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Abstract

Two chapters of this thesis analyze expert consulting problems via game theoretic models;
the �rst points out a close connection between the problem of consulting a set of experts and

the problem of searching. The last chapter presents a solution to the dictionary problem of
supporting Search and update (Insert and Delete) operations on a set of key values.

The �rst chapter shows that the problem of consulting experts on-line can be modeled
by a chip game similar and in some cases identical to the Paul-Carole games used to model

a faulty search process. It presents the best known worst-case algorithms for consulting
�nitely many experts, and the best possible algorithms for consulting in�nitely many ex-
perts (model selection) under some assumptions. It includes new results about faulty search
processes as well as generalizations and new proofs of some known results.

The second chapter uses properties of coalitional games to analyze the performance
of the greedy heuristic for the problem of hiring experts from a pool of candidates using
stochastic data. The results are instrumental in suggesting an alternative to a known
algorithm for learning Lipschitz functions by a memory-based learning systems via an
analysis of the greedy approximate solution of the s-median problem.

The third and last chapter is dedicated to the Scapegoat trees data structure: a solution
to the dictionary problem that uses binary trees with no auxiliary balancing data stored
at the tree nodes to achieve logarithmic worst-case search time, and logarithmic amortized

update time.

All chapters explore alternatives to the now standard worst-case analysis of algorithms.
The �rst chapter introduces and advocates the notions of opportunism and almost oppor-

tunism of on-line algorithms. The second chapter contrasts the pessimism of worst-case

analysis with the optimism of the greedy heuristic, and points out some bene�ts of explor-
ing the latter. The last chapter evaluates a novel data structure by computing its amortized

performance.

Thesis Supervisor: Ronald L. Rivest
Title: E.S. Webster Professor of Computer Science
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This thesis addresses two problems { consulting a set of experts and searching. The problem

of consulting a set of experts, or combining information from di�erent sources to reach

conclusions, is a most commonly-occurring problem. Many algorithmic tasks of producing

a speci�c output based on a given input �t this description.

Many, if not all human behaviors seem to be the result of processing incoming infor-

mation from multiple sources. Turing's test suggests intelligence can be measured by its

resemblance to human behavior. The �rst two chapters of this thesis evolved from research

in the area of Computational Learning Theory [38], the area of theoretical computer science

that is most closely related to research on arti�cial intelligence.

We do not address the problem of consulting experts in its full generality. Rather we are

concerned with two aspects of it: consulting experts on-line under worst-case assumptions

about the input and selecting a \good" subset from a given pool of experts.

The problem of searching for a particular named element within a given set is one of

the fundamental problems of theoretical computer science [49]. This thesis (in chapter

1) establishes a close connection between the problems of searching a set using unreliable

information, and consulting experts on-line.

The last chapter addresses another variant of the problem of searching, that of �nding

an element in a dynamically changing set.

0.1 Chapter 1: Consulting a Set of Experts On-Line

and Faulty Searching

The �rst chapter de�nes and explores a class of multistage games that capture information

theoretic aspects of on-line learning. Our framework encompasses both the problem of

consulting �nitely many experts and the problem of model selection from in�nitely many

candidates. We introduce the PM algorithms which achieve the game's value for some

families of inputs and come within a constant multiplicative factor for others. Thus they

provide simultaneous upper and lower bounds on the complexity of the problems addressed.

Worst-case analysis of algorithms can be justi�ed as a search for a solution that min-
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imizes the risk involved. However, in applications the algorithm will often be faced with

\easier" than the worst-case inputs. By introducing new notions of algorithmic complex-

ity, opportunism and almost opportunism, we distinguish on-line algorithms which take full

advantage of favorable situations, without unnecessary risks.

Using this new notion of opportunism, we prove that our algorithms, unlike previous

algorithms, are almost opportunistic in games with �nitely many experts. This suggests

that to achieve optimal on-line learning performance the manager has to gather information

in rounds in which she does not err, as well as in rounds in which she errs. This conclusion

is in contrast to the often indistinguishable asymptotic performance of learning algorithms

that gather information in all rounds and those that gather it only in rounds in which the

algorithm errs.

We apply the PM algorithms to the previously unaddressed question of consulting

experts over arbitrary �nite decision domains of size � 2, and also allow the learner to

incorporate a prior on experts' quality.

The family of games discussed herein is closely related to the well-investigated Paul-

Carole search games. In these games a searcher, Paul, tries to �nd a target value from a set

of candidate values by questioning Carole. Carole is allowed to lie in some of her answers.

It is shown that games in which the manager is evaluated on the number of mistakes he

makes are reducible to games similar to the standard Paul-Carole search games in which

the goals of the two sides are reversed, while expert consulting games in which the manager

is evaluated on the number of mistakes he makes in excess of his best advisor or advisors

are reducible to the standard Paul-Carole search games. Our analysis of these games allows

a uniform derivation of generalizations of some known results.

For decision makers our proof o�ers some insight into the folk wisdom asser that \the

hardest decisions to make are the least important ones".

The algorithms presented are named after a combinatorial entity they utilize, the Pascal

Matrix.
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0.2 Chapter 2: Greedy Expert Hiring and an Appli-

cation

The second chapter (based on Galperin [27]) addresses the problem of hiring a set of experts

from a pool of candidates. Modeling this problem by a coalitional game, a uniform lower

bound on the performance of the greedy heuristic for a family of games is derived. We

show a uniform bound for this family also holds when only approximate rather than exact

values of coalitions are known. One of the prettiest applications of this general analysis is

to the s-median problem.

Approximation algorithms for the s-median problem are a useful tool in learning Lips-

chitz functions in the generalized PAC learning model of Haussler [34, 35]. To approximate

a Lipschitz function a memory-based learning system can be used, as proposed by Lin and

Vitter [42]. We generalize the analysis of a greedy approximate solution of the s-median

problem �rst considered by Cornuejols et al. [21]. We then compare its performance to

the performance of Lin and Vitter's linear programming approximate solution of the same

problem as a tool in the construction of memory-based learning systems. We �nd the

greedy approximation is simpler, more e�cient and in many cases yields a smaller system.

0.3 Chapter 3: Searching a Dynamically Changing

Set

The last chapter (based on Galperin and Rivest [28]) is dedicated to the problem of support-

ing searches of a dynamically changing set of keys. An algorithm for maintaining binary

search trees is presented. The amortized complexity per Insert or Delete is O(log n)

while the worst-case cost of a Search is O(log n).

Scapegoat trees, unlike most balanced-tree schemes, do not require keeping extra data

(e.g. \colors" or \weights") in the tree nodes. Each node in the tree contains only a key

value and pointers to its two children. Associated with the root of the whole tree are the

only two extra values needed by the scapegoat scheme: the number of nodes in the whole
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tree, and the maximum number of nodes in the tree since the tree was last completely

rebuilt.

In a scapegoat tree a typical rebalancing operation begins at a leaf, and successively

examines higher ancestors until a node { the scapegoat { is found that is so unbalanced

that the entire subtree rooted at the scapegoat can be rebuilt at zero cost, in an amortized

sense.

Like the algorithms of the previous section, the algorithm for maintaining scapegoat

trees enjoys the bene�t of simplicity.

12



Chapter 1

Opportunistic Algorithms for Expert

Advisees

13



1.1 Introduction

The problem of consulting a set of experts is a \master problem" that encompasses many

other problems. In some cases we can ask how do humans generate their behavior based

on sensory input, or how can a computer produce a desired output as a function of the

boolean \advice" given by its input bits.

Here we explore the problem of consulting on-line a set of experts providing boolean

advice to a manager who has to reach a boolean decision. It can be described as follows:

A manager and a set of experts are presented a common \yes/no" question. The experts

advise the manager on the correct reply, then she makes a decision, after which the correct

reply is revealed. We explore the worst-case performance of the manager, and hence assume

that the experts' votes as well as the correct reply are chosen by an adversary. This is

repeated in a sequence of rounds. The manager's aim is to stay not too far behind the best

advisors, when all are evaluated by the number of mistakes they made on the sequence.

More cannot be hoped for in the worst-case, as no a priori assumptions are made about

the experts or about the problem domain.

The problem of algorithmically consulting a �nite set of experts on-line has been investi-

gated under a variety of assumptions. (The on-line problem is distinguished by the manager

having to reach a decision in every round, before seeing all inputs.) Littlestone and War-

muth's [44] WM (Weighted Majority) algorithm and later the BW (Binomial Weighting)

algorithm by Cesa-Bianchi et al. [18] address the question of consulting a �nite number of

experts that provide boolean advice. The prediction domain of either the manager or the

experts may be modi�ed to be the real interval [0; 1] as in Cesa-Bianchi et al. [17], Little-

stone and Warmuth [44], Haussler et al. [32] and Vovk [70]. For this prediction domain

various loss functions may be considered (Vovk [70], Haussler et al. [32]).

We generalize the problem of consulting �nitely many experts by considering arbitrary

measurable sets of experts of �nite measure, and letting the decision domain of the manager

and her advisors be a �nite set. We discuss optimal algorithms in the worst-case against a

computationally unlimited adversary. This is the set-up commonly assumed in the analysis

of algorithms for �nitely many consultants. The PM (Pascal Matrix) algorithms can be
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seen as a generalization of the Halving algorithm (Angluin [4], Barzdin and Freivalds [8])

to the case when the candidate predictors are allowed multiple errors.

A zero-sum multi-stage game is a competition between two players. Popular examples

include chess, checkers, backgammon. An on-line algorithm, one performing a multi-round

\conversation" with the user (as opposed to an o�-line algorithm that may be seen as

answering unrelated questions) may be looked upon as the computer's strategy in a multi-

stage game between the computer and its user, in which the computer is challenged to meet

some performance criterion measured by the Cost function in the following. The optimal

worst-case strategy � for the computer is one which for every state S that may be reached

in the game and for every input sequence I incurs a cost no greater than

inf
�2Strategies

sup
I2Inputs

Cost[�(S; I)]: (1.1)

The notion of state may be seen as capturing the relevant information about the history

of an interaction between the computer and its user, as well as information known to the

computer that is not part of this interaction. The reader is referred to Section 1.2 for

formal de�nitions of the game theoretic terms. The inf supCost[�(S; I)] might not be a

min supCost[�(S; I)] { the latter might be unachievable. If the measure of performance is

not the running time of the algorithm, the min sup strategy might not be computationally

e�cient, and an approximation might be necessary. Finding a minsup algorithm within

a certain class of algorithms assures us this is the best possible worst-case algorithm in

the class. An algorithm which is the minsup of all computationally unlimited randomized

strategies we call an opportunistic algorithm.

Consider the problem of analyzing the performance of health care procedures (e.g.

drug administration) or alternatively stock market investment policies. The worst-case

analysis of algorithms is based on often unrealistic \pessimistic" assumptions yet it may

be well justi�ed under such circumstances as a means of risk minimization. As the medical

treatment proceeds, however, we would like the treatment algorithm to take advantage of

developments which will typically be more favorable than the worst-case development the

treatment plan is assuming a priori. The notions of opportunism and almost-opportunism
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can facilitate the design of such algorithms.

An algorithm A is said to be K almost opportunistic or hK;K 0i almost opportunistic if

the cost of its execution starting with any reachable state S satis�es

sup
I2Inputs

CostA(S; I) � K inf
�2Strategies

sup
I2Inputs

Cost[�(S; I)] +K 0

for all possible inputs. We derive an e�ciently solvable equation that gives the value of

states in some expert consulting games and upper bounds this value in other games. Using

this formula, we formulate algorithms which are opportunistic for some game classes and

almost opportunistic for others.

The research e�orts of theoreticians are dedicated to generating and evaluating algorith-

mic solutions. The most commonly used measure of algorithms' quality is their asymptotic

performance. Yet this measure is not sensitive enough to separate the LRU and FIFO pag-

ing algorithms from LFU and LIFO although they are not equivalent in practice. Sleator

and Tarjan [65] used competitivity to better compare them theoretically. The competitive

ratio of an on-line algorithm A is said to be K if constant K;K 0 exist for which

sup
I2Inputs

CostA(S0; I) � K inf
�2O�-strategies

sup
I2Inputs

Cost[�(S0; I)] +K 0

where the in�mum is taken over some set of o�-line strategies, and the comparison of

performance is carried out only for the initial state S0 at which the game begins. While

PM is 2 almost opportunistic for games with �nitely many experts the best algorithm

known currently for this problem, BW, is not. However, the bounds on their asymptotic as

well as competitive performance are identical. Thus, almost opportunism is a complexity

measure that in some cases is more sensitive than other known measures of algorithms'

quality.

One of the main motivations for the exploration of lower bounds lies in the fact that

through establishing lower bounds for algorithmic problems we �nd out how far known

solutions for a certain problem are from its \optimal" solution. Opportunism and compet-

itivity are more precise indicators of this \closeness" than the commonly used comparison
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of asymptotic lower and upper bounds since they do not neglect constants. However,

reaching a competitive ratio of one for a problem is an unrealistic goal in most cases, as

familiarity with future inputs seems to be indispensable information for the optimization

of an algorithm. Proving an algorithm is opportunistic within some set of algorithms is the

most realistic yet precise method at our disposal of stating an on-line algorithm cannot be

improved upon in the worst-case.

The superiority of the PM algorithms o�ers evidence in favor of updating expert weights

in every round of the game, rather than only in rounds in which the manager errs. We

prove the PM algorithms achieve similar bounds when the decision domain is a �nite

set of arbitrary size. This generalizes the problem previously addressed by Littlestone

and Warmuth [44] and Cesa-Bianchi et al. [18] of decision domains of size two (\yes/no"

questions). The PM algorithms can also be applied to tracing \good" sets of experts of

arbitrary size � 1, if such are known to exist, and allow the manager to incorporate a

non-uniform prior on experts' quality.

Expert Games explored herein are closely related to, and for some variants reducible

to, the well investigated (Rivest et al. [61], Pelc [60], Aslam and Dhagat [6], Spencer

and Winkler [67], Aslam [5]) Paul-Carole chip games modeling a faulty search process.

Our analysis leads to an extension of results by Rivest et al. [61] to cover searchers that

incorporate an arbitrary prior on the values searched. It yields the value of the continuous

Mistake Bound game (Version A in Spencer and Winkler's [67]), implying a lower bound on

the performance of Paul in the discrete game. It yields the same necessary and a di�erent

su�cient condition for Paul's victory than those speci�ed by Spencer [66].

The heart of our proof method consists of establishing that the expert consulting prob-

lem can be modeled by a chip game (see e.g. Aslam and Dhagat [6]) in which the chooser

tries to lengthen the game. We proceed to prove strong results about non-atomic expert

consulting chip games. These imply somewhat weaker results for the interesting class of

discrete games { atomic games that represent consulting �nitely many experts. Our results

are similar to those established by Cesa-Bianchi et al. [18] for consulting �nitely many ex-

perts and those by e.g. Spencer [66] for Paul-Carole games, showing the close relationship

between these two problems.
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It is said that \the hardest decisions in life are the least important ones". This principle

is accounted for by the observation that a decision is di�cult to make when the options

presented are of similar utility. Our proof suggests that such di�cult to make decisions are

hard in yet another way. It points out that in when the options are hard to di�erentiate

the decision maker may be facing an adversarial choice.

Section 1.2 includes a few de�nitions and conventions. Section 1.3 begins with some facts

about multi stage games, and moves on to de�ne expert consulting games. In Section 1.4

we make observations about the adversary's optimal strategies. Then Section 1.5 uses

these to derive the values of some games. Knowing these values allows a formulation of

algorithms for the expert manager. Section 1.6 discusses the e�cient implementation of

these algorithms, and their absolute performance. Section 1.7 compares the PM algorithms

to the already known BW and WM algorithms for the same problem and extends them

to decision domains of size � 2. It also addresses the implications of our results for the

analysis faulty search processes.

1.2 De�nitions, Notations, Conventions

Notation 1.2.1 Denote by

a� n

the result of shifting vector a right n positions and shifting in n zeros on the left. E.g.

h0; 0; 1; 2; 3i � 2 = h0; 0; 0; 0; 1; 2; 3i:

Denote by

a�LP n

the result of shifting vector a right while preserving its length. E.g.

h0; 0; 1; 2; 3i �LP 2 = h0; 0; 0; 0; 1i:

Occasionally, as implied by the context, we may use � to refer to shifts that preserve
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vectors' lengths.

Similarly �, �LP denote left shifts.

The shift operation can be applied to matrices as well, row-wise. When a matrix is

shifted the reader should assume its size is not changed unless speci�ed otherwise explicitly.

E.g. 0
BBBBBBBB@

1 0 0 0

2 1 5 0

1 2 1 0

0 1 2 1

1
CCCCCCCCA
� 1 =

0
BBBBBBBB@

0 0 0 0

1 5 0 0

2 1 0 0

1 2 1 0

1
CCCCCCCCA
:

When we multiply matrices by vectors we use the convention that when a matrix is

multiplied by a row vector on the right the vector should be transposed

0
BBBBB@

1 0 0

2 1 0

1 2 1

1
CCCCCA
� h0; 1; 2i =

0
BBBBB@

1 0 0

2 1 0

1 2 1

1
CCCCCA
�

0
BBBBB@

0

1

2

1
CCCCCA
:

The convention for priority of operators is : for vectors a; b and a scalar �

b+ �a� 1 = b+ ((�a)� 1):

Notation 1.2.2 For two vectors a; b of the same length, if all the coordinates of vector a

are greater or equal to the corresponding coordinates of vector b, i.e. 8i : ai � bi, then this

is denoted

a � b:

De�nition 1.2.1 A measure � on a non-empty set X is called non-atomic if for every

set T � X and every positive real number c � 1 there exists a set T 0 � T such that

�(T 0) = c�(T ). Otherwise, � is called atomic.

Notation 1.2.3

0
@ m

� k

1
A =

kX
i=0

0
@ m

i

1
A:
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Notation 1.2.4

1j = h1; : : : ; 1| {z }
j

; 0; : : : ; 0i:

The dimension of 1j is stated or implied by the context when this notation is used.

For a set X we denote X� = ff : N ! Xg, N denoting the natural numbers; and

denote <+ = [0;1).

De�nition 1.2.2 The 1-shift is a relation on (<+)�, that we denote by �S1. For two

vectors a; b 2 (<+)� the relation a �S1 b holds i� there exist vectors y1; y2 2 (<+)� such

that

y1 + y2 = a

y1 + y2 � 1 = b:

De�nition 1.2.3 The shift order is a partial order on (<+)� denoted �S. For two vectors

a; b 2 (<+)� the relation a �S b holds i� there exist m � 0 vectors y1; : : : ; ym 2 (<+)� such

that

a �S1 y1 �S1 : : : �S1 ym � b:

The shift order is the transitive closure of the 1-shift relation.

Spencer and Winkler [67] use an alternative equivalent de�nition. For two vectors

a; b 2 (<+)�, the relation a �S b holds i� for all i

iX
0

aj �
iX
0

bj:

(Add trailing zeroes as needed.)

1.3 The Math of the Game

This section quotes some de�nitions and facts from Game Theory. It de�nes the notions

of an opportunistic and almost opportunistic strategies. Then it describes the particulars
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of expert consulting games and de�nes them formally. These are the subject of discussion

in what follows.

1.3.1 Multistage Two-Person Games

A zero-summultistage two-person game [56] is a seven-tupleG = hS1;S2;ST ; S0; c;M1;M2i.
The set S = S1 [ S2 [ ST is the set of states of game G. The set ST speci�es the terminal

states, those at which the game terminates. Other states we call non-terminal. State

S0 2 S1 [ S2 is the game's starting state. Depending on whether S0 2 S1 or S0 2 S2 either
the �rst or second player makes the �rst move. The value function c : ST ! < determines

the value of terminal states for the �rst player. Intuitively, this is the \sum" the second

player pays the �rst when a game ends. We often look at games from the second player's

perspective calling the same function the second player's cost, hence the c notation. We

may also refer to it as specifying the players' payo�s. The legal moves of the respective

players in each state are speci�ed by the functions Mi : Si ! 2S3�i[ST =f;g. We denote by

2T the set of subsets of set T . We only refer to zero-sum two-person games which we may

simply call multistage games in the following.

A game starts at state S0 and proceeds in rounds. In each round one of the players

alternately makes a move which modi�es the game's state. A move is selected by a player

from the set of legal moves available to him that is speci�ed by his Mi function. It depends

on the game's state at the beginning of the round.

A state is reachable if some game play arrives at that state. A pure strategy for a player

speci�es a legal move for each state reachable from the start state S0. Formally, we may

de�ne a reachable-set{strategy pair hS�1 ; �1i, where �1 : S�1 ! M1(s) is a strategy, and

S�1 is the set of states that may be reached when the �rst player plays �1 against some (at

least one) strategy of the second player. Amixed strategy speci�es a probability distribution

over legal moves for all reachable states.

For, possibly mixed, strategies �1; �2 of the respective players denote by V(Gj�1; �2) the
expected payo�s for the players when these strategies are played. The �rst player's value
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of game G with respect to �1;�2 is

V1(Gj�1;�2) = sup
�12�1

inf
�22�2

V(Gj�1; �2):

The second player's value of game G with respect to �1;�2 is

V2(Gj�1;�2) = inf
�22�2

sup
�12�1

V(Gj�1; �2):

A game G is said to have a value with respect to strategy sets �1;�2 if both players' values

of G are equal

V1(Gj�1;�2) = V2(Gj�1;�2):

This common value we then call the value of G with respect to �1;�2 and denote V(Gj�1;�2).

When we neglect to mention relative strategy sets the default sets are the full sets of players'

strategies.

A player's strategy is optimal under pessimistic assumptions if for any reachable game

state it performs no worse than any other strategy of the player in the worst-case, i.e.

against the opponent's most unfavorable strategy. If they exist, we call such strategies

minimax strategies. Formally, �o1 is a minimax strategy of the �rst player with respect to

�1;�2 if it satis�es

inf
�22�2

V(Gj�o1; �2) = V1(Gj�1;�2):

Similarly, �o2 is a minimax strategy of the second player with respect to �1;�2 if it satis�es

sup
�12�1

V(Gj�1; �o2) = V2(Gj�1;�2):

A �nite game, one which is guaranteed to terminate in a �nite number of moves and in

which the set of moves available to the players in each state is �nite, is guaranteed by the

famed Minimax Theorem [56] to have a value V(G) 2 <[f1;�1g when mixed strategies

are allowed. Both players in such a game have, possibly mixed, minimax strategies. Yet if

pure strategies guarantee the game's value, then neither player can improve upon them by

using mixed strategies. Such games can be played optimally under worst-case assumptions
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without resorting to randomization.

A computable strategy may be called an algorithm.

For an arbitrary state S 2 S denote by G(S) a game identical to G except for the

starting state which is S. Let �1;�2 denote strategy sets of the respective players. For a

strategy �1 let S(�1;�2) denote the states S 2 S that are reachable when the �rst player

plays �1 and the second player plays a strategy in �2. If for any S 2 S(�1;�2) strategy �
1

guarantees the �rst player a payo� in game G(S) that is as high as that guaranteed by any

other strategy in the set �1 when the second player is restricted to strategies in �2 we call

strategy �1 opportunistic with respect to h�1;�2i in game G. Formally, �1 is opportunistic

with respect to �1;�2 if

inf
�22�2

V(G(S)j�1; �2) = sup
�12�1

inf
�22�2

V(G(S)j�1; �2):

Similarly, a strategy of the second player �2 2 �2 is opportunistic with respect to �1;�2

in game G if

sup
�12�1

V(G(S)j�1; �2) = sup
�12�1

inf
�22�2

V(G(S)j�1; �2):

We call a strategy opportunistic in game G when it is opportunistic with respect to the full

sets of strategies available to the players. A strategy that is an algorithm, may be called

an opportunistic algorithm.

Let S0; S1; S2; : : : ; Sk be the history of a game-play between the two players. Strategy

�1 of the �rst player is opportunistic with respect to �1;�2 if for any history that is possible

when the �rst player plays �1 and the second player is restricted to strategies in �2 the

sequence hV1(G(Si)j�1;�2)iki=0 is monotonic non-decreasing. A strategy �2 of the second

player is opportunistic if for all histories satisfying analogous conditions the sequence of

valueshV2(G(Si)j�1;�2)iki=0 is monotonic non-decreasing.

A strategy �1 2 �1 is said to be hK;K 0i almost opportunistic with respect to h�1;�2i
in game G or K almost opportunistic with respect to h�1;�2i in game G if there exist �xed

23



real constants K;K 0 2 < such that for any reachable state S 2 S(�1;�2),

inf
�22�2

V(G(S)j�1; �2) � K sup
�12�1

inf
�22�2

V(G(S)j�1; �2) +K 0:

Similarly, a strategy �2 2 �2 hK;K 0i almost opportunistic with respect to h�1;�2i in game

G or K almost opportunistic with respect to h�1;�2i in game G if there exist �xed real

constants K;K 0 2 < such that for any reachable state S 2 S(�1;�2),

sup
�12�1

V(G(S)j�1; �2) � K sup
�12�1

inf
�22�2

V(G(S)j�1; �2) +K 0:

We call a strategy almost opportunistic in G when it is almost opportunistic with respect

to the full sets of strategies available to the players. A strategy that is an algorithm, may

be called an almost opportunistic algorithm.

1.3.2 Expert Consulting Games - Common Rules, De�nitions

In the game we address the manager, called Alice, consults a setX of experts. A probability

measure, �, is de�ned on X { that is �(X) = 1. We are interested in the worst-case analysis

of Alice's algorithm and assume the experts are managed by an adversary. We consider

those set-ups in which the advice the adversary is allowed to give through an expert at some

point in the game is limited only by the count of mistakes that expert made in previous

rounds. In other expert consulting set-ups limitations placed by the game's rules on the

adversary's choice of an expert's advice may be limited not only by the number of mistakes

each expert made, but also the rounds in which those mistakes were made. The state of

the game after round i is represented by a triple

Si = hEi; i; e
ii;

where Ei 2 N is the number of errors made by Alice (zero is considered a natural number);

i 2 N is the number of rounds played in the game; ei 2 [0; 1]� the expert state vector. The

coordinates of ei are real numbers that sum to one. Coordinate eij is the measure of the
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set of experts that made j mistakes in the �rst i rounds.

The initial state of the game may be S0 = h0; 0; h1ii. This state represents the fact that
all experts have accumulated zero errors at the start of the game expressing no preference

of Alice among them. The experts that have less accumulated errors are attributed greater

weight by the algorithm. Initial state vectors other than h1i may be used to represent a

prior Alice has on the experts' quality. For \experts" who are programs or functions, the

prior may be used to give a preference to simpler models of the data.

Denote by M i(x) the number of mistakes expert x is charged with after round i, and

denote by X i
j the set of experts that are charged with j mistakes in the �rst i rounds of

the game. The number of mistakes expert x is charged with is the sum of M0(x), which

corresponds to Alice's prior on x's performance, plus the number of mistakes x made in

the game.

At round i, the adversary chooses vectors ni 2 <� representing the weight of experts

voting for option one (here we assume a boolean decision domain with two options 1,2)

such that ni � ei. The other experts, whose weight may be represented by e � n, are

assumed to vote for the other option. We call ni a split. Although game states represent

only the error counts neglecting experts' identities, they may correspond to an underlying

set of experts X. Thus a split ni corresponds to a set of experts voting for option one,

X i;1 � X, such that nij = �fx 2 X i;1 :M i(x) = jg.
Next Alice chooses her decision di 2 f1; 2g, after which the adversary reveals the correct

answer. An absolute game's state vector is then updated according to the following rules:

If the correct answer is \1" then: ei+1 = oi;1(ni) = ni + (ei � ni)� 1

If the correct answer is \2" then: ei+1 = oi;2(ni) = ei � ni + ei � 1:

We call oi;1; oi;2 the options Alice is presented with.

De�nition 1.3.1 We denote by GXXX a family of expert consulting games. The various

families are distinguished by the XXX superscript. A game G 2 GXXX is speci�ed by

a tuple of up to six coordinates hX;�; e0; �;M; li; X is the set of experts; � a probability

measure on X; e0 2 <� the expert start state satisfying
P
e0 = 1; � : N ! [0; 1] the

share of \good" experts, those that make less than M(i) mistakes in the �rst i rounds;

M : N ! N the Mistake Bounding function; l 2 N is the length of the game. When
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the length is speci�ed that means it is �xed a-priori independent of play. The score in

a terminated absolute game is given by El. We use G(e) to denote a game identical to

G except, possibly, for its start state; G(e; �); G(e;M), etc. have similar semantics. We

call Alice (the manager) the player that attempts to minimize the score and her opponent

the adversary. The notations X[G]; �[G]; : : : are used to distinguish the coordinates of the

game-de�ning tuple.

Notation 1.3.1 Denote by �(G;V;S; l) the set of adversarial strategies against which

Alice is expected to make at least V mistakes in game G of length l starting at state S for

any strategy she can play. Similarly, �(G;V;S; l) is a set of Alice's strategies for which she

is expected to make up to V mistakes in a game G of l steps starting at state S.

1.3.3 Expert Consulting Games - Variations

Having discussed the commonalities of expert consulting games, we now turn to their

idiosyncrasies.

De�nition 1.3.2 We call game G non-atomic if �[G] is non-atomic, and atomic otherwise.

For an atomic game we call a game with identical parameters but a non-atomic measure

the associated non-atomic game.

If we restrict our attention to sets of experts of cardinality no greater than the continuum

then according to a standard theorem [58, Proposition 26.2] all non-atomic probability

measures that can be de�ned over the set of experts X[G] that agree with �[G] are unique

up to isomorphism, and isomorphic to the Lebesgue measure on the real segment [0; 1].

Thus, up to isomorphism, there is a single non-atomic game associated with any given

game.

De�nition 1.3.3 A game with N experts is a game for which N is the size of the set

of players, jXj = N ; all players are assigned the same weight by the measure function

8x 2 X : �(x) = 1
N
; and function � e�ectively counts the number of non-erring experts

� : N ! f i
N
: i = 0; 1; � � � ; Ng.
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Families of games may vary by the knowledge the sides possess and by the amount

of control they have in the game. E.g. both sides may know the length of the game in

advance, just one side may know it in advance, or the power to stop the game may be given

to one of the sides.

We call an absolute gameMistake Bound (MB) when the adversary is required to ensure

that

ei � 1M(i) � �(i): (1.2)

is satis�ed when the game terminates after some round i. That is, at least �(i) of the

experts make less than M(i) mistakes in the �rst i rounds of the game. One can also

explore Pre�x Mistake Bound (PMB) games in which the adversary is required to satisfy

condition (1.2) after i rounds, for all i.

Restrictions can be put on the ways in which experts' opinions interact. These can be

deterministic or probabilistic. In particular splits may be selected by a stochastic process.

Likewise, the correct labels may be selected by a stochastic process. To �t such games

into the above framework, we can think of the adversary as being restricted to use the

appropriate process to make his decisions.

One can also let M(l) or �(l) be a random variable, thus modeling a game in which

these parameters are determined stochastically, although here this avenue is not explored.

The parameters of games within a family, e.g. X;�;M(l); �(l) may vary from game to

game.

De�nition 1.3.4 We call game trees the class of binary trees the nodes of which are labeled

by expert state vectors, such that the children of a node labeled e are labeled by two options

o1(n); o2(n), with respect to some split n � e. For all d 2 N the nodes at depth d satisfy

the mistake bound condition (1.2) with i = d.

A tree corresponds to a deterministic algorithm D of the adversary if the split used to

label the children of a node labeled e is the split D chooses in state e.
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1.4 Adversarial Logic

The results of this section apply to arbitrary Mistake Bound games. They also hold for

Pre�x Mistake Bound games in which M(l) is monotonically non-decreasing, and �(l) is

monotonically non-increasing. Herein, we denote this class of games by G. We show there

are always strategies in �(G;V; S; l) that possess certain convenient properties. When

presented with the task of making a decision about a move, Alice can assume w.l.o.g. the

adversary is going to use one of these easily analyzable strategies to predict the outcome

of his decision.

1.4.1 Generally Applicable Observations

Claim 1.4.1 For any game G 2 G and any V; S; l the set �(G;V; S; l) contains a pure

strategy.

The proof uses the fact that the set of maxima of a linear function on a polygon always

contains a vertex of that polygon. The claim implies that restricting a computationally

unlimited adversary to use pure strategies does not improve the game for Alice.

De�nition 1.4.1 We de�ne strategy Ao for Alice by

doAo(o1; o2) = arg min
i=1;2

fvi : v1 = maxfVAo(o1);VAo(o2)+1g; v2 = maxfVAo(o1)+1;VAo (o2)gg:
(1.3)

Claim 1.4.2 For any game G 2 G and any V; S; l

Ao 2 �(G;V; S; l)

An Alice that knows the value of any state can choose her moves optimally, by predicting

her opponent's choices.

We can distinguish four types of deterministic adversarial moves in the split-choosing

stage:
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A-A Agreement splits. Splits for which the adversary will agree with whatever decision

Alice makes.

A-D Agreement-disagreement splits. Splits for which the adversary will agree with one

decision of Alice, but disagree with the other.

S Stall splits: n(e) = e or n(e) = 0jej. The adversary agrees with the decision of the

experts.

D-D Disagreement splits. For these the adversary will disagree with any decision Alice

makes.

Claim 1.4.3 For any game G 2 G, any start state S, and any game length l 2 N

VD(G(S; l)) � VD(G(S; l � 1)):

Proof: The adversary can always start the game with a stall move. 2

Intuitively, vectors that are smaller with respect to the shift order can be interpreted

as corresponding to more evolved positions in the expert consulting game. Thus the next

claim seems to follow naturally from the previous one. It allows us to say that the value of

games respects the shift order.

Claim 1.4.4 For any game G 2 G and two game states S1 = hE; i; ai and S2 = hE; i; ci
such that a �S c:

�(G;V; S2; l) 6= ; ) �(G;V; S1; l) 6= ;: (1.4)

Proof: Fix a strategy A for Alice. Calling the number of mistakes Alice makes the

adversary's payo�, we prove that

for any pure adversarial strategy D there exists a pure strategy D0 such that

the expected payo� of D0 against A starting with expert state vector a is at

least as high as the expected payo� of D against A starting with expert state

vector c.
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Then Claim 1.4.1 completes the proof.

Note that only the adversary can bene�t from prolonging the game. For vectors c

satisfying the game termination condition the game cannot proceed and the claim holds.

This establishes the base of an induction on the game's length l.

Assume the inductive statement holds for l < L. For l = L, let D0 2 �(G;V; S2; l). Let

n0 be the split that D0 chooses in state c. Then by the de�nition of the shift order there

exist vectors a1; a2; : : : ak such that

a �S c ) a �S1 a1 �S1 : : : �S1 ak � c:

By induction on k, as shown below, it follows that D0
0 can choose a split n00 for state a

such that both options presented to Alice by D0
0 in state a are greater than or equal to

with respect to the shift order to those presented in state c by D0. Hence, the inductive

assumption may be applied to these options completing the proof.

For k = 0 let n00 = n0.

For the inductive step, take a1 as above. It satis�es a �S1 a1, hence there exist y
1; y2

such that

y1 + y2 = a

y1 + y2 � 1 = a1:

For a vector b � a1 denote:

b̂j = minfbj; y1jg;
b0 = b̂+ (b� b̂)� 1:

Now b̂ � y1 and b� b̂ � a1�y1 = y2 � 1, hence b0 � a making b0 a legal split of a. Further,

a� a1 = y2 � y2 � 1 �S (b̂� b)� (b̂� b)� 1 = b0 � b
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hence a� b0 �S a1� b this and b0 �S b imply together that the two options o�ered when b0

is presented in state a, namely a� b0+ b0 � 1 and (a� b0)� 1 + b0 are respectively bigger

with respect to the shift order than the options a1 � b+ b� 1 and (a1 � b)� 1 + b. 2

It follows that

Corollary 1.4.1 For any game G 2 G

a �S c ) V(G(a)) � V(G(c)): (1.5)

Next we show Claim 1.4.4 implies that when the adversary chooses to agree with Alice

the adversary's state of a�airs does not improve and may even deteriorate, provided Alice

plays rationally. Thus the adversary's strategic perspectives are not harmed when he is

restricted to always disagree with Alice. First observe that

Corollary 1.4.2 For any game G 2 G a non-empty set of �-strategies must contain a

strategy that does not use agreement splits.

Proof: Since stall splits are always available to the adversary, all agreement moves can

be replaced by stall moves, without compromising the adversary's payo�. This follows from

Claim 1.4.4, as agreement moves at least weakly decrease the state's value with respect to

the shift order. 2

Next we prove that A-D splits need not be used either.

Claim 1.4.5 For any game G 2 G and any V; S; l there is a �(G;V; S; l)-strategy that does

not use A-D splits.

Proof: By the de�nition of V :

V(e; ljD; :) = max
n�e

minf maxfV(o1; l� 1jD; :) + 1;V(o2; l� 1jD; :)g;
maxfV(o1; l� 1jD; :);V(o2; l � 1jD; :) + 1g g: (1.6)

Hence, for all splits n � e

minfV(o1; l� 1jD; :);V(o2; l� 1jD; :)g � V(e; ljD; :)� 1: (1.7)
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If a given split satis�es

minfV(o1; l� 1jD; :);V(o2; l � 1jD; :)g = V(e; ljD; :)� 1

then from the de�nition of the game's value w.l.o.g. the adversary can use it as a D-D

split. This is preferable to using it as an A-D split. Thus a rationally chosen A-D split

must satisfy

minfV(o1; l� 1jD; :);V(o2; l� 1jD; :)g � V(e; ljD; :)� 2:

In fact by the de�nition of the game's value (1.6) it must satisfy

minfV(o1; l� 1jD; :);V(o2; l � 1jD; :)g = V(e; ljD; :)� 2;

maxfV(o1; l� 1jD; :);V(o2; l � 1jD; :)g = V(e; ljD; :):

The second equation follows from the �rst by the de�nition of the game's value. Equality

holds by Claims 1.4.3 and 1.4.4. Assume w.l.o.g.

V(o1; l� 1jD; :) = V(e; ljD; :):

This means that Alice can decide 1 rationally leading to an agreement. By Claim 1.4.4 if

the adversary presents the stall split n0 = e

maxfV(o1; l � 1jD; :);V(o2; l� 1jD; :) + 1g
= maxfV(e; l� 1jD; :);V(e� 1; l � 1jD; :) + 1g
= V(e; ljD; :):

maxfV(o1; l � 1jD; :) + 1;V(o2; l � 1jD; :)g
= maxfV(e; l� 1jD; :) + 1;V(e� 1; l � 1jD; :)g
= V(e; ljD; :) + 1:

Alice still decides 1 rationally, leaving the game in state e. By Claim 1.4.4 e �S o
1 implies

this move is no worse for the adversary. 2
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Thus we have proven:

Theorem 1.4.1 For any game G 2 G and any V; S; l there is a �(G;V; S; l)-strategy that

performs only S and D-D moves.

The adversary can determine the rounds of the game at which he executes the D-D

moves. In a Mistake Bound Game, there is no reason to delay their execution. Thus a

generic optimal adversarial strategy for MB games is to execute rationally justi�ed D-D

moves while available, and then stall to the end of the game. In particular if no D-D moves

will become available in the future, the adversary and Alice can choose to stop the game

without incurring a loss.

In a general Pre�x Mistake Bound game the optimal strategy of the adversary might

need to take into account global considerations when deciding whether to execute a D-D or

S move. Yet if M(l) is non-decreasing and �(l) non-increasing D-D moves can be executed

whenever they become available, as a legal game state cannot become illegal when the

game advances. Alternatively, for arbitrary M(l); �(l) the adversary can execute all his

D-D moves consecutively at the last V(G) moves of the game. This can be proven by

induction using the fact that a D-D move that is followed by an S move can be swapped

with it without violating any mistake bound restrictions.

Looking at game trees, we have so far argued that we only need to consider trees with

D-D and S moves to compute the value of a game. The value of a game is given by the

maxtrees minleaves of the number of D-D moves on the path to the leaf.

1.4.2 Non-Atomic Games

Pascal Matrices

De�nition 1.4.2 Denote by P n
l a Pascal Matrix of size n� n, order l. The entry in row

i and column j, for 0 � i < n and 0 � j < n of this matrix is

[P n
l ]i;j =

0
B@ l

i� j

1
CA :
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Comment: For c < 0 and c > l we have

0
@ l

c

1
A = 0.

We index rows and columns of matrices starting at 0. We may neglect to mention the

size of the matrix, n, as it is often not essential in our application, provided n is su�ciently

large (larger than M).

Here, for example, are a couple 4� 4 Pascal Matrices:

P 4
2 =

1

4

0
BBBBBBBB@

1 0 0 0

2 1 0 0

1 2 1 0

0 1 2 1

1
CCCCCCCCA
; P 4

0 =

0
BBBBBBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCCCCCCA
:

For a vector a and any matrix Q

Q (a� 1) = (Q� 1) a:

Since for an n� n matrix Q with Q = [qij] and a = ha1; : : : ; ani

[qij] � (ha1; : : : ; ani � 1) = h
nX

j=2

qijaj�1ini=1 = (Q� 1) a:

Now observe that
1

2
Pl +

1

2
Pl � 1 = Pl+1: (1.8)

It follows from the facts quoted above that:

Pl (
1

2
a+

1

2
a� 1) = Pl

1

2
a+ Pl (

1

2
a� 1)

=
1

2
Pl a+

1

2
(Pl � 1) a

= (
1

2
Pl +

1

2
Pl � 1) a

= Pl+1 a:
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Thus

Pl (
1

2
a+

1

2
a� 1) = Pl+1 a: (1.9)

An Optimal Adversarial Strategy for Non-Atomic Games

We call an adversary's move a \half" move if it presents the D-D split 1
2
e at state e.

Claim 1.4.6 If the adversary executes l \half" moves beginning with state e then the game

moves into state Ple, regardless of Alice's strategy.

Proof: By induction on l using equation (1.9). 2

Notation 1.4.1 Denote by D 1

2

the adversarial strategy that executes a \half" move in state

e if that does not cause a violation of the mistake bound condition, and that stalls otherwise.

Theorem 1.4.2 For non-atomic game G 2 G if �(G;V; S; l) 6= ; then D 1

2

2 �(G;V; S; l).

Proof: For a deterministic strategy D of the adversary that executes D-D and stall moves

only, let us look at the tree representingD's executions. We have argued that V(GjD; :) � V

is the minimal number of D-D moves between a depth l node and the root. Replacing D-D

moves by stall moves on branches Alice does not take rationally does not cause a violation

of the mistake bound condition (1.2), thus we can assume w.l.o.g. that on any path from

the root to a depth l leaf there are V D-D moves. Now remove all nodes corresponding to

stall moves from the tree. Assuming Alice votes with all of her consultants in such nodes,

and that the adversary announces her and her consultants right we can attach the subtree

rooted at the child that is labeled identically to the parent-node in place of the parent-node.

Denote by eV1 ; : : : ; e
V
2V the nodes at depth V . By induction on V it can be shown that:

X
el1 = 2VPV e0

where e0 is the start state, as for any two options at a state e

o1 + o2 = e+ e� 1:
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For all i = 1; : : : ; 2V :

eVi � 1M � �:

Thus
X
i

(eVi � 1M ) = (2V PV e0) � 1M � 2V �:

By Claim 1.4.6 had the adversary played D 1

2

he would have executed at least V successive

\half" moves during the �rst V rounds of the game. The resulting state would have satis�ed

the mistake bound condition at termination securing him a payo� of V. 2

1.4.3 Games with Finitely Many Experts

In non-atomic games the adversary has more splits to choose from than in the corresponding

atomic games. Thus

Theorem 1.4.3 For two games G1; G2 2 G identical, except for the measure function,

such that �[G1] is atomic and �[G2] is non-atomic

VD(G1) � VD(G2):

Next we restrict our attention to games with �nitely many experts. The adversary is

not much worse o� in these games than in the associated non-atomic games.

Consulting Finitely Many Experts in Mistake Bound Games

Notation 1.4.2 Denote by na the split de�ned by lining up the experts in order of decreas-

ing number of accumulated errors (ties are broken arbitrarily) and choosing into na those

experts at odd positions. Call it the alternating split.

These splits were considered by Spencer and Winkler [67].

Corollary 1.5.1 of Section 1.5.1 states that the value of a non-atomic game with constant

mistake bound M and adversely determined length is given by (the same notation is used

in both places):

V MB;cM(G(e)) = arg max
l
fPl e � 1M � �g:
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in the remainder of this section we denote V (e;M; �) = V MB;cM(G(e)).

Theorem 1.4.4 For two Mistake Bound games G1; G2 identical, except for the measure

function, such that G1 is a game with �nitely many experts and G2 is non-atomic

VD(G1) � d1
2
VD(G2)e:

Proof: By Theorems 1.4.1 and 1.4.2 in the non-atomic game G2 w.l.o.g. the adversary

executes

V = V (e;M; �) = arg max
l
fPl e � 1M � �g = VD(G2(e))

\half" moves, for some M , and then stalls until the game ends. Denote the number of

errors the least erring expert made getting to state e by

iLE(e) = arg min
i
fei 6= 0g:

The argument now splits into two cases :

Case 1 : [ 2 (M � iLE (e) � 1 ) � V ] | In the �rst case the least erring expert is allowed

to makeM � iLE(e) � 1 additional errors. The adversary can use this to cause the manager

to incur at least this many mistakes, without violating the mistake bound requirement.

Thus for state vectors satisfying 2(M � iLE(e)� 1) � V the theorem holds.

Case 2 : [ 2 (M � iLE (e) � 1 ) � V � 1 ] | In Case 2 we want to prove the theorem by

induction on V . For vectors covered by case 1 the base is established. Yet some states with

V = 1 might not satisfy 2(M � iLE(e)� 1) � V , i.e. iLE(e) = M � 1 that is
P
e = eM�1.

Since V = 1 the adversary can perform another \half" move, thus

X
e� 1

2
eM�1 � �:

Since e is a state in a game with �nitely many experts, eM�1; � 2 f i
N
: i 2 Ng, implying

X
e� d1

2
eM�1e � �:
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Hence the adversary can play another D-D move in a game with �nitely many experts as

well.

Now let us complete the inductive proof of case 2.

Induction's step : Having established the base we prove for the step that for any e;M;N :

V (e;M; �)� 2 � minfV (o1(na);M; �); V (o2(na);M; �)g:

By the de�nition of V

1

2V
h
0
@ V

< (M � i)

1
AiM�1

i=0 � e � � � 1

N
: (1.10)

Denoting

eLE = h 1
N
i � iLE

the bound 2(M�iLE�1) � V �1 implies that no more than half the terms in the sequence0
@ V

0

1
A;
0
@ V

1

1
A; : : : ;

0
@ V

V

1
A are summed up on the left-hand side of the following expression

giving

h
0
@ V

< (M � i)

1
AiM�1

i=0 � eLE � 1

2N
:

Thus by (1.10):

h
0
@ V

< (M � i)

1
AiM�1

i=0 � eLE � h
0
@ V

< (M � i)

1
AiM�1

i=0 � (e� eLE): (1.11)

The ratio 0
@ V

c

1
A=
0
@ V � 1

c

1
A =

V

V � c

increases as c grows. Thus

h

0
@ V

< (M � i)

1
A

0
@ V � 1

< (M � i)

1
A
iM�1
i=0 � eLE � h

0
@ V

< (M � i)

1
A

0
@ V � 1

< (M � i)

1
A
iM�1
i=0 � (e� eLE)
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We get from (1.11):

h
0
@ V � 1

< (M � i)

1
AiM�1

i=0 � eLE � h
0
@ V � 1

< (M � i)

1
AiM�1

i=0 � (e� eLE);

which is equivalent to

M�iLEX
j=1

0
@ V � 1

M � iLE � j

1
A �

M�iLEX
j=1

h
0
@ V � 1

M � i � j

1
AiM�1

i=0 � (e� eLE):

The ratio 0
@ V

c

1
A=
0
@ V

c� 1

1
A =

V � c+ 1

c

decreases as c grows. Hence,

0
@ V � 1

M � iLE � 1

1
A � h

0
@ V � 1

(M � i � 1)

1
AiM�1

i=0 � (e� eLE): (1.12)

Now note that for any game state e

X
(Pl�1 � Pl)e = h 1

2l�1

0
@ l � 1

< (M � i)

1
A � 1

2l

0
@ l

< (M � i)

1
AiM�1

i=0 � e

=
1

2l
h
0
@ l � 1

< (M � i)

1
A� (

0
@ l

< (M � i)

1
A�

0
@ l � 1

< (M � i)

1
A)iM�1

i=0 � e

=
1

2l
h
0
@ l � 1

< (M � i)

1
A�

0
@ l � 1

< (M � i� 1)

1
AiM�1

i=0 � e

=
1

2l
h
0
@ l � 1

M � i� 1

1
AiM�1

i=0 � e

Hence

X
PV�2(o

1(na) + o2(na)) =
X

PV�2(e+ e� 1)

(by (1.9)) =
X

2PV�1e

=
X

[2PV e+ 2(PV�1 � PV )e]
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(by the de�nition of V ) � 2� +
1

2V�1
h
0
@ V � 1

M � i� 1

1
AiM�1

i=0 � e

(by (1.12) � 2� +
1

2V�2

0
@ V � 1

M � iLE � 1

1
A: (1.13)

On the other hand

j
X

PV�2(o
1(na)� o2(na))j = 1

2V�2
h
0
@ V � 2

M � i� 1

1
AiM�1

i=0 � (2na � e): (1.14)

The condition 2(M � iLE � 1) � V � 1 implies

max
i

0
@ V � 2

M � i � 1

1
A = maxf

0
@ V � 2

M � iLE � 1

1
A;
0
@ V � 2

M � iLE � 2

1
Ag:

Hence, for the sum of a sequence with alternating signs

j
X

PV�2(o
1(na)� o2(na))j � 1

2V�2
maxf

0
@ V � 2

M � iLE � 1

1
A;
0
@ V � 2

M � iLE � 2

1
Ag

� 1

2V�2

0
@ V � 1

M � iLE � 1

1
A:

Together with (1.13) this means:

minf
X

PV�2o
1(na);

X
PV�2o

2(na)g � �

completing the proof of the inductive step. 2

Consulting Finitely Many Experts in Pre�x Mistake Bound Games

Let us denote by E
1

2
�k (e) the set of states that can result from the adversary executing k

\half" moves starting at state e. By Claim 1.4.6 jE 1

2
�k(e)j = 1. Similarly, E a�k(e) is the

set of all possible outcome states for k steps of the alternating strategy. It follows from the

proof of Theorem 1.4.4 that
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Corollary 1.4.3 For a state vector e in a game with N experts, and for arbitrary k;M � 0

and i > 0 let ea 2 Ea�dk=2e(e); e
1

2 2 E
1

2
�k(e) then

e
1

2 � 1M � i

N
) ea � 1M � i

N
:

Proof: By applying Theorem 1.4.4 to the N experts' game with � = i
N
and the associated

non-atomic game. 2

This implies that

Theorem 1.4.5 For two Pre�x Mistake Bound games G1; G2, identical except for the mea-

sure function, such that G1 is a game with �nitely many experts and G2 is non-atomic

VD(G1) � d1
2
VD(G2)e:

Proof: Let V = VD(G2(e)). By Theorem 1.4.2 we can assume w.l.o.g. that in the non-

atomic game, G2, the adversary executes only stall moves and V \half" moves. Referring

to the \half" moves in this sequence as �rst, second, etc., the adversary can replace the

D-D \half" splits at odd positions by D-D alternating splits. By Corollary 1.4.3 this is a

legitimate adversarial strategy achieving a payo� of d1
2
V e. 2

1.5 Games' Values and Managerial Strategies

In the previous section it is shown that in an expert consulting game the adversary may be

restricted to a small set of strategies without changing his worst-case payo�. This section

looks at the conclusions a manager can derive from the understanding of her adversary

that we gained.

1.5.1 The Values of Games

Theorem 1.4.2 and Claim 1.4.6 give a simultaneous upper an lower bound on the game's

value and allow an easy computation of the value of various families of games. We give a

few examples:
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Theorem 1.5.1 The value of a non-atomic MB game G, of length l is given by

V MB(G; l) = arg max
k�l

fPk e0 � 1M(l) � �(l)g: (1.15)

Theorem 1.5.2 The value of a non-atomic MB game G, of bounded length � l that is

determined by the adversary is given by

V MB;bl(G; l) = arg max
k

max
fi:k�i�lg

fPk e0 � 1M(i) � �(i)g: (1.16)

Notice that for a constant mistake bound M(l) = M;�(l) = � the adversary's payo� is

upper bounded by an expression that remains bounded as l!1. Thus

Corollary 1.5.1 A non-atomic MB game G, with a constant mistake bound, in which the

adversary gets to determine the length of the game has a value of

V MB;cM(G) = arg max
l
fPl e0 � 1M � �g: (1.17)

1.5.2 The Manager's Strategy

Knowing the value of game states gives Alice the power to play the game opportunistically,

as proven for the managerial strategy introduced in De�nition 1.4.1. Having given explicit

computable formulas of the values of games in the previous section, we can use these to

present computationally e�cient algorithms for expert managers. We term the algorithms

presented in this section the PM algorithm, after the matrices they resort to.

Non-Atomic Games

Notation 1.5.1 Denote by AMB;AMB;bl;AMB;cM the strategies de�ned by

doAXXX (o1; o2) = arg min
i=1;2

fvi = maxfV XXX(oi); V XXX(o3�i) + 1gg: (1.18)

The XXX superscript can be replaced appropriately.
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Theorem 1.5.3 Strategies AMB;AMB;bl;AMB;cM are opportunistic in the respective non-

atomic games.

Proof: By Claim 1.4.2 and Theorems 1.5.1, 1.5.2 and Corollary 1.5.1. 2

Games with Finitely Many Experts

Theorem 1.5.4 Strategies AMB;AMB;bl;AMB;cM are h2; 0i almost opportunistic in the re-

spective games with �nitely many experts.

Proof: Expert consulting games are zero sum, thus VD = VA = V. Therefore, the

theorem follows from Theorems 1.4.3 and 1.4.4. 2

Strategies AXXX reach their decision by comparing the values of the respective V XXX

functions. They can be re�ned to compare in state e the values of
P
PVXXX(e)�1 � o1

and
P
PV XXX(e)�1 � o2. These re�ned algorithms reach the same decision as the original

algorithms whenever V XXX(o1) 6= V XXX(o2). However, they allow a better comparison

of options which are equivalent in the associated non-atomic game. Yet even the re�ned

algorithms do not always reach the optimal decision, as demonstrated by the following

example. Thus they are not V-optimal for games with �nitely many experts. The problem

of �nding such algorithms that are e�cient remains open. Section 1.7.4 discusses the close

relationship between expert consulting games and the better investigated faulty search

games. In the latter opportunistic algorithms for �nitely many candidate values are known

only for the cases M = 1 (see Pelc [59]) and M = 2 (see Guzicki [30]).

Example (Even the re�ned algorithms are not opportunistic): Consider a Constant

Mistake Bound game with six experts, and � = 1
6
.

V(1
6
h2; 3; 0; 0; 1i) = 9;

V MB;cM(
1

6
h2; 3; 0; 0; 1i) = 10:

Now if the adversary presents the split

n =
1

6
h0; 3; 0; 0; 1i;
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then the value of the two options, based on the �ndings of a computer program, is

V(1
6
h2; 0; 3; 0; 0i) = 9; V(1

6
h0; 5; 0; 0; 1i) = 8:

Yet, as can be readily veri�ed

V MB;cM(
1

6
h2; 0; 3; 0; 0i) = V MB;cM(

1

6
h0; 5; 0; 0; 1i) = 9:

If Alice uses the re�ned method to reach her decision, she �nds that

X
P9 � 1

6
h0; 5; 0; 0; 1i = 651

6 � 29 ;
X

P9 � 1
6
h2; 0; 3; 0; 0i = 650

6 � 29 ;

leading her to the wrong decision.

1.6 E�ciency Issues

Next we discuss the e�cient implementation of the PM algorithms and their asymptotic

performance. We also refer to the lower bounds implied by their opportunism.

1.6.1 From Strategies to Algorithms

Alice can use the theorems in section 1.5.2 as explained in section 1.5.1. When the adversary

presents Alice with a set of options Alice needs to compute and compare the values of the

appropriate V XXX function for these options to reach a decision.

The value of the initial state vector e0 can be found by repeated doubling { comparing

Ple to � for a sequence of matrices with l = 20; 21; 22; : : :, and then once Ple becomes smaller

than � for the �rst time performing a binary search for the value of l for which Ple < � holds

for the �rst time between the last two values of l for which Ple was evaluated. The search

thus takes at most 2 lg V XXX(e0) steps. Each step requires computing M matrix values

and multiplication by a vector. The factorial terms in each matrix entry require O(M)

multiplications each, for a total of O(M2) computational steps per matrix on numbers of
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size exponential in M (multiplication can be carried out in poly-logarithmic time). The

bounds on the value of states in section 1.6.2 are polynomial in M and lg 1
�
. Thus the

o�-line precomputation can be carried out in polynomial time.

After the o� line pre-computation of V XXX(e0) was carried out, the values of Pl�1 can

be computed from those in Pl in O(M) multiplications. At state e the value of least one of

the two options presented to Alice is at least V XXX(e)� 1 by (1.7). Therefore, Alice needs

to multiply the options by one matrix only. At most two matrix-vector multiplications

are thus required to reach a decision. If the adversary plays suboptimally, additional

computations might be needed to compute the pseudo value of the new state.

The complexity of an on-line step can be reduced further by converting PM to an equiv-

alent weighting scheme. Note that coordinate ni of the split \votes" for both options. It

votes for option one with weight

0
@ l

� i

1
Ani and for option two with weight

0
@ l

� (i � 1)

1
Ani.

Thus letting the experts of ni vote with weight

0
@ l

i

1
Ani for decision 1 and letting the ex-

perts in ei � ni vote with weight

0
@ l

i

1
A(ei � ni) for decision 2, summing up these weights

for all coordinates of n and voting with the heavy set leads Alice to the same decision.

Corollary 1.6.1 The PM strategies are computationally e�cient.

1.6.2 Absolute Performance

Opportunism reects the performance of algorithms relative to other algorithms for the

problem. Herein we obtain absolute loss bounds. Proving these algorithms are opportunis-

tic means that these bounds are also lower bounds on the performance of any algorithm

for the problem. They hold even for computationally unlimited algorithms and for the

expected performance of randomized algorithms.

Theorem 1.6.1 The total loss of algorithm APM
MB in a non-atomic MB game of length l

with a uniform prior on experts is

arg max
k�l

f
0
@ k

M (l)

1
A � �(l)g: (1.19)
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Any other strategy's expected loss for this problem is at least as high on some inputs.

Theorem 1.6.2 The total loss of algorithm APM
MB;cM in a non-atomic MB game with

M(l) = M and a uniform prior is

argmax
l
fl � lg

1

�
+ lg

0
@ l

�M

1
Ag = lg

1

�
+M lg lg

1

�
+O(M lgM): (1.20)

Any other strategy's expected loss for this problem is at least as high on some inputs.

(The right side of (1.20) is due to Rivest et al. [61].)

1.7 Extensions and Implications

The results proven thus far for expert consulting games can be generalized in various

ways. They have interesting parallels to those obtained for the problem of searching in

the presence of errors. New proofs of old results as well as some novel results in that area

follow from what we have shown.

1.7.1 Consulting Finitely Many Experts: Comparing PM to BW

and WM

The PM algorithms are more general than the previously known WM and BW algorithms.

In particular its performance guarantees hold for arbitrary initial expert state vectors. This

can be used to incorporate a prior the manager has on his/her consultants. Such a prior

can represent an initial estimate of the quality of the experts' predictions. It can also

be based on other parameters like experts' salaries, or in the case of model selection the

candidate models' complexity. Our algorithms further allow � 6= 1
N
, while previously known

algorithms are restricted to the case of tracking the best expert.

If we limit our discussions to games of tracking the best expert with a uniform prior,

then PM is h2; 0i almost opportunistic, while the previously known algorithms are not.

Littlestone and Warmuth [44] suggest WM can be used in schemes that update the weights

46



of experts in every round, or only in rounds in which the manager errs for the same

asymptotic performance. An important di�erence between BW and PM is that unlike PM,

BW updates the weights only in rounds in which the algorithm errs. The superiority of

PM provides evidence in favor of weight updates in every round.

The upper bounds on the worst-case asymptotic performance of PM are the same as

those of BW. Cesa-Bianchi et al. [18] argue they are superior to those of WM. The next

example proves that the opportunistic ratio of BW is unbounded.

Example (BW's opportunistic ratio is unbounded): Let us de�ne a family fGkg of

expert consulting games. Game Gk is a game with n = 2k + 1 experts in which the best

expert is known not to err.

Consider the following adversarial strategy: In the �rst k rounds the adversary splits

the experts that did not err yet into two almost equal subsets. The di�erence between their

sizes is exactly one. The experts that erred in previous rounds join the bigger set. Both

BW and PM vote with the bigger set of experts, which the adversary announces correct

in these rounds. Thus by the end of round k, the manager and a single \good" expert

incurred no errors while all other experts erred once.

The value of the subgame starting after round k is zero as the identity of the non-erring

expert was already revealed. The PM algorithm \knows" which expert is \good", while

BW ignores the information contained in the opening rounds.

In the next k rounds the experts split into two subsets the size of which di�ers by one,

the \good" expert voting with the minority. BW makes k mistakes in these rounds, while

PM votes correctly. Thus while we have proven PM is h2; 0i almost opportunistic BW is

not such, as the ratio between the number of mistakes made by BW and the number of

mistakes made by an opportunistic algorithm can be arbitrarily large.

1.7.2 Consulting Experts on Multiple Choice Questions

So far we considered decision domains of size 2. That is the advice of the experts, as well

as Alice's decision, answered a \yes/no" question. In this section we prove that the PM

algorithms as de�ned in section 1.5.2 are opportunistic or almost opportunistic when the
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advice of the experts as well as Alice's decision come from a �nite set D of arbitrary size

jDj � 2.

For domains of size � 2 a split of vector e would be a jDj-tuple of vectors in <�,

n = hn1; n2; : : : ; nDi, such that
P
ni = e. The respective options are now de�ned to be

oi = ni + (e� ni)� 1.

The adversary can play strategy D 1

2

by choosing splits n = h e
2
; e
2
; 0�; : : : ; 0�i in the game

with an arbitrary decision domain D. Thus the value of the game is lower bounded by

its pseudo value V(G(e)) � V XXX(e). To prove the opposite inequality we notice that

the proofs of the Claims of section 1.4 generalize to games with bigger decision domains.

Thus the properties of the pseudo value functions established in section 1.5.1 still hold,

allowing Alice to use the PM algorithms in games with bigger decision domains for the

same performance guarantees.

1.7.3 \Real" Managers

Alice may be allowed to make decisions in the domain [0; 1]. If she decides d while the

correct answer turns out to be c she is charged a loss of jd� cj, known as the absolute loss.

If Alice's strategy is to make random binary predictions with probability d of predicting

one, then the absolute loss measures Alice's expected loss in the game.

Notice that if we replace Alice's [0; 1] decisions by binary decisions in the obvious way,

making her vote one whenever d � 1
2
, then the loss she incurs is at most twice the loss she

would incur if she were allowed to make decisions in [0; 1]. Thus the strategies described

in section 1.5.2 are h2; 0i almost opportunistic in a non-atomic game and h4; 0i almost

opportunistic in an atomic game.

1.7.4 Searching in the Presence of Errors

The problem of searching interactively under the assumption that some answers may be

erroneous is well investigated. It was �rst introduced by Ulam [69] and addressed by

numerous researchers [61, 60, 22, 30, 24, 6, 66, 67, 5]. Most of these papers model it by

a multistage game. The searcher is commonly called Paul and his adversary Carole. The
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problem most of these papers address is searching for a single value in a �nite domain. In

Rivest et al. [61] and Pelc [60] the authors consider �nding the � vicinity of a single real

value in a given segment.

The various versions of games of searching by questioning a liar using arbitrary mem-

bership queries are comparable to expert consulting games. The representation of the state

in such games is the same as in expert-consulting games, but the protocol di�ers. In a

search game the searcher presents a query to Carole in the form of a subset of the set of

candidate values. Carole replies whether the target value is in this subset or its comple-

ment. Thereby she decides the values in which one of the two subsets will accumulate one

more vote against them being the target value. Some authors associate each candidate

value with a chip, hence the name \chip games" [6]. The chips are positioned in a sequence

of piles on a ray. The allowed positions for the various piles on this ray are indexed by the

natural numbers. Paul is called a chooser, for his role of choosing the questioned subset,

while Carole a pusher as she selects the subset of chips which will be pushed one position

ahead on this ray representing the values associated with these chips having incurred an

extra vote against them being the target value. The game proceeds in rounds. Various

limitations are placed on the ways in which Carole is allowed to lie. She might be allowed

a constant number of lies [61, 59]. Games in which Carole is allowed to lie brlc times in a

game of l rounds are addressed by Aslam and Dhagat [6] and Spencer and Winkler [67].

This limitation might be enforced when the game terminates, or at each round.

In the expert consulting game the adversary (Carole) chooses a subset of X. Alice

decides which set she want to vote with, and then the adversary announces Alice right or

wrong. Unlike Paul, Alice is restricted to choose the queried set from the two candidates

presented by her adversary. On the other hand, while Paul is charged for each question he

poses, Alice's \questions" can be interpreted as \guesses". Accordingly, she gets charged

for bad guesses only.

Suppose we restrict the adversary in a Mistake Bound to always disagree with Alice's

decision, and give him the power to stop the game at any legal state he chooses. By

Theorem 1.4.1 this does not change the game's value. Now the adversary becomes the

chooser (Paul) in a chip game and Alice the pusher (Carole). However, the chooser's aim
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in this game is to prolong the game, while the pusher tries for the opposite. This is a

reversal of goals as compared to the goals of Paul and Carole. In a faulty search game the

chooser is the one trying to shorten the game.

Recall the class of game trees from De�nition 1.3.4. The value of an expert game is

max
trees

min
leaves

depth(leaf);

while the value of a Paul-Carole game is

min
trees

max
leaves

depth(leaf):

Alice, thus has to make no more mistakes than Paul. For non-atomic games the values of

the two games are equal, as \Paul" can ask about \half" splits.

Our approach generalizes that common in papers addressing the faulty search problem

in that it allows the searcher to express a non-uniform prior on the set of candidate values,

by choosing arbitrary start vectors, not only h1i. We further analyze larger classes of M(l)

and �(l) functions. We thus extend results of Rivest et al. [61] for what they call continuous

games.

Mistake bounded adversaries making linearly many mistakes,M(l) = brlc against mem-

bership queries of Paul were explored by Spencer and Winkler [67]. We show

Theorem 1.7.1 Paul needs at least 4 lnN
(1�2r)2

questions to �nd the hidden number out of N

candidates in a Mistake Bound (Version A of Spencer and Winkler [67]) game.

Proof: A Faulty Search Game with �nitely many candidate values is related to a non-

atomic search game, in a relationship similar to that existing in Expert Consulting Games.

The value of the associated non-atomic game is a lower bound (rather than an upper bound

as in expert consulting games) on the value of a game with �nitely many candidate values.

The value of a non-atomic Faulty Search Game is in turn is lower bounded by the value of

the associated Expert Consulting Game as explained above. Thus the number of questions
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Paul needs to pose to �nd one out of N candidate values is at least

arg max
l
fPlh1i � 1brlc �

1

N
g = arg max

l
f2�l

0
@ l

< brlc

1
A � 1

N
g: (1.21)

Now

2�l

0
@ l

< brlc

1
A = Prf< brlc successes in l throws of an unbiased coing:

Using Cherno�'s bound [38]:

Pr[Sl < (1� )pl] � e�lp
2=2:

we let p = 1=2,  = 1� 2r and get

e�l(1�2r)
2=4 � e� lnN

or

l � 4 lnN

(1� 2r)2
:

2

Spencer [66] implicitly proposes to evaluate states in the search game by equation (1.17)

for � = 1. His rationale for using these weights stems from considering a randomized

strategy of Carole in which she uses a fair coin to decide her answers. The probability of a

chip to advance no more than s positions in j rounds is then

0
@ j

� s

1
A2�j . Equation (1.17)

arises by asking whether the expected number of chips on the game board after a given

number of steps is at least one.

1.7.5 The Relative Game

In this section we consider a game in which Alice's score is the number of mistakes she made

in excess of her best advisors rather than the absolute number of mistakes she made. The

states' representation remains unchanged but the semantics of states in the relative game

is di�erent. The j-th coordinate of the expert state vector now represents the measure of
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the set of experts that made j mistakes less than Alice. Thus when split ni is presented

at some game state ei the game can move into one of four states. If Alice's decision is one

the game can move into one of the states:

ei+1 = ni + (ei � ni)� 1;

ei+1 = ni + (ei � ni)� 1:

Two analogous states are possible if she makes the other decision.

If the adversary is required to satisfy the game termination condition, the game becomes

a win/lose game in which the adversary either does or does not have a strategy that meets

the requirements.

A game termination condition may still be imposed as in absolute games. Alternatively,

the adversary may not be required to satisfy a game termination condition in the relative

game. The score in a relative game can then be de�ned

arg max
M
fei � 1M � �(i)g: (1.22)

That is Alice is scored by the number of mistakes she made in excess of a prespeci�ed share

� of her advisors that make the smallest number of mistakes of all of her advisors in the

game. Her aim is to minimize the score.

The analysis of section 1.4 still holds, by similar argumentation. We can assume w.l.o.g.

that the adversary always disagrees with Alice's decision, showing the problem of consulting

experts in the relative game is reducible to the faulty search problem (a Paul-Carole search

game).

The equivalent of Theorem 1.4.2 likewise holds for relative games, stating that strategy

D 1

2

is opportunistic in non-atomic games. Thus the value of non-atomic relative games can

be computed e�ciently, as in Theorems 1.5.1, 1.5.2 and Corollary 1.5.1. E.g.

Theorem 1.7.2 The value of a relative game of known length l with an unspeci�ed termi-

52



nation condition is given by

arg max
M

Ple
0 � 1M � �(l):

This in turn allows to specify computationally e�cient opportunistic managerial strategies

in the non-atomic game.

If a winning strategy for the adversary (Paul) exists in a game with �nitely many

experts, such a strategy clearly exists in the associated non-atomic game, giving a necessary

condition for the victory of the adversary. Corollary 1.4.3 establishes a su�cient condition

giving us

Theorem 1.7.3 In a Mistake Bound game with N experts if

Ple
0 � 1M > �(l) (1.23)

then Alice wins. If

P2le
0 � 1M � �(l)

then the adversary wins.

This establishes the same necessary condition for Paul's (the adversary's) victory as that

in Spencer's [66] and a di�erent su�cient condition.

Notice that 0
@ l

< M

1
A � clM :

Thus for l; c su�ciently large depending on M if e0M�1 > clM Condition 1.23 becomes

su�cient as well as necessary, as the adversary can use the most erring experts counted by

coordinate e0M�1 (those of weight 1 in the vector Ple
0) to choose splits for which the weight

of both associated options is equal throughout the game. He can split alternatingly all but

the most erring players, and use those to balance the weight of the two options. Thereby he

will e�ectively play a strategy equivalent to D 1

2

. This gives a di�erent proof of the validity

of the su�cient condition (the main result) speci�ed by Spencer [66].

Based on computer experiments the author conjectures that when presented with two

options o1; o2 in a relative game with �nitely many experts the manager (pusher) can make
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an optimal decision by comparing the value of the same states in the associated non-atomic

game, except for state vectors for which the least erring expert made signi�cantly fewer

mistakes than the other experts. The evaluation function for non-atomic games attaches

such experts excessive weight. Instead the value of such states in a game with �nitely

many experts is equal to the value of an almost identical state in which the least erring

expert is charged a single additional error. Proving this conjecture will reduce the problem

of computing the exact value of states in the relative game with �nitely many experts,

addressed by Pelc [59] and Guzicki [30] for M = 1 and M = 2 respectively to the problem

of calculating the number of moves in a game with prespeci�ed strategies for both sides.

1.8 Conclusion

Chip games were explored previously as a model of a faulty search procedure. We show

they can be used to model expert-consulting situations as well. A chip game in which the

goals of the pusher and chooser are exchanged is investigated as a model of another variant

on the expert consulting problem. Our exploration of these games proceeds via an analysis

of what we propose to call non-atomic chip games. Both games with �nitely many experts

which correspond to those chip games described in the existing literature, and non-atomic

games are instances of a more general model of interest { games in which an arbitrary

measure is de�ned over the set of chips.

We derive the exact value of non-atomic chip games. For previously explored chip-

games, corresponding to our games with �nitely many experts, a similar result is known only

for games withM = 1; 2, while the general question remains unanswered. The speci�cation

of opportunistic strategies, or better yet algorithms, for both players in these games is a

problem we leave open. Computationally it is no less interesting than the older problem

of �guring out the value of such games, and can serve as a stepping stone towards that

problem's resolution.
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Chapter 2

Analysis of Greedy Expert Hiring

and an Application to Memory-Based

Learning
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2.1 Introduction and De�nitions

One of the great challenges in modeling human capacity is overcoming redundant informa-

tion. Some researchers conjecture this is the main function of the early processing carried

out by the brain (Marr [47]). Extracting that which is essential is likewise a di�cult algo-

rithmic problem arising in various circumstances - the clique problem, traveling salesman

and many more. In the context of computational learning it was addressed explicitly by

Blum [16], Blum et al. [15], Littlestone [43], Ben-David and Dichterman [10, 11], Birkendorf

et al. [14].

Consider a manager faced with the task of hiring experts from a pool of N candidates.

We assume that he can �nd out the utility of hiring particular sets of experts by querying

an oracle x : 2N ! <. Finding an optimal solution of size k would force him to look at0
@ n

k

1
A possible sets of experts. This number is exponential in k. Therefore, looking for an

optimal solution in the general case is infeasible for large k.

The manager may choose to substitute global considerations for local ones by hiring, for

example, one expert at a time greedily. That is, hiring at step j the expert that contributes

most to the set of j� 1 experts that were already hired. This would reduce the complexity

(number of calls to the oracle) to a reasonable �(kn).

The optimism of the greedy heuristic can be contrasted with the pessimism underlying

worst-case analysis. The author believes that most conscious data processing is carried

out by simple heuristics. Thus a detailed understanding of the conditions governing the

performance of such heuristics will contribute no less to our understanding of conscious

intelligence than for example the exploration of complex optimization algorithms.

For an unrestricted input no performance guarantees can be provided for this heuristic.

However, for functions x that are monotone and concave a uniform lower bound on the

performance of greedy hiring holds. Nemhauser et al. [52] present a bound on the ratio

between the value of the greedy approximation and that of the optimal solution.

When the value of sets of experts has to be estimated by sampling, the manager may

only have access to approximate values of such sets, rather than exact values. We show

a uniform lower bound on the quality of a greedy approximation for the same family of
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games is still valid.

This can model, for example, a learning situation in which the learner has access to

some \learning engine" as a subroutine and to a source of labeled examples. The learner

(manager) can draw a labeled sample, and then run the learning subroutine on a �ltering

of that sample that passes to the learning subroutine only the values of the coordinates in

some chosen subset of coordinates. He can �nd out or estimate the \value" of the various

subsets of coordinates by testing the hypothesis this subroutine produces. His goal is to

choose a good subset of the coordinates (select features) while minimizing the number of

invocations of the learning subroutine.

The analysis of the performance of greedy hiring in coalitional games implies a lower

bound on approximations of the s-median problem de�ned below. Approximation algo-

rithms for the s-median problem are in turn, is a useful tool in the development of a

learning algorithm for Lipschitz functions (Lin and Vitter [42]).

Amemory-based learning system is a system that approximates (learns) a given function,

f : X ! Z, in the following manner: An instance of the input space X is mapped by an

encoder  to the addresses of one or more memory locations. The contents of these locations

are combined by a decoder � to produce an output in Z. Learning can be done in batch

mode or on-line. The encoder or the decoder or both of them can be learned. A memory-

based learning system can be evaluated by its sample, time, and space complexities.

Conceivably, such systems can be used to learn functions over both discrete and contin-

uous domains. Lin and Vitter [42] give a historical overview of early research on memory-

based learning systems. Their stated main result is a memory-based learning system that

PAC-learns in polynomial time and space, to which we propose an alternative.

A Voronoi system is a very simple memory-based learning system. The system can be

speci�ed by s pairs fhxi; ziigsi=1, where xi 2 X; zi 2 Z. The encoder maps a point x to the

index of its nearest neighbour in fxigsi=1, say i0 if the nearest point is xi0. The decoder

outputs zi0. The xi-s do not have to be stored explicitly. We call s the size of the system.

A function f satis�es the Lipschitz condition if there exists a constant K such that

(8x; x0 2 X) : dY (f(x); f(x
0)) � KdX(x; x

0);
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Figure 2-1: A memory-based learning system.

where dX ; dY are metrics de�ned over spaces X and Y respectively. A function satisfying

this condition is called a Lipschitz function with bound K. A class of functions F is

uniformly Lipschitz bounded if there exists a bound K such that all functions in F are

K-Lipschitz functions. Call such an F a class of Lipschitz functions.

Now let us de�ne the s-median problem (based on Lin and Vitter [41]). In section 2.4

we discuss its relevance to e�cient memory-based learning of Lipschitz functions. The

input is a complete (directed or undirected) graph G = (V;E) on n vertices. Non-negative

weights cij are associated with the edges. We call the cij-s distances. The goal is to choose

a subset U of size s of the vertices that minimizes the sum of distances from each vertex

to its nearest neighbour in U . Call U the median set.

The s-median problem arises in data compression, network location, and clustering. It

is NP-hard even in the Euclidian space [48, 57]. Lund and Yanakakis's lower bounds for

the set-covering problem imply that it is NP-hard to �nd �-approximate solutions of size

o(s log jV j) to the s-median problem for an � su�ciently small [41, 46].

We generalize the analysis of Cornuejols et al. [21] to account for approximate solutions

of the s-median problem that are not necessarily of size s. We then evaluate the usage of a
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greedy approximation scheme as an alternative to the (also greedy) approximation scheme

used by Lin and Vitter [42] in their algorithm for memory-based learning of Lipschitz

functions. It is found to be easier to implement and to have better time complexity than

the scheme proposed by Lin and Vitter. In many cases it also yields a smaller Voronoi

system.

Section 2.2 describes known and novel results stating conditions for successful greedy

expert hiring. Section 2.3 reviews the Lin-Vitter approximation algorithm for the s-median

problem, and presents and analyzes a simpler greedy alternative. Section 2.4 describes how

these algorithms can be used as part of a memory-based learning system, and compares

them in that context.

2.2 Greedy Expert Hiring

This section establishes conditions that guarantee lower bounds on the performance of the

greedy heuristic when it is applied to expert hiring problems. It uses mathematical tools

from the theory of coalitional games which it �rst recounts. Subsection 2.2.2 describes

results proven by operations researchers that are relevant to hiring when the exact values

of the various sets of experts are known. The following subsection extends these bounds to

the situation when these values are known only approximately.

2.2.1 Coalitional Games, Concave Coalitional Games

We begin by reviewing a few de�nitions and facts about coalitional games. A coalitional

game is a function:

v : 2N ! <

satisfying v(;) = 0. The set N = f1; : : : ; ng is commonly called the set of players, and the

set of its subsets, 2N , the set of coalitions. (Here we assume N is �nite.) An introductory

text on coalitional game theory is by Owen [56].
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A game is monotone if 8S; T � N such that S � T :

v(S) � v(T ):

A game is additive if 8S; T � N;S \ T = ; :

v(S) + v(T ) = v(S [ T ):

A game is subadditive if 8S; T � N;S \ T = ; :

v(S) + v(T ) � v(S [ T ):

A game is concave if it satis�es the condition of diminishing returns for all i 2 N and

for all S; T such that S � T � N n fig:

v(S [ fig)� v(S) � v(T [ fig)� v(T ):

These naming conventions are due to Shapley [63] who de�ned and investigated convex

games. After Shapley we justify the name \concave games" by de�ning a di�erencing

operator �R for all R;S � N :

[�Rv](S) = v(S [ R)� v(S nR):

If we let �QRv denote �Q(�Rv) then the de�nition of concavity given above is equivalent

to the assertion that these \second di�erences" are everywhere negative, i.e. 8Q;R; S � N

[�QRv](S) � 0

The operator �QR is analogous to the second derivative associated with concave functions

in real analysis.
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An equivalent de�nition of concave games is via the condition

8S; T � N : v(S) + v(T ) � v(S [ T ) + v(S \ T ):

It follows that all concave games are subadditive.

Two games, v; u de�ned on the same set of players N are termed equivalent if their

di�erence is an additive game, that is, if there exist constants v1; : : : ; vn such that 8S � N

v(S)� u(S) =
X
i2S

vi:

Any game equivalent to a concave game is concave. In particular a scalar multiple of a

concave game is concave. Hence the set of concave games for a �xed N forms a convex

cone in the linear space <2N�f;g. This cone contains the subspace of additive games.

2.2.2 Hiring Experts Using Exact Values of Coalitions

Let N denote the set of experts. For a subset S of the experts, where S � N , let x(S)

represent the value of this coalition for the manager. In the following we call x the coalitional

expert game.

Assume the manager has access to an oracle x that he can query for the value x(S) of

an arbitrary coalition S. If the manager is interested in hiring a set of k consultants it is

natural for him to try a greedy approach. This means that he repeatedly hires the locally

optimal expert. Starting with an empty set of hired experts, the �rst expert to be hired is

the expert e1 maximizing x(fe1g). After j experts egr1 ; : : : ; egrj have been selected the next

expert, egrj+1, to be hired is the one satisfying

e
gr
j+1 2 argmaxfx(egr1 ; : : : ; egrj ; �e) : �e 2 N n fegr1 ; : : : ; egrj gg:

We would like to derive a bound on the performance of this greedy heuristic that

is uniformly valid for a family of games. That is �nd a bound valid for all games in

the family. Let feopt1 ; : : : ; e
opt
k g be an optimal set of k experts, and let Xopt

k be its value:
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Xopt
k = x(eopt1 ; : : : ; eoptk ). Let fegr1 ; : : : ; egrj g be a set of j greedily hired experts of value

X
gr
j = x(e

gr
1 ; : : : ; e

gr
j ). We would like the ratio

Pj;k = X
gr
j =X

opt
k

to be lower bounded by a function of j and k that does not depend on x.

This problem was considered by Nemhauser and Wolsey [51, 50] and by Nemhauser,

Wolsey and Fisher [52]. They prove that for games that are monotone and concave

Pk;k � 1 � (1� 1

k
)k > 1� 1

e
:

A similar bound can be proven on Pj;k for arbitrary j. They also analyze a somewhat more

sophisticated and general approximation scheme for which they prove a matching inverse

bound:

Theorem 2.2.1 For a concave and monotone coalitional game, and for each integer q > 0

there is an algorithm that uses O(nq+1) queries of oracle x and �nds a coalition Eq of

arbitrary size k for which

P
q
k =

x(Eq)

Xopt
k

� 1 � (1� q

k
)(1� q

k � 1
)k�q:

For any integer q > 0, P q
k is the best ratio achievable by an algorithm that uses O(nq+1)

queries to �nd a coalition of size k.

2.2.3 Hiring Experts Using Approximate Values of Coalitions

In practice the assumption that the manager has access to an oracle providing him with

the precise values of expert coalitions might be unrealistic. In some situations the values

of coalitions may have to be estimated by a stochastic process, e.g. by experiments the

manager performs with those coalitions. The manager then might have to make his deci-

sions based on approximate values of coalitions, rather than on exact values. This section

establishes a uniform lower bound on the performance of a greedy manager in these cir-
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cumstances. We model the situation by letting the manager query an oracle that gives

approximations of the coalition's values.

An �-approximate oracle for game x, denoted x��, is an oracle that when queried with

a coalition S of players returns arbitrary values satisfying

�x(S) � x��(S) � ��1x(S) (2.1)

for 0 < � � 1.

We prove that

Theorem 2.2.2 For a coalition of size j, Egr;��
j , that was hired greedily with respect to an

�-approximate coalitional game oracle x�� of a concave and monotone game x

x(Egr;��
j ) � max

k=1;:::;n
f(1 � (1 � �2

k
)j)Xopt

k g
� max

k=1;:::;n
f(1 � e��

2j=k)Xopt
k g:

The proof of this theorem is presented at the end of the section.

De�nition 2.2.1 For 0 < � � 1 call a coalition fegr;�1 ; : : : ; egr;�j g �-greedily hirable if it

can be ordered êgr;�1 ; : : : ; êgr;�j so that for all l, 0 � l < j:

x(êgr;�1 ; : : : ; êgr;�l ; êgr;�l+1 ) � �max
�e
x(êgr;�1 ; : : : ; êgr;�l ; �e): (2.2)

Claim 2.2.1 A coalition fegr;�1 ; : : : ; egr;�j g is �-greedily hirable with respect to game oracle

x if and only if it greedily hirable with respect to a
p
�-approximate oracle for the game x.

Proof: =) Let egr;�1 ; : : : ; egr;�j be the ordering with respect to which coalition

Egr;�
j = fegr;�1 ; : : : ; egr;�j g

is �-greedily hirable. De�ne a
p
�-approximate oracle y for the game x. It returns ��

1

2x(S)

for the j coalitions of the form Sm = fegr;�1 ; : : : ; egr;�m g where m � j. It returns �
1

2x(S)
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for all other coalitions. Then from equation (2.2) it follows that coalition Egr;�
j is greedily

hirable with respect to oracle y.

(= If for two coalitions we have x��(S) � x��(T ) then

�x(S) � x��(S) � x��(T ) � ��1x(T )

implies

x(T ) � �2x(S):

Thus greedy hiring with respect to x��
1

2 yields �-greedy hiring with respect to x. 2

Denote by Egr;�j the set of all �-greedily hirable coalitions and let

X
gr;�
j = min

E2Egr;�
j

x(E);

P �
j;k = Xgr;�

j =Xopt
k :

Theorem 2.2.3 For expert games which are concave and monotone and any 0 < � � 1

and integers j; k

P �
j;k � 1 � (1� �

k
)j > 1 � e��j=k:

Neither concavity alone nor monotonicity alone guarantee a non-trivial bound on P �
j;k that

is uniformly valid for all games.

Proof: Let Egr;�
j = fegr;�1 ; : : : ; egr;�j g denote one of the worst �-greedily hirable coalition

of j experts. Assume w.l.o.g. egr;�1 ; : : : ; egr;�j are ordered to satisfy (2.2). For l = 0; : : : ; j�1

Xopt
k � x(egr;�1 ; : : : ; egr;�l )

= x(feopt1 ; : : : ; eoptk g)� x(fegr;�1 ; : : : ; egr;�l g)
(x is monotone) � x(fegr;�1 ; : : : ; e

gr;�
l ; e

opt
1 ; : : : ; e

opt
k g)

�x(fegr;�1 ; : : : ; e
gr;�
l g)

= [x(fegr;�1 ; : : : ; egr;�l ; eopt1 ; : : : ; eoptk�1; e
opt
k g)

�x(fegr;�1 ; : : : ; egr;�l ; eopt1 ; : : : ; eoptk�1g)]
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+[x(fegr;�1 ; : : : ; egr;�l ; eopt1 ; : : : ; eoptk�2; e
opt
k�1g)

�x(feg;�1 ; : : : ; egr;�l ; eopt1 ; : : : ; eoptk�2g)]
� � �
+[x(fegr;�1 ; : : : ; e

gr;�
l ; e

opt
1 g)� x(fegr;�1 ; : : : ; e

gr;�
l g)]

(x is concave) � [x(fegr;�1 ; : : : ; egr;�l ; eoptk g)� x(fegr;�1 ; : : : ; egr;�l g)]
+[x(fegr;�1 ; : : : ; e

gr;�
l ; e

opt
k�1g)� x(fegr;�1 ; : : : ; e

gr;�
l g)]

: : :

+[x(fegr;�1 ; : : : ; e
gr;�
l ; e

opt
1 g)� x(fegr;�1 ; : : : ; e

gr;�
l g)]

� k

�
[x(fegr;�1 ; : : : ; egr;�l ; egr;�l+1 g)� x(fegr;�1 ; : : : ; egr;�l g)]

We get that

x(egr;�1 ; : : : ; e
gr;�
l+1 ) � (1 � �

k
)x(egr;�1 ; : : : ; e

gr;�
l ) +

�

k
X

opt
k ;

or
x(egr;�1 ; : : : ; egr;�l+1 )

X
opt
k

� (1 � �

k
)
x(egr;�1 ; : : : ; e

gr;�
l )

X
opt
k

+
�

k
:

By induction on l it follows that:

x(Egr;�
j )

X
opt
k

= P �
j;k � 1 � (1 � �

k
)j > 1� e��j=k:

We now show that even for � = 1 neither condition can be dropped.

Concavity is necessary : For an arbitrary natural number M consider the following game

x0 that is monotone but not concave:

x0(;) = 0;

x0(f1g) = 1; x0(f2g) = 0; x0(f3g) = 0;

x0(f1; 2g) = 1; x0(f2; 3g) = M; x0(f1; 3g) = 1;

x0(f1; 2; 3g) = M:

Then X
gr
2 = 1; X

opt
2 = M , giving the ratio P2;2 = P 1

2;2 = 1
M

that is not bounded from

below.
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Monotonicity is necessary : For an arbitrary natural M consider game x1 that is concave

but not monotone:

x1(;) = 0;

x1(f1g) =M + 1; x1(f2g) = M; x1(f3g) = M;

x1(f1; 2g) = 1; x1(f2; 3g) = 2M � 1; x1(f1; 3g) = 1;

x1(f1; 2; 3g) = M � 1:

Then X
gr
2 = 1; X

opt
2 = 2M � 1. Hence, P2;2 = P 1

2;2 =
1

2M�1
can be arbitrarily small. 2

The bound on P �
j;k holds simultaneously for optimal solutions of all sizes. This allows

us to state a stronger lower bound on the performance of �-greedy hiring.

Corollary 2.2.1 For an �-greedily hirable coalition E
gr;�
j of size j in a concave and mono-

tone game x:

x(Egr;�
j ) � max

k=1;:::;n
f(1 � (1 � �

k
)j)Xopt

k g
� max

k=1;:::;n
f(1 � e��j=k)Xopt

k g:

We conclude this section by proving Theorem 2.2.2.

Proof (of Theorem 2.2.2): The theorem follows from Claim 2.2.1 and Corollary 2.2.1.

2

2.3 Two Approximation Algorithms for the s-Median

Problem

Lin and Vitter [42] present an algorithm that �nds an approximate solution to the s-median

problem by solving a linear programming problem and then applying the greedy heuristic

to the solution. Using the results in the previous section we analyze the performance of the

greedy heuristic when applied to the same problem directly and then compare the bounds

these two approaches yield.
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2.3.1 The Lin-Vitter Algorithm, Review

For a point x in a metric space X and a set S � X it is common to de�ne the distance of

x to S as

dX(x; S) = inf[dX(x; y) : y 2 S]:

The s-median problem is the problem given a �nite set of points �, of �nding a subset of �

of size s called the median set for which the average distance of points in � to the median

set is minimum.

The s-median problem for a set � of m points � = fx1; : : : ; xmg can be formulated as a

0� 1 integer program of minimizing

d̂�(U) =
1

m

mX
i=1

dX(xi; U) =
1

m

mX
i=1

mX
j=1

pijdX(xi; xj)

subject to

Pm
j=1 pij = 1; i = 1; : : : ;m;

Pm
j=1 qj � s;

pij � qj; i; j = 1; : : : ;m;

pij; qj 2 f0; 1g; i; j = 1; : : : ;m;

where qj = 1 i� xj is chosen as a cluster center, and pij = 1 i� qj = 1 and xi is \assigned"

to xj's cluster.

The linear program relaxation of the above is allowing qj and pij to take arbitrary values

in the interval [0; 1]. The value of an optimal fractional solution (linear program solution)

is a lower bound on the value of solutions of the discrete s-median problem.

The Lin-Vitter algorithm works as follows:

1. Solve the linear program relaxation of the discrete s-median problem by linear pro-

gramming techniques; denote the fractional solution by q̂; p̂.

2. For each i = 1; : : : ;m compute D̂i =
Pm

j=1 dX(xi; xj)p̂ij .
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3. Given a relative error bound � > 0, for each j such that q̂j > 0, construct a set Sj : A

point xi is in Sj i� dX(xi; xj) � (1 + �)D̂i. (Note that xj 2 Sj for all Sj.)

4. Apply the greedy set cover algorithm [19, 36] to the covering of � by the sets fSjg,
choosing iteratively the set Sj that covers the most uncovered points. Repeat this

process until all points of � are covered. Let IU be the set of indices of sets chosen by

the greedy set-covering heuristic. Output U = fxigi2IU as the median set.

The linear programming problem can be solved in provably polynomial time by the

ellipsoid algorithm [39] or by the interior point method [37]. The simplex method [23] works

very e�ciently in practice, although in the worst case its performance is not polynomial-

time.

Lin and Vitter [41] show:

Theorem 2.3.1 Given any � > 0, the Lin-Vitter algorithm outputs a set U of size at most

s(1 + 1=�)(lnm+ 1)

such that

d̂�(U) � (1 + �)D̂;

where D̂ is the average distance of the optimal fractional solution for the discrete s-median

problem.

2.3.2 A Simple and E�cient Greedy Algorithm

Cornuejols et al. [21] were the �rst to derive a bound on the performance of the greedy

heuristic for the s-median problem. The bound they showed is somewhat stronger than the

bound in Theorem 2.3.2, as explained towards the end of this subsection. Subsequently,

Nemhauser et al. [52] generalized the result to arbitrary coalitional games. We show a

derivation of the bound for the s-median problem from the general bound for Coalitional

Games. We also generalize their analysis to allow approximation of the s-median set by

sets of size other than s.
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Description of the Algorithm.

Given a set � = fxigmi=1 of m points in X and a nonnegative integer t, where t � m, the

algorithm selects a subset of size t of �. The algorithm works as follows:

1. Set S = ;

2. Choose �x 2 arg minx2�nS d̂�(S [ fxg) and set S = S [ f�xg.

3. Repeat step 2 t times.

The time complexity of this algorithm is O(tm2).

The Derived Expert-Game for This Problem is Concave.

De�ne a value function for the expert game by de�ning x as follows :

8S � � : x(S) = �d̂�(S) + C;

where C is a normalizing constant that guarantees concavity. We assign an arti�cial value

of C to d̂�(;), thus x(;) = 0. The proper selection of C is discussed in section 2.3.2.

We can show the concavity of this game via the condition of diminishing returns. Indeed

for an R � � let NR(x) denote the neighbours in � of a point x, x 2 R. This is the set of

points of � that are closer to x than to any other point of R.

NR(x) = fy 2 � : x 2 arg min
z2R

dX(y; z)g:

When adding x to coalition S the distance dX(y; S) may be di�erent from the distance

dX(y; S [ fxg) only for points y 2 NS[fxg(x). The set of such points subsides as the base

coalition grows

S � T 63 x ) NS[fxg(x) � NT[fxg(x):

Hence, the set of points, y, for which dX(y; U) is reduced by adding x to U for U = S is

a superset of such points for U = T . As the candidate median set U grows the distance
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dX(y; U) decreases weakly for all points y 2 �. That is

S � T ) dX(y; S) � dX(y; T ):

It follows that as the candidate median set grows the gain achieved by adding one more

point to the set diminishes:

x(S [ fxg)� x(S) � x(T [ fxg)� x(T ):

Choosing C.

The previous section proves that the expert game is concave for coalitions of size greater

than or equal to 1. Note that the additive constant C cancels out in the condition of

diminishing returns, and hence its value is not important. To complete the proof, we have

to de�ne C = d̂�(;) in a way that will not violate concavity. Choosing a big C would do,

but this would weaken the bound we get in section 2.3.2. The diameter of a set of points

is de�ned as:

diamS = supfdX(x; y) : x; y 2 Sg:

Let C = 2 � diam �, as

maxfd̂�(fxg) : x 2 �g � diam �

and

maxfd̂�(S)� d̂�(S [ fxg) : S � �; x 2 �g � diam �

guarantee together that 8x 2 �; 8S � � n fxg:

d̂�(S)� d̂�(S [ fxg) � diam � � d̂�(;)� d̂�(fxg):

Estimating the Quality of the Approximation.

Each s-median problem is equivalent to a concave and monotone expert game. This can be

used to bound the quality of approximation the greedy algorithm yields for this problem.
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Notation 2.3.1 Let Dj = d̂�(S
gr
j ) denote the average distance of the approximation of size

j produced by the greedy algorithm; let ~D = d̂�(S
opt
s ) denote the average distance of the

optimal solution of size s; and let Pj;s = Dj= ~D be the ratio between them.

Theorem 2.2.3 gives us
�Dj + C

� ~D + C
� 1� e�j=s:

Or

Dj � ~D[1 + e�j=s(
C

~D
� 1)]:

To allow a comparison to Theorem 2.3.1 we let � = e�j=s(C= ~D � 1). Solving this for j

we get

Theorem 2.3.2 Given any � > 0, the greedy algorithm outputs a set U of size

s(ln
1

�
+ ln(

2diam �

~D
� 1)) � s ln(

2diam �

� ~D
)

such that

d̂�(U) � (1 + �) ~D;

where ~D is the average distance of the optimal solution for the discrete s-median problem.

Linear Programming vs. Greedy.

To compare Lin and Vitter's s-median approximation algorithm to the greedy algorithm

described in this section note that their theorem gives a uniform bound for all input graphs

satisfying jV j � m, while our bound is uniform for graphs with identical
~D

diam �
ratio.

The greedy algorithm's performance grows logarithmically rather than linearly with 1
�
.

Easy implementation is another potential advantage of a vanilla greedy approach. Lin

and Vitter express the quality of approximation in terms of the optimal fractional solution,

while Theorem 2.3.2 expresses the quality of approximation in terms of the optimal integral

solution. Cornuejols et al. [21] and Nemhauser et al. [52] show the bounds of Theorem 2.2.3

hold relative to the optimal fractional solution of the linear programming formulation of the

s-median problem for j = k and � = 1. Similarly, ~D can be replaced by D̂ in Theorem 2.3.2.
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Contributions of This Work to the Analysis of the Greedy Heuristic's Perfor-

mance.

Previous results on the performance of the greedy heuristic of Cornuejols et al. [21] and

Nemhauser et al. [52] do not allow its comparison to the Lin-Vitter approximation algo-

rithm, as they do not consider a relaxation of the requirement on the desired size of the

approximating set. Their analysis bounds only the ratio we denoted Pk;k and not the more

general Pj;k.

Yet another novelty of our work is the proof presented in this section. Historically,

Cornuejols et al. derived a lower bound on the quality of a greedy approximation to the

solution of an s-median problem, which was subsequently generalized to arbitrary concave

and monotone games by Nemhauser et al. Our proof, by contrast, proceeds from the general

to the speci�c.

2.4 Application to Memory-Based Learning

Having analyzed the performance of a greedy alternative to the approximation algorithm

Lin and Vitter present for the s-median problem, this section compares the performance

of the two approximation algorithms as tools in the construction of Voronoi Systems that

model Lipschitz functions. It begins with a review of the learning algorithm. Then it

compares the size of the Voronoi system required by the original algorithm of Lin and

Vitter to that required by the greedy alternative analyzed in the previous section for the

same user-speci�cation of accuracy and con�dence. It concludes with a review of the proof

that the Lin Vitter algorithm indeed works (with either approximation subroutine).

2.4.1 The Learning Algorithm

Lin and Vitter [42] propose to learn classes of uniformly Lipschitz bounded functions by

Voronoi systems of polynomial size with respect to the the error measure

erPX (f; g) = EX[dY (g(x); f(x))]
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=
Z
X
dY (g(x); f(x))dPX :

Let QPx(X; �; dX) denote the quantization number de�ned to be the smallest integer s

such that there exists a Voronoi encoder  of size s that satis�es E[dX(x; u(x))] � �. The

algorithm draws

m = 
(
sdimXdiamY

�
log s log

diamY

�
+
diamY

�
log

1

�
) (2.3)

examples, where s = QPx(X;
�
4K
; dX). It runs an s-median approximation algorithm on the

sample that was drawn. The resulting median set is used to build a Voronoi system, which

is output by the algorithm.

Section 2.4.3 reviews the proof that for any given �; � and any target function f in the

class the algorithm outputs a Voronoi system which implements a function h for which

with con�dence of at least 1 � �

erPX (f; h) � �:

2.4.2 Comparing the Two s-Median Approximation Subroutines

The size of a Voronoi system produced by the Lin-Vitter approximation algorithm is

�(
sK � diamY logm

�
): (2.4)

If a priori information on the distribution of the input points is available, a lower bound

d � ~D on ~D may hold almost everywhere, that is for all of the space except, possibly, for a

set of measure zero. For example, for m input points drawn from the uniform distribution

on a region of area A in the plane with probability one the value of a solution to the s-

median problem is lower bounded by �(m�s)
q

A
s
, for some constant �, as shown by Fisher

and Hochbaum [26]. Then the vanilla greedy algorithm may be used to produce a system

of size �(s � log K�diam Y
d�

).

Since a con�dence parameter is inherent in the evaluation of the performance of PAC

learning systems, the following simpler analysis su�ces for a better comparison of the two
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approximation schemes in the context of learning. The size of ~D is lower bounded by

the distance between the two nearest points in �. For an ordered set of m points drawn

independently with respect to PX let Nm
X denote the distance between the �rst point and

its nearest neighbour in the set

Nm
X = minfdX(x1; xi) : i = 2; 3; : : : ;mg:

Consider, for example the case of a region X � <n where dX is de�ned to be an lP

norm jxj = (
Pn

1 x
p
i )

1=p, and PX a bounded density such that PX < P . Then

PrfNm
X < �g � Pm(2�)n:

Now

Prf ~D < �g < mPrf ~D < � ^ x1 2 arg min
fxi 6=xjg

dX(xi; xj)g
� mPr fNm

X < �g
� Pm2(2�)n:

Thus, for a given � > 0, with probability at least 1� �,

~D � 1

2
(

�

Pm2
)
1

n :

Since any two norms j:j1; j:j2 on <n are equivalent, that is ajxj1 � jxj2 � bjxj1 for some

positive constants a; b [45], for any norm on <n:

~D � C(
�

Pm2
)
1

n ;

for some C > 0. For distribution-metric pairs, hPX ; dXi, for which the bound

~D = 
((
�

mk
)
1

n ): (2.5)

holds with con�dence 1 � �, that is for all but a share � of hPm
X ; dmXi, a greedily chosen
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memory-based learning system of size

�(s � (log K � diamY

�
+

1

dimX
log

mk

�
)) (2.6)

can meet prespeci�ed accuracy and con�dence bounds given by parameters of � and 1� �.

To achieve this we choose m, as speci�ed in (2.3), for a con�dence parameter of 1 � �=2.

We also choose the size of the greedily selected approximating set speci�ed in (2.6) with

respect to con�dence 1� �=2. The asymptotic size of the memory-based learning system is

then given by (2.6). This is a smaller system than that produced by the algorithm proposed

by Lin and Vitter, the size of which is given by (2.4).

2.4.3 How to Prove That it Works

This section gives an outline of Lin and Vitter's correctness proof for the learning algorithm

described in Section 2.4.1.

First we quote two de�nitions after Haussler [34, 35].

For r 2 < let sign (r) = 1 i� r > 0, and zero otherwise.

De�nition 2.4.1 For A � <m say A is full if there exists an x 2 <m such that the set of

sign vectors of the following sums is of the maximum size possible

jf hsign (xi + yi)imi=1 : y 2 Agj = 2m:

De�nition 2.4.2 Let F be a class of functions from a set X into <. For any sequence

�X = (x1; : : : ; xm) of points in X, let F(�X) = f(f(x1); : : : ; f(xm)) : f 2 Fg: If F(�X) is
full we say that �X is shattered by F . The pseudo-dimension of F denoted by dimPF , is

the largest m such that there exists a sequence of m points in X that is shattered by F . If

arbitrarily long sequences are shattered, then dimPF is in�nite.

If F is a class of f0, 1g-valued functions then the de�nition of the pseudo-dimension is

the same as that of the V C dimension. Haussler and Long [33] showed an upper bound on

the sample complexity required to guarantee the uniform convergence with con�dence 1��

75



of the empirical estimates of a given family of functions with a bounded pseudo-dimension.

Lin and Vitter show that the pseudo-dimension of Voronoi encoders of size at most s is

O(dimX � s log s). Note that an �=K-good Voronoi encoder guarantees an �-good Voronoi

system, by the Lipschitz condition.

Choosing s = QPx(X;
�
4K
; dX) they assure that there exists an

�
4K
-good Voronoi encoder

of size s. Then by drawing a sample of the size required by Haussler and Long they

guarantee that with high con�dence the empirically-best Voronoi encoder of size s is �
2K

accurate. Hence a solution to the s-median problem would produce an �
2
-good Voronoi

system. Since a solution is generally NP-hard to �nd output an approximation that yields

an �-good system.

2.5 Conclusion

One of the fundamental problems of AI is �ltering out redundant information. Operations

researchers have investigated this problem as modeled by a Coalitional Game. In this model

a su�cient condition was found for the existence of a uniform bound on the performance

of the greedy approximation heuristic. The same condition on the game, monotonicity

and concavity, implies a uniform bound even when approximate rather than precise values

of coalitions are known. An s-median problem can be mapped to a game satisfying the

condition. We use this to derive bounds on the quality of a greedy approximate solution

to the s-median problem. We argue that in the context of memory-based learning of

Lipschitz functions the greedy approximation algorithm is an attractive alternative to the

approximation technique proposed by Lin and Vitter [42].

Further exploration of the greedy heuristic as well as other simple data processing tech-

niques may contribute, we conjecture, to a better understanding of conscious intelligence.
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Chapter 3

Scapegoat Trees
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3.1 Introduction

There are a vast number of schemes available for implementing a \dictionary" { support-

ing the operations Insert, Delete, and Search { using balanced binary search trees.

Mehlhorn and Tsakalidis [49] survey the recent literature on such data structures. In this

paper we propose a new method that achieves optimal amortized costs for update opera-

tions (Insert and Delete) and optimal worst-case cost for Search, without requiring

the extra information (e.g. colors or weights) normally required by many balanced-tree

schemes. This is the �rst method ever proposed that achieves a worst-case search time

of O(log n) without using such extra information, while maintaining optimal amortized

update costs. In addition, the method is quite simple and practical.

In their comparative study Baer and Schwab [7], distinguish height-balanced schemes

from weight-balanced schemes based on the criterion that triggers restructuring.

In a height-balanced structure the extra information stored at each node helps to enforce

a bound on the overall height of the tree by bounding the height of subtrees. Red-black

trees, were invented by Bayer [9] and re�ned by Guibas and Sedgewick [29]. They are

an elegant example of the height-balanced approach. Red-black trees implement the basic

dictionary operations with a worst-case cost of O(log n) per operation, at the cost of storing

one extra bit (the \color" of the node) at each node. AVL trees [1] are another well-known

example of height-balanced trees.

Other schemes are weight-balanced in that the size of subtrees causes restructuring.

By ensuring that the weights of siblings are approximately equal, an overall bound on the

height of the tree is enforced. Nievergelt and Reingold [53] introduce such trees and present

algorithms for implementing the basic dictionary operations in O(log n) worst-case time.

The �rst published data structure that does not store any extra information at each node

are Splay trees due to Sleator and Tarjan [64]. They achieveO(log n) amortized complexity

per operation. However, splay trees do not guarantee a logarithmic worst-case bound on

the cost of a Search, and require restructuring even during searches (unlike scapegoat

trees, which do have a logarithmic worst-case cost of a Search and do not restructure the

tree during searches). Splay trees do have other desirable properties that make them of
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considerable practical and theoretical interest, however, such as their near-optimality when

handling an arbitrary sequence of operations.

Our algorithmmodi�es the weight-balanced method of Varghese [20, Problem 18-3], who

presents an algorithm for maintaining weight-balanced trees with amortized cost O(log n)

per operation. Our scheme combines the notions of height-balance and weight-balance to

achieve an e�ective algorithm, without storing either height information or weight informa-

tion at any node. It is most similar to Andersson's GB0(c) trees [3]. His �rst publication [2]

has shortly preceded our independent discovery.

Both GB0(c) trees and scapegoat trees use total rebuilding of subtrees to enforce an

upper bound on the depth of the tree, and achieve the same asymptotic performance for

the dictionary operations. Both schemes require no balancing information to be kept at the

nodes. Andersson's restructuring is triggered by a height condition. We have rediscovered

his restructuring scheme, yet we also present a more general weight-based condition. The

maintenance algorithm for scapegoat trees, like that for GB0(c) trees, occasionally rebuilds

the whole tree to preserve the depth guarantee in the face of deletions. The condition

used in scapegoat trees to trigger restructuring of the whole tree is advantageous in that it

requires less frequent restructuring to enforce the same depth bound.

Yet another advantage of our scheme is demonstrated by the following scenario based on

a true story. Consider a company, ComputerPeak Inc., that uses a plain binary search trees'

algorithm for its small data bases. One day a decision is made to upgrade the unbalanced

trees' approach. Using scapegoat trees the upgrade can be carried out without changing

the format of the data, and without throwing out old code. The old code can be used as a

subroutine of the novel scapegoat structure. Although this scenario may not be very likely,

the same property of our data structure can prove useful in their initial coding. It suggests

a natural break-up of the code's development into two phases, the �rst of which produces

code that supports all of the system's features except performance.

We show scapegoat balancing can be used for a variety of tree-based data structures :

Bentley's [12] k�d trees, Leuker's [40] trees for orthogonal queries. Finkel and Bentley's [25]

quad trees. For all of these a method of balancing that does not resort to extraneous

balancing information at the nodes was not previously known.
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We include the �rst experimental study of a tree-based data structure that maintains

balance by partial rebuilding without storing auxiliary information at the nodes. Our

experimental results suggest how scapegoat trees can be tuned for optimal performance in

practice. We also compare them to other tree-based solutions of the dictionary problem.

Scapegoat trees show performance superior to splay trees and for some inputs even to

the more conventional red-black trees which store auxiliary balancing information at every

node.

Section 3.2 introduces the basic scapegoat data structure, and some notations. Sec-

tion 3.4 describes the algorithm for maintaining scapegoat trees and outlines the proof of

their features. Section 3.5 proves the complexity claims. Section 3.6 describes an algorithm

for rebuilding a binary search tree in linear time and logarithmic space. In Section 3.7 we

show how our techniques can be used in three known multi-key tree-based data structures,

and state weak conditions that su�ce to allow its application to other data structures. In

Section 3.7.2 we show how an existing binary search trees' data base can be upgraded to

a scapegoat trees' data base without modifying data format while reusing existing code.

Section 3.9 includes a detailed comparison of Andersson's GB0(c) trees to scapegoat trees.

Section 3.10 reports the results of experimental evaluation of scapegoat trees. We compare

a few variants of the scapegoat algorithm to each other and also compare it to other algo-

rithms for maintenance of binary search trees. Finally, Section 3.11 concludes with some

discussion and open problems.

3.2 Notations

In this section we describe the data structure of a scapegoat tree. Basically, a scapegoat

tree consists of an ordinary binary search tree, with two extra values stored at the root.

Each node x of a scapegoat tree maintains the following attributes:

� key [x] { The key stored at node x.

� left [x] { The left child of x.

� right [x] { The right child of x.

80



We'll also use the notations:

� size(x) { the size of the sub-tree rooted at x (i.e., the number of keys stored in this

sub-tree including the key stored at x).

� brother(x) { the brother of node x; the other child of x's parent or nil.

� h(x) and h(T ) { height of a node and a tree respectively. The height of a node is the

length of the longest path from that node to a leaf. The height of a tree is the height

of its root.

� d(x) { depth of node x. The depth of a node is the length (number of edges) of the

path from the root to that node. (The root node is at depth 0.)

Note that values actually stored as �elds in a node are used with brackets, whereas

values that are computed as functions of the node use parentheses; each node only stores

three values: key , left , and right . Computing brother(x) requires knowledge of x's parent.

Most importantly, size(x) is not stored at x, but can be computed in time O(size(x)) as

necessary.

The tree T as a whole has the following attributes:

� root[T ] { A pointer to the root node of the tree.

� size[T ] { The number of nodes in the tree. This is the same as size(root[T ]). In our

complexity analyses we also denote size[T ] by n.

� max size[T ] { The maximal value of size[T ] since the last time the tree was completely

rebuilt. If Delete operations are not performed, then the max size attribute is not

necessary.

3.3 Preliminary Discussion

Search, Insert and Delete operations on scapegoat trees are performed in the usual

way for binary search trees, except that, occasionally, after an update operation (Insert

or Delete) the tree is restructured to ensure that it contains no \deep" nodes.
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A binary-tree node x is said to be �-weight-balanced, for some �, 1=2 � � < 1, if

both

size (left [x]) � � � size (x), and (3.1)

size (right [x]) � � � size (x) : (3.2)

We call a tree �-weight-balanced if, for a given value of �, 1=2 � � < 1, all the nodes

in it are �-weight-balanced. Intuitively, a tree is �-weight-balanced if, for any subtree, the

sizes of its left and right subtree are approximately equal.

We denote

h�(n) = blog(1=�) n c;

and say that a tree T is �-height-balanced if it satis�es

h(T ) � h�(n); (3.3)

where n = size(T ). Intuitively, a tree is �-height-balanced if its height is not greater than

that of the heighest �-weight-balanced tree of the same size. The following standard claim

justi�es this interpretation.

Claim 3.3.1 If T is an �-weight-balanced binary search tree, then T is �-height-balanced.

Although scapegoat trees are not guaranteed to be �-weight-balanced at all times, they

are loosely �-height-balanced, in that they satisfy the bound

h(T ) � h�(T ) + 1; (3.4)

where h�(T ) is a shorthand for h�(size[T ]).

We assume from now on that a �xed �, 1=2 < � < 1, has been chosen. For this given

�, we call a node of depth greater than h�(T ) a deep node. In our scheme the detection

of a deep node triggers a restructuring operation.
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3.4 Operations on Scapegoat Trees

3.4.1 Searching a Scapegoat Tree.

In a scapegoat tree, Search operations proceed as in an ordinary binary search tree. No

restructuring is performed.

3.4.2 Inserting into a Scapegoat Tree.

To insert a node into a scapegoat tree, we insert it as we would into an ordinary binary

search tree, increment size[T ], and set max size[T ] to be the maximum of size[T ] and

max size[T ]. Then|if the newly inserted node is deep|we rebalance the tree as follows.

Let x0 be the newly inserted deep node, and in general let xi+1 denote the parent of

xi. We climb the tree, examining x0, x1, x2, and so on, until we �nd a node xi that is

not �-weight-balanced. Since x0 is a leaf, size(x0) = 0. We compute size(xj+1) using the

formula

size(xj+1) = size(xj) + size(brother(xj)) + 1 (3.5)

for j = 1; 2; : : : ; i, using additional recursive searches.

We call xi, the ancestor of x0 that was found that is not �-weight-balanced, the scape-

goat node. A scapegoat node must exist, by Claim 3.5.1 below.

Once the scapegoat node xi is found, we rebuild the subtree rooted at xi. To rebuild

a subtree is to replace it with a 1=2-weight-balanced subtree containing the same nodes.

This can be done easily in time O(size(xi)). Section 3.6 describes how this can be done in

space O(log n) as well.

An alternative way to �nd a scapegoat node.

As can be seen in Figure 3.4.2, x0 might have more than one weight-unbalanced ancestor.

Any weight-unbalanced ancestor of x0 may be chosen to be the scapegoat. Here we show

that another way of �nding a weight-unbalanced ancestor xi of x0 is to �nd the deepest
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Figure 3-1: The initial tree, T . For � = 0:57; h�(17) = h�(18) = 5, and T is loosely �-
height-balanced (because node 10 is at depth 6). Nodes 2, 5, 6, 12, 15 and 16 are currently
weight-unbalanced. Inserting 8 into this tree triggers a rebuild. We chose node 6 to be the
scapegoat node.

ancestor of x0 satisfying the condition

i > h�(size(xi)): (3.6)

Since this ancestor will often be higher in the tree than the �rst weight-unbalanced ancestor,

it may tend to yield more balanced trees on the average. (In our experiments this heuristic

performed better than choosing the �rst weight-unbalanced ancestor to be the scapegoat.)

Inequality (3.6) is satis�ed when xi = root[T ], hence this schemewill always �nd a scapegoat

node. The scapegoat node found is indeed weight-unbalanced by Claim 3.5.2.

Note that applying condition (3.6) when searching for the scapegoat in the example in

Figure 3.4.2 indeed results in node 6 being rebuilt, since it is the �rst ancestor of node 8

that satis�es the inequality.

3.4.3 Deleting from a Scapegoat Tree.

Deletions are carried out by �rst deleting the node as we would from an ordinary binary

search tree, and decrementing size[T ]. Then, if

size[T ] < � �max size[T ] (3.7)

we rebuild the whole tree, and reset max size[T ] to size[T ].
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3.4.4 Remarks.

� Every time the whole tree is rebuilt max size[T ] is set to size[T ].

� Note that h�(T ) is easily computed from the information stored at the root. (Indeed,

it could even be stored there as an extra attribute.)

� We do not need explicit parent �elds in the nodes to �nd the scapegoat node, since

we are just climbing back up the path we came down to insert the new node; the

nodes xi on this path can be remembered on the stack.

3.5 Correctness and Complexity

Now we prove the algorithm just described is indeed correct and analize its complexity.

3.5.1 Correctness.

The following two claims prove that the algorithm is indeed correct.

The �rst claim guarantees that a deep node has an ancestor that in not �-weight-

balanced.

Claim 3.5.1 If x is a node at depth greater than h�(T ) then there is an �-weight-unbalanced

ancestor of x.

Proof: By negation according to equations (3.1) if x is a child of y, then

size(x) � � � size(y):

By induction on the path from x to the root, size(x) � �d(x) � size[T ]. Hence, the depth

d(x) of a node x is at most log
(1=�) size[T ] establishing the claim. 2

The following claim proves that a scapegoat node found using inequality (3.6) is weight-

unbalanced.
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Claim 3.5.2 If a binary tree T contains a node x0 at depth greater than h�(n), then the

deepest ancestor xi of x0 that is not �-height-balanced is not �-weight-balanced either.

Proof: We chose xi so that the following inequalities are satis�ed.

i > h�(size(xi)) ;

and

i� 1 � h�(size(xi�1)) :

Subtracting these two inequalities gives

1 > h�(size(xi))� h�(size(xi�1)

= log
1=�

 
size(xi)

size(xi�1)

!
:

Therefore,

size(xi�1) > � � size(xi):

2

3.5.2 Complexity of Searching.

Since a scapegoat tree is loosely �-height-balanced and � is �xed, a Search operation

takes worst-case time

O(h�(n)) = O(log n) :

No restructuring or rebalancing operations are performed during a Search. Therefore,

not only do scapegoat trees yield an O(log n) worst-case Search time, but they should

also be e�cient in practice for Search-intensive applications since no balancing overhead

is incurred for searches.

3.5.3 Complexity of Inserting.

The following claim is key to the complexity analysis.

86



Claim 3.5.3 The time to �nd the scapegoat node xi is O(size(xi)).

Proof: The dominant part of the cost of �nding the scapegoat node xi is the cost of

computing the values size(x0), size(x1), . . . , size(xi). Observe that with the optimized size

calculations described in equation (3.5), each node in the subtree rooted at the scapegoat

node xi is visited exactly once during these computations. 2

We now analyze the situation where no Delete operations are done; only Insert and

Search operations are performed. The following claims yield Theorem 3.5.1, which shows

that a scapegoat tree is always �-height-balanced if no deletions are performed. The next

claim asserts that rebuilding a tree does not make it deeper.

Claim 3.5.4 If T is a 1=2-weight-balanced binary search tree, then no tree of the same

size has a smaller height.

Proof: Straightforward. 2

Claim 3.5.5 If the root of T is not �-weight-balanced then its heavy subtree contains at

least 2 nodes more than its light subtree.

Proof: Denote by sh and sl the sizes of the heavy and the light subtrees respectively.

The root of the tree is not �-weight-balanced, hence:

sh > � � (sh + sl + 1)

This yields:

sh >
�

1� �
� (sl + 1)

Since � > 1=2 and sh and sl are both whole numbers, we get:

sh � sl + 2 :

2

A tree T is complete of height h if a node cannot be added to T without making its

height greater than h. A complete tree of height h has 2h+1 � 1 nodes.
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Claim 3.5.6 If T is not �-weight-balanced and T contains only one node at depth h(T )

then rebuilding T decreases its height.

Proof: Let x be the deepest node of T , and let Tl be the light subtree of T . Let T 0
l be

the tree we get by removing x from Tl if x is a node of Tl, or Tl itself if x is not a node of

Tl. By Claim 3.5.5, T 0
l is not a complete tree of height h(T ) � 1. Therefore, Claim 3.5.4

completes the proof. 2

Theorem 3.5.1 If a scapegoat tree T was created from a 1=2-weight-balanced tree by a

sequence of Insert operations, then T is �-height-balanced.

Proof: By induction on the number of insert operations using Claim 3.5.6. 2

Let us now consider a sequence of n Insert operations, beginning with an empty tree.

We wish to show that the amortized complexity per Insert is O(log n).

For an overview of amortized analysis, see Cormen et al. [20]. We begin by de�ning a

nonnegative potential function for the tree. Let

�(x) = jsize(left [x])� size(right [x])j;

and de�ne the potential of node x to be 0 if �(x) < 2, and �(x) otherwise. The potential

of a 1=2-weight-balanced node is thus 0, and the potential of a node x that is not �-weight-

balanced is �(size(x)). (Note that �(x) is not stored at x nor explicitly manipulated

during any update operations; it is just an accounting �ction representing the amount of

\prepaid work" available at node x.) The potential of the tree is the sum of the potentials

of its nodes.

It is easy to see that by increasing their cost by only a constant factor, the insertion

operations that build up a scapegoat tree can pay for the increases in potential at the

nodes. That is, whenever we pass by a node x to insert a new node as a descendant of x,

we can pay for the increased potential in x that may be required by the resulting increase

in �(x).

The potential of the scapegoat node, like that of any non-�-weight-balanced node, is

�(size(xi)). Therefore, this potential is su�cient to pay for �nding the scapegoat node

88



and rebuilding its subtree. (Each of these two operations has complexity �(size(xi)).)

Furthermore, the potential of the rebuilt subtree is 0, so the entire initial potential may be

used up to pay for these operations. This completes the proof of the following theorem.

Theorem 3.5.2 A scapegoat tree can handle a sequence of n Insert and m Search

operations, beginning with a 1=2-weight-balanced tree. with O(log n) amortized cost per

Insert and O(log k) worst-case time per Search, where k is the size of the tree the

Search is performed on.

3.5.4 Complexity of Deleting.

The main claim of this section, Claim 3.5.10, states that scapegoat trees are loosely �-

height-balanced (recall inequality (3.4)). Since we perform 
(n) operations between two

successive rebuilds due to delete operations we can \pay" for them in the amortized sense.

Therefore, combining Claim 3.5.10 with the preceding results completes the proof of the

following theorem.

Theorem 3.5.3 A scapegoat tree can handle a sequence of n Insert and m Search or

Delete operations, beginning with a 1=2-weight-balanced tree, with O(log n) amortized cost

per Insert or Delete and O(log k) worst-case time per Search, where k is the size of

the tree the Search is performed on.

The �rst claim generalizes Theorem 3.5.1.

Claim 3.5.7 For any tree T let T 0 = Insert(T; x), then

h(T 0) � max(h�(T
0); h(T )) :

Proof: If the insertion of x did not trigger a rebuild, then the depth of x is at most

h�(T 0) and we are done.

Otherwise, suppose x was initially inserted at depth d in T , where d > h�(T 0), thereby

causing a rebuild. If T already contained other nodes of depth d we are done, since a rebuild
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does not make a tree deeper. Otherwise, the arguments in section 3.5.1 and Claim 3.5.6

apply. 2

Claim 3.5.8 If h�(T ) does not change during a sequence of Insert and Delete opera-

tions then max(h�(T ); h(T )) is not increased by that sequence.

Proof: A Delete operation can not increase max(h�(T ); h(T )). For an Insert we have

h(T 0) � max(h�(T
0); h(T ))

by Claim 3.5.7. Hence

max(h�(T
0); h(T 0)) � max(h�(T

0); h(T )) =

max(h�(T ); h(T )) :

The claim follows by induction on the number of operations in the sequence. 2

Claim 3.5.9 For T 0 = Insert(T; x), if T is loosely �-height-balanced but is not �-height-

balanced, and h�(T 0) = h�(T ) + 1, then T 0 is �-height-balanced.

Proof: We know that

h(T ) = h�(T ) + 1:

Hence

h(T ) = h�(T
0):

Combining this with Claim 3.5.7 gives

h(T 0) � h�(T
0) ;

i.e., T 0 is height balanced. 2

Now we have the tools to prove the main claim of this section.

Claim 3.5.10 A scapegoat tree built by Insert and Delete operations from an empty

tree is always loosely �-height-balanced.
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Proof: Let o1; : : : ; on be a sequence of update operations that is applied to a 1=2-

weight-balanced scapegoat tree, up until (but not including) the �rst operation, if any, that

causes the entire tree to be rebuilt. To prove the claim it su�ces to show that during this

sequence of operations the tree is always loosely �-height-balanced. During any sequence

of update operations that do not change h�(T ), a loosely �-height-balanced tree remains

loosely �-height-balanced, and an �-height-balanced tree remains �-height-balanced, by

Claim 3.5.8. Therefore, let oi1 ; : : : ; oik be the subsequence (not necessarily successive) of

operations that change h�(T ). An Insert operation in this subsequence leaves the tree

�-height-balanced, by Claim 3.5.9. The usage of max size[T ] in Delete implies that there

are no two successiveDelete operations in this subsequence, since the entire tree would be

rebuilt no later than the second such Delete operation. Therefore a Delete operation in

this subsequence must operate on an �-height-balanced tree. Since the Delete operation

decreases h�(T ) by just one, the result is a loosely �-height-balanced tree. The claim

follows from applying the preceding claims in an induction on the number of operations. 2

Proof (of Theorem 3.5.3): The proof of Theorem 3.5.1 can be easily modi�ed to

show that the amortized complexity of Inserting and Deleting is logarithmic. That is

the potential saved at the scapegoat node can \pay" the cost of rebuilding and possibly

searching in the amortized sense. A similar argument to that in the proof of Theorem 3.5.1

holds for Delete triggered rebuilding of the root.

By Claim 3.5.10 the height of a scapegoat tree is always logarithmic in the number

of nodes. Thus accounting for the worst-case performance of Searches claimed in the

theorem. 2

3.6 Rebuilding in Place

A straightforward way of rebuilding a tree is to use a stack of logarithmic size to traverse

the tree in-order in linear time and copy its nodes to an auxiliary array. Then build the

new 1=2-weight-balanced tree using a \divide and conquer" method. This yields O(n) time

and space complexity. Chang and Iyengar [31] survey a few techniques for rebuilding trees

using logarithmic auxiliary space, and present additional algorithms.
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The algorithms we present in this section are not included in their survey. All of the

algorithms they present require two traversals of the tree. The non-recursive technique

presented in Section 3.6.2 takes advantage of the fact that the input subtree is known to

be of depth logarithmic in the size of the whole tree to perform rebuilding in a single pass.

3.6.1 A Simple Recursive Method.

The �rst algorithm links the elements together into a list, rather than copying them into

an array.

The initial tree-walk is implemented by the following procedure, Flatten. A call of

the form Flatten(x;nil) returns a list of the nodes in the subtree rooted at x, sorted in

nondecreasing order. In general, a call of the form Flatten(x; y) takes as input a pointer x

to the root of a subtree and a pointer y to the �rst node in a list of nodes (linked using

their right pointer �elds). The set of nodes in the subtree rooted at x and the set of nodes

in the list headed by y are assumed to be disjoint. The procedure returns the list resulting

from turning the subtree rooted at x into a list of nodes, linked by their right pointers, and

appending the list headed by y to the result.

Flatten(x; y)

1 if x = nil

2 then return y

3 right [x] Flatten(right[x]; y)

4 return Flatten(left [x]; x)

The procedure runs in time proportional to the number of nodes in the subtree, and in

space proportional to its height

The following procedure, Build-Tree, builds a 1=2-weight-balanced tree of n nodes

from a list of nodes headed by node x. It is assumed that the list of nodes has length at

least n + 1. The procedure returns the n + 1st node in the list, s, modi�ed so that left [s]

points to the root r of the n-node tree created.
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Figure 3-2: The tree Insert(T; 8), where T is the tree of Figure 1.

Build-Tree(n; x)

1 if n = 0

2 then left [x] nil

3 return x

4 r Build-Tree(d(n� 1)=2e; x)

5 s Build-Tree(b(n� 1)=2c; right [r])

6 right [r] left [s]

7 left [s] r

8 return s

A call to Build-Tree(n; scapegoat) runs in time O(n) and uses O(log n) space.

The following procedure, Rebuild-Tree, takes as input a pointer scapegoat to the

root of a subtree to be rebuilt, and the size n of that subtree. It returns the root of the

rebuilt subtree. The rebuilt subtree is 1=2-weight-balanced. The procedure utilizes the

procedures Flatten and Build-Tree de�ned above, and runs in time O(n) and space

proportional to the height of the input subtree.

Rebuild-Tree(n; scapegoat)

1 create a dummy node w

2 z  Flatten(scapegoat; w)

3 Build-Tree(n; z)

4 return left [w]

Figures 3.4.2 and 3 illustrate this process.
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Figure 3-3: Non-recursive rebuilding in place. An intermediate state during the execution
of a rebuilding in place of the tree Insert(T; 8). Node 11 is the new root of the subtree
being rebuilt. (See T in Figure 1).

3.6.2 A Non-Recursive Method.

This section suggests a non-recursive method for rebuilding a tree in logarithmic space,

that proved to be faster in our experiments than the previous version.

We traverse the old tree in-order. Since the number of nodes in the tree is known, the

new place of each node we encounter can be uniquely determined. Every node is \plugged

into" the right place in the new tree upon being visited, thereby creating the new tree in

place.

We need to keep track of the \cutting edge" of the two tree traversals as shown in

Figure 3.6.2. Since the depth of both trees is logarithmic, two logarithmic size stacks

su�ce for this purpose.

The procedure Rebuild-Tree provides the same interface as the procedure with the

same name given in sub-section 3.6.1. It calls the procedures Get-Next-Node and Add-

New-Node, which are described below.

Our pseudo-code calls the standard stack-handling routines Pop, Push, Create and

Top. It also uses Second { a routine that peeks at the second element on the stack.
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Rebuild-Tree(n; scapegoat)

1 insert type i-type-left

2 slots in last level 2blgnc

3 nodes for last level n� slots in last level+ 1

4 ratio nodes for last level=slots in last level

5 Create(Ruining Stack)

6 Create(Building Stack)

7 Push(Ruining Stack; scapegoat)

8 while n > 0

9 do n n� 1

10 insert type Add-New-Node(Get-Next-Node(); insert type)

11 return Top(Building Stack)

The routineGet-Next-Node traverses the old tree in-order. It uses a stack { Ruining Stack

{ to store pointers to the nodes of the old subtree. The size of this stack is bound by the

depth of the subtree being rebuilt, i.e. by h�(n) + 2, where n is the size of the subtree.

Get-Next-Node()

1 next node Top(Ruining Stack)

2 while left [next node] 6= nil

3 do father node next node

4 next node left [next node]

5 if next node = Top(Ruining Stack)

6 then Pop(Ruining Stack)

7 else left [father node] nil

8 if right [next node] 6= nil

9 then Push(Ruining Stack; right[next node])

10 return next node

The routine Add-New-Node creates a perfectly balanced tree from the nodes that are
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passed to it in-order.

Add-New-Node accesses and modi�es the global variables ratio, nodes for last level

and slots in last level that were set by Rebuild-Tree. It assumes that the number of

times it will be called is compatible with the initial value of nodes for last level.

The parameters ofAdd-New-Node are next node and insert type. The �rst { next node

{ is a tree-node. The nodes are assumed to be passed in-order. The second parameter {

insert type { can be equal to one of three constants: i-t-left { if the node is to be inserted

as a leaf which is a left son of its parent; i-t-right { same as i-t-left only for a right

son; and i-t-parent { if the node is not a leaf. Add-New-Node returns the value that

should be passed as insert type on the next call.

Add-New-Node uses a stack { Building Stack { the size of which is bound by lg n+1,

where n is the size of the subtree being rebuilt. The records stored on this stack contain four

�elds { a pointer to a tree node, height , lacks right son and lacks father . The height �eld is

a positive integer that records the height of the appropriate node in the new tree relatively

to the deepest leaf in the tree. The boolean �elds lacks right son and lacks father indicate

the reason that caused us to push the record on the stack. Possible reasons are { the node

does not have a father yet, or the node's right son was not determined yet. For every record

on the stack at least one of lacks right son and lacks father is set to true. We will refer

to these �elds in the order in which they were described. Hence, fnode; 7;true;falseg

will denote a record that points to node node, with height equal to 7, lacks right son set

to true and lacks father set to false.

Add-New-Node(next node; insert type)

1 if insert type 6= i-t-parent

2 then slots in last level slots in last level� 1

3 if nodes for last level=slots in last level < ratio

4 then return Skip-A-Leaf(next node; insert type)

5 else nodes for last level nodes for last level� 1

6 return Add-A-Leaf(next node; insert type)

7 else return Add-Non-Leaf(next node)
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Skip-A-Leaf(next node; insert type)

1 if insert type = i-t-left

2 then skip a left leaf

3 left [next node] nil

4 if height [Top(Building Stack)] = 2

5 then right [Top(Building Stack)] next node

6 if :lacks father [Top(Building Stack)]

7 then Pop(Building Stack)

8 else lacks right son[Top(Building Stack)] false

9 Push(Building Stack; fnext node; 1;true;falseg)

10 else Push(Building Stack; fnext node; 1;true;trueg)

11 return i-t-right

12 else skip a right leaf

13 right[Top(Building Stack)] nil

14 if :lacks father [Top(Building Stack)]

15 then Pop(Building Stack)

16 else lacks right son[Top(Building Stack)] false

17 return Add-Non-Leaf(next node)
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Add-A-Leaf(next node; insert type)

1 right [next node] nil

2 left [next node] nil

3 if insert type = i-t-left

4 then Push(Building Stack; fnext node; 0;false;trueg)

5 else right [Top(Building Stack)] next node

6 if lacks father [Top(Building Stack)]

7 then lacks right son[Top(Building Stack)] false

8 else Pop(Building Stack)

9 return i-t-parent

Add-Non-Leaf(next node)

1 left [next node] Top(Building Stack)

2 next node0s height height [Top(Building Stack)] + 1

3 Pop(Building Stack)

4 if height [Second(Building Stack)] = next node0s height+ 1

5 then right[Top(Building Stack)] next node

6 if :lacks father [Top(Building Stack)]

7 then Pop(Building Stack)

8 else lacks right son[Top(Building Stack)] false

9 Push(Building Stack; fnext node; next node0s height;true;falseg)

10 else Push(Building Stack; fnext node; next node0s height;true;trueg)

11 if height [Top(Building Stack)] > 1

12 then return i-t-left

13 else return i-t-right
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3.7 More on Applications of Scapegoat Techniques

Scapegoat balancing techniques are applicable not only to binary search trees, but also to

other tree-based data structures. We �rst state su�cient conditions for their applicability,

and then describe some known data structures which meet these conditions. No balanc-

ing scheme that does not store auxiliary information at the nodes was previously known

for the multi-key data structures to which we show scapegoat techniques can be applied.

The discussion in the second subsection, addresses the upgrading of code that supports

unbalanced data structures to scapegoat-balanced structures. It also suggests steps for the

initial coding of scapegoat trees.

3.7.1 Multi-Key Data

The ideas underlying scapegoat trees are that of �nding and rebuilding a subtree whose

root is not weight-balanced when the tree gets too deep, and periodically rebuilding the

root after enough deletes occurred. This technique can be applied to other tree-like data

structures. To allow this, it should be possible to �nd the scapegoat node and to rebuild

the subtree rooted at it. The time to �nd the scapegoat and the rebuilding time does not

have to be linear in the number of nodes in the subtree being rebuilt, as was the case with

binary search trees (Theorem 3.5.3). It is also not necessary for the rebuilding algorithm

to yield a perfectly balanced subtree. These generalizations of the main theorem, allow us

to apply scapegoat techniques to an array of other tree-like data structures.

A Stronger Version of the Main Theorem.

Suppose for a class of trees, some �xed �bal � 1=2 and a function F , F (n) = 
(1), satisfying

F (Cn) = O(F (n)) for any constant C, there exists an algorithm that when given n nodes

can in O(nF (n)) steps build a tree containing those nodes that is �bal-weight-balanced.

We'll call such a rebuilding routine a �bal-relaxed rebuilding routine. Also suppose there

exists an algorithm that can �nd an ancestor of a given node that is not weight-balanced in

O(nF (n)) time, where n is the size of the subtree rooted at the scapegoat node, provided

such an ancestor exists. Then we can use scapegoat techniques to support dynamic updates
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to this class with amortized logarithmic complexity. When F (n) is constant and �bal = 1=2,

we have the previously handled situation of Theorem 3.5.3.

For a �xed �trigger, �trigger > �bal, an insertion of a deep node with respect to �trigger

would trigger a rebuilding. Claim 3.5.1 guarantees that such a node has an �trigger-weight-

unbalanced ancestor. However, for any constants �, �, 1=2 < � < � and for n large

enough there exists a �-weight-unbalanced tree of size n that can be rebuilt into a deeper

�-weight-balanced tree. Hence, we cannot choose any �trigger-weight unbalanced ancestor

of the deep node to be the scapegoat. However, if we choose as a scapegoat an ancestor x

of the deep node that satis�es condition (3.6):

h(x) > h�trigger
(size(x)); (3.8)

we can prove the following theorem.

Theorem 3.7.1 A relaxed scapegoat tree can handle a sequence of n Insert andm Search

or Delete operations, beginning with a 1=2-weight-balanced tree, with an amortized cost

of O(F (n) log
1=�trigger

n) per Insert or Delete and O(log
1=�trigger

k) worst-case time

per Search, where k is the size of the tree the Search is performed on.

Proof (sketch) : The existence of an ancestor that satis�es equation (3.8) is guaranteed

as explained in Section 3.5 (the root of the tree satis�es it). It follows from the way the

scapegoat was chosen that rebuilding the subtree rooted at it decreases the depth of the

rebuilt subtree, allowing us to prove a result similar to Claim 3.5.7. The other claims

leading to Theorem 3.5.3 can also be proven for relaxed rebuilding. Hence, we can indeed

support a tree of depth at most log
1=�trigger

k + 1, where k is the size of the tree, thereby

establishing the bound on the worst-case search time.

To prove the amortized bound on the complexity of updates we will de�ne a potential

function � in an inductive manner. Let the potential of the nodes in a subtree that was

just rebuilt and of newly inserted nodes be 0. Every time a node is traversed by an update

operation, increase its potential by F (N), where N is the size of the subtree rooted at that

node. For any update operation, the node whose potential is increased the most is the root.
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Hence the total price of the update operation is bounded by

(F (N) + 1) log
1=�trigger

N = O(F (N) log
1=�trigger

N)

as F (n) = 
(1).

If the root is �trigger-weight unbalanced, then CN di�erent update operations traversed

it since it was inserted or last rebuilt. Now C � C0, where

C0 =
�trigger � �bal

2�trigger�bal
:

At each one of the last C0 passes the potential of the root was increased by at least

F ((1�C0)N). Hence, the total potential stored at the root is at least C0NF ((1�C0)N) =

O(NF (N), allowing it to pay for the rebuilding operation.

2

Scapegoat k � d Trees.

Bentley [12] introduced k � d trees. He proved average-case bounds of O(lg n) for a tree

of size n for both updates and searches. Bentley [13] and Overmars and van Leeuwen [55]

propose a scheme for dynamic maintenance of k�d trees that achieves a logarithmic worst-

case bound for searches with an average-case bound of O((lg n)2) for updates. Both use an

idea similar to ours of rebuilding weight-unbalanced subtrees. Overmars and van Leeuwen

called their structure pseudo k � d trees.

Scapegoat k � d trees achieve logarithmic worst-case bounds for searches and a log2 n

amortized bound for updates. ( The analysis of updates of Overmars and van Leeuwen [55]

and Bentley [13] can be improved to yield amortized rather than average-case bounds.)

However, scapegoat k � d trees do not require maintaining extra data at the nodes. Also

we believe they might prove to be faster in practice as they do not rebuild every weight-

unbalanced node, thereby allowing for it to become balanced by future updates.

Applying Theorem 3.7.1 we get:

Theorem 3.7.2 A scapegoat k�d tree can handle a sequence of n Insert and m Search
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or Delete operations, beginning with a 1=2-weight-balanced tree, with O(log2 n) amortized

cost per Insert or Delete and O(log k) worst-case time per Search, where k is the size

of the tree the Search is performed on.

Proof: To apply Theorem 3.7.1 we use the algorithm Bentley [12] proposes for building

a perfectly balanced k � d tree of N nodes in O(kN lgN), by taking as a splitting point

the median with respect to the splitting coordinate. Finding the scapegoat is done in a

manner similar to that in binary search trees. 2

Scapegoat Trees for Orthogonal Queries.

For keys which are d dimensional vectors one may wish to specify a range for each compo-

nent of the key and ask how many keys have all components in the desired range. Leuker [40]

proposed an algorithm that handles range queries in O(logdn) worst-case time where n is

the size of the tree. Updates are handled in O(nlogdn) amortized time.

Leuker's paper proves that given a list of n keys a 1=3-balanced tree may be formed in

O(nlogmin(1;d�1)n) time.

Using this in Theorem 3.7.1 proves

Theorem 3.7.3 A scapegoat orthogonal tree can handle a sequence of n Insert and m

Search orDelete operations, beginning with a 1=2-weight-balanced tree, with O(logmin(2;d) n)

amortized cost per Insert orDelete and O(logd k) worst-case time per range query, where

k is the size of the tree the range query is performed on.

Note that our algorithm improves Leuker's amortized bounds for updates, and does not

require storage of balancing data at the nodes of the tree.

Scapegoat Quad Trees.

Quad trees were introduced by Finkel and Bentley [25]. They achieve a worst-case bound of

O(log2N) per search. (As in a d dimensional quad tree every node has 2d children naively

one could expect a O(log2dN) worst-case search time.) They do not address deletion,

and give only experimental results for insertion times. Samet [62] proposed an algorithm
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for deletions. Overmars and van Leeuwen [55] introduced pseudo-quad trees { a dynamic

version of quad trees. They suggest an algorithm for achieving O((lgN)2) average insertion

and deletion times, where N is the number of insertions, while improving the worst-case

search time to logd+1�� n+O(1), where d is the dimension of the tree, n the size of the tree

the search is performed on, and � an arbitrary constant satisfying 1 < � < d.

Scapegoat quad trees can be compared to pseudo-quad trees:

� Scapegoat trees o�er worst-case search time of C logd+1
n for any constant C, or

following the original notations of Overmars and van Leeuwen logd+1�� n for any

positive constant � (note that we do not require 1 < �).

� The bounds on updates are improved from average-case to amortized bounds. (Though

careful analysis of the algorithm of Overmars and van Leeuwen [55] can yield amor-

tized bounds too.)

� Scapegoat trees do not require maintenance of extra data at the nodes regarding the

weight of the children of each node. This can be quite substantial in this case, as

each node has 2d children, where d is the dimension of the tree.

� Scapegoat trees might prove faster in practice, as they do not require the rebuilding

of every weight-unbalanced node, thereby allowing some nodes to be balanced by

future updates. Also more compact storage might result in greater speed.

We call a multi-way node, x, �-weight-balanced, if the every child y of x, satis�es

size (y) � �size (x). Weight and height balanced trees are de�ned in a way similar to that

used for binary trees.

Theorem 2.2.3 in Overmars and van Leeuwen [55] suggests how to build a 1=(d + 1)

weight balanced pseudo-quad tree in O(n log n) time. Finding a scapegoat in a multiway

tree can be done by traversing a tree in a manner similar to that described for binary trees,

starting at the deep node and going up. Plugging this into Theorem 3.7.1 proves:

Theorem 3.7.4 A scapegoat quad tree can handle a sequence of n Insert and m Search

or Delete operations, beginning with a 1=2-weight-balanced tree, with O(log2 n) amortized
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cost per Insert or Delete and O(logd+1�� k) worst-case time per Search, where k is the

size of the tree the Search is performed on.

3.7.2 Upgrading Unbalanced Binary Search Trees to Scapegoat

Trees

To upgrade an existing data base that uses a binary search trees' data representation, a

change to the data itself is not required. One may continue to use the existing code to

perform searches and modi�cation of the data base. Scapegoat trees can be implemented

as a software layer above the existing code that uses the existing code as a subroutine.

The scapegoat layer can maintain the two constants required to trigger rebuildings that

result from deletions without referring to the inner state of the data structure, or the details

of the old search trees' implementation. A rebuilding needs to be carried out following a

deep insertion. Deep insertions can possibly be diagnosed by measuring insertion time.

More realistically, the number of calls by the old search trees' layer to the layer under it

can be counted. This number reects the number number of nodes in the data structure

that are accessed. The insertion of a deep node will cause the number of such calls to

surpass a prespeci�ed threshold.

Rebuildings as well as look-ups of weight unbalanced ancestors are carried out by a

subroutine of the scapegoat layer. They modify the data only. Provided the data format

is maintained, the old code shall work correctly with the rebuilt tree.

At the time of switch from the old code to the new code a single rebuilding of the whole

tree is su�cient by Theorem 3.5.3. Thus the complexity of a switch is linear in the size of

the data base.

The cost of \plugging in" scapegoat balancing can be amortized over the �rst 
(size [T ])

update operations, ovoiding the rebuilding of the the whole tree required above. The

scapegoat node can always be chosen at depth � h�(n). Indeed, any node at depth > h�(n)

must have a weight unbalanced ancestor at depth � h�(n) by Claim 3.5.1. If we always

choose the scapegoat at depth � h�(n) then we can prove:

Theorem 3.7.5 The amortized complexity of 
(size[T ]) update operations that use the
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scapegoat balancing scheme is O(lg size[T ]) starting with an arbitrary binary tree, for some

scapegoat selection schemes.

Proof: Notice that potential has to be maintained only at nodes that can be rebuilt. If

we choose the scapegoat at depth � h�(n), then we need to maintain potential at nodes of

that depth only. Since

X
fx:d(x)=kg

jsize[left [x]]� size[right[x]]j � size[T ]

the total potential that needs to be stored at an arbitrary binary tree to subsequently

support scapegoat-balanced updates is O(nh�(n)) = O(n lg n). Amortizing this over 
(n)

operations gives the desired bound. 2

Similarly, scapegoat balancing can be added onto the various tree-based schemes dis-

cussed in Section 3.7. This feature can also be used to support two-staged development of

scapegoat code. The unbalanced structure produced in the �rst stage will then provide all

of the complete system's features except performance.

3.8 Reducing Delete Incurred Restructuring

By rebuilding the whole tree whenever triggering condition (3.7)

size[T ] > �max size[T ]

is satis�ed the tree is guaranteed to stay loosely �-height-balanced (Theorem 3.5.3). That

is

h(T ) � h�(T ) + 1: (3.9)

We can reduce the frequency of Delete induced restructuring without violating the loga-

rithmic depth of scapegoat trees. Call a binary tree L-loosely �-height-balanced if

h(T ) � h�(T ) + L: (3.10)
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In this section we show that ifDelete induced restructuring is triggered by the satisfaction

of condition

size[T ] > �Lmax size[T ] (3.11)

the tree can be kept L-loosely �-height-balanced.

Claim 3.8.1 A scapegoat tree can handle a sequence of Insert and Delete operations

with Delete induced whole-tree restructuring being triggered by the satisfactions of

size[T ] > �Lmax size[T ]

while remaining L-loosely �-height-balanced after each operation.

Proof: The proof is similar to that of Claim 3.5.10. Restricting our attention to the sub-

sequence of operations oi1 ; : : : ; oik that modify h�(T ), we observe that by a generalization

of Claim 3.5.9 an Insert operation in this subsequence into an unbalanced tree reduces

the looseness of the tree's balance by 1. Thus an Insert operation in this subsequence

that increases max size[T ] leaves the tree �-height-balanced. The degree of looseness of

a tree is therefore upper bounded by the di�erence between the number of Delete and

Insert operations in this subsequence since the last increase of max size[T ]. Condition

(3.11) guarantees that this quantity does not exceed L. 2

Comment: The looser triggering condition for Delete induced restructuring speci�ed

by (3.11) applies to multi-key scapegoat trees as well.

3.9 Comparison to Andersson's Work

We arrived at our result unaware of Andersson's publication [2] that has preceded our

discovery by about a year. Even in light of his precedence scapegoat trees contribute to

the theoretical understanding of the family of data structures that use partial rebuilding

to enforce a bound on the tree's depth [3, 13, 55, 40, 25].

The �rst part of his thesis [3] culminates with the presentation of two data structures he

callsGB(c) trees and GB0(c) trees { General Balanced trees. These he terms \superclasses"
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containing all other classes of balanced trees. They satisfy the simplest possible criterion

that guarantees logarithmic time searching { O(lg n) height. Most other tree based data

structures, like AVL trees [1], Red-Black trees [9, 29], BB(�) trees [53], �BB trees [54]

and Andersson's BH(c) trees impose a balance condition that makes some of the trees of

height O(lg n) not members of the class of allowed trees. Andersson's GB(c) trees and

GB0(c) trees are the �rst known scheme that legalizes all trees that can be searched in

logarithmic time. The class of GB0(c) trees possesses the extra merit of storing no extra

information at the nodes to support balancing. (Andersson's c is comparable to � by the

equation c = �(lg�)�1:)

Scapegoat trees likewise are a \superclass" of trees that does not maintain any balancing

information at the nodes identical to GB0(c). A comparison of the main theorems for

scapegoat trees and GB0(c) shows the greater generality of our theoretical analysis.

In particular Theorem 3.5.1 about rebuilding following an insertion is stronger than

Andersson's comparable claim. After a deep node is inserted into a GB0(c) tree the path

up to the root is retraced until the �rst node x satisfying

h(x) > dc lg size(x)e

is encountered and rebuilt. He chooses the scapegoat using what we call the \alternative"

method (equation (3.6)). Theorem 3.5.1 asserts that any weight unbalanced node on the

path from the deep node to the root may be rebuilt to restore the balance. According to

Claim 3.5.2 any node chosen by the \alternative" method is weight-unbalanced. Hence this

method is only a special case of the more general analysis in Theorem 3.5.1.

As for deletion, Andersson proves that to handle the imbalances resulting from deletions

it is su�cient to rebuild the whole tree whenever

d(T ) � size[T ];

where d(T ) is the number of deletions that were performed since the last rebuilding of the

whole tree. He proves that GB0(c) trees compromise perfect height balance for c lg(1 + )-
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loose height balance to accommodate deletions. That is nodes might be c lg(1 + ) levels

deeper than the desired maximal depth of h
2�1=c(size[T ]).

We prove that to maintain a L-loosely height-balanced scapegoat tree it is su�cient to

rebuild the whole tree whenever (equation (3.11) ):

size[T ] > �Lmax size[T ]

or

max size[T ] > ��Lsize[T ]:

Solving 2�1=c = �, c lg(1 + ) = L we get

 = ��L � 1:

Since

d(T ) � max size[T ]� size[T ]

We conclude that our rebuilding criterion is theoretically stronger than Andersson's compa-

rable criterion. To maintain the same balance condition we require less frequent rebuilding

of the whole tree. Compare the number of Delete-induced rebuildings of the whole tree

in a scapegoat tree with parameter � to the number of such rebuildings for a GB0(c) with

c = � lg�1 �.

Any sequence that causes the satisfaction of condition

max size[T ] > ��Lsize[T ] (3.12)

must include at least size[T ] = (��L�1)size[T ] deletions. Thus any sequence of operations

that causes a Delete-induced restructuring of a scapegoat tree will also trigger at least

one restructuring of the comparable GB0(c) tree. The opposite is not true.

For example consider an arbitrarily long sequence of alternating Inserts and Deletes.

For this input sequence a scapegoat tree does not get totally rebuilt even once, while a

GB0(c) tree gets rebuilt arbitrarily many times.
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To sum up a scapegoat trees require less total rebuilding to assure the same balance

criterion as GB0(c) trees.

The usage of these schemes for multiway trees as well as their use for upgrading existing

code are novel. Sleator and Tarjan [64] as well as Andersson [3] do not report experimental

measurements of their suggested structures' performance. In the next section we present

a practical study of tree-based dictionary solutions that do not require storage of balance

enforcing information at the nodes.

3.10 Experimental Results

Our experiments address the e�cient practical implementation of scapegoat trees and com-

pare them to other known binary search trees' balancing schemes.

3.10.1 Optimizing Scapegoat Trees

The non-recursive method of rebuilding subtrees described in section 3.6.2 proved to work

faster than the method described in section 3.6.1 by 25% { 30%. In section 3.4 we described

two ways to choose the scapegoat. Our experiments suggest that checking for condition (3.6)

yields a better overall performance.

In our experiments we used a variant of the non-recursive rebuilding algorithm described

by the pseudo-code in section 3.6.2 which inserts all the nodes at the deepest level of the

newly-built subtree at the leftmost possible positions, instead of spreading them evenly.

This simpli�ed the code somewhat and yielded a 6% { 9% percent speedup over the version

described by the pseudo-code. Stout and Warren [68] call these route balanced trees. This

issue is discussed further in Section 3.11.

It is natural to expect that the optimal value for parameter � should depend on the

ratio between the number of searches and the number of modi�cations in a given sequence

of requests to the scapegoat tree. The bigger the ratio of searches the more justi�ed it is

to reduce the value of � thereby enforcing a shallow tree even at the cost of more frequent

rebuilding.

109



N
r

1K 8K 64K

1

4

16

64

256

1024

0.65

0.6

0.6

0.55

0.55

0.55

0.6

0.6

0.6

0.55

0.55

0.55

0.6

0.6

0.55

0.55

0.55

0.55

Figure 3-4: The value of � for which scapegoat trees performed best as a function of N
and r.

In table 3.10.1 we found experimentally the optimal value for � for di�erent values of

r and N , In some practical applications, both r and N or at least one of them might be

predictable in advance at the time of implementation. In such cases we suggest using the

results in table 3.10.1 to tune �.

3.10.2 Scapegoat Trees vs. Other Schemes

We compared scapegoat trees to two other schemes for maintaining binary search trees {

red-black trees and splay trees. We also compare the performance of scapegoat trees for

di�erent values of �. We compare the performance for each one of the three operations

Insert, Delete, and Search separately. We consider two types of workloads { uni-

formly distributed inputs and sorted inputs. The results are summarized in Tables 3.10.2

and 3.10.2. The tables list average time in seconds per 128K (131; 072) operations.

To compare the performance for uniformly distributed inputs, we inserted the nodes

into a tree in a random order, then searched for randomly chosen nodes in the tree, and

�nally deleted all of the nodes in random order. We tried trees of three sizes { 1K, 8K

and 64K. The results appear in Table 3.10.2.

Table 3.10.2 summarizes the results of the comparison for sorted sequences. Here too
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Figure 3-5: Results of comparative experiments for uniformly distributed inputs. Execution
time in seconds per 128K (131; 072) operations for splay trees, red-black trees and scapegoat
trees with � varying between 0:55 { 0:75 for tree sizes of 1K, 8K and 64K.

we tried three tree sizes { 1K, 8K and 64K. First we inserted the nodes into a tree in

increasing order of keys, then we searched for all of the keys that were inserted in increasing

order, and �nally we deleted all of the nodes in increasing order of keys.

For uniformly distributed sequences our experiments show that one can choose an �

so that scapegoat trees outperform red-black trees and splay trees on all three operations.

However, for the insertion of sorted sequences scapegoat trees are noticeably slower than

the other two data structures. Hence, in practical applications, it would be advisable to use

scapegoat trees when the inserted keys are expected to be roughly randomly distributed,

or when the application is search intensive.

For the splay trees we used top-down splaying as suggested by Sleator and Tarjan [64].

The implementation of red-black trees follows Chapter 14 in Cormen, Leiserson and Rivest [20].

3.11 Discussion and Conclusions

Stout and Warren [68] present an algorithm which takes an arbitrary binary search tree

and rebalances it to form what they call a route balanced tree using linear time and only

constant space. This improves upon the logarithmic space required to output a perfectly

balanced tree. A route balanced tree is one containing exactly 2d nodes at level d for

1 � g < blg nc, with no limitation on the position of trees at the deepest level. Can the
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1 K 8 K 64 K

2.83 7.75 6.17 3.59 9.49 7.13 4.96 11.19 8.49

2.40 3.38 3.50 2.65 3.21 3.81 3.46 3.74

1.37 21.25 2.90 1.88 29.84 3.45 2.50 36.91 3.72

1.41 18.67 3.08 1.89 25.38 3.31 2.44 33.26 3.75

1.38 16.17 3.04 1.88 23.39 3.19 2.58 29.47 3.93

1.36 15.80 3.02 1.90 20.02 3.36 2.59 24.31 3.87

1.54 13.94 3.83 1.88 19.25 3.49 2.67 24.79 4.15

2.68

Figure 3-6: Results of comparative experiments for monotone inputs. Execution time in
seconds per 128K (131; 072) operations for splay trees, red-black trees and scapegoat trees
with � varying between 0:55 { 0:75 for tree sizes of 1K, 8K and 64K.

performance of scapegoat trees be achieved by a structure resorting to route rebalancing

rather than perfect rebalancing of subtrees?

We also leave as an open problem the average-case analysis of scapegoat trees (say,

assuming that all permutations of the input keys are equally likely).

Section 3.4.2 proposed a few ways in which the scapegoat node can be chosen. Which one

is superior remains an open question that may be resolved theoretically or experimentally.

To summarize: scapegoat trees are the �rst \unencumbered" tree structure (i.e., having

no extra storage per tree node) that achieves a worst-case Search time of O(log n), with

reasonable amortized update costs.
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