
The Cilk System for Parallel Multithreaded Computing

by

Christopher F. Joerg

Submitted to the Department of Electrical Engineering and Computer Science

in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1996

c Massachusetts Institute of Technology 1996. All rights reserved.

Author :

Department of Electrical Engineering and Computer Science

January, 1996

Certi�ed by :

Charles E. Leiserson

Professor

Thesis Supervisor

Accepted by :

Frederic R. Morgenthaler

Chairman, Departmental Committee on Graduate Students

The Cilk System for Parallel Multithreaded Computing

by

Christopher F. Joerg

Submitted to the Department of Electrical Engineering and Computer Science

on January, 1996, in partial ful�llment of the

requirements for the degree of

Doctor of Philosophy

Abstract

Although cost-e�ective parallel machines are now commercially available, the widespread

use of parallel processing is still being held back, due mainly to the troublesome nature of

parallel programming. In particular, it is still di�cult to build e�cient implementations of

parallel applications whose communication patterns are either highly irregular or dependent

upon dynamic information. Multithreading has become an increasingly popular way to

implement these dynamic, asynchronous, concurrent programs. Cilk (pronounced \silk")

is our C-based multithreaded computing system that provides provably good performance

guarantees. This thesis describes the evolution of the Cilk language and runtime system,

and describes applications which a�ected the evolution of the system.

Using Cilk, programmers are able to express their applications either by writing mul-

tithreaded code written in a continuation-passing style, or by writing code using normal

call/return semantics and specifying which calls can be performed in parallel. The Cilk run-

time system takes complete control of the scheduling, load-balancing, and communication

needed to execute the program, thereby insulating the programmer from these details. The

programmer can rest assured that his program will be executed e�ciently since the Cilk

scheduler provably achieves time, space, and communication bounds all within a constant

factor of optimal. For distributed memory environments, we have implemented a software

shared-memory system for Cilk. We have de�ned a \dag-consistent" memory model which is

a lock-free consistency model well suited to the needs of a multithreaded program. Because

dag consistency is a weak consistency model, we have been able to implement coherence

e�ciently in software.

The most complex application written in Cilk is the ?Socrates computer chess program.

?Socrates is a large, nondeterministic, challenging application whose complex control de-

pendencies make it inexpressible in many other parallel programming systems. Running

on an 1824-node Paragon, ?Socrates �nished second in the 1995 World Computer Chess

Championship.

Currently, versions of Cilk run on the Thinking Machines CM-5, the Intel Paragon,

various SMPs, and on networks of workstations. The same Cilk program will run on all of

these platforms with little, if any, modi�cation. Applications written in Cilk include protein

folding, graphic rendering, backtrack search, and computer chess.

Thesis Supervisor: Charles E. Leiserson

Title: Professor

Acknowledgments

I am especially grateful to my thesis supervisor, Professor Charles Leiserson, who has led the

Cilk project. I still remember the day he came to my o�ce and recruited me. He explained

how he realized I had other work to do but he wanted to know if I would like to help out

\part time" on using the PCM system I had worked on to implement a chess program.

It sounded like a interesting project, so I agreed, but only after making it clear that I

could only work part time because I had my thesis project to work on. Well, \part time"

became \full time", and at times \full time" became much more than that. Eventually,

the chess program was completed, and the chess tournament came and went, yet I still

kept working on the PCM system (which was now turning into Cilk). Ultimately, I realized

that I should give up on my other project and make Cilk my thesis instead. Charles is a

wonderful supervisor and under his leadership, the Cilk project has achieved more than I

ever expected. Charles' inuence can also be seen in this write-up itself. He has helped me

turn this thesis into a relatively coherent document, and he has also pointed out some of

my more malodorous grammatical constructions.

The Cilk project has been a team e�ort and I am indebted to all the people who have

contributed in some way to the Cilk system: Bobby Blumofe, Feng Ming Dong, Matteo

Frigo, Shail Aditya Gupta, Michael Halbherr, Charles Leiserson, Bradley Kuszmaul, Rob

Miller, Keith Randall, Rolf Riesen, Andy Shaw, Richard Tauriello, and Yuli Zhou. Their

contributions are noted throughout this document.

I thank, along with the members of the Cilk team, the past and present members of

the Computation Structures Group. These friends have made MIT both a challenging and

a fun place to be. In particular I should thank Michael Halbherr. He not only began the

work that lead to the PCM system, but he tried many times to convince me to switch my

thesis to this system. It took a while, but I �nally realized he was right.

I am also indebted to Don Dailey and Larry Kaufman, both formerly of Heuristic Soft-

The research described in this document was supported in part by the Advanced Research Projects

Agency of the Department of Defense under grants N0014-94-1-0985 and N0014-92-J-1310. This work

was also supported by the National Center for Supercomputing Applications at the University of Illinois

at Urbana-Champagne (NCSA) who, under NCSA Grant TRA930289N, provided us access to their 512-

processor CM-5 for the 1994 chess tournament and by Sandia National Laboratories who provided us access

to their 1824-node Intel Paragon for the 1995 tournament.

ware. They wrote the serial Socrates program on which ?Socrates is based. In addition,

Don and I spent many long nights debugging, testing, and improving (or at least trying to

improve) ?Socrates. Most of this time we even had fun.

Professor Arvind, Dr. Andy Boughton, and Dr. Greg Papadopoulus also deserve many

thanks. They provided me the freedom, encouragement, and support to work on a wide

range of exciting projects throughout my years at MIT.

I am also grateful to my parents and my family. Their love and support has always been

important to me.

Last, but not least, I thank Constance Je�ery. Whether we were together, apart, or o�

on one of our many trips ranging from Anchorage to Zurich, her continuing friendship over

the past decade has made these years enjoyable and memorable.

Contents

1 Introduction 13

1.1 Life Before Cilk . 16

1.2 The Evolution of Cilk . 22

2 The PCM System 31

2.1 Introduction . 31

2.2 The Parallel Continuation Machine . 34

2.2.1 Elements of the PCM . 35

2.2.2 The Thread Speci�cation Language 36

2.2.3 Executing a PCM Program . 37

2.2.4 Tail Calls . 40

2.2.5 Passing Vectors in Closures . 41

2.3 Scheduling PCM Threads on a Multiprocessor 41

2.4 Two Case Studies . 44

2.4.1 Ray Tracing . 44

2.4.2 Protein Folding . 49

2.5 Conclusions . 55

3 Cilk1: A Provably Good Runtime System 57

3.1 Cilk-1 Overview . 58

3.2 Cilk Programming Environment and Implementation 60

3.3 Cilk's Work-Stealing Scheduler . 64

3.4 Performance of Cilk-1 Applications . 67

3.5 Modeling Performance . 72

3.6 Theoretical Analysis of the Cilk-1 Scheduler 75

5

3.7 Conclusion . 80

4 The ?Socrates Parallel Chess Program 81

4.1 Introduction . 82

4.2 Parallel Game Tree Search . 84

4.2.1 Negamax Search Without Pruning 84

4.2.2 Alpha-Beta Pruning . 85

4.2.3 Scout Search . 87

4.2.4 Jamboree Search . 89

4.3 Using Cilk for Chess Search . 90

4.3.1 Migration Threads . 93

4.3.2 Aborting Computations . 95

4.3.3 Priority Threads . 97

4.3.4 Steal Ordering . 98

4.3.5 Level Waiting . 99

4.4 Other Chess Mechanisms . 101

4.4.1 Transposition Table . 101

4.4.2 Repeated Moves . 104

4.4.3 Debugging . 105

4.5 Performance of Jamboree Search . 106

4.6 History of ?Socrates . 108

5 Cilk-2: Programming at a Higher Level 113

5.1 A Cilk-1 Example: Knary . 115

5.2 The Cilk 2 System . 119

5.3 Knary Revisited . 122

5.4 Conclusion . 124

6 Cilk-3: Shared Memory for Cilk 127

6.1 Introduction . 128

6.2 Dag Consistency . 135

6.3 Maintaining Dag Consistency . 137

6.4 Implementation . 151

6

6.5 An Analysis of Page Faults . 157

6.6 Conclusion . 160

7 Cilk-4: Supporting Speculative Computations 163

7.1 The Cilk-4 Language . 164

7.2 A Cilk-4 Example: Chess . 168

7.3 Conclusions . 175

8 Conclusions 177

8.1 Summary . 177

8.2 Future Work . 179

8.3 Concluding Remarks . 182

A Protein Folding Optimizations 183

7

8

List of Figures

2-1 Maximizing Communication Locality . 34

2-2 Elements of the PCM Model . 35

2-3 PCM Program to Compute Fibonacci . 38

2-4 Execution of a PCM Program . 39

2-5 Anatomy of a PCM Thread . 42

2-6 Kernel of Sequential Ray Tracer . 45

2-7 Kernel of Parallel Ray Tracer . 46

2-8 Traced Picture and Work Histogram . 47

2-9 A Folded Polymer . 50

2-10 Kernel of Sequential Protein Folding . 51

2-11 Kernel of Parallel Protein Folding . 52

3-1 The Cilk Model of Multithreaded Computation. 59

3-2 The Closure Data Structure . 61

3-3 Fibonacci in Cilk-1 . 63

3-4 Estimating Critical Path Length Using Time-Stamping 65

3-5 Normalized knary Speedup . 74

3-6 Normalized ?Socrates Speedup . 75

4-1 Algorithm negamax. 85

4-2 Pruning in a Chess Tree . 86

4-3 Algorithm absearch. 86

4-4 Algorithm scout. 88

4-5 Algorithm jamboree. 89

4-6 The Dataow Graph for Jamboree Search. 91

9

4-7 Cilk Dag for ?Socrates' Search Algorithm. 92

4-8 Use of Migration Threads . 94

4-9 Modi�ed Ready Queue . 99

4-10 Selected Chess Positions . 106

5-1 Cilk-1 Code for Knary. 117

5-2 Fibonacci in Cilk2 . 121

5-3 Cilk-2 Code for Knary. 123

6-1 Recursive Matrix Multiply . 129

6-2 Matrix Multiply in Cilk . 130

6-3 Matrix Multiply Dag . 131

6-4 Matrix Multiply Performance . 134

6-5 A Kernel Tree . 139

6-6 A Cactus Stack . 154

6-7 Histogram of Cache Warm-up Costs . 159

6-8 Page Faults Statistics . 160

7-1 Cilk Dag for ?Socrates Search Algorithm. 169

7-2 Cilk-4 Code for Test Search. 170

7-3 Cilk-4 Code for Value Search. 173

A-1 Partial Paths on a 2-D Lattice . 185

10

List of Tables

1.1 Evolution of the Cilk System . 23

2.1 Ray Tracing Result Overview . 48

2.2 Protein Folding Run Times . 54

3.1 Performance of Cilk Applications . 68

11

12

Chapter 1

Introduction

Researchers have long worked to bring parallel hardware and software into widespread

use. Recently there has been progress on the hardware front. Serial microprocessors have

been used as cost-e�ective building blocks for medium and large scale parallel machines.

Now many high-volume serial processors contain hooks, such as snoopy buses [KEW+85],

for implementing multiprocessor systems. These hooks make it quite simple and cheap

for commercial computer manufacturers to build inexpensive, entry-level, multiprocessor

machines. This trend towards including multiprocessor support in standard micropro-

cessors occurred �rst with processors used in workstations (e.g. MIPS R4000[MWV92],

Sparc[Sun89], PowerPC 601 [Mot93]) and more recently with processors for PCs (e.g. In-

tel's Pentium P54C [Gwe94]). As with any other commodity, as parallel machines drop in

price, they become cost-e�ective in new areas, leading to parallel machines being installed at

more and more sites. If this trend wasn't enough, high-speed networks and lower-overhead

software are threatening to turn every LAN into a potential parallel machine [ACP95]. We

may �nally be witnessing the move of parallel machines into the mainstream.

Although building parallel computers has become easier, programming parallel comput-

ers can still be quite di�cult. To see that parallel programming has not moved into the

mainstream, just take note of the way in which existing small-scale SMPs are being used.

This usage pattern is hard to document quantitatively, but as an example, \Open Comput-

ing" estimates that of all the high end, 2-8 processor PCs sold, 70% of them are used as �le

and print servers [EL94]. It seems that most small scale SMPs are destined to spend their

lives as \throughput machines," never to run a single parallel job. We should not be too

13

negative, however, since clearly some progress has been made on the software front. Unfor-

tunately much of this progress has been in programming languages that are suited to static

programs. A static program is one whose control behavior is relatively data-independent,

so the computation can be fairly well mapped out before the computation begins. Typical

of static programs are the large scienti�c and numeric codes that were the raison d'être of

supercomputers and of early, expensive parallel machines. Naturally, much of the early re-

search in parallel programming was directed towards programming these applications. Even

today, the suites commonly used to benchmark parallel machines (e.g. Perfect [BCK+89],

NAS [BBB+94], and Linpack [DMBS79]) are representative of such programs. Less progress

has been made for easing the task of writing parallel programs for dynamic applications.

These programs are ones where the execution of the program is heavily inuenced by the

data input to the program and by the data computed by the program. These applications

include compilers, simulators, graphic packages, and optimization packages. There has been

less work on building systems suited for dynamic applications such as these, yet these are

exactly the applications that new users of cheap parallel machines will want to run. The

goal of the work presented in this thesis is to partially address this inadequacy by build-

ing a system that allows a programmer to easily and e�ciently implement certain types of

dynamic parallel algorithms.

To reach this goal, the Cilk team at MIT's Laboratory for Computer Science has de-

signed Cilk (pronounced \silk"), a C-based runtime system for multithreaded parallel pro-

gramming. Using Cilk, programmers are able to express their applications either by writing

multithreaded code written in a continuation-passing style, or by writing code using normal

call/return semantics and specifying which calls can be performed in parallel. In the latter

case a type-checking preprocessor automatically breaks up the code into a multithreaded

program. The Cilk runtime system takes complete control of the scheduling, load balanc-

ing, and communication needed to execute the multithreaded program, thereby completely

insulating the programmer from these details. The programmer can rest assured that his

program will be executed e�ciently, since the Cilk scheduler provably achieves time, space,

and communication bounds all within a constant factor of optimal. The Cilk system reports

the \work" and \critical path" of a Cilk computation. Armed with these parameters, the

user can understand and accurately predict the performance of a program. For distributed

memory environments, we have implemented a software shared memory system for Cilk.

14

We have de�ned a \dag-consistent" memory model which is a lock-free consistency model

well suited to the needs of a multithreaded program. Because dag consistency is a relaxed

consistency model, we were able to implement coherence e�ciently in software. Currently,

versions of Cilk run on the Thinking Machines CM-5 [Thi92], the Intel Paragon [Int94],

various SMPs, and on networks of workstations [Blu95]. The same Cilk program will run

on all of these platforms with few, if any, modi�cations. Applications written in Cilk in-

clude protein folding, graphic rendering, backtrack search, and the ?Socrates chess program,

which won second prize in the 1995 World Computer Chess Championship.

I could now describe how having decided upon all the nice features Cilk should have, we

went o� and designed and built a system that contained those features. It would make a

nice story. It just wouldn't be a true story. When we �rst started this project, we had little

idea what the �nal system would look like. In fact, had we sat down and set as our goal

to build a system that looks like Cilk does today, we probably would have decided against

pursuing the project, and instead worked on a di�erent project, one which had a better

chance of being done in a reasonable time frame.

Instead, the story of Cilk is one of incremental improvement. We had some goals and

some ideas on how to reach those goals. Throughout our work on Cilk, we used applications

to help drive the development process. Applications were useful both in pointing out bugs

and weaknesses in the system, as well as in helping us decide where to focus our energies

next. We also tried to keep a �rm theoretical footing, so that we could truly understand

the performance of the system.

We began by building a simple multithreaded runtime system, and then we stepped back

and asked ourselves what were the biggest de�ciencies with this system, and what could

be done to improve them. We then chose one of the problems that we thought we could

remedy and went o� and focused on it, being careful not to reintroduce the problems we had

previously solved. Once this de�ciency was addressed we repeated the process and again

stepped back, examined the system, and looked for the next target area. This picture of

the development of Cilk is somewhat simplistic, since in actuality we were always thinking

about the bigger picture and at times we were working in several directions at once, but in

general the paradigm of incremental improvement is a good model for the evolution of Cilk.

In the rest of this chapter we give an overview of the development of the Cilk system.

In Section 1.1 we briey look at some other parallel programming systems and summariz-

15

ing what desirable characteristics we think a programming system should have. Then in

Section 1.2 we describe the evolution of Cilk. We begin with PCM, a simple multithreaded

runtime system based on continuation-passing threads. The PCM system evolved into the

Cilk-1 system with the addition of a provably good scheduler which allowed us to provide

performance guarantees. Next, the Cilk-2 system extended Cilk-1 by allowing the user to

program using call-return semantics instead of continuation passing. Then, in Cilk-3, we

added shared memory support in order to extend the range of applications we could im-

plement. Lastly, we added high-level support for speculative computations via inlets and

aborts.

1.1 Life Before Cilk

In April 1993, a 128 node Thinking Machines CM-5 was installed at MIT. We were, of

course, eager to begin using this machine in our research. We wanted to use this machine

to experiment with parallel algorithms and wanted a programming language/environment

in which to do this. Preferably we wanted an environment where we could focus on our

application, not on the low-level protocols necessary to implement the application. At the

same time we wanted our application to run e�ciently. In short, we wanted the best of

both worlds. Before describing the system we designed, we will �rst take a look at what

other parallel programming paradigms were available.

Data Parallel

One of the most successful parallel programming models is the data-parallel programming

paradigm[HS86]. This model is useful for taking advantage of the large amounts of data

parallelism that is available in many scienti�c/numeric applications. This data parallelism

is exploited by performing the same operation on a large amount of data, distributed across

the processors of the machine. Data-parallel languages, such as CM Fortran [Thi91a],

C* [Thi93], and *Lisp [Thi91b], all of which were available on the CM-5, are similar to

sequential languages. The main di�erence is that certain data types are de�ned to be

parallel. Parallel data values consist of a collection of standard, scalar data values. These

languages contain prede�ned operations on parallel variables that either operate on the

parallel variable element-wise (e.g. negating every element), or operate on the parallel

16

value as a whole (e.g. summing all elements of the parallel variable).

The data-parallel programming model has two main virtues that have led to its suc-

cess. The �rst virtue of this model is that data-parallel codes are fairly easy to write and

debug [HS86]. Just as in a serial program, the programmer sees a sequential ow of con-

trol. The values making up a parallel value are automatically spread across the machine,

although typically the programmer does have the option of inuencing how data is placed.

Any synchronization or communication that is needed to perform an operation on a parallel

value is automatically added by the compiler/runtime system. The second virtue of this

model is that it is easy for a programmer to understand the performance of a program.

Given the size of a parallel value to be operated on, the execution time for an operation is

fairly predictable. Since the execution of each operation is independent of the others, the

execution time for the program as a whole is predictable as well. A careful programmer

can therefore write a program and be con�dent that the program's performance will scale

as the machine size grows. Blelloch has taken this a step further in NESL [Ble93], where

every built in function has two complexity measures, which a programmer can use to derive

the asymptotic running time of his program.

Although the data-parallel paradigm is quite popular, it has two signi�cant drawbacks.

The �rst is the limited range of applications for which data parallel is well suited. Appli-

cations with data parallelism tend to be static in nature, the control ow of a data-parallel

program is mostly data independent, and the program's data layout and load balancing

can be done at compile time. Many applications are more dynamic in nature and do not

have these characteristics. To run in parallel, these dynamic applications need to exploit

control parallelism by performing independent operations at the same time. These applica-

tions, which may be as simple as recursively computing Fibonacci numbers or as complex

as computer chess, are nearly impossible to express in data-parallel languages. The second

drawback of this model is that data-parallel programs tend to be ine�cient. Even when

a data-parallel program gets a good speedup, if one scales the program down to one pro-

cessor, and compares it to a sequential program, the performance may be disappointing.

This phenomenon occurs because the data-parallel paradigm is not always a good model

for taking full advantage of the sequential processors that make up most of today's parallel

machines. This de�ciency is particularly acute for languages such as CM Fortran, where the

code generated uses \virtual processors". A virtual processor mechanism allows the same

17

code to run on a machine of any size, but it adds signi�cant ine�ciencies [HKT93].

Message Passing

Another common paradigm for writing parallel programs is message passing. Message-

passing models present the programmer with one thread of control in each processor, and

these processors communicate by sending messages. This model is a good representation

of the actual implementation of current parallel machines. Since this model is so close to

the hardware, a good programmer is able to write e�cient codes, just as a good assembly

language programmer is able to write assembly language code that is more e�cient than code

written in a high-level language. The drawback of this model is the same as the drawback

of programming in assembly language: writing a large program at such a low level can be

overwhelming. The user must answer all the low-level questions himself, namely questions

such as how to partition the program's data, when to perform communication, and how to

load balance the computation. Not only must the user make all these decisions, but he must

then write all the protocols necessary to carry them out. For most nontrivial programs the

user spends more time writing protocols that writing the actual application. I believe we

should aspire to a higher level of parallel programming.

There are three strategies for message-passing programming.

The simplest message-passing models are blocking. The sending processor issues a send

request, and the receiving processor issues a receive request. Whichever processor issues its

request �rst blocks and sits idle until the other processor issues its command. At that point,

communication begins. Only after communication completes can the processors continue

executing. It can be di�cult to program well in this model, because ine�ciencies occur

unless both of the processors involved in a communication issue their requests at the same

time. Moreover, this style of programming is prone to deadlock.

To make programming simpler, many systems implement a second type of message

passing: \asynchronous" message passing. In this model, when a processor performs a

send, the send executes immediately, regardless of whether or not a corresponding receive

has been issued, and the sending processor can continue executing. The system uses bu�ers

(often on both the sending and receiving side) to hold the message until it is requested by the

receiver. Asynchronous message passing eases the programmer's job, but adds signi�cant

overhead to each communication due to the copying and bu�ering that the system invisibly

18

performs.

Active Messages [vECGS92], the third strategy for message passing, reduces this over-

head by providing asynchronous message passing without the automatic bu�ering. An

active message contains a header which points to a handler, which is a piece of user code

that speci�es what to do with the data in the message. The user can specify many han-

dlers, typically one for each message type. When a message arrives, rather than having a

generic system-de�ned routine handle the message, which will typically copy the message

into a bu�er, the system instead executes this user-de�ned handler to process the arrived

message. Active Messages eases the task of writing message-passing codes because it allows

a programmer to write programs using low-overhead, asynchronous message passing and

because the paradigm of having the message itself know how it should be handled turns out

to be quite useful in practice.

Although Active Messages simpli�es the task of writing an e�cient message-passing

program, it is still just a message-passing paradigm, and is therefore too low-level to be a

general parallel programming language. We should point out that the authors of the Active

Messages paper themselves state that Active Messages was not designed as a new parallel

programming paradigm, but rather as a primitive communication mechanism with which

other paradigms could be implemented. In fact, we use Active Messages in just this way.

The Cilk system is implemented on top of Active Messages.

The Split-C [CDG+93] parallel programming language is an attempt to merge some

of the features of the data-parallel and message-passing paradigms. As in the message-

passing paradigm, Split-C exposes to the user one thread of control for each processor.

Unlike the message-passing model, however, Split-C provides a range of somewhat higher-

level primitives. Split-C has a global address space and provides the programmer with a

variety of operations which operate on global data. How global data is distributed among

the processors is totally up to the user. Naturally, Split-C can use the global-memory

primitives to implement most message-passing algorithms.

Split-C can also express many of the applications that can be expressed in data-parallel

languages. As in data-parallel languages, Split-C contains operations which act on an entire

global data structure as a whole. (e.g. summation). These system-supplied functions are

not really necessary, however, since these operations could easily be built by the user out

of the memory-access primitives. In Split-C the user can write data-parallel programs by

19

directly specifying what computation each processor should perform on its portion of the

data. Using this method the user can write more e�cient programs than can be written in

a standard data-parallel language. For example, given a sequence of operations on parallel

data, a data-parallel language typically performs each operation on all the data before

moving on to the next operation. But, it is often more e�cient to do a series of operations

on one slice of the data before moving on to the next slice and repeating the same operations.

Whereas Split-C gives the programmer this control, data-parallel languages in general do

not. A Split-C programmer can use such techniques to exploit locality and to write codes

that are optimized for the sequential processors that make up the parallel machine.

Split-C provides a programmer with more power and exibility than typical data-parallel

or message-passing languages, but it still has the drawback that it best suited mainly for

static programs. As with message-passing languages, Split-C allows dynamic programs to

be written, but this requires the programmer to write at a lower level, and thus the user

is back to programming protocols, not the application. In all the models we have seen so

far, the user decides, either at compile time or early in the execution of the program, where

all his data is going to reside, and how the computation is going to be spread amongst the

processors. None of these systems deal well with dynamic programs where it is not known

in advance how the computation will unfold and what the data will look like. None of these

systems are able to take advantage of control parallelism, which a system must be able to

do in order to execute dynamic programs. In order to execute such programs we need a

very di�erent system.

Multithreading

In order to execute unstructured programs, we need a system that can take advantage of

control parallelism. Data-parallel models present the user with a single thread of control.

Models based on message passing increase this to one thread of control per processor.

To take full advantage of control parallelism, we must virtualize the number of threads of

control so that whenever the program discovers several independent tasks, those tasks can be

executed in parallel, each with its own thread of control. When using such a multithreaded

programming model, the runtime system must schedule these tasks and dynamically spread

them across the machine in order to load balance the computation.

The most ambitious of the multithreaded languages are the implicitly parallel languages,

20

such as Id[Nik91]. In these languages the programmer expresses his algorithm at a high

level without any mention of parallelism. Then, a sophisticated compiler automatically

breaks the program up into a �ne-grained multithreaded program. In this model every

memory reference and every interprocedural communication is a potential nonlocal, long-

latency operation, which leads to small thread lengths and frequent communication. Ex-

ecuting e�ciently under these conditions requires a platform with cheap thread creation

and scheduling, as well as a high-bandwidth, low-overhead communication infrastructure.

There are several machines which have been designed with these characteristics in mind,

such as HEP [Smi78], Tera [AAC+92], and dataow machines such as Monsoon [PC90] and

the EM-4 [SKY91]. Most existing machines do not have these characteristics, however. As

analysis techniques improve, compilers are becoming better able to exploit locality in these

programs and to increase the thread lengths. These improvements may eventually allow

these programs to run on traditional machines e�ciently, but at present implicitly parallel

programs running on traditional machines incur signi�cant overheads.

More common are the explicit multithreaded languages. In these systems the user must

explicitly specify what can be done in parallel. There are a wide range of such multithreaded

systems [CRRH93, CGH94, CAL+89, CD88, CSS+91, EAL93, FLA94, Hal85, HWW93,

Kal90, KC93, KHM89, Nik94, TBK93]. These systems provide the programmer with a

means to create, synchronize, and schedule threads. In order to reduce the overhead of the

program, thread creation, synchronization, and scheduling is typically done by user-level

runtime system code, without the involvement of the native operating system. Since the

user can cheaply and dynamically spawn o� tasks as they arise, and then let the runtime

system take care of all the details of executing these tasks, these systems make it easy for

the user to take full advantage of the control parallelism inherent in many programs.

These systems di�er in how the user speci�es threads, in what support is provided for

shared objects, and in how the scheduling and load balancing of the computation takes

place. One thing these multithreaded systems all have in common is that none of them

provide performance guarantees for execution time, space or communication, as some of the

data-parallel languages do.

As mentioned earlier, the main goal of this work is to make it easier for a programmer

to e�ciently implement dynamic parallel algorithms. In this section we have described

desirable features of other systems. Let us now summarize what characteristics we would

21

like our system to have:

� Minimize the gap between applications and languages: A programmer should

focus on his application, not on protocols. Details that do not have to do with the

application should be hidden from the programmer.

� Provide predictable performance: There should be no surprises. A programmer

should have a good idea of how his application will perform, and how it will scale,

before he even executes it.

� Execute e�ciently: The system should not add too much overhead to the execution

of a user's program. The performance of the parallel code, when run on one processor,

should be comparable to the best serial code when run on the same processor.

� Scale well: When possible, increasing the number of processors used by a program

should improve the performance proportionally.

� Portable: Our system should be portable to a variety of machines, from serial

machines, to small-scale SMPs, to networks of workstations, to large-scale message-

passing machines.

� Leverage existing codes: We would like to convert a serial program to a parallel

program with the least e�ort possible. We should therefore be able to include standard

serial code in our parallel program, so that only the parts to be parallelized need to

be rewritten.

� Be expressive: We should be able to implement a wide variety of applications in

our system.

1.2 The Evolution of Cilk

This thesis describes the evolution of the Cilk system, which is outlined in Table 1.1. This

table shows the various versions of Cilk, and the key features of each version. In this thesis

we focus on the key ideas of each version of Cilk and we do not attempt to describe all the

details needed to write an application in Cilk. Those interested in using the system are

referred to the Cilk Reference Manual [BFJ+95].

22

System Novel Features

PCM Basic multithreaded system

Cilk-1 Provably good scheduler

Cilk-2 Call/return semantics

Cilk-3 Shared memory

Cilk-4 Inlets + aborts

Table 1.1: Evolution of the Cilk System.

This work began with a basic multithreaded programming system called the Parallel

Continuation Machine, or PCM for short. The intent of this system was to provide a sim-

ple system with which a user could write e�cient multithreaded programs. This system

provides the user with the basic primitives for creating threads and specifying how the

threads communicate and synchronize. The PCM system hides from the user the details of

scheduling and executing these threads, thus simplifying the task of writing explicit mul-

tithreaded applications. The user writes his multithreaded application as a set of threads,

wired together in continuation-passing style. Each thread is a nonblocking piece of code

that that may contain calls to standard C functions. After performing some computation,

a thread sends its result to another thread, potentially enabling that thread to begin work

on the rest of the computation.

A simple preprocessor takes the user's code, which consists of de�nitions of threads and

C functions, and converts it into standard C code with calls to PCM runtime primitives.

The system represents a thread using a data structure called a closure which contains a

description of a thread and all its arguments. A closure is a self-contained unit containing

all the information needed to execute an instance of a user's thread, and therefore the

computation described by a closure is free to be executed on any processor. The runtime

system uses a randomized work-stealing scheduler [BS81, Hal84, BL94] to schedule and load

balance the computation. A processor typically works locally, mimicking the serial execution

order. When a processor runs out of work, it chooses a processor at random and steals a

ready closure from the chosen processor. This work-stealing scheduling strategy tends to

provide good load balancing without requiring excessive communication [KZ93, RSAU91,

ZO94]. We wrote several applications in PCM, including a ray tracer based on the serial

POVRAY program [POV93], and a protein-folding code [PJGT94], which is still being used

23

to investigate various models of protein formation. The PCM system performed well on

these applications, achieving nearly linear speedup without adding signi�cant overhead.

This initial system showed us that we could easily build a powerful multithreaded system.

The PCM system is described in Chapter 2. Although little actual code from the PCM

system remains in the current Cilk system, many of the concepts used in PCM have persisted

throughout the various Cilk systems.

Having shown that an e�cient multithreaded system was buildable, we then focused on

providing a more rigorous foundation for the system. Although the applications we coded

in the original PCM system achieved nearly linear speedups, it was apparent that not all

programs could be executed with such good results. Our desire was to have a system which

achieved good performance over as wide a range of programs as possible. We also wanted to

have a system which made it clear what properties a program must have in order to achieve

good performance. The Cilk-1 system meets these goals.

The Cilk-1 system is an enhanced version of PCM which gives the user predictable and

provably good performance. The theoretical work of Blumofe and Leiserson [BL94] pre-

sented a work-stealing scheduling algorithm which, for a class of well-structured programs,

is provably e�cient. By adding some structure to our programs and making a change to

our scheduler, we were able to extend the proofs in [Blu95] to cover our scheduler as well.

With these changes Cilk's work-stealing scheduler achieves space, time, and communication

bounds all within a constant factor of optimal. The two parameters which predict how well

a program will perform are the \work" and \critical path" of the program. The work of a

program is the time it would take one processor to execute the program, and the critical

path is the time it would take an in�nite number of processors to execute the program. We

extended our system to measure the work and critical path when a user runs a program.

With these two measures a user is able to understand why the program performed as it did,

and the user is also able to predict the performance of the program on machines of di�erent

sizes. We describe the Cilk-1 system in Chapter 3.

It was while designing the Cilk-1 system that we wrote our largest application, the

?Socrates chess program. Up to this point we had no application that made full use of the

complicated control structure allowed by our system. In order to showcase the power of

our system and to point out any improvements that the system needed, we wanted to build

a challenging, dynamic application that could not easily be implemented in other parallel

24

programming paradigms. Computer chess is such an application. Our chess program uses

large global data structures, is nondeterministic, and performs speculative computations,

some of which are aborted. This work was in part a natural follow on of StarTech [Kus94],

a parallel chess program designed by Bradley Kuszmaul which had the scheduler and search

algorithm intertwined. We wanted to show that the scheduler and search algorithm could

be separated, thereby greatly simplifying the programmer's job, without sacri�cing perfor-

mance. Our work on ?Socrates led to several enhancements to the runtime system which

were included in the Cilk-1 system. Despite the use of low-level Cilk-1 features that void

Cilk's performance guarantees, ?Socrates still achieves e�cient, predictable performance

over a range of machines. ?Socrates remains our agship program and continues to drive

the development of Cilk. Chapter 4 describes the ?Socrates program and how it inuenced

the Cilk-1 system.

Although the continuation-passing style required by Cilk-1 allowed a wide range of

programs to be expressed, writing programs in this style was quite error prone and tedious.

In Cilk-2, our next major release of the system, we focused on making the system easier

to program. As a stepping stone towards this goal we �rst introduced a type-checking

preprocessor [Mil95]. Previously, Cilk programs were converted to C via a standard, but

simple, macro preprocessor. This preprocessor limited the constructs we could use in the

language, occasionally forcing us to expose to the programmer details we would rather

have kept hidden. Introducing the type-checking preprocessor allowed us to hide some

of these details, thus cleaning up the language. More importantly, the new preprocessor

can deduce semantic information about the source Cilk program, thereby allowing us to

perform transformations we could not consider previously. One alternative to the type-

checking preprocessor would have been to build a full-edged compiler. A compiler would

have allowed us to do everything the preprocessor could do and more. Building a compiler

is a signi�cant undertaking, however. This option would have required resources and time

that we could not a�ord, and it would have made the system less portable as well.

The power of our type-checking preprocessor allowed the programmer to write some

codes using traditional call/return semantics, thus making Cilk programs substantially eas-

ier to write. With this change users can write a parallel Cilk program without dealing with

threads or continuation passing. A program previously written as many Cilk-1 threads

tediously wired together by the programmer could now be expressed as a single Cilk-2 pro-

25

cedure. A single Cilk-2 procedure can spawn o� child procedures, suspend until all the

children complete, and then continue executing, perhaps spawning o� children again. The

new preprocessor automatically breaks these Cilk-2 procedures into several threads which

can then be executed using the basic Cilk-1 runtime system. This Cilk-2 style of program-

ming is somewhat more restrictive than that allowed by other multithreaded languages, but

we �nd it simple for the programmer, and su�cient for almost all algorithms we have tried

to write. This release, which was a major step towards making Cilk suitable for widespread

use, is described in Chapter 5.

The improvements made for the Cilk-2 system made Cilk programs easier to write, but

they did not increase the range of programs which could be written. One of the biggest

drawbacks of the Cilk systems described so far is that it is di�cult to write applications

where signi�cant amounts of data need to be shared throughout the computation. With the

Cilk-2 release, for those applications for which Cilk was \well suited" it was now fairly easy

to write a Cilk program and get good, predictable performance. The applications for which

Cilk-2 was well suited, however, were somewhat limited, mainly consisting of applications

which could be expressed using a tree-like algorithm where the nodes of the tree were

fairly independent. The di�erent parts of the computation must be fairly independent of

each other because in Cilk-2 the only way to share data throughout the computation is to

explicitly pass the data from procedure to procedure. For any reasonably large data set a

programmer would be forced to go outside of Cilk and implement a shared data structure,

probably by taking advantage of the low-level features supported by the particular platform

on which the code was being developed. To solve this problem and increase the range of

programs which could be expressed in Cilk, the aspect we focused on for the next release

of Cilk was adding shared memory support.

The Cilk-3 release includes a shared-memory system implemented totally in software.

Rather than attempting to build a shared-memory system that can solve all problems,

we focused on building one that would be su�cient for the types of problems that are

naturally expressed in a multithreaded programming environment such as Cilk. Instead

of using one of the consistency models derived from sequential consistency, we used our

own, relaxed, consistency model. Our model, which we call \dag consistency," is a lock-free

consistency model which, rather than forcing a total order on global-memory operations,

instead ensures only that the constraints of the dag are enforced. Because dag consistency

26

is a relaxed consistency model, we were able to implement coherence in software e�ciently

for Cilk. With this shared-memory system we are able to express applications, such as

matrix multiply and Barnes-Hut, which make use of global data structures The de�nition

of dag consistency, and our implementation of it for Cilk are described in Chapter 6.

Cilk-4, the last release of the Cilk system that I will describe in this thesis, is intended to

remedy a de�ciency in the Cilk-2 language. When we designed Cilk-2 and added support for

procedures with call/return semantics, we were able to rewrite almost all existing programs

using the new, simpler, Cilk-2 syntax. The only application which could not be expressed

using the Cilk-2 syntax was ?Socrates, due in large part to the complex control structure of

the parallel search algorithm. Speci�cally, ?Socrates generates speculative work which may

sometimes be killed o�. Therefore, unlike all other programs we have written, the amount

of work performed by a run of the chess program depends on the order in which the user's

threads are executed. The Cilk-2 syntax does not give the user enough control over the

execution of his code to write an e�cient speculative algorithm, so the chess code is still

written with Cilk-1 style syntax.

For the Cilk-4 release, which is currently under development, we have proposed an

extension to Cilk that should allow the chess program to be written without resorting to

any of the lower level Cilk-1 constructs. The extension allows the programmer to specify a

piece of code called an inlet when spawning a child. This inlet code is run immediately after

the child �nishes. The search routine in ?Socrates will use inlets to receive the result of one

search, and depending on the result the search routine may spawn o� a more precise search,

may update the parameters for other searches, or perhaps may abort a group of searches.

The proposed extensions also support an abort primitive which will allow a procedure

to abort all of the its spawned children. Currently, ?Socrates must implement the abort

mechanism as user-level code, which is quite tedious, this new feature will allow this code

to be removed from the user program. An overview of the proposed changes are given in

Chapter 7.

The design of the Cilk system is an ongoing project. The �nal chapter of this thesis

describes some of the improvements we would still like to make to the system, and gives

some concluding remarks.

27

History of Cilk

We conclude this section with a description of how work on Cilk has progressed over the last

two and a half years. The preceding paragraphs gave an overview of the technical evolution

of Cilk. The following give a more historical view of how the Cilk project came about.

The original PCM system grew out of work begun by Michael Halbherr. Michael was

doing research on parallel I/O, and in order to perform some experiments, he implemented

a simple system for executing parallel programs. This parallel runtime system became

interesting in its own right, and in the middle of 1993 Yuli Zhou and I began working on

this system as well. All e�orts on parallel I/O were soon forgotten, as we focused solely

on the parallel runtime system. This multithreaded runtime system eventually became the

PCM system.

While we were improving the PCM system and writing applications that used it, we

began interacting with Professor Charles Leiserson and his students, who were working on

several related projects. The �rst of these related projects was theoretical work by Robert

Blumofe and Charles Leiserson on scheduling multithreaded applications. The second was

StarTech, a parallel chess program built by Bradley C. Kuszmaul, another of Leiserson's

students.

In April of 1994, Charles suggested that we join forces, beginning by implementing a

parallel chess program in PCM. Unlike StarTech, which intertwined the search code and

the scheduler, this new program would build the chess search completely on top of the

general-purpose PCM runtime system. In May, we obtained a serial chess program from

Heuristic Software and began porting it to our system. During June, Don Dailey, then of

Heuristic Software, joined us at MIT to work on the program's chess knowledge, and at the

end of June we entered the program in the 1994 ACM International Chess Championship,

where, running on a 512-node CM-5, we �nished third.

After the chess tournament, Keith Randall joined the Cilk team and we made the

changes necessary to incorporate some of the theoretical results into the system. The re-

sulting \provably good" system was renamed Cilk. Then, in the fall of 1994, we recruited

several undergraduates (Greg Hudson, Rob Miller, Richard P. Tauriello, Daricha Techopi-

tayakul, and John Yu) to program in Cilk. This experience helped us learn more about

programming in Cilk, and two of these students, Rob and Richard, eventually wound up

28

contributing to the Cilk system itself. During late 1994, we focused on making Cilk easier

to use and began designing the Cilk-2 system. Also during 1994, Robert Blumofe, with

the help of two undergraduates, Phil Lisiecki and Howard Lu, began working on the fault

tolerant version of Cilk for networks of workstations.

In 1995, Cilk progressed on many fronts. In January, Matteo Frigo, who had recently

joined the Cilk team, completed reworking much of the Cilk code to make it more portable.

Rolf Riesen of Sandia National Laboratories later ported this reworked version of Cilk to

the Intel Paragon, and we ported the chess program to the Paragon as well. Don Dailey

again joined us to work on the chess aspects of *Socrates, and in May 1995, we ran on a

1824 node Paragon in the 1995 World Computer Chess Championship, �nishing second.

In June 1995, the Cilk-2 implementation, which had been fairly stable for several months,

was o�cially released. Early in 1995 we had begun working on shared memory support

for Cilk. The implementation of shared memory was fairly stable by September, and this

implementation is the one that we describe in this thesis. Lastly, during the second half of

the year we worked out the design of inlets and aborts for the Cilk-4 system. This system

is currently being implemented.

29

30

Chapter 2

The PCM System

This chapter describes the PCM system. PCM, the precursor to Cilk, is a simple mul-

tithreaded runtime system based on continuation-passing threads. This system was our

initial attempt to produce a system with which a user could write e�cient multithreaded

programs. The PCM system grew out of a system initially designed by Michael Halbherr

for research on I/O. Michael Halbherr, Yuli Zhou and I implemented the PCM runtime

system. Yuli Zhou implemented the preprocessor used by the PCM system. The protein

folding code described in Section 2.4 was written by myself based on discussions with Vijay

Pande of the Center for Material Sciences and Engineering at MIT.

2.1 Introduction

This chapter presents the parallel continuation machine (PCM), a parallel runtime system

designed to e�ciently execute dynamic, multithreaded programs on today's message-passing

architectures. We will �rst concentrate on explaining the key ideas underlying the imple-

mentation, and then demonstrate how they give rise to extremely e�cient parallel programs

via two real-world examples.

Parallel programs can be classi�ed along several dimensions, such as grain-size, com-

munication regularity, and whether the execution depends on runtime data. We believe

that existing programming models, such as data parallel programming and explicit mes-

sage passing, have been successful in addressing the needs of programs with simple static

Much of the work described in this section was reported on by Michael Halbherr, Yuli Zhou and myself

in an earlier paper [HZJ94].

31

communication patterns. For these programs it is usually possible to carefully orchestrate

communication and computation to statically optimize the overall performance.

On the other hand, it proves far more di�cult to �nd static solutions leading to high ma-

chine utilizations for parallel applications whose communication patterns are either highly

irregular or dependent on dynamic information. In this work, we are mostly interested in

investigating the needs and characteristics of these classes of programs, which must rely on

runtime mechanisms to enable e�cient solutions.

Multithreaded computation models have typically been proposed as a general solution to

exploit dynamic, unstructured parallelism. In such a model, dynamically created instances

of sequential threads of execution cooperate in solving the problem at hand. To e�ciently

execute such an application, it is necessary to have e�cient runtime thread placement and

scheduling techniques. Although �nding the optimal thread placement is known to be an

NP-hard problem [GJ79], it is possible to implement schedulers based on simple heuristics

that achieve good machine utilizations at reasonable cost. These heuristics usually work

well for a broad class of applications, making it possible to implement the scheduling and

placement task as a fairly generic service that resides at the core of the runtime system.

Several research machines, such as HEP [Smi78], the Monsoon dataow system [PC90],

and the forthcoming Tera machine [AAC+92], have been designed expressly to support mul-

tithreaded computations. These machines provide highly integrated, low overhead, message

interfaces as well as hardware support for scheduling and synchronization. Disregarding the

debate of whether such machines are commercially or technically viable, the problem of pro-

gramming most of the current parallel machines, which have no special hardware support

for multithreading, still remains. The programming challenge, in view of the above di�-

culties, is to minimize network communication and to provide longer sequential threads to

o�set the runtime scheduling and synchronization overhead.

The static set of sequential threads making up the multithreaded program can either

be generated implicitly by a sophisticated compiler, or explicitly by the programmer. Pro-

gramming languages advocating the implicit style, such as Id [Nik91] and Sisal [MSA+85],

usually take a high-level, functional, description of the actual problem, extract the avail-

able parallelism from the declaration and partition it into sequential threads. While implicit

programming languages simplify the programming task for some problems, other problems

are di�cult to e�ciently express in a functional style. In addition, some of these systems

32

fail to produce threads long enough to adequately amortize the overhead introduced by a

dynamic execution model.

To help reduce network communication, the execution of threads must exhibit commu-

nication locality. This requirement precludes scheduling policies such as round-robin or

random placement, but favors solutions such as work stealing where all threads are created

locally per default, but may later migrate to other nodes upon demand.

The PCM model presented in this chapter is aimed at solving the aforementioned

problems. The intended target architectures are simple message-passing machines which

support the implementation of low-overhead communication layers such as Active Mes-

sages [vECGS92]. We do not assume any additional hardware support.

We have provided C language extensions where threads can be speci�ed along with con-

ventional sequential C code. A program consists simply of a collection of threads, which are

pieces of sequential code which are guaranteed to terminate once they have been scheduled.

Threads represent the basic scheduling units that can be executed on any processor. By

exposing threads in this way, we can experiment with various static and dynamic schedul-

ing policies to optimize the overall machine utilization. In particular, we have found two

strategies which can have a great e�ect on the performance of a program.

� The scheduler uses work stealing as its default policy. This strategy creates patterns

of locality in which threads can pass arguments through local memory most of the

time, rather than across the network, thereby greatly reducing the communication

frequency.

� A thread can be made to directly transfer control to another thread, this mechanism

is similar to the control transfer mechanism used to implement tail-recursion in serial

codes. This mechanism bypasses dynamic scheduling entirely, thus avoiding all of its

associated costs.

We show the e�ect of these optimizations in Figure 2-1. As this diagram suggests, there

are three communication levels, namely register communication, memory communication,

and network communication. Preferably, we would like to transfer data through registers

as much as possible, but the very nature of a dynamic execution model will force us to

resort to memory communication or, even worse, to network communication. Note that an

application increases the working set whenever it exposes additional parallelism, making

33

network communication memory communication

register communication

Processor 1 Processor 2 Processor 3 Processor 4

Figure 2-1: Maximizing Communication Locality

it impossible to keep the entire working set in registers. The implementation goal will be

to provide an optimal compromise between increasing the sequentiality of the application

to increase its locality and exposing enough parallelism to enable dynamic load balancing.

The work stealing scheduler will then attempt to minimize the work migration frequency,

thereby minimizing network communication.

The rest of this chapter is structured as follows: Section 2.2 introduces the PCM thread

speci�cation language and presents its components. Section 2.3 introduces a cost model,

intended to clarify the costs involved in dynamic execution. Section 2.4 contains in depth

explanations of two applications implemented with the PCM package. Section 2.5 concludes

the chapter.

2.2 The Parallel Continuation Machine

The parallel continuation machine implements an SPMD programming model, where all

processors keep their own local copies of the entire code. The execution itself is completely

asynchronous, meaning that each node may execute entirely di�erent pieces of the program.

34

thread: T2

join : 0

argument 0

continuation

thread: T2

join count: 0

456,789

cont: <k1, 2>

Closure MemoryRuntime Structures

T1:

T2:

Thread Code

Program Memory

thread: T1

join count: 1

569,908

cont: <t,3>

k1:

k2:

send_argument(v, cont:<k1,2>)

Ready Queue:

ready queue contains pointers
 to all full closures

 empty
argument slot

Figure 2-2: Elements of the PCM Model

2.2.1 Elements of the PCM

A PCM program consists of a collection of threads that cooperatively solve a single problem.

Statically, a thread identi�es nothing more than a sequence of instructions, written in the

machine language of the processor. At runtime, an application can create arbitrary numbers

of dynamic instances of a static thread, each with its own set of arguments.

The PCM thread speci�cation language, which is explained in section 2.2.2, allows the

programmer to de�ne threads and to specify how threads communicate with each other.

All machine-speci�c execution details, such as dynamic load balancing or the mechanism

required to enable transparent inter-thread communication, are part of the PCM runtime

system and do not have to be speci�ed by the user. By taking care of these details, the

system simpli�es the job of writing explicit multithreaded applications without sacri�cing

the programmer's power for experimentation.

The key elements of PCM's execution environment are illustrated in Figure 2-2. New

dynamic instances of threads can be created by making closures. Closures form the contract

between the application code and the runtime system. Closures contain a pointer to the

thread code and all the arguments needed to execute the code. The thread code may

include calls to arbitrary C procedures. A thread is ready to execute when its closure

35

is full; in other words, when the closure has all its arguments. Full closures are passed

to the scheduler, which keeps them in a ready queue and will later schedule them for the

encapsulated threads to run. All threads in PCM are nonblocking, which means that once

a thread begins execution, it can run to completion without suspending.

In order to enable points of synchronization between threads, a closure can be created

with some of the arguments missing. These arguments will be �lled in later with a value sent

by another thread. A thread supplying an argument to a non-ready closure must obtain a

reference to where the argument is to be sent. Such references will be called continuations;

a continuation is just a pointer to a closure plus an integer o�set into the closure. Note that

we are slightly abusing the term continuation, which in sequential computations is used to

refer to the rest of the computation as seen from a particular program control point. In

parallel programs there is usually no such thing as \the rest of the computation" from a

single control point, but the idea is the same.

In order to detect when a closure becomes full, every closure has an additional slot

containing a join counter that indicates the number of missing arguments the closure has.

The join counter is initialized with an integer equal to the number of missing arguments

at closure creation time, and decremented each time the closure receives an argument. A

closure is given to the scheduler when the join counter reaches zero.

2.2.2 The Thread Speci�cation Language

The thread speci�cation language, called Threaded-C, was implemented for the PCM system

as an extension to C. In this language a program consists of C functions, written just as

in standard C, and threads, which are marked by the speci�er thread. A preprocessor

expands the threads into C functions, while copying the rest of the C code literally. The

resulting C program can then be compiled and linked with the PCM runtime library.

Runtime primitives are called by threads to create closures, send arguments, and transfer

closures to the scheduler:

� make_closure (Thread, arg1, : : :, argn) allocates a closure of size n+2, and returns

a pointer to the closure. The two additional slots are reserved for the code pointer,

which is initialized to Thread, and the join counter. Closures can be created without

specifying all the arguments, in which case missing arguments are indicated by _".

The join counter is implicitly initialized to the number of missing arguments.

36

� post (k) hands the closure k over to the scheduler. Only a full closure can be posted

inside the thread that created it. Closures created with empty slots will be posted

later by a send_argument when the join counter reaches zero.

� send_argument (c, v) sends the 32-bit value v to continuation c and decrements the

join counter of the target closure. The closure is posted if the join counter becomes

zero. Continuations have the type Cont and contain two �elds: a pointer to a closure,

and an integer o�set within the closure. A new continuation can be constructed, for

example, using the expression cont{k1, sum:x}, where k1 is a closure pointer and

sum:x a symbolic reference to o�set for argument x of a sum thread.

An example PCM program to compute the Fibonacci function is shown in Figure 2-3. A

sequential �b function makes two recursive calls to �b and then sums the results together.

Our parallel version �rst creates a sum closure which will receive two results and add them

together. It then creates and posts two full fib main closures for the two recursive calls of

�b. It gives each of these closures a continuation pointing to a slot in the sum closure where

the result should be sent.

When the PCM preprocessor is run on the �b code, the preprocessor expands each of

these threads into a C function that takes a single argument, namely a closure structure.

The preprocessor inserts code into the function to fetch all of the user's arguments from the

closure before starting execution of the code speci�ed by the user.

2.2.3 Executing a PCM Program

Figure 2.2.3 illustrates the sequence of events when the Fibonacci program runs on a single

processor. When there are multiple processors the only di�erence is that full closures may

be migrated to ensure a balanced load across all available processors. These scheduling

issues will be discussed in more detail in section 2.3.

The execution of a PCM program can be divided into three phases: initialization, com-

putation, and termination. The �rst and third phases are usually very short, with the

computation phase constituting the bulk of the overall execution.

During the initialization phase, shown in frame (A) of Figure 2.2.3, the program creates

two closures. One closure speci�es the start of the computation, in this example a ready

instance of fib_main, and the other closure speci�es the actions to be taken when the

37

thread sum (Cont parent, int x, int y) f
send argument (parent, x+y);

g

thread �b main (Cont parent, int n)f
if (n<2) send argument (parent, n);
else

f closure k1, s1, s2;

k1 = make closure (sum, parent, ,);
s1 = make closure (�b main, contfk1,sum:xg, n�1);
s2 = make closure (�b main, contfk1,sum:yg, n�2);
post (s1);
post (s2);

g
g

Figure 2-3: A PCM program to compute Fibonacci

computation ends, in this example a non-ready instance of a special thread called top. This

top thread is supplied by the runtime system and its responsibilities are to terminate the

computation and to print the result(s). The top closure can be instructed to expect any

number of results and must be the last closure to execute.

During the computation phase, the scheduler enters a perpetual loop. It pops a full

closure from the ready queue and then calls the thread function, such as fib_main or sum,

speci�ed in the closure with the closure pointer as its only argument. Frames (B) through

(H) of Figure 2.2.3 show snapshots of the machine state, one after each closure has executed.

For example, in frame (B) the thread fib_main with argument 3 has just terminated. It

created three closures: two full ones for fib_main with arguments 2 and 1 respectively, and

a closure for sum waiting for two arguments. The full closures were immediately posted.

These full closures contain continuations which point to the slot in the sum closure where

they will send their results. Similarly, the sum closure contains a continuation pointing to

the top closure, which is where its result should be sent.

During the termination phase, shown in frame (I), the top thread is run. It will print the

result of the computation and then cause the scheduler to exit the loop, thereby terminating

the computation. For multiprocessor computations, after the top thread executes on a

processor, that processor signals the schedulers on other processors to exit their work loops.

38

top

Ready Queue

fib
1

fib
3

(A)

top

sum

Ready Queue

fib
1

fib
2

fib
1

fib
1

1
fib
3

(B)

top

sum

Ready Queue

fib
1

fib
2

fib
1

fib
11

(C)

top

sum

Ready Queue

1

sum
fib
1

fib
0

fib

fib
1

fib
2 1

(D)

top

sum

Ready Queue

1

sum
fib
1

fib
0

fib
0

(E)

1

top

sum

Ready Queue

1

sum
fib

0
1

1

(F)

top

sum

Ready Queue

sum

0
1

1
1

(G)

top

sum

Ready Queue

1
1

2

(H)

top
2

(I)

continuation
empty slot

recently
completed thread

fib
1

fork
3

Legend:

Figure 2-4: Snapshots of the state of the PCM system after each thread completion.

39

2.2.4 Tail Calls

As a performance optimization a thread may directly call other threads via the following

runtime primitive:

� tail_call (Thread, arg1, : : :, argn) executes the thread Thread without the overhead

of creating a closure and calling the scheduler. This function must be called as the

last action of a thread and must be called with no missing arguments.

A tail-call represents a more e�cient invocation of a thread, avoiding any of the dynamic

execution overheads incurred otherwise. In the example shown in Figure 2-3, the thread

fib_main creates two full closures s1 and s2, packs the arguments into the closures and

then posts both closures before releasing control and returning to the scheduler. After

receiving control, the immediate action of the scheduler will be to pop the s2 closure and

to call its thread function fib_main, which will unpack the s2 closure prior to doing actual

work. We can avoid this costly detour through the scheduler by rewriting the else clause of

fib main to use a tail-call as follows:

f closure k1, s1;

k1 = make closure (sum, parent, ,);

s1 = make closure (�b main, contfk1, sum:xg, n�1);

post (s1);

tail call (�b main, contfk1, sum:yg, n�2);

g

To implement this mechanism, the thread preprocessor actually expands a thread into

two C functions: a general entry version, which is what we described above, and a fast

entry version which receives all arguments directly. A tail_call is thus converted into a

standard C function call to the fast entry version. The actual performance improvements

obtained with the tail-call mechanism can be quite impressive, especially for �ne-grained

applications, such as the Fibonacci example, where the performance improved by almost

twenty-�ve percent. The e�ects of using the tail-call mechanism show up in Figure 2-1 as

the register communication between threads.1

1The name of the tail call primitive was later changed to just call. The primitive tail call was then

restricted to the case of recursive calls, in which case the preprocessor is able to implement the recursive

call simply by inserting a jump to the beginning of the function.

40

2.2.5 Passing Vectors in Closures

An additional mechanism provided by the thread language allows vectors to be passed in

closures. One of these vectors may even be of arbitrary length. These vectors are passed

by value and can be referenced within a thread like any other local variable. The one

vector argument which is allowed to be of arbitrary length needs to be speci�ed as the last

argument, to make sure it is packed into the tail of the closure.

thread foo (. . . , type vect1[10], . . . , type vect2[])

declares a vector argument vect of type type. It is the responsibility of the creator of the

closure to initialize the vector. For example, the expression

make_closure (foo, . . . , vect1, . . . , vect2 = [size])

creates a closure for foo, dynamically de�ning vect2 to consist of size entries. In addition,

vect1 and vect2 will be declared to be pointers initialized to the zeroth word of the cor-

responding vector arguments. These pointers must be used subsequently to initialize the

vectors, which would otherwise be left empty. If we use _" instead of a vector name when

allocating a closure, then the vector is intentionally left empty, and its size will be added

to the initial join count.

2.3 Scheduling PCM Threads on a Multiprocessor

This section introduces a cost model for PCM in order to motivate the work stealing schedul-

ing system that we implemented for PCM on the CM-5. The CM-5 is a massively parallel

computer consisting of 32MHz SPARC processors wired together by a fat-tree intercon-

nection network [LAD+92]. All communication mechanisms required to implement the

work stealer and the inter-thread communication have been built using a version of Active

Messages [BB94].

As Figure 2-5 illustrates, we equate useful computation with what a sequential program

would have to do and classify everything else, such as communication, synchronization, and

dynamic scheduling as additional overhead. The goal of this classi�cation is to study the

factors that determine the e�ciency of a parallel computation with respect to its sequential

counterpart.

41

 Make
Closure

 reception of
global arguments Post

Closure Schedule
 Closure

Run Thread

actual work
overhead

time

 reception of
local arguments

Figure 2-5: Anatomy of a PCM Thread

To simplify the analysis, we will ignore any idle time and assume that each processing

element is executing either a thread or one of the overhead tasks depicted in Figure 2-

5. Under this assumption we can reduce the analysis to that of an average thread. The

corresponding e�ciency, �, de�ned as the fraction of the overall execution time actually

spent executing the useful computation, can then be computed

There are three important ratios needed for the computation, reecting the e�ects of

tail-recursions (�1), global send arguments (�2) and closure migration (�3) on the overall

e�ciency. �1 equals the fraction of threads not called by the tail-call mechanism, �2 equals

the fraction of arguments that have to be sent across the interconnection network and �3

equals the fraction of closures that migrate from one processing element to another. Rt

de�nes the average run length of a PCM thread and k de�nes the threads arity.

The overhead in executing a thread can be broken into the following pieces:

Make Closure (Mc): At thread creation time, a closure must be allocated and the thread

pointer and join-counter must be initialized (Mc � 10 cycles).

Local Send Argument (Sl): A Local send argument is fairly cheap and reduces to a

simple memory-to-memory transfer plus an additional check to see whether the closure

has become ready for execution (Sl � 10 cycles).

Global Send Argument (Sl + Ta): For arguments that must be sent across the network,

we have to add an additional overhead factor Ta (� 100 cycles) to the constant costs

of Sl to account for the transfer costs on the sending and receiving sides.

Post closure (Pc + �3 � Tc): After receiving all of its arguments a closure is posted and

becomes subject to dynamic scheduling (Pc � 10). If migrated to a remote processor,

42

additional transfer costs of Tc (� 500 cycles for a closure consisting of eight words)

need to be charged in addition to the constant cost Pc.

Schedule closure (Sc): The cost for transferring control to the thread at the beginning

of its execution and back to the scheduler after its termination is Sc (� 15 cycles).

With these de�nitions, we can de�ne the e�ciency of a thread as:

� =
Rt

�1 � (Mc + k � (Sl + �2 � Ta) + (Pc + �3 � Tc) + Sc) +Rt
(2.1)

With the communication costs Ta and Tc ranging in the hundreds of cycles, it becomes

imperative to reduce both �2 and �3 in order to avoid disappointing e�ciencies. �1, on

the other hand, cannot be reduced to arbitrarily small values, thus the only remaining

alternative to amortize the non-transfer related overhead is to increase the thread run

length Rt.

We can simplify equation (2.1) by assuming a typical value of k = 2 arguments per

thread, and by assuming that the tail call optimization is not used (ie. �1 = 1). We

also make the reasonable assumption that �2 = �3, which just says that the percentage of

send_arguments which are nonlocal is the same as the percentage of closures which are

migrated. We can then transform equation (2.1) into

� =
Rt

55 + 600�3 +Rt
(2.2)

This shows that the e�ciency will depend on Rt, the average run length, and on �3, the

percentage of closures migrated. The scheduler can e�ect only �3, so an important job of

the scheduler is to minimize �3.

Implementation

To achieve minimal values for �3 we have adopted a lazy scheduling policy known as work

stealing. In such a system, each processor maintains a local queue of full closures, called the

ready queue. When a closure becomes full, it is posted to its local ready queue. A processor

works out of its local ready queue for as long as there are closures in it. When a processor

runs out of local work, it will send a steal request to a randomly chosen processor. If the

processor receiving this steal request has any closures in its ready queue, it will migrate one

43

of the closures to the requesting processor.

In our current implementation, a computation executes locally using a depth-�rst schedul-

ing policy. This heuristic, which mimics serial execution order, can be expected to result in

lower resource requirements for most computations than a breadth-�rst policy would. Steal

requests, on the other hand, will always be served using a breadth-�rst policy (see Figure 2-

1). Such a steal policy can be expected to result in signi�cantly reduced steal frequencies

for computations. For example, both examples considered in the remainder of this chapter

typically migrated less than one percent of all dynamically created closures. The Cilk-1

system, described in Chapter 3 addresses these performance issues more concretely.

2.4 Two Case Studies

In the following section we present two applications implemented with the PCM thread

package. We use these applications to document the e�ciency of the PCM system. The

�rst application is ray tracing. In this application the input is a description of objects and

lighting in a scene, and the program must produce a high quality image of that scene as

seen from a speci�ed point in three space. The second application is protein folding. In this

application a sequence of monomers (i.e. an unfolded protein) is input, and the program

computes some or all possible foldings of that protein, give certain assumptions about

which foldings are legal. All performance experiments described below were performed on

the CM-5.

2.4.1 Ray Tracing

The parallel ray tracer presented here is an optimal example to illustrate the virtues of the

PCM thread package. First, the task of tracing a complicated picture of reasonable size

requires enough computation to justify the use of a powerful parallel processor. Second, the

variance in the number of processor cycles required to trace individual rays necessitates the

use of a dynamic load balancing scheme to guarantee acceptable utilizations and to ensure

scalability. Third, we can break the ray-tracing computation into threads and obtain threads

with grain-sizes coarse enough to o�set the overhead introduced by a dynamic execution

model.

There are several algorithms that can be used to implement a ray tracer. The simplest

44

void Trace()f
int x, y;

for (y = First Line; y < Last Line; y++)
for (x = First Column ; x < Last Column ; x++) f

pixel = calculate intersections(x, y);
write pixel(x, y, pixel);

g
g

Figure 2-6: Kernel of Sequential Ray Tracer

of all ray tracing algorithms intersects a ray with every object surface and displays the

object whose intersection is closest to the position of the observer. This algorithm is known

as exhaustive ray tracing, since it calculates all possible ray-surface intersections. The

ray-tracer we used improves upon this basic algorithm. It uses a bounding volume which

requires relatively simple intersection calculations, such as a sphere, to enclose more complex

objects. If a ray does not pierce the bounding volume then all the objects contained within

can be eliminated from consideration. This reduction substantially reduces the average

costs of ray surface calculations. This technique is further improved by arranging bounding

volumes into a tree hierarchy. In such a scheme a number of bounding volumes could

themselves be enclosed within an even larger bounding volume. If a ray does not intersect

with a given bounding volume then all the objects in that volume and in all child volumes

can be eliminated.

This algorithmic improvement reduces the linear time complexity of exhaustive ray

tracing to one which is logarithmic in the number of objects. However, this optimization

also creates a large variation in the time needed to trace a ray, making it di�cult to �nd a

static work distribution that su�ciently balances the available work.

Ray Tracer Parallelization

To show the power of our thread package as a tool to retarget existing sequential pro-

grams for parallel processors, we took the serial POV-Ray package[POV93] that implements

the optimized ray-tracing method described above and rewrote its kernel with our thread

language. The serial POV-Ray program is quite large, the C source �les consist of over

20,000 lines. Fortunately we did not have to modify, or even understand, much of the code.

45

thread Join(Cont parent join, int s1, int s2, int s3, int s4) f
send argument(parent join, SIGNAL);

g

thread Trace(Cont parent join, int sx, int ex, int sy, int ey) f
if((sx == ex) && (sy == ey)) f

pixel = calculate intersections(sx, sy);
write pixel(sx,sy,pixel);
send argument(parent join, SIGNAL);

g
else f

closure k1, p1, p2, p3, p4;
int xo� = (ex - sx)/2;
int yo� = (ey - sy)/2;

k1 = make closure(Join, parent join, , , ,);
p1 = make closure(Trace, contfk1,Join:s1g, sx, (sx + xo�), sy, (sy + yo�);
p2 = make closure(Trace, contfk1,Join:s2g, sx, (sx + xo�), (sy + yo� +1), ey);
p3 = make closure(Trace, contfk1,Join:s3g, (sx + xo� + 1), ex, sy, (sy + yo�);
p4 = make closure(Trace, contfk1,Join:s4g, (sx + xo� + 1), ex, (sy + yo� +1), ey);
post(p1); post(p2); post(p3); post(p4);

g
g

Figure 2-7: This shows the kernel of the PCM ray tracing code. For simplicity this code

assumes that the picture is of size 2n by 2n. The actual code does not assume this and is

only slightly more complex.

A simpli�ed version of the original sequential kernel can be seen in Figure 2-6. This function

just walks through all the pixels and calls calculate intersection on each of them to

determine the value of that pixel. This function is the portion of the code that we rewrote

using PCM.

The threaded version of this procedure, which is shown in Figure 2-7, computes the value

of a pixel using the exact same function, calculate intersection, that the sequential

version used. The Trace thread traces a sub-window of the original picture, as speci�ed

by the four coordinates in the argument list. The Trace thread accomplishes this task by

recursively splitting its sub-window into smaller sub-windows until the size of the newly

created windows reaches the size of a single pixel, at which point it calls the sequential

calculate intersection function to calculate the value of that pixel.

46

Figure 2-8: The picture on the left shows the ray traced image used in our experiments.

The histogram on the right shows how much computation was needed for each section of

the picture. Brighter points represent higher workloads, darker points represent lighter

workloads.

Ray Tracer Results

To test our multithreaded implementation, we traced pictures of di�erent complexities on

various machine sizes. We adjusted the picture size so that enough parallelism would be

generated to justify the use of the largest machine con�guration used during our test runs.

We �rst compared the uniprocessor timings of the multithreaded code with those of

the original sequential code, both running on the same CM-5 processing node. The results

showed no measurable di�erence between the sequential and the multithreaded timings. To

see why there was little di�erence, we need to look at the thread granularity. To trace the

picture shown in Figure 2-8 with a resolution of 512�512 pixels, around 300,000 threads

are created over the running time of about 1590 seconds, resulting in an average running

time per thread of about 3 milliseconds (� 100,000 Sparc cycles). Compared to this long

thread run length, the average per-thread overhead is negligible.

As pointed out at the beginning of this section, the time required to trace an individual

ray can vary signi�cantly. To show this uneven work requirement, we calculated a work

histogram for our example. The left part of Figure 2-8 shows the traced picture and the

right part of the �gure shows the work histogram. The work histogram shows how certain

47

static load distribution dynamic load distribution
nodes min time max time traced time max traced min traced impr.

1 1590 sec. 262144 rays 1590 sec. 262144 rays
2 602 sec. 988 sec. 131072 rays 795 sec. 135312 rays 126832 rays 20 %
4 236 sec. 523 sec. 65536 rays 396 sec. 79073 rays 48867 rays 24 %
8 101 sec. 257 sec. 32768 rays 189 sec. 45175 rays 21464 rays 26 %
16 46 sec. 128 sec. 16384 rays 90 sec. 22616 rays 10711 rays 30 %
32 23 sec. 70 sec. 8192 rays 46 sec. 12543 rays 5859 rays 34 %
64 10 sec. 36 sec. 4096 rays 23 sec. 7210 rays 2595 rays 36 %

Table 2.1: This shows execution times for the static and PCM versions of the ray tracer.

For the static version the rays are evenly distributed so we show the distribution of work,

while for the PCM version the work is evenly distributed so we show the distribution of

rays.

areas of the picture, such as the eye, contain much more work that other areas, such as the

sky. To show how this uneven work distribution can a�ect execution time, we compared

the speedup behavior of our multithreaded ray tracer with that of an implementation using

a static load balancing scheme. This comparison is shown in the �rst four columns of

Table 2.1. The static algorithm employs a simple work distribution that assigns exactly the

same number of rays to each node. For the static case we listed two timings: the execution

time of the fastest processor and the execution time of the slowest processor. We can see

that even with just two nodes, the slower processor requires 64% more compute cycles than

the faster processor. Even worse, this gap widens as we increase the number of processors.

When run on 64 nodes, the slowest processor takes 3.6 times as long as the fastest processor.

The multithreaded ray tracer, on the other hand, distributes the points such that each

processor performs almost the same amount of computation. Not only does the PCM

code perform better for all machine con�gurations than the static solution, it even achieves

perfect linear speedup. The improvement over the static program is shown in the last

column of the table. The improvement is measured as 1-(PCM time/static time). On 64

processors the PCM program executes in only 64% of the time that the statically distributed

program takes. We measured the range of the number of pixels traced per processor when

run under PCM, and we have included this data in Table 2.1. These numbers reect the

e�ect of the dynamic load balancer. As expected, the di�erence between the maximum and

minimum number of pixels traced per node was signi�cant, and the percentage di�erence

increases as we move to larger machine con�gurations.

48

2.4.2 Protein Folding

A second application that we implemented was protein folding. The reasons for choosing

this application were similar to the reasons for choosing ray-tracing. The �rst is that the

problems are large enough to warrant the use of parallelism. A common problem size takes

over six hours when run sequentially, and we wanted to run a series of problems. The second

reason is that initial attempts to parallelize the program did not make e�cient use of the

machine. These attempts statically broke the computation into subcomputations; but the

subcomputations were too coarse, and their run times too variable, to keep all processors

busy. An implementation using PCM avoids this problem.

The work on this problem was done in conjunction with Pande, Yu, Grosberg, and

Tanaka of the Center for Material Sciences and Engineering at MIT. In their work[PYGT94]

Pande, Yu, Grosberg, and Tanaka use the lattice model [SG90] to model protein folding.

In this model a protein is described as a chain of monomers, and it is assumed that in a

folded protein each monomer will sit on a point on a 3-dimensional lattice. Each possible

folding of the polymer can then be described as some path along the set of lattice points.

Figure 2-9 shows a polymer of length 26, with each shade representing a di�erent type of

monomer. The model assumes the polymer will take on the most compact possible paths,

so it is only concerned with paths that completely �ll some cube. In a folded polymer, a

pair of monomers will exert some attractive or repulsive force on one another. This force

depends on the types of the two monomers, and their distance. The energy of a folded

polymer can be modeled as the sum of the forces between all pairs of monomers, or between

all neighboring monomers. Of course, this energy value depends greatly on the way in which

the polymer is folded. A typical computation consists of considering all possible foldings

of a given polymer and computing a histogram of the energy values. We implemented this

algorithm in PCM based on the problem description given to us by Pande.

For the rest of this section we will be concerned mainly with the implementation

of this problem using PCM, focusing on the routine that enumerates all possible paths.

More details on the algorithms used and the results obtained with this program are given

in [PJGT94]. At its heart, this program is a search program that �nds all possible unique

paths that visit each node of the cube exactly once. This algorithm works by incremen-

tally building up paths through the cube until complete paths are reached. The function

49

Figure 2-9: A Folded Polymer

Count Entries performs the core of the search. An outline of the sequential code for this

function is given in Figure 2-10.

The �rst argument to this function is a STATE structure. This structure de�nes the

partial path that has been constructed so far. The contents of this structure depend on

the particular calculation being performed, but it typically contains information describing

which points are occupied, the type of monomer at each occupied point, and other data

used to increase the e�ciency of the search. The size of the STATE structure is typically

on the order of 100 bytes. The second argument to the function is point, the lattice point to

be added to the partial path. This function returns an integer, namely the number of paths

found. The function �rst adds point to the partial path. If this completes the path, the

function performs some calculation, typically updating a result histogram with the energy

value of this new path, and then returns. Otherwise it calls itself recursively for each empty

neighbor of point. At the end it sums up the number of complete paths found, and returns

this total. We start the search by calling Count Entries repeatedly on a set of starting

paths. These starting paths are precomputed and are chosen to prevent the consideration

of paths related by symmetry. Typically we run the program on several polymers at a time.

Each time we �nd a complete path we calculate several energy values, one for each input

polymer. This amortizes the time spent searching over several polymers. We improved

50

int Count Entries(struct STATE *orig st, int point) f
struct STATE st struct; /**local copy of state **/

struct STATE *state = &st struct;

memcpy(state,orig st,STATE SIZE);

add point to path(point,state); /** add point to path **/

/** If we found a complete path update the result histogram **/

/** and return 1 (the number of paths found.) **/

if (complete path(state))f
update result(state);

return 1 ;

g

/** Otherwise call Count Entries recursively on each neighbor **/

sum = 0;

for(i=0;i<num neighbors;i++)f
next neighbor=neighbor[i];

if (not occupied(next neighbor,state))f
sum += count entries(state, next neighbor);

g
g
return sum;

g

Figure 2-10: Kernel of Sequential Protein Folding

Pande's original algorithm by adding checks which prevent the search from considering

certain paths which cannot lead to a complete path. These changes, which are described

in Appendix A, provided a performance improvement of 1 to 2 orders of magnitude on the

problem sizes we have run.

The number of walks on a lattice increases exponentially with the size of the lattice,

so signi�cant speedups were needed in order to gain the necessary computational speed to

calculate the number of walks on sublattices larger than 3 � 3 � 3. An earlier attempt to

parallelize this algorithm was made without using PCM. In this code each starting path was

statically assigned to a node. Each node then executed the sequential code for its subset of

the starting paths. The number of complete paths reachable from di�erent starting paths

can di�er by many orders of magnitude. Therefore the work was not evenly divided between

the nodes, and the speedups obtained by this program were disappointing.

51

thread Count Entries(cont parent; int point, char st vec[STATE SIZE,) f
struct STATE *state = (struct STATE *) st vec;

add point to path(point,state);

if (complete path(state))f
update result histogram(state);

send argument(parent, 1);

return;

g

/** Determine number of neighbor nodes to be visited **/

num ntv = f(state,point); /** num ntv = num of neighbors to visit **/

/** nbrs to visit[i] = 'i'th neighbor to visit **/

/** Case 0: If no paths to search, then return 0 (no paths found) **/

if (num ntv==0) send argument(parent, 0);

/** Case 1: If exactly 1 neighbor to visit { only try that one **/

else if (num ntv==1)

tail call(Count Entries,parent,nbrs to visit[0],*state);

elsef
/** General case { n neighbors to try [n>1] **/

/** create a closure to sum results of all sub-computations **/

/** post num ntv-1 threads and perform a tail call for the last **/

sum closure = make closure(sum,parent,num ntv, =[num ntv]);

for(i=0;i<(num ntv-1);i++)f
next neighbor=nbrs to visit[i];

k1 = make closure(Count Entries,

contfsum closure,sum:val[i]g,
next neighbor, new st=[STATE SIZE]);

memcpy(new st,st,STATE SIZE);

post(k1);

g
/**Perform a tail call for �nal neighbor **/

new parent = contfsum closure,sum:val[num ntv-1]g;
tail call(Count Entries,new parent,next neighbor+1,*state);

g
g

Figure 2-11: Kernel of Parallel Protein Folding

52

Protein Folding Parallelization

To get a more e�cient parallelization, the computation needed to be broken into �ner grains.

PCM was ideal for this task. The procedure that makes use of the PCM primitives is the

Count Entries procedure. A skeleton of the code for this procedure is given in Figure 2-11.

The major di�erence between the PCM code and the serial code is that rather than making

recursive calls to Count Entries the code instead creates and posts closure to execute the

calls of Count Entries. In addition, a sum closure is created which will receive the results

of all the child threads and sum the results together. The unusual syntax in the call to

make closure (i.e., \ = [num ntv]") signi�es that a speci�ed number of empty slots (here

num ntv) should be left in the closure. These slots will be �lled in later with the results of

the subcomputations. Most of the recursive calls are made by making and posting closures.

There are also other di�erences between the serial and parallel codes. Most of these

di�erences were introduced for performance reasons, however, rather than correctness rea-

sons. The �rst di�erence is that this version determines in advance the number of neighbors

that will be visited. If there is just one neighbor that needs to be visited, then exactly one

recursive call needs to be made. We do this by making use of a tail-call. In this instance

the tail-call eliminates two overheads: �rst, the posting and scheduling of the closure, and

second, the copying of the state argument into the new closure. Also, when more than one

recursive call is needed, the �nal call makes use of a tail-call for the same reasons as given

above.

When this code was �rst written the tail call primitive did not exist. Originally we

wrote the code where all the recursive calls to Count Entries were implemented by creating

and posting closures. Then we modi�ed the code by hand to use the C goto statement to

implement the �nal recursive call to Count Entries. This improved the e�ciency of the

code by reducing the number of closures that had to be initialized, scheduled, and executed.

Adding the goto's by hand was fairly straightforward, but it made the code ugly and harder

to read. In order to get these performance improvements without the user programming

with goto's directly, we introduced the tail call primitive into the PCM language. Also

notice that the state structure is passed around by treating it as an array. Passing structures

in this way is somewhat cumbersome, so the language was later modi�ed to allow structures

to be passed to threads.

53

Number of 3� 3� 3 4� 3� 3

processors for (20 polymers) (1 polymer)

serial 43.54 sec. 21334 sec.

1 46.14 sec. 22704 sec.

2 23.07 sec. 11302 sec.

4 11.55 sec. 5639 sec.

8 5.79 sec. 2818 sec.

16 3.00 sec. 1411 sec.

32 1.47 sec. 705 sec.

64 0.76 sec. 386 sec.

128 177 sec.

Table 2.2: This table gives execution times for the protein folding code

Protein Folding Results

Many variations of this program have been run on a range of problem and machine sizes.

Results for two problem sizes are shown in Table 2.2. The second column shows the run

times for runs on a 3� 3� 3 cube which has 103,346 paths. This experiment was run with

a typical input size of 20 polymers, which means that for each complete path found, energy

calculations are performed for 20 polymers. The next column shows runs on a 4 � 3 � 3

cube, which has over 84 million paths. For this run just one input polymer was speci�ed.

In each column the run time for the sequential code is given, followed by the run times for

various parallel machine sizes.

The �rst observation is that the overhead added by the PCM model is fairly small. We

measured the e�ciency of the program by dividing the runtime of the serial program by

the runtime of the parallel program when run on one processor. The e�ciencies for both

these runs were 94%. The overheads for this program, although still fairly small at only 6%,

are larger than for the ray-tracer example because the length of the threads in the protein

folding code are much shorter than in the ray-tracer.

The second observation is that the speedups for both these problems are quite good.

We de�ne speedup as the runtime of the parallel program on one processor divided by

the speedup of the parallel program run on n processors. The smaller problem achieves

speedups of 61 on 64 processors, while the larger problem achieves linear speedups up to

128 processors (the largest machine on which we ran the code).

54

With this program we were able to enumerate all of the 134,131,827,475 paths on a

4� 4� 3 lattice. This computation was performed in several pieces on di�erent partitions

of various sizes, taking, in total, the equivalent of 128 hours on a 64-node CM-5.

2.5 Conclusions

The performance of any parallel program must scale over the performance of the best

sequential program to be truly practical. Because of the high costs of dynamic scheduling

and network communication in current message-passing architectures, this goal becomes a

serious challenge when programming applications with unstructured parallelism.

As the outcome of experimenting with PCM, we identi�ed two scheduling policies of

general use which increase the e�ciency of parallel applications run under a dynamic exe-

cution model. First, a work stealing scheduling policy enables almost-all-local computation,

resulting in linear and near-linear speedups of the ray-tracing and protein-folding examples.

Second, the tail-call mechanism gives the programmer the exibility to glue short threads

into longer ones. Tail-calls are especially important for very �ne grained computation, such

as the Fibonacci example. The parallel continuation-passing model presented in this chapter

incorporates these two mechanisms.

The PCM model can either serve as a compilation target for a higher level language, or

it can be used directly in conjunction with a sequential language, such as C. In the latter

case it comes as a simple extension, providing the essential structures needed to synchronize

computational threads and to optimize scheduling decisions. Although it could be argued

that PCM is di�cult to program because of its explicit continuation-passing style, we found

it often the case that a program just has a small kernel that needs to be parallelized, leaving

the rest of the program in its original sequential form.

Although PCM was successfully used for parallelizing several applications, we discovered

that there were still many ways to improve this system. In particular, more work was needed

on making the system easier to program. In addition to having to program in continuation-

passing style, a programmer had to construct runtime system primitives, such as closures

and continuations. These details should really have been hidden from the programmer. A

second area that needed to be explored further was global data structures. PCM provides

no support for global structures, yet many parallel applications need to make use of them.

55

Support for such structures was needed in order to increase the range of programs which

could be written. Lastly, we needed to gain a better understanding of the work-stealing

scheduler. Both of the examples presented in this chapter achieved nearly linear speedups.

We wanted to know if all similar applications would also achieve these results, or if we just

got lucky. Clearly not all programs could be executed with linear speedup. We also wanted

to understand what properties a program must have in order to achieve linear speedups.

All of these areas are addressed in future chapters.

56

Chapter 3

Cilk1: A Provably Good Runtime

System

In the previous chapter we described the PCM system for multithreaded programming.

With the PCM system a programmer writes his multithreaded program in a continuation-

passing style by de�ning a group of threads and specifying how they communicate. The

system then takes care of all the details of executing the program on the underlying parallel

hardware. The system encapsulates the user's threads into closures so that they can be

freely migrated between nodes. A work stealing scheduler is used to schedule the execution

of the threads and to balance the work load amongst the processors. For the applications we

implemented this system executes our code with little overhead and achieves good speedups.

Although the scheduler in PCM seems to perform well in practice, as with other runtime

systems [ABLL91, CRRH93, CGH94, CAL+89, CD88, CSS+91, FLA94, Hal85, HWW93,

JP92, Kal90, KC93, KHM89, Nik93, Nik94, RSL93, TBK93, VR88], the PCM system does

not provide users with any guarantees of application performance. When a user writes a

program, there is no way for him to know for sure what the performance of the code will

be. If his code performs poorly, the user has no way of knowing why it performed that way,

or even if the poor performance is due to the program itself or due to the runtime system.

To address this problem we incorporated a provably good scheduler into the PCM system

and renamed the system Cilk-1. We also added additional structure to the language, and

The work described in this chapter was previously reported on in a paper [BJK+95] by Robert Blumofe,

Bradley Kuszmaul, Charles Leiserson, Keith Randall, Yuli Zhou, and myself.

57

cleaned up the language a bit. With these changes Cilk-1's work-stealing scheduler achieves

space, time, and communication bounds all within a constant factor of optimal. Moreover,

the system gives the user an algorithmic model of application performance based on the

measures of \work" and \critical path." This chapter describes the Cilk-1 system and

demonstrates the e�ciency of the Cilk-1 scheduler both empirically and analytically.

This chapter represents joint work by several people. The system described in this

chapter was designed and implemented by the Cilk-1 team which was led by Prof. Charles

Leiserson, and consisted of Robert Blumofe, Bradley Kuszmaul, Keith Randall, Yuli Zhou,

and myself. Much of the theoretical work reported in Section 3.6 is based on work by

Charles Leiserson and Robert Blumofe.

3.1 Cilk-1 Overview

A Cilk multithreaded computation can be viewed as a directed acyclic graph (dag) that

unfolds dynamically, as is shown schematically in Figure 3-1. Unlike PCM, in which there

were no constraints on the dag, Cilk views the dag as having some structure. A Cilk program

consists of a collection of Cilk procedures, each of which is broken into a sequence of threads,

which form the vertices of the dag. Each thread is a nonblocking C function, which means

that once it has been invoked it can run to completion without waiting or suspending. As one

of the threads from a Cilk procedure runs, it can spawn a child thread which begins a new

child procedure. In the �gure, downward edges connect threads and their procedures with

the children they have spawned. A spawn is like a subroutine call, except that the calling

thread may execute concurrently with its child, possibly spawning additional children. Since

threads cannot block in the Cilk model, a thread cannot spawn children and then wait for

values to be returned. Rather, the thread must additionally spawn a successor thread to

receive the children's return values when they are produced. A thread and its successors

are considered to be parts of the same Cilk procedure. In the �gure, sequences of successor

threads that form Cilk procedures are connected by horizontal edges. Return values, and

other values sent from one thread to another, induce data dependencies among the threads,

where a thread receiving a value cannot begin until another thread sends the value. Data

dependencies are shown as upward, curved edges in the �gure. Thus, a Cilk computation

unfolds as a spawn tree composed of procedures and the spawn edges that connect them to

58

level 0

level 1

level 2

level 3

Figure 3-1: The Cilk model of multithreaded computation. Threads are shown as circles,

which are grouped into procedures. Each downward edge corresponds to a spawn of a

child, each horizontal edge corresponds to a spawn of a successor, and each upward, curved

edge corresponds to a data dependency. The numbers in the �gure indicate the levels of

procedures in the spawn tree.

their children, but the execution is constrained to follow the precedence relation determined

by the dag of threads.

The execution time of any Cilk-1 program on a parallel computer with P processors is

constrained by two parameters of the computation: the work and the critical path. The

work, denoted T1, is the time used by a one-processor execution of the program, which

corresponds to the sum of the execution times of all the threads. The critical path length,

denoted T
1
, is the total amount of time required by an in�nite-processor execution, which

corresponds to the largest sum of thread execution times along any path. With P processors,

the execution time cannot be less than T1=P or less than T
1
. The Cilk-1 scheduler uses

\work stealing" [BL94, BS81, FMM94, FM87, FLA94, Hal85, KZ93, KHM89, Kus94, Nik94,

VR88] to achieve execution time very near to the sum of these two measures. O�-line

techniques for computing such e�cient schedules have been known for a long time [Bre74,

Gra66, Gra69], but this e�ciency has been di�cult to achieve on-line in a distributed

environment while simultaneously using small amounts of space and communication.

In this chapter we demonstrate the e�ciency of the Cilk-1 scheduler both empirically

and analytically. Empirically, we have been able to document that Cilk-1 works well for

dynamic, asynchronous, tree-like, MIMD-style computations. To date, the applications

we have programmed include protein folding, graphic rendering, backtrack search, and

the ?Socrates chess program, which won second prize in the 1995 World Computer Chess

59

Championship. Many of these applications pose problems for more traditional parallel

environments, such as message passing [Sun90] and data parallel [Ble92, HS86], because

of the unpredictability of the dynamic workloads on processors. Analytically, we prove

that for \fully strict" (well-structured) programs, Cilk-1's work-stealing scheduler achieves

execution space, time, and communication bounds all within a constant factor of optimal.

The Cilk-1 language is an extension to C that provides an abstraction of threads in

explicit continuation-passing style. A Cilk-1 program is preprocessed to C and then linked

with a runtime library to run on the Connection Machine CM-5 MPP, the Intel Paragon

MPP, or the Silicon Graphics Power Challenge SMP. In addition, Blumofe has designed a

fault tolerant version of Cilk, called Cilk-NOW[Blu95, BP94], which runs on a network of

workstations. In this chapter, we focus on the Connection Machine CM-5 implementation

of Cilk-1. The Cilk-1 scheduler on the CM-5 is written in about 40 pages of C, and it

performs communication among processors using the Strata [BB94] active-message library.

The remainder of this chapter is organized as follows. Section 3.2 describes Cilk-1's

runtime data structures and the C language extensions that are used for programming.

Section 3.3 describes the work-stealing scheduler. Section 3.4 documents the performance

of several Cilk-1 applications. Section 3.5 shows how the work and critical path of a Cilk-1

computation can be used to model performance. Section 3.6 shows analytically that the

scheduler works well. Finally, Section 3.7 o�ers some concluding remarks and describes our

plans for the future.

3.2 Cilk Programming Environment and Implementation

In this section we describe the C-language extensions that we have developed to ease the

task of coding Cilk-1 programs. We also explain the basic runtime data structures that Cilk-

1 uses. The Cilk-1 language extensions are basically a cleaned-up version of the extensions

in PCM. They hide more of the implementation details than the original PCM did, and

they also allow the programmer to place more structure on the dag so that the threads

of the computation can be treated as a being grouped into procedures, as was shown in

Figure 3-1.

In the Cilk-1 language, a thread T is de�ned in a manner similar to a C function

de�nition:

60

x:1

42

0

T2

x:

y:

1

T1

17

6

join
counters

waiting closure

ready closure

arguments

code

Figure 3-2: The closure data structure.

thread T (arg-decls ...) f stmts ...g

The Cilk-1 preprocessor translates T into a C function of one argument and void return

type. The one argument is a pointer to a closure data structure, illustrated in Figure 3-2,

which holds the arguments for T. A closure includes a pointer to the C function for T, a slot

for each of the speci�ed arguments, and a join counter indicating the number of missing

arguments that need to be supplied before T is ready to run. A closure is ready if it has

obtained all of its arguments, and it is waiting if some arguments are missing. To run a

ready closure, the Cilk-1 scheduler invokes the thread as a procedure using the closure itself

as its sole argument. Within the code for the thread, the arguments are copied out of the

closure data structure into local variables. The closure is allocated from a simple runtime

heap when it is created, and it is returned to the heap when the thread terminates.

The Cilk-1 language supports a data type called a continuation, which is speci�ed by the

type modi�er keyword cont. A continuation is essentially a global reference to an empty

argument slot of a closure, implemented as a compound data structure containing a pointer

to a closure and an o�set that designates one of the closure's argument slots. Continuations

can be created and passed among threads, which enables threads to communicate and

synchronize with each other. Continuations are typed with the C data type of the slot in

the closure.

At runtime, a thread can spawn a child thread by creating a closure for the child.

61

Spawning is speci�ed in the Cilk-1 language as follows:

spawn T (args ...)

This statement creates a child closure, �lls in all available arguments, and initializes the join

counter to the number of missing arguments. Available arguments are speci�ed as in C.

To specify a missing argument, the user speci�es a continuation variable (of type cont)

preceded by a question mark. For example, if the second argument of a spawned thread

is ?k, then Cilk-1 sets the variable k to a continuation that refers to the second argument

slot of the created closure. If the closure is ready, that is, it has no missing arguments,

then spawn causes the closure to be immediately posted to the scheduler for execution. In

typical applications, child closures are spawned with no missing arguments.

To create a successor thread, a thread executes the following statement:

spawn next T (args ...)

This statement is semantically identical to spawn, but it informs the scheduler that the

new closure should be treated as a successor, as opposed to a child. Successor closures are

usually created with some missing arguments, which are �lled in by values produced by the

children.

A Cilk-1 procedure does not ever return values in the normal way to a parent procedure.

Instead, the programmer must code the parent procedure as two threads. The �rst thread

spawns the child procedure, passing it a continuation pointing to the successor thread's

closure. The child sends its \return" value explicitly as an argument to the waiting successor.

This strategy of communicating between threads is called explicit continuation passing.

Cilk-1 provides primitives of the following form to send values from one closure to another:

send argument (k, value)

This statement sends the value value to the argument slot of a waiting closure speci�ed by

the continuation k. The types of the continuation and the value must be compatible. The

join counter of the waiting closure is decremented, and if it becomes zero, then the closure

is ready and is posted to the scheduler.

Figure 3-3 shows the familiar recursive Fibonacci procedure written in Cilk-1. It consists

of two threads, fib and its successor sum. Reecting the explicit continuation-passing style

62

thread fib (cont int k, int n)

f if (n<2)

send argument (k, n)

else

f cont int x, y;

spawn next sum (k, ?x, ?y);

spawn fib (x, n-1);

spawn fib (y, n-2);

g
g

thread sum (cont int k, int x, int y)

f send argument (k, x+y);

g

Figure 3-3: A Cilk-1 procedure, consisting of two threads, to compute the nth Fibonacci

number.

that Cilk-1 supports, the �rst argument to each thread is the continuation specifying where

the \return" value should be placed.

When the fib function is invoked, it �rst checks to see if the boundary case has been

reached, in which case it uses send argument to \return" the value of n to the slot speci�ed

by continuation k. Otherwise, it spawns the successor thread sum, as well as two children

to compute the two subcases. Each of these two children is given a continuation specifying

to which argument in the sum thread it should send its result. The sum thread simply

adds the two arguments when they arrive and sends this result to the slot designated by

continuation k.

This code is similar to the PCM code for Fibonacci. The main di�erence is that the

Cilk-1 version is written at a slightly higher level since the Cilk-1 system has abstracted

away all the details about how threads are implemented. In the PCM version the user had

to deal directly with the closures that the runtime system uses to represent threads.

Although writing in explicit continuation-passing style is somewhat onerous for the

programmer, the decision to break procedures into separate nonblocking threads simpli�es

the Cilk-1 runtime system. Each Cilk-1 thread leaves the C runtime stack empty when it

completes. Thus, Cilk-1 can run on top of a vanilla C runtime system. A common alternative

[Hal85, KC93, MKH91, Nik94] is to support a programming style in which a thread suspends

whenever it discovers that required values have not yet been computed, resuming when the

values become available. When a thread suspends, however, it may leave temporary values

63

on the runtime stack which must be saved, or each thread must have its own runtime stack.

Consequently, this alternative strategy requires changes to the runtime system that depend

on the C calling stack layout and register usage conventions. Another advantage of Cilk-1's

strategy is that it allows multiple children to be spawned from a single nonblocking thread,

which saves on context switching. In Cilk-1, r children can be spawned and executed

with only r + 1 context switches, whereas the alternative of suspending whenever a thread

is spawned causes 2r context switches. Since our primary interest is in understanding

how to build e�cient multithreaded runtime systems, but without redesigning the basic C

runtime system, we chose the alternative of burdening the programmer with a requirement

which is perhaps less elegant linguistically, but which yields a simple and portable runtime

implementation.

Cilk-1 supports a variety of features that give the programmer greater control over

runtime performance. For example, when the last action of a thread is to spawn a ready

thread, the programmer can use the keyword call instead of spawn. Using call produces

a \tail call" which runs the new thread immediately without invoking the scheduler. Cilk-1

also allows arrays and subarrays to be passed (by value) as arguments to closures. Other

features include various abilities to override the scheduler's decisions, including on which

processor a thread should be placed and how to pack and unpack data when a closure is

migrated from one processor to another.

Cilk-1 can also automatically compute the critical path length and total work of a

computation. As we will see later, these values are useful to a programmer trying to

understand the performance of his program. The computation of the critical path is done

by a system of time-stamping, as shown in Figure 3-4.

3.3 Cilk's Work-Stealing Scheduler

Cilk's scheduler uses the technique of work-stealing [BL94, BS81, FMM94, FM87, FLA94,

Hal85, KZ93, KHM89, Kus94, Nik94, VR88] in which a processor (the thief) who runs out

of work selects another processor (the victim) from whom to steal work, and then steals the

shallowest ready thread in the victim's spawn tree. Cilk's strategy for selecting the victim

processor is to have the thief choose the victim at random [BL94, KZ93, RSAU91].

At runtime, each processor maintains a local ready queue to hold ready closures. Each

64

(d2; t2)(d1; t1)

(d1 � d2;max(t1; t2) + �
�
)

��

Figure 3-4: The time at which an instruction in a dataow graph is executed in a perfect

in�nite-processor schedule can be computed by time-stamping the tokens. In addition to

the normal data-value of a token (d1, d2, and d1 � d2 respectively in the �gure), the token

includes a time-stamp (t1, t2, and max(t1; t2) + �
�
respectively.) The time-stamp on the

outgoing token is computed as a function of the time-stamps of the incoming tokens and

the time to execute the instruction.

closure has an associated level, which corresponds to the number of spawn's (but not

spawn next's) on the path from the root of the spawn tree. The ready queue is an ar-

ray in which the Lth element contains a linked list of all ready closures having level L.

Cilk begins executing the user program by initializing all ready queues to be empty,

placing the root thread into the level-0 list of Processor 0's queue, and then starting a

scheduling loop on each processor. Within a scheduling loop, a processor �rst checks to see

whether its ready queue is empty. If it is, the processor commences \work stealing," which

will be described shortly. Otherwise, the processor performs the following steps:

1. Remove the thread at the head of the list of the deepest nonempty level in the ready

queue.

2. Extract the thread from the closure, and invoke it.

As a thread executes, it may spawn or send arguments to other threads. When the thread

terminates, control returns to the scheduling loop.

When a thread at level L spawns a child thread T , the scheduler executes the following

operations:

1. Allocate and initialize a closure for T.

2. Copy the available arguments into the closure, initialize any continuations to point to

missing arguments, and initialize the join counter to the number of missing arguments.

65

3. Label the closure with level L+ 1.

4. If there are no missing arguments, post the closure to the ready queue by inserting it

at the head of the level-(L+ 1) list.

Execution of spawn next is similar, except that the closure is labeled with level L and, if it

is ready, posted to the level-L list.

A processor that executes send argument(k, value) performs the following steps:

1. Find the closure and argument slot referenced by the continuation k.

2. Place value in the argument slot, and decrement the join counter of the closure.

3. If the join counter goes to zero, post the closure to the ready queue at the appropriate

level.

When the continuation k refers to a closure on a remote processor, network communication

ensues. The processor that initiated the send argument function sends a message to the

remote processor to perform the operations. The only subtlety occurs in step 3. If the

closure must be posted, it is posted to the ready queue of the initiating processor, rather

than to that of the remote processor. This policy is necessary for the scheduler to be

provably good; so migrating a closure for this reason is called a provably good steal. As a

practical matter, we have also had success with posting the closure to the remote processor's

queue, which can sometimes save a few percent in overhead.

If the scheduler attempts to remove a thread from an empty ready queue, the processor

becomes a thief and commences work stealing as follows:

1. Select a victim processor uniformly at random.

2. If the victim's ready queue is empty, go to step 1.

3. If the victim's ready queue is nonempty, extract a thread from the head of the list in

the shallowest nonempty level of the ready queue, and invoke it.

Work stealing is implemented with a simple request-reply communication protocol between

the thief and victim.

Why steal work from the shallowest level of the ready queue? The reason is two-

fold. First, we would like to steal large amounts of work, and shallow closures are likely

to execute for longer than deep ones. Stealing large amounts of work tends to lower the

communication cost of the program, because fewer steals are necessary. Second, the closures

at the shallowest level of the ready queue are also the ones that are shallowest in the dag, a

66

key fact used in Section 3.6. Consequently, if processors are idle, the work they steal tends

to make progress along the critical path.

3.4 Performance of Cilk-1 Applications

This section presents several applications that we have used to benchmark the Cilk-1 sched-

uler. We also present empirical evidence from experiments run on a CM-5 to document the

e�ciency of our work-stealing scheduler. The CM-5 is a massively parallel computer based

on 32MHz SPARC processors with a fat-tree interconnection network [LAD+92].

The applications are described below:

� fib(n) is the same as was presented in Section 3.2, except that the second recursive

spawn is replaced by a \tail call" that avoids the scheduler. This program is a good

measure of Cilk-1 overhead, because the thread length is so small.

� queens(N) is a backtrack search program that solves the problem of placing N queens

on a N �N chessboard so that no two queens attack each other. The Cilk-1 program

is based on serial code by R. Sargent of the MIT Media Laboratory. Thread length

was enhanced by serializing the bottom 7 levels of the search tree.

� pfold(x,y,z) is a protein-folding program [PJGT94] written in conjunction with V.

Pande of MIT's Center for Material Sciences and Engineering. This program was

described in more detail in Section 2.4. This program �nds hamiltonian paths in a

three-dimensional grid of size x � y � z. It was the �rst program to enumerate all

hamiltonian paths in a 3� 4� 4 grid. For this benchmark we timed the enumeration

of all paths starting with a certain sequence.

� ray(x,y) is a parallel program for graphics rendering based on the serial POV-Ray

program, which uses a ray-tracing algorithm. This program was described in Sec-

tion 2.4. The core of POV-Ray is a simple doubly nested loop that iterates over each

pixel in a two-dimensional image of size (x; y). For ray we converted the nested loops

into a 4-ary divide-and-conquer control structure using spawns.1 Our measurements

do not include the approximately 2.4 seconds of startup time required to read and

1Initially, the serial POV-Ray program was about 5 percent slower than the Cilk-1 version running on

one processor. The reason was that the divide-and-conquer decomposition performed by the Cilk-1 code

provides better locality than the doubly nested loop of the serial code. Modifying the serial code to imitate

the Cilk-1 decomposition improved its performance. Timings for the improved version are given in the table.

67

fib queens pfold ray knary knary ?Socrates ?Socrates

(33) (15) (3,3,4) (500,500) (10,5,2) (10,4,1) (10) (10)

32 proc. 256 proc.

(application parameters)

Tserial 8.487 252.1 615.15 729.2 288.6 40.993 1665 1665

T1 73.16 254.6 647.8 732.5 314.6 45.43 3644 7023

Tserial=T1 0.116 0.9902 0.9496 0.9955 0.9174 0.9023 0.4569 0.2371

T1 0.000326 0.0345 0.04354 0.0415 4.458 0.255 3.134 3.24

T1=T1 224417 7380 14879 17650 70.56 178.2 1163 2168

threads 17,108,660 210,740 9,515,098 424,475 5,859,374 873,812 26,151,774 51,685,823

thread length 4.276�s 1208�s 68.08�s 1726�s 53.69�s 51.99�s 139.3�s 135.9�s

(32-processor experiments)

TP 2.298 8.012 20.26 21.68 15.13 1.633 126.1 -

T1=P + T1 2.287 7.991 20.29 22.93 14.28 1.675 117.0 -

T1=TP 31.84 31.78 31.97 33.79 20.78 27.81 28.90 -

T1=(P � TP) 0.9951 0.9930 0.9992 1.0558 0.6495 0.8692 0.9030 -

space/proc. 70 95 47 39 41 42 386 -

requests/proc. 185.8 48.0 88.6 218.1 92639 3127 23484 -

steals/proc. 56.63 18.47 26.06 79.25 18031 1034 2395 -

(256-processor experiments)

TP 0.2892 1.045 2.590 2.765 8.590 0.4636 - 34.32

T1=P + T1 0.2861 1.029 2.574 2.903 5.687 0.4325 - 30.67

T1=TP 253.0 243.7 250.1 265.0 36.62 98.00 - 204.6

T1=(P � TP) 0.9882 0.9519 0.9771 1.035 0.1431 0.3828 - 0.7993

space/proc. 66 76 47 32 48 40 - 405

requests/proc. 73.66 80.40 97.79 82.75 151803 7527 - 30646

steals/proc. 24.10 21.20 23.05 18.34 6378 550 - 1540

Table 3.1: Performance of Cilk on various applications. All times are in seconds, except

where noted.

process the scene description �le.

� knary(n,k,r) is a synthetic benchmark whose parameters can be set to produce a

variety of values for work and critical path. It generates a tree of branching factor k

and depth n in which the �rst r children at every level are executed serially and the

remainder are executed in parallel. At each node of the tree, the program runs an

empty \for" loop for 400 iterations.

� ?Socrates is a parallel chess program that uses the Jamboree search algorithm [JK94,

Kus94] to parallelize a minmax tree search. We give performance numbers for the

search of a position to depth 10. The work of the algorithm varies with the number

of processors, because it does speculative work that may be aborted during runtime.

For this reason we give complete data sets for the two machine con�gurations. This

application is described in more detail in Chapter 4.

Table 3.1 shows typical performance measures for these Cilk-1 applications. Each col-

umn presents data from a single run of a benchmark application. We adopt the following

notations, which are used in the table. For each application, we have an e�cient serial

68

C implementation, compiled using gcc -O2, whose measured runtime is denoted Tserial.

The work T1 is the measured execution time for the Cilk-1 program running on a single

node of the CM-5. The critical path length T
1

of the Cilk-1 computation is measured by

timestamping each thread and does not include scheduling or communication costs. The

measured P -processor execution time of the Cilk-1 program running on the CM-5 is given

by TP , which includes all scheduling and communication costs. The row labeled \threads"

indicates the number of threads executed, and \thread length" is the average thread length

(work divided by the number of threads).

Certain derived parameters are also displayed in the table. The ratio Tserial=T1 is the

e�ciency of the Cilk-1 program relative to the C program. The ratio T1=T1 is the average

parallelism. The value T1=P +T
1

is a simple model of the runtime, which will be discussed

in the next section. The speedup is T1=TP , and the parallel e�ciency is T1=(P � TP). The
row labeled \space/proc." indicates the maximum number of closures allocated at any time

on any processor. The row labeled \requests/proc." indicates the average number of steal

requests made by a processor during the execution, and \steals/proc." gives the average

number of closures actually stolen.

The data listed for ?Socrates di�ers slightly from the data listed for the rest of the pro-

grams. Since ?Socrates performs speculative computations, the amount of work performed

by this program on a given input will vary as the machine size changes. For this reason the

data for ?Socrates is listed in two columns; one column gives the data for a 32 processor

run, the other for a 256 processor run. Since the work varies with the machine size, for T1

instead of giving the execution time on one processor, we give the total work performed

when run on the appropriate machine size. This approximates what T1 would be if the

program on one processor executed the same threads that the n processor version did.

The data in Table 3.1 shows two important relationships: one between e�ciency and

thread length, and another between speedup and average parallelism.

Considering the relationship between e�ciency Tserial=T1 and thread length, we see

that for programs with moderately long threads, the Cilk-1 scheduler induces very little

overhead. The queens, pfold, ray, and knary programs have threads with average length

greater than 50 microseconds and have e�ciency greater than 90 percent. On the other

hand, the fib program has low e�ciency, because the threads are so short: fib does almost

nothing besides spawn and send argument.

69

Despite it's long threads, the ?Socrates program shows low e�ciency, because its parallel

Jamboree search algorithm [Kus94] is based on speculatively searching subtrees that are not

searched by a serial algorithm. Consequently, as we increase the number of processors, the

program executes more threads and, hence, does more work. For example, the 256-processor

execution did 7023 seconds of work whereas the 32-processor execution did only 3644 seconds

of work. Both of these executions did considerably more work than the serial program's

1665 seconds of work. Thus, although we observe low e�ciency, it is due to the parallel

algorithm and not to Cilk-1 overhead.

Looking at the speedup T1=TP measured on 32 and 256 processors, we see that when

the average parallelism T1=T1 is large compared with the number P of processors, Cilk-1

programs achieve nearly perfect linear speedup, but when the average parallelism is small,

the speedup is much less. The fib, queens, pfold, and ray programs, for example, have in

excess of 7000-fold parallelism and achieve more than 99 percent of perfect linear speedup on

32 processors and more than 95 percent of perfect linear speedup on 256 processors.2 The

?Socrates program exhibits somewhat less parallelism and also somewhat less speedup. On

32 processors the ?Socrates program has 1163-fold parallelism, yielding 90 percent of perfect

linear speedup, while on 256 processors it has 2168-fold parallelism yielding 80 percent of

perfect linear speedup. With even less parallelism, as exhibited in the knary benchmarks,

less speedup is obtained. For example, the knary(10,5,2) benchmark exhibits only 70-fold

parallelism, and it realizes barely more than 20-fold speedup on 32 processors (less than

65 percent of perfect linear speedup). With 178-fold parallelism, knary(10,4,1) achieves

27-fold speedup on 32 processors (87 percent of perfect linear speedup), but only 98-fold

speedup on 256 processors (38 percent of perfect linear speedup).

Although these speedup measures reect the Cilk-1 scheduler's ability to exploit paral-

lelism, to obtain application speedup, we must factor in the e�ciency of the Cilk-1 program

compared with the serial C program. Speci�cally, the application speedup Tserial=TP is the

product of e�ciency Tserial=T1 and speedup T1=TP . For example, applications such as fib

and ?Socrates with low e�ciency generate correspondingly low application speedup. The

?Socrates program, with e�ciency 0:2371 and speedup 204:6 on 256 processors, exhibits

application speedup of 0:2371 � 204:6 = 48:51. For the purpose of performance prediction,

2In fact, the ray program achieves superlinear speedup even when comparing to the e�cient serial im-

plementation. We suspect that cache e�ects cause this phenomenon.

70

we prefer to decouple the e�ciency of the application from the e�ciency of the scheduler.

We should point out that for this test we chose a chess position and searched it to a depth

that could be run in a reasonable about of time on a serial machine. Under tournament time

controls we would do a deeper search which would would increase the available parallelism,

and thereby improve parallel performance.

Looking more carefully at the cost of a spawn in Cilk-1, we �nd that it takes a �xed

overhead of about 50 cycles to allocate and initialize a closure, plus about 8 cycles for each

word argument. In comparison, a C function call on a CM-5 processor takes 2 cycles of

�xed overhead (assuming no register window overow) plus 1 cycle for each word argument

(assuming all arguments are transferred in registers). Thus, a spawn in Cilk-1 is roughly an

order of magnitude more expensive than a C function call. This Cilk-1 overhead is quite

apparent in the fib program, which does almost nothing besides spawn and send argument.

Based on fib's measured e�ciency of 0:116, we can conclude that the aggregate average

cost of a spawn/send argument in Cilk-1 is between 8 and 9 times the cost of a function

call/return in C.

E�cient execution of programs with short threads requires a low-overhead spawn op-

eration. As can be observed from Table 3.1, the vast majority of threads execute on the

same processor on which they are spawned. For example, the fib program executed over

17 million threads but migrated only 6170 (24.10 per processor) when run with 256 proces-

sors. Taking advantage of this property, other researchers [KC93, MKH91] have developed

techniques for implementing spawns such that when the child thread executes on the same

processor as its parent, the cost of the spawn operation is roughly equal the cost of a C

function call. We hope to incorporate such techniques into future implementations of Cilk.

Finally, we make two observations about the space and communication measures in Ta-

ble 3.1.

Looking at the \space/proc." rows, we observe that the space per processor is generally

quite small and does not grow with the number of processors. For example, ?Socrates on

32 processors executes over 26 million threads, yet no processor ever has more than 386

allocated closures. On 256 processors, the number of executed threads nearly doubles to

over 51 million, but the space per processors barely changes. In Section 3.6 we show formally

that for Cilk-1 programs, the space per processor does not grow as we add processors.

Looking at the \requests/proc." and \steals/proc." rows in Table 3.1, we observe that

71

the amount of communication grows with the critical path but does not grow with the

work. For example, fib, queens, pfold, and ray all have critical paths under a tenth of

a second long and perform fewer than 220 requests and 80 steals per processor, whereas

knary(10,5,2) and ?Socrates have critical paths more than 3 seconds long and perform

more than 20,000 requests and 1500 steals per processor. The table does not show any

clear correlation between work and either requests or steals. For example, ray does more

than twice as much work as knary(10,5,2), yet it performs two orders of magnitude fewer

requests. In Section 3.6, we show that for \fully strict" Cilk-1 programs, the communication

per processor grows linearly with the critical path length and does not grow as function of

the work.

3.5 Modeling Performance

In this section, we further document the e�ectiveness of the Cilk-1 scheduler by showing

empirically that it schedules applications in a near-optimal fashion. Speci�cally, we use the

knary synthetic benchmark to show that the runtime of an application on P processors can

be accurately modeled as TP � T1=P + c
1
T
1
, where c

1
� 1:5. This result shows that

we obtain nearly perfect linear speedup when the critical path is short compared with the

average amount of work per processor. We also show that a model of this kind is accurate

even for ?Socrates, which is our most complex application programmed to date and which

does not obey all the assumptions assumed by the theoretical analyses in Section 3.6.

A good scheduler should run an application with T1 work in T1=P time on P processors.

Such perfect linear speedup cannot be obtained whenever T
1
> T1=P , since we always have

TP � T
1
, or more generally, TP � max fT1=P; T1g. The critical path T

1
is the stronger

lower bound on TP whenever P exceeds the average parallelism T1=T1, and T1=P is the

stronger bound otherwise. A good scheduler should meet each of these bounds as closely

as possible.

In order to investigate how well the Cilk-1 scheduler meets these two lower bounds, we

used our knary benchmark (described in Section 3.4), which can exhibit a range of values

for work and critical path.

Figure 3-5 shows the outcome of many experiments of running knary with various values

for k, n, r, and P . The �gure plots the speedup T1=TP for each run against the machine size

72

P for that run. In order to compare the outcomes for runs with di�erent parameters, we

have normalized the data by dividing the plotted values by the average parallelism T1=T1.

Thus, the horizontal position of each datum is P=(T1=T1), and the vertical position of each

datum is (T1=TP)=(T1=T1) = T
1
=TP . Consequently, on the horizontal axis, the normalized

machine-size is 1:0 when the average available parallelism is equal to the machine size. On

the vertical axis, the normalized speedup is 1:0 when the runtime equals the critical path,

and it is 0:1 when the runtime is 10 times the critical path. We can draw the two lower

bounds on time as upper bounds on speedup. The horizontal line at 1:0 is the upper bound

on speedup obtained from the critical path, and the 45-degree line is the upper bound on

speedup obtained from the work per processor. As can be seen from the �gure, on the

knary runs for which the average parallelism exceeds the number of processors (normalized

machine size < 1), the Cilk-1 scheduler obtains nearly perfect linear speedup. In the region

where the number of processors is large compared to the average parallelism (normalized

machine size > 1), the data is more scattered, but the speedup is always within a factor of

4 of the critical-path upper bound.

The theoretical results from Section 3.6 show that the expected running time of an

application on P processors is TP = O(T1=P + T
1
). Thus, it makes sense to try to �t

the data to a curve of the form TP = c1(T1=P) + c
1
(T
1
). A least-squares �t to the data

to minimize the relative error yields c1 = 0:9543 � 0:1775 and c
1

= 1:54 � 0:3888 with

95 percent con�dence. The R2 correlation coe�cient of the �t is 0:989101, and the mean

relative error is 13:07 percent. The curve �t is shown in Figure 3-5, which also plots the

simpler curves TP = T1=P+T1 and TP = T1=P+2�T1 for comparison. As can be seen from

the �gure, little is lost in the linear speedup range of the curve by assuming that c1 = 1.

Indeed, a �t to TP = T1=P + c
1
(T
1
) yields c

1
= 1:509� 0:3727 with R2 = 0:983592 and a

mean relative error of 4:04 percent, which is in some ways better than the �t that includes

a c1 term. (The R
2 measure is a little worse, but the mean relative error is much better.)

It makes sense that the data points become more scattered when P is close to or exceeds

the average parallelism. In this range, the amount of time spent in work stealing becomes

a signi�cant fraction of the overall execution time. The real measure of the quality of a

scheduler is how much larger T1=T1 must be than P before TP shows substantial inuence

from the critical path. One can see from Figure 3-5 that if the average parallelism exceeds

P by a factor of 10, the critical path has almost no impact on the running time.

73

.

.

Curve Fit: 0:954 � T1=P + 1:540 � T1

Model 2: 1:000 � T1=P + 2:000 � T1

Model 1: 1:000 � T1=P + 1:000 � T1

Measured Value:
L
in
ea
r
Sp
ee
du
p
B
ou
nd

Critical Path Bound

N
o
rm
a
li
z
e
d
S
p
e
e
d
u
p

Normalized Machine Size

1

0.1

0.01

0.001

0.0001

1010.10.010.0010.0001

Figure 3-5: Normalized speedups for the knary synthetic benchmark using from 1 to 256

processors. The horizontal axis is P and the vertical axis is the speedup T1=TP , but each

data point has been normalized by dividing the these parameters by T1=T1.

To con�rm our simple model of the Cilk-1 scheduler's performance on a real application,

we ran ?Socrates on a variety of chess positions. Figure 3-6 shows the results of our study,

which con�rm the results from the knary synthetic benchmarks. The curve shown is the

best �t to TP = c1(T1=P) + c
1
(T
1
), where c1 = 1:067 � 0:0141 and c

1
= 1:042 � 0:0467

with 95 percent con�dence. The R2 correlation coe�cient of the �t is 0:9994, and the mean

relative error is 4:05 percent.

Indeed, as some of us were developing and tuning heuristics to increase the performance

of ?Socrates, we used work and critical path as our measures of progress. This methodology

let us avoid being trapped by the following interesting anomaly. We made an \improvement"

that sped up the program on 32 processors. From our measurements, however, we discovered

that it was faster only because it saved on work at the expense of a much longer critical

path. Using the simple model TP = T1=P + T
1
, we concluded that on a 512-processor

machine, which was our platform for tournaments, the \improvement" would yield a loss of

performance, a fact that we later veri�ed. Measuring work and critical path enabled us to

use experiments on a 32-processor machine to improve our program for the 512-processor

74

.

.

Curve Fit: 1:067 � T1=P + 1:042 � T1

Model 2: 1:000 � T1=P + 2:000 � T1

Model 1: 1:000 � T1=P + 1:000 � T1

Measured Value:

L
in
ea
r
Sp
ee
du
p
B
ou
nd

Critical Path Bound

N
o
rm
a
li
z
e
d
S
p
e
e
d
u
p

Normalized Machine Size

1

0.1

0.01

10.10.01

Figure 3-6: Normalized speedups for the ?Socrates chess program.

machine, but without using the 512-processor machine, on which computer time was scarce.

3.6 Theoretical Analysis of the Cilk-1 Scheduler

In this section we use algorithmic analysis techniques to prove that for the class of \fully

strict" Cilk-1 programs, Cilk-1's work-stealing scheduling algorithm is e�cient with respect

to space, time, and communication. A fully strict program is one for which each thread

sends arguments only to its parent's successor threads. In the analysis and bounds of this

section, we further assume that each thread spawns at most one successor thread. For this

class of programs, we prove the following three bounds on space, time, and communication:

Space The space used by a P -processor execution is bounded by SP � S1P , where S1

denotes the space used by the serial execution of the Cilk-1 program. This bound is

existentially optimal to within a constant factor [BL94].

Time With P processors, the expected execution time, including scheduling overhead, is

bounded by TP = O(T1=P + T
1
). Since both T1=P and T

1
are lower bounds for

75

any P -processor execution, our expected time bound is within a constant factor of

optimal.

Communication The expected number of bytes communicated during a P -processor ex-

ecution is O(T
1
PSmax), where Smax denotes the largest size of any closure. This

bound is existentially optimal to within a constant factor [WK91].

The expected-time bound and the expected-communication bound can be converted into

high-probability bounds at the cost of only a small additive term in both cases. Full proofs

of these bounds, using generalizations of the techniques developed in [BL94], can be found

in [Blu95]. We defer complete proofs and give outlines here.

The space bound can be obtained from a \busy-leaves" property that characterizes the

allocated closures at all times during the execution. In order to state this property simply,

we �rst de�ne some terms. We say that two or more closures are siblings if they were

spawned by the same parent, or if they are successors (by one or more spawn next's) of

closures spawned by the same parent. Sibling closures can be ordered by age: the �rst child

spawned is older than the second, and so on. At any given time during the execution, we

say that a closure is a leaf if it has no allocated children, and we say that a leaf closure is a

primary leaf if, in addition, it has no younger siblings allocated. The busy-leaves property

states that every primary-leaf closure has a processor working on it.

Lemma 1 Cilk's scheduler maintains the busy-leaves property.

Proof: Consider the three possible ways that a primary-leaf closure can be created. First,

when a thread spawns children, the youngest of these children is a primary leaf. Second,

when a thread completes and its closure is freed, if that closure has an older sibling and that

sibling has no children, then the older-sibling closure becomes a primary leaf. Finally, when

a thread completes and its closure is freed, if that closure has no allocated siblings, then the

youngest closure of its parent's successor threads is a primary leaf. The induction follows

by observing that in all three of these cases, Cilk's scheduler guarantees that a processor

works on the new primary leaf. In the third case we use the important fact that a newly

activated closure is posted on the processor that activated it (and not on the processor on

which it was residing).

76

Theorem 2 For any fully strict Cilk program, if S1 is the space used to execute the program

on 1 processor, then with any number P of processors, Cilk's work-stealing scheduler uses

at most S1P space.

Proof: We shall obtain the space bound SP � S1P by assigning every allocated closure

to a primary leaf such that the total space of all closures assigned to a given primary leaf

is at most S1. Since Lemma 1 guarantees that all primary leaves are busy, at most P

primary-leaf closures can be allocated, and hence the total amount of space is at most S1P .

The assignment of allocated closures to primary leaves is made as follows. If the closure

is a primary leaf, it is assigned to itself. Otherwise, if the closure has any allocated children,

then it is assigned to the same primary leaf as its youngest child. If the closure is a leaf

but has some younger siblings, then the closure is assigned to the same primary leaf as its

youngest sibling. In this recursive fashion, we assign every allocated closure to a primary

leaf. Now, we consider the set of closures assigned to a given primary leaf. The total space

of these closures is at most S1, because this set of closures is a subset of the closures that

are allocated during a 1-processor execution when the processor is executing this primary

leaf, which completes the proof.

We are now ready to analyze execution time. Our strategy is to mimic the theorems

of [BL94] for a more restricted model of multithreaded computation. As in [BL94], the

bounds assume a communication model in which messages are delayed only by contention

at destination processors, but no assumptions are made about the order in which contending

messages are delivered [LAB93]. For technical reasons in our analysis of execution time,

the critical path is calculated assuming that all threads spawned by a parent thread are

spawned at the end of the parent thread.

In our analysis of execution time, we use an accounting argument. At each time step,

each of the P processors places a dollar in one of three buckets according to its actions at

that step. If the processor executes an instruction of a thread at the step, it places its dollar

into the Work bucket. If the processor initiates a steal attempt, it places its dollar into

the Steal bucket. Finally, if the processor merely waits for a steal request that is delayed

by contention, then it places its dollar into the Wait bucket. We shall derive the running

time bound by upper bounding the dollars in each bucket at the end of the computation,

summing these values, and then dividing by P , the total number of dollars put into buckets

77

on each step.

Lemma 3 When the execution of a fully strict Cilk computation with work T1 ends, the

Work bucket contains T1 dollars.

Proof: The computation contains a total of T1 instructions.

Lemma 4 When the execution of a fully strict Cilk computation ends, the expected number

of dollars in the Wait bucket is less than the number of dollars in the Steal bucket.

Proof: Lemma 5 of [BL94] shows that if P processors make M random steal requests

during the course of a computation, where requests with the same destination are serially

queued at the destination, then the expected total delay is less than M .

Lemma 5 When the P -processor execution of a fully strict Cilk computation with critical-

path length T
1

and for which each thread has at most one successor ends, the expected

number of dollars in the Steal bucket is O(PT
1
).

Proof sketch: The proof follows the delay-sequence argument of [BL94], but with some

di�erences that we shall point out. Full details can be found in [Blu95].

At any given time during the execution, we say that a thread is critical if it has not yet

been executed but all of its predecessors in the dag have been executed. For this argument,

the dag must be augmented with \ghost" threads and additional edges to represent implicit

dependencies imposed by the Cilk scheduler. We de�ne a delay sequence to be a pair (P; s)

such that P is a path of threads in the augmented dag and s is a positive integer. We say

that a delay sequence (P; s) occurs in an execution if at least s steal attempts are initiated

while some thread of P is critical.

The next step of the proof is to show that if at least s steal attempts occur during an

execution, where s is su�ciently large, then some delay sequence (P; s) must occur. That

is, there must be some path P in the dag such that each of the s steal attempts occurs

while some thread of P is critical. We do not give the construction here, but rather refer

the reader to [Blu95, BL94] for directly analogous arguments.

The last step of the proof is to show that a delay sequence with s =
(PT
1
) is unlikely

to occur. The key to this step is a lemma, which describes the structure of threads the

processors' ready pools. This structural lemma implies that if a thread is critical, it is the

78

next thread to be stolen from the pool in which it resides. Intuitively, after P steal attempts,

we expect one of these attempts to have targeted the processor in which the critical thread

of interest resides. In this case, the critical thread will be stolen and executed, unless, of

course, it has already been executed by the local processor. Thus, after PT
1
steal attempts,

we expect all threads on P to have been executed. The delay-sequence argument formalizes

this intuition. Thus, the expected number s of dollars in the Steal bucket is at most

O(PT
1
).

Theorem 6 Consider any fully strict Cilk computation with work T1 and critical-path

length T
1

such that every thread spawns at most one successor. With any number P of pro-

cessors, Cilk's work-stealing scheduler runs the computation in expected time O(T1=P+T1).

Proof: We sum the dollars in the three buckets and divide by P . By Lemma 3, the Work

bucket contains T1 dollars. By Lemma 4, theWait bucket contains at most a constant times

the number of dollars in the Steal bucket, and Lemma 5 implies that the total number of

dollars in both buckets is O(PT
1
). Thus, the sum of the dollars is T1 +O(PT

1
), and the

bound on execution time is obtained by dividing by P .

In fact, it can be shown using the techniques of [BL94] that for any � > 0, with proba-

bility at least 1� �, the execution time on P processors is O(T1=P + T
1
+ lgP + lg(1=�)).

Theorem 7 Consider any fully strict Cilk computation with work T1 and critical-path

length T
1

such that every thread spawns at most one successor. For any number P of

processors, the total number of bytes communicated by Cilk's work-stealing scheduler has

expectation O(PT
1
Smax), where Smax is the size in bytes of the largest closure in the com-

putation.

Proof: The proof follows directly from Lemma 5. All communication costs can be associ-

ated with steals or steal requests, and at most O(Smax) bytes are communicated for each

successful steal.

In fact, for any � > 0, the probability is at least 1 � � that the total communication

incurred is O(P (T
1
+ lg(1=�))Smax).

The analysis and bounds we have derived apply to fully strict programs in the case when

each thread spawns at most one successor. In [Blu95], the theorems above are generalized

to handle situations where a thread can spawn more than one successor.

79

3.7 Conclusion

To produce high-performance parallel applications, programmers often focus on communi-

cation costs and execution time, quantities that are dependent on speci�c machine con�g-

urations. We argue that a programmer should think instead about work and critical path,

abstractions that can be used to characterize the performance of an algorithm independent

of the machine con�guration. Cilk-1 provides a programming model in which work and

critical path are observable quantities, and it delivers guaranteed performance as a function

of these quantities. Work and critical path have been used in the theory community for

years to analyze parallel algorithms [KR90]. Blelloch [Ble92] has developed a performance

model for data-parallel computations based on these same two abstract measures. He cites

many advantages of such a model over machine-based models. Cilk-1 provides a similar

performance model for the domain of asynchronous, multithreaded computation.

Although Cilk-1 o�ers performance guarantees, its capabilities are somewhat limited.

Programmers �nd its explicit continuation-passing style to be onerous. The higher level

primitives described in Chapter 5 address this concern. Cilk-1 is good at expressing and

executing dynamic, asynchronous, tree-like, MIMD computations, but it is not ideal for

more traditional parallel applications that can be programmed e�ectively in, for example,

a message-passing, data-parallel, or single-threaded, shared-memory style. To partially

address this inadequacy, we have added \dag-consistent" shared memory to the Cilk system,

which allows programs to operate on shared memory without costly communication or

hardware support. This addition is described in Chapter 6.

80

Chapter 4

The ?Socrates Parallel Chess

Program

The Cilk-1 system described in the previous chapter is a powerful system which allows a pro-

grammer to write complicated multithreaded programs and have them executed e�ciently.

The system was intended to have the exibility to express programs with fairly complex

control structures. Up to this point, however, we had only written applications with rel-

atively simple control structures. For most of our programs the Cilk-1 portion consisted

mainly of one Cilk thread which was recursively called many times. We therefore wanted

to write a large, challenging application with complicated control dependencies, preferably

one which would be di�cult to express in other parallel programming paradigms. Such

a program would not only showcase the power of Cilk, but would also stress the runtime

system and the language, thereby identifying any of weaknesses Cilk may have.

We chose computer chess because it met all these criteria, and because it was an in-

teresting application in its own right. Also, since we would test the program in actual

competitions against both humans and computers, we would be forced to implement the

best algorithms, not just whatever happened to be easiest to implement in our system.

Our chess program, ?Socrates, uses the Jamboree [Kus94] algorithm to perform a parallel

game-tree search. This search algorithm has a complex control structure which is nondeter-

ministic and performs speculative computations, some of which need to be killed o� before

completing. In order to obtain good performance during this search, we use several mecha-

Part of this work was reported on by Kuszmaul and myself in an earlier article [JK94].

81

nisms not directly provided by Cilk, such as aborting computations and directly accessing

the active message layer to implement a global transposition table distributed across the

processors. The initial version of ?Socrates was implemented during the time PCM was

evolving into the Cilk system and our work on this program led to several modi�cations to

the Cilk system which gave the user more control over the execution of his program.

Many people contributed to the ?Socrates chess program. Robert Blumofe, Don Dailey,

Michael Halbherr, Larry Kaufman, Bradley Kuszmaul, Charles Leiserson, and I contributed

to the ?Socrates code itself. Don Dailey and Larry Kaufman, then of Heuristic Software

Inc., wrote the serial Socrates program on which ?Socrates is based, and Don Dailey twice

joined us at MIT to improve the chess knowledge in the program. I initially implemented

the search algorithm in Cilk, and then took a lead role in tuning and testing all aspects

of the system (including the search code, the chess code and the runtime system). At

various times Bradley Kuszmaul and I took the lead in bringing the whole system together.

Bradley Kuszmaul also invented the Jamboree search algorithm, which was �rst used in his

StarTech program. Robert Blumofe implemented the transposition table. Michael Halbherr

originally implemented the abort code. In addition, Robert Blumofe, Matteo Frigo, Michael

Halbherr, Bradley Kuszmaul, Charles Leiserson, Keith Randall, Rolf Riesen, Yuli Zhou, and

I contributed to the various PCM and Cilk runtime systems on which ?Socrates runs.

4.1 Introduction

Computer chess provides a good testbed for understanding dynamic MIMD-style computa-

tions. The parallelism in computer chess is derived from a dynamic expansion of a highly

irregular game-tree, which makes computer chess di�cult to express, for example, as a

data-parallel program. To investigate how to program this sort of dynamic MIMD-style

application, we engineered a parallel chess program called ?Socrates (pronounced \Star-

Socrates".) The program, based on Heuristic Software's serial Socrates program, has an

informally estimated rating of over 2400 USCF. ?Socrates, running on the 512-node CM-5 at

the National Center for Supercomputing Applications (NCSA) at the University of Illinois,

tied for third place in the 1994 ACM International Computer Chess Championship held at

the end of June 1994 in Cape May, New Jersey. Cilk and ?Socrates were later ported to

the Intel Paragon in March 1995, and running on Sandia National Laboratories' 1824-node

82

Paragon, ?Socrates �nished second in the 1995 World Computer Chess Championship.

?Socrates is, in part, a continuation of earlier work performed here on the StarTech [Kus94]

chess program. StarTech was based on Hans Berliner's serial Hitech[BE89] program. Al-

though ?Socrates and StarTech are based on di�erent serial programs and do not share any

code, ?Socrates borrowed techniques originally developed for StarTech, such as the basic

search algorithm. A major di�erence between the two is that in StarTech, the chess and

scheduling algorithms were all wrapped together in a single piece of code. The work on

?Socrates was intended in part to show that the chess program could be separated from the

problems of scheduling and load balancing and still execute e�ciently. ?Socrates uses Cilk

to address the scheduling problem, allowing the chess code to focus on only those issues

which are unique to a chess program.

It was not clear from the outset how to predict the performance of a parallel chess pro-

gram. Chess programs search a dynamically generated tree, and obtain their parallelism

from that tree. Di�erent branches of the tree have vastly di�erent amounts of total work

and available parallelism. ?Socrates uses large global data structures, performs speculative

computations, and is nondeterministic. But we wanted predictable performance. For exam-

ple, if one develops a program on a small machine, one would like to be able to instrument

the program and predict how fast it will run on a big machine. How can predictable perfor-

mance be salvaged from a program with these characteristics? We showed in the previous

chapter that under certain assumptions the run time of a Cilk program can be predicted

from the total workW and the critical path length C. But chess violates these assumptions,

so it was not clear how well the scheduler would perform.

For most algorithms, the values of W and C depend on the parallel algorithm, and

not on the scheduler. But for speculative computations, such as our game-tree search

algorithm, the values of W and C are partially dependent on scheduling decisions made by

the scheduler. Our work on ?Socrates led to several modi�cations to the Cilk system which

gave the user additional control over these scheduling decisions.

This chapter explains how we implemented ?Socrates in Cilk such that we achieved

predictable, e�cient performance. Section 4.2 describes the Jamboree game-tree search

algorithm and presents some analytical results describing the performance of Jamboree

search. The modi�cations made to Cilk in order to run the chess program are described

in Section 4.3. In Section 4.4 we outline several other mechanisms that were needed to

83

implement a parallel chess program. Section 4.5 describes the performance of the ?Socrates

program and shows that a chess program can execute e�ciently when the scheduler is

independent of the chess code. We make some concluding remarks in Section 4.6.

4.2 Parallel Game Tree Search

The ?Socrates chess program uses an e�cient parallel game-tree search algorithm called

\Jamboree" search [Kus94]. In this section we explain Jamboree search, starting with the

basics of negamax search and serial �-� search, and present some analytical performance

results for the algorithm.

The basic idea behind Jamboree search is to do the following operations on a position

in the game tree that has k children:

� The value of the �rst child of the position is determined (by a recursive call to the

search algorithm.)

� Then, in parallel, all of the remaining k� 1 children are tested to verify that they are

not better alternatives than the �rst child.

� Each child that turns out to be better than the �rst child is searched in turn to

determine which is the best.

If the move ordering is best-�rst, i.e., the �rst move considered is always better than the

other moves, then all of the tests succeed, and the position is evaluated quickly and e�-

ciently. We expect that the tests will usually succeed, because the move ordering is often

best-�rst due the the application of several chess-speci�c move-ordering heuristics.

4.2.1 Negamax Search Without Pruning

Before delving into the details of the Jamboree algorithm, let us review the basic search

algorithms that are applicable to computer chess. (Readers who are familiar with the serial

game tree search algorithms may wish to skip directly ahead to the description of the

Jamboree algorithm in Section 4.2.4.) Most chess programs use some variant of negamax

tree search to evaluate a chess position. The goal of the negamax tree search is to compute

the value of position p in a tree Tp rooted at position p. The value of p is de�ned according

84

(N1) De�ne negamax(p) as

(N2) If n is a leaf then return static eval(n).

(N3) Let ~c the children of n, and

(N4) b �1:
(N5) For i from 0 below j~cj do:
(N6) Let s �negamax(~ci): ;; Recursive Search

(N7) if s > b then set b s: ;; New best score

(N8) enddo

(N9) return b.

Figure 4-1: Algorithm negamax.

to the negamax formula:

vp =

8><
>:

static eval(p) if p is a leaf in Tp, and

maxf�vc : c a child of p in Tpg if p is not a leaf.

The negamax formula states that the best move for player A is the move that gives player

B, who plays the best move from B's point of view, the worst option. If there are no moves,

then we use a static evaluation function. Of course, no chess program searches the entire

game tree. Instead some limited game tree is searched using an imperfect static evaluation

function. Thus, we have formalized the chess knowledge as Tp, which tells us what tree to

search, and static eval, which tells us how to evaluate a leaf position.

The naive Algorithm negamax shown in Figure 4-1 computes the negamax value vp of

position p by searching the entire tree rooted at p. It is easy to make Algorithm negamax

into a parallel algorithm, because there are no dependencies between iterations of the for

loop of Line (N5). One simply changes the for loop into a parallel loop. But negamax is

not a e�cient serial search algorithm, and thus, it makes little sense to parallelize it.

4.2.2 Alpha-Beta Pruning

The most e�cient serial algorithms for game-tree search all avoid searching the entire tree

by proving that certain subtrees need not be examined. In this section we review the �-�

serial search algorithm in preparation for the explanation of how the Jamboree parallel

search algorithm works.

An example of how pruning can reduce the size of a game tree that is searched can be

seen in the chess position of Figure 4-2. Suppose White has determined that it can win

85

0Z0Z0Z0j
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0OPl
Z0Z0Z0J0

Figure 4-2: White to move and win. In this position, White need not consider all of Black's

alternatives to 40. Kf1, since almost any move Black makes will keep the queen, a worse

outcome than just taking the queen with 40. K�h2.

(A1) De�ne absearch(n; �; �) as

(A2) If n is a leaf then return static eval(n).

(A3) Let ~c the children of n, and

(A4) b �1:
(A5) For i from 0 below j~cj do:
(A6) Let s �absearch(~ci;��;��):
(A7) If s � � then return s. ;; Fail High

(A8) If s > � then set � s. ;; Raise �

(A9) If s > b then set b s.

(A10) enddo

(A11) return b.

Figure 4-3: Algorithm absearch.

Black's queen with 40. K�h2. White's other legal move 40. Kf1 fails to capture the queen.

White does not need to consider every possible way for Black's queen to escape. Any one of

a number of possibilities su�ces. Thus, White can stop thinking about the move without

having exhaustively searched all of Black's options.

The idea of pruning subtrees that do not need to be searched is embodied in the serial �-

� search algorithm [KM75], which computes the negamax score for a node without actually

looking at the entire search tree. The algorithm is expressed as a recursive subroutine with

two new parameters � and �. If the value of any child, when negated, is as great as �,

then the value of the parent is no less than �, and we say that the parent fails high. If the

values of all of the children, when negated, are less than or equal to �, then the value of

the parent is no greater than �, and we say that the parent fails low.

Procedure absearch is shown in Figure 4-3. When Procedure absearch is called, the

parameters � and � are chosen so that if the value of a node is not greater than � and less

86

than �, then we know that the value of the node cannot a�ect the negamax value of the

root of the entire search tree. After the score is returned from the subsearch on Line (A6),

the algorithm, on Line (A7), checks to see if the negated score is as great as �. If so, we

know that the value of the node is at least as great as � and we can skip searching the

remaining children; the node has failed high. Just because one of the children has a negated

score less than �, however, does not mean that some other child might not be within the

�-� window. The algorithm can only fail low after considering all of the children.

The �-� algorithm can substantially reduce the size of the tree searched. The �-�

algorithm works best if the best moves are considered �rst, because if any move can make

the position fail high, then certainly the best move can make the position fail high. Knuth

and Moore [KM75] show that for searches of a uniform best-ordered tree of height H and

degree D, the �-� algorithm searches only O(
p
DH) leaves instead of DH leaves.

For any k � 0, before searching the (k + 1)st child, the �-� algorithm obtains the

value of the kth child and possibly uses that value to adjust � or return immediately. This

dependency between �nishing the kth child and starting the (k + 1)st child completely

serializes the �-� search algorithm.1

4.2.3 Scout Search

For a parallel chess program, we need an algorithm that both e�ectively prunes the tree

and can be parallelized. We started with a variant on serial �-� search, called Scout search,

and modi�ed it to be a parallel algorithm. This section explains the Scout search algorithm.

Figure 4-4 shows the serial Scout search algorithm, which is due to J. Pearl [Pea80].

Procedure scout is similar to Procedure absearch, except that when considering any child

that is not the �rst child, a test is �rst performed to determine if the child is no better a

move than the best move seen so far. If the child is no better, the test is said to succeed. If

the child is determined to be better than the best move so far, the test is said to fail, and

the child is searched again (valued) to determine its true value.

The Scout algorithm performs tests on positions to see if they are greater than or less

than a given value. A test is performed by using an empty-window search on a position.

For integer scores one uses the values (��� 1) and (��) as the parameters of the recursive

1R. Finkel and J. Fishburn showed that if the serialization implied by �-� pruning is ignored by a parallel

program, then it will achieve only
p
P speedup on P processors [FF82].

87

(S1) De�ne scout(n; �; �) as

(S2) If n is a leaf then return static eval(n).

(S3) Let ~c the children of n, and

(S4) b �scout(c0;��;��):
(S5) ;; The �rst child's valuation may cause this node to fail high.

(S6) If b � � then return b.

(S7) If b > � then set � b.

(S8) For i from 1 below j~cj do: ;; the rest of the children

(S9) Let s �scout(~ci;��� 1;��): ;; Test

(S10) If s > b then set b s.

(S11) If s � � then return s. ;; Fail High

(S12) If s > � then ;; Test failed

(S13) Set s �scout(~ci;��;��). ;; Research for value

(S14) If s � � then return s. ;; Fail High

(S15) If s > � then set � s.

(S16) If s > b then set b s.

(S17) enddo

(S18) return b.

Figure 4-4: Algorithm scout.

search, as shown on Line (S9). A child is tested to see if it is worse than the best move so

far, and if the test fails on Line (S12) (i.e., the move looks like it might be better than the

best move seen so far), then the child is valued, on Line (S13), using a nonempty window

to determine its true value.

If it happens to be the case that � + 1 = �, then Line (S13) never executes because

s > � implies s � �, which causes the return on Line (S11) to execute. Consequently, the

same code for Algorithm scout can be used for the testing and for the valuing of a position.

Line S10, which raises the best score seen so far according to the value returned by a

test, is necessary to insure that if the test fails low (i.e., if the test succeeds), then the value

returned is an upper bound to the score. If a test were to return a score that is not a proper

bound to its parent, then the parent might return immediately with the wrong answer when

the parent performs the check of the returned score against � on Line S11.

A test is typically cheaper to execute than a valuation because the �-� window is

smaller, which means that more of the tree is likely to be pruned. If the test succeeds, then

algorithm scout has saved some work, because testing a node is cheaper than �nding its

exact value. If the test fails, then scout searches the node twice and has squandered some

work. Algorithm scout bets that the tests will succeed often enough to outweigh the extra

88

(J1) De�ne jamboree(n; �; �) as

(J2) If n is a leaf then return static eval(n).

(J3) Let ~c the children of n, and

(J4) b �jamboree(c0;��;��):
(J5) If b � � then return b.

(J6) If b > � then set � b.

(J7) In Parallel: For i from 1 below j~cj do:
(J8) Let s �jamboree(~ci;��� 1;��):
(J9) If s > b then set b s.

(J10) If s � � then abort-and-return s.

(J11) If s > � then

(J12) Wait for the completion of all previous iterations

(J13) of the parallel loop.

(J14) Set s �jamboree(~ci;��;��). ;; Research for value

(J15) If s � � then abort-and-return s.

(J16) If s > � then set � s.

(J17) If s > b then set b s.

(J18) Note the completion of the ith iteration of the parallel loop.

(J19) enddo

(J20) return b.

Figure 4-5: Algorithm jamboree.

cost of any nodes that must be searched twice, and empirical evidence [Pea80] justify its

dominance as the search algorithm of choice in modern serial chess-playing programs.

4.2.4 Jamboree Search

The Jamboree algorithm, shown in Figure 4-5, is a parallelized version of the Scout search

algorithm. The idea is that all of the testing of the children is done in parallel, and any tests

that fail are sequentially valued. A parallel loop construct, in which all of the iterations

of a loop run concurrently, appears on Line (J7). Some synchronization between various

iterations of the loop appears on Lines J12 and J18. We sequentialize the full-window

searches for values, because, while we are willing to take a chance that an empty window

search will be squandered work, we are not willing to take the chance that a full-window

search (which does not prune very much) will be squandered work. Such a squandered

full-window search could lead us to search the entire tree, which is much larger than the

pruned tree we want to search.

The abort-and-return statements that appear on Lines J10 and J15 return a value from

89

Procedure jamboree and abort any of the children that are still running. Such an abort is

needed when the procedure has found a value that can be returned, in which case there is no

advantage to allowing the procedure and its children to continue to run, using up processor

and memory resources. The abort causes any children that are running in parallel to abort

their children recursively, which has the e�ect of deallocating the entire subtree.

The actual search algorithm used in ?Socrates also includes some forward pruning heuris-

tics that prune a deep search based on a shallow preliminary search. The idea is that if the

shallow search looks really bad, then most of the time a deep search will not change the

outcome. Forward pruning techniques have lately been shown to be extremely powerful,

allowing programs running on single processors to beat some of the best humans at chess.

The serial Socrates program uses such a scheme, and so does ?Socrates. In the ?Socrates

version of Jamboree search, we �rst perform the preliminary search, then we search the �rst

child, then we test the remaining children in parallel, and research the failed tests serially.

Parallel search of game-trees is di�cult because the most e�cient algorithms for game-

tree search are inherently serial. We obtain parallelism by performing the tests in parallel,

but those tests may not all be necessary in a serial execution order. In order to get any

parallelism, we must take the risk of performing extra work that a good serial program

would avoid.

Figure 4-6 shows the Jamboree search code transformed into a dataow graph. This

graph clearly shows that all the tests can be executed in parallel, but that only one of

the value searches can be executed at a time. This graph was also a useful reference in

expressing the Jamboree search code as a Cilk program, since it gives an idea of how the

procedure can be broken up into separate threads.

4.3 Using Cilk for Chess Search

In the following two sections we describe the implementation of ?Socrates using Cilk-1.

These sections are an interesting case study in implementing a large, multithreaded, spec-

ulative application. As mentioned in the introduction, ?Socrates is a parallelization of a

serial chess program. Much of the code, including the static evaluator, is identical in the

parallel and the serial versions and is not discussed here. Instead, we focus on the portions

of the code which were written speci�cally for the parallel version.

90

ViValue child iV0

� � �

T1 T2 T3 Tk�1

V1 V2 V3 Vk�1

Test child i Ti

Merge

Fork

Join

Test

Figure 4-6: The dataow graph for Jamboree search. First Child 0 is searched to determine

its value, then the rest of the children are tested in parallel to try to prove that they are

worse choices than Child 0, and then each of the children that fail their respective tests are

sequentially researched. Compare this description of the Jamboree algorithm to the textual

description in Figure 4-5.

The actual Cilk search code is too large to include here, so instead we show the dag

of threads (potentially) created during a search. This dag is shown in Figure 4-7. Note

that the ovals labeled TESTi and VALi are recursive calls of the search algorithm which

perform either a limited search (a test) or a full search (a value search); so these ovals

correspond to entire sub-dags, not just individual threads. Most of this dag is analogous to

the dataow graph for Jamboree search which was shown in Figure 4-6. The threads labeled

with the diamond symbol are the threads called diamond, so named because they perform

the function that diamond nodes did in the dataow graph of Figure 4-6. The only di�erence

between the algorithm shown here and that implemented by the earlier dataow graph is

that the ?Socrates search algorithm �rst makes a recursive call to the search algorithm to

perform a \null move search". This search is a reduced depth search that is part of the

forward pruning algorithm which decides if the side to move has an advantage large enough

that the search can probably be safely ended here. This recursive call is shown by the oval

labeled VALnul in Figure 4-7. Most of the other di�erences between the dataow graph and

the Cilk dag are due to one dataow node being expanded into several Cilk threads. For

91

 T
es

t
C

h
ec

k

V
al

u
e

C
h

ec
k

F
in

is
h

V
al

u
e

 r
ec

u
rs

iv
e

co
m

p
u

ta
ti

o
n

d
at

a
d

ep
en

d
en

cy
th

re
ad

 c
re

at
io

n
 m

ay
 s

ta
rt

 a
b

o
rt

V
al

u
e

C
h

ec
k

V
al

u
e

C
h

ec
k

ar
g

u
m

en
t

m
er

g
e

 T
es

t
C

h
ec

k
 T

es
t

C
h

ec
k

T
E

S
T

S
et

u
p

T
es

t
S

et
u

p
T

es
t

S
et

u
p

T
es

t

V
_T

3

V
_T

2

V
A

L

V
A

L N
U

L

V
A

L
0

V
A

L
1

V
A

L
2

V
A

L
n

T
E

S
T

T
E

S
T

1
2

n

Figure 4-7: This dag shows the dag created by ?Socrates when performing a value search.

The ovals labeled TESTi and VALi are recursive calls of the search algorithm. Other ovals

correspond to Cilk threads.

92

example, the dataow graph just has a single node, TESTi, for the test of the ith child. In

Cilk this node is broken into several threads so that immediately after the test completes

the test check thread can run to check if we are able to abort the rest of the search. These

details were ignored in the earlier dataow graph.

The rest of this section focuses on those aspects of ?Socrates related to e�ciently im-

plementing the parallel search algorithm. The following section focuses on parallelizing

other aspects of ?Socrates. Our work on implementing ?Socrates's search algorithm lead to

many modi�cations to the scheduler. The changes we made include implementing migra-

tion handlers, implementing priority threads, aborting computations that are in progress,

changing the order in which threads are stolen, and adding level waiting. The �rst version

of ?Socrates was written when we were still using the original PCM system. Many of the

improvements to the runtime system that are described in this section were originally added

for ?Socrates and were later included in the Cilk-1 system.

4.3.1 Migration Threads

We use a large, variable sized data structure (over 200 bytes) to describe the state of a chess

board. In the serial code we pass around pointers to this state structure and copy it only

when necessary. In the parallel code we cannot just blindly pass pointers between threads,

because if the thread is migrated the pointer will no longer be valid. A naive solution is

to copy the state structure into every thread, but this adds a signi�cant overhead to the

parallel code. This overhead is especially distasteful when you realize that well under 1%

of threads are actually migrated, so most of the copying would be wasted e�ort.

To solve this problem we use migration threads. Any thread can have a migration thread

associated with it. When the scheduler tries to migrate a thread that has an associated

migration thread, the scheduler �rst calls the migration thread. This migration thread will

return a new closure which is migrated instead.

Using this mechanism we are able to pass pointers to state structures between threads.

Any thread that is passed a state pointer is also given a migration thread which can copy

the state into the closure if the thread is stolen. When this closure is stolen the migration

thread is run and the migration thread creates a copy of the closure with the state copied

into it. This closure is them migrated to the stealing processor. Once the closure arrives,

the stolen thread can then be called with a pointer to the copied state structure. This

93

T

(A) (B)

to T’s
successor

from T’s
predecessor

from T’s
predecessor

to T’s
successor

m
4

thief processor

victim processor

m
3

T

m
2

m
1

Figure 4-8: This shows how migration threads can be used to insert user code before and

after any communication event. Part (A) shows the case where migration does not occur.

Part (B) shows the case where migration does occur.

allows the overhead of copying the state to be paid only when it is actually necessary.

Using a migration thread to pass a state structure only works when the stolen thread

reads the state structure, but does not write it. Many threads, however, such as the diamond

and value check threads may update the state structure as well as read it. For these

threads, just migrating a copy of the structure when stolen would not be su�cient. Instead,

these threads are speci�ed to be local threads, which means these threads are not allowed to

be stolen. By making these threads local we can guarantee they update the original state

structure. For simplicity, many of the threads in ?Socrates were made local and only those

that start up a test of a child position are stealable.

Migration threads give the user more exibility than just running a thread on the victim

processor before a thread is migrated. Migration threads can be used to run user code before

and after every communication, as is shown in Figure 4-8. Part (A) shows the common case:

thread T is not stolen and only thread T is run. Part (B) shows the case where thread T is

94

stolen. In this case the system executes the migration thread m1 on the victim processor.

This thread can change the continuation passed to T so that instead of pointing to T 's

successor, the continuation points to a new closure which will run thread m4. The closure

for thread m4 is given the original continuation so that thread m4 can pass the result from

T onto T 's successor. The migration thread must return a closure to be migrated; this

closure can specify that thread m2, rather than T , be run on the thief processor. When

thread m2 executes it can then run some user code before spawning thread T . As was done

on the sending side, m2 can also splice another thread, m3, into the path from T to its

successor. Although we have described this process as if T were a thread, the same thing

can be done where T is an entire subcomputation. This exibility to run user code at any

of these four points was used in ?Socrates to implement the abort mechanism described in

the next section.

4.3.2 Aborting Computations

In order to implement the Jamboree search algorithm we must be able to abort a computa-

tion. When searching a node, if one of its children exceeds �, then the node fails high and

the search of the node can be ended without searching the rest of the children. If searches

of any other children are already in progress, then those searches should be aborted. The

Cilk system has no built-in mechanism for aborting a computation, so this had to be added

as user code. Our goal in designing the abort mechanism was to keep it as self contained as

possible and to minimize changes to the rest of the code. We wrote the abort mechanism

entirely in Cilk code so that it would be able to port easily. Eventually we would like to

add support for such a mechanism to Cilk itself.

In order to abort a computation we must �rst be able to �nd all of the threads that are

working on this computation. To implement this we use abort tables to link together all the

threads working on a computation. When a computation, say A, needs to create several

children it �rst creates an abort table containing an entry for each child of the computation.

Each entry in the table keeps track of the status of the children. If a child of A, say B, itself

spawns o� children, then the entry for B is updated to contain a pointer to the abort table

that B creates. Once B and all its children have completed, B's table is deallocated and

the entry for B is updated. If a child of A, say C, is stolen, A's entry for C is updated to

point to C on its new processor. With this mechanism in place the abort code is able to �nd

95

all the descendants of any computation. When performing an abort, the abort code does

not actually destroy any threads, instead it merely makes a mark in each a�ected thread's

abort table. When a user's thread runs its �rst action should be to check to see if it has

been aborted, and if so skip the rest of its computation. This check allows the user's code

to do any cleaning up that may be necessary. (For example, the code may need to free some

data structures.)

The abort mechanism provides functions to create, update, and deallocate the abort

structures; to check if a thread is aborted; and to start an abort. These mechanisms are

implemented independently of the search code. By using these functions and passing around

a few pointers to abort tables, the search code was modi�ed to include aborting without

too many changes.

One di�culty encountered in implementing the abort tables was in keeping the tables

correct when a computation migrates. Our implementation uses migration threads as shown

in the previous section to keep track of the state of the computation. When a computation

is stolen an abort table is allocated on the stealer's side and the existing abort table is

modi�ed to point to it. The di�culty arises because at the time a computation is stolen

there is not yet an abort table on the stealer's side to point to. This abort table is not

allocated until after the thread begins to run. So instead we create a unique identi�er (UID)

for each stolen computation, and store that into the abort table. Then on the stealer's side

we have a hash table to map the UID into a pointer to the abort table. The protocol for

accessing the hash table is quite tricky since there are many cases which require special

handling. For example, the network of the CM-5 can reorder messages, therefore we have

to handle the case where a message to abort a computation arrives before the thread that

will allocate the hash table entry and abort table for that computation. Unfortunately, we

did not consider all such possibilities before beginning the design, so getting this mechanism

working correctly took longer than anticipated.

Our decision to make the abort mechanism as self contained as possible turned out

to be a very good one. The abort code was written back in the early days, when the

runtime system was still called PCM. Since becoming Cilk-1, much of the runtime system

was completely rewritten, and many low-level data structures were changed. Yet the abort

code continued to work. The only changes we had to make were some minor syntax changes

when we changed the language. When we ported Cilk-1 and ?Socrates to the Paragon, the

96

abort code did not require a single change. Given the di�culty we had getting the original

code to work on the CM-5, and given that we did not have access to a debugger on the

Paragon, we were quite fortunate to have implemented this code such that it truly was

independent of the rest of the system.

4.3.3 Priority Threads

Another change to the Cilk system that was inspired by ?Socrates was the addition of

priority threads. In the search algorithm there are certain threads that we would like to

run as soon as possible, namely the test check and value check threads. These are short

threads that receive the result of a search of a child and incorporate that result into the

current computation. These threads may update � so we would like this update to occur

right away so that future searches can use this updated information. Also, these threads

may cause a search to be aborted, and we certainly want this to happen right away. In the

original system such a thread T would simply be posted to the bottom of the ready queue,

just like every other thread. This thread would then be next in line to execute, but if some

other thread was posted before thread T was scheduled, then the execution of T would be

inde�nitely delayed.

To solve this problem we added priority threads, which are threads that are posted to

a single-level priority queue rather than the standard ready queue. Whenever there is a

closure in the priority queue the closure at the front of the priority queue will be executed

next, before any closure in the standard ready queue. This allows the user to specify threads

that should be run as soon as possible.

It is interesting to note that with the provably good scheduler threads like test check

and value check must be made priority threads only because ?Socrates uses nonstealable

threads and nonstealable threads break the guarantees provided by the scheduler. The only

time a thread such as test check or value check can be enabled but not executed next

is if a send argument from another node is involved. For example, when a test completes

the only thread it spawns or enables is its test check thread. When the test is done

locally, the test check is placed at the bottom of the ready queue and will normally be

executed next. Only if in the meantime a send argument arrives from another node and

enables some unrelated thread could the test check not be the next to execute. This

situation can only happen when the thread enabled by the send argument is not stealable,

97

because otherwise the thread the send argument enabled would have been stolen away by

a provably good steal. Similarly if the test is stolen away, it enables the test check thread

via a nonlocal send argument. If the test check thread were not marked nonstealable, it

would immediately be stolen back and executed on the remote node.

Priority threads are also used in the implementation of the abort mechanism. As would

be expected, they are used to ensure that threads aborting the search are not delayed by

threads performing a search.

4.3.4 Steal Ordering

In the original PCM runtime system, the thread queue consists of a single double ended

queue. Newly enabled threads are placed at the bottom of the queue, and the local processor

takes work out of the bottom as well (i.e. LIFO). When stealing occurs, threads are stolen

from the top of the queue (i.e. FIFO). For a tree-shaped computation, the LIFO scheduling

allows the computation to proceed locally in a depth-�rst ordering, thus giving us the same

execution order a sequential program would have. When stealing occurs, however, the FIFO

steal ordering causes a thread near the top of the tree to be stolen, so a large piece of work

is migrated, thus minimizing stealing. Since Jamboree search is a tree-shaped computation,

this mechanism works reasonably well.

With this scheduling mechanism, the order in which children are executed depends on

whether or not a child is stolen. For most computations this execution order does not

matter, but for Jamboree search it does. Execution order has an e�ect, because if one child

causes a search to fail high, the rest of the children do not need to be examined. Our

program orders the children such that in the common case where no children are stolen, the

children believed to be the best moves are searched �rst. This order is likely to minimize

the total work W , since the best moves are the most likely to beat �, and the once we beat

� we fail high and do not need to search any more children. The problem is that when

stealing occurs, we steal the child least likely to cause us to fail high.

We would like to steal from the top of the tree, but still steal the child that is most likely

to fail high. Such would be the case if the scheduler had the following natural property: If a

thread spawns o� n children, those children should be executed in the same order regardless

of where the children are executed. To add this property we had to modify the scheduler

by adding the concept of levels. Each thread in the queue is assigned a level and threads

98

A3
A2
A1
C1
D4
D3

A2 A3

D2 D3 D4
D2
D1
E1

A1

C1

D1

E1

Steals

Local
Execution

Steals

Local
Execution

(A) Original Ready Queue (B) Levelized Ready Queue

Figure 4-9: This �gure shows how the ready queue is implemented. Part (A) shows the

original ready queue which was just a double ended queue. Part (B) shows the modi�ed

ready queue which is a queue of �fos.

at the same level are executed in a �xed order, regardless of whether they are stolen or

executed locally. Between levels, however, scheduling is done as before: We execute locally

at the deepest (newest) level and steal from the shallowest (oldest) level. The search code

then marks all the children of a computation as being one level deeper than the level at

which the computation is currently executing. This strategy gives us exactly the ordering of

threads that we want. Figure 4-9 shows a levelized ready queue. Each level is implemented

as a �rst-in-�rst-out queue, guaranteeing that closures at the same level are executed in the

same order regardless of whether the closures are executed locally or are stolen. Adding this

to ?Socrates reduced the amount of work performed for searching a position and seemed to

give a speedup of roughly 20-25%. This idea seemed important enough that we incorporated

this mechanism into the Cilk-1 scheduler.

4.3.5 Level Waiting

The �nal change we made to the scheduler was a further attempt to reduce the extra work

being performed by the parallel version. When a processor is searching a board position,

P , it spawns o� a bunch of children to test. If a processor runs out of children to work on

while other children are still being worked on elsewhere, then that processor steals another

closure and begins working on the stolen closure.

99

Consider the case where one (or more) of the children is stolen and the processor �nishes

the rest of the tests before the test of the stolen child completes. The processor may then

be out of work to do2. This processor then steals some closure from another processor

and begin searching its board position, call it Q. Eventually, the test of the stolen child

completes. When this result comes back, it restarts the computation on position P and

preempts Q. (Or, depending on the level of each search, Q may preempt P .) We are now in

a position where Q, no matter how little work it has, cannot complete until the arbitrarily

long computation of P completes. Meanwhile, the computation which spawned Q continues.

It may eventually block waiting for Q (and thereby arti�cially lengthen the critical path)

or it may be able to continue, but will search using looser bounds than if Q had completed

(and will thereby increase the total work).

To avoid this stalled work we further modi�ed the scheduler. We added \level wait-

ing", a feature which makes uses of the same levels that were described in Section 4.3.4 for

optimizing the steal ordering. When a computation spawns children, all the subcomputa-

tions are placed at the same level. The level-waiting mechanism simply requires all of these

subcomputations to have completed before we may begin any work at a shallower level,

or before we can steal. This strategy prevents us from starting, and then preempting, an

unrelated search. Implementing this change seemed to give us roughly a 10-15% speedup.

We made this change when we wrote the �rst version of the chess code running on

the CM-5 under PCM. This version did not have the provably good scheduler that is a

part of Cilk-1. This modi�cation is actually closely related to the busy-leaves property

described in Section 3.6. At the beginning of this section, we described the situation we

were concerned with, namely a case where a search of position Q was preempted in order

to continue working on the search of an unrelated position P . In this example the search

of Q was e�ectively a nonbusy leaf. Using the provably good scheduler, such a nonbusy

leaf cannot occur: When the search of P is re-enabled, the processor that enables the

search of P would steal that search and continued working on it, so P would not interfere

with the search of Q. Since the situation that level waiting prevents can not occur with

a provably good scheduler, the level-waiting change was removed from the scheduler when

we made the scheduler provably good. The level-waiting modi�cation was used during the

2The processor is likely to be out of work because none of the children at this level would have been

stolen if there were any work earlier in the queue.

100

1994 tournament, but not afterwards.

Removing this change probably slightly hurt the performance of future versions of

?Socrates. In order to obtain the guarantees provided by the provably good scheduler,

a program must obey certain constraints. One of these is that the scheduler must be able to

migrate any thread to any processor. But as mentioned earlier, many threads are marked

nonstealable, which forces them to stay on the same processor on which they were cre-

ated. Since not all threads can be migrated, the busy-leaves property no longer holds, and

therefore the situation described above can still occur. Eventually, we expect to rewrite

the ?Socrates search code such that the performance guarantees of the scheduler do apply.

Such a rewrite will put this concern to rest.

4.4 Other Chess Mechanisms

The previous section described issues that arose in getting the search routines to run in

Cilk, many of which led to changes in the Cilk system itself. This section describes other

aspects of the serial code that had to be modi�ed to run in a parallel system. These aspects

include the transposition table, detecting repeated moves, and debugging support.

4.4.1 Transposition Table

Most serial chess programs include a transposition table, which is basically a hash table of

previously evaluated positions. After a position is searched, we create (or update) a hash

entry for this position. The information stored in this entry includes a depth, a score, a

move, and a check key. The depth tells us how deep a search was done, the score tells us

the value of the position when searched to that depth, the move tells us what move achieves

this score, and the check-key is used for di�erentiating between two positions which hash

to the same entry. Each position has a 64-bit hash key. Part of this key is used to decide

what hash entry should be used for the key and part of the key is stored in the hash entry

as the check key to distinguish between the many positions which may hash into the same

entry.

Before searching a position we �rst check to see if it is already present in the transposition

table with a depth greater than or equal to the depth to which we need to search. If so,

then we have a score for this position, and we need not search further. Much of the time

101

when we �nd a position in the transposition table, the depth is not su�cient for the current

search. But even in this case the table is still useful because it tells us the best move found

by a shallower search, and often the best move at a shallower depth is still the best move

when searched to a deeper depth. By using the move stored in the hash table entry as our

predicted best move, we increase our chances of accurately predicting the best move, which,

as we saw in Section 4.2, greatly reduces the work and critical path of the computation.

For ?Socrates we implemented a distributed transposition table in which entries were

hashed across all the processor memories. When a thread begins a search of a position,

the �rst thing it typically does is to lookup that position in the transposition table. We

had a choice between implementing a blocking or a nonblocking interface to the table. In a

blocking implementation, the thread performing the lookup sends o� a lookup request to the

appropriate processor and busy-waits until the response arrives, at which point the thread

can continue. The obvious disadvantage of blocking is that we waste time busy-waiting. In

a nonblocking implementation, we break this thread into several threads. When the time

comes to do a lookup, a thread is posted on the processor that holds the entry. This thread

performs the lookup and sends the result back to the original processor, which enables a

thread that continues the search. This implementation has the advantage that no time is

spent busy-waiting during a table lookup. But it has one big disadvantage, namely that it

may lead to many searches taking place on the same processor concurrently. Intermixing

two or more searches on the same processor can cause both the work and the critical path

to increase. To avoid these increases we would have had to modify the scheduler to keep

the two computations separate. To avoid the complexity involved in such a modi�cation,

we chose to implement a blocking transposition table.

Since there is no way to implement this blocking mechanism using Cilk primitives, we

dropped to a lower level and used the Strata active-message library [BB94]. We designed

the transposition table such that all accesses are atomic. For example, when a value is to

be put into the table, the information about the position is sent to the processor where the

entry resides, and that processor updates the entry as required. Alternatively, we could

have implemented a nonatomic update by performing a remote read of the entry, modifying

the entry, and then doing a remote write. Nonatomic updates would have required more

messages and would have required us to lock the entry while the update was in progress, or

risk losing some information if two update operations overlapped.

102

To determine how much the busy-waiting hurts us, we instrumented our code to measure

the time spent busy-waiting. Our experiments showed us that the mean time to do a

complete lookup was under 1700 cycles, which worked out to about 7% of the execution

time. Not all this time is wasted however, while busy-waiting we poll the network so we

may spent part of this time responding to arriving messages. But our analysis gives us an

upper bound on the cost of busy-waiting.

When we ported the code to the Paragon this lookup time increased, since the Paragon

has a larger overhead for using the network. To reduce the impact of doing a global lookup,

we do other work while waiting for a lookup to return. In particular, after starting a lookup

we perform a static evaluation of the position. This work may be wasted. For example, the

lookup may �nd a valid score. In this case the search is complete and the static evaluation

of the position is not needed. But lookups �nd valid scores less than 10% of the time, and

so usually this work is not wasted.

The last aspect of the transposition table we examine is subsumptions. The issue is

what, if anything, do we do if two independent searches are concurrently searching the

same position (i.e., one search \subsumes" the other). For example, Processor P1 begins

a search of Position B, and before it completes and writes its result into the hash table,

Processor P2 begins another search of Position B. In this situation, part of the search is

being duplicated. In serial code these searches are performed sequentially, so this problem

does not occur.

We considered trying to avoid this overhead in the following manner. When a search

begins, if the transposition table lookup fails, an entry is created for that position, and

it is marked as \search in progress." Then, if another lookup occurs on this position, we

know that a search is already being done. We would then have the option of waiting for

the earlier search to complete.

We chose not to implement this mechanism, in part because implementing it would have

been somewhat complicated. Moreover, it raised several issues of which we had no clear

understanding. For example, when we are about to abort a search, is it necessary to �rst

check to see if anyone else is waiting for the results of this search? And if someone is waiting

do we still abort the search? Another unanswered question involves how to decide when to

wait: If a position is already being searched to depth d, and we want to search it to depth

d � 1, do we wait for the deeper search? If we don't wait, we are doing extra work, and

103

if we do wait, we may wait much longer than if we had just done it ourselves. In order to

estimate how much duplicate work was being performed, we instrumented our program in

the following way. Each time we completed a search and were about to write the hash table

entry, we �rst did a hash table lookup to see if we would get a hit if we began the search

now. If so, then someone else must have completed a search of this node during the time

since we began the search. We found that this occurred less than 1% of the time. This led

us to believe that subsumptions were not causing us to waste a signi�cant amount of work.

Furthermore, we had implemented a similar mechanism for the earlier StarTech program,

and it sometimes sped the program up, and sometimes slowed it down. Consequently, we

decided not to implement this mechanism for ?Socrates.

4.4.2 Repeated Moves

To fully describe a position in a chess game, we need more than just a description of where

each piece is on the board. Some history is needed as well. For example, we need to know

whether or not the king has moved. If it has, then we cannot castle, even if the king moves

back to its original position. This sort of information can easily be stored in a few bits in

the state so maintaining it causes no di�culty.

Other required history can not be stored so easily. In chess if the same position is

repeated 3 times, then the game is a draw. Similarly if 50 moves are made by each player

without an irreversible move being made, the game is a draw3. To handle these cases we

need to keep track of all moves since the last irreversible move. (Once an irreversible move

is made no earlier position can be repeated.) We keep track of these moves by adding an

array of positions to our state structure. This array contains all the positions, represented

by their 64-bit hash key, since the last irreversible move.

This array greatly increases the size of the state structure (from about 160 bytes to

nearly 1000 bytes). For a serial program the size of the state may not be signi�cant,

since the code can just modify and unmodify the same state structure. For parallel code,

however, it is often necessary to make copies of the state, and so a large state can slow

down the program. To reduce the overhead of copying the state structure, we copy only the

meaningful part of the repeated-position array. Since the average length of this portion of

3An irreversible move is one which cannot be undone, that is, one which captures a piece or moves a

pawn.

104

the list is quite small (under 2), this copying adds very little overhead.

4.4.3 Debugging

One di�culty in writing a parallel application of this complexity is debugging. Debugging

is especially di�cult for nondeterministic applications such as ?Socrates. In order to make

it easier to debug our code, we make liberal use of `assert' statements. When debugging is

turned on, assert statements ensure that conditions the programmer expected to be true,

are in fact true. Not only does this methodology cause bugs to be detected sooner, it also

helps pinpoint the cause of the bug.

Initially, one of our biggest problems was making sure that the parallel version was

working correctly. Most of the code is shared between the parallel and serial versions of

the program. Part of the code, in particular the search algorithm, is not. The search

algorithm includes not only the basic Jamboree search as described earlier, but also many

chess speci�c heuristics with which we are often experimenting. We were often modifying

both the parallel and the serial search algorithms and keeping them consistent was quite

error prone. To test if the versions are equivalent, simply running the parallel and serial

versions of the code and comparing the results is inadequate, since if the parallel version was

only slightly di�erent from the serial version, the two versions would still usually produce

the exact same answers. One method we occasionally used in order to test whether both

versions were identical was to run the parallel code on one processor and run the serial code

and make sure they both searched exactly the same number of positions. Unfortunately, we

did not always do this check often enough and at one point so many minor variations had

crept in that we wound up spending almost a week trying to make both versions consistent

again.

One of the most useful assertions we added was to check at every node of the tree that

the results of the parallel code were equivalent to the results of the serial code. In the

debugging version of the code, after the search of a position was complete we call the serial

code on the same position and compare the results. (We turned the hash table o�, since

otherwise the serial code simply �nds the result in the hash table.) Since the program is

nondeterministic, we do not require that the results are identical. Instead, we ensure that

both of the returned scores are either both below alpha, both above beta, or identical if

between alpha and beta. Due to the large amount of duplicated searching, the resulting code

105

rl0ZrZkZ
Z0Z0Zpo0
pZ0Z0Z0Z
Z0Z0aNO0
0o0ZPZ0O
Z0Z0ZQZ0
PO0Z0ZKZ
Z0Z0ZRZR PP

0Z0Z0s0j
o0l0Zpo0
0obZ0Z0o
m0Z0S0MQ
0Z0Z0Z0O
Z0ZBZPZ0
0ZPZ0ZPZ
Z0Z0Z0ZK

0ZrZ0ZkZ
Zqs0a0o0
pZ0oPm0Z
mpoPo0Z0
0Z0Z0Z0Z
Z0A0ZPZ0
PZBL0O0Z
Z0Z0ZKSR

rZ0Z0skZ
Z0Z0ZpZ0
0m0Z0ZpL
Z0o0Z0Z0
pZ0Z0ZPZ
O0Z0ZNZ0
0lbZBO0O
S0Z0S0J0

(a) N�g7 (b) Re6 (c) R�g7 20 (d) Ra2

rmbZkZ0s
opZ0lpop
0Z0o0m0Z
Z0opZ0A0
0aPZ0Z0Z
Z0M0O0Z0
PO0ZNOPO
S0ZQJBZR

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0j0o0Z
o0ZBmPZ0
0Z0ZPM0Z
ZPZ0J0o0
0Z0Z0Z0Z
Z0Z0ZbZ0

bZ0s0skZ
Z0l0Zpop
pZnapm0Z
ZpZ0Z0Z0
0O0Z0Z0Z
O0M0ONZ0
0A0ZQOPO
ZBS0ZRJ0

0ZkZ0Z0Z
Z0o0Z0Sp
pZpa0Z0Z
ZpZ0o0Z0
0Z0ZPZ0Z
ONZPZPZ0
0O0ZKO0s
Z0Z0Z0Z0

(e) a3 (f) .Nd3 (g) Ne4 (h) f4

Figure 4-10: The 8 chess positions used in this chapter. Below each position is shown

Kaufman's \correct" move for that position. All positions are \White to move", except for

Position (f).

was extremely slow. But this version was used only for debugging and was an easy way to

detect any di�erences between the serial and parallel searches and to pinpoint exactly where

the di�erences lay. After we started using this check, keeping both versions identical became

much easier. We think this debugging strategy is applicable to many parallel programs, and

not just chess.

4.5 Performance of Jamboree Search

Jamboree search is di�cult to analyze for arbitrary game trees, because it is di�cult

to characterize the tree itself, and the tree that is actually searched can depend on how

the work is scheduled. Unlike many other applications, the shape of the tree traversed

by Jamboree search can be a�ected by the order of the execution of the work, sometimes

increasing the work and sometimes decreasing work. Thus, measurements of \critical path

length" and \work" on a particular run may be di�erent than the measurements taken on

another run, because the trees themselves are di�erent. Although it is not clear precisely

what \critical path" and \work" mean for the speculative Jamboree search, we have found

that we can still use the measured critical path length and total work to tune the program.

106

Our strategy is to measure the critical path and the work on a particular run, and to

try to predict the performance from those measurements. We measured the program on

the eight problems shown in Figure 4-10. These problems were provided by ?Socrates team

member L. Kaufman, who is an International Master, For each problem the program was

run to various depths up to those that allowed the program to solve the problem by getting

the \correct" answer, as identi�ed by Kaufman. We also measured the program running

on a variety of di�erent machine sizes. Then we performed a curve �t of the data to a

performance model of the form

Tpredicted = c1 �
W

P
+ c

1
� T

1
:

As described in the previous chapter, we found that the performance can be accurately

modeled as

T � (1:067 � 0:0141)
W

P
+ (1:042 � 0:0467)T

1
+ 0 (4.1)

with 95 percent con�dence. The R2 correlation coe�cient of the �t is 0.9994, and the

mean relative error is 4.05%. To us, these tight error bounds were quite amazing, because

chess is a very demanding application. Clearly, there are times during the Jamboree search

algorithm when not much parallelism exists. The low coe�cients on Equation 4.1 indicate

that the program quickly �nishes the available work during the times of low parallelism,

and when there is much parallelism the program e�ciently balances the workload.

We found that the work increases by about a factor of 2 to 3 as the number of processors

increases from 1 to 128 processors, and that the critical path length is fairly stable as the

number of processors increases. Most of the di�culty of predicting the performance of the

chess program comes from the fact that the amount of work is variable. When the program

is run on large machines, the processors end up expanding subtrees that are pruned in the

serial code. We found that the better the move ordering, the lower the critical path and

the less total work is performed. Thus, the move ordering heuristics of a chess program,

which are important for serial programs because it reduces the work, are doubly important

for our parallel algorithm, because it also decreases the critical path length.

We also found that the critical path does not limit the speedup for our test problems, or

for the program running under tournament conditions. By using critical path to understand

the parallelism of our algorithm, we are able to make good tradeo�s in our algorithm

107

design. Without such a methodology it can be very di�cult to do algorithm design. For

example, Feldmann, Monien, and Mysliwietz �nd themselves changing their Zugzwang chess

program to increase the parallelism without really having a good way to measure their

changes [FMM93]. They express concern that by serially searching the �rst child before

starting the other children, they may have reduced the available parallelism. Our technique

allows us to state that there is su�cient parallelism to keep thousands of processors busy

without changing the algorithm. We can conclude that we should try to reduce the total

amount of work done by the program, even if it reduces the available parallelism slightly.

Being able to measure the work and critical path of a run was instrumental to our ability

to tune the program. We experimented with some techniques to improve the work e�ciency,

and found several techniques to improve the work e�ciency at the expense of increasing the

critical path length. For example, on StarTech we considered a algorithm change that would

value the �rst two children before starting the parallel tests of all the remaining children.

The idea is that by valuing more children before spawning the parallel tests, it becomes

more likely that the we will be able to prune some of the remaining children. When we

measured the runtime on a small machine, the program ran faster, but on a big machine

the runtime actually got worse. To understand why, we looked at the work and critical path

length. We found that this variant of Jamboree search actually does decrease the total work,

but it increases the critical path length, so that there is not enough available parallelism to

keep a big machine busy. By looking at both the critical path length and the total work,

we were able to extrapolate the performance on the big machine from the performance on

the little machine. Consequently, we avoided introducing modi�cations that would hurt us

in tournament conditions.

4.6 History of ?Socrates

We conclude this chapter by giving a brief history of the ?Socrates program.

We began work on this program in May of 1994. Don Dailey and Larry Kaufman

of Heuristic Software provided us with a version of Socrates, their serial chess program.

During May and June we parallelized the program using Cilk, focusing mainly on the search

algorithm and the transposition table. During June, Dailey visited MIT to help tune the

program, but we spent most of June simply getting the parallel version of the program to

108

work correctly. In late June, we entered ?Socrates in the 1994 ACM International Computer

Chess Championship in Cape May, New Jersey. We ran the program on the 512-node CM-

5 at the National Center for Supercomputing Applications (NCSA) at the University of

Illinois. Despite the fact that we had begun working on the program less than two months

earlier, the program ran reliably and �nished in third place.

The chess program then sat pretty much untouched for the next 9 months. In March

1995, Don Dailey again joined us to work on the chess portion of the code and we started

preparing for the May 1995 tournament. The 1995 tournament was the World Computer

Chess Championship held in Hong Kong. The World Computer Chess Championship is

held every three years and, unlike the 1994 tournament, which �elded mostly teams from

the US, this tournament attracts the best computer chess systems from around the world.

We had our work cut out for us.

For this tournament we were able to get access to the 1824 node Intel Paragon [Int94]

at Sandia National Labs. We began by porting Cilk to the Paragon, with the help of Rolf

Riesen of Sandia. The port of Cilk was fairly easy, although in the process we exposed

several bugs in the Paragon's SUNMOS operating system. Parts of the original ?Socrates

code, in particular the transposition table, made direct use of the CM-5 communication

hardware. These portions of the code had to be rewritten. However, most of the code,

including the abort mechanism, worked without modi�cation, and in short order we had a

working chess program.

Our �rst test of the program came in late March when, at the Maryland Theory Day,

we played International Grandmaster Gennady Sagalchik. Grandmaster Sagalchik has a

UCSF rating of 2568 and is the 35-th highest ranked player in the US; but we have 1824

Intel i860s. The game was played under standard tournament time controls, 2 hours for the

�rst 40 moves, then 20 moves per hour. Sagalchik drew White and took the early lead in

the game. ?Socrates played well and came back and eventually gained an advantage. On its

55th move ?Socrates promoted its pawn to a queen, and Sagalchik lost shortly thereafter.

After this game an informal speed game was played and ?Socrates won again.

Although ?Socrates won the game, we did have a serious problem during the game. The

machine crashed 4 or 5 times during the early part of the match. Fortunately, Sagalchik

graciously allowed us to restart each time without losing any time on our clock, so it did not

signi�cantly hurt our performance in the game. (Although the stops probably did hurt his

109

concentration.) At least one of the crashes was caused by bad hardware. The rest appeared

to be software problems due to incorrect settings of some OS parameters, and changing

some of these parameters seemed to solve the problem.

Two months later we competed in the World Computer Chess Championship. In a sur-

prising pairing, we played IBM's Deep Blue Prototype, the heavy favorite, in the �rst round

of this �ve round tournament. Deep Blue was White and took the early lead. ?Socrates

held on for a while, but eventually succumbed to Deep Blue. At this point we �gured we

needed to win all four of our remaining games in order to have a chance for second place.

We won the next three games fairly easily defeating the programs Dark Thought, Lchess,

and Rebel.

Going into the �nal round there were four programs left with a chance to win. Deep

Blue was the leader, with ?Socrates and Fritz a half point behind, and Hitech a further half

point behind. Fritz was running on a standard Pentium while the other three had much

more powerful hardware. (Hitech uses special-purpose chess hardware, while Deep Blue has

parallel special-purpose chess hardware.) In a very surprising upset Fritz quickly defeated

Deep Blue. Deep Blue's opening book ended one move to soon, and their �rst move out of

the book was a terrible blunder. Given Deep Blue's loss, a win in our game against Hitech

would leave us tied for �rst. As seemed to happen in many of our games, we got o� to a

bad start, and Hitech had the early advantage. For a while it looked pretty grim. But we

were outsearching Hitech by several ply and eventually this advantage began to show as

?Socrates's evaluation of our position started to improve slightly on each move. Eventually

we gained a big advantage and Hitech resigned.

This left us in a tie for �rst place. At 9pm, shortly after our Hitech game ended, we began

a tiebreak game against Fritz which lasted til 3am. We drew White for this playo� game

but again got o� to a poor start and after the opening \Fritz had a distinct advantage."4

For a large number of moves Fritz' advantage stayed fairly constant, with an unusually large

number of each sides moves being predicted by the opponent. However, as the endgame

approached, Fritz began to take advantage of its edge and was able to start pushing its

pawn towards promotion. After it was apparent to both programs that the pawn could not

be stopped, we resigned.

Although we lost the playo�, we did �nish a respectable second. Our program ran

4According to D. Beal in a description of the tournament in [Bea95].

110

reliably throughout the tournament, with the only crashes being due to memory ECC

errors. One area for improvement to ?Socrates that this tournament pointed out is our

opening, as we fell behind early in several of our games.

The ?Socrates program has been an exciting program to work on, and it has met the

goals we had in mind when we �rst decided to work on a computer chess program. ?Socrates

has allowed us to showcase the performance, stability, expressibility, and portability of the

Cilk system. In addition ?Socrates has helped us improve the Cilk system by pointing out

several useful modi�cations to the system. The ?Socrates program also pointed out to us

that programming in continuation passing style was not as easy as we had �rst thought. The

pseudocode for the Jamboree search algorithm takes one procedure and only twenty lines.

The Cilk code, however, utilizes over a dozen di�erent threads to implement the search code,

increasing to almost two dozen if the code for aborting computations is included as well.

Our experience with ?Socrates helped bring the issue of programmability to the forefront.

The next chapter, as well as Chapter 7, deals with this issue directly.

111

112

Chapter 5

Cilk-2: Programming at a Higher

Level

In this brief chapter we look at some modi�cations to the Cilk language and runtime system

intended to make Cilk programs easier to write.

The PCM and Cilk-1 systems were successful, in part, because they took the base

message-passing system and allowed the user to program at a higher level. The user can

write his program in terms of threads, and the system takes care of all the details and pro-

tocols needed to execute a multithreaded program on the underlying machine architecture.

The Cilk-1 style of coding, where the user explicitly creates and wires together threads,

o�ers the programmer much exibility. But this exibility comes at a price, namely the

di�culty of writing such codes. Users must write their codes in an explicit continuation

passing style, and a single sequential C procedure may need to be broken into many separate

threads to express it in Cilk-1. Although some �nd this a natural way to program, many

�nd it confusing. Even when the code is straightforward, it is still often tedious to write

and read such codes.

This chapter describes Cilk-2 which extends Cilk-1 by adding simple language extensions

that allow users to write codes at a higher level. To make writing Cilk programs easier, we

wanted to relieve the programmer of the task of writing a program in continuation-passing

style. Just as PCM raises the level of programming and hides the details of the lower-level

message-passing system, we wanted to raise the level further and hide the details of the

thread-based runtime system. Of course, we also wanted to do this without destroying the

113

performance guarantees that Cilk provides. We attempted to choose a set of higher-level

primitives that would allow a wide range of programs to be expressed. We appear to have

been successful, as these language extensions have been su�cient for us to rewrite most of

our Cilk-1 applications in the Cilk-2 style. The only exception is the chess program which,

due to its speculative nature, cannot be expressed in Cilk-2 style without resorting to the

lower-level Cilk-1 mechanisms. The Cilk-2 language includes all the Cilk-1 mechanisms, so

chess, as well as any other Cilk-1 code, can still be expressed in the Cilk-2 system. However,

when we talk about a \Cilk-2 style" code, we mean those codes written using only the new,

higher-level, primitives. So we say that chess cannot be written in Cilk-2 style, even though

it can be written in the Cilk-2 system. In Chapter 7 we examine further enhancements that

allow speculative applications, such as chess, to be written at a higher level.

Although we wanted to raise the level of programming so that users need not have to deal

with threads, we still wanted to have an \explicitly parallel" language where the user must

explicitly specify what can be done in parallel. We did not want to design an \implicitly

parallel" language where the system or compiler would try to deduce what can be run in

parallel. The Cilk system may be a good target language for a parallelizing compiler, but

doing a good job at building such a compiler is a much more di�cult task than we were

planning to undertake. Another part of the reason we did not want an implicitly parallel

language was because we believe that to write an e�cient parallel program the user must

think about parallel algorithms. Having to explicitly specifying what can be done in parallel

is one way to force a user think this way. Even when using an implicitly parallel system,

a programmer must still have a good understanding of which portions of his code will run

in parallel. If we had tried to build an implicitly parallel system, and did only a halfway

decent job, then it might often be unclear to the programmer what would be executed in

parallel. This would result in a system much harder to program than an explicitly parallel

system.

In this chapter we �rst look at a simple algorithm expressed in Cilk-1 in order to highlight

some of the di�culties of programming in the Cilk-1 language. Then, we describe the Cilk-2

language and its implementation. We then revisit the example algorithm and see how Cilk-2

makes the example algorithm much easier to express.

The Cilk-2 system described in this chapter represents joint work with other members

of the Cilk team: Robert Blumofe, Matteo Frigo, Bradley Kuszmaul, Charles Leiserson,

114

Rob Miller, Keith Randall, and Yuli Zhou. I was involved in making the design decisions

described in this chapter, but much of the implementation was done by others: Rob Miller

implemented the Cilk-to-C preprocessor, and most of the runtime system modi�cations were

made by Matteo Frigo and Keith Randall.

5.1 A Cilk-1 Example: Knary

To highlight some of the di�culties in programming in Cilk-1, consider the knary pro-

gram that was introduced in Chapter 3. Knary was introduced as a synthetic benchmark

whose parameters could be set to produce a variety of values for work and critical path.

knary(n,k,r) generates a tree of branching factor k and depth n in which the �rst r chil-

dren at every level are executed sequentially and the remainder are executed in parallel.

At each node of the tree, the program runs an empty \for" loop for 400 iterations, simu-

lating the work that would be done in an actual program. The knary program counts the

number of leaves of this tree, so the program is in e�ect a complicated way to compute the

value of kn�1. There are faster ways to compute kn�1, of course, but we are interested in

this program because of its control structure. At a high level, the control structure of this

program is reminiscent of the chess program, where, when searching a position, we �rst do

some recursive searches one at a time, and then spawn o� a bunch of searches in parallel.

The description of this program is quite simple, and we would hope that its implemen-

tation would be also. This program could be written in many ways, but we have chosen to

present the code as it was originally written for the performance tests shown in Table 3.1 of

Chapter 3, and �rst presented in [BJK+95]. As such, this code does not necessarily repre-

sent the \best" way of implementing knary, but shows how an experienced Cilk programmer

quickly coded up this application.

Figure 5-1, which is split across two pages, shows the knary code. Four di�erent threads

were used in this version of knary. The �rst is the knary thread which performs some

imitation work and then spawns o� knary serial, which performs NumSerial serial sub-

calls, and knary parallel which performs NumParallel parallel sub-calls. Notice that, as

is common in continuation-passing style code, knary performs its two spawns in the reverse

of the order in which the threads will execute. The routine knary parallel, which is the

second to be executed, must be spawned �rst, so that when knary serial is spawned, it

115

can be told where to pass its results. The thread knary serial calls itself repeatedly in

order to spawn o� the next serialized call and to sum the results from the previous call. The

thread knary parallel enters a loop to spawn o� the parallel calls of knary, and chains

the results of these calls through sum in order to sum the results.

It is not important for the reader to understand all the details of this implementation.

What is important to notice is that although the description of knary is quite simple, the

implementation is clearly not. We should further point out that this implementation cheats

slightly in that it takes advantage of the fact that knary is called as a stand alone program

and not as part of a larger program. This implementation sets the value of NumSerial

and NumParallel in the main routine (not shown), which executes on all processors when

the application begins. The program should really be written so that these values are

passed as arguments to the knary thread. Although passing NumSerial and NumParallel

could easily be done, these values would also need to be passed through the knary serial

and knary parallel threads, further increasing the argument count of these threads and

making the code even harder to read.

Part of the reason that Cilk-1 code can appear so convoluted is that threads are not easily

composable. Consider what happens to the knary code if we want to perform real work at

the beginning of each knary thread, instead of just having imitation work. Assume there is

some function work() that performs some work and returns a value indicating whether this

call of knary should return immediately or should continue as usual. Again, this control is

similar to part of the chess search algorithm. If work is a standard C procedure, this change

is easy to make. We just replace the empty loop in knary with a call to work followed by a

test to see if we should perform a send argument and return. If work is not a C procedure,

but is a Cilk thread, then this change is more complex. The knary thread must now be

broken into two threads, call them knary-1 and knary-2. The knary-1 thread �rst does a

spawn next of knary-2 and then spawns the work thread. The knary-2 thread receives the

result of the work thread, and depending on this result, either returns a value or continues

as the original knary thread does.

116

/* knary(n, k, r)

* This code is a recursive program similar to fib that spawns a tree

* of depth 'n and branching factor 'k' and counts all the leaves.

* Thus computing (k)^(depth-1) .

*

* The first 'r' of the sub-trees are spawned serially.

* The rest of the sub-trees are spawned in parallel.

*/

/* These two values are set on all processors by the main() routine (not

* shown) according to the program inputs.

*/

int NumSerial; /* set to r */

int NumParallel; /* set to n-r */

/*** Computes knary of depth 'depth' ***/

thread knary(cont k, int depth){

cont serial_result;

/* Do some work in each thread. */

int i;

dummy = (int)&i;

for(i=0;i<400;i++){}

if (depth<2) {

SendWordArgument (k, 1);

}

else{

spawn_next knary_parallel(k,depth,?serial_result, NumParallel);

spawn_next knary_serial(serial_result,depth,0,0,NumSerial);

}

}

thread sum (cont k, int x, int y)

{

SendWordArgument (k, x+y);

}

/* ... continued on next page ... */

Figure 5-1: Cilk-1 code for knary.

117

/* Calls knary 'num_serial_left' times.

* Each subcall is spawned serially.

* Returns the sum of all the calls.

*/

thread knary_serial (cont k, int depth, int result1, int result2, int num_serial_left)

{

int result = result1 + result2;

if (num_serial_left==0){

SendWordArgument(k,result);

}

else{

cont child_result;

spawn_next knary_serial(k, depth, ?child_result, result, num_serial_left-1);

spawn knary(child_result,depth-1);

}

}

/* Calls knary 'num_left' times.

* All calls are spawned in parallel.

* Returns the sum of all the calls.

*

* Rather than spawning off num_left sums, we could use a single thread

* to sum all the results. Instead this method was chosen because

* it performs the same number of spawns as knary_serial.

*/

thread knary_parallel (cont k,int depth, int result_from_ser, int num_left)

{

int i;

cont c_left,c_right;

if(num_left==0){

SendWordArgument(k,result_from_ser);

}

else{

for (i=0;i<num_left-1;i++){

spawn_next sum(k, ?c_left, ?c_right);

spawn knary(c_left,depth-1);

k = c_right;

}

spawn_next sum(k, ?c_left, result_from_ser);

spawn knary(c_left,depth-1);

}

}

Figure 5-1 continued: Cilk-1 code for knary

118

5.2 The Cilk 2 System

The goal when designing Cilk-2 was to allow the user to program in the traditional call-

return style while still using the same e�cient runtime system of threads wired together in

a continuation-passing style. The natural way to implement such a system is to specify a

set of higher-level parallel constructs which a preprocessor can translate into Cilk-1 style

threaded code. These higher-level constructs need to be powerful enough to express most

existing programs without resorting to writing threaded code. At the same time these

constructs need to have a relatively straightforward transformation into threaded code.

In order to perform such a translation, we needed a more sophisticated preprocessor

than the simple macro preprocessor originally used with Cilk-1. What we implemented

was a new type-checking preprocessor for Cilk. This preprocessor was implemented by Rob

Miller and is described in more detail in [Mil95]. This preprocessor is based on C-to-C, a

tool which parses a C program and turns it into an abstract syntax tree (AST). C-to-C

then performs type checking and dataow analysis on this AST, and then uses the AST

to regenerate a C program. C-to-C was extended to create Cilk-to-C. Cilk-to-C parses a

program written in Cilk and creates an extended \Cilk AST" which describes the program.

A Cilk AST can include constructs not allowed in a C AST. Cilk-to-C then performs type

checking and other analysis on this Cilk AST, annotating the nodes of this tree with extra

information. Cilk-to-C then transforms the Cilk AST into a pure C AST, removing any

Cilk-speci�c constructs by replacing them with calls to Cilk runtime system primitives.

After this phase the AST can be used to generate a C program.

An alternative to building a preprocessor was to implement a full blown Cilk compiler.

We chose the former option because building our own compiler would have been a much

larger task, and would have resulted in a system that was less portable. The Cilk-to-C

preprocessor allows us to do much of what we would want a compiler to do, without the

drawbacks of building a compiler.

The �rst version of Cilk-to-C was written for the Cilk-1 language, and it replaced the

original macro preprocessor. This new type-checking preprocessor bene�ts the Cilk-1 pro-

grammer in two ways. First, Cilk-to-C detects errors, particularly type errors, that the

original preprocessor cannot detect. With the original preprocessor, some of these errors

are detected by the C compiler, so the error messages refer to the processed code, instead of

119

the user's source code. Since the user may be unfamiliar with the processed code, the error

may be di�cult for the user to understand. Other type errors were not detected at all by the

original Cilk-1 system, and would lead to an incorrect program. Since Cilk-to-C performs

type checking, not only is it able to detect these errors, but it can point to the location in

the original source code where the errors occurred, thus making the errors much easier to

�x. The other bene�t of a type-checking preprocessor for Cilk-1 is that it makes the lan-

guage somewhat simpler. The runtime system has several primitives (SendWordArgument(),

SendCharArgument(), etc.) for sending arguments to closures. Previously the user had to

choose one of several such functions depending on the type of argument that was being sent.

The Cilk-1 language now has only one such function, namely send argument(), which is

used for sending arguments of any type to other closures. The type-checking preprocessor

knows the type of the argument being sent and automatically generates a call to the correct

runtime primitive.

Once we had a preprocessor powerful enough to deal with higher-level constructs, we

had to decide just what higher-level constructs we wanted. While writing applications, we

noticed common paradigms that appeared in many Cilk codes. The most common paradigm

was spawning o� several child threads and creating a successor thread to receive the values

computed by these children. It was this paradigm that we chose to support in Cilk-2. An

example of the Cilk-2 language can be seen in Figure 5-2, which shows the code for �b, which

recursively computes the nth Fibonacci number. The Cilk-2 code for �b is very similar to

the C code for �b, containing only a few additional constructs. The �rst addition is the

keyword cilk before the procedure de�nition. This keyword indicates that the following

procedure is a Cilk procedure, not a standard C procedure. The next addition is that the

two subcalls to the �b procedure are preceded by the keyword spawn which indicates that

these procedures can be executed in parallel. The �nal addition is the sync statement. The

sync statement indicates that the procedure is to be suspended at the sync point until all

spawned children have completed. Consequently, the code following the sync can safely use

the variables x and y, which receive their values from the spawned children.

We considered several choices for how to express synchronization in Cilk-2 before decid-

ing on this one. The other options we considered incorporated mechanisms which gave the

user more control over the synchronization process. In particular we considered a mecha-

nism essentially the same as join variables in Cid[Nik94]. In this proposal each spawn would

120

cilk int fib(int n)

{ if (n<2) return(n);

else

{

int x,y;

x = spawn fib(n-1);

y = spawn fib(n-2);

sync;

return(x+y);

}

}

Figure 5-2: A Cilk-2 procedure to compute the nth Fibonacci number.

have a join counter associated with it. At a sync point the user would need to specify a

join counter to wait on. Waiting on a join counter would indicate that the procedure should

suspend until all children spawned with that join counter have completed. Another pro-

posal required the user to explicitly specify at each sync point precisely which variables he

wanted to wait for.

All these other proposals had the advantage that they gave the user more control over

synchronization, but in the end we decided we did not want to give the user that control.

In most cases this extra control is unneeded and just makes the code messier. With the

exception of chess, all the Cilk programs we have written can be expressed in Cilk-2 style.

If we had chosen one of these other proposals, all of our programs would have had to deal

with the extra details exposed by that proposal, but only the chess program would have

bene�ted from it. (And even these proposals were not su�cient to completely remove the

need for the chess program to resort to the lower-level Cilk-1 mechanisms.)

Also, with the mechanism we chose, all programs written in Cilk-2 meet the criteria

for Cilk's performance guarantees as described in Chapter 3. Some of the other proposed

mechanisms did not. The last advantage of the chosen mechanisms is that since they give

the programmer less control, they are simpler to implement. Simplicity of implementation

is not why we chose this path, but it is a nice feature anyway.

Before concluding this section, we give a brief overview of the implementation of Cilk-2.

We focus on what constructs Cilk-2 code is translated into. See [Mil95] for details on how

this transformation is performed.

121

The idea for transforming Cilk-2 style code into threaded code is fairly straightforward.

Since the runtime system deals with threads, not procedures, a Cilk-2 procedure must be

broken up into a set of threads. The sync points form the boundaries for these implicitly

de�ned threads. In e�ect we treat a sync like a spawn next, where the thread being spawned

is the rest of the procedure after the sync.

One could try to translate Cilk-2 code directly into Cilk-1 style code. Using this trans-

lation, the �b code in Figure 5-2 would then be transformed into code almost identical to

the �b code shown in the Cilk-1 chapter. Although this translation would work �ne for

�b, in general it would be more di�cult. In Cilk-1 code, when spawning a child, that child

must be passed a continuation which points to the \rest of the procedure", therefore the

spawn next of the rest of the procedure must occur before any children are spawned. When

translating Cilk-2 code, having to perform the spawn next �rst is troublesome because a

sync may be nested within a conditional or a loop. Therefore when executing a proce-

dure, until we actually reach a sync, we may not know which sync we will reach. When a

child is spawned, not knowing which sync will be reached makes it di�cult to create the

continuation that must be passed to that child.

To solve the problem of not being able to create a continuation to pass to a child, Cilk-2

is translated such that all the threads that form a procedure share the same closure. This

closure is sometimes called a frame. When a thread is spawned, the current frame is used

as the frame to which the thread should send its result. When a sync is reached, all the

variables that are needed after the sync are stored into the frame. When the next thread of

the procedure is executed, the �rst part of that thread has code to read the needed variables

back out of the frame. Using only one frame has e�ciency advantages as well. Only one

frame needs to be allocated and initialized per procedure, rather than one frame for every

thread of a procedure. Also, there may be variables which are written into the frame once,

and then used by several threads of that procedure. If separate closures were used for every

thread, then these variables would have to be copied from closure to closure.

5.3 Knary Revisited

Let us now go back to the knary example and see how it can be expressed in Cilk-2.

Figure 5-3 shows the knary code as written in Cilk-2. Instead of the four threads used by

122

/* knary(n, k, r) */

cilk int knary(int depth, int num_serial, int num_parallel){

/* Do some work in each thread. */

int i;

int dummy = (int)&i;

for(i=0;i<ExtraWork;i++){}

if (depth<2) {

return 1;

}

else{

int results[MAX_PARALLEL];

int answer = 0;

/* Perform the serial recursive calls, summing in the result */

for (i=0;i<num_serial;i++){

child_result= spawn knary(depth-1);

sync;

answer += child_result;

}

/* Spawn off the parallel calls */

for (i=0;i<num_parallel;i++){

results[i] = spawn knary(depth-1);

}

sync;

/* sum the results */

for (i=0;i<num_parallel;i++){

answer += results[i];

}

return answer;

}

}

Figure 5-3: Cilk-2 code for knary.

the Cilk-1 code, the Cilk-2 code requires just one procedure. This procedure contains a

loop to spawn o� the �rst num serial sequential children, followed by a loop to spawn of

the num parallel parallel children. The main di�erence between these two loops is that

the loop for the sequential children has a sync statement inside the loop while the loop for

the parallel children has a sync statement only after the loop.

123

Composing Cilk procedures in Cilk-2 is much easier than composing threads in Cilk-

1. Earlier, we gave the example of making the following modi�cation to knary. Instead

of performing make-work, knary was supposed to call a function, work(), that performs

some work and may return a value, stop, indicating that this call of knary should return

immediately instead of continuing as usual. In Cilk-1 this change is easy to implement if

work() is a C function, but it requires more e�ort if work() is written as a Cilk thread.

In Cilk-2, this code is easy to write even if work() is a Cilk procedure. We just add the

following code to the beginning of knary:

i = spawn work();

sync;

if (i==STOP) return(0);

This code is almost the same as what would be required if work() were a C procedure. The

only di�erence is the addition of spawn and sync.

5.4 Conclusion

The Cilk-2 language allows the programmer to write his application at a higher level us-

ing the familiar call/return semantics. Our type-checking preprocessor then automatically

breaks up the user's code into a multithreaded program which can be executed with our

work-stealing scheduler, thereby providing the user with the time, space, and communica-

tion performance guarantees described in Chapter 3. Although the Cilk-2 language is more

restrictive than Cilk-1, we were able to rewrite almost all existing Cilk-1 programs using

the new, simpler, Cilk-2 syntax.

The only application that cannot be expressed using the Cilk-2 syntax was ?Socrates.

We cannot express ?Socrates because it performs speculative computations, and because

some of these speculative computations are aborted. For most algorithms, the order in

which the user's threads are executed does not e�ect the amount of work performed by the

program. But for speculative algorithms, the amount of work the program performs can

depend greatly on the order in which threads are executed. Cilk-1 contains features such

as priority threads, which are instrumental in implementing speculative searches e�ciently.

These features are not reected in the higher-level Cilk-2 constructs, so the algorithms

that used theses features cannot be e�ciently written using only the higher-level Cilk-

2 constructs. Another reason ?Socrates cannot be written entirely with the higher-level

124

Cilk-2 constructs is the ?Socrates sometimes kills o� previously spawned threads. The

?Socrates code is able to abort existing threads only because Cilk-1 contains su�cient low-

level primitives, such as migration and nonstealable threads, to allow the user's code to

keep track of all the spawned threads. Again, these low-level features are not available via

the higher-level Cilk-2 constructs. In Chapter 7 we will describe some further high-level

extensions to Cilk which will allow the chess program to be written without resorting to

the lower level Cilk-1 primitives.

125

126

Chapter 6

Cilk-3: Shared Memory for Cilk

One of the biggest shortcomings of the Cilk systems described so far is that it is di�cult

to write applications where there are signi�cant amounts of data shared throughout the

computation. The improvements to the Cilk system described in Chapter 5 make it much

easier to express algorithms in Cilk, but they do nothing to increase the range of applications

that can be expressed. In Cilk all data that is shared by several threads must be explicitly

passed among those threads. Consequently, writing e�cient programs that deal with large

structures is di�cult. The Cilk applications we have described so far mostly consist of

tree-like algorithms where very little data needs to be shared between di�erent subtrees.

Those applications that do need to share data throughout the computation do so only by

going outside of Cilk. For example, the global transposition table in the ?Socrates program

was implemented directly with active messages.

The shared-memory system described in this chapter is an attempt to alleviate this

problem. With this system we can implement data-intensive applications such as matrix

multiply, LU-decomposition, and Barnes-Hut. Rather than attempting to build a shared

memory system that can solve all problems, we focused on building one that would be

su�cient for the types of problems that are naturally expressed in a multithreaded pro-

gramming environment such as Cilk. Instead of using one of the consistency models derived

from sequential consistency, we use our own, relaxed, consistency model. Our model, which

we call \dag consistency," is a lock-free consistency model which, rather than forcing a total

order on global memory operations, instead ensures only that the constraints speci�ed by

Some of the work described in this chapter will be reported on in a paper by Robert Blumofe, Matteo

Frigo, Charles Leiserson, Keith Randall and myself [BFJ+96].

127

the computation dag are enforced. Because dag consistency is a relaxed consistency model,

we have been able to implement coherence e�ciently in software for Cilk. We dubbed the

Cilk-2 system with dag-consistent shared memory \Cilk-3."

This Cilk shared memory system was designed by members of the Cilk team: Robert

Blumofe, Matteo Frigo, Charles Leiserson, Keith Randall and myself. Matteo Frigo, Keith

Randall and I implemented the CM-5 version of the system. Robert Blumofe is implement-

ing a version of this system for networks of workstations. Charles Leiserson and I devised

the correctness proof given in Section 6.3.

6.1 Introduction

Architects of shared memory for parallel computers have traditionally attempted to support

Lamport's model of sequential consistency [Lam79] which states:

A system is sequentially consistent if the result of any execution is the same

as if the operations of all the processors were executed in some sequential order,

and the operations of each individual processor appear in this sequence in the

order speci�ed by its program.

Unfortunately, designers have found Lamport's model di�cult to implement e�ciently, and

hence relaxed models of shared-memory consistency have been developed [DSB86, GS93,

GLL+90] that compromise on semantics for a faster implementation. By and large, all of

these consistency models have had one thing in common: they are \processor centric" in the

sense that they de�ne consistency in terms of actions performed by physical processors. In

this chapter, we introduce \dag consistency", a lock-free, processor-independent consistency

model which can be implemented e�ciently for multithreaded programming environments

such as Cilk.

To illustrate the concepts behind dag consistency, consider the problem of parallel matrix

multiplication. One way to program matrix multiplication is to use the recursive divide-

and-conquer algorithm shown in Figure 6-1. To multiply one n� n matrix by another, we

divide each matrix into four n=2 � n=2 submatrices, recursively compute some products

of these submatrices, and then add the results together. This algorithm lends itself to a

parallel implementation, because each of the eight recursive multiplications is independent

and can be executed in parallel.

128

C
x =

D

E F

G H

I J

A B

+

Rx =

CG CH

EG EH

DI DJ

FI FJ

Figure 6-1: Recursive decomposition of matrix multiplication. The multiplication of n� n
matrices requires eight multiplications of n=2 � n=2 matrices, followed by one addition of

n� n matrices.

Figure 6-2 shows Cilk code for a blocked implementation of recursive matrix multipli-

cation in which the (square) input matrices A and B and the output matrix R are stored as

a collection of 16 � 16 submatrices, called blocks. All three matrices are stored in shared

memory. The Cilk procedure matrixmul takes pointers to the �rst block in each matrix as

input, as well as a variable nb denoting the number of blocks in any row or column of the

matrices. From the pointer to the �rst block of a matrix and the value of nb, the location

of any other block in the matrix can be quickly computed. As matrixmul executes, values

are stored into R, as well as into a temporary matrix tmp.

The procedure matrixmul operates as follows. Lines 3{4 check to see if the matrices

to be multiplied consist of a single block, in which case a call is made to a serial routine

multiply block (not shown) to perform the multiplication. Otherwise, line 8 allocates

some page-aligned temporary storage in shared memory for the results, lines 9{10 com-

pute pointers to the 8 submatrices of A and B, and lines 11{12 compute pointers to the

8 submatrices of R and the temporary matrix tmp. At this point, the divide step of the

divide-and-conquer paradigm is complete, and we begin on the conquer step. Lines 13-20

recursively compute the 8 required submatrix multiplications, storing the results in the 8

disjoint submatrices of R and tmp. The recursion is made to execute in parallel by using the

spawn directive, which is similar to a C function call except that the caller can continue to

execute even if the callee has not yet returned. The sync statement in line 21 causes the

procedure to suspend until all the spawned procedures have �nished. Then, line 22 spawns

a parallel addition in which the matrix tmp is added into R. (The procedure matrixadd is

itself implemented in a recursive, parallel, divide-and-conquer fashion, and the code is not

shown.) The sync in line 23 ensures that the addition completes before matrixmul returns.

129

1 cilk void matrixmul(long nb, shared block *A, shared block *B,

shared block *R)

2 {

3 if (nb == 1)

4 multiply_block(A, B, R);

5 else {

6 shared block *C,*D,*E,*F,*G,*H,*I,*J;

7 shared block *CG,*CH,*EG,*EH,*DI,*DJ,*FI,*FJ;

8 shared page_aligned block tmp[nb*nb];

/* get pointers to parts of original matricies */

9 partition_matrix(nb, A, &C, &D, &E, &F);

10 partition_matrix(nb, B, &G, &H, &I, &J);

/* get pointers to places to put results */

11 partition_matrix(nb, R, &CG, &CH, &EG, &EH);

12 partition_matrix(nb, tmp, &DI, &DJ, &FI, &FJ);

/* do multiplication subproblems */

13 spawn matrixmul(nb/2, C, G, CG);

14 spawn matrixmul(nb/2, C, H, CH);

15 spawn matrixmul(nb/2, E, H, EH);

16 spawn matrixmul(nb/2, E, G, EG);

17 spawn matrixmul(nb/2, D, I, DI);

18 spawn matrixmul(nb/2, D, J, DJ);

19 spawn matrixmul(nb/2, F, J, FJ);

20 spawn matrixmul(nb/2, F, I, FI);

21 sync;

/* add results together into R */

22 spawn matrixadd(nb, tmp, R);

23 sync;

24 }

25 return;

26 }

Figure 6-2: Cilk code for recursive blocked matrix multiplication. The call

multiply block(A,B,R) performs a serial multiplication of blocks A and B and places the

result in block R. The side length of each of these three matrices is nb blocks. The procedure

matrixadd is implemented by a straightforward parallel divide-and-conquer algorithm.

130

M8M7M6M5M4M3M2M1

X Y Z

S

... ...

Figure 6-3: Dag of blocked matrix multiplication. Each circle represents a thread of the

computation. Threads are linked by downward spawn edges, horizontal continue edges, and

upward return edges. Some edges were omitted for clarity.

Like any Cilk multithreaded computation, the parallel instruction stream of matrixmul

can be viewed as a directed acyclic graph (dag) of threads organized into a tree of procedures.

Figure 6-3 illustrates the structure of the dag. Each vertex corresponds to a thread of the

computation, which in Cilk is a nonblocking sequence of instructions. A procedure is a

sequence of threads that share the same frame or activation record . For example, the syncs

in lines 21 and 23 break the procedure matrixmul into three threads X, Y , and Z, which

correspond respectively to the partitioning and spawning of subproblems M1;M2; : : : ;M8

in lines 2{20, the spawning of the addition S in line 22, and the return in line 25. The

dag of a Cilk computation contains three kinds of edges. A spawn edge connects a thread

with its spawned child. A continue edge connects a thread with its successor in the same

procedure. A return edge reects the synchronization that occurs when a child completes

and noti�es the thread in its parent procedure that is waiting for its return. Thus, a Cilk

computation unfolds as a spawn tree composed of procedures and the spawn edges that

connect them to their children, but the execution is constrained to follow the precedence

relation determined by the dag of threads.

What kind of memory consistency is necessary to support a shared-memory program

such as matrixmul? Certainly, sequential consistency can guarantee the correctness of

the program, but a closer look at the precedence relation given by the dag reveals that a

much weaker consistency model su�ces. Speci�cally, the 8 recursively spawned children

M1;M2; : : : ;M8 need not have the same view of shared memory, because the portion of

131

shared memory that each writes is neither read nor written by the others. On the other

hand, the parallel addition of tmp into R by the computation S requires S to have a view

in which all of the writes to shared memory by M1;M2; : : : ;M8 have completed.

The basic idea behind dag consistency is that each thread sees values that are consistent

with some serial execution order of the dag, but two di�erent threads may see di�erent

serial orders. Thus, the writes performed by a thread are seen by its successors, but threads

that are incomparable in the dag may or may not see each other's writes. In matrixmul,

the computation S sees the writes of M1;M2; : : : ;M8, because all the threads of S are

successors of M1;M2; : : : ;M8, but since the Mi are incomparable, they cannot depend on

seeing each others writes. Dag consistency is similar to location consistency [GS93], but it

is de�ned in terms of the dag of a user's multithreaded computation rather than in terms of

processors and synchronization points. We shall present a formal model of dag consistency

in Section 6.2.

The current Cilk mechanisms to support dag-consistent distributed shared memory on

the Connection Machine CM-5 are implemented in software. Nevertheless, codes such as

matrixmul run with good e�ciency, as we shall shortly document. Like many software

distributed shared memory implementations, the Cilk implementation is page based to

amortize the cost of remote reads and writes over many references. Whenever a thread

accesses a page that is not resident in the local page cache of a processor, a page fault

occurs, and a protocol ensues that brings the required page into the page cache. Although

memory locations are grouped into pages, Cilk maintains dag consistency at the granularity

of individual 32-bit words.

Cilk also supports stack allocation of distributed shared memory. The declaration of tmp

in line 8 of matrixmul causes the shared-memory stack pointer to be incremented by nb*nb

blocks. When running in parallel, however, a simple serial stack is insu�cient. Instead,

Cilk provides a distributed \cactus stack" [HD68, Mos70, Ste88] that mimics a serial stack

in such a way that during execution, every thread can access all the variables allocated by

its parents and can address a variable directly by its depth in the stack. Despite the fact

that the stack is distributed, allocation can be performed locally with no interprocessor

communication. Cactus stack memory is deallocated automatically by the Cilk runtime

system when a spawned procedure returns.

132

Before discussing how maintenance of dag consistency a�ects the performance of Cilk

programs, let us �rst review the performance of Cilk programs that do not use shared

memory. Any multithreaded program can be measured in terms of the \work" and \critical

path length" of its computation dag. The work, denoted T1, is the time used by a one-

processor execution of the program, which corresponds to the sum of the execution times of

all the threads. The critical path length, denoted T
1
, is the total amount of time required

by an in�nite-processor execution, which corresponds to the largest sum of thread execution

times along any path. With P processors, the execution time cannot be less than T1=P

or less than T
1
, and Cilk's \work-stealing" scheduler provably achieves O(T1=P + T

1
)

time with high probability on fully strict multithreaded computations. For example, the

work to multiply two n�n matrices using matrixmul is �(n3) and the critical path of this

algorithm is �(lg2 n). If no shared-memory page faults were taken, therefore, the entire

algorithm would run in �(n3=P + lg2 n) time with high probability.

In order to model performance accurately, however, we must account for the e�ects

of shared-memory page faults. We show that if F1 is the number of page faults for a

multithreaded program running on 1 processor with a page cache of size C, then the total

number FP of page faults taken by P processors, each with a page cache of size C, is

FP � F1 + 2Cs, where s is the number of steals during the execution.

A graph of the performance of matrixmul on the Connection Machine CM-5 is shown in

Figure 6-4. Three curves are shown, the lower curve is the performance of the matrixmul

code shown in Figure 6-2 on a 1024 � 1024 multiply, and the upper two curves are the

performance of a variant that uses no temporary storage and has a longer critical path.

The dag-consistent shared-memory code performs at 5 megaops per processor as long as

the work per processor is large. This performance compares reasonably well with the other

matrix multiplication codes on the CM-5. For example, an implementation coded in Split-

C [CDG+93] attains just over 6 megaops per processor on 64 processors using a static

data layout, a static thread schedule, and an optimized assembly language inner loop. In

contrast, Cilk's dag-consistent shared memory is mapped across the processors dynamically,

and the Cilk threads performing the computation are scheduled dynamically at runtime.

We believe that the overhead in our current implementation can be reduced further, but

that in any case, it is a reasonable price to pay for ease of programming and dynamic

scheduling.

133

0

1

2

3

4

5

6

4 8 16 32 64

M
flo

ps
/p

ro
ce

ss
or

processors

4096x4096 optimized
1024x1024 optimized

1024x1024

Figure 6-4: Megaops per processor versus the number of processors for several matrix mul-

tiply runs on the Connection Machine CM-5. The shared-memory cache on each processor

is set to 2MB. The lower curve is for the matrixmul code in Figure 6-2 and the upper two

curves are for an optimized version that uses no temporary storage.

We have implemented irregular applications that employ Cilk's dag-consistent shared

memory, including a port of a Barnes-Hut N -body simulation [BH86] and an implementa-

tion of Strassen's algorithm [Str69] for matrix multiplication. These irregular applications

provide a good test of Cilk's ability to schedule computations dynamically. We achieve a

speedup of 9 on an 8192-particle N -body simulation using 32 processors, which is competi-

tive with other software implementations of distributed shared memory [JKW95]. Strassen's

algorithm runs as fast as matrixmul for 2048� 2048 matrices, and we coded it in Cilk in a

few hours.

The remainder of this chapter is organized as follows. Section 6.2 gives a formal de�-

nition of dag consistency, and Section 6.3 describes an abstract algorithm for maintaining

dag consistency and then gives a proof of its correctness. Section 6.4 describes an imple-

mentation of this algorithm for Cilk on the Connection Machine CM-5, and also describes

our cactus-stack memory allocator. Next, Section 6.5 analyzes the number of faults taken

by multithreaded programs, both theoretically and empirically. Section 6.6 compares dag-

134

consistency with some related consistency models and o�ers some ideas for the future.

6.2 Dag Consistency

In this section, we formally de�ne dag consistency in terms of the dag that represents a

multithreaded computation. We give conditions under which dag-consistent multithreaded

programs are deterministic, and we discuss how nondeterminism can arise. Finally, we

investigate anomalies in atomicity that can occur when the size of the concrete objects

supported by the shared-memory system is di�erent from the abstract objects that the

programmer manipulates.

We �rst introduce some terminology. Let G = (V;E) be the dag of a multithreaded

computation. For i; j 2 V , if a path of nonzero length from thread i to thread j exists in

G, we say that i (strictly) precedes j, which we write i � j. For any thread i 2 V , the

set fj 2 V : j � ig is the set of predecessors of i, and the set fj 2 V : i � jg is the set of
successors of i. We say that two threads i; j 2 V with i 6= j are incomparable if we have

i 6� j and j 6� i.

Shared memory consists of a set M of objects containing a value �eld that threads can

read and write. To track which thread is responsible for an object's value, we imagine that

each value has a tag which the write operation sets to the name of the thread performing

the write. When a thread performs a read on an object, it receives some value, but the

particular value it receives depends upon the consistency model. We assume without loss

of generality that each thread performs at most one read or write. We also make the

simplifying assumption that all objects contain some initial value tagged with a \�ctitious"

thread that precedes all other threads. This assumption saves us the trouble of specifying

what happens if a thread reads an object not written by any \real" predecessor.

Informally, we want to de�ne dag consistency such that a read can \see" a write only

if there is some serial execution order in which the read sees that write. Unlike sequential

consistency, however, dag consistency allows di�erent reads to return values that are based

on di�erent serial orders, as long as the values returned are consistent with the precedence

relations given by the dag.

In addition to stating what values might be seen by a read, the following formal de�nition

of dag consistency focuses on what values a read cannot see.

135

De�nition 8 The shared memory M of a multithreaded computation G = (V;E) is dag

consistent if the following conditions hold:

1. If any thread i 2 V reads any object m 2 M , it receives a value v tagged with some

thread j 2 V such that j writes v to m and we have i 6� j.

2. For any three threads i; j; k 2 V , such that i � j � k holds, if j writes some object

m 2M and k reads m, then the value received by k is not tagged with i.

The �rst part of this de�nition says that if a thread i reads an object, it receives the value

written to that object by some thread j, where j must not be a successor of i. Since most

computer systems are not prescient, this part of the de�nition is easy to implement. The

second part of the de�nition is more subtle, because it says what the value cannot be, rather

than what the value can be. It ensures that a writer masks writes by any of its predecessors

from all of its successors. This property is implicit in ordinary serial execution: whenever

a write to an object occurs, previous values of the object are thenceforth forever hidden.

The de�nition of dag consistency allows nondeterminism, which we view as a generally

undesirable property of a parallel program, but it is relatively easy to write programs that

are guaranteed to be deterministic. Nondeterminism arises when a write to an object occurs

that is incomparable with another read or write to the same object. For example, if a read

and a write to the same object are incomparable, then the read may or may not receive

the value of the write. Similarly, if two writes are incomparable and a read exists that

succeeds them both with no other intervening writes, the read may receive the value of

either write. To avoid nondeterminism, we require that no write to an object occurs that is

incomparable with another read or write to the same object. If no two writes to the same

object are incomparable, then all writes to the object must lie on a single path in the dag.

Moreover, all writes and any one given read must also lie on a single path. Consequently,

by the de�nition of dag consistency, every read of an object sees exactly one write to that

object. Since a write of one object has no bearing on a read of a di�erent object, the

execution is deterministic.

Nondeterminism is not the only problem that can arise in dag-consistent programs.

As with most consistency models, dag consistency can su�er from atomicity anomalies

when the concrete objects supported by the shared-memory system are larger than the

abstract objects that the programmer is reading and writing. For example, suppose that

136

system objects are 4 bytes long, but the programmer is treating the system object as 4

1-byte abstract objects. Two incomparable threads may each perform an update on a

di�erent abstract object, expecting both writes to be visible to a common successor. But,

if these 1-byte values are packed into the same 4-byte concrete object, then these writes

are really incomparable writes to the same 4-byte object. Consequently, one of the writes

may nondeterministically mask the other, and the update to one of the bytes may be lost.

Fortunately, this problem can easily be avoided by not packing together abstract objects

that might be updated by incomparable threads.

Atomicity anomalies can also occur when the programmer's abstract object is larger than

the system's concrete object. For example, suppose the system supports 4-byte concrete

objects, but the programmer needs an 8-byte object. If two incomparable threads each write

the entire 8-byte object, the programmer might expect an 8-byte read of the structure by

a common successor to receive one of the two 8-byte values written. The 8-byte read may

nondeterministically receive 4 bytes of one value and 4 bytes of the other value, however,

since the 8-byte read is really two 4-byte reads, and the consistency of the two halves is

maintained separately. Fortunately, this problem can only occur if the abstract program

is nondeterministic, that is, if the program is nondeterministic even when the abstract

and concrete objects are the same size. When writing deterministic programs, which we

advocate as good parallel programming practice, the programmer need not worry about

this atomicity problem.

6.3 Maintaining Dag Consistency

In this section we show how dag consistency can be maintained during the execution of a

multithreaded computation. We focus on the class of \well-structured" computations that

we showed in Section 3.6 can be scheduled e�ciently. We give an algorithm that maintains

dag-consistent shared memory for well-structured computations executing in a distributed

environment, and we prove that it is correct. Section 6.4 describes our implementation of

the algorithm.

Our dag-consistency algorithm depends on properties of multithreaded dags. Recall

that a procedure consists of a sequence of threads connected by continue edges. Spawn

edges go from a thread in one procedure to the �rst thread in a child procedure, thereby

137

structuring the procedures into a spawn tree. Alternatively, we can view the spawn and

continue edges as structuring the threads into a spawn-continue tree. If the computation is

fully strict, every data-dependency edge entering a procedure comes from the �nal thread

of a child procedure. Fully strict computations can be scheduled e�ciently, because they

are well structured. We shall exploit this property to design an e�cient dag-consistency

algorithm.

We shall present the dag-consistency algorithm using the nomenclature of Cilk's work-

stealing scheduler in which an idle processor obtains work by \stealing" a thread from a

busy processor. After stealing a thread, a processor executes the thread, which may cause

other threads to be created. The processor executes the created threads in depth-�rst order,

mimicking ordinary, serial, depth-�rst execution. If another processor requests work from

the processor, the thread that is closest to the root and ready to execute is stolen away. We

call the subtree of the spawn-continue tree that is rooted at a stolen thread a subcomputation.

We shall be particularly interested in the kernel of a subcomputation, which we de�ne to

be the (stolen) root thread of the subcomputation together with all threads reachable by

spawn and continue edges without passing through another stolen thread. Thus, as shown

in Figure 6-5, the scheduling algorithm partitions the spawn-continue tree into a tree of

kernels, each of which consists of all threads that execute on the same processor from the

time that a subcomputation's root thread is stolen to the time that the processor goes idle.

In order to make our dag-consistency algorithm simple, we rely on a property of Cilk's

runtime system. During the execution of a fully strict computation, a thread can be stolen

only if it belongs to a procedure whose previously spawned children have all completed.

Since a procedure with outstanding children cannot be moved, Cilk's bookkeeping of the

relationship between the procedure and its children is straightforward, because a child's

parent never moves. The dag-consistency algorithm also exploits this property, but for a

di�erent reason. Speci�cally, it relies on the fact that a data-dependency edge leaving a

thread always goes to another thread in the same subcomputation kernel or to a thread

in the parent kernel. If it were possible to steal a thread belonging to a procedure with

spawned children outstanding, then the parent of a thread might belong to a kernel which

is far away in the kernel tree.

The dag-consistency algorithm takes advantage of locality in the kernel tree by main-

taining coherence information on a kernel basis, rather than on a thread basis. Whenever

138

A
A

A
A
AAA
AAA
AAAAA

AA
AAAAAAA
AAA
A

AA
AAAAAAA

AA
AA

AA
AA
AA

A
A

AA
A
A

A
A
AAA
AAA

AA
AAAA
A
AA
AAAAAA

AAA
AAA

AA
AA
AA
A
A

A
A
A

AA
AA

AAA
AAA
AA
AA
AA
AAA
AAA
AA
AAA
AAA
AAA
A
A
AAA
AAAAAAAAAA

AAA
AAAAA
A
AA
AAAAA
AA
AA
AAAAAAA

AAA
AAAA
AAAA
AAA
A
A

AA
AA
AA

AA
AA
AA

A
A
A

AA
AA

AA
AA
AA

A
A
AAAAAAAA

AAA
AAAAAAAA

AAA
AA
AAAA
AAA

AA
AA
AAAA
AAA
A

AAA
AAAAAAAAAAA

A
A

AA
AA
AA
A
A

A
A

Figure 6-5: This shows a spawn-continue tree partitioned into a kernel tree. The data-

dependency edges of the dag are also shown faintly. The spawn-continue tree is partitioned

into four kernels, and the spawn edges beginning each new kernel are highlighted.

a processor steals a thread, it creates a cache on that processor to store shared-memory

objects used by the threads that will be part of the newly created kernel. All reads and

writes of an object performed by a thread are performed on the version of the object in

the cache of that thread's kernel. In order to propagate changed values correctly, the cache

maintains a dirty bit for each object that tells whether the object has been modi�ed since

it was brought into the cache. An object is clean if it has not been modi�ed and dirty

otherwise. An object may reside in any number of caches at a time, and the value of the

object may di�er from cache to cache. For simplicity, we assume that there is a �ctitious

initial thread that precedes all other threads. This initial thread is the only thread in its

kernel, and it maintains a cache that always contains every object.

Two operations are used by the dag-consistency algorithm to move objects between

caches: fetch and reconcile. If a cache A for a kernel contains an object, a read or write

to the object by a thread in the kernel operates directly on the cached object without any

139

object movement. If cache A does not contain the object when the read or write occurs, the

dag-consistency algorithm must perform a fetch to bring the object into A from another

cache B. The fetch operation simply copies the object from cache B into cache A and marks

the new version in cache A as clean. The reconcile operation is used to remove an object

from a cache, typically when a subcomputation completes or when room must be made in

the cache for a di�erent object. If cache A contains an object, it can reconcile the object

to another cache B only if B also contains the object. The reconcile operation �rst checks

to see whether A's version of the object is clean or dirty. If A's version is clean, then the

reconcile operation simply removes the object from cache A. If A's version is dirty, however,

then the reconcile operation marks B's version as dirty, updates it to have the same value

as A, and then removes the object from cache A.

The dag-consistency algorithm Dagger operates on the shared memory M of a multi-

threaded computation as follows:

� Whenever a thread is stolen, its newly created kernel is given an empty cache.

� Whenever a thread i in kernel X accesses an object m 2M that is not resident in X's

cache, then m is fetched into X's cache from kernel Y 's cache, where Y is the least

ancestor of X in the kernel tree such that Y 's cache contains m.

� Whenever a kernel X enables a data-dependency edge to a di�erent kernel (its parent

in the kernel tree, since the computation is fully strict), every object m in X's cache

is �rst reconciled to kernel Y 's cache, where Y is the least ancestor of X in the kernel

tree such that Y 's cache contains m.

Proof of Correctness

Before we can prove that Dagger maintains dag consistency, we need to formalize the

e�ects that Dagger has on the user computation. It su�ces to focus on an arbitrary

object m, since dag-consistency is de�ned for each object in M separately. Our strategy

is to embed the actions of Dagger on m into the dag containing the user actions. As in

Section 6.2, we assume for simplicity that each thread performs only one action. We specify

the important state variables of the system and show how each action a�ects them.

The important actions performed by the user's code are read, write, and sync. When

a thread i performs a read, the value returned by the read is the value of m currently in

140

the cache of thread i's kernel. A write thread updates the value of m in the cache. A sync

thread is one which has more than one incoming edge, namely one continue edge and one

or more data dependency edges. A sync thread that is part of procedure P executes only

after all the outstanding children of procedure P have completed.

In addition to the actions performed by the user's code, we shall also be concerned

with the actions fetch, reconcile, and steal performed by Dagger, which we can view

as special threads that are inserted by Dagger into the computation dag. These threads

are inserted to satisfy certain semantic properties. Before a user thread can read or write

m when it is not in the cache, a fetch thread is inserted prior to the access. Whenever a

data-dependency edge goes from a child kernel to an ancestor, a reconcile thread is added

immediately preceding the data-dependency edge. Since the dag is fully strict, this reconcile

thread is the �nal thread executed by the child kernel. Lastly, a steal thread is inserted as

the �rst thread of a kernel whenever a steal occurs. In most cases, when a thread is stolen

the steal thread is inserted just before the thread that was stolen. However, when a sync

thread is stolen, the steal thread is inserted immediately after the sync thread.

We can view each kernel X as keeping track of the following state variables:

� val(X) � value of m in X's cache, or nil if m is not in X's cache.

� tag(X) � the tag associated with val(X), or nil if m is not in X's cache.

� dirty(X) � true if m is dirty and false otherwise.

� H(X) � the set of \hidden" threads.

The variables tag(X) and H(X) are for purposes of the proof only. In practice, only the

value and dirty bit actually need to be maintained. The hidden set H(X) is maintained as

a set of threads whose writes to m can no longer be \seen" by threads in X (whether m is

in X's cache or not), but H(X) may also contain threads which do not write to m. The

variable tag(X) is used to identify which thread performed the write that stored the value

val(X).

We have now embedded the operation of Dagger on a user computation into a multi-

threaded computation G = (V;E) in which each thread i 2 V performs at most one simple

action. We shall next examine how the dag a�ects the caches of the various subcomputation

kernels as it is executed. First, however, we de�ne some helpful notations. For any thread

141

i 2 V , we de�ne K(i) to be the kernel to which i belongs. The state variables dynamically

change, and so when we need to be precise about the value of a state variable at di�erent

times, we superscript the state variable with a parenthesized thread name to indicate the

state variable's value immediately after the speci�ed thread executes. For example, H(i)(X)

denotes H(X) immediately after thread i executes. We will also use H(i�)(X) to denote

H(X) immediately before thread i executes. At any point in time, we de�ne la(X) to be

the least ancestor of kernel X for which val(X) 6= nil. If X must fetch or reconcile, la(X)

is the kernel that Dagger causes X to fetch from or reconcile to.

We are now ready to describe how the actions performed by a thread a�ect the state

variables of a multithreaded computation G = (V;E). For each action performed by a

thread i 2 V , we shall show how the value, tag, dirty bit, and hidden set are updated in

i's kernel as well as in any other kernels a�ected. All variables not explicitly mentioned in

the following pseudocode remain unchanged. Although in practice, many threads execute

concurrently, we shall assume that only one action occurs at a time.

The following pseudocode describes the e�ects of some thread i 2 V , where X = K(i) is

i's kernel. Depending on the action performed by i, we execute one of the following cases:

read:

No change to state variables.

write(v):

val(X) v

tag(X) i

dirty(X) true
H(X) H(X) [fj 2 V : j � ig

sync:

H(X) H(X) [H(K(j)), for all j 2 V such that (j; i) 2 E

fetch:

val(X) val(la(X))

tag(X) tag(la(X))

dirty(X) false
H(X) H(X) [H(la(X))

142

reconcile:

If dirty(X) =false, do nothing, else:

val(la(X)) val(X)

tag(la(X)) tag(X)

dirty(la(X)) true
H(la(X)) H(la(X)) [H(X)

val(X) nil
tag(X) nil
dirty(X) false

steal:

H(X) H(K(j)), where (j; i) 2 E is the unique incoming edge to i

val(X) nil
tag(X) nil
dirty(X) false

In order to prove that Dagger maintains dag consistency, we must �rst understand the

rami�cations of a dirty bit. The next lemma proves that during the time that a given tag

i appears dirty in a kernel Y , all successors of thread i belong to the subtree rooted at Y .

Lemma 9 Suppose Dagger maintains the shared-memory object m of a multithreaded

computation G = (V;E). Then, at any time after the execution of a thread j 2 V , if

tag(Y) = i, dirty(Y) = true, and i � j, then Y is a (not necessarily proper) ancestor of

K(j) in the kernel tree.

Proof: To prove this lemma we �rst examine the constrained manner in which dirty objects

are manipulated. We shall say that a kernel Y has a dirty tag i if tag(Y) = i and dirty(Y) =

true. A dirty tag is created by a write by the thread i. If a kernel Y with a dirty tag

i reconciles to an ancestor kernel Z, then the dirty tag i moves from Y to Z. When a

reconcile to a kernel with dirty tag i is performed, the dirty tag i disappears. In short, a

dirty tag i can be created by a write thread i, it can move up the kernel tree, and it can

disappear.

To prove the lemma, it su�ces to prove the following claim: if dirty tag i exists imme-

diately after executing a thread j, where i � j, then j belongs to the subtree rooted at the

143

kernel Y containing dirty tag i. The claim implies the lemma, because dirty tags can only

move up the kernel tree. Consequently, if immediately after j executes, it belongs to the

subtree rooted at a kernel Y with dirty tag i, then j must belong to the subtree rooted at

whatever kernel contains the dirty tag i for as long as the dirty tag i exists, which proves

the lemma.

We prove the claim using induction on the length of the longest path from i to j. The

base case is a path of zero length, in which case i = j. The base case is true, since after i

executes the dirty tag i is in the kernel Y = K(i). For the induction step, we shall show

that if the claim holds for all threads n edges away from i, then it holds for all threads n+1

edges away.

To prove the induction step, suppose that thread j is n + 1 edges away from i. Then,

an edge (k; j) 2 E must exist, where k is exactly n edges away from i. If K(k) = K(j),

then the claim holds trivially, because k and j belong to the same kernel. Thus, we can

assume that K(k) 6= K(j) and consider two cases based on the type of the edge from k

to j. For the �rst case, suppose that (k; j) is a spawn or continue edge. Then j must be

a steal thread, and thus, K(j) is a child of K(k). Consequently, since k belongs to the

subtree rooted at the kernel Y containing dirty tag i, it follows that j must also belong to

the subtree rooted at Y . For the second case, suppose (k; j) is a data-dependency edge.

Then, since any data-dependency edge between threads in di�erent kernels always goes to a

thread in the parent kernel, K(j) must be a parent of K(k), which implies that k is the last

thread to execute in K(k) and k is a reconcile thread. Consequently, K(k) 6= Y , because

Y 's dirty bit is true, and the reconcile sets K(k)'s dirty bit to false. Since by induction

K(k) is in the subtree rooted at Y and K(k) 6= Y , the parent of K(k), namely K(j), must

be in the subtree rooted at Y , which proves the claim and the lemma.

The next lemma establishes two monotonicity properties of hidden sets. The �rst prop-

erty says that the hidden set of any kernel monotonically increases with time as actions are

performed. The second property says that the hidden set of a thread increases monotoni-

cally along any path in the dag, where by hidden set of a thread, we mean the hidden set

of that thread's kernel immediately after the thread executes.

Lemma 10 Suppose Dagger maintains the shared-memory object m of a multithreaded

computation G = (V;E). Then, for all threads i; j 2 V such that i � j and kernel Y , we

144

have

H(i)(Y) � H(j)(Y) (6.1)

H(i)(K(i)) � H(j)(K(j)) (6.2)

Proof: Property 6.1 follows directly by induction on the actions in G, because no action

removes elements from a kernel's hidden set. We prove Property 6.2 by showing that it

holds for every edge (i; j) 2 E, which implies that it holds whenever i � j. If i and j are

in the same kernel, Property 6.1 implies the property. Otherwise, i and j are in di�erent

kernels, and we examine two cases depending on the type of edge (i; j). If (i; j) is a continue

or spawn, then j performs a steal action, and thus H(j) = H(i), and the property holds. If

(i; j) is a data-dependency edge, then j performs a join actions, and thus H(j) � H(i), and
the property holds.

We now prove three invariants on hidden sets. The �rst says that for any kernel Y ,

the hidden set of the kernel that Y would fetch from includes everything in Y 's hidden set.

This invariant ensures that when Y fetches the object m, the value received can be seen

by Y . The second invariant says that if m is dirty in a cache, only descendent kernels can

have the thread that wrote the value in their hidden sets. The third invariant says that the

value in a kernel's cache was not written by a thread in its hidden set. In other words, the

hidden set of a kernel does indeed represent those threads whose writes the kernel cannot

see.

Lemma 11 Suppose Dagger maintains the shared-memory object m of a multithreaded

computation G = (V;E). Then, for all kernels X and Y , the following statements are

invariant during the execution of G:

1. tag(Y) = nil=)H(Y) � H(la(Y)).

2. dirty(Y) = true and tag(Y) 2 H(Z) =) Z is a descendant of Y .

3. tag(Y) 62 H(Y).

Proof: We will proof these invariants by induction on the actions.

To prove Invariant 1, observe that all hidden sets are initially empty. Therefore Invari-

ant 1 holds initially, providing the base case. We now examine each action and show that

145

if the invariant is true before the action, then it is true afterwards. Note that the invariant

we are proving mentions two kernels, Y and la(Y). For each kernel, X, that has its state

variables changed by an action, we will have to show that the invariant holds in two cases:

(1) the invariant must holds for X and its least ancestor la(X), and (2) the invariant must

hold for any descendants of X, Z, where, either before or after the operation, X = la(Z).

For a read thread, the invariant holds trivially, since no state variables change.

For a write performed by thread i in kernel X, the state variables of kernel X are mod-

i�ed, so we must show the invariant are maintained on kernel X for both cases mentioned

above. For case (1) the invariant holds trivially since tag(X) 6= nil. For case (2), we note

that the write operation can not a�ect which kernel is the least ancestor of another. So X

is the least ancestor of a node, Z, after a sync if and only if X was the least ancestor of Z

before the sync. We must show that if a kernel Z exists such that X is the least ancestor of

Z and tag(Z) = nil, then H(Z) � H(X). If such a kernel Z exists then by induction the

invariant held before the operation, namely H(Z) � H(i�)(X). Since the write operation

can only increase H(X), the invariant holds after the write operation as well.

For a fetch performed by thread i in kernel X, we must show that the invariant holds

for the modi�ed kernel X. For case (1) the invariant holds trivially since tag(X) 6= nil. For

case (2) we must show that if there exists some kernel Z such that X is the least ancestor

of Z and tag(Z) = nil, then H(Z) � H(X). If such a kernel Z exists then before the fetch

operation la(X) was the least ancestor of Z. By induction H(Z) � Hi�(la(Z) = la(X)),

and by the de�nition of the fetch action Hi�(la(X)) � H(X); therefore, H(Z) � H(X)

which maintains the invariant.

For a reconcile performed by thread i in kernel X to kernel Y = la(X), we must show

that the invariant holds both for kernel X and for kernel Y = la(X). We will deal with

kernel X �rst. For case (1), by the de�nition of the reconcile action H(Y) H(Y)[H(X),

so H(X) � H(Y) and the invariant holds. For case (2) we must show that if there were

some kernel Z with tag(Z) = nil which had X as its least ancestor, then after the reconcile

H(Z) � H(la(Z)). Before the reconcile X was the least ancestor of Z so by induction

H(Z) � H(X). After the reconcile Y = la(Z) and from the de�nition of reconcile it follows

that H(Y) � H(X). Therefore H(Z) � H(Y) and the invariant holds.

Now we will show the invariant is maintained for kernel Y = la(X). For case (1) the

invariant holds trivially since tag(X) 6= nil. For case (2) we must show that if there exists

146

some kernel Z such that Y is the least ancestor of Z and tag(Z) = nil, then H(Z) � H(X).

We have already dealt with the case where before the reconcile the least ancestor of Z was

X, all that remains is the case where before the reconcile the least ancestor of Z was Y .

By induction H(Z) � H(Y) before the reconcile, and since the reconcile can only increase

H(Y) this invariant is still true after the reconcile.

For a steal performed as the �rst thread of kernel X, we must show that the invariant

holds for kernel X. For case (1), since val(X) = nil we must show that H(X) � H(la(X)).

The de�nition of the steal action states that H(X) H(K(j)), where (j; i) 2 E is the

unique incoming edge to i. If val(K(j)) 6= nil then K(j) is the least ancestor of X, and

the invariant holds since H(X) = H(la(X)). If val(K(j)) = nil then la(X) = la(K(j)),

and by induction H(K(j)) � H(la(K(j))). Therefore H(X) = H(K(j)) � H(la(X)) and

the invariant holds. For case (2) the proof is trivial since X has no descendants.

For a sync performed by thread i in kernel X, we must show that the invariant holds

for kernel X.

The sync thread i has one incoming continue edge from some thread k and one or more

incoming data-dependency edges. We have X = K(i) = K(k), because only steal threads

can have an incoming continue edge from another kernel. Also, for the data-dependency

edges either they come from threads in the same kernel, or they come from threads in kernels,

whose val is nil. For case (1), we must show that if val(X) = nil then H(X) � H(la(X)).

We will assume val(X) = nil, otherwise the proof is trivial. The de�nition of sync states

that H(X) H(X) [H(K(j)), for all j 2 V such that (j; i) 2 E. Lets look at each

set unioned to form H(X) and show that all of these sets are subsets of H(la(X)). For

H(X) we have by induction H(i�)(X) � H(la(X)), The rest of the sets unioned in each

correspond to an incoming edge. For the incoming continue edge (k; i), we have K(k) = X,

so this just unions in H(X) again. For each incoming data-dependency edge (j; i) we have

either K(j) = K(i) = X, in which case we just union in H(X) yet again, or we have

K(j) 6= X. In this second case we have val(K(j)) = nil and la(K(j)) = la(X) and,

by induction, H(K(j)) � H(la(K(j)). Therefore H(K(j)) � H(la(X)) which shows that

H(X) � H(la(X)). Finally, for case (2) we note that the sync operation only changes the

hidden set, so X is the least ancestor of a node, Z, after a sync i� X was the least ancestor

of Z before the sync. By induction the invariant holds before the operation, Since the sync

operation can only increase H(X), the invariant holds after the sync operation as well.

147

To prove Invariant 2, we will again use induction on the actions. Informally, Invariant 2

states that if kernel X has a dirty tag i then i can only appear in hidden sets which are in

the subtree rooted at X. All hidden sets are initially empty so the base case of the proof

is trivial. We now need to examine each action and show that if Invariant 2 is true before

the action, then it is true afterwards. As with the previous example, there are two kernels

in the invariant, so there are two cases we must consider. Case (1) occurs when we modify

the variables of a kernel X, and we set dirty(X) to true or modify tag(X). In this case

we must show that for all Z such that tag(X) 2 H(Z), Z is a descendant of X. Case (2)

occurs when we modify the hidden set of a kernel X. In this case we must show that the

threads added to H(X) do not cause the invariant to be invalidated. In particular, we must

show that the threads added to H(X) do not appear dirty in a kernel which is a proper

descendant of X.

For read, the invariant holds trivially since there are no changes.

For a write performed by a thread i in kernel X, we modify both the hidden set and

the tag, so we must consider both cases. For case (1), since tag(X) = true we must show

that for all Z such that tag(X) 2 H(Z), Z is a descendant of X. First notice that only the

write operation adds threads to a hidden set that are not already in some other hidden set,

and the write operation only adds threads that are predecessors of the write thread. This

implies that a thread j can not appear in any hidden set before thread j executes. Therefore

when write thread i executes i does not appear in any hidden set. Therefore there can be

no Z such that i = tag(X) 2 H(Z).

For case (2), since we add to H(X) we must show that the threads added toH(X) do not

appear dirty in a kernel which is a proper descendant of X. We prove this by contradiction.

Assume that added thread j does appear dirty in a kernel Y which is a proper descendant

of X. Then we have dirty(Y) = true and tag(Y) = j and j � i. By Lemma 9, Y is an

ancestor of X, but by our assumption Y is a proper descendant of X. This contradiction

completes the proof for case (2).

For a fetch by a thread in kernel K, we need not consider case (1) since dirty(X) is

set to false. For case (2) we will �rst make the observation that adding a thread j to the

hidden set of any kernel Y can not invalidate the invariant if j is already in the hidden set

of an ancestor of Y . This observation is true either because no dirty tag j exists, in which

case j can be added to any hidden set without breaking the invariant, or because dirty tag

148

j exists in some kernel Z and Y is a descendant of Z, in which case j can be added to any

descendant of Y because such a descendant is also a descendant of Z. Since every thread

added to H(X) by the fetch operation is already in the hidden set of an ancestor of X,

adding these threads preserves the invariant.

For a reconcile performed by thread i in kernel X to kernel Y = la(X), we need

consider cases (1) and (2) for kernel Y . For kernel X there are no cases to consider since

H(X) is unmodi�ed and tag(X) is set to nil. For case (1) of Y we must show that tag(Y)

only appears in hidden sets that are descendants of Y . By induction, before the reconcile

tag(Y) only appeared in hidden sets that were descendants of X. Since all descendants of

X are also descendants of Y , tag(Y) only appears in hidden sets that are descendants of Y .

For case (2) of Y we must show that the threads added to H(Y) do not appear as a dirty

tag in a kernel which is a proper descendant of Y . The only threads added to H(Y) are
those in H(X). Consider the state before the reconcile. We know by induction that if one

of these added threads, j, appeared as a dirty tag, then X was a descendant of Z = K(j).

Since Y is the least ancestor of X, Y must also be a (not necessarily proper) descendant of

Z. Therefore, the threads added to H(Y) can only appear as a dirty tag in a kernel which

is a proper ancestor of Y ; thus the invariant is maintained.

For a steal performed as the �rst thread of kernel X, we need not consider case (1) since

tag(X) is set to nil. For case (2) we notice that all threads added to the H(X) are taken

from an ancestor, therefore, as shown for the fetch operation, the invariant is maintained.

For a sync performed by thread i in kernel X, we must show that the invariant holds

for case (2). All threads added to H(X) are from the hidden set of a child of X. To show

that these added threads do not break the invariant we will use a simpli�ed version of the

argument made for reconcile. By induction, if Y , a child of X, has a thread j in its hidden

set that appears as a dirty tag in kernel Z, then Z must be a ancestor of Y . Since tag(Y) =

nil, Z must be a proper ancestor of Y . Since X is the parent of Y , Z must also be an

ancestor of X. Therefore, the threads added to H(X) can only appear as a dirty tag in a

kernel which is an ancestor of X; thus the invariant is maintained.

To prove Invariant 3, the �nal invariant, observe that all hidden sets are initially empty.

Consequently, tag(Y) 62 H(Y) before the computation begins, which provides the base case

of the induction. We now examine each action and show that if the invariant is true before

the action, then it is true afterwards.

149

For read, the invariant holds trivially, since no state variables change.

For a write performed by thread i in kernel X, thread i is not added to the hidden

set H(X), and so we need only to show that i is not in H(X) before the write. Observe

that the only time when a thread j that not in any hidden set is added to some hidden set

is when a successor of j performs a write. Before i executes, none of its successors have

executed, and thus, i belongs to no hidden set. In particular, we have i 62 H(X).

For a fetch performed by a thread in kernel X, to show that the invariant holds after the

thread executes, we must show tag(X) 62 H(i�)(X) and tag(X) 62 H(i�)(la(X)). The second

is true by induction, which implies that the �rst is true, because Invariant 1 guarantees

H(X) � H(la(X)).

For a reconcile performed by a thread in kernel X, we must show the invariant is

maintained for both the modi�ed kernels X and Y = la(X). The invariant holds trivially

for kernel X, since tag (i)(X) = nil. To show it is true for kernel Y , we must show that

tag(X) 62 H(X) and tag(X) 62 H(Y). The �rst holds by induction, and the second follows

from Invariant 2.

For a steal of a thread now in kernel X, the invariant holds trivially, since tag(X) is

set to be nil.

For a sync by thread i in kernel X, the sync thread i has one incoming continue

edge from some thread k and one or more incoming data-dependency edges. We have

X = K(i) = K(k), because only steal threads can have an incoming continue edge from

another kernel. If tag(X) =nil, then the invariant is trivially maintained. Otherwise, we

must show that none of the hidden sets that are unioned to form H(X) contain tag(X).

Initially, by induction tag(X) 62 H(X), and so we must show that for each incoming data-

dependency edge (j; i) 2 E, we have tag(X) 62 H(K(j)). If thread k also belongs to kernel

X, then trivially tag(X) 62 H(K(j)) = H(X). If K(k) = Y 6= X, however, then because

any data-dependency edge between threads in di�erent kernels always goes to a thread in

the parent kernel, Y is a child of X in the kernel tree. Moreover, Y has completed, and

the last thread of Y was a reconcile. Therefore, we have tag(Y) = nil, which implies that

X = la(Y). Consequently, by Invariant 1, we have H(Y) � H(X). By induction, we know

that tag(X) 62 H(X) before i executes, and therefore tag(X) 62 H(Y).

We are now ready to prove the correctness of Dagger.

150

Theorem 12 If the shared memory M of a multithreaded computation G = (V;E) is main-

tained using Dagger, then M is dag consistent.

Proof: We must show that both parts of De�nition 8 hold. The �rst part holds trivially.

To prove that the second part holds, consider three threads i; j; k 2 V , where i � j � k.

Since j performs a write and i � j, by the pseudocode for the write action, it follows that

i 2 H(j)(K(j)). Moreover, since j � k, Lemma 10 implies that H(j)(K(j)) � H(k)(K(k)).

Thus, we have i 2 H(k)(K(k)), which with Invariant 3 implies that tag (k)(K(k)) 6= i.

The algorithm Dagger depends heavily on the fact that computations are fully strict,

but the basic ideas in Dagger can be extended to nonstrict computations. The idea is that

whenever a data dependency edge goes from a sending kernel X to a receiving kernel Y , we

�rst �nd the least common ancestor Z of X and Y in the kernel tree. Then, we walk up

the tree from X reconciling at each kernel along the way until Z is reached. In e�ect, this

action unions X's hidden set into Z's. Lastly, we walk up the tree from Y to Z, reconciling

at each kernel along the way. At this point, la(X) is either Z or an ancestor of Z, and

thus, when Y next fetches, it obtains a hidden set that includes X's, thus ensuring that

the second part of De�nition 8 is met. In all other respects, this algorithm is the same

as the Dagger algorithm, and when the dag is fully strict, this procedure reduces to the

basic Dagger algorithm, since Y = Z. The Dagger algorithm is simpler to implement,

however.

In this section we have proven that the Dagger algorithm maintains dag consistency.

See [BFJ+96] for another algorithm we have implemented which also maintains dag consis-

tency.

6.4 Implementation

This section describes our implementation of dag-consistent shared memory for the Cilk

multithreaded runtime system running on the Connection Machine CM-5 parallel super-

computer [LAD+92]. We �rst describe the Cilk language extensions for supporting shared-

memory objects and the \di�" mechanism [KCDZ94] for managing dirty bits. We then

describe the distributed \cactus-stack" [HD68, Mos70, Ste88] memory allocator which the

system uses to allocate shared-memory objects. Finally, we describe the mechanisms used

151

by the runtime system to maintain dag-consistency.

The Cilk system on the CM-5 supports concrete shared-memory objects of 32-bit words.

All consistency operations are logically performed on a per-word basis. If we were to allow

every word to be fetched and reconciled independently, however, the system would be ter-

ribly ine�cient. Since extra fetches and reconciles do not adversely a�ect the consistency

algorithm, we implemented the familiar strategy of grouping objects into pages [HP90, Sec-

tion 8.2], each of which is fetched or reconciled as a unit. Assuming that spatial locality

exists when objects are accessed, grouping objects helps amortize the fetch/reconcile over-

head.

Unfortunately, the CM-5 operating system does not support handling of page faults

by the user, and so we were forced to implement shared memory in a relatively expensive

fashion. Speci�cally, in our CM-5 implementation, shared memory is kept separate from

the other user memory, and special operations are required to operate on it. Most painfully,

testing for page faults occurs explicitly in software, rather than implicitly in hardware.

Our Cilk-to-C type-checking preprocessor [Mil95] alleviates some of the discomfort, but a

transparent solution that uses hardware support for paging would be much preferable. A

minor advantage to the software approach we use, however, is that we can support full

64-bit addressing of shared memory on the 32-bit Sparc processors of the CM-5 system.

Cilk's language support makes it easy to express operations on shared memory. The user

can declare shared pointers and can operate on these pointers with normal C operations,

such as pointer arithmetic and dereferencing. The type-checking preprocessor automati-

cally generates code to perform these operations. The user can also declare shared arrays

which are allocated and deallocated automatically by the system. As an optimization, we

also provide register shared pointers, which are a version of shared pointers that are

optimized for multiple accesses to the same page. In our CM-5 system, a register shared

pointer dereference is about 5 cycles slower than an ordinary C pointer dereference when

it performs multiple accesses to within a single page. Finally, Cilk provides a loop-hole

mechanism to convert shared pointers to C pointers, which allows direct, fast operations

on pages, but requires the user to keep the pointer within a single page. We hope to port

Cilk in the near future to an architecture and operating system that allow user-level code to

handle page faults. In such a system, no di�erence need exist between shared objects and

their C equivalents, and operations on shared memory can be implemented transparently

152

with no per-access overhead.

An important implementation issue that we faced with the software implementation of

dag-consistent shared memory on the CM-5 was how to keep track of which objects on a

page have been written. Rather than using dirty bits explicitly, as the Dagger algorithm

from Section 6.3 would suggest, Cilk uses a di� mechanism as is used in the Treadmarks

system [KCDZ94]. The di� mechanism computes the dirty bit for an object by comparing

that object's value with its value in a copy made at fetch time. Our implementation makes

this copy only for pages loaded in read/write mode, thereby avoiding the overhead of copying

for read-only pages. The di� mechanism imposes extra overhead on each reconcile, but it

allows the user to manipulate a page using an ordinary C pointer that incurs no run-time

system overhead [ZSB94].

We needed to support the detection of writes in software, because the CM-5 provides

no direct hardware support to maintain dirty bits explicitly at the granularity of words.

We rejected out of hand the unpleasant alternative of requiring the user to maintain his

own dirty bits. Since we have limited compiler support and we wish to call existing C code

from Cilk procedures, we determined that it would be too di�cult to modify our Cilk-to-C

type-checking preprocessor to automate the maintenance of explicit dirty bits. Likewise, we

felt that the strategy of using binary rewriting to detect writes in software [BZS93] would

entail too much e�ort. We �nally settled on the di� mechanism for its simplicity.

Some means of allocating memory must be provided in any useful implementation of

shared memory. We considered implementing general heap storage in the style of C's malloc

and free, but most of our immediate applications only required stack-like allocation for

temporary variables and the like. Since Cilk procedures operate in a parallel tree-like

fashion, however, we needed some kind of parallel stack. We settled on implementing a

cactus-stack [HD68, Mos70, Ste88] allocator.

From the point of view of a single Cilk procedure, a cactus-stack behaves much like

an ordinary stack. The procedure can allocate and free memory by incrementing and

decrementing a stack pointer. The procedure views the stack as a linearly addressed space

extending back from its own stack frame to the frame of its parent and continuing to more

distant ancestors.

The stack becomes a cactus stack when multiple procedures execute in parallel, each

with its own view of the stack that corresponds to its call history, as shown in Figure 6-6. In

153

A

B

C

D E

P1

P2

1S 2S 3S

A A A

B

C C

D E

1S 2S 3S

Figure 6-6: A cactus-stack. Procedure P1 is stolen from subcomputation S1 to start sub-

computation S2, and then procedure P2 is stolen from S2 to start subcomputation S3. Each

subcomputation sees its own stack allocations and the stack allocated by its ancestors. The

stack grows downwards. The left side of the picture shows how the stack grows like a tree,

resembling a cactus. The right side shows the stack as seen by the three subcomputations.

In this example, the stack segment A is shared by all subcomputations, stack segment C is

shared by subcomputations S2 and S3, and the other segments are private.

the �gure, subcomputation S1 allocates some memory A before procedure P1 is spawned.

Subcomputation S1 then continues to allocate more memory B. When procedure P1 is

stolen and becomes the root of subcomputation S2, a new branch of the stack is started

so that subsequent allocations performed by S2 do not interfere with the stack being used

by S1. The stacks as seen by S1 and S2 are independent below the steal point, but they

are identical above the steal point. Similarly, when procedure P2 is stolen from S2 to start

subcomputation S3, the cactus stack branches again.

Cactus-stack allocation mirrors the advantages of an ordinary procedure stack. Any

object on the stack that is viewable by a procedure has a simple address: its o�set from the

base of the stack. Procedure local variables and arrays can be allocated and deallocated

automatically by the runtime system in a natural fashion, as was shown in the matrix mul-

tiplication example in Figure 6-2. Allocation can be performed completely locally without

communication by simply incrementing a local pointer, although communication may be

required when an out-of-cache stack page is actually referenced. Separate branches of the

cactus stack are insulated from each other, allowing two subcomputations to allocate and

free objects independently, even though objects may be allocated with the same address.

154

Procedures can reference common data through the shared portion of their stack address

space.

Cactus stacks have many of the same limitations as ordinary procedure stacks [Mos70].

For instance, a child thread cannot return to its parent a pointer to an object that it has

created. Similarly, sibling procedures cannot share storage that they create on the stack.

Just as with a procedure stack, pointers to objects allocated on the cactus-stack can only be

safely passed to procedures below the allocation point in the call tree. Heap storage o�ers

a way of alleviating some of these limitations (and we intend to provide a heap allocator

in a future version of Cilk), but the cactus stack provides simple and e�cient support for

allocation of procedure local variables and arrays.

The CM-5 implementation of Cilk supports shared memory by combining the Dagger

algorithm for maintaining consistency with a cactus-stack allocator. Two regions are al-

located within the primary memory of each processor. The �rst is the page cache, which

contains local copies of pages for the threads running on the processor, and the second is

the backing store, which is a distributed repository for pages that for one reason or another

were forced out of the processor caches. In addition, various data structures for memory

management are kept in each processor.

In Section 6.3, we assumed that an initial thread exists whose cache contains every

object. In the CM-5 implementation of Cilk, the backing store serves as the cache of this

�ctitious initial thread. Our implementation of Dagger accesses the backing store as if

it were an ordinary cache, but unlike an ordinary cache which can discard objects when it

runs out of room, the backing store never discards an object. Consequently, the size of the

backing store determines how large a shared-memory application one can run. On the CM-

5, the backing store is implemented in a distributed fashion by allocating a large fraction

of each processor's memory to this function. When space for a new backing store page is

needed, it is requested from a processor uniformly at random. This policy ensures that

backing store is spread evenly across the processors' memory. Consequently, we can run

applications that use up to about half the total available primary memory on all processors.

In other systems, it might be reasonable to place the backing store on disk �a la traditional

virtual memory.

The page manager for the shared-memory system keeps information on each active and

suspended kernel. Speci�cally, it maintains the base and limit of the portion of cactus stack

155

that has been allocated by the threads of the kernel. It also uses a hash table to keep track

of which pages are currently in the local page cache, which pages it has allocated but which

do not yet exist, and the backing-store addresses for any pages that it has allocated and

for which a copy exists in the backing store. The page manager also keeps track of user

references to each page in the local cache so that it can perform LRU page replacement

when the cache becomes full.

When a page is allocated on the stack, the stack limit is increased, but no storage

is assigned for the page until it is actually used. Thus, allocation is an extremely cheap

operation, as it is in sequential stack-based languages such as C. When the page is accessed

for the �rst time, storage is allocated for it in the cache of the accessing processor. When a

subcomputation completes, all of the pages in the cache whose addresses lie beyond the local

stack limit are discarded, since those were allocated by completed procedures in the kernel

of the terminating subcomputation. In addition, if any of these pages have been written to

the backing store, they are removed and the space for them in the backing store is freed.

The pages in the cache whose addresses indicate that they were allocated by ancestors

are reconciled with their least ancestor in accordance with the Dagger algorithm. If no

ancestor has a copy of a given page, then the page is written to a random location in the

backing store, and the ancestor that allocated the page keeps track of the backing-store

location.

Most of the actions on shared-memory described in the Dagger algorithm from Sec-

tion 6.3 can be implemented straightforwardly. The only action of signi�cant complexity

occurs when a subcomputation kernel needs to �nd its least ancestor holding a particular

page. On the CM-5, we call the process of �nding this ancestor tree climbing, because

we climb up the tree of kernels until we �nd the page in question. We also considered a

directory-based algorithm, but it would have been more complex to implement, and so for

our �rst implementation, we opted for the simpler strategy.

Tree climbing for fetching and reconciling are similar, and so we shall describe here only

the steps taken by our implementation when a thread fetches an object on a page on its

stack. When a page reference occurs, the page manager within the processor takes one of

four actions:

1. If the page is in the cache, the user's action is performed on the cached copy directly.

156

2. If the page is not in the cache and its stack address is beyond the current stack limit,

then the page manager signals an error, since the page is not allocated.

3. If the page is not in the cache and its stack address indicates that this thread's kernel

was responsible for allocating the page, then the page manager goes directly to the

backing store to fetch it, since none of the kernel's ancestors hold a copy. This action

may cause another page to be ejected from the cache, which may itself cause tree

climbing for reconciliation.

4. If the page is not in the cache and its stack address indicates that one of the ancestors

of the thread's kernel allocated the page, then the page manager sends a message to

the kernel's parent to fetch the page for the faulting thread recursively.

This last action keeps climbing the kernel tree until one of two events occur. If the page

is found in an ancestor's cache, then we fetch the page out of that cache. If we reach the

ancestor that allocated the page and its cache does not currently have the page, however,

we fetch the page directly from backing store. Once the page has been obtained, we add it

to the kernel's cache and return control to the user thread to make use of it.

6.5 An Analysis of Page Faults

In this section, we analyze the number FP of page faults that a (well-structured) computa-

tion incurs when run on P processors using Cilk's randomized work-stealing scheduler and

the implementation of dag-consistent shared memory described in Section 6.4. We prove

that FP can be related to the number F1 of page faults taken by a 1-processor execution by

the formula FP � F1 + 2Cs, where C is the size of each processor's cache in pages and s is

the total number of steals executed by Cilk's provably good work-stealing scheduler. The

2Cs term represents faults due to \warming up" the processors' caches, and we present em-

pirical evidence that this overhead is actually much smaller in practice than the theoretical

bound.

We begin with a theorem that bounds the number of page faults of a Cilk application.

The theorem assumes that the application is well-structured, in the sense described in

Section 6.3. The proof takes advantage of properties of the least-recently used (LRU) page

replacement scheme used by Cilk.

157

Theorem 13 Let FP be the number of page faults of a well-structured Cilk computation

when run on P processors, and let C be the size of of each processor's cache in pages.

Then, we have FP � F1+2Cs, where s is the total number of steals that occur during Cilk's

execution of the computation.

Proof: The proof is by induction on the number s of steals. For the base case, observe that

if no steals occur, then the application runs entirely on one processor, and thus it faults

F1 times by de�nition. For the inductive case, consider an execution E of the computation

that has s steals. Choose any subcomputation T from which no processor steals during the

execution E, and hence forms a leaf in the kernel tree. Construct a new execution E0 of the

computation which is identical to E, except that T is never stolen. Since E0 has only s� 1

steals, we know it has at most F1 + 2C(s� 1) page faults by the inductive hypothesis.

To relate the number of page faults during execution E to the number during execution

E0, we examine cache behavior under LRU replacement. Consider two processors that

execute simultaneously and in lock step a block of code using two di�erent starting cache

states, where each processor's cache has C pages. The main property of LRU that we

exploit is that the number of page faults in the two executions can di�er by at most C page

faults. This property follows from the observation that no matter what the starting cache

states may be, after one of the two executions takes C page faults, the states of the two

caches must be identical. Indeed, at the point when one execution has just taken its Cth

page fault, each cache contains exactly the last C distinct pages referenced [JD73].

We now use this property of LRU to count the number of page faults of the execution E.

The fault behavior of E is the same as the fault behavior of E0 except for the subcomputation

T and its parent, call it U , in the kernel tree. The only di�erence between the two executions

is that the starting cache state of T and the starting cache state of the section of U after

T are di�erent. Therefore, execution E makes at most 2C more page faults than execution

E0, and thus execution E has at most F1 + 2C(s� 1) + 2C = F1 + 2Cs page faults.

Theorem 13 says that the total number of faults on P processors is at most the total

number of faults on 1 processor plus an overhead term. The overhead arises whenever a

steal occurs, because in the worst case, the caches of both the thieving processor and its

victim contain no pages in common compared to the situation when the steal did not occur.

Thus, they must be \warmed up" until the caches \synchronize" with the cache of a serial

158

0

5

10

15

20

25

30

<0.5 0.5-1 1-1.5 1.5-2 2-2.5 2.5-3 >3

nu
m

be
r

of
 e

xp
er

im
en

ts

cache warm-up fraction (%)

Figure 6-7: Histogram of the cache warm-up fraction (FP � F1)=2Cs for a variety of ap-

plications, cache sizes, processor counts, and problem sizes. The vertical axis shows the

number of experiments with a cache warm-up fraction in the shown range.

execution.

To measure the warm-up overhead, we counted the number of page faults taken by

several applications|including matrixmul, a parallel version of Strassen's algorithm [Str69],

and a parallel version of a Barnes-Hut N -body code [BH86]|for various choices of cache,

processor, and problem size. For each run we measured the cache warm-up fraction (FP �
F1)=2Cs, which represents the fraction of the cache that needs to be warmed up on each

steal. We know from Theorem 13 that the cache warm-up fraction is at most 1. Our

experiments indicate that the cache warm-up fraction is, in fact, typically less than 3%, as

can be seen from the histogram in Figure 6-7 showing the cache warm-up fraction for 72

experimental runs of the above applications, with processor counts ranging from 2 to 64 and

cache sizes from 256KB to 2MB. Figure 6-8 shows a particular example for the page faults

during the multiplication of 512 � 512 matrices using a 1-megabyte cache and 4-kilobyte

pages, from which it can be seen that the constant overhead multiplying the number s of

steals is closer to 9 than to 2C = 512.

The reason why the cache warm-up costs are so low can be explained by examining the

distribution of stolen problem sizes. We performed an experiment that recorded the size of

each subproblem stolen, and we noticed that most of the tasks stolen during an execution

159

Processors 1 2 4 8 16 32 64

Steals 0 16 31 144 424 1053 1982

FP 9552 9557 9760 10216 14151 19508 24634

Page Faults F1 + 2Cs 9552 13648 17488 46416 118096 279120 516944

F1 + 9s 9552 9696 9831 10848 13368 19029 27391

Figure 6-8: Page faults versus the number of processors for a 512 � 512 multiply with a 1

Megabyte cache. We show the number of successful steals s, the number of page faults FP ,

our upper bound F1 + 2Cs on the number of page faults, and our approximation F1 + 9s.

were quite small. In fact, only 5{10% of the stolen problems were \large," where a large

subproblem is de�ned to be one which takes C or more pages to execute. The other 90{95%

of the tasks are small. Therefore, most of the stolen subcomputations never perform C page

faults before terminating. Thus, the bound FP � F1+2Cs derived in Theorem 13 is a very

conservative bound, and in practice we see less than 3% of the extra 2Cs steals.

6.6 Conclusion

Many other researchers have investigated distributed shared memory. To conclude, we

briey discuss related work and o�er some ideas for the future.

The notion that independent tasks may have incoherent views of each others' memory is

not new to Cilk. The BLAZE [MR87] language incorporated a memory semantics similar to

that of dag-consistency into a PASCAL-like language. The Myrias [BBZ88] computer was

designed to support a relaxed memory semantics similar to dag-consistency, with many of

the mechanisms implemented in hardware. Loosely-Coherent Memory [LRV94] allows for

a range of consistency protocols and uses compiler support to direct their use. Compared

with these systems, Cilk provides a multithreaded programming model based on directed

acyclic graphs, which leads to a more exible linguistic expression of operations on shared

memory.

Cilk's implementation of dag-consistency borrows heavily on the experiences from pre-

vious implementations of distributed shared memory. Like Ivy [LH89] and others [CBZ91,

FLA94, KCDZ94], Cilk's implementation uses �xed-sized pages to cut down on the over-

head of managing shared objects. In contrast, systems that use cache lines [CA94, KOH+94,

RLW94] require some degree of hardware support [SFL+94] to manage shared memory e�-

160

ciently at the granularity of cache lines. As another alternative, systems that use arbitrary-

sized objects or regions [CAL+89, JKW95, TBK93] require either an object-oriented pro-

gramming model or explicit user management of objects.

As we have gained experience programming with dag consistency, we have encountered

some de�ciencies of dag consistency that tend to make certain programming idioms inef-

�cient. For example, consider a serial program that calls two procedures, each of which

increments a variable by a certain amount. To parallelize this program using dag con-

sistency, one cannot merely spawn the two procedures in parallel, because the update of

one may be lost. Instead, a copy of the variable must be made for one of the procedures

and when they both return, the parent must add the value of the copy into the original

variable. This extra copying can be very expensive when it occurs in the inner loop of a

program. A big advantage of direct hardware support for Lamport's model of sequential

consistency [Lam79] is that no copying of temporaries need occur. We are currently inves-

tigating how this kind of problem can be solved e�ciently in Cilk without direct hardware

support.

The idea of dag-consistent shared memory can be extended to the domain of �le I/O

to allow multiple threads to read and write the same �le in parallel. We anticipate that it

should be possible to memory-map �les and use our existing dag-consistency mechanisms

to provide a parallel, asynchronous, I/O capability for Cilk. We are currently investigating

how to incorporate �le I/O in our system.

We are also currently working on porting dag-consistent shared memory to our Cilk-

NOW [Blu95] adaptively parallel, fault-tolerant, network-of-workstations system. We are

using operating system hooks to make the use of shared memory be transparent to the user.

We expect that the well-structured nature of Cilk computations will allow subcomputations

to maintain coherent views of shared memory e�ciently, even in the presence of processor

faults.

161

162

Chapter 7

Cilk-4: Supporting Speculative

Computations

The Cilk-4 system, which is still in the process of being implemented, is intended to rem-

edy a de�ciency in the Cilk-2 language. When we designed Cilk-2 and added support for

procedures with call/return semantics, we were able to rewrite almost all existing programs

using the new, simpler, Cilk-2 syntax. The only existing application which can not be ex-

pressed in the Cilk-2 style is ?Socrates. We can not express ?Socrates using the higher-level

Cilk-2 constructs in large part because the control structure of the parallel search algorithm

used in ?Socrates is fairly complex, and includes speculative computations which may be

killed o�. For most algorithms, the order in which the user's threads are executed a�ects

neither the number of threads created nor the work performed by those threads. But for

speculative algorithms, like the Jamboree search algorithm at the heart of ?Socrates, the

number of threads executed, and the amount of work those threads perform, can depend

greatly on the order in which threads are executed. The high-level Cilk-2 constructs do not

give the user enough control over the execution of his code to write an e�cient speculative

algorithm, so the chess code continues to use the lower-level Cilk-1 syntax.

Although we focus on ?Socrates, chess is not the only speculative algorithm one might

want to write in Cilk; there are many others. Any sort of search algorithm where only some

solutions are wanted can be naturally cast as a speculative algorithm. For example, consider

the protein folding code of Section 2.4. A useful modi�cation to the algorithm would be

rather than �nding all possible foldings of a polymer, instead �nding just one folding that

163

has an energy value less than some threshold.

In this chapter we �rst describe some proposed extensions that will allow speculative

algorithms to be written. We then show how these extensions could be used to implement

?Socrates.

This chapter represents ongoing joint work by the members of the Cilk team: Robert

Blumofe, Feng Ming Dong, Matteo Frigo, Bradley Kuszmaul, Charles Leiserson, Richard

Tauriello, Keith Randall, and myself. Feng Ming Dong has modi�ed the Cilk-to-C prepro-

cessor to accept the Cilk-4 language and Richard Tauriello has begun implementation of

the runtime system changes needed for Cilk-4.

7.1 The Cilk-4 Language

We have proposed two extensions to the Cilk-2 language that will enable us to express

?Socrates as well as other speculative algorithms without resorting to the lower-level Cilk-1

syntax. There are two extensions that are needed. The �rst extension is to allow the user

to specify a restricted piece of code, called an inlet [CSS+91], that is to be executed as

soon as a spawned child returns. In chess, an inlet can be used to check the result of a

test of a position and perform some action based on that result. The second extension is to

allow the user to abort all the children spawned by a procedure. In a speculative program,

computations are spawned o� whose results may not be needed. When it is determined that

certain results are not needed, the computation computing those results should be aborted.

Currently, the chess program contains user level code for aborting children. This code was

fairly di�cult to implement correctly, required detailed knowledge of the runtime system,

and it worked only with the Cilk-1 syntax. Adding an abort primitive to the runtime system

greatly simpli�es the writing of speculative computations.

The Cilk-4 language allows the user to specify inlets to receive results of child procedures.

We want inlets to run shortly after the child completes and incorporate returned results

into the parent computation. Therefore inlets must be able to read and write variables local

to the parent procedure. In order to be able to name the variables in the parent procedure,

the user de�nes inlets within the parent procedure. Since the parent procedure, as well

as the inlets, may read and write the same variables, the system guarantees that inlets

from the same parent procedure do not execute concurrently with each other or with the

164

parent procedure. Inlets can contain arbitrary Cilk code with just one restriction, namely

that inlets are not allowed to execute a sync. Inlets can spawn o� additional procedures,

however. These spawns are treated just like spawns by the parent procedure itself: The

parent procedure does not proceed beyond a sync while any of these spawns are outstanding.

The syntax of spawning an inlet is:

inlet spawn I (args ...);

where I is the name of an inlet and each argument can be either a standard argument, or

a spawn expression. When a spawn expression is used as the ith argument of an inlet, the

spawned child is spawned o� in the usual manner. The type of the inlet's ith argument

must match the type of the value returned by the spawned child. When the spawned child

completes, its return value is passed to the inlet as its ith argument. Once an inlet has all

its arguments the inlet code can be executed.

Inlets can be implemented without any major changes to our runtime system. Each

time a procedure P spawns an inlet I, which receives the result of zero or more child

procedures, a new closure is created for the inlet thread I. This inlet thread is spliced into

the computation dag between P and the children. The children send their results to I rather

than the parent P . This inlet thread I is treated as a high-priority thread, so that once the

result from all the children arrive, the inlet I executes shortly thereafter. The result of the

inlet thread is then sent to P , where it is treated the same as any arriving argument.

Ensuring that two inlets from the same parent procedure cannot execute concurrently

is not di�cult to do. Since inlets can access the variables in the frame of a procedure,

the system is constrained to execute an inlet on the same processor that contains the

frame of the parent procedure. Since frames are never moved when there are outstanding

spawns, all inlets are therefore executed on the same processor that executed their parent

procedure. This property allows us to easily make the guarantee that no two inlets can

execute concurrently.

When implementing inlets we must also be careful not to break the performance guar-

antees provided by our scheduler. The subtlety occurs in regards to the provably good

steals described in Section 3.3. Remember that when a stolen thread sends a value that

enables a second thread, the enabled thread is posted to the ready queue of the sending

processor, not to the processor on which it originally resided. This policy is necessary for

165

the scheduler to be provably good. What happens when a stolen thread on processor P

sends a value which enables an inlet on processor Q? According to the above policy, the

inlet must be stolen and executed on processor Q. But as we have seen in the preceding

paragraph, inlets cannot be stolen. To solve this problem we treat the inlet as if it were

executing on processor Q. Therefore any computation enabled by the execution of the inlet

must be migrated to processor Q. Computations which may be enabled by the inlet include

any procedures that the inlet spawns, as well as the parent procedure itself if the value

being returned is the last value the parent is waiting for. By migrating these computations

to the sending processor, and by having the sending processor not begin work-stealing until

it �nds out if any computations will be migrated, we maintain the performance guarantee.

The change to the Cilk-4 language for the second extension is to provide two new

primitives: abort and continue() and abort and return(). When one of these primitives

is called, either from within a procedure P or, more commonly, from within an inlet created

by procedure P , the system terminates any outstanding children that procedure P may

have. This implies terminating not just the children of P , but also all descendants of those

children. Just how \graceful" this termination will be is still to be determined. Currently

we expect that we will not halt any executing threads, but will simply prevent new threads

from beginning. We also considered allowing the user to specify a piece of code, similar

to an inlet, that would be executed when a procedure is aborted. This would allow the

user to \clean up", perhaps, for example, releasing some piece of storage the procedure had

allocated. We decided not to implement this option, since we saw no immediate needed for

it, but we may decide to add it if a need arises. The two new primitives di�er in where

execution continues after the abort completes. When the abort and continue() primitive

is called, the procedure continues at the next sync statement once all children have been

aborted, while when the abort and return() primitive is called, the procedure returns

once the abort completes.

The abort mechanism will be implemented similarly to the abort mechanism in the chess

code (as described in Section 4.3.2). To implement aborts, we will augment the runtime

system to keep track of the status of all spawned children. The status must contain enough

information to �nd all children, even those that have been stolen by another processor. In

essence, this information creates a tree of all existing procedures. When an abort occurs

inside procedure P we can walk the subtree rooted at P to �nd all descendants of P . As we

166

walk this tree we set a ag in each procedure indicating that the procedure is to be aborted.

At the beginning of each procedure, the preprocessor adds a check of the abort ag, and if

this ag is set the procedure returns without executing the user's code. Similar checks will

be performed each time a procedure restarts after a sync. Since a spawned, but aborted,

procedure still executes, the dag of the aborted computation is cleaned up automatically.

This method of aborting also allows the runtime system to wait until the abort is complete

before returning from the abort primitive.

One unanswered question about the implementation of aborts is how much overhead will

the abort mechanism add to the execution of a program. Inlets have the nice property that

they cause no overhead except where they are used, but this property is not true of aborts.

Even if a procedure P does not itself perform any aborts, one of P 's ancestors could do an

abort, in which case P and all its descendants need to be aborted. Therefore, the system

must keep track of the information needed to do an abort for all procedures. Although we

do not expect the overhead for keeping this information to be large, this overhead seems

wasteful, especially since most programs do not use aborts. To eliminate this overhead, the

current proposal is to to have a compile-time ag that informs the preprocessor whether

abort information should be kept for all procedures, or none of them. In this way programs

that do not use the abort mechanism will not pay any overhead.

As mentioned earlier, the modi�cations discussed here have not yet been implemented.

The current status is that most of the design decisions have been made, we have decided

how to implement the changes, and implementation has begun. Although we have settled on

a syntax, the syntax always seems open to change, so the �nal syntax will likely di�er from

what is presented here. However, even if the details of the syntax change, I do not expect the

power and expressibility of the �nal version to di�er signi�cantly from the system presented

here. Currently Feng Ming Dong is working on modifying the type-checking preprocessor to

support the new syntax, and Richard Tauriello is making the modi�cations to the runtime

system to support inlets and aborts. Richard Tauriello will report on the runtime system

modi�cations in his masters thesis.

167

7.2 A Cilk-4 Example: Chess

We now have the primitives needed to write the chess code in Cilk-4, but before examin-

ing this code, let us �rst briey review the requirements of the search algorithm used in

?Socrates. The inputs to the search algorithm includes a chess position, a depth d, and a

range of interest speci�ed by the bounds � and �. If the exact value v of the position when

searched to depth d is in the range (�; �), then the exact value of the position should be

returned. But if v < �, then the search need only return some v0 � � where v0 is an upper

bound on v. Similarly, if v > �, then the search need only return some v0 � � where v0 is

a lower bound on v. In the case where � + 1 = � the search reduces to a test of whether

v � � or v < �. We call a search a test search if � + 1 = �, and otherwise, it is called a

full value search. Figure 7-1 replicates the Cilk-1 dag from Figure 4-7 which describes the

control ow of a full value search.

The search code is broken in two parts. Figure 7-2 shows the Cilk-4 code for a test

search, and Figure 7-3 shows the code for a full value search. In this code we focus on the

control ow needed to perform a search and ignore details that do not e�ect the control

ow. In the code shown, each search routine is passed two items: (1) a state structure

which completely describes the current position and the search to be done, and (2) a move

specifying which move is to be applied to the current position. The code performs the

search and returns a score for the new position.

The code for the test search is the simpler of the two. Initially, we de�ne the inlet

check test result, which is described later. Then, we begin by applying the move to the

state structure and if we have searched deep enough we immediately return a value for the

position. Otherwise, we determine if a null-move search should be performed, and if so, we

spawn it o� and wait for the result. We then check the returned score, and if the score

is greater than �, we return immediately. Returning with a score greater than � is called

failing high. Otherwise, we search the �rst child, wait for it to complete, and again check

to see if we can fail high. Up to this point the search code can be written entirely in Cilk-2

style.

It is the next part of the code where the new constructs are used. Typically, if a search

is going to fail high, it will do so either in the null-move search or during the search of

the �rst child. Therefore, after doing these two searches, it is reasonable to do all the

168

 T
es

t
C

h
ec

k

V
al

u
e

C
h

ec
k

F
in

is
h

V
al

u
e

 r
ec

u
rs

iv
e

co
m

p
u

ta
ti

o
n

d
at

a
d

ep
en

d
en

cy
th

re
ad

 c
re

at
io

n
 m

ay
 s

ta
rt

 a
b

o
rt

V
al

u
e

C
h

ec
k

V
al

u
e

C
h

ec
k

ar
g

u
m

en
t

m
er

g
e

 T
es

t
C

h
ec

k
 T

es
t

C
h

ec
k

T
E

S
T

S
et

u
p

T
es

t
S

et
u

p
T

es
t

S
et

u
p

T
es

t

V
_T

3

V
_T

2

V
A

L

V
A

L N
U

L

V
A

L
0

V
A

L
1

V
A

L
2

V
A

L
n

T
E

S
T

T
E

S
T

1
2

n

Figure 7-1: This dag shows the dag created by ?Socrates when performing a value search.

The circles labeled TESTi and VALi are recursive calls of the search algorithm. Other

circles correspond to Cilk threads.

169

cilk int test(STATE s, MOVE move){

int child_score; /* result from search of a child */

int bestscore; /* best score found so far */

/* define the inlet to be run when a test completes */

inlet void check_test_result(int score){

if (score>=s.beta){

abort_and_return(score);

}

bestscore = MAX(bestscore, score);

}

apply_move(s,move); /* make the move */

if(s.depth==0) { /* If we reached the bottom of the tree */

return(evaluate(s)); /* compute and return the score */

}

/* Try a null move search. */

if (try_null_move_search_p(s)){

child_score = spawn test(s, NUL_MOVE);

sync;

/* If score from null move beats beta we are done. */

if (child_score>=s.beta) return(child_score);

}

generate_moves(&move_list); /* Generate the moves to be tried */

/* Search the first child. */

child_score = spawn test(s,move_list[0]);

sync;

/* If score from first move beats beta we are done. */

if (child_score>=s.beta) return(child_score);

bestscore = MAX(bestscore, child_score);

/* spawn a test for each remaining move */

for(j=1;j<s.num_children;j++)

inlet_call check_test_result(spawn test(s,move_list[j]));

sync;

return(bestscore);

}

Figure 7-2: Cilk-4 code for test search.

170

remaining searches in parallel. If any one of these does fail high, we can return without

completing any remaining searches. In order to return immediately, inlets and aborts are

needed. We de�ne a simple inlet, called check test result, to receive the result of the

search of a child. This inlet checks to see if the child's score beats �, and if so, it calls

the new primitive abort and return(), which kills o� any computations spawned by this

search procedure and returns. This inlet also updates bestscore, which keeps track of the

best score found so far. The remainder of the code for a test search spawns o� searches

of the rest of the possible moves, while specifying that the result of each search should be

passed to a check test result inlet. After spawning all the children the code performs a

sync. If the sync is reached, then no test failed high, so we simply return bestscore, the

value of the best move that we found.

Figure 7-3, which is split into two parts, shows the code for a full value search. The code

begins by de�ning the needed inlet, which will be described later. After de�ning the inlet,

the rest of the code, which begins on the second page of Figure 7-3, is very similar to the

code for a test search. Initially it is identical: we return if the position has been searched

deep enough, if a null move search fails high, or if the search of the �rst child fails high.

At this point the Jamboree search algorithm requires us to perform test searches on all the

remaining moves in parallel to see if they could possibly beat the best score. If the test of

any move fails high, then we need to do a full value search for that move. These full value

searches should be done one at a time and in order. To perform the search in this way, the

code spawns o� all the tests in parallel, just as in the code for a test search. The di�erence

is in the inlet that is run when the tests return. This inlet needs to make sure the full value

searches are spawned o� only if needed and only in serial order.

In order to control the spawning of the value searches, we store information about the

status of the child searches in the parent's frame. We create an array status[i], whose

ith element gives the search status for the ith move. Initially, all the entries are set to

DOING TEST indicating that a test search has been spawned o�. Other possible states are

DO VAL, which indicates that a full value search is needed, DOING VAL, which indicates that

a full value search has been spawned o�, and DONE, which indicates that no more searches

are needed for this move. As an optimization, we also keep track of a variable next child,

which indicates the next move for which a full value search could be started. A move can

be the next to be fully searched only if for all of the earlier moves, the full value searches

171

of those moves have either been completed, or were not necessary at all.

To implement the Jamboree search algorithm, the code uses the inlet child done which

receives the result of the search of a child. The same inlet is used to receive results from

test searches and from value searches.

This inlet �rst checks to see if the returned result beat �. If so, the search should

fail high, and the abort and return() primitive is used to end the search immediately.

Otherwise, the inlet continues. The inlet next updates the status information for this child.

When a test search has just completed, performing this update requires checking to see if

the returned result was greater than �. If so, a value search is needed and so the status

is set to DO VAL. Otherwise no value search is needed and so the status is set to DONE.

When a value search has just completed, no further searching is need for this child so the

status of the child is set to DONE. The last action of the inlet is to spawn o� a value search

if appropriate. This action is performed by walking through the moves, beginning with

next child, until either a value search is spawned o�, or until we discover no value search

should be started. If the status of the move being considered is DOING TEST, then no value

search is spawned o�, because we must wait until the test of that move completes. If the

status of the move being considered is DO VAL, then we spawn o� the value search for that

move, specifying, of course, child done as the inlet to be run when the search completes.

If the status of the move being considered is DOING VAL, then no value search is spawned

o�, because there is already a value search in progress. Otherwise the status of the move

being considered is DONE, so no value search is needed for it. In this case we set next child

to be the next move and loop.

There is one detail that may a�ect performance that was handled more e�ciently in

the Cilk-1 version than in the Cilk-4 version shown above. When we perform a test search,

this version tests against the value of � that the parent had when the search was spawned.

Occasionally, between the time the test search was spawned, and the time execution of that

test begins, the parent's value of � may increase. The search algorithm is more e�cient if

we test against the parent's current value of � rather than the earlier value. Since the Cilk-1

version passes around pointers to state structures, test searches in Cilk-1 have access to the

parent's current version of �, and the current version is in fact used by the test search. The

Cilk-4 version shown above does not use the latest version of � because it has no access to

that value. If we modi�ed the above code to store the state structures in shared memory,

172

cilk int value(STATE s, MOVE move){

/* Remember that only one value search should be in progress at a time,

* and that all value searches must be done in order.

* The variables:

* status[i] tracks the status of move 'i'. It is one of:

* DOING_TEST -- initial test not complete

* DO_VAL -- full value search needed, not yet started

* DOING_VAL -- full value search in progress

* DONE -- all testing of this child complete

* next_child: the next child for which a value search could be begun.

*/

int status[MAX_NUM_MOVES], next_child;

int bestscore;

inlet void child_done(int child_score, int child_index, int srch_type){

if (child_score>=s.beta) abort_and_return(child_score);

bestscore = MAX(bestscore,child_score);

s.alpha = MAX(child_score,s.alpha);

if (srch_type==TEST_SRCH){

/* A test search completed: Set status based on test result. */

if (child_score>test_alpha)

status[child_index]=DO_VAL;

else

status[child_index]=DONE;

} else{

/* A value search completed: This child is finished. */

status[child_index]=DONE;

}

/* See if we need to start a value search */

while(;next_child<s.num_children;next_child++){

if (status[next_child]==DOING_TEST) break;

else if (status[next_child]==DOING_VAL) break;

else if (status[next_child]==DO_VAL){

inlet_call child_done(spawn value(s, move_list[next_child]),

next_child, FALSE);

break;

}

}

}

/*** ... continued on next page ... ***/

Figure 7-3: Cilk-4 code for value search.

173

/*** Full Value Search Continued ***/

apply_move(s,move); /* make the move */

if(s.depth==0) { /* If we reached the bottom of the tree */

bestscore=evaluate(s); /* compute and return the score */

return(s);

}

/* Try a null move search. */

if (try_null_move_search_p(s)){

child_score = spawn value(s, NUL_MOVE);

sync;

/* If score from null move beats beta we are done. */

if (child_score>=s.beta) return(child_score);

}

generate_moves(&move_list); /* Generate the moves to be tried */

/* Search the first child. */

child_score = spawn value(s,move_list[0]);

sync;

/* If score from first move beats beta we are done. */

if (child_score>=s.beta) return(child_score);

s.alpha = MAX(s.alpha,child_score);

bestscore = MAX(bestscore,child_score);

next_child=1;

for(j=1;j<s.num_children;j++)status[j]=DOING_TEST;

/* Spawn off the tests */

test_alpha = s.alpha;

for (i=1;i<s.num_children;i++)

inlet_call child_done(spawn test(s,move_list[i]), i, TEST_SRCH);

sync;

/* We reach here only if no child beat beta */

return(bestscore);

}

Figure 7-3 continued: Cilk-4 code for value search

174

and then passed around pointers to the state structure, then the Cilk-4 version could use

the latest value of � as well.

7.3 Conclusions

Using the Cilk-4 primitives we are now able to implement the Jamboree search algorithm

in under three pages of code. This is much simpler than the two dozen threads which are

needed to implement the search code in the lower level Cilk-1 syntax. It will be interesting

to see how the performance of the Cilk-4 implementation compares with the performance

of the Cilk-1 implementation. We expect that the performance of the two will be similar.

However, even though the Cilk-4 version is written at a higher level, it is possible it will

perform better. The Cilk-1 version used low-level features, such as nonstealable threads,

that interfere with the operation of the provably-good scheduler by causing the busy-leaves

property not to hold. By eliminating the use of these features, the Cilk-4 version may

actually improve the e�ciency of the search.

The additions described in this chapter are useful for more than just chess. One natural

application of Cilk-4 is for use with backtrack searches where only one solution is needed.

In Cilk-2 it is easy to write a backtrack search routine that �nds all possible solutions to a

problem. But often only one solution is needed, and Cilk-2 style codes have no way to stop

the search once the �rst good solution is found. With the Cilk-4 additions, it is easy to

modify a search program to stop after �nding one solution: just associate with each spawn

an inlet that performs an abort and return if the spawned child has found a solution.

175

176

Chapter 8

Conclusions

This chapter summarizes some of the features of the Cilk system, and then describes some

areas for future work.

8.1 Summary

We think the Cilk system has achieved its goal of allowing a programmer to easily and

e�ciently implement a wide range of asynchronous, dynamic, parallel algorithms. At the

beginning of this document, we listed a number of characteristics that a good parallel

programming system should have. This section revisits this list and examines how Cilk

stands up.

� Minimize the gap between applications and languages: The Cilk system allows

a programmer to focus on his application, not on the low-level protocols needed to

implement a parallel algorithm. The Cilk system minimizes this gap by raising the

level of programming. The Cilk system hides from the programmer most low-level

details such as thread encapsulation, thread scheduling, and load balancing. The

Cilk-2 system goes further and hides the continuation-passing nature of the runtime

system from the user, allowing the user to write code in a style similar to serial code.

Cilk-4 further minimizes this gap by allowing the user to easily implement e�cient

speculative computations.

� Provide predictable performance: In Chapter 3 we showed that with P proces-

sors, the expected execution time of a Cilk computation, including scheduling over-

177

head, is bounded by TP = O(T1=P +T
1
). With this knowledge a programmer is able

to predict the performance of his program before it is even executed by estimating T1

and T
1
. Alternatively, a programmer can run his program once and use the reported

values of T1 and T
1

to accurately predict how his program will perform on other

machine sizes.

� Execute e�ciently: There is not a large overhead for executing a program with

the Cilk system. We have shown empirically (Section 3.4) that for most applications

the execution time of a Cilk program on one processor is comparable to the execution

time of a serial code when run on the same processor.

� Scale well: We have shown empirically (Section 3.5) that we can accurately model

the execution time of a program as TP � T1=P + c
1
T
1
, where c

1
is a small value

(c
1

= 1:5 for the knary example). Since the constant in front of the T1=P term is

one, we obtain nearly perfect linear speedup when the available parallelism is large

compared to the number of processors.

� Portable: Cilk has been ported to a wide range of systems. It runs on various

serial machines (under Unix and Linux), Symmetric MultiProcessors (e.g. Sun, SGI),

and Massively Parallel Processors (e.g. CM-5, Paragon). In addition, Blumofe has

implemented a version of Cilk which runs on Networks of Workstations [Blu95].

� Leverage existing codes: Since Cilk can call standard C functions, much of the

existing serial code can often be used when porting an application to Cilk. This

was especially important in porting the Socrates chess program and the POV-Ray ray

tracer to Cilk. Both of these are large applications, and when they were ported to Cilk

most of the code for these applications was able to be reused without modi�cation.

� Be expressive: Although there are many applications that cannot be easily ex-

pressed in Cilk, there are a wide range of applications which can. And many of the

applications that can be expressed in Cilk cannot be easily expressed in other paral-

lel languages. The ?Socrates program is an example of one such complex program.

Although this program was time consuming to write and debug in Cilk-1, the Cilk-4

additions described in Chapter 7 help make this program easier to express in Cilk. In

addition, the shared memory system described in Chapter 6 signi�cantly increases the

178

expressibility of the language by allowing large amounts of data to be easily shared

throughout the computation.

8.2 Future Work

The Cilk system described in this thesis is quite useful, as it allows a wide range of programs

to be easily expressed, while still achieving good performance. But, as we said earlier, the

story of Cilk is one of incremental improvement. There are still areas we think we can

improve, and so the story of Cilk is not yet over. We conclude this thesis by describing

some of the improvements to the system that we have considered.

One improvement we would like to make is to build a shared memory system which

does not destroy the performance guarantees of Chapter 3. With the current shared me-

mory system we are able to bound the number of page faults a program makes, but we

have been unable to provide a tight theoretical bound on the execution time of a shared

memory Cilk program. Experiments are currently under way with a new, and simpler,

implementation of dag-consistent shared memory, about which we hope to be able to prove

tighter bounds. This dag-consistent shared memory implementation, does not perform the

tree-walk operation described in Chapter 6. Instead a kernel always go to the backing store

to access a page. This change makes theoretical analysis easier since it eliminates the need

to analyze the execution time of performing the tree walk. In practice, on machines such

as the CM-5, where sending a short message is inexpensive, we expect the performance for

this new system to be similar to the performance of the tree walk algorithm. For machines

where the message overhead is larger, we expect this implementation to be more e�cient

since eliminating the tree walk reduces the number of protocol messages that are needed.

Another improvement we would like to make is to allow certain shared memory applica-

tions to run more e�ciently by reducing the amount of data movement necessary. Shared

memory lets us move data to the computation, but, as is well known, moving the compu-

tation to the data is often more e�cient. Currently the Cilk system has no way of moving

the computation to the data, so a shared memory Cilk program often needs to perform

more data movement than other systems need to perform. As an example, consider per-

forming many iterations of array relaxation. In a data parallel program the array would

be distributed across the machine, with each processor having its own section, and on each

179

iteration only the elements at the edge of a processors section would need to be commu-

nicated. In a naive Cilk program, on each iteration a new random tree is built to spread

the the computation among the processors. Each processor would typically get a di�erent

portion of the array each iteration. The entire array would be communicated twice per

cycle: �rst from the backing store to the processor performing the computation, and then

back again to the backing store.

We have considered two methods by which we could more closely associate a computation

to its data, thereby reducing the amount of communication a shared memory program

requires.

The simpler of the two methods is based on augmenting the existing shared memory

system to try to increase reuse of data. The idea is to try to keep track of how the

computation was spread out on the previous iteration, and, where possible, try to repeat

that computation tree on the next iteration, so that a processor would tend to work on

the same data from iteration to iteration. To implement this we would have to �gure out

how to regrow the computation tree the same way from iteration to iteration. Presumably

the user would specify when the system should try to do this. Also, the current shared

memory system cannot take advantage of potential data reuse between iterations: When

a new kernel begins (which happens every iteration) a processor will not use any of the

data currently in its cache because it does not know if that data is up-to-date. We would

need to modify the shared-memory system so that when an old copy of a needed page is

in a processor's cache, the processor is able to check to see if the page is current before it

requests a new copy. To take full advantage of this method we would also need to modify

the system so that updated pages do not need to be sent to the backing store after every

iteration. Instead, we would want to tell the backing store where the updated page is, and

leave the updated page in the cache, even after the kernel that updated the page �nishes.

A second method to decrease communication in programs using lots of data is to use

what we call persistent closures. The idea here is to try to mimic the way that the data-

parallel model works. We would bind to a processor a thread which performs part of the

computation, and allow that thread to be executed repeatedly. For the array relaxation

example, we would bind to each processor a thread to perform the relaxation on part of the

array, and that thread would be executed once each iteration. The portion of the array used

by that thread would be bound to the processor as well, and we provide the user with a way

180

to specify what data needs to be communicated on each iteration. We have performed some

simple experiments using this idea and have seen some promising results. We implemented

an array relaxation example using low-level Cilk-1 features, and this program out-performed

a similar array relaxation program we wrote in a data parallel language. Although we can

implement this mechanism using low-level Cilk features, we do not now how to add such a

mechanism to Cilk at a reasonably high level. Also we have no idea how to integrate such

a feature into Cilk in a way that gives us any performance guarantees.

We have no current plants to add either of these methods to Cilk since we have some

questions about the implementation of each of them. We do expect to eventually address

the issue of reducing data movement in Cilk, but whether it will be via one of these two

methods, or via something completely di�erent, is not yet known.

A �nal improvement that we are considering is to implement a stack-based execution

model using lazy task creation [MKH91]. This modi�cation is one we think we understand,

and we expect to implement it in the near future. Switching Cilk to a stack-based execution

model would provide two bene�ts. First, it would lower the overhead of spawning new tasks.

Second, under a stack-based model, the execution order of Cilk programs would more closely

mimic the execution order of serial programs.

A stack-based model di�ers from the current model in what happens when a spawn is

encountered. In the current system when a spawn is reached the state needed to execute the

spawned child is packaged up and put aside, and the parent procedure immediately continues

execution after the spawn. This is the opposite of the execution order of function calls in

most languages. Typically, when a function call is made the parent function suspends until

the called function completes. Under a stack based model when a spawn is reached, the

execution order mimics the execution order of a serial program by suspending the parent

and beginning execution of the child. However, enough state about the parent is kept

around so that if a steal request arrives the parent can be packaged up and stolen.

This stack-based technique makes the overhead of a spawn comparable to the overhead

of a procedure call. The only di�erence is that when spawning, some extra information may

be kept around so that the parent is able to be stolen. When a parent is stolen, then the

stack-based model has the additional cost of packaging up the parent. This cost should be

similar to, and probably slightly greater than, the cost of performing a spawn in the current

system. Since steals are rare compared to spawns, this technique signi�cantly reduces the

181

overhead of a Cilk program.

8.3 Concluding Remarks

This thesis began by pointing out that recently parallel hardware has been advancing faster

than parallel software. Parallel machines are becoming commonplace, but they are typically

used for executing many independent jobs, since writing a true parallel program is still a

di�cult task. Cilk alone is not the solution to the \parallel software problem." Probably no

one system is. But Cilk has the potential to become part of the solution, and to help spread

the use of parallel programming. By allowing a programmer to easily implement e�cient,

asynchronous, parallel algorithms, Cilk can be become one more entry in a programmer's

arsenal of tools for attacking parallel programming problems.

182

Appendix A

Protein Folding Optimizations

This appendix describes the algorithmic optimizations that we made to the original protein

folding code. These changes provided a speedup of 1 to 2 orders of magnitude on vari-

ous problem sizes. This appendix assumes the reader is familiar with the application as

described in Section 2.4.

In Section 2.4 we described the changes made to the protein folding code to express it in

Cilk. In addition to these changes, we made other changes to the original serial code which

signi�cantly improved the performance of the protein folding application. These changes

make use of simple checks to see if we can end the search down a branch early. When

searching through the cube creating a partial path, it is easy to create a partial path from

which no Hamiltonian path can be created. As a simple example, let us consider paths on a

two dimensional grid. A short path which includes the three points nearest the corner, but

not the corner itself, can never be extended into a Hamiltonian path. But since much of the

grid remains unvisited, a naive algorithm would perform a signi�cant amount of searching

before giving up on this partial path. By adding some simple checks to the search algorithm

we can reduce much of this wasted search. We do this as follows: For each point in the cube

we keep track of how many unvisited neighbors it has. A point with no unvisited neighbors,

such as the corner point in the above example, can never be reached. Since a Hamiltonian

path must reach every path once, if a point with no unvisited neighbors exists, then no

Hamiltonian path is possible. Path (a) of Figure A-1 shows a 2-D grid in which point 0 has

no unvisited neighbors. If at some point in the search a point with no unvisited neighbors is

created, then there is no way to produce a Hamiltonian path from the current partial path,

183

so the search of the current partial path can be ended. Also, notice that if a point with

only one unvisited neighbor exists, then no path can be created that continues through that

point. Therefore any possible Hamiltonian paths must end at that point. Therefore, if two

such points ever exist then no Hamiltonian path is possible. Path (b) of Figure A-1 shows

an example where two points, namely 0 and 2, both have one unvisited neighbor, and so no

path is possible. So at each step the algorithm checks to see if a two such points have been

created, and if so the search of the current partial path is ended. These checks speed up

the program by approximately a factor of 10 on the 3� 3� 3 cube and 40 on the 4� 3� 3

cube. We could not compute the exact speedup for the 4 � 4 � 3 cube because it would

take too long to run this size without the improvements. However, we estimate that the

improvements provide a speedup of over 100 on this problem size.

A further improvement can be made by noting that the set of points at which a Hamil-

tonian path can end is partially determined by the point at which the path begins. To take

advantage of this we give each point a parity. A point at position (i; j; k) is given a parity

(i + j + k) mod 2. Note that each time a point is added to the end of the partial path,

the parity of the point at the end of the path changes. This change occurs because exactly

one of the indices of the new end point di�ers by exactly 1 from the previous end point.

Therefore if we know the starting point of a path, and we know how long the path is, we

can compute what the parity of the endpoint is. So for any partial path, since we know the

parity of its starting point, we can easily compute what the parity must be for an endpoint

of any Hamiltonian path beginning with that partial path. We have seen that when the

search creates a point with only one unvisited neighbor, that point must be the end of any

Hamiltonian path. As described earlier, our search code detects when a point with only one

unvisited neighbor is created. When we create such a point we also check to see if its parity

is the predicted parity for the endpoint. If not we stop the search of the current partial

path. Path (c) of Figure A-1 shows an example of this check for a 5 � 5 2-D grid. In this

�gure each point is labeled with its parity. A Hamiltonian path is of an odd length (25), so

it must begin and end on the same parity, in this case odd. In this example, point 6 must

be the �nal point, but since it has even parity no Hamiltonian path is possible.

184

(b)

0 1 2 3

4

8

12

Starting point

(a)

0 1 2 3

4

8

12

Starting point

(c)

E O E O

5

10

15

20

E

E O E O E

E O E O E

E O E OO

E O E OO

0

Figure A-1: Each �gure shows a partial path on a 2-D lattice. None of these partial paths

can result in a Hamiltonian path: Path (a) because it has a point (0) with no unvisited

neighbors, and Path (b) because it has two points (0,2) with only one unvisited neighbor,

and Path (c) because a Hamiltonian path would have to end at a point (6) with the wrong

parity.

185

186

Bibliography

[AAC+92] Gail Alverson, Robert Alverson, David Callahan, Brian Koblenz, Allan Porter-

�eld, and Burton Smith. Exploiting heterogeneous parallelism on a multi-

threaded multiprocessor. In Proceedings of the 1992 ACM International Con-

ference on Supercomputing, pages 188{197, Washington, D.C., July 1992.

[ABLL91] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M.

Levy. Scheduler activations: E�ective kernel support for the user-level man-

agement of parallelism. In Proceedings of the Thirteenth ACM Symposium on

Operating Systems Principles, pages 95{109, Paci�c Grove, California, October

1991.

[ACP95] Thomas E. Anderson, David E. Culler, and David A. Patterson. A case for

NOW (networks of workstations). IEEE Micro, 15(1):54{64, February 1995.

[BB94] Eric A. Brewer and Robert Blumofe. Strata: A multi-layer communications

library. In Proceedings of the 1994 MIT Student Workshop on Scalable Com-

puting, July 1994.

[BBB+94] D. Bailey, E. Barszcz, J. Barton, D. Browning, et al. The NAS parallel bench-

marks. Technical Report RNR-94-007, NASA Ames Research Center, March

1994.

[BBZ88] Monica Beltrametti, Kenneth Bobey, and John R. Zorbas. The control mech-

anism for the Myrias parallel computer system. Computer Architecture News,

16(4):21{30, September 1988.

187

[BCK+89] M. Berry, D. Chen, P. Koss, D. Kuck, et al. The Perfect club benchmarks:

E�ective performance evaluation of supercomputers. International Journal of

Supercomputer Applications, 3(3):5{40, 1989.

[BE89] Hans Berliner and Carl Ebeling. Pattern knowledge and search: The SUPREM

architecture. Arti�cial Intelligence, 38(2):161{198, March 1989.

[Bea95] D. Beal. Round-by-round. ICCA Journal, 18(2), 1995.

[BFJ+95] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Bradley C. Kusz-

maul, Charles E. Leiserson, Rob Miller, Keith H. Randall, and Yuli Zhou.

Cilk 2.0 Reference Manual. MIT Laboratory for Computer Science, 545 Tech-

nology Square, Cambridge, Massachusetts 02139, June 1995. Available via

ftp://theory.lcs.mit.edu/pub/cilk/manual2.0.ps.Z.

[BFJ+96] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson,

and Keith H. Randall. Dag-consistent distributed shared memory. In Pro-

ceedings of the 10th International Parallel Processing Symposium, Honolulu,

Hawaii, April 1996.

[BH86] J. E. Barnes and P. Hut. A hierarchical O(N logN) force calculation algorithm.

Nature, 324:446, 1986.

[BJK+95] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.

Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An e�cient multithreaded

runtime system. In Proceedings of the Fifth ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP), pages 207{216,

Santa Barbara, California, July 1995.

[BL94] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded com-

putations by work stealing. In Proceedings of the 35th Annual Symposium

on Foundations of Computer Science, pages 356{368, Santa Fe, New Mexico,

November 1994.

[Ble92] Guy E. Blelloch. Programming parallel algorithms. In Proceedings of the 1992

Dartmouth Institute for Advanced Graduate Studies (DAGS) Symposium on

Parallel Computation, pages 11{18, Hanover, New Hampshire, June 1992.

188

[Ble93] Guy E. Blelloch. NESL: A nested data-parallel language. Technical Re-

port CMU-CS-93-129, School of Computer Science, Carnegie-Mellon University,

April 1993.

[Blu95] Robert D. Blumofe. Executing Multithreaded Programs E�ciently. PhD thesis,

Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, September 1995.

[BP94] Robert D. Blumofe and David S. Park. Scheduling large-scale parallel compu-

tations on networks of workstations. In Proceedings of the Third International

Symposium on High Performance Distributed Computing, pages 96{105, San

Francisco, California, August 1994.

[Bre74] Richard P. Brent. The parallel evaluation of general arithmetic expressions.

Journal of the ACM, 21(2):201{206, April 1974.

[BS81] F. Warren Burton and M. Ronan Sleep. Executing functional programs on a

virtual tree of processors. In Proceedings of the 1981 Conference on Func-

tional Programming Languages and Computer Architecture, pages 187{194,

Portsmouth, New Hampshire, October 1981.

[BZS93] Brian N. Bershad, Matthew J. Zekauskas, and Wayne A. Sawdon. The Midway

distributed shared memory system. In Digest of Papers from the Thirty-Eighth

IEEE Computer Society International Conference (Spring COMPCON), pages

528{537, San Francisco, California, February 1993.

[CA94] David Chaiken and Anant Agarwal. Software-extended coherent shared me-

mory: Performance and cost. In Proceedings of the 21st Annual International

Symposium on Computer Architecture, pages 314{324, Chicago, Illinois, April

1994.

[CAL+89] Je�rey S. Chase, Franz G. Amador, Edward D. Lazowska, Henry M. Levy, and

Richard J. Little�eld. The Amber system: Parallel programming on a network

of multiprocessors. In Proceedings of the Twelfth ACM Symposium on Operating

Systems Principles, pages 147{158, Litch�eld Park, Arizona, December 1989.

189

[CBZ91] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation and

performance of Munin. In Proceedings of the Thirteenth ACM Symposium on

Operating Systems Principles, pages 152{164, Paci�c Grove, California, Octo-

ber 1991.

[CD88] Eric C. Cooper and Richard P. Draves. C threads. Technical Report CMU-CS-

88-154, School of Computer Science, Carnegie-Mellon University, June 1988.

[CDG+93] Daved E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishna-

murthy, Steven Lumetta, Thorsten von Eicken, and Katherine Yelick. Parallel

programming in Split-C. In Supercomputing '93, pages 262{273, Portland, Ore-

gon, November 1993.

[CGH94] Rohit Chandra, Anoop Gupta, and John L. Hennessy. COOL: An object-based

language for parallel programming. IEEE Computer, 27(8):13{26, August 1994.

[CRRH93] Martin C. Carlisle, Anne Rogers, John H. Reppy, and Laurie J. Hendren. Early

experiences with Olden. In Proceedings of the Sixth Annual Workshop on Lan-

guages and Compilers for Parallel Computing, Portland, Oregon, August 1993.

[CSS+91] David E. Culler, Anurag Sah, Klaus Erik Schauser, Thorsten von Eicken, and

John Wawrzynek. Fine-grain parallelism with minimal hardware support: A

compiler-controlled threaded abstract machine. In Proceedings of the Fourth

International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 164{175, Santa Clara, California, April 1991.

[DMBS79] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK Users'

Guide. Siam, Philadelphia, 1979.

[DSB86] Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory access bu�ering

in multiprocessors. In Proceedings of the 13th Annual International Symposium

on Computer Architecture, pages 434{442, June 1986.

[EAL93] Dawson R. Engler, Gregory R. Andrews, and David K. Lowenthal. Filaments:

E�cient support for �ne-grain parallelism. Technical Report TR 93-13a, The

University of Arizona, 1993.

190

[EL94] Natalie Engler and David Linthicum. Not just a PC on steroids. Open Com-

puting, pages 43{47, April 1994.

[FF82] Raphael A. Finkel and John P. Fishburn. Parallelism in alpha-beta search.

Arti�cial Intellgence, 19(1):89{106, September 1982.

[FLA94] Vincent W. Freeh, David K. Lowenthal, and Gregory R. Andrews. Distributed

Filaments: E�cient �ne-grain parallelism on a cluster of workstations. In Pro-

ceedings of the First Symposium on Operating Systems Design and Implemen-

tation, pages 201{213, Monterey, California, November 1994.

[FM87] Raphael Finkel and Udi Manber. DIB|a distributed implementation of

backtracking. ACM Transactions on Programming Languages and Systems,

9(2):235{256, April 1987.

[FMM93] R. Feldmann, P. Mysliwietz, and B. Monien. Game tree search on a massively

parallel system. In Advances in Computer Chess 7, pages 203{219, 1993.

[FMM94] Rainer Feldmann, Peter Mysliwietz, and Burkhard Monien. Studying overheads

in massively parallel min/max-tree evaluation. In Proceedings of the Sixth An-

nual ACM Symposium on Parallel Algorithms and Architectures, pages 94{103,

Cape May, New Jersey, June 1994.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability. W.H.

Freeman and Company, 1979.

[GLL+90] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop

Gupta, and John Hennessy. Memory consistency and event ordering in scalable

shared-memory multiprocessors. In Proceedings of the 17th Annual Interna-

tional Symposium on Computer Architecture, pages 15{26, Seattle, Washington,

June 1990.

[Gra66] R. L. Graham. Bounds for certain multiprocessing anomalies. The Bell System

Technical Journal, 45:1563{1581, November 1966.

[Gra69] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal

on Applied Mathematics, 17(2):416{429, March 1969.

191

[GS93] Guang R. Gao and Vivek Sarkar. Location consistency: Stepping beyond the

barriers of memory coherence and serializability. Technical Report 78, McGill

University, School of Computer Science, Advanced Compilers, Architectures,

and Parallel Systems (ACAPS) Laboratory, December 1993.

[Gwe94] Linley Gwennap. Intel extends 486, Pentium families. Microprocessor Report,

8(3):1{11, March 1994.

[Hal84] Robert H. Halstead, Jr. Implementation of Multilisp: Lisp on a multiprocessor.

In Conference Record of the 1984 ACM Symposium on Lisp and Functional

Programming, pages 9{17, Austin, Texas, August 1984.

[Hal85] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic compu-

tation. ACM Transactions on Programming Languages and Systems, 7(4):501{

538, October 1985.

[HD68] E. A. Hauck and B. A. Dent. Burroughs' B6500/B7500 stack mechanism.

Proceedings of the AFIPS Spring Joint Computer Conference, pages 245{251,

1968.

[HKT93] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Preliminary expe-

riences with the Fortran D compiler. In Supercomputing '93, pages 338{349,

Portland, Oregon, November 1993.

[HP90] John L. Hennessy and David A. Patterson. Computer Architecture: a Quanti-

tative Approach. Morgan Kaufmann, San Mateo, CA, 1990.

[HS86] W. Hillis and G. Steele. Data parallel algorithms. Communications of the ACM,

29(12):1170{1183, December 1986.

[HWW93] Wilson C. Hsieh, Paul Wang, and William E. Weihl. Computation migration:

Enhancing locality for distributed-memory parallel systems. In Proceedings of

the Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP), pages 239{248, San Diego, California, May 1993.

[HZJ94] Michael Halbherr, Yuli Zhou, and Chris F. Joerg. MIMD-style parallel pro-

gramming with continuation-passing threads. In Proceedings of the 2nd Inter-

192

national Workshop on Massive Parallelism: Hardware, Software, and Appli-

cations, Capri, Italy, September 1994. A longer version appeared as : MIT

Laboratory for Computer Science, Computation Structures Group Memo 355.

[Int94] Intel Supercomputer Systems Division, Beaverton, Oregon. Paragon User's

Guide, June 1994.

[JD73] Edward G. Co�man Jr. and Peter J. Denning. Operating Systems Theory.

Prentice-Hall, Inc., Englewood Cli�s, NJ, 1973.

[JK94] Chris Joerg and Bradley C. Kuszmaul. Massively parallel chess. In Proceed-

ings of the Third DIMACS Parallel Implementation Challenge, Rutgers Uni-

versity, New Jersey, October 1994. Available as ftp://theory.lcs.mit.edu/

pub/cilk/dimacs94.ps.Z.

[JKW95] Kirk L. Johnson, M. Frans Kaashoek, and Deborah A. Wallach. CRL: High-

performance all-software distributed shared memory. In Proceedings of the

Fifteenth ACM Symposium on Operating Systems Principles, pages 213{228,

Copper Mountain Resort, Colorado, December 1995.

[JP92] Suresh Jagannathan and Jim Philbin. A customizable substrate for concur-

rent languages. In Proceedings of the ACM SIGPLAN '92 Conference on Pro-

gramming Language Design and Implementation, pages 55{67, San Francisco,

California, June 1992.

[Kal90] L. V. Kal�e. The Chare kernel parallel programming system. In Proceedings of

the 1990 International Conference on Parallel Processing, Volume II: Software,

pages 17{25, August 1990.

[KC93] Vijay Karamcheti and Andrew Chien. Concert|e�cient runtime support for

concurrent object-oriented programming languages on stock hardware. In Su-

percomputing '93, pages 598{607, Portland, Oregon, November 1993.

[KCDZ94] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. Tread-

Marks: Distributed shared memory on standard workstations and operating

systems. In USENIX Winter 1994 Conference Proceedings, pages 115{132, San

Francisco, California, January 1994.

193

[KEW+85] R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins, and R. G. Sheldon.

Implementing a cache consistency protocol. In Proceedings of the 12th Annual

International Symposium on Computer Architecture, pages 276{283, 1985.

[KHM89] David A. Kranz, Robert H. Halstead, Jr., and Eric Mohr. Mul-T: A high-

performance parallel Lisp. In Proceedings of the SIGPLAN '89 Conference on

Programming Language Design and Implementation, pages 81{90, Portland,

Oregon, June 1989.

[KM75] Donald E. Knuth and Ronald W. Moore. An analysis of alpha-beta pruning.

Arti�cial Intelligence, 6(4):293{326, Winter 1975.

[KOH+94] Je�rey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni,

Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark

Horowitz, Anoop Gupta, Mendel Rosenblum, and John Hennessy. The Stan-

ford Flash multiprocessor. In Proceedings of the 21st Annual International

Symposium on Computer Architecture, pages 302{313, Chicago, Illinois, April

1994.

[KR90] Richard M. Karp and Vijaya Ramachandran. Parallel algorithms for shared-

memory machines. In J. van Leeuwen, editor, Handbook of Theoretical Com-

puter Science|Volume A: Algorithms and Complexity, chapter 17, pages 869{

941. MIT Press, Cambridge, Massachusetts, 1990.

[Kus94] Bradley C. Kuszmaul. Synchronized MIMD Computing. PhD thesis, Depart-

ment of Electrical Engineering and Computer Science, Massachusetts Insti-

tute of Technology, May 1994. Available as MIT Laboratory for Computer

Science Technical Report MIT/LCS/TR-645 or ftp://theory.lcs.mit.edu/

pub/bradley/phd.ps.Z.

[KZ93] Richard M. Karp and Yanjun Zhang. Randomized parallel algorithms for

backtrack search and branch-and-bound computation. Journal of the ACM,

40(3):765{789, July 1993.

194

[LAB93] Pangfeng Liu, William Aiello, and Sandeep Bhatt. An atomic model for

message-passing. In Proceedings of the Fifth Annual ACM Symposium on Par-

allel Algorithms and Architectures, pages 154{163, Velen, Germany, June 1993.

[LAD+92] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman,

Mahesh N. Ganmukhi, Je�rey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul,

Margaret A. St. Pierre, David S. Wells, Monica C. Wong, Shaw-Wen Yang, and

Robert Zak. The network architecture of the Connection Machine CM-5. In

Proceedings of the Fourth Annual ACM Symposium on Parallel Algorithms and

Architectures, pages 272{285, San Diego, California, June 1992.

[Lam79] Leslie Lamport. How to make a multiprocessor computer that correctly executes

multiprocess programs. IEEE Transactions on Computers, C-28(9):690{691,

September 1979.

[LH89] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.

ACM Transactions on Computer Systems, 7(4):321{359, November 1989.

[LRV94] James R. Larus, Brad Richards, and Guhan Viswanathan. LCM: Memory

system support for parallel language implementation. In Proceedings of the Sixth

International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 208{218, San Jose, California, October 1994.

[Mil95] Robert C. Miller. A type-checking preprocessor for Cilk 2, a multithreaded C

language. Master's thesis, Department of Electrical Engineering and Computer

Science, Massachusetts Institute of Technology, May 1995.

[MKH91] Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy task creation:

A technique for increasing the granularity of parallel programs. IEEE Trans-

actions on Parallel and Distributed Systems, 2(3):264{280, July 1991.

[Mos70] Joel Moses. The function of FUNCTION in LISP or why the FUNARG problem

should be called the envronment problem. Technical Report memo AI-199, MIT

Arti�cial Intelligence Laboratory, June 1970.

[Mot93] Motorola. PowerPc 601 User's Manual, 1993.

195

[MR87] Piyush Mehrotra and Jon Van Rosendale. The BLAZE language: A parallel

language for scienti�c programming. Parallel Computing, 5:339{361, 1987.

[MSA+85] J.R. McGraw, S.K. Skedzielewski, S.J. Allan, R.R. Odledhoeft, , J. Glauert,

C. Kirkham, W. Noyce, and R. Thomas. Sisal: Streams and iteration in a

single assignment language: Reference manual version 1.2. Technical report,

Lawrence Livermore National Laboratories, Livermore CA, March 1985.

[MWV92] Sunil Mirapuri, Michael Woodacre, and Mader Vasseghi. The Mips R4000

processor. IEEE Micro, pages 10{22, April 1992.

[Nik91] R.S. Nikhil. ID language reference manual. Computation Structure Group

Memo 284-2, Massachusetts Institute of Technology, 545 Technology Square,

Cambridge, Massachusetts 02139, July 1991.

[Nik93] Rishiyur S. Nikhil. A multithreaded implementation of Id using P-RISC graphs.

In Proceedings of the Sixth Annual Workshop on Languages and Compilers for

Parallel Computing, number 768 in Lecture Notes in Computer Science, pages

390{405, Portland, Oregon, August 1993. Springer-Verlag.

[Nik94] Rishiyur S. Nikhil. Cid: A parallel, shared-memory C for distributed-memory

machines. In Proceedings of the Seventh Annual Workshop on Languages and

Compilers for Parallel Computing, August 1994.

[PC90] Gregory M. Papadopoulos and David E. Culler. Monsoon: An explicit token-

store architecture. In Proceedings of the 17th Annual International Symposium

on Computer Architecture, pages 82{91, Seattle, Washington, May 1990. Also:

MIT Laboratory for Computer Science, Computation Structures Group Memo

306.

[Pea80] Judea Pearl. Asymptotic properties of minimax trees and game-searching pro-

cedures. Arti�cial Intelligence, 14(2):113{138, September 1980.

[PJGT94] Vijay S. Pande, Christopher F. Joerg, Alexander Yu Grosberg, and Toyoichi

Tanaka. Enumerations of the hamiltonian walks on a cubic sublattice. Journal

of Physics A, 27, 1994.

196

[POV93] POV-Ray Team. Persistence of Vision Ray Tracer (POV-Ray) User's Docu-

mentation, 1993.

[PYGT94] Vijay Pande, Alexander Yu, Grosberg, and Toyoichi Tanaka. Thermodynamic

procedure to construct heteropolymers that can be renatured to recognize a

given target molecule. Proceeding of the National Academy of Science, U.S.A,

91(12976), 1994.

[RLW94] Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Ty-

phoon: User-level shared memory. In Proceedings of the 21st Annual Interna-

tional Symposium on Computer Architecture, pages 325{336, Chicago, Illinois,

April 1994.

[RSAU91] Larry Rudolph, Miriam Slivkin-Allalouf, and Eli Upfal. A simple load balancing

scheme for task allocation in parallel machines. In Proceedings of the Third

Annual ACM Symposium on Parallel Algorithms and Architectures, pages 237{

245, Hilton Head, South Carolina, July 1991.

[RSL93] Martin C. Rinard, Daniel J. Scales, and Monica S. Lam. Jade: A high-level,

machine-independent language for parallel programming. Computer, 26(6):28{

38, June 1993.

[SFL+94] Ioannis Schoinas, Babak Falsa�, Alvin R. Lebeck, Steven K. Reinhardt,

James R. Larus, and David A. Wood. Fine-grain access control for distributed

shared memory. In Proceedings of the Sixth International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems, pages

297{306, San Jose, California, October 1994.

[SG90] E. Shakhnovich and A. Gutin. J Chem. Phys., 93, 5967, 1990.

[SKY91] S. Sakai, Y. Kodama, and Y. Yamaguchi. Prototype implementation of a highly

parallel dataow machine EM-4. In Proceedings of the 5th International Parallel

Processing Symposium, pages 278{286, May 1991.

[Smi78] Burton J. Smith. A pipelined, shared resource MIMD computer. In Proceedings

of the 1978 International Conference on Parallel Processing, pages 6{8, 1978.

197

[Ste88] Per Stenstr�om. VLSI support for a cactus stack oriented memory organization.

Proceedings of the Twenty-First Annual Hawaii International Conference on

System Sciences, volume 1, pages 211{220, January 1988.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,

14(3):354{356, 1969.

[Sun89] Sun Microsystems, Inc. Sparc Architecture Manual, Version 8, January 1989.

[Sun90] V. S. Sunderam. PVM: A framework for parallel distributed computing. Con-

currency: Practice and Experience, 2(4):315{339, December 1990.

[TBK93] Andrew S. Tanenbaum, Henri E. Bal, and M. Frans Kaashoek. Programming

a distributed system using shared objects. In Proceedings of the Second Inter-

national Symposium on High Performance Distributed Computing, pages 5{12,

Spokane, Washington, July 1993.

[Thi91a] Thinking Machines Corporation, Cambridge, Massachusetts. Getting Started

in CM Fortran, November 1991.

[Thi91b] Thinking Machines Corporation, Cambridge, Massachusetts. Getting Started

in *Lisp, June 1991.

[Thi92] Thinking Machines Corporation, Cambridge, Massachusetts. CM5 Technical

Summary, January 1992.

[Thi93] Thinking Machines Corporation, Cambridge, Massachusetts. Getting Started

in C*, May 1993.

[vECGS92] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik

Schauser. Active messages: A mechanism for integrated communication and

computation. In Proceedings of the 19th Annual International Symposium on

Computer Architecture, pages 256{266, Gold Coast, Australia, May 1992.

[VR88] Mark T. Vandevoorde and Eric S. Roberts. WorkCrews: An abstraction for con-

trolling parallelism. International Journal of Parallel Programming, 17(4):347{

366, August 1988.

198

[WK91] I-Chen Wu and H. T. Kung. Communication complexity for parallel divide-

and-conquer. In Proceedings of the 32nd Annual Symposium on Foundations of

Computer Science, pages 151{162, San Juan, Puerto Rico, October 1991.

[ZO94] Y. Zhang and A. Ortynski. The e�ciency of randomized parallel backtrack

search. In Proceedings of the 6th IEEE Symposium on Parallel and Distributed

Processing, Dallas, Texas, October 1994.

[ZSB94] Matthew J. Zekauskas, Wayne A. Sawdon, and Brian N. Bershad. Software

write detection for a distributed shared memory. In Proceedings of the First

Symposium on Operating Systems Design and Implementation, pages 87{100,

Monterey, California, November 1994.

199

