
Shared Memory versus Message Passing
for Iterative Solution

of Sparse, Irregular Problems

Frederic T. Chong and Anant Agarwal
fftchong,agarwalg@lcs.mit.edu

Laboratory for Computer Science
Massachusetts Institute of Technology

October 27, 1996

Abstract

The benefits of hardware support for shared memory versus those for
message passing are difficult to evaluate without an in-depth study of real
applications on a common platform. We evaluate the communication mecha-
nisms of the MIT Alewife machine, a multiprocessor which provides integrated
cache-coherent shared memory, message passing, and DMA. We perform
this evaluation with “best-effort” implementations which solve several sparse,
irregular benchmark problems with a preconditioned conjugate gradient sparse
matrix solver (ICCG).

We find that machines with fast global memory operations do not need
message passing or bulk transfer to support our irregular problems. This
is primarily due to three reasons. First, a 5-to-1 ratio between global and
local cache misses makes memory copies in bulk communication expensive
relative to communication via shared memory. Second, although message
passing has synchronization semantics superior to shared memory for data-
driven computation, efficient shared memory can overcome this handicap by
using global read-modify-writes to change from the traditional owner-computes
model to a producer-computes model. Third, bulk transfers can result in high
processor idle times in irregular applications.

Keywords: multiprocessors, shared memory, message passing, bulk transfer,
iterative solution, irregular, sparse matrix

1 Introduction

Distributed shared memory and message passing are two dominant communica-
tion mechanisms in parallel systems. Most machines incorporate either message

1



passing [Thi93a] [Int91] [Che93] or shared memory [LT88] [LLG+92] [BFKR92]
[SGI94]. A few machines support both mechanisms [ABC+95] [HKO+94]. The
precise benefit of shared memory versus message passing has remained an open
question, largely due to the difficulty of finding experimental platforms supporting
an “apples to apples” comparison and the difficulty of writing applications in both
styles without bias.

This paper addresses this open question using the MIT Alewife machine [ABC+95]
and sparse, irregular applications. Alewife integrates distributed, cache-coherent
shared memory and message passing, providing an ideal platform for our exper-
iments. Although this study evolved from research [CSBS95] [BCL+95] [CS95]
and researchers1 with a clear message-passing bias, our results point to shared
memory as the most useful communication mechanism for a multiprocessor. Our
kernels were originally optimized for message passing and were rewritten for shared
memory. We chose especially challenging fine-grain, irregular benchmarks based
upon the solution of sparse linear systems via ICCG (conjugate gradient precon-
ditioned with incomplete Cholesky factors) [GvL83]. We expected ICCG to favor
message passing because it is an iterative algorithm with little data reuse. However,
we found shared memory to be an extremely efficient communication mechanism
even without the benefits of caching.

Although we expected clear gains from the superior synchronization semantics
of message-passing with Active Messages [E+92], we were able to overcome the
synchronization difficulties of shared memory by shifting from an owner-computes
model of computation to a producer-computes model (see Section 4.1). We also
expected to see performance gains when using long messages containing aggre-
gated data as opposed to short messages or cache-line transactions. Aggregation
has been a common approach on traditional multiprocessors with high-overhead
communication. A small number of long messages incurs less message send and
receive overhead than a large number of small messages. However, on modern
systems with fast active messages or hardware-supported shared memory, we
found that data copying to aggregate messages significantly reduces the perfor-
mance advantages of long messages.

While we found shared memory and message passing to be comparable in
performance for the critical kernels of our applications, we found shared memory
to be more convenient for initialization and preprocessing phases. Consequently,
we used shared memory for these phases even when the kernels used message
passing. This was a convenient option which was available because the Alewife
system allows the use of both message passing and shared memory on the same
data structures in the same program.

Previous work by Chandra, Larus, and Rogers [CLR94] studied four bench-
marks running on simulations of separate message-passing and shared-memory
machines based upon the CM5. They also argue that shared memory perfor-
mance is comparable to message passing, but shared memory was nearly a factor

1For example, one of the original developers of the CMMD message-passing library [Thi93b] on
the CM5.

2



matrix Description Order Nonzeros Seq MFLOPS Values Avg Deg Colors

BUS1138 Power system 1138 4054 0.7 Y 1.3 5
CAN1072 Aircraft model 1072 12444 0.7 N 5.3 7
BCSPWR10 Eastern US power system 5300 21842 0.7 N 1.6 4
BCSSTK18 Nuclear power plant model 11948 149090 *0.7 Y 5.7 14
OCEAN World Ocean Model 143437 962623 *0.7 N 2.9 4
BCSSTK32 Automobile Chassis 44609 2014701 *0.7 N 22.1 37

Table 1: Benchmark matrices.

of two slower than message passing on EM3D, their sparse, irregular graph prob-
lem. They also speculate that integrating bulk transfer mechanisms with shared
memory would be useful for that EM3D.

We also examine sparse, irregular graph problems, but we use ICCG instead
of their naive red-black relaxation as a solution method. ICCG converges much
more quickly than relaxation methods and is a much more powerful tool for solving
realistic problems. As we shall see, however, the irregular nature of the ICCG
computation causes bulk transfer techniques to incur substantial copying costs and
idle times. Furthermore, our actual Alewife hardware has relative costs which differ
from the assumptions made by Chandra et al. This difference, coupled with the
fine granularity of our problems, results in higher performance for shared memory
than message passing.

In the next two sections, we describe our experimental platform, our benchmarks,
and the motivation behind our choice of applications. In Section 4, we describe our
computation kernel and how each communication mechanism fits in. We present
our performance results in Section 5. We discuss related work in Section 6 and
conclude in Section 7.

2 Motivation and Benchmark Matrices

We concentrate upon ICCG not only because it is challenging, but also because
it is a powerful method for solving a wide range of sparse linear systems. Our
benchmarks, shown in Table 1, represent problems that arise in power system op-
timization and reconfiguration, aircraft design, building design, automotive design,
and oceanography. ICCG is an important method because problems in the real
world are sparse and can be quite large. As we shall see in Section 4, ICCG is an
iterative method which dramatically saves on factorization time and data size. Data
size is often critical. Even using ICCG, OCEAN will only run in the memory of 16 or
more Alewife processors and BCSSTK32 on 32 or more.

The benchmarks of Table 1 are representedby symmetric positive definite sparse
matrices, where order refers to the number of rows or columns (they are equal) and
nonzeros refers to the number of nonzero elements in the matrix. Seq MFLOPS
refers to the computation rate of an optimized sequential version of our kernel

3



on a single Alewife SPARC-based processor2. We will use this rate to compute
speedups. The (*) denotes problems which are too large to fit into the memory
of one processor, but we assume a 1 MFLOP rate (corresponding to the smaller
problems) as if they did. This assumption avoids super-linear speedups which can
result from sequential times based upon a workstation paging to disk or a single
multiprocessor node using the memory from multiple nodes.

Most of our benchmarks are from the Harwell-Boeing benchmark suite [DGL92].
Most of the matrices, especially the large ones, only come with the pattern of the
nonzero entries, not the actual floating point values. BUS1138 and BCCSTK18 are
the two largest power system and structures matrices in the HB suite with included
values. We will be using these two matrices to measure convergence and end-to-
end run times in Section 4. Values indicates which matrices have values. Avg
Deg, roughly proportional to Nonzeroes divided by Order, indicates the average
number of incoming arcs for a node of the kernel computation, described in Sec-
tion 4.1. Each incoming arc results in 2 floating point operations in the kernel.
Colors indicates the number of colors required in the multicolor ordering described
in Section 4.4. The larger the ratio between Order and Colors, the better the
parallelism and message aggregation.

3 Experimental Platform

We conduct our experiments on the MIT Alewife multiprocessor [ABC+95],
shown in Figure 1. Not only is the Alewife machine is ideal for our experiments
because it efficiently supports distributed shared memory, message passing, and
DMA (Direct Memory Access), but it also provides a good indication of the relative
performance and hardware cost of each mechanism for typical multiprocessors of
the present and of the future. These mechanisms are integrated so that a single ex-
ecution of a program can use all of these mechanisms on the same data structures.
The heart of each processing node is the CMMU (Communications and Memory
Management Unit), a custom VLSI component which serves as global and local
memory controller, as well as network interface.

The efficiency of Alewife’s communication mechanisms is essential to exposing
the tradeoffs and results of this study. A shared-memory write-miss only takes
66 cycles plus 1.6 cycles per hop in the network to the processor where the data
resides. Alewife supports active messages of the form:

send am(proc, handler, args...)

which causes a message to be sent to processor proc, interrupt the processor,
and invoke handler with args. An active message with a null handler, no body
and no arguments, only takes 102 cycles plus .8 cycles per hop. The Alewife
network interface (within the CMMU memory controller) can hold up to fourteen

2The current Alewife runs at 20 MHz, but a bug fix in the CMMU memory controller will increase
performance by 50 percent to 33 MHz.

4



Directory

Distributed

Private

Memory

Cache

FPU

Network
Router

Alewife node

CMMU

Sparcle

Shared

Distributed

Memory

HOST

VME
Host Interface

SCSI Disk Array

Figure 1: The MIT Alewife multiprocessor.

32-bit arguments for an active message. Longer messages are supported via DMA
by adding (base, length) pairs to the end of an active message. Alewife messages
are not limited in length and the CMMU automatically sends the DMA data after
the handler arguments in an active message. On the receive side, the handler is
invoked with its arguments and may either tell the CMMU to store the DMA data to
memory or receive the data directly from the network interface.

The hardware cost and performance of communication mechanisms in the
CMMU will generalize well to multiprocessors for some time into the future. In
order to leverage commodity microprocessors, multiprocessors need to support
communication through a separate chip on a bus. The CMMU demonstrates that
shared memory, message passing, and DMA can be efficiently supported by such
a communication chip. The natural integration of these mechanisms into a single
chip also serves to hold their relative hardware cost and performance somewhat
invariant. Shared memory will always be somewhat lower overhead than mes-
sage passing. To send a message, the processor needs write a header and data to
memory-mapped locations of the communications chip. To write to shared memory,
the processor only needs to write the data onto the bus with the shared address.

A fundamental difficulty in experimenting with an academic machine such as
Alewife is generalizing to future technologies. In particular, can communication
mechanisms keep up with increasing processor speeds? Fortunately, our results
do not depend upon this question. Instead, since our applications are memory
bound, our results depend upon whether communication mechanisms can keep
pace with local memory systems.

Many applications, especially irregular applications such as our larger bench-

5



marks, are larger than caches and are limited by main memory speeds. While a
quad-issue, 300 MHz Alpha is more than 30 times faster than Alewife’s 20 MHz
Sparcle processor, many current memory systems are no faster than Alewife’s 500
ns miss time. Even the fastest current prototypes, such as Digital’s cache-less
workstation [CB96], still require 90 ns to reference main memory. Memory latency
limitations will remain severe. Synchronous DRAMs and wide datapaths will not
help with irregular accesses.

The key is that network technology scales at least as well as DRAM speeds. In
fact, there is no reason why a remote miss should take any more than five times a
local miss on any machine. It takes one local-miss-time to service a remote miss
at the receiver. It takes much less than one local-miss-time to get the request off
the sender. That leaves more than three local-miss-times for the network transit
time. With current VLSI switch technology [DCB+94] keeping pace with processor
cycle times, future networks should have no trouble keeping up with local memory
speeds.

Not only is a fast remote miss feasible, it is necessary to make shared-memory
machines easy to use and viable for a wider range of applications. Given that future
fine-grain mechanisms will perform comparably to local memory systems, results
on Alewife generalize to future systems.

In the next section, we will describe how Alewife’s mechanisms affect the imple-
mentation of our sparse, irregular benchmarks.

4 Communication Mechanisms for Parallel ICCG

This section starts out describing the dominant kernel of ICCG and explaining
how our communication mechanisms affect its implementation. We then give an
overview of the entire ICCG algorithm and provide measurements that show that
the kernel is important. Finally, we describe data mapping to enhance locality and
reordering to increase parallelism and facilitate data aggregation.

4.1 Communication in the Kernel

The core of our study is a directed acyclic graph (DAG) computation which arises
from sparse triangular solution. As shown in Figure 2, the DAG arises from the
solution of Lx = b, where L is a lower triangular sparse matrix, x is the vector
of unknowns, and b is a right-hand-side vector of values. In our example, the
computation is broken into five DAG nodes, each representing a row of L, an
element of x, and an element of b. Each DAG node computes the element of x
associated with it by substituting incoming values into the equation represented
by the node’s row. DAG node i depends upon node j if row i of L contains a
non-zero in column j. Each edge in the DAG represents 2 FLOPS of computation
and the transfer of one double-precision value. For example, the edge from node
0 to node 4 indicates that we must compute v = L04 � x0, communicate v to node 4,

6



=

0
1
2
3
4
5

0

1

2

3

4

5

L x b

Figure 2: A DAG representing solution by substitution of Lx = b. Non-zeros are
represented by filled circles.

and subtract v from b4. The next two sections describe our message-passing and
shared-memory implementations of this computation.

4.1.1 Message Passing

Our DAG is essentially a dataflow computation [ACM88] and is easily implemented
via active messages. In our example, let us assume that DAG node 0 is on
processor 0 and node 4 is on processor 4. The edge from node 0 to node 4 is a
non-local edge, an edge between nodes on different processors. Each processor
keeps a presence counter per local node to keep track of how many incoming
edges have been satisfied for each node in its local memory. Once all incoming
edges have been satisfied, the outgoing edges can be processed. Since node 0
has no incoming edges, x0 = b0 and processor 0 can send v = L04 � x0 to node 4
on processor 4 via an active message of the form:

send am(in edge handler, 4, 4, v).

This causes an active message to be sent from processor 0 to processor 4.
When the message arrives, processor 4 is interrupted and the handler procedure
in Figure 3 is executed with the arguments in edge handler(4,v). This handler
causes the presence counter on node 4 to be decremented and v to subtracted
from the solution for x4.

Longer messages are also straightforward. We use longer messages in an
attempt to reduce send and receive overhead. We buffer up multiple non-local
edges, represented by (node num, value) pairs, into buffers in memory, one buffer
each processor that edges are destined for. We will see later that this buffering
incurs significant cost in memory operations (end of Section 4.1) and idle time (in
Section 5). Once a buffer contains the desired number of edges for a long message,
we send its contents as an active message with many arguments:

7



void in edge handler(int node num, double value)
f

NODE TYPE �node = node array[node num];

node!counter��;
node!x �= value;

g

/� main loop �/
for (i=0; i<num local nodes; i++) f

/� get next node in schedule �/
node = prescheduled nodes[i];

/� wait until incoming edges are done �/
while (node!counter > 0);

process outgoing edges(node);
g

Figure 3: Message-passing code for DAG execution.

send am(proc, many in edge handler, node num 1,
value 1, : : : , node num n, value n)

The handler then performs the appropriate decrement and subtraction for each
edge. Note that this approach is generally limited to the size of the output queue in
the network interface. On Alewife, we send up to 4 node-value pairs in a message.
However, the integrated DMA mechanism allows us to send a buffer containing
many more node-value pairs and receive them directly from the network interface
as if they were arguments.

We find that using a prescheduled computation schedule is more efficient than
the dynamic, data-driven schedule often associated with dataflow computations.
Consequently, the main loop (also shown in Figure 3) uses a prescheduled order,
described later in Section 4.4, which allows each processor to process nodes in
an efficient order. In our example, node 4 only has one incoming edge and its
outgoing edges can be processed as soon as processor 4 arrives at node 4 in its
prescheduled ordering.

4.1.2 Shared Memory

The use of shared memory is somewhat less obvious for this computation. The tra-
ditional method would be to schedule the nodes into phases (levels of a topological
sort) and use barrier synchronization between levels. However, this has been found
to be less efficient than finer-grain scheduling and synchronization [CSBS95]. The
problem with shared memory is that processor 0 can perform a remote write to

8



void process outgoing edges(NODE TYPE �node)
f

int i;
NODE TYPE �dest node;

/� loop over all outgoing edges �/
for (i=0; i < node!num out edges; i++) f

/� this is the destination of the current edge �/
dest node = node!out edge[i]!dest node;

/� spin until we get the lock on the cache line �/
lock node(dest node);

/� update counter and data �/
dest node!x += node!x �

node!out edge[i]!L;
dest node!counter��;

/� unlock the cache line �/
unlock node(dest node);

g
g

Figure 4: Shared-memory code for DAG execution.

shared memory on processor 4 to communicate value v, but there is no synchro-
nization event that tells processor 4 to subtract v from x4.

Our problem arises from the owner-computes model, which specifies that the
owner of the left-hand-side of the computation (x4 = x4 � v), processor 4, must
perform the subtraction. We can avoid this problem by adopting a producer-
computes model, which specifies that the producer of the value v, processor 0,
compute the subtraction via a remote read-modify-write using shared memory. In
our implementations, processor 0 performs both the update to x4 and the decrement
of the presence counter of node 4 together, using a shared-memory synchroniza-
tion primitives to keep the read-modify-writes atomic. Figure 4 outlines the code
involved. The presence counter and the variable x are kept in the same 16-byte
cache line. Generally, up to four messages are required for every non-local edge:
a write ownership request to the home node, an invalidate to the previous writer,
a cache-line transfer from the previous writer to the home node, and a cache-line
transfer from the home node to the current writer. In our shared memory experi-
ments, only two to three messages are required per non-local edge, compared to
one for message passing, due to some caching when the previous writer is the
same processor as the current writer. The main loop of the computation is the
same as the message-passing version.

9



Operation Cycles
Shared Memory
Acquire+Release Remote Lock unshared 58 + 1.5/hop
Acquire+Release Remote Lock shared 144 + 1.5/hop
Read+Write Remote Data (Cached) 8
Compute Edge 40
Increment Presence Counter 2

Message Passing
Message Send 31
Null Handler Interrupt 95
Compute Edge 40
Increment Presence Counter 2

Message Aggregation
Buffer Edge 28

Table 2: Costs of relevant Alewife operations. An unshared remote lock means that
messages only need to travel from the locking processor and the home processor
of the lock. A shared remote lock must wait for an additional round-trip to invalidate
other processors with cached copies of the lock. hops refers to network distance
between the locking processor and the home processor in the unshared case;
the shared case must also include network distance between the home node and
the farthest sharer. Once the remote lock is acquired, the rest of the shared-
memory operations are local and costs are similar to message-passing operations.
Compute Edge refers to the memory and multiply-add operations associated with
each edge of the computation.

Table 2 shows the costs of significant operations in using different communication
mechanisms. We can see that the cost of buffering is significant. Sending long
messages reduces message overhead by up to 126 cycles per every non-local
edge, beyond the first, in a message. However, buffering cost reduces these
savings by 22 percent. More importantly, buffering an edge for later transmission
can cost nearly half as much as directly communicating the data via shared memory.

4.2 Overview of ICCG

Unlike previous studies [CSBS95], we have extensively studied the entire ICCG
algorithm to ensure that our results are consistent with a complete, best-effort
implementation. We obtain supporting data by instrumenting two state-of-the-art
scientific packages: Chaco [HL95], a graph partitioner and mapper from Sandia
National Laboratories; and BlockSolve [JP94], a conjugate gradient linear systems
solver from Argonne National Laboratory.

Where does the triangular solve of our kernel come from? Our benchmarks are
linear systems represented as Ax = b, where A is a sparse matrix, x is a vector of
unknowns, and b is a right-hand side (RHS) vector of values. ICCG only works on
A-matrices which are symmetric, positive, and definite.

10



1. Data Mapping (Spectral Bisection)
2. Matrix Reordering (Multicolor)
3. Incomplete Cholesky Factorization
4. Iterative Solution

Triangular Solves (2)
Inner Products (2)
Vector Updates (3)
Matrix-Vector Products (2)

Table 3: Computations for Parallel ICCG

Ax = b can be solved directly by factoring A into A = LU , via Cholesky fac-
torization, and performing two triangular solves: Ly = b (forward substitution) and
Ux = y (backward substitution). Coarse-grain blocking approaches [RG93] per-
form well for this approach. Unfortunately, L and U can be expensive to compute
and contain significantly more nonzeros than the original A. For this reason, an
approximate factorization is often used. We compute an incomplete Cholesky fac-
torization, where L0

ij = Lij if Aij 6= 0, otherwise Lij = 0. U 0 is similarly defined. L0

and U 0 are exactly as sparse asA and we use them to iteratively arrive at a solution.
Note that the sparsity of L0 and U 0 make coarse-grain approaches impractical. The
resulting iterative computation is inherently fine-grain and irregular.

Parallel implementation of ICCG involves four computation phases, shown in
Table 3. First, an input matrix is mapped onto a target architecture, usually via a
graph partitioner. Second, the matrix is renumbered via a reordering algorithm to
provide better convergence and parallelism properties during factorization and so-
lution. Third, a preconditioner is computed by calculating the incomplete Cholesky
factors. Fourth, using an initial guess, we iteratively arrive at a solution.

For this study, we will assume that graph partitioning and matrix reordering can
be done offline. This is because the applications we examine are irregular but
not dynamic. They involve sparse matrices which are extremely long-lived and
are solved repeatedly for multiple right-hand sides. For example, the finite-element
discretization of an airplane is generally entered by hand. The structure of matrixA,
representing the airplane, changes little over time. However, the RHS representing
flying conditions changes continually.

Table 4 summarizes several attributes of our benchmark datasets. In particular,
it shows that many iterations are required to solve these linear systems and that
triangular solve takes at least 40 percent of runtime out of a total runtime which in-
cludes incomplete Cholesky and iterative solution. Iteration counts and timings are
from BlockSolve running on top of MPI [Mes93] on a collection of Sun workstations
connected by Ethernet. This system runs the same computation as would a full
implementation of ICCG on Alewife. The data, partitions, and convergence would
be the same. However, the overheads and latencies are substantially higher in the
cluster than on Alewife. We are only interested in the iteration counts and a rough
idea of what percentage of end-to-end application time is spent in triangular solve.

11



Matrix Property Number of Processors
1 4 8 16 32

BUS1138 percent nonlocal edges 0 6 15 19 27
average iterations 255 303 314 133 114
percent app iter 93 99 99 99 99
percent app tri-solve 38 41 41 56 59

BCSSTK18 percent nonlocal edges 0 8 13 19 37
average iterations 230 180 219 209 210
percent app iter 88 91 97 98 99
percent app tri-solve 40 46 55 54 65

CAN1072 percent nonlocal edges 0 9 21 32 40
BCSPWR10 percent nonlocal edges 0 10 20 45 54
OCEAN percent nonlocal edges - - - 2 4
BCSSTK32 percent nonlocal edges - - - - 24

Table 4: Locality, convergence, and rough ICCG timing attributes of some bench-
marks. nonlocal edges shows that partitioning quality is generally high. OCEAN

and BCSSTK32 do not fit on small numbers of processors. BUS1138 and BCSSTK18
have full numerical data and have the following data from BlockSolve: percent
app tri-solve shows that we can expect triangular solve to be greater than approx-
imately 40 percent of end-to-end time. average iterations shows the number of
iterations for convergence. percent app iter shows the percentage of end-to-end
time spent in iterative solution as opposed to factorization.

Because triangular solve has the finest grain communication of all the phases of
ICCG, the percentage of triangular solve time will be at least as high on Alewife as in
the single processor BlockSolve case. The single processor BlockSolve case has
no communication cost. Parallel ICCG on Alewife can only increase the percentage
of end-to-end time spent in triangular solve.

4.3 Data Mapping

Although our kernel treats our computation as a directed graph, we will use a
data mapping algorithm for undirected graphs and choose directions for the edges
later (using multicolor reordering). This approach produces better mappings and
application performance than previous DAG-oriented approaches [CSBS95].

For data placement, we use Chaco, a well-established sequential code from
Sandia National Laboratories which provides a range of mapping algorithms. We
use a multilevel algorithm which uses a coarsening heuristic to condense the graph,
and then partitions the condensed graph with recursive spectral bisection. Chaco
assigns a mapping from partitions to processors on the parallel system and then
refines it with the Kernighan-Lin algorithm [KL70].

12



Figure 5: Graph coloring and resulting matrix structure using multicolor reordering
and incomplete Cholesky factorization.

4.4 Multicolor Reordering and Message Aggregation

After the data is mapped to processors, we hold the mapping fixed but we can
renumber the nodes. The mapping works on the undirected graph, which corre-
sponds to treating the A-matrix as an adjacency matrix. We can renumber the
nodes of the graph, effectively permuting the rows and columns of A (and the rows
of x and b), without altering the linear system. The renumbered graph is isomorphic
to the original graph, but the ordering is important because incomplete Cholesky
factorization will produce triangular matrices with the same structure as whatever
ordering A is in. The triangular matrices have the same structure as the original
undirected graph (which makes the mapping useful), but the triangular structure
determines the directions on all the edges. In both factorization and triangular
solution, data will travel along each edge from node i to node j iff i < j.

Renumbering can enhance parallelism and convergence in the incomplete fac-
torization and iterative solution phases. The edge directions of the DAG can be
chosen to avoid long critical paths, yet still propagate information quickly for conver-
gence. Renumbering can also result in greater slackness, amount of computation
able to proceed between communications, which creates more data available to be
aggregated into long messages. Long messages are often used to try to amortize
communication overhead. We use the multicolor reordering algorithm [ST82],
described later in this section, which is one of the best known algorithms for en-
hancing parallelism and message aggregation.

Multicolor reorderings are similar to red-black relaxation. Nodes are colored to
ensure independence and then the computation works on the nodes one color at a
time. Specifically, the nodes of the graph are colored such that no edge connects
nodes of the same color, as shown on the left side of Figure 5. Then the matrix A

is renumbered such that the row and column numbers are sorted by color. After
incomplete factorization, this results in triangular matrices with nonzero structure
as on the right side of Figure 5. Each block of nonzeros represents a portion of
computation which can proceed in parallel, dependent only upon blocks earlier in
the sorted ordering of colors (blocks to the left in the lower triangular matrix).

The sorting of the colors effectively provides us with a topological sort of our

13



Matrix Buffer Number Processors
length 4 8 16 32

BUS1138 2 1.8 1.7 1.5 1.3
3 2.5 2.1 1.7 1.4
4 3.1 2.4 1.8 1.5

BCSSTK18 2 2.0 2.0 1.9 1.8
3 3.0 2.9 2.6 2.3
4 3.9 3.8 3.3 2.6

CAN1072 2 2.0 1.9 1.7 1.6
3 2.8 2.6 2.1 1.9
4 3.6 3.2 2.4 2.0

BCSPWR10 2 2.0 2.0 1.9 1.7
3 3.0 2.8 2.6 2.2
4 3.8 3.6 3.3 2.5

OCEAN 2 - - 2.0 2.0
3 - - 2.9 2.9
4 - - 3.8 3.8

BCSSTK32 2 - - - 1.9
3 - - - 2.7
4 - - - 3.4

Table 5: Average message length for a given buffer size and number of processors.
Buffer size and message length in units of number of non-local DAG edges (four
32-bit words).

computation DAG. If each processor completes3 its nodes in order sorted by the
multicolor numbering, the computation is deadlock-free. In fact, this ordering turns
out to be an extremely efficient computation schedule which outperforms data-
driven schedules generated at runtime.

The sorted dependencies also allow the results of each block to be buffered till
the end of the computation of the entire block without deadlock. This maximizes
opportunities for message aggregationwithin each block. In our implementations, a
processor will communicate buffered results whenever it is idle, rather than waiting
till the end of each block. Table 5 shows the average length of messages for each
benchmark at given buffer sizes and number of processors.

If we can color large datasets with a relatively small number of colors, blocks will
be large, resulting in high parallelism and aggregation. Recall that Table 1 gave
the number of colors for each benchmark. Our results will show high parallelism
on our benchmarks. Unfortunately, even if a block is large, it is distributed among
p processors and its results are sent to p processors. Consequently, the amount of
data available for long messages is proportional to the results of the block divided by
p2. This division causes even our largest benchmarks to benefit little from message
aggregation.

3Recall that, depending upon our mechanism-dependent implementations, a processor may
perform varying amounts of the computation of a node that it “owns”, but it will always “complete”
every owned node by checking input dependencies and passing results along outgoing edges.

14



How do multicolor orderings affect convergence and what are the benefits of
increased parallelism? Studies [DM89], on similar data-sets to ours, indicate that
the convergence rate of multicolor orderings is within roughly a factor of two of the
best reorderings optimized for convergence. The increased parallelism allows our
triangular solve speedups scale to much higher number of processors than with
other orderings in previous studies [CSBS95].

5 Results

In this section, we present performance results from our experiments on Alewife.
Our experiments focus on three implementations. Each implementation uses a
different mechanism to communicate data along non-local edges of our computa-
tion DAG, edges between DAG nodes on different processors. For intuition behind
each implementation, refer back to Section 4.1.

First, shared memory uses a global read-modify-writes for each non-local edge.
Second, short message uses an active message for each non-local edge. Third,
buffer n buffers up to n non-local edges (each 4 32-bit words) in local memory
before sending a message. Messages containing four or less non-local edges are
sent via an active message. Messages containing more than four are sent via an
active message with integrated DMA. We divide our results into two sections. First,
we show that there is no benefit to message aggregation in our smaller benchmarks.
Second, we show that the benefits of aggregation are extremely limited in our large
benchmarks. In both sections, we show that shared memory performs well relative
to message passing, especially in the large benchmarks when receive occupancy
is critical to network congestion.

5.1 Smaller Benchmarks

Figure 6 shows Alewife speedups for our four smaller benchmarks with each of our
communication mechanisms. Recall speedups are relative to optimized sequential
code running with the assumption that datasets fit in memory (see Table 1). We
see that shared memory and short active messages perform equally well. Note
that buffered messages of length 1 are essentially short active messages with the
overhead of buffering. We see that increasing the number of edges buffered into
longer messages decreases performance for our smaller benchmarks.

The primary reason performance decreases with longer messages is idle time.
This idle time results from waiting for enough data to aggregate into a long mes-
sage. Additionally, savings in communication is reduced by the buffering costs
discussed in Section 4.1. We can see these effects in Figure 7, which illustrates
non-local computation and idle time for BCSSTK18, which is representative of all
four small benchmarks. Non-local computation represents the average time spent
on computation and communication overhead on each non-local edge. Idle time
represents average time spent in spin wait for each node to have all its incom-
ing edges satisfied. While the non-local computation time increases more slowly

15



1 4 8 16 32

Processors

0

2

4

6

8

10

Sp
ee

du
p

bus1138

1 4 8 16 32

Processors

0
2
4
6
8

10

Sp
ee

du
p

can1072

1 4 8 16 32

Processors

0

2

4

6

8

Sp
ee

du
p

bcspwr10

shared memory
message passing
buffered 1

1 4 8 16 32

Processors

0

5

10

Sp
ee

du
p

bcsstk18

buffered 2
buffered 3
buffered 4

Figure 6: Alewife Speedups

16



4 8 16 32

Processors

0

50

100

150

200
C

yc
le

s

bcsstk18 per edge nonlocal times

shared memory 
message passing
buffered 1

4 8 16 32

Processors

0

200

400

600

800

C
yc

le
s

bcsstk18 per node idle time

buffered 2
buffered 3
buffered 4

Figure 7: BCSSTK18 breakdowns.

as we use longer messages, this benefit is made insignificant by the rapidly in-
creasing idle time which results from aggregation. This rapid increase occurs even
though we have specifically used a multicolor ordering to maximize available data
for aggregation and allow overlap with computation.

5.2 Larger Benchmarks and DMA

We expect longer messages to perform better on our two larger benchmarks. Ta-
ble 6 gives speedups and breakdowns for our two larger benchmarks. However,
BCSSTK32 is the only benchmark that shows any improvement as messages be-
come larger. This is because idle time actually decreases somewhat as we buffer
more messages. This is counter-intuitive, because idle time increased on all our
other benchmarks because of time spent waiting for edges to buffer up. It turns
out that network congestion is a significant factor in BCSSTK32. The larger dataset
size and higher degree of the nodes (lower sparsity of the matrix) result in higher
communication. The higher communication volume of shorter messages causes
increased network congestion, resulting in higher latencies and idle time4. The
short message and buffered 1 cases even result in network overflow traps, a soft-
ware trap which inhibits message sends and empties the network of congestion.
Longer messages decrease communication volume by decreasing the number of
message headers.

4Note that idle times seem extremely high because they are per node and each node of BCSSTK32
averages about 22 incoming edges.

17



ocean bcsstk32
16 proc 32 proc 32 proc

Speedup
shared memory 8.0 15.6 12.9
short message 7.8 15.3 11.3
buffered 4 6.8 12.0 11.3
buffered 3 6.8 11.8 11.2
buffered 2 6.9 11.8 11.1
buffered 1 7.0 13.7 10.8

Non-local edge cycles
shared memory 202 206 189
short message 141 139 130
buffered 4 202 194 140
buffered 3 199 195 145
buffered 2 196 190 149
buffered 1 178 174 151

Idle cycles per node
shared memory 52 57 1444
short message 55 61 1821
buffered 4 107 138 1631
buffered 3 101 132 1647
buffered 2 100 125 1671
buffered 1 90 96 1868

Table 6: Large benchmark speedups and breakdowns.

Why does shared memory do so well when it has double the communication
volume of short messages? The answer is that shared memory messages are
handled with very low occupancy by the CMMU rather than via a processor interrupt.
This results in a higher receive rate which keeps the network clear of congestion.

Will the performance of bcsstk32 continue to improve as we increase message
size? To send messages which contain more than 4 edges, we need to use DMA.
The left side of Figure 8 shows speedup for 32 processors as message buffer-
ing increases. For reference, speedups for shared memory and short message
implementations are also plotted as horizontal lines.

The right side of Figure 8 shows the key limitation to message buffering. As
buffering increases, the average length of messages quickly reaches a limit caused
by dependencies in the program. Recall that, in order to avoid deadlock and satisfy
data dependencies, a message may need to be sent before filling a buffer. As
mentioned in Section 4.4, the amount of independent data available for aggrega-
tion is divided by p2, where p is the number of processors. BCSSTK32 is limited
to an average message length of about 8 edges (128 bytes), and consequently
receives the most benefit from buffer size 8. OCEAN is similarly limited. Our smaller
benchmarks have message lengths which are too small receive no benefit from
aggregation.

How do these results generalize to systems with higher communication over-

18



5 10 15 20 25 30

Buffer Size

9

10

11

12

13

Sp
ee

du
p

shared memory
short message
buffered

5 10 15 20 25 30
Buffer Size

0

2

4

6

8

A
vg

 M
sg

 L
en

gt
h

Figure 8: (Left) BCSSTK32 with larger buffers on 32 processors. Buffering is in
terms of non-local edges of the computation. Buffering of 10 indicates that up to
160 bytes of data are sent in a message. (Right) Average number of edges sent
per message at each buffering level for this benchmark on 32 processors.

200 400 600 800 1000 1200

Message Overhead (cycles)

0

2

4

6

8

10

Sp
ee

du
p

buffered 8
short message

Figure 9: BCSSTK32 with speedups on systems with increasing communication
overhead. Short messages (16 bytes) and buffer-size-8 (128 bytes) messages are
shown.

19



heads? Figure 9 compares short messages to buffer-size-8 messages for send-
receive overheads ranging from Alewife’s 126 cycles to a hefty 1200 cycles. Over-
heads were simulated on Alewife by inserting delays in message send primitives
and in active message handlers. As we expect, aggregated messaging is more
tolerant of increased overheads. However, aggregation is need not be very large,
less than 128 bytes for our benchmarks. Such limited aggregation is more in the
class of short messaging mechanisms than bulk transfer. In fact, most DMA en-
gines are only just breaking even with direct messaging mechanisms at this point.
Consequently, our applications do not justify the inclusion of DMA hardware in a
system, even when communication overheads are high.

Larger benchmarks will not be possible until Alewife is expanded to a 128-node
system. However, our largest benchmark, with 2 million elements, is a respectable
size and comparable to the largest experiments reported in the literature.

In summary, long messages only show some benefits in a small regime for our
benchmarks and machine sizes. As we move to larger numbers of processors,
congestion may become more of a factor, even on our smaller and sparser bench-
marks then BCCSTK32. However, data dependencies limit the benefits of message
aggregation. Shared memory performs well, with its low occupancy becoming an
important factor when network congestion is an issue.

6 Related Work

Numerous studies have argued for hardware support for efficient cache-coherent
shared memory, primarily to increase the ease of use of multiprocessors. Our
study agrees that ease of use is important, but we also find that shared memory
is an extremely efficient communication mechanism which outperforms message
passing and DMA in our applications.

Many studies have examined shared memory without thorough comparison with
message passing and DMA. Yeung and Agarwal [YA93] explored fine-grain syn-
chronization and language support for preconditioned conjugate gradient on regular
problems on Alewife. Singh, Holt, and Hennessy [SHH95] studied hierarchical N-
body methods on distributed shared memory machines. They found significant
benefits from caching due to re-use in their applications.

Woo, Sing, and Hennessy [WSH94] also found the advantages of bulk transfer
over efficient shared memory to be limited. Their applications were not as irregular
and aggregation was not as expensive. However, they were able to gain many of
the benefits of bulk transfer by using large cache lines and prefetching.

Our use of a producer-computes model to cope with shared memory synchro-
nization is similar to the Remote Queues concept presented in [BCL+95].

Mukherjee et al [MSH+95] recently studied fine-grain, irregular applications on
the Chaos system [SMC91] for message passing and software distributed shared
memory on the CM5. Lu et al [LDCZ95] looked at different applications coded for
PVM message passing and Treadmarks software DSM.

20



These studies deal with an entirely different regime of overheads associated
with software DSM. These overheads make communication aggregation and re-
laxed consistency models crucial to achieving acceptable application performance.
Unfortunately, aggregation techniques are not applicable to our applications and
only hardware-supported shared memory can achieve acceptable performance.
On the plus side, efficient hardware support can provide good performance without
relaxing memory models. While relaxed models such as Wisconsin’s delayed-
update model [FLR+94] are complementary to this study and could improve our
application performance, our results show that we can still achieve acceptable
performance on an architecture which chooses not to support application-specific
models.

The goal of our study is to discover architectural implications of sparse, irreg-
ular applications through thorough study of a specific class of such applications.
However, our results should generalize well to runtime systems such as Chaos and
to parallelizing compilers as they develop towards handling sparse and irregular
codes.

7 Conclusion

From in-depth study of a set of practical, sparse, irregular problems implemented
with shared memory, message passing, and DMA on the MIT Alewife multipro-
cessor, we conclude that cache-coherent shared memory is the most general and
effective multiprocessor communication mechanism for such applications.

We discover that a producer-computes model of computation can avoid awk-
ward synchronization problems that arise between owner-computes and shared
memory. We find that fine-grain communication may often out-perform bulk trans-
fers. Message aggregation can be expensive relative to fast fine-grain mechanisms
such as shared memory or short active messages. Buffering data to local memory
for later DMA can cost nearly half as much as directly communicating the data
via shared memory. Moreover, processor idle time and network congestion make
bulk transfer unattractive for all but a small regime of message sizes (about 128
bytes) on large datasets (matrices with over 2 million elements). In fact, the low
receive overhead of shared memory message traffic avoids network congestion
when message passing or DMA can not.

8 Acknowlegements

Thanks to Fredrik Dahlgren, Matt Frank, Steve Keckler, Kathy Knobe, John Kubia-
towicz, Joel Saltz, Rob Schreiber, Shamik Sharma and Deborah Wallach.

The Alewife project is funded in part by ARPA contract N00014-94-1-0985 and
in part by NSF grant MIP-9504399. This and related documents are available from
http://www.ai.mit.edu/people/ftchong/

21



References
[ABC+95] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk Johnson, David Kranz, John

Kubiatowicz, Beng-Hong Lim, Ken Mackenzie, and Donald Yeung. The MIT Alewife ma-
chine: Architecture and performance. In Proc. 22nd Annual International Symposium
on Computer Architecture, June 1995.

[ACM88] Arvind, David E. Culler, and Gino K. Maa. Assessing the benefits of fine-grained paral-
lelism in dataflow programs. In Supercomputing ‘88. IEEE, 1988.

[BCL+95] Eric A. Brewer, Frederic T. Chong, Lok T. Liu, Shamik D. Sharma, and John Kubiatowicz.
Remote queues: Exposing message queues for optimization and atomicity. In 1995
Symposium on Parallel Architectures and Algorithms, Santa Barbara, California,
July 1995.

[BFKR92] H. Burkhardt, S. Frank, B. Knobe, and J. Rothnie. Overview of the KSR1 Computer
System. Technical Report KSR-TR-9202001, Kendall Square Research, February 1992.

[CB96] David Conroy and Lance Berc. Personal communication, Digitial Systems Research
Center, March 1996.

[Che93] Chesney. The Meiko CS-2 system architecture. In Annual ACM Symposium on
Parallel Algorithms and Architectures, 1993.

[CLR94] Satish Chandra, James R. Larus, and Anne Rogers. Where is time spent in message-
passing and shared-memory programs. In ASPLOS VI, pages 61–73, San Jose, Cali-
fornia, 1994.

[CS95] Frederic T. Chong and Robert Schreiber. Parallel sparse triangular solution with par-
titioned inverses and prescheduled DAGs. In 1995 Workshop on Solving Irregular
Problems on Distributed Memory Machines, Santa Barbara, California, April 1995.

[CSBS95] Frederic T. Chong, Shamik D. Sharma, Eric A. Brewer, and Joel Saltz. Multiprocessor
runtime support for irregular DAGs. Parallel Processing Letters: Special Issue on
Partitioning and Scheduling for Parallel and Distributed Systems, pages 671–683,
December 1995.

[DCB+94] André DeHon, Frederic Chong, Matthew Becker, Eran Egozy, Henry Minsky, Samuel
Peretz, and Thomas F. Knight, Jr. METRO: A router architecture for high-performance,
short-haul routing networks. In Proceedings of the International Symposium on
Computer Architecture, pages 266–277, May 1994.

[DGL92] Ian S. Duff, Roger G. Grimes, and John G. Lewis. User’s guide for the Harwell-Boeing
sparse matrix collection. Technical Report TR/PA/92/86, CERFACS, 42 Ave G. Coriolis,
31057 Toulouse Cedex, France, October 1992.

[DM89] Iain S. Duff and Geŕard A. Meurant. The effect of ordering on preconditioned conjugate
gradients. BIT, 29:635–657, 1989.

[E+92] Thorsten von Eicken et al. Active messages: a mechanism for integrated communication
and computation. In Proceedings of the 19th Annual Symposium on Computer
Architecture, Queensland, Australia, May 1992.

[FLR+94] Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, Ioannis Schoinas, Mark D. Hill
James R. Larus, Anne Rogers, and David A. Wood. Application-specific protocols for
user-level shared memory. In Supercomputing 94, 1994.

[GvL83] G. Golub and C. F. van Loan. Matrix Computations. John Hopkins University Press,
Baltimore, 1983.

22



[HKO+94] Mark Heinrish, Jeffrey Kuskin, David Ofelt, John Heinlein, Joel Baxter, Jaswinder Pal
Singh, Richard Simoni, Kourosh Gharachorloo, David Nakahira, Mark Horowitz, Anoop
Gupta, Mendel Rosenblum, and John Hennessy. The performance impact of flexibility
in the Stanford FLASH multiprocessor. In ASPLOS VI, pages 274–285, San Jose,
California, 1994.

[HL95] Bruce Hendrickson and Robert Leland. The Chaco user’s guide. Technical Report
SAND94-2692, Sandia National Laboratories, July 1995.

[Int91] Paragon XP/S product overview. Intel Corporation, 1991.

[JP94] Mark T. Jones and Paul E. Plassman. BlockSolve v2.0: Scalable library software for the
parallel solution of sparse linear systems. ANL Report (updated draft) 92-46, Argonne
National Laboratory, October 1994.

[KL70] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The
Bell System Technical Journal, pages 291–307, February 1970.

[LDCZ95] Honghui Lu, Sandhya Dwarkadas, Alan L. Cox, and Willy Zwaenepoel. Message passing
versus distributed shared memory on networks of workstations. In Supercomputing
95, December 1995.

[LLG+92] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber, Anoop
Gupta, John Hennessy, Mark Horowitz, and Monica S. Lam. The stanford Dash multi-
processor. Computer, 25(3):63–80, March 1992.

[LT88] T. Lovett and S. Thakkar. The Symmetry multiprocessor system. In Proceedings of the
1988 International Conference on Parallel Processing, Vol. I Architecture, pages
303–310. , University Park, Pennsylvania, [8] 1988.

[Mes93] Message Passing Interface Forum. MPI: A message passing interface. In Supercom-
puting ‘93, pages 878–883. IEEE, 1993.

[MSH+95] Shubhendu S. Mukherjee, Shamik D. Sharma, Mark D. Hill, James R. Larus, Anne
Rogers, and Joel Saltz. Efficient support for irregular applications on distributed-memory
machines. In Proc. 5th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP’95, pages 68–79, Santa Barbara, California, July 1995.

[RG93] Edward Rothberg and Anoop Gupta. An efficient block-oriented approach to parallel
sparse Cholesky factorization. In Supercomputing ‘93, pages 503–512. IEEE, 1993.

[SGI94] Power Challenge technical report. Technical report, Silicon Graphics Inc., 2011 N.
Shoreline Blvd., Mountain View, CA 94043, 1994.

[SHH95] Jaswinder Pal Singh, Chris Holt, and John Hennessy. Load balancing and data locality in
adaptive hierarchical N-body methods: Barnes-hut, fast multipole, and radiosity. Journal
of Parallel and Distributed Computing, 27(2), June 1995.

[SMC91] Joel H. Saltz, Ravi Mirchandaney, and Kay Crowley. Run-time parallelization and
scheduling of loops. IEEE Transactions on Computers, pages 603–611, 1991.

[ST82] R. Schreiber and W. Tang. Vectorizing the conjugate gradient method. In Proceedings
Symposium CYBER 205 Applications, Ft. Collins, CO, 1982.

[Thi93a] Thinking Machines Corporation, Cambridge, MA. CM-5 Technical Summary, Novem-
ber 1993.

[Thi93b] Thinking Machines Corporation, Cambridge, MA. CMMD Reference Manual (Version
3.0), May 1993.

[WSH94] Steven Cameron Woo, Jaswinder Pal Singh, and John L. Hennessy. The performance
advantages of integrating block data transfer in cache-coherent multiprocessors. In
Asplos VI, pages 219–229, San Jose, California, 1994.

23



[YA93] Donald Yeung and Anant Agarwal. Experience with fine-grain synchronization in MIMD
machines for preconditioned conjugate gradient. In Proceedings of the Fourth ACM
SIGPLAN Symposium on Principles and Practices of Parallel Programming, pages
187–197, San Diego, California, May 1993.

Fred Chong is a Ph.D. student advised by Anant Agarwal at
MIT. He received his S.B. in 1990 and S.M. in 1992 from MIT.
His research interests include communication, applications,
theory, and VLSI for parallel systems.

Anant Agarwal received his B.Tech at the Indian Institute
of Technology in Madras, India, in 1982, and his M.S. and
Ph.D. at Stanford University in 1987. Currently, he is an
Assistant Professor of Computer Science and Electrical En-
gineering at MIT, where he leads the Alewife Project.

24


