
Correctness of Vehicle Control Systems: A Case

Study

by

Henri B. Weinberg

B.S., Computer Science

Yale University, 1992

Submitted to the Department of Electrical Engineering and Computer

Science

in partial ful�llment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1996

c Massachusetts Institute of Technology 1996. All rights reserved.

Author :

Certi�ed by :

Nancy A. Lynch

Professor of Computer Science and Engineering

Thesis Supervisor

Accepted by :

Frederic R. Morgenthaler

Chairman, Departmental Committee on Graduate Students

2

Correctness of Vehicle Control Systems: A Case Study

by

Henri B. Weinberg

Submitted to the Department of Electrical Engineering and Computer Science
on March 20, 1996, in partial ful�llment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

A hybrid system is one in which digital components and analog components inter-
act. Typical examples of hybrid systems are real-time process-control systems such
as automated factories or automated transportation systems, in which the digital
components monitor and control continuous physical processes in the analog compo-
nents. The computer science community has developed formal models and methods
for reasoning about digital systems, while the control theory community has done
the same for analog systems. However, systems that combine both types of activity
appear to require new methods. The development and application of such methods
is an active area of current research.

One of the formal tools that has been developed is the hybrid I/O automaton
(HIOA) model [1]. In this case study, we show how this model can be used to spec-
ify and verify part of an automated transportation system | a vehicle deceleration
maneuver. We investigate how techniques such as automata composition, invariant
assertions, and simulation mappings can be applied to systems of communicating dig-
ital and analog components. The purpose of the case study is to test the applicability
of these computer science based techniques to the area of automated transit. In par-
ticular, we are concerned that HIOA techniques express hybrid systems faithfully and
that they allow clear and scalable proofs of signi�cant properties of these systems.

In the deceleration maneuver, digital controller slows a train to a target velocity
range within a given distance. We examine four versions of the deceleration maneuver,
each with a di�erent model of the communication between controller and train: plain,
delay, feedback, and feedback with delay. For each case we give a model of the non-
controller portion of the system, de�ne correctness of a controller, give an example of
a correct controller, and prove that it is correct. This case study contains full proofs
of the correctness of the various controllers. However, some of the proofs are only
sketched, when similar formal proofs appear in other chapters.

Thesis Supervisor: Nancy A. Lynch
Title: Professor of Computer Science and Engineering

Acknowledgments

Thesis supervisor seems a title too antiseptic for Nancy Lynch who gave so generously
of herself in the e�ort to produce this thesis. I have grown and learned under her
guidance more than these pages can tell. She and the members of her Theory of
Distributed Systems group provided the friendly and stimulating environment that
fostered my work. I am especially grateful to Victor Luchangco, Anna Pogosyants,
and Rainer Gawlick for their daily advice, support, and friendship.

My research is supported in part by a National Science Foundation graduate
fellowship.

I would like to thank my family | my parents, Emil and Caroline, my brothers,
Misha and Peter, and above all, my wife, Meg | for their unswerving belief in me.

To the memory of Anna Pogosyants.

Contents

1 Introduction 15

2 Model: Hybrid I/O Automata 21

2.1 Trajectories : 21

2.2 Hybrid I/O Automata : 23
2.3 Hybrid Executions : 24
2.4 Hybrid Traces : 26
2.5 Simulation Relations : 26
2.6 Parallel Composition and Hiding : 27

2.7 Standard HIOA Notation : 28
2.8 MMT Speci�cations : 29

3 Deceleration Case 1:
No Delay and No Feedback 37

3.1 Parameters : 38
3.2 The train Automaton : 39
3.3 Properties of train : 39
3.4 De�nition of Controller Correctness : : : : : : : : : : : : : : : : : : : 42
3.5 Example Controller: one-shot : 43

3.6 Correctness of one-shot : 45
3.6.1 Timeliness : 46
3.6.2 Safety : 50

4 Deceleration Case 2:
Delay and No Feedback 53

4.1 The buffer Automaton : 53
4.2 De�nition of Controller Correctness, Revisited : : : : : : : : : : : : : 55
4.3 Parameters, Revisited : 55
4.4 Example Controller: del-one-shot : : : : : : : : : : : : : : : : : : 55

4.5 Correctness of del-one-shot : 56
4.5.1 Non-Violation : 56
4.5.2 Timeliness and Safety : 57

9

5 Deceleration Case 3:
Feedback and No Delay 63
5.1 The sensor-train Automaton : 63
5.2 Properties of sensor-train : 64
5.3 De�nition of Controller Correctness, Revisited : : : : : : : : : : : : : 65
5.4 Parameters, Revisited : 66
5.5 Example Controller: zig-zag : 67
5.6 Correctness of zig-zag : 69

5.6.1 Timeliness : 69
5.6.2 Safety : 73

6 Deceleration Case 4:
Delay and Feedback 77
6.1 The acc-buffer Automaton : 78
6.2 De�nition of Controller Correctness, Revisited : : : : : : : : : : : : : 79
6.3 Parameters, Revisited : 79
6.4 Example Controller: del-zig-zag : 80
6.5 Correctness of del-zig-zag : 82

6.5.1 Non-Violation : 82
6.5.2 Timeliness : 84
6.5.3 Safety : 88

7 Conclusion 91

List of Figures

3-1 Overview of Basic Deceleration Model : : : : : : : : : : : : : : : : : 37
3-2 Example Execution of one-shot-sys : : : : : : : : : : : : : : : : : : 45

4-1 Overview of Delay Deceleration Model : : : : : : : : : : : : : : : : : 53
4-2 Comparison of one-shot-sys and del-one-shot-sys. : : : : : : : : 58
4-3 Overview of Simulation Mapping : 60

5-1 Overview of Feedback Deceleration Model : : : : : : : : : : : : : : : 63
5-2 Possible behavior of zig-zag-sys. : 68

6-1 Overview of Feedback with Delay Deceleration Model : : : : : : : : : 78
6-2 Adjustment downward by del-zig-zag. : : : : : : : : : : : : : : : : 81
6-3 Adjustment upward by del-zig-zag. : : : : : : : : : : : : : : : : : : 82

11

List of Tables

2.1 The skew-timer automaton. : 30
2.2 The ping-pong MMT-speci�cation. : : : : : : : : : : : : : : : : : : 33
2.3 The hybrid(ping-pong) automaton. : : : : : : : : : : : : : : : : : : : 34

3.1 The train automaton. : 40
3.2 The one-shot automaton (MMT-speci�cation) : : : : : : : : : : : : 44

4.1 The buffer automaton. : 54

5.1 The sensor-train automaton. : 64
5.2 The zig-zag automaton. : 67

6.1 The acc-buffer automaton. : 78

13

Chapter 1

Introduction

A hybrid system is one in which digital components and analog components inter-
act. Typical examples of hybrid systems are real-time process-control systems such
as automated factories or automated transportation systems, in which the digital
components monitor and control continuous physical processes in the analog compo-
nents. The computer science community has developed formal models and methods
for reasoning about digital systems, while the control theory community has done
the same for analog systems. However, systems that combine both types of activity
appear to require new methods. The development and application of such methods
is an active area of current research.

One of the formal tools that has been developed is the hybrid I/O automaton
model [1]. In this case study, we show how this model can be used to specify and
verify part of an automated transportation system| a vehicle deceleration maneuver.
We investigate how techniques such as automata composition, invariant assertions,
and simulation mappings can be applied to systems of communicating digital and
analog components. The purpose of the case study is to test the applicability of these
computer science based techniques to the area of automated transit. In particular,
we are concerned that HIOA techniques express hybrid systems faithfully and that
they allow clear and scalable proofs of signi�cant properties of these systems.

Formal Framework

The hybrid I/O automaton model is an extension of the timed I/O automaton model
of [2, 3, 4, 5] inspired by the phase transition system model of [6] and the similar
hybrid system model of [7]. A hybrid I/O automaton (HIOA) is a (possibly) in�nite
state labeled transition system. The states of a HIOA are the valuations of a set of
variables. Certain states are distinguished as start states. The transitions of a HIOA
are of two types: continuous and discrete. A HIOA's discrete transitions are labeled
with actions. Both the variables and the actions of a HIOA are partitioned into three
categories: input, output, and internal. A hybrid execution of a HIOA is a sequence of

15

transitions that describes a possible behavior of the system over time. A hybrid trace
of a HIOA is the externally visible part of an execution (i.e. the non-internal part).

We say that one HIOA implements a second, more abstract HIOA if the traces
of the �rst are included in those of the second. This captures the notion that the
implementation HIOA has no external behavior that isn't allowed by the speci�cation
HIOA. When two HIOAs are composed in parallel, they synchronize on shared in-
put/output actions and shared input/output variables. Under certain easily checked
conditions, the parallel composition of two HIOAs is itself a HIOA. An important
property of HIOA's is substituitivity: in a system composed of HIOAs, substituting
implementations of the components yields an implementation of the entire system.

As has been the case in previous work with timed I/O automata, most of the
proofs in this HIOA based case study use invariant assertions and simulations. An
assertion is a predicate on states; an invariant assertion is one that is true in every
reachable state. Invariant assertions are usually proved by induction on the length
of an execution. A simulation is a mapping between states of two HIOA that can
be used to show that that one HIOA implements another. The proof that a given
mapping is a simulation is another form of induction on the length of an execution
of the implementation; the induction matches individual steps in the implementation
with corresponding steps or sequences of steps in the speci�cation. Even proofs of
timing properties can be performed using these techniques; the key idea is to build
timing information into the state where it can be tested by assertions.

This type of formalism has several bene�ts. First, the inductive structure and styl-
ized nature of the proofs makes them easy to write, check, and understand. In some
cases, this structure has allowed the proofs to be checked using automated theorem
proving techniques. Second, the implementation relation allows the description of a
system at di�erent levels of abstraction. Assertions proved on the high level models
extend to the lower level models via the simulation mapping. This hierarchy helps
manage the complexity of the overall speci�cation and it helps simplify the proofs
because assertions are usually easier to prove on the more abstract models. Third and
�nally, the methods are not completely automatic. They require the user to supply
invariants and simulations, which serve as useful documentation of the system. In an
exploratory work such as this case study, the insight gained through a manual process
is particularly useful because it may lead to developments in the underlying models
and methods.

The Deceleration Maneuver

Typical examples of automated transportation systems include the Raytheon Per-
sonal Rapid Transit System and the California PATH project [8, 9, 10]. In these
hybrid systems, a number of computer controlled vehicles share a network of tracks
or highways. The digital part of the system is the computer vehicle controller and the
analog part of the system is the vehicle, its engine, the guideway, and so forth. In [8]

the control of the transportation system is described hierarchically. The higher levels
of such a hierarchical system coordinate and determine strategy while the lowest level
performs speci�c maneuvers.

This case study focuses on a single maneuver: the task of decelerating a vehicle
to a target speed within a certain distance. Such a maneuver might be invoked, for
example, when a vehicle is approaching an area whose maximum allowable velocity
is lower than the vehicle's current velocity. We model a vehicle and its controller as
two communicating HIOAs. We do not model the invocation of the maneuver nor do
we investigate either complex vehicle physics or complex control schemes. Instead we
have considered four variations on the communication between vehicle and controller.
The four variations arise from the inclusion or exclusion of two parameters: feedback
and delay. The �rst case is the simplest: no feedback and no delay. The second
case introduces a communication delay between the controller and the vehicle. The
third case introduces feedback without delay; the vehicle periodically sends sensory
information to the controller. The fourth case involves both feedback and delay. For
each case, we give a formal speci�cation of what it means for a controller to correctly
implement the deceleration maneuver, then we give an example implementation of
such a controller and formally verify that it correctly implements the maneuver.

Related Work

This case study is part of a long-term project in the M.I.T. Theory of Distributed
Systems research group on modeling, verifying, and analyzing problems arising in
automated transit systems. A survey of the project appears in [11]. The case study,
[12, 13], examines the train and gate problem from traditional railroad control. In
[14], the author uses abstraction to relate continuous and discrete control of a vehicle
maneuver. Safety systems for automated transit are examined in [15].

The development of models and veri�cation methods for timing-based systems is
an active research area within computer science. The timed I/O automaton model
is similar, for example, to a model of Alur and Dill [16], to one of Lamport [17]
and to one of Henzinger, Manna and Pnueli [18]. In contrast to those formalisms, the
development and use of the timed I/O automaton model has focused on compositional
properties [19], implementation relations [20], and semi-automated proof checking [21]
with less emphasis on syntactic forms, temporal logics, and fully automatic analysis.
Just as timed I/O automata have been extended to hybrid I/O automata to treat
hybrid systems, so have other real-time models. For example, the timed transition
system model of [18] is extended to the phase transition system model in [6]. Phase
transition systems are analogous to hybrid I/O automata: their transitions correspond
to our discrete steps; their activities correspond to our trajectories. The hybrid system
model of [7] is similar to the phase transition system model except that it includes
synchronization labels that correspond to our actions. This allows a notion of parallel
composition in the hybrid system model. The hybrid system model di�ers from the

HIOA model because it has no input/output distinction on either labels (actions) or
variables.

The methods of invariant assertions, abstraction mappings, forward and backward
simulations, history and prophecy variables are used in many places in computer
science. We will not attempt to attribute all these notions. An overview of these
methods, for untimed and timed systems, appears in [22, 2, 3].

Roy Johnson and Steve Spielman at Raytheon are leading the design and develop-
ment of a prototype advanced personal rapid transit system, based partly on concepts
developed by Dr. Edward Anderson of the Taxi2000 Corp. Prof. Shankar Sastry and
his colleagues at Berkeley have studied intelligent highway systems [8, 9, 10] and spe-
ci�c scenarios that arise therein. For example, they have considered equipping cars
with \smart" cruise controls that can adapt to other cars in the vicinity [9]. Another
project involving formal modeling of train control systems, using some computer sci-
ence techniques, was carried out by Schneider and co-workers [23]. Their emphasis
was on the use of an extension of Dijkstra's weakest-precondition calculus to derive
correct solutions. Other case studies in modeling hybrid systems include two analy-
ses of steam boiler controllers | one using timed I/O automaton methods [24] and
another using the automated proof checker PVS [25] | and a project using a variety
of techniques to model and verify controllers for aircraft landing gear [26].

Outline

In Chapter 2 we give a complete but terse treatment of the HIOA model and the
notational conventions used in this case study. In Chapters 3, 4, 5, and 6, we present
a succession of di�erent variations on the deceleration maneuver: no delay and no
feedback in Chapter 3; delay and no feedback in Chapter 4; feedback and no delay in
Chapter 5; and both feedback and delay in Chapter 6. We conclude in Chapter 7.

Chapter 2

Model: Hybrid I/O Automata

The hybrid I/O automaton model [1] is based on the timed I/O automaton model
of [2, 3, 4, 5], but includes more explicit treatment of continuous behavior. To make
this report self contained, this chapter gives a complete but terse treatment of the
HIOA model with an emphasis on those aspects used in subsequent chapters. The
presentation is based on [1] and [27].

The chapter is organized as follows. We begin by introducing the notion of a
trajectory; trajectories are functions that represent the continuous evolution of state.
We proceed to de�ne hybrid I/O automata (HIOA) and their executions and traces.
Next, we de�ne a simulation relation between a pair of HIOAs and the operations
of composition and of action and variable hiding. We conclude by presenting two
notational forms for automata: standard and MMT-speci�cations.

2.1 Trajectories

Throughout this chapter, we �x a time axis T , which is a subgroup of (R;+), the
real numbers with addition. In subsequent chapters we use T = R exclusively, but
the model permits T =Zand the degenerated time axis T = f0g. An interval I is a
convex subset of T . We denote intervals as usual: [t1; t2] = ft 2 T j t1 � t � t2g, etc.

For I an interval and t 2 T , we de�ne I + t
�

= ft0 + t j t0 2 Ig.
We assume a universal set V of variables. Variables in V are typed, where the

type of a variable, such as reals, integers, etc., indicates the domain over which the
variable ranges. Let Z � V. A valuation of Z is a mapping that associates to each
variable of Z a value in its domain. We write Z for the set of valuations of Z. Often,
valuations will be referred to as states.

A trajectory over Z is a mapping w : I ! Z, where I is a left-closed interval of
T with left endpoint equal to 0. With dom(w) we denote the domain of w and with
trajs(Z) the collection of all trajectories over Z. We say w is an I-trajectory if it is
a trajectory with domain I. If w is a trajectory then w:ltime , the limit time of w, is
the supremum of dom(w). Similarly, de�ne w:fstate, the �rst state of w, to be w(0),

19

and if dom(w) is right-closed, de�ne w:lstate , the last state of w, to be w(w:ltime).
A trajectory with domain [0; 0] is called a point trajectory. If s is a state then de�ne
}(s) to be the point trajectory that maps 0 to s.

For w a trajectory and t 2 T�0, we de�ne w E t
�

= w d [0; t] and w C t
�

= w d [0; t).
(Here d denotes the restriction of a function to a subset of its domain.) Note that

w C 0 is not a trajectory. By convention, w E1 = w C1
�

= w. Similarly we de�ne,
for w a trajectory and I a left-closed interval with minimal element l, the restriction
w y I to be the function with domain (I \ dom(w))� l given by w y I (t)

�

= w(t+ l).
Note that w y I is a trajectory i� l 2 dom(w).

If w is a trajectory over Z and Z 0 � Z, then the projection w # Z 0 is the trajectory
over Z 0 with domain dom(w) de�ned by w # Z 0 (t)(z)

�

= w(t)(z). The projection
operation is extended to sets of trajectories by pointwise extension. Also, if w is a
trajectory over Z and z 2 Z, then the projection w # z is the function from dom(w)

to the domain of z de�ned by w # z (t)
�

= w(t)(z).
If w is a trajectory with a right-closed domain I = [0; u], w0 is a trajectory with

domain I 0, and if w:lstate = w0:fstate, then we de�ne the concatenation w _ w0 to be
the trajectory with domain I [(I 0 + u) given by

w _ w0 (t)
�
=

�
w(t) if t 2 I;

w0(t� u) otherwise.

We extend the concatenation operator to a countable sequence of trajectories: if wi

is a trajectory with domain Ii, 1 � i < 1, where all Ii are right-closed, and if
wi:lstate = wi+1:fstate for all i, then we de�ne the in�nite concatenation, written
w1

_ w2
_ w3 : : : , to be the least function w such that w(t +

P
j<i

wj:ltime) = wi(t)
for all t 2 Ii.

A trajectory w is closed if its domain is a (�nite) closed interval and full if its
domain equals T�0. For W a set of trajectories, Closed(W) and Full(W) denote the
subsets of closed and full trajectories in W , respectively. Trajectory w is a pre�x of
trajectory w0, notation w � w0, if either w = w0 or w0 = w _ w00, for some trajectory
w00. With Pref (W) we denote the pre�x-closure of W : Pref (W)

�
= fw j 9w0 2 W :

w � w0g. Set W is pre�x closed if W = Pref (W). A trajectory in W is maximal if
it is not a pre�x of any other trajectory in W . We write Max (W) for the subset of
maximal trajectories in W .

2.2 Hybrid I/O Automata

A hybrid I/O automaton (HIOA) A = (U;X; Y;�in;�int;�out;�;D;W) consists of
the following components:

� Three disjoint sets U , X and Y of variables, called input , internal and output
variables, respectively.

Variables in E
�

= U [Y are called external , and variables in L
�

= X [Y are
called locally controlled . We write V

�

= U [L.

� Three disjoint sets �in, �int, �out of input , internal and output actions, respec-
tively.

We assume that �in contains a special element e, the environment action, which
represents the occurrence of a discrete transition outside the system that is un-
observable, except (possibly) through its e�ect on the input variables. Actions

in �ext �

= �in [�out are called external , and actions in �loc �

= �int [�out are
called locally controlled . We write �

�

= �in [�loc.

� A nonempty set � � V of initial states satisfying

Init (start states closed under change of input variables)
8s; s0 2 V : s 2 � ^ sdL = s0dL =) s0 2 �

� A set D � V � ��V of discrete transitions satisfying

D1 (input action enabling)
8s 2 V; a 2 �in 9s0 2 V : s a�! s0

D2 (environment action only a�ect inputs)
8s; s0 2 V : s e�! s0 =) sdL = s0dL

D3 (input variable change enabling)
8s; s0; s00 2 V; a 2 � : s a�! s0 ^ s0dL = s00dL =) s

a�! s00

Here we used s a�! s0 as shorthand for (s; a; s0) 2 D.

� A set W of trajectories over V satisfying

T1 (existence of point trajectories)
8s 2 V : }(s) 2 W

T2 (closure under subintervals)
8w 2 W; I left-closed, non-empty subinterval of dom(w): w y I 2 W

T3 (completeness)
(8t 2 T�0 : w y [0; t] 2 W) =) w 2 W

Axiom Init says that a system has no control over the initial values of its input
variables: if one valuation is allowed then any other valuation is allowed also.

Axiom D1 is a slight generalization of the input enabling condition of the (clas-
sical) I/O automaton model: it says that in each state each input action is enabled,
including the environment action e. The second axiom D2 says that e cannot change
locally controlled variables. Axiom D3 expresses that, since input variables are not
under control of the system, these variables may be changed in an arbitrary way after

any discrete action. The three axioms together imply the converse of D2, i.e., if two
states only di�er in their input variables then there exists an e transition between
them. Axioms D1-3 play a crucial role in our study of parallel composition. In par-
ticular D2 and D3 are used to avoid cyclic constraints during the interaction of two
systems.

AxiomsT1-3 state some natural conditions on the set of trajectories that we need
to set up our theory: existence of point trajectories, closure under subintervals, and
the fact that a full trajectory is in W i� all its pre�xes are in W.

Notation Let A be a HIOA as described above. If s 2 V and l 2 L, then we write
s

a�! l i� there exists an s0 2 V such that s a�! s0 and s0dL = l. In the sequel, the
components of a HIOA A will be denoted by VA, UA, �A, �A, etc. Sometimes, the
components of a HIOA Ai will also be denoted by Vi, Ui, �i, �i, etc.

2.3 Hybrid Executions

A hybrid execution fragment of A is a �nite or in�nite alternating sequence � =
w0a1w1a2w2 � � � , where:

1. Each wi is a trajectory in WA and each ai is an action in �A.

2. If � is a �nite sequence then it ends with a trajectory.

3. If wi is not the last trajectory in � then its domain is a right-closed interval and
wi:lstate

ai+1�!A wi+1:fstate.

An execution fragment records all the discrete changes that occur in the evolution
of a system, plus the \continuous" state changes that take place in between. The
third item says that the discrete actions in � span between successive trajectories.
We write h-frag(A) for the set of all hybrid execution fragments of A.

If � = w0a1w1a2w2 � � � is a hybrid execution fragment then we de�ne the limit
time of �, notation �:ltime , to be

P
i
wi:ltime. Further, we de�ne the �rst state of

�, �:fstate, to be w0:fstate.
We distinguish several sorts of hybrid execution fragments. A hybrid execution

fragment � is de�ned to be

� an execution if the �rst state of � is an initial state,

� �nite if � is a �nite sequence and the domain of its �nal trajectory is a right-
closed interval,

� admissible if �:ltime =1,

� Zeno if � is neither �nite nor admissible, and

� a sentence if � is a �nite execution that ends with a point trajectory.

If � = w0a1w1 � � � anwn is a �nite hybrid execution fragment then we de�ne the last
state of �, notation �:lstate , to be wn:lstate. A state of A is de�ned to be reachable
if it is the last state of some �nite hybrid execution of A.

A �nite hybrid execution fragment � = w0a1w1a2w2 � � � anwn and a hybrid execu-
tion fragment �0 = w0

0a
0
1w

0
1a

0
2w

0
2 � � � of A can be concatenated if wn

_ w0
0 is de�ned

and a trajectory of A. In this case, the concatenation � _ �0 is the hybrid execution
fragment de�ned by

� _ �0
�

= w0a1w1a2w2 � � � an(wn
_ w0

0)a
0
1w

0
1a

0
2w

0
2 � � �

A variable v of a HIOA A is called continuous if v is not modi�ed by any discrete
steps of A and for all trajectories w of A, w # fvg is a continuous function. Let
� = w0a1w1a2w2 � � � be a hybrid execution fragment of A. Then we de�ne � # fvg as
follows:

� # fvg = (w0 # fvg)
_ (w1 # fvg)

_ (w2 # fvg) : : :

The following theorem is simple to prove.

Theorem 2.3.1 If v is a continuous variable of HIOA A and � is an execution
fragment of A, then � # fvg is a continuous function.

2.4 Hybrid Traces

Suppose � = w0a1w1a2w2 � � � is a hybrid execution fragment of A. In order to de�ne
the hybrid trace of �, let

 = (w0 # EA)vis(a1)(w1 # EA)vis(a2)(w2 # EA) � � � ;

where, for a an action, vis(a) is de�ned equal to � if a is an internal action or e, and
equal to a otherwise. Here � is a special symbol which, as in the theory of process
algebra, plays the role of the `generic' invisible action. An occurrence of � in is
called inert if the �nal state of the trajectory that precedes the � equals the �rst
state of the trajectory that follows it (after hiding of the internal variables). The
hybrid trace of �, written htrace(�), is de�ned to be the sequence obtained from by
removing all inert � 's and concatenating the surrounding trajectories.

The hybrid traces of A are the hybrid traces that arise from all the �nite and
admissible hybrid executions of A. We write h-traces(A) for the set of hybrid traces
of A.

HIOA's A1 and A2 are comparable if they have the same external interface, i.e.,
U1 = U2, Y1 = Y2, �in

1 = �in
2 and �out

1 = �out
2 . If A1 and A2 are comparable then

A1 � A2 is de�ned to mean that the hybrid traces of A1 are included in those of A2:
A1 � A2

�

= h-traces(A1) � h-traces(A2). If A1 � A2 then we say that A1 implements
A2.

2.5 Simulation Relations

Let A and B be comparable HIOA's. A simulation from A to B is a relation R �
VA � VB satisfying the following conditions, for all states r and s of A and B,
respectively:

1. If r 2 �A then there exists s 2 �B such that r R s.

2. If r a�!A r0 and r R s and both r and s are reachable states then B has a �nite
execution fragment � with s = �:fstate, htrace(}(r) a }(r 0)) = htrace(�) and
r0 R �:lstate.

3. If r R s and w is a closed trajectory of A with r = w:fstate and both r and s

are reachable states then B has a �nite execution fragment � with s = �:fstate,
htrace(w) = htrace(�) and w:lstate R �:lstate .

Note that by Condition 3 and the existence of point trajectories (axiom T1), rRs

and r and s reachable implies that rdEA = sdEB.

Theorem 2.5.1 If A and B are comparable HIOA's and there is a simulation from
A to B, then A � B.

The de�nition of simulation given above is weaker than the one given in [1]. We
have added the restriction that r and s be reachable states in Conditions 2 and 3.
Theorem 2.5.1 is true with or without this restriction.

2.6 Parallel Composition and Hiding

We say that HIOA's A1 and A2 are compatible if, for i 6= j,

Xi \ Vj = Yi \ Yj = �int
i \ �j = �out

i \ �out
j = ;:

If A1 and A2 are compatible then their composition A1kA2 is de�ned to be the tuple
A = (U;X; Y;�in;�int;�out;�;D;W) given by

� U = (U1 [U2)� (Y1 [Y2), X = X1 [X2, Y = Y1 [Y2

� �in = (�in
1 [�in

2)� (�out
1 [�out

2), �int = �int
1 [�int

2 , �out = �out
1 [�out

2

� � = fs 2 V j sdV1 2 �1 ^ sdV2 2 �2g

� De�ne, for i 2 f1; 2g, projection function �i : � ! �i by �i(a)
�

= a if a 2 �i

and �i(a)
�

= e otherwise. Then D is the subset of V � ��V given by

(s; a; s0) 2 D () sdV1
�1(a)�!1 s

0dV1 ^ sdV2
�2(a)�!2 s

0dV2

� W is the set of trajectories over V given by

w 2 W () w # V1 2 W1 ^ w # V2 2 W2

Notation We extend the projection notation �i (i = 1; 2) to states, trajectories and
hybrid executions in the obvious way.

Proposition 2.6.1 A1kA2 is a HIOA.

Theorem 2.6.2 Suppose A1; A2 and B are HIOA's with A1 � A2, and each of A1

and A2 is compatible with B. Then A1kB � A2kB.

Two natural hiding operations can be de�ned on any HIOA A:
(1) If S � �out

A , then ActHide(S;A) is the HIOA B that is equal to A except that
�out
B = �out

A � S and �int
B = �int

A [S.
(2) If Z � YA, then VarHide(Z;A) is the HIOA B that is the equal to A except that
YB = YA � Z and XB = XA [Z.

Theorem 2.6.3 Suppose A and B are HIOA's with A � B, and let S � �out
A and

Z � YA.
Then ActHide(S;A) � ActHide(S;B) and VarHide(Z;A) � VarHide(Z;B).

2.7 Standard HIOA Notation

In this section we introduce the notational conventions for de�ning HIOAs that are
standard for this case study. An example HIOA called skew-timer described in
standard notation appears in Table 2.1. The automaton skew-timermodels a faulty
count-down timer with an inaccurate clock. The table identi�es the actions, variables,
discrete transitions, and trajectories of skew-timer. We explain each of these in
turn.

� The actions are classi�ed as input, output, and internal. A set of actions may
be de�ned by giving an action name with a parameter and a range for the
parameter. The actions set-timer(x) for x 2 R�0 are an example. We say
\the action set-timer" to mean the set of related actions \set-timer(x) for
x 2 R�0".

� The variables are also classi�ed as input, output, and internal. Since there are
no input variables to skew-timer, that category does not appear. Variables
are speci�ed with a name and a type; an initial value is given for internal and
output variables.

� The discrete transitions are speci�ed using precondition-e�ect, Pascal-like code
as in [28, 29]. Each set of transitions which shares an action label (or set of
related action labels) is speci�ed as one precondition-e�ect block. For example,
the �rst block describes all set-timer labeled transitions. Because set-timer
is an input action there is no precondition for this block | in other words,
the precondition is true (see Axiom D1). The notation := is the usual Pascal
assignment notation. The notation :2 is similar but denotes assignment from a
set. If a variable is not mentioned in the e�ect clause, then it is unchanged by
the transition.

� The trajectories are speci�ed as all the trajectories w that satisfy the given
set of conditions. The expression w:rate denotes the projection of w onto the
variable rate.

Informally, the behavior of skew-timer is as follows: it has a clock whose rate
varies non-deterministically between 0 and 2; when it receives a set-timer(x) in-
put action, it will later output alarm when its clock says that x time has passed;
however, there may be an internal fault action, which causes the timer to be non-
deterministically set to any value; the togo output variable reports the time remaining
until the timer expires. The variable deadline is used to encode the value of clock
that will trigger the expiration of the timer.

2.8 MMT Speci�cations

The HIOA model is powerful; however, a useful subclass of HIOA can be speci�ed in
a convenient notation called an MMT-speci�cation. The name \MMT" derives from
the names Merritt, Modugno, and Tuttle, the authors of [30] where they present a
model which corresponds to this subclass. We prefer to view it as a subclass with a
particular notation, rather than as a separate formalism. This section is based on a
similar exposition in [27]. We give a formal de�nition of an MMT-speci�cation, of a
mapping from an MMT-speci�cation to a HIOA, and an example MMT-speci�cation
together with its translation into standard notation.

An MMT-speci�cation M = (A;T; bl; bu) consists of the following components:

� A HIOA A with no external variables and only point trajectories.

� A task set T which is a collection of disjoint subsets of locally controlled actions
of A.

� A lower bound map bl : T ! R
�0.

� An upper bound map bu : T ! R
�0.

Table 2.1 The skew-timer automaton.

Actions: Input: set-timer(x) for x 2 R�0

Output: alarm

Internal: fault

Vars: Output: togo 2 R�0 [f1g, initially1
Internal: clock 2 R�0, initially 0

rate 2 [0; 2], initially 1
deadline 2 R�0 [f1g, initially1

Discrete Transitions:
set-timer(x):

E�: togo := x

deadline := clock + x

alarm:
Pre: deadline = clock
E�: deadline :=1

togo :=1
fault:

Pre: togo 6= 0
E�: togo :2 R�0

deadline := clock + togo

Trajectories:
w:rate is an integrable function
for all t 2 dom(w)

w(t):deadline = w(0):deadline

w(t):clock = w(0):clock +
R t

0 w(s):rate ds
w(t):clock � w(t):deadline
if w(0):deadline =1 then

w(t):togo =1
else

w(t):togo = w(t):deadline �w(t):clock

The HIOA A speci�es the behavior of the automaton which is not related to
timing; its trajectories are irrelevant so we assume they are point trajectories. The
remaining elements of the MMT-speci�cation de�ne its timing behavior. The tasks
are sets of actions of A that have related timing behavior; we denote individual tasks
by Ci where i ranges over an index set. The bound functions specify the timing
behavior of tasks by giving a lower and upper time bound for the execution of each
task. We require that for each tasks Ci 2 T , bl(Ci) � bu(Ci). An action a is enabled
in state s when for some s0, (s; a; s0) is a discrete step of A. A task Ci is enabled
in a state if at least one of its actions is enabled. The lower time-bound on a task
speci�es how long the task must be continuously enabled before one of its actions can
be performed. The upper time-bound on a task speci�es how long the task can be
continuously enabled before one of its actions must be performed. We formalize this
description by describing the equivalent hybrid I/O automaton.

Let M = (A;T; bl; bu) be an MMT-speci�cation where and let

A = (U;X; Y;�in;�int;�out;�;D;W)

and V = U [X [Y . By our assumption that M is an MMT-speci�cation we know
that U = Y = ; and W contains only point trajectories.

Then A0 = hybrid(M) is a hybrid I/O automaton with the following components:

� The variables of A0 are the same as those of A plus the following internal vari-
ables: now of type R�0; and �rst(Ci) and last(Ci) of type R [f1g for all
Ci 2 T .

� The actions of A0 are the same as those of A.

� The start states A0 are all the states s of A0 where sdV 2 �, s:now = 0, and for
each Ci 2 T if Ci is enabled in sdV then �rst(Ci) = bl(Ci) and last(Ci) = bu(Ci);
otherwise, �rst(Ci) = 0 and last(Ci) =1.

� The discrete steps of A0 are all (s; a; s0) where:

1. s0:now = s:now

2. (sdV; a; s0dV) 2 D

3. for each Ci 2 T

(a) If a 2 Ci, then s:�rst(Ci) � s:now.

(b) If Ci is enabled in both sdV and s0dV , and a 62 Ci,
then s0:�rst(Ci) = s:�rst(Ci) and s0:last(Ci) = s:last(Ci).

(c) If Ci is enabled in s0dV and either a 2 Ci or Ci is not enabled in sdV ,
then s0:�rst(Ci) = s0:now + bl(Ci) and s0:last(Ci) = s0:now + bu(Ci).

(d) If Ci is not enabled in s0dV then s0:�rst(Ci) = 0 and s0:last(Ci) =1.

� The trajectories of A0 are exactly those trajectories w where the following hold
for all t 2 dom(w):

1. w(t):now = w(0):now + t (now is a clock variable)

2. w(t) # V = w(0) # V (original variables remain unchanged)

3. for all Ci 2 T

(a) w(t):now � w(0):last(Ci) (time does not pass deadlines)

(b) w(t):�rst(Ci) = w(0):�rst(Ci) (deadlines remain unchanged)

(c) w(t):last(Ci) = w(0):last(Ci)

One di�erence between the exposition here and in [27], is that we do not require
that the upper bound of a task be non-zero. Such a requirement would guarantee
certain properties that are required in [27] but that are beyond the scope of this
exposition.

A simple example MMT-speci�cation ping-pong appears in Table 2.2; its corre-
sponding HIOA hybrid(ping-pong) appears in Table 2.3 in standard notation. The
notation PING = fpingg : [3; 4], means that task PING consists of the singleton
set of actions fpingg and has lower and upper time bounds of 3 and 4, respectively.
Informally, the behavior of ping-pong is as follows: it alternates performing ping

and pong output actions; it begins with a ping action after 3 to 4 time units; every
ping action is followed by a pong action in 7 to 20 time units; every pong action is
followed by a ping action in 3 to 4 time units.

In subsequent chapters we ignore the distinction between the MMT-speci�cation
and its corresponding hybrid I/O automaton. When possible, we will use MMT-
speci�cations and not give the corresponding standard notation. However, we will
refer in proofs to the deadline variables last(�) and first(�). These deadline variables
have some useful properties:

Theorem 2.8.1 If M = (A;T; bl; bu) is an MMT-speci�cation and A0 = hybrid(M),
then in all reachable states s of A0 and for all Ci 2 T the following hold:

1. s:�rst(Ci) � s:last(Ci)

2. s:now � s:last(Ci)

3. if Ci is enabled in sdV then 0 � last(Ci)� now � bu(Ci)

The use of deadline variables is key to the assertional proof style. To prove in-
variant assertions inductively it is often helpful that the entire future behavior of the
system is determined by the current state. Deadline variables encode future timing
behavior in the current state. For an example see Lemma 3.6.4.

Table 2.2 The ping-pong MMT-speci�cation.

Actions: Output: ping and pong

Vars: Internal: count 2 N, initially 0

Discrete Transitions:
ping:

Pre: count is even
E�: count := count+ 1

pong:
Pre: count is odd
E�: count := count+ 1

Tasks:
PING = fpingg : [3; 4]
PONG = fpongg : [7; 20]

Notation All HIOAs that result from MMT-speci�cations have the now variable.
So that we may compose these HIOAs and others that have a similar now variable, we
adopt a convention for the now variable. We reserve the now identi�er only for real-
valued variables that begin at zero and progress linearly with time at slope exactly
one | in other words, variables which represent the current time. These variables
must be internal or output variables. When two automata are composed that both
have now variables, we implicitly rename the variables to some other unique names
but refer to both of these variables as if they were named now.

Table 2.3 The hybrid(ping-pong) automaton.

Actions: Output: ping and pong

Vars: Internal: count 2 N, initially 0
now 2 R�0

�rst(PING) 2 R�0 [f1g, initially 3
last(PING) 2 R�0 [f1g, initially 4
�rst(PONG) 2 R�0 [f1g, initially 0
last(PONG) 2 R�0 [f1g, initially1

Discrete Transitions:
ping:

Pre: count is even
�rst(PING) � now

E�: count := count+ 1
�rst(PING) := 0
last(PING) :=1
�rst(PONG) := now + 7
last(PONG) := now + 20

pong:
Pre: count is odd

�rst(PONG) � now
E�: count := count+ 1

�rst(PING) := now + 3
last(PING) := now + 4
�rst(PONG) := 0
last(PONG) :=1

Trajectories:
w:�rst(PING), w:last(PING), w:�rst(PONG), and

w:last(PONG) are all constant functions
for all t 2 dom(w)

w(t):now = w(0):now+ t

w(t):now � w(t):last(PING)
w(t):now � w(t):last(PONG)

Chapter 3

Deceleration Case 1:
No Delay and No Feedback

In the deceleration problem we model a computer-controlled train moving along a
track. The task of the train's controller is to slow the train within a given distance.
In this chapter we consider a very simple model of the train and the controller. The
train has two modes, braking and not braking. The controller can instantly e�ect a
change in the mode of the train (relaxed in Chapters 4 and 6). The controller receives
no information from the train (relaxed in Chapters 5 and 6). The braking strength of
the train varies nondeterministically within known bounds. We model both the train
and the controller as hybrid I/O automata. Figure 3-1 illustrates the components
and their communication.

In the following sections we describe the parameters of the speci�cation, give a
hybrid I/O automaton model for the train, de�ne correctness of a controller for this
train, give an example correct controller, and prove that it is correct.

3.1 Parameters

All the parameters of the speci�cation are constants denoted by c with some dots
above it and a subscript. Dots above the constant identify the type of the constant:
position (no dots), velocity (one dot), or acceleration (two dots). The dots are a purely
syntactic device used to express the type of the constant; they do not represent an
operation of di�erentiation on some function. The subscript identi�es the particular

Figure 3-1 Overview of Basic Deceleration Model

train

brakeOn, brakeOff
A Controller

33

constant. Initial values of the train's position, velocity and acceleration are cs; _cs; �cs.
The goal of the deceleration maneuver is to slow the train to a velocity in the interval
[_cminf; _cmaxf] at position cf. When the train is not braking its acceleration is exactly
zero. When the train is braking its acceleration varies nondeterministically between
[�cmin; �cmax], both negative. The range is intended to model inherent uncertainty in
brake performance. We impose the following constraints on the parameters:

1. cs < cf

2. _cs > _cmaxf � _cminf > 0

3. �cs = 0

4. �cmin � �cmax < 0

5. cf � cs �
_c2
maxf

� _c2s
2�cmax

6. _cmaxf� _cs
�cmax

� _cminf� _cs
�cmin

The �rst three constraints are self-explanatory: initial position is before �nal posi-
tion; initial velocity is higher than target velocity range which is positive; and initial
acceleration is zero. Since braking is stronger when acceleration is more negative,
notice in the fourth constraint that �cmin is the strongest braking strength, and �cmax

the weakest. The �fth constraint ensures that with the weakest possible braking there
is still enough distance to reach the highest allowable speed by position cf. The right
hand side of this equation uses a familiar equation for \change in distance for change
in velocity" from constant acceleration Newtonian physics. To understand the sixth
constraint consider that since the controller receives no sensory information from the
train, it must decide a priori how long to brake. The sixth constraint ensures that
the least amount of time the controller must brake is less than the greatest amount
of time that it can brake.

3.2 The train Automaton

We model the train as a single HIOA called train which appears in Table 3.1. The
notation used in the table is explained in Section 2.7. The train's physical state is
modeled using three variables: x; _x; �x. As with the constants, the dots on _x and �x
are a syntactic device; the fact there there is a di�erential relationship between the
evolution of these variables is a consequence of the de�nition of the trajectory set
for train. The train accepts commands to turn the brake on or o� through discrete
actions brakeOn and brakeOff. It stores the state of the brake in variable b. While
braking the train applies an acceleration that is nondeterministic at every point but is

constrained to be an integrable function with range in the interval [�cmin; �cmax]. While
not braking the train has exactly zero acceleration. The variable now represents the
current time; when using assertions to reason about the timing behavior of systems,
it is convenient to have an explicit state variable which records the current time.

Table 3.1 The train automaton.

Actions: Input: brakeOn and brakeOff

Vars: Output: x 2 R, initially x = cs
_x 2 R, initially _x = _cs
�x 2 R, initially �x = �cs
b, a boolean, initially false

now 2 R�0, initially 0

Discrete Transitions:
brakeOn:

E�: b := true

�x :2 [�cmin; �cmax]
brakeOff:

E�: b := false

�x := 0

Trajectories:
if w(0):b = true then

w:�x is an integrable function with range [�cmin; �cmax]
else

w:�x = 0
for all t 2 I the following hold:

w(t):b = w(0):b
w(t):now = w(0):now+ t

w(t): _x = w(0): _x+
R t

0 w(s):�x ds

w(t):x = w(0):x+
R t

0
w(s): _x ds

3.3 Properties of train

The following two lemmas and three corollaries all relate the initial state and �nal
states of a trajectory. They establish standard facts of mechanics which we prove
here for completeness. In a treatment of a system with more complex dynamics we
expect that the lemmas of this section could be replaced with similar results based

on whatever methods from continuous mathematics were appropriate for the speci�c
application. We do not claim that the dynamics of train are complex or that the
mathematics used in the proofs in this section is sophisticated.

In the next two lemmas we characterize the train's behavior when not braking
and when braking, respectively. Below and throughout this work, if s and s0 are
states and x is a variable, we often write x for s:x and x0 for s0:x when s and s0 are
understood.

Lemma 3.3.1 Let w be a closed trajectory of train whose initial and �nal states
are s and s0, respectively, and let � = now0 � now. If b = false then the following
hold:

1. �x0 = �x = 0

2. _x0 = _x

3. x0 = x+ _x�

Proof: By the de�nitions of _x and x in train and integration.

Lemma 3.3.2 Let w be a closed trajectory of train whose initial and �nal states
are s and s0, respectively, and let � = now0 � now. If b = true then the following
hold:

1. _x+ �cmin� � _x0 � _x+ �cmax�

2. x+ _x�+ 1
2
�cmin�2 � x0 � x+ _x�+ 1

2
�cmax�2

Proof: We prove only the right hand side of the two inequalities; the other side is
symmetric. Let z be a trajectory of train with the domain I the same as w; and
let z(t):�x = �cmax for all t 2 I and z(0): _x = w(0): _x and z(0):x = w(0): _x. Notice that
w(t):�x � z(t):�x for all t 2 I. Because de�nite integrals preserve inequalities, we know
that for all t 2 I; w(t): _x � z(t): _x and w(t):x � z(t):x. Furthermore, by integration,
we know that z(t): _x = w(0):x+ �cmax�. This establishes the �rst inequality. Also by
integration, we know that z(t):x = w(0):x+w(0): _x�+ 1

2�cmax�2. This establishes the
second inequality.

The following corollaries further describe the train's behavior during braking.
The �rst bounds change in time by change in velocity. The second bounds change in
position by change in the square of velocity.

Corollary 3.3.3 Let w be a closed trajectory of train whose initial and �nal states
are s and s0, respectively and let � = now0 � now. If b = true then the following
holds:

_x0 � _x

�cmin
� � �

_x0 � _x

�cmax

Proof: We use Lemma 3.3.2. The steps for only one side are shown:

_x0 � _x+ �cmax� by Lemma 3.3.2
_x0 � _x � �cmax� subtract
�cmax � 0 assumption
_x0� _x
�cmax

� � division

Corollary 3.3.4 Let w be a closed trajectory of train whose initial and �nal states
are s and s0, respectively and let � = now0 � now. If b = true and 0 � _x0 then the
following holds:

(_x0)2 � _x2

2�cmin
� x0 � x �

(_x0)2 � _x2

2�cmax

Proof:Again, we show only the right hand side of the inequality. Let � = now0�now.
Let z be a trajectory as in the proof of Lemma 3.3.2 and let f denote the �nal state
of z. To make the following algebra easier to read, we let _u0 = f: _x and u0 = f:x. As
usual, x = s:x; _x = s: _x; x0 = s0:x; and _x0 = s0: _x.

_u0 = _x+ �cmax� integration
u0 = x+ _x�+ 1

2�cmax�
2 integration

� = _u0� _x
�cmax

solve for �

u0 = x+ _x _u0� _x2

�cmax
+ 1

2�cmax
(_u0)2�2 _x _u0+ _x2

�c2max
substitution

u0 = x+ 1
2�cmax

(2 _x _u0 � 2 _x2 + (_u0)2 � 2 _x _u0 + _x2) distribute

u0 = x+ (_u0)2� _x2

2�cmax
cancel

x0 � u0 as in Lemma 3.3.2

x0 � x+ (_u0)2� _x2

2�cmax
transitivity

0 � _x0 antecedent
_x0 � _u0 as in Lemma 3.3.2
_u0 < _x (�cmax < 0)

x0 � x+ (_x0)2� _x2

2�cmax
substitution

x0 � x �
(_x0)2� _x2

2�cmax
subtraction

3.4 De�nition of Controller Correctness

We de�ne a brake-controller to be a hybrid I/O automaton with no external vari-
ables, no input actions, and output actions brakeOn, and brakeOff. A correct brake-
controller is one that when composed with train, yields a HIOA whose hybrid traces
satisfy the following formal axioms:

Timeliness There exists a constant t 2 R�0 such that for all hybrid traces if there
exists a state of the trace in which now = t, then there is a state of the trace in
which x = cf.

Safety In all states of all hybrid traces the following holds:
x = cf =) _cminf � _x � _cmaxf.

These can be stated informally as: (Timeliness) there is a length of time after which
we can be sure that the train has reached cf; and (Safety) when it gets there, it has
achieved an appropriate speed. The formal de�nitions of hybrid traces and related
concepts appear in Chapter 2. Note that in (3.4) the state where x = cf can occur
during time passage, i.e. within a trajectory. For conveniencewe call the �rst property
the \timeliness" property and the second property the \safety" property.

A controller which stops time before the system reaches cf is a correct controller
according to the above de�nition. In general, one would like to avoid such vacuous
correctness results. This issue is beyond the scope of our investigation, but it is
treated in some depth in [1, 4, 5]. None of the of the example controllers presented
in this case study stop time.

The following theorem says that the timeliness and safety properties are preserved
by the implementation relation (see Section 2.4); in other words, an implementation
of a correct brake-controller is itself a correct brake-controller. This theorem is not
used in this chapter but rather in Chapter 4.

Theorem 3.4.1 Let B be a correct brake-controller and let A � B. Then A is also
a correct brake-controller.

Proof: By Theorem 2.6.2, Ajjtrain � Bjjtrain. Timeliness: Let t be the constant
which satis�es the timeliness property for B. We show that it also satis�es the
timeliness property for A. Let � be a trace of Ajjtrain; then � is also a trace of
Bjjtrain and the property holds on � by the correctness of B. Safety: Similarly.

3.5 Example Controller: one-shot

In this section we give an example of a correct brake-controller called one-shot.
There is a broad spectrum of correct controllers from which to choose an example |
from fully deterministic controllers to highly non-deterministic controllers. A fully
deterministic controller would have exactly one in�nite execution (ignoring e tran-
sitions). We have chosen to present a controller that is highly non-deterministic:
one-shot exhibits all the possible timings of exactly one brakeOn action followed by
exactly one brakeOff action which a correct controller might exhibit. In other words,
one-shot exhibits all the correct braking strategies which involve exactly one appli-
cation of the brake. We can imagine controllers with more non-determinism which

exhibit not only behaviors with single brake applications but also behaviors with mul-
tiple brake applications. We chose one-shot as an example for three reasons. First,
it is easily expressed using an MMT-speci�cation. Second, it has enough interesting
behavior that the proofs of this section illustrate non-trivial proof techniques. Third
and last, in Chapter 4 we use a simulation proof to show that the composition of
a similar controller and a delay bu�er is an implementation of this controller. The
correctness of the delayed controller then follows from the correctness of one-shot.

First we de�ne some convenient constants:

A =
1

_cs

�
cf � cs �

_c2maxf � _c2s
2�cmax

�

B =
_cmaxf � _cs
�cmax

C =
_cminf � _cs
�cmin

The �rst, A, is the longest amount of time a correct controller can wait before invoking
the brake. The others, B and C, are lower and upper bounds, respectively, on the
amount of time a correct controller should apply the brake if it only brakes once.
These constants are used as the time bounds on the tasks of one-shot.

Table 3.2 The one-shot automaton (MMT-speci�cation)

Actions: Output: brakeOn and brakeOff

Vars: Internal: phase 2 fidle; braking; doneg, initially idle

Discrete Transitions:
brakeOn:

Pre: phase = idle

E�: phase := braking

brakeOff:
Pre: phase = braking

E�: phase := done

Tasks:ON = fbrakeOng : [0; A]
OFF = fbrakeOffg : [B;C]

The formal description of one-shot appears in Table 3.2. The notation used
in the table, called MMT-speci�cation, is explained in Section 2.8. The controller is
called \one-shot" because it applies the brake only once. The automaton's executions
consist of three phases idle, braking, and done. It waits between zero and A time

Figure 3-2 Example Execution of one-shot-sys

_x

_cmaxf

_cminf

cs

x
cf

_cs

units (idle phase), then it applies the brake for at least B and at most C time units
(braking phase), and then removes the brake (donephase). The ON task governs
the transitions from idle to braking and the OFF task governs the transitions from
braking to done.

3.6 Correctness of one-shot

In this section we prove the correctness of the one-shot controller. Recall that the
composition of train and one-shot is called one-shot-sys. We will present lem-
mas and corollaries that establish the timeliness and safety properties for the hybrid
executions of one-shot-sys. Before giving the proof, we provide some motivation
and an overview.

Figure 3-2 depicts a possible execution of one-shot-sys. The vertical axis is
velocity and the horizontal axis is position. Since the vehicle is always moving forward,
the graph can be read as if time progresses from left to right. The solid line represents
the actual behavior of the train in this example execution. The initial at segment
corresponds to the idle phase; the downward curve, the braking phase; and the �nal
at segment, the done phase. The shape of the downward curve in this execution
is meant to reect a constant deceleration, but this is the exception rather than the
rule. The train's deceleration can vary nondeterministically during braking as long
as it remains integrable. As achieved deceleration varies between �cmin and �cmax the
curve becomes more or less steep, respectively.

The dotted lines represent upper and lower bounds that we will prove. The lower
bound will yield the timeliness property. The meaning of the lower bound is obvious:
we will show that the controller never allows the speed to fall below the minimum

�nal velocity. The upper bound (combined with the lower bound) will yield the
safety property. The meaning of the upper bound is less obvious: from each point
on the upper bound, if the controller initiated braking and the train achieved only
the weakest possible braking (�cmax) the train would slow to exactly _cmaxf at the �nal
position. Points below this curve are safe because immediately braking for su�ciently
long will slow the train to strictly less than _cmaxf before the �nal position. Points above
this line are unsafe because even with immediate braking, the train may achieve only
the weakest possible braking | in that case the train will remain strictly above the
required _cmaxf velocity at the �nal position.

Now we proceed to the details of the proof. In the following two sections, we
prove a variety of properties, almost all of which are invariant assertions. We make
extensive use of the deadline variables such as last(ON) which are implicit in the
MMT-speci�cation of one-shot. These variables allow assertions to encode claims
about timing behavior. The proofs o�er an argument for the clarity and simplicity of
the assertional proof style. Almost all of the proofs involve only very local reasoning
about steps of the system. The only proof which is not based on an assertion style,
that of Lemma 3.6.8, relies on Theorem 2.3.1.

Section 3.6.1 establishes the timeliness property; Section 3.6.2 establishes the
safety property. Together they yield the correctness of the controller which is sum-
marized in Theorem 3.6.14.

3.6.1 Timeliness

In this section we prove the timeliness property, namely that there is a bound t on the
time it takes to reach cf. Our method is to prove that at all times there is a positive
lower bound on velocity, speci�cally _cminf. We do this by characterizing velocity for
each of the three phases: idle in Lemma 3.6.3, braking in Lemma 3.6.4, and done in
Lemma 3.6.5. Some of the results are more general than necessary for the timeliness
property because they will be used in the next section for proving the safety property.

The following two technical lemmas will be used to eliminate certain cases in later
inductive arguments. The �rst says that there is only one idle phase and it occurs
at the beginning of the execution. The second says that there are some dependencies
among the values of the variables b, �x, and phase.

Lemma 3.6.1 In all reachable states of one-shot, if (phase = idle) then the fol-
lowing hold:

1. �rst(ON) = 0

2. last(ON) = A

Proof: Trivial induction.

Lemma 3.6.2 In all reachable states of one-shot-sys the following hold:

1. b =) �x 2 [�cmin; �cmax]

2. :b =) �x = 0

3. b() (phase = braking)

Proof: Trivial induction.

The following lemma characterizes the velocity and position of the train during
the controller's idle phase.

Lemma 3.6.3 In all reachable states of one-shot-sys, if phase = idle the follow-
ing hold:

1. _x = _cs

2. x = cs + (now) _cs

Proof: By induction. The interesting case is trajectories where we note that �x = 0
and Lemma 3.3.1 applies. Some trivial algebra yields the desired result.

The following lemma characterizes the velocity of the train during braking. It is
interesting because it involves assertion-style reasoning about the controller's deadline
variables. While the controller is in the braking phase, last(OFF)�now is the greatest
amount of time the train will continue braking. This time must be bounded in order
to avoid slowing down below the minimum �nal speed, _cminf. A similar result holds
for �rst(OFF) and the upper bound on velocity.

Lemma 3.6.4 In all reachable states of one-shot-sys, if phase = braking the
following hold:

1. last(OFF)� now � _cminf� _x
�cmin

2. �rst(OFF)� now � _cmaxf� _x
�cmax

Proof: By induction. The two interesting cases are the ON task that sets phase =
braking and trajectories while phase = braking. For the ON task the pre-state has
phase = idle and Lemma 3.6.3 and the de�nitions of B and C yield the desired
results as follows (only (2) is shown):

B = _cmaxf� _cs
�cmax

by de�nition

_x = _cs = _x0 by Lemma 3.6.3
�rst(OFF)0 = now0 + B one-shot de�nition

�rst(OFF)0 � now0 = _cmaxf� _x
�cmax

substitute & subtract

For trajectories, we use Lemma 3.6.2 and the equation from Corollary 3.3.3. Sub-
traction and expansion of � = now0 � now yields the desired results as follows (only

(2) is shown):

now0 � now � _x0� _x
�cmax

by Corollary 3.3.3.

�rst(OFF)� now �
_cmaxf� _x
�cmax

inductive hypothesis

�rst(OFF)� now0 �
_cmaxf� _x0

�cmax
substitute and cancel

The following corollary uses basic properties of deadline variables and the preced-
ing lemma to prove that as we exit the braking phase and thereafter, we are in the
target velocity range.

Corollary 3.6.5 In all reachable states of one-shot-sys, if phase = done the fol-
lowing holds:

_cmaxf � _x � _cminf

Proof: By induction. The interesting cases are the OFF action and trajectories in
the done phase. For the OFF action we know that in the pre-state phase = braking

so Lemma 3.6.4 applies. Furthermore �rst(OFF) � now � last(OFF) by a property
of MMT automata. From this we can conclude that _cmaxf � _x � _cminf (details for one
side shown below). For trajectories, we know that �x = 0 so _x = _x0, by Lemma 3.6.2
and Lemma 3.3.1.

�rst(OFF)� now �
_cmaxf� _x
�cmax

from Lemma 3.6.4

�rst(OFF) � now from Theorem 2.8.1
�rst(OFF)� now � 0 subtraction

0 �
_cmaxf� _x
�cmax

transitivity

0 > �cmax assumption
0 � _cmaxf � _x multiply
_x � _cmaxf subtract

The following lemma and associated corollary combines the above phase-by-phase
results to yield the global result and the time bound.

Lemma 3.6.6 In all reachable states of one-shot-sys the following holds:

_x � _cminf

Proof: We consider cases of phase. When phase = idle Lemma 3.6.3 gives _x = _cs
and by assumption _cs > _cmaxf � _cminf. When phase = braking, Lemma 2.8.1 gives
now � last(OFF) and Lemma 3.6.4 gives the desired result. Finally when phase =
done, Corollary 3.6.5 applies.

Corollary 3.6.7 In all reachable states of one-shot-sys the following holds:

x � cs + _cminf(now)

Proof: Lemma 3.6.6 establishes that in all reachable states (including those in trajec-
tories) _x � _cminf. At all times x� cs is the integral of _x. It is a property of de�nite in-
tegrals that lower bounds are preserved. Therefore x�cs �

R
now

0
_cminf dt = _cminf(now).

The following lemma establishes the timeliness property.

Lemma 3.6.8 Let � be a trace of one-shot-sys. If there exists a state s of � in
which s:now = cf�cs

_cminf
, then there is a state s0 of � in which s0:x = s0:cf.

Proof: By Corollary 3.6.7 we know that in state s, s:x � cf. We observe that no
discrete action modi�es x and that for all trajectories w of the system, w:x is a
continuous function. Therefore x is a continuous variable of one-shot-sys (see end
of Section 2.3). Let �0 be an execution of one-shot-sys whose trace is �. Let
f = �0 # fxg. By Theorem 2.3.1, f is a continuous function. We know f(s:now) � cf
and that f(0) = cs < cf. By the intermediate value theorem, it follows that for some
t where 0 � t � s:now, f(t) = cf. We conclude that a state where x = cf is achieved
in �0 and hence in �.

3.6.2 Safety

In this section we prove the safety property, namely that the following formula is an
invariant of the system:

(x = cf =) _cminf � _x � _cmaxf)

We have already shown that at all times _cminf � _x, therefore we need only establish
the other half of the inequality. To prove this invariant we prove a stronger invariant:

x � cf =) cf � x �
_c2maxf� _x2

2�cmax

Intuitively, this invariant says that before reaching the �nal position there must be
enough distance left to brake, even at the weakest braking. It has as a special case
the safety property (note that �cmax is negative). This is a common technique for
proving an invariant: not all invariants can be proven inductively but there is usually
a strengthening of the invariant which can. Once again, we prove the invariant for
each phase(3.6.9, 3.6.10, 3.6.11) and combine the results (3.6.12). The safety property
is proved in corollary 3.6.13.

Lemma 3.6.9 In all reachable states of one-shot-sys, if phase = idle then cf �

x �
_c2
maxf

� _x2

2�cmax
.

Proof: By Lemmas 2.8.1 and 3.6.1 we know now � A. Using the equations for _x
and x from Lemma 3.6.3 we substitute and simplify, yielding the desired result (see
de�nition of A).

now � 1
_cs

�
cf � cs �

_c2
maxf

� _c2s
2�cmin

�
from now � A

cs + (now) _cs � cf �
_c2
maxf

� _c2s
2�cmin

multiply by _cs and add
cs

x = cs + (now) _cs from Lemma 3.6.3

x � cf �
_c2maxf� _c2s
2�cmin

= and � transitive

cf � x �
_c2
maxf

� _c2s
2�cmin

subtract cf and reverse
sign

Lemma 3.6.10 In all reachable states of one-shot-sys, if phase = braking then

cf � x �
_c2maxf� _x2

2�cmax

Proof: By induction. The interesting cases are the ON task and trajectories while
phase = braking. In the ON task case Lemma 3.6.9 applies to the pre-state; since
none of the state variables mentioned in the formula change during the ON task the
formula still holds. In the trajectory case, we substitute from Lemma 3.3.4 into the
inductive hypothesis and simplify.

cf � x �
_c2
maxf

� _x2

2�cmax
inductive hypothesis

x0 � x � _x
02� _x2

2�cmax
from Lemma 3.3.4

cf � x� x0 + x �
_c2maxf� _x2� _x

02+ _x2

2�cmax
subtract

cf � x0 �
_c2
maxf

� _x
02

2�cmax
cancel

Lemma 3.6.11 In all reachable states of one-shot-sys, if x � cf and phase = done

then

cf � x �
_c2maxf� _x2

2�cmax

Proof: Directly using Lemma 3.6.5. The left hand side is bounded below by zero
because x � cf. The right hand side is bounded above by zero because _x � _cmaxf.

Corollary 3.6.12 In all reachable states of one-shot-sys, if x � cf then

cf � x �
_c2
maxf

� _x2

2�cmax

Proof: Directly using Corollaries 3.6.9, 3.6.10, and 3.6.11.

Corollary 3.6.13 In all reachable states of one-shot-sys:

cf = x =) _cmaxf � _x � _cminf

Proof: Directly using 3.6.12 and 3.6.6.

We conclude this chapter with a theorem which summarizes the correctness result
for the one-shot controller.

Theorem 3.6.14 The following are true of one-shot-sys:

Timeliness For all hybrid traces � of one-shot-sys, if in some state of � now =
x�cs
_cminf

, then for some state in � x = cf.

Safety In all states of all hybrid traces of one-shot-sys, the following holds:
x = cf =) _cminf � _x � _cmaxf.

In other words, one-shot is a correct brake-controller.

Proof:We establish the timeliness property for hybrid executions of one-shot-sys in
Lemma 3.6.8; we establish the safety property for hybrid executions of one-shot-sys
in Corollary 3.6.13. The properties extend to the hybrid traces of one-shot-sys
because each hybrid trace is the projection of some hybrid execution. Controller
correctness is de�ned in Section 3.4.

Chapter 4

Deceleration Case 2:
Delay and No Feedback

In this chapter we extend the model of the train by nondeterministically delaying the
braking commands. Rather than modify the train automaton itself, we introduce a
new automaton called buffer that will serve as a bu�er between the train and a
controller. Figure 4-1 illustrates the components and their communication.

In the following sections we present buffer, modify the correctness criteria to
account for the buffer, give an example controller called del-one-shot, and prove
that it is correct. The proof uses a simulation mapping to show that the com-
position of del-one-shot and buffer implements one-shot; the correctness of
del-one-shot then follows (in part) from Theorem 3.4.1.

4.1 The buffer Automaton

The bu�er stores a single command from the controller. It forwards it to the train
after some delay. For each command, the delay is nondeterministically chosen from
the interval [��; �+] (where 0 � �� � �+).

The buffer automaton appears in Table 4.1. It is largely self explanatory. The
variable request stores a command while it is being bu�ered. The history variable
violation becomes true when a new command from the controller arrives before the
previous one has exited the bu�er, that is when the bu�er overows. We use violation

Figure 4-1 Overview of Delay Deceleration Model

A Controllertrain

brakeOff
buffer

bufBrakeOff

brakeOn bufBrakeOn

47

Table 4.1 The buffer automaton.

Actions: Inputs: bufBrakeOn and bufBrakeOff

Outputs: brakeOn and brakeOff

Vars: Internal: request 2 fon; off; noneg, initially none

violation, boolean, initially false

Discrete Transitions:
bufBrakeOn:

E�: Cases of request,
on : no e�ect
off : violation := true

none : request := on

bufBrakeOff:
E�: Cases of request,

on : violation := true

off : no e�ect
none: request := off

brakeOn:
Pre: request = on

E�: request := none

brakeOff:
Pre: request = off

E�: request := none

Tasks:
BUFF = fbrakeOn; brakeOffg : [��; �+]

to ag this error condition.

4.2 De�nition of Controller Correctness, Revisited

We modify the de�nition of a correct controller to account for the bu�er. Let � be an
operator on automata which hides the actions bufBrakeOn and bufBrakeOff (see Sec-
tion 2.6). A correct bu�ered-brake-controller is a HIOA C with no external variables
and with output actions bufBrakeOn and bufBrakeOff such that the composition
�(Cjjbuffer)jjtrain is a correct brake-controller as de�ned in Section 3.4. The use
of the hiding operator � in the correctness de�nition is a technical convenience.

4.3 Parameters, Revisited

Not only do we need to place restrictions on the value of the new parameters (��; �+),
but we also need to revise the constraints among the original parameters in light of
these new ones. Intuitively, the controller is subject to more uncertainty and therefore
needs less stringent requirements. The further constraints can be viewed as forcing
the target velocity range, [_cminf; _cmaxf] to be wider and hence the controller's task
easier. These are the additional constraints:

1. 0 � �� � �+

2. _cs � _cmaxf + �cmax�
+

3. _cmaxf � _cminf + �cmin�
+

4. _cmaxf� _cs
�cmax

+ �+ � �� � _cminf� _cs
�cmin

� �+ + ��

The �rst constraint ensures that the delay interval is well-de�ned. The next
two are necessary to ensure that the bu�er does not overow. The last constraint
replaces constraint number six in Section 3.1; the new version accounts not only for
the nondeterminism of the braking strength but also for the bu�er. The other �ve
original constraints remain as well but are not shown here. Note that these constraints
in this chapter are more restrictive than the constraints from Chapter 3.

4.4 Example Controller: del-one-shot

Here we give an example of a valid bu�ered-brake-controller called del-one-shot.
This automaton is identical to one-shot of Section 3.4 except in the names of its
actions and the duration of its phases. The output actions brakeOn, brakeOff are
replaced by bufBrakeOn, bufBrakeOff. The time bounds A;B;C are replaced by
A0; B0; C 0. These new bounds are:

A0 =max(0; A� �+)

B0 =B + �+ � ��

C 0 =C � �+ + ��

We also name the following compositions of automata:

del-one-shot-and-buf= �(bufferjjdel-one-shot)

del-one-shot-sys= trainjjdel-one-shot-and-buf

4.5 Correctness of del-one-shot

The proof of correctness of the controller requires proofs of the timeliness and safety
properties. First, we prove that the bu�er never overows in Section 4.5.1. In Sec-
tion 4.5.2 we prove timeliness and safety using a simulation mapping to the unbu�ered
case of Chapter 3. The timeliness and safety results of the unbu�ered case extend via
the simulation to this case.

4.5.1 Non-Violation

Non-violation is proved directly.

Lemma 4.5.1 In all reachable states of del-one-shot-and-buf
the following holds:

violation = false:

Proof: Violation occurs when request 6= none and a bufBrakeOn or bufBrakeOff

action takes place. Since these actions are controlled by the ON and OFF tasks it
is su�cient to show that �rst(ON) and �rst(OFF) are greater than now whenever
request 6= none. The following invariant of del-one-shot-sys is su�cient:

request 6= none =) last(BUFF) � min(�rst(ON);�rst(OFF))

This follows from a simple inductive argument that uses the new constraints on the
target velocities and the de�nition of B0.

4.5.2 Timeliness and Safety

In this section we prove the timeliness and safety properties for del-one-shot-sys
via a simulation mapping. The simulation maps states of del-one-shot-and-buf
to states of the original controller, one-shot. Note that the use of the hiding
operator � in the de�nition of del-one-shot-and-buf makes the two automata
comparable (Section 2.5). We use the simulation and Theorem 2.5.1 to show that
del-one-shot-and-buf implements one-shot. Then, the timeliness and safety
properties of del-one-shot follow from Theorem 2.6.2.

The intuition that suggests this type of proof is as follows: one-shot exhibits
all possible behaviors that engage the brake exactly once and that satisfy the time-
liness and safety properties. Therefore, the automaton one-shot is itself a form of
speci�cation for those behaviors | that is, every correct brake-controller which only
engages the brake once is an implementation of one-shot. Since the example con-
troller of this chapter, del-one-shot, only brakes once, we expect that it satis�es
the timeliness and safety properties if and only if the composition of del-one-shot
and buffer implements one-shot. One direction of the \if and only if" comes from

Figure 4-2 Comparison of one-shot-sys and del-one-shot-sys.

train

brakeOff
buffer

bufBrakeOff

del-one-shot-sys

brakeOn bufBrakeOn

del-one-shot

train

brakeOff
one-shot

one-shot-sys

brakeOn

Theorem 3.4.1 and is the proof method we use. The other direction is based on our
claim that one-shot exhibits all possible behaviors that engage the brake exactly
once.

Notice that the safety and timeliness properties only mention variables in train.
In light of this, it may appear counter-intuitive that the simulation mapping ex-
cludes the train. Consider Figure 4-2, which shows the automata and inter-automaton
communication of one-shot-sys and del-one-shot-sys together. The dark ver-
tical line represents a common interface in both systems, namely the interface to
train. A consequence of our simulation mapping is that the external behavior of
del-one-shot-and-buf is a subset of the external behavior of one-shot. Their
external behavior is precisely the behavior across the dark line and this is all the
input that train receives; therefore train's behavior in the bu�ered case is a subset
of its behavior in the unbu�ered case. Therefore, the timeliness and safety proper-
ties, which involve only variables of train, extend from the unbu�ered case to the
bu�ered case.

In the following three subsections we give some supporting lemmas, the simulation
mapping, and then the �nal correctness result in Theorem 4.5.6.

Supporting Lemmas

The following lemma helps reduce the number of cases that need to be considered in
the simulation proof.

Lemma 4.5.2 In all reachable states of del-one-shot-and-buf exactly one of the
following is true:

1. phase = idle ^ request = none

2. phase = braking^ request = on

3. phase = braking^ request = none

4. phase = done ^ request = off

5. phase = done ^ request = none

Furthermore, all transitions lead from a state in one category to a state in the same
or immediately subsequent category.

Proof: Simple induction, uses Lemma 4.5.1.

The following two technical lemmas help make the simulation proof more readable.
Both lemmas concern the time bounds on the idle phase.

Lemma 4.5.3 In all reachable states of del-one-shot, the following holds:

phase = idle =) �rst(ON) = 0 ^ last(OFF) = A0

Proof: Exactly analogous to Lemma 3.6.1.

Lemma 4.5.4 In all reachable states of del-one-shot-and-buf
the following holds:

(phase = braking^ request 6= none) =) last(BUFF) � A0 + �+ = A

Proof: Simple induction, uses Lemma 4.5.2.

Simulation

In this section we present a simulation relation R from del-one-shot-and-buf to
one-shot. The key insight is that since external behavior must be preserved, the
timing of external actions must coincide, speci�cally brakeOn and brakeOff.

Let s denote a state in the implementation (del-one-shot-and-buf), and u

denote a state in the speci�cation (one-shot); the states are related via R (denoted
sRu) when the following two conditions hold:

1. u:now = s:now

2. By cases of s:phase:

(a) idle, then u:phase = idle

(b) braking, by cases of s:request:

i. on, then u:phase = idle

ii. none, then u:phase = braking and
u:�rst(OFF) � s:�rst(OFF) + �� and
u:last(OFF) � s:last(OFF) + �+

(c) done, by cases of s:request:

Figure 4-3 Overview of Simulation Mapping

idle

idle

braking

on off

done

donebraking

(a) (b) (c)

Time

one-shot

del-one-shot-and-buf

request

phase

phase

Mapping Clause 2
i ii i ii

i. off, then u:phase = braking and
u:�rst(OFF) � s:�rst(BUFF) and
u:last(OFF) � s:last(BUFF)

ii. none, then u:phase = done

Intuitively, the simulation is mapping the \virtual" phases of the implementation,
del-one-shot-and-buf, to the actual phases of the speci�cation, one-shot. This
is illustrated in Figure 4-3. The �gure depicts an execution of one-shot above
a corresponding execution of del-one-shot. A virtual phase of del-one-shotis
the portion of its execution that corresponds to an actual phase of one-shot. For
example the virtual idle phase consists of the period between the �rst and second
dotted line. The second and third dotted lines represent the times when brakeOn and
brakeOff actions occur, respectively. The �gure also shows how mapping clause 2
applies to di�erent portions of the execution.

The proof that the relation R is in fact a simulation mapping appears below. The
form of simulation proofs is that of an exhaustive case analysis. To those familiar
with the style of simulation proofs, this one is straightforward and unremarkable.

Lemma 4.5.5 The above relation R is a simulation mapping from
del-one-shot-and-buf to one-shot.

Proof: Let s follow from s0 in one discrete transition labeled by action � or in one
trajectory and let sRu. We must �nd u0 such that s0Ru0 and there exists an execution
fragment from u to u0 with the same trace as �. We break by cases depending on the
type of step and its label:

1. If s leads to s0 via a trajectory then we must show that there is an equivalent
trajectory enabled from u. Since the barriers to time progress are the last(�)
variables, it is su�cient to show that they are all greater in the speci�cation.
More exactly:

minfu:last(ON); u:last(OFF)g

� minfs:last(ON); s:last(OFF); s:last(BUFF)g

Cases by u:phase:

(a) u:phase = idle

The OFF task is disabled in u so u:last(OFF) =1 and we are concerned
only with u:last(ON). From the relation R we can break into the following
two cases:

i. s:phase = idle { then s:last(OFF) = 1 and s:last(BUFF) = 1 (by
automaton de�nition and Lemma 4.5.2). By Lemmas 3.6.1 and 4.5.3
u:last(ON) = A and s:last(ON) = A0 and by de�nition A � A0.

ii. s:phase = braking ^ s:request 6= none { Follows from Lemmas 3.6.1
and 4.5.4.

(b) u:phase = braking

The ON task is disabled in u so u:last(ON) = 1 and we are concerned
only with u:last(OFF). From the relationR we can break into the following
two cases:

i. s:phase = braking ^ s:request = none { then s:last(ON) = 1 and
s:last(BUFF) = 1. By clause 2(b)ii of the relation u:last(OFF) =
s:last(OFF) + �+.

ii. s:phase = done^ s:request 6= none { then s:last(ON) = s:last(OFF) =
1. By clause 2(c)i of the relation u:last(OFF) = s:last(BUFF).

(c) u:phase = done

Trivial. Both tasks OFF and ON are disabled in u, so u:last(OFF) =
u:last(ON) =1.

2. If � is bufBrakeOn then let u0 = u and the execution fragment be empty. We
must show that s0Ru0. Note that s:phase = idle by the de�nition of the
del-one-shot automaton. Also note that s:request = none by Lemma 4.5.1
(non-violation). The results follows by clause 2a of the relation.

3. If � is bufBrakeOff then it is similar to the previous case. We let u0 = u and
the execution fragment is empty. It follows from clause 2(c)i that s0Ru0.

4. If � is brakeOn then let u0 be the unique state that follows u via the brakeOn

action and let the execution fragment contain only that action. We must show

that brakeOn is enabled in u and that s0Ru0. Note that s:request = on by the
de�nition of the buffer automaton. By Lemma 4.5.2 we know that s:phase =
braking. Therefore by clause 2a of the relation we know that u:phase = idle.
Since u:�rst(ON) = 0 by Lemma 3.6.1, brakeOn is enabled in u. It remains
to show that u0 satis�es the relation. Since s0 satis�es the antecedent of clause
2(b)ii, u0 must satisfy its consequent. By the de�nitions of B;B0; C;C 0 it does.

5. If � is brakeOff then we proceed much as in the above case. Let u0 be the unique
state that follows u via the brakeOff action and let the execution fragment con-
tain only that action. First, s:request = off by the de�nition of the buffer
automaton. By Lemma 4.5.2, s:phase = done. By clause 2(c)i of the rela-
tion we know that u:phase = braking and that [u:�rst(OFF); u:last(OFF)] �
[s:�rst(BUFF); s:last(BUFF)] and brakeOff is enabled in s, therefore it is en-
abled in u. Finally s0Ru0 by clause 2(c)ii.

These are all the cases of �.

Using the Simulation

In this section we use the above simulation to prove that del-one-shot is a correct
bu�ered-brake-controller.

Theorem 4.5.6 Automaton del-one-shot is a correct bu�ered-brake-controller.

We must show that del-one-shot-and-buf is a correct brake-controller.
By Lemma 4.5.5 and Theorem 2.5.1:

del-one-shot-and-buf� one-shot

By Theorem 3.4.1 and Theorem 3.6.14 del-one-shot-and-buf is a correct brake-
controller.

Chapter 5

Deceleration Case 3:
Feedback and No Delay

In this chapter we describe a more complex model of the deceleration problem where
the train provides the controller with sensor feedback at periodic intervals. We de�ne
a new train automaton called sensor-train. We also de�ne correctness conditions,
give an example controller and prove that it is correct. Figure 5-1 illustrates the
components and their communication.

5.1 The sensor-train Automaton

The sensor-train automaton appears in Table 5.1. It accepts accel(a) messages
which are requests to accelerate at a rate a 2 [�cmin + �cerr; �cmax]. If a is the requested
acceleration then the achieved acceleration of the train is in the interval [a� �cerr; a].
This is similar to the behavior of train from Section 3.2 in that the acceleration
is non-deterministically chosen from an interval. It di�ers in that the controller can
choose one of the endpoints of the �xed length interval and hence adjust the interval
up or down. The train provides sensor information periodically; it sends a status

message giving the current values of its variables acc, _x, and x every �s time units.
The variable acc stores the most recent acceleration request. The variable next is a
deadline variable which stores the time of the next status action.

Figure 5-1 Overview of Feedback Deceleration Model

A Controller

accel(a)

status(a; v; p)

sensor-train

57

Table 5.1 The sensor-train automaton.

Actions: Inputs: accel(a) for a 2 [�cmin+ �cerr; �cmax]
Outputs: status(a; v; p) for a; v; p 2 R

Vars: Outputs: x 2 R, initially x = cs
_x 2 R, initially _x = _cs
�x 2 R, initially �x = �cs
acc 2 [�cmin + �cerr; �cmax], initially �cs
next 2 R�0, initially 0
now 2 R�0, initially 0

Discrete Transitions:
accel(a):

E�: acc := a

�x :2 [a� �cerr; a]
status(a; v; p):

Pre: a = acc, v = _x, p = x and now = next
E�: next := now+ �s

Trajectories:
w:acc and w:next are constant functions
w:�x is an integrable function with range [w(0):acc� �cerr; w(0):acc]
For all t 2 I the following hold:

w(t):now = w(0):now+ t

w(t):now � next

w(t): _x = w(0): _x+
R t

0
w(s):�x ds

w(t):x = w(0):x+
R t

0 w(s): _x ds

5.2 Properties of sensor-train

The following two properties of sensor-train are similar to the properties of train
proved in Lemmas 3.3.2 and 3.3.4. The �rst bounds change in velocity by change in
time. The second bounds change in position by change in velocity.

Lemma 5.2.1 For all closed trajectories w of sensor-train where s is the initial
and s0 is the �nal state of w the following holds:

acc(now0 � now) � _x0 � _x � (acc� �cerr)(now
0 � now)

Proof: As in the �rst part of Lemma 3.3.2, except that acc and (acc � �cerr) replace
�cmax and �cmin respectively.

Lemma 5.2.2 For all closed trajectories w of sensor-train where s is the initial
and s0 is the �nal state of w, if acc � 0 and 0 < _x0 then the following holds:

(_x0)2 � _x2

2acc
� x0 � x �

(_x0)2 � _x2

2(acc � �cerr)

Proof: Similar to Lemma 3.3.4, except that acc and (acc� �cerr) replace �cmax and �cmin

respectively.

The following property is like the now � last(�) property for MMT automata,
Theorem 2.8.1.

Lemma 5.2.3 In all reachable states of sensor-train the following holds:

0 � next � now � �s

Proof: Simple induction.

5.3 De�nition of Controller Correctness, Revisited

We de�ne a correct controller-under-feedback to be a hybrid I/O automaton with no
external variables and with output actions accel(a) for a 2 [�cmin + �cerr; �cmax] that
when composed with sensor-train yields an automaton whose hybrid traces satisfy
the timeliness and safety properties from Section 3.4. These are restated here for
convenience:

Timeliness There exists a constant t 2 R�0 such that for all hybrid traces if there
exists a state of the trace in which now = t, then there is a state of the trace in
which x = cf.

Safety In all states of all hybrid traces the following holds:
x = cf =) _cminf � _x � _cmaxf.

5.4 Parameters, Revisited

In order to guarantee that a valid controller exists, we impose the following constraints
on the parameters:

1. cs < cf

2. _cs > _cmaxf � _cminf > 0

3. �cerr > 0

4. �s > 0

5. �cmin < �cmin + �cerr < 0 � �cmax � �cerr < �cmax

6. cf � cs �
_c2
maxf

� _c2s
2(�cmin+�cerr)

7. _cmaxf � _cminf � ��cmin�s

Note that these constraints supersede the original constraints given in Chapter 3.
Informally the constraints say the following: (1) the �nal position is past the initial
position; (2) the task is to decelerate the train to a well-de�ned interval but not
to reverse the train; (3) the uncertainty in acceleration is non-zero; (4) the interval
between sensor observations is non-zero; (5) certain commands to the train can guar-
antee periods of strictly negative or non-negative acceleration; (6) there is enough
distance to brake, given the weakest braking that can occur after a request for the
strongest braking; (7) the target interval of velocities is wide enough. Constraint 7
is only one of a number of constraints that make the target velocity interval wide
enough for there to be some correct controller. We chose this form of constraint 7
because it is necessary for the correctness of the example controller of this chapter.

Recall that in the description of sensor-train the initial values of both acc and
�x are set to �cs. In order to avoid a tedious treatment of certain initial conditions,
we assume that the train is initially at a convenient acceleration. Let �cs be the
acceleration needed to reach _cmaxf at exactly cf, as follows:

�cs =
_c2maxf� _c2s
2(cf � cs)

Notice that �cs is negative.

5.5 Example Controller: zig-zag

Controlling the train in the presence of sensory feedback appears to require a sub-
stantially di�erent algorithm from that in the non-feedback case. Here we give an
example valid controller-under-feedback called zig-zag. The system composed of
sensor-train and zig-zag is called zig-zag-sys. We describe zig-zag in Ta-
ble 5.2.

We explain informally the behavior of zig-zag. The controller takes no action
unless it receives a status(a; v; p) message in which v � _cmaxf; this is guaranteed
to occur eventually and before the �nal position because of our choice of the initial
negative acceleration �cs. This is an arbitrary choice in the design of zig-zag| there
are other correct controllers that adjust the acceleration earlier. Once the controller is
informed that the velocity of the train in below _cmaxf, it immediately send an accel(a)
message where a is the acceleration which will accelerate the train from its current
velocity to _cmaxf in �s time (if that acceleration is higher than �cmax, the largest allowed
value of a, then it uses �cmax.) . If the train doesn't achieve the requested acceleration
then the velocity in �s time will be less than _cmaxf. Constraint 7 on the parameters

Table 5.2 The zig-zag automaton.

Actions: Inputs: status(a; v; p) for a; v; p 2 R
Outputs: accel(a) for a 2 [�cmin+ �cerr; �cmax]

Vars: Internal: send 2 [�cmin+ �cerr; �cmax] [fnoneg, initially none

Discrete Transitions:
status(a; v; p):

E�:
if v � _cmaxf then

send := min
�
�cmax;

_cmaxf�v

�s

�
accel(a):

Pre: send = a

E�: send := none

Trajectories:
w:send is a constant function
if w is not a trivial trajectory then

w(0):send = none

for all t 2 I the following holds:
w(t):now = w(0):now+ t

from Section 5.4 is su�cient to ensure that the interval [_cmaxf; _cminf] is wide enough
that this strategy doesn't cause the velocity to dip below _cminf. In the de�nition of
the trajectory set, the �rst \if" statement ensures that time progresses only if the
controller has nothing to send.

The controller is called zig-zag because of the shape of the curve in _x�now space
of the worst-case behavior of zig-zag-sys (recall that zig-zag-sys is the composition
of sensor-train and zig-zag). Figure 5-2 depicts a possible behavior for the system;
it assumes constant acceleration. The train begins at time zero with velocity _cs and
acceleration �cs. If it achieved �cs acceleration it would reach the goal velocity of _cmaxf

at exactly cf (the upper dotted line). However, for the �rst three �s periods it only
achieves �cs � �cerr acceleration (the solid line). At that point the controller sees that
_x � _cmaxf and changes the acceleration (�rst bend in solid line). Every �s time units
the controller continues to adjust acceleration so that the highest it will reach is _cmaxf.

Figure 5-2 Possible behavior of zig-zag-sys.

0

_x

5�s

_cmaxf

_cminf

_cs

now

5.6 Correctness of zig-zag

The structure of the proof is very similar to that of the simple case examined in
Chapter 3: �rst, we show the timeliness property via a global lower bound on velocity;
second, we show the safety property via a more complex invariant that has as a sub-
case the invariant used in Chapter 3.

5.6.1 Timeliness

In this section we prove the timeliness property. The �rst lemma is a technical lemma
that says that whenever the controller is going to send a new acceleration, there is
�s time until the next status message. This is obvious because the status messages
are sent at �s intervals and the controller responds to them immediately.

Lemma 5.6.1 In all reachable states of zig-zag-sys the following holds:

send 6= none =) next = now + �s

Proof: Trivial induction.

The next lemma, Lemma 5.6.2, is the major new result needed to prove the
timeliness property. As in Chapter 3, we would like to prove the timeliness property
with the invariant _x � _cminf. However, this invariant cannot be proved directly with
an inductive argument. Once again, we strengthen the invariant to yield an invariant
assertion that can be proved inductively; the weaker invariant follows as a corollary.

The stronger invariant appears in Lemma 5.6.2. It is an invariant that describes
a lower bound on velocity at the current time and for the near future | the current

sensory interval. This property uses a set of implications with mutually exclusive and
exhaustive antecedents. Each implication corresponds to one of the periodic logical
phases of the system: send = none, when the zig-zag is waiting for the next status
message; and send 6= none, when zig-zag has just received a status message and
is about to send a new accel command. The invariant makes a di�erent claim for
each of these phases. On the one hand, the invariant says that if send = none then
the current velocity is above _cminf and the velocity at the time of the next status
message will be also. The worst-case velocity at the time of the next status message
is calculated using the current lower bound on acceleration, acc � �cerr, and the time
left until the next status message, next�now. This type of calculation appears again
in more complex forms in subsequent sections and chapters. On the other hand, the
invariant says that if send 6= none then the current velocity is above _cminf and the
velocity at the time of the next status message will be also. In this case, the worst-cast
velocity at the time of the next status message is calculated using the acceleration
that the controller is about to send the train, namely the variable send itself. This
type of invariant appears again later in more complex forms.

Lemma 5.6.2 In all reachable states of zig-zag-sys, the following hold:

1. send = none =) _x � _cminf ^ _x+ (acc� �cerr)(next � now) � _cminf

2. send 6= none =) _x � _cminf ^ _x+ (send� �cerr)�s � _cminf

Proof: By induction. Notice that the antecedents of the two implications are mu-
tually exclusive and exhaustive; we will refer to them as Rule 1 and 2. We say that
a rule applies when it's antecedent is true and that it holds when it applies and its
consequent is true (or when it doesn't apply).

Basis: In the initial state _x > _cmaxf so Rule 1 applies. It holds because of our
assumptions on the parameters, the de�nition of �cs, and the de�nition of the initial
states of the automata.

Induction: Suppose the property is true in state s; we must show that it is true
in s0 which follows from s in one discrete transition labeled by action � or in one
trajectory. For the sake of brevity, we denote variables in the post-state by adding
primes, e.g. we write now0 instead of s0:now. We brake by cases on the type of step
and its label: accel, status, or trajectory.

1. � = accel: notice that send 6= none by the action's precondition, so Rule
2 applies in s and by the inductive hypothesis it holds. The only variables
which change are send and acc; the action sets acc0 = send and send0 = none.
Therefore Rule 1 must apply in s0. We must show that it holds. Clearly,
_x0 = _x � _cminf by the inductive hypothesis. By Lemma 5.6.1 next � now = �s
and because none of these variables change next0 � now0 = �s. By substituting
next0 � now0 = �s, acc0 = send and send0 = none into the inequality in Rule 2
we get :

_x+ (acc0 � �cerr)(next0 � now0) = _x+ (send � �cerr)�s � _cminf

This shows that Rule 1 holds in s0.

2. � = status: notice that next = now by the action's precondition, so next 6=
now + �s and by the contra-positive of Lemma 5.6.1 send = none; therefore,
Rule 1 applies in s and by the inductive hypothesis it holds. The only variables
which change are send and next. We break by cases of send0:

(a) send0 = none: Rule 1 applies in s0; must show that it holds. According
to the automata de�nitions _x0 = _x = v � _cmaxf, next0 � now0 = �s, and
acc0��cerr � �cmin. By assumption on the parameters: _cmaxf� _cminf > ��cmin�s.
From these, we reach the desired conclusion with some algebra:

_cmaxf � _cminf � ��cmin�s parameter assumption
_cmaxf+ �cmin�s � _cminf subtract

_x0 � _cmaxf automaton de�nition
_x0 + �cmin�s � _cminf substitute

�s > 0 parameter assumption
acc0 � �cerr � �cmin: automaton de�nition

_x0 + (acc0 � �cerr)�s � _cminf substitution
�s = next0 � now0 automaton de�nition

_x0 + (acc0 � �cerr)(next0 � now0) � _cminf substitution

Thus Rule 1 holds in s0.

(b) send0 6= none: Rule 2 applies in s0; must show that it holds. Above we
showed that next = now and Rule 1 holds in state s from which we know
that _x � _cminf. This is half of Rule 2; it remains to show the other half.
According to the automata de�nitions: send0 = min(�cmax;

_cmaxf� _x
�s

). By
assumption on the parameters �cmax � �cerr � 0, therefore if send0 = �cmax

Rule 2 applies trivially. Assume that send0 = _cmaxf� _x
�s

< �cmax. Some algebra
yields the desired result:

�cmin + �cerr < 0 parameter assumption
�s > 0 parameter assumption

��cmin�s > �cerr�s subtract & multiply
_cmaxf� _cminf � ��cmin�s parameter assumption
_cmaxf� _cminf � �cerr�s transitivity
_cmaxf � �cerr�s � _cminf subtract

_x0 + _cmaxf� _x0 � �cerr�s � _cminf anti-cancel

_x0 +
�

_cmaxf� _x
�s

� �cerr

�
�s � _cminf anti-distribute

send0 = _cmaxf� _x
�s

assumption

_x0 + (send0 � �cerr)�s � _cminf substitute

Thus Rule 2 holds in s0.

3. The step is a trajectory: then send = send0 = none according to the trajecto-
ries of the controller. Thus, Rule 1 holds in s, applies in s0 and must be shown

to hold in s0. This case uses Lemma 5.2.1, the inductive hypothesis and some
simple algebra.
Notice that acc = acc0, so let X = (acc� �cerr) = (acc0 � �cerr):

_x +X(next� now) � _cminf inductive hypothesis
_x0 � _x � X(now0 � now) by Lemma 5.2.1

_x0 � _x �X(now0 � now) � 0 subtract
_x+ _x0 � _x+X(next� now)

�X(now0 � now) � _cminf add
_x0 +X(next� now0) � _cminf cancel

For the _x � _cminf requirement: by Lemma 5.2.3 next � now � 0, thus if
X � 0 then _x0 � _x � _cminf; otherwise, _x0 � _x0 + X(next � now0) � _cminf

(by Lemma 5.2.3). Thus Rule 1 holds in s0.

Corollary 5.6.3 In all reachable states of zig-zag-sys the following holds:

_x � _cminf

Proof: Directly from 5.6.2. The antecedents form an exhaustive set of cases, and in
all cases the property is true.

This leads to the timeliness property as Lemma 3.6.6 did in Chapter 3. The
corollaries which yield the timeliness property are exactly analogous and are not
restated here. The �nal result is stated in Theorem 5.6.8.

5.6.2 Safety

The following technical lemma is says that under certain conditions a certain inequal-
ity is maintained during trajectories. Informally, the inequality tests whether there
remains enough distance to brake the train to below _cmaxf. This inequality appeared
extensively in the proof of the safety property in Section 3.6.2.

Lemma 5.6.4 Let w be a closed trajectory of zig-zag-sys where s is the initial state
and s0 is the �nal state of w. If acc = �cs, x � cf, and x0 � c0f then

cf � x �
_c2maxf� _x2

2�cs
=) cf � x0 �

_c2maxf � (_x0)2

2�cs

Proof: The proof is similar to those in Section 3.6.2.

acc = �cs � 0 assumption

cf � x �
_c2
maxf

� _x2

2�cs
assumption

x0 � x �
(_x0)2� _x2

2acc by Lemma 5.2.2

x� x0 �
_x2�(_x0)2

2acc multiply

cf � x+ x� x0 �
_c2
maxf

� _x2+ _x2�(_x0)2

2acc add

cf � x0 �
_c2
maxf

�(_x0)2

2�cs
cancel

The following lemma is the major result needed to prove the safety property. It
is similar to two other results: (1) Corollary 3.6.12 and its supporting lemmas, which
used a similar equation to bound \distance remaining"; and, (2) Lemma 5.6.2 of this
section, which provides a set of implication with an exhaustive set of antecedents.
Each of the clauses can be associated with a portion of the solid line in the graph
in Figure 5-2. The �rst clause applies to the initial downward segment; it says that
before passing the _cmaxf threshold the following hold: the acceleration �cs is in e�ect;
the controller is not sending any commands; and there is enough distance left to
brake at the current acceleration. The second and third clauses guarantee that once
the velocity has dipped below _cmaxf, it will never rise above _cmaxf. These clauses
guarantee an upper bound in a manner analogous to the clauses of Lemma 5.6.2
which guaranteed a lower bound.

Lemma 5.6.5 In all reachable states of zig-zag-sys the following hold:

1. _x > _cmaxf =) acc = �cs ^ send = none ^
�
(x � cf) =) cf � x �

_c2maxf� _x2

2�cs

�

2. _x � _cmaxf ^ send = none =) (_x+ acc(next � now)) � _cmaxf

3. _x � _cmaxf ^ send 6= none =) (_x+ send(�s)) � _cmaxf

Proof: This is an inductive proof very similar to the proof of Lemma 5.6.2 above.
As in that lemma, the property is the conjunction of a set of implications whose
antecedents are mutually exclusive and exhaustive. We use similar terminology here,
calling them Rules 1, 2, and 3. Notice that Rules 2 and 3 are analogous to Rules 1
and 2 of the previous lemma except that they guarantee an upper bound instead of
a lower bound. We omit portions of this proof which are directly analogous.

Basis: In the initial state Rule 1 applies and is satis�ed trivially. Induction:
Suppose the property is true in state s; we must show that it is true in s0 which
follows from s in one step | either a discrete step labeled by action � or a trajectory.
For the sake of brevity, we denote variables in the post-state by adding primes, e.g.
we write now0 instead of s0:now. We brake by cases on the type of step and the label
�: accel, status, or trajectory.

1. � = accel: Either _x � _cmaxf or not.

(a) _x � _cmaxf: This case is exactly analogous to the � = accel case of the
proof of Lemma 5.6.2. Here, Rule 3 holds in state s and Rule 2 is shown
to hold in state s0. We abbreviate the proof by noting that acc0 = send
and next0 � now0 = �s.

(b) _x > _cmaxf: by the inductive hypothesis Rule 1 holds in s and therefore
send = none; however in that case, this action was not enabled in s.
Therefore _x > _cmaxf is impossible for the accel action case.

2. � = status: Either _x � _cmaxf or not.

(a) _x � _cmaxf: This case is exactly analogous to the � = status case of the
proof of Lemma 5.6.2. Here, Rule 2 holds in state s and Rule 3 can be
shown to hold in state s0. We omit the proof.

(b) _x > _cmaxf: Thus, Rule 1 holds in states s. By the automata de�nitions
only variable next changes as a result of this action (because _x > _cmaxf).
Since next does not appear in Rule 1, it must continue to hold in state s0.

3. The step is a trajectory: Either _x � _cmaxf

(a) _x � _cmaxf: This case is exactly analogous to the trajectory in the proof of
Lemma 5.6.2. Here, Rule 2 holds in state s and can be shown to also hold
in state s0. We omit the proof.

(b) _x > _cmaxf: Thus, Rule 1 holds in states s. By the de�nition of automata,
we know that only the variables now, �x, _x, and x are modi�ed by this
action. Therefore, we know that acc0 = acc = �cs and send0 = send = none.
There are two cases, either Rule 1 holds in s0 or Rule 2 does.

i. _x0 > _cmaxf: Rule 1 applies in s0 and we must show that it holds. This
is guaranteed by Lemma 5.6.4.

ii. _x0 � _cmaxf: Rule 2 applies in s0. Note that acc0 = �cs is negative, while
(next � now0) is always positive by Lemma 5.2.3. Since _x0 � _cmaxf, we
know _x0 + acc0(next � now0) � _cmaxf. Therefore Rule 2 holds in s0.

The following corollaries correspond directly to Corollaries 3.6.12 and 3.6.13.

Corollary 5.6.6 In all reachable states of zig-zag-sys the following holds:

(x � cf) =) cf � x �
_c2maxf� _x2

2�cs

Proof: Directly from 5.6.5. If the �rst implication applies, then it appears in the
consequent. If the second implication or third applies, then _c2maxf � _x2 is positive,
hence, the fraction is negative and the inequality holds. These cases are exhaustive.

The following corollary establishes the safety property.

Corollary 5.6.7 In all reachable states of zig-zag-sys the following holds:

cf = x =) _cmaxf � _x � _cminf

Proof: Directly from 5.6.6 and 5.6.3.

We summarize the correctness results in the following theorem.

Theorem 5.6.8 Automaton zig-zag is a correct controller-under-feedback.

Proof: We must show that the hybrid traces of zig-zag-sys satisfy the timeliness
and safety properties (see Section 5.3). As mentioned at the end of Section 5.6.1, the
timeliness property follows from Corollary 5.6.3 just as it did from Lemma 3.6.6 in
Chapter 3. We have omitted the intermediate results. Corollary 5.6.7 is exactly the
safety property.

Chapter 6

Deceleration Case 4:
Delay and Feedback

In this chapter we combine periodic sensor feedback and command delay. As in Chap-
ter 4, we introduce delay via a bu�er called acc-buffer. We make no modi�cation
to the sensor-train automaton. We de�ne a notion of a correct controller for this
bu�ered system. We give an example of a correct controller called del-zig-zag that
involves only minor modi�cations to the zig-zag controller of Chapter 5. Figure 6-1
illustrates the components and their communication.

In Chapter 4, we use a simulation based argument to prove that the composition
of del-one-shot and buffer implements one-shot, the highly nondeterministic
controller of Chapter 3. One might expect a similar development in this chapter |
namely that we use a simulation proof to show that the composition of del-zig-zag
and acc-buffer implements zig-zag, the controller of Chapter 5. This is not
the case; we prove the correctness of del-zig-zag directly. In fact, no simulation
proof is possible because the composition of any controller and acc-buffer can not
implement zig-zag. Informally this is clear because acc-buffer will introduce a
delay between the time when the train gives the controller sensor input and when the
train receives the related command. No such delay occurs for zig-zag| it responds
to each sensor input without delay. There remains the question of whether some other
choice of example controllers could have enabled the use of a simulation proof in this
chapter in a manner analogous to Chapter 4. We address that issue in Chapter 7.

Figure 6-1 Overview of Feedback with Delay Deceleration Model

A Controller

status(a; v; p)

accel(a) bufAccel(a)

acc-buffersensor-train

71

6.1 The acc-buffer Automaton

The bu�er, called acc-buffer, has much the same structure as that of Chapter 4.
It appears in Table 6.1 as an MMT-speci�cation.

Table 6.1 The acc-buffer automaton.

Actions: Inputs: bufAccel(a) for a 2 [�cmin+ �cerr; �cmax]
Outputs: accel(a) for a 2 [�cmin+ �cerr; �cmax]

Vars: Internal: request 2 [�cmin+ �cerr; �cmax] [fnoneg, initially none

violation, boolean, initially false

Discrete Transitions:
bufAccel(a):

E�: if request = none then
request := a

else
violation := true

accel(a):
Pre: request = a

E�: request := none

Tasks: BUFF = faccel(a)g : [��; �+]

The variable request stores a command while it is being bu�ered. The major
di�erence between acc-buffer and buffer of Chapter 4 is the type of the command
being bu�ered. The variable violation is true when a new command from the controller
arrives before the previous one has exited the bu�er, that is when the bu�er overows.
We use the history variable violation to ag this error condition.

6.2 De�nition of Controller Correctness, Revisited

A valid controller-under-feedback-and-delay is an HIOA with no external variables
and with output actions bufAccel(a) for a 2 [�cmin + �cerr; �cmax] that when composed
with acc-buffer yeilds a correct controller-under-feedback as de�ned in Section 5.3.

In Section 4.2 we use a hiding operator � in the de�nition of correctness for a
bu�ered-brake-controller. We do not need such a hiding operator here because we are
not comparing hybrid traces as one does in a simulation proof.

6.3 Parameters, Revisited

In order to guarantee that a valid controller, exists we impose the following constraints
on the parameters:

1. cs < cf

2. _cs > _cmaxf � _cminf > 0

3. �cerr > 0

4. �s > �+ � �� � 0

5. �cmin < �cmin + �cerr < 0 � �cmax � �cerr < �cmax

6. cf � cs �
_c2maxf� _c2s

2(�cmin+�cerr)

7. _cmaxf � _cminf � ��cmin(�s + �+)

8. _cmaxf � _cminf � �cerr(�� + �s) + (�cmax � �cmin)(�+ � ��)

Constraints 1, 2, 3, 5, and 6 are identical to the same numbered constraints from
Section 5.4; they are restated here for convenience. Constraint 4 requires that the
delay interval be well-de�ned and not zero and that it be shorter than the frequency
of sensor feedback. Constraints 7 and 8 both ensure that the target velocity interval
is wide enough. As in Chapter 5, other choices for constraints 7 and 8 are reasonable,
but as stated the constraints are necessary for the correctness of the example controller
of this chapter.

For convenience, we continue to assume as in Chapter 5 that the initial values of
acc and �x are set to �cs, where:

�cs =
_c2maxf� _c2s
2(cf � cs)

Notice that �cs is negative.

6.4 Example Controller: del-zig-zag

We do not de�ne a completely new controller for this chapter. Rather, we modify the
zig-zag controller of Chapter 5. We de�ne del-zig-zag to be identical to zig-zag
except that we rename its output actions accel(a) to bufAccel(a) and rede�ne the
tranisitions labeled with the status(a; v; p) input actions, as follows:

status(a; v; p):
E�: if v � _cmaxf then

if _cmaxf < v + a(�s + �+) then

send := _cmaxf�v�a�
+

�s

else

send := _cmaxf�v�a�
�

�s+�+���

The composition of sensor-train, acc-buffer, and del-zig-zag is called
del-zig-zag-sys.

For each status message, del-zig-zag only takes action if v � _cmaxf; this is
similar to zig-zag and allows for an initial braking period at the initial (negative)
acceleration �cs. Once the velocity drops below _cmaxf, the action the controller takes
depends on whether an adjustment upward or downward is needed in the acceleration
to keep the velocity below _cmaxf. The two cases are depicted in Figure 6-2 and
Figure 6-3. The �gures show velocity versus time graphs of possible behaviors of
del-zig-zag-sys. Time zero in both �gures is the time of some status(a; v; p)
message in which v � _cmaxf. The horizontal dashed lines are the velocity bounds.
The solid lines form a \bent wedge"; this wedge represents upper and lower bounds
on the possible behavior of del-zig-zag-sys. The origin of the wedge is at time zero
when _x = v. The portion of the wedge before the bend bounds the evolution of _x while
the current acceleration is in e�ect. The bend in the wedge represents the change
in acceleration when the bu�er outputs the controller's command. The portion of
the wedge after the bend bounds the evolution of _x after the controllers requested
acceleration takes e�ect. The angles of the �rst part of the wedge are determined by
a and a� �cerr; the angles of the second part of the wedge are determined by send and
send� �cerr. The dotted lines represent the bounds on behavior if a remained in e�ect.

Figure 6-2 Adjustment downward by del-zig-zag.

0

_x

_cminf

_cmaxf

�� �+
time

�s

v

(�s+��) (�s+�+)

Let us focus on Figure 6-2 �rst. Notice the di�erence between the time of the
upper and lower bends in Figure 6-2: the lower side of the wedge bends at time ��

and the upper side at time �+. This is because it is an adjustment downward, that
is send < a. The upper bound on _x happens when the bu�er delays send as long

as possible; similarly, the lower bound occurs when the bu�er delays send as little
as possible. The test in the above pseudo-code \if _cmaxf < v + : : : " is true when if
the current acceleration (dotted line) is allowed to remain in e�ect then _x will exceed
_cmaxf before the next guaranteed change of acceleration at time �s + �+. The �rst
branch of the \if" statement results in an adjustment downward in the acceleration
as depicted in Figure 6-2. It is adjusted so that the top of the wedge is exactly _cmaxf

at time �s + �+. Constraints 7 and 8 on the parameters (see Section 6.3) ensure that
this choice for send does not result in the bottom of the wedge passing below _cminf.

Figure 6-3 Adjustment upward by del-zig-zag.

0

_x

_cminf

_cmaxf

�� �+
time

�s

v

(�s+�+)(�s+��)

The upward adjustment depicted in Figure 6-3 is analogous to the downward ad-
justment but reversed. The upper side of the wedge results from the bu�er delivering
the upward adjustment as soon as possible; the lower side of the wedge results from
the bu�er delivering the upward adjustment as late as possible. As before, the \else"
branch of the \if" statement results in the top of the wedge being at exactly _cmaxf at
time �s + �+; however, the calculation is a bit more complex because the bend in the
upper side of the wedge occurs earlier, at time ��. Once again Constraints 7 and 8
on the parameters ensure that this choice for send does not result in the bottom of
the wedge passing below _cminf.

6.5 Correctness of del-zig-zag

The proof of correctness of the controller requires proofs of the timeliness and safety
properties. The structure of the proofs is similar to that of Chapter 5. We �rst prove
a \non-violation" property and then we prove each correctness property in a separate
subsection.

We have presented the bu�er using an MMT-speci�cation. Since there is only one
MMT task in the bu�er and no other MMT-speci�cations to consider, we abbreviate
�rst(BUFF) and last(BUFF) as �rst and last.

6.5.1 Non-Violation

In this section we prove that the history variable violation remains false in all exe-
cutions of del-zig-zag-sys. It follows as a corollary of the following lemma.

As in the proof of non-violation in Section refsec:DelayVio, it is su�cient to prove
the invariant that either send or request is always none. As before we must strengthen
this invariant so that it may be proved by induction. The lemma proves this stronger
form that is the conjunction of two implications. Informally, it uses deadline variables
to say that (1) del-zig-zag only sends commands immediately after statusmessages
and (2) acc-buffer will relay requested commands before the next statusmessage.
It depends primarily on constraint 4 on the parameters: �s > �+.

Lemma 6.5.1 In all reachable states of del-zig-zag-sys the following hold:

1. send 6= none =) (next = now + �s) ^ request = none

2. request 6= none =) (last + �s = next + �+) ^ send = none

Proof: Proof by induction. The property to be proved consists of the conjunction
of two implications; we call them Rule 1 and Rule 2 in the style of the proof of
Lemma 5.6.2. Note that only one of the Rules can apply and hold in a given state.
Basis: in the initial state neither rule applies. Induction: Let state s lead to state
s0 via a single step | either a discrete step labeled by action � or a trajectory. We
proceed by cases on the type of step and �: accel, bufAccel, status, or trajectory.

1. � = accel: Rule 2 applies and holds in s. The transition sets request0 = none

and does not a�ect send. Therefore, neither rule applies in the s0.

2. � = bufAccel: Rule 1 applies and holds in s0. The transition sets request0 6=
none and send0 = none. It does not a�ect now or next and it sets last0 =
now + �+. By the inductive hypothesis, next = next0 = now + �s, so Rule 2
applies and holds in s0.

3. � = status: We claim that neither rule applies in s. The precondition for this
action is now = next; so clearly Rule 1 cannot apply in s. For the purpose of
contradiction suppose Rule 2 applied in s, then last+ �s = next+ �+. However,
by assumption on the parameters �s > �+, so last < next and therefore last <
next = now. But this contradicts Theorem 2.8.1. Thus neither rule applies in s,
i.e. send = none and request = none. The transition does not a�ect request so
request0 = none and it sets next0 = now0 + �s. Thus Rule 1 holds in s0 (whether
or not it applies).

4. The step is a trajectory: does not a�ect any of the mentioned variables except
now. The now variable only appears in Rule 1 and that rule only applies when
time passage is forbidden.

These cases are exhaustive and thus the property holds.

The non-violation property for del-zig-zag-sys is established in the following
corollary.

Corollary 6.5.2 In all reachable states of del-zig-zag-sys violation = false.

Proof:Violation occurs when request 6= none and a bufAccel action takes place. This
action is only enabled when send 6= none; however, by Lemma 6.5.1 request = none

in that case. Therefore the property holds.

6.5.2 Timeliness

The structure of the proof is similar to that in Chapter 5. As in that chapter, the
major result we require is an invariant that implies the lower bound invariant on
velocity. The following lemma establishes such a result by strengthening the lower
bound on velocity. It is analogous to Lemma 5.6.2; it is more complex because of extra
cases and the uncertainty introduced by the bu�er. We have changed the notation
slightly to accommodate the more complex formulas. The invariant consists of four
clauses: 1, 2a, 2bi, and 2bii. We explain their informal meaning in terms of the wedges
of Figures 6-2 and 6-3. Each clause tests that at a certain point in the execution, the
lower arm of the wedge remains above _cminf. Clause 1 applies when the controller has
chosen a command (stored in send) but has not yet passed it to the bu�er. Clause 2a
applies when neither the controller nor the bu�er are holding an unsent command.
Clause 2bi applies when the bu�er holds a command which has not been held long
enough to relay. Clause 2bii applies when the bu�er holds a command which has
been held long enough to relay.

Lemma 6.5.3 Let z denote z � �cerr. In all reachable states of del-zig-zag-sys the
following hold:

1. send 6= none =) request = none^ _x � _cminf ^
_x+ acc(��) + min(acc; send)(�+ � ��) + send(�s) � _cminf

2. send = none =)

(a) request = none =) _x � _cminf ^ _x+ acc(next � now + �+) � _cminf

(b) request 6= none =)

i. now < �rst =) _x � _cminf ^ _x+ acc(�rst� now)
+min(acc; request)(�+ � ��) + request(�s) � _cminf

ii. now � �rst =) _x � _cminf ^
_x+min(acc; request)(last� now) + request(�s) � _cminf

Proof: Proof by induction. As in the proofs of similar lemmas from the previous
chapter we refer to the parts of the above invariant as \rules". Basis case: In the
initial state Rule 2a applies. We show that it holds as follows: Note that acc = �cs
and next � now = 0 and _x = _cs > _cmaxf � _cminf. Thus, it is su�cient to show that
_cmaxf+�cs�+ � _cminf. This follows from the fact that �cs � �cmin and parameter constraint
7. Inductive case: Suppose the property is true in state s; we must show that it is
true in s0 which follows from s in one step | either a discrete transition labeled by
� or a trajectory. For the sake of brevity, we denote variables in the post-state by
adding primes, e.g. we write now0 instead of s0:now. We brake by cases on the type
of step and on �: accel, bufAccel, status, or trajectory.

1. � = accel: We know request 6= none, so by Lemma 6.5.1 send = none. Fur-
thermore, now � �rst, by this actions precondition, so Rule 2bii applies is s and
holds by the inductive hypothesis. As for the post-state | request0 = none and
send0 = none, so Rule 2a applies in s0. We show that it holds by noting that
acc0 = request and no other relevant variables have changed. Substitution and
Lemma 6.5.1 yield the desired result, as follows:

last� now � 0 by Theorem 2.8.1
req � min(acc; req) de�nition of min

_x+min(acc; req)(last� now) + req�s � _cminf inductive hypothesis
_x+ req(last� now) + req�s � _cminf substitute

_x+ req(last� now+ �s) � _cminf group
last+ �s = next+ �+ by 6.5.1

_x+ req(next� now+ �+) � _cminf substitute
acc0 = req automaton de�nition

_x0 + acc0(next0 � now0 + �+) � _cminf substitute

2. � = bufAccel: We know send 6= none so Rule 1 applies in s. It holds by the
inductive hypothesis. Also, request0 6= none, send0 = none, and now0 < �rst0,
so Rule 2bi applies in s0. We must show that it holds. This is trivial because
request0 = send and �rst = now+ ��.

3. � = status: As in the same case in the proof of Lemma 6.5.1, we know that
send = none and request = none; thus, Rule 2a applies in s and it holds by the
inductive hypothesis. We break by cases:

(a) send0 = none, so Rule 2a applies in s0. It holds because none of the
variables in its consequent are a�ected by the transition.

(b) send0 6= none, so Rule 1 applies in s0. Note that a = acc, so we write
acc instead; similarly for v and _x. Also note that now = next by the
actions precondition, and _x � _cmaxf by the actions e�ect. Finally, note
that send and next are the only variables modi�ed on this transition. We
break by cases on the branch of the conditional taken in the e�ect clause
in del-zig-zag.

i. _cmaxf < _x + acc(�s + �+) | In this case, we �rst resolve the \min"
operator by showing that send0 < acc. As follows:

send0 = _cmaxf� _x�(acc)�+

�s
automaton de�nition

_x+ (acc)�+ + send0�s = _cmaxf simplify
_cmaxf < _x+ acc(�s + �+) case

_x+ (acc)�+ + send0�s < _x+ acc(�s + �+) substitute
send0�s < acc�s cancel

�s � 0 parameter assumption
send0 < acc divide

Now we must show that _x+acc��+ send0(�+� ��+ �s) � _cminf. First,
notice that send0 < acc implies that 0 � acc � send0. Also, acc is
bounded above by �cmax and send0 below by �cmin. This justi�es the �rst
inequality that appears below:

�cmax� �cmin � acc� send0 � 0 above
_cmaxf� �cerr(�

� + �s)
�(�cmax � �cmin)(�

+ � ��) � _cminf parameter assumption
�+ � �� � 0 parameter assumption

_cmaxf� �cerr(�� + �s)

�(acc� send0)(�+ � ��) � _cminf substitute
_x + (acc)�+ + send0�s = _cmaxf as above

_x+ (acc)�+ + send0�s � �cerr(�
� + �s)

�(acc� send0)(�+ � ��) � _cminf substitute
_x + acc�� + send0(�+ � �� + �s) � _cminf simplify

ii. _cmaxf � _x + acc(�s + �+) | As in the previous case, we �rst resolve
the \min" operator by showing that send0 � acc. As follows:

send0 = _cmaxf� _x�(acc)��

�s+�+���
automaton de�nition

_x+ (acc)��

+send0(�s + �+ � ��) = _cmaxf simplify
_cmaxf � _x+ acc(�s + �+) case

_x+ (acc)��

+send0(�s + �+ � ��) < _x+ acc(�s + �+) substitute
send0(�s + �+ � ��) < acc(�s + �+ � ��) cancel

(�s + �+ � ��) � 0 parameter assumption
send0 < acc divide

Now we must show that _x + acc�+ + send0�s � _cminf. By similar
reasoning to that used in the analogous case above we get the �rst
inequality:

�cmax � �cmin � send0 � acc � 0 above
_cmaxf � �cerr(�

� + �s)
�(�cmax � �cmin)(�+ � ��) � _cminf parameter assumption

�+ � �� � 0 parameter assumption
_cmaxf � �cerr(�

� + �s)
�(send0 � acc)(�+ � ��) � _cminf substitute

_x + (acc)�� + send0(�s + �+ � ��) = _cmaxf as above
_x+ (acc)�� + send0(�s + �+ � ��)
��cerr(�� + �s)� (send0 � acc)(�+ � ��) � _cminf substitute

_x+ acc�+ + send0�s � _cminf simplify

4. The step is a trajectory: We know that send = send0 = none so Rule 2 applies
in s and s0. This case is straightforward. It uses a similar argument to that of
the trajectory case in the proof of Lemma 5.6.2. We outline the subcases that
must be considered but give no details of their proofs:

(a) request = request0 = none, so Rule 2a applies in s and s0.

(b) request = request0 6= none, so Rule 2b applies in s and s0.

i. now < �rst, so Rule 2bi applies in s. We proceed by cases:

A. now0 < �rst0, so Rule 2bi applies in s0.

B. now0 � �rst0, so Rule 2bii applies in s0.

ii. now � �rst, so Rule 2bii applies in s and s0.

The following corollary establishes the lower bound on velocity as an invariant of
del-zig-zag-sys.

Corollary 6.5.4 In all reachable state of del-zig-zag-sys the following holds:

_x � _cminf

Proof: Directly from 6.5.3. The antecedents form an exhaustive set of cases, and in
all cases the property is true.

Corollary 6.5.4 leads to the timeliness property just as Lemma 3.6.6 did in Chap-
ter 3. The corollaries that yield the timeliness property are exactly analogous and
are not restated here. The �nal result is summarized in Theorem 6.5.6 at the end of
this chapter.

6.5.3 Safety

In this section, we give only the major result, Lemma 6.5.5; it leads to the safety
property for del-zig-zag just as Lemma 5.6.5 for zig-zag. We do not give the
intermediate corollaries and lemmas that yield the safety property because they are
precisely analogous to those of Section 5.6.2.

Lemma 6.5.5 is similar to both Lemma 5.6.5 and Lemma 6.5.3. It is a strength-
ening of the desired invariant and its form is the conjunction of a set of implications.
The form of the �rst clause borrows from the �rst clause of Lemma 5.6.5. The form
of the remaining clauses is analogous to Lemma 6.5.3; however, these clauses check
that the upper arm of the wedge is lower than _cmaxf whereas the analogous clauses in
Lemma 6.5.3 check the lower arm of the wedge against _cminf.

Lemma 6.5.5 In all reachable states of del-zig-zag-sys the following hold:

1. _x > _cmaxf =) acc = �cs ^ send = none ^
�
(x � cf) =) cf � x �

_c2
maxf

� _x2

2�cs

�

2. _x � _cmaxf =)

(a) send 6= none =) request = none^
_x+ acc(��) + max(acc; send)(�+ � ��) + send(�s) � _cmaxf

(b) send = none =)

i. request = none =) _x+ acc(next � now + �+) � _cmaxf

ii. request 6= none =)

A. now < �rst =)
_x+acc(�rst�now)+max(acc; request)(�+���)+request(�s) � _cmaxf

B. now � �rst =)
_x+max(acc; request)(last � now) + request(�s) � _cmaxf

Proof: The invariant in this lemma is very similar to that of Lemma 6.5.3 and so is
its proof.

We summarize the correctness results in the following theorem.

Theorem 6.5.6 Automaton del-zig-zag is a correct controller-under-feedback-and-
delay.

Proof: We must show that the composition of del-zig-zag and acc-buffer is a
correct controller-under-feedback as de�ned in Section 5.3. This in turn requires that
the hybrid traces of del-zig-zag-sys satisfy the timeliness and safety properties of
Section 3.4. As mentioned at the end of Section 6.5.2, the timeliness property follows
from Corollary 6.5.4 just as it did from Lemma 3.6.6 in Chapter 3. We have omitted
the intermediate results. Similarly, the safety property follows from Lemma 6.5.5 as
it did from Lemma 5.6.5 in Chapter 5. We have omitted the intermediate results.

Chapter 7

Conclusion

Summary

We have presented a case study in the application of hybrid I/O automaton techniques
to automated transit systems. The purpose of the case study is to test the applicability
of HIOA techniques to the area of automated transit; in particular, we are concerned
that HIOA techniques express hybrid systems faithfully and that they allow clear and
scalable proofs of signi�cant properties of these systems.

We focused on the deceleration maneuver in which a train's controller slows the
train to a target velocity range within a given distance. We examined four versions of
the deceleration maneuver, each with a di�erent model of the communication between
controller and train: plain, delay, feedback, and feedback with delay. In the plain case
of Chapter 3, the controller receives no sensor information from the train and controls
the brake through on and o� commands which take e�ect immediately. The delay
case of Chapter 4 is like the plain case except that the brake commands are delayed.
In the feedback case of Chapter 5, the controller receives periodic sensor information
from the train; the controller can instantly command the train to achieve speci�c
positive and negative accelerations subject to some performance error. The feedback
with delay case of Chapter 6 is like the feedback case except that the acceleration
commands are delayed. For each case we give a model of the non-controller portion of
the system, de�ne correctness of a controller, give an example of a correct controller,
and prove that it is correct.

We model the train and the controller as HIOAs communicating through discrete
actions. For the cases with delay, we interpose a third automaton which serves as a
bu�er, delaying messages from the controller to the train. The bu�ers and some of
the example controllers are de�ned using the MMT-speci�cations of Section 2.8. The
other automata are de�ned using the standard notation of Section 2.7.

The main correctness conditions for controllers are the timeliness and safety prop-
erties, de�ned in Section 3.4. The timeliness property says that the train always
progresses to the destination location within a �xed time. The safety property says

83

that when the train arrives at the destination it has achieved a velocity in the tar-
get range. These properties mention only the variables of the train. Since the train
outputs these variables, we cast these properties as hybrid trace properties of the
composition of the train and the controller (and a bu�er if applicable).

We use two major proof methods: invariant assertions and simulations. The use
of invariant assertions is ubiquitous in this case study. The use of invariant assertions
usually involves strengthening a proposed invariant assertion until it can be proved
by induction on the steps of a hybrid execution. These inductive proofs have a styl-
ized form that separates reasoning about discrete behavior (actions) from continuous
behavior (trajectories). Timing information such as the current time and deadlines
for events are explicitly modeled in the state as variables (e.g. now, last(OFF)).
These variables facilitate proofs of timing behavior using invariant assertions. MMT-
speci�cations implicitly add many such timing variables in a standard manner which
makes the automata de�nitions and related proofs more readable.

We use one simulation in this case study: in Chapter 4 a simulation shows that
the composition of the bu�er and controller of that chapter is an implementation
of the controller of Chapter 3. Using the subtitutivity result of Theorem 2.6.2, the
timeliness and safety properties follow because they are preserved by hybrid trace
inclusion.

This case study contains full proofs of the correctness of the various controllers.
However, some of the proofs are only sketched, when similar formal proofs appear in
other chapters.

Evaluation

The hybrid I/O automaton model and its related tools provide a framework in which
a modest hybrid system can be described naturally and veri�ed formally. Trajectories
appear essential to a faithful treatment of physical systems. They permit di�eren-
tial relationships between physical variables to be expressed directly. We also found
shared variables useful. If the variables of a system are exposed then some prop-
erties can be expressed as hybrid trace properties. This allows certain properties
like the timeliness and safety properties to be cast as hybrid trace properties which
in the timed I/O automaton model would necessarily have been properties of timed
executions.

The proofs in this case study are clear and scalable from the plain case to the
feedback with delay case. We believe clarity and scalability are the result of our
reliance on invariant assertions throughout. This technique enhances clarity because
invariant assertions have a close relationship to intuitive, informal claims. The proofs
of invariant assertions are usually by induction in a stylized manner which allows for
easy navigation and checking. The assertional technique is scalable to more complex
systems because often the invariant itself holds on the more complex system. Even if
it does not, often the invariant of the simple system appears embedded in an invariant

of the more complex system. For example, the invariant in Lemma 3.6.10 appears in
clause 1 of the invariant in Lemma 5.6.5. When substitution like this occurs the proof
of the original invariant can often be reused with minor modi�cation. For example,
compare the proofs of Lemmas 3.6.10 and 5.6.4. We believe this kind of reuse is
characteristic of invariant assertion based methods. There remains the challenge of
�nding invariants that maximize reuse.

We have a more guarded evaluation of simulations because of their more limited
use in this case study. The simulation proof in Chapter 4 is clear and concise. How-
ever, we acknowledge that its use is limited in two respects. First, it involves only the
computer portion of the system. As a result, the components and the simulation itself
could have been expressed using timed I/O automaton methods. Our contribution is
in showing how this well understood method of proof for computer systems can be
woven into the treatment of a hybrid system.

Second, we acknowledge that the case study does not demonstrate that simulations
scale from the delay case to the feedback with delay case. As mentioned in Chapter 6,
no simulation is possible from a controller for the feedback with delay case to zig-zag,
the example controller of Chapter 5. Because zig-zag always responds instantly to
its sensor input, no controller with delayed responses can implement it. This begs
the question of whether a simulation based proof in the feedback with delay case is
possible given some other choice of controller for the feedback case. The answer is
yes. However, we chose not to present such a controller because it would be overly
complex without illustrating any new techniques or insights. The complexity of such
a controller arises from its need to be highly non-deterministic both in when it sends
multiple acceleration commands and which acceleration command it sends. This
di�ers from the simple non-determinism of one-shot of Chapter 3 that merely varies
the timing of two brake commands and not their content.

Further Work

This case study took shape during the early stages of the development of the HIOA
model and does not exercise all the model's features. In particular, further case studies
involving HIOA's could investigate more fully the use of shared variables. In this work
we modeled the physical part of the system, the train, as a single automaton. We
believe that the shared variables of HIOAs are the key to a more modular treatment
of physical systems. Some modest progress in this direction appears in [15] where
sensors and actuators are modeled as separate automata which share variables with
the physical system. Nevertheless, we anticipate further progress in using this facet
of the HIOA model.

We look forward to further examination of the utility of simulation proofs for
hybrid systems. An e�ort toward this begins in [14] but much remains to be done.
We chose to avoid a highly abstract example controller in Chapter 5 because for
this example the increased non-determinism would lead to complexity that would

obscure the description. The utility of simulation proofs depends on the lucidity of
more abstract speci�cations; we hope that our experience in this case study is the
exception rather than the rule for hybrid systems.

Much work remains for the M.I.T. Theory of Distributed Systems research group
in our long-term project applying these techniques to automated transit systems. Cur-
rent research involves further case studies in ground based transportation systems.
We are modeling multi-vehicle maneuvers arising in the California PATH project
[8, 9, 10]. The high-level and preliminary treatment of safety systems in [15] will
be extended to examine the implementations of those systems in the Raytheon Per-
sonal Rapid Transit project. We hope to develop a machine parsable language for
hybrid system speci�cations and to develop tools for computer aided proof checking
and veri�cation. We are examining methods for integrating into our methods the
techniques of relevant disciplines such as mechanical engineering and control theory.
Our long term goal is to help design the industrial strength formal tools that will
have an impact on the design and development of real transportation systems.

Bibliography

[1] Nancy Lynch, Roberto Segala, Frits Vaandrager, and H.B. Weinberg. Hybrid
I/O automata. In DIMACS Workshop on Veri�cation and Control of Hybrid
Systems, October 1995. To appear in R. Alur, T. Henzinger, and E. Sontag,
editors, Hybrid Systems III, Lecture Notes in Computer Science, Springer-Verlag.
Also, to appear as MIT/LCS/TM-544.

[2] Nancy Lynch and Frits Vaandrager. Forward and backward simulations { Part
II: Timing-based systems. Technical Memo MIT/LCS/TM-487.c, Laboratory
for Computer Science, Massachusetts Institute of Technology, Cambridge, MA
02139, April 1995.

[3] Nancy Lynch and Frits Vaandrager. Forward and backward simulations { Part
II: Timing-based systems. Information and Computation. To appear. Available
now as [2].

[4] R. Gawlick, R. Segala, J. S�gaard-Andersen, and N. Lynch. Liveness in timed
and untimed systems. Technical Report MIT/LCS/TR-587, Laboratory for Com-
puter Science, Massachusetts Institute of Technology, Cambridge, MA, 02139,
December 1993.

[5] Rainer Gawlick, Roberto Segala, J�rgen S�gaard-Andersen, and Nancy Lynch.
Liveness in timed and untimed systems. In Serge Abiteboul and Eli Shamir,
editors, Proceedings of the 21st International Colloquim, ICALP94, volume 820
of Lecture Notes in Computer Science, pages 166{177, Jerusalem, Israel, July
1994. Springer-Verlag. Full version in [4].

[6] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In J.W.
de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors, REX Work-
shop on Real-Time: Theory in Practice, volume 600 of Lecture Notes in Computer
Science, pages 447{484, Mook, The Netherlands, June 1991. Springer-Verlag.

[7] R. Alur, C. Courcoubetis, T.A. Henzinger, P.H. Ho, X. Nicollin, A. Olivero,
J Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138:3{34, 1995.

87

[8] Datta N. Godbole, John Lygeros, and Shankar Sastry. Hierarchical hybrid con-
trol: A case study. Prelminary report for the california path program, Institute
of Transportations Studies, University of California, August 1994.

[9] Datta Godbole and John Lygeros. Longitudinal control of the lead car of a pla-
toon. California PATH Technical Memorandum 93-7, Institute of Transportation
Studies, University of California, November 1993.

[10] John Lygeros and Datta N. Godbole. An interface between continuous and
discrete-event controllers for vehicle automation. California PATH Research Re-
port UCB-ITS-PRR-94-12, Institute of Transportations Studies, University of
California, April 1994.

[11] Nancy Lynch. Modelling and veri�cation of automated transit systems, using
timed automata, invariants and simulations. In DIMACS Workshop on Veri�-
cation and Control of Hybrid Systems, October 1995. To appear in R. Alur, T.
Henzinger, and E. Sontag, editors, Hybrid Systems III, Lecture Notes in Com-
puter Science, Springer-Verlag. Also, to appear as MIT/LCS/TM-545.

[12] Constance Heitmeyer and Nancy Lynch. The generalized railroad crossing: A
case study in formal veri�cation of real-time systems. In Proceedings of the
IEEE Real-Time Systems Symposium., pages 120{131, San Juan, Puerto Rico,
December 1994. IEEE Computer Society Press.

[13] Constance Heitmeyer and Nancy Lynch. The generalized railroad crossing:
A case study in formal veri�cation of real-time systems. Technical Memo
MIT/LCS/TM-511, Laboratory for Computer Science, Massachusetts Institute
of Technology, Cambridge, MA, November 1994.

[14] Nancy Lynch. A three-level analysis of a simple acceleration maneuver,
with uncertainties. Manuscript. WWW URL=http://theory.lcs.mit.edu/three-
level.html.

[15] H.B. Weinberg, Nancy Lynch, and Norman Delisle. Veri�cation of automated
vehicle protection systems. In DIMACS Workshop on Veri�cation and Con-
trol of Hybrid Systems, October 1995. To appear in R. Alur, T. Henzinger,
and E. Sontag, editors, Hybrid Systems III, Lecture Notes in Computer Science,
Springer-Verlag.

[16] R. Alur and D. Dill. Automata for modelling real-time systems. In Proc. 17th
ICALP Lecture Notes in Computer Science 443, pages 322{335. Springer-Verlag,
1990.

[17] Leslie Lamport. The temporal logic of actions. Technical Report 79, Digital
Systems Research Center, December 25 1991.

[18] Thomas Henzinger, Zohar Manna, and Amir Pnueli. Timed transition systems.
In J. W. de Bakker, C. Huizing, and G. Rozenberg, editors, Proceedings of REX
Workshop \Real-Time: Theory in Practice", volume 600 of Lecture Notes in
Comupter Science, pages 226{251. Springer-Verlag, June 1991.

[19] Frits Vaandrager and Nancy Lynch. Action transducers and timed automata.
In W. R. Cleaveland, editor, CONCUR '92: 3rd International Conference on
Concurrency Theory, volume 630 of Lecture Notes in Computer Science, pages
436{455, Stony Brook, NY, USA, August 1992. Springer Verlag.

[20] J�rgen S�gaard-Andersen. Correctness of Protocols in Distributed Systems. PhD
thesis, Technical University of Denmark, Lyngby, Denmark, December 1993. ID-
TR: 1993-131.

[21] Victor Luchangco. Using simulation techniques to prove timing properties. Mas-
ter's thesis, MIT Electrical Engineering and Computer Science, 1995. In progress.

[22] Nancy Lynch and Frits Vaandrager. Forward and backward simulations { Part
I: Untimed systems. Info. Comput., to appear.

[23] Keith Marzullo, Fred B. Schneider, and Navin Budhiraja. Derivation of sequen-
tial real-time, process control programs. In Andre M. van Tilborg and Gary M.
Koob, editors, Foundations of Real-Time Computing, pages 39{54. Kluwer Aca-
demic Publishers, 1991.

[24] Gunter Leeb and Nancy Lynch. Proving safety properties of the steam boiler
controller: Formal methods for industrial applications, a case study, January
1996. Submitted for publication. Presented at the Methods for Semantics and
Speci�cation, International Conference and Research Center for Computer Sci-
ence, Schloss, Dagstuhl, Germany, June 1995, as \Using Timed Automata for
the Steam Boiler Controller Problem.".

[25] Jan Vitt and Jozef Hooman. Speci�cation and veri�cation of a real-time steam
boiler system. In Second European Workshop on Real-Time and Hybrid Systems,
pages 205{208, Grenoble, France, May 1995. Proceedings for participants only.

[26] Simin Nadjm-Tehrani. Modelling and formal analysis of an aircraft landing gear
system. In Second European Workshop on Real-Time and Hybrid Systems, pages
239{246, Grenoble, France, May 1995. Proceedings for participants only.

[27] Nancy A. Lynch and Hagit Attiya. Using mappings to prove timing properties.
Distributed Computing, 6(2):121{139, 1992.

[28] N. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI-
Quarterly, 2(3):219{246, September 1989. Centrum voor Wiskunde en Informat-
ica, Amsterdam, The Netherlands.

[29] N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algo-
rithms. In Proceedings of the 6th Annual ACM Symposium on Principles of
Distributed Computing, pages 137{151, August 1987.

[30] Michael Merritt, Francemary Modugno, and Mark Tuttle. Time constrained
automata. In J. C. M. Baeten and J. F. Goote, editors, CONCUR'91: 2nd
International Conference on Concurrency Theory, volume 527 of Lecture Notes in
Comupter Science, pages 408{423, Amsterdam, The Netherlands, August 1991.
Springer-Verlag.

