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Abstract

The use of the internet has increased extensively with a growing number of
inexperienced users surfing the Web.  Lurking in Web pages, Java applets are
automatically executed on users’ machines.  As a result, popular Web
browsers are understandably conservative on what they allow Java applets to
do.  However, this places a heavy restriction on applets which drastically
limits their capabilities.  Therefore, we have developed a constraint language
in which naive users can specify their fine-grained control over applets
without needing to know the the intricacies of applet security. We have
written an implementation of the Java Security Manager built into Sun’s
AppletViewer to demonstrate the feasability of this approach, addressing the
many security issues that arise when opening the operating system to the
public domain. This involves maintaining a log of applets’ past accesses to
determine the allowability of their future accesses, along with an account of
which applets ‘own’ which files.
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C h a p t e r  1
Introduction

Security has become an important issue in today’s culture.  This can

easily be seen by how much money the United States government budgets to

their military program, or by the number of locks people place on their main

entrances to their homes.  Such measures are also required when securing

one’s computer system to protect against theft, eavesdropping, and vandalism.

With the advent of the Internet, more and more computers become vulnerable

because of their wired connection to the external network - a computer

attacker’s heaven.  Computer users must now face the challenge of keeping

their doors open while discarding unwanted guests.

1.1  The World-Wide Web
The World-Wide Web (WWW) is a collection of interconnected,  linked

information which was first developed in 1989 by Tim Berners-Lee and CERN.
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It consists of distributed Web pages or documents which contain hypertext

links to other documents on the Internet.  A network is thus created through

arbitrary connections from one page to another.  These documents are down-

loaded from Web servers onto the user’s system (Web client) and viewed using

applications known as Web browsers.  Browsers are capable of accessing these

documents using various protocols such as HTTP (HyperText Transfer Proto-

col), FTP (File Transfer Protocol), NNTP (Internet News Protocol), Telnet, and

gopher.

1.2  Mobile Code - Java Applets

Along with the Internet, a new fad, mobile coding, now makes a com-

puter system even more assailable than before.  Mobile coding refers to the

transmission of executable content over the network which is then run on the

client’s machine.  Its popularity emerged when the World Wide Web began to

attract more and more users.  Mobile coding  became a preferred alternative to

server-side execution.  It is used to run remote computations when the server

is down, or to overcome latency and bandwidth issues by transporting the code

over the network and then executing the code locally, without requiring any

further network traffic.  Figure 1 illustrates this transaction.

Sun Microsystems created a mobile code technology named Java in

1993.  Java’s platform independence and safety features resulting from its vir-

tual machine environment (as is further described in Chapter 3) has made it

widely adopted and supported by the computer industry.  Being the prevalent
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mobile code that have been lurking in Web pages, Java applets will be the

focus of this paper.  Java applets are Java applications that are embedded

within Web documents. [23]  However, be aware that there are also other

mobile code in Web content including Sun’s Tcl/Tk, Microsoft’s ActiveX con-

trols, Plug ins, application macros, etc.

1.2.1  Security Issues with Mobile Code
Previously, executables could only be downloaded using protocols such

as FTP,  where the user was required to explicitly specify the name of the file

to be downloaded.  The user was aware of all the files (including executables)

that were retrieved from the network.  In order to run an executable, the user

had to run the code explicitly.  However, with mobile code, the executable is

not only implicitly downloaded by the Web browser, but also spontaneously

executed thereafter on the client machine using the user’s access rights.  As

opposed to CGI-scripts which are executed on the host Web server, mobile code

uses the resources on the client machine to execute its program.

Furthermore, the World Wide Web eases an attacker’s troubles since it

automates the process of code distribution.  Previously, a malevolent hacker

Figure 1. Mobile code architecture [14]

Remote Author

Composes Mobile
Code

Send over
Network

Client
Operating System

Mobile
Code

Executes

Interacts
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could distribute malicious code only by covertly placing the executable on the

client’s storage system, falsely publicizing it on an FTP site, or forwarding it

on a floppy disk.  Now, it can be inherently and automatically distributed

through Web documents.

Although the automocity of downloading, executing, and distributing of

the code makes Web surfing user-friendly, the user is now blind to the code

being run on his/her own machine.  For example, an off-the-shelf Web browser

accessing a web page may download an applet that is causing malicious side-

effects on the client’s machine.  It may be covertly reading or writing private

files on the machine, or sending derogatory mail to the user’s boss.  This lack

of awareness of foreign code, the easy accessibility to the client system, and

the automation of code distribution make mobile coding on the WWW unsafe.

It is difficult to maintain the following three tenents of computer security

since the client system is now vulnerable to the intrusive mobile code:

1. Privacy - Ensures the protection of sensitive information located on one’s system.

One’s private information should not be read or accessed by others.  There is a

need to thwart intruders and eavesdroppers from confidential data.

i.e. Mobile code should not publicize the contents of private files.

2. Data Integrity  - Ensures the preservation of the contents of the data stored on

one’s system.  One expects to find information intact without modification by

others.  There is a need to thwart vandals from modifying the data.

i.e. Mobile code should not modify protected data.
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3. System Reliability - Ensures the predictability of one’s system so it functions as

expected.  One expects the system to respond to the same input in a consistent

manner.  There is a need to thwart intruders from causing any damage to the sys-

tem.  i.e. Mobile code should not selfishly use all the CPU cycles.

1.2.2  Naivete of New Users

The widespread use of mobile code among new and inexperienced users

requires even more caution and protection.  For instance, the number of Web

sites has been increasing from 130 in June 1993 to 650,000 in January 1997

with a doubling period of less than 6 months. [12]  The number of Internet

users in the United States alone had reached 5.8 million by November 1995

[24] and is now over 40 million. [3]  As the Internet welcomes the ever increas-

ing number of users, more and more of these users are naive of the intricacies

of the Web.  These inexperienced users are understandably ignorant of the

existence of mobile code within Web documents and the consequences of exe-

cuting them on their systems.  An attacker can easily lure ordinary users to a

malicious Web site by advertising appealing merchandise or information.

While, unbeknownst to the users, their machines may be executing malicious

code when they download the document.  Consequently, for global protection,

the mechanism used to secure computer systems from malicious applets

should be easily understood by ordinary users.

Surprisingly, Web authors themselves are not knowledgeable about the

security aspects of Java applet programming.  In a survey conducted from

October 1996 through November 1996 of 2,664 Web authors, 45.7%  said they
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did not know anything about Java security.  “Authors are not becoming more

educated about Java’s security even though more are planning to use it.” At

that time 24.4% of the authors had programmed in Java, since they regarded

its platform independence as a major advantage. [17]

1.3  Current Web Browser Limitations

To guard against malicious applets, Java-enabled Web browsers have

averted the security problems by simply placing harsh restrictions on all

applets.  The current most popular Web browser, Netscape’s Navigator disal-

lows all access to the local file system and restricts network access only to the

originating host.  It further prohibits applets from executing system com-

mands, accessing system properties, printing files, or starting other programs

on the client. [15]   The only system accesses given to applets are the client’s

CPU to execute the code and the capability to create graphical windows to pro-

vide graphical user interfaces.  Even the window itself is labeled with a warn-

ing to denote that it is owned by an applet.  Figure 2 summarizes the

restrictions on Java applets.

These restrictions provide safety against malicious applets so they do

not compromise the privacy, reliability, and integrity of the client system.

For example, when an applet is downloaded, the user is not aware of what it

really does. Although it is probably benign, without security restrictions, it

has the potential to erase or alter data, infect the system with a virus, crash

the system, or damage it in another way.   However, in using cautionary mea-
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Reading Local Files Not allowed.

Writing Local Files Not allowed.

Deleting Local Files Not allowed.

Exiting the Program Not allowed.

Executing System Commands Not allowed.

Dynamically linking to other libraries Not allowed.

Listening for socket connections Not allowed.

Accepting connections from hosts Not allowed.

Connecting to hosts Can only connect to the originating host.

Printing Files Not allowed.

Accessing Threads Can only access threads that are owned by applets.

Accessing System Properties Can access the following properties:
java.version, java.vendor, java.vendor.url, java.class.ver-
sion, os.name, os.arch, os.version, file.separator, path.sep-
arator, line.separator

But, cannot access the following properties:
java.home, java.class.path, user.name, user.home, user.dir

Accessing other packages Cannot accesssun andnetscape packages.
Cannot define sun, netscape, or java packages.

Creating a Top-level window Can create a top-level window, but includes a visual warn-
ing label.

Accessing the Clipboard Not allowed.

Figure 2. Java Applet Restrictions as set by Netscape Navigator 3.x

Figure 3. Sandbox - Remote code is Untrusted; Local code is Trusted.
“Java provides the foundation for a secure environment in which untrusted code can be quaran-
tined, managed, and safely executed.  However, unless you are content with keeping that code in a
little black box and running it just for its own benefit, you will have to grant it access to at least
some system resources so that it can be useful.  Every kind of access carries with it certain risks
and benefits.  The advantages of granting an untrusted applet access to your window system, for
example, are that it can display information and let you interact in a useful way.  The associated
risks are that the applet may instead display something worthless, annoying, or offensive.  Since
most people can accept that level of risk, graphical applets and the World Wide Web in general are
possible.” [22]

valuable resources

sandbox
local code

Yay! I do whatever I want! remote code

JVM

Free me!
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sures against malicious applets, the Web browsers place rigorous limitations

on all applets.  Figure 3 depicts the confinement placed on applets.

This prevents applets from doing more useful services for the user such

as maintaining the user’s schedule book, creating an automatic birthday card

delivery system, and updating the Web links in the bookmarks file.  These

beneficial services require access to the user’s local file system as a storage

resource, and access to the network for external information and communica-

tion.  In fact, the applet’s state can instead be stored on the parent host, and

external network connections can also be achieved via the parent host.  How-

ever, this inefficiently introduces extra latency and bandwidth costs which can

be avoided if the applet were allowed to store information on the local file sys-

tem and were permitted to connect to the network directly.  To solve this, we

need to find a way to loosen our leashes on applets while still ensuring the

security of the client system.

1.4  Summary

The wide-scale popularity of Java applets, along with Web browsers’

capability of automatically downloading, executing, and distributing them,

have forced current Web browsers to excessively restrict their actions.  In try-

ing to devise a system which would loosen the leash on the applets, the follow-

ing criteria should be maintained:

1. The system should not compromise the security of the client’s com-

puter in any way.
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2. The system should be straightforward and easily understood by the

wide distribution of naive users.

3. The system should be configurable with fine-grained control to

accommodate the needs of the many users.

4. The system should be flexible to adapt to possible new uses and capa-

bilities of Java applets.

Only those systems that are able to conform to the above constraints

while giving applets a more lax policy can successfully solve the problem.

This paper will describe the design and implementation of such a system that

allows users to specify their policies over applets by using a simple constraint

language.  Permissions will be determined not only by the identity of the

applet, but also by the applet’s past accesses.  In this paper, we will focus our

attention to the UNIX operating system.

1.5  Preview

I have introduced the motivation for our work in this first chapter.

Chapter 2 will briefly summarize and evaluate other approaches to addressing

this problem.  Chapter 3 will then provide background information before pro-

ceeding to the details of the proposed system.  A design overview of the system

will be described in Chapters 4 and 5, followed by a detailed explanation of its

implementation in Chapter 6.  We will then conclude in Chapter 7 with sug-

gestions for future work.
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C h a p t e r  2
Related Work

Other individuals and organizations have tried to tackle the problems

with setting access permissions on mobile code.  The common approach is to

build upon digital signatures and certificates to identify trusted applets.

Microsoft, Netscape, and Sun have used this technique to create their applet

policies.  The World Wide Web Consortium has envisioned an even greater

trust model using rating systems.  And finally, a researcher at Carnegie Mel-

lon University has devised a system whereby the code itself carries proof of its

innocence.

2.1  Digital Signatures
To allow end users to decide which Web content they can trust, some

have introduced the notion of digital signatures to identify the origin of the

document and/or endorsers of the document.  The signature may be embedded
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in the document, attached with the document, or received by querying a third

party. [32]  It is placed there by the originator of the applet, and it can't be

altered or duplicated.  A signature does not reveal anything about the content

or quality of the applet, just the identity of its signer. It provides a way to

authenticate the document so the user can give appropriate authorization.

With this system, applets coming from a trusted source are granted higher

privileges, while untrusted applets face the tightest restrictions.

The current digital signature techniques use RSA, a public key crypto-

graphy standard, where there are two keys, public and private, that are math-

ematically related to each other.  A signature for a document is then a string of

bits derived from the document itself and the private key of the signing party.

The signer’s public key is then used to verify the signature of the document.

Note that since the signature depends on the document, it cannot be used to

validate a different document.  This protocol is illustrated in Figure 4.  The

current systems also rely on Key Certification Authorities (CAs), such as Veri-

sign, that are responsible for issuing and/or certifying these public keys. [32]

2.2  Binary Trust Model - Microsoft’s IE

The digital signature technique is currently used in Microsoft’s Authen-

ticode system in Microsoft Internet Explorer 3.0.   The Authenticode technol-

ogy allows a user to maintain his/her “Safety Level” at “High” to allow only

digitally signed applets to be downloaded.  Using the digital signature, the

applet’s code is verified to ensure that has not been tampered with.  The user
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then makes a decision as to whether he/she wishes to run the executable, tak-

ing into regard the name of the certificate authority and the author/endorser

of the code.  Unsigned applets can also be downloaded if the “Safety Level” is

set to “Medium”.  In both cases, however, the system interrupts the user by

requesting permission each time prior to executing the applet code. [19]

However, although the digital signature initiative is a good mechanism

for identifying and authenticating applets, this binary trusted/not-trusted

model is not sufficient for setting applet policies.  This provides an all-or-noth-

ing approach, where a trusted applet gains all access to the system, while a

non-trusted applet gains none.

Figure 4. Creating and Verifying Digital Signatures [6]
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2.3  Capabilities - Netscape’s Communicator

Netscape’s newest Web application, Communicator, includes a protocol

called Netscape Object Signing which allows Java applets written with capa-

bilities to request the ability to operate outside of their sandbox.  Capabilities

are requests to use the user's system resources (for example: writing to disk,

reading from disk, establishing a remote connection, etc.). [21]

The identification of applets is similar to the Authenticode method in

which the applets are digitally signed.  However, the capabilities-based

approach provides an extra level beyond the binary trust model.  When a

signed object is downloaded, the user receives information indicating the

signer of the applet and the capabilities that the applet requests.  Based on

that identification, the user decides whether to give the applet the requested

access to his /her computer.  Since the user is pre-informed of all the resources

to which the applet will need access, he/she can allow access to only those

resources and need not blindly allow access to all resources as would be done

with the Authenticode system. Unsigned applets, however, would still be

entirely limited to their sandboxes. [21]

Even though this provides a some-or-nothing approach, it still requires

users to give their permission each time by interrupting them as they surf the

Web.  Although, users may initially pay particular attention to the dialog

boxes, after a while, users discard these messages haphazardly since they will

routinely appear.  Also, the users will need to reevaluate their policy each time

to see if the applet conforms to it.  Instead, if the system set the policy at one-
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time and then abided by it thereafter, a more user-friendly system would be

achieved.

2.4  Configurable Applet Policy - Sun’s HotJava

 The HotJava Browser 1.0 allows the user to configure a one-time

applet policy allowing an applet more or less access to local system resources

based on the applet’s digital signature.  Users can tune security by controlling

which applets can be downloaded, which system files can be read or written,

which network hosts can be accessed, and which system permissions can be

granted. [27, 16]

Restrictions are set according to a particular certificate, a particular

Web site, or a grouping of sites and certificates.  A check-list is provided where

the user can specify which system accesses (opening windows without warn-

ing labels, accessing HotJava properties, accessing the clipboard, printing

files, and launching applications) are granted or denied for applets from each

group.  The user can list which files and directories the applets can read from

and write to, and similarly, which network hosts and ports the group can

access.  This graphical dialog is shown in Figure 5. [27]

This provides a much more configurable mechanism for specifying the

user’s applet policy.  The policy is set once and configured through the use of

check-boxes and list-boxes.  However, the structure of the policy is limited to

what is provided in the interface, namely the check-list of resources and the

list of names.  A more flexible, customizable tool is needed.
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Figure 5. HotJava’s Applet Security Preferences Page
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2.5  X believes Y about Z - PICS Trust Model

Another protocol built upon the digital signature scheme is the Plat-

form for Internet Content Selection (PICS) model developed by the World

Wide Web Consortium.  PICS is described as “an infrastructure for associating

labels (metadata) with Internet content”.  [33]   The labels specify the types of

content included in the documents.  These labels may be created and distrib-

uted by the authors of the documents themselves and/or by multiple, indepen-

dent labelling services which would rate others’ documents using their own

rating system.  When an end-user asks to see a particular URL, a PICS-com-

pliable Web browser fetches the document and also makes an inquiry to the

label bureau to ask for labels that describe that URL.  Depending on what the

labels say and where the labels originate, a filter configured by the user may

block access to that URL.  [33]

This system evolves into a community built upon a trust model often

termed as the Web of Trust.  Here is what Microsoft has to say about the trust

model:

“The only way to provide users with both the most positive com-
puting experience and maximum security is to adopt a model
based on trust.  A trust model identifies the certified provider of a
program and then allows users to decide for themselves whether
to trust that provider.  This model enables developers to create
the most innovative applications, and enables users to realize the
full potential of their computers while still maintaining an
appropriate level of security.”  - http://www.microsoft.com/secu-
rity/

However, although this trust model is adequate for content that cannot

yet be judged by a computer, such as graphics or textual compositions, it is not
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sufficient for active code such as Java applets.  Applets can be regulated by the

browser because of the safety of the Java language as will be discussed later in

Chapter 3.  Therefore, such a trust model is not necessary for granting access

to Java applets.  Would you allow an applet to access your file system just

because your friend Joe ‘thinks’ it is alright?

2.6  Proof-Carrying Code - CMU
George C. Necula and Peter Lee from Carnegie Melon University

(CMU) are attacking this problem using a different approach.  They have

introduced the notion of proof-carrying code (PCC), a mechanism by which the

Web server supplies a “safety proof” attached with the code that attests to the

code's adherence to a previously agreed safety policy.  The client can then vali-

date the proof to assure that the code abides to the safety policy.  Figure 6

illustrates this protocol. [20]

This approach promises a desirable outcome since no trust is assumed,

rather, the trust is earned by proving the code’s benevolence.  However, a more

user-friendly system needs to be achieved so ordinary users can configure

their own policies.  A system where users can declare their access permissions

and where the restrictions would be based on trustworthiness and/or authen-

tication of the applet.

2.7  Java Protected Domains - Java’s Future
Developers at JavaSoft are restructuring the Java Virtual Machine

(JVM) to help develop fine-grained control policies.  They have introduced the
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idea of Java Protected Domains where the JVM is effectively partitioned into

distinct protection components for the set of resources.  Each component can

impose restrictions on its internal resources.  Underlying these domains, an

inherent mechanism exists which ensures that applications do not falter from

their security permissions during inter-domain interactions. [30]

This work will provide an inherent mechanism for easily setting per-

missions on resources and for securely protecting resources.  When integrated

Figure 6. Proof-Carrying Code
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with a mechanism for specifying policies and for deciding permissions, a

secure system can perhaps be achieved.

2.8  Summary
Although the above approaches allow trusted applets more access to the

client system, they either do not provide a less trust-requiring system (criteria

1), a more user-friendly interface (criteria 2), a finer granularity of control

over applets (criteria 3), or a more flexible tool (criteria 4) as required in

Section 1.4.  Further, they do not keep track of information flow between an

applet and a later execution of that applet or another applet as will be

described in Section 3.3.3.
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C h a p t e r  3
Addressing Security

This chapter provides the background needed to further understand the

security issues with Java applets running on the Unix operating system.  We

first describe the specifics of the UNIX system, paying particular attention to

its security features.  The safeness of the Java language and the design of the

Java platform is then detailed.  After that, the security concerns that arise

when using Java and Java applets will be listed.

3.1  Unix Operating System
The Unix system was originally designed with emphasis on ease of use

rather than on security.  Its roots as a research platform in AT&T Bell Labora-

tories and in academia caused no great need for security until some time later

when it extended to the commercial environment. [25,1, 10, 11]  However, if

used properly, it includes several security measures through its password
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security, file access control, and auditing capabilities.  On the other hand, it

has several user-friendly features that inadvertently increase the vulnerabil-

ity of the system: the set-UID bit, file links, the PATH variable, the network-

ing utilities, excessive resource usability, and user customization files.

3.1.1  Password Security
The password is the most vital part of UNIX’ multi-user account secu-

rity.  Users have their own private passwords which the system uses for

authentication.  These passwords are encoded with a one-way encryption

(Data Encryption Standard) and stored in the /etc/passwd file preventing the

need to keep the raw password in file storage.  When a user logs in with his/

her password, the password is encoded and then compared against the

encrypted password in the user’s entry within the /etc/passwd file. [2, 1, 11]

Even though the passwords are encrypted, crackers can use a brute-

force attack to discover users’ original passwords if they manage to pirate a

copy of the password file.  Once the outsider cracks a user’s password, he/she

can easily log into the system with all the capabilities of that user.  Further-

more, UNIX has a privileged account known as root which gives “super user”

capabilities including reading from any file, writing to any file, and invoking

privileged system calls.  If the password to this root account is exposed, then

all accounts are compromised.

In addition to the encrypted password, the /etc/passwd file contains

the user’s login name, home directory, and login shell.  The password file

therefore needs to be accessed by many other programs (e.g. ‘cd’) that need to
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know the location of the user’s home directory.  This being the case, it is kept

world-readable for easy access by these programs.  However, the password

file’s world-readability and its well-known location make it trivial for an

intruder to access the file.  Therefore, some administrators create a non-world-

readable shadow password file, /etc/shadow, that contains the users’ actual

passwords, while the /etc/passwd file contains the other information.  [1, 8]

3.1.2  File System Security
Each file in the UNIX file system has associated with it an inode which

is part of a file descriptor that describes the properties of the file.  These prop-

erties include file access permissions, linking information, and other file

attributes.  Directories are treated as special types of files. [18]

3.1.2.1  Access Control Lists

Each file or directory has three sets of permission bits associated with it

together with a user identification number (UID) and a user-group identifica-

tion number (GID).  The three sets of bits are for the owner of the file, for the

users in the group associated with the file, and for all other users (the

“world” permissions).  File access for a user is not hierarchical: if the file is

owned by the user, the owner bits are tested, otherwise if the user is in the

file’s group, the group bits are tested, otherwise the world permissions are

tested. [25, 11]  This means that a file giving access to the world does not nec-

essarily give access to its owner.  Each set contains three identical permission

bits that control the following [5]:
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read: If set, the file or directory may be read.  In the case of a directory,
read access allows a user to see the contents of a directory (the
names of the files contained therein), but not to access them.

write: If set, the file or directory may be written (modified).  In the case
of a directory, write permission implies the ability to create,
delete, and rename files.

execute: If set, the file or directory may be executed (searched).  In the
case of a directory, execute permission implies the ability to climb
into that directory or to use it as a component of a path name.

Note that write access does not imply read access.  In addition, underly-

ing directory permissions can adversely affect the safety of seemingly pro-

tected files.  For example, a file F that has its write bit not set can still be

modified if the permissions set by its parent directory D allow write permis-

sion: file F can be deleted and re-created using directory D’s write permissions

without having to obey file F’s write permissions. [11]

The access mode can be modified with the chmod system command; the

owner of the file can be changed with the chown command; and the group

associated with the file can be changed with the chgrp command.  Only the

owner of the file/directory (or the super user) can modify these properties. [5,

13]

3.1.2.2  UMASK Value
In conjunction with the standard access controls, UNIX provides a sys-

tem feature called umask which allows the user to specify the default file and

directory creation mode.  The bits in the umask value are masked with the

permission bits specified by the system upon creation of a file.  So it actually

defines the permission bits that are not to be given by default. [5, 1] This
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allows users to easily avoid the creation of world-writable and/or world-read-

able files.  The umask value can be specified in the user’s start-up configura-

tion files as described in Section 3.1.4.4. [5]  Users should be aware of this

value and set it conservatively.

3.1.2.3  Set-UID & Set-GID Bits

Along with the nine bits specifying a file’s read, write, and execute per-

missions, each file has two additional bits that are used only when the file is

executed as a program: set-UID and set-GID bits.  Each process generated by

or for the user has associated with it an effective UID and a real UID, and an

effective GID and a real GID.  The user process’ effective UID and effective GID

are used to determine the access permissions.  If the set-UID bit is set for the

file, the effective UID for the process is changed to the UID associated with the

file.  Similarly, the effective GID of a process is changed to the GID associated

with the file when that file’s set-GID bit is set.  The real UID and real GID of

the process do not change when the file is executed. [25, 5, 11]

The idea behind set-UID and set-GID bits is that one may write a pro-

gram which is executable by others and which maintains files accessible to

others but only through that program.  A classic example is a game-playing

program which records the player’s scores in a file.  The score file needs to be

modified and updated by the game via players’ processes, but cannot be modi-

fied directly by the players since it would give them freedom to alter the

scores.  This can be accomplished by setting on the game program’s set-UID

bit. [25]
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One must use the set-UID (and set-GID) bits very carefully in order to

maintain the security of the system.  For example, a writable set-UID file can

have another program copied onto it preserving the set-UID bit. This allows

any user to execute commands using another user’s access permissions.

Therefore, one must ensure that all set-UID files are writable by no one other

than their owners.  Another security concern is when a set-UID file is owned

by root.  For those files, any user who executes that file is temporarily empow-

ered with super user capabilities.  Care must be taken to guarantee that these

root owned set-UID files are bug-free and trusted. [25]

3.1.2.4  File Links
File links allow a user to give a single file (a single inode) multiple

names.  Links can be hard or soft (symbolic). Hard links create links directly

to an inode, while soft links create new inodes which name the files to which

they are linked.  They are useful when one needs to have the same file located

at multiple places.  When the file or the link is modified, the other file is

apparently modified. [18]

File links introduce a security concern since they may accidently lead

access to a directory that was intended to be protected.  For example, if one’s /

ftp/pub directory had a link to a private directory for some reason, an outsider

can travel to that private directory by following that link.  Care must be taken

to prevent such insecure links.
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3.1.3  Audit Mechanism
The UNIX system audits many things including the last time a user

logged in, commands that a user executed during a login session, which users

attempted or gained access to root privileges, and which users were logged in

at any given time. [1]  These logs are maintained in the /usr/adm and /etc

directories.  Such information can usually be retrieved by issuing commands

such as ps, who, w, lastlog, and lastcomm. [5, 1]  One may want to prevent out-

siders from accessing such information to ensure others’ privacy and to limit

the release of such system information.

3.1.4  Usability vs. Security
Since UNIX designers placed greater emphasis on the usability of the

system, they inadvertently sacrificed its security.  Along with the concerns

introduced by set-UID bits and file links, other user-friendly features exist

that must also be carefully used.

3.1.4.1  The PATH Environment Variable - Trojan Horses

The PATH variable lists a sequence of directories in which the system

should search when it looks for an executable.  If the executable is not located

in any of the directories listed in the PATH, a “Command not found” error is

returned.  This allows users to input simply an executable’s name and to let

the system search for it, rather than specifying its full path name.  For exam-

ple, if /usr/bin and /bin are in the PATH, the user can simply type ls, who, or

any other command located in those directories to execute them. [13]
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A common practice is to place the current working directory, “.”, in the

PATH so that any program in the current directory could be executed.  How-

ever, along with this convenience comes the danger of easily placed Trojan

horses.  Trojan horses are programs that apparently perform a useful or inter-

esting task, but are actually executing malicious activities in the background.

For example, if a malicious version of the command ls (Trojan horse ls) is

planted in the current working directory and “.” is placed in the PATH prior to

/bin, then the Trojan horse ls will be executed instead of /bin/ls.  Similarly,

Trojan horses can be easily planted in any writable directory that appears

prior to the system directories in the PATH; it need not be in the current direc-

tory.  In addition, having an excessively long PATH list increases the opportu-

nity for planting a Trojan horse in any one of those directories.

3.1.4.2  Networking - Viruses

UNIX provides friendly network features where one can specify a list of

“trusted” hosts (and users).  Remote logins (using rlogin) and remote com-

mand executions (using rsh or rcp) from these hosts would be permitted with-

out requiring the guest to enter a password.  This provides a convenience for

users when they use the network since they do not have to repeatedly enter

their passwords. [5, 1, 13]

The system administrator (having super user access) lists the trusted

hosts along with their trusted users in the /etc/hosts.equiv file (hosts equiva-

lency file).  If a user attempts to access the system remotely from one of the

hosts listed in hosts.equiv, is listed as a trusted user from that host, and has
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an account on this local system with the specified login name, then the access

is granted without requesting a password.  Similarly, each user can have a

local .rhosts file in his/her account which can list further trusted hosts and

users not listed in the administrator’s hosts.equiv file. [5, 1]

Unfortunately, this customizable enumeration of trusted hosts, though

convenient, is extremely insecure.  The ‘trust host’ concept gives intruders and

viruses (programs which spread themselves secretly) unhindered opportunity

to break into other machines in the network.  For example, the Internet Worm

of November 1988 made use of the cascaded logins to spread quickly through-

out the network. [5, 1]  Once it broke passwords, it easily navigated through

other hosts using the users’ .rhosts and the /etc/hosts.equiv files.  Knowing

this, UNIX administrators are usually very careful when using the /etc/

hosts.equiv file.  However, the .rhosts files are not under their control and can

be created by normal users granting access to whomever they choose, without

the administrator’s knowledge. [5]  Naturally, care must also be taken to pre-

vent outsiders from creating .rhosts files.

3.1.4.3  Excessive Resource Usage - Denial Of Service

“The area of security in which UNIX is theoretically weakest is in pro-
tecting against crashing or at least crippling the operation of the system.  The
problem here is not mainly in uncritical acceptance of bad parameters to sys-
tem calls.. but rather in lack of checks for excessive consumption of resources.”
[25]

UNIX has no built-in limits on the amount of resources allowed per

user, giving users the freedom to excessively consume disk space, files, swap

space, and processes. [25]  Although providing no restrictions is user-friendly,
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this gives easy rise to denial of service attacks where attackers hog system

resources to the point of unusability by others. [4]  The following is the classic

shell program that consumes all the inodes or disk blocks on the system pre-

venting others from writing to the disk [25]:

while ; ; do
mkdir x
cd x

done

The following is a C program that consumes all the system processes forcing

the user to reboot the machine:

main() {
fork ();
main ():

}

3.1.4.4  User Configuration Files (Dotfiles)

Users can maintain their own configuration files in their home directo-

ries to be accessed by programs that have user customizations.  These files

include .cshrc, .kshrc, .profile, .login, .rhosts, and so on.  They are also known

as dotfiles since their names begin with a dot (“.”).  They are not listed as part

of the directory contents when using the ordinary ls command.  These hidden

files can only be seen by using the “-a” option with ls.  This feature provides

the capability not to be overwhelmed with these customization files during

normal usage of the file system.  However, this allows attackers to place other

dotfiles covertly in the users file space which would normally not be seen.

Care must be taken in preventing outsiders from creating dotfiles if one wants

to be aware of all files that are created and of the usage of the file system.
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3.1.5  Summary of Safeguards
The following list summarizes the safeguards needed when allowing

foreign code to be executed on the local system:

- Protect the directories: /etc, /adm, /usr, /var, /dev, /bin.
- Disallow the creation and modification of dotfiles by untrusted

sources.
- Place limits on and audit resource usage.
- Disallow the creation and modification of .rhosts files.
- Disallow having the same file names as those in /bin: ls, more, ...
- Disallow the setting of SUID and SGID bits on files.
- Disallow writing to SUID and SGID files.
- Allow the following of file links only carefully.
- Disallow the execution of ps, who, w, lastlog, lastcomm,... by untrusted

sources.

3.2  Java Safety
The Java programming language was released in May of 1995 by Sun

Microsystems as a platform-independent language that is both safe enough to

traverse networks and powerful enough to replace native executable code. [22]

Its ‘Write Once/Run Anywhere’ capability is a result of the Java Virtual

Machine which sits in between the native operating system and Java applica-

tions as show in Figure 7.  The Java source code is compiled into an intermedi-

ate byte code which is run inside the Java interpreter. [22, 34, 9]  Since Java

applications are interpreted, the program can be executed in a secure run-

time environment.  Both the safeness of the language design and the system

architecture help ensure the safeness of Java applications.
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3.2.1  Language
The safety of the Java language stems from its goal to keep program-

ming simple and straightforward.  This avoids the unnecessary common

design and programming errors, and equally importantly, prevents malicious

programs from accessing and modifying critical parts of the system. [22, 9]

3.2.1.1  Simple Rules

Java has simple rules and features in its language which make it easy

to follow and more difficult to make the mistakes often made in other lan-

guages.  For example, it supports only single inheritance class hierarchy, but

allows multiple inheritance of interfaces.  It allows a class to implement the

behavior of an interface without needing to be a subclass of the interface. This

eliminates the need for multiple inheritance of classes, without causing the

Figure 7. Java Virtual Machine Environment
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problems associated with multiple inheritance. [22]  Further, Java includes

the notion of packages for organizing class files.  This package system allows

the Java compiler to handle the operations of make automatically. [22]  It also

has a simple way to manage concurrent threads.  The keyword synchronized

can be associated with a method to designate it for serialized access within the

object.  The run-time system then ensures that only one synchronized method

is run simultaneously. [22]

3.2.1.2  No Naughty Pointers
Unlike some other programming languages, Java prevents the pro-

grammer from having direct access to the address-space of the program.  Java

is strictly object-oriented, so that memory can only be allocated and accessed

through objects.  There are no pointers (but references), no global variables,

and no notion of memory ‘records’ or ‘structures’.  Since there are no pointers,

there can be no pointer arithmetic or pointer de-referencing, forcing programs

to access only those objects they create themselves. [23, 34]

Arrays in Java are true arrays in that they are bound and limited to

their size.  A program that tries to access data outside of the array’s range

faces a run-time error.  Strings also have similar high-level support in Java.

Another safety measure is to prevent uninitialized objects from being used or

accessed.  This restricts programs to stay within their own memory and pre-

vents them from peeking into unauthorized locations. [22]
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3.2.1.3  Dynamic Memory Management

In addition to not having ad-hoc pointers, Java objects are automati-

cally created and deleted in the heap by the system’s memory manager.  The

Java run-time system keeps an account of all references to an object and

removes it from memory when it is no longer needed.  This use of a garbage

collector protects programs from having dangling pointers (accidentally free-

ing memory that is still referenced) and memory leaks (failing to free memory

once it is no longer needed).

3.2.1.4  Statically Typed, Late-binding

Every object in Java has a well-defined type that is known at compile

time.  The Java compiler prevents objects that are assigned to the wrong type

or that call nonexistent methods within it.  The Java run-time system keeps

track of all objects and knows their types during execution.  This allows the

system to prevent illegal casting of objects from one type to another. [22]

Java is a late-binding language, which means that it locates the defini-

tions of methods dynamically at run-time.  This allows the run-time system to

determine which method to run in a hierarchical object structure where a sub-

class can override its superclass’ methods.  Although this reduces the perfor-

mance of the program, it makes the behavior of the system straightforward.

[22]

3.2.1.5  Encapsulation

The Java language comes with four access modifiers for variables and

methods within classes to assert the security permissions on their visibility.
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This allows users to encapsulate and protect their data.  The permission can

be public (accessible by anyone), protected (accessible only by subclasses and

classes within its package), private protected (accessible only by subclasses),

private (accessible only within the class itself), or the default (accessible only

within its package).  The runtime and compiler checks ensure that these per-

missions are followed by all objects.

3.2.2  Architecture
Along with the safety provided by the Java language, the Java security

model provides three layers of protection around all classes as shown in

Figure 8.  This is necessary especially if Java binary code is to be downloaded

from (trusted and untrusted) sources in the Internet.  At the inner level, the

verifier guarantees the integrity of incoming classes and that the code uses

components as they are intended.  This allows the class loader to guarantee

that an application is using the core Java system classes and that these

classes are the only means of accessing basic system resources.  With these

Figure 8. The Java Security Model [22]
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restrictions in place, the security manager can control access over these sys-

tem resources. [22]

3.2.2.1  Byte-Code Verifier
Even though the compiler performs thorough type checking, the verifier

can catch deliberately malicious assembled code not produced by a trusted

Java compiler or code damaged via the network.  The verifier ensures that the

class file has the correct format.  The byte-code is verified using a simple theo-

rem prover which establishes a set of structural constraints on the bytecode.

[34]

The verifier also improves the performance of the interpreter since cer-

tain expensive run-time checks already statically performed by the verifier

can be eliminated.  These constraints include [34]:

- No stack overflows or underflows
- No illegal register accesses and stores
- No illegal data conversion (via casting)
- No violation of access permissions on objects
- No illegal parameters

3.2.2.2  Class Loader
Bytecode loaded from the system library on the local file system can be

downloaded by the Java runtime system.  However, to load code from other

sources in the network, the class loader is used to provide the Java runtime

with a downloaded class.  Classes are transported across the network as byte

streams and restructured into classes by the class loader. [7]

The class loader establishes a name space hierarchy.  It guarantees that

unique name spaces exist for classes that come from the local file system and
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for those that come from the network.  When a class is loaded, it is placed in a

private name space associated with its origin and remains assigned to its class

loader.  This partitioning ensures that 1. classes loaded from different net-

work sources are restricted from interacting with other classes, and 2. the sys-

tem classes are not overridden or replaced by versions loaded from other

(trusted or untrusted) sources. [15]

3.2.2.3  Security Manager

 The Java security manager is responsible for making application-level

security decisions.  A security manager can be installed by an application after

which it cannot be replaced or modified.  The Java system classes which pro-

vide access to system resources always consult the security manager before

permitting access.  The class loader together with the verifier guarantee that

these system classes are the only means by which the bytecode can access the

system resources.  This permits the security manager confidently and solely to

grant or deny access to all system resources using any simple or complex pol-

icy.  This lets the application impose an effective level of trust on the security

manager.

There are a fixed number of resources to which an application can have

access.  The security manager contains methods for each of these accesses as

shown in Figure 9.  These methods are called by the system classes to check if

permissions to the resources should be given.  These resources include the file

system, network ports, external processes, system properties, and the window-

ing environment.  If permission is denied, a security exception is raised;  oth-
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erwise, control is given back to the calling procedure.  Additional resources

and accesses are, and further can be, included in future Java Development

Kits (JDK).  For example, Sun’s JDK1.1 now also includes checkAwtEvent-

QueueAccess, checkMemberAccess, checkMulticast, checkPrintJobAccess,

checkSystemClipboardAccess, and checkSecurityAccess. [29]

An uninstalled security manager grants all requests so that the Java

virtual environment can perform any activity that is under the user’s authori-

zation.  However, an application that requires the downloading of untrusted

source code, such as a Java-enabled Web browser needing to download

applets, should install a security manager as one of its first actions.  This

would ensure that permissions are granted according to that security man-

ager.  By default, the base security manager simply denies access to all

resources.  In order to allow applets any access to resources, the methods

File
   checkRead   Read a file?
   checkWrite   Write a file?
   checkDelete   Delete a file?

Network
   checkConnect   Connect a socket to this host?
   checkAccept   Accept a connection from this host
   checkListen   Listen for connections on this port?

Processes
   checkExec   Execute this system process?
   checkExit   Execute a system exit?
   checkAccess   Access this thread?

Other
   checkProperty(ies)Access   Access this system property(ies)?
   checkTopLevelWindow   Create this new top-level window?
   checkCreateClassLoader   Create a new class loader?
   checkPackageAccess   Access this package?
   checkPackageDefinition   Define this package?
   checkLink   Link to this dynamic library?

Figure 9. Security Manager Methods
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listed in Figure 9 need to be overridden in a subclass of the security manager.

[15, 22]

The security manager provides a central powerhouse for setting access

rules.  In making these rules, it can recognize for whom the access is being

requested by checking whose class loader is currently on the stack.  Since each

package has its own class loader, the security manager can recognize which

applet, if any, is requesting the permission.  This allows the capability of plac-

ing a more complex, but fine-grained policy.

3.3  Security Concerns with Java

When granting Java applets access to system resources, the security of

the local system must be carefully scrutinized.

3.3.1  Java Security Holes
The Java language was designed to be safe so that secure applications

can be built using it.  However, as it is extremely difficult to implement bug-

free and entirely secure systems, Java also has security holes that are still

being discovered by various research teams scrutinizing the system.  Since the

Java platform has been available to the public eye since the very beginning,

its security can be carefully scrutinized, implemented, and repaired.

Examples of security-related bugs include undermining the Java type

system, letting applets create their own class loaders, loading illegal byte

code, using false DNS servers to make arbitrary network connections, etc. [15,

7]  These bugs have been promptly corrected in later Java Development Kits
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and Java-enabled Web browsers once they were discovered.  Since Java pro-

vides a safe foundation for developing secure network applications, as long as

it remains under public scrutiny, it can provide a potentially secure platform.

Therefore, in this paper, we assume that such security holes will be corrected

as they are uncovered allowing us to think beyond these holes and to create

more useful applications.

3.3.2  Respecting Other Applications
When a common set of resources is to be shared by multiple applica-

tions and applets, common courtesy should be enforced to respect others.  An

applet should not affect the execution of other applets and other applications.

This also includes the prevention of denial of service attacks which UNIX has

no safeguard against as described in Section 3.2.1.2.  Current Java implemen-

tations do not monitor or control resource consumption by applets.

3.3.3  Gossiping Applets - Inter-Applet Communication
If Java applets were given the power to access protected information,

can they by forced to keep it to themselves?  We can perhaps create a policy

where applets are forbidden to connect to the network after reading protected

information on the system.  However, there are covert channels which applets

can use to communicate this information to other applets who would then be

able to release this information to the network.  In other words, as shown in

Figure 10, if Applet A had accessed Protected file F, then knowing this, the

security manager can prevent applet A from connecting to the network.  How-

ever, using a covert channel, Applet A can release this information to Applet
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B.  Not being aware of this transaction, the security manager can mistakenly

allow Applet B to then transmit this protected information to the network.

Such inter-applet communication makes it difficult to keep track of informa-

tion flow.

3.3.3.1  Via The File System
If applets are allowed to write to the file system, an applet can easily

transmit information to another applet by writing that information to a file

readable by the other applet.  The following scenario depicts this transaction:

Figure 10.  Applet Communication
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Additionally, intra-applet communication can also be achieved using

the file system.  An applet can store information in the file system which it can

later retrieve during the same execution or when it restarts.  The system must

be aware of the possibility of it accessing and storing protected information for

later use.

3.3.3.2  Via The Document
An applet can transmit information to other applets within its docu-

ment by passing the information within method arguments.  Java allows an

applet to ask its context (the Web browser or the appletviewer) for the list of

applets in its document using the java.applet.AppletContext.getApplets proce-

dure or for a specific applet in its document using the java.applet.AppletCon-

text.getApplet method. [29]  Since an applet has access to other applets, it can

invoke other applets’ methods and pass any argument it wishes to those meth-

ods.  For example, the following Java code in Applet A sends protected infor-

mation to Applet B if Applet A and Applet B are from the same document:

AppletB appB = (AppletB) getAppletContext().getApplet(“AppletB”);
appB.covertChannel(“Here is some protected information“, <information>);

3.3.3.3  Via Newly Spawned Applets
Java includes a feature whereby applets can request the browser or

appletviewer to show a given Web page.  Using the java.applet.AppletCon-

text.showDocument method, it can replace the current web page with a given

URL, show the URL within a certain frame, or show it in a new top-level win-

dow. [29]  If applets are able to write to the file system, however, this capabil-

ity enables them to spawn new applets.  For example, the applet can write a
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Web document (NewApplet.html) with an embedded applet and then request

the browser to show the document (file:/<dir>/NewApplet.html).  This, how-

ever, opens up another channel through which applets can transfer informa-

tion to other applets.  Particularly, the new class file written by the parent

applet can include protected information known by the parent which would

then be transferred to the newly spawned applet.

3.3.3.4  Via Selective Resource Usage
A stealthy way for applets to transfer information is by sending signals

using system resources.  For example, a malicious applet can selectively name

the files that it creates so another applet can retrieve information by reading

the names of the files.  An applet that maintains a private list of your book-

marks file can name some temporary files that have the names of the listed

URLs.  An accomplice applet can read the contents of the directory and

retrieve the names of those URLs from the names of the files.  As another

example, two applets can communicate using some previously agreed code by

the opening and closing of certain network ports.

Such selective naming and usage is difficult to control.  However, such

communication may be possible to track if applets’ operations are audited and

suspicious activity is recognized.  For example, if odd file names appear or an

uncanny number of network ports are opened, one’s suspicions would be

raised.
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3.4  Summary
Java’s safe design can provide a solid foundation for creating useful

mobile code.  However, when exposing system resources to the public domain,

security is of great concern.  The UNIX platform provides ways to secure one’s

account and files; however, precautions need to be taken when making the sys-

tem resources more accessible to outsiders.
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C h a p t e r  4

Overall Design

 This chapter will give an overall picture of our system and describe the

functionality of each module.  The details of the implementation will be

described in subsequent chapters.

In order to provide a secure, straightforward, flexible, and configurable

policy for Java applets, we have designed and implemented a System where

ordinary users can specify their restrictions using a Simple Constraint Lan-

guage (SCL).   The user specifies his/her policy in SCL and stores it in an

Applet Rules File (ARF).  When an applet needs access to a certain resource,

the Applet Security Manager (ASM) allows or denies permission to that

resource according to the policy set by the user in the ARF.  This resolution of

permissions is managed by a separate module called Applet Access Checker.

Further, logs recording applets’ past accesses (Applet Access Logs) and a log
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storing the applet owners of files (Applet FileOwners Log) are maintained by

the two loggers, Applet Access Logger and Applet FileOwners Logger.  The fol-

lowing sections will describe and explain the need for the elements of the Sys-

tem as depicted in Figure 11.

4.1  Applet Rules
The Applet Rules File stores the policy that the user wishes to place on

applets downloaded onto his/her system.  The Rules module processes this file

and provides information about the rules to the Applet Access Checker.

Figure 11.  Design Architecture
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SCL also provides a way to label applets according to their state.  This

allows users to categorically state their policies by identifying applets by these

security labels in addition to their names and origins.  For example, an applet

can be labelled suspicious if it accesses more than 25 files, or  becomes private

after accessing private files.  Further rules would state that suspicious applets

can no longer access private resources, and that private applets can no longer

connect to the network.

More details about SCL, the Rules module, and the labelling scheme

are described in Chapter 5.

4.2  Applet Access Logs - Applets’ Karmic State

The user’s policy is a function of the applet’s identity and its past

accesses.  This is dissimilar from the Access Control List or capabilities tech-

nique used by most operating systems.  The permission of an applet depends

not only on its identity but also on its current state; its current state is the

sum of all its past accesses.  Keeping a record of applets’ past accesses

requires keeping Applet Access Log (AAL) files which are maintained by an

Applet Access Logger.

AAL files allow users to create much more useful policies.  For example,

when determining whether an applet should be allowed to connect back to its

host, user Joe would be unwilling to permit this only if the applet would be

compromising his privacy.  The integrity and reliability of his system would

not be damaged by this connection assuming the network connection does not
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drastically slow down his system.  In order to  assess safely whether the

applet would compromise his privacy, he would need to determine whether it

has accessed any of his private information.  (This is better than having Joe

blindly trust the applet if it came from a trusted source.)  Providing an audit-

ing mechanism on applets as is done by our Applet Access Logger, allows Joe to

peruse the applet’s past history and to see whether any of his private informa-

tion were accessed.  (Having Joe specify this policy in his Applet Rules File

does not require him to repeatedly reassess his policy).  Of course, Joe is also

free to disallow all access to his private information if he so wishes.  However,

this logging feature provides Joe a way to be less restrictive.

Each applet merits its own AAL file in order to search efficiently

through an applet’s log.  An entry in the log will state the resource used, the

access made, the name of the resource, and the number of times this access

was made.  For example: [File, Read, “/Public/FileName, 9] or [Host, Con-

nect.To, web.mit.edu, 5].  This information sufficiently provides the informa-

tion needed to decide future permissions.

4.3  Applet FileOwners Log - Mute Applets

In order to address the issue of applet communication described in

Section 3.3.3, the System entirely prevents applets from communicating with

one another (via the File System).  In the cases where it cannot prevent trans-

mission of information (via the Document), it considers those gossiping applets

to be in the same category of secrecy.  In the case where there is only a one-
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time exchange (via Spawned Applets), it updates the culprit’s log file to

account for this transfer.

4.3.1  Via the File System

Since the System is fully aware of which applets have accessed which

files, the System is capable of disallowing applets from accessing files written

by other applets.  This provides a way to create individual storage space for

applets without risking the possibility of privileged applets revealing informa-

tion to non-privileged ones.  (A possible future extension that allows file shar-

ing among applets is described in Section 7.1.3.)   An applet becomes an owner

of a File F once it has written to a pre-existing, non-previously-owned File F or

has created a new File F.  Other applets cannot read, write, or delete File F

since it is not owned by them.  This ownership will last through the stopping

and restarting of the applet, and through the exiting and reexecuting of the

Web browser.  The ownership will last as long as the applet’s stored informa-

tion remains accessible.  The applet will therefore continue to be the owner of

File F until File F is deleted.

One can argue that it would be safe for non-owners to delete File F

without allowing them to read from or write to it since there would be no

transfer of information.  However, allowing the deletion of another applet’s

files would encourage malicious applets wanting to prevent another Web site’s

applets from accessing their own (temporary) files.  Therefore, we have also

disallowed the deletion of files owned by other applets.
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Since current operating systems do not support the logging of which

executables have modified which files, the System keeps a log of this informa-

tion in the Applet FileOwners Log (AFL), maintained by Applet FileOwners

Logger.  The AFL is indexed by the file’s name and associates each file with

the identity of the owner applet and the time the file was last accessed.  The

Applet Access Checker uses this file through the Applet FileOwners Logger in

order to determine file accesses for all applets.  A file’s entry in AFL is deleted

when that file no longer exists, that is, when the file is deleted by the owner

applet or directly by the user via the operating system.

4.3.2  Via the Document

Since Web browsers allow applets to pass information to cousin applets

from the same document (as described in Section 3.3.3.2), we need to account

for the possibility of information leaking through this manner.  If Applet A has

been given access to Information I, we must be aware that Applet B from

Applet A’s document, can also access Information I from Applet A.  Similarly,

Applet A can access information from Applet B.  So both Applet A and Applet B

can be considered to have the same state of combined information.

Using this argument, when determining whether a permission should

be granted for Applet A, we make sure the same permission should be granted

for Applet B.  If there are N applets in the document, then the permission is

checked for all N applets.  Using this protocol, we account for the information

exchange between the cousin applets.
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Another approach would have been to give permissions and to log past

accesses based on the identity of the Web documents instead of the identity of

the applets.  Rather than the individual applets, each Web document would be

held accountable for the actions by all the applets within it.  However, this

limits an applet residing in multiple documents from accessing its own tempo-

rary files.  The files would need to be associated with one of those documents

instead of the applet.

4.3.3  Via Spawned Applets

We also need to account for the possibility of information exchange to

spawned applets.  As described in Section 3.3.3.3, this communication is a

one-way, one-time transmission.  When a new applet is spawned, it can carry

with it the latest state of the parent applet.  In other words, the total  informa-

tion that the parent knows at the point of birth can be transferred to the

newly-born applet.  Since we consider the state of an applet to be stored in its

Applet Access Log (AAL), we can simply view this information exchange as the

spawned applet inheriting a copy of this log.  So the spawned applet must also

bare the burden of and be accountable for its parent’s past history.  However,

afterwards, the parent and child go their separate ways without any further

communication, allowing them to make their own history keeping their sepa-

rate AALs.

If spawned applets are loaded via the file  protocol, detecting them is

trivial since we log the applet ownership of files.  When the applet is down-

loaded, we can check in Applet FileOwners Log whether the file in the URL is
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owned by another applet; the owner would be it’s parent.  If there is a parent,

the spawned applet’s AAL is initialized to the parent applet’s AAL.

If spawned applets are loaded via any other protocol such as http , it is

more difficult to detect them.  However, it is also more difficult to create such

spawned applets since this requires 1. the parent applet to be allowed to write

to document space on a Web server and 2. the parent applet to have knowl-

edge of the Web server’s file structure.  The latter can be easily achieved by

snooping around the server, however, it is strongly suggested that precaution

be taken to avoid the former.

4.4  Applet Security Manager
As was detailed in Section 3.2.2.3, the Java Security Manager is

responsible for granting and denying access to resources.   The Applet Security

Manager (ASM), the security manager for our System, delegates the responsi-

bility of determining the permissions for applets to the Applet Access Checker

(described in Section 4.5).  The ASM asks the Applet Access Checker whether

to grant the applet a particular access (i.e. read) to a particular resource (i.e. a

file) giving additional information about the resource (i.e. the file’s name).  The

Applet Access Checker responds in the affirmative or the negative.  If negative,

the Applet Security Manager will signal a security exception, otherwise, it

does nothing.
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4.5  Applet Access Checker
The Applet Access Checker manages the entire System.  It stores in

memory the applet policy parsed and scanned by Rules, and  makes sure the

two loggers, Applet Access Logger and Applet FileOwners Logger, are updated

with the latest information.  Using these three subordinates it responds to the

Applet Security Manager’s inquiries about applet permissions.

4.5.1  Logic Flow
In order to determine whether applet P can be granted access A to

resource R named N, the following steps need to be taken as shown in

Figure 12.  First, if R is a file, then verify that N is not owned by another

applet using the Applet FileOwners Logger.  If not, verify that N is not one of

the System’s file (i.e. Access Log Files, FileOwners Log File, or Applet Rules

File).  If not, verify that it is not one of Java’s system files (i.e. in

java.class.path ).  If all of the above is fine, or if R is not a file,  then deter-

mine which rules in Rules affect access A for resource R.  (Chapter 5 will go

into more detail about the backward searching of rules and how conflicting

rules are resolved.)  Both the applet and its cousins (other applets from the

same document as described in Section 4.3.2) must pass these rules.  For the

rules that require knowledge of the applets past history, the Applet Access

Logger is questioned..
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Figure 12.  Logic Flow
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4.6  Loggers

The two loggers, Applet FileOwners Logger and Applet Access Logger,

are alike in their functionality although unique in their usage.  They have

therefore been designed similarly but with striking differences.

4.6.1  HashCache

Extensive reading and writing to and from the file system requires

many time-consuming I/O operations.  Since both loggers need to store their

information in files, an efficient design is required to account for the multiple

updates and read requests to and from these files.  Therefore, a caching

scheme is used to store and retrieve the data.  In order to make the data

retrieval even more efficient, the data is stored in a hashtable indexed by the

file’s name for the Applet FileOwners Logger and by the applet’s name in the

Applet Access Logger.  This combination of using a hashtable and a cache is

termed HashCache.

4.6.2  Log Cleanup

The practice of keeping a log naturally leads to the question of when/

how to garbage collect the entries to prevent a forever growing collection on

limited disk space.

This question is easily answered for the Applet FileOwners Logger

which has an entry for each file owned by an applet.  The number of entries

cannot forever increase because of the limitation on the number of files placed
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by operating systems.  As the applets’ files are created and deleted, the entries

are also created and deleted respectively.

However, garbage collecting the Applet Access Logger is a bit more

tricky since logs can grow endlessly with time.  As applets do more and more

things, their history will forever increase; so when can one safely delete an

applet’s log?  An applet’s log is no longer needed if we know the applet will

never be executed again.  However, since the future cannot be predicted,

another alternative is needed.  The System safely deletes an applet’s history

once the applet no longer owns a file and has exited.  The reasoning is that if

the applet is no longer running and it does not leave any information behind,

then there is no way that it can store any previously accessed protected data.

Since it has no remains in file storage, it is safe to start it off with a clean slate

the next time it runs.  This logic allows us periodically to clean up applets’

logs.

4.6.3  Log Location

The logs cannot be modified by applets.  They are stored in a private

location which may be configured by the user.  In addition, the Applet Access

Checker makes sure that applets do not access these files.

4.7  Summary

This chapter delineated the overall design of the System excluding the

Rules module which will be described in the next chapter.  The System gives a

solution to the need-for-fine-grained-control-over-applets problem introduced
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in Chapter 1 while addressing the security issues described in Section 3.3.

The solution is to allow users to specify their policies using a simple constraint

language and to allow the categorical labelling of applets.  The System does

this while ensuring the applets are mute and are accountable for their past

history.  It makes use of an intelligent Applet Access Checker for managing the

processes involved and Loggers for recording information about the applets.
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C h a p t e r  5
Rules

Our system allows users to specify their policies on applets by declaring

rules that applets must follow.  In order to specify these rules in a straightfor-

ward manner, we have designed a Simple Constraint Language (SCL) in

which users describe the rules in their policy.  These rules are then used to

determine permission for a particular access to a particular system resource

for a particular applet.

5.1  Simple Constraint Language (SCL)
SCL is a strongly typed, case-insensitive language.  It includes four

major constructs: constants, variables, primitive procedures, and statements.

All four are used to create comprehensible rules.
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5.1.1  Types
All expressions in SCL are strongly typed to catch mismatched type

errors during the scanning of the rules.  They can be either of type string,

digit, or boolean. Variables of type T can be assigned only values or expres-

sions of type T.  Expressions of type T can be compared only to other expres-

sions of type T.  A list of type T contains only expressions of type T. Boolean

operators expect only expressions of type boolean.

5.1.2  Constants
There are three types of constant values. String literals are denoted by

surrounding the text with quotation marks (i.e. “www.mit.edu”, “/usr/bin”).

Digit values are positive or negative integers (i.e. 5000, -10). Boolean values

are either true or false.

5.1.3  Variables
SCL supplies a fixed number of variables that can be used to obtain

information about the applet (applet variables) and the resource (resource

variables), and to give a specific access to that resource (access variables).   As

in Java, variables are specified with a hierarchical syntax using dots (“.”), pro-

viding comprehensibility and easy extensibility for future additions.

5.1.3.1  Applet Information (Applet Variables)
Four kinds of applet variables are provided to identify the applet:

Name, CodeBase, Document, and Category.  The first three provide readable

information about the origin of the applet.  These can be easily extended to

include information about the digital signers and endorsers of the applet and
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document in future models.  The Category of the applet provides a modifiable

label which can be used to flexibly group applets according to some measure.

A label can be set once an applet has done something in its history or can be

based simply on its origin.  For example, an user can assign a label for applets-

that-have-read-protected-files and for applets-that-are-trusted-to-access-the-

mailbox.  However, in order to allow an ordinal ranking to the labels, these

labels are implemented as integers.  An applet’s label is 0 by default.

Figure 13 lists the applet variables, including their types.  For the

examples included, assume the user has downloaded the applet http://

www.applets.com/scheduler/addressbook/main.class from the document

http://web.mit.edu:80/applets/schedulers.html.

5.1.3.2  Resource Information (Resource Variables)
Variables are provided to identify system resources that are available to

applets.  These include File, Directory, Host, Command, Thread, and Property.

With JDK1.1, Print and Dynamic Linking can also be included.  Figure 14

lists the read-only variables that provide information about the resources.

5.1.3.3  Access Permission (Access Variables)
Each resource has associated with it accesses that can be permitted to

it.  The boolean variables in Figure 15 can be set to true or false specifying

whether the access should be permitted.  These variables can be assigned but

not read.  Otherwise, if they could be read, then the possibility of infinite loop-
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ing would arise in the rules.  Specifically, if one wanted permission to make a

File.read access and a rule that granted File.read access needed to know the

permission for a File.write access, then the permission for File.write access

would need to be evaluated.  If that in turn needed to know the permission for

File.read access, then a runtime looping error would occur.  In order to avoid

such complexity, these access variables are writable only.

Variable Type Description

Name: the applet

Applet.Name   string   The full package name of the applet
i.e.scheduler.addressbook.main

CodeBase: the applet’s origin

  Applet.CodeBase.Name   string   The full URL of the applet
i.e.http://www.applets.com/scheduler/addressbook/
main.class

  Applet.CodeBase.Host.Name  string   The DNS name of the applet’s server
i.e.www.applets.com

  Applet.CodeBase.Host.IP   string   The IP address of the applet’s server
i.e.18.249.0.37

Document: the applet’s document

  Applet.Document.Name   string   The full URL of the document
i.e.http://web.mit.edu:80/applets/schedulers.html

  Applet.Document.Host.Name  string   The DNS name of the document’s server
i.e.web.mit.edu

  Applet.Document.Host.IP   string   The IP address of the document’s server
i.e.18.249.0.37

Category: the applet’s state (label)

  Applet.Category   digit   The label placed on the applet
i.e.Trusted(7), Suspicious(3), Untrusted (0)

Figure 13.  Variables providing Applet Information
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Variable Type Description

File.Name  string   The name of the file. e.g.hosts

  File.Path string   The path of the file which may or may not be absolute.
e.g.etc/hosts

File.AbsPath string   The absolute path of the file. e.g./etc/hosts

File.Parent string   The parent directory of the file. e.g./etc

File.Size digit   The file’s size. e.g.2000 (for 2Kilobytes)

Directory.Name string   The name of the directory. e.g.inbox

Directory.Path string   The path of the directory. e.gMail/inbox

Directory.AbsPath string   The absolute path of the directory.
e.g./user/nimisha/homes/Mail/inbox

Directory.Parent string   The parent directory of the directory.
e.g./user/nimisha/homes/Mail

Directory.Size  digit   The length of the directory. e.g.34816

Host.Name string   The name of the host. e.g.www.sun.com

Thread.Name string   The name of the Thread.

  Thread.Group string   The name of the Thread’s group.

Command.Name string   The name of the command. e.g.ls

Property.Name string   The name of the property. e.g.user.home

Figure 14.  Variables identifying System Resources

Resource Access Variable Description

  File File.read   Whether the file can be read.

  File.write   Whether the file can be modified.

  File.delete   Whether the file can be deleted.

  Directory   Directory.read   Whether the directory can be read.

  Directory.write   Whether the directory can be modified

  Directory.delete   Whether the directory can be deleted.

  Host   Host.Connect.To   Whether the host can be connected to.

  Host.Connect.From   Whether connections can be accepted from the host.

  Thread   Thread.Access   Whether the thread can be accessed.

  Command   Command.Exec   Whether the command can be
   executed.

  Property   Property.Read   Whether the property can be read.

  Property.Write   Whether the property can be modified.

  Window   Window.Create   Whether the window can be created.

Figure 15.  Variables giving Accesses to System Resources
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5.1.4  Primitive Procedures
Primitive procedures allow a way to determine useful information dur-

ing run-time using constants and variables.  Each procedure has at least one

argument on which it operates and returns one value.  Both the arguments

and the return value are strongly typed.  Except for the Past procedure, proce-

dures are syntactically written in prefix notation.

5.1.4.1  Boolean Operations
((boolean, boolean) | (boolean) ) ==> boolean

The Boolean Operations are And, Or, and Not.  They all take in bool-

ean arguments and return a boolean value. And and Or are binary opera-

tors, while Not is a unary operator. And returns true only if both of its

arguments have the value true; otherwise, it returns false. Or returns false

only if both of its arguments have the value false; otherwise, it returns true.

Not returns false if its argument has the value true; otherwise, it returns true.

This is illustrated below:

( And true ( And true false ) )  ==> false
( Or  ( Not true ) true ) ==> true

5.1.4.2  Comparison Operations
((string|digit), (string|digit)) ==> boolean

The Comparison Operations are equal (“=”), not equal (“!=”), greater

than (“>”), less than (“<“), greater than or equal to (“>=”), and less than or

equal to (“<=”).  They are all binary operations which take in string or digit

arguments and return a boolean value.  Both arguments must be of the same

type.  If the arguments are of type digit, a numerical comparison is done.  If
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the arguments are of type string, a lexicographic comparison is done.  The fol-

lowing provide some examples:

( <  5   2 )  ==> false
( <  “hello”   “hi” ) ==> true
( =  Applet.Category  “Trusted” )  ==> run-time comparison

5.1.4.3  Match Procedure
(string, string) ==> boolean

The Match procedure provides a way to do pattern matching on strings.

It is a binary procedure that takes in two strings with the first argument

being the test string and the second argument the pattern string.  A boolean

specifying whether the test string matches the pattern string is returned.  The

pattern string is a limited regular expression in that it may have one or more

asterisks (“*”) as wild card characters which can match any string, including

the null string (as is similarly done in Unix shells).  The following examples

illustrate its functionality:

( Match  “hello there”  “*ello*” ) ==> true
( Match  “abc”  “*cd” )  ==> false
( Match  “web.mit.edu/nimisha/www/index.html”  “web.mit.edu/*” )  ==> true
( Match  File.Path  “/Public/*” )  ==> run-time match

5.1.4.4  OneOf Procedure
( (string|digit),  (string|digit)+ ) ==> boolean

The OneOf procedure is useful in determining whether an element

belongs to a list.  It is a binary operator that takes in a test element and a list

of elements.  The type of the test element must be the same as the type of the

elements in list.  That is, if the test element is a string, list must be a list of

strings.  The OneOf procedure returns a boolean specifying whether the test
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element is included in the list.  If the list is a list of strings that include pat-

terns, then the Match procedure is used to determine whether the test element

matches one of the patterns in the list.  Examples follow:

( OneOf  9  (  1  5  9  ) )  ==> true
( OneOf  “hi”  ( “hola”  “hello”  “hi”  “namaste” ) )  ==> true
( OneOf  “hi”  ( “h*”  “namaste” ) )  ==> true
( OneOf  File.Name  ( “ls”  “csh”  “more” ) )  ==> run-time check

5.1.4.5  Count and CountAll Procedures
boolean variable ==> digit

The Count and CountAll procedures are provided for totalling the num-

ber of accesses to a particular resource or for all resources, respectively.  They

take in an access variable as their argument and return a digit specifying the

total access.  For example, ( Count  file.read ) will return the total number of

times the file in question was read by this applet, and ( CountAll file.read ) will

return the total number of times all files were read by this applet.  The follow-

ing constraint is always kept:

( >=  ( CountAll Command.Exec )  ( Count Command.Exec ) ) ==> true

5.1.4.6  Past Procedure
( Any identifier in Past X predicate )
( All identifier in Past X predicate )

The Past procedure is a powerful tool in determining the applet’s state

inclusive of its past actions.  The predicate is evaluated over the applet’s past

usage of resource (or access) X.  The purpose is to find out the truth of the

predicate in the applet’s past history with X.



79

Two operators are provided, All and Any, which correspond to the math-

ematical notations ∀ (for every) and ∃ (there exists). All is used to verify the

truth of the predicate for every X used in the past.  With All, the predicate will

be true if and only if all X satisfied the predicate.  (The null set is considered to

have satisfied the predicate.) Any is used to confirm the truth of the predicate

for at least one X used in the past.  With Any, the predicate will be true if and

only if there existed at least one X that satisfied the predicate.  (The null set is

therefore considered to not satisfy the predicate.)

X can be either of two things: 1. a resource name or 2. a resource’s

access  variable.  For example, if X is “File”, then it corresponds to all the files

that the applet had accessed in the past.  However, if it is “File.Read”, then it

corresponds to only the files that the applet had read in the past.

The identifier is used to provide a nomenclature to identify the particu-

lar past resource inside the predicate.  When the identifier appears in the

predicate, it assumes the role of the resource in X.  Information about the

resource can be inquired within the predicate by using the resource informa-

tion variables described in Section 5.1.3.2, but replacing the resource name

with the identifier.  For example, if X is “File” or “File.Read”, and the identifier

is “f”, then when f.name and f.parent appear in the predicate, they refer to

information about the current file in question.  In other words:

Any:  If (∃ identifier Σ PastX s.t. predicate), then true, else false
All: ∀ identifier Σ PastX,  if (predicate), then true, else false

The following examples illustrate their functionality:

( Any  f  in  PastFile   ( OneOf   f.path  ProtectedDirs  )  )
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( Any  f  in  PastFile.Write   ( >   f.size  3000  ) )
( All  h  in  PastHost   ( =  h.name  Applet.codebase.host.name  )  )
( All  c  in  PastCommand.Exec  ( and  ( <=  (count  c.exec )  1 )

                                                                          ( OneOf  c.name SafeCommands )))

5.1.5  Statements
The aforementioned constants, variables, and primitive procedures are

combined and used in statements to describe the rules of the applet policy.

Define statements provide a mechanism for declaring global constant values.

Assignments allow a way to modify variables. If-Else statements allow a way

to set preconditions to assignments. Begin statements allow the grouping of

statements.  The syntax of these statements is derived from the Lisp lan-

guage.

5.1.5.1  Define Statements
( define identifier value )

The Define statement includes the keyword “Define”, the identifier

being defined, and the value to be assigned.  The value can be either a list of

elements (encapsulated within parentheses) or a single element of any type:

string, digit, or boolean.  The elements can even be identifiers defined in

previous Define statements. Define statements are used to provide global

identifiers for constant values.  These values therefore cannot be variables or

primitive procedures.  The following examples illustrate the syntactic repre-

sentation:

( Define  WriteableDirs  (  “/user/nimisha/AppletTmp/*” ) )
( Define  ReadOnlyDirs  (  “/ftp/pub/*” “/user/nimisha/Public/*” ) )
( Define  ReadableDirs  ( WriteableDirs  ReadOnlyDirs ) )
( Define  FileSizeLimit  5000 )
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5.1.5.2  Assignments
( variable  = value )

An Assignment includes a writeable variable, the assignment operator

“=”, and the value to be assigned.  The types of the variable and the value

must be the same. Assignments can be globally declared or placed within If-

Else statements as will be described later.  Contrary to Define statements,

Assignments can have more complex expressions including variables and

primitive procedures as their values as shown below:

( Host.Connect.To = false )
( File.Write = ( and  ( Match  File.Path  WriteableDirs ) )

( <  File.Size  FileSizeLimit ) ) )

5.1.5.3  If-Else Statements
( If predicate  consequent  ( Else alternative ) )

An If-Else statement provides a straightforward way to describe a rule.

It sets preconditions on the assignment of variables.  It consists of a predicate

which must have a boolean return value, a consequent statement which is

evaluated if the predicate is true, and an alternative statement which is evalu-

ated otherwise.  The consequent and alternative statements are local state-

ments (i.e. not Define statements).  For example, the Assignment above can be

rephrased as:

( If  ( and  ( Match  File.Path  WriteableDirs )
                      ( <  File.Size  FileSizeLimit )  )
                 ( File.Write = true  )
      ( Else  ( File.Write = false  )  )  )

5.1.5.4  Begin Statements
( Begin local-statement1 local-statement2 ... )
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Begin statements provide a way to group local statements together

including If statements, Assignments, and other Begin statements. Define

statements are not included since they are global.  The following is an exam-

ple of its usage:

( Begin
(  File.Write = false )
(  File.Read = true )
(  File.Delete = false )   )

5.1.6  Example
Figure 16 shows an example of an applet policy constructed using SCL.

SCL allows the use of “/*”,  “*/”, and “//” to form comments as is done in Java.

5.2  Rules Resolution
SCL provides a syntactic language to specify the rules.  However, a fur-

ther mechanism is provided to evaluate these rules during run-time and to

conclude the permissions that are set.

5.2.1  Static Simplifications

The rules are analyzed and simplified statically using copy propagation,

constant folding, and typing to efficiently decrease the run-time evaluation of

the policy.  These simplifications are done during the parsing of the rules.

5.2.1.1  Copy Propagation
The constant values declared in the Define statements are statically

substituted within the rules in which the definition’s identifier are found.

This reduces the need for an extra lookup table and allows further simplifica-

tions of the constant values.  Table 1 gives an example.
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/* Declare Readable Directories. */
( Define  ReadableDirs   ( “/user/nimisha/Public/*”   “/www/”” ) )

/* Declare Writeable Directories. */
( Define  WriteableDirs  ( “/user/nimisha/AppletTmp” ) )

/* Allow read access to Readable directories. */
( If  ( OneOf  File.Path  ReadableDirs )

( File.Read = true )  )

/* Allow read, write, and delete access to Writeable directories. */
( If  ( OneOf  File.Path WriteableDirs )

( Begin
( File.Write = true )
( File.Read = true )
( File.Delete = true )  )  )

/* Limit usage of total file space for all applets. */
( If  ( >  ( Countall File.Size )  20000 )

 ( File.Write = false )  )

/* Declare Protected Directories. */
( Define  ProtectedDirs  ( “/user/nimisha/Mail/” ) )

/* Allow read access to the Mail directory to mail organizer applets. */
( If  ( And ( Match File.Path  “/user/nimisha/Mail/*” )
                ( Match Applet.CodeBase.Name  “web.mit.edu/applets/Mail”  )  )

( Begin
( File.Read = true )
( File.Write = true )  )  )

/* Keep Protected information inside. */
( If  ( Any f in PastFile  ( OneOf  f.path  ProtectedDirs ) )

( Host.Connect.To = false  )
( Else  ( Host.Connect.To = true  ) )  )

/* Allow creation of windows by default. */
( Window.Create = true )

/* Limit the number of windows created. */
( If  ( > ( Countall Window.Create )  50 )
             ( Winocw.Create = false ) )

Figure 16.  Example of an Applet Policy

( Define X 1 )
===>  ( A = 1 )

( A = X )

TABLE 1. Copy Propagation from Define Statements
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5.2.1.2  Constant Folding
If there are any constant boolean values in a Boolean Operation, the

expression is easily reduced to a single value.  The following table summarizes

the reductions:

5.2.1.3  Typing
Since SCL is strongly typed, all variables, values, and expressions are

typed statically to prevent re-parsing during run-time.  Mismatched typed

errors are caught during the parsing and signalled to the user.

5.2.2  Backward Searching
When a permission is to be checked for a particular resource, the user’s

applet policy is referenced.  Instead of verifying all the rules each time an

access is to be granted, only the rules that affect this access are verified.  The

other rules are considered as dead-code at that time.  However, since the

applet’s label can change at any time, rules that affect Applet.Category are

always re-evaluated.  For example, if permission to read a system property is

requested, then only global Assignments and If-Else statements that affect

Property.Read and/or Applet.Category are evaluated, while the other rules are

discarded.  This is done for efficiency reasons only.

 (And  X  false)  ==> false  (And false X)  ==> false

 (And X true)  ==> X  ( And true X ) ==> X

 (Or X false) ==> X  (Or false X) ==> X

 (Or X true) ==> true  (Or true X) ==> true

TABLE 2.  Constant Folding in Boolean Operations
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5.2.3  No Redundancies
To avoid confusion and to keep the user’s policy clear, the system disal-

lows global re-definitions and global re-assignments.  So there can be at most

one Define statement for each identifier, and at most one global assignment for

each variable.  Any redundancies are detected statically during the parsing of

the rules and signalled to the user.  However, redundancies among local

assignments in If-Else statements are still allowed.

5.2.4  Resolving Access Conflicts
Since access variables can be assigned in global Assignments and in

multiple If-Else statements, conflicts may arise from these plural assign-

ments.  For example, one rule may assign File.Read to false, while another

assigns it to true.  A safe evaluation scheme is provided to resolve such con-

flicts.

The system uses a straightforward logic to evaluate the rules for a

given access.  By default, the access is false.  So if there are no rules affecting

this access, permission is not granted [ Φ  ==> false ].  If there are rules, the

final permission is the “and” of all the permissions set by the rules.  So, if

there is at least one rule that denies access, the permission is denied [ (T)*(F)+

==> false ].  In other words, in order for permission to be granted, all the rules

must permit access [ (T)+ ==> true ].

5.2.5  Resolving Labelling Conflicts
Similarly, since the category can be modified by any rule, conflicts may

arise from multiple assignments to an applet’s category.  For example, con-
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sider the policy written below.  It labels all applets Untrusted by default, Trusts

those applets that come from www.trust.org, and regards those applets that

accessed any protected files as Internal.  Since more than one of these rules can

be fired for a particular applet at a particular state, a safe resolution scheme

is provided.

/* Set the Category to Untrusted by default. */

( Applet.Category  =  Untrusted  )

/ * Declare the applets that we trust. */
( If  ( =  Applet.CodeBase.Host  “www.trust.org”  )

( Applet.Category  = Trusted  ) )

/* Declare the applets that should be internal. */
( If  ( Any f in PastFile ( OneOf  f.Path  ProtectedDirs )  )

( Applet.Category =  Internal )  )

/* Allow trusted applets to read from the file system. */
( If  ( >= Applet.Category  Trusted )

( File.Read = true ) )

/* Disallow Internal applets from connecting outside. */
( If  ( <  ( Applet.Category Internal )  )

( Host.Connect.To = false )
( Else ( Host.Connect.To = true ) )  )

The system enforces the labels to be implemented as type digit in order

to specify a way to order the security levels of each category.  So for the above

policy, the following needs to be declared:

( Define  Untrusted  1 )
( Define  Internal      5 )
( Define  Trusted    10 )

The least secure label should have the least value and the most secure

should have the highest.  Conflicts in assigning labels are then safely resolved
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by conservatively setting the label to the minimum of the values.  By default,

the label is set to 0 for all applets.

5.3  Summary
SCL was designed as a straightforward, comprehensible, and flexible

language for specifying the policy.  The variables provide a common vocabu-

lary for receiving information and setting permissions.  The primitive proce-

dures provide tools for computing useful information about the applets.  The

statements allow a way to formulate the rules in a logical structure.  These

rules are then evaluated and resolved at run-time.
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C h a p t e r  6
Implementation Notes

This chapter describes the pertinent details of the implementation of

the system.  The system is developed on the Sun SPARC platform using

JDK1.0.2.  It modifies the appletviewer’s Security Manager that comes with

JDK1.0.2.  The Java source code is retrieved from the class files using Java

Mocha Decompiler [31].  Neither the Java Virtual Machine nor the system

classes are modified.

6.1  Applet Security Manager
The Applet Security Manager (ASM) is questioned by the Java system

classes when access to a system resource is requested.  When one of the

checkX methods listed in Figure 9 is called, the ASM must determine whether

the request comes for an applet or for the application.  It does this by checking

whether a class loader is on the execution stack.  Since class loaders are only
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used for loading non-system classes, having a class loader on the stack implies

that an applet was loaded.

 Being a centralized authority, the ASM is responsible for responding to

all the queries in a multi-threaded environment.  Therefore, all the checkX

methods in the ASM are synchronized assuring that only one thread is

accessing the ASM at one time.  Also, since the ASM itself may need to access

system resources in determining the permissions, a flag (InCheck) exists to

signal when a security check is in progress.  (For example, the ASM may need

to access the logs to determine ownership of a file.)  If InCheck is true, then

permission is unquestionably granted since the request is coming from the

ASM, otherwise, the request is evaluated after setting InCheck to true.  Once

the request is determined, InCheck is reset to false before returning from the

procedure.

As the overseer, the ASM makes sure the system performs its closing

tasks before the appletviewer exits.  It does this by initially setting the

java.System.runFinalizersOnExit to true.  This ensures that the loggers can

write back their data to the files and all information is properly recorded upon

exit.

Not all the checkX methods in JDK1.0.2’s appletviewer’s security man-

ager were modified. checkCreateClassLoader and checkExit still throw secu-

rity exceptions for applets since they would otherwise introduce major

security hazards.  Letting applets create their own class loaders would imbal-

ance the safe foundation set by the lower level security in Java; allowing



91

applets to halt the Java Virtual Machine seems unnecessary.  In addition,

checkLink (throws a security exception) is not modified in the current system;

however, more flexibility can naturally be provided in the future.

6.2  Rules

The rules are scanned and parsed using Sun’s Java Compiler Compiler

(JavaCC) [28].  Given lexical and grammar specifications, JavaCC generates

Java code that can parse the files.  The files must conform to the grammar

specified, otherwise a parsing error would be raised.  Other errors including

mismatched types,  global redefinitions, assignments to read-only variables,

illegal identifiers, negative applet categories, and so on, are caught during

parsing.

In the implementation, Past procedures are not allowed to be nested

since nested Past expressions can be simplified to one Past expression.  Other-

wise, it makes the implementation more difficult and makes the rule more

complex than is needed.  The parser signals an error if nested Past procedures

exist.

The parser has been implemented so that it stores the rules in two

tables: one for global Assignments and another for the global If-Else state-

ments.  The subcomponents of the rules are stored in their corresponding data

structures as shown in Figure 17.   The data structures form a hierarchy

based on their types.  Namely, all the boolean typed structures are sub-

classed from a common boolean expression structure (BoolExpStruct), and
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the digit typed structures are subclassed from a common numerical expres-

sion structure (NumExpStruct).

6.3  Applet Access Checker
The Applet Access Checker (AAC) needs to evaluate the rules during

runtime.  It makes extensive use of Java’s runtime type checking feature in

order to do this.  Since Define Statements are copy propagated, only If-Else

statements and Assignments are evaluated during execution.  These state-

ments are recognized during runtime by verifying the type of the data struc-

tures: IfStruct for If-Else Statements and AssignStruct for Assignments.  As

the rules are decomposed for evaluation, various evalX methods are called to

evaluate the objects:

evalIf ( IfStruct  ) : Vector<AssignStruct>
evalAssign ( AssignStruct  ) : AssignStruct
evalBool ( BoolExpStruct  ) : Boolean or boolean[]
evalNum ( NumExpStruct ) : int

Figure 17.  Hierarchy of Data Structures for Rule Subcomponents

IfStruct

ExpStruct

BoolExpStruct

PastStruct

MatchStruct

BoolOpStruct

OneOfStruct

CountStruct DigitStruct

AssignStruct

NumExpStruct

ComparStruct



93

evalVar ( VarStruct ) :  Object
evalList ( Vector<Object> ) : Vector<Object>
evalObject ( Object  ) : Object

The evaluation of the Past procedure is interesting in that the resource

or access under question has a list of past values that need to be evaluated

instead of a single value.  This list of values needs to be evaluated within the

Past procedure’s predicate.  For example, in

(Any f in PastFiles ( Or  ( match  f.path  “/etc/*” )
( >  ( count  f.write )  0 ) ) )

the predicate ( Or ...) needs to be evaluated for the whole list of files accessed

in the past.  Within the predicate, the suboperations also need to be evaluated

for a list and then combined as a list.  In order to achieve this, evalBool is

allowed to return an array of booleans ( boolean[] ) for the list of values in

addition to a single Boolean value.  In this way, both match and > return a

boolean[] (m[] and g[]) which is used by Or. Or then evaluates the or operation

on the corresponding values in the array [(or m[0] g[0]) , (or m[1] g[1]), ...].

Finally, the array of booleans is reduced to a single Boolean value depending

on whether the values are to be and’ed (for the All procedure) or or’ed (for the

Any procedure).   The suboperations within boolean operations in Past proce-

dures may also return a list of values of other types (e.g. (count f.write) returns

a list of Integers).  These lists will be maintained until a final Boolean value is

attained.
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6.4  Logs

The Applet FileOwners Log (AFL) and the Applet Access Logs (AALs)

are implemented using cached hashtables (HashCache) as described in

Section 4.6.1.  The size of the two caches are specified as constants in the log-

ger classes (AppletFileOwnerLog.CACHE_SIZE and AppletAccess-

Log.CACHE_SIZE) which can be easily modified.  For now, they are

arbitrarily set to size 16.

The caches use a Least Recently Used (LRU) replacement policy.  The

HashCache class is implemented as a subclass of java.util.Hashtable.  It main-

tains an LRU vector which is updated whenever an object is accessed from the

table.  In order to do this, HashCache overrides the put, containsKey, get,

remove, and clear methods from java.util.Hashtable.  It also adds a get_all

method that can be used if one is retrieving all the objects in the table and

does not want the LRU vector to be updated.

In order to account for failure in the system, all the data in the cache is

written back to the log after a certain number of events or minutes.  In case

the system fails or is exited abnormally, these regular writebacks will prevent

major loss of information.  The loggers include WRITEBACK_EVENTS and

WRITEBACK_TIMEOUT_MNS constants to specify the minimum number of

events between writebacks and the minimum number of minutes between

writebacks, respectively.  Counters are kept for both events and minutes.

When a writeback occurs, both counters are reset.  If the application exits nor-

mally, writebacks are also done upon the exit through their finalize methods.
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6.5  Security Notes

In the implementation of the system, certain security issues needed to

be addressed.  As in Java, a safe design is only a support structure for a secure

implementation.

6.5.1  Error Resolution
How does one resolve various errors?  Errors include I/O errors, parser

errors, applet security errors, other runtime errors (i.e. out of bounds,

unknown host), and other unexpected system errors.  Since this system

involves the maintenance of multiple simultaneous running applets, we need

to classify these errors into fatal system errors and applet-specific errors.  The

first class of fatal system errors should include those errors where the entire

system should be halted, since otherwise, security violations would occur.  If

the system were inside a Web browser, then the browser should halt all its

Java operations when encountering a fatal class error. The latter class of

applet-specific errors should include those errors where only a particular

applet’s execution should be halted.  These errors that affect only one applet

need not and should not halt the entire system.  If the entire system were

halted from such an error, then that would allow an applet to affect the execu-

tion of other applets by simply causing those errors (denial of service attack).

It then seems apparent that errors which affect all applets and the

security of the entire system should be included in the fatal system class.  This

would include parser errors and I/O errors from the Rules file, and formatting

and I/O errors from the Applet FileOwner Log.  On the other hand, a security
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violation by a single applet and a formatting or I/O error in a single applet’s

Applet Access Log should not affect the entire system.  Instead, these errors

should be signalled for the benefit of the user.

6.5.2  Applet Identification
How does one identify applets?  In the appletviewer and in Web brows-

ers, the host of the applet’s document is most commonly specified using its

DNS host name.  In so doing, the system simply identifies the applet by the

host name of its codebase.  The accesses in the Applet Access Log and the files

in the Applet FileOwner Log are all associated with the DNS host name of the

applet’s codebase.  Since a server sometimes uses multiple machines (and thus

perhaps multiple IP addresses) to reduce its load, the system should not dis-

tinguish the same applet on the different machines.  Identifying applets by

their host name allows the system to associate the applet with the server and

not the specific machine permitting the applet to later access its files.

However, this leaves room for DNS spoofing attacks, in which incorrect

entries in a DNS server lead to incorrect identification of applets. [7]  If the

DNS server becomes infiltrated since the last execution, then the correct iden-

tity of an applet changes.  This introduces a vulnerability to an external

source: the DNS server.

On the other hand, the support for digitally signing applets can address

this.  Instead of IP addresses or DNS host names, the signature on the applets

would provide a secure mechanism for identification.  This functionality has

now been included in JDK1.1’s java.security package.  However, one may want
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to consider an applet that is updated to a newer version to be considered as

the same identity as its older version so that it may access its old files.  This

would require a slight variant to digital signing where the identity of the

applet does not change with some modification to its code if the author and the

origin are the same.  But as the theorists may know, this is currently a diffi-

cult problem.

6.5.3  CheckX methods
The checkX methods in the Applet Security Manager are called when

system classes want to verify whether the current thread (applet) has the

authority to access a certain resource.  These methods are provided to check

access.  However, in calling a checkX method, it does not necessarily mean

that the given applet has performed that action, but only that the action was

requested.  Despite this, the current implementation logs it as if the action

was performed.  For example, the java.io.File.canRead method uses the check-

Read method to just check whether the read permission should be allowed,

although the file may not even be read.

Current Java development kits also give applets access to the Security

Manager, enabling applets to inquire about their permissions using the Secu-

rity Manager’s checkX methods.  This feature allows applet authors to write

more robust and useful code.  However, with the current implementation of

the system, the checkX methods will log these inquiries as actual accesses.

The outcome is that applet’s accesses would be limited by these extra

loggings if the applet policy includes rules that limit future accesses based on
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past ones.  For example, if a rules states that “an applet cannot access more

than 8 files”, the applet would be able to access only 4 files since the checks

prior to each access would also be counted.  This does not introduce any secu-

rity holes assuming past accesses only limit future accesses.  If this were not

the case, then an applet could merely call the checkX methods without actu-

ally accessing the resource but instead extending its permissions.  An example

would be a rule that states, “an applet can access this protected file only if it

has read this copyright.”  The applet could simply call the checkRead method

on the copyright, but not read it.  However, such rules would not be very use-

ful.

To address this properly however, the Security Manager should have

two types of methods: one for checking access (checkX) and another for both

checking and logging the access (checklogX).  The former can be used by

applets who want to know their permissions, and the latter can continue to be

used by the system classes.

6.5.4  Unix File System
To be consistent with the capabilities on the UNIX platform, giving

write access to an applet does not necessarily mean it has read access.  Writ-

ing is not a superset of reading.  In order to allow an applet to read and write,

both permissions must be assigned to true in the rule.

On another note, the current Java API is limited in that the file permis-

sions on the UNIX system are inaccessible.  Therefore, there is no way of set-
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ting a file’s ACLs or discovering whether a file’s SUID bit is set.  This limits

the breadth of the policy one can place on an applet’s access to the file system.

Further, the files that are newly created by the Java runtime are given

ACL permissions based on the user’s current umask value.  If the umask value

does not prevent the creation of world-readable files, then all new files would

be world-readable.  The file permissions cannot be changed after its creation

because of the limitation in the Java API.  Consequently, the log files created

by the system and files created by applets would be dependent upon the

umask value.  Users must be aware of this and set their umasks values

accordingly.

6.6  Summary
The implementation of the system addressed issues of efficiency, con-

currency, and security.  Algorithms have been discovered for the first two as

computer science progressed.  However, the last, security, still needs to be

carefully considered.  The current implementation has attempted to address,

in a practical manner, the security issues that have so far arisen.  But more

has yet to be done.
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C h a p t e r  7
Conclusion

The System has been designed and implemented to propose a solution

for providing fine-grained control over Java applets while ensuring the

requirements set in Section 1.4: configurability, flexibility, straightforward-

ness, and security.  In doing this, a Simple Constraint Language was created

to be used for writing a configurable applet policy.  The language includes

nomenclature for variables that identify resources, accesses, and applets.  The

syntax of these variables was intentionally chosen to be hierarchical in order

to provide a flexible naming scheme that can be easily extended.  Primitive

procedures and structural constructs are also supplied to ease specification of

constraints and rules.
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The rules are powerful in that they can reference an applet’s past

accesses in order to determine its future accesses.  This goes a step beyond the

commonly used capabilities and access control lists found in current operating

systems.  Further, a labelling scheme is included for grouping like applets into

a single category and for writing rules based on the category.  The labelling

can also be based on the applets past accesses in addition to their origin and

identity.  This makes writing policies even more straightforward.

In designing and implementing the System, the security of the client

system was always kept in mind.  Therefore, measures were taken to prevent

or track applet communication, to limit resource usage, to audit applet behav-

ior, and to maintain privacy, integrity, and reliability of the system.

All this was implemented without the need for modifying Java’s core

system classes.  However, in order to build a commercial application of the

System, the Java API needs to be extended to include more UNIX file system

specific control, resource usage control, and applet permission verification.

These additions would then more confidently assure that the security of the

UNIX system is preserved.  A sample policy for UNIX users is provided in

Appendix A which addresses the security issues of the UNIX system.  To be

most secure, the System should not be run as the super user.

7.1  Future Direction

Further work in this area can prove to yield an even less restrictive and

even more secure, straightforward, configurable, and flexible system.
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7.1.1  Simple, but Smarter, Constraint Language
The language should be extended to include the possibility of identify-

ing applets using their digital signatures.  This will allow users to authenti-

cate applets and to place more trust based upon their origin.  However, to

create a sound policy, the rules should still be combined with those that give

authorization based upon the applets’ trustworthiness and past actions.  Poli-

cies based solely on the origin of applets would otherwise create a rigid caste

system.

In addition, a more intelligent policy reader could perhaps be developed

to catch obvious errors in the rules.  If artificial intelligence, specifically an

expert system on security policies, were included, the policy reader might be

able to statically determine the security level of the policy.  For example, if a

rule grants write permission to certain files, but no read permission, then that

may be an error on the part of the user which can be easily detected by an

intelligent policy reader.  Or if the policy reader has knowledge of the vocabu-

lary used for security, it can detect a possible error in a rule that allows “suspi-

cious” applets to connect to the network.  Such intelligence could prevent

security blunders made in the policy.

A feature that is currently lacking in the language is the ability to

define procedures.  Such a capability would make the policy more powerful

and the language even more flexible.  For example, currently in the language,

there is no way for the user to check if the name of the file under question

matches one of the files in the bin directory (to catch Trojan horses more effec-

tively).  A primitive procedure that lists the contents of a directory or an addi-
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tional attribute to the directory resource variable can be added to the

language.  However, that would require modification of the System.  Instead, if

the user could develop his own procedure to list the contents of the directory,

then that would be more flexible allowing even further extensions.  A possible

mechanism of easily implementing this is to allow users to write their proce-

dures in Java using Java’s API.  Their procedures would simply then be exe-

cuted during runtime.  Care must be taken, however, to make these

procedures bug-free and to test them fully since the applets’ policy would be

based upon their return values.  Keeping them short and simple would aid in

this.

7.1.2  Applet Durability
Applets are associated with their codebase in the System.  An applet

can access its past files only if its codebase matches the codebase associated

with the files.  However, an outcome of this practice is that if the applet’s loca-

tion is modified, then it can no longer access its past files on the user’s system.

The usage of Uniform Resource Names (URNs) however, would easily remedy

this.  If applets were associated with their URNs instead of their location, the

mobility of the applets would not affect their ability to access their files. [26]

7.1.3  File Sharing
The System’s goal of providing more freedom to applets was however

limited by the restraint of not allowing applets to share files.  This confine-

ment was placed in order to retain security by preventing inter-applet commu-

nication.  However, from the applets’ point of view, file sharing would be a
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useful capability in creating cooperative applets that work together in per-

forming powerful operations.  For example, as one applet organizes and

arranges the user’s schedule, another could graphically present the scheduler,

while another communicates with other agents to make appointments.  These

teamplayer applets would perhaps need to communicate with each other and

to share the common schedule files.

A possible way of implementing file sharing while ensuring security,

would be to attach a security label with each file and with each applet.  The

label on the file would denote the security level of its contents.  i.e. Secret-

from-All-Applets, Public-to-Network, Non-Network, etc.  The label on the

applet would correspond to the highest level of security of the information

that it had accessed so far.  Then applets with the same current security level

should be able to access the same files without compromising the local system.

This way, in case applet communication occurs through the shared files, it

would not matter since both applets have accrued the same security level of

information.  This assumes that the policy set by the user is in accord with

these security labels.  A simple and straightforward way of implementing such

rules is necessary.

7.1.4  Centralized Policy Decisions
The System provides a way for ordinary users to specify a fine-grained

control policy.  However, some users may still not be capable of or have the

time to set the rules.  To address this, default policies for different operating

systems should be supplied for these users.  If they wish, they may modify the
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rules.  But the default policy should be comprehensive and easily configurable

to set appropriate values (i.e. user’s home directory, etc.) to those of the user’s

system.

Network administrators, on the other hand, may want to place a cen-

tralized policy for all system users.  This can be done by configuring the loca-

tion of the Applet Rules File (ARF) to a directory that is writable only by the

super user.  Users can, however, still download their own version of the System

and configure their ARFs differently ignoring the administrator’s policy.

Corporations also need to place certain common limitations on applets

downloaded by all their employees.  This is usually done by using a firewall.  A

policy can be placed at the firewall which must be obeyed by all applets enter-

ing the site.  In order to implement this, the System would need to be inte-

grated into the firewall filtering mechanism.  The filtering mechanism would

take the place of the Applet Security Manager.  Further, with this scheme,

users inside the firewall can create their own policy but it cannot override the

site’s policy.  In other words, the accesses granted to an applet by the user can

only be a subset of the accesses granted by the site, not a superset.

7.1.5  Other Languages
Can the System be modified to work with languages other than Java?

The security of the System stems from the secure foundation of Java’s low

level architecture, its safe language, and its interpretative feature.  The safety

of the language is needed to ensure the applet’s program does what it says.

The secure architecture is needed to ensure the applet is obedient.  The inter-
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pretative language is needed to check and restrict its behavior during run-

time.  Another language that can provide these three things would be suitable.

7.2  Final Note
The System has potential for a less restrictive policy on applets, while

providing a secure, straightforward, configurable, and flexible system.  Inte-

grating with UNIX-specific Java API, file sharing, centralized policy decisions,

digital signatures, and URNs would make it even more powerful.
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Appendix A: Sample Policy for UNIX Users

/************ UNIX Specific Rules ************/
/** Catch Trojan Horses **/
( If  ( OneOf  File.Name  ( “ls” “find” “more” “diff” “ps” “cat” “chmod” “chown” “chgrp”

“cp” “mv” “grep” “sh” “csh” “ksh” “man” “ln” “su” )  )
( File.Write = false ) )

/** Protect the system directories **/
( If  ( OneOf  File.Path  ( “/bin/*” “/etc/*” “/usr/*” “/var/*” “/dev/*” “/adm/*” “/sys/*” ) )

( File.Write = false )
( File.Delete = false ) )

/** Disallow the creation and modification of dotfiles ( includes .rhosts files ) **/
( If  ( Match File.Name “.*” )

( File.Write = false )
( File.Delete = false ) )

/** Disallow the execution of protected progams. **/
( If  ( OneOf Command.Name ( “ps” “who” “w” “lastlog” “lastcomm” ) )

( Command.Exec = false ) )

/************ Prevention of Denial of Service ************/
/* Limit number of file pointers created. */
(If  ( > ( Countall File.Write ) 20 )

( File.Write = false ) )

/* Limit usage of total file space. */
( If ( > ( Countall File.Size ) 500000 )

( File.Write = false ) )

/* Limit number of windows created. */
( If ( > ( Countall Window.Create ) 100 )

( Window.Create = false ) )

/************ Additional Personal Rules ************/
( Define WriteableDirectories ( “/user/nimisha/AppletTempSpace/*” ) )
( If ( OneOf File.Path WriteableDirectories )

( File.Read = true )
( File.Write = true )
( File.Delete = true ) )

/* Allow trusted sources access to protected directories and network connection. */
( Define ProtectedDirectories ( “/user/nimisha/Mail/*” “/user/nimisha/Papers/*” “/user/nimisha/Diary/*” ) )
( Define Trusted Sources ( “web.mit.edu” “www.sun.com” “ana.lcs.mit.edu” ) )
( If ( And ( OneOf File.Path ProtectedDirectories )
                 ( OneOf Applet.CodeBase.Host.Name TrustedSources ) )

( File.Read = true )
( File.Write = true )
( Host.Connect.To = true ) )

/* Keep protected information inside. */
( If ( Any f in PastFile ( OneOf f.path ProtectedDirectories ) )

( Host.Connect.To = false ) )
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