
Identifying and Merging

Related Bibliographic Records

by

Jeremy A. Hylton

Submitted to the Department of Electrical Engineering and Computer Science
in partial ful�llment of the requirements for the degrees of

Master of Engineering in Electrical Engineering and Computer Science

and

Bachelor of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1996

c Jeremy A. Hylton, 1996. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part, and to grant

others the right to do so.

Author :
Department of Electrical Engineering and Computer Science

February 13, 1996

Certi�ed by :
Jerome H. Saltzer

Professor of Computer Science and Engineering, Emeritus
Thesis Supervisor

Accepted by :
Frederic R. Morgenthaler

Chairman, Departmental Committee on Graduate Theses

Identifying and Merging Related Bibliographic Records

by

Jeremy A. Hylton

Submitted to the Department of Electrical Engineering and Computer Science
on February 13, 1996, in partial ful�llment of the

requirements for the degrees of
Master of Engineering in Electrical Engineering and Computer Science

and
Bachelor of Science in Computer Science and Engineering

Abstract

Bibliographic records freely available on the Internet can be used to construct a high-
quality, digital �nding aid that provides the ability to discover paper and electronic
documents. The key challenge to providing such a service is integrating mixed-quality
bibliographic records, coming from multiple sources and in multiple formats. This
thesis describes an algorithm that automatically identi�es records that refer to the
same work and clusters them together; the algorithm clusters records for which both
author and title match. It tolerates errors and cataloging variations within the records
by using a full-text search engine and an n-gram-based approximate string matching
algorithm to build the clusters. The algorithm identi�es more than 90 percent of the
related records and includes incorrect records in less than 1 percent of the clusters.
It has been used to construct a 250,000-record collection of the computer science
literature. This thesis also presents preliminary work on automatic linking between
bibliographic records and copies of documents available on the Internet.

The thesis will be published as M.I.T. Laboratory for Computer Science Technical
Report 678.

Thesis Supervisor: Jerome H. Saltzer
Title: Professor of Computer Science and Engineering, Emeritus

Acknowledgments

I would like to thank

� Jerry Saltzer, my thesis adviser, for his detailed criticism of this thesis. He

helped me, in particular, to chose my words more carefully and use them more

precisely.

� Mitchell Charity for many conversations that helped to shape the design and

implementation of the system described in this thesis. He frequently provided

a valuable sounding board for ill-formed ideas.

� Tara Gilligan and my parents, Bill and Judi, for their patience and support as

I �nished a thesis that took longer than any of us expected. My father, who as

a writer and editor is so familiar with �nishing the manuscript, o�ered exactly

the encouragement and commiseration I needed.

This work was supported in part by the IBM Corporation, in part by the Digi-

tal Equipment Corporation, and in part by the Corporation for National Research

Initiatives, using funds from the Advanced Research Projects Agency of the United

States Department of Defense under grant MDA972-92-J1029.

6

Contents

1 Introduction 15

1.1 What is a digital library? : 15

1.2 Integrating bibliographic databases : : : : : : : : : : : : : : : : : : : 16

1.3 Overview of related work : 18

1.3.1 Networked information discovery and retrieval : : : : : : : : : 18

1.3.2 Libraries and cataloging : 20

1.3.3 Database systems : 20

1.3.4 Information retrieval : 22

2 Cataloging and the Computer Science Collection 23

2.1 Bibliographic relationships and cataloging : : : : : : : : : : : : : : : 23

2.1.1 Issues in cataloging and library science : : : : : : : : : : : : : 25

2.1.2 Taxonomy of relationships between records : : : : : : : : : : : 27

2.1.3 Expressing relations between Bibtex records : : : : : : : : : : 29

2.2 Practical issues for identifying relationships : : : : : : : : : : : : : : : 30

2.2.1 Bibtex record format : 31

2.2.2 CS-TR record format : 32

2.2.3 MARC records : 33

2.2.4 E�ects of cataloging practices : : : : : : : : : : : : : : : : : : 34

7

2.3 Describing the contents of DIFWICS : : : : : : : : : : : : : : : : : : 35

2.3.1 Subjects covered in collection : : : : : : : : : : : : : : : : : : 36

2.3.2 Other characteristics of collection : : : : : : : : : : : : : : : : 38

3 Identifying Related Records 41

3.1 Record comparison in the presence of errors : : : : : : : : : : : : : : 42

3.2 Algorithm for author-title clusters : 43

3.2.1 Comparing author lists : 45

3.2.2 String comparisons with n-grams : : : : : : : : : : : : : : : : 46

3.2.3 Performance of algorithm : 48

3.3 Other systems for identifying related records : : : : : : : : : : : : : : 50

3.3.1 Duplicate detection in library catalogs : : : : : : : : : : : : : 51

3.3.2 The database merge/purge problem : : : : : : : : : : : : : : : 54

3.4 Analysis of author-title clusters : 54

4 Merging Related Records 59

4.1 Goals of merger and outline of process : : : : : : : : : : : : : : : : : 60

4.2 Creating the union record : 62

4.2.1 Problems with union records : : : : : : : : : : : : : : : : : : : 63

4.2.2 Re�nements to merger process : : : : : : : : : : : : : : : : : : 66

4.3 Clusters sizes and composition in DIFWICS : : : : : : : : : : : : : : 68

5 Presenting Relations and Clusters 71

5.1 The basic Web interface : 72

5.2 Assessing the quality of union records : : : : : : : : : : : : : : : : : : 73

6 Automatic linking 79

6.1 Searching for related Web citations : : : : : : : : : : : : : : : : : : : 79

6.2 Principles for fully-automated system : : : : : : : : : : : : : : : : : : 81

8

7 Conclusions and Future Directions 85

7.1 Future directions : 85

7.1.1 Performance, portability, and production : : : : : : : : : : : : 85

7.1.2 Improving the quality of records : : : : : : : : : : : : : : : : : 87

7.1.3 Identifying other bibliographic relationships : : : : : : : : : : 88

7.1.4 Integrating non-bibliographic information : : : : : : : : : : : : 89

7.1.5 Enabling librarianship and human input : : : : : : : : : : : : 90

7.2 Conclusions : 91

9

10

List of Figures

2-1 Number of citations per year in bibliography collection and ACM Guide

to Computing Literature : 38

2-2 Distribution of records by size : 39

2-3 Distribution of Bibtex records, arranged by the number of �elds used 40

3-1 N-gram comparison of two strings with a letter-pair transposition : : 48

3-2 Errors in author-title clusters for 937-record sample : : : : : : : : : : 55

3-3 Two falsely matched records : 56

4-1 CS-TR records for one TR from two publishers : : : : : : : : : : : : 64

4-2 Bibtex records exhibiting the conference-journal problem : : : : : : : 65

4-3 Variation in �elds values within author-title clusters of the same type 70

5-1 Sample author-title cluster display from Web interface : : : : : : : : 74

5-2 Source match and �eld consensus ratios for cluster including a false

match : 77

5-3 Source match and �eld consenus ratios for correct cluster : : : : : : : 77

11

12

List of Tables

2.1 Versions of the Whole Internet Catalog cataloged in the OCLC union

catalog : 27

2.2 Bibtex document types : 32

3.1 Statistics for size of potential match pools : : : : : : : : : : : : : : : 50

4.1 Cluster sizes : 68

4.2 Souce records, by type : 69

13

14

Chapter 1

Introduction

The growth in the volume of information available via computer networks has in-

creased both the usefulness of network information and the di�culty of managing

it. The information freely available today o�ers the opportunity to provide library-

like services. Organizing the information, which is available from many sources and

in many forms, is one of the key challenges of building a useful information ser-

vice. This thesis presents a system for integrating bibliographic information from

many heterogeneous sources that identi�es related bibliographic records and presents

them together. The system has been used to construct the Digital Index for Works

in Computer Science (DIFWICS), a 240,000-record catalog of the computer science

literature.

1.1 What is a digital library?

The term digital library is used widely, but little consensus exists about what exactly

a digital library is. Before discussing the kind of information sources used to construct

the library and how these sources were integrated, it is useful to clarify the term and

explain how the particular vision of a digital library a�ected the design of the system.

15

The digital library envisioned here is a computer system that provides a single

point of access to an organized collection of information. The digital library is, of

course, not a single system, but a loose federation of many systems and services;

nonetheless, in many cases it should appear to operate as a single system. Providing

interoperability among these systems remains a major research topic [25].

One kind of interoperability that is sometimes overlooked is the interoperation

between physical and digital objects in the library. Most documents exist today

only on paper, and digital libraries must provide access to both paper and digital

documents to be able to satisfy most users' needs.

The components of the digital library serve many purposes, including the storage

of information in digital repositories, providing aids to discovering information that

satis�es users' needs, and locating the information that users want. The integrated

database of bibliographic records addresses the discovery process. It o�ers an index

of document citations and abstracts.

1.2 Integrating bibliographic databases

The emphasis of the research reported here is to make e�ective use of the diversity

of bibliographic information freely available on the Internet. At least 450,000 biblio-

graphic records describing the computer science literature are freely available, mostly

in the form of Bibtex citations; they describe a large part of the computer science

literature, but they very widely in quality and accuracy. Nonetheless, when combined

with papers available from researchers' Web pages and servers and with on-line library

catalogs, these records provide enough raw data to build a fairly useful library.

The bibliographic records present many challenges for creating an integrated in-

formation service. The records contain typographical and cataloging errors; there are

many duplicate records; and there are few shared standards for entering information

16

in the records. The records come from many sources: Some are prepared by librari-

ans for their patrons, others come from individual authors' personal collections or are

assembled from Usenet postings.

Although the heterogeneity of the source records poses a problem for combining

all the records into a single collection, it can also be exploited to improve the quality

of the overall collection. The heterogeneity provides considerable leverage on the

problems of extracting the best possible information from records and providing links

between closely related records (an observation made by Buckland, et al. [8]). By

identifying related records, a union record can be created that combines the best

information from each of the source records.

One of the primary contributions of this thesis is an algorithm for identifying

related bibliographic records. The algorithm �nds records that share the same author

and title �elds and groups them together in a cluster of records that all describe the

same work; the algorithm works despite variations and errors in the source records.

The clusters produced by the algorithm may include several di�erent but related

documents, such as a paper published as a technical report and later as a journal

article. A catalog of the records, with record clusters presented together, forms the

core of DIFWICS.

DIFWICS is intended primarily as an aid to the discovery process, helping users

to explore the information collected in the library. In addition to the index of biblio-

graphic records, it provides a simple system for locating cited documents when they

are available in digital form. This second system works equally well as a means of

locating documents in a traditional library's catalog, which helps to locate physical

copies, and provides the groundwork for a more ambitious automatic linking project.

The preliminary automatic linking work, presented in Chapter 6, uses Web indexes

like Alta Vista to �nd copies of papers on the Web. When papers are available on

the Web, they are usually referenced by at least one other Web page, which includes

17

a standard, human-readable citation along with a hypertext link. Some of the same

techniques used to identify related bibliographic records in DIFWICS can be used

to �nd related citations on the Web and to link the Web pages to the bibliographic

records.

Two important characteristics of my work set it apart from related work. First, the

collection is assembled without speci�c coordination among the information providers;

this limits the overhead involved for authors and publishers to make their documents

available and makes data from many existing services available for use in the current

system. The second novel feature of this research is the algorithm for identifying re-

lated records. Systems for identifying related records in library catalogs and database

systems use a single key for record comparison; my algorithm uses a full-text index

of the records to help identify related records. The details of the duplicate detection

algorithm are presented in Chapter 3.

1.3 Overview of related work

This thesis builds on research in both computer science and library science. The

problem of duplicate detection, for example, occurs in somewhat di�erent form in the

database community (the multidatabase or semantic integration problem) and in the

library community (creating union catalogs and the de-duplication problem). This

section gives an overview of some related areas of research.

1.3.1 Networked information discovery and retrieval

Networked information discovery and retrieval (NIDR) is a broad category encom-

passing nearly any kind of information access using a large scale computer network

[26]. DIFWICS is an example NIDR application and is informed by a variety of work

in this area.

18

This thesis touches at least tangentially on many NIDR issues|including locating,

naming, and cataloging network resources|but the clearest connection is to several

projects that have used the World-WideWeb and other Internet information resources

to provide access to some part of the computer science literature. These systems work

primarily with technical reports, because they are often freely available and organized

for Internet access by the publishing organization.

The Uni�ed Computer Science Technical Report Index (UCSTRI) [43] automat-

ically collects information about technical reports distributed on the Internet and

provides an index of that information with links to the original report.

The Harvest system [6] is a more general information discovery system that com-

bines tools for building local, content-speci�c indexes and sharing them to build

indexes that span many sites; these tools include support for replicate and caching.

The Harvest implementors developed a sample index of computer science technical re-

ports. Harvest was designed to illustrate the principles for scalable access to Internet

resources described in Bowman, et al. [7].

A third system is the Networked Computer Science Technical Report Library

(NCSTRL) [12], which uses the Dienst protocol [21]. Dienst provides a repository

for storing documents, a distributed indexing scheme, and a user interface for the

documents in a repository.

All three systems rely, in vary degrees, on publishers for making documents avail-

able and providing bibliographic information. The publisher-centric model is lim-

iting. Information not organized by publishers, including most online information,

lacks standards for naming and cataloging.

Other systems, like Alta Vista and Lycos, index large quantities of information

available via the World-Wide Web. They are not selective about the material they

index, and are somewhat less useful for information retrieval purposes as result. If

a user is looking for a particular document, however, and has information like the

19

author and title, these indexes can be quite useful for �nding it (if it is available).

Not only do these Web indices index the papers themselves, but they index pages

that point to the papers. Chapter 5 discusses some possibilities for integrating these

citations with the more traditional bibliographic citations used to build the computer

science library.

1.3.2 Libraries and cataloging

The recent development of library-like services for using network information, like

UCSTRI or Harvest, parallels the traditional library community's development of

large-scale union catalogs and online public access catalogs in the late 70s and early

80s. The OCLC Online Union Catalog merged several million bibliographic records

and developed one of the �rst duplicate detection systems [18].

More recently, the library community has begun to re-evaluate its cataloging stan-

dards. Several papers [5, 15, 40, 48] suggest that catalogers should focus more on

describing \works"|particular, identi�able intellectual works|rather than \docu-

ments"|the particular physical versions of a work. For example, Shakespeare's play

Hamlet is a clearly identi�able work; it has been published in many editions, each a

\document."

This thesis makes use of this distinction when it labels as duplicates records for

di�erent documents that instantiate a particular work. Levy and Marshall [24] raise

similar questions about how people actually use libraries in their discussion of future

digital libraries.

1.3.3 Database systems

Heterogeneous databases di�er from more conventional database systems because

they included distributed components that do not all share the same database model;

20

the component databases may have di�erent data models, query languages, or sche-

mas [13]. One of the problems that arises in multidatabase systems is the integration

of the underlying schemas to provide users with a standard interface.

Duplicate detection is closely related to integration of heterogeneous databases,

but is complicated by the fact that bibliographic formats impose little structure on

the data they contain; the wide variations in quality and accuracy that typify col-

lections of Bibtex records further complicate the problem. Papakonstantinou, et al.

[30] present a more thorough discussion of the di�erences between the integration of

databases and the integration of information systems like bibliographic record collec-

tions. The merge/purge problem described by Hern�andez and Stolfo [17] implements

a duplicate detection system for mailing lists that copes with variations and errors

in the underlying data by making multiple passes over the data, each time using a

di�erent key to compare the records.

Mediators [45] are a di�erent approach to the problem of integrating information

from multiple sources. Mediators are part of a model of the networked information

environment that includes database access as its lowest level and users and informa-

tion gathering applications at the top level. The mediators operate in between the

databases and the users, providing an abstraction boundary that captures enough

knowledge about various underlying databases to present a new, uniform view of that

data to users.

Data warehousing extends the mediator model by creating a new database that

contains the integrated contents of other databases rather than providing a dynamic

mediation layer on top of them. DIFWICS integrates distributed bibliographies in a

similar way.

21

1.3.4 Information retrieval

Duplicate detection in information retrieval is at the opposite end of the spectrum

from database schema integration; information retrieval deals with the full-text of doc-

uments with little or no formal structure. Duplicate takes on a wider meaning in this

�eld: Consider a search for stories about an earthquake in a collection of newspaper

articles; there are probably many stories about the earthquake, from many di�erent

news sources. The stories are duplicates because their content overlaps substantially

and not because of some external feature like their title or date of publication. Yan

and Garcia-Molina [49] provide a more detailed discussion of duplicate detection in

this context.

22

Chapter 2

Cataloging and the Computer

Science Collection

This chapter introduces the conceptual framework for creating, using, and relating

bibliographic records. It also discusses some of the more practical issues associated

with the speci�c records used in the experimental computer science library.

2.1 Bibliographic relationships and cataloging

Bibliographic records have traditionally described speci�c physical objects or units of

publication. This thesis describes a di�erent use of bibliographic information and a

di�erent focus for cataloging: I use bibliographic records to describe a work instead

of a particular document. The term work is used here to mean a unit of intellec-

tual content, which may take on one or more published forms (or none at all); each

published form is a document. A paper, presented at a conference and later revised

and published in a journal or collected in a book, is a work, each version a di�erent

\document."

I emphasize the work over the document because I believe that the primary use of

23

the library catalog is to �nd works. A patron looking for a copy of Hamlet is usually

looking for the work Hamlet, and, depending on circumstance, any particular copy of

Hamlet might do. The library catalog should help patrons identify the works available

and then chose a particular document, based on the patron's needs.

The MIT library catalog, for example, returns a list of 17 items as the result

of a title search for \Hamlet." It takes careful review to determine that the list

contains eight copies of Shakespeare's play, three recorded performances, one book

about performances, three musical works inspired by the play, and two copies of

Faulkner's novel titled The hamlet. (Copies that exist in various collected works do

not appear in the search results.)

The Hamlet search illustrates the problem of cataloging particular documents but

not the works they represent. Deciphering the search results took several minutes and

required study of the source bibliographic records to determine exactly what each

item was. The search results would be easy to understand if they were organized

around works and relationships. The eight copies of the play are all versions of the

same work, Hamlet, and the performances might be considered derivative works. In

a music library, it might be useful to highlight the three distinct musical works, and

note that each is related to the play.

This chapter discusses recent work in library science that suggests catalogers

should focus on the work instead of the document. It presents a taxonomy of bibli-

ographic relations, which helps to clarify the di�erence between a work and a docu-

ment, and it discusses the experimental collection these theories will be applied to, a

collection of 250,000 computer science citations.

24

2.1.1 Issues in cataloging and library science

Standards for cataloging and for using bibliographic information are a current subject

of research in the library community. Two majors themes run through several recent

papers [5, 15, 37, 48]:

� Library catalogs should make is easier for users to understand relationships be-

tween di�erent entries. In particular, catalogs should identify particular works.

� Increasingly bibliographic information is being used to �nd information in a

networked environment, where the catalog of bibliographic records is less likely

to described the contents of local library and more likely to be a union catalog.

The most recent theoretical framework for descriptive cataloging was formulated

in the 1950s by Seymour Lubetzky. According to Wilson [48], Lubetzky suggested the

library catalog serves two functions: the �nding function and the collocation function.

The �nding function. If a patron knows the author, the title, or the subject of the

book, the catalog should enable him or her to determine whether the library

has the book.

The collocation function. The catalog should show what the library has by a par-

ticular author or on a particular subject, and it should show the various editions

or translations of a given work.

Current cataloging practice places more emphasis on the �rst function than the

second. This emphasis is strange, Wilson says, because most discussions of the theo-

retical background conclude that patrons are not interested in particular documents,

so much as in the works they represent. The catalog standards result partly from the

historical development of catalogs as simple shelf lists and partly from the ease of

25

cataloging discrete physical objects, rather than works, which might constitute only

part of an object or span several of them.

The emphasis on the physical object over the work is inadequate in several ways.

The user's interest in the work rather than the document has already been noted.

Smiraglia and Leazer [37] note that anecdotal evidence supports this claim and that

catalog usage studies show that the bibliographic �elds used to di�erentiate between

variant editions are seldom used.

Library catalogs and other collections of bibliographic records are used increasingly

as networked information discovery and retrieval tools, where discovering what kinds

of works exist is more important than �nding out which works are in the local library.

When a user wants an item, there are many other retrieval options other than the

local library, including an Internet search and inter-library borrowing.

Trends in publishing make the bibliographic model increasingly unwieldy: Elec-

tronic publishing and advances in paper publishing technologies have made it easy to

change and update documents. As a result, it is now common for each new printing

of a book to incorporate some corrections and additions or for authors to publish

electronic copies of their papers that include changes made after print publication.

OCLC cataloging rules require a new bibliographic record be created for each copy

of a work that has di�erent date of impression and di�erent text. Heaney [15] cites

a message from Bob Strauss to the Autocat mailing list that describes the problem;

Strauss observes that between the original publication of Ed Krol's Whole Internet

Catalog in 1992 and his search on Dec. 2, 1993, nine di�erent versions have been

cataloged in the OCLC union catalog (see Table 2-1).

The problem raises two questions: First, is it sensible to create new records to

describe each version of a document? Second, should the average user be exposed to

this level of detail? The answer to the �rst question is unclear; the answer to the

second, in many cases, may be no.

26

Number Holdings Feature
1 323 1992
2 10 minor corr, 1992
3 883 [Corr ed]
4 968 1st ed (same as #1?)
5 51 July 1993, minor corr.
6 136 \May 1993"
7 116 [Corr ed] (1993)
8 19 [Corr ed]
9 132 \Feb. 1993; minor corr"

total 2638

Table 2.1: Versions of the Whole Internet Catalog cataloged in the OCLC union
catalog

2.1.2 Taxonomy of relationships between records

Tillett [41] and others have developed taxonomies of bibliographic relationships. Till-

ett's taxonomy provides a useful vocabulary for discussing the di�erent kinds of doc-

uments that describe the same work, as well as relationships between di�erent works.

The seven categories presented here are based on Tillett's taxonomy, although some

of the categories are slightly di�erent.

Equivalence relationship. Equivalence holds between records that describe the

same document but in di�erent mediums, e.g. reprint, micro�lm, original book.

Derivative relationship. The derivative relation holds between di�erent versions

of the text, e.g. di�erent editions or translations, arrangements or adaptations.

Referential relationships. The referential relationship holds when one document

explicitly contains a reference or link to another document. Tillett describes

reviews, critiques, abstracts, and other secondary references as \descriptive"

relations; the referential category expands Tillett's de�nition to include other

kinds of references between works, including citations of one work within an-

27

other and survey articles.

In an online environment, where a paper's citation list may be as accessible as

standard bibliographic information, this expanded notion seems useful.

Sequential relationship. The sequential, or chronological, relationship describes

documents intentionally published as a sequence or group. Examples included

the successive issues of a journal or volumes of a book series, like an almanac

or encyclopedia.

Hierarchical relationship. The hierarchical relationship holds between the whole

and the parts of a particular work. It applies to relations between a book and

its chapters, and vice versa, or articles in a journal or collection. (Tillett prefers

the term \whole-part" relationship.)

Accompanying relationship. The accompanying relationship holds between two

documents that are intentionally linked, but not necessarily in a hierarchical

relationship. Examples include a textbook and an instructional supplement,

or a concordance, index, or catalog that describes another work (or group of

works).

\Shared characteristic" relationship. The \shared-characteristic" relationship

holds between bibliographic records that have the same value in a particular

�eld. It is a kind of catch-all category that describes almost any sort of rela-

tionship; the relation seems to be most useful for �elds like publisher, subject

heading, or classi�cation code, but year of publication or page count are also

potentially shared characteristics.

User queries are another example of a kind of shared characteristic relationship.

The results of a query all share the particular characteristic described by the

query.

28

2.1.3 Expressing relations between Bibtex records

Identifying and representing each of the relationships described in the previous section

is beyond the scope of this thesis. Instead, I focus on identifying a limited set of

relationships and presenting the rough form of a user-interface for those relationships.

The algorithm presented in the next chapter identi�es related records based on

the author and title �elds; if the �elds are the same, it concludes the records describe

the same work. Two relationships hold between records in such a cluster: equivalence

and derivative relationships; some records will be duplicate citations of the same

document and others will cite di�erent documents that represent the same work.

Identifying works is di�cult. Even when a human cataloger is reviewing two

bibliographic records, it can be di�cult to tell it they describe the same work without

referring to actual copies of the cited work. A cluster is an algorithmically-generated

set of related records, which may or may not be the same as the actual set of records

for a particular work. A cluster generated by one algorithm may be better in one

way or another than a cluster generated by a di�erent algorithm. (Indeed, the next

chapter describes several algorithms that identify only duplicate records and do not

consider works.)

This thesis uses author-title clusters, which identi�es a work as a unique author

and title combination. Any pair of records with the same title and same authors

are considered equivalent for the purpose of creating an author-title cluster, although

there may be unusual cases where this test does not discriminate between two di�erent

works.

Using the term equivalent requires some care; it sounds simple enough, but equiv-

alence depends entirely on the context in which some equivalence test is applied.

(Consider, for example, the four di�erent equality tests in Common Lisp [38].) The

records in an author-title cluster are equivalent for the purpose of identifying a work,

29

but are probably not equivalent for the purpose of locating the work in a library or

retrieving it across the network.

The two uses of equivalent above isolate two separate problems that must be ad-

dressed in a catalog that is work-centered, but constructed from bibliographic records

that have not been prepared with this use in mind. The �rst problem is identifying

the works described by the records in the catalog. The second problem is identifying

the separate documents in the author-title cluster and presenting them as di�erent

instances of the main work. This process involves identifying the di�erent documents

within the cluster and merging duplicate citations for each document into a single,

composite record.

The derivative relation holds between the di�erent documents in an author-title

cluster, but identifying each di�erent document is complicated by many factors, in-

cluding the version problem and the di�culty of relying on Bibtex for �nely-nuanced

descriptions. I solve a simpli�ed version of the problem by using the Bibtex entry

type to identify the di�erent, horizontal classes of records within a cluster. Thus, a

cluster might be presented to the user as containing two document types|an article

and a technical report|but would not distinguish between, say, di�erent editions of

a book.

2.2 Practical issues for identifying relationships

Bibliographic formats a�ect how well relationships and works can be identi�ed. The

format not only dictates what information can be recorded, but also tends to a�ect

the practice of recording.

Many freely available bibliographic records use the Bibtex format [22], which is

used to produce citations lists in the LaTeX document preparation system. About

90 percent of the records in DIFWICS are Bibtex records.

30

Being able to accept bibliographic records in any format is a design goals of

DIFWICS, because it minimizes the need for coordination among publishers, cat-

alogers, and libraries and maximizes the number of records available for immediate

use.

Because other bibliographic formats, like Refer or Tib, are less common than

Bibtex records, the current implementation supports only one other bibliographic

format, the CS-TR format developed as part of the Computer Science Technical

Report Project (CS-TR) [19] and de�ned by RFC 1807 [23].

The two formats di�er in both syntax and semantics, so using both formats inter-

changeably requires a common format that both can be converted into. The common

format involves some information loss, when one format captures more information

about a particular �eld than the other format is capable of expressing. For example,

the CS-TR format has separate �elds for authors and corporate authors, but Bibtex

has only a single author �eld for both kinds of author; the common format does not

capture the distinction, because it is not possible to determine which kind of author

is being referred to in Bibtex.

Several characteristics of the Bibtex and CS-TR formats a�ect the design of the

library and the kinds of bibliographic relationships that can be identi�ed. Bibtex

is currently used as the common format, because Bibtex is capable of describing

any document that can be described with a CS-TR record (albeit with some loss of

information).

2.2.1 Bibtex record format

Bibtex �les are used for organizing citations and preparing bibliographies. The format

is organized around several di�erent entry types (see Table 2-2), which describe how

a document was published. Each type uses several of the two dozen standard �elds

31

Article MastersThesis
Book Misc
Booklet PhDThesis
InBook Proceedings
InCollection TechReport
InProceedings Unpublished
Manual

Table 2.2: Bibtex document types

to describe the publication.

The format is very exible. There are few rules governing precisely how a �eld

must be formatted and users are encouraged to de�ne their own �elds as necessary.

The individual �elds fall into three categories|required, optional, and ignored|

depending on the document type; the journal �eld is required for an Article, but

ignored for a TechnReport. Ignored �elds allow users to de�ne their own �elds.

Throughout this thesis, I call the required and optional �elds the standard �elds and

the ignored �elds non-standard.

Most of the speci�c �elds are easy to use, process, and understand|like month,

year, or journal|but a few �elds contain unstructured information about the docu-

ment being cited, notably note, annote, abstract, and keywords. In practice, the note,

annote, and (non-standard) keywords �eld often appear to be confused; the note �eld

is intended for miscellaneous information to print with a citation and the annote �eld

for comments about the cited document, such as would be included in an annotated

bibliography.

2.2.2 CS-TR record format

The CS-TR format was designed speci�cally for universities and R&D organizations to

exchange information about technical reports. The �elds it uses are geared speci�cally

towards describing technical reports, allowing a more detailed description of technical

32

reports than standard Bibtex �elds, but limits its usefulness for describing other

documents.

CS-TR de�nes a few mandatory �elds used for record management and 25 other

�elds, all of which are optional. Some of the �elds can be easily converted to Bibtex|

CS-TR date maps to Bibtex month and year (with loss of the day) and CS-TR title

is the same as Bibtex title. Most of the CS-TR �elds don't have an analogue in the

standard Bibtex �elds, and must be omitted or placed in a non-standard �eld or the

note �eld.

2.2.3 MARC records

MARC is the predominant bibliographic format in the library community. While it is

not used by the system presented here, the MARC record makes an interesting point

of comparison.

The MARC record is a highly structured format; its use emphasizes precise la-

bels for �elds and detailed descriptions of the items being cataloged. Crawford [11]

provides an overview of MARC and its use in libraries; he observes that all MARC

records share �ve characteristics:

� Each record has a title or identifying name.

� Each object is produced, published, or released at a speci�c time, by a speci�c

person or group.

� Each object is described physically.

� Most non�ction objects have subjects|what the object is about.

� Notes are made about what is being cataloged, e.g. restrictions on use or notes

about the reproduction.

33

The MARC format de�nes several hundred �elds, many of which have sub�elds,

that specify the format and content of the �eld values exactingly. The primary �eld

used for author (�eld number 100, "Main Entry{Personal Name"), has sub�eld codes

for specifying the personal name, titles or dates associated with the name, and fuller

forms of the name; another code indicates whether the personal name begins with a

forename, single surname, or multiple surnames.

MARC's precision makes comparing records more di�cult for several reasons.

There is more opportunity for small errors in MARC; several di�erent �elds can be

used to enter the same information; and there is some exibility as to how much

information must be entered. Users of electronic library catalogs will probably be

familiar with the problem of determining when two author entries are the same|

separate listings appear when one record has date of birth, while another has dates

of birth and death and a third may contain a fuller form of the author's name.

The practical implication of the di�erences between MARC records and citation-

oriented records like Bibtex is that while Bibtex records are not as rich in information

they provide a much simpler structure for extracting information, like author and title,

which are used to distinguish between di�erent works.

2.2.4 E�ects of cataloging practices

Bibtex's exibilty allows people to enter information in many ways. The use of

abbreviations in �elds values is very common, which makes it di�cult to compare

two �elds to see if they have the same value; ignoring capitalization, Communications

of the ACM is abbreviated variously as \CACM", \C. ACM", \C.A.C.M.", \Comm.

ACM", \Comm. of the ACM (CACM)", etc.

Notes about the document, e.g. that it is an abstract only or that it is a revised

edition, are entered in many di�erent ways. Although the notes �eld seems to be

34

the most likely candidate for this information, it is variously entered in the title �eld

(complicating comparisons), in the note or annote �eld, or in the edition �eld (where

\2nd" is as likely as \second").

There appears to be less variation among the di�erent sources of CS-TR records,

because the de�nition of each �eld is fairly speci�c and because technical reports have

fewer unusual cases than other document types.

The problems of abbreviations and variations are less pronounced in CS-TR

records because they are produced by the publishing institutions, which tend to be

consistent within their own records. CS-TR records are also easier to handle because

many of the �elds are unused in the records available today; more than half the

records use no more than seven descriptive �elds.

2.3 Describing the contents of DIFWICS

DIFWICS incorporates bibliographic records from two major collections available

on the Internet. The primary source is Alf-Christian Achilles' collection of 450,000

Bibtex records, titled \A Collection of Computer Science Bibliographies" [2]. This

work organizes several hundred individual collections of varying size and quality. The

second source is the CS-TR records produced by the �ve participants in the CS-TR

project; the collections is composed of approximately 6,000 technical report records

from Berkeley, Carnegie Mellon, Cornell, M.I.T., and Stanford.

The �rst collection requires some explanation to understand what kinds of records

it provides and how they a�ect the system for identifying related records. The individ-

ual bibliographies fall into three major categories|personal bibliographies organized

by individual researchers, journal and conference proceedings bibliographies, and bib-

liographies organized around a particular subject. Although Bibtex is commonly used

to prepare citation lists for papers, none of the source �les suggest they were prepared

35

for that purpose.

There are only a few personal bibliographies, but each is quite large and appears to

have been created and checked with some care. Joel Seiferas's collection holds 43,000

theory citations and Gio Wiederhold's collection holds 10,000 citations, mostly about

databases.

The journal and conference bibliographies tend to be fairly complete listings of

the articles or papers published. The bibliography for the Journal of the ACM, for

example, includes every article published from 1954 to 1995.

The topical collections range widely from a 5,000-record collection on program-

ming languages and compilers to a 24-record collection on fuzzy Petri nets.

2.3.1 Subjects covered in collection

Achilles has organized the collection into major subject areas and we have selected

an arbitrary subset of the records in each category to include in DIFWICS|in all,

about 240,000 records; the remainder of the collection had not been processed at the

time of this writing. A brief description of each categories and the number of records

included from it follows. (Sizes are rounded to the nearest 5,000.)

Arti�cial Intelligence. 30,000 records covering most areas of AI, with most exten-

sive coverage of logic programming and natural language processing. Includes

13 journal bibliographies.

Compiler Technology and Type Theory. 20,000 records covering programming

languages and compilers. Includes �ve journals and six conferences.

Databases. 20,000 records. Half from personal collection of Gio Weiderhold. In-

cludes one journal and one conference.

36

Distributed Systems. 10,000 records. Scattered coverage of networking, distribut-

ed systems (including Mach and Amoeba bibliographies), mobile computing.

Graphics. 15,000 records covering topic including vision and ray tracing. Includes

complete SIGGRAPH bibliography, �ve journals.

Mathematics. 5,000 records. Computer algebra, ACM Transactions on Mathemat-

ical Systems, applied statistics.

Neural Networks. 5,000 records. Sampling of a few seemingly representative col-

lections.

Object-Oriented Programming and Systems. 5,000 records. Includes OOP-

SLA and ECOOP proceedings.

Operating Systems. 10,000 records. Mostly from the Univ. of Erlangen library

and a USENIX bibliography.

Parallel Processing. 15,000 records. Broad coverage, including transputers, multi-

processors, numerical methods, parallel vision. Many journals and conferences.

Software Engineering. 10,000 records. Process modelling, speci�cation, veri�ca-

tion. Includes three journals.

Theory. 60,000 records. Major topics include concurrency, hashing, logic, term

rewriting, cryptography, and computability. Mostly from the Seiferas collec-

tion, which includes citation from 34 journals and conferences. Also includes

two journals and two conferences.

Miscellaneous. 35,000 records. Records that do not �t into the other categories or

span multiple categories. Includes 5,000 record from the SEL-HPC archive, a

3,200-record Communications of the ACM bibliography, and 16 other journals.

37

Figure 2-1: Number of citations per year in bibliography collection and ACM Guide

to Computing Literature

Half the records included in the computer science library cite documents pub-

38

Figure 2-2: Distribution of records by size

The source records range in size from from 50 bytes to 10,000 bytes, but more

39

Figure 2-3: Distribution of Bibtex records, arranged by the number of �elds used

40

Chapter 3

Identifying Related Records

Libraries have faced the problem of duplicate records for more than 20 years; as they

developed computer systems for managing library catalogs and, in particular, for shar-

ing bibliographic records in a networked environment, duplicate records were identi-

�ed as a problem and techniques for eliminating them were developed. Traditional

de-duplication, however, is signi�cantly di�erent from identifying all the citations of

a particular work; in many ways, identifying works is easier.

This chapter describes in detail the algorithm for identifying author-title clusters

and the characteristics of the source records that make this problem hard. It presents a

novel algorithm that uses randomized full-text searches to detect potential duplicates.

The algorithm is analyzed and two kinds of failures are examined|including a record

in a cluster when it cites a di�erent work (false match) and creating two di�erent

clusters whose members describe the same work (missed match). The chapter also

surveys other approaches to identifying related records|two early systems used for

de-duplication in library catalogs and a recent multidatabase integration system.

41

3.1 Record comparison in the presence of errors

The record comparison test addresses three sources of variation between records that

describe the same document: entry errors, which are primarily typographic, di�er-

ences in cataloging standards, and abbreviations.

Entry errors are unintentional errors made during the creation and transcription

of bibliographic records. The most common entry errors are simple misspellings

and typographical errors, but improperly formatted records and records which omit

required �elds are also common. Typical format errors include placing information

in the wrong �eld, such as putting the month and year in the year �eld, or not using

the required syntax for a �eld, e.g. entering the year as a two-digit number instead

of a four-digit number.

Misspelling and typographical errors are common to most text databases and the

literature about them is substantial. O'Neill and Vizine-Goetz's overview of quality

control in text databases [29] provides a thorough, though somewhat dated discussion

of the sources of errors and some techniques for correcting them; Kukich [20] surveys

techniques for automatically detecting and correcting spelling errors.

While entry errors are an unintentional source of variability, di�ering cataloging

standards are often intentional. Many bibliographies apply a consistent set of cata-

loging rules, but the standards are quite di�erent from one bibliography to another.

Cataloging standards a�ect what kind of information is recorded in a citation and

where it is recorded. If a citation describes an extended abstract, for example, some

bibliographies record that fact in the title �eld and others record it in the note or

annote �eld.

Cataloging standards also determine what document type the citation is assigned

or whether a new citation is created for each instance of publication. When an article

is published more than once, some databases include a record that describes one of

42

the publications fully and includes information about the other publication in one of

the comment �elds. Similarly, many conference proceedings are published as issues

of a journal; sometime these articles are cataloged as Bibtex InProceedings citations

and other times as Article.

Authors' names are a particular source of trouble. The same name can be cat-

aloged many ways: last name only, �rst initial and last name, all initials and last

name, �rst name and last name, etc. In a list of authors, some bibliographies include

only the �rst author (only sometimes indicating that there are other authors) and

others include all the names.

Unusual names frequently cause problems. In a sample of 1,000 records, 14 uses

of \Jr." were found, but none follow the speci�ed format [22]. The correct placement

of \Jr." within the author string is: \Steele, Jr., Guy L."

Abbreviations are another source of problems caused by di�erences in cataloging.

Journal and conference names and publishers are abbreviated in many non-standard

ways, making comparisons using these �elds di�cult. (Bibtex allows users to de�ne

abbreviations within a Bibtex �le; the abbreviations are expanded when a bibliogra-

phy is processed. These are not the abbreviations discussed here; rather, the problem

lies with abbreviations in the actual text of the �eld.)

The problems posed by abbreviations are not addressed here. Abbreviations are

seldom used in the author or title �elds, so they do not present a problem for identi-

fying related records. The problem is discussed in somewhat more detail in Chapter 6

in the section on authority control.

3.2 Algorithm for author-title clusters

The algorithm for identifying clusters of related records considers each record in the

collection and determines whether it has (approximately) the same author and title

43

�eld as any other record. There are two primary concerns for the algorithm's design.

First, the algorithm should avoid comparing each record against every other record|

an O(n2) proposition. Second, the algorithm, and in particular the test for similarity,

must cope with the kinds of entry errors described above.

The algorithm uses two rounds of comparisons to identify author-title clusters.

The �rst round creates a pool of potentially matching records using a full-text search

of the entire collection; the pool consists of the results of three queries, with words

randomly selected from the author and title of the source record. (The index, however,

includes words that appear anywhere in a record, not just in the author and title

�elds.) In the second round, each potential match is compared to the source record,

and an author-title cluster is created for the matching records.

Three di�erent queries are used to construct the potential match pool. Each query

includes one of the authors' last names and two words from the title �eld. Title words

that are either one- and two-letters long or are in the stoplist, which includes the 50

most common words in the index, are not used. In cases where there are not enough

words to construct three full queries, queries use fewer words. (And in some extreme

cases only one or two queries are performed.)

The second phase of testing compares the author and title �eld of each record in the

potential match pool against the source record. It uses an n-gram-based approximate

string matching algorithm to compare the two �elds. The string matching algorithm

is explained in detail below.

The algorithm is applied to every source record, regardless of whether it has been

placed in a cluster already; thus, a cluster with �ve records will be checked by �ve

di�erent passes. The algorithm enforces transitivity between records: If record A

matches record B and record B matches C, all three are placed in the same cluster,

whether or not A matches C.

The algorithm is tolerant of format errors and typographic errors. Given a pair

44

of records that cite documents with the same author and title, the potential match

pool for one record will contain the other as long as one of the three queries contains

words that match the second record; a small number of errors is unlikely to cause a

problem. The approximate string match will tolerate variations as large as transposed

or missing words in a long title string.

3.2.1 Comparing author lists

Comparing two entries' author �elds is more complex than comparing title �elds,

because there is much wider variation in how names are entered than in how titles

are entered. Instead of comparing author strings directly, the algorithm performs a

more complicated comparison.

To compare two author entries, each author string is separated into a list of

individual authors and each name is compared; the name comparison considers each

part of the name|�rst name, last name, etc.|separately. If the names and the order

of the names both match, then the two author �eld are considered to be the same.

When one author list contains matching names, in the same order as the �rst list, but

omits names from the end of the last, the two strings are also considered the same;

testing suggested it was likely either there was a cataloging error or that the same

work had been published with slightly di�erent author lists. Finally, an author list

that includes a single name and the notation \and others" will match any list of two

or more names that has a matching �rst author. (The Bibtex format speci�es the use

of \and others," so variants like \et al." are not handled.)

Individual author names are compared by separating the two name strings into

four parts: �rst name, middle name, last name, and su�x (e.g. Jr.). Two parts of a

name match if any of three conditions is met:

1. A trigram comparison reports the strings are the same.

45

2. One of the strings is an initial and the other string is a name that starts with

that initial, or both strings are the same initial

3. Either of the strings is blank.

Thus, \G. Steele" and \Guy L. Steele Jr." are considered the same. However, \B.

Cli�ord Neuman" and \Cli�ord Neuman" are not considered the same (even though

Neuman is cited both ways).

3.2.2 String comparisons with n-grams

An n-gram is a vector representation that includes all the n-letter combinations in a

string. The n-gram vector has a component vector for every possible n-letter combi-

nation. (For an alphabet which contains the letters 'a' to 'z' and the numbers '0' to

'9', the vector space is 36n-dimensional.) The n-gram representation of a string has

a non-zero component vector for each n-letter substring it contains, where the mag-

nitude is equal to the number of times the substring occurs. The string comparison

algorithm uses 3-grams, or trigrams, so I will limit further discussion to trigrams.

Formally, a trigram vector ~A for a string s is de�ned as

~As = faaaa; aaab; : : : ; ad5f ; : : : ; a999g;

where aaaa = number of times \aaa00 appears in s:

The trigram vector for the string \record" contains four components: \rec", \eco",

\cor", and \ord." If the trigram \eco" appeared twice in the string, then aeco = 2.

The string comparison algorithm forms trigram vectors for the two input strings

and subtracts one vector from the other. The magnitude of the resulting vector

di�erence is compared to a threshold value; if the magnitude of the di�erence is less

than the threshold, the two strings are declared to be the same. If each trigram

46

appears only once in an input string, the di�erence vector is the same as the list of

trigrams that appears in one string but not the other. In general, the magnitude of

the di�erence vector for two inputs ~A and ~B is:

k ~Dk =
vuut 999X

i=aaa

(ai � bi)2

The threshold value was determined experimentally, using several dozen pairs of

strings which had been labelled the same or di�erent, based on how the algorithm

should compare them. The threshold that worked best varied linearly with the total

number of distinct trigrams in the two input strings. The threshold T used for

comparing two strings with a total of n trigrams is

T = 2:486 + 0:025n

The variable threshold allowed the test to tolerate several errors in a long title

string, such as missings words or multiple misspellings, and still work well with short

title strings. A higher, �xed threshold would have admitted many short strings that

had completely di�erent words.

The threshold was chosen using a collection of about 50 pairs of strings, each

of which was labelled a priori as the same or di�erent. The computed threshold

minimized the number of pairs that was incorrectly identi�ed. The sample strings,

however, were not chosen with great care and the e�ects of small variations in the

threshold were not studied.

The trigrams are produced by converting all strings to lower case letters and

numbers; all spaces and punctuation are removed. Most n-gram implementations

pad the string with leading and trailing spaces, so that \record" would produce a

47

s1 = \Machine Vision"
~As1 = f mac, ach, chi, hin, ine, nev, evi, vis, isi, sio, ion g

s2 = \Machien Vision"
~As2 = f mac, ach, chi, hie, ien, env, nvi, vis, isi, sio, ion g

~D = ~As1 � ~As2 = f hin, hie, ine, ien, nev, env, evi, nvi g

k ~Dk =
p
12 + 12 + 12 + 12 + 12 + 12 + 12 + 12 = 2:828

� T = 2:486 + 0:025 � 15 = 2:861

Figure 3-1: N-gram comparison of two strings with a letter-pair transposition

trigram including \ r" and \ re." My implementation, however, begins the �rst

trigram with the �rst letter and ends with the trigram that includes the last three

letters; this test is slightly more tolerant of errors at the beginning and end of strings.

Consider the example comparison in Figure 3-1 between two strings \Machine

Vision" and \Machien Vision." The di�erence vector ~D contains eight trigrams, each

appearing once, so the magnitude of the di�erence is 2.828. The threshold, based on

a count of 15 trigrams in the input, is 2.861. The strings are declared to be the same,

because the magnitude of the di�erence is just less than the threshold.

The trigram string comparator worked well enough to create author-title clusters

that tolerated small errors, but did not include �elds that a human cataloger would

consider distinct. There were some problems, however, and it seems likely that it

could be improved. Many similarity functions for string and document vectors are

discussed in the information retrieval literature; Salton [33] o�ers a brief overview.

3.2.3 Performance of algorithm

The �rst round, which identi�es a pool of potential matches, greatly reduces the num-

ber of comparisons that must be made to create author-title clusters. The brute force

48

approach|compare each record to every other record{requires O(n2) comparisons:

(n� 1) + (n� 2) + (n� 3) + : : :+ 1

=
n2 � n

2

The pool of potential matches tends to be very small; the average pool contained fewer

than 30 records when the entire 240,000 record collection was processed. The savings

over pairwise comparison is big|7.5 million comparisons instead of 31.2 billion.

The number of comparisons that must be performed grows with the average pool

size, but it is di�cult to judge how the collection size a�ects the average pool size.

The pools are the results of a full-text search that includes one of the authors' last

names (unless no authors are cited); although the number of occurrences of any word

tends to grow linearly with collection size, names behave di�erently. The number of

times \Szolovits" appears, for example, is a function of two things: how many papers

Szolovits has written and how many duplicate citations for these papers are in the

collection.

A closer examination of the potential pools that were produced while processing

the full collection helps to map out the possibilities for collections up to hundreds of

thousands of records, but does not provide a de�nitive answer.

I recorded the size of the potential match pools for the �rst 5,800 records, based

on a collection with 50,000, 125,000, and 240,000 records. (Only a single pool was

created, but records outside the �rst 50,000 were ignored for the �rst sample and

records outside the �rst 125,000 were ignored for the second sample.) The distribution

of pool sizes is roughly exponential. The majority of the pools contained fewer than

13 records in each sample. The tail of the exponential grows longer as the collection

size increases; the largest pool increases from 14,294 for the 50,000-record sample to

49

45,750 for the 240,000-record sample.

Size of collection Average pool size Median pool size
50,000 15.76 8
125,000 18.30 10
240,000 32.29 13

Table 3.1: Statistics for size of potential match pools

Most of the pools are quite small, but occasionally large pools are returned; the

latter are often caused by books with with some missing information, e.g. no au-

thor, or very common title words, e.g. \introduction to algorithms" or, worst of all,

both. A reasonable optimization might be to ignore records that contain extremely

large potential pools, and treat them as failures for which related records cannot be

recognized.

3.3 Other systems for identifying related records

Several papers describe speci�c systems for identifying duplicates records. Two early

duplicate detection projects are surveyed below|the IUCS scheme [47] and the orig-

inal OCLC On-Line Union Catalog [18]; O'Neill, et. al [28] presents some character-

istics of duplicate records in the OCLC catalog. Toney [42] describes a more recent

e�ort, and provides a good overview of the design space for library duplicate detection

systems.

The OCLC and IUCS projects were completed in the late 70s, when the library

community had just begun sharing bibliographic records among institutions and

building large online union catalogs. Subsequent work reects the general approach

mapped out in these two seminal studies.

The database merge/purge problem, described by Hern�andez and Stolfo [17], is

very similar to the duplication detection problem. In the merge/purge problem,

50

several di�erent databases with similar records must be merged and the duplicates

purged; an example is joining several mailing lists, which may contain inconsistent or

incorrect addresses.

The recent information retrieval literature contains several reports from Stanford

on duplicate detection in a Usenet awareness service [49] and several schemes for copy

detection in a digital library [35, 36]. Duplicate detection in information retrieval is

a substantially di�erent problem, because the actual content of two documents is

compared; the reported work discusses several di�erent approaches to identifying

overlapping content at the granularity of words and sentences.

3.3.1 Duplicate detection in library catalogs

The key di�erence between the OCLC and IUCS algorithms and my algorithm is

that the former identify duplicate records. Records are duplicates when they describe

exactly the same document and not just the same work. Although the precise rules

for de�ning a duplicate vary somewhat between the algorithms, they both compare

many �elds. The OCLC rules require that the following �elds match for a pair of

records to be considered duplicates: author, title, publisher, copyright date, date

of impression (if text di�ers), edition, medium, series, page or number of volumes,

illustrator, and translator.

Most techniques for duplicate identi�cation share the same gross structure: They

use two rounds of comparisons, identifying possible duplicates on the �rst round and

making more careful examination on the second round. The �rst round uses a �xed-

length key, created from one or more �eld values; records with the same key are

considered potential duplicates. A longer key, incorporating several �elds, is used for

the second round. (The second-round keys seem to be used primarily to avoid loading

entire records into memory for comparison|a concern more important in 1979 than

51

today.)

Duplicate detection keys summarize the information contained in the record; they

consist of a series of �xed-length encodings of �eld values. In the OCLC and UICS

schemes, di�erent keys are used for round one and round two of duplicate identi�ca-

tion. Fields are typically encoded in one of three ways:

1. Selecting certain characters from the �eld. The OCLC scheme uses characters

1, 2, 3, 5, 8, 13, 21, and 34 from a normalized title string to construct one of

its keys. Character selection rules can be more complicated, specifying certain

characters from speci�c words, such as the �rst and fourth characters of the

second word.

2. For �elds like reproduction code, which has a limited range of values, each

possible value can be assigned a speci�c value.

3. More complicated encodings construct hashes of normalized �eld values. The

second round of the OCLC scheme hashes the entire title into a 109-bit key. The

key is built by converting the trigrams that do not span words to integers and

applying a hash function to the sequence of integers. The IUCS scheme builds

a Harrison key [14] from trigrams. The Hamming distance between two keys

can be compared, allowing tolerance of typographical errors and other small

variations between two strings.

The IUCS scheme uses a short, �xed-length title-date key for its �rst round, taking

eight characters from the beginning and end of titles plus some date information.

(MacLaury [27] described the choice of title characters.) Records that have the same

title-date key are compared using three more keys: the �rst �ve characters of the

author �eld, a 72-bit Harrison key of the title �eld, and the highest number taken

from the various page �elds.

52

The OCLC scheme is similar. The �rst round key looks for exact matches of four

�elds|the date, record type, reproduction code, and the 8-character title selection.

The second round compares the entire key, but de�nes 16 di�erent conditions under

which the keys can be declared a match. These conditions examine di�erent parts

of the key, looking for either an exact match or partial match. Partial matches are

de�ned for only a few �elds of the key; a partial match of of Harrison keys occurs

when the bits set in one key �eld are a subset of those set in the other key. One of

the conditions for matching illustrates the approach: Two records are duplicates if

there is an exact match of the Government Document Number and page �elds, and

partial matches of the LCCN, ISBN, edition, and series �elds; partial matches occur

when one record has no value in a particular �eld.

The QUALCAT expert system [31] is an interesting alternative to the key-based

comparisons. A team of catalogers developed a set of rules that describe whether

a certain combination of �elds values makes it more or less likely that two records

are duplicates. Each record pair is described by a possibility that it is a duplicate

(poss) and the certainty it is a duplicate (cert). Initially, the cert is 0 and the poss is

100. Each rule increases the cert or lowers the poss. Once all possible rules have been

applied, a pair of records with su�ciently high cert and poss are automatically labelled

duplicates, records with low values are not, and records in between are referred to a

human cataloger for review.

The expert system was used to compare records during the second round of QUAL-

CAT testing. The �rst round was a fairly typical key-based �lter using Universal

Standard Bibliographic Code (USBC). The USBC is similar to the OCLC and IUCS

�rst rounds keys, but Toney [42] notes that it is more dependent on clean data.

Quantitative results of the QUALCAT system were not provided.

In the OCLC study, Hickey and Rypka [18] observe three major causes of failure

to match duplicates. A di�erence in the �rst 34 characters of the title string that the

53

initial date-title keys is drawn from causes 12 percent of the missed matches. The

two other causes are di�erences in place of publication and pagination.

One question that remains to be answered is whether the probalistic �rst round

proposed here o�ers any improvement over the key-based approach. Because both

systems were not available for testing, we can at best hypothesize that the randomized

text-search approach is more tolerant of errors. Word order errors, di�erences in

cataloging, and typographical errors would all cause problems for the date-title key.

The randomized text-search approach can tolerate these errors as long as one of the

three queries uses words that do not contain typographical errors. It is not a�ected

by word errors or by cataloging variations that a�ect which words are included in the

title.

3.3.2 The database merge/purge problem

The approach to the merge/purge problem used by Hernandez and Stolfo [17] is simi-

lar to the one used for duplicate detection. Their algorithm use keys to partition their

data into sets small enough that they are willing to apply computationally intensive

comparisons. The source data varies widely, so any particular key is likely to miss

many records; to overcome this problem, their algorithm makes several independent

runs over the data with di�erent keys and computes the transitive closure of the re-

sults. The accuracy of their test jumped from 70 percent with a single pass to 90

percent with three passes.

3.4 Analysis of author-title clusters

The algorithm for creating author-title clusters can fail in two ways. It can cre-

ate clusters that include citations for more than one work (a false merge) or it can

create two separate clusters that both contain citations for the same document (a

54

missed match). The author-title cluster algorithm keeps these failures to a reason-

able minimum; analysis of a sample set indicates that less than 1 percent of the

clusters contained false merges and that missed matches occurred about 5 percent of

the time.

The clusters were analyzed using a 937-record sample. The sample was selected

so that each shares at least three title words with one or more other records; this

characteristic was intended to increase the possibility of false merges. The cluster-

ing algorithm was run on the sample, and its results were examined by hand. The

algorithm determined that the sample contained 554 unique clusters.

After the algorithm was run, I checked each cluster to verify that each record

described the same document. I checked for missed matches looking for records in

other clusters that contained similar title �elds. I identi�ed potential missed matches

of a record by doing independent searches for each word in the title. (The search used

a an approximate string searching program that did not use a n-gram approach.) If

a di�erent record was returned by at least two-thirds of the agrep searches, it was

compared by hand with the source record.

According to my manual check of the records, the sample actually contained 554

unique works, 250 of which were cited by more than two records. The author-title

clusters contained four false merges and 30 missed matches.

Clusters identi�ed 554
Missed matches 30
False merges 4

Figure 3-2: Errors in author-title clusters for 937-record sample

The four false merges all involved closely related bibliographic records. In three

of the four clusters, the two di�erent works were part of a series, where each paper

was labelled part one or part two. Figure 3-2 shows an example. The papers had

55

@ArticlefMulmuley90,
title = \A Fast Planar Partition Algorithm, I",
author = \Mulmuley",
year = \1990",
journal = \Journal of Symbolic Computation",
volume = \10", g

@ArticlefMulmul91,
title = \A Fast Planar Partition Algorithm, II",
author = \K. Mulmuley",
year = \1991",
month = \[1]",
pages = \74{103",
journal = \Journal of the ACM, JACM",
volume = \38",
number = \1", g

Figure 3-3: Two falsely matched records

the same authors and the approximate string match reported that the titles were the

same because they di�ered only in the �nal trigram. The �nal false merge involved

two di�erent papers with very similar titles|\Towards Dataow Analysis of Com-

municating Finite State Machines" and \Dataow Analysis of Communicating Finite

State Machines"|and the same authors.

The sample set is small enough that it is di�cult to extrapolate the results to

a large collection with great precision, but it appears that the failure rate would be

acceptably low. Measured in percentages, false merges occurred in 0.7 percent of the

clusters and 5.7 percent of the clusters were missed matches that should have been

merged with another cluster.

I also used the results of two other algorithms to gauge the relative success of the

author-title clustering algorithm presented here. The bibmerge program [1] creates

title-date clusters; if two records have the same title and date, they are placed in

the same cluster. Bibmerge has only limited utility as a benchmark, because it uses

56

a very simple detection scheme that is not tolerant of formatting and typographical

errors. The program's source contains the comment: \This script is written in the

most unprofessional manner available to me, the only reason why I have not scrapped

it is that is works." Nonetheless, it was the only other duplicate detection system

available for testing on the same sample set.

Bibmerge found 650 unique clusters; it missed 126 matches and made one false

merge. The title-data clusters identi�ed 10 record pairs that were missed by the

author-title clusters, because the title and date �eld was the same but the author

was di�erent. In seven cases, the author �elds were improperly formatted. In two

cases, the authors were listed in a di�erent order in each record. The �nal case was

bibmerge's lone false match: An issue of Computing Surveys contained two responses

to an earlier article, both of which were titled \The File Assignment Problem."

A second check of the quality of the algorithm presented here is the results reported

for the OCLC duplicate detection scheme described earlier, although the OCLC clus-

ters were created under substanitally di�erent rules. The analysis of the OCLC

algorithm is the most substantial reported in the literature. Using a set of 184 pairs

of records that had been identi�ed in advance as duplicates, the OCLC system suc-

cessfully identi�ed 127 pairs, a 69 percent success rate, compared to a 94 percent

success rate for my author-title algorithm The false match rate was measured by se-

lecting 1,000 record pairs and applying the duplicate test to each pair; only some of

the pairs were duplicates. The error rate on this sample was 1.3 percent|13 false

matches|which is comparable to the 4 false merges out of 554 (0.7 percent) in the

author-title clusters.

57

58

Chapter 4

Merging Related Records

This chapter describes the creation of a composite record that summarizes the dupli-

cate records in an author-title cluster. It introduces two terms, information dossier

and union record, to describe two di�erent ways of grouping related bibliographic

information.

A union record is a composite record created by merging several bibliographic

records from distinct sources. A di�erent union record is created for each di�erent

type of document included in the cluster; thus, a particular cluster may have union

records for a journal article, a technical report, and a conference paper.

An information dossier [8] is a collection of information objects, e.g. bibliographic

records, related to some way to one another. Speci�cally, I use the term to describe

the source records that form an author-title cluster and the union records generated

for the cluster. Although the current system does not include other objects, the

next section presents a system for automatically linking records to electronic copies

available on the Internet. The dossier would contain links or perhaps local copies of

relevant item; in this way, a dossier is distinct from the records in a cluster.

Union records can be an imprecise summary of the source records, because the

quality of the source records is variable and because there are sometimes too few

59

records to be able to resolve conicts between records. When there are conicts, a

single representative value is chosen for the union record instead of omitting the �eld

or creating a hybrid value.

Because of this decision, I also calculate statistics that describe the quality of the

composite. When the source records vary signi�cantly from the union record, the user

may wish to examine the source records. These statistics are described in Chapter 5.

4.1 Goals of merger and outline of process

There are three primary goals for the merger process that creates union records and

dossiers:

� to eliminate redundancy in query results

� to identify multiple access paths to a work

� to create complete and accurate union records from conicting and incomplete

source records

Because some author-title clusters may also include false merges, the dossier should

contain some information about how closely the union record matches each source

record.

Duplicate listings in the results of a query limit the ease with which the results

can be used. A long list takes longer to transmit, process, and read than a short list,

but the real di�culty is that it can be di�cult for a person to identify the duplicate

and related records. For a person, identifying duplicates in a long list can be quite

di�cult and error prone.

When the union record is created, there is an opportunity to eliminate errors and

to create a record that is more complete than any of the sources. An error in one

60

or a few source records can be purged, if there are enough records with the correct

information; the correct value for the �eld is chosen by voting. Fields that are missing

in one record can be drawn from another record. Unfortunately, these kinds of quality

control have limited utility, because in the common case there are only a few records

in a cluster.

Finally, the dossier brings together information about each di�erent instance of

publication, which allows a user to choose the physical document that is easiest to

retrieve. When works are published several times|in di�erent journals, proceedings,

or books|having an exhaustive list of these publications makes it easier to �nd the

work when the local library does not hold all of the publications. Because many

universities publish their technical reports in digital form, knowing that a work was

issued as a technical report means the work is more likely to be found online.

A secondary goal for the dossier is to minimize the amount information lost to

the user when false merges occur. The dossier should include information about how

closely individual records match the union record and how much variation there is

in the value of a �eld across the source records. When a particular record di�ers

substantially from the union record or when one �eld has a di�erent value in each

record, there may be cause for the user to suspect a false merge. The interface

described in the next chapter provides access to all of the source records and a measure

of the truthfulness of the union record.

The general strategy for merging records is based on the di�erent kinds of entry

types allowed by Bibtex. The source records are grouped by entry and a union

record is produced for each type. The �elds values in the union record are assigned,

for most �elds, by counting the occurrences of each value and choosing the most

commonly occurring value for the union record. Some �elds are treated di�erently.

The author and title �elds will be the same regardless of type, so we can apply to

counting strategy can be applied globally. The author �eld is also di�erent because

61

the counting strategy is applied to the component names rather than the full author

list.

4.2 Creating the union record

The merger process described here is very simple, and only copes with a few kinds

of errors in the source records. However, a number of re�nements are suggested for

dealing with a wider range of errors; these re�nements deal with speci�c kinds of errors

but use the same basic strategy. (A few of these re�nements have been implemented,

but most have not.)

Records are merged a �eld at a time. For each �eld, the number of occurrences

of each di�erent value is counted and the most frequently occurring value is chosen.

Sometimes, one or more values will occur with equal frequency, and a tie-breaker is

needed; the longest value is chosen. The tie-breaker is arbitrary, although it is hoped

that the longer values will be more likely to contain information that helps the user.

There are three exceptions to the rules for merging �elds.

� Values for the month �eld are converted to the �rst three letters of the month,

or they are ignored.

� Values other than a four-digit number are ignored in the year �eld.

� The author �eld is merged by considering each name individually, �nding the

longest form of that name, and assembling a list of these longest names.

There are three rough categories of �elds, each of which will be a�ected somewhat

di�erently by merging. The categories di�er in how likely a �eld is to be the same in

two di�erent records for the same document.

The �rst category includes �elds like title, date, or pages, which describe �xed,

62

objective characteristics of the document. These �elds are most common and the

merger process is tailored to them.

The second category includes �elds like note, annote, and keywords, which will

vary widely from source record to source record (if they appear at all). There are

no speci�c guidelines for the use of these �elds, so each source may describe some

di�erent characteristic of the document. Each occurrence of one of these �elds in a

source record is included in the union record.

The abstract �eld is hard to classify. Although there should be a single abstract

for each document, there is a lot of variation in what is actually recorded as the

abstract. Currently, the longest abstract is chosen using the standard process.

The last category is �elds which are used to manage bibliographic records or serve

some other purpose speci�c to the record's creator. Standard �elds like key and many

non-standard �elds, like bibdate or location, will appear in the union record, chosen

by the standard counting scheme. However, it is unlikely that any of the �eld values

are related and the value selected has little signi�cance. The interface presented in

the next chapter ignores these �elds in the standard display.

4.2.1 Problems with union records

The counting approach does not work very well when there are only a few records of

a particular type. Typographic and formatting errors also cause problems.

In the six records for the article "Scheduler Activations: E�ective Kernel Support

for the User-Level Management of Parallelism" by Anderson et al., three di�erent

values appear in the pages �eld|\53" and \53--70" each appear once and \53--79"

appears four times. If the value \53--79" appeared only once, it would be impossible

to distinguish between the correct value and the incorrect ones.

Another potential problem is the policy of creating a union record for each di�erent

63

BIB-VERSION:: v2.0
ID:: MIT-LCS//MIT/LCS/TR-569
ENTRY:: February 25, 1995
ORGANIZATION:: Massachusetts Institute of Technology,

Laboratory for Computer Science
TITLE:: Concurrent Garbage Collection of Persistent Heaps
TYPE:: Technical Report
AUTHOR:: Nettles, S.
AUTHOR:: O'Toole, J.
AUTHOR:: Gi�ord, D.
DATE:: June 1993
PAGES:: 22
ABSTRACT:: We describe the �rst concurrent compacting garbage collector

for a persistent heap. Client threads read and write the heap
in primary memory [...]

BIB-VERSION:: CS-TR-V2.0
ID:: CMU//CS-93-137
ENTRY:: September 13, 1995
ORGANIZATION:: Carnegie Mellon University,

School of Computer Science
TITLE:: Concurrent Garbage Collection of Persistent Heaps
AUTHOR:: Nettles, Scott
AUTHOR:: O'Toole, James
AUTHOR:: Gi�ord, David
DATE:: April 1993
PAGES:: 22
ABSTRACT:: We describe the �rst concurrent compacting garbage collector

for a persistent heap. Client threads read and write the heap
in primary memory [...]

Figure 4-1: CS-TR records for one TR from two publishers

64

document type in a cluster. The policy assumes that there will be only a single

document of a particular type in a cluster, i.e. that we will not �nd two di�erent

articles with the same author and publisher. This assumption does not hold in some

circumstances, resulting in misleading union records.

One example of a failure is a technical report written by authors from di�erent

institutions and issued independently by each institution. (See Figure 4-1.) The sys-

tem will create a single union record for these reports, which correctly represent most

information|author, title, abstract|but will obscure or confuse the issuing organi-

zations and the report's number or identi�er. The problem is serious, because a the

organization and report number are important for locating a copy of the document.

@ArticlefBNBTEAEDLHML89,
title = \Lightweight Remote Procedure Call",
author = "Brian N. Bershad and Thomas E. Anderson and Edward D.

Lazowska and Henry M. Levy",
year = \1989",
month = dec,
pages = \102{113",
journal = \Proc. Twelfth ACM Symposium on Operating Systems",
volume = \23",
number = \5", g

@ArticlefBershadAndersonLazowskaLevy90,
title = \Lightweight Remote Procedure Call",
author = "Brian N. Bershad and Thomas E. Anderson and Edward D.

Lazowska and Henry M. Levy",
year = \1990",
month = feb,
pages = \37{55",
journal = \ACM Transactions on Computer Systems",
volume = \8",
number = \1", g

Figure 4-2: Bibtex records exhibiting the conference-journal problem

Another example of a failure is caused by confusion about how to catalog the

65

papers in a conference proceedings that are published as a journal article, e.g. the

SOSP proceedings printed in Operating Systems Review. The proceedings is an issue

of the journal, so it would be quite reasonable to catalog the conference paper as a

journal article. But if a paper is cataloged as an article and is also published in a

journal (say the Transactions of Computer Systems), then the record for the SOSP

paper and the record for the TOCS article will be merged into a single union record.

4.2.2 Re�nements to merger process

The general strategy just described improves signi�cantly with a few re�nements.

Three re�nements have been implemented: The author �eld is treated separately, as

it was during cluster identi�cation, because of its special formatting. Two simple

�lters are used to prevent �eld values with detectable errors from being counted.

Several other re�nements are suggested, but have not been implemented.

The author list is constructed di�erently because all of the author �elds in the

source records must match (with the approximate match described in Section 3.2.1)

for the records to be placed in the same cluster. The merge algorithm extracts as

much information about each name as possible and creates a new author list. When

names are compared, each part (i.e. �rst, middle, last name) is expanded wherever

possible; a blank entry becomes an initial or a full name, and an initial becomes a

full name.

Filters, which validate �eld values before creating the union record, prevent invalid

data from being included in the union record; they can also normalize �eld values,

by testing for common mistakes and cataloging variants and attempting to correct

them.

The month and year �elds are merged using �lters. Common problems in these

�elds include:

66

� The source record combines them, e.g. year = \Sept. 1987"

� The source record uses the number of the month instead of the name, e.g. month

= \[2]"

� The source record uses question marks to indicate uncertainty, e.g. year =

\199?"

The month �lter normalizes all entries to the three-letter abbreviations used by Bib-

tex. Numbers are converted to text and full names shortened; entries that cannot be

re-formatted are ignored. The year �lter accepts only four-digit years, removes any

data other than the year, and discards entries for which a valid year cannot be found.

More powerful heuristics for identifying mis-formatted and incorrect data and

either discarding it or converting it to the correct format would further improve the

quality of the union records. For example, it may be pro�table to identify a group

of �eld values that are similar but not exactly the same, e.g. two titles that di�er

in only a few positions or years that are similar, like \199?" and "1991. The merge

process would then determine the most frequently occurring group, and then choose

a representative element from that group. If three source records contained the year

values \1989", \1991", and \199?", this strategy would choose 1991 as the most

frequently occurring, correctly-formatted value.

When there are several �elds that occur with equal frequency, we choose the

longest value for the union record. There are many other heuristics that could be

used instead, like a strictly random choice or choosing the shortest �eld; heuristics

could be applied on a per-�eld basis, e.g. using the highest number in the year �eld.

67

4.3 Clusters sizes and composition in DIFWICS

A brief analysis of the author-title clusters in the DIFWICS suggests two broad

observations. First, enough related records were found to justify the e�ort involved

in identifying them. Second, within a cluster there is substantial variation among the

source �eld values.

The DIFWICS collection consists of 243,000 source records and 162,000 author-

title clusters. More than half of the records belong to a cluster that contains two or

more records. Fewer clusters contain more than one record of the same type|about

30,000 clusters or 20 percent of the collection.

Cluster Number of Number of Percentage
size clusters records of all records
1 116,829 116,829 45.8%
2 28,865 57,730 22.6%
3 9,068 27,204 10.7%
4 3,885 15,540 6.1%
5 1,710 8,550 3.4%
6 878 5,268 2.1%
7 528 3,696 0.9%

8 or more 772 7,888 3.1%
total 162,535 242,705 100.0%

Table 4.1: Cluster sizes

Table 4-1 shows how many clusters of a particular size there are and what percent-

age of the total number of records are in clusters of that size. The average number

of clusters in a record is 1.49.

The distribution of record types within the entire collection is basically the same

as the distribution within clusters: Articles are most common, followed by papers in

conference proceedings Table 4-2 shows how many source records of are particular

type exist. Most of the clusters contain one type of record.

Clusters with more than one type of source record represent less than 10 percent

68

Type Records Percent
Article 108,985 (44.9%)
InProceedings 75,150 (31.0%)
TechReport 23,606 (9.7%)
Book 12,178 (5.0%)
InCollection 9,955 (4.1%)
PhdThesis 3,143 (1.3%)
other 9,688 (4.0%)
total 242,705 (100.0%)

Table 4.2: Souce records, by type

of the total number of clusters. The three most common combinations are Article

and InProceedings (4,349 clusters), Article and TechReport (1,808 clusters), and In-

Proceedings and TechReport (1,536 clusters). Fewer than 1,000 clusters contain three

di�erent record types and none contain four or more.

Within clusters that contained two or more records of the same type, I exam-

ined individual �elds to see how often all the source records had the same value.

Field values were compared by normalizing them to lowercase alphanumeric strings,

eliminating formatting and punctuation.

The statistics were gathered using a 10 percent sample of the clusters, considering

only those clusters that had two or more records of the same type. The sample

included 3,753 Article clusters (11,836 records), 3,113 InProceedings clusters (9,705

records), and 1,335 TechReport clusters (3,345 records).

Table 4-3 summarizes the results of the analysis on several standard Bibtex �elds.

It shows the number of times the �eld appeared in the sample clusters and the number

of times all the records in a cluster had the same normalized value.

The variation in the title �eld is interesting because it suggests how many more

clusters would exist if approximate string matching wasn't used. About 10 or 15

percent of the titles don't contain the same normalized string, even though they are

considered to be the same under the approximate string match.

69

Field Article InProceedings TechReport
Present Uniform Present Uniform Present Uniform

title 3753 3197 (85%) 3113 2665 (86%) 1355 1232 (91%)
year 3753 3546 (94%) 3075 2850 (93%) 1352 1212 (90%)
month 3435 1417 (41%) 2496 1636 (66%) 1031 900 (87%)
pages 3683 2640 (72%) 2973 2177 (73%) 417 393 (94%)
journal 3752 1193 (32%)
institution 1350 763 (57%)
number 3578 3458 (97%) 995 585 (59%)
booktitle 3062 477 (16%)
publisher 1769 1265 (72%)

Figure 4-3: Variation in �elds values within author-title clusters of the same type

Among the other �elds, the year is the most consistent; records have the same

year more than 90 percent of the time. The month �eld shows much more variation

because there are several di�erent abbreviations used for each month. Abbreviations

cause similar problems in several other �elds with high variation|journal, institution,

booktitle, and publisher. The �lters for improving the merger process, described

above, could increase the number of �elds with uniform values.

70

Chapter 5

Presenting Relations and Clusters

This chapter describes some preliminary work on presenting a collection of 240,000

records after author-title clusters are identi�ed and information dossiers constructed.

The Web-based interface allows simple full-text queries of the collection, presents

related records together on the screen, and automatically creates links that invoke

searches of Web-indices, technical report archives, and the local library collection.

Although the user interface is only a prototype, it does illustrate two important

design principles.

1. The results of a search should display the works that match the query, pre-

senting the union records for di�erent versions of the same work together. The

presentation should cull the most complete and accurate information available

from any duplicate records for a document, but should not hide variations in

the underlying records.

2. The related records in a particular cluster should be used to help the user

�nd an easily accessible copy of a document. The combination of bibliographic

information, which allows well-de�ned queries into Web indices, library catalogs,

and other databases, and clusters, which link related documents, should increase

71

a user's ability to �nd a particular document (or a related one that represents

the same abstract work).

5.1 The basic Web interface

The basic interface to the collection is a full-text index of all 240,000 source records,

that allows basic Boolean queries. (The underlying search engine allows for queries

that look for words only when they appear in certain �elds; a Web interface for this

feature is underway.) The records are stored in a database that maintains a unique

identi�er for each record, a separate name space for clusters, and a mapping from

record id to cluster id. The index uses record ids internally, but returns a list of

clusters in response to a user query.

A query using the Web interface returns a summary showing the title, author,

and year of all the matching works, followed by a expanded entry for each cluster.

Figure 5-1 shows the expanded entry for the paper \Lightweight Remote Procedure

Call."

The �rst two lines of the cluster entry show the title and authors| the two de�ning

characteristics of the document|followed by entries for the abstract and keywords,

which will be the same for each document in the cluster.

A bulleted list of three document citations follows the keywords; the citations

are produced from the union records. The �rst two lines of document citations are

formatted to look like a citation for a traditional bibliography. In the �rst entry, an

article in ACM Transactions on Computer Systems, it shows the date the article was

published, the volume and number, and the pagination.

The third line of the document citation contains a hypertext link to a search of the

local reading room catalog. The search will look for the particular document being

cited. In the �rst entry, it searches for the journal the article appeared in; for the

72

second entry, a conference paper, it searches for the proceedings.

The last line of the document citation contains two links to more information

about the records for the document. The link to the expanded record displays a full

union record, which includes nonstandard �elds that are not displayed in the regular

citation. The second link returns the source records used to make the union record;

the link indiciates the number of source records and returns them in their original

form.

The last line of the cluster entry (following the bulleted document citations) in-

corporates links to several other search services. There are links to the Alta Vista and

Excite Web indices, which contain queries based on the title �eld and the authors'

last names. When the work has been published as a technical report, links to the

NCSTRL and UCSTRI technical report indices are included.

5.2 Assessing the quality of union records

The most serious shortcoming of the current interface is that provides no warning to

the user when there are di�erences between the union record and the source records.

Preliminary work for detecting and measuring these di�erences is presented here, but

the results are not integrated into the current interface.

Because the displayed document citations are based on the union records created

by merging duplicate records, there is a chance that the citation will contain mistakes

or hide useful information that is contained in the source records. Problems could be

the result of a record that describes a di�erent document being included in the cluster

by mistake. However, most problems arise because the source records contain di�erent

and conicting information about the document. (These problems were discussed in

greater detail in Chapter 4.)

When a record is included in an author-title cluster by mistake, two di�erent kinds

73

Lightweight Remote Procedure Call
Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy

Abstract. Lightweight Remote Procedure Call (LRPC) is a communication facility designed and
optimized for communication between protection domains on the same machine. In contemporary
small−kernel operating systems, existing RPC systems incur an unnecessarily high cost when used for
the type of communication that predominates −−− between protection domains on the same machine.
This cost leads system designers to coalesce weakly−related subsystems into the same protection
domain, trading safety for performance. By reducing the overhead of same−machine communication,
LRPC encourages both safety and performance. LRPC combines the control transfer and communication
model of capability systems with the programming semantics and large−grained protection model of
RPC. LRPC achieves a factor of three performance improvement over more traditional approaches
based on independent threads exchanging messages, reducing the cost of same−machine communication
to nearly the lower bound imposed by conventional hardware. LRPC has been integrated into the Taos
operating system of the DEC SRC Firefly multiprocessor workstation.

Keywords. RPC−Modellierung BERS 89,HUTC 89

Article in ACM Transactions on Computer Systems.
Feb 1990. vol. 8, no. 1. pages 37−55.
Check in LCS/AI reading room.
View expanded record, source records (9).

Appeared in sosp12.
Dec 1989. pages 102−113.
Check in LCS/AI reading room.
View expanded record, source records (7).

Technical report. Department of Computer Science, University of Washington, no. 89−04−02.
Apr 1989.
Check in LCS/AI reading room.
View expanded record, source records (3).

Search for this paper in Alta Vista, in Excite netSearch, in NCSTRL, in UCSTRI.

Figure 5-1: Sample author-title cluster display from Web interface

74

of failure result.

1. In a cluster that contains several citations for a document type, the mis-matched

record will be hidden. The union record will not describe the hidden record,

and any query that matches the record will return the cluster it is mistakenly

included in. The only way to discover the hidden record is to look at the source

records.

2. In a cluster with only a few citations, the merger process may create a union

record that includes some �elds from the mis-matched record and some �elds

from the good records, because an arbitrary value is selected when a most

frequently occuring �eld value can't be identi�ed. The result is a confusing

union record that mixes information from di�erent documents or works.

The \source match" ratio can identify the �rst problem. It measures how closely

the �elds in the union record match the �elds in a particular source record. It is

computed by comparing the standard �elds in the union record with the same �elds

in a source record. (Records not de�ned in the source record are ignored.) The value

is a tuple of the number of �elds that match and the number of �eld that do not

match, e.g. (4,3) indicates four �elds match and three �elds do not.

The second problem can be identi�ed with the \�eld consensus" ratio, which

measures how many of the source records contain the same value as the union record

for a particular �eld.

For each union record, we can compute the source match value for each source

record and the �eld consensus value for each of the major �elds. The result in each

case is a list of ratios, one source match ratio for each source record and one �eld

consensus ratio for each standard �eld.

Unfortunately, these ratios provide only a very rough measure of the di�erences

between records or �elds. The variations in Bibtex records that make identifying

75

duplicate and related records hard also complicates the analysis of union records.

Variations, like abbreviations and typos, cause �elds to fail to match. To limit the

e�ects of formatting errors, the �elds values are normalized before comparison; all

non-alphanumber characters are eliminated and all letters are converted to lowercase.

These problems make the ratios hard to interpret. A source match ratio of (2,5)

could mean that the source describes a di�erent document than does the union record.

But it could just as well mean that the source record contains a number of non-

standard abbreviations or typographical errors.

Despite the problems with creating and intepreting these ratios, some informal

tests suggest that they are helpful for identifying clusters that contain false matches.

Figure 5-2 shows an a sample cluster where the statistics help to identify a false

match. The cluster contains four technical report citations, which the union record

reports as \Process Migration in the Sprite Operating System." In fact, the cluster

also contains a single citation for a di�erent technical report by the same author, titled

\Transparent Process Migration in the Sprite Operating System." The problem is

clear in the source match ratio, which shows that the third source record shares one

common �eld value with the union record and di�ers on �ve other �elds. The single

di�erences that appear in the �eld consensus ratios also suggest that one of the source

records may not belong.

In the previous example, the di�erence between source record and union record

was rather pronounced. Often, the statistics are more ambiguous. Figure 5-3 shows

a more representative set of ratios. Although the �rst source record matches on two

�elds and disagrees on �ve �elds, the cluster is correct.

If the ratios are useful, it seems less clear how to use them to automatically

detect problems and warn the user. Always presenting the statistics to the user also

seems cumbersome, because they further complicate the display and because they

complicate understanding the display. A middle ground that displays the statistics

76

Fredrick Douglis. Process Migration in the Sprite Operating System. Technical report.

Computer Science Division, University of California, no. UCB/CSD/ 87/343. Feb
1987.
Source match ratios
record source match

#1 [5,1]
#2 [3,4]
#3 [1,5]
#4 [5,1]

Field consensus ratios
title [3,1] institution [2,2]
month [3,0] pages [1,1]
number [2,2] year [3,1]

Figure 5-2: Source match and �eld consensus ratios for cluster including a false match

Michael L. Scott and others. Implementation Issues for the Psyche Multiprocessor

Operating System. Appeared in Proceedings of the Symposium on Experiences with

Distributed and Multiprocessor Systems. Oct 1989. pages 227-236.
Source match ratios
record source match

#1 [2,5]
#2 [5,1]
#3 [4,3]

Field consensus ratios
title [2,1] booktitle [1,2]
month [1,1] pages [3,0]
year [3,0] publisher [1,2]

Figure 5-3: Source match and �eld consenus ratios for correct cluster

77

when they show signi�cant variation and supresses them when there is very little

variation might strike the right balance. A warning indicator that showed one of three

values|a mistake is likely, possible, or unlikely|would also display the information

concisely.

78

Chapter 6

Automatic linking

The previous chapter described the current Web interface, which includes links to

Web search services in its display of author-title clusters. The search links are a

�rst step towards automatically linking records in DIFWICS directly to copies of

documents on the Web.

The general scheme for automatically linking a cluster to copies of the work avail-

able on-line is the same as the scheme for identifying the clusters in the bibliographic

collection: A full-text search using some arbitrarily selected words from the author

and title �eld will turn up potential copies and a more detailed comparison of those

copies will �nd actual instances of the work.

6.1 Searching for related Web citations

The work reported on here does not perform automatic linking, but it makes a �rst

step in that direction and the preliminary results o�er some insight on a full-scale

automatic linking project. The basic insight is that any document that is accessible

from the World-Wide Web has a hypertext link to it { either from another page or

through some search system; the hypertext link is a citation for the document, and

79

often the hypertext link is included from a traditional citation that describes the

document.

The Web catalog interface's links to other search services { to the reading room

catalog, the AltaVista and Excite Web indices, and the NCSTRL and UCSTRI tech-

nical report indices { provide the �rst-step full-text search for online documents. The

current system requires that the user perform the second �lter manually on the search

results, but the process can be automated.

The individual search links are created with some knowledge of the particular

search interface and the format of citations on the Web. The AltaVista search engine

makes e�cient use of long quoted strings, so the search looks for occurrences of the

full title. The reading room catalog interface does not catalog journal articles, but

does catalog journals and uses the word \holdings" in each journal entry; for journal

articles, the catalog search uses a few words from the journal name and the word

holdings to check the journal's availability.

A pair of examples illustrate some of the success and pitfalls of this approach to

automatic linking. The �rst example is a search for the paper \Obliq: A Language

with Distributed Scope" by Luca Cardelli. The paper was issued as a DEC SRC

technical report, and is available from the author's personal Web pages. The results

of a search for this paper are unusually good, because SRC's technical report archive

includes a seperate page for each technical report, which matches the queries very

closely.

Searches in AltaVista, Excite, UCSTRI, and the reading room catalog all return

a link to the report in the SRC technical report archive as the best match for the

search. (NCSTRL does not index SRC technical reports.) The two Web searches use

relevance ranking to order all the Web pages that matched at least some of the query

terms. Among the most relevant pages are:

� several pages about use of the Obliq language

80

� a Web page listing the contents of the issue of Computing Systems in which the

paper was published

� a bibliography of Cardelli's papers from a Web site in Germany

� lecture notes for a class that discusses Cardelli's work on the semantic of multiple

inheritance

� several papers that cite the Obliq paper

� an FAQ on object-oriented programming languages

The Web searches returned Cardelli's personal page with a link to a Postscript copy

of the paper, but it is not ranked highly in the list of search results. It appears in

about 30th position.

A search for the paper \A Theory of Primitive Objects: Second-Order Systems"

by Martin Abadi and Cardelli produces more representative results, because it is not

a SRC technical report. The search illustrates the bene�ts of the AltaVista full-string

search over the Excite keyword-only search. The Excite search locates many pages

that contain mention of the authors and their work on type theory, but no pages

with links to the desired paper. The AltaVista search, on the other hand, locates

two pages maintained by the authors with links to the paper. These pages appear to

be several levels deep on their local �lesystem, so it is likely they are not included

in the smaller Excite index. (The reading room link shows that it has a copy of the

conference proceedings that include the paper.)

6.2 Principles for fully-automated system

These basic results suggest several things about how to design a system for automat-

ically tracking down citations on other Web pages, instead of requiring the user to

81

take the second step of examining individual Web pages.

1. Large-scale Web indexes are likely to index many pages that contain references

to the paper being sought. These references will be a mix of normal citations, found

in other papers, lecture notes, and other works, and of Web-based citations, like those

found in personal publication lists. Some but not all of these citations will contain

hypertext links to a digital copy of the document.

2. The citations that included hypertext links are often found onWeb pages several

levels deeper than a server's main Web page. Many of the smaller Web indexes omit

these pages, so searches of these indexes are more likely to return no relevant pages or

pages that lead to the revelant citation but do not actually contain it. For example,

the second Excite search described above returned a page about a book on objects

written by Abadi and Cardelli, which in turn contained links to the author's personal

pages, which contained links to lists of publications.

3. Very few papers are available on the Web in an easily indexed format like

HTML or plain text. Most papers are available as Postscript, which is not easily

indexed. As a result, it is uncommon to discover pages where the title or search

summary clearly indicates that the page contains the sought-after document.

We experimented with two services that augmented the current interface for

searching the Web. One service performed searches automatically, retrieved the �rst

10 pages returned, and searched the pages for citations that were similar to the docu-

ment being sought. Another service interposed a Web proxy server between the user

that tracked the user's examination of the search results and recorded what page the

paper was actually found on. The proxy let the user navigate the Web as normal,

but added a header to the top of each page that showed the author and title of the

paper being sought; the proxy header also contained a link for the user to follow when

the paper had been found. Neither of the experimental services were robust enough

or successful enough to include in the current interface, but our brief use of them

82

suggests that they would be interesting areas for future work.

83

84

Chapter 7

Conclusions and Future Directions

7.1 Future directions

7.1.1 Performance, portability, and production

The underlying database and environment for storing and comparing bibliographic

records, in particular the n-gram string comparison, were not the primary focus of this

thesis. If the system is going to support a very large collection (millions of records)

or many simultaneous users, its performance needs to be improved. The system also

needs a few other implementation changes to allow long-term use in a production

environment.

The prototype system was implemented primarily in Perl 5, which allowed rapid

prototyping at the cost of execution-time e��ciency. The n-gram string comparison

is particularly slow in the current implementation; during the second round of cluster

creation, loading records from disk and performing the detailed comparison proceeds

at less than 10 records per second (on a 25 MHz RS/6000).

One consequence of the implementation decisions is that it is di�cult to identify

the bottlenecks. The Perl implementation of, for example, n-gram comparisons is

85

clearly slow, but implementing it in a di�erent language might speed it up enough

that some other part of the system becomes the bottleneck. The remaining comments

on performance should be considered with this constraint in mind.

It appears that loading bibliographic records into the system is costly. The records

are stored in their original text format, and parsed each time the record is loaded.

The primary cost of loading a record is parsing the Bibtex, so it may be pro�table to

develop a more easily parse intermediate format.

The cost of performing full-text queries during the construction of potential match

pools appears to be the next mostly costly part of clustering, after the n-gram com-

parisons. In addition to optimizing the internal workings of the search engine, there

may be an opportunity for global query optimizations. Three three-word queries are

created for each record in the collection; it seems probable that the same query would

be generated more than once, both because of duplicate records and because authors

are likely to generate di�erent works with some of the same title words. If performing

a query is a sign�cant bottleneck, the queries could be re-ordered to take advantage

of repeated queries.

One important limitation, independent of performance considerations, is that it

does not record the source of a bibliographic record. When a particular bibliography is

integrated into the main collection, there is no way to record that it was originaly part

of, say, the USENIX bibliography. As a result, it is di�cult to keep the collection up-

to-date and incorporate changes and additions from a bibliography that has already

been included.

The production system should record the source in a consistent way, so that the

main collection can continuously incorporate changes from external sources. A \data

pump" could be set up to monitor sources of bibliographic records and add new

records or update modi�ed records.

Recording the source of a record enables other value-added services, such as judg-

86

ing the quality of a record based on its source, which are described below.

7.1.2 Improving the quality of records

One approach to improving the quality of bibliographic information, the one described

in this thesis, is to locate related bibliographic records and merge them in a way that

improves the quality of information. A di�erent approach is to use authority control.

In a library catalog, authority control describes the process of identifying each

of the unique names in the catalog|usually names of authors and names of subject

headings|and �nding all of the variant forms of the name within the catalog. An

authority record describes the authoritative form of the name along with any variants.

Authority records can be integrated into the catalog, but more often they are used

by librarians to help in the preparation of the catalog. New entries in the catalog can

be checked against the authority records to determine the proper form of the name,

and old records can be updated to use the authoritative form.

Using authority control to regularize the use of certain �elds, notably author,

journal, and publisher, would improve the quality of the records visible to the user

and, in the case of the author �eld, the quality of the clustering algorithm. (Recall

that problems parsing and comparing author lists accounted for most of the missed

matches during clustering.) A system for authority control, however, would have to

deal with some of the same problems the clustering algorithm handles now; it needs

to identify as many variant entries as possible without being so aggressive that truly

di�erent entries are conated.

Authority control for journals, publishers, and conferences would not a�ect the

creation of author-title clusters, but would make it easier to produce union records and

would improve the value of the \�eld consensus" and \source match" ratios. Creating

the authority records, however, would be a labor-intensive process, requiring a human

87

cataloger to generate a list of authoritative names and review possible variations to

determine if they in fact refer to the same object. It should be possible to automate

much of the process by looking for plausible variations on and abbreviations of the

authoritative name, but some variations would be virtually impossible: The Journal

of Library Automation, for example, changed its name to Library Resources and

Technical Services. On the other hand, it is possible that journals in di�erent �elds

could be abbreviated the same way; possible conicts in abbreviations should be

reviewed by a human cataloger.

This observation about the need for human supervision of authority control applies

to library cataloging in general. The identi�cation of basic bibliographic information|

the author and title of the work, the pages it appears on, etc.|is a largely clerical

process. (Fully automated cataloging is an active area for research, but little progress

has been made [44].) Instead, cataloging should focus information that is more di�-

cult to obtain|whether two authors with similar names are in fact the same person

or whether two papers with similar but di�erent titles actually represent the same

work. Heaney makes the same case in his argument for an object-oriented cataloging

standard[15].

7.1.3 Identifying other bibliographic relationships

The clustering algorithm identi�es author-title clusters, in part because identifying

equivalence and derivative bibliographic relationships has the most advantage for

users and in part because they can be reliably identi�ed in the presence of mixed-

quality records. Identifying other bibliographic relationships would also be useful;

if authority control (or some other mechanism) is used to improve the quality and

consistency of �eld values, this problem would be easier to tackle.

The hierarchical relationship holds between a composite work and its parts|

88

between a journal issue and the articles it containes or between a conference pro-

ceedings and the papers it contains. The wide variation in the journal and booktitle

�elds makes this relationship hard to identify in the current collection, but authority

control could make possible comparisons. The relationship could be stored as journal

issue clusters or proceedings clusters that contain all of the articles from a particular

issue of a journal or all the papers presented at a conference.

The hierarchical relationship would be a useful addition to the current search

interface. When a user �nds an interesting paper, he could examine the proceedings

clusters to see if any similar work was presented or check the journal cluster for

an accompanying article. Clusters could also identify the sequential relationship by

linking together the journal issue or proceedings clusters, which would provide a

three-level hierarchy from browsing; users could move between clusters for individual

articles, clusters for issues, and clusters for entire journals.

The referential relationship is interesting because it cannot, in general, be identi-

�ed using bibliographic information alone. References that involve critique or review,

e.g. a Computing Reviews article, might be identi�able, but citations do not contain

enough information to determine that one paper is cited by another paper.

7.1.4 Integrating non-bibliographic information

The referential relationship could be identi�ed if an information dossier contained

information in addition to bibliographic records|in particular, if it contained the

citation list or the entire text of the document. The information dossier is a partic-

ularly useful notion because it can include information of all sorts, such as the full

text of the document or information on how to order it.

Non-bibliographic information can be included in a dossier if the author and title

can be identi�ed and matched with an existing author-title cluster. Extending the

89

dossier allows a much richer set of interactions with the library collection. For ex-

ample, a user browses a document and discovers a reference to another work that is

potentially of interest. The user highlights the reference with his or her mouse and

clicks a button, and the document that was referenced appears in a new window on

the user's screen.

Including the full-text of a document (including the citations) enables many other

applications as well. Users can perform queries across the entire text of a document,

which creates more opportunities for discovery relavant documents. Abstracts and

summaries can be automatically generated for the documents [32], which can help

the user quickly establish the relevance of a document to the current search. Citation

indexes and graphs can be created that show how often and how widely a particular

paper or conference proceedings is cited.

One related issue that does not seem to be well-understood is machine processing

of citations intended to be read by humans. It is di�cult to design a general purpose

processor that can identify the distinct parts of a citation; possible problems include

identifying the individual authors names and distinguishing between di�erent numeric

values, like years, page numbers, and volume/issue numbers. Some leverage on the

problem can be gained by looking for bibliographic records that are \similar" to the

citation, using the structured information contained in bibliographic records to try

and understand the unstructerd citation. Eytan Adar and I [3] proposed one scheme

for linking the two.

7.1.5 Enabling librarianship and human input

The automatic processes for identifying and merging bibligraphic records work quite

well in general, but human intervention would be helpful for correcting the errors that

do occur. In general, the system should allow users to make corrections and changes

90

to the bibliographic records and to the author-title clusters.

There are at least two di�erent actions that a librarian might want to perform.

First, the librarian should be able to change the contents of an author-title cluster by

explicitly labelling a pair of records as related or not related. Marking two records as

related would cause the author-title cluster to contain all records that have the same

author and title �elds as one of the two records.

Second, librarians should be able to label the quality of a source record or a

particular collection of source records. Even a simple quality control scheme that

allowed records to be marked as high quality, low quality, or mixed quality would

improve the creation of composite records.

The library collection would also bene�t from other kinds of human interaction.

The collection of bibliographic records and a system for managing information dossier

provides a basic infrastructure for supporting collaborative and cooperative work. An

annotation service that allowed users to share reviews and critiques of documents is

an example of such a service.

7.2 Conclusions

The two primary conclusions to draw from this work are that bibliographic relation-

ships can be automatically identi�ed in mixed-quality source records and that freely

available bibliographic information can provide the basis for a useful and relatively

complete index of the computer science literature.

The author-title clustering algorithm, described in Chapter 3, successfully identi-

�es related bibliographic records that describe the same work. The algorithm tolerates

errors in the records and variability in the cataloging practices, but maintains a tol-

erably low error rate; testing the algorithm with a small, controlled sample showed

that it identi�ed more than 90 percent of the related records and mistakenly linked

91

records for two di�erent works less than 1 time in 100. The e�ects of mistaken links

are mitigated by presenting the user with information about the amount of variation

in the underlying records.

The clustering algorithm uses a full-text index of the source records to limit the

number of inter-record comparisons and to overcome errors in the author and title

�elds have have caused other algorithms to fail.

The Digital Index for Works in Computer Science demonstrates that it is possible

to create a useful information discovery service from heterogenous sources of biblio-

graphic information. It uses the clustering algorithm to integrate records from many

sources and in multiple formats without any more coordination between sources than

now exists. The system can automatically incorporate records from other collections

and from individual citation lists without requiring that the creators of those records

change their current practice.

The 240,000-record DIFWICS collection is broad in scope: It covers a large part

of the computer science literature, including most areas of speciality and a large

percentage of the total literature cataloged by the ACM between 1977 and 1993.

The DIFWICS catalog identi�es individual works, linking together duplicate records

and di�erent documents with the same author and title, and helps users �nd online

documents. The work-centered catalog reduces redundancy in search results and

makes inter-document relationships clearer, and the preliminary automatic linking

work speeds the process of searching for papers on the Web and suggests that the

process could be fully automated.

92

Bibliography1

[1] Alf-Christian Achilles. bibmerge. [Program available via WWW], 1994. URL

<http://liinwww.ira.uka.de/bibliography/tools/bibmerge> (version 28 Feb.

1995).

[2] Alf-Christian Achilles. A collection of computer science bibliographies. [WWW

document], 1995. URL <http://liinwww.ira.uka.de/bibliography/index.html>

(visited 10 Feb. 1995).

[3] Eytan Adar and Jeremy Hylton. On-the-y hyperlink creation for pages

images. In Shipman et al. [34], pages 173{176.

[4] Deborah Lines Andersen, Thomas J. Galvin, and Mark D. Giguere, editors.

Navigating the Networks: Proceedings of the ASIS Mid-Year Meeting, Medford,

NJ, 1994. American Society for Information Science (ASIS), Learned

Information.

[5] Eva Bertha. Inter- and intrabibliographical relationships: A concept for a

hypercatalog. In Helal [16], pages 211{223.

1Several documents cited in this thesis are available only in electronic form, via the World-Wide

Web. It is di�cult, however, to provide long-lasting citations for these documents. I have chosen

to include the current URLs for the Web page and either the date of the most recent update to the

page or the date of the last time I checked that the page was available (if the page was not dated).

93

[6] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, and

Michael F. Schwartz. The harvest information discovery and access system. In

Committee [10]. [WWW document] URL

<ftp://ftp.cs.colorado.edu/pub/cs/techreports/schwartz/Harvest.Conf.ps.Z>

(visited 10 Feb. 1995).

[7] C. Mic Bowman, Peter B. Danzig, Udi Manber, and Michael F. Schwartz.

Scalable internet resources discovery: Research problems and approaches.

Communications of the ACM, 37(8):98{107, August 1994.

[8] Michael K. Buckland, Mark H. Butler, Barbara A. Norhard, and Christian

Plaunt. Union records and dossiers: Extended bibliographic information

objects. In Andersen et al. [4], pages 42{57.

[9] Michael J. Carey and Donovan A. Schneider, editors. Proceedings of the 1995

ACM SIGMOD International Conference on Management of Data, May 1995.

Also published as SIGMOD Record 24(2), June 1995.

[10] International World Wide Web Conference Committee, editor. Proceedings of

the 2nd International Conference on the World-Wide Web, Chicago, December

1994. [WWW document, labeled \These documents are no longer being

supported."] URL <http://www.ncsa.uiuc.edu/SDG/IT94/IT94Info.html>.

[11] Walt Crawford. MARC for library use. G. K. Hall, Boston, second edition,

1989.

[12] James R. Davis. Creating a networked computer science technical report

library. D-Lib Magazine [Online journal], September 1995. URL

<http://www.dlib.org/dlib/september95/09davis.html>.

94

[13] Ahmed K. Elmagarmid and Calton Pu. Introduction to the special issue on

heterogeneous databases. ACM Computing Surveys, 22(3):175{178, September

1990.

[14] M. C. Harrison. Implementation of the substring test by hashing.

Communications of the ACM, 14(12):777{779, December 1971.

[15] Michael Heaney. Object-oriented cataloging. Information Technology and

Libraries, 14(3):135{153, September 1995.

[16] Ahmed H. Helal, editor. Opportunity 2000: understanding and serving users in

an electronic library. Essen University Library, 1993.

[17] Mauricio A. Hern�andez and Salvatore J. Stolfo. The merge/purge problem for

large databases. In Carey and Schneider [9], pages 127{138. Also published as

SIGMOD Record 24(2), June 1995.

[18] Thomas B. Hickey and David J. Rypka. Automatic detection of duplicate

monographic records. Journal of Library Automation, 12(2):125{142, June

1979.

[19] Robert E. Kahn. An introduction to the cs-tr project. [WWW document],

December 1995. URL <http://www.cnri.reston.va.us/home/cstr.html>

(version 11 Dec. 1995).

[20] Karen Kukich. Techniques for automatically correcting words in text. ACM

Computing Surveys, 24(4):377{439, December 1992.

[21] Carl Lagoze and James R. Davis. Dienst: An architecture for distributed

digital libraries. Communications of the ACM, 38(4):47, April 1995.

95

[22] Leslie Lamport. Latex: a document preparation system. Addison-Wesley, 2nd

edition, 1994.

[23] Rebecca Lasher and Danny Cohen. A format for bibliographic records, June

1995. Internet Engineering Task Force, RFC 1807.

[24] David M. Levy and Catherine C. Marshall. Going digital: A look at

assumptions underlying digital libraries. Communications of the ACM,

38(4):77{84, April 1995.

[25] Cli�ord Lynch and Hector Garcia-Molina, editors. Interoperability, Scaling and

the Digital Libraries Research Agenda. HPCC/IITA Working Group, August

1995. A Report on the May 18-19, 1995 IITA Digital Libraries Workship.

[26] Cli�ord A. Lynch, Avra Michelson, Craig Summerhill, and Cecilia Preston.

The nature of the nidr challenge. Technical report, Coalition for Networked

Information, 1995. URL <http://www.cni.org/projects/nidr/www/toc.html>

(visited 12 Feb. 1995).

[27] Keith D. MacLaury. Automatic merging of monographic data bases{use of

�xed-length keys derived from title strings. Journal of Library Automation,

12(2):143{155, June 1979.

[28] Edward T. O'Neill, Sally A. Rogers, and W. Michael Oskins. Characteristics of

duplicate records in oclc's online union catalog. Library Resources and

Technical Services, 37(1):59{71, 1993.

[29] Edward T. O'Neill and Diane Vizine-Goetz. Quality control in online

databases. In Williams [46], pages 125{156.

96

[30] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object

exchange across heterogeneous information sources. In Yu and Chen [50], pages

251{260.

[31] M. J. Ridley. An expert system for quality control and duplicate detection in

bibliographic databases. Program, 26(1):1{18, January 1992.

[32] Gerard Salton, James Allan, Chris Buckley, and Amit Singhal. Automatic

analysis, theme generation, and summarization of machine-readable text.

Science, 264:1421{1426, June 1994.

[33] Gerard Salton and Michael J. McGill. Introduction to Modern Information

Retrieval, chapter 6.2 Vector Similarity Functions, pages 201{204.

McGraw-Hill, 1983.

[34] Frank M. Shipman, III, Richard Furuta, and David M. Levy, editors.

Proceedings of Digital Libraries '95, Department of Computer Science, Texas

A&M Universty, College Station, TX 77843, June 1995. Hypermedia Research

Laboratory.

[35] Narayanan Shivakumar and Hector Garcia-Molina. Scam: A copy detection

mechanism for digital documents. In Shipman et al. [34].

[36] Narayanan Shivakumar and Hector Garcia-Molina. The scam approach to copy

detection in digital libraries. D-Lib Magazine [Online journal], November 1995.

URL <http://www.dlib.org/dlib/november95/scam/11shivakumar.html>.

[37] Richard P. Smiraglia and Gregory H. Leazer. Toward the bibliographic control

of works: Derivative bibliographic relationships in the online union catalog. In

OCLC Research Bulletin, pages 56{59. 1994.

97

[38] Guy L. Steele, Jr. Common LISP, chapter 6.3 Equality Predicates, pages

103{110. Digital Press, 1990.

[39] Elaine Svenonius, editor. The Conceptual Foundationgs of Descriptive

Cataloging. Academic Press, San Diego, Calif., 1989.

[40] Barbara B. Tillett. Bibliographic structures: The evolution of catalog entries,

references, and tracings. In Svenonius [39], pages 149{166.

[41] Barbara B. Tillett. A taxonomy of bibliographic relationships. Library

Resources & Technical Services, 35(2):150{158, 1991.

[42] Stephen R. Toney. Cleanup and deduplication of an international bibliographic

database. Information Technology and Libraries, 11(1):19{28, March 1992.

[43] Marc Van Heyningen. The uni�ed computer science technical report index:

Lessons in indexing diverse resources. In Committee [10]. [WWW document]

URL <http://www.cs.indiana.edu/ucstri/paper/paper.html> (visited 10 Feb,

1995).

[44] Stuart Weibel. Automated cataloging: Implications for libraries and patrons.

In F. W. Lancaster and Linda C. Smith, editors, Arti�cial Intelligence and

Expert Systems: Will They Change the Library?, pages 67{80. University of

Illinois, 1992.

[45] Gio Weiderhold. Mediators in the architecture of future information systems.

IEEE Computer, 25(3):38{49, mar 1992.

[46] Martha E. Williams, editor. Annual Review of Information Science and

Technology, volume 23. Elsevier Science Publishers B.V., 1988.

98

[47] Martha E. Williams and Keith D. MacLaury. Automatic merging of

monographic data bases{identi�cation of duplicate records in multiple �les:

The IUCS scheme. Journal of Library Automation, 12(2):156{168, June 1979.

[48] Patrick Wilson. The second objective. In Svenonius [39], pages 5{16.

[49] Tak W. Yan and Hector Garcia-Molina. Duplicate detection in information

dissemination. In Proceedings of 21st International Very Large Database

Conference (VLDB), September 1995. Zurich, Switzerland.

[50] P. S. Yu and A. L. P. Chen, editors. Proceedings of the 11th International

Conference on Data Engineering, Taipei, Taiwan, March 1995. IEEE Computer

Society Press.

99

