
Engineering a Global Resolution Service

by

Edward C. Slottow

Submitted to the Department of Electrical Engineering

and Computer Science in Partial Fulfillment of the

Requirements for the Degrees of

Bachelor of Science in Electrical Engineering and

Computer Science and Master of Engineering in Electrical

Engineering and Computer Science

at the

Massachusetts Institute of Technology

June 1997

© Massachusetts Institute of Technology, 1997. All rights reserved.

MIT-LCS-TR-712

Massachusetts Institute of Technology

Laboratory for Computer Science

Cambridge, Massachusetts 02139

ii

iii

Engineering a Global Resolution Service

by

Edward C. Slottow

Submitted to the Department of Electrical Engineering

and Computer Science

June 1997

In Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Engineering and Computer

Science and Master of Engineering in Electrical Engineering and

Computer Science

Abstract

As the World Wide Web continues to balloon in size the issue of a robust
information infrastructure has become increasingly important. Currently,
Web links are based on fragile names that have limited life due to semantic
content. Uniform Resource Names (URNs), globally unique, persistent
identifiers, are one way to solve this problem. Resolvers map URNs to the
resources they identify. We describe a global Resolver Discovery Service
(RDS) that determines the appropriate resolver for a URN devoid of location
information. The RDS uses a high degree of distribution and replication to
achieve scalability, both in the number of URNs and users. We have
implemented a subset of the RDS as a proof-of-concept.

Thesis Supervisor: Dr. Karen R. Sollins
Title: Research Scientist, Laboratory for Computer Science

iv

v

Acknowledgments

I would like to thank my thesis advisor, Dr. Karen Sollins, for supporting and
guiding this work. She was a tremendous help by explaining naming issues,
especially those surrounding long-lived identifiers, and unraveling the mys-
tery of Massachusetts automobile insurance.

The architecture described here is based on ideas of Lewis Girod. He was
invaluable for his insight into system design and also for bouncing ideas off of.

My thanks also go to the rest of the Advanced Network Architecture Group at
LCS, including Andrew Parker for working on a large-scale simulation of my
ideas, Nimisha Mehta, who shared my office, for trying to complete her thesis
at the same time, and Garrett Wollman for restoring files from backup when I
accidentally deleted them.

I would especially like to thank Tina Pinto, who proofread my thesis. She
alternately motivated me to finish and distracted me from my work.

Thanks to Jason Sachs, who acted as a friend and role-model. He insistently
urged me to finish even before I started.

Thanks go to the rest of my friends who occasionally asked how things were
going and provided great conversation when I should have been writing.

Finally I would like to acknowledge my parents, Jeff and Joan Slottow, for pro-
viding a supportive environment in which to grow up and sending me far away
to MIT. That, and bringing home my first computer, an Apple II+, when I was
in elementary school.

This research was supported by the Advanced Research Projects Agency of the
Department of Defense under Contract No. DABT63-94-C-0072.

vi

vii

Table of Contents

1 Introduction . 11
1.1 Information Infrastructures . 12

1.1.1 Information Mesh . 12
1.1.2 The World Wide Web . 14

1.2 URL Deficiencies . 14
1.3 URN Resolution. 17
1.4 Summary . 18
1.5 Coming Attractions . 18

2 Related Work . 19
2.1 Grapevine. 20
2.2 Lampson’s Global Name Service . 22
2.3 The Domain Name System . 23
2.4 Harvest. 25
2.5 Summary . 27

3 Uniform Resource Names . 29
3.1 Functional Requirements . 29
3.2 Resolution Requirements . 30

3.2.1 Evolution . 31
3.2.2 Usability . 31
3.2.3 Security . 32

3.3 Resolution Framework . 33
3.4 URN Syntax. 36
3.5 Summary . 37

4 Resolver Discovery Service . 39
4.1 Pure Resource Identifiers . 39
4.2 RDS Requirements . 41
4.3 Partitioning and Delegation . 43
4.4 Possible Architectures . 44

4.4.1 NAPTR . 44
4.4.2 Our Architecture. 45

4.5 Summary . 47

5 The Distributed Database . 49
5.1 Tree Structure . 50

5.1.1 Traditional B-tree Algorithm . 51
5.1.2 Insertion Enhancements . 54

5.1.2.1 Root Splitting . 54

viii

5.1.2.2 Node Perspective . 55
5.1.2.3 Augmentations for Searching 57
5.1.2.4 Key-to-child Ratio . 58
5.1.2.5 Bulk Insert. 62

5.1.3 Searching Enhancements. 65
5.1.3.1 Search from Any Node . 65
5.1.3.2 Caching . 66
5.1.3.3 Subspace Determination. 68

5.1.4 Deletion . 72
5.2 Replication Groups . 72

5.2.1 Group Membership . 74
5.2.2 Flooding. 76
5.2.3 Replicated Algorithms . 77

5.3 Hints. 77
5.4 Tree Operations . 80
5.5 Security . 81
5.6 Summary . 82

6 Implementation . 85
6.1 MemberPool Server . 86
6.2 Member Server . 87
6.3 DistDB . 89
6.4 Summary . 93

7 Conclusion . 95
7.1 Future Directions . 96
7.2 We Live in Interesting Times . 97

References . 99

ix

List Of Figures

Figure 1. URN Resolution Steps . 34
Figure 2. Our RDS Architecture . 46
Figure 3. Single Insertion . 52
Figure 4. Number of Keys and Nodes for a B-tree of Height Three 59
Figure 5. Single Insertion into a B-tree with s = 2. 60
Figure 6. Bulk Insertion into a B-tree with s = 2 . 63
Figure 7. Subspace Determination . 69
Figure 8. Computing the Maximum and Minimum Loads 81
Figure 9. MemberPool Server Administrative Interface 87
Figure 10. Member Server Administrative Interface. 89
Figure 11. The Main DistDB Window. 90
Figure 12. Searching For URNs . 91
Figure 13. Information Window for Mem2@s-xii.lcs.mit.edu:3005 92

x

11

C h a p t e r 1
Introduction

Names typically serve two functions: identification and location. As an identifier a

name refers to an entity. As an address it indicates how to find that entity. A name

also has several properties. Its type defines its syntax and the kind of entity to which

it refers. The space of all possible names of a given type is called a namespace. A

name has a context in which it is meaningful and a lifetime during which it is valid.

For example, a filename is only meaningful in the context of a specific directory in a

specific file system for as long as the file exists. Finally, a name may be a mnemonic

so that it is meaningful to humans and easy to remember. For example, files are

often given names that reflect their contents. On the other hand, in general phone

numbers give no indication to whom they correspond.

Names are a vital component for expressing relationships among objects in

emerging information infrastructures. This linking requires names with infinite life.

12

One type of name, Uniform Resource Names (URNs), have the needed persistence

but require a resolution system to associate them with the named resources.

1.1 Information Infrastructures

Global communications networks such as the Internet provide the means for global

information services. The elements of these services, including the file systems, data-

bases, networks, protocols, and linking models, form the underlying infrastructure

that determines the functionality and quality of the services rendered by these sys-

tems. The linking model, which relies on naming systems, controls how information

is related.

One architecture for a global information system, the Information Mesh, has

the goal of creating a robust, reliable, long-lasting infrastructure upon which dispar-

ate applications may build. Over the last several years, another information system,

the World Wide Web, has gained tremendous popularity. The Web is an amalgam-

ation of new and existing network services linked together by hypertext pages.

1.1.1 Information Mesh

The Information Mesh [19] recognizes that applications which are primarily con-

cerned with the distribution and exchange of information are often tied to specific

network protocols and storage models. Since the lifetime of information is much

longer than that of protocols and storage models, these applications should be inde-

pendent of their access methods. A global information infrastructure is needed to

decouple information from access methods so that the latter may evolve indepen-

dently from the former. Four distinguishing goals make the Information Mesh well

suited as an information infrastructure:

13

• Longevity: The infrastructure and its identifiers should be able to exist indefi-

nitely as the lifetime of information is often measured in terms of generations of

humans. The practice of mixing location and mnemonics, relatively short-lived

traits, into a name limits its lifetime.

• Mobility: Information tends to move over its lifetime due to changes in access

methods and movement of humans and institutions.

• Evolvability: Since the lifetime of a computer system can be measured in years,

there must be a clear path for the infrastructure to evolve with advances in technol-

ogy. Any part of the infrastructure may need to be replaced or enhanced as new

protocols, security models, and computational capacity become available.

• Resiliency: A global infrastructure requires the interaction of many components,

any of which may fail, as both servers and networks are subject to outages. An

infrastructure will become part of the fabric of society and users will depend on it

working without knowledge of its existence. The infrastructure needs to handle

failure with a minimum amount of disruption in service.

One component that the Information Mesh needs to satisfy these goals is per-

sistent identifiers used for naming objects and linking them together. While the loca-

tion of an object is mutable, a pure identifier is static. Objects named by pure

identifiers can move and computer systems can change without their identifiers

becoming invalid.

The Information Mesh uses object identifiers, or oids, to name objects. An oid

identifies an object without indicating how to find it, so hints are used to resolve an

oid into one or more locations. Uniform Resource Names (URNs), persistent, globally

14

unique identifiers, are a type of name that match the Information Mesh requirements

for oids well.

1.1.2 The World Wide Web

The World Wide Web is a global information system consisting of multimedia-rich

hypertext pages written in the Hypertext Markup Language (HTML) [1]. A link from

an HTML page to a network resource is specified by a Uniform Resource Locator

(URL). The Web link is a one-way relationship, thus creating a directed graph of Web

resources.

The syntax of a URL [2] starts with a scheme that often doubles as a protocol.

Following the scheme is a location accessible within that scheme. The location, espe-

cially for a resource that is the entry point to a Web site, or home page, is often highly

mnemonic. URLs display poor longevity since they contain the location of informa-

tion, causing a major weakness in the Web as an information infrastructure. URNs

are being developed as an alternative to URLs since URNs are persistent even as

resources move. URNs are designed to encompass existing namespaces as well as

new ones with the needed semantics.

1.2 URL Deficiencies

Assumptions that were once valid have begun to erode, as the Web relies on many

components that were not intended to be used as they are now. These assumptions

need to be reexamined and components replaced with ones that better satisfy the

needs of a global infrastructure. The strain in the area of linking can be separated

15

into two type: names being extended beyond their abilities and links with limited

functionality.

Until now commonly used naming schemes have relied on the simplifying

assumption of limited scope, either in space (e.g., the name is only valid for a com-

puter or site) or time (i.e., the lifetime of the name is longer than the resource it iden-

tifies). The result is that a name often functions as an identifier, a locator, and a

mnemonic. In many cases compromises made by giving a name multiple purposes,

especially location, justify the reduced complexity of the supporting name system. A

global information infrastructure such as the Web cannot make the same simplifying

assumptions made by small scale systems.

Usernames are one example of a namespace with limited scope. A username

is usually valid only for a single computer or a site. When a username is based on the

user’s actual name it acts as an identifier and a mnemonic. Email addresses, which

incorporate usernames, are an example of a namespace with a limited lifetime. Since

an email address specifies the location of a particular inbox, it is valid only as long as

the user does not change inboxes. As email becomes commonplace people are likely

to change addresses more frequently as they move between schools, jobs, and Inter-

net service providers. Global network services require names that are infinite in time

and space, such as email names that are valid everywhere for the life of the people

they serve.

URLs join many disparate types of names into one naming system. The ftp

and http schemes, the primary types of URLs, require a server and a locator, which

is often the path to a file on the server. The mailto scheme indicates that the URL is

an email address and the news scheme that the URL is a Network News group or

article. URLs incorporate names, such as email addresses, host names, and path-

16

names, that have limited scope. The names display poor longevity as they identify a

location instead of a resource, causing URL links to be fragile. Web links need to be

based on names that have an infinite lifetime. So far, the problem of dangling links

has been solved with server redirection. A forwarding pointer is left at the old loca-

tion pointing to the new one. However forwarding pointers cannot be maintained

indefinitely.

Besides links that become invalid over time, the Web’s reliance on URLs also

leads to poor load distribution. The http and ftp schemes fail to take into account

heavy usage, distribution, and mirroring of sites since their URLs specify the server

upon which resources reside. Contrast this with the news scheme, which omits the

name of the news server. Since this location information is left out of the URL, any

news server can be used instead of a specific one. A global information service needs

a more flexible way of finding a resource than specifying its exact location to allow for

various load balancing techniques.

Host specification also causes problems when an information service needs

several Web servers to handle all of the requests. There are a number of ways to dis-

tribute load under the current system based on URLs. One is to have a host name

resolve into several IP addresses. Another is to put HTML pages on one server and

pictures on another. In both cases URNs would be useful as they provide the proper

abstraction. Since a URN identifies a resource instead of a location, it can resolve not

only to multiple URLs but also to meta-information, such as geographic location.

Thus a URN can be used to find the location of the most accessible copy of a resource.

While URLs are excellent at specifying location and acting as a low-level link-

ing mechanism, the long-lasting, global network services that are still in their

17

infancy require a more robust linking model1. URNs fulfill the higher level naming

needs of these services.

1.3 URN Resolution

Unlike URLs, URNs are designed to be location-independent. To find the location of

a resource named by a URN, the URN needs to be resolved by a service that knows

the mapping between URNs and locations. This service is essentially a global lookup

table. By changing a mapping in the table, a resource can move without affecting its

URN. While some types of URNs may indicate how to find the appropriate resolution

service, Web objects should be named by URNs that are pure identifiers, that is,

names with an extremely general syntax giving no indication of how to find resolvers.

The less information a name contains the longer it will last and the broader its appli-

cability.

The global scope of URNs requires a global resolution system to enable pure

identifiers to be usable. The global resolution system can be divided into two major

parts. The first, the resolvers, is a highly distributed set of servers that can resolve

URNs. The other part is the Resolution Discovery Service (RDS), which finds the

appropriate resolver for a URN. Because the global resolution system will be an inte-

gral, highly utilized part of any information infrastructure, it will need to scale well

with Internet growth while remaining responsive and available. The ability for it to

scale directly correlates with the scalability of the RDS. We have designed one possi-

ble RDS and implemented its major features.

1. See [22] for one such linking architecture used in the Information Mesh.

18

1.4 Summary

Global information infrastructures should require as little maintenance as possible

while providing the highest level of service. To this end, the names they use to imple-

ment linking should last indefinitely. Names in use now, such as URLs, are short-

lived compared to the lifetime of the information they identify due to the fact that

they are primarily addresses. Long-lived names should contain as little information

as possible. URNs are global, long-lived identifiers that address the Web’s linking

dilemma. Since URNs may not contain any information, a global resolution system is

needed to find a resource associated with a given URN.

1.5 Coming Attractions

While a URN resolution system may be the largest name resolution system ever

attempted, it is certainly not the first. Previous people have tackled the issues sur-

rounding naming and scale. Chapter 2 reviews several existing resolution systems

along with Harvest, an information discovery system that deals with scaling issues.

Chapter 3 explorers URNs in-depth, including a discussion of their functional

requirements and syntax. It also gives a framework for the resolution process with

special attention to the RDS. The optimal architecture for an RDS will scale well and

provide highly reliable service. The architecture of one RDS meant for pure identifi-

ers is presented in Chapter 4 followed by the specifics of its design in Chapter 5. We

have implemented a subset of the design to develop algorithms and demonstrate fea-

sibility. This prototype is described in Chapter 6. Finally, Chapter 7 concludes with a

discussion of the current design and the direction it should take in the future.

19

C h a p t e r 2
Related Work

Previous name resolution systems have provided valuable insight into the creation of

a global service, including necessary requirements, design features, and operational

experience. Grapevine and its successor, Clearinghouse, served primarily as messag-

ing systems. Email addresses were resolved into inbox locations, allowing users to

move and have multiple inboxes. Lampson highlighted the differences in require-

ments between a name service and a more general database in the description of his

global name service. The Domain Name System serves as an example of a large, dis-

tributed service with extensive operational experience. Finally, Harvest, while not a

naming system, deals with scaling issues and information management relevant to

modern Internet services.

20

2.1 Grapevine

Grapevine [3] was a project undertaken at Xerox’s Palo Alto Research Center in the

early 1980’s to explore distributed systems and provide electronic mail service. Along

with messaging, it supported the naming of various entities, such as users, comput-

ers, and printers; authentication; and resource location. Grapevine had many admi-

rable design features. It was both distributed and replicated as a way to handle

scaling, load, and failure. It was also designed to have a decentralized administra-

tion.

Grapevine’s name service was structured as independently administered and

distributed registries acting as a unified registration database. A registry contained

an arbitrary collection of names, usually organized by location or function. For exam-

ple, a registry could contain the names of all the people at a site or all the names

related to a specific service, such as mail delivery. The organization of the registra-

tion database into registries naturally led to a namespace with two levels: a registry

and names within the registry.

Each registry was replicated on several registration servers, with each server

containing multiple registries. This use of replication masked the failure of individ-

ual servers while the distribution insured that information was stored on servers

close to the clients that needed it.

Due to its distributed nature, Grapevine used a weak consistency model of

updating registry replicas. In this model, each replica would eventually receive an

update, although there was no guarantee when. With weak consistency the registra-

tion database did not need to be globally locked while an update was occurring, so it

was still available to users. Consequently a client could receive inconsistent

responses during an update by querying different servers. Weak consistency was

21

preferable to a stricter version because an update may have taken several minutes or

more to propagate, during which the name service should have remained available.

To perform an update to a registry, a user contacted one of the servers that

contained it. The server then sent the update to all other servers replicating the reg-

istry through Grapevine’s messaging service. It could do this because every server

had a registry that contained the structure of the entire database, essentially a regis-

try of registries. If a recipient of an update was temporarily unavailable, the update

remained in its inbox until it became active again.

The designers of Grapevine recognized that the registration database allowed

for the separation of naming from location, an important feature in a large informa-

tion system. The destination of an email message was specified by the recipient’s

name and registry instead of a message server. The registration database was used

to find the recipient’s primary message server and also allowed for secondary ones in

case the primary one was down. This distinction between identification and location

allowed people to change inboxes as long of they stayed within a registry.

Grapevine was widely used by Xerox’s research community for a number of

years, from which real world experience can be gained. In 1983 there were 17 servers

containing 5900 names [18]. Scaling of the system was limited by the fact that every

server contained the structure of the entire database. A larger system would have

needed more space on each server and would have led to a higher frequency of struc-

tural changes. Operational practice was to create more registries as the number of

names increased instead of adding to the existing ones. Increasing the size of the reg-

istries would have required larger servers, which were quite small by today’s stan-

dards. Creating more increased the possibility that an individual would move

between registries. Clearinghouse [17], the commercial successor to Grapevine, had

22

better scaling characteristics at the expense of adding a level to the naming hierar-

chy. This creeping partitioning of the namespace reduces the longevity of the names.

2.2 Lampson’s Global Name Service

Lampson used Grapevine and Clearinghouse as the basis for the design of another

global name service [12]. This service was meant to be large enough to encompass all

computers and users in the world. The idea behind it was to organize all names into

a global file system-like structure. A name’s properties, such as passwords and mail-

boxes, could be determined by looking in its directory. While the client interface

appeared similar to that of a file system, Lampson emphasized that the two were dif-

ferent. A file system needs faster access times and is smaller than a name service. A

name service also differs from a general database because the set of names and their

properties changes slowly. The requirements for Lampson’s service form a good start-

ing point for any widely deployed name service: arbitrarily large size, long life, high

availability, fault isolation, and tolerance of mistrust.

Lampson satisfied these requirements with a hierarchical namespace similar

to a file system. The value of a path to a node was its child or children. The leaves

were the values of name properties. For example, the value of the (fictitious) direc-

tory ANSI/MIT/LCS/Slottow/Mailboxes is the child or children of this node, the mail-

boxes that receive Slottow’s email. ANSI/MIT/LCS/Slottow/ names all properties

belonging to Slottow at MIT’s Laboratory for Computer Science.

Like Grapevine, Lampson’s name service was distributed and replicated. Rep-

lication occurred at the subtree level, a finer granularity than a registry. For exam-

ple, LCS could allocate multiple servers to hold directory copies of the ANSI/MIT/

LCS subtree. Updates originated at directory copies and were propagated by sweeps.

23

A sweep collected the changes made to each directory copy and then distributed the

combined changes back to each of them. The directory copies were organized in a

ring topology, and if one failed during a sweep the update could be lost. After a fail-

ure the copies needed to be reorganized into a new ring manually.

This name service used hierarchy as its chief method of dealing with growth.

The deeper the hierarchy in a naming scheme the less likely names will remain con-

stant as the people will cross partition boundaries more often. The names in this sys-

tem were aligned with the topology of the servers. This system may be good for

routing mail or authenticating users but failed to prove its ability to meet the com-

bined goals of arbitrarily large size and long-lived names, both important require-

ments for a URN system.

2.3 The Domain Name System

The Domain Name System (DNS) [14], the standard way for resolving the name of

any host connected to the Internet, is the most widely deployed resolution system.

Due to its extensive field testing and numerous implementations, DNS has grown to

be a mature, successful resolution system that has demonstrated what does and does

not work. The design goals for DNS differ from those of Grapevine and Lampson’s

service, perhaps due to DNS’s application and the experience its creators had with

existing networks and host naming. Among the goals are:

• Consistency: The namespace should be consistent and free from network specifics.

• Size: DNS replaced a previous resolution system that could not handle the growing

number of Internet hosts. Given the frequency of updates, the host name needed to

be stored and maintained in a distributed manner.

24

• Generality: Implementing a global service is costly so DNS is not restricted to one

type of data, such as a host’s IP address.

• Protocol Independence: While the Internet protocols are most prevalent, a dis-

joint set of information for each class of network should exist for a name so that it

can be resolved to network specific information.

The Domain Name System is a generalized resolution system for hierarchical

names primarily used to identify Internet hosts. The DNS name servers are distrib-

uted and maintained along administrative boundaries, so names typically reflect

organizational structure. Coupling the topology of the name servers to the structure

of the namespace allows for a simple delegation of naming authority and mainte-

nance responsibility. DNS is composed of a tree of name servers. Each name server

has authority over a zone, a logical portion of the namespace replicated on several

servers. Each zone contains a list of names and their attributes. If the name is a

host, then it will have an address attribute. If it is another zone, then its attribute

will be that zone’s name server.

At the top of the tree is the set of servers that contain the root zone. The

names in the root zone, such as EDU, COM, and GOV, are commonly known as the

top-level domains. A name server at the next level down, say for the EDU domain,

authoritatively knows all of the name servers that serve the EDU zone. It also has a

list of zones in the EDU domain and their name servers. For example, the root zone

contains the EDU domain name, which contains the MIT domain name, and so on.

The name servers for the MIT domain contain addresses of MIT’s hosts, such as Web,

the MIT Web server, and information about subzones, such as the LCS domain. A

name is the concatenation of delegation, so the name of MIT’s Web server is

web.mit.edu.

25

The method of replication employed by DNS is simpler than that of Grapevine

and Lampson’s global name service. Those services were administered remotely by a

few trained people. With widely distributed replicas, this required more complex

update protocols and structural overhead. In the DNS model, each server is adminis-

tered locally by its maintainer. An update to the names in a zone can only be per-

formed on a master server, which reads the name information out of a file. The other

zone replicas are secondary servers that either read their information from the same

file or use a simple protocol to poll the master server for updates.

To discover the attributes of a name, an application queries a resolver. Often

the resolver resides on the same computer, but it need not. It knows the address of at

least one name server that it can query, possibly receiving referrals to other name

servers. Through a repetition of queries the resolver will encounter a name server

that can resolve the name.

Like Lampson’s global name service, DNS names are strictly partitioned into

a hierarchy. However, a computer moves less frequently than information, and when

it does the disruption is not as great.

2.4 Harvest

The Domain Name System achieves a high degree of scalability through massive dis-

tribution and localized structural data. No DNS server knows about the entire tree

structure, nor does it need to. In contrast, Grapevine did not scale well since every

server needed to know the structure of the entire name system. The Internet’s rapid

growth, most recently fueled by the popularity of the Web, requires new ways of cop-

ing with the volume of data and users. While not a name resolution service, Harvest

[4] was designed for the Internet’s current size. Its main purpose is the gathering

26

and indexing of the vast quantities of available information so that topics can be

searched for quickly.

While Harvest employs new techniques for managing large amounts of infor-

mation, it also recognizes a large user base to whom it offers service. A single, or

even several, servers is no longer sufficient to quickly handle user requests. Harvest

has four main components that index the information and make it available in a scal-

able fashion:

• Gatherer: Indexes information from content providers.

• Broker: Provides a query interface to an index generated from one or more Gather-

ers.

• Replicator: Replicates Brokers to handle user demand.

• Object Cache: Caches network objects to reduce network and server loads while

increasing responsiveness.

The Replicator [8] is the most relevant aspect of Harvest for global resolution

systems. Both the Replicator and a URN resolution system have similar needs,

namely a large amount of data accessed frequently by a large user base.

The Replicator maintains a weakly consistent replicated directory tree of files.

Replicas are divided into groups in which files are flooded by the flood-d program.

The flooding pattern is determined by the logical network topology, that is the band-

width between members of each group. Every so often the network topology is redis-

covered and the flooding paths reconfigured automatically, requiring no human

intervention when servers fail.

A group maintains weak consistency using an anti-entropy flooding algorithm.

Occasionally, a replica starts a session to synchronize its information with that of a

27

logical neighbor, the result being that eventually every replica will have the same

information. This update method does not scale to many replicas, so they are divided

up into groups of limited size. The groups are connected to each other and exchange

updates.

2.5 Summary

Grapevine and Lampson’s global name service articulated the needs of a global reso-

lution system and contributed several ideas, primarily the importance of replication

and distribution, but also viable consistency and update methods. All of the name

services mentioned achieved scaling with a hierarchical namespace reflecting the sys-

tem’s structure. This sort of design inhibits the longevity of names, a major impedi-

ment to using any of these as a URN resolution system.

The Domain Name System serves as an example of a highly successful name

resolution system. While it demonstrates proven design choices, it also benefits from

extensive operational experience in areas not covered by its technical details. Among

these are the administration of a global name database, legal issues surrounding

name assignment, and demands by those wishing to own names.

Harvest’s Replicator provides a means of dealing with user demands. As a

core component of an information infrastructure the URN resolution system will be

one of the most utilized Internet services. The Replicator demonstrates how to han-

dle this responsibility.

28

29

C h a p t e r 3

Uniform Resource Names

While much has been said about the advantages of URNs, little detail has been given

about them. The functional requirements placed upon URNs make them appropriate

for an information infrastructure. These requirements would be meaningless with-

out a practical resolution system that can fulfill them. It is expected that there will

be different types of URNs, differentiated by their syntax. Clients should be able to

resolve existing and future types of URNs without modification. The resolution

framework lays out a system that has the potential to meet the URN requirements

while isolating the client from the specifics of a URN scheme.

3.1 Functional Requirements

[20] defines the function of URNs:

The purpose or function of a URN is to provide a globally unique, per-
sistent identifier used for recognition, for access to characteristics of
the resource or for access to the resource itself.

30

The functional requirements for URNs make them appropriate for use in a

global information architecture:

• Global scope and uniqueness: A URN has the same meaning everywhere so it

must be unique and cannot be assigned to multiple resources.

• Persistence: A URN will last indefinitely even if the resource it names does not.

Therefore a URN should never be reused.

• Scalability: URNs need to be appropriate for naming any resource now and in the

future.

• Legacy support: URNs should accommodate existing namespaces.

While not all URN schemes will satisfy all of these requirements, the more they meet

the more effective they will be.

3.2 Resolution Requirements

Ultimately a URN needs to be translated by a resolution system that will determine

how well it meets its purpose. The requirements for a resolution system are based on

three assumptions [21]:

• Longevity: While URNs are persistent identifiers, the resources they name will

change network location. Furthermore, the infrastructure on which URNs rely,

such as network layers, protocols, file systems, and even the resolution system

itself, will evolve.

• Delegation: Delegation is an important method of distributing the responsibility

for assigning URNs to those most interested. Both naming authority and resolu-

tion responsibility will be delegated at multiple levels.

31

• Isolation: An authority has control over name assignment, resolution, and policy

within its namespace independent of others. Furthermore, they are free to choose

resolution services.

The three major requirements for a resolution system, evolution, usability,

and security, support these assumptions.

3.2.1 Evolution

The first requirement, evolution, ensures that the resolution system will promote the

persistence of URNs. While it is hard to predict how the Internet will change, it is

certain that it will. A URN resolution system needs to be long-lived, so it will have to

evolve with the changes. Resolution will likely evolve in a number of ways. One is

that various types of URNs will have varying resolution mechanisms. The system

will need to be able to handle the addition of new URN schemes, either through gen-

erality or by creating specific components responsible for the new types. Existing res-

olution systems will also evolve in multiple ways, for example by changing the

resolution algorithms or the communication protocols. In fact, any part may need to

evolve with changes in demand and from operational experience. Lastly, usage of

URNs will evolve from narrowly defined types based on existing namespaces to pure

identifiers.

3.2.2 Usability

Publishers, users, and maintainers make different demands on the resolution sys-

tem. Publishers, the providers of content, need URNs to be resolved quickly and,

more importantly, correctly. They need to create and manage URNs cheaply and eas-

ily while making them globally available. Publishers will also want resolution to con-

sider user characteristics, such as geographic location and network bandwidth.

32

While they will provide long-term information about their resources, publishers will

also need to provide short-term information to cover short-lived changes in service

and delays in changing the long-lived information.

The priority for the users is that URNs be resolved quickly and that the inter-

face be simple. A user may need to evaluate resolution information to determine

which part is best suited to her needs, for example by picking from resolutions based

on authenticity. What these needs are and how to express them must be easy to

understand. The user will want to interact with a friendlier, albeit shorter-lived,

name that is easier to type and remember than a URN may be.

Finally, management of the resolution system, should require as few network

resources as possible. Pricing will support the system and prevent abuses to it by

putting negative pressure on the registration of extraneous namespaces. Configura-

tion needs to be simple enough so that it is done properly.

3.2.3 Security

Since URNs will be a basic part of the information infrastructure, users depending on

the integrity of the resolution system will have little tolerance for security violations.

There are several ways that the system could be attacked, the simplest being denial-

of-service. More subtle attacks could be made by servers that are part of the system.

These servers could potentially provide incorrect information either to clients or to

other servers. Thus, there must be a verifiable, authoritative version of resolution

information. Security violations can be combatted through widespread distribution

and replication, minimizing the reliance on a single server.

33

3.3 Resolution Framework

Different URN schemes will need different methods of resolution that all fit within

the above requirements. However, client software cannot be modified every time a

new URN scheme is created nor should it be required to know specific resolution

methods. A general framework provides an abstraction for the resolution process1.

The framework uses hints to indicate how to resolve a URN. Although a hint will

usually be correct, it is not guaranteed to be. Section 5.3 discusses hints in more

detail. The act of resolution is simply trying to find the correct hint, progressing from

fast, unreliable sources to slow, reliable ones.

There are a number of different components essential to a robust URN resolu-

tion system. Publishers need computers that serve Web pages with URNs and hints.

Clients resolve URNs through local proxies to abstract the specifics of the resolution

process. The proxy will likely consult a Resolver Discovery Service which will find

the appropriate resolver. Naming authorities maintain the resolvers that map URNs

into other information, such as URLs.

Figure 1 shows the steps for resolving URNs within the framework. The user

begins by obtaining a URN from some source. In the figure Web Server A returns a

page with two links specified as URNs: URN1 and URN2. Since the server has a hint

for URN1 it can either include it with the page or the client can request it. Consulting

the source is the primary way to resolve a URN. Sources will want to cache hints to

provide the best performance for their users.

If the source has no hints or stale ones for a URN, then the client has to use

the fall back resolution method, as in the case when the user wants to view URN2.

1. This framework is more extensive than the one in [21], which only considers RDS’s and
resolvers.

34

The client needs to contact its authoritative resolver. Publishers of URNs maintain

the resources needed to resolve their names, allowing them maximum control over

name assignment, quality of service, and cost. Since a URN may not give any indica-

tion of how to find its resolver, the global Resolver Discovery Service (RDS) contains

enough information to map a URN to one or more resolvers. Different types of URNs

have different needs and ways of mapping to resolvers. URNs based on arbitrary

strings may need an RDS that is one global lookup table. However, the RDS for a

Figure 1. URN Resolution Steps
1. The source (Web Server A) of the URN is consulted.
2. If source cannot provide any hints, the client asks a proxy server for hints.
3. The proxy consults a Resolver Discovery Service.
4. The client consults one or more resolvers.

Information Mesh Home Page

Client

Teddy's Home Page
Short But Sweet Bio

I was born and raised in Los Angeles (the city most likely to fulfill biblical prophecy), California. Yes, I actually
lived in the city. I attended Van Nuys High School until I was 18. I'm now a gradual student studying electrical
engineering and computer science (Course 6-2) at the Massachusetts Institute of Technology. Cambridge is the
second city that I've ever lived in. I used to live in MIT's Burton-Conner dormitory. I was co-floor chair of my
floor, Burton 1, along with Alex Chen. I now live in Tang Hall.

Besides going to classes I am working on my thesis as a member of the Advanced Network Architecture Group
at the Laboratory for Computer Science. Before this summer I worked for the MacDev group, part of Distributed
Computing and Network Services. My work included improving the Macintosh version of TechInfo, porting
TechInfo to the Power Macintosh, enhancing the interface of the WWW to TechInfo gateway, and adding support
for KClient to TechNotify. My resume gives a more complete picture of my experience.

I took 6.111 fall semester of my junior year. I created a PacMan-like game for my final project.

Mind Candy

My hobbies include reading, origami, and wildlife photography. In fact, I took a seminar, SP.757, where we took
pictures and modified them with Photoshop to create a final project. Most TV programming is garbage, especially
the local news. The few good shows are Babylon 5 (excellent), the Simpsons, The X Files, ER, and Animaniacs.
I'm also a fan of Robotech. Why were most of the best cartoons, such as Bugs Bunny, Rocky and Bullwinkle, and
Tom and Jerry made at least 30 years ago? Many other shows have home pages.

Audio Affinities

I try to listen to college/alternative music, which is difficult because Boston lacks good radio stations. The best
station around is WBCN. The best radio station anywhere is 106.7 KROQ in LA. KROQ is the voice of god. My
favorite music groups are U2 and Depeche Mode. I appreciate good movie sound tracks, most notably Glory, Much
Ado About Nothing, the Last Emperor, and animated Disney films with soundtracks by Howard Ashman.The
Ultimate Band List has information on practically every band in existence.

Fun with the Funnies

The greatest comic strip on the face of this earth is Calvin and Hobbes. Following closely behind:

For Better or For Worse Foxtrot Dilbert Jump Start Robotman

URL: http://mit.edu/edward/www/

User

Web Server A

Proxy Server A

get M
esh

Hom
e

Page

ask Resolver A

re
so

lve
URN2

URL2

resolve URN2 ask Resolver A

resolve URN2

URN1
URN2

Teddy Slottow (edward@mit.edu)
Last modified: Sun Mar 23 19:07:34 EST

Resolver
Discovery

Service

Resolver D

Resolver C

Resolver B

Resolver A

URN1: URL1

35

strictly hierarchical URN scheme that can parse the URN may only need the map-

ping between delegation and resolvers.

A proxy server isolates clients from the RDS. There may be many RDS’s that

implement the semantics of the URN schemes. While we cannot expect client soft-

ware to be updated for each new RDS, system administrators can keep the proxy

servers updated. The proxies are extendable by adding resolution code made avail-

able for each RDS. In the figure, the client asks the local proxy server to resolve

URN2. The proxy asks the appropriate RDS, which returns the hint that Resolver A

can authoritatively resolve URN2. Resolver A resolver the URN to URL2. Alterna-

tively the owner of Resolver A could have delegated authority over URN2 to another

resolver such as Resolver B. Then Resolver A would return a hint which could be the

name of another resolver (in this case Resolver B) or even another URN.

An RDS and a resolver serve similar functions; they both return hints for

URNs. An RDS is a large scale, general service meant to redirect a resolution to a

resolver. A resolver is much smaller and often can resolver a URN to a location. A

resolver can also be more specialized to suite an individual publisher’s resolution

needs. Either one can return hints that redirect or resolve a URN.

The proxy server performs several secondary tasks. One is to provide a mech-

anism for site-wide hints. A site may choose to mirror a popular resource locally. The

proxy serves site specific hints for that resource along with those from the RDS. By

serving site-wide hints, the proxy can also be used to create site-wide URNs and even

entire schemes without client configuration. For example, a company may wish to

assign a name for an internal document that should not be exported outside its intra-

net. The proxy also acts as a hint cache. Caching as many URNs as possible will

reduce the resolution time, especially for popular URNs.

36

This framework allows for resolution systems to potentially meet the given

requirements. It supports evolution by accommodating multiple URN types without

client knowledge. Since all interaction with the RDS is through a proxy, the RDS can

evolve or even be replaced. By using the same protocol to communicate with all

potential sources of hints, including proxies and resolvers, the resolution steps can be

very general. In terms of usability, most URNs can be resolved quickly by caching at

the source. Providers can make them globally available by registering with an RDS

and running a resolver. This framework omits discussion of security. Individual sys-

tem designers are responsible for meeting the security and other requirements.

3.4 URN Syntax

To accommodate new and existing namespaces a URN has an extremely general syn-

tax [13]:

urn: NID: NSS

The prefix “urn: ” identifies a string as a URN. Following the prefix is the case-insen-

sitive NID (Namespace Identifier), which defines the type of URN (its scheme). The

NSS (Namespace Specific String) is a globally unique name within an NID

namespace. Each NID has a published syntax, resolution mechanism, and definition

of lexical equivalence. In this manner, different types of URNs can be created that

support many existing namespaces, and new namespaces can be created for various

applications.

For example, a URN scheme based on ISBN numbers could have the NID

“ISBN” while another based on pure identifiers for resources could have the hypothet-

ical NID “PRI ”. In the ISBN namespace, the NSS’s would be actual ISBN numbers

37

which have a well published, hierarchical syntax. In the PRI namespace, the struc-

ture, if any, may be kept hidden to maintain the illusion of a flat space.

URNs have a canonical form that must be used for all interchange and trans-

port. Two URNs are considered lexically equivalent if, after normalizing their cases,

they begin with “urn: ”, have the same NID, and have the same NSS. Namespaces

can have a more restrictive definition of lexical equivalence for the NSS. More details

about the syntax, including a more precise definition of the syntax, %-encoding,

reserved and excluded characters, and determining lexical equivalence can be found

in [13].

3.5 Summary

URNs have properties that make them fit well within a global information infrastruc-

ture. The most important way in which URNs are suitable for this is through the

ability to separate identification from location while still allowing for existing

namespaces. The resolution framework provides a model for different types of URNs

to be location independent. Location independence will promote the creation of long-

lived identifiers ideally suited for a wide range of services, including persistent

names for Web resources, lifelong email addresses, and public key systems.

38

39

C h a p t e r 4

Resolver Discovery Service

One type of URN that has the potential to be long-lived by exhibiting a high degree of

mobility is the pure resource identifier (PRI). Resolving one within the framework

requires a Resolver Discovery Service that is scalable, responsive, and reliable. The

RDS needs to separate the delegation of naming authority from resolution responsi-

bility so that the naming authorities are independent and the names mobile.

4.1 Pure Resource Identifiers

Pure resource identifiers are names specifically created to last indefinitely by omit-

ting location information, meaningful words, and anything else that may change over

time. Thus, they act solely as identifiers. PRIs are suited to any application that

would benefit from globally unique, persistent names. Possible uses include naming

Web resources, creating permanent email names, and serving as identifiers in a pub-

lic key distribution mechanism. The lack of mnemonics in PRIs frees them from a

40

number of problems. First, by omitting meaningful words they do not have to change

when a resource moves, which would have invalidated the meaning. Omitting mne-

monics also avoids legal problems with conflicts over trademarks. Finally, character

set and language issues that afflict other namespaces become moot.

Another factor that limits mobility is the partitioning of a namespace by the

use of hierarchy that is coupled with its management and resolution, as once a name

is created it is often locked into a specific delegation of authority and resolution,

delineated by its syntax. This problem plagues Grapevine, Clearinghouse, Lamp-

son’s global name service, and DNS. Over time resources move, and their owners will

need the ability to change the entity responsible for resolving their names.

PRIs utilize hierarchy to distribute naming authority and ensure global

uniqueness without limiting their mobility. This can be accomplished with a very

general syntax for the NSS:

<subspace name><resource name>

A PRI has a subspace name followed by the name of a resource within that subspace,

both being zero or more characters. A subspace is a subset of names that share a

common administrative authority denoted by a common prefix. Since there are no

separator characters between components of the name, this syntax allows for a fluid

delegation hierarchy. The subspace name may be a concatenation of administrative

prefixes. Likewise, the resource name may begin with another concatenation of pre-

fixes, so the entire name can be deconstructed into a hierarchy of delegation author-

ity. Where the subspace name ends and the resource name begins can change over

time by adjusting which prefixes form the subspace, giving PRIs greater mobility.

With this syntax there is no way to tell the structure of a PRI without resolv-

ing it. For example, say MIT owns the subspace “abc” and gives a portion, “def”, to

41

LCS, which creates the name “1”. The full name of the resource is “abcdef1”. While

not evident from the syntax, this name’s subspace is “abc” or “abcdef”. The latter

example is a concatenation of delegation that forms a new, more restricted subspace.

In this form MIT has lost control over then names with this prefix.

The task of the RDS is to determine which part of a PRI specifies the subspace

and return the corresponding hints. This strategy will work for any type of name

that goes from more general to more specific, so it will work for any URN that can be

put in this canonical form. If resolution proceeds to a resolver or another RDS, one of

them may apply a transformation first to put the URN in a form it needs, or it may

know the syntax of the URN.

4.2 RDS Requirements

The RDS has a number of requirements that, unsurprisingly, are similar to those for

a resolution system.

• Compliance: The RDS should fit with the requirements for a resolution system

and also realize the functional requirements for URNs.

• Scalability: The Internet has been growing at an exponential rate. The target

number of PRIs is on the order of 109 and the number of subspaces 107. Along with

the number of subspaces, the RDS needs to scale with the number of users. There

are about 40 million Web users over the age of 16 in the U.S. and Canada now [16]

but that number is increasing as the Internet becomes ubiquitous. While actual

numbers are impossible to determine, 109 worldwide resolution requests per day is

not unreasonable. While most of the requests will be handled by caching either

locally or at the source, the demands on the RDS will still be high and growing. The

42

service may need uncommon scaling techniques such as replicating based on usage

and taking into account network bandwidth.

• Evolution: The RDS needs to provide an evolutionary path with little disruption to

the user. Any part of the RDS may need to change, including hint content, security

methods, and internal protocols.

• Automation: Administration should be minimal. A heavily used system needs to

have the right resources available in the right places. The RDS will be large

enough to make excessive oversight unmanageable. Instead the entire system

should be largely self-maintaining.

• Robustness: The service needs a high degree of reliability because people will take

for granted that it works. Not only should it mask failure, it should also be able to

recover automatically when possible.

• Speed: While the RDS is the fall back method, it still needs to be quick. Name res-

olution adds an extra layer of communication that does not exist today, and users

will not accept it if it adds a noticeable amount of time to accessing a resource.

• Delegation: Authority and resolution should be easy to delegate so that a pub-

lisher has a wide range of choices of service providers. These providers would offer

to give a publisher a subspace and manage administrative duties. However, once

the publisher has authority over a space, it should be free to leave its provider.

• Access: Ownership of a subspace should be accessible to everyone, from individu-

als to large organizations. The requirements to become a naming authority should

be minimal to allow for the greatest opportunity.

43

4.3 Partitioning and Delegation

There are two extreme forms that the RDS can take based on the chain of resolution

responsibility: deep, which has a high degree of partitioning, and flat, which has

none. Deep is similar to other naming systems, such as DNS, where delegation of

resolution responsibility mirrors the structure of the name. A flat model does not

leverage this structure, instead being a single collection of names.

In the deep model, top level subspaces are registered with the root authority.

The top level subspaces delegate parts of their spaces to second level authorities, and

so on. Not only do they delegate naming authority, they also pass off resolution

responsibility. For example, MIT gets a subspace from the root authority, and LCS

gets space from MIT. Whenever the root RDS gets a query for one of LCS’s PRIs, it

finds that the PRI is in MIT’s subspace and returns hints pointing to MIT’s resolver.

When MIT receives a query for the PRI, it determines that it belongs to the subspace

delegated to LCS and returns hints for LCS’s resolvers.

The main disadvantage of this model is that the hierarchy forces a strict parti-

tioning of the namespace, restricting the mobility of the names. This problem exists

as long as the resolution is tied to the delegation of authority. However, PRIs do not

express their hierarchy so the partitioning is not fixed, regardless of how they were

created. Over time the majority of subspaces may flatten as they move, leading to a

flat RDS.

The opposite extreme from a deep RDS is a flat one in which a PRI is treated

as a single subspace name followed by a resource name. Treating the naming scheme

as flat promotes mobility by minimizing partitioning even if it is not flat. Authority

may still be delegated, but all resolution responsibility remains with a central entity.

For example, MIT’s subspace would be registered with the central entity. MIT has

44

the ability to give LCS a subspace, but once it does so, it loses control of the subspace,

as it too is registered with the central entity.

It is probable that the RDS will be a combination of the flat and deep model.

When the structure of the name can be exploited, some may prefer to take advantage

of it while others will prefer to rely on the root. The strength of a PRI is that it

allows flexibility, letting publishers choose the resolution model and move between

the two without changing names. The flat model is the more general, and the more

difficult of the two to implement. We expect it to be more prevalent, so it is the one

that the RDS must be prepared to accommodate.

4.4 Possible Architectures

The architecture of the RDS needs to be suitable for an extremely large, flat

namespace. One, known as NAPTR [7], that was proposed to the URN Working

Group cannot meet this need. However, our RDS was created to meet it and the

requirements.

4.4.1 NAPTR

Since DNS is a mature, widely used resolution system, extending it to handle URNs

is easier than creating a new RDS from scratch. NAPTR proposes a way to use DNS

to resolve new URNs while grandfathering in existing ones through a series of que-

ries and rewrite rules. It operates by extracting a part of a URN and looking up its

DNS NAPTR record, which contains two transformation fields. One is a new string

to lookup. The other is a regular expression that when applied to the original URN

will extract some part to lookup. To resolve a URN, a client performs a series of

45

transformations and queries until a failure occurs or a terminal NAPTR record is

encountered pointing to a resolution service.

NAPTR works best for URNs with a clearly delineated structure so that regu-

lar expressions can extract pieces from it. Unfortunately, regular expressions are

hard to write and are confusing, which could lead to problems if they are incorrect.

Furthermore, regular expressions are not powerful enough to express transforma-

tions that may be needed for grandfathered namespaces, such as reversing the ele-

ments of a name with an arbitrary number of divisions, nor are they capable of

deconstructing PRIs. By relying on DNS, NAPTR inherits its problems, including

names with limited mobility. NAPTR is a quick solution to a problem that requires

careful thought. Any popular RDS will exist for a long time and should be well suited

for its task.

4.4.2 Our Architecture

We created an RDS designed to support the longevity of URNs, especially PRIs, in a

scalable, reliable manner. The basic architecture (see Figure 2) consists of two main

components, the central and distributed databases. The central database contains

the authoritative version of all subspace hints. It has no interaction with clients that

wish to resolve URNS, just those wishing to manage their subspaces, so the demands

on it are less stringent than on the RDS as a whole. It needs this isolation because,

as the official source of all hints, it has to be protected from attack. Also, its availabil-

ity does not need to be as high, nor does it have the ability to handle queries from all

URN users. Therefore the central database can be created from a fairly conventional

solution, possibly even shrink-wrapped database software.

46

Naming authorities will either directly or indirectly request the creation of

and modifications to hints stored in the central database. The direct way is by com-

municating with the central database administrator through some means, such as

email or a Web-based interface. The other, the recommended method, is to contract

with a subspace provider. Subspace providers can compete through lower prices and

quality of service, for instance, with custom software for managing subspaces. All

transactions go to the subspace providers, which pass them to the central database or

to other providers. The effect of this is to promote competition in the registration pro-

cess and to reduce the number of entities with which the central database must com-

municate.

The distributed database, with less protection and higher availability than the

central one, handles the large magnitude of resolutions. It employs a high degree of

Figure 2. Our RDS Architecture
The RDS is divided into centralized and distributed parts. The hints in the
distributed database are partitioned and replicated by replication groups, collections
of members controlled by a leader that store the same sets of hints.

R

e
p

l i c a t i o n G r o
u

p

Leader

Member

Member

Replication
Group

Replication
Group

Replication
Group

Replication
Group

Replication
Group

Replication
Group

Replication
Group

Central Database

Distributed Database

47

distribution and replication to achieve scaling in the face of failure. The database is

composed of replication groups arranged in a hierarchy, although, unlike the DNS,

this hierarchy is not based on its contents. Each replication group is a collection of

members that maintain the same set of hints. One member in each group serves as

the leader and acts for the group as a whole. Replication groups will be discussed in

more detail in Section 5.2. The central database sends updates to the root replication

group, which in turn filter down to the appropriate places in the tree. URN resolu-

tion can be initiated at any member. Members route queries through the tree of

groups to the location of the needed hints.

4.5 Summary

PRIs are a kind of URN specifically designed for mobility and longevity. Our RDS is

tailored for extracting subspaces from these names and finding their hints, although

it is general enough for other types of URNs. Given the needs of and demands on an

RDS, a freshly designed solution such as ours is justified. This system has a widely

distributed and replicated component to serve the needs of the URN users and a cen-

tralized and more conventional part for publishers to register hints. The distributed

database is described in the next chapter.

48

49

C h a p t e r 5
The Distributed Database

The distributed database component of our RDS uses a B-tree structure to achieve

scalability independent of its contents. The algorithms for manipulating a B-tree

require several modifications to make them appropriate for a distributed and repli-

cated system. While they treat the nodes in the B-tree as single entities, the nodes

are actually groups of exact replicas. Each group has a leader that is responsible for

membership and other group-wide tasks. A group maintains weak consistency

through the use of an epidemic flooding algorithm.

Attackers can pose a serious threat if they can alter hints undetected. Repli-

cation shields the database from attack by providing redundancy. The hints them-

selves are digitally signed to prevent falsification. Auxiliary hints can be added by

anyone to correct and augment the ones inserted by the central database. All hints

share a number of properties. They indicate the next step in resolving a URN, and

50

possibly meta-information to aid in choosing which resolution step to follow if multi-

ple ones are given.

The central authority runs the ADMIN system alongside the central database.

ADMIN provides services to the replication groups and monitors the database as a

whole, ensuring it is running efficiently, fixing and reporting problems, and collecting

statistics.

5.1 Tree Structure

The distributed database is arranged in a tree of replication groups that is unrelated

to the delegation structure of the names it contains. The tree must optimize search

time, so we want to minimize its height, hopefully to about four so only a small num-

ber of servers need to be contacted during a search. Consequently, given the target

number of subspaces, the tree will have a high branching factor. The distributed

database may operate for over a decade with little change. In that time the tree

should not become overly unbalanced because the database cannot be shut down for

maintenance.

A B-tree [6] has an arbitrary branching degree and remains balanced with a

worst-case height of , where n is the number of keys in the tree. Search and

insertion times are proportional to the height of the tree. The traditional algorithms

for these operations require modifications to form the basis of a distributed system.

Furthermore, the searching algorithm requires additional development because the

distributed database needs to find the subspace of a URN instead of an exact match.

O nlog()

51

5.1.1 Traditional B-tree Algorithm

A B-tree is a generalized version of a balanced binary search tree that can have an

arbitrary branching factor. Its general properties are1:

• Each node x has x.n keys, , stored in non-decreasing order.

• Each internal node x has children nodes, . The keys

fall between those of its children such that

.

• All leaf nodes have the same depth.

• For each non-root node x, , where t is the minimum degree. The

root must have at least one key. Consequently, each internal node except for the

root has at least t children. A node is full when it has keys, the maximum

allowed.

Inserting a key into a B-tree is more complicated than for a binary search tree

since the tree must remain balanced with a uniform depth. To maintain this invari-

ant, a non-root splits in two when it becomes full, sending its median key to its par-

ent. Thus, a B-tree usually grows horizontally instead of vertically. Since the root

node has no parent, when it becomes full a new node is created as its parent so that it

can split. When the tree has become full at its current height, it grows from the top

instead of from the bottom as in conventional trees. An insert operation starts at the

root, which splits if full, and proceeds down to the appropriate leaf. Before descend-

ing to a child, the child is split if it is full, guaranteeing that it has room for a new

key.

1. This description of the B-tree algorithm is derived from [6], pages 384-393.

x k 1[]. …x k n[].

x n. 1+ x c 1[]. …x c x n 1+.[].

x c i[] k x c i[] n..[]. . x k i[]. x c i 1+[] k 1[]. .≤ ≤

t 1– x n. 2t 1–≤ ≤

2t 1–

52

An example insertion is shown in Figure 3. The key d is being inserted into a

B-tree of height one populated by single-letter keys. The tree has a branching degree

of two, so each node can have between one and three keys. In part a. the key is

inserted at the root. The root is full, so an empty parent node is created, and the root

splits in half, pushing up its median key m. This is the only way that a B-tree can

grow vertically. With the root no longer full, the insertion can progress, as shown in

part b. d needs to be inserted into the first leaf, which is full, so it is split and its

median key pushed up (part c.), growing the tree horizontally. With enough room in

the appropriate child (the second leaf), the insert can complete.

Here is an outline of the insertion algorithm. More detailed pseudocode can

be found in [6].

Figure 3. Single Insertion
(a) The key d is inserted into a tree with a branching degree of two.
(b) The root, which is full, splits, increasing the depth of the tree. The insert

proceeds to the child.
(c) The leaf that d needs to be inserted into is full, so it splits before the insert can

progress downwards and finish.

d

d

d

m

h sh m s

u w yqj ka c g

m

u w yqj kd ga

sc h

(c)

(b)(a)

j ka c g u w yq

53

Insert(tree , key)
1 if tree.root is full
2 create a new node x as parent of tree.root
3 tree.root ← x
4 Split(x, 1)
5 InsertNonfull(tree.root, key)

Insert depends on two operations: Split and InsertNonfull. Split takes a node

and the index of a child and splits the child in half.

Split(x, i)
1
2 create a new node d
3
4 if c is internal,
5
6 delete and, if c is internal,
7 insert d at
8 insert keymed at

Splitting a child node guarantees that it is not full. A key can be inserted into

it with InsertNonfull:

InsertNonfull(x, key)
1 if x is a leaf
2 insert key into x.k, maintaining the order
3 else
4 find the child c to insert key into
5 if c is full
6 Split(x, index of c)
7 find the child d to insert key into
8 InsertNonfull(d, key)

To find a key, the tree is traversed down from the root until either it is found

or the search reaches a leaf that does not contain the key, in which case the key is not

in the tree. The search returns the node in which the key was found and its index:

Search(x, key)
1 if key ∈ x.k
2 return 〈x, index of key〉
3 if node is a leaf
4 return 〈nil, 0〉
5 else
6 find the child c to search
7 return Search(c, key)

c x c i[].←

d k. c k t 1…2t 1–+[].←
d c. c c t 1…2t+[].←

key med c k t[].←
c k t[]…c k 2t 1–[].. c c t 1+[]…c c 2t[]..

x c i 1+[].
x k i[].

54

This algorithm has some notable advantages. Insertion requires a single

downward traversal of the tree, and splitting is a localized operation that takes

time. Furthermore, storing keys in all nodes of the tree is beneficial for resource uti-

lization and load balancing.

The B-tree has some shortcomings when applied to a distributed system. One

is that while the insertion algorithm only inserts one key at a time while the central

database will need to insert many at once. Also, because a node is the abstract repre-

sentation of a replication group, splitting a node is a fairly expensive operation that

requires the cooperation of some number of networked computers.

5.1.2 Insertion Enhancements

The insert algorithm needs to be enhanced if a B-tree is to be used as the database

structure, with each node of the tree being a replication group and the keys the URNs

or subspaces of hints.

5.1.2.1 Root Splitting

In the traditional B-tree, when the root is full a new one is created. In a distributed

network B-tree the root cannot change because others depend on it being well-known.

The central database needs to communicate with the root, as does ADMIN, the cen-

tral management and monitoring program. To keep the root constant, Insert relies on

SplitRoot. Changes are given in bold:

Insert(tree , key)

1 if tree.root is full

2 SplitRoot(tree .root)

3 InsertNonfull(tree.root, key)

O 1()

55

SplitRoot creates two new nodes that become the children of the root and seeds

them with the root’s data:

SplitRoot(root)
1 create two new nodes, x and y
2
3 if internal,
4
5 if internal,
6 ,

5.1.2.2 Node Perspective

Another difference is that the data structure cannot be manipulated as easily when it

is implemented with networked computers. Creating a new node with half the keys

and children of an existing node is not just an array copy; it involves multiple com-

puters cooperating over the network. The distributed algorithm considers what each

node must do and how it communicates with others. We take an object oriented

approach, so algorithms are applied on a node that refers to itself as this. Insert is

now the only entry point for insertion into all nodes so each node needs a new field,

isRoot, which is true if the node is the root. Before calling Insert on a node there is no

way to know if it is full. While this could be verified, the check would require an

extra round trip communication. Here is the object-oriented outline for the new

Insert:

Insert(key)
1 if this is full
2 if isRoot
3 SplitRoot()
4 InsertNonfull(key)
5 return true
6 else
7 SplitNonroot()
8 return false
9 else
10 InsertNonfull(key)
11 return true

x k. root k 1…t 1–[].←
x c. root c 1…t[].←

y k. root k t 1…2t 1–+[].←
y c. root c t 1…2t+[].←

root k. root k t[].← root c. x y,{ }←

56

If this node is the root and it is full, it splits itself. Since it is now guaranteed

to not be full, InsertNonfull is called on it to carry out the insertion. Again, when

Insert is called on a node that is not full, InsertNonfull is called. This algorithm

diverges from the original in that an Insert can be called on a node that is full. If it is,

the node has to split itself and then have the parent try again, which is indicated by

Insert returning false. A node also needs a new field, p, that is a pointer to its parent.

When an internal node splits, half of its children must be told of their new parent.

SplitNonroot splits a non-root node in two:

SplitNonroot()
1 create a new node x to be the new sibling
2 x.p ← p,
3 if this is not a leaf
4
5 for
6
7 tell p about split, , and x
8 delete
9 if internal, delete

A new node is created by forming a replication group from unused members.

It is assumed that the minimum amount of resources are available. If they are not,

then the central maintainers can temporarily make up the deficit until third parties

contribute more members.

Here is the new, node oriented version of InsertNonfull:

InsertNonfull(key)
1 if key ∈ k
2 replace old key with key
3 else
4 if this is a leaf
5 insert key into k, maintaining the order
6 else
7 find the appropriate child d to insert key into
8 if !d.Insert(key)
9 InsertNonfull(key)

x k. k t 1…2t 1–+[]←

x c. c t 1…2t+[]←
i t 1+ 2tto←
c i[] p. x←

k t[]
k t[]…k 2t 1–[]

c t 1+[]…c 2t[]

57

InsertNonfull replaces the key if it exists and inserts it if it does not because a

key is a subspace of a URN with an attached hint. In line 8, the key is inserted into a

potentially full child, in which case the child will split and be unable to finish the

insert. If this happens, InsertNonfull is called again. This time the child will not be

full so the insert will succeed.

It should be noted that only one insertion can be performed at a time. During

an insert operation the tree may be internally inconsistent and cannot be guaranteed

consistent until the operation completes. Atomic operations and synchronization

between nodes needs to be minimized so concurrent inserts are not allowed.

5.1.2.3 Augmentations for Searching

Searches may be initiated at any node in the tree instead of originating just at the

root, unlike the traditional algorithm; a search may ascend as well as descend the

tree. We have already augmented the node data with the parent so the search can

ascend the tree. The enhanced search algorithm in Section 5.1.3 also needs each

internal node to keep track of the range of keys in the subtrees rooted at each of its

children. From this information it can determine the direction to search and refrain

from descending unnecessarily.

Since all inserts proceed through the parent, it receives enough information to

track child ranges. Each internal node x has x.n + 1 ranges, x.r[1] … x.r[x.n + 1].

Each range has two fields, f and l, that denote the first and last keys in it. Here is

modified pseudocode to maintain r, with changes in bold:

SplitRoot(root)
1 create two new nodes, x and y, to be the children
2 ,
3 if this is not a leaf
4 and
5
6 ,

x p. this← x k. k 1…t 1–[]←

x c. c 1…t[]← x r. r 1…t[]←
c 1…t[] p. x←

y p. this← y k. k t 1…2t 1–+[]←

58

7 if this is not a leaf
8 and
9
10
11 ,

SplitNonroot()
1 create a new node x to be the new sibling
2 x.p ← p,
3 if this is not a leaf
4 and
5
6 tell p about split, , x, and x’s range
7 delete
8 if internal, delete and

InsertNonfull(key)
1 if key ∈ k
2 replace old key with key
3 else
4 if this is a leaf
5 insert key into k, maintaining the order
6 else
7 find the appropriate child d to insert key into and its range w
8
9 if !d.Insert(key)
10 InsertNonfull(key)

5.1.2.4 Key-to-child Ratio

Another way that the algorithm fails to consider physical resources is in the number

of hints per node. Each internal node has one more child than keys, so a significant

percentage of its data is composed of structural overhead. Also, the number of keys

in the tree is a function of its height and branching degree:

where h is the height of the tree and n is the total number of keys. The number of

nodes g that contain these keys is:

.

y c. c t 1…2t+[]← y r. r t 1…2t+[]←
c t 1+ …2t[] p. y←

r k 1[] k t 1–[],〈 〉 k t 1+[] k 2t 1–[],〈 〉,{ }←
k k t[]← c x y,{ }←

x k. k t 1…2t 1–+[]←

x c. c t 1…2t+[]← x r. r t 1…2t+[]←
c t 1+ …2t[] p. x←

k t[]
k t[]…k 2t 1–[]

c t 1+[]…c 2t[] r t 1+[]…r 2t[]

w w key∪←

2th 1– n 2t()h 1+ 1–≤ ≤

2th 1–
t 1–
-------------- 1+ g 2t()h 1+ 1–

2t 1–
-------------------------------≤ ≤

59

Figure 4 shows the number of keys and nodes in a B-tree of height three for

various branching degrees. It shows that a tree with a branching degree of 50 can

hold up to 108 keys, but this would require up to 106 nodes, with each node having

just 100 keys. The number of keys per node and the branching degree need to be

independently controlled because a replication group should have many more hints

than children. The optimal ratio between keys and children can only be learned from

experience; nonetheless, the algorithm needs to be modified to allow greater control

over the composition of the B-tree.

The ratio of keys to children can be adjusted by adding a new field, s. Instead

of one key separating two children, s keys do. An internal node has children.

At its fullest any node will have keys. To achieve this ratio, when a node

splits it pushes up s continuous keys to its parent instead of just one. Thus the num-

ber of keys in an internal node will always be a multiple of s.

During an insert to an internal node, the new key may fall between two keys

not separated by a child. The number of keys between two children cannot be

Figure 4. Number of Keys and Nodes for a B-tree of Height Three
(a) The range of keys possible in a B-tree of height three for various branching

degrees.
(b) The corresponding number of nodes needed to store those keys.

N
um

b
e

r o
f K

e
ys

 (
n

)

Branching Degree (t)

N
um

b
e

r o
f N

o
d

e
s

(g
)

Branching Degree (t)
1 10 1001 10 100

(a) (b)

100

102

104

106

108

1010

100

101

102

103

104

105

106

107

n
s
--- 1+

2t 1–()s

60

reduced by splitting because the tree must stay balanced. In this case a key that is

next to a child is inserted into the child, making room for the new key.

Figure 5 shows how insertion is modified for a tree with multiple keys per

child. The example has a ratio of two (), so internal nodes have two keys

between each child. In part a. the insertion proceeds as usual. The first leaf is full

and splits when it receives the new key d (part b.). Instead of pushing one key up to

the parent it pushes two. In general, every split pushes s keys up, so internal nodes

always have a multiple of s keys. The insertion backs up to the parent because it

may, as in this case, proceed to the new child. Since d falls between keys c and e,

there is no child into which it can be inserted. To make room for d, e is inserted into

its adjacent child, as shown in part c.

Figure 5. Single Insertion into a B-tree with s = 2
(a) The key d is inserted into the tree. The search progresses to the first leaf.
(b) The leaf is full so it splits, pushing up two keys, c and e. The insertion backs up

to the leaf ’s parent.
(c) d falls between c and e, so it cannot be inserted into a child. d is inserted into

the node and e is pushed out.

s tc he i

(c)

m o

d

e

e f g j k q ra b u xv y

s tc hd i

(b)

m o

d

f g q rj ka b u xv y

(a)

m o

d

j k q r

h i s t

a c fb e g u xv y

s 2=

61

Here is the new version of the splitting algorithm to support multiple keys per

child. The two main modifications are to push up multiple keys and push end keys

into their children as shown in part c.

SplitRoot(root)
1 create two new nodes, x and y, to be the children
2 ,
3 if this is not a leaf
4 and
5
6 ,
7 if this is not a leaf
8 and
9
10
11 ,

SplitNonroot()
1 create a new node x to be the new sibling
2 x.p ← p,
3 if this is not a leaf
4 and
5
6 tell p about split, , x, and x’s range

delete
1 if internal, delete and

InsertNonfull has the largest change. If the key to be inserted falls between

two keys that are not separated by a child, the key is inserted and a key next to a

child is inserted into it to make room.

InsertNonfull(key)
1 if key ∈ k
2 replace old key with key
3 else
4 if this is a leaf
5 insert key into k, maintaining the non-decreasing order
6 else
7 i ← index where key should be inserted to maintain order
8 if i mod s ≠ 1
9 insert key at position i
10
11
12 delete
13
14

x p. this← x k. k 1… t 1–()s[]←

x c. c 1…t[]← x r. r 1…t[]←
c 1…t[] p. x←

y p. this← y k. k st 1… 2t 1–()s+[]←

y c. c t 1…2t+[]← y r. r t 1…2t+[]←
c t 1…2t+[] p. y←

r k 1[] k t 1–()s[],〈 〉 k st 1+[] k 2t 1–()s[],〈 〉,{ }←
k k t 1–()s 1…st+[]← c x y,{ }←

x k. k st 1… 2t 1–()s+[]←

x c. c t 1…2t+[]← x r. r t 1…2t+[]←
c t 1+ …2t[] p. x←

k t 1–()s 1+[]…k st[]
k t 1–()s 1+[]…k 2t 1–()s[]

c t 1+[]…c 2t[] r t 1+[]…r 2t[]

j i s i 1–() smod()–+←
key k j[]←

k j[]
i j←
i i 1–() s⁄ 1+←

62

15
16 if ! .Insert(key)
17 InsertNonfull(key)

5.1.2.5 Bulk Insert

The insert algorithm only inserts one key at a time. However, the central database

will need to insert many hints at once, necessitating a bulk insert method. Bulk

insertion is significantly more complicated than the single version. The single insert

algorithm splits full nodes in half on the way down to make room for one key to be

pushed up. In a bulk insert many keys may be pushed up from multiple children,

possibly more than the full limit. It is not clear how to split a node until after its chil-

dren have split, so the bulk insert must filter down and then back up the tree.

The bulk insert passes all new keys down to the appropriate leaves, updating

internal node ranges in the process. Each leaf that receives keys either stores them,

or, if it does not have enough room, splits into two or more nodes, pushing the divid-

ing keys up to the parent. After collecting all pushed up keys from its children, a par-

ent splits into multiple nodes if needed, and pushes its dividing keys up. If the root

receives enough keys, it may split multiple times, growing the height. If the root

needs to create more than st children it will still be full and will split again.

The bulk insert is demonstrated in Figure 6. In part a. two keys, d and n, are

inserted into a tree with a branching degree of two and a key-to-child ratio of two.

The root passes the insert to two of its children. d is inserted into the first child.

Since n cannot be passed to a child, it is inserted into the root node and the existing

key o inserted into the third child. These are concurrently inserted bythe children in

part b. The first child is now full so it splits, as shown in part c. After the first and

third children have finished with the insert, the root can split if it is full, which it is in

this example. Part d. shows that the root has split and the bulk insert is complete.

r i[] r i[] key∪←
c i[]

63

BulkInsert is a node’s entry point for inserting more than one key. Since inter-

nal nodes and leaves must behave differently on the way down, this algorithm simply

calls on the proper behavior given the node’s position.

BulkInsert(keys)
1 if this is a leaf
2 LeafInsert(keys)
3 else
4 InternalInsert(keys)

InternalInsert determines which keys should be inserted into which children:

InternalInsert(keys)
1 for each key in keys
2 if key ∈ k
3 replace old key with key and remove key from keys
4 else
5 if key does not fall into any child
6 insert into k and push end key into keys, as in InsertNonfull
7 partition keys into blocks for children
8 for each b in blocks and its associated child index i
9
10 c [i].BulkInsert(b)

Figure 6. Bulk Insertion into a B-tree with s = 2
(a) Two keys, d and n, are inserted into the tree.
(b) d is inserted into the first child. Since n fits between keys m and o, o is inserted

into the third child to make room for n. The first child is now full.
(c) The first child splits, pushing up two keys. Now the root is full.
(d) After all children are done with the bulk insert, the root, which is now full, splits.

d, n d, n

(b)

h m si n t

u xv yj k o q ra c fb e gd

o

(d)

h i

e f g j k o q ra b u xv y

c d m sn t

u xv ya b

(c)

j k o q re f g

h m si n tdc

(a)

h m si o t

q rj ka c fb e g u xv y

r i[] r i[] range of b∪←

64

LeafInsert inserts keys into a leaf node, splitting it if necessary:

LeafInsert(keys)
1 merge keys with k, maintaining order
2 if
3 BulkLeafSplit()
4 else if !isRoot
5 tell p that insert fit

After all children received a bulk insert have responded to the parent, either

by pushing up the divider keys or by telling the parent that the insert fit, the parent

can finish its part, splitting if full. This is accomplished with the Finish algorithm:

Finish()
1 if
2 BulkInternalSplit()
3 else if !isRoot
4 tell p that insert fit

LeafInsert and Finish rely on BulkLeafSplit and BulkInternalSplit to split the

node if it is full.

BulkLeafSplit()
1
2
3 for
4
5 if i ≠ numNodes
6
7 FinishSplit(numNodes, splitK, nil, nil, dividers)

BulkInternalSplit()
1
2
3 for
4
5
6
7 if i ≠ numNodes
8
9 FinishSplit(numNodes, splitK, splitC, splitR, dividers)

FinishSplit(numNodes , splitK , splitC , splitR , dividers)
1 if isRoot
2 create numNodes new nodes,
3 for
4 ,

n 2t 1–()s>

n 2t 1–()s>

numNodes n s+() st()⁄←
step n s+() numNodes⁄←

i 1 numNodesto←
splitK i[] k i 1–()step 1+ … i step⋅ s–[]←

dividers i 1–()s 1…is+[] k i step⋅ s– 1+ … i step⋅[]←

numNodes n s+() st()⁄←
step n s+() s numNodes⋅()⁄←

i 1 numNodesto←
splitK i[] k i 1–()step s 1… i step⋅ 1– s+[]←
splitC i[] c i 1–()step 1+ … i step⋅[]←
splitR i[] r i 1–()step 1+ … i step⋅[]←

dividers i 1–()s 1…is+[] k i step⋅ 1– s 1… i step⋅ s+[]←

x 1[]…x numNodes[]
i 1 numNodesto←
x i[] p. this← x i[] k. splitK i[]←

65

5
6 , r ← x’s ranges
7 if internal
8 ,
9 for each ,
10 Finish()
11 else
12 create new nodes,
13 for
14 ,
15
16 if internal
17 ,
18 for each ,
19 tell p about split, dividers, x, and x’s ranges

Depending on the number of hints inserted, the bulk update can involve a

large number of replication groups and significant coordination between a parent and

its children, increasing the chance that something will fail.

5.1.3 Searching Enhancements

As in the case of insertion, searching also needs to be modified. First, as mentioned

in Section 5.1.2.3, searches can be initiated anywhere in the tree, not just at the root,

so the search must progress up, as well as down, the tree. Caching is used to make

non-local jumps to reduce the number of nodes involved in a search and avoid a bot-

tleneck at the root. Finally, the distributed database contains subspaces, not URNs,

requiring a more sophisticated searching algorithm instead of the exact match ver-

sion given above.

5.1.3.1 Search from Any Node

The first modification to the search algorithm allows searches to start anywhere.

When a node receives an inquiry for a key that it does not contain, it must determine

if the search request should be passed to the parent or a child. Searching is done in

two stages. First it progresses up the tree until it reaches a subtree that contains the

k dividers←
c x←

x i[] c. splitC i[]← x i[] r. splitR i[]←
sc splitC i[]∈ sc p. x i[]←

numNodes 1– x 2[]…x numNodes[]
i 2 numNodesto←
x i[] p. p← x i[] k. splitK i[]←

k splitK 1[]←

x i[] c. splitC i[]← x i[] r. splitR i[]←
sc splitC i[]∈ sc p. x i[]←

66

key. In the second stage it has reached the root of a subtree that may contain it so the

search descends downwards as in the traditional algorithm. Here is the new, object-

oriented version of the search algorithm that starts at any node. This version returns

the key, which is actually a hint, instead of its index. Search simply begins the

upward stage:

Search(key)
1 return SearchUp(key)

SearchUp searches up the tree. If the key falls within the node’s subtree then

the search starts downwards.

SearchUp(key)
1 if key out of this node’s range
2 if isRoot
3 return 〈nil, nil〉
4 else
5 return p.SearchUp(key)
6 else
7 return SearchDown(key)

SearchDown differs from the original Search in that the data structure has

been augmented with ranges, so it can determine if a key does not exist before

descending. It also must factor in the key-to-child ratio.

SearchDown(key)
1 if key out of this node’s range
2 return 〈nil, nil〉
3 else
4 if key ∈ k
5 return
6 if this is not a leaf and for some
7 return c[i].SearchDown(key)
8 return 〈nil, nil〉

5.1.3.2 Caching

A node that receives queries for URNs in the same subspace can benefit from caching.

Caching information about other nodes allows searches to jump sideways and not

just up and down. Trees have the weakness that there are fewer nodes at higher lev-

this k index of key[],〈 〉
r i[] f. key r i[] l.≤ ≤ 1 i r n.≤ ≤

67

els, creating a bottleneck at the top. Caching individual URNs would result in a low

hit rate due to their extremely large number. Instead, nodes cache the ranges of

other nodes, which they discover by recording the path a search takes. When the

node that initiates a search gets the result back, it can cache each node encountered

and its range. If a cache is stale then the search will jump to a node that does not

have the expected range, but the search can progress from there.

A node needs a new field, cache, that is a list of cache entries. Each entry con-

tains a node m, its range r, and auxiliary fields for use by a cache replacement strat-

egy. These can be the number of times an entry has been hit, the last time it was

used, and its age. The new version of Search adds the nodes and ranges encountered

during a search to cache. SearchUp and SearchDown now return a triplet of the node

at which the hint was found, the hint, and the search path. (i.e.). The search

path is the set of nodes and ranges encountered during the search

Search(key)
1 〈x, h, e〉 = SearchUp(key)
2 for each entry in e
3 if
4 remove cache entries with entry’s range or node
5 add entry to cache
6 return 〈x, h〉

SearchUp now looks in its cache for a better node to search before proceeding

as normal. It additionally returns the nodes encountered and their ranges.

SearchUp(key)
1 if key is in the range of cache entry e
2 if key is not in this node’s range or e.r is subsumed by it
3 〈x, h, e〉 = e.SearchUp(key)
4 return 〈x, h, 〈this , range 〉 ∪ e〉
5 if key out of this node’s range
6 if isRoot
7 return 〈nil, nil, {〈this , range 〉}〉
8 else
9 〈x, h, e〉 = p.SearchUp(key)
10 return 〈x, h, 〈this , range 〉 ∪ e〉
11 else

x h e, ,〈 〉

entry m. this p,{ } c∪∉

68

12 〈x, h, e〉 = SearchDown(key)
13 return 〈x, h, 〈this , range 〉 ∪ e〉〉

Similarly for SearchDown:

SearchDown(key)
1 if key is in the range of cache entry e
2 if key is not in this node’s range or e.r is subsumed by it
3 〈x, h, e〉 = e.SearchUp(key)
4 return 〈x, h, 〈this , range 〉 ∪ e〉
5 if key out of this node’s range
6 return 〈nil, nil, {〈this , range 〉}〉
7 else
8 if key ∈ k
9 return 〈this, this.k[index of key], {〈this , range 〉}〉
10 if this is not a leaf and for some
11 〈x, h, e〉 = .SearchDown(key)
12 return 〈x, h, 〈this , range 〉 ∪ e〉
13 return 〈nil, nil, {〈this , range 〉}〉

5.1.3.3 Subspace Determination

Unlike the traditional B-tree search, a successful search of the distributed database

may not result in an exact match. The database contains hints lexically sorted by

their keys, the subspaces and URNs. A search needs to discover the subspace to

which a URN belongs. After a search for an exact match fails, a subspace for the

URN is hypothesized and looked for. The hint one less than the target URN is either

the URN’s subspace, within the URN’s subspace, or unrelated. In the last case their

are no hints for the URN’s subspace, but in the first two cases there may be. If the

hint directly less than a URN is its prefix then it is the URN’s subspace, and the hint

is result of the query. If the hint and the URN share a common prefix, then they may

be in the same subspace. The common prefix is searched for in the same manner

until either a subspace is found or it can be determined that none exists. The search

steps for finding a URN’s subspace are:

1. Search for the given URN.

2. If an exact match is found, return it.

r i[] f. key r i[] l.≤ ≤ 1 i r n.≤ ≤
c i[]

69

3. Search for the hint directly less than the URN.

4. If the hint is the URN's prefix, return it; it is the subspace. If it is not, but shares

a common prefix, go back to step 1 and search for the prefix, which may be the

subspace.

An example search is shown in Figure 7. Here a hint for the URN j1 is being

looked for. The search begins with step 1, looking for an exact match. It traverses

the tree until it can be determined that an exact match does not exist. In this case

the search ends at a node with the keys j and k. Since an exact match does not exist,

the search proceeds to step 3 to look for the subspace. In this case, the key directly

less than the URN is in the node where step 1 ended. It will often be the case that

step 1 takes the search to a node that is close to the key found in step 3. The key j is

directly less than j1. This is the URN’s prefix, so by step 4 this is the best subspace,

and its hint is returned.

The new versions of SearchUp and SearchDown carry out steps 1 and 2. When

either one determines that an exact match does not exist, it looks for the key directly

less than the URN by calling SearchForSubspace, which is responsible for step 3.

Figure 7. Subspace Determination
A user queries the node with keys s and t about the URN j1. In step 1 the tree is
searched for an exact match. Step 1 ends at the node with keys j and k, where it can
be determined that an exact match does not exist. The search then looks for the key
less than the URN, as per step 3. The key j is found in the same node. By step 4,
since it is the URN’s prefix it must be its subspace.

1

3

m o j1

e f g j k q ra b u xv y

s tc hd i

70

Finally, if a such a key is found, SearchForSubspace proceeds to step 4 with the

ExplorePossibility algorithm.

The modified SearchUp progresses to step 3 by calling SearchForSubspace if it

fails to find a subtree that contains the key, but only if the key is greater than the

greatest one in the tree.

SearchUp(key)
1 if key is in the range of cache entry e
2 if key is not in this node’s range or e.r is subsumed by it
3 〈x, h, e〉 = e.SearchDown(key)
4 return 〈x, h, 〈this, range〉 ∪ e〉
5 if key out of this node’s range
6 if isRoot
7 if key is greater than the top of the node’s range
8 〈x, h, e〉 = SearchForSubspace(key)
9 return 〈x, h, 〈this , range 〉 ∪ e〉
10 else
11 return 〈nil, nil, {〈this, range〉}〉
12 else
13 〈x, h, e〉 = p.SearchUp(key)
14 return 〈x, h, 〈this, range〉 ∪ e〉
15 else
16 〈x, h, e〉 = SearchDown(key)
17 return 〈x, h, 〈this, range〉 ∪ e〉〉

While searching downwards, if the search key is not in the node’s range, there

are two possibilities. The key could be greater than the top of the range, in which

case its subspace may be in the node’s subtree. If it is less than the bottom of the

range, the subspace is not in the subtree so the search passes to the parent. If the

key is in the node’s range but not in the node, either it or one of its children may con-

tain then the subspace.

SearchDown(key)
1 if key is in the range of cache entry e
2 if key is not in this node’s range or e.r is subsumed by it
3 〈x, h, e〉 = e.SearchDown(key)
4 return 〈x, h, 〈this, range〉 ∪ e〉
5 if key out of this node’s range
6 if key is greater than the top of the node’s range
7 〈x, h, e〉 = SearchForSubspace(key)
8 return 〈x, h, 〈this , range 〉 ∪ e〉

71

9 else
10 if isRoot
11 return 〈nil, nil, { 〈this , range 〉}〉
12 else
13 〈x, h, e〉 = p.SearchForSubspace(key)
14 return 〈x, h, 〈this , range 〉 ∪ e〉
15 else
16 if key ∈ k
17 return 〈this, this.k[index of key], {〈this, range〉}〉
18 if this is not a leaf and for some
19 〈x, h, e〉 = .SearchDown(key)
20 return 〈x, h, 〈this, range〉 ∪ e〉
21 〈x, h, e〉 = SearchForSubspace(key)
22 return 〈x, h, 〈this , range 〉 ∪ e〉

Step 3 is handled by SearchForSubspace, which searches for the key one less

than the given one. It ascends the tree zero or more times until it reaches a subtree

that contains the desired key. It then descends until it finds the key. There are three

possibilities when SearchForSubspace is called with a given key. The key is either

greater than every key in the subtree, less than all of them, or falls in the subtree. In

the first case, the result is the greatest key in the subtree. In the second case the

search ascends to the parent, and in the third, the search descends until it finds the

key. Upon finding the desired key, SearchForSubspace calls ExplorePossibility to

determine the subspace and search for it.

SearchForSubspace(key)
1 if key is greater than the top of the node’s range
2 if this is a leaf
3 〈x, h, e〉 = ExplorePossibility(key,)
4 else
5 〈x, h, e〉 = .SearchForSubspace(key)
6 return 〈x, h, 〈this, range〉 ∪ e〉
7 else if key is less than the top of the node’s range
8 if isRoot
9 return 〈nil, nil, {〈this, range〉}〉
10 else
11 〈x, h, e〉 = p.SearchForSubspace(key)
12 return 〈x, h, 〈this, range〉 ∪ e〉
13 else
14 let i be the index of the key directly less than key
15 if this is not a leaf and and
16 〈x, h, e〉 = .SearchForSubspace(key)

r i[] f. key r i[] l.≤ ≤ 1 i r n.≤ ≤
c i[]

k n[]

c n s⁄ 1+[]

i smod 0= key r i 1+() s⁄ 1+[] f.>
c i 1+() s⁄ 1+[]

72

17 else
18 〈x, h, e〉 = ExplorePossibility(key,)
19 return 〈x, h, 〈this, range〉 ∪ e〉

ExplorePossibility performs step 4 by comparing the URN and the key directly

less than it. If the key is a prefix of the URN, then the search is done and the sub-

space hint has been found. If they have a common prefix, then the search for the pre-

fix proceeds. If they have nothing in common, then there is no hint for the URN.

ExplorePossibility(key, lessKey)
1 if lessKey is a prefix of key
2 return 〈this, lessKey, 〈this, range〉〉
3 else if lessKey shares a prefix pre with key
4 〈x, h, e〉 = SearchUp(pre)
5 return 〈x, h, 〈this, range〉 ∪ e〉
6 else
7 return 〈nil, nil, {〈this, range〉}〉

5.1.4 Deletion

Subspaces will eventually need to be deleted when their owners no longer want them.

Deletion is an expensive operation requiring the coordination of several replication

groups. Any operation involving the restructuring of the database is complex and can

fail in unexpected ways, so instead of being deleted, hints are marked as expired.

They are replaced as new hints are inserted.

5.2 Replication Groups

So far the database has mostly been described as algorithms on a data structure. As

mentioned, a node is a replication group composed of members that all have the same

storage capacity. Servers have widely varying storage capacities and speeds that

tend to increase over time, but a replication group needs replicas to be the same size,

so a server is divided into a number of members, each satisfying the minimum size

k i[]

73

requirements. As a server gains more storage capacity, the number of members that

it contributes to the database can increase.

Each site with URN users is expected to contribute a server with some num-

ber of members to the distributed database. The members are used as needed in any

replication group, for example when a node splits or a replication group needs to

grow. This insures that resources are best utilized throughout the entire database

and allows them to be reallocated as needed. Groups request new members from

ADMIN, which keeps a list of members that are unused but available. If none are

free, ADMIN removes an underutilized member from the database. As part of its

management duties, ADMIN keeps track of replication group sizes and loads as dis-

cussed in Section 5.4. There are a number of incentives for a site to contribute mem-

bers. The primary one is to gain access for its users. Another incentive for a site to

participate is to control the quality of service. The more members it contributes, the

more entry points it will have into the distributed database, and its users will have a

higher chance of starting a search closer to the results of their queries. The site can

also control the size of its cache to shorten the search path.

Replication serves to handle the number of requests and improve robustness,

which is especially important both for high reliability and so that a subtree does not

become disconnected. The latter scenario could disable a large part of the database

and require manual repair. As a precaution against this the minimum replication

group size is three, with at least two of the members possessing leadership ability.

Each group has a leader that acts for the group as a whole and maintains the

abstraction of a node being a single entity. The leader is responsible for maintaining

group membership, receiving and distributing inserts to its members and children,

performing tree operations, and making sure the group does not get overloaded. Not

74

all members may have the ability to act as a leader either because their implementa-

tions are lacking the needed functionality or because they have been configured not

to. Their owners may choose to do this because the member has a low bandwidth

Internet connection or the computer that serves the member does not have the extra

capacity or reliability to be a leader.

Since a node is actually multiple entities, a pointer to it is a list of all of the

members. When a member needs to pass a search on to a parent or child, it can com-

municate with any member of the destination group , distributing the load. This

organization adheres to the philosophy that there should be no single point of failure,

often realized by a high degree of symmetry. Any member should be able to fail with-

out adversely affecting the database, so no single member should have any informa-

tion that cannot be reconstructed by another.

5.2.1 Group Membership

Each member of a group has a copy of the group’s membership table so that anyone

can become the leader and flood updates within the group. The table has an entry for

each member with the following fields:

• member: A reference to the member.

• health: The member can be either LIVING or DEAD. It is LIVING unless it

becomes disconnected from the group. If a member discovers that another one is

not responding, it contacts the leader which makes an assessment that may lead to

declaring the bad member DEAD. A DEAD member may not realize its health has

changed, so when it contacts the group it is informed that it died and refreshes its

data.

75

• weight: The weight is a rough measure of the member’s computational ability

based on the load it experiences. It is used by parents and children when picking

with whom to communicate during a search.

• leadership potential: Indicates that this member can act as a leader.

The membership table also stores the ID of the current leader, a unique ID for

the group (a randomly chosen eight byte integer), a version number, and a topology

that specifies how members communicate. The ID assures others that they are com-

municating with a member from the intended group. The topology guarantees that

each member has at least two neighbors with which to communicate.

A group needs a new member when minimum membership requirements are

not being met or it is getting more requests than it can handle. The leader monitors

the load of each member and adjusts the weights if the load is poorly distributed. If

the load is uniformly high, then the group needs a new member to help out. The

leader gets a new member from ADMIN and gives it a copy of its hints other data,

and adds it to the membership table. A member may leave the group unexpectedly if

its owner or ADMIN removes it, or if the group loses contact with it. If a member

realizes that it has been disconnected for any reason, it will reestablish contact with

its group and refresh its data. If it cannot find a group member then it returns to

ADMIN’s pool of unused members.

Each time the table changes, the leader increments its version and floods it to

the group. When the leader adds a member, it informs the parent and children,

which flood the information internally so that they can immediately use it. When a

member is deleted or declared DEAD the parent and children are not informed. They

will discover this for themselves if they try to contact it and subsequently try another

76

member. If a member’s table for its parent or a child reaches the minimum group size

then it will get a new copy from a living member of the group.

While determining if a member is DEAD is straightforward, deciding if the

leader has died is more problematic. Giving a member the authority to declare the

leader DEAD would invite abuse by members that try to take over the group. When

a member suspects that its leader is dead, it contacts the parent leader, which makes

an assessment and may appoint a new leader. If the parent leader does not respond,

then any other parent member is told that its leader is dead and takes the same

steps. At the root, which has no parent, any of the trusted members can become the

leader.

5.2.2 Flooding

Whenever a membership table changes it is flooded within the group, as is other rep-

licated data such as hints. Flooding is the means by which all members eventually

obtain the same information, similar to the mechanism used by Harvest. While Har-

vest uses an anti-entropy epidemic algorithm to spread updates, replication groups

require them to spread more quickly during splits. The replication groups use a mod-

ified rumor mongering algorithm [9]. When a member receives an update it asks

each of its topological neighbors given in the membership table and another member

chosen randomly if they also want it based on its version, and sends it to them if they

do. Eventually an update will reach all members. Every time a member is added or

removed the leader begins a topology calculation based on bandwidth and includes it

with the membership table update.

77

5.2.3 Replicated Algorithms

The insertion algorithm treats a node as a single entity even though it is actually

group of members. To maintain this abstraction, insertions proceed through the lead-

ers. When a leader receives new data it floods it to the rest of the group. It includes

a checksum of all hints along with new and updated ones so that the receiver can tell

if it missed any updates. This way network resources are not wasted sending

unneeded data. Searches can only be halted for an extremely short time while the

insert is occurring so the pointers to parents and children must be changed in the

proper order. When a group needs to split, the leader forms a replication group from

three new members, seeds each of them with the needed data, and makes the other

adjustments to the tree’s structure. When all the pointers have been safely rear-

ranged, the leader removes the hints and children that it gave to the new group and

floods this to the rest of its own group. If something goes wrong during the insert it

may be lost, in which case it would have to be tried again. Any errors are propagated

back to the root of the tree, but the best way to determine the success of an insert is to

verify it by searching for one of the newly inserted hints.

Replication does not add as much complexity to searching as it does to inser-

tion. The worst that can happen is that a search will result in a false negative, which

is tolerable as long as this happens infrequently. When a member needs to call its

parent or a child, it picks a member of the appropriate replication group at random

based on the weights of all the members in the callee group.

5.3 Hints

The hints mentioned so far form the primary contents of the distributed database.

These are central hints, hints from the central authority marked by slowly changing

78

information. The database contains two other types of hints based on their source:

publisher hints and unauthorized hints. Both are injected directly into the distrib-

uted database either to supersede central hints or suggest alternative resolutions.

Publisher hints are digitally signed by the owners of the central hints they override,

guaranteeing their authenticity. They are meant for short-term changes, such as the

temporary addition of resolvers and to mask the delay in updating central hints.

Publisher hints either expire or are purged over time. Unauthorized hints originate

from entities that have no authority over a URN but wish to suggest an alternate res-

olution. This would be useful, for example, if we were going to publish HTML ver-

sions of plain text Internet Requests for Comments independently from the Internet

Engineering Task Force. Our unauthorized hints for their URNs would inform cli-

ents of our alternate versions. Unauthorized hints should be treated with caution as

their legitimacy cannot be determined.

 Publisher and unauthorized hints can be injected into the distributed data-

base at any member. Publisher hints are routed to the replication group with the cor-

responding central hints and unauthorized hints to the groups that would contain

them if they were central. Instead of travelling through the leaders, they are sent

through any member and are flooded when they reach their final destinations. Mem-

bers use extra capacity to store them but are under no obligation to ensure their

existence; they can delete these hints at any time. When there is a choice between

purging publisher and unauthorized hints, the unauthorized hints are deleted first.

A successful search will return a central hint, and possibly a publisher and one or

more unauthorized hints.

Hints have an extensible format to allow for evolution. A distributed database

hint contains the following information:

79

• Subspace or URN: This indicates the subject of the hint and acts as the hint’s key.

• Time stamp: The time stamp tells when the hint was created and hence its age. A

publisher hint with a newer time stamp replaces a previous one with an older one,

and is purged after the central hint is updated with a newer time stamp.

• Time-to-live: This gives an upper bound on the lifetime of a hint. Publisher and

unauthorized hints have a fixed maximum lifetime.

• Expired: Central hints that are no longer valid are marked as expired and may be

purged. If an expired hint exists it may still be more useful than no hint at all.

• Access control list: A URN may resolve to a number of copies of a resource main-

tained by different entities who all need to modify its hints. The access control list

is a list of public keys of entities, including the owner of the hint, that are allowed to

create associated publisher hints. A publisher hint is only valid if it is signed with

a private key that corresponds to one of the keys in this list. This list is only mean-

ingful for central hints.

• Resolution data: This is a list of ways to resolve the URN. Each item can be the

actual resolution, that is a URL or other string to which the URN maps; a redirec-

tion to a resolver along with a protocol; or another URN. It may be both a resolver

and a URN, in which case the given resolver should be queried about the given

URN. Optional meta-information about the resolution data can also be included to

help a client choose which item to pick. Possible information includes geographic

location, network bandwidth, the resource’s language, and its file type. Each can

have a public key belonging to the next resolver to guarantee the authenticity of

resolution.

80

Resolvers may need other properties. Unknown ones should be ignored by cli-

ents to allow hints to be extended, possibly with a different security model, applica-

tion specific data, or with other information as hints evolve.

5.4 Tree Operations

ADMIN maintains the database, managing resources and reporting problems that it

cannot resolve. As part of the process it monitors replication groups and collects sta-

tistics on how the database is being used. The entire database needs to be monitored

to ensure that it is operating smoothly and resources are well utilized. It monitors

utilization with a tree operation that gets the number and type of members in and

load of each group. The load is averaged over the period of a day to identify usage

trends instead of hourly variations. Using this information, ADMIN can determine

the resources allocated to each group and rearrange them. Short term load spikes

are handled by caching. The other set of operations are for gathering statistics that

indicate how people are using the database and subspaces. Among the data that can

be collected is the most and least accessed hints and the total number of queries.

ADMIN initiates a tree operation at the root. In response to an operation

request, a replication group reports the combination of the result of the operation

performed on each child with its own data. Thus, an operation traverses the tree

down and back up, visiting every group. For example, to find the maximum and min-

imum group loads (see Figure 8), each node calculates the maximum and minimum of

its load and those reported by its children. Consequently, the time an operation takes

is proportional to the tree height.

81

5.5 Security

Since the database is distributed across computers owned by thousands of institu-

tions, there is no way to guarantee the security and trustworthiness of replication

servers. A security model needs to make sure that the authenticity of hints acquired

from an untrusted server can be verified and that any malicious acts can be con-

tained.

While the entire database cannot be trusted, the central database has to be,

because it is the final authority on all information in hints and has a contractual obli-

gation to those who register subspaces to provide the correct information. Even

though the distributed database members cannot be trusted, at least some of the root

members must be since they control the hints that enter the database. Therefore the

root has a core set of trusted members maintained by the central authority that the

central database communicates with exclusively. The root group may be larger than

the trusted members, but the extra ones are not trusted by the central database.

There are two types of security attacks: external and internal. External

attacks consist of outsiders trying either to disable a server or break into it. The

Figure 8. Computing the Maximum and Minimum Loads
The maximum and minimum loads are computed by traversing the tree of
replication groups. Each computes its own load and combines it with the maximum
and minimum loads of its children, if any.

Path from min load
Path from max load

max 3
min 3

load 3

max 2
min 2

load 2

max 6
min 2

load 6

max 8
min 2

load 5
max 8
min 3

load 3

max 8
min 8

load 8

max 6
min 6

load 6

82

former problem is handled through replication. The latter is a problem of outsiders

trying to change the behavior of a member or modify hints. There is no danger in

attackers reading them.

Attacks by members of a replication group are more insidious. They can

exhibit several possible destructive behaviors, such as adding hints for fake sub-

spaces that interfere with existing ones and changing existing hints. In this way

someone could hijack a Web site’s URNs to resolve to URLs for a fake site that looks

like the real one to steal private information such as credit card numbers. Another

type of attack is to delete hints, perhaps those belonging to a competitor. Finally,

there are a host of problems related to a member simply misbehaving.

One precaution against security violations is to prevent as much ill behavior

as possible. That which cannot be stopped can be isolated so its damage is mini-

mized. Since hints are obtained from untrusted sources, each one is digitally signed

by the central database, which has a well known public key, effectively making them

read only and exposing tampering.

External denial-of-service attacks can be isolated through replication. If one

member is disabled, the rest of its replication group will mask the attack. Similarly,

the behavior of a malicious member can be isolated by recognizing its odd actions and

possibly inconsistent data and removing it from the replication group. A member will

have a hard time targeting specific hints because it cannot control which replication

group it belongs to.

5.6 Summary

The distributed database is a physical implementation of a B-tree with modifications

for distribution and replication. Replication is a technique that provides fault toler-

83

ance and protects against attacks, as well as a way to handle load. Resolution integ-

rity can be assured through a chain of trust, starting with signed central hints that

give public keys for verifying publisher hints and resolvers. The hints are extensible

to allow for evolution. The tree structure of the database is independent of the hints

that it contains, creating a scalable way to contain all hints without limiting their

mobility.

84

85

C h a p t e r 6
Implementation

We have created a simple implementation of the distributed database to experiment

with algorithms, gain insight into how they work, and act as a proof-of-concept. It

handles insertions and searches while allowing for the branching factor and caching

parameters to be explored. It is not suitable for production, most notably because it

is not optimized to store a large number of hints on each server or recover from fail-

ure, as all state, including hints, is kept in memory. The prototype does not deal with

secondary, although no less important, features such as load balancing, digital signa-

tures, tree operations, or optimal network topologies. However it does serve as a

proof-of-concept for creating a scalable RDS solution.

The database is implemented exclusively in the Java programming language

[10] to allow for quick development time. Java is an object-oriented language with

notable features, such as garbage collection and a simple graphical user interface

86

API. Java’s cross-platform nature also allows us to run the implementation on differ-

ent platforms without having to recompile code.

Network communication is handled by Java’s Remote Method Invocation

(RMI) [11], a means of remotely executing Java object methods. RMI was chosen for

the ease and flexibility it would allow while developing the functionality of the objects

that implement the distributed database.

The distributed database was implemented with three major programs. The

MemberPool Server keeps track of available unused members. The Member Server

program runs a server that creates a given number of members and registers them

with a MemberPool Server. Finally the DistDB program provides a way to interact

with the distributed database.

6.1 MemberPool Server

The MemberPool Server provides a subset of the functionality of ADMIN by keeping

track of unused members. Whenever a member becomes available it registers itself

with its default MemberPool Server. A group leader that needs to perform a split gets

unused members from its default MemberPool server.

The core of the MemberPool Server is a remote Java object, that is, one that

can be called with RMI. Any member that wishes to join a member pool simply calls

the object’s join method. Similarly, any leader that needs an unused member calls

that object’s method for getting a member.

The MemberPool Server supports both local and remote monitoring of the

pool. Figure 10 shows that simple text interface that allows an administrator to list

the unused members.

87

MemberPool Server implements the minimum functionality needed to support

the distributed database. An industrial strength implementation needs a more

sophisticated way of choosing an unused member. It needs to consider the members

in the destination replication group so that a group does not have two members from

the same Member Server. Another criteria for picking an unused member needs to be

the level of participation by each server. Finally if the MemberPool Server is out of

members, it needs to retrieve underutilized ones from the database.

6.2 Member Server

The Member Server creates members and registers them with a MemberPool Server.

Besides contributing members to the distributed database, it also provides a way for

clients to resolve URNs.

The members themselves are instances of the remote MemberImpl class. This

class has methods that implement insertion, searching, and other member behavior.

The server creates members that are only suited for a small number of keys, which

they store in memory. If the server crashes, the members have no means of recovery;

Figure 9. MemberPool Server Administrative Interface
The MemberPool Server has a menu-driven interface. The member pool shown here
has fourteen unused members, seven supplied by a Member Server running on
phobos.lcs.mit.edu and the other seven by s-xii.lcs.mit.edu.

88

new members must be created. A production server would have a large number of

keys stored on a permanent media and keep the most popular ones in memory. So as

not to disrupt replication groups unnecessarily, after recovering from a short-term

problem it should recreate each of its members, which then resynchronize themselves

with their respective group leaders. A server that is unavailable for an extended

period of time should create new members because the groups it participated in

should have recovered from the loss.

The other function of the Member Server is to accept queries for URN resolu-

tion using a simple protocol. To resolve a URN, a client opens a connection to the

server’s port and sends the URN. The Member Server initiates a search at the mem-

ber that is closest to the result. After searching the database the server responds

with the result: an error, no match, or a central hint. The hint is just the name of a

resolver. A search that results in a subspace returns the subspace as well as the

member from which the hint came.

The Member Server also has a menu-driven interface for administrative

tasks. An administrator can create more members, set the member pool, and, as

shown in Figure 10, view each member’s status. A member can be 1) unused, in

which case it belongs to a MemberPool server, 2) living, meaning that it is an active

part of the distributed database, or 3) dead, if it knows it has become disconnected

from the database. The Member Server periodically checks the status of living mem-

bers to see if they are still part of the database and changes their status to dead if

they are not. It also reclaims dead members, returning them to the unused member

pool.

89

6.3 DistDB

The DistDB program lets the user experiment with a distributed database. The user

can create a new database and insert hints singly or in bulk from a file. DistDB also

allows the user to monitor the database by displaying each replication group in the

tree and the subspaces it contains. This lets the user see the structure of the tree and

explore the database’s behavior in response to inserts. With DistDB, the user can

control the branching degree and caching parameters of the entire database or of

individual nodes.

Figure 11 shows a small database with a branching degree of three. DistDB

displays each replication group as a box with its members followed by the subspaces

it contains. The last line of the box is the range of the tree rooted at that group. The

redness1 of a member indicates its cumulative load, measured as the number of

searches in which the it has been involved. The lines between groups show parent/

1. Redder members appear darker in a monochrome figure.

Figure 10. Member Server Administrative Interface
The Member Server has a text-based administrative interface that lets the user view
the state of each member and set the MemberPool server. This Member Server has
seven members, four unused and three part of a distributed database.

90

chi ld re lat ionships, so th is database has he ight two with Mem7@s-

xii.lcs.mit.edu:3005 at the root.

A search can be initiated at any member directly from DistDB as well as by

contacting a Member Server. For example, the result of querying Member2@s-

xii.lcs.mit.edu:3005 for the fictitious URN urn:pri:abctnaswblk1234 (see Figure 12,

part a.) is that it falls into the subspace urn:pri:abctnaswblk over which the resolver

Figure 11. The Main DistDB Window
The main window shows the structure of the database and the contents of each
replication group. This database has a branching degree of three and key-to-child
ratio of one.

91

laridae.mit.edu has authority. The search began looking for an exact match. Since

the URN did not fall within Mem2’s range it progressed to the parent and from there

down to Mem7@phobos.lcs.mit.edu:2792. It was not found there but the subspace

directly less than it was the URN’s prefix so it was the result of the search.

From this search , Mem2 learned about members Mem6@s-

xii.lcs.mit.edu:3005, Mem7@phobos.lcs.mit.edu:2792, and their ranges. A subsequent

search starting at Mem2 for urn:pri:abctnaswspr76, although not in the same sub-

space as the previous one, was able to jump to Mem6. When the search reached

Member2 the exact match failed. The subspace directly less than the URN was

Figure 12. Searching For URNs
(a) The result of a search started at Mem2@s-xii.lcs.mit.edu:3005 for URN

urn:pri:abctnaswblk1234 was found to be the subspace urn:pri:abctnaswblk at
Mem7@phobos.lcs.mit.edu:2792. Its resolver was laridae.mit.edu.

(b) Mem2 cached the members and their ranges encountered during the search in a.
A subsequent search for urn:pri:abctnaswpr76 was able to jump to Mem6@s-
xii.lcs.mit.edu:3005, bypassing the root.

(a)

(b)

92

urn:pri:abctnaswprpl, not the subspace of the URN, but it shares the subspace

urn:pri:abcrtnasw, which was found.

The state of any member can be examined, including its concept of its health,

branching degree, root, parent, load, range, and date it joined the database. The

information window (see Figure 13) also shows the member’s hints, and, if it is inter-

nal, its children and their ranges. Additionally, the window shows the size and con-

tents of the member’s cache along with its replacement strategy. Besides examining

a member’s state, the user can alter the branching degree, cache size, and cache

replacement strategy, allowing for experimentation and also fine-tuning of the data-

base after it has been deployed.

Figure 13. Information Window for Mem2@s-xii.lcs.mit.edu:3005
The information window shows the state of a member. Mem2’s information window
reflects the result of the two searches.

93

6.4 Summary

The distributed database has been implemented as three programs. The Member-

Pool Server tracks unused members provided by Member Servers. Each Member

Server provides a configurable number of members and can accept URN queries from

clients. The entire database can be managed with the DistDB program, which pro-

vides a graphical interface for inserting hints and searching for subspaces. It also

allows the state of a member to be examined and modified.

This implementation was instrumental in the development of the insertion

and searching algorithms. Using RMI as the means of communication was an easy

way to extend the functionality of members, but the method invocation semantics,

that of a single control thread across distributed objects, at times proved to be a hin-

drance, such as when a member fails, breaking the chain of execution. It also added

complication to the bulk insert algorithm, which, unlike the single insert, requires

concurrent operations. RMI also suffers from poor performance and resource utiliza-

tion, keeping many TCP sockets open. Even though Java is supposed to be cross plat-

form, RMI only worked reliably on computers running Microsoft Windows.

The distributed splitting algorithm is easy to get wrong. Replication will

make it more resilient to failure, but it is still complex. The bulk insert is even more

complicated and prone to failure. This implementation handles errors less than opti-

mally. Problems need to be isolated and reported back to the user.

As a prototype, this implementation lacks a number of important features

needed for a deployable version, such as the key-to-child ratio enhancement, replica-

tion (under development), the full hint format, and the resolution protocol. Other

implementation details, such as secure member-to-member communication still

remain.

94

95

C h a p t e r 7

Conclusion

The RDS described here is sufficient for existing and future URN namespaces as long

as they can be put in canonical form. Its structure and resolution mechanism pro-

mote longevity through a single, global registry. No single entity can control the dis-

tributed database, nor does the central authority have absolute control over all hints.

While the computer industry changes rapidly, established components of the net-

work, such as the DNS, have remained stable for a relatively long time. As a basic

network service, this RDS is meant to be viable for many years and provide an evolu-

tionary path both for future needs and to transition to a different system if the need

arises.

The distributed database has been tested on a small scale but not on a large

one. Distributed and replicated systems need to be simple because they require coor-

dination amongst independently operating computers and thus are subject to more

types of problems. Splitting a replication group is fairly complicated because it

96

requires all pointers to change in a short amount of time, as opposed to other name

services, such as DNS, where updates can proceed at a more leisurely pace. Errors

need to be accurately reported so that the central authority can detect and deal with

them. They are easy to detected and back out of for the single key insert but more

difficult to not just report, but also isolate in the bulk insert because of the concur-

rency in the algorithm. While a B-tree does remain balanced, the cost may not be

worth the risk. A regular high degree search tree, while not as optimal, may form the

basis of a more robust, and simpler, distributed database.

7.1 Future Directions

There are a number of improvements that can, and should, be made to the distrib-

uted database to make it more appropriate for global deployment. First is that cur-

rently the minimum amount of data a member must hold is fixed. However, what

this amount is cannot be determined without experience and may even change over

time. Instead of splitting a server’s capacity into fixed chunks, members should be of

variable size. A replication group should be able to request the needed amount of

capacity from ADMIN, which gets it from a server that has at least that much. This

is especially important because we do not know the optimal member size, which may

not be constant across replication groups. The central authority may wish to make

some groups have a higher or lower branching degree or key-to-child ratio in order to

deal with hot spots of activity.

Another area that needs work is the member-to-member communications pro-

tocols. RMI is not appropriate for an actual system because it limits the implementa-

tion to Java. A commercial-grade distributed database would have many

implementations in many languages. The distributed database needs to use either a

97

custom protocol or possibly one based on CORBA [5] that allows distributed objects to

communicate regardless of implementation language.

Communication between members was specifically designed to avoid use of

Internet multicast so that it could be immediately deployable. If worldwide multicast

becomes a viable, commonplace means of communication then the structure of the

replication group needs to be revisited. Much overhead, both memory and network,

could be reduced through the use of multicast to keep track of group membership.

The RDS only touches on security, using replication and digitally signed hints

to fight denial-of-service and ill-behaving member attacks. It addresses one way of

providing some assurance that a URN is being resolved correctly, but security is an

open issue and its role in the RDS needs further study. The integrity of hints needs

to be assured so that URNs are resolved correctly and cannot be tampered with. How

this will be achieved depends on the global authentication and authorization methods

that become accepted. Like the rest of the URN resolution system, security is an

evolving component and its role needs to be reevaluated periodically.

Finally, a deployable database will need better administrative tools than the

rudimentary ones described in the last chapter.

7.2 We Live in Interesting Times

Many assumptions have been made based on rough numbers and ideas. There is a

lot we cannot know until URNs are adopted by the public. There is little data on the

number of URNs, users, and resolution requests that would result from a successful

URN system. We also lack a sense of how URNs will be used and subspaces will be

managed. What little data we have comes from the DNS and the Web, although nei-

ther can be measured well due to their distributed nature. After we have operational

98

experience with URN resolution the assumptions in this thesis will need to be reex-

amined.

Work on URNs is ongoing in the Internet Engineering Task Force URN Work-

ing Group. While we have proposed herein one method of resolving URNs intended

to be scalable and long-lasting, others have other ideas about what URNs are and

how they should be managed. Only time will tell if URNs are adopted by the commu-

nity at large, especially by companies that write client software and publishers that

would use them.

99

References

[1] T. Berners-Lee and D. Connolly, Hypertext Markup Language - 2.0, Network
Working Group RFC 1866, November 1995. Available from
<ftp://ds.internic.net/rfc/rfc1866.txt>

[2] T. Berners-Lee, L. Masinter, and M. McCahill, Uniform Resource Locators
(URL), Network Working Group RFC 1738, December 1994. Available from
<ftp://ds.internic.net/rfc/1738.txt>

[3] A. D. Birrell, R. Levin, R. M. Needham, and M. D. Schroeder, Grapevine: An
Exercise in Distributed Computing, Communications of the ACM, 25(4),
April 1982, pp 260-274.

[4] C. Mic Bowman, Peter B. Danzig, et al., Harvest: A Scalable, Customizable
Discovery and Access System. Technical Report CU-CS-732-94, Department of
Computer Science, University of Colorado, Boulder, revised March 1995.
Available from
<ftp://ftp.cs.colorado.edu/pub/cs/techreports/schwartz/Harvest.Jour.ps.Z>

[5] The Common Object Request Broker: Architecture and Specification,
The Object Management Group, Inc., July 1996. Available from
<http://www.omg.org/corba/corbiiop.htm>

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms,
The MIT Press, 1990.

[7] R. Daniel and M. Mealling, Resolution of Uniform Resource Identifiers using the
Domain Name System, Internet Draft, March 1997. Available from
<ftp://ds.internic.net/internet-drafts/draft-ietf-urn-naptr-04.txt>

[8] P. Danzig, K. Obraczka, et al., Massively Replicating Services in Autonomously
Managed Wide-Area Internetworks. Technical Report, University of Southern
California, January 1994. Available from
<ftp://catarina.usc.edu/pub/kobraczk/ToN.ps.Z>

[9] A. Demers, D. Greene, et al., Epidemic Algorithms for Replicated Database
Maintenance, Proceedings of the Sixth Annual ACM Symposium on
Principles of Distributed Computing, Vancouver, August 1987, pp 1-12.

[10] J. Gosling, B. Joy, and G. Steele, The Java™ Language Specification,
Addison-Wesley, 1996. Available from
<http://www.javasoft.com/docs/language_specification.html>

100

[11] Java™ Remote Method Invocation Specification, Sun Microsystems, Inc.,
February 1997. Available from <ftp://ftp.javasoft.com/docs/jdk1.1/rmi-spec.pdf>

[12] B. W. Lampson, Designing a Global Name Service, Proceedings of the Fifth
Annual ACM Symposium on Principles of Distributed Computing,
Calgary, August 1986, pp 1-10.

[13] R. Moats, URN Syntax, Network Working Group RFC 2141, May 1997.
Available from <ftp://ds.internic.net/rfc/rfc2141.txt>

[14] P. Mockapetris, Domain Names - Concepts And Facilities, Network Working
Group RFC 1034, November 1987. Available from
<ftp://ds.internic.net/rfc/1034.txt>

[15] T. Newell, What’s in a Name?, InterNIC News, 2(3), March 1997. Available
from <http://rs.internic.net/nic-support/nicnews/mar97/>

[16] Nielsen/CommerceNet Demographic Studies, CommerceNet/Nielsen Media
Research, Spring 1997. Available from
<http://www.commerce.net/work/pilot/nielsen_96/>

[17] D. C. Oppen, Y. K. Dalal, The Clearinghouse: A Decentralized Agent for Locating
Named Objexts in a Distributed Environment, Xerox OPD-T8103, October 1981.

[18] M. D. Schroeder, A. D. Birrell, and R. M. Needham, Experience with Grapevine:
The Growth of a Distributed System, ACM Transactions on Computer
Systems, 2(1), Febraury 1984, pp 3-23.

[19] K. R. Sollins, Supporting Longevity in an Infromation Infrastructure
Architecture, Proceedings of the 1996 SIGOPS European Workshop,
Connemara, Ireland, September 1996. Available from
<http://www-sor.inria.fr/sigops96/papers/sollins.ps>

[20] K. R. Sollins, Functional Requirements for Uniform Resource Names, Network
Working Group RFC 1737, February 1995. Available from
<ftp://ds.internic.net/rfc/1737.txt>

[21] K. R. Sollins, Requirements and a Framework for URN Resolution Systems,
Internet Draft, March 1997. Available from
<ftp://ds.internic.net/internet-drafts/draft-ietf-urn-req-frame-01.txt>

[22] K. R. Sollins and J. R. Van Dyke, Linking in a Global Information Architecture,
World Wide Web Journal, 1(1), November 1995, pp 493-508. Available from
<http://www.w3.org/pub/WWW/Journal/1/e.193/paper/193.html>

