
Experimental Study of Minimum Cut Algorithms

by

Matthew S. Levine

A.B. Computer Science
Princeton University, 1995

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE IN PARTIAL FULFILLMENT FOR THE DEGREE OF

MASTER OF SCIENCE IN COMPUTER SCIENCE
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MAY 1997

c1997 Massachusetts Institute of Technology
All Rights Reserved

Signature of Author : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
Department of Electrical Engineering and Computer Science

May 9, 1997

Certified by : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

David R. Karger
Assistant Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Arthur C. Smith
Chairman, Department Committee on Graduate Students



Experimental Study of Minimum Cut Algorithms

by

Matthew S. Levine

Submitted to the Department of Electrical Engineering and
Computer Science on May 9, 1997 in Partial Fulfillment of the

Requirements for the Degree of Master of Science in Computer Science

Abstract

Recently, several new algorithms have been developed for the minimum cut problem that sub-
stantially improve worst-case time bounds for the problem. These algorithms are very different
from the earlier ones and from each other. We conduct an experimental evaluation of the relative
performance of these algorithms. In the process, we develop heuristics and data structures that
substantially improve practical performance of the algorithms. We also develop problem fami-
lies for testing minimum cut algorithms. Our work leads to a better understanding of practical
performance of the minimum cut algorithms and produces very efficient codes for the problem.

Keywords: minimum cut, graph algorithms, experimental evaluation, network optimization

Thesis Supervisor: David Karger
Title: Assistant Professor of Electrical Engineering and Computer Science

This research was partly supported by DARPA contracts N000014-95-1-1246 and DABT63-95-C-
0009, Army Contract DAAH04-95-1-0607 and NSF Award CCR-9624239. Some of this work was
done at NEC Research Institute.



Contents

1 Introduction 5

1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 9

2.1 Flow Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Push-Relabel Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 The Gomory-Hu Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 The Hao-Orlin Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 The Padberg-Rinaldi Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 The Nagamochi-Ibaraki Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 The Karger-Stein Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Tree Packings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Gabow’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Karger’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Implementation 41

3.1 Graph Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Implementing Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 The Padberg-Rinaldi Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Hao-Orlin Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



4 CONTENTS

3.4 Nagamochi-Ibaraki Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Karger-Stein Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Karger’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6.2 Tree Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.3 Checking for 2-respecting cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Experiments 61

4.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.2 Problem Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.3 Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.4 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Results by Problem Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 Results by Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Conclusion 89

A Data Tables 91

Bibliography 123



Chapter 1

Introduction

A minimum cut of an n-vertex, m-edge, capacitated, undirected graph is a partition of the vertices
into two sets that minimizes the total capacity of edges with endpoints in different sets. This
concept is more natural in pictures than in words; see Figure 1.1.

a

c

b

d

g h

i

f

e
j

Figure 1.1: The dashed line shows a minimum cut of this graph.

Computation of minimum cuts is useful in various applications. An easy example is network
reliability theory [37, 53]. If edges of a network fail with some probability, it makes intuitive sense
that the greatest danger of network disconnection is at a minimum cut. Minimum cuts also arise
in information retrieval [6], compilers for parallel languages [7], and cutting-plane algorithms for
the Traveling Salesman Problem (TSP) [3]. We have also received requests for our codes from
researchers interested in routing in ATM networks and computational biology.



6 CHAPTER 1. INTRODUCTION

1.1 Previous Work

The problem of finding a minimum cut has a long history. It was originally considered a harder
variant of the minimum s-t cut problem, which places the further restriction that designated
vertices s and t be on opposite sides of the partition. The well-known max-flow–min-cut theo-
rem [22, 21] implies that an s-t minimum cut can be found by computing an s-t maximum flow.
In 1961, Gomory and Hu showed how to solve the minimum cut problem with n - 1 s-t mini-
mum cut computations. Subsequently there was much progress in computing maximum flows,
but no one has yet been able to prove a time bound better than O(nm) for any of the best algo-
rithms [1, 9, 10, 25, 41]. Hence we cannot give a bound better than O(n2m) for the Gomory-Hu
algorithm.

Gomory-Hu stood as the best algorithm for the problem until 1989, when Nagamochi and
Ibaraki [47] showed how to find a minimum cut without using maximum flows. Their algorithm
(which we will call NI) runs in O(n(m+n logn)) time. In 1992, Hao and Orlin [29, 30] rejuvenated
the flow approach by showing that clever modification of the Gomory-Hu algorithm implemented
with a push-relabel maximum flow algorithm runs in time asymptotically equal to the time to
compute one maximum flow: O(nm log(n2=m)). (We refer to this algorithm as HO.)

Progress continued in 1993 with a randomized algorithm (KS) given by Karger and Stein [39,
40] . With probability at least 1 - 1=n, it finds all minimum cuts in O(n2 log3n) time. Finally,
in 1996, Karger [38] gave two closely related algorithms (K). The first finds a minimum cut with
probability at least 1- 1=n and runs in O(m log3n) time; the second finds all minimum cuts with
probability at least 1- 1=n and runs in O(n2 logn) time.

The recent burst of theoretical progress has outdated implementation experiments. In 1990,
Padberg and Rinaldi published a study on practical implementation of Gomory-Hu [51], which
is very valuable for the design of heuristics, but unfortunately came just before the theory break-
throughs. Nagamochi et al [48] confirm that NI often beats Gomory-Hu in practice. Nothing is
known about the practical performance of the other new algorithms.

1.2 Our Contribution

In this paper we address the question of the practical performance of minimum cut algorithms. We
consider all of the contenders: NI, HO, KS, and K. Our goal is to obtain efficient implementations
of all the algorithms and meaningful comparisons of their performance. Accomplishing this goal
has two main aspects: obtaining good implementations and obtaining good tests.

A major aspect of obtaining good implementations is making good use of heuristics. We intro-
duce a new strategy for applying the heuristics of Padberg and Rinaldi, which turns out to be very
important to the efficiency of our implementations. We give a modified version of KS that seems
to be more effective. We also introduce a new heuristic for maximum-flow based cut algorithms.

For both KS and K, which are Monte Carlo algorithms, guaranteeing correctness of our imple-
mentations required using parameters from the theoretical analysis. Thus we rework the analysis
for both of these algorithms to get the best constant factors, and end up having to prove new the-
orems. In both cases it turns out that we believe there are stronger results than we can prove, so



1.2. OUR CONTRIBUTION 7

the practical performance of both of these algorithms stands to be improved directly by further
theoretical work.

For K, the constants that we get from the theoretical analysis are unmanageably large, but we
discovered that we always get the right answer with much smaller constants. Hence we cheat,
and use a value that we cannot justify in our implementation. For this reason our implementation
of K must be considered a heuristic—we do not have a proof of correctness.

For many applications, HO appears to be the best algorithm, followed by NI, but overall, our
tests show that no single algorithm dominates the others. In general, HO and NI dominate K and
KS, but on one problem family both K and KS show better asymptotic performance than NI and
HO. We also have problem families where HO is asymptotically better than NI and vice versa.

Unfortunately, development and testing is iterative and interrelated. We develop tests that are
hard for the implementations by looking for weaknesses in the implementations. Meanwhile, we
use the tests to find weaknesses in the implementation and devise heuristics to improve perfor-
mance. Thus it is difficult to be sure when we are done. For HO we take advantage of implemen-
tation work on maximum flow algorithms [2, 13, 16, 17, 50]; for NI we take advantage of the work
of Nagamochi et al. KS and K were both developed from scratch, so it remains possible that their
inferior performance is due to the fact that we are the first to develop heuristics for them.

Nevertheless, at the very least, we make significant progress in understanding how to imple-
ment these algorithms, introduce new heuristics, and give an interesting set of problem genera-
tors.

Note that this paper represents joint work with Chandra Chekuri, Andrew Goldberg, David
Karger, and Clifford Stein. A preliminary version appeared in SODA 97 [8].

The paper is organized as follows. In Chapter 2 we review the theory behind the minimum
cut algorithms, including definitions, characterizations of the problem, and descriptions of the al-
gorithms. In Chapter 3 we discuss general implementation issues and details of each algorithm in
turn. In Chapter 4 we discuss our experiments, including descriptions of the problem generators
and results. Note that some readers will want to skip certain portions of this paper. In particular,
readers who are already familiar with the algorithms may want to skip most of chapter two, and
readers who are interested primarily in the bottom line may wish to skip all the way to the results
section. We give warnings at specific places in the text before particularly complicated and/or
detailed discussions that many readers will likely want to skip.



8 CHAPTER 1. INTRODUCTION



Chapter 2

Background

In this chapter we discuss the theory behind minimum cuts. One of the reasons minimum cuts
are so interesting to study is that the theory behind the different algorithms is so varied. First we
review approaches based on a reduction of the problem to the maximum flow problem. Next we
look at algorithms that identify edges that cannot be in the minimum cut and use that information
to reduce the problem. We conclude with algorithms based on packing trees, a dual problem.

We begin by introducing some terminology.

Let G = (V;E; c) be an undirected graph with vertex set V, edge set E and non-negative real
edge capacities c : E ! R

+. Let n = jVj and m = jEj. We will denote an undirected edge with
endpoints v and w by fv;wg, but use c(v;w) as shorthand for c(fv;wg). A cut is a partition of the
vertices into two nonempty sets A and A. The capacity or value of a cut c(A;A) is defined by

c(A;A) =
X

u2A;v2A;fu;vg2E
c(u; v) (2.1)

We will sometimes unambiguously refer to a cut just by naming one side, and use the shorthand
c(A) = c(A;A). Also, if A = fvg, we may use c(v) instead of c(A). We refer to such cuts as
trivial, and refer to the value c(v) as the capacity of v. The edges included in the sum in (2.1) will
be referred to as edges in the cut or edges that cross the cut. A minimum cut of G is a cut A that
minimizes c(A). We use �(G) to denote the value of the minimum cut.

Note that there may be more than one minimum cut. In fact, in a cycle where every edge has
the same capacity, there are

�
n

2

�
of them. (The cycle is actually the worst case. This result is shown

by Dinitz, Karzanov, and Lomonosov [18] and also follows easily from the correctness proof of
KS.) Since we only look for one minimum cut, we sometimes fix one minimum cut and refer to it
as “the minimum cut”.

2.1 Flow Based Approaches

The first approach to solving the minimum cut problem was based on a related problem, the
minimum s-t cut problem. An s-t cut is a cut that has s and t on opposite sides of the partition.



10 CHAPTER 2. BACKGROUND

The minimum s-t cut, �s;t(G), is the s-t cut of minimum value. The well-known max-flow–min-
cut theorem [22, 21] implies that a minimum s-t cut can be found by computing the maximum
flow between s and t. In this section we discuss maximum flow and the minimum cut algorithms
based on it.

2.1.1 Definitions

Although we study an undirected version of the minimum cut problem in this paper, flows are
more natural in directed graphs. We transform an undirected graph into a directed graph in a
standard way: replace each edge fv;wg by two arcs (v;w) and (w; v), each with the same capacity.
A cut in a directed graph is defined as in an undirected graph, except that we only count the edges
in one direction. That is, the capacity of a cut A in a directed graph is the sum of the edges crossing
from A to A:

c(A;A) =
X

u2A;v2A;(u;v)2E
c((u; v))

In general, c(A;A) is not the same as c(A;A) in a directed graph, but since we replace each undi-
rected edge with two directed edges, one in each direction, the value of every directed cut in the
transformed graph is the same as the corresponding undirected cut in the original graph.

Let G = (V; E; c) be a directed graph with two distinguished vertices s (source) and t (sink). A
flow is a function f : E! R satisfying

f(v;w) � c(v;w) ; 8(v;w) 2 E (2.2)
f(v;w) = -f(w; v) ; 8(v;w) 2 E (2.3)P
v2V

f(v;w) = 0 ; 8w 2 V - fs; tg: (2.4)

The first condition says that the flow on a directed edge is never more than the capacity of that
edge. The second says that flow on an edge is antisymmetric: a units of flow on (u; v) implies -a

units of flow on (v; u). The final condition says that flow is conserved everywhere but the source
and sink: the flow into each vertex is the same as the flow out of it.

We define the residual capacity cf(v;w) of an edge (v;w) to be cf(v;w) = c(v;w) - f(v;w). The
residual network Gf = (V;Ef) is the network induced by the edges that have non-zero (i.e. positive)
residual capacity.

The value of a flow is the net flow into the sink, i.e.,

jfj =
X
v2V

f(v; t):

It can be shown that the third condition, flow conservation, implies that this value is the same as
the net flow out of the source.

The maximum flow problem is to determine a flow f for which jfj is maximum. The max-flow–
min-cut theorem states that the value of the maximum s-t flow is equal to the value of the min-
imum s-t cut, i.e., jfj = �s;t(G). Therefore all the edges of a minimum s-t cut are used up to



2.1. FLOW BASED APPROACHES 11

capacity by a maximum s-t flow, and it can be shown that any s-t cut that is not minimum always
has some edges with residual capacity. It follows that the vertices reachable from the source by
edges in the residual network define an s-t minimum cut. An s-t maximum flow algorithm can
thus be used to find an s-t minimum cut, and minimizing over all

�
n

2

�
possible choices of s and t

yields a minimum cut.

2.1.2 Push-Relabel Methods

As this paper is primarily concerned with minimum cuts, not maximum flows, we do not wish
to get too involved with maximum flow algorithms. Conveniently, however, the fastest current
maximum flow algorithms and the Hao-Orlin minimum cut algorithm are both based on the push
relabel method, so we review that method here. For a more detailed description see [26].

We begin with some additional definitions. The algorithm maintains a preflow, which is a
relaxed version of a flow. A preflow satisfies conditions (2.2) and (2.3), and the following relaxation
of condition (2.4):

X
v2V

f(v;w) � 0 ; 8w 2 V- fs; tg (2.5)

So a preflow only has “one-sided” flow conservation. Flow still may not be created at a vertex,
but now it may be absorbed, because we allow more flow to enter than leave. We define the excess
at vertex v with respect to preflow f by

ef(w) =
X
v2V

f(v;w)

Given a preflow f, a distance labeling is a function d : V ! N that satisfies d(v) � d(w) + 1 for
every (v;w) in the residual graph and d(s) - d(t) � n. The main point of this definition is that
d(v) - d(w) is always a lower bound on the distance from v to w in the residual graph. In general
we hope for these lower bounds to be close to correct, so that we can use a distance labeling to
direct flow to the sink along short paths, which at least intuitively is a good thing to do. Another
way to phrase this intuition is that a distance labeling gives a “locally consistent” estimate on the
distance to the sink. The idea is that if we maintained exact distances we would be able to route
flow to the sink on a shortest path, but then we would have to do a lot of work to update the
labels. By relaxing the conditions on labels so that they are only lower bounds on distances, we
attempt to get the benefit of having distances without doing so much work. Since the labels give
lower bounds on distances, d(v) � d(t) + n implies that t is not reachable from v in Gf, because
all paths have less than n edges. Thus the second condition, d(s) - d(t) � n, says that the sink is
not reachable from the source, which means that some s-t cut is saturated, which means that if f is
actually a flow then jfj is maximum. We say that an arc (v;w) 2 Ef is admissible if d(v) = d(w) + 1.
We say that a vertex v is active if the excess ef(v) > 0.

Given a preflow f and a distance labeling d, we define push and relabel operations, which
update f and d, respectively, as follows. The push operation applies to an admissible arc (v;w)

where v is active; it increases flow on (v;w) by as much as possible: min(cf(v;w); ef(v)). The



12 CHAPTER 2. BACKGROUND

relabel operation applies to an active vertex v with no outgoing admissible arcs. It sets d(v) to the
highest value allowed by the distance labeling constraints: one plus the smallest distance label of a
vertex reachable from v via a residual arc. It is not hard to show that pushes and relabels preserve
the validity of the distance labeling.

Push((v;w))

(applies when (v;w) is a residual arc and d(v) = d(w) + 1)
send min(c(v;w); excess(v))units of flow along (v;w)

remove (v;w) and/or add (w; v) to the residual graph if necessary

Relabel(v)

(applies when v has excess, is not the sink, and for all residual (v;w) has d(v) 6= d(w) + 1)
d(v) = minresidual (v;w) d(w) + 1

The generic push-relabel algorithm for finding a minimum s-t cut starts by setting all distance
labels to zero. Then the algorithm sets d(s) = 2n - 1 1 and saturates all arcs out of s. This action
gives the initial preflow and distance labeling. The algorithm applies push and relabel operations
in an arbitrary order. When no operation applies, the algorithm terminates. Since one of push or
relabel will always apply at an active vertex, termination means that there are no active vertices,
which means that we have a flow. By the arguments above, this flow is maximum.

GenericPushRelabel(G; s; t)

for all v, d(v) 0

d(s) 2n- 1

saturate all arcs out of s
while there exists a vertex with excess

find a place to apply a Push or Relabel and do so
return excess at t

We get time bounds by counting the number of push and relabel operations. It is easy to
show that distance labels only increase and are always O(n), from which it follows that there can
be only n2 relabels. Each relabel requires looking at the outgoing edges of a vertex, so the total
relabeling time is

P
v
O(n)degree(v) = O(nm). We account for pushes by distinguishing pushes

that saturate, that is, use all the residual capacity of a residual arc, and those that do not. After a
saturating push on an arc, it is no longer part of the residual graph, and it cannot return to the
residual graph until there is a push on the reverse arc. But for the reverse arc to be admissible,
we must relabel one endpoint. Thus there can be only O(n) saturating pushes per arc, giving a
total of O(nm) saturating pushes. It remains to bound the number of non-saturating pushes. It is
possible to give a generic bound of O(n2m) on the number of non-saturating pushes, but we can
get better bounds by considering variations on the algorithm.

At a high level, push-relabel algorithms differ by the order in which they apply push and re-
label operations. One convenient way of ordering the operations is to define a discharge operation,
which combines the push and relabel operations at a low level. The discharge operation applies
to an active vertex v. The operation applies push operations to arcs out of v and relabel operations
to v until v is no longer active.

1For an s-t cut computation, we can set d(s) = n; the higher value is needed for the Hao-Orlin algorithm.



2.1. FLOW BASED APPROACHES 13

Discharge(v)

(applies when v has excess)
while v has excess

if v:currentArc = NIL, Relabel(v)
else Push(v:currentArc)

We can now specify an ordering of pushes and relabels by giving a strategy for selecting the
next active vertex to discharge. One possibility is the highest label strategy: discharge an active
vertex with the highest distance label. This strategy, in combination with appropriate heuristics,
seems to give the best results in practice [13]. It also permits a better bound on the number of
non-saturating push operations: O(n2

p
m) [11].

HighestLabelPushRelabel(G; s; t)

for all v, d(v) 0

d(s) 2n- 1

saturate all arcs out of s
while there exists an active vertex

Discharge(an active vertex with maximum distance label)

We now sketch the proof of this time bound. Call the time between successive relabels a phase.
At the end of a phase, for any vertex that has excess that was moved during the phase, we can
identify a “trajectory” of non-saturating pushes that contributed to the excess. These trajectories
end either at an edge that had a saturating push, or a vertex that had done no pushes since it was
last relabeled. The key observation is that a non-saturating push from a vertex with the highest
label makes that vertex inactive and, since there are no higher labeled vertices that could push to
it, it must stay inactive at least until a relabel occurs. Thus these trajectories are vertex disjoint.
So there can only be

p
m trajectories longer than n=

p
m in a phase, totaling l

p
m non-saturating

pushes for a phase in which the maximum distance label (over active vertices) drops by l. But the
total increase in distance labels is only O(n2), so the total decrease is the same, giving a bound of
O(n2

p
m) on the number of non-saturating pushes in trajectories longer than n=

p
m. And since

each trajectory ends an edge that had a saturating push or a vertex that was newly relabeled,
the total number of trajectories is only O(nm), so the total number of non-saturating pushes in
trajectories shorter than n=

p
m is also only O(n2

p
m).

Another possibility is to use a FIFO queue to order discharge operations. In conjunction with
dynamic trees, a sophisticated data-structure that makes it possible to do many non-saturating
pushes at once, this method gives the best known time bound: O(nm log(n2=m)) [26]. We did not
implement this version, and the full description is rather involved, so we do not give it here.

We assume that a relabel operation always uses the gap relabeling heuristic [12, 16]. This heuris-
tic often speeds up push-relabel algorithms for the maximum flow problem [2, 13, 16, 50] and is
essential for the analysis of the Hao-Orlin algorithm. Gap relabeling is based on the observation is
that if there is no vertex with distance label x, then no excess at a vertex with distance label greater
than x can reach the sink. (Consider applying discharge operations to these vertices before apply-
ing discharge operations to any of the other vertices. Since there is no vertex with distance label x,
it will never be possible to push any excess to a vertex with label less than x. It follows that all this
excess must return to the source.) We exploit this observation as follows. Just before relabeling



14 CHAPTER 2. BACKGROUND

v, check if any other vertex has label d(v). If the answer is yes, then relabel v. Otherwise, delete
all vertices with distance label greater than d(v). Note we have written the above as it applies to
finding minimum cuts; if we actually want the flow then we cannot delete active vertices, but we
can assign label d(s) to all the vertices with label greater than d(v), which is still helpful.

GapRelabel(v)

(conditions for Relabel apply)
if v is the only vertex with distance label d(v)

remove all w with d(w) � d(v)

else Relabel(v)

2.1.3 The Gomory-Hu Algorithm

In 1961, Gomory and Hu [27] showed that �s;t(G) for all
�
n

2

�
pairs of s and t could actually be

computed using only n - 1 maximum flow computations. Their method immediately yields an
algorithm for computing minimum cuts using only O(n) maximum flow computations. Note that
since Gomory and Hu considered directed graphs and actually compute all �s;t(G), they solve a
more general problem.

We can see more directly that O(n) maximum flow computations suffice to compute a mini-
mum cut. Fix some vertex s arbitrarily. In the minimum cut, there is some vertex t on the other
side of the partition. For this t, the s-tminimum cut is clearly the same as the minimum cut. There-
fore we can find the minimum cut by finding the minimum (over t) of minimum s-t cuts. This
algorithm computes a minimum cut with n- 1 minimum s-t cut computations. For the purposes
of later discussion, we refer to this simplified algorithm as GH.

2.1.4 The Hao-Orlin Algorithm

A natural question to ask about GH is whether some of the information computed in one maxi-
mum flow computation can be reused in the next one. Hao and Orlin answer this question in the
affirmative. The key new idea is to use a push-relabel maximum flow algorithm to implement
GH, and use the preflow and distance labeling from the last max-flow computation as a starting
point for the current one. This method allows us to amortize the work of the (n- 1) s-t cut com-
putations to obtain a worst-case time bound that is asymptotically the same as the bound for one
maximum flow computation. We give a brief description of this algorithm below. See [31] for
details. Note that the algorithm given by Hao and Orlin applies to directed graphs, as did the
original Gomory-Hu algorithm. As with GH, we ignore those details in this discussion.

A key concept of the Hao-Orlin algorithm is that of a sleeping layer of vertices. A sleeping layer
is a set of vertices that do not participate in the current flow computation; there can be multiple
such layers. A vertex is asleep if it belongs to a sleeping layer and awake otherwise. Initially all
vertices are awake. When gap relabeling discovers a set of vertices disconnected from the sink,
these vertices form a new sleeping layer. This layer is deleted from the graph and put on a stack
of layers. When a layer of vertices is put to sleep, the values of the vertex distance labels are the
same as they were just before the relabeling operation during which the layer was discovered. At



2.2. CONTRACTION 15

some point during the execution of the algorithm, the top layer will be popped from the stack and
the vertices of this layer will become awake. The point of the sleeping layers is that at the time
we find them they are not relevant to the current flow computation, but we have done work to
get their distance labels to the current state, so we save this information for use in a later flow
computation.

The Hao-Orlin algorithm starts as follows. We select the first source and sink arbitrarily. We
set the distance label of the source to 2n- 1 and saturate all arcs out of the source. Distance labels
of all other vertices are set to zero. Then we start the first s-t cut computation. After an s-t cut
computation terminates, we examine the cut it finds and remember the cut if its capacity is smaller
than that of the best cut we have seen so far. Then we start the next computation as follows. First
we set the distance label of t to 2n- 1 and saturate all of its outgoing arcs. This effectively makes
it part of the source, so we refer to such vertices as source vertices. Next we look for a new sink.
If there are no non-source, awake vertices, we awaken the top sleeping layer. We now pick the
non-source, awake vertex with the smallest distance label as the new sink. If we cannot find a new
sink because there are no non-source, awake vertices and there are no more sleeping layers, then
all vertices are source vertices and we are done.

HO(G)

�̂ 1
designate some vertex s, give it label 2n- 1, and saturate all of its outgoing arcs
while there are non-source vertices

if there are no awake vertices, awaken the top sleeping layer
pick the awake vertex with minimum distance label as t
PushRelabel(G; s; t) (always using GapRelabel, not Relabel)
if the excess at t is less than �̂

�̂ excess at t
designate t a source vertex, and saturate all of its outgoing edges

return �̂

It is not hard to check that the distance labels remain valid throughout the computation, which
implies the correctness of the algorithm. Likewise, as in the maximum flow context, the distance
labels are O(n) and only increase. It follows that using highest label selection, the time bound for
HO is O(n2

p
m). The proof for FIFO selection with dynamic trees also carries over, giving a time

bound of O(nm log(n2=m)).

2.2 Contraction

Another way to approach the minimum cut problem is to try to identify vertices that are on the
same side of the minimum cut. Given two such vertices, we would like to reduce the problem.
This motivates the following definition:

Given a graph G and vertices v and w, we create G=fv;wg, the contraction of v and w, by merg-
ing v and w into one node. That is, v and w cease to be discernible vertices; there is only a node
representing the two of them, which has as its neighbors the union of the neighbors of v and the
neighbors of w. If fv;wg 2 E, we often refer to the contraction of v and w as the contraction of edge



16 CHAPTER 2. BACKGROUND

fv;wg. Multiple edges are preserved by this operation, at least in terms of capacity. That is, if v and
w have a common neighbor u, then in G=fv;wg either fvw; ug has capacity c(v; u)+c(w;u)or there
are two edges fvw; ug, one with capacity c(v; u) and the other with capacity c(w;u). These two
views are equivalent in theory; which paradigm to use when representing the graph in practice is
an implementation detail.

Note that although the terms node and vertex are often used interchangeably, we make a dis-
tinction for the purposes of talking about contracted graphs. We use the term node for the base
set of a graph potentially created by a contraction operation, and the term vertex for the input. So
after any series of contractions, nodes correspond to sets of vertices of the input graph.

The key property that we want from the contraction operation is captured in the following
two lemmas:

Lemma 2.2.1 Given a network G and two nodes v and w, if v and w are on the same side of some minimum
cut, then �(G) = �(G=fv;wg).

Proof. The proof is immediate from the fact that no new cuts are created by contraction and that
by assumption all the edges of some minimum cut are not contracted.

Lemma 2.2.2 Given a network G and two nodes v and w, �(G) = minf�(G=fv;wg); �v;w(G)g.

Proof. If v and w are on the same side of some minimum cut, then �(G) = �(G=fv;wg) by
Lemma 2.2.1. Otherwise v and w are on opposite sides of every minimum cut, so �(G) = �v;w(G)

by definition.

So given two vertices on the same side of any minimum cut, contraction produces a smaller
graph with the same minimum cut. Further, given a minimum v-w cut, we can find a minimum
cut by taking the smaller of the v-w cut we have and the minimum cut of G=fv;wg. From these
observations we immediately get a high level minimum cut algorithm:

GenericContractCut(G)

�̂ 1
while G has more than one node

Either
1. identify an edge fv;wg that is not in some minimum cut
2. compute �v;w(G) for some v and w and set �̂ = minf�v;w(G); �̂g

G G=fv;wg

return �̂

Since a contraction reduces the number of nodes by one, this algorithm requires n-1 iterations
of the while loop.

We assume that our algorithms always keep track of the minimum cut seen so far, as in Gener-

icContractCut, so we refer to an edge fv;wg as contractible if it is not in some minimum cut or if we
already know �v;w(G).

Note that GH can be modified to fit in this framework, because a maximum flow computation
identifies a contractible edge (always option 2). Thus we use n - 1 flow computations. Likewise



2.2. CONTRACTION 17

in HO, we can contract the source and the sink at the end of each flow computation. Actually,
HO already does contractions implicitly by designation of source vertices, but for the purposes of
adding heuristics it turns out to be desirable to think about doing the contractions explicitly.

In the remainder of this section we describe several other ways to identify contractible edges.
First we discuss local tests for contractibility given by Padberg and Rinaldi. These do not always
apply, so they do not result in a minimum cut algorithm, but they are excellent heuristics. Then
we discuss an algorithm of Nagamochi and Ibaraki that identifies at least one contractible edge by
a graph search. Finally we discuss an algorithm of Karger and Stein, which shows that “guessing”
contractible edges is good enough for a high probability of success.

2.2.1 The Padberg-Rinaldi Heuristics

In their implementation study of minimum cut algorithms, [51], Padberg and Rinaldi introduced
several local tests for identifying contractible edges. The point is to try to take option 1 of Gener-
icContractCut whenever possible. Used in GH, every time a test finds a contractible edge, we save
one maximum flow computation. If the tests do not identify any contractible edges, then we have
no choice but to use the flow computation. Since maximum flow computations are expensive, fast
tests for contractibility are a big win—even if sometimes they do not apply—because we do not
lose much if they fail and we gain a lot if they pass.

In their paper, Padberg and Rinaldi give a very general class of tests. Some of these would
be quite time consuming, and in fact, could dominate the running time of the new minimum cut
algorithms. We single out the four cheapest tests, which are reasonable to use. We refer to these
as PR tests or PR heuristics. We say that a test passes if one of the conditions is satisfied, which
implies that the edge is contractible. Recall for the following formulas that c(v) denotes the total
capacity incident to vertex v.

Lemma 2.2.3 [51] Let �̂ be an upper bound on �(G). If v;w 2 V satisfy any of the following conditions:

PR1 c(v;w)� �̂

PR2 c(v) � 2c(v;w)

PR3 9u such that c(v) � 2(c(v;w) + c(v; u)) and c(w) � 2(c(v;w) + c(w;u)),

PR4 c(v;w) +
P

u
min(c(v; u); c(w;u))� �̂

then one of the following conditions must hold:

1. v and w are on the same side of some minimum cut.

2. fvg is a minimum cut.

3. fwg is a minimum cut.

4. There is only one minimum cut and fv;wg is the only edge that crosses it.



18 CHAPTER 2. BACKGROUND

5. There is only one minimum cut and the edges whose capacities are included in the sum for test PR4
are the only edges that cross it.

Written mathematically, these tests are difficult to interpret, but they are actually fairly intu-
itive. This intuition comes out best in the proof, so we give that now.

Proof. PR1 says that if we have an edge with capacity greater than an upper bound on the min-
imum cut value, then it is not in some minimum cut. This result is immediate from the fact that
the value of any cut including fv;wg is at least c(v;w). If the capacity and bound are equal, then a
minimum cut that includes fv;wg can have no other edges. Thus if there is another minimum cut
it cannot include fv;wg, and otherwise we have that condition 4 holds.

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

����������������������
����������
����������

����������
����������
����������

�������������������� �����������������������
�����������
�����������

�����������
�����������
�����������

����������������������
�����������
�����������
�����������
�����������

����������
����������
����������
����������

v
w

v
w 44

Figure 2.1: PR2: if c(v;w) � c(v)=2, then the cut on the right is no bigger than the cut on the left.

PR2 says that if we have an edge fv;wg with capacity at least half the capacity of v, then either
it is not in some minimum cut or fvg is a minimum cut. To see this, consider such an edge (see
Figure 2.1). If it does not cross some minimum cut then condition 1 holds, so suppose it crosses
every minimum cut. Fix one of the minimum cuts. What happens if we move v to the other side
of the vertex partition? The cut value loses c(v;w) and may gain as much as c(v)-c(v;w). But the
second quantity is at most c(v;w), so we cannot make the cut value larger, which contradicts the
assumption that fv;wg crosses every minimum cut. Of course, if fvg is the minimum cut, then we
cannot move v across the partition, but that is the only other possibility. Note that by symmetry,
PR2 also passes if c(w) � c(v;w).

PR3 is a more complicated form of PR2. Again, consider an edge where the conditions hold.
Suppose u is on the same side of some minimum cut as v. Then by Lemma 2.2.1 we can consider
G=fu; vg, because it has the same cut value. This merges fu;wg and fv;wg, so the assumption that
c(w) � 2(c(v;w)+ c(w;u)) implies that PR2 applies at w in the contracted graph. Now suppose u
is not on the same side of the minimum cut as v; that is, it is on the same side as w. By symmetry,
the same argument applies. So either way, fv;wg does not cross some minimum cut or one of fvg

or fwg is a minimum cut. (See Figure 2.2)

PR4 is a generalization of PR1. We consider fv;wg and all of the length two paths between v

and w (see Figure 2.3). Any cut separating v and w must include fv;wg and at least one edge from
each of the paths of length two. The test is computing the minimum value that this quantity can
have; clearly if it is greater than an upper bound on the cut value, then v and w cannot be on the
same side of any minimum cut. And as in PR1, if the test is met with equality it is possible that the
edges we have summed over are the only edges of the unique minimum cut, which means that
case 5 holds. Note that any edge that passes PR1 will pass PR4, but we distinguish the two tests
because PR1 is cheaper to compute.

We still have not argued that these tests can help us. Observe first that conditions 4 and 5 are



2.2. CONTRACTION 19

�����������
�����������
�����������

�����������
�����������
�����������

����������������������
�����������
�����������
�����������
�����������

����������
����������
����������
������������������������������

����������
����������
����������

����������
����������
����������

�����������
�����������
�����������
�������������������������������

�����������
�����������
�����������

�����������
�����������
�����������

���
���
���
���

���
���
���
���

����

���� ����

���
���
���
���

����

������

��
��
��
��

���
���
���
���

��
��
��
��

������

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

�
�
�
�

�
�
�
�

�����������������������
�����������
�����������

�����������
�����������
�����������

����������������������
�����������
�����������
�����������
�����������

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����������
����������
����������
����������
������������������������������

����������
����������
����������

����������
����������
����������

���
���
���

���
���
���

���
���
���

���
���
���

����������

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

�����������
�����������
�����������

�����������
�����������
�����������

����������������������
�����������
�����������
�����������
����������� ����������

����������
����������
������������������������������

����������
����������
����������

����������
����������
����������

u

vw

u

w v

vw

uu

w v

2

2

2

2

2

2 22

2

2

2

2

Figure 2.2: PR3: if c(v;w)+ c(v; u)� c(v)=2 and c(v;w)+ c(w;u)� c(w)=2, then for either case of
a cut containing fv;wg (on the left), there is a cut that does not contain fv;wg and is no bigger (on
the right).

w

v

Figure 2.3: PR4: any cut separating v and w must also cut one edge from each of the paths of
length two.



20 CHAPTER 2. BACKGROUND

technicalities that will not concern us. In order to have�̂ set to �(G) we must have already found a
minimum cut, so there is no question of missing the unique minimum cut by ignoring possibilities
4 and 5. Thus when fv;wg passes a PR test, it either is not in some minimum cut, or one of fvg or
fwg is a minimum cut. So as long as we check c(v) and c(w) and update �̂ if appropriate, fv;wg is
contractible if it passes a PR test.

Note that we need to be more careful if we want to find all minimum cuts. In that case we
would want condition 1 strengthened to a guarantee that fv;wg is not in any minimum cut. It is
easy to show that we can get that condition by making the inequalities in the tests strict. Likewise,
if we are interested in finding near-minimum cuts, we must relax the tests further. In particular,
if we want to find all cuts with value at most ��(G), we must introduce � into the inequalities of
the tests. This detail is only an issue for KS and K, which are capable of finding all minimum cuts
in the same time bounds, and can be extended to find near-minimum cuts.

It is not hard to see that it is possible to have a graph where none of these tests apply. Consider
an uncapacitated graph with minimum cut at least 2 (PR1 fails), where each vertex has degree at
least 3 (PR2 fails), and there are no triangles (PR3 and PR4 fail). An example is a cycle on n - 2

nodes with an extra vertex connected to every other node on the cycle and another extra vertex
connected to the remaining nodes (see Figure 2.4). We call this graph a bicycle wheel (because of
the heavy rim and light, interleaved spokes), and in fact test our codes on it.

Figure 2.4: A graph on which all PR tests fail.

2.2.2 The Nagamochi-Ibaraki Algorithm

Other than by computing maximum flows, we still have not given a guaranteed way to identify
a contractible edge. As discussed above, given a subroutine to find a contractible edge, we get a
minimum cut algorithm: repeatedly find a contractible edge and contract it until the graph has
only two vertices. This method requires n - 2 calls to the subroutine. So the question is whether
there is a fast such subroutine. Nagamochi and Ibaraki [47] show that there is a surprisingly
simple one.

For the purposes of intuition, consider uncapacitated multigraphs. Suppose we have a graph



2.2. CONTRACTION 21

with minimum cut value one. Then the graph is connected, so we can find a spanning tree. For
every minimum cut, the one edge of the cut must be in the tree, or else it is not spanning. Thus all
the minimum cut edges are included in this spanning tree. Any other edges are not in any mini-
mum cut, and are therefore contractible. Generalizing this idea, we define a sparse k-connectivity
certificate to be a subgraph with at most kn edges in which the value of any cut is the minimum of
k and the cut’s original value. So for k � �, if we find a sparse k-connectivity certificate, any edge
not in the certificate is contractible. Further, as suggested by the example above, we can find such
a subgraph by repeatedly (k times) finding a maximal spanning forest and removing those edges
from further consideration.

There are still two problems with this idea. First, in a capacitated graph, it is not efficient
to repeat any step � times. Second, it is not guaranteed that we find a contractible edge, as the
certificate may contain all of the original edges.

Nagamochi and Ibaraki solve these two problems simultaneously. They use a graph search
called scan-first search that finds all of the maximal spanning forests in one pass over the graph,
and they show that this search also finds a minimum v-w cut for some v and w, which guarantees
that we will be able to do at least one contraction. Note that it is possible to invert this perspective.
We can say that Nagamochi and Ibaraki gave an algorithm that efficiently finds a minimum v-w
cut and also happens to find a sparse connectivity certificate, which provides a good heuristic for
obtaining more contractions. It is a mistake, however, to proceed to ignore this heuristic, as it
sometimes allows NI to finish in one search, instead of n- 1.

In more detail, we build the maximal spanning forests by visiting the vertices in some order.
When we visit a vertex, we assign to appropriate spanning forests all unassigned incident edges.
In order to assign edges to forests, we keep track for each vertex of the maximum tree to which
any incident has been assigned (r(v)). Let Ei be the edges of the ith maximal spanning forest. The
remarkable theorem proved by Nagamochi and Ibaraki is that if we always pick the vertex with
maximum r(v) to visit next, and assign incident edge fv;wg to Er(w)+1, then we get the desired
spanning forests.

ScanFirstSearch(G)

for each v 2 V

r(v) 0

mark v unvisited
for each e 2 E

mark e unassigned
E1  E2  � � � EjEj ;
while there is an unvisited node

v the unvisited node with largest r(v)
for each unassigned fv;wg

Er(w)+1  Er(w)+1 [ fv;wg

if (r(v) = r(w)) r(v) r(v) + 1

r(w) r(w) + 1

Mark fv;wg assigned
Mark v visited

We now sketch the proof that scan-first search finds the desired forests. First, note that we do



22 CHAPTER 2. BACKGROUND

indeed maintain the property that r(w) is the maximum forest in which w has an incident edge. It
follows that by adding fv;wg to Er(w)+1, we can never create a cycle, so we do indeed find forests.
It remains to argue that when we add fv;wg to forest i+ 1, there is a path from v to w in forest i. (If
this statement is true, we are always adding each edge to the first forest in which it does not create
a cycle, which implies that none of the previous forests could have been made larger by adding
this edge, which means that we are properly simulating the idea of repeatedly finding maximal
spanning forests and deleting them.) When assigning an edge to a tree, consider also directing it
from the vertex being visited to the unvisited vertex. From the way we assign edges to forests, it is
clear that each vertex has in-degree at most one in a given forest. Further, if we have two distinct
trees in a given forest, each with at least one edge, then they cannot become connected, because
the roots have already been visited, so there are no more unassigned incident edges to add there.
Now, when we add fv;wg to forest i + 1, we have r(v) and r(w) each at least i, so both of v and
w have an incident edge in forest i. Assume for contradiction that there is no path between v and
w in forest i, in which case they are in distinct trees. Let v0(w0) be the root of the tree containing
v(w), and assume without loss of generality that v0 is visited before w0. Let v0; v1; : : : ; vh = v be
the unique path from v0 to v in the tree containing v. After visiting v0, r(v1) is at least i, and r(w0)

is at most i- 1, since we assume w0 is visited second. So we now visit v1 before w0, because it has
a larger r. Repeating this argument, it follows that we visit v before we visit w0, but in order for
w0 to be the root of the tree containing w, it must be visited before v, so we have a contradiction.

We now direct our attention to the second claim, that scan-first search also finds a minimum
v-w cut for some v and w. Consider the last edge assigned. This edge necessarily connects the
next-to-last vertex visited (v) to the last vertex visited (w). Each edge of w is clearly added to a
different forest, so the fv;wg edge is assigned to Ec(w). But this means that any cut containing fv;wg

has value at least c(w), or else we could have put the edge in an earlier forest. In particular, this
means that �v;w � c(w). Since �v;w cannot be more than c(w), we have that in fact �v;w = c(w).

Thus we always compute �v;w(G) for some v and w and can therefore always take option 2
of GenericContractCut. Note that unlike GH, NI does not pick v and w, it just finds the minimum
v-w cut for some v and w. Further, it is possible that we find many edges to which we can apply
option 1 of GenericContractCut.

Using an appropriate priority queue to pick the next vertex to scan, the search runs in O(m+

n logn) time; thus the total time of NI is O(n(m+ n logn)). Note that we have not talked about
capacitated graphs; but we do not need to explicitly construct the Ei, so for integer weights there
is no problem. In fact the proofs carry over for real weights as well. See Section 3.4 for discussion
of what is actually implemented.

Matula’s 2+ � Approximation Algorithm

Recall that NI only guarantees a reduction of one node per search. This situation arises because we
do not want to make a mistake. However, if we are willing to settle for an answer that is within
a constant factor of the minimum cut, we can guarantee that the number of edges is reduced by a
constant factor with each search. This result is due to Matula [46]. The algorithm is as follows:



2.2. CONTRACTION 23

MatulaApprox(G, �)

compute d, the minimum over v of c(v)
compute a sparse

�
d

2+�

�
-connectivity certificate and contract all of the non-certificate edges

recurse
return the smaller of d and the result of the recursive call

This algorithm gives an answer within 2+� of the minimum cut. The argument that this result
holds is easy. If the minimum cut is less than d=(2 + �), then the sparse certificate contains all of
the minimum cut edges, so the graph given to the recursive call will have the same minimum cut.
When the minimum cut is more than d=(2 + �), since the minimum cut is at most d, d is a 2 + �

approximation.

We now argue the running time, assuming that the total edge capacity is bounded by a poly-
nomial in n; the results can be extended to arbitrary capacities [35]. Since the original graph had
dn=2 edges, and the certificate has only dn=(2 + �), an 
(�) fraction of the edges must be elim-
inated at each step. It follows immediately that the running time is O(m=�) for uncapacitated
graphs, or O(m(logn)=�) for capacitated graphs with total edge weight polynomial in n.

2.2.3 The Karger-Stein Algorithm

Karger and Stein take a very different approach to pick edges to contract. Rather than finding
a contractible edge, they just pick an edge at random and contract it. The intuition behind this
surprising action is that relatively few edges cross any given minimum cut (that is what makes
the cut minimum), so there is a reasonable chance that the edge is in fact contractible.

In order to explain this algorithm, we start by describing a simpler algorithm of Karger [33],
which shows one of the key ideas. Consider our capacitated graph as an uncapacitated graph with
multiple edges to represent capacitated edges. Pick an edge at random. Clearly the probability
it is in the minimum cut is only �=m. Further, since each edge has unit capacity, each node must
have at least � incident edges, so m � �n=2. (If v had fewer incident edges, fvg would be a smaller
cut.) So the probability of picking a minimum cut edge is at most �

�n=2
= 2=n. We say a minimum

cut survives a contraction if no edge that crosses it is contracted. It follows that the probability that
a given minimum cut survives k successive contractions (being contracted down to n - k nodes) is
at least

(1-
2

n
)(1-

2

n- 1
) � � �(1- 2

n- k+ 1
) =

n- 2

n

n- 3

n- 1
� � � n- k - 1

n- k + 1
=

�
n-k

2

�
�
n

2

� (2.6)

In particular, if we repeatedly contract random edges until the graph has two nodes, the minimum
survives with probability at least 1=

�
n

2

�
. It follows that we can repeat this algorithm O(n2 logn)

times to find a minimum cut with probability at least 1 - 1=n. This algorithm also works for
capacitated graphs; the only modification we need to make is that edges should be picked for
contraction with probability proportional to capacity.

Unfortunately, the above algorithm does not run very fast. One iteration of a sequence of
n- 1 contractions can take O(n2) time; O(n2 logn) iterations can take O(n4 logn) time. However,
Karger and Stein [39] point out that the highest probability of failure is when the graph is small.



24 CHAPTER 2. BACKGROUND

In fact, if we contract down to n=
p
2 nodes, Equation 2.6 says that the probability the minimum

cut survives is at least one half. Thus instead of contracting down to two nodes, it makes sense to
use a recursive approach:

RecursiveContract(G)

if G has less than 7 vertices, compute the minimum cut by brute force and return it
repeat twice:

contract down to d1+ n=
p
2e nodes, giving G0

RecursiveContract(G 0)
return the minimum of the two answers from 2b

Note that the base case is not n = 2 for technical reasons: when n is less than 7, d1+ n=
p
2e is

bigger than n.

Theorem 2.2.4 [39] The recursive contraction algorithm runs inO(n2 logn) time and finds the minimum
cut with probability 
(1= logn).

It follows that O(log2n) repetitions run in O(n2 log3 n) time and find a minimum cut with
probability at least 1- 1=n. Note that since the probability of success holds for any minimum cut,
the algorithm actually finds all of them with high probability.

KS(G)
repeat RecursiveContract(G) O(log2 n) times and return the smallest cut seen.

Notice that the constant in the O, the number of iterations we must run, depends on the exact
analysis of the success probability of the recursive contraction algorithm. This point will cause us
some trouble in the next section, when we modify the algorithm.

A New Variant of KS

We note that KS makes the pessimistic assumption that the total edge capacity when n nodes
remained was n�=2. Under this assumption, contraction to less than n=

p
2 nodes might not pre-

serve the minimum cut with probability at least 1=2. Consider, however, the case of two cliques
joined by a single edge. In this case, the original algorithm is being overly conservative in con-
tracting to only n=

p
2 nodes. It could in fact contract to a far smaller graph while still preserving

the minimum cut with reasonable probability.

We give a variant of the recursive contraction algorithm that has better behavior in this respect.
Unfortunately, we have been unable to prove that it does not have worse behavior when the graph
really does have only n�=2 edges. In some sense it is not terrible that we cannot prove it is never
worse, as we hope that our experiments would reveal such a problem. However, our experiments
cannot be exhaustive, so it would be nice to know that there is not a bad graph we did not think of.
Even worse, it turns out that a tiny change to this variant would cause it to have infinite expected
running time, so we do need to at least show a polynomial time bound, even though we cannot
show the O(n2 log3n) time bound that we would like. Note that we also must carefully analyze
the success probability, as that is the only way to guarantee the correctness of our implementation.



2.2. CONTRACTION 25

We now describe the variant. As in the PR tests, �̂ is an upper bound on the minimum cut.

NewRecursiveContract(G)

compute minv c(v), and update �̂ if appropriate
if G has only two nodes, return �̂
repeat twice:

mark each edge fv;wg independently with probability 1- 2-c(v;w)=�̂

contract all marked edges, giving G0

NewRecursiveContract(G 0)
return �̂

There are two main differences to explain. First, we do not need to stop at 7 nodes, because
we do not get stuck there any more. (Recall that the old algorithm got stuck there because it tried
to contract to a specific size, and that size was not smaller than n when n was less than 7. Now
we mark edges, so we freely contract down to one.) Notice also that we do not even bother to stop
at 2, which seems the natural stopping point, because the first step updates�̂ to the minimum cut
of a two node graph. The second change is the way we pick edges for contraction. To see why
the new method makes sense, again consider the probability that the minimum cut survives the
contractions. Let c1; c2; : : :cj denote the capacities of the minimum cut edges. The probability the
minimum cut survives is

2-c1=�̂2-c2=�̂ � � �2-cj�̂ = 2-
P

ci=�̂ = 2-�=�̂

Since �̂ is an upper bound on �, this probability is always at least 1=2.

So the new algorithm preserves the minimum cut with the same probability, but it may con-
tract more edges. For example, given two cliques joined by a single edge, if�̂ is close to � (= 1), the
new algorithm will contract many more edges, reducing the depth of the recursion. Note, how-
ever, that we must be careful, because if �̂ is very far from �, the probability of contraction will
be very small and the recursion depth and running time could get very large. Thus by this mod-
ification we hope to do more contractions when there are excess edges and reduce the recursion
depth, but in the process we introduce the risk of not contracting enough edges and increasing the
recursion depth. So we must be careful.

We resolve this problem by noticing that we have a convenient upper bound on � in the form
of the minimum degree of the input graph. If we use this upper bound, then the probability that
any given vertex v is not involved in a contraction is at most 2-c(v)=�̂ , which is at most 1=2. Thus
we expect at least half of the nodes to be involved in a contraction during each execution of step
(b), which means that we expect the contracted graph to have only 3n=4 nodes. Since we can
do the O(n) contractions in O(m) time, if we actually reduced to 3n=4 nodes each time then the
recurrence for the running time would be

T(n) = O(n2) + 2T(3n=4) = O(nlog4=3 2) � O(n2:4)

Unfortunately, we are not guaranteed such a reduction, so we cannot use this recurrence relation.
Nevertheless, we conjecture that the new algorithm’s performance is in fact equal to that of the
old one, but this remains to be proved.

It is tempting to stop worrying about the running time now, because we are implementing the
algorithm, so we are interested more in what it actually does than the best bound we can prove,



26 CHAPTER 2. BACKGROUND

but it turns out that we must be very careful. Recall that in the original algorithm, the minimum
cut survived to depth k of the recursion with probability 
(1=k). That was fine originally, since
the depth was known to be finite, but now we must be careful. Suppose we made our base case
one node, instead of two. Now we do not terminate until the minimum cut is contracted, so the
probability we do not terminate at depth k is 
(1=k). Hence the expected depth of the recursion
is infinite!

We will now argue that when the base case is two nodes, the running time is in fact polynomial.
From above, we can say that the probability a given node is not contracted away is at most 1=4.
Thus a Chernoff bound tells us that when k nodes remain, the probability that we do not contract
away (1 - �)k=4 of them is at most e-�

2k=8. So while k = 
(logn), with high probability we do
get a constant factor reduction at each step, so with high probability the recursion only descends
to depth O(logn) before the graph is down to c logn nodes.

After this point, since the graph has at least three nodes before termination, we have total edge
weight at least 3�=2. Thus any time we do random contractions, the probability that all edges
survive is at most 2-3=2. Suppose now that a sequence of k logn contractions does not bring the
graph down to two nodes. We have then that in k logn independent trials, an event that happens
with probability at most 2-3=2 occurred (k- c) logn times. That is, taking � = 2

p
2- 1- 2

p
2c=k,

we have that we are exceeding the expected the number of non-contractions by a factor of 1 + �.
Applying Chernoff bounds, we get that the probability of this happening is at most

e
-�

2
k log n

8
p
2

For k sufficiently larger than c (but still constant), � is constant, so we get that the probability is
n-
(k) . Since the number of paths only grows as 2k, a union bound tells us that the expected
depth is O(logn), which implies a polynomial running time.

It remains to show the success probability of the new algorithm, which we need to determine
how many iterations to run. Unfortunately, we cannot afford to be sloppy here, as whatever
constant we compute will be hard-coded into an implementation. Since the algorithm is Monte
Carlo, we have no other way to ensure that an implementation succeeds with an appropriate
probability. Therefore, we devote the rest of this section to a careful analysis of the new algorithm.
Readers not interested in the details of the analysis can safely skip it.

We begin by reviewing the success probability analysis of the old algorithm. The main idea
is to consider the tree defined by the recursion. (A node represents a call to RecursiveContract,
and its children are the recursive calls.) We can use the tree to write a recurrence for the success
probability. In particular, if we define p(k) to be the probability that a node at height k succeeds
in finding the minimum cut of the graph it is given, then p(0) = 1 and

p(k) � 1- (1-
1

2
p(k- 1))2 = p(k- 1) -

(p(k- 1))2

4

This recurrence follows from the algorithm; we succeed if in either trial the minimum cut survives
the contractions and the recursive call is successful. Since we already argued that the minimum
cut survives the contractions with probability at least 1/2, and the probability of a recursive call
succeeding from a height k node is p(k - 1), we get the desired recurrence. The base case comes
from the fact that the algorithm uses a deterministic strategy when the graph is small enough.



2.2. CONTRACTION 27

To solve this recurrence, we use a change of variables. Let q(k) = 4=p(k)- 1. This substitution
gives the recurrence

q(k) = q(k- 1) + 1+ 1=q(k- 1)

It is easy to verify by induction that

k+ 3 � q(k) � k+ Hk+2 + 3=2

Assembling, we get that

p(k) � 4

k+ Hk+2 + 3=2

Now, since we succeed in a height k tree if and only if the minimum cut survives at some depth k

node, and Hk � 1+ ln(k), we get the following lemma:

Lemma 2.2.5 The probability that the minimum cut survives at some recursion node of depth d in the
RCA is at least 4

d+ln(d+2)+5=2
.

As the depth of the recursion is roughly (i.e., up to small additive factors) logp
2
n = 2 logn, it

follows that the success probability is 
(1= logn).

We now consider the new algorithm. As we already argued, the new algorithm also preserves
the minimum cut with probability at least 1=2 before recursing, so Lemma 2.2.5 holds. Unfor-
tunately, we no longer know the depth of the recursion. Whereas in the old algorithm we were
guaranteed a reduction in the number of nodes from n to d1+n=

p
2e in each recursive call, in the

new algorithm we only expect to reduce the number of nodes by a factor of 3=4. We will therefore
have to do some additional work to determine the depth at which the minimum cut is actually
found. We begin by assuming that the upper bound�̂ has been set to �. At the end of this section,
we justify our assumption.

Our analysis is based on a network reliability analysis from [37]. That paper considers a graph
in which each edge fails with probability p, and determines the probability that the graph remains
connected. This problem is related to our objective as follows. Our goal is to show that at a
certain recursion depth, the recursion has been terminated, which means that our graph has been
contracted to a single node. That is, we want the set of contracted edges to span (connect) all of
G. Inverting this objective, we can consider deleting the set of edges that were not contracted, and
require that deleting these edges not disconnect the graph.

Now consider a particular recursion node at depth d. The graph at this node is the outcome
of a series of independent “contraction phases” in which each edge is contracted with probability
1- 2-1=� (by our assumption that �̂ = �). That is, the probability of not being contracted is 2-1=�.
It follows that at depth d, the probability that any edge is not contracted is 2-d=�. We now invert
our perspective as in the previous paragraph. We ask whether deleting the uncontracted edges
leaves us with a single component. In other words: we consider deleting every edge of G with
probability 2-d=�, and ask whether the remaining (contracted) edges connect G.

The following is proven in [45] (see also [37]), using the fact that among all graph with mini-
mum cut �, the graph most likely to become disconnected under random edge failures is a cycle:



28 CHAPTER 2. BACKGROUND

Lemma 2.2.6 Let G have n edges and minimum cut �. Then the probability that G is not connected after
edge failures with probability 1- p is at most n2p�.

We might hope to apply this lemma as follows.

Corollary 2.2.7 At a node at recursion depth k logn, for k > 2, the probability that G has not been
contracted to a single node is at most n2-k.

Proof. At depth k logn, the (cumulative) probability of non-contraction for a given edge is p =

2-(k logn)=� = n-k=�. Plugging into Lemma 2.2.6, we find that the probability we have not con-
tracted to a single node is at most n2-k.

Unfortunately, this lemma is not sufficient to prove what we want. At depth 3 logn in the
recursion tree, there are n3 recursion nodes. Although each one has only a 1=n chance of not
being a leaf of the recursion tree, there is a reasonable chance that not all are leaves. We must
therefore perform a more careful analysis.

We evaluate the probability of success as the product of two quantities: the probability that the
minimum cut survives contraction to the given depth and the probability that the minimum cut is
found by our algorithm given that it survives. Conditioning on the survival of the minimum cut
makes our analysis somewhat complicated.

Given the conditioning event, there is some node N at depth k logn in which the minimum cut
has survived. We would like to claim that at this point the contracted graph has only two nodes.
Unfortunately, conditioning on the survival of the minimum cut means that no minimum cut edge
has been contracted, a condition that breaks our reliability model.

To deal with this problem, we rely on the fact that our new algorithm examines the degrees of
the nodes in its inputs. It therefore suffices to show that at least one side of the minimum cut is
contracted to a single node, since this single node will be examined by the algorithm. We will in
fact argue that both sides will be contracted to a single node. Another way to say this is that the
edge failures break G into exactly two connected components.

Lemma 2.2.8 Conditioned on the fact that a minimum cut has failed, the cycle is the most likely graph to
partition into more than two pieces under random edge failures.

Proof. A straightforward modification of [45].

Corollary 2.2.9 Conditioned on the fact that a minimum cut has failed, the probability a graph partitions
into 3 or more pieces is at most np�=2.

The following lemma is an immediate corollary.

Lemma 2.2.10 Conditioned on that fact that the minimum cut survives at some node of depth k logn, the
recursive contraction algorithm finds the minimum cut with probability at least

f(k; n) = 1- n1-k=2:



2.2. CONTRACTION 29

Proof. Consider the depth k logn recursion node at which the minimum cut survives. At this
depth, the probability of edge “failure” is n-k=�. From the previous lemma, f(k; n) is the probabil-
ity that the contracted edges at this recursion node reduce the graph to two nodes, implying we
find the minimum cut.

Lemma 2.2.11 For any k, at depth k logn, the new RCA finds the minimum cut with probability at least

4

k logn+ ln(k logn+ 2) + 5=2
f(k; n):

Proof. From Lemma 2.2.5 we find that the probability that the minimum cut survives in some
recursion node at depth d = k logn is at least 4

d+ln(d+2)+5=2
. We now condition on the event

having taken place and apply Lemma 2.2.10 to find the probability of success f(k; n) given this
event. The overall probability is the product of these two quantities.

Corollary 2.2.12 The probability that a single iteration finds the minimum cut is at least

4

2 logn+ 2 log logn + ln(2 logn + 2 log logn+ 2) + 5=2
(1-

1

logn
)

Proof. Set k = 2+
2 log logn

logn
in Lemma 2.2.11

Note it is easy to evaluate the quantity of Lemma 2.2.11 on-line, so it is not necessary to analyt-
ically determine the optimal k. We give Corollary 2.2.12 just to show that the success probability
is again roughly 
(1= logn).

From this analysis of the success probability of a single iteration, it is easy to compute the num-
ber of iterations needed to achieve a specified success probability. In particular, if we want success
probability p, and we denote the maximum value (over k) of the probability in Lemma 2.2.11 as s,
then i, the number of iterations we need is given by

(1- s)i < 1- p

Finally we consider what happens if�̂ is more than �. In this case, the probability of contracting
a minimum cut edge at any recursion node is strictly less than one half. The result is that the
probability of minimum cut survival at depth k quickly converges to a constant, instead of falling
off linearly with k. (Note that we would get a similarly dramatic change if we made the probability
strictly greater than one half: the probability would fall off exponentially with k.) In particular,
for �̂ > �,

Pr[success] > 2
1+

�

�̂ - 2
2
�

�̂

Further, revising Lemma 2.2.10, we see that f(k; n) = 1 - n
1-

k�

2�̂ . But since the probability of
the minimum cut surviving at a given depth is at least a constant, we can consider going to an
arbitrary depth, in which case this quantity becomes 1. Note that we could attempt to deliberately
use �̂ > �, which would raise our success probability, but we would have to very careful, as we
could easily cause the algorithm to run forever. This idea should be studied further.



30 CHAPTER 2. BACKGROUND

2.3 Tree Packings

Recall that in the first section we approach the minimum cut problem by exploiting the nice duality
between s-t minimum cuts and maximum flow. Given that this duality exists, it is natural to ask
whether the minimum cut problem has its own dual, which we could exploit directly. It turns out
that there is such a dual, and in this section we discuss algorithms that use it.

An a-arborescence is a directed spanning tree rooted at a; that is, a directed acyclic subgraph
where a has in-degree zero and every other node has in-degree one. An a-cut is a cut; its value
is the total capacity of edges crossing the partition from the side that includes a to the other. Two
theorems of Edmonds relate a-cuts and a-arborescences:

Theorem 2.3.1 [20] In a directed graph the maximum number of edge-disjoint a-arborescences equals the
minimum value of an a-cut.

Theorem 2.3.2 [19] The edges of a directed graph can be partitioned into k a-arborescences if and only if
they can be partitioned into k spanning trees where every vertex except a has in-degree k.

We refer to a set of edge-disjoint trees as a tree packing. It follows that if we take our undirected
graph and transform it into a directed graph as we did for maximum flows, then for an arbitrary
a, the maximum cardinality of a tree packing where every node except a has the same in-degree
is equal to the value of the minimum cut.

If we try to consider undirected spanning trees, we get a theorem that is close, but has some
slack in it. In particular, Nash-Williams shows:

Theorem 2.3.3 [49] An undirected graph with minimum cut � contains at least b�=2c edge-disjoint span-
ning trees.

Note that NI packs spanning trees (and forests), but it does so with different intent, as it does
not attempt to find a maximum packing, but rather a maximal one. NI also packs undirected
spanning trees, which means that in general it cannot hope to find more than �=2 full trees.

In this section we describe algorithms that use tree packings to find the minimum cut. First
we review an algorithm of Gabow that runs in time proportional to the value of the minimum cut.
We then give a strongly polynomial algorithm due to Karger. It is not necessary to understand
Gabow’s algorithm to understand Karger’s, although it is used in the implementation. Some
readers may wish to skip directly to the section on Karger’s algorithm.

2.3.1 Gabow’s Algorithm

Edmonds’ theorems about the relation between arborescences and minimum cuts are analogous to
the max-flow–min-cut theorem. It is therefore natural to look for an “augmenting trees” algorithm
to find a tree packing, analogous to the classical Ford-Fulkerson augmenting paths algorithm to
find a maximum flow [22]. This is precisely what Gabow [23] gives.



2.3. TREE PACKINGS 31

The augmenting paths algorithm for maximum flow works by repeatedly finding a path from
the source to the sink in the residual graph and sending as much flow along it as possible. This
does not mean that it is possible to greedily choose flow paths; a new augmenting path may elim-
inate the flow on some edge of a previous path, but this just amounts to the two paths exchanging
segments. (If one path goes from s to v to w to t, and another goes from s to w to v to t, this
amounts to one path going from s to v to t and the other going from s to w to t.)

Likewise, the basic idea of Gabow’s algorithm is to repeatedly find a tree and delete it from
the graph until it is impossible to find any more. Again, this is not to say that a greedy strategy
works—on the contrary, in its attempt to find a new tree, the algorithm must consider changing
the trees already found.

More precisely, given a set of trees, we try to build a new tree by starting with an empty forest
(just vertices) and connecting trees of the forest until we have a new tree. To avoid confusion, we
refer to a tree of the forest as an f-tree. We always hope to be able to find an edge that connects two
f-trees, but it is possible that we cannot do so with unused edges. Nevertheless, we may be able to
“trade” edges with an existing tree, taking an edge we need to link up two f-trees and giving an
unused edge so that the tree stays connected. This process can of course be more complicated; we
may need to move edges around many of the existing trees in order to get an edge we want.

Remember that there is also another restriction: we must ensure that if the maximum packing
has k trees, then every node except a will have in-degree k. Notice that this restriction is over the
entire packing. That is, we do not require that each node other than a have in-degree one in each
tree, merely that the sum of a node’s in-degrees over the trees is k. To handle this restriction, we
maintain the invariant that each f-tree has precisely one node that does not have enough incoming
edges (except for the tree that contains a, since a never needs incoming edges). We call such a node
the root of its f-tree. (We always call a a root.) When we look for an edge that connects two f-trees,
we actually want an edge that is directed to the root of one of them (never a). Then when we
merge the two f-trees there is again precisely one node that needs incoming edges, and when we
succeed in building a whole tree, a is necessarily the root, which implies that we have satisfied the
degree constraints.

Given this framework, in order to make progress we need to find a way to both increase the
in-degree of an f-tree root and connect that f-tree to another f-tree. Consider an f-tree root v (not
a). The easy case is if v has an incoming edge from a vertex in another f-tree. Then we are all set.
However, it is possible that all of v’s incoming edges are from elsewhere in the same f-tree. In this
case we need to try trading edges with some tree T. We give T one of v’s incoming edges, e, so
that v’s in-degree will increase by one; T gives e0, one of the edges on the cycle formed by adding
e, back to the set of unused edges so that it will stay a tree. This exchange effectively changes the
root of the f-tree to v 0, the head of e 0, because that is the node that now lacks an incoming edge.
We hope that now an incoming edge of v0 connects to another f-tree, but of course we may need to
try another trade. This process terminates when we either succeed in connecting to another f-tree
or decide that none of the possibilities work out.

Note that we are looking for a sequence of edge trades; we refer to this sequence as an aug-
menting path. (This augmenting path is in some sense analogous to the augmenting paths of the
Ford-Fulkerson maximum flow algorithm, but they are not the same.) We now give pseudocode
for the high level work of Gabow’s algorithm:



32 CHAPTER 2. BACKGROUND

PackTrees(G, a)

repeat:
initialize a new forest of f-trees, with each vertex in its own f-tree
while there is more than one f-tree

mark all f-trees active, except the one containing a

while there are active f-trees
pick an active f-tree and search for an augmenting path
if the search fails, return the set of trees found so far
else do the sequence of trades, and mark inactive both of the f-trees involved

add the one f-tree to the set of trees found so far

The real trick of Gabow’s algorithm is to search for an augmenting path in an efficient manner.
Intuitively, it should be possible to consider every edge at most once, so it should take no more
than O(m) time, but that means it could take O(nm) time per tree, and O(�nm) time total. With
such a bound we would not gain much by considering tree packings instead of maximum flows.
However, Gabow shows how to find many augmenting paths in O(m) time, such that the time
to add a tree is only O(m logn). The remainder of this section describes how to find augmenting
paths efficiently; readers not interested in such details may wish to skip on to Karger’s algorithm.

The searches are done in a breadth-first manner. We keep track of the candidate augmenting
paths by labeling each edge with the previous edge in the path. So when we start considering an
f-tree root, we give all of its incoming edges a null label and add each to a queue. As a general
step, we take the first edge from the queue and consider adding it to another tree. Adding an edge
to a tree creates a cycle, so we label each edge of the cycle with the current edge and add it to the
queue (we make sure that we only label each edge once per “round”, so there is no question of
relabeling edges). We also label unused incoming edges of nodes on the cycle with the cycle edge
incoming to that node. If we ever find an edge that connects two f-trees we halt, and trace back
along the labels to figure out how to update.

The efficiency of the above depends on several things. First, when we take an edge from the
front of the queue, we do not try adding it to all the other trees. Instead we cycle through the
trees, moving on to tree i when we first find an edge from tree i - 1 on the front of the queue.
Second, we process the f-trees in rounds, where each edge can be labeled at most once in a round.
In particular, we start a round by marking each f-tree (except the one containing a) as active. We
then pick an active f-tree, search for a way to connect it to another f-tree, make the connection and
mark both trees inactive. The point is to avoid looking at an edge too many times. Efficiency here
also depends on the fact that the labeling is ordered so that the labeled edges in any tree form a
subtree, making it easy to look at only the unlabeled edges in a cycle. (Given that the labeled edges
form a subtree, we can keep track of its root. Now given the endpoints of an edge, we figure out
which endpoint is labeled and jump to the root of the labeled subtree. We now either find that the
unlabeled vertex has a labeled ancestor, in which case we label down to the unlabeled vertex from
there, or we label from the root of the labeled subtree up to the least common ancestor of the two
vertices, and down to the unlabeled vertex. In any case we preserve the property that the labeled
nodes form a subtree, and it is easy to identify the new root of the labeled subtree if it changes.)



2.3. TREE PACKINGS 33

Search(v)

initialize an empty queue, Q
label all of v’s incoming edges with a special symbol start, and add them to Q
set i to 0
while Q is not empty

take the first edge, e = fw; xg, off of Q
if e is in tree i, set i to i+ 1 (modulo the number of trees)
if both w and x are labeled, continue (the while loop)
let u be whichever of w and x is unlabeled (one must be)
let r be the root of the labeled subtree
repeat:

if u = r

for each edge f on the path from the root of the labeled subtree up to u
and then down to whichever of w and x is unlabeled

Label(f; e)

if the call to Label() returns an edge, return it
break (the repeat loop)

if u and v are in different subtrees return e

let y be the deeper of u, r
if y’s parent edge is labeled

for each edge f on the path from u down to whichever of w and x is unlabeled
Label(f; e)

if the call to Label() returns an edge, return it
break (the repeat loop)

set whichever of u and r is y to y’s parent

Label(e, l)

label e with l

if e’s head has no labeled edges
for each unused incoming edge of e’s head, f

if f connects two f-trees, return f

label f with e

return NIL

Assuming that this method is all correct, which is not obvious, but is proved by Gabow, it is
not difficult to see the time bound. Each round looks at each edge at most once, and reduces the
number of f-trees by at least a factor of two. Thus it takes at most O(m logn) time to find each
tree, totaling O(�m logn) time.

2.3.2 Karger’s Algorithm

The major problem with Gabow’s algorithm is that it takes time proportional to the value of the
minimum cut, which could be huge for a graph with integer edge capacities, and it does not work
at all for a graph with irrational edge capacities. It is possible to give a strongly polynomial tree
packing algorithm [24, 5], but the time bounds are not better than O(nm). Karger finesses the



34 CHAPTER 2. BACKGROUND

problem by showing that we can get by with a tree packing in a subgraph that does have a small
minimum cut.

One key observation is that a maximum tree packing must have at least one tree that uses at
most two tree edges. This observation holds if we obtain a packing from a directed version of the
graph, as in Edmonds’ theorem, or an undirected packing, as in Nash-Williams’ theorem. In the
first case, each of the � cut edges gets turned into only two directed edges, and we get � trees, so
it is not possible for all trees to contain at least three cut edges. Likewise, in the second case, we
get at least �=2 trees, so it is not possible to give at least three of the � cut edges to each tree.

If we could find a subgraph in which the cut values were small, but corresponded to the cut
values of the original graph, it would still be the case that some tree in a packing in the subgraph
would use only two minimum cut edges. Even better, the argument still goes through if we only
have an a subgraph in which the cut values roughly correspond to the cut values of the original
graph. Given such a subgraph, we can pack trees in it and find the minimum cut by checking for
cuts that only use two tree edges.

We can also motivate this approach in reverse. We know that by using Gabow’s algorithm
we can find tree packings quickly in graphs with small minimum cuts. Thus it would be great if
we could compute a tree packing in a subgraph with small minimum cut and use it to find the
minimum cut of the whole graph.

So at a very high level, Karger’s algorithm is as follows:

K(G)
find a subgraph G0 in which cuts correspond reasonably well to the cuts in G

pack trees in G0

check some trees for cuts that use at most one tree edge
check some trees for cuts that use at most two tree edges

To refer to the last two steps conveniently, we say a cut k-respects a tree if it uses k tree edges.
Similarly, we refer to a tree that contains only k edges of a cut as k-constraining the cut. Thus we
are interested in 1 and 2-respecting cuts of a tree that 1 or 2-constrains the minimum.

We now describe how to accomplish each step.

Finding a Sparse Subgraph The subgraph can be found by taking a random sample of the edges.
The following theorem of Karger captures the key property of a random sample:

Theorem 2.3.4 [36] Consider edges with capacity greater than one to be multiple edges with capacity one.
If we sample each edge independently with probability p = 12 lnn

��2
, then with probability at least 1-O(1=n)

all cut values in the sampled graph are within 1� � of their expected value.

For implementation purposes, it will be necessary to get the best constants factor we can from
this theorem. We defer that chore to the implementation section, and just discuss application
of this theorem here. The following argument holds with probability at least 1 - O(1=n). The
minimum cut of the sample is at least (1 - �)p�, because all cuts have expected value at least
p�. The edges of the original minimum cut sample down to at most (1+ �)p� edges. If we pack



2.3. TREE PACKINGS 35

directed spanning trees, then each minimum cut edge can be used only twice, and the number of
trees is equal to the minimum cut of the sample. Hence, it is impossible to have all trees use at
least three minimum cut edges as long as 2(1 + �)p� < 3(1 - �)p�. So if we take � � 1

5
, a tree

packing in the sample will have at least one tree that uses only two minimum cut edges. Note
that the sampled graph has minimum cut O(logn), so Gabow’s algorithm will run quickly on it.
By computing a sparse connectivity certificate, we can ensure that the sample only has O(n logn)

edges, so in fact we can guarantee that Gabow’s algorithm will run in O(n log2n) time.

We note that even when we do our best to get small constants, they still are not very small,
and this problem becomes a sticking point in the implementation. We ended up running tests on
an implementation that violated this analysis and was consistently correct, but we have not yet
been able to tighten the analysis to justify this action. See Section 3.6.1 for further discussion.

Finding Tree Packings There are at least two possibilities for finding tree packings in the sub-
graph. One is to make our undirected graph directed and use Gabow’s algorithm, which is de-
scribed above.

Another possibility is to approximate a packing of undirected spanning trees with the frac-
tional packing algorithm of Plotkin, Shmoys, and Tardos [52] (PST). This approach hast the theo-
retical advantage that in some cases we may find more than �=2 trees, and in this case there will
be a tree that uses only one minimum cut edge. We did not implement this method, so we do not
describe it further.

Finding 1-respecting Cuts We now need a way to find the minimum cuts that use only two tree
edges. We start with minimum cuts that use only one tree edge.

Define v# to be the descendents of v in a tree. (Assume the tree is rooted. We can root our trees
arbitrarily if necessary.) For arbitrary f, define f#(v) =

P
w2v# f(w). Given values f(v) it is easy to

compute f#(v) for all v in linear time with a depth first (postorder) traversal of the tree.

���
���
���
���

v

Figure 2.5: Cut defined by v. The cut edges are drawn solid. c#(v) counts the cut edges, as
well as double counting the dotted edges (which are counted once by �#(v)), so the cut value is
c#(v) - 2�#(v).



36 CHAPTER 2. BACKGROUND

We notice now that v# defines a cut that uses only one tree edge (v’s parent edge). So we
might hope to compute cut values of 1-respecting cuts by computing c#(v). This quantity is not
quite correct though. c#(v) counts the total capacity of edges leaving the subtree rooted at v, but
double counts the capacity of edges that connect two nodes in v# (see Figure 2.5). The quantity we
want, the cut value if we cut v’s parent edge, is the total capacity of edges that leave the subtree
rooted at v. To fix this problem, we let �(v) denote the total capacity of edges whose endpoints’
least common ancestor is v. All m least common ancestors can be found in O(m) time, so we can
compute �(v) in O(m) time. Observe that �#(v) is precisely the total capacity of edges that connect
two nodes in v#. Thus C(v#) = c#(v)- 2�#(v). It follows that we can find all cuts that use only one
tree edge in O(m) time.

Finding 2-respecting Cuts (the simple way) We can extend this approach to cuts that use two
tree edges. A pair of nodes, v and w, now define a cut. We say that v and w are comparable if
one is an ancestor of the other, and incomparable otherwise. If v and w are incomparable, we are
interested in the quantity C(v#[w#) = C(v#)+C(w#)-2C(v#; w#) (see Figure 2.6); if (without loss
of generality) v 2 w#, we are interested in the quantity C(w#-v#) = C(w#)-C(v#)+2C(v#; w#-v#)
(see Figure 2.7).

���� ������
v w

Figure 2.6: Cut defined by incomparable v and w. The cut edges are drawn solid. C(v#) + C(w#)
counts the cut edges, as well as double counting the dotted edges, namely those counted by
C(v#; w#). So the cut value is C(v#) + C(w#) - 2C(v#; w#)

We already know how to compute C(v#) and C(w#), so we need only worry about the other
terms. Define fv(w) = c(v;w), the capacity of the edge, if any, between v and w. Define gw(v) =
f
#
v(w). As argued above, we can compute this function for any v in O(n) time. So we can get all
O(n2) values for pairs v;w in O(n2) time. Now g

#
w(v) = C(v#; w#), the desired quantity in the first

case, and we can also compute it in O(n2) time. In the second case, the sum g
#
w(v) double counts

edges with both endpoints in v#, so to get the desired quantity we just take g#w(v) - 2�#(v).

We now have an algorithm to compute all cuts that use at most two tree edges in O(n2) time.



2.3. TREE PACKINGS 37

����

����

�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

���������
���������
���������
���������

���������
���������
���������
���������

������
������
������

������
������
������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

w

v

Figure 2.7: Cut defined by comparable v and w. The cut edges are drawn solid. C(w#) counts the
thin solid edges and the dotted edges. C(v#) counts the thick solid edges and the dotted edges.
C(v#; w# - v#) counts the thick solid edges. Thus the cut value, the thick solid edges plus the thin
solid edges, is given by C(w#) - C(v#) + 2C(v#; w# - v#).

Assembling everything, we have a minimum cut algorithm that with probability at least 1 - 1=n

finds all minimum cuts and runs in O(n2 logn) time.

A Faster Way to Find 2-respecting Cuts (the fancy way) The method given above computes
the cuts for all O(n2) pairs of tree edges, and therefore takes 
(n2) time, regardless of the in-
put. If all we want is one minimum cut, we would hope to avoid considering some pairs of tree
edges. It turns out that we can. Some readers may wish to skip these details and move on to the
implementation chapter.

We start by fixing some vertex v. We now want to find the w such that the cut defined by
cutting v’s parent edge and w’s parent edge is minimum. The key observation is that if v and
this w are incomparable, then w must be an ancestor of a neighbor of a descendant of v, because
we can demand that each side of the minimum cut be connected. (In order for v# [ w# to be
connected, there must be an edge between a descendant of v and a descendant of w.) If v and w

are comparable, then without loss of generality we can assume w is v’s ancestor. This observation
suggests a way to restrict the sums given above. We need only check vertices that fit one of the
two conditions.

It is not immediately clear that we will gain anything, because v (or a neighbor of a descendant
of v) may haveO(n) ancestors. So to be efficient, we use dynamic trees [54, 55], which among other
things, support the following two operations on a tree with values at the nodes (val(w) at node
w):

AddPath(v; x) add x to the value of every node on the path from v to the root.

MinPath(v) find the node on the path from v to the root with the minimum value.



38 CHAPTER 2. BACKGROUND

Both operations can be done in O(logn) time.

Thus for a leaf v, we can find its incomparable “partner” w by initializing all nodes u to have
value C(u#), calling AddPath(u;-2c(v; u)) for each neighbor u of v, and then calling MinPath(u)

for each neighbor u of v and taking the minimum w returned. This method works because the
AddPath calls result in val(w) being C(w#) - 2C(v;w#). So val(w) + C(v#) = C(v# [ w#) (recall
that v is a leaf, so v# = v). We want to minimize this quantity over w, for which we need only look
at val(w), and this is precisely what the calls to MinPath do.

LeafIncomparablePartner(v)

for all u, val(u) C(u#)
for all edges fv; ug, AddPath(u;-2c(v; u))
return the w corresponding to the minimum value over edges fv; ug of MinPath(u)

We can find v’s comparable partner by using the same initialization, calling AddPath(u; 2c(v; u))

for each neighbor u of v, and just checking MinPath(v). This time the calls to AddPath result in
val(w) = C(w#) + 2C(w# - v; v). So we get the desired quantity by subtracting C(v#), and we can
find the minimum over comparable w by the call to MinPath. Note that there is only one call to
MinPath, because in this case we are only interested in ancestors of v.

LeafComparablePartner(v)

for all u, val(u) C(u#)
for all edges fv; ug, AddPath(u; 2c(v; u))
return the w corresponding to MinPath(v)

Note that we cannot afford to actually initialize the dynamic trees for each v we process. We
have to initialize them once and then undo dynamic tree operations when we are done processing
a given leaf. At least in theory, this is not a problem.

To process an internal node, we need to look at all the neighbors of its descendants. The basic
idea is to process all the leaves of the tree and contract them into their parents. We can then process
the leaves of the new tree. If the tree is balanced, O(logn) such phases suffice to process the whole
tree. Unfortunately, it is possible to have n nodes with downward degree one, in which case we
do O(n) phases.

However, after we process the only child of a node v, we can immediately process the node
by doing AddPath operations for each of its neighbors and then MinPath operation(s). We already
have the values set for the neighbors of the descendants, so the AddPath operations will update the
values appropriately. The partner of v is then either the best partner found for the descendant, or
an ancestor of a neighbor of v. Note that we cannot immediately process a node with downward
degree two, because after processing one child we must undo those AddPath operations before
we can process the other child. We then have to redo them when we process the node itself. It
is because no undoing is necessary for a node with downward degree one that we can go right
ahead and process it.

It follows that we can process in one phase all nodes that have downward degree less than two
and do not have as descendants any nodes with downward degree more than one. After a phase,
each new leaf node is a node that had at least two children previously (or else it would have been
processed), so the number of leaves decreases by a least a factor of two in each phase. It follows



2.3. TREE PACKINGS 39

that we need only O(logn) phases. Each phase does at most O(1) dynamic tree operations per
edge, and each dynamic tree operation takes O(logn) time, so the time to process the whole tree
is O(m log2 n).



40 CHAPTER 2. BACKGROUND



Chapter 3

Implementation

Unfortunately, knowing how an algorithm works in theory is not the same as knowing how to
implement it well. In this chapter we discuss the important implementation details of the four al-
gorithms, including choice of data structures, implementation of primitives, choice of subroutines,
settings of parameters, and heuristic improvements.

In general, we only concern ourselves with implementation details that have major impact. It
is almost always possible to speed up a program a bit by cleverly twiddling the code, but those
are not the sort of changes that concern us. The rule of thumb we adopted was not to worry
much about any details that changed the runtime by less than a factor of two. Some heuristic
improvements affected the runtime by factors of a thousand; these are clearly of much greater
interest.

Another rule we use in the implementations is that a heuristic be amortized against the run-
ning of the underlying algorithm. In other words, a heuristic run periodically should not cost more
than the work done by the algorithm in the interim. Further, any heuristic preprocessing should
not take more than near linear time, as linear work is all that we can be assured the algorithm will
need to do. The point is that while we wish to get as much benefit as we can from heuristics, we do
not want it to ever be the case that an implementation suffers terribly on some problems because
of its use of heuristics. For example, we would not allow a preprocessing heuristic that ran in
quadratic time, because even if the worst case running time of the underlying algorithm is cubic,
it is always possible that it will run in linear time. If this happens, then we would lose a great deal
by running the heuristic. On the other hand, after the algorithm has done quadratic work, there
is no harm in running the heuristic, because even if it fails we lose no more than a factor of two
in total running time. Our strategy guarantees that failed heuristics never dominate the runtime,
and that successful heuristics are not much more expensive than the underlying algorithm.

Throughout this chapter we mix discussion of the abstract algorithms and our implementa-
tions of them. To avoid confusion we distinguish them by typeface. Sans serif font refers to an
algorithm: HO, NI, KS, K. Typewriter font refers to an implementation: ho, ni, ks, k. Since we
have many variants of each implementation, we will distinguish them with suffixes. For example,
ho nopr refers to an implementation of HO that does not include PR heuristics.

We begin by discussing graph data structures and implementation of the contraction opera-



42 CHAPTER 3. IMPLEMENTATION

tion. Next we discuss general issues in incorporation of the Padberg-Rinaldi heuristics. Then we
discuss each of the algorithms in turn.

3.1 Graph Data Structures

The internal representation of the graph is very important. There are many possible choices, and
designation of the “best” one is only possible with respect to the operations that must be sup-
ported.

HO and NI clearly need a representation that makes it easy to find the neighbors of a given ver-
tex, in order to support the push/relabel operations and the graph search, respectively. Gabow’s
algorithm also clearly needs an adjacency representation, so K needs one if it uses Gabow’s algo-
rithm to do the tree packing. K will also need one if it uses the fancy (dynamic trees) approach
to finding 2-respecting cuts. If K is implemented without either of these subroutines, as it can be,
then it is less clear what data structure is right. For KS, especially in the variant we give, there is
no apparent reason why it would need an adjacency structure. In fact, what we really want for
KS is to be able to pass over all of the edges quickly so we can decide whether to contract each of
them.

So ho, k, and ni all represent an undirected graph as a symmetric directed graph using the
adjacency list representation. Each vertex has a doubly linked list of edges adjacent to it and
pointers to the beginning and the end of the list. An edge fu; vg is represented by two arcs, (u; v)
and (v; u). These arcs have pointers to each other. An arc (u; v) appears on the adjacency list of u
and has a pointer to v.

We note that another possibility would be an adjacency matrix; however, this representation
would be very space inefficient for a sparse graph. The space could be reduced by hashing, but
hashing removes the simplicity of an adjacency matrix that makes it attractive. We did not explore
this possibility.

ks represents an undirected graph as an array of edges. This representation has less flexibility
than the adjacency list, but KS really does not need it, so a smaller and simpler representation
makes sense. It is possible that it makes little difference.

3.1.1 Implementing Contraction

As mentioned in Section 2.2, contracting nodes v and w consists of merging v and w. This action
will create parallel edges if v and w have any neighbors in common, and will create a self-loop if v
and w are neighbors. Parallel edges can be merged into one edge with capacity equal to the sum of
the original two capacities; self-loops can be deleted. So we have two important implementation
issues: how to represent merged vertices, and what to do about unnecessary edges.

One possibility is to do the contractions explicitly, so that a node is always represented the
same way as a vertex, without self-loops or parallel edges. We refer to this strategy as compact
contraction, and implement it as follows:



3.1. GRAPH DATA STRUCTURES 43

before after

2

2

2

d c

ab

cd

a

Figure 3.1: Compact contraction example: Contracting edge fa; bg in a graph represented by adja-
cency lists. Graphs in the top row are represented as shown in the bottom row. If an arc capacity
is equal to one, the capacity is not shown.

CompactContract(v,w)

Replace each edge fw; xg with an edge fv; xg.
Delete w from V(G).
Delete self-loops and merge parallel edges adjacent to v.

Figure 3.1 gives an example of this implementation of edge contraction for the adjacency list
representation of a graph.

With the graph represented by an adjacency list, a careful implementation of compact contrac-
tion of v and w takes time proportional to the sum of degrees of v and w before the contraction.
With the graph represented by an array of edges, compact contraction can take O(m) time, and
therefore is probably not practical.

Another possibility is to implicitly represent nodes by the sets of vertices they contain. We do
not need to actually merge v and w, we just need to be able to tell what node a vertex belongs to.
This observation suggests using a disjoint-set union data structure to keep track of the nodes of
the contracted graph. We refer to this strategy as set-union contraction and implement it as follows:



44 CHAPTER 3. IMPLEMENTATION

before after

d

a b

c d

a

c

Figure 3.2: Set-union contraction example: Contracting edge fa; bg. Graphs are in the top row. An
adjacency list representation is in the middle row, and an array of edges representation is in the
bottom row. Dotted lines are pointers for the set-union data structure.



3.2. THE PADBERG-RINALDI HEURISTICS 45

SetUnionContract(v,w)

union(v,w)

We implement the disjoint-set union data structure by disjoint-set forests with path compres-
sion; see e.g. [14]. In this representation each set has a distinct representative, each vertex has a
pointer towards (but not necessarily directly to) the representative of its set, and representatives
point to themselves. We assume that the reader is familiar with the set-union data structure.

The advantage of set-union contraction is that a contraction takes only O(�(n)) time, where
� is a functional inverse of Ackermann’s function (bounded by 4 for n less than the number of
particles in the universe). Disadvantages come from the parallel arcs and self-loops which remain
in the graph. With parallel arcs, operations that we would have done in one step could take many
steps. Worse, we are not guaranteed that the number of arcs in a contracted graph is O(n2). The
other disadvantage is that it now also takes O(�(n)) time to find the head node of an arc. Note
however, it is possible to use set-union contraction to do many individual contractions and then
compact the graph in one pass. We call this operation compaction. This approach keeps the benefit
of fast contractions and hopefully cleans up before the parallel arcs get out of hand. We implement
compaction as follows:

CompactGraph(G)

compute the set representative for every edge endpoint
if the graph is represented as an edge array

sort the edges by endpoints
pass over the sorted list of edges, combining parallel edges and removing self-loops

else (graph is represented by edge lists)
append the edge lists of each vertex to the list of its set representative
for each set representative

unmark any marked neighbors
for each edge e

if e is a self-loop, delete it
else if e reaches an unmarked neighbor, mark the neighbor with e

else merge e with the neighbor’s mark
remove all vertices that are not set representatives

Using two calls to a counting sort algorithm to implement the sort step, compaction can easily
be done in O(m) time with either graph representation.

We make use of all of these strategies at different times. In general we use set-union con-
traction followed by a compaction when we have many contractions to do, and we use compact
contraction when we have few contractions to do. We will discuss this issue further in subsequent
sections.

3.2 The Padberg-Rinaldi Heuristics

It is not clear how to get the most benefit from the PR tests. One natural strategy, which is used
by Padberg and Rinaldi [51], is to keep applying them until no edges pass any of the tests. We



46 CHAPTER 3. IMPLEMENTATION

refer to this approach as the exhaustive strategy. The problem is that this strategy takes too long. It
could take 
(mn) time just to apply tests PR3 and PR4 to every edge. Since edges change during
contractions, and therefore must be tested again, if one PR test passes at a time, applying these
two tests exhaustively could take 
(n2m) time, dominating the running time of all the algorithms
we are implementing. Even PR1 and PR2 could take 
(mn) time to apply exhaustively. So our
rule on the cost of heuristics removes the exhaustive strategy from consideration.

An alternative strategy is to apply the tests only to edges that change. Recall that a contraction
can create parallel edges, which may be merged. The resulting edge has larger capacity, so a PR

test may now apply, even though it did not apply to either edge individually. We refer to this
approach as the source strategy, because in a contraction based implementation of GH (or HO),
which contracts the source and sink at the end of a max-flow computation, edges incident to the
source are the ones that change. This strategy also extends to NI: apply the PR tests near the edge
contracted after the last search. Both Padberg and Rinaldi [51] and Nagamochi et al [48] make use
of this approach. Note that it could be similarly extended to KS as it was originally described,
where we contract one edge at a time, but it does not make sense for our variant, where we
contract many edges at once. It also makes no sense for K, which does not fit into the framework
of GenericContractCut. Note that this strategy does not replace the exhaustive strategy, because we
apply the tests where the underlying algorithm has changed the graph, but then do not reapply
according to where the tests change the graph. (If we did, then it would be the exhaustive strategy,
and we would not have gained anything.)

As an alternative to the above methods, we introduce a new approach, which we call the pass
strategy. The basic idea is to apply the tests as much as possible in linear time. For PR1 and PR2,
there is a natural way to implement this idea: apply each test once to each edge. For PR3 and
PR4 we need to skip many edges. We approach this problem by making a new low-level test that
applies PR3 and PR4 to all edges incident to a node. Recall that PR3 looks at an edge and the
other two sides of a triangle, and PR4 looks at all triangles an edge is in. We implement our test as
follows:

PRTest34(v)

label all neighbors of v
for each unscanned neighbor w of v

sum = 0

for each neighbor x of w that is labeled (i.e. is a neighbor of v)
add min(c(v; x); c(w;x)) to sum
apply test PR3 to the triangle fv;wg; x

apply PR4 to fv;wg using the info in sum

mark w scanned
mark v scanned

The main point is that a neighbor’s incident edges are only looked at if it is unscanned; it is
therefore immediate that the following implementation of a pass only takes linear time:



3.2. THE PADBERG-RINALDI HEURISTICS 47

PRPass(G)

apply PR1 and PR2 once to each edge
mark all nodes unscanned
while there is an unscanned node v, PRTest34(v)

A linear time pass turned out to be very useful. For one thing, it makes sense to preprocess the
input with it, because it only takes linear time. Then, if it contracted away a constant fraction of
the nodes, we apply it again. We used this preprocessing strategy for all the algorithms, although
we used a different constant for different algorithms. It turned out that preprocessing alone killed
several otherwise interesting problem families—only two nodes would be left by the time we were
done. A linear time pass also integrates nicely into NI and KS. We will discuss this issue further in
subsequent sections.

Observe that this strategy needs an adjacency structure to support PR3 and PR4, but it can be
implemented with either contraction method. We can either do compact contractions or do set-
union contractions and compact when we are done. The former has the advantage that parallel
arcs are merged right away, which may cause a later test to pass when it would not have otherwise.
The latter has the advantage that one compaction at the end takes only O(m) time, whereas many
compact contractions could take O(n2) time. Our experience was that compact contraction was
better for tests PR3 and PR4, because it caused more tests to pass. Set-union contraction was
typically a bit faster than compact contraction for PR1 and PR2, but there was less difference in
the number of passed tests.

We note that a subtlety of the tests says that we must not involve any v in more than one PR2

or PR3 contraction met with equality in one pass if we use set-union contraction. Recall that in
this case fvg may be the minimum cut, and once we have done one set-union contraction involving
v, the old c(v) will not be correct. An easy example where we would get into trouble is a line of
five nodes, with edge capacities two, one, one, and two. PR2 applies to both of the edges with
capacity one, but after contracting one, it does not apply to the other. If we do both contractions
blindly, we will miss the minimum cut.

Note that for the purposes of explanation we have left out some details from the above pseu-
docode. In particular, one must be careful about how nodes are labeled in PRTest34 so there is
no confusion between different calls, and obviously one must not apply a test to an edge that has
already been contracted.

We have also failed to specify in what order to apply PRTest34. Our experience was that over
several passes it was good to try to give every node a chance to be scanned, and it was good to
apply tests again where they had succeeded before. To achieve this, we assigned every node a
score, initially zero. Each time it was involved in a contraction its score was incremented, and
each time it was skipped for a PRTest34 its score was incremented by two. We then picked nodes
in decreasing order by score. Using a random order worked reasonably well too.

We warn anyone who implements these tests that they are very subtle. Seemingly little changes
do often affect performance. For example, the seemingly innocent change of applying PRTest34 in
an arbitrary fixed order causes us to lose many contractions. It took us a long time to arrive at the
strategies described here. We recommend comparing any new strategies against the ones we use.



48 CHAPTER 3. IMPLEMENTATION

3.3 Hao-Orlin Algorithm

We based our implementation ho on the push-relabel max-flow code of Cherkassky and Gold-
berg [13]. Thus several implementation decisions were made based experience from the max-flow
context. Such decisions are likely appropriate, but not above question.

We begin by discussing choices we made in the implementation that are not addressed by the
algorithm. We then discuss the heuristics we added.

3.3.1 Basics

Graph Representation As mentioned previously, we need an adjacency data structure for HO, so
we use adjacency lists. Contractions tend not to happen in groups, so we use compact contraction
everywhere in ho.

Push-Relabel Strategy We chose to use the highest-label strategy to pick which nodes to dis-
charge first. This strategy seems to give the best results in practice in the max-flow context [13].
For this reason we did not consider the fancy approach that uses dynamic trees.

We use an array of buckets B[0 : : :2n- 1] to implement this efficiently. Bucket B[i] holds both
a list of all awake vertices with distance label i and a list of those that are also active. This makes
it easy to keep track of the highest label active node, as well as making it easy to detect nodes that
have become disconnected from the sink and must be put to sleep.

Source and Sink Selection In some cases the algorithm is sensitive to the way the first source-
sink pair is chosen. We chose a vertex with the largest capacity as the first sink and a neighbor of
this vertex as the first source. Brief testing suggested that this choice works well in general.

3.3.2 Heuristics

Global Updates In the maximum flow context, it is useful for many problem classes to period-
ically compute exact distances to the sink. This operation is known as a global update, and it can
easily be accomplished by a backwards breadth-first search from the sink. (Backwards means that
we traverse the directed edges in the wrong direction, which is easy, because we also have arcs in
both directions.) We make several natural modifications in order to use this idea in HO.

� The sink’s distance label is nonzero, so the backwards breadth-first search starts with the
sink’s distance label instead of zero.

� The computation is done only on the awake graph. (We do not want to disturb the sleeping
nodes.)

� Vertices not reachable by the breadth-first search computation are put to sleep without chang-
ing their distance labels. (The sink is not reachable from these vertices.)



3.3. HAO-ORLIN ALGORITHM 49

In order to ensure that we do not spend too much time on global updates, we explicitly amor-
tize against relabels: a global update is performed as soon as the number of relabels since the
last global update exceeds � times the number of awake vertices. Thus relabeling time always
dominates time spent doing global updates. In our implementation, � = 2.

Global updates do not always improve the running time; on some problem families, such as
graphs with heavy components¡, the running times become worse. However, the running times
never become much worse in our tests, and sometimes are much better than without global up-
dates.

PR Heuristics As in all our algorithms, we preprocess with PR tests before doing anything else.
We also make use of the PR tests during the execution of HO, which is very tricky, because HO

reuses flow information for successive flow computations. We have to be careful not to disturb
the flow information when we do contractions as a result of the PR tests.

Fortunately, it is easy to show (using [31]) that it is safe to contract an edge incident to the
source, as long as we saturate any new outgoing capacity from source that this operation creates.
So we can safely use the source PR strategy. Using the source strategy is also appropriate, as it is
the edges near the source that typically change. Unfortunately, the algorithm frequently does little
work in a flow computation, and the source quickly becomes high degree, making even a source
test expensive. Thus we explicitly amortize against the work of the algorithm: we apply a source
test when the algorithm has done enough work in pushes and relabels to dominate the cost of the
last test.

Note that it is possible to do a PR pass, which might contract an edge not adjacent to the
source, but we must do a global update immediately afterwards to restore the validity of the
distance labeling. Our experience with this idea was that it usually just slowed down the code, so
we stopped using it.

Excess Detection We introduce a simple heuristic that often allows us to contract a vertex in the
middle of a flow computation. The general results on the push-relabel method [26] imply that the
excess at a vertex v is a lower bound on the capacity of the minimum s-v cut. Thus, if at some
point during an s-t cut computation the excess at v becomes greater than or equal to the capacity
of the minimum cut we have seen so far, we contract v into the source and saturate all the arcs
going out of v. Note that v can be either awake or asleep. The correctness proof for this heuristic
is straight-forward. We call this heuristic excess detection.

A special case of the excess detection heuristic occurs when v is the sink. In this case we can
stop the current s-t cut computation and go on to the next one. (Remember that we do not actually
care about the s-t cut unless it is a smaller cut than we have seen before, and the fact that excess
detection applies means that it is not, so we can contract s and t and move on.)

Excess detection is inexpensive and on some problems, it reduces the number of s-t cut com-
putations significantly. We note that one needs to be careful when implementing excess detection,
because one contraction can cause excess detection to pass at other nodes. (Suppose the excess at
v becomes large and v is contracted into the source. When v’s outgoing arcs are saturated, excess
at some of v’s neighbors may become large, and these neighbors should be contracted as well.)



50 CHAPTER 3. IMPLEMENTATION

This problem can be handled by keeping track of the nodes waiting to be contracted in either a
stack or a queue, as long as we make sure not to put a node on the stack/queue more than once.
In general, excess detection requires care, because we are changing the graph during a maximum
flow computation.

Note that in fact the total flow entering v is a lower bound on the minimum s-v cut, and the
total flow is always at least as large as the excess, so we could get a stronger test by using this
quantity. However, we already need to maintain excesses, whereas we do not need to maintain
total incoming flow, and brief testing suggested that the extra cost of maintaining this information
negated the benefit from the contractions gained.

Single-Node Layers Suppose a sleeping layer consists of a single node v. When this node is
awakened it will be necessarily be the only awake node other than the source, so it will become the
sink, and the flow value will be its excess plus any further flow it can get directly from the source.
Further, we know that all nodes that are awake at the time v is put to sleep will be contracted into
the source by the time it is awakened. Thus the “further flow it can get directly from the source”, is
precisely the total capacity from the currently awake nodes. We therefore have all the information
to compute the s-v flow at the time v is put to sleep, so instead of bothering to put it to sleep we
compute the flow value and contract it into s immediately. This reordering can be helpful because
it may cause PR tests and/or excess detection tests to pass earlier than they would have.

3.4 Nagamochi-Ibaraki Algorithm

NI required relatively little modification from its theory description. We just incorporated two
heuristics given by Nagamochi et al. [48], made some careful data structure choices, and incorpo-
rated PR tests. We differ from [48] on the latter two points.

Nagamochi-Ono-Ibaraki Heuristics Nagamochi et al. [48] give a heuristic modification to NI

that often helps to update the upper bound on the minimum cut. The heuristic takes advantage of
the fact that the set of visited nodes is connected, and therefore defines a cut. It may seem that this
is just an arbitrary cut, but recall that we always pick the most connected node to visit next. So for
example, if we have two cliques connected by a single edge, we will likely visit all of the nodes of
one clique before visiting any nodes of the other. Thus if we always check the cut defined by the
set of visited nodes, we will find the minimum cut. Furthermore, since most of the edges in this
graph are unnecessary, as soon as we find the minimum cut the sparse certificate will allow us to
contract most of the edges. In general, this heuristic is very helpful at allowing us to get the most
out of our sparse certificates.

We can easily keep track of this cut value by adding c(v) and subtracting 2r(v) each time we
visit a node v. (Recall that r(v) is the capacity of edges between v and the visited nodes, so the
previous cut value contains r(v) once. Adding c(v), we count r(v) again and add in the capacity
from v to unvisited nodes. So subtracting 2r(v) we get the desired quantity.) We use the value to
update our cut upper bound. The code for this heuristic, called the � heuristic, appears at line (*)
below.



3.4. NAGAMOCHI-IBARAKI ALGORITHM 51

We now give the pseudocode for a scan-first search that contracts the contractible edges it
finds. Note that this is different from the description in the theory chapter in that we do not
explicitly build the spanning forests, and we do not assume that edges are uncapacitated.

ScanFirstSearchContract(G; �̂)

for each v 2 V

r(v) 0

mark v unvisited
for each e 2 E

mark w unscanned
while there is an unscanned node

v is the unscanned node with largest r(v)
(*) � �+ c(v) - 2r(v)

�̂ minf�; �̂g

for each unscanned e = fv;wg

r(w) r(w) + c(v;w)

if (r(w) � �̂)

G G=(v;w) with new node v0

�̂ = minfc(v 0); �̂g

Mark e scanned
Mark v visited

return �̂

Priority Queue The theory bound given by Nagamochi and Ibaraki depends on use of a priority
queue with a constant time increase-key operation, e.g. a Fibonacci heap. Preliminary experiments
suggested that Fibonacci heaps do help a little bit on very dense graphs, but otherwise it is better
to use a (simpler) k-ary heap. In the end we chose to use a 4-ary heap. Note that this makes the
theoretical worst case time bound on our implementation O(mn logn).

PRHeuristics Nagamochi et al [48] incorporate the PR tests by applying a source test at the node
created by the last contraction of a search. This approach turns out to be very helpful, but their
implementation has disadvantages: there is no preprocessing stage, the tests are only applied to
one node after each search, and they are not careful to make sure the tests only take linear time
each time.

So we add preprocessing, and we do a PRPass (Section 2.2.1) at the end of every kth search.
(We used k = 2.) Since a pass takes only linear time, and a search takes slightly more than linear
time, we respect our rule on the time consumed by heuristics. It also turns out that this strategy is
very effective. We use the score method described in Section 3.2 to decide which nodes to test, but
we clear the scores after each search, so that we always test first the nodes involved in the most
contractions during the search. Note that we also perform the source test, as we do not necessarily
test the result of the last contraction in a pass, and sometimes the source test is very helpful.



52 CHAPTER 3. IMPLEMENTATION

Graph Representation As mentioned previously, we need an adjacency structure, so that is what
we use. Implementation of contraction is trickier. We implemented NI using both compact con-
traction and set-union contraction. Preliminary experiments showed that the two data structures
are incomparable in practice: each was significantly faster on some problems and significantly
slower on others.

The problem is that we are only guaranteed one contraction per search, in which case we
would prefer to use compact contraction. It is possible however, that we do many contractions,
in which case we would prefer to use set-union contraction. So we can use set-union contraction
and compact periodically, but we also have the problem that the PR heuristics prefer compact
contraction. So we adopt the strategy of using set-union contraction during the scan-first search,
compacting at the end, and using compact contraction during PRPass. This approach never allows
the parallel edges to get out of hand, allows the PR tests to use their preferred method, and is never
too expensive—even if we do few contractions, the cost is usually less than that of the preceding
search.

Our final high level implementation is as follows:

NI(G)

�̂ minv c(v)

while G has more than two nodes
�̂ ScanFirstSearch(G; �̂)

CompactGraph(G)

if this is a kth (second) iteration
do source PR tests at last node involved in a contraction
PRPass(G)

return �̂

3.5 Karger-Stein Algorithm

For KS, the main implementation decision we made was to implement our variant (Section 2.2.3)
instead of the original version. Early testing suggested that our variant was better, but now that
we understand the algorithm better it would be interesting to implement the original, to make
sure that our variant was a good idea. Note that we violate our rule about heuristics here, because
we have not been able to prove that the variant is as fast as the original in the worst case, so more
extensive comparisons to the original should be done.

We needed to use an exponential distribution to sample each edge with probability exponen-
tial in its capacity. Though we were initially concerned by the resulting large number of calls to
exponential/logarithm functions, we found that in practice the generation of these random num-
bers was not a significant part of the running time. Beyond that we just needed to deal with data
structures and the PR heuristics.

Graph Representation As mentioned previously, KS does not really need adjacency lists, so we
did not use them. We use set-union contraction to do all the contractions of a phase and then



3.6. KARGER’S ALGORITHM 53

compact the structure. With a careful implementation of this approach, it is relatively easy to
undo the contractions when we back out of the recursion. (It would have been more difficult with
adjacency lists; the best thing would probably be to just copy the graph.)

PR Heuristics The decision not to use adjacency lists basically rules out easy use of PR3 and
PR4. Since it is clearly desirable to have the same preprocessing as the other codes, we actually
input the graph in ni’s data structures, ran the preprocessing, and then switched to the array of
edges.

We experimented with internal PR3 and PR4 tests, because we were concerned about not hav-
ing them, but we found that they were of little help. A possible explanation for this effect is the
following (we focus on the PR4 case; a similar arguments applies for the PR3 test). The PR4 test
applies when the sum of capacities on length-two paths exceeds �, where the capacity of a length
two path is the smaller of its edge’s capacities. Consider a randomized contraction phase and its
impact on such a “PR4 structure”. The total capacity of edges in the PR4 structure is 2�, implying
that the probability some edge in the structure is contracted exceeds 3=4. Especially over multiple
levels of recursion, this accumulates much faster than the 1=2 chance that a minimum cut edge
will be contracted. Once we contract an edge in the PR4 structure, the PR4 test will no longer
apply. In other words, in an intuitive sense, randomized contraction is taking care of the PR4 and
PR3 tests before we have time to apply them explicitly.

It remains to describe our internal use of PR1 and PR2. Since we already pass over all the
edges of the graph, contracting them with an appropriate probability, it is easy to incorporate PR1

and PR2. We apply the tests when we make the random choice of whether to contract an edge; we
then contract it if either a test says to or the random choice says to. This implementation clearly
adds only a small overhead.

As mentioned in the discussion of the tests, since we are using set-union contraction we also
need to be careful not to let a node be involved in more that one PR2 test met with equality in one
pass.

3.6 Karger’s Algorithm

Karger’s algorithm leaves open a large number of implementation options. We begin with the
familiar topics of graph representation and the PR tests, and then consider each of the three parts
of the algorithm in turn. One of our implementation decisions invalidates the algorithm’s proof
of correctness; see the section on picking � for more details. Thus this implementation is actually
one great big heuristic.

Graph Representation As mentioned before, it would be conceivable to implement K without
an adjacency structure, but we did not attempt it. The basic graph representation is as in ho

and ni. There is, however, another issue: we must represent the trees of the tree packing. Since
one (capacitated) edge can occur as many tree edges, we used more adjacency list structures to
represent the trees. Each tree edge maintains a pointer to the graph edge it derived from. Note



54 CHAPTER 3. IMPLEMENTATION

that we need this adjacency structure for Gabow’s algorithm; with the Plotkin, Shmoys, Tardos
packing algorithm it is possible to represent the trees with a only a parent pointer for each vertex.

PR Heuristics Naturally, we also used the PR preprocessing for k. Since the algorithm does
not do any contractions, the only way the PR tests might do further good is if we get a better
upper bound on the minimum cut. If we get a new upper bound early enough in the execution so
that the further contractions might help, we run the preprocessing again. We discuss how we get
new upper bounds in subsequent sections. Our general finding was that our initial upper bound
estimates were good enough that there was not much to be gained by doing this.

3.6.1 Sampling

There are several problems with the simple theoretical description of the sampling step that need
to be finessed in an implementation.

Estimating the Minimum Cut In order to perform the sampling step correctly, the algorithm
needs to estimate the value of the minimum cut. In [34], Karger gives two ways to resolve this
problem. The first is to run Matula’s linear time (2 + �)-approximation algorithm to get a good
estimate (see Section 2.2.2). The other option starts by getting a crude approximation and then
samples the edges, finds a tree packing, and doubles the sampling probability, repeating if the
number of trees in the packing is smaller than expected. Since doubling the sampling probability
doubles the number of trees, finding the final tree packing dominates the time of finding all the
others. If the crude approximation was within a factor of n, then the time spent sampling is at
most O(m logn).

Our experience is that it is better to run Matula’s approximation algorithm. The main reason is
that running Matula’s algorithm allows us to compute a sparse ((2+ �)�)-connectivity certificate
on the input. We can then contract all remaining edges, which can greatly reduce or even solve
some problems. Furthermore, once our input graph is sparse, our sampled graph will be sparse;
in particular, it will have only O(n log2n) edges. The tree packing step turns out to be expensive,
so it is helpful to have as few edges as possible in the sampled graph.

Sampling from Capacitated Graphs Another concern is sampling a capacitated edge. In theory,
we treat a graph with integer capacities as an uncapacitated graph with multiple edges, but we
do not want to actually flip a coin c(v;w) times for edge fv;wg, and we still do not know what
to do with irrational capacities. For integer capacity edges, what we want is to pick a number
from 0 to c(v;w) according to the binomial distribution. Notice that the sampling probability is
inversely proportional to the cut value. So if we were to multiply all the edge capacities by some
large factor, causing the minimum cut to go up by that factor, the probability would go down
such that the mean of the distribution would stay the same. Therefore we can approximate the
binomial distribution with the Poisson distribution, which is very close to the binomial for large
numbers and small mean. Picking a number according to the Poisson distribution can be done
such that the number of random numbers we need is the same as the value we output (see [42]);



3.6. KARGER’S ALGORITHM 55

since the expected value of a sampled edge is always at most O(logn), this method allows us to
sample using O(m logn) random numbers, regardless of the magnitude of the capacities. Since
an irrational number can be approximated arbitrarily well by a rational, and we can multiply up
a rational to get an integer, in the limit this method properly samples irrational capacity edges.
Note that we do not need to actually carry out this process of multiplying up edges, because all
we need to know to sample from the Poisson distribution is the mean, which is unaffected.

Picking � Another problem is picking the � used to compute the sampling probability. Unfor-
tunately, even after reworking the analysis, the constants are quite large. Even in the limit as n
goes to infinity, we end up needing to pack and check 36 lnn trees (see below). We can get several
trees that 2-respect (so that we do not have to check all the trees) by packing more trees, but our
experience was that the time spent finding the trees was enough to make the running time several
orders of magnitude worse than the other algorithms. We discovered, however, that on our test
examples, finding only 6 lnn trees and checking only 10 of them for 2-respecting cuts gave the
right answer all the time. It is plausible that the analysis is not tight, but since we have not been
able to tighten it, this implementation must be considered heuristic. There is no proof that it will
be correct with the desired probability in all cases. This modification is in contrast to the other
algorithms, where our heuristic changes did not affect correctness.

For reference, we now give a reworking of Karger’s analysis [34] that gives the best constants
we know how to get. Some readers will want to skip this section.

Recall that we sample each edge independently with probability p, and we need to bound
the probability that any non-minimum cut samples to less than (1 - �)p� edges. For any given
cut, we can easily argue such a result holds with polynomially small probability by application of
Chernoff bounds, but there are exponentially many cuts, so a simple union bound will not work.
Fortunately, there can only be a few small cuts, and the probability of a large cut deviating is
smaller than that of a small cut. Balancing the size of the cuts against the number of them, we can
manage to get a result.

So this analysis depends on the number of small cuts in a graph. We refer to a cut as �-
minimum if is has value at most ��. Unfortunately, while it is conjectured that there are only
O(nb2�c) �-minimum cuts, only special cases have been proved. We will use two of these pieces:

Lemma 3.6.1 [34] There are at most n2� �-minimum cuts.

Lemma 3.6.2 [32] For � < 3=2, there are at most 9n2 �-minimum cuts.

We assume that the program will be given a parameter f, where we are supposed to succeed
with probability at least 1- 1=f, so we will use that parameter here.

It turns out that the first 9n2 cuts are the only ones of any concern. We will proceed by as-
suming this fact, doing the analysis, and then justifying the assumption by showing that with the
constants we computed the larger cuts contribute almost nothing.

The small cuts are easy to analyze. Using a Chernoff bound on each of them and a union
bound on the result, we get that

Pr[one of smallest 9n2 cuts samples to < (1- �)p� edges] < 9n2e-�
2p�=2



56 CHAPTER 3. IMPLEMENTATION

If we want this probability to be at most 1=2f, we get that

�2p� < 4 lnn + 2ln18f

Recall that we also need to know the probability that the minimum cut samples to too many
edges, but from Chernoff bounds we immediately get

Pr[minimum cut samples to > (1+ �)p� edges] < e-�
2p�=4

If we want this probability to be at most 1=2f, we get that

�2p� < 4 ln 2f

Recall also that what we want is that twice the number of edges sampled from the minimum
cut is less than thrice the minimum cut of the sample, so that some tree must 2-respect the mini-
mum cut. Translated into the variables above, this statement reads as

2(1+ �) < 3(1- �)

Solving, we find that if we take

� <
1

3+

q
2 ln 2f

2 lnn+ln18f

and
p >

4 lnn+ 2 ln 18f

�2�

then with probability at least 1- 1=f we will get at least one tree that 2-respects the minimum cut.
Note that the 4 in the second Chernoff bound above could be tightened a bit, but it only affects
how close � is to 1/3, so it does not matter much.

It now remains to show that the cuts we ignored really did not matter. For this purpose, order
the cut values in increasing order, and denote them c1(= �); c2; c3; : : : . So we have already dealt
with c1 : : : c9n2 , and we are now concerned with the rest. By Lemma 3.6.2, c9n2 > 3�=2. Thus

Pr[any of c9n2 : : : cn3 samples to < (1- �)p� edges] < n3e-(
1+2�

3
)
23p�=4

Assuming n > f, we can assume that 1=4 < � < 1=3. Plugging in, we get that the probability
above is at most e-15=4 lnn = n-3:75, which is clearly negligible.

We now must deal with the remaining cuts (cn3 : : : ). Using Lemma 3.6.1, we get that cn2� �
��. Rewriting, ck > lnk

2 lnn
�.

Pr[kth cut sample to < (1- �)p� edges] < e-9 lnk=4 = k-9=4

Applying the union bound, we now need to consider
X
k>n3

k-9=4 <

Z1
x=n3

k-9=4 =
4

5
n-15=4

Again, this quantity is clearly negligible. This concludes the reanalysis.

As n goes to infinity, we get � = 1=3 and p = (36 logn)=�. For f = 1=20 and n = 32768, which
corresponds to the larger problems we tested on, we get � = :284 and p = 663=lambda. 663 is
many more trees than is reasonable.



3.6. KARGER’S ALGORITHM 57

3.6.2 Tree Packing

As discussed in the theory section, there are at least two completely different possibilities for pack-
ing trees. One approach is to use Gabow’s algorithm to pack directed spanning trees; the other is
to use the fractional packing algorithm of Plotkin, Shmoys and Tardos (PST) to pack undirected
trees.

Gabow’s Algorithm Our implementation of Gabow’s algorithm is mostly straight after the the-
ory. The only significant heuristic we add is to greedily pack depth-first search trees at the begin-
ning, switching to Gabow’s algorithm when we get stuck. Our experience is that this heuristic
often finds the majority of the trees. We experimented briefly with reducing � (thus increasing
the sample size), so that we could stop packing trees when we only had most of them, but we
found that the increase in the number of trees caused by the decrease in � negated any benefit of
terminating Gabow’s algorithm early.

We also considered using the trees found by scan-first search as a heuristic, but we found them
unsuitable. For one thing, scan-first search finds undirected trees, so it is typically a factor of two
away from the optimum packing. Further, scan-first search is breadth-first in nature, and therefore
tends to put many of one node’s edges in one tree, thus disconnecting the node unnecessarily, and
immediately forcing a switch to Gabow’s algorithm. We also note that the fancy way to check for
2-respecting cuts prefers “stringy” trees, such as depth-first search trees. Scan-first search trees
may still be a good starting point for PST though.

If we use the theoretically justifiable sampling probability, tree packing seems to be the bottle-
neck. Unfortunately, the biggest problem we had was that Gabow’s algorithm seems to need an
explicit representation of all of the trees, so as problem size increases we quickly run out of mem-
ory. There are tricks that can be played to reduce the running time of Gabow’s algorithm, such as
the divide and conquer variant proposed by Karger [34], but it seems that for Gabow’s algorithm
to be practical, we need to either find a way to implicitly represent the trees, or we need to tighten
the analysis of Karger’s algorithm so that we do not need to pack so many. As already mentioned,
we ended up handling this problem by violating the analysis and declaring the implementation
heuristic.

Note that using Gabow’s algorithm to pack trees has the advantage that on integer capacity
graphs with small minimum cut we can forget about random sampling and 2-respecting cuts and
just use Gabow’s algorithm to find the minimum cut.

PST Algorithm We have done preliminary experiments with PST, but they are inconclusive.
Previous implementation work using PST to find multicommodity flows [44] found that heuristic
changes to the algorithm were crucial to good performance. We do not feel that we have worked
enough with PST yet to include results on it in this study. It would definitely be interesting to
know how it performs. For reference, important issues appear to be selection of a starting point
and on-line heuristic adjustment of parameters.

It is easy to implicitly represent the trees in PST, so if the analysis of K cannot be tightened, we
suspect that an implementation of K that respects the analysis will have to use PST.



58 CHAPTER 3. IMPLEMENTATION

Another major hope for PST is that it will in fact typically pack enough trees that we will only
need to look for 1-respecting cuts. Saving the computation of 2-respecting cuts would improve
practical performance a great deal.

So we regret that we have not included PST in this study. As far as future implementation
work on K goes, we consider PST to be deserving of the highest priority.

3.6.3 Checking for 2-respecting cuts

We implemented both the simple and the fancy methods for checking 2-respecting cuts. We con-
jectured for a long time that dynamic trees would prove too complicated to be valuable, but it
turns out that this is not the case.

The Simple Way The simple method was implemented largely as the theory suggested. We
combined the n computations of f#v(w) into one tree traversal, and the n computations g#w(v) into
another. Another change was that we used an explicit test in the middle of the computation to
handle the two cases (comparable, incomparable) instead of a fix at the end, as proposed by the
theory. It is not clear that this change makes any difference. We do not bother to use a linear time
algorithm for computing least common ancestors; rather we use the path compression algorithm
of Tarjan [56], which is wonderfully simple and runs in O(m�(m;n)) time, where �(m;n) is a
functional inverse of Ackermann’s function.

A real problem with the method is that this simplest approach to it requires a table of size
O(n2) to keep the values of all the cuts we are interested in as we computed them. This is clearly
the simplest thing to do, but use of O(n2) space incurs a big penalty on sparse graphs. It would be
interesting to find another way that is equally simple but space efficient. We eventually decided
to select between the simple method and the fancy method on-line, based on the density of the
graph.

The Fancy Way We used an implementation of dynamic trees written by Tamas Badics [4] for
the first DIMACS implementation challenge. This implementation uses splay trees, which is likely
the most practical approach.

We made some non-obvious changes from the theory description in implementing this method.
These are not deeply significant, but we give them here for the sake of anyone who wants to im-
plement K himself. Some readers will want to skip on to the experiments chapter.

The theory suggests separating computations for comparable v and w from those for incom-
parable v and w. The problem is that when looking for an incomparable partner we wish to add
-2c(v; u) to neighbors u, and we want to find a w that is incomparable when we do the Min-

Path operation. In theory, this suggests doing an AddPath(v;1) first, so that no ancestor of v
could possibly be the minimum. When we are looking for a comparable partner we wish to add
+2c(v; u) for all neighbors u, and obviously we do want an ancestor as the answer. We resolve
these problems in our implementation. First, for all edges we compute and store the least com-
mon ancestor (LCA) of the endpoints. (Recall that we needed to compute them anyway to find
1-respecting cuts.) Now instead of doing an AddPath(u;-2c(v; u)) for the incomparable case and



3.6. KARGER’S ALGORITHM 59

v u

root

lca(v, u)

Figure 3.3: Adding c(v; u) up the tree. Along the dashed path we wish to add -2c(v; u), and
along the thick path we wish to add 2c(v; u). So we add -2c(v; u) from u to the root, and we add
4c(v; u) from LCA(v; u) to the root.

separately an AddPath(u; 2c(v; u)) for the comparable case, we do an AddPath(u;-2c(v; u)) and
an AddPath(LCA(u; v); 4c(v; u)). This puts the right values in the right places (see Figure 3.3). Fur-
ther, since every node’s value is initialized with the value of the cut if its parent edge is cut, and
we check 1-respecting cuts first, we only get a comparable w when looking for an incomparable
one if there is not one that gives a better cut.

Find2RespectingCuts(T)

initialize a dynamic tree T0 that represents T, and has val(v) = C(v#)
while T0 has more than one node

ProcessBoughs(root of T 0)



60 CHAPTER 3. IMPLEMENTATION

ProcessBoughs(v)

if v has multiple children
for each child w of v

(partner; value) = ProcessBoughs(w)

if (partner; value) is not NIL (w is top of bough)
for all edges fv; ug (undo dynamic tree ops)

AddPath(u; 2c(v; u))

AddPath(LCA(u; v);-4c(v; u))

contract(v;w)

return NIL
if v has one child w

(partner; value) = ProcessBoughs(w)

if (partner; value) is NIL, return NIL (v not on a bough)
(partner 0; value 0) = ProcessNode(v)

contract(v;w)

if value 0 < value, return (partner0; value 0)
else return (partner; value)

else (v is a leaf)
return ProcessNode(v)

ProcessNode(v)

for all edges fv; ug

AddPath(u;-2c(v; u))

AddPath(LCA(u; v); 4c(v; u))

for all edges fv; ug

x = MinPath(u)

if val(x) + C(v#) < �̂

�̂ = val(x) + C(v#)
partner = x

x = MinPath(u)

if val(x) - C(v#) < �̂

�̂ = val(x) + C(v#)
return (partner; �̂)



Chapter 4

Experiments

In this chapter we discuss the experiments we carried out on the implementations described in the
last chapter. We begin by describing the design of our experiments. We then discuss the results.

4.1 Experiment Design

The most important part of running experiments is the inputs that are tested. It is of course impos-
sible to try everything; subjective choices were necessarily made in the design of our experiments.
In this section we describe and justify those choices. We begin by laying out our goals, which
guided these decisions. We then describe the families of inputs we chose, and give details on
precisely which experiments we ran.

4.1.1 Goals

As stated in the introduction, our goal in this study is to obtain efficient implementations of all the
algorithms and meaningful comparisons of their performance. Of course, it is not obvious how to
define meaningful in this context. As an approximate definition, we adopt the following rules:

1. running times on real-world problems are meaningful

2. comparisons to previous work are meaningful

3. running times on problems that expose weaknesses in the algorithms and/or implementa-
tions are meaningful

4. running times that differ by a small constant factor are not meaningful

The justification for rule 1 is obvious. Performance on real-world problems is a direct measure
of real-world performance. It is also clear that rule 2 is reasonable, as our results would be ques-
tionable if they differed too dramatically from previous work. Rule 3 may seem objectionable, in



62 CHAPTER 4. EXPERIMENTS

that the kinds of graphs that expose weaknesses may never come up in applications, but we main-
tain that it is important to know just how bad performance is in the worst case. For example, if
one implementation typically wins by a factor of five, but has a bad case where it loses by a factor
of 10, one would probably be happy to use it and hope the bad case does not happen. However,
if the bad case causes the implementation to lose by a factor of 10,000, one might be more hesitant
about blindly hoping that the bad case does not occur.

We justify rule 4 based on the fact that small factors come and go easily. In all likelihood, a
good (and determined) programmer could speed up all of our implementations by a factor of two
just by carefully optimizing the source code. Likewise, machine dependencies, such as cache size,
are liable to have small effects that we might be able to fix, but our fixes might be unnecessary
or even undesirable on another machine. We are not interested in such details. We hope to be
able to recommend an algorithm to use and provide a starting implementation, but someone who
is interested in the absolute best performance will have to (and probably want to) do the final
optimization himself.

Note that as a corollary of rule 4, we chose to look for minimum cut values, not the actual
cuts. This decision simplifies the code a bit, and ensures that the implementations do not take a
long time simply because they find many cuts. (Any of the algorithms can discover 
(n) cuts;
assuming it takes 
(n) time to save a cut when found, the time spent saving cuts could be 
(n2),
which might dominate the runtime.) It is easy to adapt our codes to actually find the minimum cut
without affecting the running time by more than a factor of two: first find the minimum cut value,
then run the algorithm again and stop when we first find a cut with the same value, outputting this
cut. Since this modification can change the running time by at most a factor of two, we deemed it
unnecessary to worry about it in our tests.

4.1.2 Problem Families

We chose several different families of inputs to cover the different types of tests we decided were
meaningful.

Class name Brief description
TSP TSP instances
PRETSP Preprocessed TSP instances
NOI1–NOI6 Random graphs with “heavy” components (after NOI)
REG1–REG2 Regular random graphs
IRREG Irregular random graphs
BIKEWHE Bicycle wheel graphs
DBLCYC Two interleaved cycles
PR1–PR8 Two components with a min-cut between them (after PR)

Table 4.1: Summary of problem families.



4.1. EXPERIMENT DESIGN 63

Subproblems from a Traveling Salesman Problem Solver

A state of the art method for solving Traveling Salesman Problem (TSP) instances exactly uses the
technique of cutting planes. The set of feasible traveling salesman tours in a graph induces a convex
polytope in a high-dimensional vector space. Cutting plan algorithms find the optimum tour by
repeatedly solving a linear programming relaxation of an integer programming formulation of
the TSP and adding linear inequalities that cut off undesirable parts of the polytope until the
optimum solution to the relaxed problem is integral. One set of inequalities that has been very
useful is subtour elimination constraints, first introduced by Dantzig, Fulkerson, and Johnson [15].
The problem of identifying a subtour elimination constraint can be rephrased as the problem of
finding a minimum cut in a graph with real-valued edge weights. Thus, cutting plane algorithms
for the traveling salesman problem must solve a large number of minimum cut problems (see [43]
for a survey of the area). We obtained some of the minimum cut instances that were solved by
Applegate and Cook [3] in their TSP solver. These are clearly desirable test data, as they are from
a “real-world” application.

The Padberg-Rinaldi heuristics are very effective on the TSP instances. In order to factor out
the time spent in preprocessing, for each TSP instance we made a smaller instance by running PR

passes until some pass fails to do any contractions. (Note that running PR passes until one pass
fails is not the same as exhaustively applying the PR tests.) We refer to these reduced instances
as PRETSP. We tested the implementation on both the original TSP problems and the PRETSP
problems.

Table 4.2 gives a summary of these instances, including their “names” which correspond to
the original TSP problems.

Note that these problems are smaller than we would have liked. Several PRETSP instances
have only two nodes, and the largest PRETSP instance has only 607 nodes. The running times of
the best algorithms are therefore small, making it hard for us to really distinguish them. We were
unable to obtain larger instances; remember that finding a minimum cut is only a subroutine of a
TSP solver, and the whole algorithm apparently takes too long for TSP researchers to be running
on much larger graphs.

Random Graphs with “Heavy” Components

A natural type of graph on which to run a minimum cut algorithm is the type that is always
drawn to exhibit the problem: two well connected components connected by low capacity edges.
Nagamochi et al. [48] used a family of graphs that generalizes this idea. We use the same family,
which is parameterized as follows:

n the number of vertices in the graph

d the density of edges as a percent (i.e. m =
d

100

n(n-1)

2
)

k the number of “heavy” (well-connected) components

P the scale between intercomponent and intracomponent edges



64 CHAPTER 4. EXPERIMENTS

Problem number Problem name n m n0 m 0

1 tsp.att532.x.1 532 787 20 38
2 tsp.vm1084.x.1 1084 1252 19 36
3 tsp.vm1748.x.1 1748 2336 77 131
4 tsp.d1291.x.1 1291 1942 88 185
5 tsp.fl1400.x.1 1400 2231 148 300
6 tsp.rl1323.x.1 1323 2169 113 221
7 tsp.rl1323.x.2 1323 2195 106 208
8 tsp.r15934.x.1 5934 7287 150 292
9 tsp.r15934.x.2 5934 7627 261 517
10 d15112.xo.19057 15112 19057 605 1162
11 pla33810.xo.38600 33810 38600 2 1
12 pla33810.xo.39367 33810 39367 2 1
13 pla33810.xo.39456 33810 39456 2 1
14 pla85900.xo.102596 85900 102596 2 1
15 pla85900.xo.102934 85900 102934 2 1
16 pla85900.xo.102988 85900 102988 52 90
17 usa13509.xo.15631 13509 15631 325 561
18 usa13509.xo.17048 13509 17048 477 920
19 usa13509.xo.17079 13509 17079 449 861
20 usa13509.xo.17111 13509 17111 454 886
21 usa13509.xo.17130 13509 17130 403 786
22 usa13509.xo.17156 13509 17156 532 1029
23 usa13509.xo.17156a 13509 17156 501 950
24 usa13509.xo.17183 13509 17183 492 946
25 usa13509.xo.17193 13509 17193 549 1072
26 usa13509.xo.17210 13509 17210 465 926
27 usa13509.xo.17303 13509 17303 542 1064
28 usa13509.xo.17358 13509 17358 573 1104
29 usa13509.xo.17375 13509 17375 476 945
30 usa13509.xo.17386 13509 17386 607 1150
31 usa13509.xo.17390 13509 17390 557 1091
32 usa13509.xo.17494 13509 17494 505 971

Table 4.2: Summary of TSP and PRETSP instances. n and n0 is the number of nodes in the TSP
and PRETSP instances, respectively. m and m0 are the corresponding numbers of edges.



4.1. EXPERIMENT DESIGN 65

The graph is constructed by first taking n vertices and randomly coloring them with k colors. We
then add one random cycle on all vertices, so the graph will be connected, and add the remaining
m-n edges at random. Every edge added gets a random capacity. If the endpoints have different
colors, the capacity is chosen uniformly at random from [1; 100]; otherwise the capacity is chosen
uniformly at random from [1; 100P].

Following [48], we tested on 6 subfamilies. Our families are the same in spirit as those of [48],
but we use larger problem sizes and we added some data points where we felt it was appropriate.

Family n d k P

NOI1 300,400,500,600 50 1 300,400,500,600,
700,800,900,1000 700,800,900,1000

NOI2 300,400,500,600 50 2 300,400,500,600,
700,800,900,1000 700,800,900,1000

NOI3 1000 5,10,25,50,75,100 1 1000
NOI4 1000 5,10,25,50,75,100 2 1000
NOI5 1000 50 1,2,3,5,7,10,20,30,33,35 1000

40,50,100,200,300,400,500
NOI6 1000 50 2 5000,2000,1000,500

250,100,50,10,1

Families NOI1 and NOI2 study the effect of varying the number of vertices. Families NOI3
and NOI4 study the effect of varying the density of the graph. Family NOI5 studies the effect
of varying the number of components, and family NOI6 studies the effect of varying the ratio
between the weights of the intercomponent and intracomponent edges.

Regular Random Graphs

Recall that in the analysis of the original KS, we lower bound m with �n=2. It follows that a graph
where this bound is tight is liable to be an interesting graph for KS. If uncapacitated, such a graph
is interesting in general, because it has the minimum number of edges possible given its minimum
cut value. (An uncapacitated graph must have � edges incident to every vertex, since otherwise
some vertex defines a smaller cut.) Recall also that one of the heuristics in NI computes lower
bounds on cut values between edge endpoints, and can lead to many contractions in one phase. It
makes sense that a graph that has as few edges as possible might cause this heuristic to fail.

We achieve this extreme case with a �-regular graph. In particular, we take the union of �=2
random cycles. Preliminary experiments with a union of � random matchings gave similar results.

Family n �

REG1 1000, 2000, 4000, 8000, 16000 8 16 32 64 128 256
1000 512 1024

REG2 128, 256, 512, 1024, 2048 n/8



66 CHAPTER 4. EXPERIMENTS

REG1 tests the effect of varying n and � on sparse graphs. REG2 tests the effect of varying n

on dense graphs.

Irregular Random Graphs

An obvious question about the previous family is what happens if symmetry is broken a little bit.
In particular, we consider taking the union of � random matchings (or cycles), and then adding
some edges of another random matching. It is not obvious that this family will produce different
results, but it turns out that NI changes behavior in interesting ways. We add another parameter
e, the number of extra edges, to the parameters from the REG families.

Family n � e

IRREG 4000 8, 9 0, 2, 4, 16, 64, 256, 1024, 2000, 2976, 3744, 3936, 3984, 3996, 3998, 4000

Bicycle Wheels

Another extreme graph is a cycle. An uncapacitated cycle has
�
n

2

�
minimum cuts, a value that

matches the upper bound, and n�=2 edges, a value that matches the lower bound. A cycle also
has only one undirected spanning tree, despite having minimum cut value two, so it exhibits the
extreme case for the size of a tree packing.

Unfortunately, PR2 applies at every vertex in a cycle, so PR preprocessing always solves cycles.
One natural way to try to overcome this problem is to make a “wagon wheel” instead. That is, add
an extra vertex that is connected to every vertex on the cycle. If the capacities of the new edges
are small compared to the cycle edges, then the graph is still very much like a cycle in terms of its
cuts, but PR2 no long applies. Unfortunately, now PR3 applies at every vertex. So we go one step
further: we take a cycle and add two extra vertices, one connected to every other node, and the
other connected to the remaining nodes. We also connect the two added vertices. We refer to this
graph as a bicycle wheel, as that is precisely what it looks like. (See Figure 4.1.2). Note that this
graph is now immune to all the PR tests. (In fact, it is the example of a PR immune graph we gave
in Section 2.2.1.)

We pick the capacities so that all trivial cuts have the same value. This choice causes the “rim”
to have large capacity, and the “spokes” to have small capacity, which means that the cuts are still
very much like those of a cycle. The only parameter then is the number of vertices, so that is all
we vary.

Family n

BIKEWHE 1024, 2048, 4096, 8192, 16384, 32768



4.1. EXPERIMENT DESIGN 67

Figure 4.1: A 10-vertex bicycle wheel graph.

Two Interleaved Cycles

Another way to get a graph that is basically a cycle, but is immune to the PR tests, is to use two
cycles. For this family we use an n-node cycle with capacity 1000, and we make a second cycle by
connecting every third node of the original cycle with a unit capacity edge.

In order to make this family a little more interesting, we also “hide” a minimum cut in the
middle. That is, we take two opposite cycle arcs and decrease their capacity by three. We then
increase the capacity of four of the second cycles’ edges by three, such that all trivial cuts still have
value 2002. In the process, however, we have created a cut of value 2000. Note there are also

(n2) cuts of value 2006. This modification is cumbersome to describe in words, but the picture
is clear. See Figure 4.2.

Family n

DBLCYC 1024, 2048, 4096, 8192, 16384, 32768

PR

One final problem family is one used by Padberg and Rinaldi [51]. Our only use of this family is
to check the effectiveness of our PR strategies against those of Padberg and Rinaldi.

This family includes two different types of graphs. The first type is a random graph with an
expected density d. The second type is a random graph that consists of two components connected
by “heavy” edges, with “light” edges going between the components, thus the minimum cut is
very likely to separate the two components (similar to the NOI families). The generator takes three
parameters

� n - the number of vertices,

� d - the density (as a percentage),



68 CHAPTER 4. EXPERIMENTS

Figure 4.2: Two interleaved cycles. The outer cycle edges have capacity 1000, except for the two
thin ones, have which capacity 997. The inner edges have capacity 1, except for the 4 thick ones,
which have capacity 4. The dashed line shows the minimum cut (value 2000). The dotted line
shows one of many near minimum cuts (value 2006).



4.1. EXPERIMENT DESIGN 69

� c - the type of graph to generate (1 or 2).

If c = 1, for each pair of vertices, with probability d, we include an edge with weight uniformly
distributed in [1; 100]. If c = 2, we split the graph into two components, one containing vertices 1
through n=2 and the other containing vertices n=2+ 1 through n. Again, for each pair of vertices,
we include an edge with probability d. If the two vertices are in the same component, the edge
weight is chosen uniformly from [1; 100n], but if the vertices are in different components, the edge
weight is chosen uniformly from [1; 100].

Family n d c

PR1 100,200,300,400 2 1
PR2 100,200,300,400 10 1
PR3 100,200,300,400 50 1
PR4 100,200,300,400 100 1
PR5 100,200,300,400,500,1000,1500,2000 2 2
PR6 100,200,300,400 10 2
PR7 100,200,300,400 50 2
PR8 100,200,300,400 100 2

As we wish to compare directly to Padberg and Rinaldi, these values are precisely those used
by Padberg and Rinaldi in their paper [51].

4.1.3 Codes

As discussed in the previous chapter, for each algorithm we made numerous decisions about the
implementation. While the process of implementation involved testing many of these decisions,
there are far too many for us to attempt to present data on everything we tried. We picked several
important variations on which to report data. See Table 4.1.3 for a summary.

Code Description
ho HO with all heuristics
ho nopr HO without PR heuristics
ho noxs HO without excess detection
ho noprxs HO without PR heuristics or excess detection
hybrid Nagamochi et al implementation of NI
ni NI with all heuristics
ni nopr NI without PR heuristics
ks KS with all heuristics
ks nopr KS without internal PR heuristics
k K with all heuristics

Table 4.3: Summary of the implementations we tested



70 CHAPTER 4. EXPERIMENTS

Notice that the suffix nopr does not mean the same thing in all cases. For HO and NI we
show what happens when PR heuristics are disabled entirely, whereas for KS we never consider
disabling PR preprocessing, and for K we never disable the PR heuristics at all. This decision is
based on experience with the PR tests.

It turns out that no one algorithm is clearly best, and we did attempt to make a hybrid algo-
rithm that would fill this role. We can give a good idea of what such an implementation would
look like based on the data we got from the implementations above.

4.1.4 Setup

Our experiments were conducted on a machine with a 200MHz PentiumPro processor, 128M of
RAM, and a 256K cache. Our codes are written in C and compiled with the GNU C compiler (gcc)
using the O4 optimization option. All of the Monte Carlo implementations (ks, ks nopr, k) used
95% as a minimum success probability.

We averaged five runs wherever randomness was involved. That is, for the problem families
that are constructed randomly, we constructed five instances for each setting of the parameters.
Further, for the randomized algorithms, we did five runs on each instance. We report averages.

As mentioned in Section 4.1.1, our implementations do not actually output the minimum cut,
or save the minimum cut in any special data structure. However, at the time the minimum cut is
encountered they do have the minimum cut stored in some internal data structure from which it
could easily be extracted.

In order to see why different implementations had different performances, we recorded many
quantities in addition to total running time:

For all implementations we measured:

total running time not including time to input the graph

discovery time the time at which the algorithm first encountered the minimum cut. This
quantity tells us two things. First, if we use the two pass method to get the actual cut,
as described in Section 4.1.1, the discovery time will be the running time of the second
pass. So running time plus discovery time should be the time to find and output a min-
imum cut. Second, for KS, discovery times tells us how many iterations of the recursive
contraction algorithm we actually needed to run. If discovery times are always far less
than running times, we might suspect that the analysis is not tight.

edge scans the number of times an edge was examined. Examining edges is a basic unit
of work that all the algorithms perform. Hence this quantity provides some sort of
machine independent measure of running time. This is a basic unit of work that is
common to all of the codes.

For implementations that perform PR tests we measured:

preprocessing time the time spent preprocessing the graph with PR tests.

initial PR contractions the number of contractions done by the PR preprocessing.



4.2. RESULTS 71

internal PR contractions the number of contractions due to PR tests while running the main
algorithm.

For HO implementations we measured:

s-t cuts the number of s-t cut (max-flow) computations, not counting single node layers.

average problem size the average number of vertices in an s-t cut problem.

one node layers the number of times a sleeping layer has exactly one node. (Recall that we
process this case specially.)

excess contractions the number of contractions due to the excess detection heuristic.

For NI implementations we measured:

phases the number of scan-first searches executed.

For KS implementations we measured:

leaves the number of leaves of the recursion tree.

For K implementations we measured:

packing time the amount of time spent packing trees.

respect time the amount of time spent checking for 1 and 2-respecting cuts.

4.2 Results

In this section we discuss our results. The overall result is that ho and ni are best, although each
has a bad case, and on bicycle wheels they both lose asymptotically to k and ks. We give more
details by first discussing the results on each problem family, and then discussing each algorithm.

In this section we present most of the data in the form of plots. Full data appears in tabular
form in the Appendix. The plots always have log(running time) as the vertical axis. For families
where we are varying the size or density of the graph, we also use a logarithmic scale for the hor-
izontal axis. Since we expect the running time of the algorithms to be expressible as c1nc2 , log-log
plots are appropriate: the y-intercept tells us c1 and the slope tells us c2. So parallel lines corre-
spond to algorithms with the same asymptotic performance and different constant factors, and
different slopes correspond to different asymptotic performance. Where appropriate we use a lin-
ear regression to compute the slopes and intercept of the best fit line and report these performance
functions in a table.

Note that our timer was not precise below 0:01 seconds, and we cannot plot 0:00 on a log
scale, so any timer results of 0:00 were translated to 0:01 for plotting purposes. Such small values
probably should not be trusted in any case.



72 CHAPTER 4. EXPERIMENTS

1 5 9 13 17 21 25 29
instance

0.0

0.1

1.0

10.0

100.0

C
P

U
 T

im
e 

(s
ec

.)

TSP

k
ks
ks_nopr
hybrid
ni
ni_nopr
ho
ho_nopr
ho_noxs
ho_noprxs

Figure 4.3: All implementations on the TSP instances. Note that the x-axis of this plot has no
meaning; the points are connected by lines because the lines seem to make it easier to read the
plot.



4.2. RESULTS 73

4.2.1 Results by Problem Family

TSP

The TSP family turned out to be a study in the effectiveness and subtlety of PR tests. The most
striking result here is the difference between hybrid and ni, which for the “USA” instances (17–32)
is approximately a factor of 1000 (see Figure 4.3) . This difference is almost entirely due to the PR

strategy. Recall that hybrid does have PR tests, yet it behaves like ni nopr. Most of the difference
is our PR preprocessing, which reduces the size of the USA problems by a factor of 10 to 15 in
about a tenth of a second. However, if we factor out this difference by preprocessing the instances
before running the codes on them (Figure 4.4), we find that ni is still gaining something over both
ni nopr and hybrid, so our internal PR strategy is also gaining us something.

17 19 21 23 25 27 29 31
instance

0.01

0.10

C
P

U
 T

im
e 

(s
ec

.)

PRETSP

ni
hybrid
ni_nopr

Figure 4.4: NI variants on preprocessed TSP USA instances (PRETSP 17–32).

NOI

Overall, random graphs with heavy components serve as a demonstration of the good case for
NI. These graphs have many “extra” edges, and as one would hope, all of the implementations
of NI were able to exploit this property to run in near-linear time. Further, using Matula’s ap-
proximation algorithm to get a good cut upper bound and computing a sparse certificate based
on that value was sufficient to solve almost every instance, so the behavior of k on almost all of
these problems is the behavior of this preprocessing step. Notice that k is still several (roughly 4)



74 CHAPTER 4. EXPERIMENTS

300 400 500 600 700 800 900 1000
number of vertices

1.0

10.0

100.0

C
P

U
 T

im
e 

(s
ec

.)

NOI1

k
ks
ks_nopr
hybrid
ni
ni_nopr
ho
ho_nopr
ho_noxs
ho_noprxs

Figure 4.5: All implementations on random graphs (varying size).

300 400 500 600 700 800 900 1000
number of vertices

0.1

1.0

10.0

C
P

U
 T

im
e 

(s
ec

.)

NOI2

k
ks
ks_nopr
hybrid
ni
ni_nopr
ho
ho_nopr
ho_noxs
ho_noprxs

Figure 4.6: All implementations on random graphs with 2 heavy components (varying size).



4.2. RESULTS 75

times slower than ni. There are two reasons for this. First, since the contractions done by Matula’s
algorithm must be undone, k has extra overhead in the contraction code to allow contractions to
be undone. Second, k must always do at least two sparse certificate computations: at least one for
Matula’s algorithm and then the one that uses the value computed by Matula’s algorithm. ni, on
the other hand, typically needs only one sparse certificate computation for these graphs.

5 10 25 50 75 100
density

1.0

10.0

100.0

C
P

U
 T

im
e 

(s
ec

.)

NOI3

k
ks
ks_nopr
hybrid
ni
ni_nopr
ho
ho_nopr
ho_noxs
ho_noprxs

Figure 4.7: All implementations on random graphs (varying density).

Varying the number of nodes and the density of the graphs, all the implementations behave
with similar asymptotics (Table 4.4 and Figures 4.5–4.8). In fact, only KS distinguishes itself, and
that is for having significantly worse constant factors. Actually, KS’s analysis is failing it on these
problems. The variant was designed with graphs of this nature in mind, and indeed ks typically
ends up with very shallow recursion trees. However, while it appears that the success probability
here should be constant, we could not find the right way to determine that fact on-line. The
problem is that we cannot just look at the depth of the trees and use the actual depth to revise
our estimate of success probability, because if we condition on the fact that a recursion tree has
small depth, we find that the probability we have contracted a minimum cut edge increases. So
all we can say is that on these families ks actually performs quite well, but we do not know how
to recognize this fact on-line and terminate early.

Varying the number of components is more interesting (Figure 4.9). For one thing, there is a
threshold value, after which the PR preprocessing solves the problem. This threshold appears to
occur when the intercomponent cuts become as large as the the intracomponent cuts. Note that
we can see the slowdown k has in the contraction code, because after we cross the threshold it
runs a constant factor slower than the other implementations with PR preprocessing. We also see
that excess detection can sometimes fill in for PR tests, as ho nopr improves performance at the



76 CHAPTER 4. EXPERIMENTS

5 10 25 50 75 100
density

1.0

10.0

100.0

C
P

U
 T

im
e 

(s
ec

.)
NOI4

k
ks
ks_nopr
hybrid
ni
ni_nopr
ho
ho_nopr
ho_noxs
ho_noprxs

Figure 4.8: All implementations on random graphs with 2 heavy components (varying density).

NOI1 NOI2 NOI3 NOI4
k 1:43� 10-6 � n2:16 1:46� 10-6 � n2:16 9:31� 10-2 � d0:98 9:36� 10-2 � d0:97

ks 1:28� 10-5 � n2:33 1:86� 10-5 � n2:17 1:69� d1:07 1:59� d0:91

ks nopr 1:60� 10-5 � n2:29 2:60� 10-5 � n2:13 2:13� d1:00 1:69� d0:91

hybrid 3:77� 10-7 � n2:32 6:97� 10-7 � n2:20 1:08� 10-1 � d0:89 1:35� 10-1 � d0:76

ni 5:39� 10-7 � n2:18 4:88� 10-7 � n2:17 3:06� 10-2 � d1:04 2:99� 10-2 � d1:00

ni nopr 1:24� 10-7 � n2:41 3:24� 10-7 � n2:20 1:63� 10-2 � d1:24 2:22� 10-2 � d1:03

ho 9:75� 10-7 � n2:11 1:78� 10-7 � n2:38 4:23� 10-2 � d1:02 3:67� 10-2 � d1:07

ho nopr 1:37� 10-7 � n2:42 2:21� 10-7 � n2:31 2:14� 10-2 � d1:20 2:23� 10-2 � d1:11

ho noxs 8:62� 10-7 � n2:13 1:94� 10-7 � n2:40 5:74� 10-2 � d0:94 8:19� 10-2 � d0:90

ho noprxs 4:40� 10-7 � n2:29 6:36� 10-7 � n2:20 9:53� 10-2 � d0:89 1:17� 10-1 � d0:78

Table 4.4: Asymptotic behavior of the implementations on graphs with heavy components.



4.2. RESULTS 77

1.0 10.0 100.0
number of components

1.0

10.0

100.0

C
P

U
 T

im
e 

(s
ec

.)

NOI5

k
ks
ks_nopr
hybrid
ni
ni_nopr
ho
ho_nopr
ho_noxs
ho_noprxs

Figure 4.9: All implementations on random graphs with heavy components (varying number of
components).

same threshold, whereas ho noprxs does not change behavior.

Another interesting aspect of varying the number of components is that for five and seven
components, preprocessing with Matula’s algorithm and one sparse certificate computation does
not solve the problem. For all other numbers of components it does. Notice that in the two cases
where it has to do some work, k reveals that its performance on these graphs is better than ks, but
not very good.

Finally, varying the capacity of the intracomponent edges (Figure 4.10), we see that for very
high values, most of the implementations improve performance. They all seem to improve at
the same point, but for very different reasons. For ks, the improvement comes because the trees
become very shallow when there is so much extra edge capacity to be picked for contraction. For
ni, fewer sparse certificate computations are necessary, as it finds more excess edges to contract.
For ho, excess detection quickly causes most of the vertices to be contracted away.

REG

Regular random graphs (Tables 4.5 and 4.6, Figures 4.11–4.13) are the bad case for NI. In fact, they
induce NI’s worst case
(mn) time performance. This fact is immediately apparent on both sparse
and dense graphs. The only place where any NI implementation manages to perform well is when
the graphs are very dense, and the PR tests kick in.



78 CHAPTER 4. EXPERIMENTS

1.0 10.0 100.0 1000.0
intracomponent edge capacity factor

10.0

100.0

C
P

U
 T

im
e 

(s
ec

.)

NOI6

k
ks
ks_nopr
hybrid
ni
ni_nopr
ho
ho_nopr
ho_noxs
ho_noprxs

Figure 4.10: All implementations on random graphs with heavy components (varying “heaviness”
of components).

4 8 16 32 64 128
density

0.1

1.0

10.0

C
P

U
 T

im
e 

(s
ec

.)

REG1

k
ks
ks_nopr
hybrid
ni
ni_nopr
ho
ho_nopr
ho_noxs
ho_noprxs

Figure 4.11: All implementations on sparse regular random graphs (varying density).



4.2. RESULTS 79

1000 2000 4000 8000 16000
number of vertices

0.1

1.0

10.0

100.0

C
P

U
 T

im
e 

(s
ec

.)
REG1

k
ks
ks_nopr
hybrid
ni
ni_nopr
ho
ho_nopr
ho_noxs
ho_noprxs

Figure 4.12: All implementations on sparse regular random graphs (varying size).

128 256 512 1024 2048
number of vertices

0.0

0.1

1.0

10.0

100.0

C
P

U
 T

im
e 

(s
ec

.)

REG2

k
ks
ks_nopr
hybrid
ni
ni_nopr
ho
ho_nopr
ho_noxs
ho_noprxs

Figure 4.13: All implementations on dense regular random graphs.



80 CHAPTER 4. EXPERIMENTS

REG1

k 8:10� 10-6 � n1:13d1:42

ks 1:80� 10-4 � n1:25d0:93

ks nopr 5:92� 10-4 � n1:19d0:77

hybrid 3:55� 10-7 � n2:17d0:90

ni 3:02� 10-7 � n2:18d0:92

ni nopr 2:44� 10-7 � n2:18d0:92

ho 1:09� 10-6 � n1:52d0:83

ho nopr 1:31� 10-6 � n1:42d0:94

ho noxs 2:84� 10-6 � n1:39d0:80

ho noprxs 2:66� 10-6 � n1:35d0:86

Table 4.5: Asymptotic behavior of the implementations on sparse regular random graphs. (These
fits do not include the unusual cases n = 1000, d = 256; 512.)

REG2
k 4:34� 10-9 � n3:09

ks 1:12� 10-5 � n2:21

ks nopr 3:59� 10-5 � n2:05

hybrid 4:25� 10-8 � n3:01

ni 2:07� 10-8 � n3:12

ni nopr 2:02� 10-8 � n3:09

ho 1:68� 10-7 � n2:28

ho nopr 9:03� 10-8 � n2:37

ho noxs 1:95� 10-7 � n2:27

ho noprxs 9:92� 10-8 � n2:35

Table 4.6: Asymptotic behavior of the implementations on dense regular random graphs.



4.2. RESULTS 81

These graphs are also sufficiently sparse that k just runs Gabow’s minimum cut algorithm.
Gabow’s algorithm is apparently competitive with ho when the cut value is very small, but as the
value increases performance quickly degrades. The transition away from Gabow’s algorithm is
the reason for the sudden change in behavior that can be seen in Figure 4.11 when the graph gets
dense. We were unable to run large enough problems to compare k and ho for the case where the
graph is sparse, but has at least 
(logn) cycles.

Note that k’s terrible asymptotic performance on the dense instances is an artifact of small
problems. For these instances, the number of nodes is small enough that even though they have

(n2) edges, k is deciding that they are sparse enough to use Gabow’s algorithm on. The n = 2048

case does not quite fall on the fit line in Figure 4.13, because it is the first instance where Gabow’s
algorithm is not used. The asymptotic performance will improve after this point.

IRREG

0.0 1333.3 2666.7 4000.0 5333.3 6666.7 8000.0
number of extra edges

1.0

10.0

100.0

C
P

U
 T

im
e 

(s
ec

.)

IRREG

k
ks
ks_nopr
hybrid
ni
ni_nopr
ho
ho_nopr
ho_noxs
ho_noprxs

Figure 4.14: All implementations on irregular random graphs.

Irregular random graphs (Figure 4.14) mainly show the significant dependence NI has on graph
regularity. The performance of all implementations of NI tend to do poorly when the input is very
regular, as in the regular random graphs, whereas they all do well when the input is irregular,
as in the random graphs with heavy components. Intuitively, this behavior is in accord with the
nature of the algorithm: irregular graphs have “extra” edges that will not be in a sparse certificate
and therefore be contracted. This family shows just how dramatic the difference is.

It is also interesting that excess detection appears to be more effective when the graph has



82 CHAPTER 4. EXPERIMENTS

extra edges, and the PR tests are not.

BIKEWHE

1024 2048 4096 8192 16384 32768
number of vertices

1.0

10.0

100.0

C
P

U
 ti

m
e 

(s
ec

.)

BIKEWHE

k
ks
ks_nopr
hybrid
ni
ni_nopr
ho
ho_nopr
ho_noxs
ho_noprxs

Figure 4.15: All implementations on bicycle wheel graphs.

The bicycle wheel graphs (Figure 4.15 and Table 4.7) are particularly interesting because they are
the only example we have where both deterministic algorithms lose asymptotically. Unfortu-
nately, because k needs 
(n logn) space, 128M of RAM was not sufficient memory for us to run
a big enough instance to see k win. It appears that the crossover would take place right near the
edge of the plot though.

DBLCYC

Two interleaved cycles (Figure 4.15 and Table 4.7) have interesting properties with respect to the
PR tests. The graphs have 
(n2) near-minimum cuts, and random choices of edges to contract
will not distinguish very near minimum cuts from minimum cuts, so KS should find them all.
However, the PR tests can tell the difference, and this makes for a huge difference between ks and
ks nopr. ks runs quite well on these graphs, whereas ks nopr runs so badly that we had to run it
on some smaller instances in order to get any idea of how it behaved.

Surprisingly, similar behavior occurs in the implementations of NI. ni does a few sparse certifi-
cate computations, and then the PR tests finish off the graph. hybrid’s PR strategy is not nearly as



4.2. RESULTS 83

BIKEWHE
k 1:57� 10-5 � n1:68

ks 7:39� 10-5 � n1:79

ks nopr 2:24� 10-4 � n1:92

hybrid 1:43� 10-6 � n2:14

ni 1:73� 10-7 � n2:31

ni nopr 1:81� 10-7 � n2:30

ho 4:04� 10-8 � n2:17

ho nopr 2:80� 10-8 � n2:23

ho noxs 5:39� 10-8 � n2:14

ho noprxs 2:56� 10-8 � n2:24

Table 4.7: Asymptotic behavior of the implementations on bicycle wheel graphs.

1024 2048 4096 8192 16384 32768512256128
number of vertices

0.1

1.0

10.0

100.0

C
P

U
 T

im
e 

(s
ec

.)

DBLCYC

k
ks
ks_nopr
hybrid
ni
ni_nopr
ho
ho_nopr
ho_noxs
ho_noprxs

Figure 4.16: All implementations on two interleaved cycles.



84 CHAPTER 4. EXPERIMENTS

DBLCYC
k 1:77� 10-5 � n1:41

ks 9:02� 10-5 � n1:35

ks nopr 4:92� 10-4 � n2:09

hybrid 2:44� 10-7 � n2:06

ni 7:07� 10-6 � n1:16

ni nopr 3:04� 10-7 � n2:24

ho 7:42� 10-8 � n2:22

ho nopr 8:23� 10-8 � n2:18

ho noxs 7:18� 10-8 � n2:23

ho noprxs 8:36� 10-8 � n2:17

Table 4.8: Asymptotic behavior of the implementations on two interleaved cycles.

effective, allowing roughly n=3 sparse certificates to be computed before finishing off the graph.
This difference leads to a significant difference in asymptotic performance.

The second surprise about this family is that all of the implementations of HO perform badly.
This family is the only one where ho does so badly. (Even on bicycle wheels, where ho was dis-
tinctly losing to K asymptotically, it was still winning for all of the problem sizes we ran.) Note
that it is not obvious how to get ni’s good performance here by some kind of sparsification pre-
processing. ni takes a few certificate computations, so repeating sparse certificate computations
while they help would not work here. Further, using Matula’s 2+ � approximation and using the
resulting cut bound to compute a sparse certificate (as k does) reduces the problem but does not
solve it.

So it appears that this family has the property that the source PR tests do not kick in for a long
time, whereas PR passes seem to help very soon. It would be nice to implement PR passes in ho to
verify this conjecture. (Note that implementing PR passes in HO is non-trivial, because a PR pass
may invalidate the distance labeling.)

PR

Our only goal in running these tests used by Padberg and Rinaldi was to compare our PR strategy
to theirs. We refer to their code as pr, and look at the number of s-t cuts computed. Since our
implementations contract nodes via other heuristics, we look at all of the variants (Table 4.2.1).

It is somewhat difficult to make a meaningful comparison here because of HO’s other heuris-
tics. Looking just at the number of s-t cuts computed by ho, it appears that we cannot hope to
do much better. However, ho noxs shows that in some cases we are not getting as much out of
the PR tests as pr. It remains unclear whether we should be concerned about this fact or not. The
question is whether there are times when we would miss PR tests and excess detection would not
make up the difference. It is possible that two interleaved cycles are such a case, but we have yet



4.2. RESULTS 85

n d c pr ho ho noxs ho nopr ho noprxs

100 2 1 3.8 1.0 1.0 1.0 55.6
200 2 1 1.8 1.0 1.0 1.0 62.8
300 2 1 1.2 1.0 1.0 1.2 62.8
400 2 1 1.0 1.6 3.8 2.2 63.4
100 10 1 3.8 1.2 1.8 2.2 37.4
200 10 1 12.6 1.8 12.4 5.0 32.4
300 10 1 23.0 2.0 11.2 5.0 48.6
400 10 1 42.8 3.4 7.6 7.6 51.2
100 50 1 1.4 1.2 2.0 5.8 26.2
200 50 1 1.6 4.0 7.4 8.0 40.4
300 50 1 2.2 5.8 9.4 9.0 50.6
400 50 1 2.4 5.0 10.6 13.8 67.6
100 100 1 1.0 1.0 1.2 7.0 26.0
200 100 1 1.0 1.0 1.4 10.4 38.4
300 100 1 1.0 1.0 1.4 11.2 55.6
400 100 1 1.0 1.0 1.2 13.6 65.8
100 2 2 6.2 1.0 1.0 3.2 68.6
200 2 2 1.6 1.0 1.0 2.2 98.8
300 2 2 1.2 1.0 1.0 1.8 115.4
400 2 2 1.0 1.0 1.4 1.8 119.2
500 2 2 1.0 1.0 2.4 2.2 126.2
1000 2 2 6.4 2.2 16.0 4.0 134.0
1500 2 2 11.8 5.8 58.8 5.8 133.0
2000 2 2 215.4 8.0 58.8 10.2 189.8
100 10 2 2.8 1.0 2.6 2.6 44.6
200 10 2 2.4 1.0 3.0 3.2 52.6
300 10 2 12.6 3.6 16.4 5.8 58.0
400 10 2 34.0 2.2 19.8 5.2 81.8
100 50 2 1.0 2.2 6.0 5.6 41.0
200 50 2 1.0 5.0 19.8 9.6 71.8
300 50 2 1.4 6.4 36.8 10.0 108.2
400 50 2 2.0 4.2 25.0 10.4 134.6
100 100 2 1.0 2.6 6.2 7.4 52.8
200 100 2 1.0 3.0 9.0 10.8 108.4
300 100 2 1.0 1.0 1.0 13.4 156.2
400 100 2 1.0 6.2 41.8 13.2 195.6

Table 4.9: Number of s-t cuts performed by HO implementations on PR graphs.



86 CHAPTER 4. EXPERIMENTS

to verify that.

4.2.2 Results by Algorithm

We now shift our focus and discuss the algorithms individually. We also discuss the PR tests, as
we feel that they deserve further discussion.

The Padberg-Rinaldi Heuristics

The PR heuristics are powerful, but subtle. In general, our pass strategy appears to be a good way
to apply the tests. It never significantly slows down the implementation, and it often results in
substantial improvements. Preprocessing with PR passes practically trivializes the TSP instances,
and solves cycles, and wagon wheels, and random graphs with many heavy components. Passes
also significantly improve the asymptotic behavior of ni and ks on two interleaved cycles.

We conclude that omitting PR tests from an implementation of a minimum cut algorithm
would be a serious mistake.

The Hao-Orlin Algorithm

HO appears to be the best general purpose algorithm. It loses asymptotically on bicycle wheels,
but it has the best performance for the size graphs we ran. The only bad case is two interleaved
cycles, where it loses to all the other algorithms. Otherwise, it performs very well.

Notice that we do not have any dense families on which ho exhibits its worst case 
(n2
p
m)

time behavior. The worst we see is 
(n2) behavior on bicycle wheels and two interleaved cy-
cles. In the maximum flow context, there are parameterized worst case instances. However, these
instances have many degree two nodes, which PR2 would promptly remove, so we did not try
them. It would be nice to either find a worst case family or prove that the PR tests improve HO’s
time bounds.

In general, ho is so fast on its own that the heuristics do not help a great deal. On the TSP in-
stances, PR preprocessing gains an order of magnitude, but that is the most extreme example. The
heuristics also “compete” with each other for contractions. Comparing ho, ho noxs, and ho nopr,
we see that they all do similar numbers of heuristic contractions. Both the PR tests and excess
detection can be responsible for many heuristic contractions, but when we put them together
a contraction done by one typically means one less done by the other. Further, without either
heuristic, we get many one node layers, so the “flow computation” we are saving is often trivial.

It is valuable to do PR preprocessing, but the value of internal PR tests is unclear. One direction
we see that should be explored is the idea of doing PR passes periodically. Such a strategy may
improve ho’s bad performance on two interleaved cycles.

The behavior of excess detection is interesting. Both NOI6 and IRREG suggest that excess
detection is good at identifying extra edges, in a way that the PR tests are not. It would be nice to
establish a stronger statement on the relationship between excess detection and NI.



4.2. RESULTS 87

The Nagamochi-Ibaraki Algorithm

Results on implementations of NI are mixed. When ni works well, it works very well, but some-
times it does show its worst case behavior. In the long run, the sparse certificate computation
may be more valuable than the whole algorithm. That is, the good case for ni is when the sparse
certificate exhibits many extra edges, and this computation can be done as a preprocessing step
for any other algorithm. Such a strategy would take advantage of ni’s performance in the good
cases and resort to another algorithm for the bad ones. The inclusion of this strategy is partially
responsible for the reasonable performance of k.

ni compares favorably with hybrid. Our implementation never loses by much, and sometimes
our improved PR strategy gives us much better performance. In particular, we win by about
three orders of magnitude on TSP instances, and we have better (by a factor of n) asymptotic
performance on two interleaved cycles.

The Karger-Stein Algorithm

ks seems to be inferior to the other implementations, but it is not clear that this statement can be
generalized to KS. We have no problem families on which ks wins, but on bicycle wheels it only
loses to k, which is cheating on its probabilities.

For many families, it is not clear that the internal PR tests help a great deal, but they help
asymptotically on two interleaved cycles, so we conclude that they are valuable. Note PR tests in
general help less in ks than in other codes, because we may have to undo them. That is, when we
apply PR tests after random contractions, they may pass only because we have already contracted
a minimum cut edge, so when we undo the random contractions (backing out of the recursion),
we must undo the PR contractions as well. As a result, ks often does more PR contractions than
there are nodes in the graph.

The frustrating thing about implementing KS is its Monte Carlo nature—correctness depends
on the analysis, and tight analysis is difficult. Our evidence on tightness is mixed. For several
random graphs with heavy components, it occasionally happens that the discovery time is a sub-
stantial fraction (more than 20%) of the post-preprocessing time, which says that if we ran many
fewer recursion trees we would get the wrong answer. However, we only picked the constants to
guarantee a 95% success probability, so we should expect to get the wrong answer occasionally.
Even on the problems where we see high discovery times, most of the discovery times are still
small. So there is no hope of improving ks by many orders of magnitude, but improvement by as
much as one order of magnitude looks plausible.

The other evidence that ks can improve is the fact that the trees are almost always far shallower
than the theory predicts, which suggests that the probability of finding the minimum cut is higher
than the theory estimates. However, even though the theory analysis gives us an estimate of
success probability based on depth, we cannot estimate the probability after looking at the depth
of the tree, because conditioning on a shallow depth, it becomes more likely that we contracted a
minimum cut edge. This state is particularly frustrating because the PR tests, which do not make
mistakes, are liable to be responsible for the shallow depth, but we do not know how to tell the
difference on-line.



88 CHAPTER 4. EXPERIMENTS

It seems that there should be a way to estimate the probability of success on-line, based on
what the algorithm has done, and get tighter estimates than the off-line analysis would give, but
we have not been able to find it.

A heuristic that might help ks, but that we did not get a chance to try, is to do a sparse certifi-
cate computation after the random contractions. If the random contractions tend to create graphs
with extra edges, this strategy may help to reduce the depth of the recursion.

Another possible heuristic that should be explored is deliberately overestimating the mini-
mum cut so that the success probability of each recursion tree increases. Preliminary experiments
with this idea suggested that it does speed up the implementation, but careful analysis of the
running time is needed to make sure that such an implementation will not have termination prob-
lems.

Karger’s Algorithm

Results on K remain inconclusive. The performance of k is not amazing, but it is not terrible either.
Of course, since we cheated on the probabilities, it is not clear that timings on k mean anything,
but since k never got the wrong answer, we believe that they do. It would be nice to either find a
problem family that demonstrates the tightness of the theory results or improve the bound.

Note that two interleaved cycles were originally designed as an attempt to stress the sampling
probabilities. They have one minimum cut and 
(n2) near minimum cuts, so they should be
in danger of generating a sampled graph in which a tree packing might have no trees that the
minimum cut 2-respects. However, in 70,000 runs on a 1000 node double cycle, we always found
a tree that the minimum cut 2-respected. The reason for success, though, seems to be that when
the sampled graph looks roughly like a cycle, there is little question that at least one tree will be
path going around it. We are not sure if this observation can be exploited at all to tighten the
analysis.

Tree packing is often the bottleneck, so it would also be valuable to work more on improving
Gabow’s algorithm. With a theoretically justifiable sampling probability, the problem we have is
that Gabow’s algorithm needs to explicitly represent the trees, and there are too many. Perhaps
some kind of scaling approach could work around this problem. Karger’s divide and conquer
approach [34], which improves the asymptotic running time to O(

p
�m logn), might also improve

performance.

The major implementation question that remains to be answered is what happens if we use the
fractional packing algorithm of Plotkin, Shmoys, and Tardos to compute the tree packings instead
of Gabow’s algorithm. There are two reasons why PST might be better. First, it does not need
an explicit representation of the trees, so it will demand less memory, and may allow us to use
theoretically justifiable sampling probabilities. Second, it is possible that it will often find more
than the minimum number of trees, in which case we would be able to check only for 1-respecting
cuts.



Chapter 5

Conclusion

Our study produced several efficient implementations of minimum cut algorithms, improving the
previous state of the art. We introduced new strategies for improving performance, and we give
several problem families on which future implementations can be tested.

Our tests show that no single algorithm dominates the others. ho and ni typically dominate
ks and k, but on bicycle wheels, asymptotically the reverse is true. ho and ni are hard to compare
directly; on regular random graphs ho does well and ni does poorly, and on two interleaved cycles
ni does well and ho does poorly. For general purposes we would recommend ho, as it has such
small constant factors that even when it performs “badly”, it does pretty well. After ho we would
recommend ni.

Our results confirm the importance of the Padberg-Rinaldi heuristics. In some cases they im-
prove the practical performance by several orders of magnitude, and in other cases they clearly
improve the asymptotic performance of an implementation. We conclude that omitting PR tests
from an implementation of a minimum cut algorithm would be a serious mistake. It is said that
implementations using graph contraction are usually difficult to code (see e.g. [28]) and may be
inefficient, but the gains of the Padberg-Rinaldi heuristics easily make contraction worth imple-
menting.

There are several possible directions for future work. On the implementation side, there are
a few possibilities that should be explored. First, further experiments on using PR tests in ho

should be done. In particular, we would like to know if PR passes will cure the bad behavior on
two interleaved cycles. Second, some experiments on adding sparse certificate computations to
the other algorithms should be done. Sparse certificates might help ho a little bit, and it would be
interesting to see if they help inside the recursion of ks. Finally, PST tree packing should be tried in
k. This change might make it feasible for k to use theoretically justifiable sampling probabilities,
as well as possibly improving performance. It would also be nice to try to improve Gabow’s
algorithm, possibly with some further heuristics.

There are also some open questions on the theory side. First, either a graph that causes worst-
case behavior in HO should be found, or it should be proved that the addition of heuristics actually
improves the time bounds. Second, both KS and K would benefit from more theory work. Since
they are Monte Carlo in nature, we can only guarantee “correctness” by using the theoretical



90 CHAPTER 5. CONCLUSION

analysis, and we do not believe that the constant factors of the analysis are tight in either case.
The idea of overestimating the minimum cut in KS should be explored, and it would be nice to get
an analysis of KS that allowed for a more on-line estimation of success probabilities.



Appendix A

Data Tables



92 APPENDIX A. DATA TABLES

nod
es

arcs
totaltim

e
d

iscovery
tim

e
ed

ge
scans

preprocess
initial

internal

s-t

avg.
1

nod
e

excess
phases

leaves
packing

respect
avg

d
ev

%
avg

d
ev

%
avg

d
ev

%
tim

e
PR

PR
cuts

size
layers

d
etect

tim
e

tim
e

ho
532

787
0.01

0.00
0.00

0.00
10072

0.00
0.00

487
14

9
16.67

7
13

-
-

-
-

ho
nopr

532
787

0.03
0.00

0.02
0.00

62950
0.00

-
-

-
65

54.43
15

451
-

-
-

-
ho

noprxs
532

787
0.03

0.00
0.02

0.00
73118

0.00
-

-
-

480
15.58

51
-

-
-

-
-

ho
noxs

532
787

0.01
0.00

0.00
0.00

10250
0.00

0.00
487

13
21

10.29
9

-
-

-
-

-
hybrid

532
787

0.51
0.00

-
-

-
-

-
-

136
-

-
-

-
-

-
-

-
k

532
787

0.01
0.00

0.00
0.00

10043
0.00

0.00
512

17
-

-
-

-
-

-
-

-
ks

532
787

0.03
0.31

0.00
0.00

16077
0.03

0.00
512

405
-

-
-

-
-

331
-

-
ks

nopr
532

787
0.07

0.11
0.00

0.00
18375

0.03
0.00

512
0

-
-

-
-

-
1676

-
-

ni
532

787
0.01

0.00
0.00

0.00
2350

0.00
0.00

487
37

-
-

-
-

4
-

-
-

ni
nopr

532
787

0.46
0.00

0.44
0.00

698119
0.00

-
-

-
-

-
-

-
491

-
-

-
ho

1748
2336

0.02
0.00

0.01
0.00

39701
0.00

0.00
1611

25
35

31.86
29

47
-

-
-

-
ho

nopr
1748

2336
0.12

0.00
0.12

0.00
333314

0.00
-

-
-

213
126.02

55
1479

-
-

-
-

ho
noprxs

1748
2336

0.11
0.00

0.11
0.00

298036
0.00

-
-

-
1623

39.59
124

-
-

-
-

-
ho

noxs
1748

2336
0.01

0.00
0.01

0.00
40028

0.00
0.01

1611
42

62
19.15

31
-

-
-

-
-

hybrid
1748

2336
4.67

0.00
-

-
-

-
-

-
535

-
-

-
-

-
-

-
-

k
1748

2336
0.07

0.30
0.01

0.00
90134

0.32
0.01

1671
23

-
-

-
-

-
-

0.03
0.02

ks
1748

2336
0.18

0.05
0.01

0.50
87416

0.02
0.01

1671
2790

-
-

-
-

-
1107

-
-

ks
nopr

1748
2336

0.43
0.12

0.01
0.00

106655
0.04

0.01
1671

0
-

-
-

-
-

9901
-

-
ni

1748
2336

0.02
0.00

0.00
0.00

17124
0.00

0.01
1611

98
-

-
-

-
28

-
-

-
ni

nopr
1748

2336
4.75

0.00
4.61

0.00
7123685

0.00
-

-
-

-
-

-
-

1576
-

-
-

ho
15112

19057
0.27

0.00
0.14

0.00
443297

0.00
0.12

13912
147

290
42.64

269
493

-
-

-
-

ho
nopr

15112
19057

2.89
0.00

2.74
0.00

5880926
0.00

-
-

-
1910

107.13
335

12866
-

-
-

-
ho

noprxs
15112

19057
2.97

0.00
2.79

0.00
6117231

0.00
-

-
-

14081
26.59

1030
-

-
-

-
-

ho
noxs

15112
19057

0.26
0.00

0.13
0.00

448498
0.00

0.11
13912

150
692

19.26
356

-
-

-
-

-
hybrid

15112
19057

301.19
0.00

-
-

-
-

-
-

1948
-

-
-

-
-

-
-

-
k

15112
19057

2.50
0.14

0.14
0.03

1811697
0.19

0.16
14473

151
-

-
-

-
-

-
1.95

0.33
ks

15112
19057

2.01
0.01

0.11
0.00

924550
0.00

0.13
14473

28303
-

-
-

-
-

2537
-

-
ks

nopr
15112

19057
4.19

0.02
0.11

0.04
1069057

0.02
0.13

14473
0

-
-

-
-

-
60392

-
-

ni
15112

19057
0.29

0.00
0.12

0.00
189001

0.00
0.11

13912
775

-
-

-
-

64
-

-
-

ni
nopr

15112
19057

311.42
0.00

205.75
0.00

226365793
0.00

-
-

-
-

-
-

-
7834

-
-

-
ho

33810
38600

0.27
0.00

0.27
0.00

271169
0.00

0.18
33808

0
1

2.00
0

0
-

-
-

-
ho

nopr
33810

38600
4.60

0.00
4.49

0.00
8708022

0.00
-

-
-

151
2121.44

12
33646

-
-

-
-

ho
noprxs

33810
38600

7.34
0.00

5.25
0.00

14351590
0.00

-
-

-
32201

165.57
1608

-
-

-
-

-
ho

noxs
33810

38600
0.27

0.00
0.27

0.00
271169

0.00
0.18

33808
0

1
2.00

0
-

-
-

-
-

hybrid
33810

38600
1.77

0.00
-

-
-

-
-

-
0

-
-

-
-

-
-

-
-

k
33810

38600
0.31

0.02
0.31

0.02
271168

0.00
0.23

33808
0

-
-

-
-

-
-

-
-

ks
33810

38600
0.23

0.00
0.23

0.02
193968

0.00
0.17

33808
-

-
-

-
-

-
0

-
-

ks
nopr

33810
38600

0.23
0.00

0.23
0.00

193968
0.00

0.17
33808

-
-

-
-

-
-

0
-

-
ni

33810
38600

0.22
0.00

0.22
0.00

77200
0.00

0.16
33808

0
-

-
-

-
0

-
-

-
ni

nopr
33810

38600
0.54

0.00
0.54

0.00
395035

0.00
-

-
-

-
-

-
-

6
-

-
-

ho
33810

39367
0.30

0.00
0.30

0.00
303275

0.00
0.21

33808
0

1
2.00

0
0

-
-

-
-

ho
nopr

33810
39367

5.08
0.00

5.02
0.00

8077063
0.00

-
-

-
283

4226.33
51

33475
-

-
-

-
ho

noprxs
33810

39367
11.71

0.00
8.44

0.00
19261846

0.00
-

-
-

31796
707.20

2013
-

-
-

-
-

ho
noxs

33810
39367

0.30
0.00

0.30
0.00

303275
0.00

0.21
33808

0
1

2.00
0

-
-

-
-

-
hybrid

33810
39367

6.27
0.00

-
-

-
-

-
-

320
-

-
-

-
-

-
-

-
k

33810
39367

0.33
0.01

0.33
0.01

303274
0.00

0.26
33808

0
-

-
-

-
-

-
-

-
ks

33810
39367

0.25
0.02

0.25
0.00

224540
0.00

0.19
33808

-
-

-
-

-
-

0
-

-
ks

nopr
33810

39367
0.25

0.02
0.24

0.02
224540

0.00
0.19

33808
-

-
-

-
-

-
0

-
-

ni
33810

39367
0.26

0.00
0.25

0.00
78734

0.00
0.19

33808
0

-
-

-
-

0
-

-
-

ni
nopr

33810
39367

2.96
0.00

2.96
0.00

2163704
0.00

-
-

-
-

-
-

-
17

-
-

-
ho

33810
39456

0.30
0.00

0.28
0.00

295708
0.00

0.20
33808

0
1

2.00
0

0
-

-
-

-
ho

nopr
33810

39456
3.70

0.00
3.13

0.00
6756961

0.00
-

-
-

368
1257.12

53
33388

-
-

-
-

ho
noprxs

33810
39456

8.81
0.00

4.78
0.00

16069243
0.00

-
-

-
31845

305.51
1964

-
-

-
-

-
ho

noxs
33810

39456
0.29

0.00
0.27

0.00
295708

0.00
0.20

33808
0

1
2.00

0
-

-
-

-
-

hybrid
33810

39456
2.24

0.00
-

-
-

-
-

-
0

-
-

-
-

-
-

-
-

k
33810

39456
0.33

0.00
0.31

0.02
295707

0.00
0.25

33808
0

-
-

-
-

-
-

-
-

ks
33810

39456
0.24

0.00
0.22

0.02
216795

0.00
0.18

33808
-

-
-

-
-

-
0

-
-

ks
nopr

33810
39456

0.24
0.03

0.22
0.02

216795
0.00

0.18
33808

-
-

-
-

-
-

0
-

-
ni

33810
39456

0.25
0.00

0.23
0.00

78912
0.00

0.19
33808

0
-

-
-

-
0

-
-

-
ni

nopr
33810

39456
1.20

0.00
1.19

0.00
872145

0.00
-

-
-

-
-

-
-

12
-

-
-

Table
A

.1:T
SP

d
ata



93

nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect
avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time

ho 85900 102596 0.87 0.00 0.79 0.00 810397 0.00 0.64 85898 0 1 2.00 0 0 - - - -
ho nopr 85900 102596 4.20 0.00 3.53 0.00 7014415 0.00 - - - 202 3915.79 21 85676 - - - -
ho noprxs 85900 102596 34.54 0.00 6.06 0.00 63960815 0.00 - - - 79725 248.18 6174 - - - - -
ho noxs 85900 102596 0.85 0.00 0.78 0.00 810397 0.00 0.62 85898 0 1 2.00 0 - - - - -
hybrid 85900 102596 8.97 0.00 - - - - - - 5 - - - - - - - -
k 85900 102596 0.99 0.00 0.90 0.00 810396 0.00 0.79 85898 0 - - - - - - - -
ks 85900 102596 0.73 0.00 0.66 0.00 605204 0.00 0.57 85898 - - - - - - 0 - -
ks nopr 85900 102596 0.72 0.01 0.65 0.01 605204 0.00 0.57 85898 - - - - - - 0 - -
ni 85900 102596 0.73 0.00 0.66 0.00 205192 0.00 0.57 85898 0 - - - - 0 - - -
ni nopr 85900 102596 3.83 0.00 3.83 0.00 2704804 0.00 - - - - - - - 9 - - -
ho 85900 102934 0.90 0.00 0.90 0.00 855359 0.00 0.67 85898 0 1 2.00 0 0 - - - -
ho nopr 85900 102934 11.12 0.00 11.04 0.00 18125856 0.00 - - - 477 6293.96 134 85288 - - - -
ho noprxs 85900 102934 33.08 0.00 32.12 0.00 55749839 0.00 - - - 79900 241.92 5999 - - - - -
ho noxs 85900 102934 0.88 0.00 0.87 0.00 855359 0.00 0.66 85898 0 1 2.00 0 - - - - -
hybrid 85900 102934 11.03 0.00 - - - - - - 22 - - - - - - - -
k 85900 102934 1.02 0.00 1.02 0.00 855358 0.00 0.82 85898 0 - - - - - - - -
ks 85900 102934 0.76 0.01 0.76 0.01 649490 0.00 0.60 85898 - - - - - - 0 - -
ks nopr 85900 102934 0.75 0.01 0.74 0.01 649490 0.00 0.60 85898 - - - - - - 0 - -
ni 85900 102934 0.74 0.00 0.74 0.00 205868 0.00 0.58 85898 0 - - - - 0 - - -
ni nopr 85900 102934 4.94 0.00 4.94 0.00 3499861 0.00 - - - - - - - 13 - - -
ho 85900 102988 0.91 0.00 0.33 0.00 869143 0.00 0.68 85830 3 4 47.50 0 61 - - - -
ho nopr 85900 102988 20.28 0.00 11.72 0.00 34575949 0.00 - - - 674 5491.61 160 85065 - - - -
ho noprxs 85900 102988 32.71 0.00 12.06 0.00 59777886 0.00 - - - 79931 209.54 5968 - - - - -
ho noxs 85900 102988 0.89 0.00 0.32 0.00 870001 0.00 0.66 85830 46 13 22.85 9 - - - - -
hybrid 85900 102988 10.96 0.00 - - - - - - 11 - - - - - - - -
k 85900 102988 1.03 0.00 0.31 0.01 870500 0.00 0.84 85839 22 - - - - - - - -
ks 85900 102988 0.86 0.01 0.25 0.00 690944 0.00 0.61 85839 1551 - - - - - 599 - -
ks nopr 85900 102988 0.95 0.02 0.25 0.02 698830 0.00 0.61 85839 0 - - - - - 4470 - -
ni 85900 102988 0.80 0.00 0.25 0.00 206642 0.00 0.64 85830 6 - - - - 2 - - -
ni nopr 85900 102988 4.96 0.00 3.99 0.00 3502182 0.00 - - - - - - - 16 - - -
ho 13509 15631 0.14 0.00 0.14 0.00 196893 0.00 0.09 12976 70 80 43.86 69 313 - - - -
ho nopr 13509 15631 2.32 0.00 1.35 0.00 4613412 0.00 - - - 803 261.11 127 12578 - - - -
ho noprxs 13509 15631 2.47 0.00 1.39 0.00 4897923 0.00 - - - 12733 41.52 775 - - - - -
ho noxs 13509 15631 0.17 0.00 0.17 0.00 248615 0.00 0.08 12976 180 240 47.70 111 - - - - -
hybrid 13509 15631 124.12 0.00 - - - - - - 1222 - - - - - - - -
k 13509 15631 0.65 0.42 0.13 0.00 537593 0.39 0.11 13185 73 - - - - - - 0.39 0.11
ks 13509 15631 0.58 0.02 0.10 0.05 301960 0.02 0.08 13185 8471 - - - - - 798 - -
ks nopr 13509 15631 0.82 0.03 0.10 0.04 286172 0.02 0.08 13185 0 - - - - - 7023 - -
ni 13509 15631 0.13 0.00 0.12 0.00 55118 0.00 0.07 12976 270 - - - - 18 - - -
ni nopr 13509 15631 90.19 0.00 9.84 0.00 72585922 0.00 - - - - - - - 4142 - - -
ho 13509 17048 0.23 0.00 0.22 0.00 375035 0.00 0.10 12492 163 289 43.43 200 364 - - - -
ho nopr 13509 17048 2.86 0.00 2.45 0.00 5877064 0.00 - - - 1580 113.33 292 11636 - - - -
ho noprxs 13509 17048 2.97 0.00 2.48 0.00 6085267 0.00 - - - 12591 34.71 917 - - - - -
ho noxs 13509 17048 0.24 0.00 0.23 0.00 419222 0.00 0.10 12492 155 562 26.27 298 - - - - -
hybrid 13509 17048 314.77 0.00 - - - - - - 2591 - - - - - - - -
k 13509 17048 0.85 0.15 0.17 0.03 667280 0.14 0.14 12985 237 - - - - - - 0.46 0.20
ks 13509 17048 1.72 0.01 0.20 0.13 784104 0.01 0.11 12985 23607 - - - - - 2259 - -
ks nopr 13509 17048 3.53 0.02 0.75 0.79 916754 0.01 0.11 12985 0 - - - - - 51033 - -
ni 13509 17048 0.25 0.00 0.17 0.00 171263 0.00 0.09 12492 685 - - - - 62 - - -
ni nopr 13509 17048 333.05 0.00 28.94 0.00 255366401 0.00 - - - - - - - 9033 - - -
ho 1291 1942 0.02 0.00 0.00 0.00 64813 0.00 0.00 976 45 83 25.65 59 127 - - - -
ho nopr 1291 1942 0.11 0.00 0.11 0.00 297504 0.00 - - - 215 63.07 90 985 - - - -
ho noprxs 1291 1942 0.11 0.00 0.11 0.00 308678 0.00 - - - 1143 19.37 147 - - - - -
ho noxs 1291 1942 0.02 0.00 0.00 0.00 66384 0.00 0.00 976 34 189 13.91 90 - - - - -
hybrid 1291 1942 2.94 0.00 - - - - - - 326 - - - - - - - -
k 1291 1942 0.16 0.24 0.00 2.00 222684 0.28 0.01 1170 36 - - - - - - 0.10 0.04
ks 1291 1942 0.36 0.02 0.01 0.82 157836 0.01 0.01 1170 5134 - - - - - 1665 - -
ks nopr 1291 1942 0.86 0.05 0.00 1.22 197768 0.02 0.01 1170 0 - - - - - 17772 - -
ni 1291 1942 0.03 0.00 0.01 0.00 31238 0.00 0.01 976 260 - - - - 28 - - -
ni nopr 1291 1942 3.09 0.00 3.04 0.00 4655872 0.00 - - - - - - - 1213 - - -

Table A.2: TSP data (cont)



94 APPENDIX A. DATA TABLES

nod
es

arcs
totaltim

e
d

iscovery
tim

e
ed

ge
scans

preprocess
initial

internal

s-t

avg.
1

nod
e

excess
phases

leaves
packing

respect
avg

d
ev

%
avg

d
ev

%
avg

d
ev

%
tim

e
PR

PR
cuts

size
layers

d
etect

tim
e

tim
e

ho
13509

17079
0.23

0.00
0.16

0.00
376562

0.00
0.10

12456
176

254
43.64

238
384

-
-

-
-

ho
nopr

13509
17079

3.04
0.00

1.05
0.00

6324104
0.00

-
-

-
1662

118.78
284

11562
-

-
-

-
ho

noprxs
13509

17079
3.04

0.00
1.06

0.00
6222631

0.00
-

-
-

12615
35.91

893
-

-
-

-
-

ho
noxs

13509
17079

0.22
0.00

0.15
0.00

377492
0.00

0.10
12456

187
544

23.46
320

-
-

-
-

-
hybrid

13509
17079

263.55
0.00

-
-

-
-

-
-

2099
-

-
-

-
-

-
-

-
k

13509
17079

1.34
0.15

1.12
0.18

1045496
0.19

0.13
13003

149
-

-
-

-
-

-
0.93

0.23
ks

13509
17079

1.76
0.01

0.33
0.49

807922
0.01

0.11
13003

24340
-

-
-

-
-

2490
-

-
ks

nopr
13509

17079
3.99

0.01
0.47

0.66
984983

0.01
0.11

13003
0

-
-

-
-

-
64745

-
-

ni
13509

17079
0.25

0.00
0.21

0.00
174235

0.00
0.08

12456
700

-
-

-
-

66
-

-
-

ni
nopr

13509
17079

315.88
0.00

275.94
0.00

242984346
0.00

-
-

-
-

-
-

-
8918

-
-

-
ho

13509
17111

0.20
0.00

0.02
0.00

305102
0.00

0.11
12707

123
216

35.69
196

266
-

-
-

-
ho

nopr
13509

17111
2.78

0.00
0.01

0.00
5686705

0.00
-

-
-

1724
135.93

305
11479

-
-

-
-

ho
noprxs

13509
17111

2.88
0.00

0.01
0.00

5953999
0.00

-
-

-
12607

29.47
901

-
-

-
-

-
ho

noxs
13509

17111
0.20

0.00
0.02

0.00
323479

0.00
0.10

12707
144

409
18.11

247
-

-
-

-
-

hybrid
13509

17111
296.88

0.00
-

-
-

-
-

-
2140

-
-

-
-

-
-

-
-

k
13509

17111
0.88

0.30
0.01

0.00
719920

0.25
0.14

13021
188

-
-

-
-

-
-

0.50
0.20

ks
13509

17111
1.66

0.01
0.01

0.82
763462

0.00
0.11

13021
22371

-
-

-
-

-
2492

-
-

ks
nopr

13509
17111

3.46
0.02

0.01
0.50

895027
0.01

0.11
13021

0
-

-
-

-
-

53540
-

-
ni

13509
17111

0.25
0.00

0.00
0.00

161549
0.00

0.10
12707

506
-

-
-

-
64

-
-

-
ni

nopr
13509

17111
303.10

0.00
0.00

0.00
230590104

0.00
-

-
-

-
-

-
-

8560
-

-
-

ho
13509

17130
0.19

0.00
0.18

0.00
275500

0.00
0.11

12725
97

79
64.90

95
512

-
-

-
-

ho
nopr

13509
17130

2.61
0.00

2.60
0.00

5396663
0.00

-
-

-
777

195.55
172

12559
-

-
-

-
ho

noprxs
13509

17130
2.77

0.00
1.30

0.00
5627773

0.00
-

-
-

12558
32.31

950
-

-
-

-
-

ho
noxs

13509
17130

0.20
0.00

0.17
0.00

317520
0.00

0.11
12725

271
328

26.79
183

-
-

-
-

-
hybrid

13509
17130

33.68
0.00

-
-

-
-

-
-

662
-

-
-

-
-

-
-

-
k

13509
17130

0.57
0.17

0.16
0.00

475887
0.13

0.14
13065

179
-

-
-

-
-

-
0.28

0.11
ks

13509
17130

1.43
0.01

0.13
0.04

671141
0.01

0.11
13065

19603
-

-
-

-
-

2110
-

-
ks

nopr
13509

17130
2.92

0.03
0.13

0.00
772748

0.01
0.11

13065
0

-
-

-
-

-
43979

-
-

ni
13509

17130
0.16

0.00
0.14

0.00
71857

0.00
0.10

12725
398

-
-

-
-

14
-

-
-

ni
nopr

13509
17130

54.42
0.00

46.69
0.00

39857283
0.00

-
-

-
-

-
-

-
1569

-
-

-
ho

13509
17156

0.22
0.00

0.19
0.00

358283
0.00

0.11
12649

162
206

39.65
203

288
-

-
-

-
ho

nopr
13509

17156
2.50

0.00
2.46

0.00
5095245

0.00
-

-
-

1735
141.48

310
11463

-
-

-
-

ho
noprxs

13509
17156

2.62
0.00

2.57
0.00

5331468
0.00

-
-

-
12605

67.04
903

-
-

-
-

-
ho

noxs
13509

17156
0.22

0.00
0.20

0.00
360071

0.00
0.11

12649
161

429
25.25

268
-

-
-

-
-

hybrid
13509

17156
297.61

0.00
-

-
-

-
-

-
2410

-
-

-
-

-
-

-
-

k
13509

17156
1.44

0.51
1.19

0.60
1150264

0.52
0.14

12948
139

-
-

-
-

-
-

0.99
0.26

ks
13509

17156
1.95

0.01
0.18

0.15
882280

0.01
0.11

12948
26923

-
-

-
-

-
2751

-
-

ks
nopr

13509
17156

4.30
0.01

0.62
0.37

1061215
0.01

0.11
12948

0
-

-
-

-
-

65466
-

-
ni

13509
17156

0.26
0.00

0.21
0.00

175560
0.00

0.10
12649

529
-

-
-

-
78

-
-

-
ni

nopr
13509

17156
286.75

0.00
247.56

0.00
222044958

0.00
-

-
-

-
-

-
-

8654
-

-
-

ho
13509

17156
0.21

0.00
0.21

0.00
331350

0.00
0.11

12684
150

189
46.72

201
283

-
-

-
-

ho
nopr

13509
17156

2.35
0.00

2.34
0.00

4892725
0.00

-
-

-
1728

103.06
303

11477
-

-
-

-
ho

noprxs
13509

17156
2.57

0.00
2.55

0.00
5262358

0.00
-

-
-

12624
34.30

884
-

-
-

-
-

ho
noxs

13509
17156

0.21
0.00

0.19
0.00

340113
0.00

0.10
12684

176
400

38.25
247

-
-

-
-

-
hybrid

13509
17156

245.46
0.00

-
-

-
-

-
-

2151
-

-
-

-
-

-
-

-
k

13509
17156

1.47
0.35

0.18
0.03

1134943
0.38

0.13
12925

227
-

-
-

-
-

-
1.04

0.24
ks

13509
17156

1.98
0.01

0.20
0.39

890033
0.01

0.11
12925

27337
-

-
-

-
-

2718
-

-
ks

nopr
13509

17156
4.22

0.01
0.39

0.40
1055280

0.01
0.11

12925
0

-
-

-
-

-
61046

-
-

ni
13509

17156
0.24

0.00
0.16

0.00
148383

0.00
0.10

12684
522

-
-

-
-

52
-

-
-

ni
nopr

13509
17156

298.84
0.00

162.38
0.00

226366501
0.00

-
-

-
-

-
-

-
7951

-
-

-
ho

13509
17183

0.21
0.00

0.12
0.00

341914
0.00

0.10
12419

110
189

43.08
157

633
-

-
-

-
ho

nopr
13509

17183
2.66

0.00
1.13

0.00
5494783

0.00
-

-
-

995
192.56

211
12302

-
-

-
-

ho
noprxs

13509
17183

2.88
0.00

1.43
0.00

5862169
0.00

-
-

-
12565

37.00
943

-
-

-
-

-
ho

noxs
13509

17183
0.27

0.00
0.12

0.00
490301

0.00
0.10

12419
224

545
31.59

319
-

-
-

-
-

hybrid
13509

17183
267.18

0.00
-

-
-

-
-

-
2122

-
-

-
-

-
-

-
-

k
13509

17183
1.98

0.30
0.13

0.04
1426615

0.34
0.14

12966
105

-
-

-
-

-
-

1.54
0.25

ks
13509

17183
1.84

0.01
0.10

0.05
831087

0.01
0.11

12966
25315

-
-

-
-

-
2479

-
-

ks
nopr

13509
17183

3.96
0.01

0.10
0.04

1013403
0.01

0.11
12966

0
-

-
-

-
-

60628
-

-
ni

13509
17183

0.21
0.00

0.09
0.00

129969
0.00

0.09
12419

678
-

-
-

-
36

-
-

-
ni

nopr
13509

17183
227.98

0.00
4.96

0.00
176354954

0.00
-

-
-

-
-

-
-

6620
-

-
-

Table
A

.3:T
SP

d
ata

(cont)



95

nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect
avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time

ho 13509 17193 0.23 0.00 0.23 0.00 394417 0.00 0.10 12427 185 286 39.33 250 360 - - - -
ho nopr 13509 17193 2.74 0.00 2.69 0.00 5762394 0.00 - - - 1703 109.51 321 11484 - - - -
ho noprxs 13509 17193 2.88 0.00 2.82 0.00 6027148 0.00 - - - 12595 33.78 913 - - - - -
ho noxs 13509 17193 0.25 0.00 0.24 0.00 440299 0.00 0.10 12427 171 585 24.34 324 - - - - -
hybrid 13509 17193 298.50 0.00 - - - - - - 2319 - - - - - - - -
k 13509 17193 1.24 0.40 0.18 0.03 992759 0.37 0.14 12918 208 - - - - - - 0.83 0.22
ks 13509 17193 2.13 0.01 0.24 0.18 950330 0.01 0.12 12918 28941 - - - - - 2763 - -
ks nopr 13509 17193 4.60 0.01 0.68 0.62 1139164 0.01 0.12 12918 0 - - - - - 69081 - -
ni 13509 17193 0.27 0.00 0.25 0.00 183706 0.00 0.09 12427 707 - - - - 66 - - -
ni nopr 13509 17193 295.31 0.00 180.30 0.00 225010925 0.00 - - - - - - - 8667 - - -
ho 13509 17210 0.21 0.00 0.13 0.00 327575 0.00 0.11 12645 133 187 33.26 200 343 - - - -
ho nopr 13509 17210 2.50 0.00 1.60 0.00 5266937 0.00 - - - 1479 124.68 285 11744 - - - -
ho noprxs 13509 17210 2.64 0.00 1.65 0.00 5484353 0.00 - - - 12577 35.81 931 - - - - -
ho noxs 13509 17210 0.21 0.00 0.13 0.00 337505 0.00 0.11 12645 179 434 21.55 249 - - - - -
hybrid 13509 17210 268.99 0.00 - - - - - - 2300 - - - - - - - -
k 13509 17210 1.36 0.23 0.14 0.00 1040112 0.22 0.14 12978 175 - - - - - - 0.94 0.23
ks 13509 17210 1.86 0.01 0.11 0.00 848771 0.01 0.11 12978 25337 - - - - - 2575 - -
ks nopr 13509 17210 4.06 0.01 0.11 0.05 1018408 0.01 0.11 12978 0 - - - - - 61326 - -
ni 13509 17210 0.27 0.00 0.11 0.00 188033 0.00 0.10 12645 534 - - - - 76 - - -
ni nopr 13509 17210 289.69 0.00 26.14 0.00 219639355 0.00 - - - - - - - 8199 - - -
ho 13509 17303 0.26 0.00 0.08 0.00 456907 0.00 0.10 12402 221 312 49.68 225 348 - - - -
ho nopr 13509 17303 2.55 0.00 0.55 0.00 5271350 0.00 - - - 1791 101.80 325 11392 - - - -
ho noprxs 13509 17303 2.52 0.00 0.59 0.00 5159189 0.00 - - - 12611 31.37 897 - - - - -
ho noxs 13509 17303 0.25 0.00 0.07 0.00 475460 0.00 0.10 12402 194 586 34.96 325 - - - - -
hybrid 13509 17303 293.55 0.00 - - - - - - 2115 - - - - - - - -
k 13509 17303 1.86 0.13 0.08 0.06 1329209 0.16 0.14 12880 188 - - - - - - 1.36 0.31
ks 13509 17303 2.27 0.01 0.06 0.06 1006877 0.01 0.11 12880 31327 - - - - - 3003 - -
ks nopr 13509 17303 5.17 0.02 0.06 0.00 1257523 0.01 0.12 12880 0 - - - - - 80887 - -
ni 13509 17303 0.30 0.00 0.07 0.00 223396 0.00 0.09 12402 743 - - - - 84 - - -
ni nopr 13509 17303 295.65 0.00 284.08 0.00 228561981 0.00 - - - - - - - 8842 - - -
ho 13509 17358 0.23 0.00 0.06 0.00 354901 0.00 0.12 12582 187 246 36.86 189 303 - - - -
ho nopr 13509 17358 2.75 0.00 2.63 0.00 5649156 0.00 - - - 1856 113.87 372 11280 - - - -
ho noprxs 13509 17358 2.83 0.00 2.68 0.00 5847172 0.00 - - - 12512 30.91 996 - - - - -
ho noxs 13509 17358 0.22 0.00 0.05 0.00 373319 0.00 0.12 12582 178 488 20.24 259 - - - - -
hybrid 13509 17358 327.05 0.00 - - - - - - 1990 - - - - - - - -
k 13509 17358 1.91 0.43 0.06 0.09 1520246 0.47 0.14 12896 154 - - - - - - 1.42 0.30
ks 13509 17358 2.35 0.01 0.04 0.11 1043378 0.01 0.12 12896 32159 - - - - - 3255 - -
ks nopr 13509 17358 5.52 0.01 0.05 0.11 1340760 0.01 0.12 12896 0 - - - - - 90390 - -
ni 13509 17358 0.28 0.00 0.05 0.00 188778 0.00 0.11 12582 593 - - - - 82 - - -
ni nopr 13509 17358 323.10 0.00 299.13 0.00 245728170 0.00 - - - - - - - 9227 - - -
ho 1400 2231 0.04 0.00 0.03 0.00 83957 0.00 0.01 1091 38 89 50.24 54 126 - - - -
ho nopr 1400 2231 0.09 0.00 0.05 0.00 242591 0.00 - - - 291 123.47 110 998 - - - -
ho noprxs 1400 2231 0.15 0.00 0.07 0.00 326020 0.00 - - - 1170 149.67 229 - - - - -
ho noxs 1400 2231 0.03 0.00 0.03 0.00 90377 0.00 0.01 1091 37 189 32.30 81 - - - - -
hybrid 1400 2231 1.88 0.00 - - - - - - 240 - - - - - - - -
k 1400 2231 0.17 0.35 0.11 0.54 200415 0.32 0.02 1213 78 - - - - - - 0.09 0.06
ks 1400 2231 0.44 0.02 0.05 0.56 197380 0.02 0.01 1213 6914 - - - - - 1412 - -
ks nopr 1400 2231 0.92 0.07 0.16 0.78 226231 0.04 0.02 1213 0 - - - - - 15587 - -
ni 1400 2231 0.03 0.00 0.03 0.00 32502 0.00 0.01 1091 222 - - - - 26 - - -
ni nopr 1400 2231 2.18 0.00 0.20 0.00 3411931 0.00 - - - - - - - 978 - - -
ho 13509 17375 0.22 0.00 0.22 0.00 329559 0.00 0.12 12714 147 175 51.47 164 308 - - - -
ho nopr 13509 17375 2.77 0.00 1.91 0.00 5755826 0.00 - - - 1600 142.04 293 11615 - - - -
ho noprxs 13509 17375 2.98 0.00 1.92 0.00 6142642 0.00 - - - 12593 35.86 915 - - - - -
ho noxs 13509 17375 0.21 0.00 0.18 0.00 353291 0.00 0.11 12714 109 424 24.79 260 - - - - -
hybrid 13509 17375 291.32 0.00 - - - - - - 1875 - - - - - - - -
k 13509 17375 1.62 0.11 0.17 0.00 1215379 0.14 0.14 12996 100 - - - - - - 1.19 0.25
ks 13509 17375 1.72 0.01 0.14 0.04 790518 0.01 0.12 12996 23072 - - - - - 2358 - -
ks nopr 13509 17375 3.43 0.01 0.14 0.03 907779 0.01 0.12 12996 0 - - - - - 48821 - -
ni 13509 17375 0.26 0.00 0.15 0.00 168251 0.00 0.10 12714 459 - - - - 66 - - -
ni nopr 13509 17375 278.35 0.00 161.82 0.00 214819246 0.00 - - - - - - - 8342 - - -

Table A.4: TSP data (cont)



96 APPENDIX A. DATA TABLES

nod
es

arcs
totaltim

e
d

iscovery
tim

e
ed

ge
scans

preprocess
initial

internal

s-t

avg.
1

nod
e

excess
phases

leaves
packing

respect
avg

d
ev

%
avg

d
ev

%
avg

d
ev

%
tim

e
PR

PR
cuts

size
layers

d
etect

tim
e

tim
e

ho
13509

17386
0.24

0.00
0.20

0.00
403433

0.00
0.11

12343
169

252
38.65

241
503

-
-

-
-

ho
nopr

13509
17386

2.43
0.00

2.16
0.00

4927526
0.00

-
-

-
1512

164.06
329

11667
-

-
-

-
ho

noprxs
13509

17386
2.44

0.00
2.15

0.00
4882956

0.00
-

-
-

12526
35.40

982
-

-
-

-
-

ho
noxs

13509
17386

0.24
0.00

0.22
0.00

405268
0.00

0.11
12343

229
585

20.25
350

-
-

-
-

-
hybrid

13509
17386

282.56
0.00

-
-

-
-

-
-

2086
-

-
-

-
-

-
-

-
k

13509
17386

2.42
0.27

0.16
0.02

1753774
0.34

0.14
12850

137
-

-
-

-
-

-
1.90

0.33
ks

13509
17386

2.13
0.01

0.13
0.00

951413
0.00

0.12
12850

29675
-

-
-

-
-

2609
-

-
ks

nopr
13509

17386
4.23

0.01
0.13

0.00
1090329

0.00
0.12

12850
0

-
-

-
-

-
56422

-
-

ni
13509

17386
0.27

0.00
0.16

0.00
173634

0.00
0.10

12343
726

-
-

-
-

54
-

-
-

ni
nopr

13509
17386

258.39
0.00

6.02
0.00

198286438
0.00

-
-

-
-

-
-

-
7792

-
-

-
ho

13509
17390

0.25
0.00

0.03
0.00

417099
0.00

0.10
12385

125
331

35.62
296

371
-

-
-

-
ho

nopr
13509

17390
2.99

0.00
0.02

0.00
6009698

0.00
-

-
-

1821
147.39

362
11325

-
-

-
-

ho
noprxs

13509
17390

3.25
0.00

0.02
0.00

6302949
0.00

-
-

-
12600

66.86
908

-
-

-
-

-
ho

noxs
13509

17390
0.25

0.00
0.03

0.00
454853

0.00
0.11

12385
147

629
20.88

346
-

-
-

-
-

hybrid
13509

17390
286.08

0.00
-

-
-

-
-

-
2435

-
-

-
-

-
-

-
-

k
13509

17390
1.60

0.27
0.02

0.18
1198111

0.25
0.14

12874
147

-
-

-
-

-
-

1.11
0.30

ks
13509

17390
2.37

0.01
0.02

0.00
1050881

0.01
0.11

12874
32502

-
-

-
-

-
3184

-
-

ks
nopr

13509
17390

5.59
0.01

0.02
0.22

1345529
0.01

0.11
12874

0
-

-
-

-
-

89900
-

-
ni

13509
17390

0.30
0.00

0.02
0.00

207357
0.00

0.09
12385

738
-

-
-

-
68

-
-

-
ni

nopr
13509

17390
267.68

0.00
0.02

0.00
210277258

0.00
-

-
-

-
-

-
-

8291
-

-
-

ho
13509

17494
0.21

0.00
0.07

0.00
321937

0.00
0.11

12626
136

196
34.49

205
345

-
-

-
-

ho
nopr

13509
17494

3.15
0.00

2.41
0.00

6597998
0.00

-
-

-
1631

106.84
296

11581
-

-
-

-
ho

noprxs
13509

17494
2.38

0.00
1.63

0.00
4950277

0.00
-

-
-

12534
31.10

974
-

-
-

-
-

ho
noxs

13509
17494

0.20
0.00

0.07
0.00

331620
0.00

0.11
12626

122
469

16.97
291

-
-

-
-

-
hybrid

13509
17494

312.60
0.00

-
-

-
-

-
-

1981
-

-
-

-
-

-
-

-
k

13509
17494

1.02
0.36

0.07
0.06

801265
0.29

0.15
12966

174
-

-
-

-
-

-
0.59

0.23
ks

13509
17494

1.88
0.01

0.05
0.09

854202
0.01

0.12
12966

25581
-

-
-

-
-

2523
-

-
ks

nopr
13509

17494
4.04

0.01
0.06

0.07
1029351

0.01
0.12

12966
0

-
-

-
-

-
62074

-
-

ni
13509

17494
0.27

0.00
0.06

0.00
189659

0.00
0.10

12626
569

-
-

-
-

76
-

-
-

ni
nopr

13509
17494

245.45
0.00

174.09
0.00

187529662
0.00

-
-

-
-

-
-

-
7450

-
-

-
ho

5934
7287

0.06
0.00

0.06
0.00

93650
0.00

0.03
5651

29
40

43.60
57

155
-

-
-

-
ho

nopr
5934

7287
0.94

0.00
0.92

0.00
2142016

0.00
-

-
-

235
581.77

93
5605

-
-

-
-

ho
noprxs

5934
7287

1.06
0.00

0.88
0.00

2335250
0.00

-
-

-
5563

74.45
370

-
-

-
-

-
ho

noxs
5934

7287
0.06

0.00
0.06

0.00
101110

0.00
0.03

5651
87

121
21.42

73
-

-
-

-
-

hybrid
5934

7287
16.47

0.00
-

-
-

-
-

-
787

-
-

-
-

-
-

-
-

k
5934

7287
0.22

0.29
0.05

0.09
216788

0.28
0.05

5762
40

-
-

-
-

-
-

0.10
0.05

ks
5934

7287
0.42

0.02
0.04

0.10
201301

0.01
0.03

5762
5412

-
-

-
-

-
1127

-
-

ks
nopr

5934
7287

0.74
0.07

0.04
0.00

213926
0.04

0.04
5762

0
-

-
-

-
-

10431
-

-
ni

5934
7287

0.06
0.00

0.05
0.00

29911
0.00

0.03
5651

169
-

-
-

-
16

-
-

-
ni

nopr
5934

7287
20.78

0.00
3.38

0.00
21075510

0.00
-

-
-

-
-

-
-

2274
-

-
-

ho
5934

7627
0.08

0.00
0.08

0.00
157268

0.00
0.04

5444
39

76
54.67

116
258

-
-

-
-

ho
nopr

5934
7627

0.86
0.00

0.86
0.00

2088813
0.00

-
-

-
228

259.64
158

5547
-

-
-

-
ho

noprxs
5934

7627
0.85

0.00
0.84

0.00
1916261

0.00
-

-
-

5551
34.15

382
-

-
-

-
-

ho
noxs

5934
7627

0.09
0.00

0.09
0.00

170349
0.00

0.04
5444

97
233

28.91
159

-
-

-
-

-
hybrid

5934
7627

69.72
0.00

-
-

-
-

-
-

1090
-

-
-

-
-

-
-

-
k

5934
7627

0.82
0.39

0.06
0.06

842276
0.43

0.05
5655

53
-

-
-

-
-

-
0.64

0.12
ks

5934
7627

1.08
0.02

0.11
0.32

469127
0.01

0.04
5655

13497
-

-
-

-
-

3512
-

-
ks

nopr
5934

7627
2.49

0.03
0.69

0.55
589774

0.02
0.04

5655
0

-
-

-
-

-
45318

-
-

ni
5934

7627
0.09

0.00
0.05

0.00
66531

0.00
0.03

5444
355

-
-

-
-

44
-

-
-

ni
nopr

5934
7627

60.32
0.00

0.99
0.00

60040418
0.00

-
-

-
-

-
-

-
4939

-
-

-
ho

1323
2169

0.03
0.00

0.01
0.00

51756
0.00

0.00
1115

30
41

37.41
56

79
-

-
-

-
ho

nopr
1323

2169
0.10

0.00
0.09

0.00
270015

0.00
-

-
-

175
75.35

72
1075

-
-

-
-

ho
noprxs

1323
2169

0.12
0.00

0.12
0.00

348029
0.00

-
-

-
1188

22.89
134

-
-

-
-

-
ho

noxs
1323

2169
0.02

0.00
0.00

0.00
54641

0.00
0.01

1115
49

93
23.39

64
-

-
-

-
-

hybrid
1323

2169
3.64

0.00
-

-
-

-
-

-
338

-
-

-
-

-
-

-
-

k
1323

2169
0.16

0.36
0.00

1.22
203805

0.39
0.01

1205
17

-
-

-
-

-
-

0.10
0.04

ks
1323

2169
0.42

0.03
0.00

1.22
177601

0.02
0.01

1205
5574

-
-

-
-

-
1900

-
-

ks
nopr

1323
2169

0.93
0.04

0.00
1.22

213233
0.02

0.01
1205

0
-

-
-

-
-

19284
-

-
ni

1323
2169

0.04
0.00

0.00
0.00

43844
0.00

0.01
1115

141
-

-
-

-
60

-
-

-
ni

nopr
1323

2169
3.83

0.00
1.94

0.00
5686288

0.00
-

-
-

-
-

-
-

1279
-

-
-

Table
A

.5:T
SP

d
ata

(cont)



97

nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect
avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time

ho 1323 2195 0.02 0.00 0.01 0.00 48710 0.00 0.01 1167 26 39 37.49 52 38 - - - -
ho nopr 1323 2195 0.13 0.00 0.04 0.00 392661 0.00 - - - 148 81.22 93 1081 - - - -
ho noprxs 1323 2195 0.14 0.00 0.03 0.00 396920 0.00 - - - 1166 19.61 156 - - - - -
ho noxs 1323 2195 0.02 0.00 0.01 0.00 51236 0.00 0.01 1167 29 71 23.94 54 - - - - -
hybrid 1323 2195 3.86 0.00 - - - - - - 368 - - - - - - - -
k 1323 2195 0.10 0.38 0.07 0.56 130127 0.40 0.01 1214 22 - - - - - - 0.05 0.04
ks 1323 2195 0.41 0.03 0.03 0.46 173774 0.01 0.01 1214 5353 - - - - - 1910 - -
ks nopr 1323 2195 0.85 0.04 0.20 0.57 204395 0.03 0.01 1214 0 - - - - - 19234 - -
ni 1323 2195 0.03 0.00 0.03 0.00 32044 0.00 0.01 1167 104 - - - - 44 - - -
ni nopr 1323 2195 4.07 0.00 3.98 0.00 5885243 0.00 - - - - - - - 1293 - - -
ho 1084 1252 0.01 0.00 0.00 0.00 11584 0.00 0.00 1052 7 7 15.57 5 11 - - - -
ho nopr 1084 1252 0.05 0.00 0.00 0.00 137721 0.00 - - - 90 163.66 8 985 - - - -
ho noprxs 1084 1252 0.09 0.00 0.00 0.00 211424 0.00 - - - 1037 122.68 46 - - - - -
ho noxs 1084 1252 0.01 0.00 0.00 0.00 11744 0.00 0.01 1052 14 12 12.75 4 - - - - -
hybrid 1084 1252 1.36 0.00 - - - - - - 336 - - - - - - - -
k 1084 1252 0.01 0.00 0.00 0.00 13939 0.02 0.00 1061 13 - - - - - - 0.00 0.00
ks 1084 1252 0.03 0.30 0.00 0.00 18665 0.05 0.00 1061 519 - - - - - 359 - -
ks nopr 1084 1252 0.09 0.16 0.00 0.00 23967 0.05 0.00 1061 0 - - - - - 2452 - -
ni 1084 1252 0.01 0.00 0.00 0.00 3759 0.00 0.01 1052 19 - - - - 8 - - -
ni nopr 1084 1252 1.54 0.00 0.00 0.00 2341930 0.00 - - - - - - - 1003 - - -

Table A.6: TSP data (cont)



98 APPENDIX A. DATA TABLES
nod

es
arcs

totaltim
e

d
iscovery

tim
e

ed
ge

scans
preprocess

initial
internal

s-t

avg.
1

nod
e

excess
phases

leaves
packing

respect
avg

d
ev

%
avg

d
ev

%
avg

d
ev

%
tim

e
PR

PR
cuts

size
layers

d
etect

tim
e

tim
e

hybrid
605

1162
0.23

0.00
-

-
-

-
-

-
15

-
-

-
-

-
-

-
-

ni
605

1162
0.11

0.00
0.00

0.00
136501

0.00
0.00

0
300

-
-

-
-

72
-

-
-

ni
nopr

605
1162

0.21
0.00

0.00
0.00

322571
0.00

-
-

-
-

-
-

-
151

-
-

-
hybrid

549
1072

0.28
0.00

-
-

-
-

-
-

12
-

-
-

-
-

-
-

-
ni

549
1072

0.10
0.00

0.08
0.00

116474
0.00

0.01
0

277
-

-
-

-
68

-
-

-
ni

nopr
549

1072
0.22

0.00
0.16

0.00
333669

0.00
-

-
-

-
-

-
-

185
-

-
-

hybrid
465

926
0.20

0.00
-

-
-

-
-

-
17

-
-

-
-

-
-

-
-

ni
465

926
0.08

0.00
0.00

0.00
100514

0.00
0.00

0
228

-
-

-
-

62
-

-
-

ni
nopr

465
926

0.16
0.00

0.00
0.00

260207
0.00

-
-

-
-

-
-

-
157

-
-

-
hybrid

542
1064

0.23
0.00

-
-

-
-

-
-

28
-

-
-

-
-

-
-

-
ni

542
1064

0.08
0.00

0.00
0.00

95845
0.00

0.00
0

274
-

-
-

-
58

-
-

-
ni

nopr
542

1064
0.15

0.00
0.00

0.00
240401

0.00
-

-
-

-
-

-
-

136
-

-
-

hybrid
573

1104
0.29

0.00
-

-
-

-
-

-
21

-
-

-
-

-
-

-
-

ni
573

1104
0.11

0.00
0.00

0.00
127352

0.00
0.00

0
299

-
-

-
-

70
-

-
-

ni
nopr

573
1104

0.25
0.00

0.00
0.00

386232
0.00

-
-

-
-

-
-

-
207

-
-

-
hybrid

476
945

0.20
0.00

-
-

-
-

-
-

17
-

-
-

-
-

-
-

-
ni

476
945

0.08
0.00

0.00
0.00

99407
0.00

0.00
0

217
-

-
-

-
58

-
-

-
ni

nopr
476

945
0.21

0.00
0.00

0.00
319209

0.00
-

-
-

-
-

-
-

191
-

-
-

hybrid
607

1150
0.22

0.00
-

-
-

-
-

-
14

-
-

-
-

-
-

-
-

ni
607

1150
0.10

0.00
0.00

0.00
110719

0.00
0.00

0
294

-
-

-
-

56
-

-
-

ni
nopr

607
1150

0.15
0.00

0.00
0.00

223849
0.00

-
-

-
-

-
-

-
112

-
-

-
hybrid

557
1091

0.27
0.00

-
-

-
-

-
-

14
-

-
-

-
-

-
-

-
ni

557
1091

0.09
0.00

0.00
0.00

113798
0.00

0.00
0

302
-

-
-

-
58

-
-

-
ni

nopr
557

1091
0.21

0.00
0.00

0.00
308862

0.00
-

-
-

-
-

-
-

162
-

-
-

hybrid
505

971
0.23

0.00
-

-
-

-
-

-
10

-
-

-
-

-
-

-
-

ni
505

971
0.09

0.00
0.00

0.00
100608

0.00
0.01

0
254

-
-

-
-

60
-

-
-

ni
nopr

505
971

0.18
0.00

0.00
0.00

278074
0.00

-
-

-
-

-
-

-
159

-
-

-
hybrid

325
561

0.03
0.00

-
-

-
-

-
-

8
-

-
-

-
-

-
-

-
ni

325
561

0.01
0.00

0.00
0.00

16351
0.00

0.00
0

126
-

-
-

-
16

-
-

-
ni

nopr
325

561
0.02

0.00
0.00

0.00
28436

0.00
-

-
-

-
-

-
-

37
-

-
-

hybrid
477

920
0.21

0.00
-

-
-

-
-

-
26

-
-

-
-

-
-

-
-

ni
477

920
0.08

0.00
0.02

0.00
86054

0.00
0.01

0
232

-
-

-
-

52
-

-
-

ni
nopr

477
920

0.15
0.00

0.02
0.00

232635
0.00

-
-

-
-

-
-

-
144

-
-

-
hybrid

449
861

0.19
0.00

-
-

-
-

-
-

19
-

-
-

-
-

-
-

-
ni

449
861

0.07
0.00

0.03
0.00

87231
0.00

0.00
0

208
-

-
-

-
56

-
-

-
ni

nopr
449

861
0.13

0.00
0.06

0.00
202259

0.00
-

-
-

-
-

-
-

130
-

-
-

hybrid
454

886
0.21

0.00
-

-
-

-
-

-
11

-
-

-
-

-
-

-
-

ni
454

886
0.08

0.00
0.00

0.00
91044

0.00
0.00

0
227

-
-

-
-

62
-

-
-

ni
nopr

454
886

0.17
0.00

0.00
0.00

264027
0.00

-
-

-
-

-
-

-
165

-
-

-
hybrid

403
786

0.14
0.00

-
-

-
-

-
-

12
-

-
-

-
-

-
-

-
ni

403
786

0.06
0.00

0.06
0.00

76546
0.00

0.00
0

207
-

-
-

-
58

-
-

-
ni

nopr
403

786
0.12

0.00
0.12

0.00
184082

0.00
-

-
-

-
-

-
-

143
-

-
-

hybrid
532

1029
0.27

0.00
-

-
-

-
-

-
28

-
-

-
-

-
-

-
-

ni
532

1029
0.08

0.00
0.00

0.00
96779

0.00
0.00

0
267

-
-

-
-

54
-

-
-

ni
nopr

532
1029

0.17
0.00

0.00
0.00

260179
0.00

-
-

-
-

-
-

-
164

-
-

-
hybrid

501
950

0.20
0.00

-
-

-
-

-
-

16
-

-
-

-
-

-
-

-
ni

501
950

0.12
0.00

0.00
0.00

140584
0.00

0.00
0

256
-

-
-

-
76

-
-

-
ni

nopr
501

950
0.24

0.00
0.00

0.00
369383

0.00
-

-
-

-
-

-
-

202
-

-
-

hybrid
492

946
0.25

0.00
-

-
-

-
-

-
19

-
-

-
-

-
-

-
-

ni
492

946
0.08

0.00
0.00

0.00
88342

0.00
0.00

0
252

-
-

-
-

52
-

-
-

ni
nopr

492
946

0.14
0.00

0.00
0.00

208264
0.00

-
-

-
-

-
-

-
122

-
-

-

Table
A

.7:PR
E

T
SP

d
ata



99

nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect
avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time

ho 300 22425 0.17 0.07 0.02 0.32 414336 0.06 0.03 0 153 4 284.65 0 139 - - - -
ho nopr 300 22425 0.13 0.08 0.02 0.50 413343 0.09 - - - 8 276.59 16 274 - - - -
ho noprxs 300 22425 0.19 0.04 0.02 0.31 750026 0.05 - - - 49 187.19 249 - - - - -
ho noxs 300 22425 0.16 0.06 0.02 0.32 418143 0.06 0.03 0 281 8 270.49 7 - - - - -
hybrid 300 17632 0.21 0.05 - - - - - - 3 - - - - - - - -
k 300 22425 0.33 0.03 0.03 0.32 334714 0.01 0.03 0 330 - - - - - - - -
ks 300 22425 7.31 0.05 0.02 0.37 1978048 0.04 0.03 0 5775 - - - - - 265 - -
ks nopr 300 22425 7.35 0.04 0.02 0.45 1870356 0.03 0.03 0 0 - - - - - 5295 - -
ni 300 22425 0.14 0.03 0.02 0.34 150473 0.03 0.03 0 175 - - - - 2 - - -
ni nopr 300 22425 0.12 0.11 0.02 0.50 185572 0.08 - - - - - - - 4 - - -
ho 400 39900 0.32 0.04 0.03 0.30 758316 0.05 0.05 0 233 5 396.31 0 159 - - - -
ho nopr 400 39900 0.28 0.09 0.02 0.34 858315 0.08 - - - 12 374.57 37 349 - - - -
ho noprxs 400 39900 0.42 0.10 0.02 0.42 1553980 0.10 - - - 53 235.00 345 - - - - -
ho noxs 400 39900 0.30 0.03 0.03 0.12 724352 0.06 0.05 0 384 8 350.95 5 - - - - -
hybrid 400 31413 0.42 0.05 - - - - - - 3 - - - - - - - -
k 400 39900 0.62 0.02 0.05 0.31 595073 0.01 0.05 0 454 - - - - - - - -
ks 400 39900 14.94 0.03 0.03 0.34 3724151 0.03 0.05 0 7960 - - - - - 282 - -
ks nopr 400 39900 14.07 0.03 0.03 0.37 3460471 0.03 0.05 0 0 - - - - - 7059 - -
ni 400 39900 0.25 0.03 0.03 0.36 269833 0.03 0.05 0 243 - - - - 2 - - -
ni nopr 400 39900 0.24 0.07 0.03 0.40 339220 0.08 - - - - - - - 4 - - -
ho 500 62375 0.49 0.06 0.03 0.64 1123700 0.07 0.08 0 313 4 496.79 0 180 - - - -
ho nopr 500 62375 0.45 0.08 0.02 0.67 1395214 0.08 - - - 13 456.54 41 444 - - - -
ho noprxs 500 62375 0.67 0.05 0.02 0.78 2374071 0.04 - - - 70 298.57 429 - - - - -
ho noxs 500 62375 0.48 0.05 0.03 0.54 1126768 0.07 0.08 0 482 7 439.17 8 - - - - -
hybrid 500 49094 0.69 0.07 - - - - - - 4 - - - - - - - -
k 500 62375 1.00 0.01 0.05 0.61 928399 0.01 0.08 0 571 - - - - - - - -
ks 500 62375 25.04 0.06 0.03 0.64 5980270 0.05 0.08 0 10323 - - - - - 288 - -
ks nopr 500 62375 23.14 0.06 0.03 0.62 5556688 0.05 0.07 0 0 - - - - - 8877 - -
ni 500 62375 0.42 0.04 0.03 0.64 420353 0.04 0.07 0 306 - - - - 2 - - -
ni nopr 500 62375 0.38 0.09 0.03 0.60 536465 0.12 - - - - - - - 5 - - -
ho 600 89850 0.69 0.01 0.08 0.51 1525698 0.02 0.11 0 406 3 598.40 0 187 - - - -
ho nopr 600 89850 0.70 0.06 0.06 0.55 2132219 0.06 - - - 13 558.40 69 516 - - - -
ho noprxs 600 89850 1.09 0.07 0.06 0.48 3828988 0.07 - - - 77 318.65 521 - - - - -
ho noxs 600 89850 0.68 0.02 0.08 0.46 1535212 0.02 0.11 0 560 5 497.57 32 - - - - -
hybrid 600 70635 1.04 0.06 - - - - - - 5 - - - - - - - -
k 600 89850 1.49 0.01 0.13 0.46 1344394 0.01 0.12 0 713 - - - - - - - -
ks 600 89850 38.91 0.02 0.08 0.51 9118613 0.02 0.11 0 13265 - - - - - 299 - -
ks nopr 600 89850 35.65 0.03 0.08 0.49 8449323 0.03 0.11 0 0 - - - - - 12059 - -
ni 600 89850 0.63 0.02 0.08 0.46 620847 0.02 0.10 0 404 - - - - 2 - - -
ni nopr 600 89850 0.61 0.08 0.08 0.50 837674 0.09 - - - - - - - 5 - - -
ho 700 122325 1.01 0.06 0.13 0.26 2255858 0.08 0.15 0 499 4 697.77 0 194 - - - -
ho nopr 700 122325 1.11 0.07 0.10 0.25 3361271 0.06 - - - 13 644.92 71 615 - - - -
ho noprxs 700 122325 1.44 0.04 0.09 0.31 5029798 0.06 - - - 95 412.79 603 - - - - -
ho noxs 700 122325 0.99 0.05 0.12 0.29 2260789 0.08 0.15 0 656 6 592.04 35 - - - - -
hybrid 700 96252 1.60 0.06 - - - - - - 5 - - - - - - - -
k 700 122325 2.09 0.01 0.20 0.23 1850405 0.01 0.16 0 873 - - - - - - - -
ks 700 122325 56.29 0.02 0.12 0.27 13160519 0.02 0.15 0 16922 - - - - - 305 - -
ks nopr 700 122325 52.35 0.02 0.12 0.26 12319490 0.02 0.15 0 0 - - - - - 17121 - -
ni 700 122325 0.90 0.02 0.13 0.26 880236 0.02 0.15 0 530 - - - - 2 - - -
ni nopr 700 122325 0.97 0.08 0.12 0.26 1347265 0.10 - - - - - - - 6 - - -
ho 800 159800 1.38 0.04 0.12 0.72 3030685 0.07 0.20 0 561 4 796.93 0 232 - - - -
ho nopr 800 159800 1.37 0.04 0.09 0.77 4194031 0.04 - - - 15 729.50 99 683 - - - -
ho noprxs 800 159800 1.88 0.03 0.09 0.73 6540903 0.04 - - - 106 464.84 693 - - - - -
ho noxs 800 159800 1.36 0.04 0.11 0.75 3043199 0.07 0.20 0 772 8 699.15 17 - - - - -
hybrid 800 125750 2.00 0.07 - - - - - - 7 - - - - - - - -
k 800 159800 2.75 0.01 0.18 0.73 2396977 0.01 0.21 0 971 - - - - - - - -
ks 800 159800 73.57 0.03 0.11 0.75 17143931 0.04 0.19 0 18982 - - - - - 311 - -
ks nopr 800 159800 67.76 0.04 0.11 0.73 15878903 0.04 0.19 0 0 - - - - - 17362 - -
ni 800 159800 1.14 0.03 0.11 0.75 1116805 0.04 0.19 0 560 - - - - 2 - - -
ni nopr 800 159800 1.18 0.11 0.11 0.71 1583954 0.13 - - - - - - - 5 - - -

Table A.8: NOI1 data



100 APPENDIX A. DATA TABLES

nod
es

arcs
totaltim

e
d

iscovery
tim

e
ed

ge
scans

preprocess
initial

internal

s-t

avg.
1

nod
e

excess
phases

leaves
packing

respect
avg

d
ev

%
avg

d
ev

%
avg

d
ev

%
tim

e
PR

PR
cuts

size
layers

d
etect

tim
e

tim
e

ho
900

202275
1.71

0.04
0.16

0.67
3612659

0.06
0.25

0
661

4
897.87

0
232

-
-

-
-

ho
nopr

900
202275

1.86
0.03

0.11
0.71

5794794
0.04

-
-

-
18

831.14
187

692
-

-
-

-
ho

noprxs
900

202275
2.51

0.03
0.11

0.72
8788232

0.04
-

-
-

96
495.86

803
-

-
-

-
-

ho
noxs

900
202275

1.66
0.04

0.15
0.69

3644518
0.06

0.25
0

855
6

766.31
35

-
-

-
-

-
hybrid

900
159134

2.72
0.06

-
-

-
-

-
-

7
-

-
-

-
-

-
-

-
k

900
202275

3.56
0.01

0.24
0.67

3057606
0.01

0.27
0

1133
-

-
-

-
-

-
-

-
ks

900
202275

95.74
0.02

0.15
0.68

22306145
0.02

0.25
0

22424
-

-
-

-
-

312
-

-
ks

nopr
900

202275
89.02

0.02
0.15

0.68
20755059

0.02
0.25

0
0

-
-

-
-

-
21934

-
-

ni
900

202275
1.52

0.03
0.15

0.66
1458977

0.02
0.25

0
683

-
-

-
-

2
-

-
-

ni
nopr

900
202275

1.65
0.07

0.15
0.69

2243445
0.09

-
-

-
-

-
-

-
6

-
-

-
ho

1000
249750

2.13
0.02

0.17
0.57

4359927
0.01

0.31
0

754
4

997.52
0

238
-

-
-

-
ho

nopr
1000

249750
2.46

0.09
0.12

0.65
7605133

0.09
-

-
-

16
933.95

243
738

-
-

-
-

ho
noprxs

1000
249750

3.22
0.13

0.12
0.63

11050154
0.14

-
-

-
100

566.37
898

-
-

-
-

-
ho

noxs
1000

249750
2.07

0.01
0.16

0.58
4412605

0.02
0.31

0
964

7
854.90

26
-

-
-

-
-

hybrid
1000

196545
3.54

0.03
-

-
-

-
-

-
5

-
-

-
-

-
-

-
-

k
1000

249750
4.44

0.01
0.26

0.57
3786958

0.00
0.34

0
1280

-
-

-
-

-
-

-
-

ks
1000

249750
122.10

0.01
0.16

0.60
28411005

0.01
0.31

0
25977

-
-

-
-

-
318

-
-

ks
nopr

1000
249750

115.18
0.01

0.15
0.59

26625662
0.01

0.30
0

0
-

-
-

-
-

26448
-

-
ni

1000
249750

1.89
0.01

0.16
0.59

1822543
0.01

0.30
0

787
-

-
-

-
2

-
-

-
ni

nopr
1000

249750
2.16

0.04
0.15

0.60
2941612

0.05
-

-
-

-
-

-
-

7
-

-
-

Table
A

.9:N
O

I1
d

ata
(cont)



101

nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect
avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time

ho 300 22425 0.14 0.10 0.12 0.14 317385 0.12 0.03 0 65 5 210.41 0 227 - - - -
ho nopr 300 22425 0.11 0.04 0.09 0.05 349113 0.05 - - - 10 178.96 0 288 - - - -
ho noprxs 300 22425 0.18 0.10 0.09 0.18 717747 0.11 - - - 83 106.86 215 - - - - -
ho noxs 300 22425 0.17 0.15 0.11 0.15 417408 0.19 0.03 0 193 35 147.06 69 - - - - -
hybrid 300 17632 0.19 0.04 - - - - - - 13 - - - - - - - -
k 300 22425 0.31 0.03 0.11 0.09 312624 0.00 0.03 0 203 - - - - - - - -
ks 300 22425 4.39 0.02 0.32 0.42 1105148 0.02 0.03 0 4878 - - - - - 142 - -
ks nopr 300 22425 4.90 0.03 0.52 0.65 1257706 0.03 0.03 0 0 - - - - - 1445 - -
ni 300 22425 0.11 0.04 0.06 0.00 121916 0.03 0.03 0 15 - - - - 2 - - -
ni nopr 300 22425 0.09 0.05 0.04 0.11 122219 0.03 - - - - - - - 2 - - -
ho 400 39900 0.27 0.14 0.23 0.17 563308 0.17 0.05 0 87 5 289.46 3 302 - - - -
ho nopr 400 39900 0.21 0.07 0.17 0.06 632333 0.06 - - - 8 244.24 6 384 - - - -
ho noprxs 400 39900 0.35 0.04 0.17 0.06 1269434 0.07 - - - 114 138.62 284 - - - - -
ho noxs 400 39900 0.32 0.19 0.22 0.10 757283 0.19 0.05 0 264 44 167.76 89 - - - - -
hybrid 400 31413 0.37 0.02 - - - - - - 22 - - - - - - - -
k 400 39900 0.60 0.02 0.21 0.05 556486 0.00 0.06 0 286 - - - - - - - -
ks 400 39900 8.31 0.02 0.63 0.64 2002081 0.02 0.05 0 6579 - - - - - 147 - -
ks nopr 400 39900 9.12 0.03 0.97 0.74 2265468 0.02 0.05 0 0 - - - - - 1675 - -
ni 400 39900 0.22 0.03 0.12 0.03 219118 0.02 0.05 0 27 - - - - 2 - - -
ni nopr 400 39900 0.17 0.02 0.07 0.00 219691 0.02 - - - - - - - 2 - - -
ho 500 62375 0.49 0.13 0.33 0.07 1046260 0.17 0.08 0 108 5 360.57 0 384 - - - -
ho nopr 500 62375 0.38 0.05 0.25 0.08 1075556 0.05 - - - 11 271.56 0 487 - - - -
ho noprxs 500 62375 0.54 0.05 0.23 0.09 1915919 0.06 - - - 138 171.03 360 - - - - -
ho noxs 500 62375 0.60 0.14 0.31 0.03 1395957 0.17 0.08 0 342 67 211.45 88 - - - - -
hybrid 500 49094 0.60 0.03 - - - - - - 35 - - - - - - - -
k 500 62375 0.97 0.02 0.33 0.05 868986 0.00 0.08 0 372 - - - - - - - -
ks 500 62375 13.39 0.03 1.08 0.66 3180333 0.03 0.08 0 8341 - - - - - 150 - -
ks nopr 500 62375 14.54 0.02 1.29 0.67 3575272 0.02 0.07 0 0 - - - - - 1869 - -
ni 500 62375 0.36 0.02 0.19 0.00 348878 0.02 0.08 0 40 - - - - 2 - - -
ni nopr 500 62375 0.29 0.01 0.11 0.04 351416 0.03 - - - - - - - 2 - - -
ho 600 89850 0.75 0.08 0.54 0.16 1560962 0.10 0.11 0 142 5 539.13 0 449 - - - -
ho nopr 600 89850 0.57 0.03 0.38 0.09 1614625 0.01 - - - 15 306.51 0 583 - - - -
ho noprxs 600 89850 0.80 0.04 0.35 0.12 2729178 0.04 - - - 188 200.65 410 - - - - -
ho noxs 600 89850 0.94 0.05 0.49 0.15 2139332 0.06 0.11 0 458 67 249.82 71 - - - - -
hybrid 600 70635 0.88 0.01 - - - - - - 28 - - - - - - - -
k 600 89850 1.43 0.01 0.49 0.03 1249364 0.00 0.12 0 449 - - - - - - - -
ks 600 89850 19.71 0.02 1.38 0.51 4609111 0.02 0.11 0 10117 - - - - - 153 - -
ks nopr 600 89850 21.33 0.02 2.13 0.64 5217585 0.02 0.11 0 0 - - - - - 2110 - -
ni 600 89850 0.53 0.01 0.27 0.02 496450 0.01 0.11 0 46 - - - - 2 - - -
ni nopr 600 89850 0.42 0.01 0.17 0.03 498021 0.01 - - - - - - - 2 - - -
ho 700 122325 1.00 0.05 0.76 0.16 2011223 0.05 0.15 0 227 1 699.70 0 469 - - - -
ho nopr 700 122325 0.81 0.02 0.53 0.07 2240568 0.02 - - - 16 357.63 0 682 - - - -
ho noprxs 700 122325 1.16 0.04 0.50 0.09 3881323 0.05 - - - 219 232.98 479 - - - - -
ho noxs 700 122325 1.28 0.07 0.68 0.11 2869285 0.07 0.15 0 547 73 334.32 76 - - - - -
hybrid 700 96252 1.25 0.02 - - - - - - 71 - - - - - - - -
k 700 122325 1.99 0.01 0.67 0.03 1705377 0.00 0.16 0 546 - - - - - - - -
ks 700 122325 27.83 0.03 2.39 0.72 6488656 0.03 0.15 0 12090 - - - - - 159 - -
ks nopr 700 122325 29.94 0.03 2.60 0.64 7256479 0.02 0.15 0 0 - - - - - 2346 - -
ni 700 122325 0.73 0.01 0.37 0.01 688362 0.01 0.15 0 81 - - - - 2 - - -
ni nopr 700 122325 0.59 0.01 0.23 0.02 692674 0.01 - - - - - - - 2 - - -
ho 800 159800 1.51 0.07 1.16 0.19 3096715 0.09 0.20 0 188 4 710.30 3 602 - - - -
ho nopr 800 159800 1.10 0.04 0.78 0.14 3205484 0.06 - - - 15 449.75 3 780 - - - -
ho noprxs 800 159800 1.62 0.04 0.73 0.12 5505613 0.05 - - - 225 268.59 573 - - - - -
ho noxs 800 159800 1.80 0.03 1.04 0.13 4039553 0.04 0.19 0 603 100 335.84 94 - - - - -
hybrid 800 125750 1.65 0.01 - - - - - - 90 - - - - - - - -
k 800 159800 2.64 0.01 0.87 0.02 2225934 0.00 0.21 0 628 - - - - - - - -
ks 800 159800 37.28 0.03 3.24 0.68 8607079 0.03 0.19 0 13977 - - - - - 162 - -
ks nopr 800 159800 39.85 0.02 3.50 0.60 9606802 0.02 0.19 0 0 - - - - - 2506 - -
ni 800 159800 0.98 0.01 0.49 0.01 904395 0.00 0.19 0 107 - - - - 2 - - -
ni nopr 800 159800 0.78 0.01 0.30 0.02 911602 0.01 - - - - - - - 2 - - -

Table A.10: NOI2 data



10
2

A
PP

EN
D

IX
A

.
D

A
TA

TA
BL

ES

nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect
avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time

ho 900 202275 1.77 0.09 1.26 0.13 3460314 0.11 0.25 0 276 3 831.16 0 618 - - - -
ho nopr 900 202275 1.42 0.02 0.90 0.06 3908538 0.01 - - - 17 459.41 0 881 - - - -
ho noprxs 900 202275 2.00 0.02 0.84 0.03 6646862 0.02 - - - 270 294.70 628 - - - - -
ho noxs 900 202275 2.35 0.03 1.17 0.08 5118598 0.03 0.25 0 650 126 385.05 121 - - - - -
hybrid 900 159134 2.14 0.02 - - - - - - 115 - - - - - - - -
k 900 202275 3.41 0.01 1.14 0.03 2819478 0.00 0.27 0 721 - - - - - - - -
ks 900 202275 47.91 0.02 4.97 0.45 11034605 0.02 0.24 0 15924 - - - - - 163 - -
ks nopr 900 202275 50.74 0.02 3.76 0.60 12171827 0.02 0.25 0 0 - - - - - 2654 - -
ni 900 202275 1.25 0.01 0.62 0.01 1155836 0.01 0.24 0 135 - - - - 2 - - -
ni nopr 900 202275 1.01 0.02 0.38 0.00 1168331 0.02 - - - - - - - 2 - - -
ho 1000 249750 2.59 0.10 1.65 0.18 5197277 0.12 0.30 0 177 11 681.56 0 810 - - - -
ho nopr 1000 249750 1.81 0.02 1.15 0.11 5145474 0.03 - - - 17 530.75 0 982 - - - -
ho noprxs 1000 249750 2.49 0.04 1.09 0.06 8270216 0.04 - - - 315 322.80 684 - - - - -
ho noxs 1000 249750 2.92 0.03 1.56 0.11 6257279 0.02 0.30 0 752 128 403.56 117 - - - - -
hybrid 1000 196545 2.70 0.02 - - - - - - 132 - - - - - - - -
k 1000 249750 4.24 0.01 1.40 0.02 3485807 0.00 0.34 0 813 - - - - - - - -
ks 1000 249750 59.87 0.03 4.44 0.70 13681153 0.03 0.31 0 17980 - - - - - 164 - -
ks nopr 1000 249750 63.89 0.02 4.48 0.60 15250038 0.02 0.31 0 0 - - - - - 2881 - -
ni 1000 249750 1.55 0.01 0.78 0.01 1429950 0.01 0.31 0 156 - - - - 2 - - -
ni nopr 1000 249750 1.25 0.01 0.47 0.03 1451158 0.01 - - - - - - - 2 - - -

Table A.11: NOI2 data (cont)



103

nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect
avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time

ho 1000 24975 0.21 0.09 0.01 0.97 531168 0.10 0.03 0 262 6 989.70 0 728 - - - -
ho nopr 1000 24975 0.14 0.05 0.01 1.33 462470 0.03 - - - 11 969.33 0 987 - - - -
ho noprxs 1000 24975 0.39 0.03 0.01 0.94 1528034 0.03 - - - 73 693.05 925 - - - - -
ho noxs 1000 24975 0.24 0.09 0.01 0.62 670385 0.08 0.03 0 709 23 920.57 265 - - - - -
hybrid 1000 24362 0.48 0.02 - - - - - - 0 - - - - - - - -
k 1000 24975 0.43 0.02 0.01 0.69 439631 0.01 0.04 0 635 - - - - - - - -
ks 1000 24975 7.32 0.05 0.01 0.74 1940860 0.07 0.04 0 19632 - - - - - 160 - -
ks nopr 1000 24975 9.12 0.08 0.01 0.69 2348652 0.07 0.03 0 0 - - - - - 4175 - -
ni 1000 24975 0.16 0.03 0.01 0.89 166771 0.06 0.03 0 0 - - - - 1 - - -
ni nopr 1000 24975 0.12 0.06 0.01 1.22 166771 0.06 - - - - - - - 1 - - -
ho 1000 49950 0.42 0.05 0.04 0.23 1044323 0.06 0.06 0 462 5 980.19 10 520 - - - -
ho nopr 1000 49950 0.34 0.04 0.03 0.12 1112500 0.05 - - - 13 964.39 6 979 - - - -
ho noprxs 1000 49950 0.73 0.11 0.03 0.12 2803815 0.13 - - - 78 759.21 920 - - - - -
ho noxs 1000 49950 0.52 0.06 0.05 0.08 1389832 0.05 0.07 0 933 31 953.76 33 - - - - -
hybrid 1000 47529 0.81 0.03 - - - - - - 1 - - - - - - - -
k 1000 49950 0.90 0.02 0.06 0.08 872265 0.01 0.08 0 910 - - - - - - - -
ks 1000 49950 22.80 0.12 0.04 0.11 5734117 0.10 0.07 0 19202 - - - - - 257 - -
ks nopr 1000 49950 23.20 0.06 0.05 0.15 5694113 0.05 0.07 0 0 - - - - - 8125 - -
ni 1000 49950 0.34 0.02 0.05 0.11 356988 0.03 0.07 0 307 - - - - 2 - - -
ni nopr 1000 49950 0.28 0.05 0.04 0.11 383134 0.06 - - - - - - - 3 - - -
ho 1000 124875 1.35 0.14 0.06 0.66 3185443 0.14 0.16 0 570 8 986.71 0 418 - - - -
ho nopr 1000 124875 1.11 0.05 0.04 0.64 3512990 0.06 - - - 15 934.97 31 952 - - - -
ho noprxs 1000 124875 1.77 0.07 0.04 0.64 6382915 0.07 - - - 91 605.64 907 - - - - -
ho noxs 1000 124875 1.34 0.08 0.06 0.65 3333379 0.11 0.16 0 920 16 952.81 61 - - - - -
hybrid 1000 110503 1.79 0.02 - - - - - - 4 - - - - - - - -
k 1000 124875 2.28 0.01 0.09 0.63 2077760 0.00 0.18 0 1155 - - - - - - - -
ks 1000 124875 68.63 0.01 0.06 0.67 16210678 0.01 0.16 0 22233 - - - - - 317 - -
ks nopr 1000 124875 62.04 0.02 0.06 0.66 14661612 0.02 0.16 0 0 - - - - - 16821 - -
ni 1000 124875 0.93 0.01 0.06 0.66 935655 0.01 0.16 0 621 - - - - 2 - - -
ni nopr 1000 124875 0.88 0.02 0.06 0.65 1186902 0.04 - - - - - - - 4 - - -
ho 1000 249750 2.12 0.01 0.17 0.60 4359927 0.01 0.31 0 754 4 997.52 0 238 - - - -
ho nopr 1000 249750 2.48 0.08 0.12 0.61 7605133 0.09 - - - 16 933.95 243 738 - - - -
ho noprxs 1000 249750 3.22 0.13 0.11 0.60 11050154 0.14 - - - 100 566.37 898 - - - - -
ho noxs 1000 249750 2.07 0.01 0.16 0.58 4412605 0.02 0.31 0 964 7 854.90 26 - - - - -
hybrid 1000 196545 3.55 0.02 - - - - - - 5 - - - - - - - -
k 1000 249750 4.41 0.01 0.25 0.57 3786958 0.00 0.34 0 1280 - - - - - - - -
ks 1000 249750 121.48 0.01 0.16 0.61 28411005 0.01 0.31 0 25977 - - - - - 318 - -
ks nopr 1000 249750 115.19 0.01 0.15 0.58 26625662 0.01 0.31 0 0 - - - - - 26448 - -
ni 1000 249750 1.89 0.02 0.15 0.61 1822543 0.01 0.30 0 787 - - - - 2 - - -
ni nopr 1000 249750 2.16 0.04 0.16 0.59 2941612 0.05 - - - - - - - 7 - - -
ho 1000 374625 3.40 0.01 0.39 0.30 6880160 0.01 0.44 0 793 5 997.02 0 199 - - - -
ho nopr 1000 374625 3.66 0.08 0.27 0.34 10825518 0.09 - - - 18 906.84 215 765 - - - -
ho noprxs 1000 374625 4.37 0.08 0.27 0.34 14445572 0.09 - - - 124 505.85 874 - - - - -
ho noxs 1000 374625 3.29 0.01 0.38 0.31 6856776 0.01 0.44 0 989 8 908.21 0 - - - - -
hybrid 1000 263567 5.17 0.02 - - - - - - 6 - - - - - - - -
k 1000 374625 6.32 0.01 0.63 0.29 5160278 0.00 0.47 0 1328 - - - - - - - -
ks 1000 374625 159.41 0.00 0.36 0.31 37081283 0.01 0.44 0 27710 - - - - - 318 - -
ks nopr 1000 374625 154.62 0.01 0.36 0.31 35419759 0.01 0.44 0 0 - - - - - 31912 - -
ni 1000 374625 2.76 0.01 0.36 0.29 2552939 0.01 0.44 0 848 - - - - 2 - - -
ni nopr 1000 374625 3.55 0.04 0.37 0.32 4837419 0.05 - - - - - - - 8 - - -
ho 1000 499500 4.42 0.01 0.23 0.66 8340295 0.01 0.55 0 818 5 997.06 0 174 - - - -
ho nopr 1000 499500 5.03 0.05 0.15 0.69 14703068 0.06 - - - 19 896.70 313 665 - - - -
ho noprxs 1000 499500 5.50 0.02 0.15 0.71 17811484 0.04 - - - 107 473.36 891 - - - - -
ho noxs 1000 499500 4.33 0.02 0.22 0.64 8357741 0.00 0.55 0 989 8 974.42 0 - - - - -
hybrid 1000 315794 6.77 0.07 - - - - - - 10 - - - - - - - -
k 1000 499500 8.04 0.01 0.39 0.66 6261946 0.01 0.58 0 1353 - - - - - - - -
ks 1000 499500 188.43 0.01 0.21 0.67 43506519 0.01 0.55 0 28624 - - - - - 318 - -
ks nopr 1000 499500 184.81 0.01 0.21 0.68 42122276 0.01 0.55 0 0 - - - - - 36067 - -
ni 1000 499500 3.56 0.02 0.21 0.65 3154630 0.01 0.54 0 879 - - - - 2 - - -
ni nopr 1000 499500 4.92 0.09 0.21 0.65 6748303 0.10 - - - - - - - 10 - - -

Table A.12: NOI3 data



104 APPENDIX A. DATA TABLES

nod
es

arcs
totaltim

e
d

iscovery
tim

e
ed

ge
scans

preprocess
initial

internal

s-t

avg.
1

nod
e

excess
phases

leaves
packing

respect
avg

d
ev

%
avg

d
ev

%
avg

d
ev

%
tim

e
PR

PR
cuts

size
layers

d
etect

tim
e

tim
e

ho
1000

24975
0.19

0.05
0.02

0.85
420812

0.06
0.04

0
41

5
673.81

1
950

-
-

-
-

ho
nopr

1000
24975

0.12
0.04

0.01
0.82

351518
0.08

-
-

-
7

632.03
1

990
-

-
-

-
ho

noprxs
1000

24975
0.40

0.05
0.01

0.89
1605808

0.06
-

-
-

119
314.38

879
-

-
-

-
-

ho
noxs

1000
24975

0.31
0.11

0.02
0.65

826219
0.11

0.03
0

748
45

434.81
204

-
-

-
-

-
hybrid

1000
24362

0.46
0.01

-
-

-
-

-
-

0
-

-
-

-
-

-
-

-
k

1000
24975

0.43
0.03

0.02
0.61

419214
0.00

0.04
0

259
-

-
-

-
-

-
-

-
ks

1000
24975

6.14
0.04

0.02
0.60

1492234
0.04

0.04
0

10448
-

-
-

-
-

159
-

-
ks

nopr
1000

24975
6.11

0.10
0.01

0.69
1626503

0.07
0.04

0
0

-
-

-
-

-
1598

-
-

ni
1000

24975
0.14

0.03
0.02

0.45
138913

0.03
0.03

0
0

-
-

-
-

1
-

-
-

ni
nopr

1000
24975

0.11
0.06

0.02
0.42

138913
0.03

-
-

-
-

-
-

-
1

-
-

-
ho

1000
49950

0.46
0.03

0.24
0.72

1021161
0.03

0.07
0

115
4

690.95
0

877
-

-
-

-
ho

nopr
1000

49950
0.30

0.02
0.15

0.74
946597

0.02
-

-
-

10
549.76

0
988

-
-

-
-

ho
noprxs

1000
49950

0.70
0.06

0.15
0.71

2687387
0.06

-
-

-
118

379.10
881

-
-

-
-

-
ho

noxs
1000

49950
0.72

0.12
0.20

0.72
1885108

0.14
0.07

0
656

69
439.22

271
-

-
-

-
-

hybrid
1000

47529
0.75

0.01
-

-
-

-
-

-
0

-
-

-
-

-
-

-
-

k
1000

49950
0.88

0.02
0.17

0.66
830775

0.01
0.08

0
557

-
-

-
-

-
-

-
-

ks
1000

49950
13.81

0.03
0.59

1.07
3336637

0.04
0.07

0
17308

-
-

-
-

-
159

-
-

ks
nopr

1000
49950

15.86
0.07

1.14
1.23

3933576
0.06

0.07
0

0
-

-
-

-
-

2980
-

-
ni

1000
49950

0.31
0.01

0.10
0.59

299629
0.02

0.07
0

1
-

-
-

-
2

-
-

-
ni

nopr
1000

49950
0.24

0.03
0.06

0.45
299633

0.02
-

-
-

-
-

-
-

2
-

-
-

ho
1000

124875
1.24

0.10
0.83

0.15
2663993

0.11
0.16

0
147

12
586.71

0
838

-
-

-
-

ho
nopr

1000
124875

0.90
0.04

0.60
0.13

2663778
0.03

-
-

-
16

535.05
0

982
-

-
-

-
ho

noprxs
1000

124875
1.44

0.03
0.57

0.14
5133037

0.04
-

-
-

193
379.41

805
-

-
-

-
-

ho
noxs

1000
124875

1.54
0.14

0.78
0.13

3656221
0.14

0.16
0

658
110

433.92
229

-
-

-
-

-
hybrid

1000
110503

1.56
0.03

-
-

-
-

-
-

4
-

-
-

-
-

-
-

-
k

1000
124875

2.19
0.01

0.67
0.03

1942652
0.00

0.18
0

736
-

-
-

-
-

-
-

-
ks

1000
124875

33.38
0.02

2.39
0.53

7846352
0.02

0.16
0

18120
-

-
-

-
-

162
-

-
ks

nopr
1000

124875
37.30

0.03
3.55

0.77
9021666

0.02
0.16

0
0

-
-

-
-

-
2988

-
-

ni
1000

124875
0.81

0.02
0.39

0.02
761927

0.03
0.16

0
87

-
-

-
-

2
-

-
-

ni
nopr

1000
124875

0.64
0.02

0.22
0.02

767477
0.03

-
-

-
-

-
-

-
2

-
-

-
ho

1000
249750

2.58
0.10

1.65
0.17

5197277
0.12

0.30
0

177
11

681.56
0

810
-

-
-

-
ho

nopr
1000

249750
1.83

0.03
1.17

0.11
5145474

0.03
-

-
-

17
530.75

0
982

-
-

-
-

ho
noprxs

1000
249750

2.50
0.05

1.09
0.09

8270216
0.04

-
-

-
315

322.80
684

-
-

-
-

-
ho

noxs
1000

249750
2.91

0.03
1.56

0.12
6257279

0.02
0.31

0
752

128
403.56

117
-

-
-

-
-

hybrid
1000

196545
2.69

0.01
-

-
-

-
-

-
132

-
-

-
-

-
-

-
-

k
1000

249750
4.22

0.01
1.39

0.02
3485807

0.00
0.34

0
813

-
-

-
-

-
-

-
-

ks
1000

249750
59.42

0.03
4.40

0.71
13681153

0.03
0.31

0
17980

-
-

-
-

-
164

-
-

ks
nopr

1000
249750

63.73
0.02

4.47
0.60

15250038
0.02

0.31
0

0
-

-
-

-
-

2881
-

-
ni

1000
249750

1.54
0.01

0.77
0.01

1429950
0.01

0.30
0

156
-

-
-

-
2

-
-

-
ni

nopr
1000

249750
1.24

0.02
0.47

0.01
1451158

0.01
-

-
-

-
-

-
-

2
-

-
-

ho
1000

374625
3.67

0.01
2.36

0.25
7069828

0.03
0.44

0
254

10
675.26

0
733

-
-

-
-

ho
nopr

1000
374625

2.55
0.04

1.61
0.21

7192414
0.06

-
-

-
17

563.66
0

981
-

-
-

-
ho

noprxs
1000

374625
3.30

0.04
1.53

0.19
10473923

0.06
-

-
-

361
324.46

637
-

-
-

-
-

ho
noxs

1000
374625

3.79
0.06

2.26
0.23

7593893
0.06

0.44
0

880
90

481.60
27

-
-

-
-

-
hybrid

1000
263567

3.62
0.01

-
-

-
-

-
-

0
-

-
-

-
-

-
-

-
k

1000
374625

6.04
0.01

2.13
0.02

4720956
0.00

0.48
0

849
-

-
-

-
-

-
-

-
ks

1000
374625

79.74
0.03

6.59
0.61

18162375
0.03

0.44
0

18043
-

-
-

-
-

164
-

-
ks

nopr
1000

374625
83.73

0.02
5.70

0.45
19909078

0.01
0.44

0
0

-
-

-
-

-
2879

-
-

ni
1000

374625
2.29

0.02
1.18

0.01
2001539

0.00
0.44

0
190

-
-

-
-

2
-

-
-

ni
nopr

1000
374625

1.85
0.02

0.74
0.01

2039467
0.00

-
-

-
-

-
-

-
2

-
-

-
ho

1000
499500

4.71
0.05

3.27
0.24

8659804
0.09

0.54
0

212
8

713.76
11

765
-

-
-

-
ho

nopr
1000

499500
3.19

0.05
2.10

0.19
8740015

0.09
-

-
-

16
578.23

11
970

-
-

-
-

ho
noprxs

1000
499500

4.10
0.05

2.04
0.17

12485081
0.06

-
-

-
408

314.83
590

-
-

-
-

-
ho

noxs
1000

499500
4.81

0.06
3.09

0.21
9246901

0.07
0.55

0
828

91
637.61

79
-

-
-

-
-

hybrid
1000

315794
4.35

0.01
-

-
-

-
-

-
0

-
-

-
-

-
-

-
-

k
1000

499500
7.69

0.01
2.89

0.01
5694846

0.00
0.58

0
861

-
-

-
-

-
-

-
-

ks
1000

499500
95.12

0.04
7.63

0.96
21529012

0.04
0.55

0
17997

-
-

-
-

-
164

-
-

ks
nopr

1000
499500

100.02
0.03

8.31
0.86

23647290
0.03

0.55
0

0
-

-
-

-
-

3081
-

-
ni

1000
499500

2.91
0.01

1.55
0.01

2451567
0.01

0.54
0

195
-

-
-

-
2

-
-

-
ni

nopr
1000

499500
2.37

0.02
1.01

0.01
2497759

0.00
-

-
-

-
-

-
-

2
-

-
-

Table
A

.13:N
O

I4
d

ata



105

nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect
avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time

ho 1000 249750 2.10 0.02 0.16 0.62 4359927 0.01 0.31 0 754 4 997.52 0 238 - - - -
ho nopr 1000 249750 2.53 0.09 0.12 0.61 7605133 0.09 - - - 16 933.95 243 738 - - - -
ho noprxs 1000 249750 3.24 0.13 0.11 0.60 11050154 0.14 - - - 100 566.37 898 - - - - -
ho noxs 1000 249750 2.10 0.02 0.16 0.61 4412605 0.02 0.31 0 964 7 854.90 26 - - - - -
hybrid 1000 196545 3.53 0.03 - - - - - - 5 - - - - - - - -
k 1000 249750 4.41 0.01 0.25 0.56 3786958 0.00 0.34 0 1280 - - - - - - - -
ks 1000 249750 121.28 0.01 0.15 0.59 28411005 0.01 0.31 0 25977 - - - - - 318 - -
ks nopr 1000 249750 114.81 0.01 0.15 0.60 26625662 0.01 0.31 0 0 - - - - - 26448 - -
ni 1000 249750 1.88 0.02 0.15 0.60 1822543 0.01 0.30 0 787 - - - - 2 - - -
ni nopr 1000 249750 2.16 0.04 0.16 0.60 2941612 0.05 - - - - - - - 7 - - -
ho 1000 249750 1.00 0.08 0.23 0.47 890688 0.25 0.63 998 0 1 2.00 0 0 - - - -
ho nopr 1000 249750 1.77 0.35 0.17 0.47 4705713 0.42 - - - 4 617.76 1 993 - - - -
ho noprxs 1000 249750 3.75 0.23 0.17 0.50 12853261 0.23 - - - 513 97.95 485 - - - - -
ho noxs 1000 249750 0.99 0.09 0.23 0.46 890688 0.25 0.62 998 0 1 2.00 0 - - - - -
hybrid 1000 196545 2.46 0.02 - - - - - - 0 - - - - - - - -
k 1000 249750 1.67 0.05 0.35 0.46 890687 0.25 1.13 998 0 - - - - - - - -
ks 1000 249750 0.93 0.09 0.21 0.48 444391 0.51 0.58 998 - - - - - - 0 - -
ks nopr 1000 249750 0.94 0.09 0.22 0.48 444391 0.51 0.59 998 - - - - - - 0 - -
ni 1000 249750 0.95 0.08 0.22 0.49 446295 0.00 0.60 998 0 - - - - 0 - - -
ni nopr 1000 249750 1.07 0.02 0.22 0.48 1050530 0.01 - - - - - - - 2 - - -
ho 1000 249750 0.95 0.01 0.13 0.34 748225 0.01 0.58 998 0 1 2.00 0 0 - - - -
ho nopr 1000 249750 1.17 0.30 0.10 0.35 2841593 0.39 - - - 3 708.27 0 995 - - - -
ho noprxs 1000 249750 3.15 0.25 0.10 0.35 10623608 0.25 - - - 535 153.44 463 - - - - -
ho noxs 1000 249750 0.94 0.01 0.14 0.36 748225 0.01 0.57 998 0 1 2.00 0 - - - - -
hybrid 1000 196545 2.43 0.02 - - - - - - 0 - - - - - - - -
k 1000 249750 1.62 0.01 0.21 0.34 748224 0.01 1.07 998 0 - - - - - - - -
ks 1000 249750 0.88 0.01 0.13 0.33 301929 0.02 0.54 998 - - - - - - 0 - -
ks nopr 1000 249750 0.89 0.02 0.13 0.34 301929 0.02 0.54 998 - - - - - - 0 - -
ni 1000 249750 0.92 0.03 0.13 0.33 446295 0.00 0.55 998 0 - - - - 0 - - -
ni nopr 1000 249750 1.06 0.01 0.13 0.33 1045074 0.00 - - - - - - - 2 - - -
ho 1000 249750 0.96 0.00 0.27 0.22 758572 0.00 0.59 998 0 1 2.00 0 0 - - - -
ho nopr 1000 249750 0.82 0.05 0.20 0.24 1725115 0.08 - - - 2 901.33 0 995 - - - -
ho noprxs 1000 249750 2.70 0.12 0.20 0.21 9060836 0.14 - - - 558 172.09 440 - - - - -
ho noxs 1000 249750 0.94 0.01 0.27 0.22 758572 0.00 0.58 998 0 1 2.00 0 - - - - -
hybrid 1000 196545 2.48 0.01 - - - - - - 0 - - - - - - - -
k 1000 249750 1.62 0.00 0.41 0.20 758571 0.00 1.08 998 0 - - - - - - - -
ks 1000 249750 0.89 0.01 0.26 0.22 312275 0.01 0.54 998 - - - - - - 0 - -
ks nopr 1000 249750 0.89 0.01 0.26 0.21 312275 0.01 0.54 998 - - - - - - 0 - -
ni 1000 249750 0.91 0.01 0.26 0.22 446295 0.00 0.56 998 0 - - - - 0 - - -
ni nopr 1000 249750 1.06 0.01 0.26 0.22 1045504 0.00 - - - - - - - 1 - - -
ho 1000 249750 1.01 0.01 0.17 0.46 872233 0.00 0.64 998 0 1 2.00 0 0 - - - -
ho nopr 1000 249750 0.90 0.06 0.13 0.56 1902627 0.05 - - - 2 968.32 0 995 - - - -
ho noprxs 1000 249750 4.43 0.54 0.12 0.46 15203098 0.54 - - - 615 90.04 383 - - - - -
ho noxs 1000 249750 0.99 0.02 0.16 0.45 872233 0.00 0.63 998 0 1 2.00 0 - - - - -
hybrid 1000 196545 2.61 0.01 - - - - - - 6 - - - - - - - -
k 1000 249750 1.66 0.01 0.26 0.43 872232 0.00 1.11 998 0 - - - - - - - -
ks 1000 249750 0.94 0.01 0.16 0.47 425936 0.01 0.58 998 - - - - - - 0 - -
ks nopr 1000 249750 0.93 0.02 0.16 0.46 425936 0.01 0.59 998 - - - - - - 0 - -
ni 1000 249750 0.96 0.01 0.16 0.45 446295 0.00 0.60 998 0 - - - - 0 - - -
ni nopr 1000 249750 1.04 0.00 0.16 0.45 1055629 0.00 - - - - - - - 1 - - -
ho 1000 249750 1.09 0.01 0.19 0.50 1131721 0.01 0.72 998 0 1 2.00 0 0 - - - -
ho nopr 1000 249750 1.10 0.07 0.14 0.50 2387355 0.05 - - - 3 920.46 11 984 - - - -
ho noprxs 1000 249750 4.32 0.08 0.13 0.49 14553432 0.07 - - - 606 85.72 392 - - - - -
ho noxs 1000 249750 1.06 0.01 0.18 0.51 1131721 0.01 0.70 998 0 1 2.00 0 - - - - -
hybrid 1000 196545 2.76 0.01 - - - - - - 74 - - - - - - - -
k 1000 249750 1.73 0.01 0.29 0.48 1131720 0.01 1.19 998 0 - - - - - - - -
ks 1000 249750 1.01 0.01 0.17 0.51 685425 0.02 0.67 998 - - - - - - 0 - -
ks nopr 1000 249750 1.02 0.01 0.17 0.50 685425 0.02 0.67 998 - - - - - - 0 - -
ni 1000 249750 1.03 0.01 0.17 0.51 446295 0.00 0.68 998 0 - - - - 0 - - -
ni nopr 1000 249750 1.09 0.03 0.18 0.47 1157227 0.02 - - - - - - - 1 - - -

Table A.14: NOI5 data



10
6

A
PP

EN
D

IX
A

.
D

A
TA

TA
BL

ES

nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect
avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time

ho 1000 249750 1.06 0.01 0.22 0.17 1128305 0.01 0.69 998 0 1 2.00 0 0 - - - -
ho nopr 1000 249750 1.22 0.07 0.16 0.13 2839732 0.04 - - - 4 965.36 38 956 - - - -
ho noprxs 1000 249750 5.29 0.16 0.16 0.15 18173266 0.18 - - - 546 83.87 452 - - - - -
ho noxs 1000 249750 1.04 0.00 0.22 0.14 1128305 0.01 0.68 998 0 1 2.00 0 - - - - -
hybrid 1000 196545 2.96 0.03 - - - - - - 0 - - - - - - - -
k 1000 249750 1.72 0.01 0.34 0.13 1128304 0.01 1.17 998 0 - - - - - - - -
ks 1000 249750 0.99 0.01 0.21 0.14 682009 0.01 0.64 998 - - - - - - 0 - -
ks nopr 1000 249750 1.00 0.02 0.21 0.15 682009 0.01 0.65 998 - - - - - - 0 - -
ni 1000 249750 1.01 0.00 0.21 0.13 446295 0.00 0.65 998 0 - - - - 0 - - -
ni nopr 1000 249750 1.16 0.03 0.21 0.16 1305785 0.02 - - - - - - - 2 - - -
ho 1000 249750 1.08 0.02 0.26 0.17 1183977 0.01 0.71 998 0 1 2.00 0 0 - - - -
ho nopr 1000 249750 1.52 0.03 0.18 0.13 3796370 0.04 - - - 6 965.51 50 942 - - - -
ho noprxs 1000 249750 4.23 0.24 0.19 0.18 14478060 0.23 - - - 495 113.90 503 - - - - -
ho noxs 1000 249750 1.05 0.03 0.26 0.16 1183977 0.01 0.69 998 0 1 2.00 0 - - - - -
hybrid 1000 196545 2.96 0.01 - - - - - - 5 - - - - - - - -
k 1000 249750 1.73 0.01 0.40 0.15 1183976 0.01 1.18 998 0 - - - - - - - -
ks 1000 249750 1.00 0.01 0.24 0.15 737680 0.01 0.65 998 - - - - - - 0 - -
ks nopr 1000 249750 1.00 0.02 0.24 0.16 737680 0.01 0.65 998 - - - - - - 0 - -
ni 1000 249750 1.02 0.01 0.25 0.15 446295 0.00 0.66 998 0 - - - - 0 - - -
ni nopr 1000 249750 1.26 0.03 0.25 0.17 1395155 0.01 - - - - - - - 2 - - -
ho 1000 249750 1.07 0.01 0.19 0.59 1215232 0.00 0.70 998 0 1 2.00 0 0 - - - -
ho nopr 1000 249750 1.69 0.13 0.14 0.56 4437649 0.16 - - - 6 909.58 34 957 - - - -
ho noprxs 1000 249750 4.72 0.11 0.14 0.60 16244958 0.12 - - - 442 115.53 556 - - - - -
ho noxs 1000 249750 1.06 0.00 0.19 0.58 1215232 0.00 0.69 998 0 1 2.00 0 - - - - -
hybrid 1000 196545 3.05 0.03 - - - - - - 10 - - - - - - - -
k 1000 249750 1.73 0.01 0.29 0.57 1215231 0.00 1.19 998 0 - - - - - - - -
ks 1000 249750 1.00 0.01 0.18 0.58 768936 0.01 0.65 998 - - - - - - 0 - -
ks nopr 1000 249750 1.00 0.01 0.18 0.58 768936 0.01 0.66 998 - - - - - - 0 - -
ni 1000 249750 1.01 0.01 0.18 0.59 446295 0.00 0.66 998 0 - - - - 0 - - -
ni nopr 1000 249750 1.38 0.02 0.19 0.57 1566652 0.07 - - - - - - - 3 - - -
ho 1000 249750 2.59 0.10 1.66 0.17 5197277 0.12 0.30 0 177 11 681.56 0 810 - - - -
ho nopr 1000 249750 1.81 0.02 1.15 0.13 5145474 0.03 - - - 17 530.75 0 982 - - - -
ho noprxs 1000 249750 2.53 0.04 1.10 0.07 8270216 0.04 - - - 315 322.80 684 - - - - -
ho noxs 1000 249750 2.92 0.04 1.56 0.11 6257279 0.02 0.31 0 752 128 403.56 117 - - - - -
hybrid 1000 196545 2.68 0.01 - - - - - - 132 - - - - - - - -
k 1000 249750 4.21 0.01 1.38 0.02 3485807 0.00 0.34 0 813 - - - - - - - -
ks 1000 249750 59.45 0.03 4.41 0.71 13681153 0.03 0.31 0 17980 - - - - - 164 - -
ks nopr 1000 249750 63.78 0.02 4.47 0.60 15250038 0.02 0.31 0 0 - - - - - 2881 - -
ni 1000 249750 1.54 0.01 0.77 0.01 1429950 0.01 0.30 0 156 - - - - 2 - - -
ni nopr 1000 249750 1.25 0.01 0.47 0.02 1451158 0.01 - - - - - - - 2 - - -
ho 1000 249750 2.50 0.16 1.49 0.52 4960444 0.19 0.31 0 129 24 374.13 2 843 - - - -
ho nopr 1000 249750 1.95 0.06 1.10 0.50 5842424 0.06 - - - 25 391.76 7 966 - - - -
ho noprxs 1000 249750 2.97 0.04 1.20 0.58 10187248 0.04 - - - 220 230.46 778 - - - - -
ho noxs 1000 249750 2.78 0.16 1.48 0.53 6011778 0.19 0.31 0 678 96 274.36 223 - - - - -
hybrid 1000 196545 2.63 0.03 - - - - - - 18 - - - - - - - -
k 1000 249750 19.25 0.12 1.79 0.53 13475576 0.09 0.34 0 478 - - - - - - 2.27 12.71
ks 1000 249750 74.78 0.07 3.73 0.89 18332202 0.07 0.31 0 22360 - - - - - 196 - -
ks nopr 1000 249750 83.11 0.04 10.16 0.96 19218594 0.04 0.31 0 0 - - - - - 7266 - -
ni 1000 249750 1.63 0.04 0.97 0.52 1440661 0.03 0.31 0 302 - - - - 2 - - -
ni nopr 1000 249750 1.31 0.04 0.71 0.54 1512715 0.05 - - - - - - - 4 - - -
ho 1000 249750 2.89 0.03 0.25 0.36 6036279 0.04 0.31 0 90 29 265.54 6 872 - - - -
ho nopr 1000 249750 2.36 0.03 0.19 0.38 7179069 0.05 - - - 33 275.50 11 954 - - - -
ho noprxs 1000 249750 3.17 0.03 0.18 0.40 11256572 0.03 - - - 249 147.41 749 - - - - -
ho noxs 1000 249750 3.58 0.08 0.25 0.36 8264702 0.08 0.31 0 563 152 181.82 282 - - - - -
hybrid 1000 196545 2.59 0.02 - - - - - - 0 - - - - - - - -
k 1000 249750 17.29 0.61 0.38 0.34 11854675 0.55 0.34 0 542 - - - - - - 1.29 10.90
ks 1000 249750 69.33 0.03 0.24 0.36 17094353 0.04 0.31 0 23390 - - - - - 204 - -
ks nopr 1000 249750 80.88 0.03 0.24 0.38 18617982 0.03 0.31 0 0 - - - - - 6554 - -
ni 1000 249750 1.55 0.02 0.25 0.37 1374397 0.01 0.31 0 198 - - - - 2 - - -
ni nopr 1000 249750 1.26 0.01 0.25 0.35 1406916 0.02 - - - - - - - 5 - - -

Table A.15: NOI5 data (cont)



107
nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect

avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time
ho 1000 249750 3.18 0.06 0.18 0.45 6718974 0.07 0.31 0 104 25 292.36 2 867 - - - -
ho nopr 1000 249750 2.62 0.07 0.13 0.46 8036162 0.09 - - - 32 262.58 7 959 - - - -
ho noprxs 1000 249750 3.60 0.02 0.13 0.48 12805103 0.02 - - - 279 134.78 719 - - - - -
ho noxs 1000 249750 4.03 0.07 0.18 0.45 9413915 0.08 0.31 0 587 172 135.96 238 - - - - -
hybrid 1000 196545 2.56 0.02 - - - - - - 9 - - - - - - - -
k 1000 249750 4.45 0.03 0.28 0.43 3832165 0.08 0.34 0 765 - - - - - - - -
ks 1000 249750 66.06 0.04 0.17 0.47 15842343 0.06 0.31 0 22132 - - - - - 204 - -
ks nopr 1000 249750 76.88 0.06 0.17 0.46 17686963 0.05 0.31 0 0 - - - - - 5669 - -
ni 1000 249750 1.53 0.02 0.17 0.46 1328932 0.03 0.31 0 115 - - - - 2 - - -
ni nopr 1000 249750 1.23 0.02 0.17 0.44 1342940 0.04 - - - - - - - 5 - - -
ho 1000 249750 3.04 0.14 0.22 0.43 6114897 0.21 0.35 47 43 11 330.10 1 895 - - - -
ho nopr 1000 249750 2.20 0.28 0.16 0.45 6511378 0.31 - - - 19 294.41 0 978 - - - -
ho noprxs 1000 249750 3.40 0.11 0.15 0.45 11981642 0.11 - - - 346 95.20 652 - - - - -
ho noxs 1000 249750 3.62 0.08 0.21 0.42 7819953 0.10 0.35 47 659 158 116.97 133 - - - - -
hybrid 1000 196545 2.43 0.02 - - - - - - 6 - - - - - - - -
k 1000 249750 4.14 0.03 0.34 0.40 3509270 0.11 0.62 58 463 - - - - - - - -
ks 1000 249750 51.58 0.10 0.21 0.44 11885487 0.08 0.52 58 14907 - - - - - 167 - -
ks nopr 1000 249750 54.61 0.14 0.21 0.43 13243441 0.10 0.52 58 0 - - - - - 2535 - -
ni 1000 249750 1.44 0.01 0.22 0.46 1112212 0.05 0.35 47 8 - - - - 2 - - -
ni nopr 1000 249750 1.14 0.02 0.21 0.43 1184449 0.03 - - - - - - - 2 - - -
ho 1000 249750 2.49 0.44 0.17 0.79 4658657 0.61 0.41 235 24 4 500.42 0 733 - - - -
ho nopr 1000 249750 2.03 0.32 0.12 0.81 5656390 0.37 - - - 6 469.87 1 991 - - - -
ho noprxs 1000 249750 3.63 0.19 0.12 0.81 12421927 0.19 - - - 428 102.21 570 - - - - -
ho noxs 1000 249750 3.19 0.45 0.17 0.80 6742579 0.56 0.41 235 641 62 224.32 58 - - - - -
hybrid 1000 196545 2.43 0.02 - - - - - - 3 - - - - - - - -
k 1000 249750 3.52 0.27 0.26 0.76 2602874 0.36 0.56 235 147 - - - - - - - -
ks 1000 249750 37.81 0.50 0.16 0.80 8651244 0.49 0.39 235 6207 - - - - - 127 - -
ks nopr 1000 249750 35.49 0.51 0.16 0.80 8998740 0.49 0.40 235 0 - - - - - 998 - -
ni 1000 249750 1.29 0.16 0.17 0.80 908743 0.26 0.40 235 3 - - - - 1 - - -
ni nopr 1000 249750 1.08 0.01 0.16 0.77 1072016 0.02 - - - - - - - 2 - - -
ho 1000 249750 2.10 0.29 0.24 0.49 3583047 0.44 0.43 276 7 4 436.91 0 710 - - - -
ho nopr 1000 249750 2.14 0.15 0.17 0.49 6119261 0.19 - - - 6 587.72 0 992 - - - -
ho noprxs 1000 249750 4.08 0.19 0.18 0.49 14013247 0.18 - - - 490 78.77 508 - - - - -
ho noxs 1000 249750 3.32 0.41 0.24 0.47 6987824 0.50 0.43 276 638 39 227.87 44 - - - - -
hybrid 1000 196545 2.45 0.01 - - - - - - 1 - - - - - - - -
k 1000 249750 3.58 0.28 0.36 0.48 3157705 0.38 1.13 335 84 - - - - - - - -
ks 1000 249750 28.49 0.53 0.22 0.48 7578667 0.51 0.85 335 4209 - - - - - 124 - -
ks nopr 1000 249750 25.99 0.53 0.23 0.48 7711374 0.51 0.85 335 0 - - - - - 742 - -
ni 1000 249750 1.26 0.14 0.23 0.49 860232 0.24 0.42 276 3 - - - - 1 - - -
ni nopr 1000 249750 1.08 0.01 0.23 0.47 1057393 0.01 - - - - - - - 2 - - -
ho 1000 249750 1.35 0.55 0.14 0.48 1760189 1.07 0.56 810 11 1 78.56 0 175 - - - -
ho nopr 1000 249750 2.29 0.48 0.10 0.50 6423214 0.55 - - - 5 555.73 1 991 - - - -
ho noprxs 1000 249750 4.24 0.06 0.09 0.54 14737105 0.07 - - - 508 55.50 490 - - - - -
ho noxs 1000 249750 1.70 0.88 0.14 0.49 2872487 1.43 0.55 810 127 31 22.88 30 - - - - -
hybrid 1000 196545 2.45 0.01 - - - - - - 0 - - - - - - - -
k 1000 249750 2.16 0.47 0.22 0.49 1386311 0.81 1.05 816 33 - - - - - - - -
ks 1000 249750 9.84 1.82 0.13 0.50 2441019 1.69 0.59 816 1806 - - - - - 31 - -
ks nopr 1000 249750 9.46 1.81 0.13 0.51 2543921 1.70 0.59 816 0 - - - - - 336 - -
ni 1000 249750 1.05 0.18 0.14 0.51 561173 0.41 0.54 810 1 - - - - 0 - - -
ni nopr 1000 249750 1.08 0.01 0.13 0.48 1054870 0.01 - - - - - - - 2 - - -

Table A.16: NOI5 data (cont)



108 APPENDIX A. DATA TABLES

nod
es

arcs
totaltim

e
d

iscovery
tim

e
ed

ge
scans

preprocess
initial

internal

s-t

avg.
1

nod
e

excess
phases

leaves
packing

respect
avg

d
ev

%
avg

d
ev

%
avg

d
ev

%
tim

e
PR

PR
cuts

size
layers

d
etect

tim
e

tim
e

ho
1000

249750
2.26

0.09
1.80

0.15
4339266

0.09
0.31

0
25

1
999.53

0
970

-
-

-
-

ho
nopr

1000
249750

1.34
0.08

1.20
0.09

3614985
0.08

-
-

-
5

682.73
0

994
-

-
-

-
ho

noprxs
1000

249750
1.84

0.05
1.00

0.08
5714081

0.06
-

-
-

423
320.91

575
-

-
-

-
-

ho
noxs

1000
249750

2.09
0.08

1.50
0.11

4247732
0.10

0.31
0

992
3

638.70
2

-
-

-
-

-
hybrid

1000
196545

2.37
0.01

-
-

-
-

-
-

393
-

-
-

-
-

-
-

-
k

1000
249750

4.07
0.01

1.39
0.02

3388096
0.00

0.34
0

250
-

-
-

-
-

-
-

-
ks

1000
249750

44.74
0.01

2.70
0.16

11215213
0.01

0.30
0

276
-

-
-

-
-

136
-

-
ks

nopr
1000

249750
38.80

0.02
2.42

0.21
11143615

0.01
0.31

0
0

-
-

-
-

-
209

-
-

ni
1000

249750
1.44

0.02
0.78

0.01
1262330

0.01
0.31

0
0

-
-

-
-

2
-

-
-

ni
nopr

1000
249750

1.12
0.01

0.47
0.02

1262330
0.01

-
-

-
-

-
-

-
2

-
-

-
ho

1000
249750

2.16
0.07

1.62
0.12

4192595
0.08

0.31
0

117
2

999.27
0

879
-

-
-

-
ho

nopr
1000

249750
1.47

0.02
1.13

0.06
4034558

0.06
-

-
-

11
567.39

0
987

-
-

-
-

ho
noprxs

1000
249750

2.13
0.03

1.07
0.03

6815571
0.04

-
-

-
352

345.03
646

-
-

-
-

-
ho

noxs
1000

249750
2.12

0.07
1.54

0.10
4301366

0.10
0.31

0
992

3
667.56

3
-

-
-

-
-

hybrid
1000

196545
2.66

0.02
-

-
-

-
-

-
11

-
-

-
-

-
-

-
-

k
1000

249750
4.13

0.01
1.40

0.02
3394484

0.00
0.34

0
476

-
-

-
-

-
-

-
-

ks
1000

249750
48.27

0.02
3.44

0.42
11634480

0.02
0.30

0
4189

-
-

-
-

-
163

-
-

ks
nopr

1000
249750

42.59
0.02

3.10
0.29

11639741
0.01

0.30
0

0
-

-
-

-
-

649
-

-
ni

1000
249750

1.47
0.02

0.77
0.01

1318399
0.01

0.31
0

15
-

-
-

-
2

-
-

-
ni

nopr
1000

249750
1.17

0.02
0.47

0.02
1318646

0.01
-

-
-

-
-

-
-

2
-

-
-

ho
1000

249750
2.59

0.09
1.66

0.18
5197277

0.12
0.31

0
177

11
681.56

0
810

-
-

-
-

ho
nopr

1000
249750

1.82
0.01

1.16
0.12

5145474
0.03

-
-

-
17

530.75
0

982
-

-
-

-
ho

noprxs
1000

249750
2.52

0.03
1.10

0.07
8270216

0.04
-

-
-

315
322.80

684
-

-
-

-
-

ho
noxs

1000
249750

2.91
0.04

1.56
0.11

6257279
0.02

0.31
0

752
128

403.56
117

-
-

-
-

-
hybrid

1000
196545

2.69
0.01

-
-

-
-

-
-

132
-

-
-

-
-

-
-

-
k

1000
249750

4.23
0.01

1.40
0.02

3485807
0.00

0.34
0

813
-

-
-

-
-

-
-

-
ks

1000
249750

59.34
0.03

4.39
0.71

13681153
0.03

0.31
0

17980
-

-
-

-
-

164
-

-
ks

nopr
1000

249750
63.72

0.02
4.46

0.60
15250038

0.02
0.31

0
0

-
-

-
-

-
2881

-
-

ni
1000

249750
1.56

0.03
0.79

0.02
1429950

0.01
0.31

0
156

-
-

-
-

2
-

-
-

ni
nopr

1000
249750

1.24
0.01

0.47
0.01

1451158
0.01

-
-

-
-

-
-

-
2

-
-

-
ho

1000
249750

2.88
0.07

0.19
0.53

6064750
0.11

0.31
0

258
13

633.26
40

686
-

-
-

-
ho

nopr
1000

249750
2.29

0.11
0.14

0.56
6996101

0.16
-

-
-

20
576.13

88
890

-
-

-
-

ho
noprxs

1000
249750

3.28
0.05

0.14
0.54

11617066
0.06

-
-

-
155

297.74
844

-
-

-
-

-
ho

noxs
1000

249750
3.11

0.07
0.19

0.52
7010881

0.09
0.31

0
734

54
416.23

208
-

-
-

-
-

hybrid
1000

196545
3.07

0.06
-

-
-

-
-

-
59

-
-

-
-

-
-

-
-

k
1000

249750
4.44

0.01
0.29

0.50
3806190

0.02
0.34

0
1172

-
-

-
-

-
-

-
-

ks
1000

249750
113.91

0.02
0.18

0.54
26299972

0.03
0.31

0
22657

-
-

-
-

-
317

-
-

ks
nopr

1000
249750

104.73
0.03

0.18
0.53

24202592
0.03

0.31
0

0
-

-
-

-
-

17932
-

-
ni

1000
249750

1.81
0.03

0.18
0.55

1700141
0.03

0.31
0

653
-

-
-

-
2

-
-

-
ni

nopr
1000

249750
1.72

0.08
0.18

0.51
2212316

0.11
-

-
-

-
-

-
-

5
-

-
-

ho
1000

249750
2.55

0.05
0.18

0.48
5137483

0.04
0.31

0
474

5
818.03

39
480

-
-

-
-

ho
nopr

1000
249750

2.21
0.08

0.13
0.45

6576748
0.08

-
-

-
17

617.23
78

903
-

-
-

-
ho

noprxs
1000

249750
3.28

0.06
0.13

0.46
11351682

0.06
-

-
-

123
338.70

876
-

-
-

-
-

ho
noxs

1000
249750

2.99
0.17

0.18
0.46

6629090
0.18

0.31
0

786
36

535.06
175

-
-

-
-

-
hybrid

1000
196545

3.11
0.06

-
-

-
-

-
-

76
-

-
-

-
-

-
-

-
k

1000
249750

4.43
0.01

0.28
0.44

3778360
0.01

0.34
0

1184
-

-
-

-
-

-
-

-
ks

1000
249750

114.18
0.03

0.17
0.46

26504913
0.03

0.31
0

23041
-

-
-

-
-

317
-

-
ks

nopr
1000

249750
105.56

0.03
0.17

0.45
24422932

0.03
0.31

0
0

-
-

-
-

-
18871

-
-

ni
1000

249750
1.82

0.04
0.17

0.45
1715849

0.03
0.31

0
670

-
-

-
-

2
-

-
-

ni
nopr

1000
249750

1.75
0.08

0.17
0.45

2282932
0.10

-
-

-
-

-
-

-
5

-
-

-
ho

1000
249750

2.27
0.08

0.20
0.61

4521039
0.07

0.31
0

637
5

971.33
0

355
-

-
-

-
ho

nopr
1000

249750
2.10

0.06
0.14

0.61
6069733

0.05
-

-
-

18
685.29

68
912

-
-

-
-

ho
noprxs

1000
249750

3.17
0.06

0.14
0.65

10867025
0.08

-
-

-
136

380.92
862

-
-

-
-

-
ho

noxs
1000

249750
2.43

0.24
0.19

0.62
5163926

0.29
0.31

0
847

18
874.05

132
-

-
-

-
-

hybrid
1000

196545
2.93

0.03
-

-
-

-
-

-
3

-
-

-
-

-
-

-
-

k
1000

249750
4.38

0.01
0.29

0.59
3657228

0.01
0.34

0
1129

-
-

-
-

-
-

-
-

ks
1000

249750
109.85

0.03
0.18

0.61
25502234

0.03
0.31

0
21547

-
-

-
-

-
317

-
-

ks
nopr

1000
249750

100.18
0.03

0.18
0.61

23377910
0.03

0.31
0

0
-

-
-

-
-

15414
-

-
ni

1000
249750

1.76
0.02

0.18
0.61

1649211
0.02

0.31
0

593
-

-
-

-
2

-
-

-
ni

nopr
1000

249750
1.63

0.04
0.19

0.59
2009053

0.06
-

-
-

-
-

-
-

4
-

-
-

Table
A

.17:N
O

I6
d

ata



109

nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect
avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time

ho 1000 249750 2.15 0.02 0.17 0.59 4376733 0.02 0.30 0 648 4 996.65 0 344 - - - -
ho nopr 1000 249750 1.99 0.04 0.12 0.63 5768994 0.05 - - - 15 839.42 61 922 - - - -
ho noprxs 1000 249750 3.25 0.05 0.12 0.63 11248585 0.06 - - - 116 420.56 883 - - - - -
ho noxs 1000 249750 2.41 0.25 0.16 0.61 5201591 0.31 0.31 0 906 10 877.08 81 - - - - -
hybrid 1000 196545 3.04 0.03 - - - - - - 3 - - - - - - - -
k 1000 249750 4.38 0.01 0.26 0.56 3685733 0.01 0.34 0 1158 - - - - - - - -
ks 1000 249750 112.25 0.02 0.15 0.61 26083341 0.02 0.30 0 22293 - - - - - 318 - -
ks nopr 1000 249750 102.33 0.03 0.16 0.61 23896519 0.02 0.31 0 0 - - - - - 16968 - -
ni 1000 249750 1.78 0.02 0.16 0.61 1688875 0.02 0.31 0 639 - - - - 2 - - -
ni nopr 1000 249750 1.72 0.05 0.16 0.61 2144898 0.06 - - - - - - - 5 - - -
ho 1000 249750 2.13 0.04 0.24 0.40 4484626 0.06 0.30 0 673 5 997.71 0 320 - - - -
ho nopr 1000 249750 2.24 0.05 0.17 0.41 6684792 0.07 - - - 13 925.08 118 867 - - - -
ho noprxs 1000 249750 3.28 0.02 0.17 0.40 11220557 0.04 - - - 111 531.62 887 - - - - -
ho noxs 1000 249750 2.20 0.11 0.24 0.38 4753967 0.12 0.31 0 889 6 842.02 102 - - - - -
hybrid 1000 196545 3.51 0.08 - - - - - - 5 - - - - - - - -
k 1000 249750 4.43 0.01 0.37 0.37 3748140 0.00 0.34 0 1239 - - - - - - - -
ks 1000 249750 115.21 0.02 0.23 0.40 26840123 0.02 0.31 0 23305 - - - - - 318 - -
ks nopr 1000 249750 105.84 0.03 0.23 0.38 24667815 0.03 0.31 0 0 - - - - - 19321 - -
ni 1000 249750 1.91 0.02 0.24 0.38 1830892 0.02 0.31 0 798 - - - - 2 - - -
ni nopr 1000 249750 2.44 0.16 0.28 0.49 2896334 0.14 - - - - - - - 6 - - -
ho 1000 249750 2.10 0.01 0.21 0.27 4330353 0.01 0.31 0 753 4 948.17 0 240 - - - -
ho nopr 1000 249750 2.38 0.04 0.14 0.26 7337585 0.04 - - - 19 919.38 256 724 - - - -
ho noprxs 1000 249750 3.22 0.09 0.14 0.29 11153276 0.09 - - - 108 596.73 890 - - - - -
ho noxs 1000 249750 2.07 0.01 0.20 0.26 4352467 0.01 0.31 0 943 6 837.24 49 - - - - -
hybrid 1000 196545 3.45 0.05 - - - - - - 7 - - - - - - - -
k 1000 249750 4.39 0.01 0.32 0.25 3774942 0.01 0.34 0 1267 - - - - - - - -
ks 1000 249750 120.74 0.01 0.19 0.26 28263455 0.01 0.31 0 25701 - - - - - 318 - -
ks nopr 1000 249750 113.70 0.02 0.19 0.27 26368168 0.02 0.30 0 0 - - - - - 25369 - -
ni 1000 249750 1.88 0.02 0.20 0.27 1802856 0.02 0.30 0 768 - - - - 2 - - -
ni nopr 1000 249750 2.06 0.08 0.19 0.26 2826420 0.09 - - - - - - - 6 - - -

Table A.18: NOI6 data (cont)



110 APPENDIX A. DATA TABLES

nod
es

arcs
totaltim

e
d

iscovery
tim

e
ed

ge
scans

preprocess
initial

internal

s-t

avg.
1

nod
e

excess
phases

leaves
packing

respect
avg

d
ev

%
avg

d
ev

%
avg

d
ev

%
tim

e
PR

PR
cuts

size
layers

d
etect

tim
e

tim
e

ho
1000

4000
0.10

0.15
0.00

0.00
301923

0.15
0.01

0
566

13
848.65

69
349

-
-

-
-

ho
nopr

1000
4000

0.10
0.23

0.00
0.00

368658
0.24

-
-

-
24

614.17
383

591
-

-
-

-
ho

noprxs
1000

4000
0.11

0.14
0.00

0.00
438589

0.14
-

-
-

108
214.51

890
-

-
-

-
-

ho
noxs

1000
4000

0.12
0.08

0.00
0.00

436247
0.10

0.01
0

679
37

537.12
281

-
-

-
-

-
hybrid

1000
3990

3.75
0.02

-
-

-
-

-
-

14
-

-
-

-
-

-
-

-
k

1000
4000

0.15
0.17

0.00
0.00

127508
0.14

0.01
0

143
-

-
-

-
-

-
-

-
ks

1000
4000

3.55
0.02

0.00
0.00

1264952
0.01

0.01
0

35495
-

-
-

-
-

395
-

-
ks

nopr
1000

4000
6.93

0.02
0.00

0.00
1721490

0.01
0.01

0
0

-
-

-
-

-
77910

-
-

ni
1000

4000
3.40

0.02
0.00

0.00
4513288

0.02
0.00

0
476

-
-

-
-

297
-

-
-

ni
nopr

1000
4000

2.80
0.04

0.00
0.00

4582849
0.02

-
-

-
-

-
-

-
324

-
-

-
ho

2000
64000

1.80
0.06

0.00
0.00

5168993
0.06

0.09
0

1577
14

1534.99
295

111
-

-
-

-
ho

nopr
2000

64000
1.59

0.06
0.00

2.00
6088960

0.06
-

-
-

18
1465.16

1744
237

-
-

-
-

ho
noprxs

2000
64000

1.36
0.04

0.00
0.00

5564455
0.03

-
-

-
39

787.24
1959

-
-

-
-

-
ho

noxs
2000

64000
1.70

0.05
0.00

0.00
5022326

0.06
0.09

0
1660

25
1024.36

312
-

-
-

-
-

hybrid
2000

62984
114.57

0.01
-

-
-

-
-

-
316

-
-

-
-

-
-

-
-

k
2000

64000
4.84

0.07
0.00

4.90
1563491

0.13
0.11

0
903

-
-

-
-

-
-

-
-

ks
2000

64000
62.46

0.00
0.00

0.00
15558856

0.00
0.09

0
73880

-
-

-
-

-
336

-
-

ks
nopr

2000
64000

70.15
0.01

0.00
0.00

16469977
0.00

0.09
0

0
-

-
-

-
-

161924
-

-
ni

2000
64000

116.79
0.01

0.00
0.00

152144327
0.01

0.09
0

1362
-

-
-

-
615

-
-

-
ni

nopr
2000

64000
91.25

0.01
0.00

0.00
158207301

0.01
-

-
-

-
-

-
-

943
-

-
-

ho
2000

128000
3.61

0.07
0.00

0.00
10111352

0.07
0.18

0
1517

12
1782.44

390
77

-
-

-
-

ho
nopr

2000
128000

3.08
0.03

0.00
0.00

12220563
0.06

-
-

-
17

1529.17
1859

121
-

-
-

-
ho

noprxs
2000

128000
2.66

0.11
0.00

0.00
10423576

0.10
-

-
-

30
924.68

1968
-

-
-

-
-

ho
noxs

2000
128000

3.18
0.15

0.00
0.00

8951626
0.17

0.18
0

1833
18

1202.97
145

-
-

-
-

-
hybrid

2000
124048

209.61
0.01

-
-

-
-

-
-

370
-

-
-

-
-

-
-

-
k

2000
128000

13.89
0.02

0.00
0.00

2826500
0.01

0.20
0

915
-

-
-

-
-

-
-

-
ks

2000
128000

117.79
0.00

0.00
0.00

29037211
0.00

0.18
0

73483
-

-
-

-
-

336
-

-
ks

nopr
2000

128000
126.64

0.01
0.00

0.00
29606137

0.01
0.18

0
0

-
-

-
-

-
161430

-
-

ni
2000

128000
218.45

0.01
0.00

2.00
285855580

0.01
0.17

0
1393

-
-

-
-

590
-

-
-

ni
nopr

2000
128000

172.07
0.01

0.00
0.00

299663100
0.00

-
-

-
-

-
-

-
973

-
-

-
ho

2000
256000

6.41
0.08

0.00
2.00

16640099
0.10

0.35
0

1384
11

1605.93
558

44
-

-
-

-
ho

nopr
2000

256000
6.07

0.09
0.00

1.22
23310150

0.09
-

-
-

14
1682.14

1910
74

-
-

-
-

ho
noprxs

2000
256000

6.11
0.12

0.00
0.00

23142345
0.11

-
-

-
26

983.57
1972

-
-

-
-

-
ho

noxs
2000

256000
5.78

0.15
0.00

2.00
15858456

0.17
0.35

0
1796

15
1214.57

186
-

-
-

-
-

hybrid
2000

240400
379.74

0.01
-

-
-

-
-

-
407

-
-

-
-

-
-

-
-

k
2000

256000
93.16

0.02
0.00

2.71
69687532

0.02
0.40

0
935

-
-

-
-

-
-

5.69
82.80

ks
2000

256000
213.74

0.01
0.00

0.00
52257106

0.01
0.35

0
73218

-
-

-
-

-
336

-
-

ks
nopr

2000
256000

226.50
0.01

0.00
4.90

52735033
0.00

0.35
0

0
-

-
-

-
-

161456
-

-
ni

2000
256000

417.78
0.02

0.00
0.00

524331685
0.00

0.35
0

1420
-

-
-

-
568

-
-

-
ni

nopr
2000

256000
324.09

0.01
0.00

0.00
555036368

0.00
-

-
-

-
-

-
-

988
-

-
-

ho
4000

16000
0.96

0.36
0.00

0.00
1904097

0.37
0.04

0
2210

21
3453.75

469
1296

-
-

-
-

ho
nopr

4000
16000

0.60
0.22

0.00
2.00

1520746
0.23

-
-

-
26

2569.89
1756

2216
-

-
-

-
ho

noprxs
4000

16000
0.82

0.08
0.00

0.00
2178736

0.09
-

-
-

288
394.62

3711
-

-
-

-
-

ho
noxs

4000
16000

1.06
0.13

0.00
0.00

2179954
0.13

0.04
0

2840
52

1862.11
1104

-
-

-
-

-
hybrid

4000
15988

79.00
0.02

-
-

-
-

-
-

40
-

-
-

-
-

-
-

-
k

4000
16000

0.90
0.09

0.00
0.00

510990
0.08

0.04
0

569
-

-
-

-
-

-
-

-
ks

4000
16000

22.08
0.01

0.00
0.00

5763257
0.01

0.03
0

164741
-

-
-

-
-

422
-

-
ks

nopr
4000

16000
37.30

0.01
0.00

0.00
8381110

0.00
0.03

0
0

-
-

-
-

-
346848

-
-

ni
4000

16000
79.19

0.01
0.00

0.00
67906589

0.01
0.03

0
1996

-
-

-
-

1113
-

-
-

ni
nopr

4000
16000

60.60
0.01

0.00
0.00

68761057
0.01

-
-

-
-

-
-

-
1175

-
-

-
ho

4000
32000

2.08
0.13

0.00
0.00

4617361
0.13

0.07
0

2263
24

3264.51
834

875
-

-
-

-
ho

nopr
4000

32000
1.36

0.16
0.00

2.00
4158505

0.16
-

-
-

28
2762.99

2375
1595

-
-

-
-

ho
noprxs

4000
32000

1.11
0.06

0.00
2.00

3478284
0.06

-
-

-
119

904.31
3879

-
-

-
-

-
ho

noxs
4000

32000
1.50

0.04
0.00

0.00
3454252

0.04
0.06

0
2714

49
1849.89

1234
-

-
-

-
-

hybrid
4000

31941
156.91

0.01
-

-
-

-
-

-
228

-
-

-
-

-
-

-
-

k
4000

32000
1.91

0.11
0.00

0.00
938535

0.12
0.07

0
1392

-
-

-
-

-
-

-
-

ks
4000

32000
39.24

0.01
0.00

0.00
9512648

0.00
0.06

0
165141

-
-

-
-

-
360

-
-

ks
nopr

4000
32000

54.59
0.01

0.00
0.00

12258313
0.00

0.06
0

0
-

-
-

-
-

347532
-

-
ni

4000
32000

158.02
0.02

0.00
0.00

158493920
0.01

0.06
0

2172
-

-
-

-
1276

-
-

-
ni

nopr
4000

32000
123.34

0.01
0.00

0.00
161548677

0.01
-

-
-

-
-

-
-

1520
-

-
-

Table
A

.19:R
E

G
1

d
ata



111

nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect
avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time

ho 4000 64000 3.68 0.21 0.00 0.00 8894012 0.23 0.11 0 2235 25 3192.64 1132 604 - - - -
ho nopr 4000 64000 2.35 0.12 0.00 0.00 7959014 0.12 - - - 26 3096.85 3171 801 - - - -
ho noprxs 4000 64000 1.88 0.03 0.00 1.22 6573041 0.03 - - - 91 1102.45 3907 - - - - -
ho noxs 4000 64000 2.79 0.05 0.00 0.00 6881485 0.04 0.11 0 2542 43 1906.94 1412 - - - - -
hybrid 4000 63766 275.75 0.01 - - - - - - 465 - - - - - - - -
k 4000 64000 4.18 0.09 0.00 0.00 1654546 0.12 0.12 0 1736 - - - - - - - -
ks 4000 64000 75.65 0.00 0.00 0.00 17991690 0.00 0.11 0 160776 - - - - - 360 - -
ks nopr 4000 64000 90.53 0.00 0.00 0.00 20453291 0.00 0.11 0 0 - - - - - 346067 - -
ni 4000 64000 284.58 0.01 0.00 2.00 313932692 0.00 0.11 0 2527 - - - - 1253 - - -
ni nopr 4000 64000 225.76 0.01 0.00 0.00 322722081 0.00 - - - - - - - 1733 - - -
ho 4000 128000 4.63 0.16 0.01 0.82 11374344 0.18 0.21 0 3054 17 3031.67 707 218 - - - -
ho nopr 4000 128000 3.68 0.11 0.00 1.22 12969070 0.12 - - - 22 2870.50 3621 355 - - - -
ho noprxs 4000 128000 3.51 0.07 0.00 0.00 13008224 0.07 - - - 48 1602.61 3950 - - - - -
ho noxs 4000 128000 4.58 0.11 0.00 0.00 12012080 0.09 0.20 0 3374 33 2018.39 590 - - - - -
hybrid 4000 127011 495.89 0.01 - - - - - - 636 - - - - - - - -
k 4000 128000 10.74 0.07 0.00 0.00 3159411 0.12 0.24 0 1802 - - - - - - - -
ks 4000 128000 146.24 0.00 0.00 0.00 34587947 0.00 0.20 0 158712 - - - - - 360 - -
ks nopr 4000 128000 161.09 0.00 0.00 0.00 36546665 0.00 0.21 0 0 - - - - - 345795 - -
ni 4000 128000 527.19 0.01 0.00 0.00 608916828 0.00 0.21 0 2685 - - - - 1215 - - -
ni nopr 4000 128000 419.54 0.02 0.00 0.00 630270549 0.00 - - - - - - - 1863 - - -
ho 4000 256000 9.25 0.26 0.00 2.00 22283721 0.29 0.41 0 2827 14 3315.66 1039 117 - - - -
ho nopr 4000 256000 7.98 0.13 0.00 2.00 27625737 0.14 - - - 18 3216.83 3758 222 - - - -
ho noprxs 4000 256000 6.96 0.08 0.00 2.00 25427920 0.11 - - - 50 1385.19 3948 - - - - -
ho noxs 4000 256000 7.72 0.11 0.00 2.00 19627500 0.12 0.40 0 3643 28 1878.71 326 - - - - -
hybrid 4000 252001 915.74 0.01 - - - - - - 749 - - - - - - - -
k 4000 256000 30.48 0.05 0.00 3.39 6116382 0.13 0.46 0 1837 - - - - - - - -
ks 4000 256000 279.81 0.00 0.00 4.90 66016826 0.00 0.40 0 157742 - - - - - 360 - -
ks nopr 4000 256000 295.49 0.00 0.00 0.00 67213720 0.00 0.40 0 0 - - - - - 346700 - -
ni 3199 204799 789.97 0.50 -0.20 -2.00 929500495 0.50 0.12 0 2242 - - - - 935 - - -
ni nopr 4000 256000 788.60 0.02 0.00 0.00 1214900453 0.00 - - - - - - - 1932 - - -
ho 4000 512000 17.68 0.20 0.00 2.00 40734493 0.22 0.81 0 3215 11 3348.59 689 81 - - - -
ho nopr 4000 512000 15.99 0.13 0.00 2.00 56315335 0.17 - - - 16 3311.86 3848 133 - - - -
ho noprxs 4000 512000 13.88 0.12 0.00 0.00 50086275 0.11 - - - 32 1783.39 3966 - - - - -
ho noxs 4000 512000 16.44 0.12 0.00 0.00 40759551 0.12 0.79 0 3695 20 2172.18 282 - - - - -
hybrid - - - - - - - - - - - - - - - - - - -
k 4000 512000 - - - - - - 0.91 0 - - - - - - - - -
ks 4000 512000 525.44 0.00 0.00 3.39 123186585 0.00 0.80 0 156994 - - - - - 360 - -
ks nopr 4000 512000 545.35 0.00 0.00 0.00 123563248 0.00 0.80 0 0 - - - - - 346158 - -
ni - - - - - - - - - - - - - - - - - - -
ni nopr - - - - - - - - - - - - - - - - - - -
ho 8000 32000 3.07 0.14 0.01 0.82 5349231 0.14 0.09 0 3043 29 6380.80 1876 3049 - - - -
ho nopr 8000 32000 1.88 0.26 0.00 0.00 4137229 0.28 - - - 30 5167.75 3482 4486 - - - -
ho noprxs 8000 32000 2.31 0.15 0.00 1.22 5218807 0.15 - - - 488 560.02 7510 - - - - -
ho noxs 8000 32000 3.13 0.14 0.00 1.22 5612719 0.15 0.09 0 5479 68 3615.62 2450 - - - - -
hybrid 8000 31990 368.04 0.02 - - - - - - 72 - - - - - - - -
k 8000 32000 2.05 0.06 0.00 0.00 1058509 0.05 0.09 0 1135 - - - - - - - -
ks 8000 32000 52.80 0.01 0.00 0.00 11897638 0.01 0.08 0 357872 - - - - - 407 - -
ks nopr 8000 32000 85.86 0.00 0.00 0.00 18187806 0.00 0.08 0 0 - - - - - 730797 - -
ni 8000 32000 362.46 0.01 0.00 2.00 259302500 0.01 0.08 0 3772 - - - - 2121 - - -
ni nopr 8000 32000 276.21 0.01 0.00 0.00 262058041 0.01 - - - - - - - 2225 - - -
ho 1000 8000 0.24 0.08 0.00 0.00 758049 0.08 0.01 0 566 15 854.30 124 291 - - - -
ho nopr 1000 8000 0.16 0.12 0.00 0.00 701438 0.12 - - - 18 694.54 602 378 - - - -
ho noprxs 1000 8000 0.15 0.12 0.00 0.00 665581 0.09 - - - 76 230.51 922 - - - - -
ho noxs 1000 8000 0.20 0.08 0.00 0.00 668381 0.09 0.01 0 751 29 510.06 217 - - - - -
hybrid 1000 7943 7.42 0.01 - - - - - - 58 - - - - - - - -
k 1000 8000 0.33 0.10 0.00 0.00 218697 0.11 0.02 0 345 - - - - - - - -
ks 1000 8000 6.66 0.03 0.00 0.00 2078410 0.01 0.01 0 35743 - - - - - 329 - -
ks nopr 1000 8000 10.07 0.01 0.00 0.00 2542820 0.01 0.01 0 0 - - - - - 76668 - -
ni 1000 8000 7.82 0.02 0.00 0.00 10471363 0.02 0.01 0 562 - - - - 341 - - -
ni nopr 1000 8000 6.12 0.02 0.00 0.00 10731553 0.01 - - - - - - - 406 - - -

Table A.20: REG1 data (cont)



11
2

A
PP

EN
D

IX
A

.
D

A
TA

TA
BL

ES

nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect
avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time

ho 8000 64000 7.09 0.16 0.00 2.00 14194306 0.17 0.14 0 4316 37 6635.68 1547 2096 - - - -
ho nopr 8000 64000 3.36 0.27 0.00 1.22 8762890 0.30 - - - 32 5364.86 4835 3131 - - - -
ho noprxs 8000 64000 2.68 0.05 0.01 0.50 6957842 0.04 - - - 302 937.47 7696 - - - - -
ho noxs 8000 64000 3.40 0.05 0.00 1.22 6840538 0.05 0.15 0 5678 52 3841.81 2267 - - - - -
hybrid 8000 63948 714.37 0.01 - - - - - - 432 - - - - - - - -
k 8000 64000 4.24 0.18 0.00 0.00 1858429 0.15 0.15 0 2802 - - - - - - - -
ks 8000 64000 91.46 0.00 0.00 0.00 20025578 0.00 0.14 0 346811 - - - - - 378 - -
ks nopr 8000 64000 123.40 0.00 0.00 4.90 26316320 0.00 0.14 0 0 - - - - - 727433 - -
ni 8000 64000 738.59 0.01 0.00 0.00 611253237 0.01 0.14 0 4320 - - - - 2453 - - -
ni nopr 8000 64000 573.43 0.01 0.00 0.00 622358458 0.01 - - - - - - - 2911 - - -
ho 8000 128000 10.87 0.15 0.01 0.82 23304030 0.15 0.26 0 5470 30 6550.52 1449 1048 - - - -
ho nopr 8000 128000 7.68 0.12 0.00 1.22 23371174 0.13 - - - 35 6314.17 6335 1628 - - - -
ho noprxs 8000 128000 5.18 0.09 0.00 1.22 15517549 0.11 - - - 145 1714.43 7853 - - - - -
ho noxs 8000 128000 6.67 0.12 0.00 0.00 14688219 0.13 0.26 0 6034 50 3670.72 1912 - - - - -
hybrid - - - - - - - - - - - - - - - - - - -
k 8000 128000 9.18 0.11 0.00 0.00 3355821 0.13 0.28 0 3486 - - - - - - - -
ks 8000 128000 174.70 0.00 0.00 0.00 38135235 0.00 0.25 0 337446 - - - - - 378 - -
ks nopr 8000 128000 202.99 0.00 0.00 0.00 43767767 0.00 0.25 0 0 - - - - - 727152 - -
ni - - - - - - - - - - - - - - - - - - -
ni nopr - - - - - - - - - - - - - - - - - - -
ho 8000 256000 15.28 0.25 0.01 0.50 33064404 0.27 0.49 0 6055 20 6648.82 1457 465 - - - -
ho nopr 8000 256000 11.84 0.16 0.01 0.50 35746668 0.19 - - - 25 6193.91 7105 869 - - - -
ho noprxs 8000 256000 8.44 0.08 0.00 2.00 26675254 0.08 - - - 91 2519.54 7907 - - - - -
ho noxs 8000 256000 10.79 0.08 0.01 0.50 24461412 0.08 0.48 0 6979 40 3957.14 978 - - - - -
hybrid - - - - - - - - - - - - - - - - - - -
k 8000 256000 24.34 0.09 0.00 0.00 6794776 0.15 0.53 0 3609 - - - - - - - -
ks 8000 256000 338.76 0.00 0.00 0.00 74046194 0.00 0.47 0 332994 - - - - - 378 - -
ks nopr 8000 256000 361.45 0.00 0.00 0.00 78586178 0.00 0.47 0 0 - - - - - 727495 - -
ni - - - - - - - - - - - - - - - - - - -
ni nopr - - - - - - - - - - - - - - - - - - -
ho 8000 512000 28.43 0.20 0.01 0.82 61742367 0.21 0.96 0 6497 20 6479.37 1282 199 - - - -
ho nopr 8000 512000 22.58 0.11 0.00 2.00 71228873 0.13 - - - 24 6310.14 7635 339 - - - -
ho noprxs 8000 512000 18.72 0.06 0.00 1.22 57552572 0.06 - - - 64 3211.41 7934 - - - - -
ho noxs 8000 512000 21.18 0.08 0.00 2.00 46832524 0.08 0.94 0 7186 35 4358.37 776 - - - - -
hybrid - - - - - - - - - - - - - - - - - - -
k 8000 512000 - - - - - - 1.04 0 - - - - - - - - -
ks 8000 512000 658.49 0.00 0.00 0.00 143623202 0.00 0.92 0 331050 - - - - - 378 - -
ks nopr 8000 512000 672.61 0.00 0.00 0.00 146332256 0.00 0.92 0 0 - - - - - 726871 - -
ni - - - - - - - - - - - - - - - - - - -
ni nopr - - - - - - - - - - - - - - - - - - -
ho 8000 1024000 51.22 0.24 0.01 0.82 106495621 0.27 1.90 0 7080 17 6462.20 748 151 - - - -
ho nopr 8000 1024000 40.60 0.10 0.00 0.00 125669240 0.14 - - - 23 6055.29 7636 339 - - - -
ho noprxs 8000 1024000 34.54 0.10 0.01 0.82 106160539 0.10 - - - 43 3099.51 7955 - - - - -
ho noxs 8000 1024000 40.97 0.15 0.01 0.50 87924075 0.15 1.90 0 7624 25 3989.45 347 - - - - -
hybrid - - - - - - - - - - - - - - - - - - -
k 8000 1024000 - - - - - - 2.10 0 - - - - - - - - -
ks 8000 1024000 - - - - - - 1.86 0 - - - - - - - - -
ks nopr 8000 1024000 - - - - - - 1.86 0 - - - - - - - - -
ni - - - - - - - - - - - - - - - - - - -
ni nopr - - - - - - - - - - - - - - - - - - -
ho 16000 64000 6.90 0.44 0.01 0.00 11112970 0.46 0.20 0 7094 32 12468.52 3085 5786 - - - -
ho nopr 16000 64000 3.37 0.12 0.01 0.00 6569316 0.12 - - - 30 9769.41 7103 8865 - - - -
ho noprxs 16000 64000 5.53 0.24 0.01 0.82 11248730 0.24 - - - 1069 580.03 14930 - - - - -
ho noxs 16000 64000 7.25 0.11 0.01 0.50 12035648 0.11 0.19 0 12053 77 7054.88 3866 - - - - -
hybrid - - - - - - - - - - - - - - - - - - -
k 16000 64000 4.56 0.09 0.00 0.00 2221004 0.08 0.19 0 2282 - - - - - - - -
ks 16000 64000 126.62 0.00 0.00 0.00 24658153 0.00 0.18 0 765278 - - - - - 403 - -
ks nopr 16000 64000 194.56 0.00 0.00 0.00 39090134 0.00 0.18 0 0 - - - - - 1526418 - -
ni - - - - - - - - - - - - - - - - - - -
ni nopr - - - - - - - - - - - - - - - - - - -

Table A.21: REG1 data (cont)



113

nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect
avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time

ho 16000 128000 17.11 0.30 0.01 0.00 31875748 0.31 0.32 0 8916 41 13020.00 3372 3667 - - - -
ho nopr 16000 128000 10.61 0.27 0.01 0.82 25654192 0.29 - - - 41 11670.50 9545 6412 - - - -
ho noprxs 16000 128000 7.16 0.07 0.01 0.50 17475261 0.08 - - - 534 1053.18 15464 - - - - -
ho noxs 16000 128000 9.38 0.03 0.01 0.50 17926654 0.03 0.32 0 10881 65 7254.96 5051 - - - - -
k 16000 128000 9.16 0.16 0.00 4.90 3791428 0.14 0.33 0 5562 - - - - - - - -
ks 16000 128000 216.40 0.00 0.00 0.00 42000477 0.00 0.30 0 726276 - - - - - 396 - -
ks nopr 16000 128000 278.11 0.00 0.00 0.00 56276091 0.00 0.30 0 0 - - - - - 1522991 - -
ni - - - - - - - - - - - - - - - - - - -
ni nopr - - - - - - - - - - - - - - - - - - -
ho 16000 256000 35.24 0.40 0.01 0.00 71527009 0.42 0.58 0 11122 43 13495.44 2735 2096 - - - -
ho nopr 16000 256000 18.80 0.19 0.01 0.50 51019905 0.22 - - - 37 12371.29 12211 3750 - - - -
ho noprxs 16000 256000 11.73 0.06 0.01 0.50 31955553 0.06 - - - 263 2795.22 15736 - - - - -
ho noxs 16000 256000 16.07 0.08 0.01 0.00 32860069 0.09 0.57 0 11436 60 7176.72 4500 - - - - -
k 16000 256000 19.57 0.08 0.00 0.00 6696886 0.11 0.60 0 6954 - - - - - - - -
ks 16000 256000 409.20 0.00 0.00 0.00 80340882 0.00 0.54 0 707313 - - - - - 396 - -
ks nopr 16000 256000 455.98 0.00 0.00 0.00 93254279 0.00 0.54 0 0 - - - - - 1523218 - -
ni - - - - - - - - - - - - - - - - - - -
ho 16000 512000 44.02 0.15 0.01 0.00 90563234 0.17 1.10 0 13434 29 13384.69 1562 971 - - - -
ho nopr 16000 512000 32.89 0.12 0.01 0.50 93592364 0.14 - - - 35 12221.72 14148 1815 - - - -
ho noprxs 16000 512000 22.37 0.08 0.01 0.82 64322918 0.08 - - - 104 4732.34 15894 - - - - -
ho noxs 16000 512000 29.36 0.07 0.01 0.50 62855621 0.08 1.07 0 11882 50 7559.74 4065 - - - - -
k 16000 512000 - - - - - - 1.16 0 - - - - - - - - -
ks 16000 512000 795.45 0.00 0.00 4.90 156929724 0.00 1.04 0 698021 - - - - - 396 - -
ks nopr 16000 512000 814.96 0.00 0.00 0.00 167381430 0.00 1.04 0 0 - - - - - 1524793 - -
ni - - - - - - - - - - - - - - - - - - -
ho 16000 1024000 63.34 0.15 0.01 0.00 128573917 0.18 2.13 0 12767 19 12708.32 2880 331 - - - -
ho nopr 16000 1024000 56.20 0.12 0.01 0.50 155440655 0.14 - - - 25 11917.58 15164 809 - - - -
ho noprxs 16000 1024000 52.54 0.11 0.01 0.82 154857878 0.13 - - - 63 6336.16 15935 - - - - -
ho noxs 16000 1024000 65.22 0.15 0.01 0.50 139855022 0.16 2.12 0 12554 45 7641.91 3397 - - - - -
k 16000 1024000 - - - - - - 2.30 0 - - - - - - - - -
ks 16000 1024000 - - - - - - 2.07 0 - - - - - - - - -
ks nopr 16000 1024000 - - - - - - 2.08 0 - - - - - - - - -
ni - - - - - - - - - - - - - - - - - - -
ho 1000 16000 0.41 0.18 0.00 0.00 1299160 0.18 0.02 0 684 13 833.78 163 137 - - - -
ho nopr 1000 16000 0.32 0.07 0.00 0.00 1359336 0.09 - - - 16 736.16 789 192 - - - -
ho noprxs 1000 16000 0.29 0.06 0.00 0.00 1280009 0.06 - - - 51 297.10 947 - - - - -
ho noxs 1000 16000 0.38 0.04 0.00 0.00 1244717 0.07 0.03 0 678 24 517.94 295 - - - - -
hybrid 1000 15771 13.65 0.01 - - - - - - 117 - - - - - - - -
k 1000 16000 0.91 0.11 0.00 0.00 457862 0.14 0.03 0 433 - - - - - - - -
ks 1000 16000 13.57 0.01 0.00 0.00 3781221 0.01 0.02 0 35168 - - - - - 319 - -
ks nopr 1000 16000 17.09 0.01 0.00 0.00 4225565 0.01 0.02 0 0 - - - - - 76974 - -
ni 1000 16000 14.97 0.01 0.00 0.00 20029919 0.01 0.02 0 647 - - - - 326 - - -
ni nopr 1000 16000 11.59 0.01 0.00 2.00 20744438 0.01 - - - - - - - 451 - - -
ho - - - - - - - - - - - - - - - - - - -
ho nopr - - - - - - - - - - - - - - - - - - -
ho noprxs 16000 2048000 90.84 0.10 0.01 0.82 251801003 0.08 - - - 62 5997.49 15936 - - - - -
ho noxs - - - - - - - - - - - - - - - - - - -
ks - - - - - - - - - - - - - - - - - - -
ks nopr - - - - - - - - - - - - - - - - - - -
ni - - - - - - - - - - - - - - - - - - -
ho 1000 32000 0.75 0.06 0.00 0.00 2327044 0.06 0.05 0 803 10 766.77 128 55 - - - -
ho nopr 1000 32000 0.62 0.08 0.00 0.00 2644521 0.07 - - - 15 688.23 867 116 - - - -
ho noprxs 1000 32000 0.57 0.05 0.00 0.00 2461502 0.05 - - - 36 362.37 962 - - - - -
ho noxs 1000 32000 0.68 0.09 0.00 0.00 2186642 0.08 0.04 0 810 20 525.48 168 - - - - -
hybrid 1000 31030 25.94 0.01 - - - - - - 153 - - - - - - - -
k 1000 32000 2.37 0.09 0.00 0.00 874052 0.14 0.05 0 450 - - - - - - - -
ks 1000 32000 26.89 0.01 0.00 0.00 6981176 0.01 0.04 0 35008 - - - - - 318 - -
ks nopr 1000 32000 30.39 0.01 0.00 0.00 7357750 0.01 0.04 0 0 - - - - - 76783 - -
ni 1000 32000 27.35 0.01 0.00 0.00 37359850 0.00 0.04 0 675 - - - - 310 - - -
ni nopr 1000 32000 21.26 0.00 0.00 0.00 39060234 0.00 - - - - - - - 476 - - -

Table A.22: REG1 data (cont)



11
4

A
PP

EN
D

IX
A

.
D

A
TA

TA
BL

ES
nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect

avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time
ho 1000 64000 1.24 0.10 0.00 0.00 3766219 0.11 0.09 0 714 9 891.37 237 37 - - - -
ho nopr 1000 64000 1.24 0.11 0.00 0.00 5152551 0.13 - - - 14 811.01 930 55 - - - -
ho noprxs 1000 64000 1.24 0.08 0.00 0.00 5201893 0.06 - - - 25 464.35 973 - - - - -
ho noxs 1000 64000 1.27 0.06 0.00 0.00 3921484 0.05 0.09 0 757 14 600.66 225 - - - - -
hybrid 1000 60150 47.73 0.01 - - - - - - 182 - - - - - - - -
k 1000 64000 6.53 0.05 0.00 0.00 1578973 0.16 0.10 0 457 - - - - - - - -
ks 1000 64000 49.52 0.01 0.00 0.00 12519128 0.01 0.08 0 34727 - - - - - 318 - -
ks nopr 1000 64000 53.55 0.01 0.00 4.90 12835589 0.01 0.08 0 0 - - - - - 76948 - -
ni 1000 64000 50.86 0.01 0.00 0.00 68021712 0.01 0.08 0 700 - - - - 295 - - -
ni nopr 1000 64000 39.52 0.01 0.00 0.00 72026238 0.00 - - - - - - - 487 - - -
ho 1000 128000 2.32 0.04 0.00 0.00 6504475 0.04 0.16 0 854 7 929.49 123 13 - - - -
ho nopr 1000 128000 2.46 0.11 0.00 0.00 9501742 0.10 - - - 12 817.10 961 25 - - - -
ho noprxs 1000 128000 2.40 0.11 0.00 0.00 9389644 0.10 - - - 23 448.98 975 - - - - -
ho noxs 1000 128000 2.12 0.06 0.00 0.00 6038684 0.05 0.16 0 964 11 569.76 22 - - - - -
hybrid 1000 113035 84.20 0.00 - - - - - - 199 - - - - - - - -
k 1000 128000 34.27 0.02 0.00 2.29 27284014 0.03 0.18 0 467 - - - - - - 2.32 29.86
ks 1000 128000 86.25 0.00 0.00 4.90 21477712 0.01 0.16 0 34709 - - - - - 318 - -
ks nopr 1000 128000 91.63 0.01 0.00 3.39 21715768 0.01 0.16 0 0 - - - - - 76807 - -
ni 1000 128000 95.13 0.01 0.00 0.00 119028361 0.01 0.16 0 709 - - - - 283 - - -
ni nopr 1000 128000 72.43 0.01 0.00 0.00 127300992 0.00 - - - - - - - 495 - - -
ho 2000 8000 0.27 0.14 0.00 0.00 659042 0.14 0.02 0 822 14 1660.26 352 808 - - - -
ho nopr 2000 8000 0.22 0.16 0.00 0.00 711731 0.18 - - - 21 1309.04 825 1151 - - - -
ho noprxs 2000 8000 0.29 0.07 0.00 0.00 941397 0.08 - - - 152 327.39 1846 - - - - -
ho noxs 2000 8000 0.36 0.12 0.00 0.00 907043 0.12 0.02 0 1438 41 965.91 517 - - - - -
hybrid 2000 7986 17.25 0.02 - - - - - - 24 - - - - - - - -
k 2000 8000 0.41 0.11 0.00 0.00 263932 0.10 0.02 0 289 - - - - - - - -
ks 2000 8000 8.64 0.02 0.00 0.00 2716837 0.02 0.01 0 75221 - - - - - 418 - -
ks nopr 2000 8000 15.88 0.01 0.00 0.00 3785550 0.01 0.01 0 0 - - - - - 163060 - -
ni 2000 8000 16.70 0.02 0.00 0.00 17444423 0.02 0.01 0 911 - - - - 573 - - -
ni nopr 2000 8000 12.80 0.02 0.00 0.00 17645731 0.02 - - - - - - - 612 - - -
ho 2000 16000 0.64 0.18 0.00 0.00 1668922 0.19 0.03 0 852 18 1599.61 617 510 - - - -
ho nopr 2000 16000 0.45 0.29 0.00 0.00 1599719 0.31 - - - 28 1127.13 1180 790 - - - -
ho noprxs 2000 16000 0.43 0.11 0.00 2.00 1562451 0.11 - - - 108 490.18 1891 - - - - -
ho noxs 2000 16000 0.58 0.08 0.00 0.00 1591363 0.08 0.03 0 1201 41 1000.46 755 - - - - -
hybrid 2000 15947 35.29 0.01 - - - - - - 113 - - - - - - - -
k 2000 16000 0.81 0.08 0.00 0.00 445916 0.08 0.03 0 694 - - - - - - - -
ks 2000 16000 16.16 0.01 0.00 0.00 4412345 0.00 0.02 0 76505 - - - - - 339 - -
ks nopr 2000 16000 23.68 0.01 0.00 4.90 5592339 0.00 0.03 0 0 - - - - - 162757 - -
ni 2000 16000 35.44 0.00 0.00 0.00 40906159 0.01 0.03 0 1156 - - - - 661 - - -
ni nopr 2000 16000 27.92 0.02 0.00 0.00 41915701 0.01 - - - - - - - 794 - - -
ho 2000 32000 1.22 0.24 0.00 0.00 3378001 0.25 0.05 0 1380 16 1685.77 311 290 - - - -
ho nopr 2000 32000 0.86 0.18 0.00 0.00 3383194 0.21 - - - 18 1602.60 1626 353 - - - -
ho noprxs 2000 32000 0.73 0.07 0.00 0.00 2922104 0.07 - - - 56 667.52 1942 - - - - -
ho noxs 2000 32000 1.05 0.09 0.00 0.00 3020974 0.09 0.05 0 1327 33 960.52 636 - - - - -
hybrid 2000 31759 63.07 0.01 - - - - - - 235 - - - - - - - -
k 2000 32000 1.80 0.02 0.00 0.00 769758 0.01 0.06 0 867 - - - - - - - -
ks 2000 32000 32.30 0.00 0.00 0.00 8244158 0.00 0.05 0 74912 - - - - - 336 - -
ks nopr 2000 32000 39.52 0.00 0.00 0.00 9284073 0.00 0.05 0 0 - - - - - 161739 - -
ni 2000 32000 64.37 0.01 0.00 0.00 79999226 0.00 0.05 0 1275 - - - - 643 - - -
ni nopr 2000 32000 49.68 0.01 0.00 2.00 82416061 0.00 - - - - - - - 886 - - -

Table A.23: REG1 data (cont)



115
nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect

avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time
ho 128 1024 0.01 0.33 0.00 0.00 43225 0.09 0.00 0 66 7 104.66 24 27 - - - -
ho nopr 128 1024 0.01 0.00 0.00 0.00 44064 0.11 - - - 11 86.61 67 47 - - - -
ho noprxs 128 1024 0.01 0.00 0.00 0.00 47845 0.06 - - - 21 51.14 105 - - - - -
ho noxs 128 1024 0.01 0.33 0.00 0.00 49986 0.08 0.00 0 62 13 70.68 50 - - - - -
hybrid 128 967 0.10 0.04 - - - - - - 4 - - - - - - - -
k 128 1024 0.02 0.33 0.00 0.00 24547 0.01 0.00 0 41 - - - - - - - -
ks 128 1024 0.52 0.02 0.00 0.00 191230 0.02 0.00 0 3647 - - - - - 284 - -
ks nopr 128 1024 0.82 0.04 0.00 0.00 216848 0.03 0.00 0 0 - - - - - 8100 - -
ni 128 1024 0.08 0.05 0.00 0.00 161684 0.03 0.00 0 78 - - - - 44 - - -
ni nopr 128 1024 0.07 0.06 0.00 0.00 174641 0.03 - - - - - - - 56 - - -
ho 256 4096 0.05 0.11 0.00 0.00 213928 0.06 0.01 0 145 7 219.42 66 34 - - - -
ho nopr 256 4096 0.04 0.14 0.00 0.00 225677 0.04 - - - 12 172.11 190 53 - - - -
ho noprxs 256 4096 0.04 0.14 0.00 0.00 231942 0.11 - - - 26 99.52 228 - - - - -
ho noxs 256 4096 0.05 0.15 0.00 0.00 219728 0.10 0.00 0 172 14 156.15 67 - - - - -
hybrid 256 3859 0.67 0.03 - - - - - - 26 - - - - - - - -
k 256 4096 0.13 0.12 0.00 0.00 106149 0.14 0.00 0 109 - - - - - - - -
ks 256 4096 2.12 0.02 0.00 0.00 739686 0.02 0.00 0 7620 - - - - - 289 - -
ks nopr 256 4096 2.95 0.02 0.00 0.00 808518 0.01 0.00 0 0 - - - - - 16938 - -
ni 256 4096 0.66 0.06 0.00 0.00 1255611 0.01 0.00 0 160 - - - - 86 - - -
ni nopr 256 4096 0.52 0.03 0.00 0.00 1323981 0.01 - - - - - - - 118 - - -
ho 512 16384 0.26 0.03 0.00 2.00 835486 0.07 0.02 0 374 6 476.33 98 31 - - - -
ho nopr 512 16384 0.25 0.06 0.00 2.00 1106118 0.05 - - - 10 415.47 445 55 - - - -
ho noprxs 512 16384 0.25 0.18 0.00 0.00 1146966 0.19 - - - 26 215.08 484 - - - - -
ho noxs 512 16384 0.29 0.14 0.00 0.00 993982 0.14 0.02 0 372 15 283.98 121 - - - - -
hybrid 512 15424 5.68 0.01 - - - - - - 76 - - - - - - - -
k 512 16384 0.99 0.06 0.00 4.90 384460 0.13 0.03 0 230 - - - - - - - -
ks 512 16384 10.99 0.01 0.00 0.00 3091358 0.01 0.02 0 16669 - - - - - 303 - -
ks nopr 512 16384 12.74 0.01 0.00 4.90 3242684 0.01 0.02 0 0 - - - - - 37000 - -
ni 512 16384 6.65 0.00 0.00 0.00 9260699 0.00 0.02 0 349 - - - - 157 - - -
ni nopr 512 16384 5.11 0.01 0.00 0.00 9886507 0.01 - - - - - - - 246 - - -
ho 1024 65536 1.25 0.12 0.00 0.00 3740683 0.13 0.09 0 759 9 862.93 218 34 - - - -
ho nopr 1024 65536 1.21 0.07 0.00 0.00 4971482 0.07 - - - 13 796.36 945 63 - - - -
ho noprxs 1024 65536 1.19 0.10 0.00 0.00 4960265 0.09 - - - 26 474.56 996 - - - - -
ho noxs 1024 65536 1.35 0.14 0.00 0.00 4158297 0.15 0.09 0 792 16 583.88 213 - - - - -
hybrid 1024 61688 50.06 0.00 - - - - - - 187 - - - - - - - -
k 1024 65536 6.71 0.05 0.00 0.00 1616941 0.16 0.10 0 467 - - - - - - - -
ks 1024 65536 51.04 0.01 0.00 0.00 12833888 0.01 0.08 0 35461 - - - - - 318 - -
ks nopr 1024 65536 55.32 0.01 0.00 0.00 13236592 0.01 0.08 0 0 - - - - - 79103 - -
ni 1024 65536 54.00 0.01 0.00 0.00 71774491 0.00 0.08 0 713 - - - - 303 - - -
ni nopr 1024 65536 41.75 0.01 0.00 0.00 75764030 0.00 - - - - - - - 500 - - -
ho 2048 262144 6.27 0.19 0.00 1.22 16791158 0.22 0.35 0 1735 9 1688.60 263 37 - - - -
ho nopr 2048 262144 6.29 0.11 0.00 0.00 23640286 0.13 - - - 14 1655.01 1972 61 - - - -
ho noprxs 2048 262144 5.97 0.14 0.00 0.00 22739058 0.11 - - - 26 943.23 2020 - - - - -
ho noxs 2048 262144 6.26 0.13 0.00 0.00 17264754 0.13 0.36 0 1611 14 1198.45 419 - - - - -
hybrid 2048 246520 398.25 0.01 - - - - - - 418 - - - - - - - -
k 2048 262144 96.37 0.02 0.00 0.00 72228454 0.02 0.41 0 957 - - - - - - 5.85 85.76
ks 2048 262144 222.06 0.00 0.00 0.00 53837716 0.00 0.36 0 75056 - - - - - 336 - -
ks nopr 2048 262144 232.81 0.00 0.00 0.00 54115840 0.00 0.36 0 0 - - - - - 164886 - -
ni 2048 262144 434.57 0.01 0.00 2.00 547706475 0.01 0.36 0 1462 - - - - 578 - - -
ni nopr 2048 262144 340.20 0.01 0.00 0.00 581596560 0.00 - - - - - - - 1011 - - -

Table A.24: REG2 data



116 APPENDIX A. DATA TABLES

nod
es

arcs
totaltim

e
d

iscovery
tim

e
ed

ge
scans

preprocess
initial

internal

s-t

avg.
1

nod
e

excess
phases

leaves
packing

respect
avg

d
ev

%
avg

d
ev

%
avg

d
ev

%
tim

e
PR

PR
cuts

size
layers

d
etect

tim
e

tim
e

ho
4000

16000
1.10

0.27
0.00

0.00
2218968

0.28
0.04

0
2040

23
3419.16

633
1301

-
-

-
-

ho
nopr

4000
16000

0.75
0.34

0.00
1.22

1909436
0.36

-
-

-
28

2609.32
1680

2290
-

-
-

-
ho

noprxs
4000

16000
0.84

0.13
0.00

0.00
2244400

0.14
-

-
-

323
347.81

3675
-

-
-

-
-

ho
noxs

4000
16000

1.14
0.11

0.00
0.00

2355196
0.11

0.04
0

2623
53

1817.30
1321

-
-

-
-

-
hybrid

4000
15985

79.18
0.02

-
-

-
-

-
-

45
-

-
-

-
-

-
-

-
k

4000
16000

0.89
0.03

0.00
0.00

501402
0.03

0.04
0

567
-

-
-

-
-

-
-

-
ks

4000
16000

22.08
0.02

0.00
0.00

5753487
0.01

0.03
0

165006
-

-
-

-
-

421
-

-
ks

nopr
4000

16000
37.59

0.01
0.00

0.00
8388216

0.00
0.04

0
0

-
-

-
-

-
347384

-
-

ni
4000

16000
77.86

0.02
0.00

0.00
66914214

0.02
0.04

0
1770

-
-

-
-

1096
-

-
-

ni
nopr

4000
16000

59.35
0.02

0.00
0.00

67717242
0.01

-
-

-
-

-
-

-
1163

-
-

-
ho

4000
17872

0.43
0.11

0.00
2.00

842669
0.10

0.04
0

945
10

3886.56
774

2267
-

-
-

-
ho

nopr
4000

17872
0.34

0.09
0.00

1.22
834081

0.08
-

-
-

13
3307.72

1393
2592

-
-

-
-

ho
noprxs

4000
17872

0.76
0.05

0.00
1.22

2031613
0.05

-
-

-
220

524.08
3778

-
-

-
-

-
ho

noxs
4000

17872
1.05

0.11
0.00

2.00
2205910

0.11
0.04

0
2803

52
2064.47

1141
-

-
-

-
-

hybrid
4000

17854
3.17

0.01
-

-
-

-
-

-
0

-
-

-
-

-
-

-
-

k
4000

17872
0.79

0.15
0.00

0.00
443427

0.09
0.04

0
426

-
-

-
-

-
-

-
-

ks
4000

17872
20.29

0.01
0.00

0.00
5035862

0.00
0.04

0
143979

-
-

-
-

-
360

-
-

ks
nopr

4000
17872

27.28
0.01

0.00
4.90

6284075
0.00

0.04
0

0
-

-
-

-
-

143359
-

-
ni

4000
17872

2.23
0.01

0.00
0.00

1954958
0.00

0.04
0

1373
-

-
-

-
28

-
-

-
ni

nopr
4000

17872
1.71

0.01
0.00

0.00
2007138

0.01
-

-
-

-
-

-
-

29
-

-
-

ho
4000

17968
0.42

0.09
0.00

0.00
831186

0.10
0.04

0
928

10
3839.83

387
2672

-
-

-
-

ho
nopr

4000
17968

0.35
0.05

0.00
0.00

830606
0.05

-
-

-
11

3506.69
1275

2711
-

-
-

-
ho

noprxs
4000

17968
0.78

0.07
0.00

2.00
2095834

0.07
-

-
-

182
639.74

3816
-

-
-

-
-

ho
noxs

4000
17968

1.06
0.07

0.00
2.00

2220416
0.07

0.04
0

2796
52

2019.31
1149

-
-

-
-

-
hybrid

4000
17949

2.82
0.04

-
-

-
-

-
-

0
-

-
-

-
-

-
-

-
k

4000
17968

0.71
0.03

0.00
3.39

411508
0.00

0.04
0

425
-

-
-

-
-

-
-

-
ks

4000
17968

20.33
0.01

0.00
4.90

5032291
0.00

0.04
0

142452
-

-
-

-
-

360
-

-
ks

nopr
4000

17968
26.85

0.01
0.00

2.71
6200325

0.00
0.04

0
0

-
-

-
-

-
134606

-
-

ni
4000

17968
1.96

0.04
0.00

0.00
1729860

0.06
0.03

0
901

-
-

-
-

24
-

-
-

ni
nopr

4000
17968

1.51
0.02

0.00
0.00

1784856
0.01

-
-

-
-

-
-

-
26

-
-

-
ho

4000
17992

0.43
0.09

0.00
2.00

835761
0.11

0.04
0

1206
12

3847.51
445

2334
-

-
-

-
ho

nopr
4000

17992
0.35

0.10
0.00

2.00
858993

0.10
-

-
-

13
3606.06

1379
2606

-
-

-
-

ho
noprxs

4000
17992

0.80
0.10

0.00
0.00

2186246
0.10

-
-

-
229

576.78
3769

-
-

-
-

-
ho

noxs
4000

17992
1.05

0.18
0.00

0.00
2216035

0.19
0.04

0
2612

55
2164.63

1330
-

-
-

-
-

hybrid
4000

17973
2.92

0.02
-

-
-

-
-

-
0

-
-

-
-

-
-

-
-

k
4000

17992
0.71

0.02
0.00

3.39
411881

0.00
0.05

0
436

-
-

-
-

-
-

-
-

ks
4000

17992
20.35

0.01
0.00

4.90
5032954

0.00
0.04

0
142124

-
-

-
-

-
360

-
-

ks
nopr

4000
17992

26.76
0.01

0.00
4.90

6175910
0.00

0.04
0

0
-

-
-

-
-

131979
-

-
ni

4000
17992

1.92
0.02

0.00
0.00

1705051
0.02

0.04
0

1408
-

-
-

-
24

-
-

-
ni

nopr
4000

17992
1.49

0.02
0.00

0.00
1765166

0.02
-

-
-

-
-

-
-

26
-

-
-

ho
4000

17998
0.43

0.11
0.01

0.50
877556

0.12
0.04

0
791

13
3896.46

674
2518

-
-

-
-

ho
nopr

4000
17998

0.33
0.10

0.00
1.22

813494
0.10

-
-

-
16

3498.00
1192

2790
-

-
-

-
ho

noprxs
4000

17998
0.74

0.03
0.00

2.00
2006488

0.04
-

-
-

185
661.52

3813
-

-
-

-
-

ho
noxs

4000
17998

1.10
0.09

0.01
0.00

2320532
0.09

0.04
0

2735
54

2074.15
1208

-
-

-
-

-
hybrid

4000
17979

2.92
0.02

-
-

-
-

-
-

0
-

-
-

-
-

-
-

-
k

4000
17998

0.71
0.02

0.01
0.71

411903
0.00

0.04
0

431
-

-
-

-
-

-
-

-
ks

4000
17998

20.30
0.01

0.01
0.89

5030813
0.00

0.04
0

142064
-

-
-

-
-

360
-

-
ks

nopr
4000

17998
26.68

0.01
0.00

1.13
6168150

0.00
0.04

0
0

-
-

-
-

-
131548

-
-

ni
4000

17998
1.90

0.03
0.00

1.22
1655569

0.03
0.04

0
1265

-
-

-
-

23
-

-
-

ni
nopr

4000
17998

1.44
0.02

0.00
1.22

1714658
0.01

-
-

-
-

-
-

-
25

-
-

-
ho

4000
17999

0.43
0.12

0.01
0.63

841826
0.14

0.04
0

1195
11

3764.74
357

2433
-

-
-

-
ho

nopr
4000

17999
0.35

0.06
0.01

0.82
849377

0.05
-

-
-

13
3502.78

1340
2645

-
-

-
-

ho
noprxs

4000
17999

0.81
0.20

0.01
0.33

2208973
0.20

-
-

-
193

626.92
3806

-
-

-
-

-
ho

noxs
4000

17999
0.96

0.07
0.01

0.63
2025369

0.07
0.04

0
3033

49
2014.70

915
-

-
-

-
-

hybrid
4000

17980
2.88

0.05
-

-
-

-
-

-
0

-
-

-
-

-
-

-
-

k
4000

17999
0.71

0.03
0.02

0.47
411794

0.00
0.04

0
420

-
-

-
-

-
-

-
-

ks
4000

17999
20.38

0.01
0.01

0.87
5031412

0.00
0.04

0
142035

-
-

-
-

-
360

-
-

ks
nopr

4000
17999

26.73
0.01

0.01
0.64

6168597
0.00

0.04
0

0
-

-
-

-
-

130641
-

-
ni

4000
17999

1.90
0.01

0.01
0.63

1679990
0.00

0.04
0

837
-

-
-

-
24

-
-

-
ni

nopr
4000

17999
1.45

0.01
0.01

0.94
1709862

0.01
-

-
-

-
-

-
-

25
-

-
-

Table
A

.25:IR
R

E
G

d
ata



117

nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect
avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time

ho 4000 18000 1.25 0.35 0.00 2.00 2562969 0.36 0.04 0 1513 29 3276.71 1203 1251 - - - -
ho nopr 4000 18000 0.78 0.30 0.00 0.00 2078615 0.32 - - - 91 1006.76 2309 1597 - - - -
ho noprxs 4000 18000 0.80 0.06 0.00 1.22 2161851 0.05 - - - 164 704.74 3834 - - - - -
ho noxs 4000 18000 1.10 0.05 0.00 0.00 2312688 0.05 0.04 0 2160 54 1849.36 1782 - - - - -
hybrid 4000 17981 91.23 0.01 - - - - - - 67 - - - - - - - -
k 4000 18000 1.05 0.10 0.00 0.00 575287 0.09 0.05 0 1142 - - - - - - - -
ks 4000 18000 24.41 0.01 0.00 0.00 6173769 0.01 0.04 0 168068 - - - - - 390 - -
ks nopr 4000 18000 40.94 0.01 0.00 0.00 8820460 0.00 0.04 0 0 - - - - - 346083 - -
ni 4000 18000 89.22 0.01 0.00 0.00 80311388 0.01 0.04 0 1683 - - - - 1166 - - -
ni nopr 4000 18000 68.90 0.01 0.00 0.00 81207069 0.01 - - - - - - - 1242 - - -
ho 4000 18000 0.93 0.20 0.00 0.00 1901201 0.21 0.04 0 1647 21 3155.41 1035 1294 - - - -
ho nopr 4000 18000 0.67 0.25 0.00 0.00 1763930 0.27 - - - 79 956.99 2308 1611 - - - -
ho noprxs 4000 18000 0.77 0.11 0.00 1.22 2122690 0.10 - - - 194 626.68 3805 - - - - -
ho noxs 4000 18000 1.09 0.10 0.00 2.00 2282047 0.10 0.04 0 2233 57 1894.28 1707 - - - - -
hybrid 4000 17981 91.42 0.01 - - - - - - 62 - - - - - - - -
k 4000 18000 1.07 0.10 0.00 0.00 590160 0.10 0.04 0 1145 - - - - - - - -
ks 4000 18000 24.50 0.01 0.00 0.00 6193166 0.01 0.04 0 167707 - - - - - 394 - -
ks nopr 4000 18000 40.81 0.01 0.00 0.00 8828381 0.00 0.04 0 0 - - - - - 347322 - -
ni 4000 18000 89.24 0.00 0.00 0.00 80224341 0.00 0.04 0 1974 - - - - 1165 - - -
ni nopr 4000 18000 69.38 0.01 0.00 2.00 81191613 0.00 - - - - - - - 1244 - - -
ho 4000 18001 1.14 0.27 0.00 2.00 2329625 0.28 0.04 0 1657 26 3252.60 1069 1244 - - - -
ho nopr 4000 18001 0.84 0.22 0.00 2.00 2228460 0.23 - - - 92 1018.24 2256 1649 - - - -
ho noprxs 4000 18001 0.87 0.10 0.00 2.00 2365175 0.11 - - - 149 718.70 3850 - - - - -
ho noxs 4000 18001 1.19 0.10 0.00 2.00 2495374 0.10 0.04 0 2411 56 1761.70 1531 - - - - -
hybrid 4000 17981 91.68 0.01 - - - - - - 64 - - - - - - - -
k 4000 18001 0.99 0.03 0.00 0.00 542349 0.01 0.05 0 1143 - - - - - - - -
ks 4000 18001 24.43 0.01 0.00 0.00 6180522 0.01 0.04 0 168158 - - - - - 390 - -
ks nopr 4000 18001 40.96 0.01 0.00 0.00 8823849 0.00 0.04 0 0 - - - - - 347629 - -
ni 4000 18001 90.10 0.02 0.00 0.00 80000674 0.01 0.04 0 2013 - - - - 1162 - - -
ni nopr 4000 18001 69.31 0.01 0.00 0.00 81014302 0.01 - - - - - - - 1243 - - -
ho 4000 18002 1.06 0.14 0.00 0.00 2155042 0.15 0.04 0 1285 22 3153.64 1353 1337 - - - -
ho nopr 4000 18002 0.81 0.38 0.00 0.00 2126929 0.40 - - - 88 914.88 2285 1624 - - - -
ho noprxs 4000 18002 0.75 0.05 0.00 0.00 2033741 0.03 - - - 224 474.26 3775 - - - - -
ho noxs 4000 18002 1.09 0.06 0.00 0.00 2285722 0.06 0.04 0 2186 55 1783.70 1756 - - - - -
hybrid 4000 17982 90.26 0.01 - - - - - - 69 - - - - - - - -
k 4000 18002 1.12 0.16 0.00 0.00 607685 0.13 0.04 0 1129 - - - - - - - -
ks 4000 18002 24.34 0.01 0.00 4.90 6169723 0.01 0.04 0 168557 - - - - - 387 - -
ks nopr 4000 18002 41.13 0.01 0.00 0.00 8827699 0.01 0.04 0 0 - - - - - 346908 - -
ni 4000 18002 91.30 0.02 0.00 0.00 80456815 0.00 0.04 0 1752 - - - - 1168 - - -
ni nopr 4000 18002 69.36 0.01 0.00 0.00 81306040 0.00 - - - - - - - 1242 - - -
ho 4000 18008 1.07 0.32 0.00 0.00 2182638 0.33 0.04 0 1719 24 3189.11 912 1342 - - - -
ho nopr 4000 18008 0.66 0.17 0.00 0.00 1763623 0.17 - - - 78 935.97 2349 1571 - - - -
ho noprxs 4000 18008 0.78 0.03 0.00 1.22 2097683 0.03 - - - 182 640.76 3816 - - - - -
ho noxs 4000 18008 1.18 0.13 0.00 2.00 2458874 0.13 0.04 0 2414 56 1927.10 1527 - - - - -
hybrid 4000 17988 91.04 0.02 - - - - - - 55 - - - - - - - -
k 4000 18008 1.10 0.09 0.00 0.00 606997 0.08 0.04 0 1125 - - - - - - - -
ks 4000 18008 24.37 0.01 0.00 0.00 6171061 0.01 0.04 0 168314 - - - - - 388 - -
ks nopr 4000 18008 40.77 0.01 0.00 0.00 8814297 0.00 0.04 0 0 - - - - - 346420 - -
ni 4000 18008 89.82 0.01 0.00 0.00 80028251 0.01 0.04 0 1884 - - - - 1161 - - -
ni nopr 4000 18008 68.76 0.01 0.00 0.00 80896637 0.01 - - - - - - - 1237 - - -
ho 4000 16001 1.27 0.17 0.00 2.00 2594228 0.18 0.04 0 2235 28 3307.98 443 1291 - - - -
ho nopr 4000 16001 0.61 0.18 0.00 0.00 1532746 0.19 - - - 26 2507.27 1723 2249 - - - -
ho noprxs 4000 16001 0.76 0.10 0.00 0.00 2010436 0.09 - - - 250 456.10 3749 - - - - -
ho noxs 4000 16001 1.07 0.10 0.00 1.22 2220403 0.11 0.04 0 2309 54 1837.07 1634 - - - - -
hybrid 4000 15986 78.62 0.01 - - - - - - 45 - - - - - - - -
k 4000 16001 0.87 0.02 0.00 0.00 488465 0.02 0.04 0 574 - - - - - - - -
ks 4000 16001 22.09 0.01 0.00 0.00 5766984 0.01 0.03 0 164683 - - - - - 424 - -
ks nopr 4000 16001 37.47 0.00 0.00 0.00 8387672 0.00 0.03 0 0 - - - - - 347468 - -
ni 4000 16001 77.57 0.01 0.00 0.00 67447020 0.01 0.03 0 1785 - - - - 1105 - - -
ni nopr 4000 16001 58.91 0.01 0.00 0.00 68170275 0.01 - - - - - - - 1169 - - -

Table A.26: IRREG data (cont)



11
8

A
PP

EN
D

IX
A

.
D

A
TA

TA
BL

ES

nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect
avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time

ho 4000 18032 0.96 0.12 0.00 0.00 1984185 0.13 0.04 0 1286 22 3197.95 1317 1371 - - - -
ho nopr 4000 18032 0.66 0.07 0.00 0.00 1740324 0.08 - - - 68 1091.26 2342 1589 - - - -
ho noprxs 4000 18032 0.77 0.10 0.00 0.00 2050222 0.10 - - - 210 538.28 3788 - - - - -
ho noxs 4000 18032 1.08 0.11 0.00 1.22 2250851 0.11 0.04 0 2472 54 1882.78 1471 - - - - -
hybrid 4000 18012 89.10 0.01 - - - - - - 45 - - - - - - - -
k 4000 18032 0.97 0.02 0.00 0.00 538513 0.01 0.04 0 1138 - - - - - - - -
ks 4000 18032 24.37 0.01 0.00 0.00 6165349 0.01 0.04 0 167755 - - - - - 390 - -
ks nopr 4000 18032 40.64 0.01 0.00 0.00 8793752 0.00 0.04 0 0 - - - - - 344086 - -
ni 4000 18032 87.33 0.01 0.00 0.00 78176303 0.02 0.04 0 1846 - - - - 1132 - - -
ni nopr 4000 18032 67.44 0.02 0.00 0.00 78925101 0.02 - - - - - - - 1194 - - -
ho 4000 18128 0.88 0.17 0.00 0.00 1776700 0.17 0.04 0 1332 23 3073.79 1310 1331 - - - -
ho nopr 4000 18128 0.71 0.23 0.00 2.00 1884016 0.24 - - - 69 1187.47 2240 1689 - - - -
ho noprxs 4000 18128 0.80 0.11 0.00 2.00 2183758 0.11 - - - 196 569.18 3803 - - - - -
ho noxs 4000 18128 1.26 0.06 0.00 0.00 2645618 0.07 0.04 0 2149 57 1835.22 1791 - - - - -
hybrid 4000 18108 81.77 0.02 - - - - - - 16 - - - - - - - -
k 4000 18128 1.07 0.10 0.00 0.00 581624 0.09 0.05 0 1110 - - - - - - - -
ks 4000 18128 24.09 0.01 0.00 0.00 6076427 0.01 0.04 0 167700 - - - - - 378 - -
ks nopr 4000 18128 39.86 0.01 0.00 0.00 8670435 0.00 0.04 0 0 - - - - - 333896 - -
ni 4000 18128 80.20 0.01 0.00 0.00 71326768 0.01 0.04 0 1659 - - - - 1024 - - -
ni nopr 4000 18128 60.79 0.01 0.00 0.00 71695319 0.01 - - - - - - - 1054 - - -
ho 4000 18512 0.69 0.16 0.00 2.00 1385153 0.16 0.04 0 2146 18 3533.07 579 1254 - - - -
ho nopr 4000 18512 0.53 0.19 0.00 0.00 1419907 0.21 - - - 57 1211.71 2068 1873 - - - -
ho noprxs 4000 18512 0.80 0.07 0.00 0.00 2205651 0.07 - - - 255 466.80 3744 - - - - -
ho noxs 4000 18512 1.18 0.09 0.00 2.00 2488518 0.10 0.04 0 2542 52 2049.84 1403 - - - - -
hybrid 4000 18491 53.07 0.00 - - - - - - 0 - - - - - - - -
k 4000 18512 1.04 0.08 0.00 0.00 569064 0.08 0.05 0 1049 - - - - - - - -
ks 4000 18512 23.43 0.01 0.00 0.00 5842193 0.00 0.04 0 164379 - - - - - 362 - -
ks nopr 4000 18512 37.55 0.01 0.00 0.00 8201296 0.00 0.04 0 0 - - - - - 292333 - -
ni 4000 18512 51.78 0.01 0.00 0.00 45398091 0.01 0.04 0 1724 - - - - 632 - - -
ni nopr 4000 18512 38.83 0.01 0.00 2.00 45468836 0.01 - - - - - - - 638 - - -
ho 4000 19000 0.49 0.04 0.00 2.00 972028 0.05 0.04 0 2025 11 3731.31 382 1578 - - - -
ho nopr 4000 19000 0.47 0.09 0.00 1.22 1217452 0.12 - - - 86 627.65 1386 2526 - - - -
ho noprxs 4000 19000 0.85 0.02 0.00 2.00 2334362 0.02 - - - 256 437.38 3743 - - - - -
ho noxs 4000 19000 0.96 0.06 0.00 2.00 2041341 0.07 0.05 0 2703 46 1771.97 1248 - - - - -
hybrid 4000 18978 24.25 0.03 - - - - - - 0 - - - - - - - -
k 4000 19000 1.03 0.03 0.00 0.00 554985 0.01 0.04 0 1000 - - - - - - - -
ks 4000 19000 23.26 0.01 0.00 0.00 5685895 0.00 0.04 0 157747 - - - - - 360 - -
ks nopr 4000 19000 34.99 0.01 0.00 0.00 7693147 0.00 0.04 0 0 - - - - - 242427 - -
ni 4000 19000 23.27 0.03 0.00 0.00 20368629 0.03 0.04 0 1124 - - - - 274 - - -
ni nopr 4000 19000 17.45 0.03 0.00 0.00 20407409 0.03 - - - - - - - 276 - - -
ho 4000 19488 0.50 0.11 0.00 0.00 1011545 0.12 0.04 0 1726 8 3819.50 446 1817 - - - -
ho nopr 4000 19488 0.42 0.09 0.00 2.00 1066158 0.07 - - - 30 1397.73 1316 2651 - - - -
ho noprxs 4000 19488 0.89 0.12 0.00 0.00 2484925 0.14 - - - 295 415.25 3703 - - - - -
ho noxs 4000 19488 1.24 0.11 0.00 0.00 2639453 0.11 0.04 0 2657 53 2028.45 1287 - - - - -
hybrid 4000 19465 8.20 0.02 - - - - - - 0 - - - - - - - -
k 4000 19488 1.06 0.02 0.00 0.00 551010 0.01 0.05 0 942 - - - - - - - -
ks 4000 19488 23.17 0.01 0.00 0.00 5583931 0.00 0.04 0 150606 - - - - - 360 - -
ks nopr 4000 19488 32.57 0.01 0.00 0.00 7222560 0.00 0.04 0 0 - - - - - 193009 - -
ni 4000 19488 7.17 0.02 0.00 0.00 6277318 0.03 0.04 0 563 - - - - 82 - - -
ni nopr 4000 19488 5.36 0.03 0.00 2.00 6298579 0.03 - - - - - - - 83 - - -
ho 4000 19872 0.45 0.07 0.00 0.00 904165 0.08 0.04 0 1359 10 3721.60 463 2165 - - - -
ho nopr 4000 19872 0.37 0.07 0.00 0.00 952205 0.06 - - - 13 3160.31 1163 2822 - - - -
ho noprxs 4000 19872 0.82 0.07 0.00 0.00 2254566 0.07 - - - 233 516.35 3765 - - - - -
ho noxs 4000 19872 1.01 0.09 0.00 2.00 2162225 0.09 0.04 0 3145 50 2027.03 801 - - - - -
hybrid 4000 19847 4.06 0.01 - - - - - - 0 - - - - - - - -
k 4000 19872 0.96 0.13 0.00 0.00 513041 0.10 0.05 0 910 - - - - - - - -
ks 4000 19872 23.11 0.01 0.00 4.90 5544245 0.00 0.04 0 145232 - - - - - 360 - -
ks nopr 4000 19872 30.83 0.01 0.00 0.00 6883541 0.00 0.04 0 0 - - - - - 156283 - -
ni 4000 19872 3.14 0.01 0.00 0.00 2806724 0.01 0.04 0 961 - - - - 36 - - -
ni nopr 4000 19872 2.38 0.01 0.00 0.00 2844712 0.01 - - - - - - - 37 - - -

Table A.27: IRREG data (cont)



119

nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect
avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time

ho 4000 19968 0.51 0.03 0.00 2.00 1024664 0.02 0.04 0 1160 11 3943.26 530 2295 - - - -
ho nopr 4000 19968 0.38 0.06 0.00 2.00 976694 0.04 - - - 15 3467.80 1201 2782 - - - -
ho noprxs 4000 19968 0.84 0.13 0.00 2.00 2345380 0.14 - - - 269 438.74 3730 - - - - -
ho noxs 4000 19968 1.06 0.11 0.00 2.00 2292255 0.11 0.04 0 2794 52 2013.51 1151 - - - - -
hybrid 4000 19942 3.68 0.03 - - - - - - 0 - - - - - - - -
k 4000 19968 0.86 0.11 0.00 4.90 474495 0.07 0.05 0 902 - - - - - - - -
ks 4000 19968 23.18 0.01 0.00 0.00 5533196 0.00 0.04 0 143928 - - - - - 360 - -
ks nopr 4000 19968 30.54 0.01 0.00 4.90 6813107 0.00 0.04 0 0 - - - - - 147222 - -
ni 4000 19968 2.71 0.01 0.00 0.00 2476826 0.00 0.04 0 631 - - - - 32 - - -
ni nopr 4000 19968 2.08 0.01 0.00 0.00 2500252 0.01 - - - - - - - 33 - - -
ho 4000 19992 0.47 0.11 0.00 0.00 947404 0.14 0.04 0 1265 14 3873.20 312 2406 - - - -
ho nopr 4000 19992 0.39 0.06 0.00 1.22 982945 0.05 - - - 15 3717.79 1232 2751 - - - -
ho noprxs 4000 19992 0.82 0.06 0.00 2.00 2254118 0.07 - - - 234 464.57 3764 - - - - -
ho noxs 4000 19992 1.05 0.12 0.00 1.22 2229070 0.12 0.04 0 2879 47 2016.02 1070 - - - - -
hybrid 4000 19966 3.60 0.02 - - - - - - 0 - - - - - - - -
k 4000 19992 0.81 0.02 0.00 1.46 458854 0.00 0.05 0 894 - - - - - - - -
ks 4000 19992 23.25 0.01 0.00 2.29 5533477 0.00 0.04 0 143650 - - - - - 360 - -
ks nopr 4000 19992 30.46 0.01 0.00 1.78 6796199 0.00 0.04 0 0 - - - - - 144886 - -
ni 4000 19992 2.53 0.07 0.00 0.00 2292778 0.09 0.04 0 1230 - - - - 29 - - -
ni nopr 4000 19992 2.01 0.02 0.00 1.22 2419368 0.02 - - - - - - - 32 - - -
ho 4000 19998 0.50 0.11 0.01 0.63 1021437 0.12 0.05 0 1239 12 3859.26 444 2302 - - - -
ho nopr 4000 19998 0.37 0.10 0.00 1.22 950583 0.07 - - - 15 3306.01 1052 2930 - - - -
ho noprxs 4000 19998 0.79 0.10 0.01 0.33 2210902 0.09 - - - 243 472.28 3756 - - - - -
ho noxs 4000 19998 1.14 0.20 0.01 0.94 2450897 0.20 0.04 0 2939 48 2148.75 1010 - - - - -
hybrid 4000 19972 3.67 0.03 - - - - - - 0 - - - - - - - -
k 4000 19998 0.90 0.13 0.01 0.67 496252 0.09 0.05 0 892 - - - - - - - -
ks 4000 19998 23.21 0.01 0.01 1.00 5534196 0.00 0.04 0 143547 - - - - - 360 - -
ks nopr 4000 19998 30.46 0.01 0.01 0.99 6791941 0.00 0.04 0 0 - - - - - 144367 - -
ni 4000 19998 2.53 0.05 0.01 0.94 2282411 0.05 0.04 0 2006 - - - - 29 - - -
ni nopr 4000 19998 2.00 0.01 0.01 0.89 2418235 0.00 - - - - - - - 32 - - -
ho 4000 19999 0.47 0.06 0.01 0.63 937796 0.06 0.04 0 1134 12 3861.75 283 2567 - - - -
ho nopr 4000 19999 0.37 0.06 0.01 0.33 942599 0.05 - - - 15 3579.70 1144 2839 - - - -
ho noprxs 4000 19999 0.84 0.12 0.01 0.82 2386909 0.13 - - - 217 587.49 3781 - - - - -
ho noxs 4000 19999 1.08 0.08 0.01 0.63 2295285 0.08 0.04 0 2970 52 2030.25 975 - - - - -
hybrid 4000 19973 3.60 0.02 - - - - - - 0 - - - - - - - -
k 4000 19999 0.84 0.09 0.01 0.45 477199 0.08 0.05 0 905 - - - - - - - -
ks 4000 19999 23.13 0.01 0.01 0.62 5532939 0.00 0.04 0 143532 - - - - - 360 - -
ks nopr 4000 19999 30.30 0.00 0.01 0.75 6791292 0.00 0.04 0 0 - - - - - 144935 - -
ni 4000 19999 2.64 0.02 0.01 0.89 2387316 0.03 0.04 0 994 - - - - 30 - - -
ni nopr 4000 19999 2.01 0.02 0.01 0.63 2449209 0.01 - - - - - - - 32 - - -
ho 4000 16002 0.83 0.35 0.00 0.00 1652344 0.37 0.04 0 1808 18 3186.96 681 1490 - - - -
ho nopr 4000 16002 0.52 0.09 0.00 0.00 1330925 0.11 - - - 23 2205.47 1636 2339 - - - -
ho noprxs 4000 16002 0.73 0.05 0.00 0.00 1918943 0.06 - - - 319 302.91 3679 - - - - -
ho noxs 4000 16002 1.11 0.10 0.00 2.00 2256278 0.11 0.04 0 2671 54 1705.83 1272 - - - - -
hybrid 4000 15987 79.26 0.02 - - - - - - 46 - - - - - - - -
k 4000 16002 0.87 0.02 0.00 0.00 492495 0.01 0.04 0 565 - - - - - - - -
ks 4000 16002 22.25 0.02 0.00 0.00 5780443 0.01 0.03 0 163947 - - - - - 428 - -
ks nopr 4000 16002 37.44 0.01 0.00 0.00 8382547 0.00 0.03 0 0 - - - - - 347803 - -
ni 4000 16002 77.92 0.01 0.00 0.00 67221757 0.01 0.03 0 1718 - - - - 1101 - - -
ni nopr 4000 16002 59.35 0.01 0.00 0.00 67936727 0.01 - - - - - - - 1166 - - -
ho 4000 20000 1.26 0.21 0.00 2.00 2650657 0.22 0.04 0 1981 25 3254.40 702 1289 - - - -
ho nopr 4000 20000 1.00 0.26 0.00 1.22 2816372 0.28 - - - 33 2741.98 2037 1928 - - - -
ho noprxs 4000 20000 0.85 0.08 0.00 1.22 2383670 0.08 - - - 229 506.78 3769 - - - - -
ho noxs 4000 20000 1.36 0.12 0.00 0.00 2920179 0.12 0.04 0 2733 57 1768.63 1207 - - - - -
hybrid 4000 19974 103.02 0.01 - - - - - - 85 - - - - - - - -
k 4000 20000 1.24 0.17 0.00 4.90 659768 0.14 0.05 0 904 - - - - - - - -
ks 4000 20000 26.04 0.01 0.00 0.00 6487797 0.01 0.04 0 169330 - - - - - 367 - -
ks nopr 4000 20000 42.81 0.01 0.00 0.00 9311809 0.00 0.04 0 0 - - - - - 348464 - -
ni 4000 20000 102.33 0.01 0.00 0.00 92641778 0.01 0.04 0 1950 - - - - 1207 - - -
ni nopr 4000 20000 77.86 0.02 0.00 0.00 93762348 0.01 - - - - - - - 1305 - - -

Table A.28: IRREG data (cont)



12
0

A
PP

EN
D

IX
A

.
D

A
TA

TA
BL

ES

nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect
avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time

ho 4000 16008 1.07 0.33 0.00 2.00 2162918 0.34 0.04 0 1843 23 3403.26 618 1513 - - - -
ho nopr 4000 16008 0.60 0.30 0.00 1.22 1534529 0.33 - - - 25 2514.46 1817 2156 - - - -
ho noprxs 4000 16008 0.85 0.08 0.00 1.22 2201395 0.08 - - - 269 409.25 3729 - - - - -
ho noxs 4000 16008 1.08 0.09 0.00 2.00 2191507 0.10 0.04 0 2750 55 1739.21 1192 - - - - -
hybrid 4000 15993 78.13 0.01 - - - - - - 43 - - - - - - - -
k 4000 16008 0.92 0.11 0.00 0.00 513722 0.09 0.04 0 566 - - - - - - - -
ks 4000 16008 22.00 0.01 0.00 0.00 5743012 0.01 0.03 0 165318 - - - - - 419 - -
ks nopr 4000 16008 37.34 0.01 0.00 0.00 8367371 0.00 0.04 0 0 - - - - - 346167 - -
ni 4000 16008 76.40 0.02 0.00 0.00 66466780 0.01 0.04 0 1833 - - - - 1088 - - -
ni nopr 4000 16008 58.80 0.01 0.00 0.00 67086529 0.01 - - - - - - - 1141 - - -
ho 4000 16032 1.04 0.15 0.00 0.00 2093962 0.16 0.04 0 2060 25 3315.68 518 1393 - - - -
ho nopr 4000 16032 0.68 0.20 0.00 2.00 1752914 0.20 - - - 34 2349.00 1570 2394 - - - -
ho noprxs 4000 16032 0.80 0.08 0.00 0.00 2111676 0.08 - - - 290 417.26 3709 - - - - -
ho noxs 4000 16032 1.12 0.13 0.00 0.00 2287736 0.13 0.04 0 2687 57 1888.02 1253 - - - - -
hybrid 4000 16017 77.70 0.01 - - - - - - 31 - - - - - - - -
k 4000 16032 0.87 0.03 0.00 0.00 497553 0.03 0.04 0 565 - - - - - - - -
ks 4000 16032 21.92 0.01 0.00 0.00 5725190 0.01 0.03 0 165271 - - - - - 416 - -
ks nopr 4000 16032 37.30 0.01 0.00 0.00 8348505 0.00 0.04 0 0 - - - - - 343248 - -
ni 4000 16032 74.51 0.01 0.00 0.00 64753799 0.01 0.03 0 1712 - - - - 1058 - - -
ni nopr 4000 16032 57.05 0.01 0.00 0.00 65349654 0.01 - - - - - - - 1112 - - -
ho 4000 16128 1.07 0.20 0.00 0.00 2171971 0.21 0.04 0 2090 24 3351.14 454 1429 - - - -
ho nopr 4000 16128 0.72 0.31 0.00 0.00 1850099 0.32 - - - 44 1698.74 1586 2368 - - - -
ho noprxs 4000 16128 0.77 0.11 0.00 0.00 2017220 0.12 - - - 265 406.14 3733 - - - - -
ho noxs 4000 16128 1.15 0.12 0.00 0.00 2353055 0.12 0.04 0 3048 58 1842.28 891 - - - - -
hybrid 4000 16113 70.16 0.01 - - - - - - 14 - - - - - - - -
k 4000 16128 0.95 0.11 0.00 0.00 523967 0.09 0.04 0 559 - - - - - - - -
ks 4000 16128 21.61 0.01 0.00 0.00 5621301 0.01 0.04 0 166054 - - - - - 399 - -
ks nopr 4000 16128 36.61 0.01 0.00 0.00 8209925 0.00 0.04 0 0 - - - - - 333561 - -
ni 4000 16128 68.69 0.02 0.00 0.00 58722033 0.02 0.04 0 1733 - - - - 950 - - -
ni nopr 4000 16128 51.64 0.02 0.00 0.00 59036711 0.02 - - - - - - - 978 - - -
ho 4000 16512 0.54 0.13 0.00 1.22 1039862 0.13 0.04 0 2057 13 3579.16 561 1366 - - - -
ho nopr 4000 16512 0.50 0.11 0.00 2.00 1246168 0.12 - - - 47 1269.31 1463 2487 - - - -
ho noprxs 4000 16512 0.78 0.16 0.00 1.22 2064607 0.16 - - - 332 372.36 3666 - - - - -
ho noxs 4000 16512 1.08 0.07 0.00 1.22 2219092 0.07 0.04 0 3017 55 1863.49 925 - - - - -
hybrid 4000 16497 44.80 0.03 - - - - - - 0 - - - - - - - -
k 4000 16512 0.98 0.09 0.00 0.00 531138 0.10 0.04 0 516 - - - - - - - -
ks 4000 16512 20.63 0.01 0.00 4.90 5343115 0.01 0.03 0 164679 - - - - - 367 - -
ks nopr 4000 16512 34.20 0.01 0.00 0.00 7708141 0.00 0.04 0 0 - - - - - 289769 - -
ni 4000 16512 43.16 0.02 0.00 0.00 36716479 0.01 0.03 0 1223 - - - - 573 - - -
ni nopr 4000 16512 32.66 0.02 0.00 0.00 36758173 0.01 - - - - - - - 579 - - -
ho 4000 17000 0.44 0.06 0.00 0.00 859576 0.07 0.04 0 1884 11 3569.09 377 1724 - - - -
ho nopr 4000 17000 0.39 0.11 0.00 1.22 983675 0.13 - - - 60 864.45 1171 2766 - - - -
ho noprxs 4000 17000 0.74 0.04 0.00 1.22 1977996 0.04 - - - 283 411.09 3715 - - - - -
ho noxs 4000 17000 1.01 0.08 0.00 0.00 2084487 0.08 0.04 0 2925 52 1843.45 1021 - - - - -
hybrid 4000 16983 19.50 0.01 - - - - - - 0 - - - - - - - -
k 4000 17000 0.94 0.04 0.00 0.00 501469 0.03 0.04 0 479 - - - - - - - -
ks 4000 17000 20.35 0.01 0.00 4.90 5165804 0.00 0.03 0 157875 - - - - - 360 - -
ks nopr 4000 17000 31.47 0.00 0.00 0.00 7131610 0.00 0.04 0 0 - - - - - 234823 - -
ni 4000 17000 17.93 0.03 0.00 0.00 15374207 0.02 0.03 0 1644 - - - - 231 - - -
ni nopr 4000 17000 13.58 0.02 0.00 0.00 15431955 0.02 - - - - - - - 233 - - -
ho 4000 17488 0.43 0.10 0.00 1.22 836407 0.11 0.04 0 1548 10 3697.10 515 1923 - - - -
ho nopr 4000 17488 0.36 0.11 0.00 1.22 873946 0.10 - - - 23 1890.64 1242 2733 - - - -
ho noprxs 4000 17488 0.78 0.03 0.00 1.22 2083656 0.04 - - - 292 413.61 3706 - - - - -
ho noxs 4000 17488 1.04 0.04 0.00 2.00 2179022 0.04 0.04 0 2945 53 1974.74 999 - - - - -
hybrid 4000 17471 6.01 0.02 - - - - - - 0 - - - - - - - -
k 4000 17488 0.95 0.03 0.00 4.90 510673 0.01 0.04 0 443 - - - - - - - -
ks 4000 17488 20.31 0.01 0.00 0.00 5081639 0.00 0.04 0 150186 - - - - - 360 - -
ks nopr 4000 17488 29.00 0.01 0.00 0.00 6625589 0.00 0.03 0 0 - - - - - 182557 - -
ni 4000 17488 5.09 0.02 0.00 0.00 4398846 0.03 0.04 0 1018 - - - - 64 - - -
ni nopr 4000 17488 3.90 0.03 0.00 2.00 4435175 0.03 - - - - - - - 66 - - -

Table A.29: IRREG data (cont)



121
nodes arcs total time discovery time edge scans preprocess initial internal s-t avg. 1 node excess phases leaves packing respect

avg dev % avg dev % avg dev % time PR PR cuts size layers detect time time
ho 1024 2045 0.11 0.00 0.00 0.00 532343 0.00 0.00 0 10 9 912.33 988 15 - - - -
ho nopr 1024 2045 0.12 0.00 0.00 0.00 699088 0.00 - - - 10 922.70 997 16 - - - -
ho noprxs 1024 2045 0.13 0.00 0.00 0.00 700046 0.00 - - - 13 790.38 1010 - - - - -
ho noxs 1024 2045 0.12 0.00 0.00 0.00 548614 0.00 0.00 0 5 11 791.64 1007 - - - - -
hybrid 1024 2045 4.16 0.00 - - - - - - 22 - - - - - - - -
k 1024 2045 1.86 0.38 0.00 0.00 1864218 0.34 0.00 0 1 - - - - - - 1.14 0.70
ks 1024 2045 18.43 0.03 0.00 0.00 7646982 0.03 0.00 0 237274 - - - - - 13481 - -
ks nopr 1024 2045 134.90 0.02 0.00 0.00 25812267 0.01 0.00 0 0 - - - - - 3422384 - -
ni 1024 2045 1.51 0.00 0.00 0.00 2191859 0.00 0.00 0 631 - - - - 324 - - -
ni nopr 1024 2045 1.53 0.00 0.00 0.00 3172420 0.00 - - - - - - - 767 - - -
ho 2048 4093 0.78 0.00 0.00 0.00 2777922 0.00 0.01 0 11 10 1845.30 2008 17 - - - -
ho nopr 2048 4093 0.78 0.00 0.00 0.00 3610925 0.00 - - - 11 1862.91 2018 18 - - - -
ho noprxs 2048 4093 0.73 0.00 0.00 0.00 3236001 0.00 - - - 22 1437.09 2025 - - - - -
ho noxs 2048 4093 0.84 0.00 0.00 0.00 3029748 0.00 0.01 0 10 22 1289.82 2015 - - - - -
hybrid 2048 4093 17.14 0.00 - - - - - - 117 - - - - - - - -
k 2048 4093 4.85 0.52 0.00 0.00 3865549 0.37 0.01 0 1 - - - - - - 2.96 1.83
ks 2048 4093 64.20 0.02 0.00 0.00 25978941 0.02 0.01 0 761936 - - - - - 33006 - -
ks nopr 2048 4093 510.54 0.01 0.00 0.00 97493172 0.01 0.01 0 0 - - - - - 12985750 - -
ni 2048 4093 7.33 0.00 0.00 0.00 8752715 0.00 0.01 0 1263 - - - - 648 - - -
ni nopr 2048 4093 7.36 0.00 0.00 0.00 12683080 0.00 - - - - - - - 1535 - - -
ho 4096 8189 3.40 0.00 0.00 0.00 10132262 0.00 0.03 0 15 11 3725.73 4048 20 - - - -
ho nopr 4096 8189 3.18 0.00 0.00 0.00 13101365 0.00 - - - 12 3755.75 4063 20 - - - -
ho noprxs 4096 8189 3.12 0.00 0.00 0.00 11023325 0.00 - - - 31 2364.48 4064 - - - - -
ho noxs 4096 8189 3.52 0.00 0.00 0.00 10769201 0.00 0.03 0 10 23 2670.61 4062 - - - - -
hybrid 4096 8189 77.48 0.00 - - - - - - 318 - - - - - - - -
k 4096 8189 21.76 0.47 0.00 0.00 16827559 0.43 0.03 0 1 - - - - - - 15.78 5.81
ks 4096 8189 217.29 0.01 0.00 0.00 88894755 0.01 0.02 0 2488045 - - - - - 82202 - -
ks nopr - - - - - - - - - - - - - - - - - - -
ni 4096 8189 41.46 0.00 0.00 0.00 34922585 0.00 0.02 0 2539 - - - - 1292 - - -
ni nopr 4096 8189 37.55 0.00 0.00 0.00 50697637 0.00 - - - - - - - 3071 - - -
ho 8192 16381 15.84 0.00 0.01 0.00 36584820 0.00 0.05 0 13 12 7511.42 8144 21 - - - -
ho nopr 8192 16381 17.41 0.00 0.00 0.00 48378276 0.00 - - - 13 7562.92 8156 22 - - - -
ho noprxs 8192 16381 16.73 0.00 0.00 0.00 49471274 0.00 - - - 28 5680.36 8163 - - - - -
ho noxs 8192 16381 16.49 0.00 0.00 0.00 39850260 0.00 0.06 0 12 28 5215.14 8151 - - - - -
hybrid 8192 16381 355.87 0.00 - - - - - - 763 - - - - - - - -
k 8192 16381 54.64 0.35 0.00 0.00 50494020 0.25 0.05 0 1 - - - - - - 25.85 28.44
ks 8192 16381 772.43 0.02 0.00 0.00 307373061 0.01 0.05 0 8271666 - - - - - 217031 - -
ks nopr - - - - - - - - - - - - - - - - - - -
ni 8192 16381 197.90 0.00 0.00 0.00 139427922 0.00 0.04 0 5085 - - - - 2578 - - -
ni nopr 8192 16381 190.70 0.00 0.00 0.00 202931617 0.00 - - - - - - - 6143 - - -
ho 16384 32765 37.84 0.00 0.01 0.00 93892240 0.00 0.11 0 14 13 15125.77 16332 23 - - - -
ho nopr 16384 32765 55.69 0.00 0.00 0.00 144763771 0.00 - - - 14 15214.79 16345 24 - - - -
ho noprxs 16384 32765 55.36 0.00 0.00 0.00 142891464 0.00 - - - 29 11558.97 16354 - - - - -
ho noxs 16384 32765 35.91 0.00 0.01 0.00 83557492 0.00 0.11 0 10 24 11504.25 16349 - - - - -
hybrid - - - - - - - - - - - - - - - - - - -
k 16384 32765 - - - - - - 0.11 0 - - - - - - - - -
ks - - - - - - - - - - - - - - - - - - -
ks nopr - - - - - - - - - - - - - - - - - - -
ni 16384 32765 869.31 0.00 0.00 0.00 556928579 0.00 0.11 0 10190 - - - - 5146 - - -
ni nopr 16384 32765 872.64 0.00 0.00 0.00 810984322 0.00 - - - - - - - 12287 - - -
ho 32768 65533 300.16 0.00 0.02 0.00 559776502 0.00 0.23 0 15 14 30429.50 32712 25 - - - -
ho nopr 32768 65533 325.74 0.00 0.01 0.00 667965736 0.00 - - - 16 29185.19 32723 28 - - - -
ho noprxs 32768 65533 360.98 0.00 0.01 0.00 755676525 0.00 - - - 34 22560.59 32733 - - - - -
ho noxs 32768 65533 305.72 0.00 0.02 0.00 579486594 0.00 0.23 0 14 34 21025.65 32719 - - - - -
k 32768 65533 - - - - - - 0.23 0 - - - - - - - - -
ks - - - - - - - - - - - - - - - - - - -

Table A.30: BIKEWHE data



122 APPENDIX A. DATA TABLES
nod

es
arcs

totaltim
e

d
iscovery

tim
e

ed
ge

scans
preprocess

initial
internal

s-t

avg.
1

nod
e

excess
phases

leaves
packing

respect
avg

d
ev

%
avg

d
ev

%
avg

d
ev

%
tim

e
PR

PR
cuts

size
layers

d
etect

tim
e

tim
e

ho
1024

2048
0.35

0.00
0.34

0.00
1230702

0.00
0.00

0
255

257
264.00

2
509

-
-

-
-

ho
nopr

1024
2048

0.30
0.00

0.30
0.00

1222959
0.00

-
-

-
762

259.03
4

257
-

-
-

-
ho

noprxs
1024

2048
0.31

0.00
0.31

0.00
1223465

0.00
-

-
-

1019
257.77

4
-

-
-

-
-

ho
noxs

1024
2048

0.37
0.00

0.34
0.00

1228466
0.00

0.00
0

513
509

256.60
1

-
-

-
-

-
hybrid

1024
2048

0.41
0.00

-
-

-
-

-
-

660
-

-
-

-
-

-
-

-
k

1024
2048

0.29
0.08

0.01
0.82

248286
0.10

0.01
0

510
-

-
-

-
-

-
0.15

0.12
ks

1024
2048

1.11
0.02

0.05
0.51

628211
0.02

0.00
0

38488
-

-
-

-
-

503
-

-
ks

nopr
128

256
12.33

0.03
3.22

0.45
1792355

0.03
0.00

0
0

-
-

-
-

-
488208

-
-

ni
1024

2048
0.02

0.00
0.01

0.00
28666

0.00
0.01

0
1018

-
-

-
-

4
-

-
-

ni
nopr

1024
2048

1.66
0.00

0.00
0.00

4198347
0.00

-
-

-
-

-
-

-
1022

-
-

-
ho

2048
4096

1.59
0.00

1.58
0.00

4792474
0.00

0.01
0

512
513

520.00
1

1021
-

-
-

-
ho

nopr
2048

4096
1.29

0.00
1.28

0.00
4777023

0.00
-

-
-

1530
515.02

4
513

-
-

-
-

ho
noprxs

2048
4096

1.25
0.00

1.25
0.00

4778041
0.00

-
-

-
2043

513.76
4

-
-

-
-

-
ho

noxs
2048

4096
1.66

0.00
1.54

0.00
4783057

0.00
0.01

0
1024

1021
512.55

2
-

-
-

-
-

hybrid
2048

4096
1.66

0.00
-

-
-

-
-

-
1326

-
-

-
-

-
-

-
-

k
2048

4096
0.80

0.17
0.02

0.45
531380

0.29
0.01

0
1022

-
-

-
-

-
-

0.41
0.34

ks
2048

4096
2.50

0.02
0.09

0.39
1287910

0.01
0.01

0
80983

-
-

-
-

-
506

-
-

ks
nopr

256
512

51.14
0.04

9.93
0.49

7408803
0.04

0.00
0

0
-

-
-

-
-

2074744
-

-
ni

2048
4096

0.05
0.00

0.02
0.00

57338
0.00

0.00
0

2042
-

-
-

-
4

-
-

-
ni

nopr
2048

4096
7.74

0.00
0.01

0.00
16785355

0.00
-

-
-

-
-

-
-

2046
-

-
-

ho
4096

8192
7.44

0.00
7.42

0.00
18932846

0.00
0.03

0
1024

1025
1032.00

1
2045

-
-

-
-

ho
nopr

4096
8192

5.77
0.00

5.76
0.00

18903061
0.00

-
-

-
3066

1027.01
4

1025
-

-
-

-
ho

noprxs
4096

8192
5.78

0.00
5.77

0.00
18905103

0.00
-

-
-

4091
1025.75

4
-

-
-

-
-

ho
noxs

4096
8192

7.85
0.00

7.39
0.00

18916498
0.00

0.02
0

2048
2045

1024.52
2

-
-

-
-

-
hybrid

4096
8192

6.72
0.00

-
-

-
-

-
-

2658
-

-
-

-
-

-
-

-
k

4096
8192

2.40
0.26

0.06
0.09

1309191
0.40

0.02
0

2046
-

-
-

-
-

-
1.31

0.96
ks

4096
8192

6.45
0.03

0.22
0.46

2738795
0.01

0.02
0

173665
-

-
-

-
-

607
-

-
ks

nopr
512

1024
222.81

0.01
26.44

0.64
31730580

0.01
0.00

0
0

-
-

-
-

-
9039839

-
-

ni
4096

8192
0.11

0.00
0.03

0.00
114682

0.00
0.02

0
4090

-
-

-
-

4
-

-
-

ni
nopr

4096
8192

38.74
0.00

0.01
0.00

67125195
0.00

-
-

-
-

-
-

-
4094

-
-

-
ho

8192
16384

36.27
0.00

36.24
0.00

75152772
0.00

0.05
0

2048
2049

2056.00
1

4093
-

-
-

-
ho

nopr
8192

16384
28.02

0.00
28.00

0.00
75110509

0.00
-

-
-

6138
2051.00

4
2049

-
-

-
-

ho
noprxs

8192
16384

28.16
0.00

28.14
0.00

75114599
0.00

-
-

-
8187

2049.75
4

-
-

-
-

-
ho

noxs
8192

16384
37.98

0.00
35.64

0.00
75152956

0.00
0.05

0
4097

4093
2048.51

1
-

-
-

-
-

hybrid
8192

16384
28.14

0.00
-

-
-

-
-

-
5319

-
-

-
-

-
-

-
-

k
8192

16384
6.34

0.10
0.11

0.07
3317116

0.18
0.05

0
4094

-
-

-
-

-
-

3.59
2.47

ks
8192

16384
18.21

0.01
0.84

0.40
5754351

0.00
0.04

0
364825

-
-

-
-

-
644

-
-

ks
nopr

1024
2048

934.99
0.01

158.37
0.65

132601552
0.01

0.00
0

0
-

-
-

-
-

38185545
-

-
ni

8192
16384

0.26
0.00

0.08
0.00

229370
0.00

0.04
0

8186
-

-
-

-
4

-
-

-
ni

nopr
8192

16384
184.54

0.00
0.03

0.00
268468171

0.00
-

-
-

-
-

-
-

8190
-

-
-

ho
16384

32768
166.92

0.00
166.86

0.00
299569833

0.00
0.10

0
4095

4097
4104.00

2
8189

-
-

-
-

ho
nopr

16384
32768

126.35
0.00

126.32
0.00

299444635
0.00

-
-

-
12282

4099.00
4

4097
-

-
-

-
ho

noprxs
16384

32768
126.70

0.00
126.66

0.00
299452821

0.00
-

-
-

16379
4097.75

4
-

-
-

-
-

ho
noxs

16384
32768

178.64
0.00

164.42
0.00

299496122
0.00

0.10
0

8192
8189

4096.51
2

-
-

-
-

-
hybrid

16384
32768

121.82
0.00

-
-

-
-

-
-

10643
-

-
-

-
-

-
-

-
k

16384
32768

13.59
0.05

0.23
0.03

6633293
0.07

0.10
0

8190
-

-
-

-
-

-
7.79

5.22
ks

16384
32768

46.36
0.00

2.29
0.64

11983898
0.01

0.08
0

764442
-

-
-

-
-

683
-

-
ni

16384
32768

0.55
0.00

0.17
0.00

458746
0.00

0.09
0

16378
-

-
-

-
4

-
-

-
ni

nopr
16384

32768
798.69

0.00
0.07

0.00
1073807307

0.00
-

-
-

-
-

-
-

16382
-

-
-

ho
32768

65536
731.91

0.00
731.78

0.00
1195948260

0.00
0.20

0
8191

8193
8200.00

2
16381

-
-

-
-

ho
nopr

32768
65536

538.90
0.00

538.83
0.00

1195863014
0.00

-
-

-
24570

8195.00
4

8193
-

-
-

-
ho

noprxs
32768

65536
540.86

0.00
540.78

0.00
1195879392

0.00
-

-
-

32763
8193.75

4
-

-
-

-
-

ho
noxs

32768
65536

803.84
0.00

719.95
0.00

1195894133
0.00

0.20
0

16385
16381

8192.50
1

-
-

-
-

-
hybrid

32768
65536

520.86
0.00

-
-

-
-

-
-

21291
-

-
-

-
-

-
-

-
k

32768
65536

-
-

-
-

-
-

0.20
0

-
-

-
-

-
-

-
-

-
ks

32768
65536

110.03
0.00

3.82
0.60

25370976
0.00

0.17
0

1621037
-

-
-

-
-

753
-

-
ni

32768
65536

1.10
0.00

0.33
0.00

917498
0.00

0.17
0

32762
-

-
-

-
4

-
-

-

Table
A

.31:D
B

L
C

Y
C

d
ata



Bibliography

[1] R. K. Ahuja, J. B. Orlin, and R. E. Tarjan. Improved Time Bounds for the Maximum Flow
Problem. SIAM J. Comput., 18:939–954, 1989.

[2] R. J. Anderson and J. C. Setubal. Goldberg’s Algorithm for the Maximum Flow in Perspective:
a Computational Study. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and
Matching: First DIMACS Implementation Challenge, pages 1–18. AMS, 1993.

[3] D. L. Applegate and W. J. Cook. Personal communication. 1996.

[4] T. Badics and R. Boros. Implementing a Maximum Flow Algorithm: Experiments with Dy-
namic Trees. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First
DIMACS Implementation Challenge, pages 43–64. AMS, 1993.

[5] F. Barahona. Packing Spanning Trees. Mathematics of Operations Research, 20(1):104–115, 1995.

[6] R. A. Botafogo. Cluster Analysis for Hypertext Systems. In Proc. of the 16th Annual ACM
SIGIR Conference of Res. and Dev. in Info. Retrieval, pages 116–125, 1993.

[7] S. Chatterjee, J. R. Gilbert, R. Schreiber, and T. J. Sheffler. Array Distribution in Data-Parallel
Programs. In Languages and Compilers for Parallel Computing, pages 76–91. Lecture Notes in
Computer Science series, vol. 896, Springer-Verlag, 1996.

[8] C. S. Chekuri, A. V. Goldberg, D. R. Karger, M. S. Levine, and C. Stein. Experimental Study of
Minimum Cut Algorithms. In Proc. 8th ACM-SIAM Symposium on Discrete Algorithms, pages
324–333, 1997.

[9] J. Cheriyan and T. Hagerup. A randomized maximum flow algorithm. In Proc. 30th IEEE
Annual Symposium on Foundations of Computer Science, pages 118–123, 1989.

[10] J. Cheriyan, T. Hagerup, and K. Mehlhorn. Can a maximum flow be computed in o(nm)

time? In M. S. Paterson, editor, Proc. 17th ICALP, Lecture Notes in Computer Science
#443, pages 235–248, Springer-Verlag, Berlin, 1990. An extended abstract is also available
as ALCOM-90-26, ESPRIT II Basic Research Actions Program Project no. 3075 (ALCOM).

[11] J. Cheriyan and S. N. Maheshwari. Analysis of Preflow Push Algorithms for Maximum
Netwrok Flow. SIAM J. Comput., 18:1057–1086, 1989.



124 BIBLIOGRAPHY

[12] B. V. Cherkassky. A Fast Algorithm for Computing Maximum Flow in a Network. In A. V.
Karzanov, editor, Collected Papers, Vol. 3: Combinatorial Methods for Flow Problems, pages 90–96.
The Institute for Systems Studies, Moscow, 1979. In Russian. English translation appears in
AMS Trans., Vol. 158, pp. 23–30, 1994.

[13] B. V. Cherkassky and A. V. Goldberg. On Implementing Push-Relabel Method for the Maxi-
mum Flow Problem. Technical Report STAN-CS-94-1523, Department of Computer Science,
Stanford University, 1994.

[14] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cam-
bridge, MA, 1990.

[15] G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson. Solution of a Large-Scale Traveling Sales-
man Problem. Oper. Res., 2:393–410, 1954.

[16] U. Derigs and W. Meier. Implementing Goldberg’s Max-Flow Algorithm — A Computational
Investigation. ZOR — Methods and Models of Operations Research, 33:383–403, 1989.

[17] U. Derigs and W. Meier. An Evaluation of Algorithmic Refinements and Proper Data-
Structures for the Preflow-Push Approach for Maximum Flow. In ASI Series on Computer
and System Sciences, volume 8, pages 209–223. NATO, 1992.

[18] E. A. Dinic, A. V. Karzanov, and M. V. Lomonosov. On the structure of a family of minimum
weighted cuts in a graph. In A. A. Fridman, editor, Studies in Discrete Optimization, pages
290–306. Nauka Publishers, 1976.

[19] J. Edmonds. Submodular functions, matroids, and certain polyhedra. In Calgary International
Conf. on Combinatorial Structures and their Applications, pages 69–87, New York, 1969. Gordon
and Breach.

[20] J. Edmonds. Edge-disjoint branchings. In R. Rustin, editor, Combinatorial Algorithms, pages
91–96, New York, 1972. Algorithmics Press.

[21] P. Elias, A. Feinstein, and C. E. Shannon. Note on Maximum Flow Through a Network. IRE
Transactions on Information Theory, IT-2:117–199, 1956.

[22] L. R. Ford, Jr. and D. R. Fulkerson. Maximal Flow Through a Network. Canadian Journal of
Math., 8:399–404, 1956.

[23] H. N. Gabow. A Matroid Approach to Finding Edge Connectivity and Packing Arbores-
cences. J. Comp. and Syst. Sci., 50:259–273, 1995.

[24] H. N. Gabow and H. H. Westermann. Forests, Frames and Games: Algorithms for Matroid
Sums and Applications. Algorithmica, 7(5):465–497, 1992.

[25] A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem. J. Assoc.
Comput. Mach., 35:921–940, 1988.

[26] A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost Circulations by Canceling Negative
Cycles. In Proc. 20th Annual ACM Symposium on Theory of Computing, pages 388–397, 1988.



BIBLIOGRAPHY 125

[27] R. E. Gomory and T. C. Hu. Multi-terminal network flows. J. SIAM, 9:551–570, 1961.

[28] D. Gusfield. Very simple methods for all pairs network flow analysis. SIAM J. Comput.,
19:143–155, 1990.

[29] J. Hao. A Faster Algorithm for Finding the Minimum Cut of a Graph. Unpublished
manuscript, 1991.

[30] J. Hao and J. B. Orlin. A Faster Algorithm for Finding the Minimum Cut of a Graph. In Proc.
3rd ACM-SIAM Symposium on Discrete Algorithms, pages 165–174, 1992.

[31] J. Hao and J. B. Orlin. A Faster Algorithm for Finding the Minimum Cut in a Directed Graph.
J. Algorithms, 17:424–446, 1994.

[32] M. R. Henzinger and D. P. Williamson. On the Number of Small Cuts in a Graph. Information
Processing Letters, 59:41–44, 1996.

[33] D. R. Karger. Global Min-Cuts in RNC, and Other Ramifications of a Simple Min-Cut Algo-
rithm. In Proc. 4th ACM-SIAM Symposium on Discrete Algorithms, 1993.

[34] D. R. Karger. Random sampling in cut, flow, and network design problems. In Proc. 26th
Annual ACM Symposium on Theory of Computing, pages 648–657, 1994. Submitted to Math. of
Oper. Res.

[35] D. R. Karger. Random Sampling in Graph Optimization Problems. PhD thesis, Department of
Computer Science, Stanford University, Stanford, CA 94305, 1994.

[36] D. R. Karger. Using randomized sparsification to approximate minimum cut. In Proc. 5th
ACM-SIAM Symposium on Discrete Algorithms, pages 424–432, 1994.

[37] D. R. Karger. A randomized fully polynomial approximation scheme for the all terminal
network reliability problem. In Proc. 27th Annual ACM Symposium on Theory of Computing,
pages 11–17, 1995.

[38] D. R. Karger. Minimum Cuts in Near-Linear Time. In Proc. 28th Annual ACM Symposium on
Theory of Computing, pages 56–63, 1996.

[39] D. R. Karger and C. Stein. An ~O(n2) Algorithm for Minimum Cuts. In Proc. 25th Annual ACM
Symposium on Theory of Computing, pages 757–765, 1993.

[40] D. R. Karger and C. Stein. A new approach to the minimum cut problem. J. Assoc. Comput.
Mach., 43(4):601–640, July 1996.

[41] V. King, S. Rao, and R. Tarjan. A Faster Deterministic Maximum Flow Algorithm. J. Algo-
rithms, 17:447–474, 1994.

[42] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming. Addison
Wesley, 2nd edition, 1981.

[43] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys. The Traveling Salesman Problem.
Wiley & Sons, 1985.



126 BIBLIOGRAPHY

[44] T. Leong, P. Shor, and C. Stein. Implementation of a Combinatorial Multicommodity Flow
Algorithm. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First
DIMACS Implementation Challenge, pages 387–406. AMS, 1993.

[45] M. V. Lomonosov and V. P. Poleskii. Lower bound of network reliability. Problems of Informa-
tion Transmission, 7:118–123, 1971.

[46] D. W. Matula. A Linear Time 2+� Approximation Algorithm for Edge Connectivity. In Proc.
4th ACM-SIAM Symposium on Discrete Algorithms, pages 500–504, 1993.

[47] H. Nagamochi and T. Ibaraki. Computing Edge-Connectivity in Multigraphs and Capaci-
tated Graphs. SIAM J. Disc. Meth., 5:54–66, 1992.

[48] H. Nagamochi, T. Ono, and T. Ibaraki. Implementing an Efficient Minimum Capacity Cut
Algorithm. Math. Prog., 67:297–324, 1994.

[49] C. S. J. A. Nash-Williams. Edge disjoint spanning trees of finite graphs. Journal of the London
Mathematical Society, 36:445–450, 1961.

[50] Q. C. Nguyen and V. Venkateswaran. Implementations of Goldberg-Tarjan Maximum Flow
Algorithm. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First
DIMACS Implementation Challenge, pages 19–42. AMS, 1993.

[51] M. Padberg and G. Rinaldi. An Efficient Algorithm for the Minimum Capacity Cut Problem.
Math. Prog., 47:19–36, 1990.

[52] S. A. Plotkin, D. Shmoys, and E. Tardos. Fast Approximation Algorithms for Fractional Pack-
ing and Covering. In Proc. 32nd IEEE Annual Symposium on Foundations of Computer Science,
pages 495–504, 1991.

[53] A. Ramanathan and C. Colbourn. Counting Almost Minimum Cutsets with Reliability Ap-
plications. Math. Prog., 39:253–261, 1987.

[54] D. D. Sleator and R. E. Tarjan. A Data Structure for Dynamic Trees. J. Comput. System Sci.,
26:362–391, 1983.

[55] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J. Assoc. Comput. Mach.,
32(3):652–686, 1985.

[56] R. E. Tarjan. Applications of Path Compression on Balanced Trees. J. Assoc. Comput. Mach.,
26(4):690–715, 1979.


