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Abstract

The paxos algorithm is an e�cient and highly fault-tolerant algorithm, devised by

Lamport, for reaching consensus in a distributed system. Although it appears to be
practical, it seems to be not widely known or understood. This thesis contains a new
presentation of the paxos algorithm, based on a formal decomposition into several
interacting components. It also contains a correctness proof and a time performance
and fault-tolerance analysis.

The presentation is built upon a general timed automaton (GTA) model. The

correctness proof uses automaton composition and invariant assertion methods. The
time performance and fault-tolerance analysis is conditional on the stabilization of
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In order to formalize this stabilization, a special type of GTA called a Clock GTA is
de�ned.
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Chapter 1

Introduction

Reaching consensus is a fundamental problem in distributed systems. Given a dis-

tributed system in which each process1 starts with an initial value, to solve a consensus

problem means to give a distributed algorithm that enables each process to eventu-

ally output a value of the same type as the input values, in such a way that three

conditions, called agreement, validity and termination, hold. There are di�erent def-

initions of the problem depending on what these conditions require. The agreement

condition states requirements about the way processes need to agree (e.g., \no two

di�erent outputs occur"). The validity condition states requirements about the rela-

tion between the input and the output values (e.g., \any output value must belong to

the set of initial values"). The termination condition states requirements about the

termination of an algorithm that solves the problem (e.g., \each non-faulty process

eventually outputs a value"). Distributed consensus has been extensively studied; a

good survey of early results is provided in [17]. We refer the reader to [35] for a more

up-to-date treatment of consensus problems.

1We remark that the words \process" and \processor" are often used as synonyms. The word

\processor" is more appropriate when referring to a physical component of a distributed system.

A physical processor is often viewed as consisting of several logical components, called \processes".

Processes are composed to describe larger logical components, and the resulting composition is also

called a process. Thus the whole physical processor can be identi�ed with the composition of all its

logical components. Whence the word \process" can also be used to indicate the physical processor.

In this thesis we use the word \process" to mean either a physical processor or a logical component

of it. The distinction either is unimportant or should be clear from the context.
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Consensus problems arise in many practical situations, such as, for example, dis-

tributed data replication, distributed databases, ight control systems. Data repli-

cation is used in practice to provide high availability: having more than one copy

of the data allows easier access to the data, i.e., the nearest copy of the data can

be used. However, consistency among the copies must be maintained. A consensus

algorithm can be used to maintain consistency. A practical example of the use of data

replication is an airline reservation system. The data consists of the current booking

information for the ights and it can be replicated at agencies spread over the world.

The current booking information can be accessed at any of the replicas. Reservations

or cancellations must be agreed upon by all the copies.

In a distributed database, the consensus problem arises when a collection of pro-

cesses participating in the processing of a distributed transaction has to agree on

whether to commit or abort the transaction, that is, make the changes due to the

transaction permanent or discard the changes. A common decision must be taken to

avoid inconsistencies. A practical example of the use of distributed transactions is a

banking system. Transactions can be done at any bank location or ATM machine,

and the commitment or abortion of each transaction must be agreed upon by all the

bank locations or ATM machines involved.

In a ight control system, the consensus problem arises when the ight surface

and airplane control systems have to agree on whether to continue or abort a landing

in progress or when the control systems of two approaching airplanes need to modify

the air routes to avoid collision.

Various theoretical models of distributed systems have been considered. A gen-

eral classi�cation of models is based on the kind of communications allowed between

processes of the distributed system. There are two ways by which processes commu-

nicate: by passing messages over communication channels or using a shared memory.

In this thesis we focus on message-passing models.

A wide variety of message-passing models can be used to represent distributed

systems. They can be classi�ed by the network topology, the synchrony of the system

and the failures allowed. The network topology describes which processes can send
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messages directly to which other processes and it is usually represented by a graph in

which nodes represent processes and edges represent direct communication channels.

Often one assumes that a process knows the entire network; sometimes one assumes

that a process has only a local knowledge of the network (e.g., each process knows

only the processes for which it has a direct communication channel).

About synchrony, several model variations, ranging from the completely asyn-

chronous setting to the completely synchronous one, can be considered. A completely

asynchronous model is one with no concept of real time. It is assumed that messages

are eventually delivered and processes eventually respond, but it may take arbitrarily

long. In partially synchronous systems some timing assumptions are made. For ex-

ample, upper bounds on the time needed for a process to respond and for a message

to be delivered hold. These upper bounds are known by the processes and processes

have some form of real-time clock to take advantage of the time bounds. In com-

pletely synchronous systems, the computation proceeds in rounds in which steps are

taken by all the processes.

Failures may concern both communication channels and processes. In partially

synchronous models, messages are supposed to be delivered and processes are ex-

pected to act within some time bounds; a timing failure is a violation of these time

bounds. Communication failures can result in loss of messages. Duplication and re-

ordering of messages may be considered failures, too. The weakest assumption made

about process failures is that a faulty process has an unrestricted behavior. Such a

failure is called a Byzantine failure. More restrictive models permit only omission

failures, in which a faulty process fails to send some messages. The most restrictive

models allow only stopping failures, in which a failed process simply stops and takes

no further actions. Some models assume that failed processes can be restarted. Often

processes have some form of stable storage that is not a�ected by a stopping failure;

a stopped process is restarted with its stable storage in the same state as before the

failure and with every other part of its state restored to some initial values.

In the absence of failures, distributed consensus problems are easy to solve: it is

enough to exchange information about the initial values of the processes and use a
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common decision rule for the output in order to satisfy both agreement and validity.

Failures complicate the matter, so that distributed consensus can even be impossible

to achieve. The di�culties depend upon the distributed system model considered

and the exact de�nition of the problem (i.e., the agreement, validity and termination

conditions).

Real distributed systems are often partially synchronous systems subject to pro-

cess, channel and timing failures and process recoveries. Today's distributed systems

occupy larger and larger physical areas; the larger the physical area spanned by the

distributed system, the harder it is to provide synchrony. Physical components are

subject to failures. When a failure occurs, it is likely that, some time later, the prob-

lem is �xed, restoring the failed component to normal operation. Moreover, though

timely responses can usually be provided in real distributed systems, the possibility

of process and channel failures makes it impossible to guarantee that timing assump-

tions are always satis�ed. Thus real distributed systems su�er timing failures. Any

practical consensus algorithm needs to consider all the above practical issues. More-

over, the basic safety properties must not be a�ected by the occurrence of failures.

Also, the performance of the algorithm should be good when there are no failures.

paxos is an algorithm devised by Lamport [29] that solves the consensus prob-

lem. The model considered is a partially synchronous distributed system where each

process has a direct communication channel with each other process. The failures

allowed are timing failures, loss, duplication and reordering of messages, process stop-

ping failures. Process recoveries are considered; some stable storage is needed. paxos

is guaranteed to work safely, that is, to satisfy agreement and validity, regardless of

process, channel and timing failures and process recoveries. When the distributed

system stabilizes, meaning that there are no failures nor process recoveries and a

majority of the processes are not stopped, for a su�ciently long time, termination is

achieved; the performance of the algorithm when the system stabilizes is good. In

[29] there is also presented a variation of paxos that considers multiple concurrent

runs of paxos when consensus has to be reached on a sequence of values. We call

12



this variation the multipaxos algorithm2.

The basic idea of the paxos algorithm is to propose values until one of them is

accepted by a majority of the processes; that value is the �nal output value. Any

process may propose a value by initiating a round for that value. The process initiat-

ing a round is the leader of that round. Rounds are guaranteed to satisfy agreement

and validity. A successful round, that is, a round in which a value is accepted by

a majority of the processes, results in the termination of the algorithm. However

a successful round is guaranteed to be conducted only when the distributed system

stabilizes. Basically paxos keeps starting rounds while the system is not stable, but

when the system stabilizes, a successful round is conducted. Though failures may

force the algorithm to always start new rounds, a single round is not costly: it uses

only linear, in the number of processes, number of messages and amount of time.

Thus, paxos has good fault-tolerance properties and when the system is stable com-

bines those fault-tolerance properties with the performance of an e�cient algorithm,

so that it can be useful in practice.

In the original paper [29], the paxos algorithm is described as the result of discov-

eries of archaeological studies of an ancient Greek civilization. That paper contains

a sketch of a proof of correctness and a discussion of the performance analysis. The

style used for the description of the algorithm often diverts the reader's attention.

Because of this, we found the paper hard to understand and we suspect that others

did as well. Indeed the paxos algorithm, even though it appears to be a practical

and elegant algorithm, seems not widely known or understood, either by distributed

systems researchers or distributed computing theory researchers.

This thesis contains a new, detailed presentation of the paxos algorithm, based

on a formal decomposition into several interacting components. It also contains a cor-

rectness proof and a time performance and fault-tolerance analysis. The multipaxos

algorithm is also described together with an application to data replication.

2
paxos is the name of the ancient civilization studied in [29]. The actual algorithm is called the

\single-decree synod" protocol and its variation for multiple consensus is called the \multi-decree

parliament" protocol. We take the liberty of using the name paxos for the single-decree synod

protocol and the name multipaxos for the multi-decree parliament protocol.
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The formal framework used for the presentation is provided by Input/Output

automata models. Input/Output automata are simple state machines with transitions

labelled with actions. They are suitable for describing asynchronous and partially

synchronous distributed systems. The basic I/O automaton model, introduced by

Lynch and Tuttle [37], is suitable for modelling asynchronous distributed systems.

For our purposes, we will use the general timed automaton (GTA) model, introduced

by Lynch and Vandraager [38, 39, 40], which has formal mechanisms to represent

the passage of time and is suitable for modelling partially synchronous distributed

systems.

The correctness proof uses automaton composition and invariant assertion meth-

ods. Composition is useful for representing a system using separate components.

This split representation is helpful in carrying out the proofs. We provide a modular

presentation of the paxos algorithm, obtained by decomposing it into several com-

ponents. Each one of these components copes with a speci�c aspect of the problem.

In particular there is a \failure detector" module that detects process failures and

recoveries. There is a \leader elector" module that copes with the problem of electing

a leader; processes elected leader by this module, start new rounds for the paxos al-

gorithm. The paxos algorithm is then split into a basic part that ensures agreement

and validity and into an additional part that ensures termination when the system

stabilizes; the basic part of the algorithm, for the sake of clarity of presentation, is

further subdivided into three components. The correctness of each piece is proved

by means of invariants, i.e., properties of system states that are always true in an

execution. The key invariants we use in our proof are the same as in [31, 32].

The time performance and fault-tolerance analysis is conditional on the stabiliza-

tion of the system behavior starting from some point in an execution. While it is

easy to formalize process and channel failures, dealing formally with timing failures

is harder. To cope with this problem, this thesis introduces a special type of GTA

called a Clock GTA. The Clock GTA is a GTA augmented with a simple way of for-

malizing timing failures. Using the Clock GTA we provide a technique for practical

time performance analysis based on the stabilization of the physical system.
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A detailed description of themultipaxos protocol is also provided. As an example

of an application, the use of multipaxos to implement a data replication algorithm is

presented. With multipaxos the high availability of the replicated data is combined

with high fault tolerance. This is not trivial, since having replicated copies implies

that consistency has to be guaranteed and this may result in low fault tolerance.

Independent work related to paxos has been carried out. The algorithms in [11,

34] have similar ideas. The algorithm of Dwork, Lynch and Stockmeyer [11] also uses

rounds conducted by a leader, but the rounds are conducted sequentially, whereas

in paxos a leader can start a round at any time and multiple simultaneous leaders

are allowed. The strategy used in each round by the algorithm of [11] is somewhat

di�erent from the one used by paxos. Moreover the distributed model of [11] does

not consider process recoveries. The time analysis provided in [11] is conditional on

a \global stabilization time" after which process response times and message delivery

times satisfy the time assumptions. This is similar to our analysis. (A similar time

analysis, applied to a di�erent problem, can be found in [16].)

multipaxos can be easily used to implement a data replication algorithm. In

[34] a data replication algorithm is provided. It incorporates ideas similar to the ones

used in paxos.

paxos bears some similarities with the standard three-phase commit protocol:

both require, in each round, an exchange of 5 messages. However the standard commit

protocol requires a reliable leader elector while paxos does not. Moreover paxos

sends information on the value to agree on, only in the third message of a round,

while the commit protocol sends it in the �rst message; because of this, multipaxos

can exchange the �rst two messages only once for many instances and use only the

exchange of the last three messages for each individual consensus problem while such

a strategy cannot be used with the three-phase commit protocol.

In the class notes of the graduate level Principles of Computer Systems course [31]

taught at MIT, a description of paxos is provided using a speci�cation language called

SPEC. The presentation in [31] contains the description of how a round of paxos is

conducted. The leader election problem is not considered. Timing issues are not
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considered; for example, the problem of starting new rounds is not addressed. A

proof of correctness, written also in SPEC, is outlined. Our presentation di�ers from

that of [31] in the following aspects: it is based on I/O automata models rather than

on a programming language; it provides all the details of the algorithm; it provides

a modular description of the algorithm, including auxiliary parts such as a failure

detector module and a leader elector module; along with the proof of correctness,

it provides a performance and fault-tolerance analysis. In [32] Lampson provides

an overview of the paxos algorithm together with the key points for proving the

correctness of the algorithm.

In [43] the clock synchronization problem has been studied; the solution provided

there introduces a new type of GTA, called the mixed automaton model. The mixed

automaton is similar to our Clock automaton with respect to the fact that both try

to formally handle the local clocks of processes. However while the mixed automaton

model is used to obtain synchronization of the local clocks, the Clock GTA automa-

ton is used to model good timing behavior and thus does not need to cope with

synchronization.

Summary of contributions. This thesis provides a new, detailed and modular

description of the paxos algorithm, a correctness proof and a time performance anal-

ysis. The multipaxos algorithm is described and an application to data replication

is provided. This thesis also introduces a special type of GTA model, called the Clock

GTA model, and a technique for practical time performance analysis when the system

stabilizes.

Organization. This thesis is organized as follows. In Chapter 2 we provide a

description of the I/O automata models and in particular we introduce the Clock

GTA model. In Chapter 3 we discuss the distributed setting we consider. Chapter 4

gives a formal de�nition of the consensus problem we consider. Chapter 5 is devoted

to the design of a simple failure detector and a simple leader elector which will be

used to give an implementation of paxos. Then in Chapter 6 we describe the paxos
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algorithm, prove its correctness and analyze its performance. In Chapter 7 we describe

the multipaxos algorithm. Finally in Chapter 8 we discuss how to use multipaxos

to implement a data replication algorithm. Chapter 9 contains the conclusions.

17



Chapter 2

Models

In this chapter we describe the I/O automata models we use in this thesis. Section 2.1

presents an overview of the automata models. Then, Section 2.2 describes the basic

I/O automaton model, which is used in Section 2.3 to describe the MMT automaton

model. Section 2.4 describes the general timed automaton model. In Section 2.5 the

Clock GT automaton is introduced; Section 2.5 provides also a technique to transform

an MMTA into a Clock GTA. Section 2.6 describes how automata are composed.

2.1 Overview

The I/O automata models are formal models suitable for describing asynchronous and

partially synchronous distributed systems. Various I/O automata models have been

developed so far (see, for example, [35]). The simplest I/O automata model does not

consider time and thus it is suitable for describing asynchronous systems. We remark

that in the literature this simple I/O automata model is referred to as the \I/O

automaton model". However we prefer to use the general expression \I/O automata

models" to indicate all the I/O automata models, henceforth we refer to the simplest

one as the \basic I/O automaton model" (BIOA for short). Two extensions of the

BIOA model that provide formal mechanisms to handle the passage of time and thus

are suitable for describing partially synchronous distributed systems, are the MMT

automaton (MMTA for short) and the general timed automaton (GT automaton or
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GTA for short). The MMTA is a special case of GTA, and thus it can be regarded

as a notation for describing some GT automata.

In this thesis we introduce a particular type of GTA that we call \Clock GTA". The

Clock GTA is suitable for describing partially synchronous distributed systems with

processors having local clocks; thus it is suitable for describing timing assumptions. In

this thesis we use the GTA model and in particular the Clock GT automaton model.

However, we use the MMT automaton model to describe some of the Clock GTAs1;

this is possible because an MMTA is a particular type of GTA; there is a standard

technique that transforms an MMTA into a GTA and we specialize this technique in

order to transform an MMT automaton into a Clock GTA.

An I/O automaton is a simple type of state machine in which transitions are

associated with named actions. These actions are classi�ed into categories, namely

input, output, internal and, for the timed models, time-passage. Input and output

actions are used for communication with the external environment, while internal

actions are local to the automaton. The time-passage actions are intended to model

the passage of time. The input actions are assumed not to be under the control

of the automaton, that is, they are controlled by the external environment which

can force the automaton to execute the input actions. Internal and output actions

are controlled by the automaton. The time-passage actions are also controlled by

the automaton (though this may at �rst seem somewhat strange, it is just a formal

way of modeling the fact that the automaton must perform some action before some

amount of time elapses).

As an example, we can consider an I/O automaton that models the behavior of

a process involved in a consensus problem. Figure 2-1 shows the typical interface

(that is, input and output actions) of such an automaton. The automaton is drawn

as a circle, input actions are depicted as incoming arrows and output actions as

outcoming arrows (internal actions are hidden since they are local to the automaton).

1The reason why we use MMT automata to describe some of our Clock GT automata is that

MMT automata code is simpler. We use MMTA to describe the parts of the algorithm that can run

asynchronously and we use the time bounds only for the analysis.
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Receive(m)Send(m)

Init(v) Decide(v)

I/O automaton

Figure 2-1: An I/O automaton.

The automaton receives inputs from the external world by means of action Init(v),

which represents the receipt of an input value v and conveys outputs by means of

action Decide(v) which represents a decision of v. Actions Send(m) and Receive(m)

are supposed to model the communication with other automata.

2.2 The basic I/O automata model

A signature S is a triple consisting of three disjoint sets of actions: the input ac-

tions, in(S), the output actions, out(S), and the internal actions, int(S). The exter-

nal actions, ext (S), are in(S) [ out(S); the locally controlled actions, local(S), are

out(S) [ int(S); and acts(S) consists of all the actions of S. The external signature,

extsig (S), is de�ned to be the signature (in(S); out(S); ;). The external signature is

also referred to as the external interface.

A basic I/O automaton (BIOA for short) A, consists of �ve components:

� sig(A), a signature

� states(A), a (not necessarily �nite) set of states

� start(A), a nonempty subset of states(A) known as the start states or initial

states

� trans(A), a state-transition relation, where trans(A) � states(A) �

acts(sig(A)) � states(A); this must have the property that for every state s
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and every input action �, there is a transition (s; �; s0) 2 trans(A)

� tasks(A), a task partition, which is an equivalence relation on local(sig(A))

having at most countably many equivalence classes

Often acts(A) is used as shorthand for acts(sig(A)), and similarly in(A), and so on.

An element (s; �; s0) of trans(A) is called a transition, or step, of A. If for a

particular state s and action �, A has some transition of the form (s; �; s0), then we

say that � is enabled in s. Input actions are enabled in every state.

The �fth component of the I/O automaton de�nition, the task partition tasks(A),

should be thought of as an abstract description of \tasks," or \threads of control,"

within the automaton. This partition is used to de�ne fairness conditions on an

execution of the automaton; roughly speaking, the fairness conditions say that the

automaton must continue, during its execution, to give fair turns to each of its tasks.

An execution fragment of A is either a �nite sequence, s0; �1; s1; �2; : : : ; �r; sr,

or an in�nite sequence, s0; �1; s1; �2; : : : ; �r; sr; : : : , of alternating states and actions

of A such that (sk; �k+1; sk+1) is a transition of A for every k � 0. Note that if

the sequence is �nite, it must end with a state. An execution fragment beginning

with a start state is called an execution. The length of a �nite execution fragment

� = s0; �1; s1; �2; : : : ; �r; sr is r. The set of executions of A is denoted by execs(A).

A state is said to be reachable in A if it is the �nal state of a �nite execution of A.

The trace of an execution � of A, denoted by trace(�), is the subsequence of �

consisting of all the external actions. A trace � of A is a trace � of an execution of

A. The set of traces of A is denoted by traces(A).

2.3 The MMT automaton model.

An MMT timed automaton model is obtained simply by adding to the BIOA model

lower and upper bounds on the time that can elapse before an enabled action is

executed. Formally an MMT automaton consists of a BIOA and a boundmap b. A

boundmap b is a pair of mappings, lower and upper which give lower and upper bounds
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for all the tasks. For each tasks C, it is required that 0 � lower(C) � upper(C) �1

and that lower(C) < 1. The bounds lower(C) and upper(C) are respectively, a

lower bound and an upper bound on the time that can elapse before an enabled

action belonging to C is executed.

A timed execution of an MMT automaton B = (A; b) is de�ned to be a �nite

sequence � = s0, (�1; t1), s1, (�2; t2); : : : ; (�r; tr), sr or an in�nite sequence � = s0,

(�1; t1), s1, (�2; t2); : : : ; (�r; tr), sr; : : : , where the s's are states of the I/O automaton

A, the �'s are actions of A, and the t's are times in R�0. It is required that the

sequence s0; �1; s1; : : :|that is, the sequence � with the times ignored|be an ordi-

nary execution of I/O automaton A. It is also required that the successive times tr

in � be nondecreasing and that they satisfy the lower and upper bound requirements

expressed by the boundmap b.

De�ne r to be an initial index for a task C provided that C is enabled in sr and

one of the following is true: (i) r = 0; (ii) C is not enabled in sr�1; (iii) �r 2 C. The

initial indices represent the points at which we begin to measure the time bounds of

the boundmap. For every initial index r for a task C, it is required that the following

conditions hold. (Let t0 = 0.)

Upper bound condition: If there exists k > r with tk > tr + upper(C), then there

exists k0 > r with tk0 � tr + upper(C) such that either �k0 2 C or C is not enabled in

sk0.

Lower bound condition: There does not exist k > r with tk < tr + lower(C) and

�k 2 C.

The upper bound condition says that, from any initial index for a task C, if time ever

passes beyond the speci�ed upper bound for C, then in the interim, either an action

in C must occur, or else C must become disabled. The lower bound condition says

that, from any initial index for C, no action in C can occur before the speci�ed lower

bound.

The set of timed executions of B is denoted by texecs(B). A state is said to be

reachable in B if it is the �nal state of some �nite timed execution of B.

A timed execution is admissible provided that the following condition is satis�ed:
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Admissibility condition: If timed execution � is an in�nite sequence, then the

times of the actions approach 1. If � is a �nite sequence, then in the �nal state of

�, if task C is enabled, then upper(C) =1.

The admissibility condition says that time advances normally and that processing

does not stop if the automaton is scheduled to perform some more work. The set of

admissible timed executions of B is denoted by atexecs (B).

Notice that time bounds of the MMT substitute for the fairness conditions of a

BIOA.

The timed trace of a timed execution � of B, denoted by ttrace(�), is the sub-

sequence of � consisting of all the external actions, each paired with its associated

time. The admissible timed traces of B, which are denoted by attraces(B), are the

timed traces of admissible timed executions of B.

2.4 The GT automaton model

The GTA model uses time-passage actions called �(t), t 2 R+ to model the passage

of time. The time-passage action �(t) represents the passage of time by the amount

t.

A timed signature S is a quadruple consisting of four disjoint sets of actions: the

input actions in(S), the output actions out(S), the internal actions int(S), and the

time-passage actions. For a GTA

� the visible actions, vis(S), are the input and output actions, in(S) [ out(S)

� the external actions, ext(S), are the visible and time-passage actions, vis(S) [

f�(t) : t 2 R+
g

� the discrete actions, disc(S), are the visible and internal actions, vis(S)[ int(S)

� the locally controlled actions, local(S), are the output and internal actions,

out(S) [ int(S)

� acts(S) are all the actions of S
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A GTA A consists of the following four components:

� sig(A), a timed signature

� states(A), a set of states

� start(A), a nonempty subset of states(A) known as the start states or initial

states

� trans(A), a state transition relation, where trans(A) � states(A) �

acts(sig(A)) � states(A); this must have the property that for every state s

and every input action �, there is a transition (s; �; s0) 2 trans(A)

Often acts(A) is used as shorthand for acts(sig(A)), and similarly in(A), and so on.

An element (s; �; s0) of trans(A) is called a transition, or step, of A. If for a

particular state s and action �, A has some transition of the form (s; �; s0), then we

say that � is enabled in s. Since every input action is required to be enabled in every

state, automata are said to be input-enabled. The input-enabling assumption means

that the automaton is not able to somehow \block" input actions from occurring.

There are two simple axioms that A is required to satisfy:

A1: If (s; �(t); s0) and (s0; �(t0); s00) are in trans(A), then (s; �(t+t0); s00) is in trans(A).

A2: If (s; �(t); s0) 2 trans(A) and 0 < t0 < t, then there is a state s00 such that

(s; �(t0); s00) and (s00; �(t� t0); s0) are in trans(A).

Axiom A1 allows repeated time-passage steps to be combined into one step, while

Axiom A2 is a kind of converse to A1 that allows a time-passage step to be split in

two.

A timed execution fragment of a GTA, A, is de�ned to be either a �nite sequence

� = s0; �1; s1; �2; : : : ; �r; sr or an in�nite sequence � = s0; �1; s1; �2; : : : ; �r; sr; : : : ,

where the s's are states of A, the �'s are actions (either input, output, internal, or

time-passage) of A, and (sk; �k+1; sk+1) is a step (or transition) of A for every k. Note

that if the sequence is �nite, it must end with a state. The length of a �nite execution
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fragment � = s0; �1; s1; �2; : : : ; �r; sr is r. A timed execution fragment beginning with

a start state is called a timed execution.

Axioms A1 and A2, say that there is not much di�erence between timed execution

fragments that di�er only by splitting and combining time-passage steps. Two timed

execution fragments � and �0 are time-passage equivalent if � can be transformed

into �0 by splitting and combining time-passage actions according to Axioms A1 and

A2.

If � is any timed execution fragment and �r is any action in �, then we say that

the time of occurrence of �r is the sum of all the reals in the time-passage actions

preceding �r in �. A timed execution fragment � is said to be admissible if the sum

of all the reals in the time-passage actions in � is 1. The set of admissible timed

executions of A is denoted by atexecs(A). A state is said to be reachable in A if it is

the �nal state of a �nite timed execution of A.

The timed trace of a timed execution fragment �, denoted by ttrace(�), is the

sequence of visible events in �, each paired with its time of occurrence. The admissible

timed traces of A, denoted by attraces(A), are the timed traces of admissible timed

executions of A.

We may refer to a timed execution simply as an execution. Similarly a timed trace

can be referred to as a trace.

2.5 The Clock GT automaton model

A Clock GTA is a GTA with a special component included in the state; this special

variable is called Clock and it can assume values in R. The purpose of Clock is to

model the local clock of the process. The only actions that are allowed to modify

Clock are the time-passage actions �(t). When a time-passage action �(t) is executed

by an automaton, the Clock is incremented by an amount of time t0 � 0 independent

of the amount t of time speci�ed by the time-passage action2. Since the occurrence

2Formally, we have that if (s; �(t); s0) is a step of an execution then also (s; �(~t); s0), for any ~t > 0,

is a step of that execution. Hence a Clock GTA cannot keep track of the real time.
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of the time-passage action �(t) represents the passage of (real) time by the amount

t, by incrementing the local variable Clock by an amount t0 di�erent from t we are

able to model the passage of (local) time by the amount t0. As a special case, we

have some time-passage actions in which t0 = t; in these cases the local clock of the

process is running at the speed of real time.

In the following and in the rest of the thesis, we use the notation s:x to denote the

value of state component x in state s.

De�nition 2.5.1 A step (sk�1; �(t); sk) of a Clock GTA is called regular if sk:Clock�

sk�1:Clock = t; it is called irregular if it is not regular.

That is, a time-passage step executing action �(t) is regular if it increases Clock by

t0 = t. In a regular time-passage step, the local clock is increased by the same amount

as the real time, whereas in an irregular time-passage step �(t) that represents the

passage of real time by the amount t, the local clock is increased either by t0 < t (the

local clock is slower than the real time) or by t0 > t (the local clock is faster than the

real time).

De�nition 2.5.2 A timed execution fragment � of a Clock GTA is called regular if

all the time-passage steps of � are regular. It is called irregular if it is not regular,

i.e., if at least one of its time-passage step is irregular.

In a partially synchronous distributed system processes are expected to respond

and messages are expected to be delivered within given time bounds. A timing failure

is a violation of these time bounds. An irregular time-passage step can model the

occurrence of a timing failure. Thus in a regular execution fragment there are no

timing failures.

Transforming MMTA into Clock GTA. The MMT automata are a special case

of GT automata. There is a standard transformation technique that given an MMTA

produces an equivalent GTA, i.e., one that has the same external behavior (see Section

23.2.2 of [35]).
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In this section, we show how to transform any MMT automaton (A; b) into an

equivalent clock general timed automaton A0 = clockgen(A; b). Automaton A0 acts

like automaton A, but the time bounds of the boundmap b are expressed as restrictions

on the value that the local time can assume. The technique used is essentially the same

as the one that transforms an MMTA into an equivalent GTA with some modi�cations

to handle the Clock variable, that is, the local time.

The transformation involves building local time deadlines into the state and not

allowing the local time to pass beyond those deadlines while they are still in force.

The deadlines are set according to the boundmap b. New constraints on non-time-

passage actions are added to express the lower bound conditions. Notice however,

that all these constraints are on the local time, while in the transformation of an

MMTA into a GTA they are on the real time.

More speci�cally, the state of the underlying BIOA A is augmented with a Clock

component, plus First(C) and Last(C) components for each task C. The First(C)

and Last(C) components represent, respectively, the earliest and latest local times at

which the next action in task C is allowed to occur. The time-passage actions �(t)

are also added.

The First and Last components get updated by the various steps, according to

the lower and upper bounds speci�ed by the boundmap b. The time-passage actions

�(t) have an explicit precondition saying that the local time cannot pass beyond any

of the Last(C) values; this is because these represent deadlines for the various tasks.

Restrictions are also added on actions in any task C, saying that the current local

time Clock must be at least as great as the lower bound First(C).

In more detail, the timed signature of A0 = clockgen(A; b) is the same as the

signature of A, with the addition of the time-passage actions �(t), t 2 R+. Each state

of A0 consists of the following components:

basic 2 states(A), initially a start state of A

Clock 2 R, initially arbitrary

For each task C of A:

First(C) 2 R, initially Clock + lower(C) if C is enabled in state basic,
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otherwise 0

Last(C) 2 R[ f1g, initially Clock + upper(C) if C is enabled in basic,

otherwise 1

The transitions are de�ned as follows. If � 2 acts(A), then (s; �; s0) 2 trans(A0)

exactly if all the following conditions hold:

1. (s:basic; �; s0:basic) 2 trans(A).

2. s0:Clock = s:Clock.

3. For each C 2 tasks(A),

(a) If � 2 C, then s:First(C) � s:Clock.

(b) If C is enabled in both s:basic and s0:basic and � =2 C, then s:First(C) =

s0:First(C) and s:Last(C) = s0:Last(C).

(c) If C is enabled in s0:basic and either C is not enabled in s:basic or � 2 C,

then s0:First(C) = s:Clock+lower(C) and s0:Last(C) = s:Clock+upper(C).

(d) If C is not enabled in s0:basic, then s0:First(C) = 0 and s0:Last(C) =1.

If � = �(t), then (s; �; s0) 2 trans(A0) exactly if all the following conditions hold:

1. s0:basic = s:basic.

2. s0:Clock � s:Clock.

3. For each C 2 tasks(A),

(a) s0:Clock � s:Last(C).

(b) s0:First(C) = s:First(C) and s0:Last(C) = s:Last(C).

The following lemma holds.

Lemma 2.5.3 In any reachable state of clockgen(A; b) and for any task C of A, we

have that.
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1. Clock � Last(C).

2. If C is enabled, then Last(C) � Clock + upper(C).

3. First(C) � Clock + lower(C).

4. First(C) � Last(C).

If some of the timing requirements speci�ed by b are trivial|that is, if some

lower bounds are 0 or some upper bounds are 1|then it is possible to simplify

the automaton clockgen(A; b) just by omitting mention of these components. In this

thesis all the MMT automata have boundmaps that specify a lower bound of 0 and

an upper bound of a �xed constant `; thus the above general transformation could

be simpli�ed (by omitting mention of First(C) and using ` instead of upper(C), for

any C) for our purposes. In the following lemma we consider lower(C) = 0 and

upper(C) = `.

Lemma 2.5.4 Consider a regular execution fragment � of clockgen(A; b), starting

from a reachable state s0 and lasting for more than ` time. Assume that lower(C) = 0

and upper(C) = ` for each task C of automaton A. Then (i) any task C enabled in

s0 either has a step or is disabled within ` time, and (ii) any new enabling of C has a

subsequent step or disabling within ` time, provided that � lasts for more than ` time

from the enabling of C.

Proof: Let us �rst prove (i). Let C be a task enabled in state s0. By Lemma 2.5.3

we have that s0:First(C) � s0:Clock � s0:Last(C) and that s0:Last(C) � s0:Clock+ `.

Since the execution is regular, within time `, Clock passes the value s0:Clock + `.

But this cannot happen (since s0:Last(C) � s0:Clock+ `) unless Last(C) is increased,

which means either C has a step or it is disabled within ` time. The proof of (ii) is

similar. Let s be the state in which C becomes enabled. Then the proof is as before

substituting s0 with s.
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2.6 Composition of automata

The composition operation allows an automaton representing a complex system to be

constructed by composing automata representing simpler system components. The

most important characteristic of the composition of automata is that properties of

isolated system components still hold when those isolated components are composed

with other components. The composition identi�es actions with the same name in

di�erent component automata. When any component automaton performs a step

involving �, so do all component automata that have � in their signatures. Since

internal actions of an automaton A are intended to be unobservable by any other au-

tomaton B, automaton A cannot be composed with automaton B unless the internal

actions of A are disjoint from the actions of B. (Otherwise, A's performance of an

internal action could force B to take a step.) Moreover, A and B cannot be composed

unless the sets of output actions of A and B are disjoint. (Otherwise two automata

would have the control of an output action.)

Composition of BIOA.

Let I be an arbitrary �nite index set3. A �nite countable collection fSigi2I of signa-

tures is said to be compatible if for all i; j 2 I, i 6= j, the following hold4:

1. int(Si) \ acts(Sj) = ;

2. out(Si) \ out(Sj) = ;

A �nite collection of automata is said to be compatible if their signatures are compat-

ible.

When we compose a collection of automata, output actions of the components be-

come output actions of the composition, internal actions of the components become

internal actions of the composition, and actions that are inputs to some components

3The composition operation for BIOA is de�ned also for an in�nite but countable collection of

automata [35], but we only consider the composition of a �nite number of automata.
4We remark that for the composition of an in�nite countable collection of automata, there is

a third condition on the de�nition of compatible signature [35]. However this third condition is

automatically satis�ed when considering only �nite sets of automata.
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but outputs of none become input actions of the composition. Formally, the compo-

sition S =
Q

i2I Si of a �nite compatible collection of signatures fSigi2I is de�ned to

be the signature with

� out(S) = [i2Iout(Si)

� int(S) = [i2Iint (Si)

� in(S) = [i2I in(Si)� [i2Iout(Si)

The composition A =
Q

i2I Ai of a �nite collection of automata, is de�ned as

follows:5

� sig(A) =
Q

i2I sig(Ai)

� states(A) =
Q

i2I states(Ai)

� start(A) =
Q

i2I start(Ai)

� trans(A) is the set of triples (s; �; s0) such that, for all i 2 I, if � 2 acts(Ai),

then (si; �; s
0
i
) 2 trans(Ai); otherwise si = s0

i

� tasks(A) = [i2Itasks(Ai)

Thus, the states and start states of the composition automaton are vectors of states

and start states, respectively, of the component automata. The transitions of the

composition are obtained by allowing all the component automata that have a par-

ticular action � in their signature to participate simultaneously in steps involving

�, while all the other component automata do nothing. The task partition of the

composition's locally controlled actions is formed by taking the union of the compo-

nents' task partitions; that is, each equivalence class of each component automaton

becomes an equivalence class of the composition. This means that the task structure

of individual components is preserved when the components are composed. Notice

5The � notation in the de�nition of start(A) and states(A) refers to the ordinary Cartesian

product, while the � notation in the de�nition of sig(A) refers to the composition operation just

de�ned, for signatures. Also, the notation si denotes the ith component of the state vector s.
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that since the automata Ai are input-enabled, so is their composition. The following

theorem follows from the de�nition of composition.

Theorem 2.6.1 The composition of a compatible collection of BIO automata is a

BIO automaton.

The following theorems relate the executions and traces of a composition to those

of the component automata. The �rst says that an execution or trace of a compo-

sition \projects" to yield executions or traces of the component automata. Given

an execution, � = s0; �1; s1; : : : ; of A, let �jAi be the sequence obtained by deleting

each pair �r; sr for which �r is not an action of Ai and replacing each remaining sr

by (sr)i, that is, automaton Ai's piece of the state sr. Also, given a trace � of A (or,

more generally, any sequence of actions), let �jAi be the subsequence of � consisting

of all the actions of Ai in �. Also, j represents the subsequence of a sequence � of

actions consisting of all the actions in a given set in �.

Theorem 2.6.2 Let fAigi2I be a compatible collection of automata and let A =
Q

i2I Ai.

1. If � 2 execs (A), then �jAi 2 execs (Ai) for every i 2 I.

2. If � 2 traces(A), then �jAi 2 traces(Ai) for every i 2 I.

The other two are converses of Theorem 2.6.2. The next theorem says that, under

certain conditions, executions of component automata can be \pasted together" to

form an execution of the composition.

Theorem 2.6.3 Let fAigi2I be a compatible collection of automata and let A =
Q

i2I Ai. Suppose �i is an execution of Ai for every i 2 I, and suppose � is a sequence

of actions in ext (A) such that �jAi = trace(�i) for every i 2 I. Then there is an

execution � of A such that � = trace(�) and �i = �jAi for every i 2 I.

The �nal theorem says that traces of component automata can also be pasted

together to form a trace of the composition.
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Theorem 2.6.4 Let fAigi2I be a compatible collection of automata and let A =
Q

i2I Ai. Suppose � is a sequence of actions in ext (A). If �jAi 2 traces(Ai) for every

i 2 I, then � 2 traces(A).

Theorem 2.6.4 implies that in order to show that a sequence is a trace of a system,

it is enough to show that its projection on each individual system component is a trace

of that component.

Composition of MMTA.

MMT automata can be composed in much the same way as BIOA, by identifying

actions having the same name in di�erent automata.

Let I be an arbitrary �nite index set. A �nite collection of MMT automata is

said to be be compatible if their underlying BIO automata are compatible. Then the

composition (A; b) =
Q

i2I(Ai; bi) of a �nite compatible collection of MMT automata

f(Ai; bi)gi2I is the MMT automaton de�ned as follows:

� A =
Q

i2I Ai, that is, A is the composition of the underlying BIO automata Ai

for all the components.

� For each task C of A, b's lower and upper bounds for C are the same as those

of bi, where Ai is the unique component I/O automaton having task C.

Clearly we have the following theorem.

Theorem 2.6.5 The composition of a compatible collection of MMT automata is an

MMT automaton.

The following theorems correspond to Theorems 2.6.2{2.6.4 stated for BIOA.

Theorem 2.6.6 Let fBigi2I be a compatible collection of MMT automata and let

B =
Q

i2I Bi.

1. If � 2 atexecs (B), then �jBi 2 atexecs(Bi) for every i 2 I.

2. If � 2 attraces(B), then �jBi 2 attraces(Bi) for every i 2 I.
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Theorem 2.6.7 Let fBigi2I be a compatible collection of MMT automata and let

B =
Q

i2I Bi. Suppose �i is an admissible timed execution of Bi for every i 2 I

and suppose � is a sequence of (action,time) pairs, where all the actions in � are in

ext (A), such that �jBi = ttrace(�i) for every i 2 I. Then there is an admissible timed

execution � of B such that � = ttrace(�) and �i = �jBi for every i 2 I.

Theorem 2.6.8 Let fBigi2I be a compatible collection of MMT automata and let

B =
Q

i2I Bi. Suppose � is a sequence of (action,time) pairs, where all the actions in

� are in ext (A). If �jBi 2 attraces(Bi) for every i 2 I, then � 2 attraces(B).

Composition of GTA.

Let I be an arbitrary �nite index set. A �nite collection fSigi2I of timed signatures

is said to be compatible if for all i; j 2 I, i 6= j, we have

1. int(Si) \ acts(Sj) = ;

2. out(Si) \ out(Sj) = ;

A collection of GTAs is compatible if their timed signatures are compatible.

The composition S =
Q

i2I Si of a �nite compatible collection of timed signatures

fSigi2I is de�ned to be the timed signature with

� out(S) = [i2Iout(Si)

� int(S) = [i2Iint (Si)

� in(S) = [i2I in(Si)� [i2Iout(Si)

The composition A =
Q

i2I Ai of a �nite compatible collection of GTAs fAigi2I is

de�ned as follows:

� sig(A) =
Q

i2I sig(Ai)

� states(A) =
Q

i2I states(Ai)

� start(A) =
Q

i2I start(Ai)
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� trans(A) is the set of triples (s; �; s0) such that, for all i 2 I, if � 2 acts(Ai),

then (si; �; s
0
i
) 2 trans(Ai); otherwise si = s0

i

The transitions of the composition are obtained by allowing all the components that

have a particular action � in their signature to participate, simultaneously, in steps

involving �, while all the other components do nothing. Note that this implies that

all the components participate in time-passage steps, with the same amount of time

passing for all of them.

Theorem 2.6.9 The composition of a compatible collection of general timed au-

tomata is a general timed automaton.

The following theorems correspond to Theorems 2.6.2{2.6.4 stated for BIOA and

to Theorems 2.6.6{2.6.8 stated for MMTA. Theorem 2.6.11, has a small technicality

that is a consequence of the fact that the GTA model allows consecutive time-passage

steps to appear in an execution. Namely, the admissible timed execution � that is

produced by \pasting together" individual admissible timed executions �i might not

project to give exactly the original �i's, but rather admissible timed executions that

are time-passage equivalent to the original �i's.

Theorem 2.6.10 Let fBigi2I be a compatible collection of general timed automata

and let B =
Q

i2I Bi.

1. If � 2 atexecs (B), then �jBi 2 atexecs(Bi) for every i 2 I.

2. If � 2 attraces(B), then �jBi 2 attraces(Bi) for every i 2 I.

Theorem 2.6.11 Let fBigi2I be a compatible collection of general timed automata

and let B =
Q

i2I Bi. Suppose �i is an admissible timed execution of Bi for every

i 2 I, and suppose � is a sequence of (action,time) pairs, with all the actions in

vis(B), such that �jBi = ttrace(�i) for every i 2 I. Then there is an admissible

timed execution � of B such that � = ttrace(�) and �i is time-passage equivalent to

�jBi for every i 2 I.
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Theorem 2.6.12 Let fBigi2I be a compatible collection of general timed automata

and let B =
Q

i2I Bi. Suppose � is a sequence of (action,time) pairs, where all the ac-

tions in � are in vis(A). If �jBi 2 attraces(Bi) for every i 2 I, then � 2 attraces(B).

Composition of Clock GTA.

Clock GT automata are GT automata; thus, they can be composed as GT automata

are composed. However we point out that the composition of Clock GT automata does

not yield a Clock GTA but a GTA. This follows from the fact that in a composition

of Clock GT automata there are more than one special state component Clock. It

is possible to generalize the de�nition of Clock GTA by letting a Clock GTA have

several special state components Clock1;Clock2; : : : so that the composition of Clock

GT automata is still a Clock GTA. However we do not make this extension in this

thesis, since for our purposes we do not need the composition of Clock GT automata

to be a Clock GTA.

2.7 Bibliographic notes

The basic I/O automata was introduced by Lynch and Tuttle in [37]. The MMT

automaton model was designed by Merritt, Modugno, and Tuttle [42]. More work

on the MMT automaton model has been done by Lynch and Attiya [36]. The GT

automaton model was introduced by Lynch and Vaandrager [38, 39, 40]. The book

by Lynch [35] contains a broad coverage of these models and more pointers to the

relevant literature.
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Chapter 3

The distributed setting

In this chapter we discuss the distributed setting. We consider a complete network

of n processes communicating by exchange of messages in a partially synchronous

setting. Each process of the system is uniquely identi�ed by its identi�er i 2 I,

where I is a totally ordered �nite set of n identi�ers. The set I is known by all

the processes. Moreover each process of the system has a local clock. Local clocks

can run at di�erent speeds, though in general we expect them to run at the same

speed as real time. We assume that a local clock is available also for channels; though

this may seem somewhat strange, it is just a formal way to express the fact that a

channel is able to deliver a given message within a �xed amount of time, by relying

on some timing mechanism (which we model with the local clock). We use Clock GT

automata to model both processes and channels.

Throughout the thesis we use two constants, ` and d, to represent upper bounds on

the time needed to execute an enabled action and to deliver a message, respectively.

These bounds do not necessarily hold for every action and message in every execution;

a violation of these bounds is a timing failure. A Clock GTA models timing failures

with irregular time-passage actions.

37



3.1 Processes

A process is modeled by a Clock GT automaton. We allow process stopping failures

and recoveries and timing failures. To formally model process stops and recoveries

we model process i with a Clock GTA which has a special state component called

Statusi and two input actions Stopi and Recoveri. The state variable Statusi reects

the current condition of process i. The e�ect of action Stopi is to set Statusi to

stopped, while the e�ect of Recoveri is to set Statusi to alive. Moreover when

Statusi = stopped, all the locally controlled actions are not enabled and the input

actions have no e�ect, except for action Recoveri.

De�nition 3.1.1 We say that a process i is alive (resp. stopped) in a given state if

in that state we have Statusi = alive (resp. Statusi = stopped).

De�nition 3.1.2 We say that a process i is alive (resp. stopped) in a given execution

fragment, if it is alive (resp. stopped) in all the states of the execution fragment.

Between a failure and a recovery a process does not lose its state. We remark that

paxos needs only a small amount of stable storage (see Section 6.5); however, for

simplicity, we assume that the entire state of a process is stable.

De�nition 3.1.3 A \process automaton" for process i is a Clock GTA having the

special Statusi variable and input actions Stopi and Recoveri and whose behavior sat-

is�es the following. The e�ect of action Stopi is to set Statusi to stopped, while

the e�ect of Recoveri is to set Statusi to alive. In any reachable state s such that

s:Status = stopped the only possible steps are (s; �; s0) where � is an input action.

Moreover when s:Status = stopped for all � 6= Recoveri state s
0 is equal to state s.

We also assume that there is an upper bound of ` on the elapsed (local) clock

time if some locally controlled action is enabled. That is, if a locally controlled action

becomes enabled, then it is executed within (local) time ` of the enabling (local) time,

unless it becomes again disabled. This time bound is directly encoded into the steps

of process automata. We remark that, when the execution is regular, the local clock
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runs at the speed of real time and thus the time bound holds with respect to the real

time, too.

Finally, we provide the following de�nition of \stable" execution fragment of a

given process. This de�nition will be used later to de�ne a stable execution of a

distributed system.

De�nition 3.1.4 Given a process automaton processi, we say that an execution

fragment � of processi is \stable" if process i is either stopped or alive in � and �

is regular.

3.2 Channels

We consider unreliable channels that can lose and duplicate messages. Reordering

of messages is not considered a failure. Timing failures are also possible. Figure 3-1

shows the code of a Clock GT automaton channeli;j, which models the communi-

cation channel from process i to process j; there is one automaton for each possible

choice of i and j. Notice that we allow the possibility that the sender and the receiver

are the same process. We denote byM the set of messages that can be sent over the

channels. The interface of channeli;j, besides the actions modelling failures, consists

of input actions Send(m)i;j, m 2 M, which are used by process i to send messages to

process j, and output actions Receive(m)i;j, m 2 M, which are used by the channel

automaton to deliver messages sent by process i to process j.

Channel failures are formally modeled as input actions Losei;j , and Duplicatei;j. The

e�ect of these two actions is to manipulate Msgs. In particular Losei;j deletes one

message from Msgs; Duplicatei;j duplicates one of the messages in Msgs. When the

execution is regular, automaton channeli;j guarantees that messages are delivered

within time d of the sending. When the execution is irregular, messages can take

arbitrarily long time to be delivered.

The next lemma provides a basic property of channeli;j.

Lemma 3.2.1 In a reachable state s of channeli;j, if a message (m; t) 2 s:Msgs
i;j

then t � s:Clocki;j � t+ d.
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channeli;j

Signature:

Input: Send(m)i;j , Losei;j , Duplicatei;j
Output: Receive(m)i;j
Time-passage: �(t)

State:

Clock 2 R, initially arbitrary

Msgs, a set of elements of M�R, initially empty

Actions:

input Send(m)i;j
E�: add (m;Clock) to Msgs

output Receive(m)i;j
Pre: (m; t) is in Msgs, for some t

E�: remove (m; t) from Msgs

time-passage �(t)

Pre: Let t0 � 0 be s.t. for all (m; t00) 2 Msgs

Clock+ t0 � t00 + d

E�: Clock := Clock+ t0

input Losei;j
E�: remove one element of Msgs

input Duplicatei;j
E�: let (m; t) be an element of Msgs

let t0 s.t. t � t0 � Clock

place (m; t0) into Msgs

Figure 3-1: Automaton channeli;j

Proof: We prove the lemma by induction on the length k of an execution � =

s0�1s1 : : : sk�1�ksk. The base k = 0 is trivial since s0:Msgs is empty. For the inductive

step assume that the assertion is true in state sk and consider the execution ��s. We

need to prove that the assertion is still true in s. Actions Losei;j , Duplicatei;j, and

Receive(m)i;j, do not add any new element to Msgs and do not modify Clock; hence

they cannot make the assertion false. Thus we only need to consider the cases � =

Send(m)i;j and � = �(t). If � = Send(m)i;j a new element (m; t), with t = sk:Clock

is added to Msgs; however since sk:Clock = s:Clock the assertion is still true in state

s. If � = �(t), by the precondition of �(t), we have that s:Clock � t+ d for all (m; t)

in Msgs. Thus the assertion is true also in state s.

We remark that if channeli;j is not in a reachable state then it may be unable

to take time-passage steps, because Msgsi;j may contain messages (m; t) for which

Clocki;j > t+d and thus the time-passage actions are no longer enabled, that is, time

cannot pass.
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The following de�nition of \stable" execution fragment for a channel captures the

condition under which messages are delivered on time.

De�nition 3.2.2 Given a channel channeli;j, we say that an execution fragment

� of channeli;j is \stable" if no Losei;j and Duplicatei;j actions occur in � and � is

regular.

Next lemma proves that in a stable execution fragment messages are delivered

within time d of the sending.

Lemma 3.2.3 In a stable execution fragment � of channeli;j beginning in a reach-

able state s and lasting for more than d time, we have that (i) all messages (m; t)

that in state s are in Msgsi;j are delivered by time d, and (ii) any message sent in �

is delivered within time d of the sending, provided that � lasts for more than d time

from the sending of the message.

Proof: Let us �rst prove assertion (i). Let (m; t) be a message belonging to s:Msgs
i;j
.

By Lemma 3.2.1 we have that t � s:Clocki;j � t+ d. However since � is stable, the

time-passage actions increment Clocki;j at the speed of real time and since � lasts for

more than d time, Clock passes the value t+ d. However this cannot happen if m is

not delivered since by the preconditions of �(t) of channeli;j, all the increments t0 of

Clocki;j are such that Clocki;j + t0 � t+ d. Notice that m cannot be lost (by a Losei;j

action), since � is stable.

Now let us prove assertion (ii). Let (s0;Send(m)i;j; s
00) be the step that puts (m; t),

with t = s0:Clock, in Msgs. Since s0:Clock = s00:Clock, we have that s00:Clocki;j = t.

Since � is stable, the time-passage actions increment Clocki;j at the speed of real time

and since � lasts for more than d time from the sending of m, Clocki;j passes the value

t+ d. However this cannot happen if m is not delivered since by the preconditions of

�(t) of channeli;j, all the increments t0 of Clocki;j are such that Clocki;j + t0 � t+ d.

Again, notice that m cannot be lost (by a Losei;j action), since � is stable.
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3.3 Distributed systems

In this section we give a formal de�nition of distributed system. A distributed system

is the composition of automata modelling channels and processes. We are interested

in modelling bad and good behaviors of a distributed system; in order to do so

we provide some de�nitions that characterize the behavior of a distributed system.

The de�nition of \nice" execution fragment given in the following captures the good

behavior of a distributed system. Informally, a distributed system behaves nicely

if there are no process failures and recoveries, no channel failures and no irregular

steps|remember that an irregular step models a timing failure|and a majority of

the processes are alive.

De�nition 3.3.1 Given a set J � I of processes, a communication system for J is

the composition of channel automata channeli;j for all possible choices of i; j 2 J .

De�nition 3.3.2 A distributed system is the composition of process automata mod-

eling some set J of processes and a communication system for J .

In this thesis we will always compose automata that model the set of all processes

I. Thus we de�ne the communication system Scha to be the communication system

for the set I of all processes. Figure 3-2 shows this communication system and its

interactions with the external environment.

Next we provide the de�nition of \stable" execution fragment for a distributed

system exploiting the de�nition of stable execution fragment given previously for

channels and process automata.

De�nition 3.3.3 Given a distributed system S, we say that an execution fragment

� of S is \stable" if:

1. for all automata processi modelling process i, i 2 S it holds that �jprocessi

is a stable execution fragment for process i.

2. for all channels channeli;j with i; j 2 S it holds that �jchanneli;j is a stable

execution fragment for channeli;j.
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Figure 3-2: The communication system Scha

Finally we provide the de�nition of \nice" execution fragment that captures the

conditions under which paxos satis�es termination.

De�nition 3.3.4 Given a distributed system S, we say that an execution fragment

� of S is \nice" if � is a stable execution fragment and a majority of the processes

are alive in �.

The above de�nition requires a majority of processes to be alive. As will be

explained in Chapter 6, the property of majorities needed by the paxos algorithm

is that any two majorities have one element on common. Hence any quorum scheme

could be used.

In the rest of the thesis, we will use the word \system" to mean \distributed

system".
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Chapter 4

The consensus problem

Several variations of the consensus problem have been studied. These variations

depends on the model used. In this chapter we provide a formal de�nition of the

consensus problem that we consider.

4.1 Overview

In a distributed system processes need to cooperate and fundamental to such cooper-

ation is the problem of reaching agreement on some data upon which the computation

depends. Well known practical examples of agreement problems arise in distributed

databases, where data managers need to agree on whether to commit or abort a

given transaction, and ight control systems, where the airplane control system and

the ight surface control system need to agree on whether to continue or abort a

landing in progress.

In the absence of failures, achieving agreement is a trivial task. An exchange of

information and a common rule to make a decision is enough. However the problem

becomes much more complex in the presence of failures.

Several di�erent but related agreement problems have been considered in the

literature. All have in common that processes start the computation with initial

values and at the end of the computation each process must reach a decision. The

variations mostly concern stronger or weaker requirements that the solution to the

44



problem has to satisfy. The requirement that a solution to the problem has to satisfy

are captured by three properties, usually called agreement, validity and termination.

As an example, the agreement condition may state that no two processes decide

on di�erent values, the validity condition may state that if all the initial values are

equal then the (unique) decision must be equal to the initial value and the termination

condition may state that every process must decide. A weaker agreement condition

may require that only non-faulty processes agree on the decision (this weaker condition

is necessary, for example, when considering Byzantine failures for which the behavior

of a faulty process is unconstrained). A stronger validity condition may state that

every decision must be equal to some initial value.

It is clear that the de�nition of the consensus problem must take into account the

distributed setting in which the problem is considered.

About synchrony, several model variations, ranging from the completely asyn-

chronous setting to the completely synchronous one, can be considered. A completely

asynchronous model is one with no concept of real time. It is assumed that messages

are eventually delivered and processes eventually respond, but it may take arbitrarily

long. In a completely synchronous model the computation proceeds in a sequence

of steps1. At each step processes receive messages sent in the previous step, per-

form some computation and send messages. Steps are taken at regular intervals of

time. Thus in a completely synchronous model, processes act as in a single syn-

chronous computer. Between the two extremes of complete synchrony and complete

asynchrony, other models with partial synchrony can be considered. These models

assume upper bounds on the message transmission time and on the process response

time. These upper bounds may be known or unknown to the processes. Moreover

processes have some form of real-time clock to take advantage of the time bounds.

Failures may concern both communication channels and processes. In synchronous

and partially synchronous models, timing failures are considered. Communication

failures can result in loss of messages. Duplication and reordering of messages may

1Usually these steps are called \rounds". However in this thesis we use the word \round" with a

di�erent meaning.
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be considered failures, too. Models in which incorrect messages may be delivered

are seldom considered since there are many techniques to detect the alteration of

a message. The weakest assumption made about process failures is that a faulty

process has an unrestricted behavior. Such a failure is called a Byzantine failure.

Byzantine failures are often considered with authentication; authentication provides

a way to sign messages, so that, even a Byzantine-faulty process cannot send a message

with the signature of another process. More restrictive models permit only omission

failures, in which a faulty process fails to send some messages. The most restrictive

models allow only stopping failures, in which a failed process simply stops and takes

no further actions. Some models assume that failed processes can be restarted. Often

it is assumed that there is some form of stable storage that is not a�ected by a

stopping failure; a stopped process is restarted with its stable storage in the same

state as before the failure and with every other part of its state restored to some initial

values. In synchronous and partially synchronous models messages are supposed to

be delivered and processes are expected to act within some time bounds. A timing

failure is a violation of those time bounds.

Real distributed systems are often partially synchronous systems subject to pro-

cess and channel failures. Though timely responses can be provided in real distributed

systems, the possibility of process and channels failures makes impossible to guaran-

tee that timing assumptions are always satis�ed. Thus real distributed systems su�er

timing failures, too. The possibility of timing failures in a partially synchronous dis-

tributed system means that the system may as well behave like an asynchronous one.

Unfortunately, reaching consensus in asynchronous systems, is impossible, unless it

is guaranteed that no failures happen [18]. Henceforth, to solve the problem we need

to rely on the timing assumptions. Since timing failures are anyway possible, safety

properties, that is, agreement and validity conditions, must not depend at all on tim-

ing assumptions. However we can rely on the timing assumptions for the termination

condition.
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4.2 Formal de�nition

In Section 3 we have described the distributed setting we consider in this thesis. In

summary, we consider a partial synchronous system of n processes in a complete

network; processes are subject to stop failures and recoveries and have stable storage;

channels can lose, duplicate and reorder messages; timing failures are also possible.

Next we give a formal de�nition of the consensus problem we consider.

For each process i there is an external agent that provides an initial value v

by means of an action Init(v)i
2. We denote by V the set of possible initial values

and, given a particular execution �, we denote by V� the subset of V consisting of

those values actually used as initial values in �, that is, those values provided by

Init(v)i actions executed in �. A process outputs a decision v by executing an action

Decide(v)i. If a process i executes action Decide(v)i more than once then the output

value v must be the same.

To solve the consensus problem means to give a distributed algorithm that, for

any execution � of the system, satis�es

� Agreement: All the Decide(v) actions in � have the same v.

� Validity: For any Decide(v) action in �, v belongs to V�.

and, for any admissible execution �, satis�es

� Termination: If � = � and  is a nice execution fragment and for each

process i alive in  an Init(v)i action occurs in �, then any process i alive in ,

executes a Decide(v)i action in �.

The agreement and termination conditions require, as one can expect, that correct

processes \agree" on a particular value. The validity condition is needed to relate

the output value to the input values (otherwise a trivial solution, i.e. always output

a default value, exists).

2We remark that usually it is assumed that for each process i the Init(v)i action is executed at

most once; however we do not need this assumption.
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4.3 Bibliographic notes

paxos solves the consensus problem in a partially synchronous distributed system

achieving termination when the system executes a nice execution fragment. Allowing

timing failures, the partially synchronous system may behave as an asynchronous

one. A fundamental theoretical result, proved by Fischer, Lynch and Paterson [18]

states that in an asynchronous system there is no consensus algorithm even in the

presence of only one stopping failure. Essentially the impossibility result stem from

the inherent di�culty of determining whether a process has actually stopped or is

only slow.

The paxos algorithm was devised by Lamport. In the original paper [29], the

paxos algorithm is described as the result of discoveries of archaeological studies of

an ancient Greek civilization. The paxos algorithm is presented by explaining how

the parliament of this ancient Greek civilization worked. A proof of correctness is

provided in the appendix of that paper. A time-performance analysis is discussed.

Many practical optimizations of the algorithm are also discussed. In [29] there is

also presented a variation of paxos that considers multiple concurrent runs of paxos

when consensus has to be reached on a sequence of values. We call this variation the

multipaxos algorithm.

multipaxos can be easily used to implement a data replication algorithm. In

[34] a data replication algorithm is provided. It incorporates ideas similar to the ones

used in paxos.

In the class notes of Principles of Computer Systems [31] taught at MIT, a de-

scription of paxos is provided using a speci�cation language called SPEC. The pre-

sentation in [31] contains the description of how a round of paxos is conducted. The

leader election problem is not considered. Timing issues are not considered; for ex-

ample, the problem of starting new rounds is not addressed. A proof of correctness,

written also in SPEC, is provided. Our presentation di�ers from that of [31] in the

following aspects: it uses the I/O automata models; it provides all the details of the

algorithm; it provides a modular description of the algorithm, including auxiliary
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parts such as a failure detector module and a leader elector module; along with the

proof of correctness, it provides a performance and fault-tolerance analysis. In [32]

Lampson provides a brief overview of the paxos algorithm together with the key

points for proving the correctness of the algorithm.

In [11] three di�erent partially synchronous models are considered. For each of

them and for di�erent types of failure an upper bound on the number of failures

that can be tolerated is shown, and algorithms that achieve the bounds are given. A

model studied in [11] considers a distributed setting similar to the one we consider in

this thesis: a partially synchronous distributed system in which upper bounds on the

process response time and message delivery time hold eventually; the failures con-

sidered are process stop failures (also other models that consider omission failures,

Byzantine failures with and without authentication are studied in [11]). The proto-

col provided in [11], the DLS algorithm for short, needs a linear, in the number of

processes, amount of time from the point in which the upper bounds on the process

response time and message delivery time start holding. This is similar to the paxos

performance which requires a linear amount of time to achieve termination when the

system executes a nice execution fragment. However the DLS algorithm does not

consider process recoveries and it is resilient to a number of process stopping failures

which is less or equal to half the number of processes. This can be related to paxos

by the fact that paxos requires a majority of processes alive to reach termination.

The paxos algorithm is resilient also to channel failures while the DLS algorithm

does not consider channel failures.

paxos bears some similarities with the standard three-phase commit protocol:

both require, in each round, an exchange of 5 messages. However the standard commit

protocol requires a reliable leader elector while paxos does not. Moreover paxos

sends information on the value to agree on only in the third message of a round (while

the commit protocol sends it in the �rst message) and because of this, multipaxos

can exchange the �rst two messages only once for many instances and use only the

exchange of the last three messages for each individual consensus problem.
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Chapter 5

Failure detector and leader elector

In this chapter we provide a failure detector algorithm and then we use it to implement

a leader election algorithm, which in turn will be used in Chapter 6 to implement

paxos. The failure detector and the leader elector we implement here are both sloppy,

meaning that they are guaranteed to give accurate information on the system only in

a stable execution. However, this is enough for implementing paxos.

5.1 A failure detector

In this section we provide an automaton that detects process failures and recoveries

and we prove that the automaton satis�es certain properties that we will need in

the rest of the thesis. We do not provide a formal de�nition of the failure detection

problem, however, roughly speaking, the failure detection problem is the problem of

checking which processes are alive and which ones are stopped.

Without some knowledge of the passage of time it is not possible to detect failures;

thus to implement a failure detector we need to rely on timing assumptions. Figure

5-1 shows a Clock GT automaton, called detector(z; c)i. In our setting failures and

recoveries are modeled by means of actions Stopi and Recoveri. These two actions are

input actions of detector(z; c)i. Moreover detector(z; c)i has InformStopped(j)i

and InformAlive(j)i as output actions which are executed when, respectively, the

stopping and the recovering of process j are detected. Automaton detector(z; c)i
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detector(z; c)i

Signature:

Input: Receive(m)j;i, Stopi, Recoveri
Internal: Check(j)i
Output: InformStopped(j)i, InformAlive(j)i, Send(m)i;j
Time-passage: �(t)

State:

Clock 2 R initially arbitrary

Status 2 falive; stoppedg initially alive

Alive 2 2I initially I

for all j 2 I:

Prevrec(j) 2 R�0 initially arbitrary

Lastinform(j) 2 R�0 initially Clock

Lastsend(j) 2 R�0 initially Clock

Lastcheck(j) 2 R�0 initially Clock

Actions:

input Stopi
E�: Status := stopped

input Recoveri
E�: Status := alive

internal Send(\Alive")i;j
Pre: Status = alive

E�: Lastsend(j) := Clock+ z

input Receive(\Alive")j;i
E�: if Status = alive then

Prevrec(j) := Clock

if j 62 Alive then

Alive := Alive [ fjg

Lastcheck(j) := Clock+ c

internal Check(j)i
Pre: Status = alive

j 2 Alive

E�: Lastcheck(j) := Clock+ c

if Clock > Prevrec(j) + z + d then

Alive := Alive n fjg

output InformStopped(j)i
Pre: Status = alive

j 62 Alive

E�: Lastinform(j) := Clock+ `

output InformAlive(j)i
Pre: Status = alive

j 2 Alive

E�: Lastinform(j) := Clock+ `

time-passage �(t)

Pre: Status = alive

E�: Let t0 be s.t.

8j;Clock+ t0 � Lastinform(j)

8j;Clock+ t0 � Lastsend(j)

8j;Clock+ t0 � Lastcheck(j)

Clock := Clock+ t0

Figure 5-1: Automaton detector for process i
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works by having each process constantly sending \Alive" messages to each other

process and checking that such messages are received from other processes. It sends

at least one \Alive" message in an interval of time of a �xed length z (i.e., if an

\Alive" message is sent at time t then the next one is sent before time t + z) and

checks for incoming messages at least once in an interval of time of a �xed length

c. Let us denote by Sdet the system consisting of system Scha and an automaton

detector(z; c)i for each process i 2 I. Figure 5-2 shows Sdet.
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Figure 5-2: The system Sdet

Lemma 5.1.1 If an execution fragment � of Sdet, starting in a reachable state and

lasting for more than z+ c+ `+2d time, is stable and process i is stopped in �, then

by time z + c + ` + 2d, for each process j alive in �, an action InformStopped(i)j is

executed and no subsequent InformAlive(i)j action is executed in �.

Proof: Let j be any alive process, and let t0 be the Clockj value of process j at

the beginning of �. Notice that, since � is stable, at time � in �, we have that

Clockj = t0 + �. Now, notice that channeli;j is a subsystem of Sdet, that is,

Sdet is the composition of channeli;j and other automata. By Theorem 2.6.10
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the projection �jchanneli;j is an execution fragment of channeli;j and thus any

property true for channeli;j in �jchanneli;j is true for Sdet in �; in particular

we can use Lemma 3.2.3. Since � is stable and starts in a reachable state we have

that �jchanneli;j is stable and starts in a reachable state. Thus by Lemma 3.2.3,

any message from i to j that is in the channel at the beginning of � is delivered by

time d and consequently, since process i is stopped in �, no message from process i

is received by process j after time d. We distinguish two possible cases. Let s be the

�rst state of � after which no further messages from i are received by j and let �s be

the action that brings the system into state s. Notice that the time of occurrence of

�s is before or at time d.

Case 1: Process i 62 s:Alivej . Then, by the code of detectori an action

InformStopped(i)j is executed within ` time after s. Clearly action InformStopped(i)j

is executed after s and, since the time of occurrence of �s is � d then it is executed

before or at time d + `. Moreover since no messages from i are received after s, no

InformAlive(i)j can happen later on. Thus the lemma is proved in this case.

Case 2: Process i 2 s:Alivej . Let Prevrec be the value of Clockj at the moment

when the last \Alive" message from i is received from j. Since no message from

process i is received by process j after s and the time of occurrence of �s is � d,

we have that Prevrec � t0 + d; indeed, as we observed before, at time � in �, we

have that Clockj = t0 + �, for any �. Since process i is supposed to send a new

\Alive" message within z time from the previous one and the message may take up to

d time to be delivered, a new \Alive" message from process i is expected by process

j before Clockj passes the value Prevrec+ z + d. However, no messages are received

when Clockj > Prevrec. By the code of detector(z; c)j an action Check(i)j occurs

after time Prevrec+ z + d and before or at time Prevrec+ z + c+ d; indeed, a check

action occur at least once in an interval of time of length c. When this action occurs,

since Clockj > Prevrec + z + d, it removes process i from the Alivej set (see code).

Thus by time Prevrec+ z + c + d process i is not in Alivej . Since Prevrec � t0 + d,

we have that process i is not in Alivej before Clockj passes t
0 + z + c + 2d. Action

InformStopped(i)j is executed within additional ` time, that is before Clockj passes
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t0 + z + c + 2d + `. Notice also|and we will need this for the second part of the

proof|that this action happens when Clockj > t0 + z + c + 2d > t0 + d. Thus we

have that action InformStopped(i)j is executed by time z + c+ 2d + `. Since we are

considering the case when process i is in Alivej at time d, action InformStopped(i)j is

executed after time d. This is true for any alive process j. Thus the lemma is proved

also in this case.

This concludes the proof of the �rst part of the lemma. Now, since no messages

from i are received by j after time d, that is, no message from i to j is received

when Clockj > t0 + d and, by the �rst part of this proof, InformStopped(i)j hap-

pens when Clockj > t0 + d, we have that no InformAlive(i)j action can occur after

InformStopped(i)j has occurred. This is true for any alive process j. Thus also the

second part of the lemma is proved.

Lemma 5.1.2 If an execution fragment � of Sdet, starting in a reachable state and

lasting for more than z+ d+ ` time, is stable and process i is alive in �, then by time

z + d+ `, for each process j alive in �, an action InformAlive(i)j is executed and no

subsequent InformStopped(i)j action is executed in �.

Proof: Let j be any alive process, and let t0 be the value of Clocki and t
00 be the value

of Clockj at the beginning of �. Notice that, since � is stable, at time � in �, we have

that Clocki = t0+� and Clockj = t00+�. Now, notice that channeli;j is a subsystem

of Sdet, that is, Sdet can be though of as the composition of channeli;j and other

automata. By Theorem 2.6.10 �jchanneli;j is an execution of channeli;j and thus

any property of channeli;j true in �jchanneli;j is true for Sdet in �; in particular

we can use Lemma 3.2.3. Since process i is alive in � and � is stable, process i sends

an \Alive" message to process j by time z and, by Lemma 3.2.3, such a message is

received by process j by time z + d. Whence, before Clockj passes t
00 + z + d, action

Receive(\Alive")i;j is executed and thus process i is put into Alivej (unless it was

already there). Once process i is into Alivej, within additional ` time, that is before

Clockj passes t
00+ z+ d+ `, or equivalently, by time z+ d+ `, action InformAlive(i)j

is executed. This is true for any process j. This proves the �rst part of the Lemma.
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Let t be the time of occurrence of the �rst Receive(\Alive")i;j executed in �; by

the �rst part of this lemma, t � z+ d. Then since � is stable, process i sends at least

one \Alive" message in an interval of time z and each message takes at most d to be

delivered. Thus in any interval of time z+ d process j executes a Receive(\Alive")i;j.

This implies that the Clockj variable of process j never assumes values greater than

Prevrec(i)j+ z+d, which in turns imply that every Check(i)j action does not remove

process i from Alivej . Notice that process i may be removed from Alivej before time

t. However it is put into Alivej at time t and it is not removed later on. Thus also

the second part of the lemma is proved.

The strategy used by detector(z; c)i is a straightforward one. For this reason

it is very easy to implement. However the failure detector so obtained is not reliable,

i.e., it does not give accurate information, in the presence of failures (Stopi, Losei;j,

irregular executions). For example, it may consider a process stopped just because the

\Alive" message of that process was lost in the channel. Automaton detector(z; c)i

is guaranteed to provide accurate information on faulty and alive processes only when

the system is stable.

In the rest of this thesis we assume that z = ` and c = `, that is, we use

detector(`; `)i. This particular strategy consists of sending an \Alive" message

in each interval of ` time (i.e., we assume z = `) and of checking for incoming mes-

sages at least once in each interval of ` time (i.e., we assume c = `). In practice

the choice of z and c may be di�erent. However from a theoretical point of view

such a choice is irrelevant as it only a�ects the running time by a constant factor.

Lemmas 5.1.3 and 5.1.4 can be restated as follows.

Lemma 5.1.3 If an execution fragment � of Sdet, starting in a reachable state and

lasting for more than 3` + 2d time, is stable and process i is stopped in �, then by

time 3` + 2d, for each process j alive in �, an action InformStopped(i)j is executed

and no subsequent InformAlive(i)j action is executed in �.

Lemma 5.1.4 If an execution fragment � of Sdet, starting in a reachable state and

lasting for more than d + 2` time, is stable and process i is alive in �, then by time
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d + 2`, for each process j alive in �, an action InformAlive(i)j is executed and no

subsequent InformStopped(i)j action is executed in �.

5.2 A leader elector

Electing a leader in an asynchronous distributed system is a di�cult task. An in-

formal argument that explains this di�culty is that the leader election problem is

somewhat similar to the consensus problem (which, in an asynchronous system sub-

ject to failures is unsolvable [18]) in the sense that to elect a leader all processes

must reach consensus on which one is the leader. As for the failure detector, we need

to rely on timing assumptions. It is fairly clear how a failure detector can be used

to elect a leader. Indeed the failure detector gives information on which processes

are alive and which ones are not alive. This information can be used to elect the

current leader. We use the detector(`; `)i automaton to check for the set of alive

processes. Figure 5-3 shows automaton leaderelectori which is an MMT automa-

ton. Remember that we use MMT automata to describe in a simpler way Clock GT

automata. Automaton leaderelectori interacts with detector(`; `)i by means

of actions InformStopped(j)i, which inform process i that process j has stopped, and

InformAlive(j)i, which inform process i that process j has recovered. Each process

updates its view of the set of alive processes when these two actions are executed. The

process with the biggest identi�er in the set of alive processes is declared leader. We

denote with Slea the system consisting of Sdet composed with a leaderelectori

automaton for each process i 2 I. Figure 5-4 shows Slea.

Since detector(`; `)i is not a reliable failure detector, also leaderelectori is

not reliable. Thus, it is possible that processes have di�erent views of the system so

that more than one process considers itself leader, or the process supposed to be the

leader is actually stopped. However as the failure detector becomes reliable when the

system Sdet executes a stable execution fragment (see Lemmas 5.1.3 and 5.1.4), also

the leader elector becomes reliable when system Slea is stable. Notice that when

Slea executes a stable execution fragment, so does Sdet.
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leaderelectori

Signature:

Input: InformStopped(j)i, InformAlive(j)i, Stopi, Recoveri
Output: Leaderi, NotLeaderi

State:

Status 2 falive; stoppedg initially alive

Pool 2 2I initially fig

Leader 2 I initially i

Actions:

input Stopi
E�: Status := stopped

output Leaderi
Pre: Status = alive

i = Leader

E�: none

input InformStopped(j)i
E�: if Status = alive then

Pool := Pool n fjg

Leader := max of Pool

input Recoveri
E�: Status := alive

output NotLeaderi
Pre: Status = alive

i 6= Leader

E�: none

input InformAlive(j)i
E�: if Status = alive

Pool := Pool [ fjg

Leader := max of Pool

Tasks and bounds:

fLeaderi, NotLeaderig, bounds [0; `]

Figure 5-3: Automaton leaderelector for process i
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Figure 5-4: The system Slea

Formally we consider a process i to be leader if Leaderi = i. That is a process i is

leader if it consider itself to be the leader. This allows multiple or no leaders and does

not require other processes to be aware of the leader or the leaders. The following

de�nition gives a much more precise notion of leader.

De�nition 5.2.1 In a state s, there is a unique leader if and only if there exists an

alive process i such that s:Leaderi = i and for all other alive processes j 6= i it holds

that s:Leaderj = i.

Next lemma states that in a stable execution fragment, eventually there will be a

unique leader.

Lemma 5.2.2 If an execution fragment � of Slea, starting in a reachable state and

lasting for more than 4`+2d, is stable, then by time 4`+2d, there is a state occurrence
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s such that in state s and in all the states after s there is a unique leader. Moreover

this unique leader is always the process with the biggest identi�er among the processes

alive in �.

Proof: First notice that the system Slea consists of system Sdet composed with

other automata. Hence by Theorem 2.6.10 we can use any property of Sdet. In

particular we can use Lemmas 5.1.3 and 5.1.4 and thus we have that by time 3`+2d

each process has a consistent view of the set of alive and stopped processes. Let i be

the leader. Since � is stable and thus also regular, by Lemma 2.5.4, within additional

` time, actions Leaderj and NotLeaderj are consistently executed for each process j,

including process j = i. The fact that i is the the process with the biggest identi�er

among the processes alive in � follows directly from the code of leaderelectori.

We remark that, for many algorithms that rely on the concept of leader, it is

important to provide exactly one leader. For example when the leader election is

used to generate a new token in a token ring network, it is important that there is

exactly one process (the leader) that generates the new token, because the network

gives the right to send messages to the owner of the token and two tokens may result

in an interference between two communications. For these algorithms, having two or

more leaders jeopardizes the correctness. Hence the sloppy leader elector provided

before is not suitable. However for the purpose of this thesis, leaderelectori is

all we need.

5.3 Bibliographic notes

In an asynchronous system it is impossible to distinguish a very slow process from a

stopped one. This is why the consensus problem cannot be solved even in the case

where at most one process fails [18]. If a reliable failure detector were provided then

the consensus problem would be solvable. This clearly implies that in a completely

asynchronous setting no reliable failure detector can be provided. Chandra and Toueg

[5] gave a de�nition of unreliable failure detector, and characterized failure detectors

in terms of two properties: completeness, which requires that the failure detector
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eventually suspect any stopped process, and accuracy, which restricts the mistakes a

failure detector can make. No failure detector are actually implemented in [5]. The

failure detector provided in this thesis, cannot be classi�ed in the hierarchy de�ned

in [5] since they do not consider channel failures.

Chandra, Hadzilacos and Toueg [4] identi�ed the \weakest" failure detector that

can be used to solve the consensus problem.

Failure detectors have practical relevance since it is often important to establish

which processes are alive and which one are stopped. For example in electing a leader

it is crucial to know which processes are alive and which ones are stopped. The need

of having a leader in a distributed computation arise in many practical situations,

like, for example, in a token ring network. However in asynchronous systems there is

the inherent di�culty of distinguishing a stopped process from a slow one.
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Chapter 6

The paxos algorithm

paxos was devised a very long time ago1 but its discovery, due to Lamport, dates

back only to 1989 [29].

In this chapter we describe the paxos algorithm, provide an implementation us-

ing Clock GT automata, prove its correctness and analyze its performance. The

performance analysis is given assuming that there are no failures nor recoveries, and

a majority of the processes are alive for a su�ciently long time. We remark that

when no restrictions are imposed on the possible failures, the algorithm might not

terminate.

6.1 Overview

Our description of paxos is modular: we have separated various parts of the overall

algorithm; each piece copes with a particular aspect of the problem. This approach

should make the understanding of the algorithm much easier. The core part of the

algorithm is a module that we call basicpaxos; this piece incorporates the basic

ideas on which the algorithm itself is built. The description of this piece is further

subdivided into three components, namely bpleader, bpagent and bpsuccess.

In basicpaxos processes try to reach a decision by running what we call a

\round". A process starting a round is the leader of that round. basicpaxos guar-

1The most accurate information dates it back to the beginning of this millennium [29].

61



antees that, no matter how many leaders start rounds, agreement and validity are not

violated. However to have a complete algorithm that satis�es termination when there

are no failures for a su�ciently long time, we need to augment basicpaxos with an-

other module; we call this module starteralg. The functionality of starteralg

is to make the current leader start a new round if the previous one is not completed

within some time bound.

Leaders are elected by using the leaderelector algorithm provided in Chap-

ter 5. We remark that this is possible because the presence of two or more leaders

does not jeopardize agreement validity; however to get termination there must be a

unique leader.

Thus, our implementation of paxos is obtained composing the following au-

tomata: channeli;j for the communication between processes, detectori and

leaderelectori for the leader election, basicpaxosi and starteralgi, for every

process i; j 2 I. The resulting system is called Spax and it is shown in Figure 6-1; we

have emphasized some of the interactions among the automata composing Spax and

some of the interactions with the external environment|input actions that model

channel failures are not drawn; channels are not drawn. Figure 6-2 gives a more

detailed view of the interaction among the automata composing basicpaxosi.

It is worth to remark that some pieces of the algorithm do need to be able to

measure the passage of the time (detectori, starteralgi and bpsuccessi) while

others do not.

We will prove (Theorems 6.2.15 and 6.2.18) that the system Spax solves the con-

sensus problem ensuring partial correctness|any output is guaranteed to be correct,

that is agreement and validity are satis�ed|and (Theorem 6.4.2) that Spax guar-

antees also termination when the system executes a nice execution fragment, that is,

without failures and recoveries and with at least a majority of the processes being

alive.
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6.2 Automaton basicpaxos

In this section we present the automaton basicpaxos which is the core part of the

paxos algorithm. We begin by providing an overview of how automaton basicpaxos

works, then we provide the automaton code along with a detailed description and

�nally we prove that it satis�es agreement and validity.

6.2.1 Overview

The basic idea, which is the heart of the algorithm, is to propose values until one of

them is accepted by a majority of the processes; that value is the �nal output value.

Any process may propose a value by initiating a round for that value. The process

initiating a round is said to be the leader of that round while all processes, including

the leader itself, are said to be agents for that round. Informally, the steps for a round

are the following.

1. To initiate a round, the leader sends a \Collect" message to all agents2 an-

nouncing that it wants to start a new round and at the same time asking for

information about previous rounds in which agents may have been involved.

2. An agent that receives a message sent in step 1 from the leader of the round,

responds with a \Last" message giving its own information about rounds pre-

viously conducted. With this, the agent makes a kind of commitment for this

particular round that may prevent it from accepting (in step 4) the value pro-

posed in some other round. If the agent is already committed for a round with

a bigger round number then it informs the leader of its commitment with an

\OldRound" message.

3. Once the leader has gathered information about previous rounds from a majority

of agents, it decides, according to some rules, the value to propose for its round

2Thus it sends a message also to itself. This helps in that we do not have to specify di�erent

behaviors for a process according to the fact that it is both leader and agent or just an agent. We

just need to specify the leader behavior and the agent behavior.
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and sends to all agents a \Begin" message announcing the value and asking

them to accept it. In order for the leader to be able to choose a value for

the round it is necessary that initial values be provided. If no initial value is

provided the leader must wait for an initial value before proceeding with step

3. The set of processes from which the leader gathers information is called the

info-quorum of the round.

4. An agent that receives a message from the leader of the round sent in step 3,

responds with an \Accept" message by accepting the value proposed in the cur-

rent round, unless it is committed for a later round and thus must reject the

value proposed in the current round. In the latter case the agent sends an \Ol-

dRound" message to the leader indicating the round for which it is committed.

5. If the leader gets \Accept" messages from a majority of agents, then the leader

sets its own output value to the value proposed in the round. At this point the

round is successful. The set of agents that accept the value proposed by the

leader is called the accepting-quorum.

Since a successful round implies that the leader of the round reached a decision,

after a successful round the leader still needs to do something, namely to broadcast

the reached decision. Thus, once the leader has made a decision it broadcasts a

\Success" message announcing the value for which it has decided. An agent that

receives a \Success" message from the leader makes its decision choosing the value

of the successful round. We use also an \Ack" message sent from the agent to the

leader, so that the leader can make sure that everyone knows the outcome.

Figure 6-3 shows: (a) the steps of a round r; (b) the response from an agent that

informs the leader that an higher numbered round r0 has been already initiated; (c)

the broadcast of a decision. The parameters used in the messages will be explained

later. Section 6.2.2 contains a description of the messages.

Since di�erent rounds may be carried out concurrently (several processes may

concurrently initiate rounds), we need to distinguish them. Every round has a unique

identi�er. Next we formally de�ne these round identi�ers. A round number is a pair
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Figure 6-3: Exchange of messages

(x; i) where x is a nonnegative integer and i is a process identi�er. The set of round

numbers is denoted by R. A total order on elements of R is de�ned by (x; i) < (y; j)

i� x < y or, x = y and i < j.

De�nition 6.2.1 Round r \precedes" round r0 if r < r0.

If round r precedes round r0 then we also say that r is a previous round, with

respect to round r0. We remark that the ordering of rounds is not related to the

actual time the rounds are conducted. It is possible that a round r0 is started at some

point in time and a previous round r, that is, one with r < r0, is started later on.

For each process i, we de�ne a \+i" operation that given a round number (x; j)

and an integer y, returns the round number (x; j) +i y = (x+ y; i).
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Every round in the algorithm is tagged with a unique round number. Every

message sent by the leader or by an agent for a round (with round number) r 2 R,

carries the round number r so that no confusion among messages belonging to di�erent

rounds is possible.

However the most important issue is about the values that leaders propose for

their rounds. Indeed, since the value of a successful round is the output value of

some processes, we must guarantee that the values of successful rounds are all equal

in order to satisfy the agreement condition of the consensus problem. This is the

tricky part of the algorithm and basically all the di�culties derive from solving this

problem. Consistency is guaranteed by choosing the values of new rounds exploiting

the information about previous rounds from at least a majority of the agents so that,

for any two rounds there is at least one process that participated in both rounds.

In more detail, the leader of a round chooses the value for the round in the following

way. In step 1, the leader asks for information and in step 2 an agent responds with

the number of the latest round in which it accepted the value and with the accepted

value or with round number (0; j) and nil if the agent has not yet accepted a value.

Once the leader gets such information from a majority of the agents (which is the

info-quorum of the round), it chooses the value for its round to be equal to the value

of the latest round among all those it has heard from the agents in the info-quorum

or equal to its initial value if all agents in the info-quorum were not involved in any

previous round. Moreover, in order to keep consistency, if an agent tells the leader of

a round r that the last round in which it accepted a value is round r0, r0 < r, then

implicitly the agent commits itself not to accept any value proposed in any other

round r00, r0 < r00 < r.

Given the above setting, if r0 is the round from which the leader of round r gets

the value for its round, then, when a value for round r has been chosen, any round

r00, r0 < r00 < r, cannot be successful; indeed at least a majority of the processes

are committed for round r, which implies that at least a majority of the processes

are rejecting round r00. This, along with the fact that info-quorums and accepting-

quorums are majorities, implies that if a round r is successful, then any round with
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a bigger round number r0 > r is for the same value. Indeed the information sent by

processes in the info-quorum of round r0 is used to choose the value for the round,

but since info-quorums and accepting-quorums share at least one process, at least

one of the processes in the info-quorum of round r0 is also in the accepting-quorum

of round r. Indeed, since the round is successful, the accepting-quorum is a majority.

This implies that the value of any round r0 > r must be equal to the value of round

r, which, in turn, implies agreement.

We remark that instead of majorities for info-quorums and accepting-quorums,

any quorum system can be used. Indeed the only property that is required is that

there is always a process in the intersection of any info-quorum with any accepting-

quorum.

vA

Bv

Bv

vA

Bv

Ballot
number Value

(1,B)

(2,A)

(2,D)

(3,A)

(3,B)

A B C D E

Figure 6-4: Choosing the values of rounds. Empty boxes denote that the process

is in the info-quorum, and black boxes denote acceptance. Dotted lines indicate
commitments.

Example. Figure 6-4 shows how the value of a round is chosen. In this example we

have a network of 5 processes, A;B;C;D;E (where the ordering is the alphabetical one)
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and vA; vB denote the initial values of A and B. At some point process B is the leader

and starts round (1; B). It receives information from A;B;E (the set fA;B;Eg is the info-

quorum of this round). Since none of them has been involved in a previous round, process B

is free to choose its initial value vB as the value of the round. However it receives acceptance

only from B;C (the set fB;Cg is the accepting-quorum for this round). Later, process A

becomes the leader and starts round (2; A). The info-quorum for this round is fA;D;Eg.

Since none of this processes has accepted a value in a previous round, A is free to choose

its initial value for its round. For round (2; D) the info-quorum is fC;D;Eg. This time

in the quorum there is process C that has accepted a value in round (1; B) so the value of

this round must be the same of that of round (1; B). For round (3; A) the info-quorum is

fA;B;Eg and since A has accepted the value of round (2; A) then the value of round (2; A)

is chosen for round (3; A). For round (3; B) the info-quorum is fA;C;Dg. In this case there

are three processes that accepted values in previous rounds: process A that has accepted

the value of round (2; A) and processes C;D, that have accepted the value of round (2; D).

Since round (2; D) is the higher round number, the value for round (3; B) is taken from

round (2; D). Round (3; B) is successful.

To end up with a decision value, rounds must be started until at least one is

successful. The basic consensus module basicpaxos guarantees that a new round

does not violate agreement or validity, that is, the value of a new round is chosen in

such a way that if the round is successful, it does not violate agreement and validity.

However, it is necessary to make basicpaxos start rounds until one is successful. We

deal with this problem in Section 6.3.

6.2.2 The code

In order to describe automaton basicpaxosi for process i we provide three automata.

One is called bpleaderi and models the \leader" behavior of the process; another

one is called bpagenti and models the \agent" behavior of the process; the third one

is called bpsuccessi and it simply takes care of broadcasting a reached decision. Au-

tomaton basicpaxosi is the composition of bpleaderi, bpagenti and bpsuccessi.
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Figures 6-5 and 6-6 show the code for bpleaderi, while Figure 6-7 shows the

code for bpagenti. We remark that these code fragments are written using the

MMTA model. Remember that we use MMTA to describe in a simpler way Clock

GT automata. In section 2.3 we have described a standard technique to transform

any MMTA into a Clock GTA. Figures 6-8 and 6-9 show automaton bpsuccessi.

The purpose of this automaton is simply to broadcast the decision once it has been

reached by the leader of a round. The interactions among these automata are shown

in Figure 6-2; Figure 6-3 describes the sequence of messages used in a round.

It is worth to notice that the code fragments are \tuned" to work e�ciently when

there are no failures. Indeed messages for a given round are sent only once, that is, no

attempt is made to try to cope with losses of messages and responses are expected to

be received within given time bounds. Other strategies to try to conduct a successful

round even in the presence of some failures could be used. For example, messages

could be sent more than once to cope with the loss of some messages or a leader could

wait more than the minimum required time before starting a new round abandoning

the current one|this is actually dealt with in Section 6.3. We have chosen to send

only one message for each step of the round: if the execution is nice, one message

is enough to conduct a successful round. Once a decision has been made, there is

nothing to do but try to send it to others. Thus once the decision has been made

by the leader, the leader repeatedly sends the decision to the agents until it gets an

acknowledgment. We remark that also in this case, in practice, it is important to

choose appropriate time-outs for the re-sending of a message; in our implementation

we have chosen to wait the minimum amount of time required by an agent to respond

to a message from the leader; if the execution is stable this is enough to ensure that

only one message announcing the decision is sent to each agent.

We remark that there is some redundancy that derives from having separate au-

tomata for the leader behavior and for the broadcasting of the decision. For exam-

ple, both automata bpleaderi and bpsuccessi need to be aware of the decision,

thus both have a Decision variable (the Decision variable of bpsuccessi is updated

when action RndSuccessi is executed by bpleaderi after the Decision variable of
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bpleaderi

Signature:

Input: Receive(m)j;i, m 2 f\Last", \Accept", \Success", \OldRound"g

Init(v)i, NewRoundi, Stopi, Recoveri, Leaderi, NotLeaderi
Internal: Collecti, GatherLasti, Continuei GatherAccepti, GatherOldRoundi
Output: Send(m)i;j , m 2 f"Collect", \Begin"g

BeginCasti, RndSuccess(v)i ,

States:

Status 2 falive,stoppedg initially alive

IamLeader, a boolean initially false

Mode 2 fcollect,gatherlast,

wait,begincast,gatheraccept

decided,rnddoneg initially rnddone

InitValue 2 V [ nil initially nil

Decision 2 V [ fnilg initially nil

CurRnd 2 R initially (0; i)

HighestRnd 2 R initially (0; i)

RndValue 2 V [ fnilg initially nil

RndVFrom 2 R initially (0; i)

RndInfQuo 2 2I initially fg

RndAccQuo 2 2I initially fg

InMsgs, multiset of messages initially fg

OutMsgs, multiset of messages initially fg

Tasks and bounds:

fCollecti, GatherLasti, Continuei, BeginCasti, GatherAccepti , RndSuccess(v)ig, bounds [0; `]

fGatherOldRoundig, bounds [0; `]

fSend(m)i;j : m 2Mg, bounds [0; `]

Actions:

input Stopi
E�: Status := stopped

input Leaderi
E�: if Status = alive then

IamLeader := true

output Send(m)i;j
Pre: Status = alive

mi;j 2 OutMsgs

E�: remove mi;j from OutMsgs

input Recoveri
E�: Status := alive

input NotLeaderi
E�: if Status = alive then

IamLeader := false

input Receive(m)j;i
E�: if Status = alive then

add mj;i to InMsgs

Figure 6-5: Automaton bpleader for process i (part 1)
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Actions:

input Init(v)i
E�: if Status = alive then

InitValue := v

input NewRoundi
E�: if Status = alive then

CurRnd := HighestRnd+i 1

HighestRnd := CurRnd

Mode := collect

internal Collecti
Pre: Status = alive

Mode = collect

E�: RndVFrom := (0; i)

RndInfQuo := fg; RndAccQuo := fg

8j put (CurRnd,\Collect")i;j
in OutMsgs

Mode := gatherlast

internal GatherLasti
Pre: Status = alive

Mode = gatherlast

m = (r ,\Last",r0,v)j;i 2 InMsgs

CurRnd=r

E�: remove all copies of m from InMsgs

RndInfQuo := RndInfQuo [ fjg

if RndV From < r0 and v 6= nil then

RndValue := v

RndV From := r0

if jRndInfQuoj > n=2 then

if RndValue = nil and

InitValue 6= nil then

RndValue := InitValue

if RndValue 6= nil then

Mode := begincast

else

Mode := wait

internal Continuei
Pre: Status = alive

Mode = wait

InitValue 6= nil

E�: if RndValue = nil then

RndValue := InitValue

Mode := begincast

output BeginCasti
Pre: Status = alive

Mode = begincast

E�: 8j put (CurRnd,\Begin",RndValue)i;j
in OutMsgs

Mode := gatheraccept

internal GatherAccepti
Pre: Status = alive

Mode = gatheraccept

m = (r,\Accept")j;i 2 InMsgs

CurRnd = r

E�: remove all copies of m from InMsgs

RndAccQuo := RndAccQuo [fjg

if jRndAccQuoj> n=2 then

Decision := RndValue

Mode := decided

output RndSuccess(Decision)i
Pre: Status = alive

Mode = decided

E�: Mode = rnddone

internal GatherOldRoundi
Pre: Status = alive

m = (r,\OldRound",r0)j;i 2 InMsgs

CurRnd < r

E�: remove m from InMsgs

HighestRnd := r0

Figure 6-6: Automaton bpleader for process i (part 2)
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bpagenti

Signature:

Input: Receive(m)j;i, m 2 f\Collect", \Begin"g

Init(v)i, Stopi, Recoveri
Internal: LastAccepti, Accepti
Output: Send(m)i;j , m 2 f"Last", \Accept", \OldRound"g

States:

Status 2 falive,stoppedg initially alive

LastR 2 R initially (0; i)

LastV 2 V [ fnilg initially nil

Commit 2 R initially (0; i)

InMsgs, multiset of messages initially fg

OutMsgs, multiset of messages initially fg

Tasks and bounds:

fLastAcceptig, bounds [0; `]

fAcceptig, bounds [0; `]

fSend(m)i;j : m 2Mg, bounds [0; `]

Actions:

input Stopi
E�: Status := stopped

output Send(m)i;j
Pre: Status = alive

mi;j 2 OutMsgs

E�: remove mi;j from OutMsgs

internal LastAccepti
Pre: Status = alive

m = (r,\Collect")j;i 2 InMsgs

E�: remove all copies of m from InMsgs

if r � Commit then

Commit := r

put (r,\Last",LastR,LastV)i;j
in OutMsgs

else

put (r,\OldRound",Commit)i;j
in OutMsgs

input Recoveri
E�: Status := alive

input Receive(m)j;i
E�: if Status = alive then

add mj;i to InMsgs

internal Accepti
Pre: Status = alive

m = (r,\Begin",v)j;i 2 InMsgs

E�: remove all copies of m from InMsgs

if r � Commit then

put (r,\Accept")i;j in InMsgs

LastR := r, LastV := v

else

put (r,\OldRound",Commit)i;j
in OutMsgs

input Init(v)i
E�: if Status = alive then

LastV := v

Figure 6-7: Automaton bpagent for process i

73



bpsuccessi

Signature:

Input: Receive(m)j;i, m 2 f\Ack", \Success"g

Stopi, Recoveri, Leaderi, NotLeaderi, RndSuccess(v)i
Internal: SendSuccessi , GatherSuccessi , GatherAcki, Waiti
Output: Decide(v)i , Send(\Success",v)i;j
Time-passage: �(t)

State:

Clock 2 R initially arbitrary

Status 2 falive; stoppedg initially alive

Decision 2 V [ fnilg initially nil

IamLeader, a boolean initially false

Acked(j), a boolean 8j 2 I initially all false

Prevsend 2 R[ fnilg initially nil

LastSend 2 R[ f1g initially1

LastWait 2 R[ f1g initially1

LastGA 2 R[ f1g initially1

LastGS 2 R[ f1g initially1

LastSS 2 R[ f1g initially1

InMsgs, multiset of messages initially fg

OutMsgs, multiset of messages initially fg

Actions:

input Stopi
E�: Status := stopped

input Leaderi
E�: if Status = alive then

IamLeader := true

output Send(m)i;j
Pre: Status = alive

mi;j 2 OutMsgs

E�: remove mi;j from OutMsgs

if OutMsgs is empty

LastSend :=1

else

LastSend := Clock + `

input RndSuccess(v)i
E�: if Status = alive then

Decision := v

LastSS := Clock+ `

input Recoveri
E�: Status := alive

input NotLeaderi
E�: if Status = alive then

IamLeader := false

input Receive(m)j;i
E�: if Status = alive then

put mj;i into InMsgs

if m is an \Ack" message and

LastGA =1 then

LastGA = Clock+ `

if m is an \Success" message and

LastGS =1 then

LastGS = Clock+ `

Figure 6-8: Automaton bpsuccess for process i (part 1)
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internal SendSuccessi
Pre: Status = alive, IamLeader = true

Decision 6= nil, PrevSend = nil

9j 6= i s.t. Acked(j) = false

E�: 8j 6= i s.t. Acked(j) = false

put (\Success",Decision)i;j
in OutMsgs

PrevSend := Clock

LastSend := Clock + `

LastWait := Clock + (4` + 2n`+ 2d) + `

LastSS :=1

internal GatherSuccessi
Pre: Status = alive

m = (\Success",v)j;i 2 InMsgs

E�: remove all copies of m from InMsgs

Decision := v

put (\Ack")i;j in OutMsgs

output Decide(v)i
Pre: Status = alive

Decision 6= nil

Decision = v

E�: none

internal GatherAcki
Pre: Status = alive

m =(\Ack")j;i 2 InMsgs

E�: remove all copies of m from InMsgs

Acked(j) := true

if no other \Ack" is in InMsgs then

LastGA :=1

else

LastGA := Clock+ `

internalWaiti
Pre: Status = alive, PrevSend 6= nil

Clock > PrevSend + (4`+ 2n` + 2d)

E�: PrevSend := nil

LastWait :=1

time-passage �(t)

Pre: Status = alive

E�: Let t0 be s.t.

Clock+t0 � LastSend

Clock+t0 � LastWait

Clock+t0 � LastSS

Clock+t0 � LastGS

Clock+t0 � LastGA

Clock := Clock+t0

Figure 6-9: Automaton bpsuccess for process i (part 2)
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bpleaderi is set). Having only one automata would have eliminated the need of

such a duplication. However we preferred to separate bpleaderi and bpsuccessi

because they accomplish di�erent tasks.

In addition to the code fragments of bpleaderi, bpagenti and of bpsuccessi,

we provide here some comments about the messages, the state variables and the

actions.

Messages. In this paragraph we describe the messages used for communication

between the leader i and the agents of a round. Every message m is a tuple of

elements. The messages are:

1. \Collect" messages, m = (r;\Collect")i;j. This message is sent by the leader of

a round to announce that a new round, with number r, has been started and

at the same time to ask for information about previous rounds.

2. \Last" messages, m = (r;\Last",r0; v)j;i. This message is sent by an agent to

respond to a \Collect" message from the leader. It provides the last round r0 in

which the agent has accepted a value, and the value v proposed in that round.

If the agent did not accept any value in previous rounds, then v is either nil

or the initial value of the agent and r0 is (0; j).

3. \Begin" messages, m = (r;\Begin",v)i;j. This message is sent by the leader of

round r to announce the value v of the round and at the same time to ask to

accept it.

4. \Accept" messages, m = (r;\Accept")j;i. This message is sent by an agent to

respond to a \Begin" message from the leader. With this message an agent

accepts the value proposed in the current round.

5. \OldRound" messages, m = (r,\OldRound",r0)j;i. This message is sent by an

agent to respond either to a \Collect" or a \Begin" message. It is sent when the

agent is committed to reject the round speci�ed in the received message and has
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the goal of informing the leader about round r0 which is the higher numbered

round for which the agent is committed to reject round r.

6. \Success" messages, m = (\Success",v)i;j. This message is sent by the leader

after a successful round.

7. \Ack" messages, m =(\Ack")j;i. This message is an acknowledgment, so that

the leader can be sure that an agent has received the \Success" message.

Automaton bpleaderi. Variable IamLeader keeps track of whether the process is

leader; it is updated by actions Leaderi and NotLeaderi. VariableMode is used by the

leader to go through the steps of a round. It is used like a program counter. Variable

InitValue contains the initial value of the process. This value is set by some external

agent by means of the Init(v)i action and it is initially unde�ned. Variable Decision

contains the value decided by process i. Variable CurRnd contains the number of

the round for which process i is currently the leader. Variable HighestRnd stores the

highest round number seen by process i. Variable RndValue contains the value being

proposed in the current round. Variable RndVFrom is the round number of the round

from which RndValue has been chosen (recall that a leader sets the value for its round

to be equal to the value of a particular previous round, which is round RndVFrom).

Variable RndInfQuo contains the set of processes for which a \Last" message has

been received by process i (that is, the info-quorum). Variable RndAccQuo contains

the set of processes for which an \Accept" message has been received by process i

(that is, the accepting-quorum). We remark that in the original paper by Lamport,

there is only one quorum which is �xed in the �rst exchange of messages between the

leader and the agents, so that only processes in that quorum can accept the value

being proposed. However, there is no need to restrict the set of processes that can

accept the proposed value to the info-quorum of the round. Messages from processes

in the info-quorum are used only to choose a consistent value for the round, and once

this has been done anyone can accept that value. This improvement is also suggested

in Lamport's paper.
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Actions Leaderi and NotLeaderi are used to update IamLeader. Action Init(v)i is

used by an external agent to set the initial value of a process. Action RndSuccessi is

used to output the decision. Action NewRoundi starts a new round. It sets the new

round number by increasing the highest round number ever seen. Then action Collecti

resets to the initial values all the variables that describe the status of the round and

broadcasts a \Collect" message. Action GatherLasti collects the information sent

by agents in response to the leader's \Collect" message. This information is the

number of the last round accepted by the agent and the value of that round. Upon

receiving these messages, GatherLasti updates, if necessary, variables RndValue and

RndVFrom. Also it updates the info-quorum of the current round by adding to it the

agent who sent information. GatherLasti is executed until a majority of the processes

have sent their own information. When \Last" messages have been collected from a

majority of the processes, GatherLasti is no longer enabled. If RndValue is de�ned

then action BeginCasti is enabled. If RndValue is not de�ned (and this is possible

if the leader does not have an initial value and does not receive any value in \Last"

messages) the leader waits for an initial value before enabling action BeginCasti.

When an initial value is provided, action Continuei sets RndValue and enables action

BeginCasti. Action BeginCasti broadcasts a \Begin" message with the value chosen

for the round. Action GatherAccepti gathers the \Accept" messages. If a majority of

the processes accept the value of the current round then the round is successful and

GatherAccepti sets the Decision variable to the value of the current round. When

variable Decision has been set, action RndSuccessi is enabled and it outputs the

decision made. Action GatherOldRoundi collects messages that inform process i that

the round previously started by i is \old", in the sense that a round with a higher

number has been started. Process i can update, if necessary, its HighestRnd variable.

Automaton bpagenti. Variable LastR is the round number of the latest round for

which process i has sent a \Accept" message. Variable LastV is the value for round

LastR. Variable Commit speci�es the round for which process i is committed and

thus speci�es the set of rounds that process i must reject, which are all the rounds
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with round number less than Commit. We remark that when an agent commits for

a round r and sends to the leader of round r a \Last" message specifying the latest

round r0 < r in which it has accepted the proposed value, it is enough that the agent

commits to not accept the value of any round r00 in between r0 and r. To make the

code simpler, when an agents commits for a round r, it commits to reject any round

r00 < r.

Action LastAccepti responds to the \Collect" message sent by the leader by send-

ing a \Last" message that gives information about the last round in which the agent

has been involved. Action Accepti responds to the \Begin" message sent by the

leader. The agent accepts the value of the current round if it is not rejecting the

round. In both LastAccepti and Accepti actions, if the agent is committed to reject

the current round because of an higher numbered round, then a noti�cation is sent

to the leader so that the leader can update the highest round number ever seen.

Automaton bpsuccessi. VariableDecision contains a copy of the variableDecision

of bpleaderi; indeed it is updated when the output action RndSuccessi of bpleaderi

is executed. Variable IamLeader has the same function as in bpleaderi. Variable

Acked(j) contains a boolean that speci�es whether or not process j has sent an ac-

knowledgment for a \Success" message. Variable Prevsend records the time of the

previous broadcast of the decision. Variables LastSend, LastWait, LastGA, LastGS,

LastSS are used to impose the time bounds on the actions. Their use should be clear

from the code.

Action RndSuccessi simply takes care of updating the Decision variable and sets

a time bound for the execution of action SendSuccessi. Action SendSuccessi sends

the \Success" message, along with the value of Decision to all processes for which

there is no acknowledgment. Then it sets the time bounds for the re-sending of the

\Success" message (and also the time bound for the actual sending of the messages,

since outgoing messages are handled with the use of OutMsgs). ActionWaiti re-enable

action SendSuccessi after an appropriate time bound. We remark that 3`+2n`+2d is

the total time needed to send the \Success" message and get back an \`Ack" message
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(see Lemma 6.2.21). Action GatherSuccessi handles the receipt of \Success" messages

from processes that already know the decision and sends an acknowledgment. Action

GatherAcki handles the \Ack" messages.

We remark that automaton bpsuccessi needs to be able to measure the passage

of the time; indeed it is a Clock GTA.

6.2.3 Partial Correctness

Let us de�ne the system Sbpx to be the composition of system Scha and automaton

basicpaxosi for each process i 2 I (remember that basicpaxosi is the composition

of automata bpleaderi, bpagenti and bpsuccessi). In this section we prove the

partial correctness of Sbpx: we show that in any execution of the system Sbpx,

agreement and validity are guaranteed.

For these proofs, we augment the algorithmwith a collectionH of history variables.

Each variable inH is an array indexed by the round number. For every round number

r a history variable contains some information about round r. In particular the set

H consists of:

Hleader(r) 2 I [ nil, initially nil (the leader of round r).

Hvalue(r) 2 V [ nil, initially nil (the value for round r).

Hfrom(r) 2 R [ nil, initially nil (the round from which Hvalue(r) is taken).

Hinfquo(r), subset of I, initially fg (the info-quorum of round r).

Haccquo(r), subset of I, initially fg (the accepting-quorum of round r).

Hreject(r), subset of I, initially fg (processes committed to reject round r).

The code fragments of automata bpleaderi and bpagenti augmented with the

history variables are shown in Figure 6-10. The �gure shows only the actions that

change history variables. Actions of bpsuccessi do not change history variables.

Initially, when no round has been started yet, all the information contained in the

history variables is set to the initial values. All but Hreject(r) history variables of

round r are set by the leader of round r, thus if the round has not been started these

variables remain at their initial values. More formally we have the following lemma.
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bpleaderi Actions:

input NewRoundi
E�: if Status = alive then

CurRnd := HighestRnd+ 1

� Hleader(CurRnd):=i

HighestRnd := CurRnd

Mode := collect

output BeginCasti
Pre: Status = alive

Mode = begincast

E�: 8j put (CurRnd,\Begin",RndValue)i;j
in OutMsgs

� Hinfquo(CurRnd) := RndInfQuo

� Hfrom(CurRnd) := RndVFrom

� Hvalue(CurRnd) := RndValue

Mode := gatheraccept

internal GatherAccepti
Pre: Status = alive

Mode = gatheraccept

m = (r,\Accept")j;i 2 InMsgs

CurRnd = r

E�: remove all copies of m from InMsgs

RndAccQuo := RndAccQuo [fjg

if jRndAccQuoj> n=2 then

Decision := RndValue

� Haccquo(CurRnd):= RndAccQuo

Mode := decide

bpagenti Actions:

internal LastAccepti
Pre: Status = alive

m = (r,\Collect")j;i 2 InMsgs

E�: remove all copies of m from InMsgs

if r � Commit then

Commit := r

� For all r0, LastR < r0 < r

� Hreject(r0) := Hreject(r0) [ fig

put (r,\Last",LastR,LastV)i;j
in OutMsgs

else

put (r,\OldRound",Commit)i;j
in OutMsgs

Figure 6-10: Actions of bpleaderi and bpagenti for process i augmented with

history variables. Only the actions that do change history variables are shown. Other
actions are the same as in bpleaderi and bpagenti, i.e. they do not change history

variables. Actions of bpsuccessi do not change history variables.
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Lemma 6.2.2 In any state of an execution of Sbpx, if Hleader(r) = nil then

Hvalue(r) = nil

Hfrom(r) = nil

Hinfquo(r) = fg

Haccquo(r) = fg:

Proof: By an easy induction.

Given a round r, Hreject(r), is modi�ed by all the processes that commit themselves

to reject round r, and we know nothing about its value at the time round r is started.

Next we de�ne some key concepts that will be instrumental in the proofs.

De�nition 6.2.3 In any state of the system Sbpx, a round r is said to be \dead" if

jHreject(r)j � n=2.

That is, a round r is dead if at least n=2 of the processes are rejecting it. Hence, if a

round r is dead, there cannot be a majority of the processes accepting its value, i.e.,

round r cannot be successful.

De�nition 6.2.4 The set RS is the set fr 2 RjHleader(r) 6= nilg.

That is, RS is the set of rounds that have been started. A round r is formally started

as soon as its leader Hleader(r) is de�ned by the NewRoundi action.

De�nition 6.2.5 The set RV is the set fr 2 RjHvalue(r) 6= nilg.

That is, RV is the set of rounds for which the value has been chosen.

Invariant 6.2.6 In any state s of an execution of Sbpx, we have that RV � RS .

Indeed for any round r, if Hleader(r) is nil, by Lemma 6.2.2 we have that Hvalue(r)

is also nil. Hence Hvalue(r) is always set after Hleader(r) has been set.

Next we formally de�ne the concept of anchored round which is crucial to the

proofs. Informally a round r is anchored if its value is consistent with the value
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chosen in any previous round r0. Consistent means that either the value of round r

is equal to the value of round r0 or round r0 is dead. Intuitively, it is clear that if all

the rounds are either anchored or dead, then agreement is satis�ed.

De�nition 6.2.7 A round r 2 RV is said to be \anchored" if for every round r0 2 RV

such that r0 < r, either round r0 is dead or Hvalue(r0) = Hvalue(r).

Next we prove that Sbpx guarantees agreement, by using a sequence of invariants.

The key invariant is Invariant 6.2.13 which states that all rounds are either dead or

anchored. The �rst invariant captures the fact that when a process sends a \Last"

message in response to a \Collect" message for a round r, then it commits to not vote

for rounds previous to round r.

Invariant 6.2.8 In any state s of an execution of Sbpx, if message (r;\Last",r00; v)j;i

is in OutMsgs
j
, then j 2 Hreject(r0), for all r0 such that r00 < r0 < r.

Proof: We prove the invariant by induction on the length k of the execution �. The

base is trivial: if k = 0 then � = s0, and in the initial state no messages are in

OutMsgs
j
. Hence the invariant is vacuously true. For the inductive step assume that

the invariant is true for � = s0�1s1:::�ksk and consider the execution s0�1s1:::�ksk�s.

We need to prove that the invariant is still true in s. We distinguish two cases.

Case 1. In state sk, message (r;\Last",r00; v)j;i is in OutMsgs
j
. In this case, by

the inductive hypothesis, in state sk we have that j 2 Hreject(r0), for all r0 such

that r00 < r0 < r. Since no process is ever removed from any Hreject set, then also

in state s we have that j 2 Hreject(r0), for all r0 such that r00 < r0 < r.

Case 2. In state sk, message (r;\Last",r00; v)j;i is not in OutMsgs
j
. Since message

(r;\Last",r00; v)j;i is in OutMsgs
j
in state s, it must be that � = LastAcceptj and that

sk:LastR = r00. Then the invariant follows by the code of LastAcceptj which puts

process j into Hreject(r0) for all r0 such that r00 < r0 < r.

The next invariant states that the commitment made by an agent when sending

a \Last" message is still in e�ect when the message is in the communication channel.

This should be obvious, but to be precise in the rest of the proof we prove it formally.
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Invariant 6.2.9 In any state s of an execution of Sbpx, if message (r;\Last",r00; v)j;i

is in channelj;i, then j 2 Hreject(r0), for all r0 such that r00 < r0 < r.

Proof: We prove the invariant by induction on the length k of the execution �.

The base is trivial: if k = 0 then � = s0, and in the initial state no messages are in

channelj;i. Hence the invariant is vacuously true. For the inductive step assume that

the invariant is true for � = s0�1s1:::�ksk and consider the execution s0�1s1:::�ksk�s.

We need to prove that the invariant is still true in s. We distinguish two cases.

Case 1. In state sk, message (r;\Last",r00; v)j;i is in channelj;i. In this case,

by the inductive hypothesis, in state sk we have that j 2 Hreject(r0), for all r0 such

that r00 < r0 < r. Since no process is ever removed from any Hreject set, then also

in state s we have that j 2 Hreject(r0), for all r0 such that r00 < r0 < r.

Case 2. In state sk, message (r;\Last",r00; v)j;i is not in channelj;i. Since

message (r;\Last",r00; v)j;i is in channelj;i in state s, it must be that � = Send(m)j;i

with m = (r;\Last",r00; v)j;i. By the precondition of action Send(m)j;i we have that

message (r;\Last",r00; v)j;i is in OutMsgs
j
in state sk. By Invariant 6.2.8 we have that

in state sk process j 2 Hreject(r0) for all r0 such that r00 < r0 < r. Since no process is

ever removed from any Hreject set, then also in state s we have that j 2 Hreject(r0),

for all r0 such that r00 < r0 < r.

The next invariant states that the commitment made by an agent when sending

a \Last" message is still in e�ect when the message is received by the leader. Again,

this should be obvious.

Invariant 6.2.10 In any state s of an execution of Sbpx, if message (r;\Last",r00; v)j;i

is in InMsgs
i
, then j 2 Hreject(r0), for all r0 such that r00 < r0 < r.

Proof: We prove the invariant by induction on the length k of the execution �. The

base is trivial: if k = 0 then � = s0, and in the initial state no messages are in

InMsgs
i
. Hence the invariant is vacuously true. For the inductive step assume that

the invariant is true for � = s0�1s1:::�ksk and consider the execution s0�1s1:::�ksk�s.

We need to prove that the invariant is still true in s. We distinguish two cases.
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Case 1. In state sk, message (r;\Last",r00; v)j;i is in InMsgs
i
. In this case, by the

inductive hypothesis, in state sk we have that j 2 Hreject(r0), for all r0 such that

r00 < r0 < r. Since no process is ever removed from any Hreject set, then also in

state s we have that j 2 Hreject(r0), for all r0 such that r00 < r0 < r.

Case 2. In state sk, message (r;\Last",r00; v)j;i is not in InMsgs
i
. Since message

(r;\Last",r00; v)j;i is in InMsgs
i
in state s, it must be that � = Receive(m)i;j with

m = (r;\Last",r00; v)j;i. By the e�ect of action Receive(m)i;j we have that message

(r;\Last",r00; v)j;i is in channelj;i in state sk. By Invariant 6.2.9 we have that in state

sk process j 2 Hreject(r0) for all r0 such that r00 < r0 < r. Since no process is ever

removed from any Hreject set, then also in state s we have that j 2 Hreject(r0), for

all r0 such that r00 < r0 < r.

The following invariant states that the commitment of the agent is still in e�ect

when the leader updates its information about previous rounds using the agents'

\Last" messages.

Invariant 6.2.11 In any state s of an execution Sbpx, if process j 2 RndInfQuo
i
,

for some process i, and CurRndi = r, then 8r0 such that s:RndVFromi < r0 < r, we

have that j 2 Hreject(r0).

Proof: We prove the invariant by induction on the length k of the execution �. The

base is trivial: if k = 0 then � = s0, and in the initial state no process j is in

RndInfQuo
i
for any i. Hence the invariant is vacuously true. For the inductive step

assume that the invariant is true for � = s0�1s1:::�ksk and consider the execution

s0�1s1:::�ksk�s. We need to prove that the invariant is still true in s. We distinguish

two cases.

Case 1. In state sk, j 2 RndInfQuo
i
, for some process i, and CurRndi = r.

Then by the inductive hypothesis, in state sk we have that j 2 Hreject(r0), for all

r0 such that sk:RndVFromi < r0 < r. Since no process is ever removed from any

Hreject set and, as long as CurRndi is not changed, variable RndVFromi is never

decreased, then also in state s we have that j 2 Hreject(r0), for all r0 such that

s:RndVFromi < r0 < r.
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Case 2. In state sk, it is not true that j 2 RndInfQuo
i
, for some process i, and

CurRndi = r. Since in state s it holds that j 2 RndInfQuo
i
, for some process i, and

CurRndi = r, it must be the case that � = GatherLasti and that m in the precon-

dition of GatherLasti is m = (r;\Last",r00; v)j;i. Notice that, by the precondition of

GatherLasti, m 2 InMsgs
i
. Hence, by Invariant 6.2.10 we have that j 2 Hreject(r0),

for all r0 such that r00 < r0 < r. By the code of the GatherLasti action we have that

RndVFromi � r00. Whence the invariant is proved.

The following invariant is basically the previous one stated when the leader has

�xed the info-quorum.

Invariant 6.2.12 In any state of an execution of Sbpx, if j 2 Hinfquo(r) then 8r0

such that Hfrom(r) < r0 < r, we have that j 2 Hreject(r0).

Proof: We prove the invariant by induction on the length k of the execution �.

The base is trivial: if k = 0 then � = s0, and in the initial state we have that for

every round r, Hleader(r) = nil and thus by Lemma 6.2.2 there is no process j in

Hinfquo(r). Hence the invariant is vacuously true. For the inductive step assume that

the invariant is true for � = s0�1s1:::�ksk and consider the execution s0�1s1:::�ksk�s.

We need to prove that the invariant is still true in s. We distinguish two cases.

Case 1. In state sk, j 2 Hinfquo(r). By the inductive hypothesis, in state sk we

have that j 2 Hreject(r0), for all r0 such that Hfrom(r) < r0 < r. Since no process is

ever removed from any Hreject set, then also in state s we have that j 2 Hreject(r0),

for all r0 such that Hfrom(r) < r0 < r.

Case 2. In state sk, j 62 Hinfquo(r). Since in state s, j 2 Hinfquo(r), it must

be the case that action � puts j in Hinfquo(r). Thus it must be � = BeginCasti for

some process i, and it must be sk:CurRndi = r and j 2 sk:RndInfQuoi. Since action

BeginCasti does not change CurRndi and RndInfQuo
i
we have that s:CurRndi = r

and j 2 s:RndInfQuo
i
. By Invariant 6.2.11 we have that j 2 Hreject(r0) for all r0

such that s:RndVFromi < r0 < r. By the code of BeginCasti we have that Hfrom(r) =

s:RndVFromi.

We are now ready to prove the main invariant.
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Invariant 6.2.13 In any state of an execution of Sbpx, any non-dead round r 2 RV

is anchored.

Proof: We proceed by induction on the length k of the execution �. The base is

trivial. When k = 0 we have that � = s0 and in the initial state no round has been

started yet. Thus Hleader(r) = nil and by Lemma 6.2.2 we have that RV = fg and

thus the assertion is vacuously true. For the inductive step assume that the assertion

is true for � = s0�1s1:::�ksk and consider the execution s0�1s1:::�ksk�s. We need to

prove that, for every possible action � the assertion is still true in state s. First we

observe that the de�nition of \dead" round depends only upon the history variables

and that the de�nition of \anchored" round depends upon the history variables and

the de�nition of \dead" round. Thus the de�nition of \anchored" depends only on

the history variables. Thus actions that do not modify the history variables cannot

a�ect the truth of the assertion. The actions that change history variables are (see

code):

1. � = NewRoundi

2. � = BeginCasti

3. � = GatherAccepti

4. � = LastAccepti

Case 1. Assume � =NewRoundi. This action sets the history variable Hleader(r),

where r is the round number of the round being started by process i. The new round

r does not belong to RV since Hvalue(r) is still unde�ned. Thus the assertion of the

lemma cannot be contradicted by this action.

Case 2. Assume � = BeginCasti. Action � sets Hvalue(r), Hfrom(r) and

Hinfquo(r) for some round r. Round r belongs to RV in the new state s. In order

to prove that the assertion is still true it su�ces to prove that round r is anchored in

state s and any round r0, r0 > r is still anchored in state s (notice that rounds with

round number less than r are still anchored in state s, since the de�nition of anchored

for a given round involves only rounds with smaller round numbers).
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First we prove that round r is anchored. From the precondition of BeginCasti we have

that Hinfquo(r) contains more than n=2 processes; indeed variable Mode is equal to

begincast only if the cardinality of RndInfQuo is greater than n=2. Using Invariant

6.2.12 for each process j in Hinfquo(r), we have that for every round r0, such that

Hfrom(r) < r0 < r, there are more than n=2 processes in the set Hreject(r0), which

means that every round r0 is dead. Since Hvalue(Hfrom(r)) = Hvalue(r), round r is

anchored in state s.

Finally, we need to prove that any non-dead round r0, r0 > r that was anchored

in sk is still anchored in s. Since action BeginCasti modi�es only history variables

for round r, we only need to prove that in state s, Hvalue(r0) = Hvalue(r). Let r00

be equal to Hfrom(r). Since r0 is anchored in state sk we have that sk:Hvalue(r
0) =

sk:Hvalue(r
00). Again because BeginCasti modi�es only history variables for round

r, we have that s:Hvalue(r0) = s:Hvalue(r00). But we have proved that round r is

anchored in state s and thus s:Hvalue(r) = s:Hvalue(r00). Hence s:Hvalue(r0) =

s:Hvalue(r).

Case 3. Assume � = GatherAccepti. This action modi�es only variable Haccquo,

which is not involved in the de�nition of anchored. Thus this action cannot make the

assertion false.

Case 4. Assume � = LastAccepti. This action modi�es Hinfquo and Hreject.

Variable Hinfquo is not involved in the de�nition of anchored. Action LastAccepti

may put process i in Hreject of some rounds and this, in turn, may make those

rounds dead. However this cannot make false the assertion; indeed if a round r was

anchored in sk it is still anchored when another round becomes dead.

The next invariant follows easily from the previous one and gives a more direct

statement about the agreement property.

Invariant 6.2.14 In any state of an execution of Sbpx, all the Decision variables

that are not nil, are set to the same value.

Proof: We prove the invariant by induction on the length k of the execution �. The

base of the induction is trivially true: for k = 0 we have that � = s0 and in the initial
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state all the Decisioni variables are unde�ned.

Assume that the assertion is true for � = s0�1s1:::�ksk and consider the execution

s0�1s1:::�ksk�s. We need to prove that, for every possible action � the assertion is

still true in state s. Clearly the only actions which can make the assertion false are

those that set Decisioni, for some process i. Thus we only need to consider actions

GatherAccepti and GatherSuccessi.

Case 1. Assume � = GatherAccepti. This action sets Decisioni to Hvalue(r)

where r is some round number. If all Decisionj, j 6= i, are unde�ned then Decisioni

is the �rst decision and the assertion is still true. Assume there is only one Decisionj

already de�ned. Let Decisionj = Hvalue(r0) for some round r0. By Invariant 6.2.13,

rounds r and r0 are anchored and thus we have that Hvalue(r0) = Hvalue(r). Whence

Decisioni = Decisionj. If there are some Decisionj, j 6= i, which are already de�ned,

then by the inductive hypothesis they are all equal. Thus, the lemma follows.

Case 2. Assume � = GatherSuccessi. This action sets Decisioni to the value

speci�ed in the \Success" message that enabled the action. It is easy to see (by

the code) that the value sent in a \Success" message is always the Decision of some

process. Thus we have that Decisioni is equal to Decisionj for some other process j

and by the inductive hypothesis if there is more than one Decision variable already

set they are all equal.

Finally we can prove that agreement is satis�ed.

Theorem 6.2.15 In any execution of the system Sbpx, agreement is satis�ed.

Proof: The theorem follows easily by Invariant 6.2.14.

Validity is easier to prove since the value proposed in any round comes either from

a value supplied by an Init(v)i action or from a previous round.

Invariant 6.2.16 In any state of an execution � of Sbpx, for any r 2 RV we have

that Hvalue(r) 2 V�.

Proof: We proceed by induction on the length k of the execution �. The base of the

induction is trivially true: for k = 0 we have that � = s0 and in the initial state all

89



the Hvalue variables are unde�ned.

Assume that the assertion is true for � = s0�1s1:::�ksk and consider the execution

s0�1s1:::�ksk�s. We need to prove that, for every possible action � the assertion is

still true in state s. Clearly the only actions that can make the assertion false are

those that modify Hvalue. The only action that modi�es Hvalue is BeginCast. Thus,

assume � = BeginCasti. This action sets Hvalue(r) to RndValuei. We need to prove

that all the values assigned to RndValuei are in the set V�. Variable RndValuei is

modi�ed by actions NewRoundi and GatherLasti. We can easily take care of action

NewRoundi because it simply sets RndValuei to be InitValuei which is obviously in

V�. Thus we only need to worry about GatherLasti actions. A GatherLasti action

sets variable RndValuei to the value speci�ed into the \Last" message if that value

is not nil. By the code, it is easy to see that the value speci�ed into any \Last"

message is either nil or the value Hvalue(r0) of a previous round r0; by the inductive

hypothesis we have that Hvalue(r0) belongs to V�.

Invariant 6.2.17 In any state of an execution of Sbpx, all the Decision variables

that are not unde�ned are set to some value in V�.

Proof: A variable Decision is always set to be equal to Hvalue(r) for some r. Thus

the invariant follows from Invariant 6.2.16.

Theorem 6.2.18 In any execution of the system Sbpx, validity is satis�ed.

Proof: Immediate from Invariant 6.2.17.

6.2.4 Analysis

In this section we analyze the performance of Sbpx. Since the algorithm may not

terminate at all when failures happen, we can only prove that if, starting from some

point in time on, no failures or recoveries happen and there is at least a majority of

alive processes then termination is achieved within some time bound and with the

sending of some number of messages.
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Before turning our attention to the time analysis, let us give the following lemma

which provides a bound on the number of messages sent in any round.

Lemma 6.2.19 If an execution fragment of the system Sbpx, starting in a reachable

state, is stable then at most 4n messages are sent in a round.

Proof: In step 1 the leader broadcasts a \Collect" message, thus this counts for n

messages. Since the execution is stable, no message is duplicated. In step 2, agents

respond to the \Collect" message. Even though only bn=2c+1 of these responses are

used by the leader, we need to account for n messages since every process may send

a \Last" message in step 2. A similar reasoning for steps 3 and 4 leads to a total of

at most 4n messages.

Now we consider the time analysis. Let us begin by making precise the meaning

of expressions like \the start (end) of a round".

De�nition 6.2.20 In an execution fragment during which process i is the unique

leader

� the \start" of a round is the execution of action NewRoundi;

� the \end" of a round is the execution of action RndSuccessi.

A round is successful if it ends, that is, if the RndSuccessi action is executed by

the leader i. Moreover we say that a process i reaches its decision when automaton

bpsuccessi sets its Decision variable. We remark that, in the case of a leader, the

decision is actually reached when the leader knows that a majority of the processes

have accepted the value being proposed. This happens in action GatherAccepti of

bpleaderi. However, to be precise in our proofs, we consider the decision reached

when the variableDecision of bpsuccessi is set; for the leader this happens exactly at

the end of a successful round. Notice that the Decide(v)i action, which communicates

the decision v of process i to the external environment, is executed within ` time from

the point in time when process i reaches the decision, provided that the execution is

regular (in a regular execution actions are executed within the expected time bounds).

91



The following lemma states that, once the leader has made a decision, if the

execution is stable, the decision will be reached by all the alive processes within linear

(in the number of processes) time and with the sending of at most 2n messages.

Lemma 6.2.21 If an execution fragment � of the system Sbpx, starting in a reach-

able state s and lasting for more than 3` + 2n` + 2d time, is stable and there is a

unique leader, say i, that has reached a decision in state s, then by time 3`+2n`+2d,

every alive process j 6= i has reached a decision, and the leader i has Acked(j)i = true

for every j 6= i. Furthermore, at most 2n messages are sent.

Proof: First notice that Sbpx is the composition of channeli;j and other automata.

Hence, by Theorem 2.6.10 we can apply Lemma 3.2.3. Let i be the leader. By as-

sumption, Decisioni of bpsuccessi is not nil in state s. By the code of bpsuccessi,

action SendSuccessi is executed within ` time. This action puts at most n messages

into the OutMsgsi set. Action Sendi;j is enabled until all of them have been actually

sent over the channels. This takes at most n` time. By Lemma 3.2.3 each alive pro-

cess j receives the \Success" message, i.e., executes a Receive(\Success",v)i;j action,

within d time. By Lemma 2.5.4, action GatherSuccessi will be executed within ad-

ditional ` time. This action sets variable Decisionj and puts an \Ack" message into

OutMsgsj. At this point all alive processes have reached a decision. Within ` time

the \Ack" message is actually sent over channelj;i. Then, again by Lemma 3.2.3

this \Ack" message is received by process i, i.e., action Receive(\Ack")j;i is executed,

within d time. Within at most n` time all \Ack" messages are processed by action

Acki. At this point the leader knows that all alive processes have reached a decision,

and will not send any other message to them. The time bound is obtained by adding

the above time bounds. We account for 2n messages since the leader sends a \Suc-

cess" message to every process and for each of these message an acknowledgment is

sent.

In the following we will be interested in the time analysis from the start to the end

of a successful round. Hence we consider an execution fragment � having a unique

leader, say process i and such that the leader i has started a round by the �rst state
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of � (that is, in the �rst state of �, CurRndi = r for some round number r).

We remark that in order for the leader to execute step 3, i.e., action BeginCasti,

it is necessary that RndValue be de�ned. If the leader does not have an initial value

and no agent sends a value in a \Last" message, variable RndValue is not de�ned. In

this case the leader needs to wait for the execution of the Init(v)i to set a value to

propose in the round (see action Continuei). Clearly the time analysis depends on the

time of occurrence of the Init(v)i. To deal with this we use the following de�nition.

De�nition 6.2.22 Given an execution fragment �, we de�ne ti
�
to be

� 0, if InitValuei is de�ned in the �rst state of �;

� the time of occurrence of action Init(v)i, if variable InitValuei is unde�ned in

the �rst state of � and action Init(v)i is executed in �;

� in�nite, if variable InitValuei is unde�ned in the �rst state of � and no Init(v)i

action is executed in �.

Moreover, we de�ne T i

�
to be maxf4` + 2n` + 2d; ti

�
+ 2`g.

We are now ready to provide a time analysis for a successful round. We �rst

provide a simple lemma that gives a bound for the time that elapses between the

execution of the BeginCast action and the RndSuccess action for a successful round

in a stable execution fragment. Notice that action BeginCast for a round r sets history

variable Hvalue(r); hence the fact that in a particular reachable state s we have that

s:Hvalue(r) 6= nil means that for any execution that brings the system into state s

action BeginCast for round r has been executed.

Lemma 6.2.23 Suppose that for an execution fragment � of the system Sbpx, start-

ing in a reachable state s in which s:Decision = nil, it holds that:

(i) � is stable;

(ii) in � there exists a unique leader, say process i;

(iii) � lasts for more than 3` + 2n` + 2d time;
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(iv) s:CurRndi = r, for some round number r, and s:Hvalue(r) 6= nil;

(v) round r is successful.

Then we have that action RndSuccessi is performed by time 3` + 2n` + 2d from the

beginning of �.

Proof: First notice that Sbpx is the composition of channeli;j and other automata.

Hence, by Theorem 2.6.10 we can apply Lemmas 2.5.4 and 3.2.3. Since the execution

is stable, it is also regular, and thus by Lemma 2.5.4 actions of bpleaderi and

bpagenti are executed within ` time and by Lemma 3.2.3 messages are delivered

within d time.

Variable Hvalue(r) is set when action BeginCast for round r is executed. Since

Hvalue(r) is de�ned, \Begin" messages for round r have been put in OutMsgs
i
. In at

most n` time action Sendi;j is executed for each of these messages, and the \Begin"

message is delivered to each agent j, i.e., action Receivei;j is executed, within d time.

Then, the agent executes action Acceptj within ` time. This action puts the \Accept"

message in OutMsgsj. Action Sendj;i for this message is executed within ` time and

the message is delivered, i.e., action Receivej;i for that message is executed, within d

time. Since the round is successful there are more than n=2 such messages received by

the leader. To set the decision action GatherAccepti must be executed for bn=2c + 1

\Accept" messages. This is done in less than n` time. At this point the Decision

variable is de�ned and action RndSuccessi is executed within ` time. Summing up

all the times we have that the round ends within 3` + 2n` + 2d.

The next lemma provides a bound on the time needed to complete a successful

round in a stable execution fragment.

Lemma 6.2.24 Suppose that for an execution fragment � of the system Sbpx, start-

ing in a reachable state s in which s:Decision = nil, it holds that:

(i) � is stable;

(ii) in � there exists a unique leader, say process i;
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(iii) � lasts for more than T i

�
+ 3` + 2n` + 2d time;

(iv) s:CurRndi = r, for some round number r;

(v) round r is successful.

Then we have that action RndSuccessi is performed by time T i

�
+ 3` + 2n` + 2d from

the beginning of �.

Proof: First notice that Sbpx is the composition of channeli;j and other automata.

Hence, by Theorem 2.6.10 we can apply Lemmas 2.5.4 and 3.2.3. Since the execution

is stable, it is also regular, and thus by Lemma 2.5.4 actions of bpleaderi and

bpagenti are executed within ` time and by Lemma 3.2.3 messages are delivered

within d time.

To prove the lemma, we distinguish two possible cases.

Case 1. s:Hvalue(r) 6= nil.

By Lemma 6.2.23 action RndSuccessi is executed within 3`+2n`+2d time from the

beginning of �.

Case 2. s:Hvalue(r) = nil. We �rst prove that action BeginCasti is executed

by time T i

�
from the beginning of �.

Since s:CurRndi = r, it takes at most ` time for the leader to execute action Collecti.

This action puts n \Collect" messages, one for each agent j, into OutMsgsi. In at

most n` time action Sendi;j is executed for each of these messages, and the \Collect"

message is delivered to each agent j, i.e., action Receivei;j is executed, within d time.

Then it takes ` time for an agent to execute action LastAcceptj which puts the

\Last" message in OutMsgsj , and ` time to execute action Sendj;i for that message.

The \Last" message is delivered to the leader, i.e., action Receivej;i is executed,

within d time. Since the round is successful at least a majority of the processes send

back to the leader a \Last" message in response to the \Collect" message. Action

GatherLasti, which handles \Last" messages, is executed for bn=2c+1 messages; this

is done within at most n` time.

At this point there are two possible cases: (i) RndValue is de�ned and (ii)

RndValue is not de�ned. In case (i), action BeginCasti is enabled and is executed
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within ` time. Summing up the times considered so far we have that action BeginCasti

is executed within 4`+2n`+2d time from the start of the round. In case (ii), action

Continuei is executed within ti
�
+ ` time; this action enables action BeginCasti which

is executed within additional ` time. Hence action BeginCasti is executed by time

ti
�
+ 2`. Putting together the two cases we have that action BeginCasti is executed

by time maxf4`+ 2n` + 2d; ti
�
+ 2`g.

Hence we have proved that action BeginCasti is executed in � by time T i

�
.

Let �0 be the fragment of � starting after the execution of the BeginCasti action.

By Lemma 6.2.23 action RndSuccessi is executed within 3`+2n`+2d time from the

beginning of �0. Since action BeginCasti is executed by time T i

�
in � we have that

action RndSuccessi is executed by time T i

�
+ 3` + 2n` + 2d in �.

Lemmas 6.2.19, 6.2.21 and 6.2.24, state that if in a stable execution a successful

round is conducted, then it takes a linear, in n, amount of time and a linear, in

n, number of messages to reach consensus. However it is possible that even if the

system executes nicely from some point in time on, no successful round is conducted

and to have a successful round a new round must be started. We take care of this

problem in the next section. We will use a more re�ned version of Lemma 6.2.24; this

re�ned version replaces condition (v) of Lemma 6.2.24 with a weaker requirement.

This weaker requirement is enough to prove that the round is successful.

Lemma 6.2.25 Suppose that for an execution fragment � of Sbpx, starting in a

reachable state s in which s:Decision = nil, it holds that:

(i) � is nice;

(ii) in � there exists a unique leader, say process i;

(iii) � lasts for more than T i

�
+ 3` + 2n` + 2d time;

(iv) s:CurRndi = r, for some round number r;

(v) there exists a set J � I of processes such that every process in J is alive and

J is a majority, for every j 2 J , s:Commitj � r and for every j 2 J and
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k 2 I, channelk;j does not contain any \Collect" message belonging to any

round r0 > r.

Then we have that action RndSuccessi is performed by time T i

�
+ 3` + 2n` + 2d from

the beginning of �.

Proof: In state s, process i is the unique leader in � and since s:CurRndi = r, round

r has been started by i. Hence process i sends a \Collect" message which is delivered

to all the alive voters. All the alive voters, and thus all the processes in J , respond

with \Last" messages which are delivered to the leader. No process j 2 J can be

committed to reject round r. Indeed, by assumption, process j is not committed to

reject round r in state s; moreover process j cannot receive a \Collect" message that

forces it to commit to reject round r since, by assumption, no such a message is in

any channel to process j in s and in � the only leader is i which only sends messages

belonging to round r. Since J is a majority, the leader receives at least a majority

of \Last" messages and thus it is able to proceed with the next step of the round.

The leader sends a \Begin" message which is delivered to all the alive voters. All the

alive voters, and thus all the processes in J , respond with \Accept" messages since

they are not committed to reject round r. Since J is a majority, the leader receives

at least a majority of \Accept" messages. Therefore round r is successful. Thus we

can apply Lemma 6.2.24. By Lemma 6.2.24 action RndSuccessi is performed within

T i

�
+ 3` + 2n` + 2d time.

6.3 Automaton starteralg

To reach consensus using Sbpx, rounds must be started by an external agent by

means of the NewRoundi action that makes process i start a new round. The system

Sbpx guarantees that running rounds does not violate agreement and validity, even

if rounds are started by many processes. However since running a new round may

prevent a previous one from succeeding, initiating too many rounds is not a good idea.

The strategy used to initiate rounds is to have a leader election algorithm and let the
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leader initiate new rounds until one round is successful. We exploit the robustness of

basicpaxos in order to use the sloppy leader elector provided in Chapter 5. As long

as the leader elector does not provide exactly one leader, it is possible that no round

is successful, however agreement and validity are always guaranteed. Moreover, when

the leader elector provides exactly one leader, if the system Sbpx is executing a nice

execution fragment3 then a round is successful.

Once a process is leader, it must start rounds until one of them is successful or until

it is no longer leader. When a process i becomes leader it starts a round. However

due to crashes of other processes or due to already started rounds, the round started

by i may not succeed. In this case the leader must start a new round.

Figure 6-11 shows a Clock GT automaton starteralgi for process i. This au-

tomaton interacts with leaderelectori by means of the Leaderi and NotLeaderi

actions and with basicpaxosi by means of the NewRoundi BeginCasti, RndSuccessi

actions. Figure 6-1, given at the beginning of the chapter, shows the interaction of

the starteralgi automaton with the other automata.

Automaton starteralgi updates the ag IamLeader according to the input ac-

tions Leaderi and NotLeaderi and executes the other actions whenever it is the leader.

Flag Start is used to start a new round and it is set either when a Leaderi action

changes the leader status IamLeader from false to true, that is, when the process

becomes leader, or when action RndSuccessi is not executed within the expected

time bound. Flag RndSuccess is updated by the input action RndSuccessi. Ac-

tion NewRoundi starts a new round. Action CheckRndSuccessi checks whether the

round is successful within the expected time bound. This time bound depends on

whether the leader has to wait for an Init(v)i event. However by Lemma 6.2.23 action

RndSuccessi is expected to be executed within 3` + 2n` + 2d time from the time of

occurrence of action BeginCasti. When action BeginCasti is executed, the above time

bound is set. Action CheckRndSuccessi starts a new round if the previous one does

not succeed within the expected time bound.

3Recall that in a nice execution fragment there are no failures or recoveries and a majority of the

processes are alive. See de�nition at the end of Chapter 3.
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starteralgi

Signature:

Input: Leaderi, NotLeaderi, BeginCasti, RndSuccessi , Stopi, Recoveri
Internal: CheckRndSuccessi , �(t)

Output: NewRoundi
Time-passage: �(t)

States:

Clock 2 R initially arbitrary

Status 2 falive,stoppedg initially alive

IamLeader, a boolean initially false

Start, a boolean initially false

Deadline 2 R[ fnilg initially nil

LastNR 2 R[ f1g initially1

Last 2 R[ f1g initially1

RndSuccess, a boolean initially false

Actions:

input Stopi
E�: Status := stopped

input Recoveri
E�: Status := alive

input Leaderi
E�: if Status = alive then

if IamLeader = false then

IamLeader = true

if RndSuccess = false then

Deadline := nil

Start := true

LastNR := Clock+ `

input NotLeaderi
E�: if Status = alive then

IamLeader := false

input BeginCasti
E�: if Status = alive then

Deadline := Clock+ 3`+ 2n`+ 2d

input RndSuccess(v)i
E�: if Status = alive then

RndSuccess := true

Last := 1

output NewRoundi
Pre: Status = alive

IamLeader = true

Start = true

E�: Start := false

LastNR := 1

internal CheckRndSuccessi
Pre: Status = alive

IamLeader =true

Deadline 6= nil

Clock > Deadline

E�: Last := 1

if RndSuccess = false then

Start := true

LastNR := Clock+ `

time-passage �(t)

Pre: Status = alive

E�: Let t0 be s.t. Clock+ t0 � Last

and Clock+ t0 � LastNR

Clock := Clock + t0

Figure 6-11: Automaton starteralg for process i
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6.4 Correctness and analysis

Even in a nice execution fragment a round may not reach success. However in that

case a new round is started and there is nothing that can prevent the success of the

new round. Indeed in the newly started round, alive processes are not committed for

higher numbered rounds since during the �rst round they inform the leader of the

round number for which they are committed and the leader, when starting a new

round, always uses a round number greater than any round number ever seen. Thus

in the newly started round, alive process are not committed for higher numbered

rounds and since the execution is nice the round is successful. In this section we will

formally prove the above statements.

Let Spax be the system obtained by composing system Slea with one automa-

ton basicpaxosi and one automaton starteralgi for each process i 2 I. Since

this system contains as a subsystem the system Sbpx, it guarantees agreement and

validity. However, in a long enough nice execution fragment of Spax termination is

achieved, too.

The following lemma states that in a long enough nice execution fragment with

a unique leader, the leader reaches a decision. We recall that T i

�
= maxf4` + 2n` +

2d; ti
�
+ 2`g and that ti

�
is the time of occurrence of action Init(v)i in � (see De�ni-

tion 6.2.22).

Lemma 6.4.1 Suppose that for an execution fragment � of Spax, starting in a reach-

able state s in which s:Decision = nil, it holds that

(i) � is nice;

(ii) there is a unique leader, say process i;

(iii) � lasts for more than T i

�
+ 12` + 6n` + 7d time.

Then by time T i

�
+ 12` + 6n` + 7d the leader i has reached a decision.

Proof: First we notice that system Spax contains as subsystem Sbpx; hence by using

Theorem 2.6.10, the projection of � on the subsystem Sbpx is actually an execution

of Sbpx and thus Lemmas 6.2.24 and 6.2.25 are still true in �.
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Let s0 be the �rst state of � such that all the messages that are in the channels in

state s are not anymore in the channels in state s0 and such that s0:CurRnd is de�ned.

State s0 exists in � and its time of occurrence is less or equal to maxfd; `g. Indeed,

since the execution is nice, all the messages that are in the channels in state s are

delivered by time d and if CurRnd is not de�ned in state s then, by the code of

starteralgi, since i is leader in �, action NewRoundi is executed by time ` of the

beginning of �.

In state s0, for every alive process j and for every k, channelk;j does not contain

any \Collect" message belonging to any round not started by process i. Indeed, since

i is the unique leader in �, \Collect" messages sent during � are sent by process i and

other \Collect" message possibly present in the channels in state s are not anymore

in the channels in state s0.

Let r be the number of the latest round started by process i by state s0, that is,

s0:CurRndi = r.

Let �0 be the fragment of � beginning at s0. Since �0 is a fragment of �, we have

that �0 is nice and process i is the unique leader in �0.

We now distinguish two possible cases.

Case 1. Round r is successful. In this case, by Lemma 6.2.24 the round is

successful within T i

�0 + 3` + 2n` + 2d time in �0. Noticing that T i

�0 � T i

�
and that

maxfd; `g < d + `, we have that the round is successful within T i

�
+ 4` + 2n` + 3d

time in �. Thus the lemma is true in this case.

Case 2. Round r is not successful.

By the code of starteralgi, action NewRoundi is executed within T i

�0 + 4` +

2n`+2d time in �0 (it takes T i

�0+3`+2n`+2d to execute action CheckRndSuccessi and

additional ` time to execute action NewRoundi). Let rnew be the new round started

by i in action NewRoundi, let s
00 be the state of the system after the execution of

action NewRoundi and let �00 be the fragment of �0 beginning at s00.

Clearly �00 is nice, process i is the unique leader in �00 and s00:CurRndi = rnew.

Any alive process j that rejected round r because of a round r0, r0 > r, has

responded to the \Collect" message of round r, with a message (r;\OldRound",r0)j;i
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informing the leader i about round r0. Since �0 is nice all the \OldRound" messages

are received before state s00. Since action NewRoundi uses a round number greater

than all the ones received in \OldRound" messages, we have that for any alive process

j, s00:Commitj < rnew.

Let J be the set of alive processes. From what is argued above any process

j 2 J has s00:Commitj < rnew. Moreover in state s00, for every j 2 J and any k 2 I,

channelk;j does not contain any \Collect" message belonging to any round r0 > rnew

(indeed \Collect" messages sent in � are sent only by the unique leader i and we have

already argued that any other \Collect" message is delivered before state s0). Finally

since � is nice, by de�nition of nice execution fragment, we have that J contains a

majority of the processes.

Hence we can apply Lemma 6.2.25 to the execution fragment �00. Moreover for

�00 we have that T i

�00 = 4` + 2n` + 2d (indeed we assumed that round r is not suc-

cessful and this can only happen when an initial value has been provided). Hence by

Lemma 6.2.25, round rnew is successful within 7`+4n`+4d time from the beginning

of �00. Summing up the time bounds and using maxfd; `g < d + ` and T i

�0 � T i

�
, we

have that the lemma is true also in this case.

If the execution is stable for enough time, then the leader election eventually elects

a unique leader. In the following theorem we consider a nice execution fragment �

and we let i be the process eventually elected unique leader. We remark that before i

is elected leader several processes may consider themselves leaders. Hence, as a worst-

case scenario, we have that before i becomes the unique leader, all the processes may

act as leaders and may send messages. In the message analysis we do not count

any message m sent before i becomes the unique leader and also we do not count a

response to such a message m (in the worst-case scenario, these messages can be as

many as O(n2)). We also recall that, for any i, ti
�
denotes the time of occurrence of

action Init(v)i if this action occurs in � (see De�nition 6.2.22).

Theorem 6.4.2 Let � be a nice execution fragment of Spax starting in a reachable

state and lasting for more than ti
�
+ 24` + 10n` + 13d. Then the leader i executes
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Decide(v0)i by time ti
�
+ 21` + 8n` + 11d from the beginning of � and at most 8n

messages are sent. Moreover by time ti
�
+ 24` + 10n` + 13d from the beginning of �

any alive process j executes Decide(v0)j and at most 2n additional messages are sent.

Proof: Since Spax contains Slea and Sbpx as subsystems, by Theorem 2.6.10 we

can use any property of Slea and Sbpx. Since the execution fragment is nice (and

thus stable), by Lemma 5.2.2 there will be a unique leader (process i) by time 4`+2d.

Let s0 be the �rst state of � in which there is a unique leader. By Lemma 5.2.2 the

time of occurrence of s0 before or at time 4`+2d. Let �0 be the fragment of � starting

in state s0. Since � is nice, �0 is nice.

By Lemma 6.4.1 we have that the leader reaches a decision by time T i

�0 + 12` +

6n` + 7d from the beginning of �0. Summing up the times and noticing that T i

�0 �

ti
�0 + 4` + 2n` + 2d and that ti

�0 � ti
�
we have that the leader reaches a decision by

time ti
�
+ 20` + 8n` + 11d. Within additional ` time action Decide(v0)i is executed.

Moreover during � the leader starts at most two rounds and by Lemma 6.2.19 we

have that at most 4n messages are spent in each round.

Since the leader reaches a decision by time ti
�
+20`+8n`+11d, by Lemma 6.2.21

we have that a decision is reached by every alive process j by time ti
�
+23`+10n`+13d

with the sending of at most 2n additional messages. Within additional ` time action

Decide(v0)j is executed.

6.5 Concluding remarks

In this chapter we have provided a new presentation of the paxos algorithm. The

paxos algorithm was devised in [29]. However, the algorithm seems to be not widely

known or understood. We conclude this chapter with a few remarks.

The �rst remark concerns the time analysis. The linear factor in the time bounds

derives from the fact that a leader needs to broadcast n messages (one for each agent)

and also has to handle up to n responses that may arrive concurrently. If we assume

that the broadcasting of a message to n processes takes constant time, and that

incoming messages can be processed within constant time from their receipt, then
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all the n` contributions in the time bounds become `, and the time bounds become

constants instead of linear functions of the number of processes.

Another remark is about the use of majorities for info-quorums and accepting-

quorums. The only property that is used is that there exists at least one process

common to any info-quorum and any accepting-quorum. Thus any quorum scheme

for info-quorums and accepting-quorums that guarantees the above property can be

used.

The amount of stable storage needed can be reduced to a very few state variables.

These are the last round started by a leader (which is stored in the CurRnd variable),

the last round in which an agent accepted the value and the value of that round

(variables LastR, LastV), and the round for which an agent is committed (variable

Commit). These variables are used to keep consistency, that is, to always propose

values that are consistent with previously proposed values, so if they are lost then

consistency might not be preserved. In our setting we assumed that the entire state of

the processes is in stable storage, but in a practical implementation only the variables

described above need to be stable.

We remark that a practical implementation of paxos should cope with some

failures before abandoning a round. For example a message could be sent twice,

since duplication is not a problem for the algorithm (it may only a�ect the message

analysis), or the time bound checking may be done later than the earliest possible

time to allow some delay in the delivery of messages.

A recover may cause a delay. Indeed if the recovered process has a bigger identi�er

than the one of the leader then it will become the leader and will start new rounds,

possibly preventing the old round from succeeding. As suggested in Lamport's original

paper, one could use a di�erent leader election strategy which keeps a leader as long

as it does not fail. However it is not clear to us how to design such a strategy.
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Chapter 7

The multipaxos algorithm

The paxos algorithm allows processes to reach consensus on one value. We consider

now the situation in which consensus has to be reached on a sequence of values; more

precisely, for each integer k, processes need to reach consensus on the k-th value. The

multipaxos algorithm reaches consensus on a sequence of values; it was discovered

by Lamport at the same time as paxos [29].

7.1 Overview

To achieve consensus on a sequence of values we can informally use an instance of

paxos for each integer k, so that the k-th instance is used to agree on the k-th value.

Since we need an instance of paxos to agree on the k-th value, we need for each

integer k an instance of the basicpaxos and starteralg automata. To distinguish

instances we use an additional parameter that speci�es the ordinal number of the

instance. So, we have basicpaxos(1), basicpaxos(2), basicpaxos(3), etc., where

basicpaxos(k) is used to agree on the k-th value. This additional parameter will be

present in each action. For instance, the Init(v)i and Decide(v0)i actions of process

i become Init(k; v)i and Decide(k; v0)i in basicpaxos(k)i. Similar modi�cations are

needed for all other actions. The starteralgi automaton for process i has to be

modi�ed in a similar way. Also, messages belonging to the k-th instance need to be

tagged with k.
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This simple approach has the problem that an in�nite number of instances must

be started unless we know in advance how many instances of paxos are needed. We

have not de�ned the composition of Clock GTA for an in�nite number of automata

(see Chapter 2).

In the following section we follow a di�erent approach consisting of modifying the

basicpaxos and starteralg automata of paxos to obtain the multipaxos algo-

rithm. This di�ers from the approach describe above because we do not have separate

automata for each single instance. The multipaxos algorithms takes advantage of

the fact that, in a normal situation, there is a unique leader that runs all the instances

of paxos. The leader can use a single message for step 1 of all the instances. Similarly

step 2 can also be handled grouping all the instances together. Then, from step 3

on each instance must proceed separately; however step 3 is performed only when an

initial value is provided.

Though the approach described above is conceptually simple, it requires some

change to the code of the automata we developed in Chapter 6. To implement mul-

tipaxos we need to modify basicpaxos and starteralg. Indeed basicpaxos and

starteralg are designed to handle a single instance of paxos, while now we need to

handle many instances all together for the �rst two steps of a round. In this section we

design two automata similar to basicpaxos and starteralg that handle multiple

instances of paxos. We call them multibasicpaxos and multistarteralg.

7.2 Automaton multibasicpaxos.

Automaton multibasicpaxos has, of course, the same structure as basicpaxos,

thus goes through the same sequence of steps of a round with the di�erence that

now steps 1 and 2 are executed only once and not repeated by each instance. The

remaining steps are handled separately for each instance of paxos.

When initiating new rounds multibasicpaxos uses the same round number for

all the instances. This allows the leader to send only one \Collect" message to all

the agents and this message serves for all the instances of paxos. When responding
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to a \Collect" message for a round r, agents have to send information about all the

instances of paxos in which they are involved; for each of them they have to specify

the same information as in basicpaxos, i.e., the number of the last round in which

they accepted the value being proposed and the value of that round. We recall that

an agent, by responding to a \Collect" message for a round r, also commits to not

accept the value of any round with round number less than r; this commitment is

made for all the instances of paxos.

Once the leader has executed steps 1 and 2, it is ready to execute step 3 for every

instance for which there is an initial value. For instances for which there is no initial

value provided, the leader can proceed with step 3 as soon as there will be an initial

value.

Next, we give a description of the steps of multibasicpaxos by relating them to

those of basicpaxos, so that it is possible to emphasize the di�erences.

1. To initiate a round, the leader sends a message to all agents specifying the

number r of the new round and also the set of instances for which the leader

already knows the outcome. This message serves as \Collect" message for all

the instances of paxos for which a decision has not been reached yet. This is

an in�nite set, but only for a �nite number of instances is there information

to exchange. Since agents may be not aware of the outcomes of instances for

which the leader has already reached a decision, the leader sends in the \Collect"

message, along with the round number, also the instances of paxos for which

it already knows the decision.

2. An agent that receives a message sent in step 1 from the leader of the round,

responds giving its own information about rounds previously conducted for all

the instances of paxos for which it has information to give to the leader. This

information is as in basicpaxos, that is, for each instance the agent sends

the last round in which it accepted the proposed value and the value of that

round. Only for a �nite number of instances does the agent have information.

The agent makes the same kind of commitment as in basicpaxos. That is
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it commits, in any instance, to not accept the value of any round with round

number less than r. An agent may have already reached a decision for instances

for which the leader still does not know the decision. Hence the agent also

informs the leader of any decision already made.

3. Once the leader has gathered responses from a majority of the processes it can

propose a value for each instance of paxos for which it has an initial value. As

in basicpaxos, it sends a \Begin" message asking to accept that value. For

instances for which there is no initial value, the leader does not perform this

step. However, as soon as there is an initial value, the leader can perform this

step. Notice that step 3 is performed separately for each instance.

4. An agent that receives a message from the leader of the round sent in step 3

of a particular instance, responds by accepting the proposed value if it is not

committed for a round with a larger round number.

5. If the leader of a round receives, for a particular instance, \Accept" messages

from a majority of processes, then, for that particular instance, a decision is

made.

Once the leader has made a decision for a particular instance, it broadcasts that

decision as in basicpaxos.

It is worth to notice that since steps 1 and 2 are handled with all the instances

grouped together, there is a unique info-quorum, while, since from step 3 on each

instance proceeds separately, there is an accepting-quorum for each instance (two

instances may have di�erent accepting-quorums).

Figures 7-1, 7-2, 7-3, 7-4 and 7-5 show the code fragments of automata bmpleaderi,

bmpagenti and bmpsuccessi for process i. Automaton multibasicpaxosi for pro-

cess i is obtained composing these three automata. In addition to the code fragments,

we provide here some comments. The �rst general comment is that multibasic-

paxos is really similar to basicpaxos and the di�erences are just technicalities due

to the fact that multibasicpaxos handles multiple instances of paxos all together
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for the �rst two steps of a round. This clearly results in a more complicated code, at

least for some parts of the automaton. We refer the reader to the description of the

code of basicpaxos and in the following we give speci�c comments on those parts of

the automaton that required signi�cant changes. We will follow the same style used

for basicpaxos by describing the messages used and, for each automaton, the state

variables and the actions.

Messages. Messages are as in basicpaxos. The structure of the messages is

slightly di�erent. The following description of the messages is done assuming that

process i is the leader.

1. \Collect" messages,m = (r;\Collect",D;W )i;j. This message is as the \Collect"

message of basicpaxosi. Moreover, it speci�es also the setD of all the instances

for which the leader already knows the decision and the set W of instances for

which the leader has an initial value but not a decision yet.

2. \Last" messages,m=(r,\Last";D0;W 0; f(k; bk; vk)jk 2 W 0
g)j;i. As in basicpaxosi

an agent responds to a \Collect" message with a \Last" message. The message

includes a set D0 containing pairs (k,Decision(k)) for all the instances for which

the agent knows the decision and the leader does not. The message includes

also a set W 0 which contains all the instances of the set W of the \Collect"

message plus those instances for which the agent has an initial value while the

leader does not. Finally for each instance k in W 0 the agent sends the round

number rk of the latest accepted round for instance k and the value vk of round

rk.

3. \Begin" messages, m = (k; r;\Begin",v)i;j. This message is as in basicpaxosi

with the di�erence that the particular instance k to which it is pertinent is

speci�ed.

4. \Accept" messages, m = (k; r;\Accept")j;i. This message is as in basicpaxosi

with the di�erence that the particular instance k to which it is pertinent is

speci�ed.
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bmpleaderi

Signature:

Input: Receive(m)j;i, m 2 f\Last", \Accept", \Success", \OldRound"g

Init(k; v)i, NewRoundi, Stopi, Recoveri, Leaderi, NotLeaderi
Internal: Collecti, GatherLasti, Continue(k)i, GatherAccept(k)i , GatherOldRoundi
Output: Send(m)i;j , m 2 f\Collect", \Begin"g

BeginCast(k)i, RndSuccess(k; v)i

States:

Status 2 falive,stoppedg initially alive

IamLeader, a boolean initially false

Mode 2 frnddone,collect,gatherlastg initially rnddone

Mode, array of values 2 fwait,begincast,

gatheraccept,decided,rnddoneg initially all rnddone

InitValue, array of V [ nil initially all nil

Decision, array of V [ fnilg initially all nil

HighestRnd 2 R initially (0; i)

CurRnd 2 R initially (0; i)

RndValue, array of V [ fnilg initially all nil

RndVFrom, array of R initially all (0; i)

RndInfQuo 2 2I initially fg

RndAccQuo, array of 2I initially all fg

InMsgs, multiset of messages initially fg

OutMsgs, multiset of messages initially fg

Tasks and bounds:

fCollecti, GatherLastig, bounds [0; `]

fContinue(k)i, BeginCast(k)i, GatherAccept(k)i , RndSuccess(k; v)i : k 2 Ng, bounds [0; `]

fGatherOldRoundig, bounds [0; `]

fSend(m)im 2Mg, bounds [0; `]

Actions:

input Stopi
E�: Status := stopped

input Leaderi
E�: if Status = alive then

IamLeader := true

output Send(m)i;j
Pre: Status = alive

mi;j 2 OutMsgs

E�: remove mi;j from OutMsgs

input Recoveri
E�: Status := alive

input NotLeaderi
E�: if Status = alive then

IamLeader := false

input Receive(m)j;i
E�: if Status = alive then

add mj;i to InMsgs

Figure 7-1: Automaton bmpleader for process i (part 1)
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Actions:

input NewRoundi
E�: if Status = alive then

CurRnd := HighestRnd +i 1

HighestRnd := CurRnd

Mode := collect

Mode(k) := rnddone

internal Collecti
Pre: Status = alive

Mode = collect

E�: RndInfQuo := fg

D := fkjDecision(k) 6= nilg

8k 62 D

RndValue(k) := InitValue(k)

RndVFrom(k) := (0; i)

RndAccQuo(k):= fg

W := fkj InitValue(k) 6= nil and

Decision(k) = nilg

8j put (CurRnd,\Collect",D;W )i;j
in OutMsgs

Mode := gatherlast

internal GatherLasti
Pre: Status = alive

Mode = gatherlast

m = (r ,\Last",D;W ,

f(k; bk; vk)jk 2Wg)j;i 2 InMsgs

CurRnd = r

E�: remove all copies of m from InMsgs

8(k; v) 2 D do

Decision(k) := v

Mode(k) := decided

RndInfQuo := RndInfQuo [ fjg

8k 2W

if RndVFrom(k) < bk
and vk 6= nil then

RndValue(k) := vk
RndVFrom(k) := rk

if jRndInfQuoj > n=2 then

Mode := begincast

8k

if RndValue(k) = nil and

InitValue(k) 6= nil then

RndValue(k) := InitValue(k)

RndValue(k) 6= nil then

Mode(k) := begincast

else

Mode(k) := wait

input Initi(k; v)

E�: if Status = alive then

InitValue(k) := v

internal Continue(k)i
Pre: Status = alive

Mode(k) = wait

RndValue(k) = nil

E�: RndValue(k) := InitValue(k)

Mode(k) := begincast

output BeginCast(k)i
Pre: Status = alive

Mode(k) = begincast

E�: 8j put

(k,CurRnd,\Begin",RndValue(k))i;j
in OutMsgs

Mode(k) := gatheraccept

internal GatherAccept(k)i
Pre: Status = alive

Mode(k) := gatheraccept

m = (r,\Accept")j;i 2 InMsgs

CurRnd = r

E�: remove all copies of m from InMsgs

RndAccQuo(k) := RndAccQuo(k) [ fjg

if jRndAccQuo(k)j > n=2 then

Decision(k) := RndValue(k)

Mode(k) := decided

output RndSuccess(k,Decision)i
Pre: Status = alive

Mode(k) = decided

E�: Mode(k) = rnddone

internal GatherOldRoundi
Pre: Status = alive

m=(r,\OldRound",r0)j;i 2 InMsgs

CurRnd < r

E�: remove all copies of m from InMsgs

HighestRnd := r0

Figure 7-2: Automaton bmpleader for process i (part 2)

111



bmpagenti

Signature:

Input: Receive(m)j;i, m 2 f\Collect", \Begin"g

Init(k; v)i, Stopi, Recoveri
Internal: LastAccepti, Accept(k)i
Output: Send(m)i;j , m 2 f\Last", \Accept", \OldRound"g

States:

Status 2 falive,stoppedg initially alive

LastB, array of R initially all (0; i)

LastV, array of V [ fnilg initially all nil

Commit 2 R initially (0; i)

InMsgs, multiset of messages initially fg

OutMsgs, multiset of messages initially fg

Tasks and bounds:

fLastAcceptig, bounds [0; `]

fAccept(k)i : k 2 Ng , bounds [0; `]

fSend(m)i : m 2Mg, bounds [0; `]

Actions:

input Stopi
E�: Status := stopped

input Recoveri
E�: Status := alive

internal LastAccepti
Pre: Status = alive

m = (r,\Collect",D;W )j;i 2 InMsgs

E�: remove all copies of m from InMsgs

if r � Commit then

Commit := r

W 00 := fk 2 NjLastV(k) 6= nil,

Decision(k) = nilg

W 0 :=W 00 [W

D0 := f(k,Decision(k) j

k 62 D, Decision(k) 6= nilg

put (r,\Last",D0;W 0,

f(k; bk; vk)jk 2 W 0g)i;j in OutMsgs

where bk =LastB(k), vk=LastV(k)

else

put (r,\OldRound",Commit)i;j
in OutMsgs

output Send(m)i;j
Pre: Status = alive

mi;j 2 OutMsgs

E�: remove mi;j from OutMsgs

input Receive(m)j;i
E�: if Status = alive then

add mj;i to InMsgs

internal Accept(k)i
Pre: Status = alive

m = (k; r,\Begin",v)j;i 2 InMsgs

E�: remove all copies of m from InMsgs

if r � Commit then

put (k,r,\Accept")i;j in InMsgs

LastB(k) := r, LastV(k) := v

else

put (r,\OldRound",Commit)i;j
in OutMsgs

input Init(k; v)i
E�: if Status = alive then

LastV(k) := v

Figure 7-3: Automaton bmpagent for process i
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bmpsuccessi

Signature:

Input: Receive(m)j;i, m 2 fAck, Acceptg

Stopi, Recoveri, Leaderi, NotLeaderi, RndSuccess(k; v)i
Internal: SendSuccessi , GatherSuccess(k)i , GatherAcki, Waiti
Output: Decide(k; v)i, Send(\Success",v)i;j
Time-passage: �(t)

State:

Clock 2 R initially arbitrary

Status 2 falive; stoppedg initially alive

Decision array of 2 V [ fnilg initially nil

IamLeader, a boolean initially false

Acked(j), array of boolean 8j 2 I initially all false

Prevsend 2 R[ fnilg initially nil

LastSend 2 R[ f1g initially1

LastWait 2 R[ f1g initially1

LastGA(k) array of R[ f1g initially1

LastGS(k) array of R[ f1g initially1

LastSS(k) array of R[ f1g initially1

InMsgs, multiset of messages initially fg

OutMsgs, multiset of messages initially fg

Actions:

input Stopi
E�: Status := stopped

input Recoveri
E�: Status := alive

input Leaderi
E�: if Status = alive then

IamLeader := true

input NotLeaderi
E�: if Status = alive then

IamLeader := false

input RndSuccess(k; v)i
E�: if Status = alive then

Decision := v

LastSS := Clock+ `

input Receive(m)j;i
E�: if Status = alive then

put mj;i into InMsgs

if mj;i = (k;\Ack") and

LastGA(k) =1 then

LastGA(k) = Clock+ `

if mj;i = (k;\Success") and

LastGS(k) =1 then

LastGS(k) = Clock+ `

output Send(m)i;j
Pre: Status = alive

mi;j 2 OutMsgs

E�: remove mi;j from OutMsgs

if OutMsgs is empty

LastSend :=1

else

LastSend := Clock + `

Figure 7-4: Automaton bmpsuccess for process i (part 1)
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internal SendSuccessi
Pre: Status = alive, IamLeader = true

PrevSend = nil

9j 6= i, 9k s.t. Decision(k) 6= nil

and Acked(j; k) = false

E�: 8j 6= i, 8k s.t. Decision(k) 6= nil

and Acked(j; k) = false

put (k,\Success",Decision)i;j
in OutMsgs

PrevSend := Clock

LastSend := Clock + `

LastWait := Clock + 5`+ 2n` + 2d

LastSS :=1

internal GatherSuccess(k)i
Pre: Status = alive

m = (k,\Success",v)j;i 2 InMsgs

E�: remove all copies of m from InMsgs

Decision(k) := v

put (k,\Ack")i;j in OutMsgs

output Decide(k; v)i
Pre: Status = alive

Decision 6= nil

Decision = v

E�: none

internal GatherAcki
Pre: Status = alive

m = (k,\Ack")j;i 2 InMsgs

E�: remove all copies of m from InMsgs

Acked(j; k) := true

if no other (k,\Ack") is in InMsgs then

LastGA(k) :=1

else

LastGA(k) := Clock+ `

internalWaiti
Pre: Status = alive, PrevSend 6= nil

Clock > PrevSend+ (4`+ 2n`+ 2d)

E�: PrevSend := nil

LastWait :=1

time-passage �(t)

Pre: Status = alive

E�: Let t0 be s.t.

Clock+t0 � LastSend

Clock+t0 � LastWait

and for all k

Clock+t0 � LastSS(k)

Clock+t0 � LastGS(k)

Clock+t0 � LastGA(k)

Clock := Clock+t0

Figure 7-5: Automaton bmpsuccess for process i (part 2)
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5. \OldRound" messages,m =(r,\OldRound",r0)j;i. This message is as in basicpaxosi.

Notice that there is no need to specify any instance since when a new round is

started, it is started for all the instances.

6. \Success" messages, m =(k,\Success",v)i;j. This message is as in basicpaxosi

with the di�erence that the particular instance k to which it is pertinent is

speci�ed.

7. \Ack" messages, m =(k,\Ack")j;i. This message is as in basicpaxosi with the

di�erence that the particular instance k to which it is pertinent is speci�ed.

Most state variables and automaton actions are similar to the correspondent state

variables and automaton actions of basicpaxos. We will only describe those state

variables and automata actions that required signi�cant changes. For variables we

need to use arrays indexed by the instance number. Most of the actions are as in

basicpaxosi with the di�erence that a parameter k specifying the instance is present.

This is true especially for actions relative to steps 3, 4, and 5 and for bmpsuccessi.

Actions relative to steps 1 and 2 needed major rewriting since in multibasicpaxosi

they handle multiple instances of paxos all together.

Automaton bmpleaderi. Variables InitValue, Decision, RndValue, RndVFrom

and RndAccQuo are now arrays of variables indexed by the instance number: we

need the information stored in these variables for each instance. Variable HighestRnd,

CurRnd and RndInfQuo are not arrays because there is always one current round

number and only one info-quorum (used for all the instances). VariableMode deserves

some more comments: in bmpleaderi we have a scalar variable Mode which is

used for the �rst two steps, then, since from the third step on each instance is run

separately, we have another variable Mode which is an array. Notice that values

collect and gatherlast of variable Mode are relative to the �rst two steps of a

round and that values wait, begincast, gatheraccept, decided are relative to

the other steps of a round. Value rnddone is used either when no round has been

started yet and also when a round has been completed.
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Action Collecti �rst computes the set D of paxos instances for which a decision

is already known. Then initializes the state variables pertinent to all the potential

instances of paxos, which are all the ones not included in D. Notice that even though

this is potentially an in�nite set, we need to initialize those variables only for a �nite

number of instances. Then it computes the set W of instances of paxos for which the

leader has an initial value but not yet a decision. Finally a \Collect" message is sent

to all the agents. Action GatherLasti takes care of the receipt of the responses to the

\Collect" message. It processes \Last" messages by updating, as basicpaxosi does,

the state variables pertinent to all the instances for which information is contained in

the \Last" message. Also if the agent is informing the leader of a decision of which

the leader is not aware, then the leader immediately sets its Decision variable. When

a \Last" message is received from a majority of the processes, the info-quorum is

�xed. At this point, each instance for which there is an initial value can go on with

step 3 of the round. Action Continuei takes care of those instances for which after

the info-quorum is �xed by the GatherLasti action, there is no initial value. As soon

as there is an initial value also these instances can proceed with step 3. Other actions

are similar to the corresponding actions in bpleaderi.

Automaton bmpagenti. Variables LastB and LastV are now arrays of variables

indexed by the instance number, while variable Commit is a scalar variable; indeed

there is always only one round number used for all the instances.

Action LastAccepti responds to the \Collect" message. If the agent is not commit-

ted for the round number speci�ed in the \Collect" message it commits for that round

and sends to the leader the following information: the set D0 of paxos instances for

which the agent knows the decision while the leader does not, and for each of such

instances, also the decision; for each instance in the set W of the \Collect" message

and also for each instance for which the agent has an initial value while the leader

does not, the usual information, about the last round in which the process accepted

the value of the round and the value of that round, is included in the message. Action

Accept(k)i and Init(k; v)i are similar to the corresponding actions in bpagenti.
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Automaton bmpsuccessi. This automaton is very similar to bpsuccessi. The

only di�erence is that now the leader sends a \Success" message for any instance for

which there is a decision and there are agents that have not sent an acknowledgment.

7.3 Automaton multistarteralg

As for basicpaxos, also for multibasicpaxos we need an automaton that takes

care of starting new rounds when necessary, i.e., when a decision is not reached

within some time bound. We call this automaton multistarteralg. The task

of multistarteralg is the same as the one of starteralg: it has to check that

rounds are successful within the expected time bound. This time bound checking

must be done separately for each instance.

Figure 7-6 shows automaton multistarteralgi for process i. The automaton is

similar to automaton starteralgi. The di�erence is that the time bound checking

is done, separately, for each instance. A new round is started if there is an instance

for which a decision is not reached within the expected time bound.

7.4 Correctness and analysis

We do not prove formally the correctness of the code provided in this section. However

the correctness follows from the correctness of paxos. Indeed for every instance of

paxos, the code of multipaxos provided in this section does exactly the same thing

that paxos does; the only di�erence is that step 1 (as well as step 2) is handled in a

single shot for all the instances. It follows that Theorem 6.4.2 can be restated for each

instance k of paxos. In the following theorem we consider a nice execution fragment

� and we assume that i is eventually elected leader (by Lemma 5.2.2 this happens by

time 4` + 2d in �).

In the following theorem ti
�
(k) denotes ti

�
for instance k. The formal de�nition of

ti
�
(k) is obtained from the de�nition of ti

�
(see De�nition 6.2.22) by changing Init(v)i

in Init(k; v)i.
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multistarteralgi

Signature:

Input: Leaderi, NotLeaderi, BeginCast(k)i, RndSuccess(k; v)i , Stopi, Recoveri
Internal: CheckRndSuccessi
Output: NewRoundi
Time-passage: �(t)

States:

Clock 2 R initially arbitrary

Status 2 falive,stoppedg initially alive

IamLeader, a boolean initially false

Start, a boolean initially false

RegRnds � N initially empty

Deadline array of 2 R[ fnilg initially nil

LastNR 2 R[ f1g initially1

Last array of 2 R[ f1g initially1

RndSuccess, array of a boolean initially false

Actions:

input Stopi
E�: Status := stopped

input Recoveri
E�: Status := alive

input Leaderi
E�: if Status = alive then

if IamLeader = false then

IamLeader = true

For all k

if RndSuccess(k) = false then

Deadline(k) := nil

Start := true

LastNR := Clock+ `

input NotLeaderi
E�: if Status = alive then

IamLeader := false

input BeginCast(k)i
E�: if Status = alive then

Deadline(k) := Clock+ 3`+ 2n`+ 2d

input RndSuccess(k; v)i
E�: if Status = alive then

RndSuccess(k) := true

Last(k) :=1

output NewRoundi
Pre: Status = alive

IamLeader =true

Start =true

E�: Start := false

LastNR := 1

internal CheckRndSuccess(k)i
Pre: Status = alive

IamLeader = true

Deadline(k) 6= nil

Clock > Deadline(k)

E�: Last(k) := 1

if RndSuccess(k) = false then

Start := true

LastNR := Clock+ `

time-passage �(t)

Pre: Status = alive

E�: Let t0 be s.t.

8k;Clock+ t0 � Last(k)

and Clock+ t0 � LastNR

Clock := Clock + t0

Figure 7-6: Automaton multistarteralg for process i
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Theorem 7.4.1 Let � be a nice execution fragment of Smpx starting in a reachable

state and lasting for more than ti
�
(k) + 24` + 10n` + 13d. Then the leader i executes

Decide(k; v0)i by time ti
�
(k)+ 21`+8n`+11d from the beginning of � and at most 8n

messages are sent. Moreover by time ti
�
(k) + 24` + 10n` + 13d from the beginning of

� any alive process j executes Decide(k; v0)j and at most 2n additional messages are

sent.

7.5 Concluding remarks

In this chapter we have described the multipaxos protocol. multipaxos is a vari-

ation of the paxos algorithm. It was discovered by Lamport at the same time as

paxos [29].

multipaxos achieves consensus on a sequence of values utilizing an instance of

paxos for each of them. AMP uses an instance of paxos to agree on each value of

the sequence; remarks about paxos provided at the end of Chapter 6 apply also for

multipaxos. We refer the reader to those remarks.
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Chapter 8

Application to data replication

In this chapter we show how to use multipaxos to implement a data replication

algorithm.

8.1 Overview

Providing distributed and concurrent access to data objects is an important issue in

distributed computing. The simplest implementation maintains the object at a single

process which is accessed by multiple clients. However this approach does not scale

well as the number of clients increases and it is not fault-tolerant. Data replication

allows faster access and provides fault tolerance by replicating the data object at

several processes.

One of the best known replication techniques is majority voting (e.g., [20, 23]).

With this technique both update (write) and non-update (read) operations are per-

formed at a majority of the processes of the distributed system. This scheme can

be extended to consider any \write quorum" for an update operation and any \read

quorum" for a non-update operation. Write quorums and read quorums are just sets

of processes satisfying the property that any two quorums, one of which is a write

quorum and the other one is a read quorum, intersect (e.g., [16]). A simple quo-

rum scheme is the write-all/read-one scheme (e.g., [6]) which gives fast access for

non-update operations.
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Another well-known replication technique relies on a primary copy. A distin-

guished process is considered the primary copy and it coordinates the computation:

the clients request operations of the primary copy and the primary copy decides

which other copies must be involved in performing the operation. The primary copy

technique works better in practice if the primary copy does not fail. Complex recov-

ery mechanisms are needed when the primary copy crashes. Various data replication

algorithms based on the primary copy technique have been devised (e.g., [13, 14, 34]).

Replication of the data object raises the issue of consistency among the replicas.

These consistency issues depend on what requirements the replicated data has to

satisfy. The strongest possible of such requirements is atomicity: clients accessing

the replicated object obtain results as if there was a unique copy. Primary copy algo-

rithms [1, 34] and voting algorithms [20, 23] are used to achieve atomicity. Achieving

atomicity is expensive; therefore weaker consistency requirements are also considered.

One of these weaker consistency requirements is sequential consistency [26], which al-

lows operations to be re-ordered as long as they remain consistent with the view of

individual clients.

8.2 Sequential consistency

In this section we formally de�ne a sequential consistent read/update object. Sequen-

tial consistency has been �rst de�ned by Lamport [26]. We base our de�nition on the

one given in [15] which relies on the notion of atomic object [27, 28] (see also [35] for

a description of an atomic object).

Formally a read/update shared object is de�ned by the set O of the possible

states that the object can assume, a distinguished initial state O0, and set U of

update operations which are functions up : O ! O.

We assume that for each process i of the distributed system implementing the

read/update shared object, there is a client i and that client i interacts only with

process i. The interface between the object and the clients consists of request actions

and report actions. In particular the client i requests a read by executing action
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Request-readi and receives a report to the read request when Report-read(O)i is exe-

cuted; similarly a client i requests an update operation by executing action Request-

update(up)i and receives the report when action Report-updatei is executed.

If � is a sequence of actions, we denote by �ji the subsequence of � consisting

of Request-readi, Report-read(O)i, Request-update(up)i and Report-updatei. This

subsequence represents the interactions between client i and the read/update shared

object.

We will only consider client-well-formed sequence of actions � for which �ji, for

every client i, does not contain two request events without an intervening report, i.e.,

we assume that a client does not request a new operation before receiving the report

of the previous request. A sequence of action � is complete if for every request event

there is a corresponding report event. If � is a complete client-well-formed sequence

of actions, we de�ne the totally-precedes partial order on the operations that occur in

� as follows: an operation o1 totally-precedes an operation o2 if the report event of

operation o1 occurs before the request event of operation o2.

In an atomic object, the operations appear \as if" they happened in some sequen-

tial order. The idea of \atomic object" originated in [27, 28]. Here we use the formal

de�nition given in Chapter 13 of [35]. In a sequentially consistent object the above

atomic requirement is weakened by allowing events to be reordered as long as the view

of each client i does not change. Formally a sequence � of request/report actions is

sequentially consistent if there exists an atomic sequence  such that ji = �ji, for

each client i. That is, a sequentially consistent sequence \looks like" an atomic se-

quence to each individual client, even though the sequence may not be atomic. A

read/update shared object is sequentially consistent if all the possible sequence of

request/report actions are sequentially consistent.

8.3 Using multipaxos

In this section we will see how to use multipaxos to design a data replication algo-

rithm that guarantees sequential consistency and provides the same fault tolerance
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properties of multipaxos. The resulting algorithm lies between the two replication

techniques discussed at the beginning of the chapter. It is similar to voting schemes

since it uses majorities to achieve consistency and it is similar to primary copy tech-

niques since a unique leader is required to achieve termination. Using multipaxos

gives much exibility. For instance, it is not a disaster when there are two or more

\primary" copies. This can only slow down the computation, but never results in

inconsistencies. The high fault tolerance of multipaxos results in a highly fault

tolerant data replication algorithm, i.e., process stop and recovery, loss, duplication

and reordering of messages, timing failures are tolerated. However liveness is not

guaranteed: it is possible that a requested operation is never installed.

We can use multipaxos in the following way. Each process in the system main-

tains a copy of the data object. When client i requests an update operation, process

i proposes that operation in an instance of multipaxos. When an update operation

is the output value of an instance of multipaxos and the previous update has been

applied, a process updates its local copy and the process that received the request

for the update gives back a report to its client. A read request can be immediately

satis�ed returning the current state of the local copy.

It is clear that the use of multipaxos gives consistency across the whole sequence

up1; up2; up3; ::: of update operations, since each operation is agreed upon by all the

processes. In order for a process to be able to apply operation upk, the process must

�rst apply operation upk�1. Hence it is necessary that there be no gaps in the sequence

of update operations. A gap is an integer k for which processes never reach a decision

on the k-th update (this is possible if no process proposes an update operation as

the k-th one). Though making sure that the sequence of update operations does not

contain a gap enables the processes to always apply new operations, it is possible to

have a kind of \starvation" in which a requested update operation never gets satis�ed

because other updates are requested and satis�ed. We will discuss this in more detail

later.
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8.3.1 The code

Figures 8-1 and 8-2 show the code of automaton datareplicationi for process i.

This automaton implements a data replication algorithm using multipaxos as a

subroutine. It accepts requests from a client; read requests are immediately satis�ed

by returning the current state of the local copy of the object while update requests

need to be agreed upon by all the processes and thus an update operation is proposed

in the various instances of paxos until the operation is the outcome of an instance

of paxos. When the requested operation is the outcome of a particular instance k

of multipaxos and the (k � 1)-th update operation has been applied to the object,

then the k-th update operation can be applied to the object and a report can be given

back to the client that requested the update operation.

Figure 8-3 shows the interactions between the datareplication automaton and

multipaxos and also the interactions between the datareplication automaton

and the clients.

To distinguish operations requested by di�erent clients we pair each operation up

with the identi�er of the client requesting the update operation. Thus the set V of

possible initial values for the instances of paxos is the set of pairs (up; i), where up

is an operation on the object O and i 2 I is a process identi�er.

Next we provide some comments about the code of automaton datareplicationi.

Automaton actions. Actions Request-update(up)i, Request-readi, Report-updatei

and Report-read(O)i constitute the interface to the client. A client requests an up-

date operation up by executing action Request-update(up)i and gets back the result

r when action Report-update(r)i is executed by the datareplicationi automaton.

Similarly a client requests a read operation by executing action Request-readi and

gets back the status of the object O when action Report-read(O)i is executed by the

datareplicationi automaton.

A read request is satis�ed by simply returning the status of the local copy of the

object. Action Request-readi sets the variable CurRead to the current status O of

the local copy and action Report-read(O)i reports this status to the client.
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datareplicationi

Signature:

Input: Receive(m)j;i, Decide(k; v)i, Request-update(up)i, Request-readi
Internal: SendWantPaxosi, RecWantPaxosi, Updatei, RePropose(k)i
Output: Send(m)i;j , Init(k; v)i, Report-updatei, Report-read(O)i

States:

Propose, array of V [ fnilg, initially nil everywhere

Decision, array of V [ fnilg, initially nil everywhere

S, an integer, initially 1

X, a pair (O; k) with O 2 O, k 2 N initially (O0; 0)

CurRead 2 O [ fnilg, initially nil

Proposed, array of booleans, initially false everywhere

Reproposed, array of booleans, initially false everywhere

InMsgs, multiset of messages, initially fg

OutMsgs, multiset of messages, initially fg

Tasks and bounds:

fInitig, bounds [0; `]

fRecWantPaxosig, bounds [0; `]

fSendWantPaxosig, bounds [0; `]

fReport-updatei, Updateig, bounds [0; `]

fReport-read(O)ig, bounds [0; `]

fRePropose(k)ig, bounds [0; `]

fSend(m)i;j : m 2Mg, bounds [0; `]

Figure 8-1: Automaton datareplication for process i (part 1)
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Actions:

output Send(m)i;j
Pre: mi;j 2 OutMsgs

E�: remove mi;j from OutMsgs

input Receive(m)j;i
E�: add m to InMsgs

input Request-readi
E�: CurRead := O, where X = (O; k)

output Report-read(O)i
Pre: CurRead = O

E�: CurRead := nil

input Request-update(up)i
E�: Propose(S) := (up; i)

S := S + 1

output Initi(k; (up; j))

Pre: Propose(k) = (up; j)

Proposed(k) = false

Decision(k) = nil

E�: Proposed(k) := true

internal SendWantPaxosi
Pre: Propose(k) = (up; i)

Decision(k) = nil

E�: 8j put (\WantPaxos",S,(up; i))i;j
in OutMsgs

internal RecWantPaxosi
Pre: m=(\WantPaxos",k,(up; j)) in InMsgs

E�: remove m from InMsgs

if Propose(k) = nil then

Propose(k) := (up; j)

S := k + 1

8k < S s.t. Propose(k) = nil do

Propose(k) := dummy

output Report-updatei
Pre: Decision(k) = (up; i)

Propose(k) = (up; i)

X = (O; k � 1)

E�: X := (up(O); k)

internal Updatei
Pre: Decision(k) = (up; j)

j 6= i

X = (O; k � 1)

E�: X := (up(O); k)

internal RePropose(k)i
Pre: Propose(k) = (up; i)

Decision(k) 6= (up; i)

Decision(k) 6= nil

Reproposed(k) = false

E�: Reproposed(k) := true

Propose(S) := (up; i)

S := S + 1

input Decide(k; (up; j))i
E�: Decision(k) := (up; j)

Figure 8-2: Automaton datareplication for process i (part 2)
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To satisfy an update request the requested operation must be agreed upon by

all processes. Hence it has to be proposed in instances of multipaxos until it is

the outcome of an instance. A Request-update(up)i action has the e�ect of setting

Propose(k), where k = S, to (up; i); action Init(k; (up; j))i
1 is then executed so that

process i has (up; j) as initial value in the k-th instance of paxos. However since

process i may be not the leader it has to broadcast a message to request the leader

to run the k-th instance (the leader may be waiting for an initial value for the k-th

instance). Action SendWantPaxosi takes care of this by broadcasting a \WantPaxos"

message specifying the instance k and also the proposed operation (up; i) so that any

process that receives this message (and thus also the leader) and has its Propose(k)

value still unde�ned will set it to (up; i). Action RecWantPaxos takes care of the re-

ceipt of \WantPaxos" messages. Notice that whenever the receipt of a \WantPaxos"

message results in setting Propose(k) to the operation speci�ed in the message, pos-

sible gaps in the sequence of proposed operation are �lled with a dummy operation

which has absolutely no e�ect on the object O. This avoids gap in the sequence of

update operations.

When the k-th instance of paxos reaches consensus on a particular update op-

eration (up; i), the update can be applied to the object (given that the (k � 1)-th

update operation has been applied to the object) and the result of the update can be

given back to the client that requested the update operation. This is done by action

Report-update(r)i. Action Updatei only updates the local copy without reporting

anything to the client if the operation was not requested by client i. If process i pro-

posed an operation up as the k-th one and another operation is installed as the k-th

one, then process i has to re-propose operation up in another instance of paxos. This

is done in action ReProposei. Notice that process i has to re-propose only operations

that it proposed, i.e., operations of the form (up; i).

1Notice that we used the identi�er j since process imay propose as its initial value the operation of

another process j if it knows that process j is proposing that operation (see actions SendWantPaxosi
and RecWantPaxosi).
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State variables. Propose is an array used to store the operations to propose as

initial values in the instances of paxos. Decision is an array used to store the out-

comes of the instances of paxos. The integer S is the index of the �rst unde�ned

entry of the array Propose. This array is kept in such a way that it is always de-

�ned up to Propose(S � 1) and is unde�ned from Propose(S). Variable X describes

the current state of the object. Initially the object is in its initial state O0. The

datareplicationi automaton keeps an updated copy of the object, together with

the index of the last operation applied to the object. Initially the object is described

by (O0; 0). Let Ok be the state of the object after the application to O0 of the �rst

k operations. When variable X = (O; k), we have that O = Ok. When the outcome

Decision(k+1)= (up; i) of the (k+1)-th instance of Paxos is known and current state

of the object is (O; k), the operation up can be applied and process i can give back a

response to the client that requested the operation.

Variable CurRead is used to give back the report of a read. Variable Proposed(k)

is a ag indicating whether or not an Init(k; v)i action for the k-th instance has been

executed, so that the Init(k; v)i action is executed at most once (though executing

this action multiple times does not a�ect paxos). Similarly Reproposed(k) is a ag

used to re-propose only once an operation that has not been installed. Notice that

an operation must be re-proposed only once because a re-proposed action will be

re-proposed again if it is not installed.

8.3.2 Correctness and analysis

We do not prove formally the correctness of the datareplication algorithm. By

correctness we mean that sequential consistency is never violated. Intuitively, the

correctness of datareplication follows from the correctness of multipaxos. Indeed

all processes agree on each update operation to apply to the object: the outcomes of

the various instances of paxos give the sequence of operations to apply to the object

and each process has the same sequence of update operations.
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Theorem 8.3.1 Let � be an execution of the system consisting of datareplication

and multipaxos. Let � be the subsequence of � consisting of the request/report events

and assume that � is complete. Then � is sequentially consistent.

Proof sketch: To see that � is sequentially consistent it is su�cient to give an atomic

request/report sequence  such that ji = �ji, for each client i. The sequence  can be

easily constructed in the following way: let up1; up2; up3; ::: be the sequence of update

operations agreed upon by all the processes; let 0 be the request/report sequence

Request-update(up1)i1 ,Report-updatei1 , Request-update(up2)i2 , Report-updatei2 , ...;

then  is the sequence obtained by 0 by adding Request-read, Report-read events in

the appropriate places (i.e., if client i requested a read when the status of the local

copy was Ok, then place Request-readi, Report-read(Ok)i, between Report-updateik

and Request-update(upk+1)ik+1).

Liveness is not guaranteed. Indeed it is possible that an operation is never satis�ed

because new operations could be requested and satis�ed. Indeed paxos guarantees

validity but any initial value can be the �nal output value, thus when an operation is

re-proposed in subsequent instances, it is not guaranteed that eventually it will be the

outcome of an instance of paxos if new operations are requested. A simple scenario is

the following. Process 1 and process 2 receive requests for update operations up1 and

up2, respectively. Instance 1 of paxos is run and operation up2 proposed by process

2 is installed. Thus process 1 re-proposes its operation in instance 2. Process 3 has,

meanwhile, received a request for update operation up3 and proposes it in instance

2. The operation up3 of process 3 is installed in instance 2. Again process 1 has to

re-propose its operation in a new instance. Nothing guarantees that process 1 will

eventually install its operation up1 if other processes keep proposing new operations.

This problem could be avoided by using some form of priority for the operations to

be proposed by the leader in new instances of paxos.

The algorithm exhibits the same fault tolerance properties of paxos: process stop

and recovery, message loss, duplication and reordering and timing failures. However,

as in paxos, to get progress it is necessary that the system executes a long enough

nice execution fragment.
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8.4 Concluding remarks

The application of multipaxos to data replication that we have presented in this

chapter is intended only to show how multipaxos can be used to implement a data

replication algorithm. A better data replication algorithm based on multipaxos can

certainly be designed. We have not provided a proof of correctness of this algorithm;

also the performance analysis is not given. There is work to be done to obtain a good

data replication algorithm.

For example, it should be possible to achieve liveness by using some form of

priority for the operations proposed in the various instances of paxos. The easiest

approach would use a strategy such that an operation that has been re-proposed

more than another one, has priority, that is, if the leader can choose among several

operations, it chooses the one that has been re-proposed most. This should guarantee

that requested operations do not \starve" and are eventually satis�ed.

In this chapter we have only sketched how to use paxos to implement a data

replication algorithm. We leave the development of a data replication algorithm

based on paxos as future work.
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Chapter 9

Conclusions

The consensus problem is a fundamental problem in distributed systems. It plays a

key role practical problems involving distributed transactions. In practice the compo-

nents of a distributed systems are subject to failures and recoveries, thus any practical

algorithm should cope as much as possible with failures and recoveries. paxos is a

highly fault-tolerant algorithm for reaching consensus in a partially synchronous dis-

tributed system. multipaxos is a variation of paxos useful when consensus has to

be reached on a sequence of values. Both paxos and multipaxos were devised by

Lamport [29].

The paxos algorithm combines high fault-tolerance with e�ciency; safety is main-

tained despite process halting and recovery, messages loss, duplication and reordering,

and timing failures; also, when there are no failures nor recoveries and a majority of

processes are alive for a su�ciently long time, paxos reaches consensus using linear,

in the number of processes, time and messages.

paxos uses the concept of a leader, i.e., a distinguished process that leads the

computation. Unlike other algorithms whose correctness is jeopardized if there is not

a unique leader, paxos is safe also when there are no leaders or more than one leader;

however to get progress there must be a unique leader. This nice property allows us

to use a sloppy leader elector algorithm that guarantees the existence of a unique

leader only when no failures nor process recoveries happen. This is really important

in practice, since in the presence of failures it is practically not possible to provide a
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reliable leader elector (this is due to the di�culty of detecting failures).

Consensus algorithms currently used in practice are based on the 2-phase commit

algorithm (e.g., [2, 25, 41, 48], see also [22]) and sometime on the 3-phase commit

algorithm (e.g. [47, 48]). The 2-phase commit protocol is not at all fault tolerant. The

reason why it is used in practice is that it is very easy to implement and the proba-

bility that failures a�ect the protocols is low. Indeed the time that elapses from the

beginning of the protocol to its end is usually so short that the possibility of failures

becomes irrelevant; in small networks, messages are delivered almost instantaneously

so that a 2-phase commit takes a very short time to complete; however the protocol

blocks if failures do happen and recovery schemes need to be invoked. Protocols that

are e�cient when no failures happen yet highly fault tolerant are necessary when

the possibility of failures grows signi�cantly, as happens, for example, in distributed

systems that span wide areas. The paxos algorithm satisfy both requirements.

We believe that paxos is the most practical solution to the consensus problem

currently available.

In the original paper [29], the paxos algorithm is described as the result of discov-

eries of archaeological studies of an ancient Greek civilization. That paper contains

a sketch of a proof of correctness and a discussion of the performance analysis. The

style used for the description of the algorithm often diverts the reader's attention.

Because of this, we found the paper hard to understand and we suspect that others

did as well. Indeed the paxos algorithm, even though it appears to be a practical

and elegant algorithm, seems not widely known or understood, either by distributed

systems researchers or distributed computing theory researchers.

In this thesis we have provided a new presentation of the paxos algorithm, in

terms of I/O automata; we have also provided a correctness proof and a time per-

formance and fault-tolerance analysis. The correctness proof uses automaton com-

position and invariant assertion methods. The time performance and fault-tolerance

analysis is conditional on the stabilization of the system behavior starting from some

point in an execution. Stabilization means that no failures nor recoveries happen

after the stabilization point and a majority of processes are alive for a su�ciently

133



long time.

We have also introduced a particular type of automaton model called the Clock

GTA. The Clock GTA model is a particular type of the general timed automaton

(GTA) model. The GTA model has formal mechanisms to represent the passage of

time. The Clock GTA enhances those mechanisms to represent timing failures. We

used the Clock GTA to provide a technique for practical time performance analysis

based on the stabilization of the physical system. We have used this technique to

analyze paxos.

We also have described multipaxos and discussed an example of how to use

multipaxos for data replication management. Another immediate application of

paxos is to distributed commit. paxos bears some similarities with the 3-phase

commit protocol; however 3-phase commit, needs in practice a reliable failure detector.

Our presentation of paxos has targeted the clarity of presentation of the algo-

rithm; a practical implementation does not need to be as modular as the one we

have presented. For example, we have separated the leader behavior of a process

into two parts, one that takes care of leading a round and another one that takes

care of broadcasting a reached decision; this has resulted in the duplication of state

information and actions. In a practical implementation it is not necessary to have

such a separation. Also, a practical algorithm could use optimizations such as mes-

sage retransmission, so that the loss of one message does not a�ect the algorithm,

or waiting larger time-out intervals before abandoning a round, so that a little delay

does not force the algorithm to start a new round.

Further directions of research concern improvements of paxos. For example it is

not clear whether a clever strategy for electing the leader can help in improving the

overall performance of the algorithm. We used a simple leader election strategy which

is easy to implement, but we do not know if more clever leader election strategies

may positively a�ect the e�ciency of paxos. Also, it would be interesting to provide

performance analysis for the case when there are failures, in order to measure how

badly the algorithm can perform. For this point, however, one should keep in mind

that paxos does not guarantees termination in the presence of failures. We remark
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that allowing timing failures and process stopping failures the problem is unsolvable.

However in some cases termination is achieved even in the presence of failures, e.g.,

only a few messages are lost or a few processes stop.

It would be interesting to compare the use of paxos for data replication with

other related algorithms such as the data replication algorithm of Liskov and Oki.

Their work seems to incorporate ideas similar to the ones used in paxos.

Also the virtual synchrony group communication scheme of Fekete, Lynch and

Shvartsman [16] based on previous work by Amir et. al. [3], Keidar and Dolev [24]

and Cristian and Schmuck [7], uses ideas somewhat similar to those used by paxos:

quorums and timestamps (timestamps in paxos are basically the round numbers).

Certainly a further step is a practical implementation of the paxos algorithm. We

have shown that paxos is very e�cient and fault tolerant in theory. While we are sure

that paxos exhibits good performance from a theoretical point of view, we still need

the support of a practical implementation and the comparison of the performance of

such an implementation with existing consensus algorithms to a�rm that paxos is

the best currently available solution to the consensus problem in distributed systems.

We recently learned that Lee and Thekkath [33] used paxos to replicate state

information within their Petal systems which implements a distributed �le server. In

the Petal system several servers each with several disks cooperate to provide to the

users a virtual, big and reliable storage unit. Virtual disks can be created and deleted.

Servers and physical disks, may be added or removed. The information stored on the

physical disks is duplicated to some extent to cope with server and or disk crashes

and load balancing is used to speed up the performance. Each server of the Petal

system needs to have a consistent global view of the current system con�guration; this

important state information is replicated over all servers using the paxos algorithm.
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Appendix A

Notation

This appendix contains a list of symbols used in the thesis. Each symbol is listed

with a brief description and a reference to the pages where it is de�ned.

n number of processes in the distributed system. (37)

I ordered set of n process identi�ers. (37)

` time bound on the execution of an enabled action. (37)

d time bound on the delivery of a message. (37)

V set of initial values. (47)

R set of round numbers. A round number is a a pair (x; i),

where x 2 I and x 2 N. Round numbers are totally ordered. (65)

Hleader(r) history variable. The leader of round r. (80)

Hvalue(r) history variable. The value of round r. (80)

Hfrom(r) history variable. The round from which the value of round r is taken. (80)

Hinfquo(r) history variable. The info-quorum of round r. (80)

Haccquo(r) history variable. The accepting-quorum of round r. (80)

Hreject(r) history variable. Processes committed to reject round r. (80)

RS set of round numbers of rounds for which Hleader is set. (82)

RV set of round numbers of rounds for which Hvalue is set. (82)

ti
�

time of occurrence of Init(v)i in �. (93)

T i

�
max of 4` + 2n` + 2d and ti

�
+ 2`. (82)
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Scha distributed system consisting of channeli;j, for i; j 2 I (42)

Sdet distributed system consisting of Scha and detectori, for i 2 I (52)

Slea distributed system consisting of Sdet and leaderelectori,

for i 2 I. (56)

Sbpx distributed system consisting of Scha and bpleaderi, bpagenti

and bpsuccessi for i 2 I. (80)

Spax distributed system consisting of Slea and bpleaderi, bpagenti,

bpsuccessi and starteralgi for i 2 I. (100)

regular time-passage step, a time-passage step �(t) that increases the local clock of

each Clock GTA by t. (26)

regular execution fragment, an execution fragment whose time-passage steps are all

regular. (26)

stable execution fragment, a regular execution fragment with no process crash or

recoveries and no loss of messages. (38{42)

nice execution fragment, a stable execution fragment with a majority of processes

alive. (43)

start of a round, is the execution of action NewRound for that round. (91)

end of a round, is the execution of action RndSuccess for that round. (91)

successful round, a round is successful when it ends, i.e., when action RndSuccess for

that round is executed. (91)
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