
545 TECHNOLOGY SQUARE; CAMBRIDGE, MASSACHUSETTS 02139 (617) 253-5851

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS/TR-742

AN INTERACTIVE APPROACH

TO THE IDENTIFICATION AND

EXTRACTION

OF VISUAL EVENTS

William F. Stasior

February, 1998

This document has been made available free of charge via ftp
from the MIT Laboratory for Computer Science.

An Interactive Approach

to the Identi�cation and Extraction

of Visual Events

William F. Stasior

Telemedia Networks and Systems Group

Laboratory for Computer Science

Massachusetts Institute of Technology

Abstract

This report describes an interactive approach to the computerized processing and interpre-
tation of visual information. The objective is to facilitate the development of interactive

applications that analyze and interpret video input. The approach is to transform video
from raw sensory data into symbolicmedia events which can be incorporated into the design
of event-driven programs.

The computational task is modeled as a sequence of representational transformations which
are performed in stages on the data stream as it ows through a network of processing

modules. The transformations expose the salient information in the image stream which
is identi�ed and transformed into properties. Properties are then grouped into sequences
of predicates that are analyzed by pattern matching automata. Upon recognition, these
automata signal a symbolic event to the event processing layer of the application.

The approach is realized by Sieve, a \System for Identifying and Extracting Visual Events."

Sieve is a programming toolkit that provides a computational framework for building mul-
timedia programs that respond to both user and media input. Sieve's functionality may be
accessed by embedding the system into a custom application or by employing the higher
level VsGrep application. VsGrep is a general purpose tool, built using the Sieve toolkit,

that may be con�gured to take speci�ed actions in response to matching speci�c patterns
of video. As such, VsGrep may be used as a high level application builder which takes a
concise speci�cation and produces an interactive content analyzing application.

Finally, this report describes �ve prototype applications built using VsGrep that demon-
strate the system's functionality and performance: the Room Monitor, the Whiteboard

Recorder, the Computer Librarian, the Television Agent, and the Gesture Detector. These
applications show that desktop processing of video information is both feasible and powerful.

cMassachusetts Institute of Technology 1998

This research was supported by the Advanced Research Projects Agency of the Department of

Defense, monitored by the United States Air Force (AFSC, Rome Laboratory) under contract No.

F30602-92-C-0019, and by a grant from Sun Microsystems.

1

2

Acknowledgments

I'd like to thank my advisor, David Tennenhouse, both for inspiration and for the years of
support, guidance, and patience.

I also greatly enjoyed working with both my readers, Eric Grimson and Tom�as Lozano-

P�erez. In addition to their insights, I am very appreciative of their time and availability.

The research group that I work with has been the best reason for spending the time to earn
my degree. Chris Lindblad was a great resource who had a tremendous, positive impact
on this work. Vanu Bose, David Wetherall, Mike Ismert, and Henry Houh have all been
extremely helpful, and, incredibly fun to work with. John Guttag has been a great help

in the �nal stages. I am also very grateful to a many, many others who have been a part
of the Telemedia Networks and Systems Group { which has now become Software Devices
and Systems.

Finally, I owe the most to my current and future family. My mom and dad provided me with
everything they possibly could to support this endeavor, while my sister, Laura, remains

my strongest advocate. At last, I do not know how I ever would have �nished if it were not
for my �anc�e Jennifer providing comfort and support in these last two years.

3

Contents

1 Introduction 11

1.1 Approach and Contributions : 14
1.2 Road Map : 19

2 Related Work 21

2.1 Approaches to Computer Vision : 21
2.2 Content Based Retrieval : 22

2.3 Media Systems : 25

3 The Sieve Architecture 27

3.1 Media Data and Media Processing : 29
3.2 Recognizing Media Events : 32
3.3 Additional Background : 36

3.4 Example, The HeadHunter : 40
3.5 Summary : 47

4 Generating Properties 49

4.1 Matching : 50
4.2 Image Transformations : 63

4.3 Motion : 70
4.4 Binary Image Manipulation : 83
4.5 Alternative Filters and Properties : 90
4.6 Summary : 90

5 Property Processing 91

5.1 Parameter Setting : 91
5.2 Routing : 94
5.3 Summary : 106

6 Generating Events 107

6.1 Methodology : 107

6.2 Implementation : 114
6.3 Summary : 123

7 Video Grep 125

7.1 The VsGrep program : 126
7.2 Gesture Recognizer : 129

7.3 Room Monitor : 130

4

7.4 Computer Librarian : 134

7.5 Whiteboard Recorder : 135
7.6 Television Agent : 137
7.7 Summary : 138

8 Performance 141

8.1 Application Throughput : 141

8.2 Qualitative Performance : 143
8.3 Image Processing Throughput : 145

9 Conclusions 153

9.1 Contributions : 154
9.2 Insights : 154

9.3 Future Work : 157

A Test Images 159

B VsGrep Code 163

5

List of Figures

1-1 User media application loop : 12
1-2 User and media events : 14
1-3 Video ! properties! events ! interaction : : : : : : : : : : : : : : : : : : 14

1-4 Extracting properties from video streams : : : : : : : : : : : : : : : : : : : 15
1-5 Matching patterns of properties : 15
1-6 The VsGrep application : 16
1-7 The Television Agent : 17

1-8 The Room Monitor : 17
1-9 The Whiteboard Recorder : 17
1-10 The Computer Librarian : 18

1-11 The Gesture Recognizer : 18

3-1 Transforming unstructured media into symbolic events : : : : : : : : : : : : 27
3-2 Traditional interactive multimedia application : : : : : : : : : : : : : : : : : 28

3-3 New multimedia application architecture : 29
3-4 Data ow computation : 29
3-5 Extracting a moving object from a stationary background : : : : : : : : : : 31

3-6 Output of the moving object extraction ow graph : : : : : : : : : : : : : : 32
3-7 Data transformation : 33
3-8 Property generation : 34
3-9 Routing : 35

3-10 Recognition : 35
3-11 Script for implementing the moving object extraction ow graph : : : : : : 37

3-12 Moving object extractor abstraction : 38
3-13 The HeadHunter application : 40

3-14 Head shots : 40
3-15 HeadHunter layout : 41
3-16 Procedure to set up HeadHunter graphical user interface : : : : : : : : : : : 42

3-17 VsFaceDetect control panel : 43
3-18 Auxiliary procedures to implement Save and Remove : : : : : : : : : : : : : 43
3-19 HeadHunter data ow : 44
3-20 HeadHunter automata : 44

3-21 The isAnchor predicate : 44
3-22 Procedure to set up HeadHunter data ow : : : : : : : : : : : : : : : : : : : 45
3-23 Callback procedures for automata and �le sink : : : : : : : : : : : : : : : : 46
3-24 Short hand implementation : 46

3-25 The main procedure for the HeadHunter application : : : : : : : : : : : : : 47

6

4-1 Matching models to data : 50

4-2 VsPixelMatch used in a template matching �lter : : : : : : : : : : : : : : : 53
4-3 One dimensional histogram : 55
4-4 Three di�erent images with the same histograms : : : : : : : : : : : : : : : 57
4-5 Histogram of the Laplacian : 58

4-6 VsHausdor� : 59
4-7 Faces : 62
4-8 Transforming data for matching : 63

4-9 VsEdge : 67
4-10 Histogram transformation : 68
4-11 Convolution of an image with a stencil approximating the Laplacian : : : : 69
4-12 Convolution of an image with a box �lter : : : : : : : : : : : : : : : : : : : 69

4-13 Motion detection : 71
4-14 The output of VsDiffMotion with the shadow artifact : : : : : : : : : : : : 72
4-15 VsDi�Motion implementation : 72
4-16 VsThreshold : 74

4-17 VsOptFlowMotion implementation : 77
4-18 VsOptFlow : 78
4-19 Background motion : 79

4-20 VsStatMotion �lter : 80
4-21 VsStationary : 81
4-22 VsStationary implementation : 82
4-23 VsMotionExtract output : 86

4-24 VsMotionExtract : 86
4-25 VsColor : 88
4-26 VsSpeck : 88
4-27 VsMaskFill : 89

4-28 VsMaskFill output : 90

5-1 Fixed model tracker : 92

5-2 Event based tracker for updating model data : : : : : : : : : : : : : : : : : 93
5-3 Watch based tracker : 94
5-4 Script for implementing Hausdor� tracking : : : : : : : : : : : : : : : : : : 94

5-5 VsClassify : 95

5-6 A 4-way Classi�er built using VsClassify : 97
5-7 A temporal down-sampler built using VsClassify : : : : : : : : : : : : : : : 97
5-8 A switch built using VsClassify : 97

5-9 Sports Highlight Browser : 98
5-10 Sports highlight cliche : 99
5-11 VsTemplate : 99
5-12 VsClassProp : 100

5-13 Three di�erent graphic markers : 101
5-14 Classifying scoreboards : 102
5-15 Compound module for computing A and B : : : : : : : : : : : : : : : : : : 102
5-16 Compound module for computing A or B : : : : : : : : : : : : : : : : : : : 102

5-17 Two templates for the same team : 103
5-18 Classi�cation network : 105
5-19 VsSync used to \reorder" output from a classi�cation network : : : : : : : 106

7

6-1 Generating events from images : 107

6-2 Processing methodology : 108
6-3 A DFA which accepts the strings \aa", \aba", \abba", \abbba", ... : : : : : 112
6-4 An NFA which accepts the strings \aa", \aba", \aca", \abba", \acca",

\abbba", \accca", ... : 112

6-5 An NFA with � transitions which accepts the strings \ad", \abd", and \abcd"113
6-6 Concatenation of A and B : 114
6-7 Transformation to AjB : 114

6-8 Transformation of A to A* : 115
6-9 Three stages of a VsVex module : 116
6-10 Example of a VsCompose pipeline : 117
6-11 Hand gesture : 122

6-12 VsVex de�nition for recognizing a hand gesture : : : : : : : : : : : : : : : : 123

7-1 The VsGrep application : 125

7-2 The VsGrep application builder : 126
7-3 The VsGrep data ow : 127
7-4 The VsGrep graphical shell with a control panel and video player : : : : : : 128
7-5 The Gesture Recognizer : 129

7-6 Gesture Recognizer speci�cation : 130
7-7 The Room Monitor : 130
7-8 Room monitor speci�cation : 132
7-9 Speci�cation for icon selection : 133

7-10 The Computer Librarian : 134
7-11 Computer Librarian speci�cation : 135
7-12 The Whiteboard Recorder : 135

7-13 Whiteboard Recorder speci�cation : 136
7-14 The Television Agent : 137
7-15 The Television Agent property speci�cation : : : : : : : : : : : : : : : : : : 138
7-16 The VsAnchor �lter : 139

7-17 The Television Agent predicates and patterns : : : : : : : : : : : : : : : : : 140

8-1 Throughput performance by �lter : 145

8-2 Processing time versus resolution for template matching : : : : : : : : : : : 146
8-3 Processing time versus resolution for motion and translation �lters : : : : : 147
8-4 Processing time versus resolution for PixM and OptFlow (HistM shown for

reference) : 148

8-5 Throughput performance versus resolution : : : : : : : : : : : : : : : : : : : 149
8-6 Processing time for matching modules as a function of model size. The

resolution of the images used to obtain the results shown for VsHausdor� and
VsHistMatch (320x240) was four times that used for VsPixelMatch (160x120).150

8-7 Processing time of di�erent methods for VsDi�Motion �lter : : : : : : : : : 151
8-8 Average throughput performance by �lter for di�erent platforms measured

relative to that of a 166 MHz UltraSparc : 152

9-1 Composition : 155
9-2 Example of potential deadlock : 156
9-3 Source to sink latency : 157

8

A-1 Ten still images that were used for performance testing : : : : : : : : : : : : 160

A-2 Representative images from the ten motion sequences used for testing : : : 161
A-3 A complete motion sequence : 162

9

List of Tables

4.1 Distance methods : 53
4.2 Distance methods for VsDi� : 73

8.1 Throughput performance by application : 142
8.2 Recall and Precision : 143
8.3 Filter declarations : 145

8.4 Throughput for 8 bit gray scale versus 24 bit color : : : : : : : : : : : : : : 149
8.5 Platform speci�cations : 152

10

Chapter 1

Introduction

This dissertation describes an interactive approach to the computerized processing and in-
terpretation of visual information. The objective is to enable a user armed with a multimedia
workstation to build interactive applications that analyze and interpret video input.

The approach is realized by Sieve, a \System for Identifying and Extracting Visual Events."

Sieve is a programming toolkit that provides a computational framework for building mul-
timedia programs that respond to both user and media input.

Processing capability advances multimedia

Multimedia has already extended the domain of computer data from that which was primar-
ily numbers and text to that which includes images and media. Broadband networks coupled
with the widespread deployment of video devices, such as cameras, television receivers, and
video recorders, are allowing workers to rapidly access and produce visual information. In

doing so, it raises the possibility of these media becoming a rich and universal source of
information in the work place.

However, while computers are highly capable of examining and transforming text, they have
remained largely incapable of penetrating media. Media remains an opaque data type which
may be captured, stored, retrieved, and presented but can not be searched, manipulated,

or analyzed.

This lack of processing capability, which would be a limitation on any source of data, is
particularly severe for audio and video because they have a temporal component. The
temporal dependence places demands on the consumer's attention and limits the amount of
media which may be consumed. For example, consider the di�erence between photographs

and video tape. Video is easy to produce and rich in content. Many consumers would prefer,
however, to browse a set of photographs because they summarize an experience, freeing the
viewer from the time extent of the event.

What is needed are tools that can summarize media information and allow the user to
browse and consume this vast source of data more e�ciently. One would like programs that

can watch television for us and tell us when something of interest occurs. One would also
like programs that can analyze the video from cameras in our environment to tell us when

11

interesting events occur in the physical world.

Computer vision provides a starting point for multimedia processing

Unfortunately, the signi�cant advances in computer vision have as of yet done little towards
advancing such goals. Building robust, working vision systems has proven to be exceedingly

di�cult. Most vision algorithms are computationally expensive, di�cult to apply, and not
robust. Vision systems typically function in a narrow task domain or not at all.

I believe that part of the problem is that vision applications try to be too smart relative to
the task at hand. Using an analogy to text, one may argue that while considerable progress
has been made in the area of natural language understanding, most users use much simpler

search tools, such as the grep utility, to �nd and manipulate text. For example, in searching
through one's email to �nd an old message about a seminar, one is likely to search for words
related to the topic of the seminar, the speaker's name, or even the date to �nd the message

for which he or she is looking.

The point is, human beings don't mind applying their own knowledge and intelligence to

data manipulation tasks. What humans need are tools which allow them to leverage the
computer's ability to perform repetitive tasks such as searching large quantities of data in
well de�ned ways.

Computer vision + interactivity is the key to unlocking information

Multimedia brings video to the computer desktop. In doing so, the user is brought closer to
the data and the processing. This thesis aims to exploit this change by making it possible

for the user to be tightly integrated with the extraction of information (�gure 1-1) by
utilizing traditional computer vision techniques in an interactive environment.

Sensing

Feedback

User Input

Media Output

Media Input

ApplicationMedia

Feedback

Figure 1-1: User media application loop

Interactive applications inherit the constraint that they must run reasonably fast. Hence,

12

the objective of building interactive programs which analyze video may seem overwhelming.

To the contrary, this thesis argues that combining interactivity with vision makes the vision
problem tractable across a wide range of interesting applications.

The fundamental advantage to interactivity is that it brings a human into the loop. Three
principle advantages of a supervised system over a fully autonomous one are:

� A user can supply parameters and feedback.

Algorithms that process sensory data frequently depend upon a multitude of input
parameters. Typically, these parameters are tuned in an ad hoc manner to maximize
performance. While computer programs have considerable di�culty in judging their
own performance, humans can provide feedback which may be used to adjust the

system.

� A user can tolerate mistakes.

It is considerably easier to prune the space of possibilities than to produce a de�nitive

answer. While an autonomous system may be forced into making an uncertain deci-
sion, an interactive system can be useful to its user simply by reducing the amount of
information that the user sees, allowing the operator to perform the �nal arbitration.

� A user can specialize the system.

A human user is able to apply his or her knowledge about the problem in order to
match a speci�c processing operation to a highly constrained task. For example,

in searching a news telecast for a Red Sox baseball highlight, the user may know
that Red Sox highlights are typically preceded by an anchor person and followed by a
graphic depicting the score of the game. Given the right tools, the user may direct the
computer to search the telecast for such occurrences rather than require the system

to understand the concept of baseball.

13

1.1 Approach and Contributions

To meet the objectives outlined above, this thesis:

� Develops a framework for building interactive applications which analyze media con-

tent.

Media Analysis

Mouse
Keyboard Low Level

Processing

Actions

Audio
Video

User Events

Media Events

Event Driven
Application

Figure 1-2: User and media events

Interactive applications are those that respond in a timely manner to a human user.

In the case of traditional interfaces, the user communicates with the computer through
a keyboard or a mouse. Such input is processed at a low level into symbols and events
which are processed at a higher level by the application.

This thesis treats media input in an analogous manner. Media is transformed from
raw sensory data into symbolic media events which the application processes along

with higher level user events in event handling routines (�gure 1-2).

� Develops an approach to analyzing video streams which is suitable for generating
symbolic media events.

Properties

Events

Interaction

Scripts Widgets

Event Driven
Programming

property

Processing Processing

property

Media Flow

Pattern Matching
Automata

Display

Figure 1-3: Video ! properties ! events ! interaction

The problem of generating symbolic events from unstructured video is posed as the
problem of recognizing patterns in video data. This computational task, depicted

14

in �gure 1-3, is modeled as a sequence of representational transformations which are

performed in stages on the data stream as it ows through a network of processing
modules. The transformations expose the salient information in the image stream
which is identi�ed and transformed into properties.

Next, patterns of properties are recognized by automata which analyze the sequences
of property measurements. Upon recognition, these automata signal a symbolic event

to the event processing layer of the application.

� Adapts algorithms from computer vision so that they may be used in a ow driven
media processing network to measure properties in video.

property

transform

model
match transform

model
match

property

motion
Video select

property

transform

model
match

join

Figure 1-4: Extracting properties from video streams

The video analysis employed in this thesis focuses on two complementary areas from
computer vision: matching and motion. Matching is concerned with determining

whether two inputs are the same while motion is concerned with detecting and mea-
suring change. Motion is used primarily to focus the attention of the system, telling
it when and where to look. Matching is used to compare input data against models
and templates so that a property may represent the degree to which an input matches

a particular model. Matching is implemented in a modular fashion whereby represen-
tational transformations that expose the relevant information are performed prior to
matching (�gure 1-4).

� Adapts algorithms from computational automata theory that may be used to recognize
patterns of properties.

Predicates

Properties

Events

Finite
Automata

Figure 1-5: Matching patterns of properties

15

There are many viable approaches to the problem of detecting patterns in streams

of property values. This thesis focuses on adapting well developed techniques used
to recognize strings of symbols to the problem of recognizing sequences of properties.
The concept of a predicate is introduced (illustrated in �gure 1-5) to map properties
to symbols so that regular patterns may be recognized using �nite-automata.

� Implements Sieve, a programming system that realizes the analytical approach put

forth in this thesis.

Sieve is an extensible system for implementing interactive applications which manip-
ulate and analyze media content.

� ImplementsVsGrep, a generic Sieve application that is the visual equivalent of \grep".

Figure 1-6: The VsGrep application

VsGrep, shown in �gure 1-6, may be used an interactive tool or as a high level appli-
cation builder which takes as input a concise speci�cation and produces as output an
interactive content analyzing application.

� Demonstrates Sieve by using it to build applications which extend the domain of
multimedia.

This thesis presents �ve prototype applications implemented using Sieve: the Room

Monitor, the Whiteboard Recorder, the Computer Librarian, the Television Agent,
and the Gesture Detector. In addition to demonstrating Sieve's functionality, these
applications demonstrate the possibilities brought about by the desktop processing of
media information.

16

The Television Agent (�gure 1-7) demonstrates the possibility of using computers to

help us sift through the volumes of video data coming at us from television content
providers. In particular, this application captures video clips of special events which
the user has programmed the agent to watch for.

Anchor Highlight Scoreboard

Figure 1-7: The Television Agent

The Room Monitor (�gure 1-8) demonstrates the potential of using cameras and

processing to assist us in managing our physical environment. The Room Monitor
summarizes activity in one's o�ce according to user speci�ed visual criteria, such as
noting visitors through observations of motion.

Figure 1-8: The Room Monitor

The Whiteboard Recorder (�gure 1-9) is a more specialized application which also
demonstrates the potential for computers being made aware of the physical world
through the use of camera sensors. The recorder summarizes the activity on one's
whiteboard over a period of time by constructing a succinct set of still images from

the video stream.

Figure 1-9: The Whiteboard Recorder

17

The Computer Librarian (�gure 1-10) is another specialized application, similar in

function to the Whiteboard Recorder. The librarian keeps track of who has borrowed
what books from a collection by saving a video clip each time a visitor removes or
returns a book.

Figure 1-10: The Computer Librarian

Finally, the Gesture Recognizer (�gure 1-11) demonstrates the potential for programs

that analyze media to provide for a more natural interface between a human and
a computer. The Gesture Monitor is a con�gurable application designed to permit
the user to signal commands to the computer without the assistance of a mouse or
keyboard.

Figure 1-11: The Gesture Recognizer

An important element of the overall approach is its focus on interactive and task speci�c
solutions to media interpretation problems. Rather than attempt to solve general vision

problems, this thesis acknowledges that while such solutions are desirable, they are di�cult
to achieve. Instead, this work promotes the aggressive use of application constraints to
simplify the computational task. For example, the Whiteboard application exploits the fact

that the writing on the board is darker than the board itself. The Room Monitor takes full
advantage of the fact that its input comes from a stationary camera while the Television
Agent attempts to use the repetition in the format and graphics used in TV broadcasts to
�nd interesting video clips.

The key to exploiting such constraints is to allow the user to specialize the computation.

Rather than attempting to build an intelligent system that can specialize itself, this work
leverages the intelligence of the user and focuses on the problem of bringing the user closer
to the computational task. Sieve provides the linguistic means whereby the user can rapidly
combine and con�gure reusable modules into specialized applications. In addition, Sieve

provides high level tools such as the Vex module. Vex enables its user to specify the
characteristics of the media that he or she is interested in and to perform actions based
upon whether the media meets the speci�cation. Vex frees the user from the mundane
programming details of memory management, ow design, and pattern analysis; allowing

the user instead to focus on the application speci�c details of determining what video the he
or she is interested in and what they want to do when such a piece of video is encountered.

18

An important assumption of this approach is that the user knows how to specialize the

computation and is willing to do so. Thus, an immediate limitation to this approach is
that it expects the user to be a programmer. A subject for future work (described briey
in section 9.3), is to enable the system to learn from examples provided by the user. Such
a system could be based on the same computational framework, but would be useful to a

wider population.

Sieve provides a platform for exploration of the subset of applications that interpret visual
input and produce useful results without the automation of higher level reasoning. This is
not meant to imply that human visual pro�ciency could ever be achieved by such a system.
Instead, Sieve is presently targeted at applications where the visual criteria, or properties,

are known ahead of time. For instance, a Sieve program might attempt to identify a person
by judging the similarity of the input to a model or set of models which represent expected
views of the individual.

Sieve currently has no general mechanisms for learning new views or adjusting expectations,
though it is of course possible to program Sieve applications to adapt themselves in speci�c

ways on a case by case basis. Whether deeper intelligence could be achieved by overlaying
automated reasoning on top of Sieve's symbolic framework remains to be explored.

1.2 Road Map

The next chapter relates the work presented in this report to research from the �elds of
computer vision and interactive multimedia programming systems. Chapter 3 then describes
Sieve's approach and system architecture, which is based on low level image processing and
higher level pattern matching.

The next three chapters detail the analytical components of the system. Chapter 4 de-

scribes those which directly process the \bits" in the media stream. These components
transform streams of unstructured video into sequences of properties. Chapter 5 describes
ways in which these properties are used to dynamically adjust the system. Finally, chap-
ter 6 describes how patterns of properties are realized and used to generate symbolic media

events.

Examples are presented throughout the �rst 6 chapters that demonstrate Sieve's functional-
ity as a programming toolkit. Chapter 7 moves to a higher level of abstraction by presenting
VsGrep, a stand-alone tool based on Sieve for implementing interactive applications that
analyze video content. The chapter concludes by presenting several applications built using

this tool. Finally, chapter 8 presents quantitative and qualitative performance results for
the system and chapter 9 reviews the thesis in light of the experimental work, discusses
various insights, and suggests directions for future work.

19

20

Chapter 2

Related Work

This chapter reviews research in three areas related to this thesis: approaches to computer
vision, visual content-based retrieval systems, and multimedia programming systems.

2.1 Approaches to Computer Vision

This thesis argues for the aggressive use of application constraints to simplify the vision
task. As such, the approach bears similarity to the task oriented approach advocated by
Ikeuchi and Herbert [1990] and to the active-vision paradigm summarized by Swain and
Stricker [1993]. Horswill [1994] and Wood�ll [1992] have both successfully applied this

approach to the problem of building special purpose real-time vision systems. However,
they are vertically integrated and lack Sieve's layered abstractions, e.g. properties and
patterns.

A well developed, general model for task directed visual perception, put for forth by Ullman,
is that of Visual Routines [Ullman, 1984]. Ullman's model divides the processing of visual

information into two stages. The �rst is a data driven, bottom up stage which creates base
representations such as the primal sketch and the 2 1/2D sketch [Marr, 1979]. The second is
a goal driven, top down application of visual routines which establishes properties and rela-
tions from these representations. The routines are composed from a limited set of elemental

operations by a routine processor that is driven by high level, cognitive components of the
system. Ullman argues that while the elemental operations are selected to meet speci�c
objectives, their results may be shared by subsequent processes.

The fundamental elements of Ullman's model are present in the computational framework
developed in this thesis. The �rst stage of Ullman's analysis may be performed by trans-

lation �lters which compute edges, motion, and other basic representations. The second
stage is performed by model matching and property generating �lters which look for spe-
ci�c properties in the image stream. As in Ullman's model, the incremental representations

computed by these modules are available in all subsequent processing.

However, this thesis calls upon the user, rather than an AI subsystem, to supply the higher

level components needed to specialize the processing task. In addition, the user may assume
the role of the routine processor by explicitly con�guring the data ow network. Alterna-

21

tively, higher level facilities, such as VsGrep (see chapter 7) may be used to automate this

function. Finally, this thesis also di�ers in that it proposes a speci�c model of communica-
tion between the levels of computation.

2.2 Content Based Retrieval

Driven by the recent explosion in digital media brought about by multimedia capable sys-

tems and the world wide web, content-based retrieval systems have become a major focus
of the vision research community. The goal of these systems is to provide an interactive
interface which enables a user to browse large databases of digital media. Traditionally,

these systems have enabled the user to query the database for entries which match hand
annotated keywords. Recent work, however, has enabled users to query based on the actual
media content (i.e. the pixels) using techniques such as color indexing [Swain and Ballard,
1991], shape matching, and texture matching [Picard, 1996].

A considerable number of new research projects and commercial systems have recently

come on-line. While not identical, many of these systems are very similar to one another.
Described below are four projects which cover most of the main ideas and have been par-
ticularly inuential: IBM's QBIC system, the MIT Media Lab's Photobook and FourEyes
platforms, Berkeley's Chabot System, and CMU's Informedia Project.

IBM's `Query By Image Content" (QBIC) system [Flickner et al., 1995] [Niblack

et al., 1993] has evolved from a research project into a commercial system. QBIC extends
IBM's relational database, DB2, to support queries of images and video by visual properties
such as shape, texture, and color. The system includes a polished graphical user interface
to assist the user with both data entry and retrieval. An important element of the system

is that during data entry, the user identi�es and optionally adds semantic labels to objects
which the system then characterizes using a �xed feature set. Queries may be made by
text using both semantic (e.g. \show me �sh") and feature (e.g. \show me blue textured
objects") based descriptors. Alternatively, similarity based queries may also be made by

supplying a sample image or, innovatively, by drawing a sketch.

The MIT Media Lab's Photobook system [Pentland et al., 1996] is another content-
based retrieval system that allows a user to interactively query a database for image and
video entries. Like QBIC, the entries in the database are annotated both by human op-
erators, which may attach semantic labels, and by computers, which may attach feature

vectors. The choice of feature vector depends on the population and the application of the
database so that a di�erent feature would be used to characterize human faces than would
be used to characterize hand tools. An important database element that Photobook lacks

is an index. While the reference [Pentland et al., 1996] suggests that the feature vectors
constitute an index, it is more accurate to refer to these descriptions as annotations. This
is because a query for a matching feature vector requires a linear scan through the entire
database. The bene�t of pre-computing the feature vector, like the bene�t of adding an

annotation, is that the processing time per entry may be greatly reduced. Thus, Photo-
book is more a platform for interactive, content-based searching than a true database. The
FourEyes system [Picard and Minka, 1995] extends the Photobook platform with an ad-
vanced interactive interface that assists the user in identifying regions of interest and in

adding labels. The advanced interface engages the user in a multi-stage interaction where

22

the user provides positive and negative examples while the system provides feedback.

The Berkeley Chabot System [Ogle and Stonebraker, 1995] is designed to manage a

large collection of images. The Chabot database, which consists of a collection of nature
photographs from the California Department of Water Resources (DWR), is in the process
of growing from roughly 11,000 images in 1995 towards an eventual goal of 500,000 images
(the complete DWR collection). In order to manage this volume of data, Chabot starts with

an advanced relational database system that provides multiuser access, large scale storage,
and exible indexing. Images in the database are annotated by human operators who add
semantic descriptions of each scene. In addition, images may be annotated by computer
generated features such as the color histogram. An important di�erence between Chabot

and Photobook is Chabot's ability to create custom indices based on these features (e.g.
an index of images containing mostly yellow). However, the features employed by Chabot
are signi�cantly less sophisticated than those of Photobook. Also, unlike Photobook and

QBIC, Chabot does not support image segmentation. Thus, the only \objects" in the
Chabot system are the complete scenes depicted in the images. Research underway at
Berkeley to address the segmentation issue is reported in [Carson et al., 1996].

The CMU Informedia Digital Video Library [Wactlar et al., 1996] is a recent project
aimed at building a large multi-purpose library of raw and edited video to be distributed

over a metropolitan network. The project concerns itself with the problem of searching
and browsing the online content. The goal is to simultaneously use speech recognition,
natural language understanding, and computer vision to automatically index the data for
content-based retrieval. The vision component includes the detection of faces [Rowley et

al., 1995], graphical text, and production e�ects (e.g. shot changes, fades, pans, zooms).
A major thrust of the research has been in using automatic analysis to summarize videos
into compact \skims" so that a user may judge the relevance of a retrieved clip at a glance
[Smith and Kanade, 1995].

Discussion There are numerous additional systems similar to those described here. These

include several based on color and texture matching: the Virage system [Bach et al., 1996],
Los Alamos National Lab's Candid system [Kelly and Cannon, 1995], Columbia Univer-
sity's VisualSeek system [Smith and Chang, 1996], and Boston University's ImageRover
[Sclaro� et al., 1997]. There are also several systems based on shape matching, including

Singapore Institute of Systems Science's CORE system [Wu et al., 1995] and the University
of Northumbria at Newcastle's ARTISAN system [Eakins et al., 1996]. Finally, amongst
the systems aimed at motion analysis and video parsing are the University of Palermo's

JACOB system [Cascia and Ardizzone, 1996] and the Singapore Institute's system for an-
alyzing news footage [Zhang et al., 1995].

All of these systems share important similarities to Sieve. In particular, these systems:

� Perform image analysis. All of the systems listed above include at least some

ability to analyze image content. The techniques employed by these systems are
similar to the techniques used by Sieve to generate properties.

� Reduce multimedia information. These systems are designed for browsing large
collections of images and videos. They, thus, share one of Sieve's objectives of reducing
vast amounts of media information to a quantity that can be dealt with by a human

user.

23

� Interact with a human participant. An integral component of each of these sys-

tems is the user interface. The interface permits an interaction between the computer
and user whereby the user can experiment with di�erent queries while the system
provides feedback. Thus, these systems are philosophically similar to Sieve in that
they aim to exploit the intelligence and exibility of the human user to achieve their

results.

Despite these similarities, Sieve di�erentiates itself in several important ways. In particular,

Sieve:

� Supports live video. While Sieve is a capable tool for searching through video �les,

it has been designed primarily as a tool for analyzing live video. The resulting ow-
based architecture is designed to continuously process a stream that, conceptually, is
in�nite in duration.

� Models time-varying behavior. Sieve employs a state model to represent time-
varying behavior. The model enables Sieve to match sequences in which features

evolve over time. The approach is thus similar to recent work involving the use
Hidden Markov Models (HMMs) to recognize hand gestures and human dynamics
from sequences of observed symbols [Lee and Xu, 1996] [Bregler, 1997] [Starner and
Pentland, 1996]1.

� Performs processing at application time. Since content-based retrieval queries

are based on features, this requires that entries be organized by feature vector. Such
organization, however, requires that one know what the interesting features are at the
time that the data is entered into the system. Since di�erent features work best for
di�erent tasks, this poses a serious problem. However, even if one could develop a

limited set of useful features to characterize images, and could then a�ord to index
by every feature vector in this set, one would still need to know what objects in the
image to select for indexing. Presently, content-based retrieval systems deal with this
problem by either having a human operator pre-select the objects of interest (e.g.

QBIC) or by simply limiting queries to descriptions of entire scenes (e.g. Chabot).

In Sieve, the processing is performed at the time that the recognition task has been
de�ned. Thus, a Sieve application typically knows what objects are relevant, what
features should be used and where such objects may appear. Moreover, since Sieve
restricts itself to processing a limited number of input streams at a time and knows

what it is looking for, it is often possible to directly compare inputs to models. Thus,
Sieve may employ many matching techniques (for example, the matched �ltering and
Hausdor� distance techniques described in chapter 4) which are simply not applicable

to indexing.

� Sieve is a programming system. The content-based retrieval systems provide a

�xed user interface designed to meet the requirements of a speci�c task. The research
in this area has focused on developing particular techniques for matching and index-
ing, and on developing specialized user interfaces for entering and querying data. In

contrast, Sieve is a programming system that allows the user/programmer to cus-

1Indeed, the symbolic input of a trained HMM analyzer is equivalent to that of the �nite state automata.
Thus, it should be possible to incorporate such analyzers into Sieve as drop-in replacements for the pattern
matchers that are presently implemented.

24

tomize the processing, user interaction, and function of an application. The focus of

the research is not on the speci�c techniques but rather on the reusable interfaces that
de�ne how capabilities are accessed and managed by the programmer.

{ The Property/Predicate/Pattern/Event interfaces. These interfaces de�ne how

information evolves from raw sensory data to symbolic form.

{ The Program/System interface. The programmer �rst creates modules which
de�ne input/output relationships and then connects them into a ow-graph.
The system assumes the responsibility for managing the ow of data through
the graph. This separation of responsibility allows the system to schedule access

to the network, disk, camera device, screen and so on in a manner that minimizes
idle wait states and I/O overhead. Potentially, this separation could also be used
to schedule parallel execution of data processing.

{ The scripting interface. This interface de�nes how a programmer accesses and
extends the capabilities provided by the system so that issues such as abstraction

and composition are a major focus. Scripting is of particular importance to Sieve
because of Sieve's objective of allowing the programmer to specialize the system
to perform a particular task.

2.3 Media Systems

Sieve builds on and extends the MIT/LCSVuSystem programming environment [Lindblad
and Tennenhouse, 1996] [Tennenhouse et al., 1995] [Adam et al., 1993]. The VuSystem was
designed to allow for software-based processing of temporally sensitive data. The system

is extensible, embeds a scripting language and provides a data ow programming model.
Thus, the VuSystem was judged to be an appropriate implementation platform for Sieve2.

The VuSystem bears some similarity to theContinuous Media Toolkit (CMT) developed
at Berkeley [Jackson et al., 1996]. Both provide a data ow programming model and both
embed a Tcl interpreter to provide a scripting interface. CMT even employs the object-

oriented extension, OTcl, written by David Wetherall as part of his work on the VuSystem
[Wetherall and Lindblad, 1995]. The main di�erence is one of emphasis. Whereas the
VuSystem was designed for compute intensive application, CMT emphasizes audio and
video play back. CMT Research focuses on editing, chaining video segments into continuous

streams, and maintaining presentation quality over wide area networks.

The Khoros system, developed initially at the University of New Mexico and commercial-
ized by Khoral Research, Inc, is another data ow based image processing system [Young
et al., 1995]. Though similar in many ways to CMT, Khoros represents the other end of
the spectrum in terms of emphasis { focusing on data processing and visualization rather

than on video presentation. Khoros includes an extensive library of image transformation
modules. However, it does not provide a framework or mechanism for representing the
progression of information into symbolic form.

A di�erent approach is taken by systems such as VideoScheme [Matthews et al., 1993]

2Background on the VuSystem is provided in chapter 3.

25

and Obvius [Heeger et al., 1992]. These systems implement a more procedural model of

computation. Both systems consist of an interactive video editor with an embedded lisp
(Scheme for VideoScheme and Common Lisp for Obvius) interpreter. The interpreter allows
for the automation of repetitive editing tasks, including those which are based on the content
of the media data. VideoScheme, for instance includes built-in functions which transform

images to histograms, normalize histograms, and compute di�erences between histograms.
These primitives were used to implement a cut detection algorithm. VideoScheme and
Obvius essentially extend the capabilities of video editing systems. The programs are �le

based and do not model the ow of media data through system. As a result, the systems
are not directly applicable to the processing of live video.

Finally, ActiveMovie is Microsoft's new3 API for creating multimedia applications on the
Win32 platform. Presently, this API supports the playback of multimedia streams in a
variety of formats from local �les and network sources.

The ActiveMovie architecture is startlingly similar to that of the VuSystem. Microsoft
describes ActiveMovie as an architecture to \control and process streams of time-stamped

multimedia data by using modular components called �lters connected in a con�guration
called a �lter graph". The con�guration of the �lter graph and the ow of data through the
graph are controlled by a \�lter graph manager". Application programs con�gure the �lter

graph by communicating with the �lter graph manager through a set of Component Object
Model (COM) interfaces which may be accessed from di�erent languages such as C++ and
Visual Basic. In a manner nearly identical to the VuSystem, �lter modules communicate
with one another by passing time stamped data through the ow graph and communicate

with the application by posting events.

ActiveMovie does not provide tools for media analysis. Presently, the SDK provides �lters
for reading and writing audio and video data in a variety of formats such as MPEG, Quick-
Time, AVI, and Wave and a few simple transformation �lters, such as a general color space
transform �lter and a special purpose 16bit-color VGA dither �lter are provided. However,

modules which examine and interpret the data have not been implemented. Moreover, fa-
cilities such as the property and pattern mechanisms developed in this thesis, do not exist.
As a result, �lter events related to the content of the data are currently limited to those
which indicate the detection of errors in the data stream.

The emergence of ActiveMovie suggests a technology transfer path for the research described

in this thesis. Since the programming models for ActiveMovie and VuSystem applications
are nearly identical, the approach developed for analyzing media content should be directly
applicable to both.

3Released in December, 1996

26

Chapter 3

The Sieve Architecture

In order to realize an e�ective approach to processing media, this thesis has developed a
system capable of analyzing media information while responding to an interactive user. The
approach is to reduce streams of media input into sequences of media events (�gure 3-1)

and then to handle these events in a manner similar to how programs handle user events.

One may view any program as a �lter that takes a stream of data as input and produces
a stream of output. Interactive programs are �lters which consider input generated by a
user, such as that which is produced by keystrokes and mouse clicks. However, unlike many
programs which process an input stream that is �xed and produce an output stream which

is not time sensitive, interactive programs face fundamental temporal challenges. User input
is not naturally synchronized with the data processing. It is di�cult to predict what it will
consist of and when it will occur. Furthermore, for most applications user input must be
handled in a timely fashion.

Sieve event x event y......

Media Events

Figure 3-1: Transforming unstructured media into symbolic events

For traditional media, these problems have been addressed by interactive systems such as
X [Asente and Swick, 1990], Mac OS [Apple, 1992], and Microsoft Win32 [Microsoft, 1995],
using an event driven programming paradigm. In this paradigm user actions are modeled as

external events which are queued up by the system and passed to the application. Widget
and class libraries process the low level events, such as mouse movements and clicks, into
high level events, such as scrolls and drags, and pass these events to the appropriate handler

routine. This paradigm has been successful in allowing the implementation of time sensitive,
user driven programs.

Media input is in many ways similar to user input. Namely, media input is time sensitive,
continuous, and not naturally synchronized with the application. Thus, one may expect

27

frame grabber

file

network

window

file

network

Media Switch

mediamedia

feedback

GUI

control events

control

user inputfeedback

Application

Event Processing

Figure 3-2: Traditional interactive multimedia application

that a paradigm similar to that used for handling user input will prove e�ective for handling
media input. Furthermore, by treating both media and user input similarly, this approach

o�ers the opportunity for the seamless integration of these two sources of input.

Figure 3-2 depicts the structure of a traditional multimedia application built around an
event processing core that responds to user events, provides feedback to the user, and
outputs control signals that \steer" the media information. The main limitation is that the
media is not available to the application, and so, the program is not able to sense or change

its content. Instead, the computer acts as a mediating agent through which the user directs
and controls the ow of audio and video information.

The introduction of media processing and media events changes the structure of an interac-
tive multimedia application. The new structure enabled by Sieve is depicted in Figure 3-3.
The media is brought into the application so that rather than treat the media as an ex-

ternal, opaque entity, the program may sense and manipulate the media's content. The
media may even drive the behavior of the program in a manner similar to how a user may
drive an interactive program. Finally, with the use of cameras and microphones, the user
may in some cases appear in the media itself. For example, media processing modules that

recognize a user's hand gesture could provide the application with a way to sense the user
in the user's physical environment. Finally, with the use of cameras and microphones, the
user may in some cases appear in the media itself, providing the system with a new way

to sense the user in the physical environment. Such systems may, for example, recognize a
user's hand gesture or track a user's whereabouts.

The rest of this chapter describes the structure of a Sieve application in greater detail.
Section 3.1 describes how media data and media processing are modeled in a Sieve program.
Section 3.2 goes on to preview how, using this model, applications recognize and signal media

events. This topic, which is central to this thesis, is covered in greater detail in Chapters 4
and 5. Section 3.3 provides details concerning the Sieve implementation. Finally, Section 3.4

28

frame grabber

file

network

window

file

network

Media Processing

mediamedia

feedback

GUI

control events

control

user inputfeedback

Application

events

camera
sensing

Event Processing

media input media output

Figure 3-3: New multimedia application architecture

presents an example of a complete Sieve application.

3.1 Media Data and Media Processing

The problem of manipulating media is that of handling temporally sensitive information.
Media spans time. Interactive programs which process media while involving a human
user must meet timing conditions imposed by human perception when presenting media
information.

This thesis employs a data ow model of media computation developed in [Lindblad, 1994].

In this model (depicted in �gure 3-4), streams of media ow in a pipelined fashion through

networks of processing modules. These modules manipulate and transform the media data
as it ows through the network.

Dup Filter

Filter

SinkSource

Data Flow

payload payload

payload
payload

payload

Figure 3-4: Data ow computation

The media data ows through the network in units referred to as payloads. Payloads

are lumped data packages which represent �nite time-slices of a media stream. For some
types of data, the segmentation of the stream into units is natural. For example, a video

29

stream is quite naturally broken up into a sequence of image payloads (i.e. frames). Still,

other segmentations are possible. Video data could, instead, be passed from module to
module as scan line payloads or as multi-image video clip payloads. The choice is a matter
of convention which is determined by considering issues such as communication overhead,
latency requirements, and programming convenience.

Other types of media, such as sampled audio, have less obvious conventions. Since packaging

individual samples as data units would lead to unacceptable communication overhead, audio
samples are grouped into fragments consisting of a number of samples that trades o� latency
for overhead.

The interaction of the system with the media data occurs in the processing modules. Pro-
cessing modules may act as data sources, sinks, or �lters. A source module is one which

internalizes a stream of payloads to the system. In practice, such a module may be grabbing
payloads from a device, such as a camera, forwarding them from a network, reading them
from a �le, or generating them from a mathematical formula. However, from the point of
view of the program, a source module produces a media stream and therefore has no input

ports.

A sink module is one which externalizes a stream of payloads. A sink module may display
payloads on a console, transfer them to a network, dump them to a �le, or simply throw
them away. From the point of view of the program a sink module consumes a media stream
and therefore has no output ports.

A �ltermodule is one which both consumes and produces streams of payloads. One normally

thinks of �ltering as an operation which takes a single stream of input and produces a single
stream of output. This thesis, however, broadly de�nes a �lter module as any module that
contains at least one input port and and least one output port. Thus, a �lter module may
consume and produce a single stream of payloads. In addition, however, a �lter module

may combine two streams of payloads into a single stream, split a single input stream into
multiple output streams, or both input and output multiple streams simultaneously.

In order to support a variety of media types and data formats, payloads are speci�ed to be
self identifying data structures. Logically a payload contains two parts: a descriptor and
data. The data is simply a block of memory which contains the media bits. The descriptor

speci�es the representation of the data. For example, a descriptor might specify that a
payload represents an image of a certain height and width, encoded as 8 bit grey scale
samples, listed row by row starting from the upper left corner. It is the responsibility of

the processing module to examine the descriptor to determine the type and format of the
payload.

Perspective

The most important consequences of the media ow style of programming is that modules
are restricted in their ability to look back at the data. Unlike a document based program-
ming model, where the entire document may be internalized and analyzed in any order,
processing modules must explicitly limit and manage their state. This means that if a

module may need to examine a payload in the future, it must store that payload locally (or
make a copy of it) until such a time.

30

While this restriction may be an inconvenience to the programmer, it reects the reali-

ties associated with processing media information. Media data places tough demands on
computational storage so that when processing media it is impractical to adopt an in�nite
memory storage model. Moreover, while the system may be used for processing stored
media, it is designed to be applicable for processing continuous streams of live data coming

from a camera or network where future data isn't available and past data is limited to what
has been explicitly stored.

A Flow Graph Example

Figure 3-5 depicts a ow graph for extracting a moving object from a stationary background.
A representative output is depicted in �gure 3-6.

The boxes in the �gure correspond to the primitive �lter modules which manipulate the
media. An image payload, originating from the source module is passed to a VsDup module
which makes three copies of the payload1 and passes them to a VsColor module, VsDiff

module, and VsStationary module.

Stationary

Diff Speck Fill

Color

Dup

Sink

Source
Threshold

Dup Sink

(background)

(foreground)

Figure 3-5: Extracting a moving object from a stationary background

The VsStationary module, described in Section 4.3.3, executes code which attempts to
compute the background of a scene. Each time the VsStationary receives an input image
it calculates its best estimate of the background and sends the resulting output to another
VsDup module. The second VsDup sends one copy of the background image to a sink module

(which displays the image) and the other to the second input of the VsDiff module.

The VsDiffmodule waits for an image payload to appear at each of its input ports and then
outputs a gray scale image computed by taking the pixel by pixel di�erence between the two
input images. The di�erence image is passed to VsThreshold module which computes a
binary map image indicating where the magnitude of the di�erence is greater than a speci�ed

threshold. In this case the two images are the current view and the current estimate of the
background, so the map indicates where the scene di�ers from the background. The map
payload is passed down the pipe, �rst to the VsSpeck module which removes spurious data

points (see section 4.4.2) and then to the VsFill module which �lls in missing regions (see
section 4.4.2). The VsColor module combines the binary image payload with an original
copy of the image, replacing true valued pixels in the map with color or gray scale pixels
from the scene while setting false valued pixels in the map to a speci�ed background value.

The combined payload is passed to a sink module which displays the resulting images and
terminates the processing pipeline.

1
VsDup does not copy the actual data, just a reference counted pointer to the data

31

Figure 3-6: Output of the moving object extraction ow graph

A more complete description of the function of this computation, as well as descriptions of
the primitive modules, is presented in Chapter 4.

3.2 Recognizing Media Events

The ow graph example of the previous section demonstrated the ability to manipulate

and transform the video but ultimately the output, like the input, was a stream of images.
There was no transition towards a decision or independent action taken on account of the
media's content.

The approach taken by this thesis is to treat the problem of understanding media in terms of
recognizing media events. Programs which use content information from the media stream

are modeled as event driven programs which are augmented to respond to media events in
addition to standard user events.

An event is a meaningful pattern of data in a temporally sensitive input stream. A \mean-
ingful pattern" is an occurrence about which the program wishes to be noti�ed. Such
patterns are summarized to an event driven program as a discrete sequence of symbolic

descriptors which describe the identity, time, and relevant details of the events. A media
event is a symbolic description of the time and identity of a meaningful pattern of data in
a media stream.

For example, a media event may signal the detection of movement in a speci�ed area of

32

a scene, the appearance of a particular color pattern in the imagery, or the detection of a

human face in a frame of video. The signi�cance of such a pattern is assumed to be known
to the user or programmer. In the case of a security application, for example, the input
may come from a �xed camera and the presence of motion may indicate the possibility of
an intruder.

For the media event model to be useful there must be a computational means of recognizing

patterns in a data stream. In keeping with a modular data ow approach, media analysis
is performed in stages by �lter modules which transform their input and add properties.
Properties, in turn, are used by downstream modules to direct media ow and to recognize
patterns. Modules which recognize patterns communicate successful matches by signaling

events.

Transformations

Histogram

Figure 3-7: Data transformation

Vision processes may be modeled as a series of representational transformations. In Sieve,
such transformations are performed by modules which �lter streams of payloads. The
purpose of these transformations is to expose the salient information from the image data.

For example, the VsEdge �lter transforms a stream of images from an intensity based

representation to a boolean format which explicitly depicts intensity boundaries. Similarly,
VsDiffMotion uses a binary image format to explicitly represent temporal changes in image
intensity. Other modules perform transformations where image data is converted to non-
image based representations. For instance, the VsHistogrammodule, illustrated in �gure 3-

7, transforms images into signal payloads which represent intensity statistics in the data.

Properties

Properties represent time varying measurements which may be made on media streams. As
shown in �gure 3-8, these measurements are attached to payloads by processing modules as
they pass through the data ow network. The addition of a property to a payload leaves the
data otherwise unchanged and there is no fundamental limit to the number of properties

which may be accumulated by a given payload.

Each property consists of an identifying symbol and a value. In general, a property value
may be an integer, oating point number, boolean number, or a symbol representing a
string. The identifying symbol or name of the property that a module uses to describe its

33

properties:
 p1=0.13

properties:
 p1=0.12

FileSrc

Match

Model Matching

properties:
 p1=0.13
 p2=0.89

(p2)

Figure 3-8: Property generation

measurements is typically a parameter to the module. Vector quantities are supported by
de�ning multiple properties with related names2. For example, when the user speci�es for a
VsFaceDetectmodule to use the property symbol face, the module generates the properties
face.left, face.right, face.top, and face.bottom to represent a rectangular region in

the image where a face has been located.

Property measurements often summarize information exposed through representational
transformations. For instance, a set of properties may characterize the output of a mo-
tion detector, indicating the amount of change in a scene and the location of the centroid
of the moving pixels. However, the most prevalent use of properties is to represent the

degree to which a transformed input matches a model. When used as such, the property
name identi�es the model to which the input is matched. For example, the VsPixelMatch
�lter, described in Section 4.1.1, takes a model image and an image stream as input and

produces as output a stream of properties which it attaches to the image stream payloads
as they ow through the �lter. The property symbol is a name which identi�es the model
image while the property value is a oating point number indicating the degree of similarity
between each image and the model.

Properties are well suited to the representation of a relatively limited set of values. Complex

or dense data representations, such as an image or a histogram, are more e�ciently encoded
in the data segment of a payload, e.g., through a transform �lter. Still, because proper-
ties relate to models, they are capable of implicitly representing the complex information
captured by the model. For this reason, and because the objective is to transition from un-

structured media towards discrete, symbolic events; properties are an e�ective mechanism
for encoding visual information.

Routing

In addition to transforming payloads and adding properties, processing modules may direct
or route the media data. An example of a routing module is VsClassify. VsClassify,
shown in �gure 3-9, examines the properties of the payloads in its input stream and routes
them to either its True or False output port depending on a speci�ed property's value.

2A more direct method of representing vector quantities can and should be implemented. Such a feature
would add elegance to the Sieve implementation but would probably provide no signi�cant insights into the
merits of the system.

34

Classify

True

Falsep=0p=1p=1

p=1

p=0

p=1

p=0p=0

property=p

Figure 3-9: Routing

Routing or classifying payloads may be used as a preliminary step towards generating a
media event. By routing payloads to one subgraph or another, a classify �lter reduces

the workload on downstream processing modules. Section 5.2 discusses the role of routing
modules.

Events

Vex

p=1p=0p=0p=1p=1p=0p=0p=0

match!

pattern=p p p p

Figure 3-10: Recognition

Ultimately, the objective of the recognition modules is to make a decision. In Sieve, such
decisions are expressed as events which are signaled by modules (as shown in �gure 3-10) in
response to observing speci�c patterns of input observed in sequences of images. Presently,

the event generating modules limit themselves, to examining the sets of properties attached
to payloads. Generality is preserved because any pattern matching task that requires direct
examination of the payload data may be implemented as a �lter module that signals a
pattern match by attaching a boolean property that is detected upstream by an event

generating module.

There are many di�erent kinds of patterns which could be de�ned over sequences of prop-
erties. A pattern matcher could, for instance, signal an event whenever a speci�c property
reaches a given threshold. Alternatively, a pattern matcher could accumulate the running
total of a speci�c property and signal an event whenever, say, the average of the last n

values dips below a low water mark.

This work has focused its attention on pattern matchers which may be expressed as non-
deterministic �nite state automata. Such state machines are well understood and widely
used for recognizing patterns in text. An important motivation for choosing �nite state
automata is that they have a well developed language, regular expressions, for concisely

specifying their behavior.

Formally, a �nite state automata is speci�ed by a a set of states, a start state, �nal state(s),
a set of input symbols, and a transition function [Hopcroft and Ullman, 1979]. The tran-
sition function speci�es, for every possible input and state con�guration, the new state

35

con�guration. Typically, the transition function may be represented by a directed graph

where the nodes represent states and the edges represent transitions on particular input
symbols.

In order to specify the transitions on a �nite state automata where the input is not a
sequence of symbols, but rather, a sequence of property sets, this thesis employs predicates.
A predicate is a boolean function de�ned over sets of properties. Predicates are used to

specify which edges of a �nite state automata graph are followed for a given input. The
automata signals an event when a sequence of inputs results in the transition of the automata
into a �nal state.

By mapping properties to boolean valued predicate symbols, it becomes possible to use a
regular expression syntax to concisely specify a pattern matching automata. The VsVex

module, described in Section 6.2, uses such syntax to allow a script programmer to conve-
niently represent a specialized recognition task.

In summary, properties represent time varying measurements which may be made on media
data. Predicates are time varying boolean values which represent simultaneous combinations
of properties. Patterns, which are recognized by �nite state automata, represent sequences

of predicates. Finite state automata are speci�ed as either state transition graphs or,
equivalently, as regular expressions.

Bu�ering

An important di�erence between the processing of traditional user input and the processing
of media input is that the transformed media data may be an important part of the output.
For example, a program that monitors one's o�ce may, in addition to making decisions
about what is going on, capture and display video clips corresponding to the recognized

event.

To meet this requirement, pattern matchers are typically augmented with bu�ering capa-
bility. For example, the VsAutomata module, which implements the �nite state automata
pattern matchers describe above, may be con�gured to hold payloads in a bu�er queue until
a pattern is recognized. The bu�er is necessary because for most patterns, it is impossible

to tell when a payload arrives whether that payload will be part of a match. The pattern
matchers are the natural place to do the bu�ering because they have the information needed
to determine when a payload may be released from the queue or discarded.

The considerable storage requirements for video information make it necessary to carefully
manage the bu�er queues. Accordingly, Sieve provides the pattern matchers with a mecha-

nism which causes payloads to be written to secondary storage when a bu�er grows beyond
a speci�ed size.

3.3 Additional Background

The following subsections provide information speci�c to the VuSystem and Sieve which
may aid the reader's understanding of the example code fragments that appear in this
report. Further details of the VuSystem are described in [Lindblad, 1994].

36

3.3.1 Modules

In the VuSystem, primitive modules correspond to C++ objects which are compiled into the

system. The C++ objects implement a work method which contains the high performance
code which processes the arrays of bits in the media stream. The VuSystem design speci-
�es the communication and scheduling protocols which de�ne how payloads are transfered
between processing modules and when the Work method code is run.

Processing modules are combined into ow graphs using the Tcl scripting language, which

provides the means of creating and destroying modules, connecting their inputs to outputs,
and specifying parameters which a�ect their behavior. The VuSystem extends the Tcl
scripting [Ousterhout, 1994] language for this purpose. Figure 3-11 shows a script that
creates the ow graph depicted in �gure 3-5.

VsVideoSource vs.source \
-videoSource :vidboard1

VsDup vs.dup1 \
-numOutputPorts 3 \
-input "bind vs.source.output"

VsStationary vs.stationary \
-threshold 20 \
-input "bind vs.dup1.output0"

VsDup vs.dup2 \
-numOutputPorts 2 \
-input "bind vs.stationary.output"

VsSink vs.background \
-input vs.dup2.output1

VsDiff vs.diff \
-input1 "bind vs.dup1.output1" \
-input2 "bind vs.dup2.output0"

VsThreshold vs.thresh \
-threshold 20 \
-input "bind vs.diff.output"

VsSpeck vs.speck \
-input "bind vs.thresh.output"

VsMaskFill vs.fill \
-input "bind vs.speck.output"

VsColor vs.color \
-foreground -1 \
-background 0 \
-input "bind vs.dup1.output2" \
-mask "bind vs.fill.output"

VsSink vs.foreground \
-input vs.color.output

Figure 3-11: Script for implementing the moving object extraction ow graph

In addition to providing means of combination, the scripting language provides the ability to

create �rst class abstractions. For example, the �lter modules which comprise the ow graph
shown in �gure 3-5 may be grouped into an abstract, one input, one output �lter, shown
in �gure 3-12, which inputs a stream of image payloads and outputs a stream of images

with the background removed3. The ability to create �rst class scripting objects with the
same abstract properties as their C++ counterparts is provided by ObjectTcl [Wetherall
and Lindblad, 1995], an extension to the Tcl scripting language written by David Wetherall
as part of his research studying a graphical programming methodology for building media

ow applications [Wetherall, 1994].

3The output to the second sink, used for displaying the background, was not included in the abstraction.

37

SinkSource

Abstract Filter

Figure 3-12: Moving object extractor abstraction

3.3.2 Payloads

Media data ows through the graph of processing modules in units referred to as payloads.
Payloads are time stamped, typed data structures. The time stamp on each payload is

used by presentation which need to know the temporal relationship between data units.
For instance, the VsWindowSink module, which renders video frame payloads on the screen,
uses the time stamp �eld to determine how much delay to insert between renderings and to
synchronize video playback with audio playback.

Time stamps may also be used as identi�ers for a payload. No two payloads of the same

type may have the same time stamp4. In addition, the time stamps for a given payload type
owing through a pipeline always advance. Thus, modules which match patterns against
sequences of payloads identify the sequence of payloads by their time stamps.

Payloads are passed between modules as reference counted pointers. The actual data resides
in shared memory segments. Thus, a module which copies the payload, such as the VsDup

module, typically performs what is referred to as a shallow copy. A shallow copy is one
in which the pointer is copied and the reference count is increased, but the data remains
in place. Modules which consume payloads decrease the reference count. Memory is freed
whenever the count drops to zero. Because a payload's data segment may be shared, �lters

which alter the media data must either make a copy of the actual data (referred to as a
deep copy) or check the reference count to be certain that no other module points to it.

A payload may accumulate any number of properties as it ows through a graph of pro-
cessing modules, each identi�ed by its own symbol. These properties are stored in hash
tables which map property symbols to property values. Each set of properties has its own

hash table and each payload contains a pointer to one of these tables. As a result, multiple
payloads, even payloads of di�erent types, may point to the same table and, therefore, share
a set of properties. Thus, a module which transforms a stream of payloads may be imple-

mented so that the transformed payload points to the same property table as the input
payload. In such a way, a payload may collect a single set of property measurements even
as it is transformed from representation to representation.

The type system allows di�erent kinds of payloads to ow interleaved within a single stream.
For example, audio and video payloads can ow along the same path from source to sink.

Processing modules are able to modify their actions based on the type and representation
of the data arriving at their inputs. Most processing modules pass along payload types
that they don't recognize. For example, the VsJpegC module, which implements jpeg com-

4This is true for data payloads such as those which carry audio and video information. It is not always
the case for signaling payloads, such those used to signal the start and end of a ow. Such payloads are
described in [Lindblad, 1994]

38

pression on video frames, simply forwards payloads, such as audio fragments, which aren't

video frames. The VsJpegC module also forwards video frames which are in unrecognized
formats.

Payload types are implemented as C++ classes. The two most common types are
VsVideoFrames and VsAudioFragments. Each type has its own additional descriptor infor-
mation. For example, a VsVideoFrame payload has a height, width, bits per pixel, encoding

type (Grey, 8 Bit Color, RGB, or BGR), as well as a number of other �elds such as bytes
per line, byte order, and others.

3.3.3 Event Handling

At the core of any event driven application is an event loop which waits for and responds to
external events. For programs driven by a graphical user interface, these events may be user
keyboard presses, mouse movements, and button clicks. At a low level, these events can be

tedious to interpret. Rather than process these events directly, application programmers
interface \widget" libraries which handle the low level details of drawing menus, monitoring
the mouse movements, and so on and produce higher level events such as menu selections

and window scrolls.

One of the most important functions of a toolkit library is handling event dispatch. Toolkits

such as Xt and Tk provide an abstraction for event dispatch whereby the application pro-
grammer specializes his/her program by de�ning callback routines. The routines are called
when a given widget is activated by the user. For example, a scrollbar widget will call its

callback procedure with the new scroll value whenever the scrollbar position is changed.

In Sieve, event handling is implemented using the Xt callback mechanism. The programmer

specializes the event detection apparatus by specifying a callback routine and the media
processing module uses the Xt dispatch mechanism to signal events by invoking the proce-
dure. The module supplies as arguments the beginning and ending timestamps over which

the pattern was observed. The module may also, optionally, supply additional information
about the pattern. Thus, the media processing modules act together asmedia widgets which,
together with GUI widgets, the application programmer weaves together and con�gures to
build an event-driven program.

39

Figure 3-13: The HeadHunter application

3.4 Example, The HeadHunter

This section presents an example Sieve program that captures and presents video clips
which meet speci�c visual criteria. In particular, this program captures video clips of
\talking heads", such as those shown in �gure 3-14, which are video clips in which a human

face is prominently depicted in the center of the screen. In the case of television video,
these clips are typical of, though not restricted to, an anchor person or announcer speaking

directly to the camera.

Anchor Baby Comedian

Figure 3-14: Head shots

In addition to processing the video, the program simultaneously interacts with a human user

through a graphical user interface. When invoked, the HeadHunter application brings up
the window shown in �gure 3-13. The central screen is used to display the incoming stream

40

of video (see �gure 3-15 for a diagram of the layout). Initially, the two video lists to the

left and right of the screen are empty. As the program \recognizes" video clips matching
the desired criteria, window entries depicting each clip appear in the \candidate" video
list to the left of the screen. The user may then accept or reject candidates by selecting
them from the candidate list (by clicking on them) and pressing the \Save" or \Remove"

buttons. The remove button deletes the entry while the \Save" button moves it from the
candidate video list to the \accepted" video list. Finally, the user may use the \Control
Panel" and \Program" buttons to bring up additional windows used to dynamically adjust

the processing modules' parameters.

Main Screen
(live video)

Candidate
Video
List

Accepted
Video
List

Buttons for
Control Panel

and
Visual Program Panel

Accept/Reject Buttons

Figure 3-15: HeadHunter layout

While the purpose of this program is more pedagogical than utilitarian, one may imagine
such an application being used by an editor or producer putting together a summary graphic

depicting the contributions of the various reporters. In addition, a more general version of
this program serves as the basis for the VsGrep application describe in section 7.1.

3.4.1 Implementation of the user interface

The user interface consists of a top level window which contains seven elements: a central
viewing area, two \video lists", and four buttons.

The interface is implemented by the HeadHunterGui procedure. HeadHunterGui takes as
arguments the name to use for the top level widget and the name for the top level data
ow module. HeadHunterGui proceeds to create a top level form widget and, within that

widget, to create and con�gure the video lists, screen, and commands (i.e. buttons) shown
in �gure 3-15. Finally, HeadHunterGui calls the procedure HeadHunterFlow which sets up
the media processing ow graph for the application. The code for HeadHunterGui is shown

in �gure 3-16.

The video lists are instances of the Tcl class VsVideoList. A VsVideoList object is a

scrollable viewing areas which contains a dynamic list of entries. Each entry consists of
a label and a window for representing a video �le. The VsVideoList object implements

41

proc HeadHunterGui {w m args} {
VsEntity $m
$m set w $w
apply Form $w $args

#Create left hand video list with save and remove buttons
VsVideoList $w.inEntries $m.inEntries
Command $w.add \

-label "Save" \
-callback "SaveSelection $m.inEntries" \
-fromVert $w.inEntries

Command $w.sub \
-label "Remove" \
-callback "RemoveSelection $m.inEntries" \
-fromHoriz $w.add \
-fromVert $w.inEntries

#Create central screen with control panel and program buttons
VsScreen $w.screen \

-resizable true \
-fromHoriz $w.inEntries

Command $w.controlPanel \
-label "Control Panel" \
-callback "VsPanelShell $w.controlPanel.shell -obj $m" \
-fromHoriz $w.inEntries \
-fromVert $w.screen

Command $w.visualPanel \
-label "Program" \
-callback "VsVisualShell $w.visualPanel.shell -obj $m.flow" \
-fromHoriz $w.controlPanel \
-fromVert $w.screen

#Create right hand video list for saved clips
VsVideoList $w.outEntries $m.outEntries \

-fromHoriz $w.screen

#Set up flow graph for video processing
HeadHunterFlow $w $m.flow

}

Figure 3-16: Procedure to set up HeadHunter graphical user interface

the methods addEntry and deleteEntry which create and destroy entries, causing the

chain list to grow and shrink respectively. A user may interactively select an entry in the

VsVideoList by clicking on its window or label. The program may query the VsVideoList
object for the identity of the current selection at any time. For example, clicking on the
\Remove" button below the candidate video list causes the RemoveSelection procedure to

be called. RemoveSelection queries the candidate video list object for its current selection
and, if one exists, deletes the �le associated with that entry and removes the entry from
the list. The other button located below the candidate video list is labeled \Save". The
\Save" button calls the SaveSelection procedure which e�ectively moves the selected

entry in the candidate video list to the accepted video list. The code for SaveSelection
and RemoveSelection is shown in �gure 3-18.

The VsScreen portion of the procedure creates the live display window and two button
widgets. The control panel button brings up a compound panel which contains the control
panel for each of the data ow modules in the program. These panels allow the user

to dynamically adjust a module's parameters. For example, �gure 3-17 shows the control
panel for the VsFaceDetectmodule. The program button brings up the visual programming
environment, called Paves [Wetherall, 1994] which allows the user to dynamically recon�gure

42

Figure 3-17: VsFaceDetect control panel

proc SaveSelection {entryList} {
set entry [$entryList current]
if {[info commands $entry] != {}} {

set newFile "saved.[getNextFileNumber . saved.].uv"
exec /usr/bin/mv [$entry pathname] $newFile
$entryList deleteEntry $entry
[[file rootname $entryList].outEntries addEntry $newFile] expose

}}
proc RemoveSelection {entryList} {

set entry [$entryList current]
if {[info commands $entry] != {}} {

exec /usr/bin/rm [$entry pathname]
$entryList deleteEntry $entry

}}

Figure 3-18: Auxiliary procedures to implement Save and Remove

an application's data ow by graphically creating, destroying, and connecting the processing
modules. Figure 3-19 shows the visual programming panel for the HeadHunter application.

3.4.2 The ow graph

The data ow for the incoming video stream is graphically depicted in the visual program-
ming panel in �gure 3-19. The ow graph is created by the HeadHunterFlow procedure

shown in �gure 3-22.

As shown by the visual panel and the code, the video data ows from a source module to a
VsDup. The VsDup makes two copies of the video stream, sending one to a VsWindowSink,
which is linked to the live display window, and the other to the analyzing pipeline.

Data analysis is performed by the VsFaceDetect, VsDerive, and VsAutomata modules.
VsFaceDetect, described in section 4.1.5, attaches the properties face.top, face.bottom,

43

Figure 3-19: HeadHunter data ow

face.left, and face.right to a payload if a \face" is detected. The VsDerive module
(see section 5.2) converts these properties to the boolean valued anchor property using the
predicate function isAnchor. Shown in �gure 3-21, isAnchor tests to see if the position and
size of the face is indicative of a news anchor camera shot. Finally, VsAutomata implements

the �ve state non-deterministic �nite state automata depicted in �gure 3-20.

S2 S3 S4S1 S5

. (true)

anchor anchor anchor anchor

Figure 3-20: HeadHunter automata

proc isAnchor {left top right bottom} {
return [expr {

$left > .35 && $right < .65 &&
$top > .20 && $bottom < .65 &&
$right-$left > .15 && $bottom-$top > .2}]

}

Figure 3-21: The isAnchor predicate

The pattern recognized by the automata is any sequence of payloads that starts with an

image for which the anchor property is true and ends with three consecutive images for
which the anchor property is false. The e�ect of requiring three non-faces to be detected,
rather than one, is to prevent one or two misclassi�ed images from breaking a single video

clip into many. Non-deterministic �nite state automata are discussed in chapter 6 while the
implementation of VsAutomata is presented in section 6.2.

The automata module used in this application is bu�ered. Upon matching an input, the
module acts by calling the FoundOne procedure and sending the payloads which comprised

44

proc HeadHunterFlow {w m args} {
global videoSource; VsEntity $m

#Create a VideoSource, duplicate the output, and display one copy in window
VsVideoSource $m.source \

-videoSource $videoSource
VsDup $m.dup \

-numOutputPorts 2 \
-input "bind $m.source.output"

VsWindowSink $m.sink \
-input "bind $m.dup.output0" \
-widget $w.screen

#Generate face property
VsFaceDetect $m.face \

-type fast_har \
-scale {.16667 .3333} \
-inputRect {.25 .05 .75 .80} \
-property face \
-input "bind $m.dup.output1"

#Compute anchor and . predicates (. means true)
VsDerive $m.deriv \

-input "bind $m.face.output"
$m.deriv derive {. int 1}
$m.deriv derive {anchor int {[isAnchor [prop.f face.left] [prop.f face.top]

[prop.f face.right] [prop.f face.bottom]]}}
#Setup automata pattern matcher
VsAutomata $m.auto \

-buffer 1 \
-input "bind $m.deriv.output"

set state5 [$m.auto makeState {} {}]
set state4 [$m.auto makeState {} [list [list ^anchor $state5]]]
set state3 [$m.auto makeState {} [list [list ^anchor $state4]]]
set state2 [$m.auto makeState {} [list [list ^anchor $state3]]]
set state1 [$m.auto makeState {} [list [list anchor $state2]]]
$m.auto addStateTransitions $state2 [list . $state2]
$m.auto stateAction $state5 "FoundOne $m"
$m.auto startStates [list $state1]

#Send matching video clips to a file sink
VsFileSink $m.filesink \

-callback "SinkCallback $m" \
-input "bind $m.auto.output"

}

Figure 3-22: Procedure to set up HeadHunter data ow

the pattern to the VsFileSink module. The stream of payloads sent by the automata is

terminated with a VsFinish payload. The arrival of the VsFinish at the �le sink causes
the module to call its Tcl callback procedure, SinkCallback. SinkCallback closes the �le
and creates an entry depicting the �le in the candidate entry list. The code for FoundOne
and SinkCallback is presented in �gure 3-23.

An alternative to hand generating the analytic pipeline and �nite state graph is to use

VsVex. VsVex is an higher level facility that allows the programmer to concisely specify the
properties, predicates, and patterns that are to be generated and analyzed. Of particular
value is the regular expression facility that allows the programmer to specify the �nite state
graph as a compact expression. Figure 3-24 shows the alternative de�nition of the analytic

portion the HeadHunter application. The VsVex code may be used as a replacement for the
lines of code between the VsWindowSink and the VsFileSink in HeadHunterFlow.

45

When we find one send the payload buffer to the file sink
proc FoundOne {self args} {

$self.auto send $args
$self.auto clear
set path "candidate.[getNextFileNumber . candidate.].uv"
$self.filesink pathname $path
$self.filesink start}

When file sink is finished, close the file and add to video list
proc SinkCallback {self args} {

if [keyarg -sinkFinish $args 0] then {
set pathname [$self.filesink pathname]
set entryList [file root $self].inEntries
$self.filesink pathname ""
[$entryList addEntry $pathname] expose

}}

Figure 3-23: Callback procedures for automata and �le sink

One cosmetic di�erence between the two versions of the program is that the name of the
property that represents the isAnchor predicate has been changed from anchor to \A".

This has been done for compatibility with the regular expression parser which treats each
character in the regular pattern as a separate property. There is no fundamental reason
for this limitation. The restriction, which is limited to expressions parsed by the RegMatch
procedure, is simply a convention that allows for a cleaner, more compact syntax. The

RegMatch procedure also implements a second convention that likewise, improves the read-
ability. In particular, lower case characters are reserved to represent the complement of
uppercase properties. Thus, the character \a" in a regular expression matches inputs where
the property \A" is false. These conventions allow the expression \A.*aaa" to represent the

�nite state automata of �gure 3-20 5.

VsVex $m.auto \
-input "bind $m.dup.output1" \
-buffer 1 \
-properties {

{VsFaceDetect -property face -type fast_har -scale {.16667 .3333}
-inputRect {.25 .05 .75 .80}}} \

-predicates {
{. int 1}
{A int {[isAnchor [prop.f face.left] [prop.f face.top]\

[prop.f face.right] [prop.f face.bottom]]}}}\
-patterns [list [list RegMatch "A.*aaa" "FoundOne $m"]]

Figure 3-24: Short hand implementation

3.4.3 Invocation

For the sake of completeness, the main procedure is shown in �gure 3-25. main parses
the command line, initializes the application libraries, creates a top level shell object, and

5Actually, the state machine implemented by the code in �gure 3-22 is slightly di�erent than that im-
plemented by the code in �gure 3-24, though the output is the same. Figure 3-20 depicts the simpler state
machine generated by the handwritten code . The state machine automatically generated from the regular
expression contains a few redundant states.

46

catches and reports errors. Thus, code from �gures 3-16, 3-18, 3-21, 3-22, 3-23, and 3-25

comprise the complete script for the HeadHunter application.

Although some aspects of the Tcl code appear baroque, the complete script6, including
blank lines and comments, is only 130 lines. Of the 99 lines with code7, 43 implement the
user interface and 16 handle the invocation { leaving just 40 lines of code to implement the
ow graph and its related procedures (that is HeadHunterFlow, isAnchor, FoundOne, and

SinkCallback).

proc main {} {
global argv name class errorInfo videoSource

set name [lindex $argv 0]
set videoSource [lindex $argv 1]

xt appInitialize app_context "HeadHunter" argv {}
vs appInitialize app_context vs

VsShell $name.top \
-title HeadHunter \
-cmd HeadHunterGui \
-realize "vs start" \
-dismiss "catch {vs destroy}; exit" \
-args vs.hh \
-allowShellResize true

while {[catch {app_context mainLoop} msg]} {
VsErrorShell $name.err -summary $msg -detail $errorInfo

}
}
main

Figure 3-25: The main procedure for the HeadHunter application

3.5 Summary

This chapter has described the archtectural framework of a Sieve application. The reader

now should understand how a Sieve application is organized and have a sense of the script-
ing language. The next three chapters will detail the analytical components of the Sieve
toolkit. Chapter 4 describes the image processing modules that generate properties. Chap-
ter 5 describes ways in which these properties are used to dynamically adjust the system.

Chapter 6 then describes how properties are ultimately used to generate symbolic media
events.

6The VsVex version of the script
7Lines containing only brackets are counted as blank. The only purpose for putting a bracket on its own

line is cosmetic.

47

48

Chapter 4

Generating Properties

In order to make decisions based on the content of a video stream, a system requires a
computational means of examining the data. Sieve employs a library of low level image and
video processing modules which transform the video data and measure its properties. This

chapter details those modules.

The property centric approach raises many issues. Should properties be based on two
dimensional image characteristics or on three dimensional scene characteristics? How can
complex image or scene characteristics be summarized into concise descriptions? What
techniques are applicable to building desktop applications? There are no de�nitive answers

to these questions, and so, Sieve is designed to support a wide range of approaches. However,
in the course of experimenting with building content analyzing applications, a strategy for
generating properties has emerged.

Essentially, this thesis focuses on two complementary areas from computer vision: matching
and motion. Matching is concerned with determining whether two inputs are the same while

motion is concerned with detecting and measuring change.

Matching is used to tell the system what is the identity of the focus of attention. Using the
appropriate transformations and representations, inputs may be matched to models in order

to generate properties. The property's value represents the degree to which the transformed
input matches the model while its name identi�es the model to which the input is matched.

It is unnecessary, therefore, for the properties themselves to provide rich descriptions of
the information in an image. Rather, the complexity of the information is captured in the
named models. Typically, the user is aware of the meaning and signi�cance of the models
and may instruct the system to interpret a particular match in the appropriate way.

Motion (or more generally change) is used primarily to focus or direct the attention of the

system. Properties summarizing detected motion are used to temporally focus the system,
telling it when interesting events take place. Transformations of images into motion �elds
spatially focus the system, telling it where interesting objects are located. Such information
is often used to generate segmentations, represented as binary images, from which geometric

and set properties may be derived.

The remainder of this chapter is divided into �ve sections. Section 4.1 discusses methods
for matching and presents modules which implement many of these techniques. Section 4.2

49

focuses on data transformations. While computationally the transformations are performed

prior to matching, they are motivated by the matching operations, and therefore are dis-
cussed after matching. Section 4.3 focuses on measuring motion and change. Technically
motion detection is a type of data transformation, but its role is of such importance that it is
treated separately. Section 4.4 presents several modules which analyze and manipulate the

binary images produced by modules, such as the motion detectors, which identify regions
of interest in images. Finally, section 4.5 considers alternative modules and �lters.

4.1 Matching

The problem of matching is to determine whether one input is \the same" as another. Using
the notion of sameness, one may generate properties by measuring the degree of sameness
of the input to di�erent models (�gure 4-1).

transform

model

match

property

Figure 4-1: Matching models to data

Of course, the notion of sameness di�ers from application to application. The challenge of
matching is to transform the input into a representation which is invariant over the range of

inputs which one wishes to match, while discriminating between inputs which are intended
to be di�erent.

Another challenge related to matching is determining what to match. Often, a model
represents only a subset of the input data. For instance, when processing images, a model
may be expected to match only a portion of the image. In such cases, a matching algorithm

must not only be able to judge the similarity of two inputs, but also be able to select the
portion of the input to match against the model. Sometimes additional information (such as
that generated from motion analysis) may be used to focus the system on the portion of the

image that should be compared. Frequently, however, the matching algorithm must search
for the subset of the input to compare against the model. Such a matcher typically produces
as output the measure of similarity between the model and the best matching subset of the
input data as well the parameters identifying the subset from which the measure was taken.

This section describes di�erent methods for measuring sameness and the implementation

of modules which implement these methods. First, direct pixel matching is presented.
Though the technique itself is simple, the discussion clari�es the roll of matching in Sieve.
In addition, direct matching serves as a convenient place to discuss how color and gray scale
images are represented. Next, histogram matching is discussed as an example of statistical

pro�le matching. The third subsection describes two-dimensional feature matching and
presents the Hausdor� match as an example. The fourth subsection outlines the potential
roll for geometric and three dimensional matching. Finally, the �fth subsection discusses

50

example-based matching and presents a face detection algorithm based on this method.

4.1.1 Direct Matching

Many di�erent techniques may be used to obtain a measure of how closely two sets of pixels

match. The most straightforward means is a pixel by pixel comparison between the sets.
It is assumed that the two sets of pixels, A and B, comprise identically shaped regions and
that pairwise comparison of pixels ai and bi are made between pixels in the same relative
location. While it may be possible, under special conditions, to use pixel matching on

natural objects in real images, the main use of pixel matching presented in this report is
for matching graphics found in television video.

A useful way of representing a wide class of pixel by pixel comparisons is by de�ning a
distance metric between pairs of pixels, d = kp1 	 p2k, and a function, F, which represents
the distance between two sets of pixels, A and B, as follows:

A = fa1; a2; :::ang B = fb1; b2; :::bng (4:1)

D = fdi j di = kai 	 bikg (4:2)

F (D) = kA	 Bk (4:3)

Gray scale pixels represent brightness in the image plane as a scalar quantity. Therefore, a
gray scale pixel metric is a function de�ned over scalar values. Some commonly used gray
pixel metrics include the square di�erence, absolute di�erence, and absolute di�erence of

logs.

Color pixels represent lightness in the image plane as a vector quantity. A discussion of
di�erent color representations is presented in section 4.2.1. Regardless of color model that
is employed, a distance metric for color pixels is a function that takes two vectors as input
and produces a positive scalar value as output. A proper metric must also treat the two

inputs symmetrically, return a positive number if they are di�erent, return 0 if they are the
same, and obey the triangle inequality [Therrien, 1989]. Candidate metrics include those
based on the distance between the two vectors:

euclidean =
q
(xa � xb)2 + (ya � yb)2 + (za � zb)2 (4:4)

city block = jxa � xbj+ jya � ybj+ jza � zbj (4:5)

maximum component = max(jxa � xbj; jya � ybj; jza � zbj) (4:6)

and those based on the relative direction or angle, �, between the two vectors:

51

1� cos(�) = 1� ~a �~b
j~ajj~bj

(4:7)

sin(�) =
j~a
~bj
j~ajj~bj

(4:8)

The angle based measures, advocated by [Sung, 1992] and [Subirana and Sung, 1992], o�er
the advantage they are based on the relative weights of the vector components so that when
applied to a tristimulus color space they are insensitive to absolute intensity di�erences.

Once pixel values have been converted to distance measures, one may treat the accumulation
of the distance measures into a single measure in a uniform manner. In this case, we are

interested in functions which treat the distance measures as an unordered set of values.
Appropriate candidates include the sum of the distances (typically scaled by the number of
inputs), the product, the minimum, the maximum, the median, and the k-th rank. Another

useful accumulator is simply the number of distance inputs which are greater than a given
threshold.

VsPixelMatch

The VsPixelMatch module takes as input two image streams. By convention, one of these

streams is labeled the input stream and the other the model stream. The module searches
for the translation of the model with respect to the input which results in the minimum
distance as measured by a direct pixel match. The module produces as output a sequence
of properties which it attaches to the images in the input stream. These properties indicate

the minimum detected measure and the region of points in the input image that yielded
that measure.

The VsPixelMatch module may be used in one of two ways: as a synchronized comparator
of two image streams or as a template matcher. When used as the former, the two input
streams are compared frame by frame and the input stream, including the attached prop-

erties, is passed through while the model stream is consumed and discarded. When used
as the latter, the model stream must be explicitly stepped by the programmer so that once
an image is loaded, the module behaves like a model or template matching �lter whereby

each frame in the input stream is compared against the \held" model template. Figure 4-2
shows the VsPixelMatch module being used as a component in a template matching �lter.

Presently, VsPixelMatch is restricted to matching rectangular regions of points. One may
select a subset of the model image to serve as the model point set using the modelRect

parameter. The value of this parameter is a list of four numbers specifying the location of

the left, top, right, and bottom edges of the model. Each edge is represented as a oating
point number between 0 and 1 which represents the relative coordinate as a fraction of
the model image's width and height. Similarly the inputRect parameter speci�es the
rectangular region of points in the image that is searched for a match. A value of f0.0 0.0

1.0 1.0g, for example, would specify for the full image to be searched whereas a value of
f0.5 0.0 1.0 0.5g would specify for only the upper right-hand quadrant to be used.

52

FileSource

Match

Template Match

property:
 match=0.89
 match.top=0.09
 match.left=0.11
 ...

PixelMatch

Figure 4-2: VsPixelMatch used in a template matching �lter

VsPixelMatch implements a variety of comparison methods which may be described by a
pixel distance function and an accumulation function. The pixel metric is speci�ed using the

vectorMethod and the scalarMethod parameters, which respectively specify the method
used for comparing color pixels and gray pixels. Table 4.1 summarizes the allowable values
for these parameters. The only accumulation function currently implemented is the sum of

the distances.

Name Function

scalarMethod squareDi� (a� b)2

scalarMethod absDi� ja � bj
vectorMethod euclidean Equation 4.4

vectorMethod cityBlock Equation 4.5

vectorMethod maxDi� Equation 4.6

vectorMethod dotProduct Equation 4.7

Table 4.1: Distance methods

The output of VsPixelMatch is a set of �ve properties which are attached to the input
image. The base name for these properties is speci�ed by the property parameter. A
parameter value of match, for example, causes VsPixelMatch to attach the properties match,

match.top, match.bottom, match.left, and match.right. The values of these properties
are, respectively, the minimal distance measure and the location of the four edges of the
matching region.

The parameters for VsPixelMatch are summarized in the following table:

53

Parameter Value

model input port Model input port

input input port Input port

output output port Output port

scalarMethod fabsDiff squareDiffg Default is absDiff

vectorMethod fcityblock euclidean Default is cityblock

maxDiff dotProductg
inputRect oat oat oat oat Search rectangle: left top right bottom

modelRect oat oat oat oat Model rectangle: left top right bottom

property string Default is no property

hold f0 1g Default is 1

VsPixelMatch searches for the translation between the model and the input that results in

the minimum distance This idea can be extended to account for scale and rotational varia-
tions by scaling and/or rotating one image region with respect to the other and searching
for the best �t. Indeed, any variation which can be parameterized may be accounted for
in such a way. The drawback of this approach is computational cost. Every parameter

which is searched adds a multiplicative factor to the amount of computation so that it is
important to limit the range and frequency over which a parameter is searched.

One should note that not all distance measures between sets of pixels, not even those which
are essentially pixel by pixel comparisons, may be represented as a pixel distance function
and a distance set accumulator. An important example is a matched �lter [Rosenfeld, 1969].

A matched �lter for two image patches is described by the equation:

nX
i=1

aibi

vuut nX
i=1

a2i

vuut nX
i=1

bi2

(4:9)

The matched �lter accumulates the product of the pixels values in the two regions and

scales the sum by a factor that is dependent on the value of the pixels in the region. One
can de�ne a distance metric as 1 minus the output of the matched �lter. Unfortunately,
the approach put forth in this section provides no means of calculating the scale factor. It

would not be di�cult to generalize the approach but there really is no pressing need to do
so. The VsPixelMatch �lter, described below, implements a variety of matchers supported
by the existing scheme. While mathematically elegant, the matched �lter does not appear

to o�er signi�cant practical advantages over metrics such as the sum of the absolute or
Euclidean di�erences. Still, were there a need to provide such functionality, it would not be
di�cult to add by either extending VsPixelMatch or by implementing it as a new module.

The more signi�cant limitation that is shared by all the direct matching schemes described
in this section, including the matched �lter, is that they fail to account for important

properties between pixels within the regions. Other than the fact that these comparison
methods require that the spatial organization of the two regions be the same, there is no
use of structural information. As a result, these types of matchers are extremely sensitive
to alignment, scale, rotation, deformation, and so on.

54

4.1.2 Statistical Matching

Another means of measuring the similarity between two sets of pixels is to compute a

statistical pro�le which characterizes the sets of pixels and to compare the two pro�les.

One of the most straightforward statistics to compute over a set of pixels is the histogram of
their values. A histogram represents, for each gray or color range in the image, the number
of pixels in the image whose value falls within that range (�gure 4-3). Typically, the ranges,
referred to as bins, are non-overlapping and collectively exhaustive. In the case of gray scale

images, each bin represents a one-dimensional range of intensities while the bins for color
histograms are multi-dimensional.

Value

N
um

be
r

of
 O

cc
ur

an
ce

s

Figure 4-3: One dimensional histogram

Histograms have long found wide spread use in image processing as a basis for normalizing
image intensities (histogram modi�cation), and selecting thresholds [Pratt, 1991], [Rosen-

feld, 1969]. More recently, histograms have gained popularity in image analysis applications
as a tool for matching and indexing images [Swain, 1990] [Swain and Ballard, 1991] [Funt
and Finlayson, 1995]. In such applications, a histogram serves as a signature which may be
used to identify an object.

While technically, a pixel map of the object is also a signature of the object, a histogram

signature is better suited because of its invariant properties. Histograms of deformable
objects are frequently invariant to the types of deformations that the object undertakes. For
instance, the histogram of the frontal view of a person gesticulating their arms and changing
their expression remains relatively constant even though the spatial relationships between

pixel locations varies wildly. Furthermore, it is often the case that histogram signatures
remain fortuitously stable even when the two dimensional point of view to the object changes
because the color components of many three dimensional objects often remains relatively
constant across di�erent views.

The histogram representation serves as a natural way to organize the information in an

image. In particular, the pixels are grouped and sorted by value so that like-valued pixels
are placed in the same bin and near-valued pixels are placed in nearby bins. As a result,
alignment for matching is not an issue. Furthermore, the placement of near-valued pixels in
nearby bins makes histograms robust for matching in the presence of uncorrelated imaging

noise. Finally, histograms are easily made scale invariant by simply normalizing the bin

55

counts by the total number of pixels. Thus, each bin value represents the percentage of

pixel in the object that fall within its color range.

Another important advantage of histogram matching is computational performance. His-
tograms are a compact representation that are e�ciently generated and e�ciently compared.
Moreover, when searching for a region that matches a �xed model, the model histogram need
only be computed once. More important, however, is the mathematical property that the

histogram of a region is the sum of the histograms of the sub-regions. This property allows
for an e�cient implementation of the search algorithm whereby histograms for overlapping
regions need not be computed from scratch. The di�erence in performance, when compared
to direct matching, is dramatically illustrated in the performance results of chapter 8.

Unfortunately, histograms are not invariant to changes in lighting, though their robust

nature helps reduce its negative e�ects. One approach to dealing with this problem is to
transform the input to a more lighting invariant form. As was the case with pixel matching,
the VsColorTransform module has been used for this purpose.

The method used to compare histograms may be described as an accumulation of di�erences
between corresponding bins. The limitation of such bin to bin comparisons is that they do

not account for the relationships between non-overlapping bins. For example, in the extreme
case of comparing two histograms with absolutely no overlap, such a comparison fails to
account for whether the bins are near each other or are far apart. Measures that could be
taken to reduce such e�ects are smoothing the histogram or accumulating the bin values

di�erently. For example, one may model each bin as the accumulation of responses of each
pixel to a narrow band �lter. In practice, however, such measures tend to be unnecessary
for real images, since noise in the image processes serves to distribute pixel values.

VsHistMatch

The VsHistMatch module performs a function similar to that of VsPixelMatch in that it
searches for the translation of a model region within an input image that results in the
minimum distance measurement. Like VsPixelMatch, the module takes as input two image
streams, one labeled input and the other labeled model, and produces as output a set of

properties which it attaches to the images in the input stream. The modules di�er in the
way that model and input regions are compared and, therefore, in several of the parameters
related to the comparisons.

VsHistMatch compares pairs of regions by computing histograms for the two regions and
measuring the di�erence between the histograms. Histograms for a gray scale images are

represented as one dimensional arrays of bins. The number of bins is determined by the
grayBits parameter which speci�es the number of higher order bits that are used to de-
termine bin assignment. For example, a grayBits value of 6 speci�es that each gray scale
pixel be assigned to one of 26 bins on the basis of its 6 most signi�cant bits. Histograms for

color images are represented as three dimensional arrays of bins. The colorBits parameter
is a list of three values which independently specify the number of higher order bits used
for each of the three color dimensions.

VsHistMatch supports two methods for comparing histograms: sum of the absolute di�er-
ences between the bin counts and sum of the square di�erences between the bin counts. In

56

both cases, the bin values are �rst normalized by dividing them by the total number of pix-

els represented in the histogram. The normalized bins, therefore, represent the percentage
of image pixels in each bin. The method employed is speci�ed by the binMethod parameter.
The value returned by either of these methods is a number between 0 and 2, with 0 being
the value returned when comparing two identical histograms. The value 2 is returned by

the absolute di�erence method if the two histograms have absolutely no overlap. In the
case of the square di�erence method, the value returned is 2 if and only if all the pixels for
both histograms falls into exactly two distinct bins.

VsHistMatch treats the property, imageRect, modelRect, and hold parameters identically
to VsPixelMatch. This common treatment facilitates the implementation of higher level

modules such as VsTemplate (see section 5.2) which take the identity of a matching module
as an input parameter.

The parameters for VsHistMatch are summarized as follows:

Parameter Value

model input port Model input port

input input port Input port

output output port Output port

inputRect oat oat oat oat Search rectangle: left top right bottom

modelRect oat oat oat oat Model rectangle: left top right bottom

grayBits int Default is 8

colorBits int int int Default is f3 3 3g

binMethod fabsDiff sqDiffg Default is absDiff

property string Default is no property

hold f0 1g Default is 1

The cost of using a histogram representation is a loss of information which can allow dis-
similar regions to match. In particular, the color makeup of an object is preserved but the
spatial relationship between the di�erent colors is lost. For example, the three di�erent

images in Figure 4-4 share the same histogram.

Figure 4-4: Three di�erent images with the same histograms

Some of these problems may be addressed by considering other statistical measures. For

example, in the case illustrated, a histogram of a statistic based on local variation, such as
the Laplacian (�gure 4-5), would distinguish the two images. In general, any local feature
which may be quantized and counted may be used to generate a histogram-like statistical
pro�le which may in turn be used to characterize an image.

Many such features, often referred to as textures, have been proposed. [Tamura et al.,

1978], for example, presents statistical measures which correspond to visual concepts such
as coarseness, contrast, and directionality. These features were employed by Niblack in the

57

Texture Histogram

Figure 4-5: Histogram of the Laplacian

QBIC project [Niblack et al., 1993] as a basis for querying an image database by content.
More recent work presented by Picard and Minka [Picard, 1996] [Picard and Minka, 1995]

characterizes images using multiple texture models based on �rst and second order pixel
statistics.

4.1.3 Feature Matching (2D)

A di�erent approach to matching two dimensional regions of pixels is to transform the
pixels into a map of features and to perform matching based on the relative locations

of such features. For example, a commonly used image feature is edge locations. Edge
locations may be loosely de�ned as abrupt changes in pixel value. The principle advantage
of comparing features is that their measurement may, in some cases, be made invariant
to di�erent conditions. For example, the existence and location of an edge in an image is

relatively insensitive to lighting conditions.

A di�culty in matching feature locations is dealing with perturbations in feature locations.
Direct matching, for instance, fails if binary feature locations are skewed by distances of
even a pixel. Other methods for comparing point sets are better suited. One such method
developed by Huttenlocher and Rucklidge [1992] and implemented in Sieve, is based on

the Hausdor� distance. This method calculates the distance between two sets of points on

the basis of the Euclidean distances of points in the model set to their nearest counterpart
in the image set (and visa versa). The Hausdor� distance measure is the maximum such
Euclidean distance.

Formally, given two sets of points, one representing a model, M = m1;m2; :::mjM j, and the

other an image, I = i1; i2; :::ijIj; the Hausdor� distance, H(M,I), between the two point sets
is given by the formula:

H(M; I) = max(h(M; I); h(I;M)) (4:10)

where h(M,I) is de�ned as the largest distance from any point in M to the closest point in
I:

h(M; I) = max
m2M

min
i2I

km� ik (4:11)

58

h(M; I) is referred to as the forward distance while the converse, h(I;M), is referred to as

the reverse distance.

Huttenlocher and Rucklidge go on to de�ne the partial Hausdor� distance measure as the
k-th ranked Euclidean distance1 and then calculate the best or minimal such value across
di�erent translations and scales.

Huttenlocher, Noh, and Rucklidge [1992] demonstrated the robustness and e�ciency of the
Hausdor� technique by using it to build a real time tracker on a modest workstation. Their

code is the basis for Sieve's VsHausdorff module.

VsHausdor�

The VsHausdorff (�gure 4-6) module employs the Hausdor� distance metric to locate a

model in an input image. If the model is found, the module tags the image with a set
of properties indicating the location where the model appears and an additional property
indicating the quality of the match.

Hausdorff

property:
 match=.95
 match.top=.21
 match.left=.38
 match.right=.62
 match.bottom=.52

Figure 4-6: VsHausdor�

VsHausdorff implements an interface that is very similar to that of VsHistMatch and
VsPixelMatch. One di�erence is that the model and input payloads are expected to be
binary images. The true pixels in these images represent the model and input point sets.

The module searches for translations of the model with respect to the input image which

result in a distance measure that matches the speci�ed criteria. The criteria is de�ned by the
threshold and fraction parameters. Both parameters are speci�ed as pairs in which the
�rst value speci�es the forward value (threshold or fraction) and the second value speci�es
the reverse value. The forward fraction refers to the fraction of model points which must

be within a distance of the forward threshold (measured in pixels) from an input point.
Likewise the reverse fraction and reverse threshold specify the same values for the reverse
match.

1To be precise, the maximum, k-th ranked Euclidean distance where the max is taken between the forward
and reverse measures

59

If one or more translations results in a match, VsHausdorff selects the one with the highest

quality value. The quality value is computed as the product of the fraction of model points
falling within forward threshold pixels of an input point and the fraction of input points
falling within reverse threshold pixels of a model point. Thus, the quality value is a number
between 0 and 1.

As was the case for VsPixelMatch and VsHistMatch, the inputRect parameter speci�es

the rectangular region of points that is searched for a match to the model. Likewise, the
modelRect speci�es the rectangular region of points used to represent the model. The
property output of VsHausdorff also resembles that of the other matching modules. The
main di�erence is that whereas the other modules attach a set of properties for every input

image, VsHausdorff only adds a property if a translation is found that meets the threshold
and fraction criteria.

Parameter Value

model input port Model input port

input input port Input port

output output port Output port

inputRect oat oat oat oat Search rectangle: left top right bottom

modelRect oat oat oat oat Model rectangle: left top right bottom

threshold oat oat Forward and reverse thresholds

fraction oat oat Forward and reverse fractions

property string Base name for properties

hold f0 1g Default is 1

4.1.4 Geometric Matching (3D)

The matching methods discussed thus far are based on the reectance and texture properties
of objects. While such properties are extremely useful, it is worth noting that there are
alternatives. For example, the geometry or shape of an object may be employed. The basic
strategy, as described in [Grimson, 1990], is to extract geometric features from the data and

to search for globally consistent correspondences between the measured features and the
model features. A geometric feature may be any identi�able location on the object such as
an edge, corner, planar patch, cylinder, or sphere. One advantage of geometric matching is
that the technique applies well to three dimensional models.

Sieve does not currently implement a geometric matching �lter, though it does provide

several transformation modules which may be used to extract features. VsEdge, described
in section 4.2.2, is such an example. One reason for the omission is that geometric matching
algorithms have high computational requirements which currently limit their applicability
for interactive applications. Another reason is that while geometric matching systems are

complex, free standing libraries implementing these techniques are scarce, so there is a
high implementation cost. Were such libraries to become available, however, one means of
integrating geometric matching into Sieve would be as a module similar to VsPixelMatch

or VsHistMatch which compares a stream of inputs to a model, attaching a property to
each input indicating the degree to which the input and the model correspond.

60

4.1.5 Example-based Matching

The example-based matching approach involves training a system to classify inputs by

providing a number of labeled examples. The examples are used to tune parameters of the
decision making algorithm. Once trained, the system acts as a classi�er which may be used
to label (i.e. attach properties) to new inputs.

Examples and inputs are presented to the system as feature vectors in a multi-dimensional
space. Selecting the right features is the most important problem in building an example-

based learning system { although the choice of decision making algorithm and training
algorithm makes a di�erence.

One domain where example-based learning has proven to be e�ective is that of face detec-
tion. A face detector attempts to locate the human faces in an image. Sung and Poggio
[1994] built a face detector by normalizing two dimensional inputs to a 19x19 pixel win-

dow where each pixel location was treated as a dimension in a high dimensional space. A
canonical face model was built which attempted to capture the region in the vector space
which corresponded to faces. Using this face model, a feature vector based on taking the
distance between inputs and the face model was used to train a neural network to classify

19x19 pixel windows as those which did or did not contain a face. Using this classi�er, a
system was built which searched an image for faces by exhaustively scanning the image for
windows at all possible locations and scales.

Sung and Poggio's detector proved to be extremely e�ective at detecting frontal views of

human faces. Part of this success may be attributed the surprising regularity of faces when
properly aligned with a low resolution window. Using many of the same ideas, Rowley [1995]

built a face detector which again was based on classifying low resolution pixel windows.
Rowley's approach di�ered in that it used the pixels themselves2 as the feature vector and

trained the neural network directly on these vectors. Rowley's detector was also e�ective
and, more importantly, made publicly available as a library (no source code) which could
be incorporated into Sieve.

The problem of face recognition is akin to that of face detection, and the use of similar
techniques have been explored by many including [Turk, 1991], [Lawrence et al., 1997],

and [Beymer, 1996]. However, for several reasons, face recognition is not yet as practical.
Fundamentally, recognition is a more di�cult classi�cation problem because each input must
be classi�ed into one of many categories, whereas detection requires only two categories. In
addition, a face detector may be trained on thousands of examples and subsequently used

in a wide range of scenarios; whereas a recognizer must be trained for each individual for
which it is intended. Indeed, one of the most valuable aspects to Rowley's library is the set
of trained parameters which have been compiled into the detector.

VsFaceDetect

VsFaceDetect (�gure 4-7) implements the face detection algorithm described in [Rowley
et al., 1995]. The module is e�ectively a wrapper around Rowley's library code. It is

2Both Rowley and Sung/Poggio preprocess the pixels by performing illumination gradient correction and
histogram equalization

61

implemented as a single input, single output �lter which passes a stream of payloads without

altering the data. The module acts by attaching properties to any image payload in which
it observes one or more faces.

One Face Multiple Faces No Face

AA
AA

A
AAA
AAA
A

AA

Figure 4-7: Faces

The base name for the attached properties is set by property parameter. Each detected
face results in four properties being attached to the payload which specify the rectangular
region of the face. If, for instance, two faces were detected while property was set to
\head", the eight properties head.1.left, head.1.right, head.1.top, head.1.bottom,

head.2.left, head.2.right, head.2.top, and head.2.bottom would describe the two
rectangular regions where the faces were found.

VsFaceDetect may be con�gured to operate in one of two modes. Setting the type pa-
rameter to \har" 3, selects Rowley's standard detection algorithm which looks for multiple
faces at all locations and scales. Setting type to \fast har" instructs the detector to search

for faces in a speci�ed sub-region of the image and only at speci�ed scales. In addition, the
\fast har" algorithm terminates once it detects a face so that at most one face location is
indicated.

The inputRect parameter speci�es, in a manner like that of the other matching modules,
the rectangular sub-portion of the image to which the detector limits its search. The model

employed by VsFaceDetect is implicit so there is no model input port and no modelRect

parameter. The scale parameter, however, serves a related function by specifying the
minimum and maximum fraction of the image that might be covered by a matching face.

The parameters for VsFaceDetect are summarized as follows:

Parameter Value

input input port Input port

output output port Output port

type fhar fast harg Default is har

inputRect oat oat oat oat Search rectangle: left top right bottom

scale oat oat List of two values between 0 and 1

property string Default is no property

3HAR = Henry A. Rowley's initials

62

4.2 Image Transformations

The transformation of sensor data from two dimensional arrays of light intensity mea-

surements into intermediate representations that expose useful information has long been
recognized as an important step in visual perception [Marr, 1979] [Ullman, 1984].

transform

model

match

property

Figure 4-8: Transforming data for matching

This section describes many of the transformation �lters which are used by Sieve
prior to matching (�gure 4-8). For example, Sieve applications frequently use the

VsPixelTransform module, described in section 4.2.1, to improve the performance of a
pixel or histogram matching algorithm. The VsEdge module described in section 4.2.2 im-
plements the transformation of a color or gray scale image into a binary representation
while VsHistogram, described in section 4.2.3, describes the transformation of an image

into a histogram. Finally, the VsConvolve �lter, which convolves an arbitrary stencil with
an image is described in section 4.2.4.

4.2.1 Color Space Transforms

A color pixel represents lightness in the image plane as a vector quantity. Many vector
representations are possible and in practice, many representations are used. Since, the
performance of many matching algorithms is highly dependent on the pixel representation,

this section concerns itself with transformation from one representation to another. While
it is possible to implicitly incorporate a color space transformation into the matching algo-
rithm, it is advantageous from a modularity and re-usability standpoint to separate out the

transformation part of the algorithm whenever possible.

The components of a color vector often represent the brightness response of di�erent sensors

with varying spectral sensitivities. Because the human visual system itself uses three types
of sensors, called cones [Kandel and Schwartz, 1985], it is common to represent colors using
a tristimulus model. Examples include C.I.E. standard observer model which represents

color as an [r,g,b] vector where the r, g, and b sensitivities have been designed to approxi-
mate the spectral response of the three human visual cones, and the more commonly used
NTSC/RGB standard which represents color as an [r,g,b] vector where the r, b, and b values
are related to the glow of the standard phosphors used in TV sets. Other models include

the YIQ, YUV, UVW, XYZ, and rg-by-bw opponent color spaces [Pratt, 1991].

The transformations between many of these di�erent models are simply linear transforma-
tions which may be represented by a 3x3 coe�cient matrix. For example, the following
equation describes the transformation from an RGB vector to an opponent vector:

63

2
64 RG

BY

BW

3
75 =

2
64 1 �1 0
�1 �1 2
1 1 1

3
75
2
64 R

G

B

3
75 (4:12)

Others, such as the transformation from RGB to IHS are non-linear but invertible functions.
IHS space, for example, is a representation of the rectangular RGB vector in cylindrical
coordinates; where I (intensity) is the distance along the central axis, S (saturation) is the
distance from the central axis, and H (hue) is the direction from the central axis to the tip

of the vector.

While it is the case that these di�erent pixel representations may be readily converted to and
from one another, the behavior of a distance metric is dependent on the color representation.
For example, a vector A may appear closer to vector B than vector C in one color space but
closer to vector C than vector B in the other. Consider, for example, a city-block metric

applied to the RGB color space and the [rg,by,bw] opponent color space. The RGB vector
[0, 0, 5] is a city-block distance of 5 from the origin while the vector [3, 2, 1] is a distance
of 6 (further). However, when transformed to the opponent color space, the �rst vector
becomes [0, 10, 5] which is a distance of 15 from the origin while the second vector becomes

[1, -3, 6] which is is a distance of 10 (closer).

The transformation to various color models, such as the opponent color space de�ned in
equation 4.12 or a normalized color space de�ned in equation 4.13 are often used as an ad
hoc color constancy algorithm [Duda and Hart, 1973], [Ballard and Brown, 1982].

u = R
R+G+B

v = G
R+G+B

w = B
R+G+B

(4:13)

It is important to realize however that true color constancy, which is de�ned by [Hurl-
bert, 1989] as the tendency of objects to stay the same perceived color under changing
illumination, requires the measurement of a scene's reectance properties. Unfortunately,

determining these properties from image irradiance on a pixel by pixel basis is an under
constrained problem. Since experiments such as those reported in [Land and McCann, 1971]

show that humans perceive constant colors with a high pro�ciency, it appears as though hu-

man color perception is based on non-local properties and therefore could never be achieved
by a pixel by pixel image transformation.

Still, as was shown above, the choice of color space does e�ect a matching algorithm. The
normalized color model, for example, remains constant to changes in illumination which
change the three tristimulus irradiance measures by a scalar factor.

[R0; G0; B0] = [cR; cG; cB] (4:14)

Conversely, the RG and BY components of the opponent color space are invariant to illu-

mination changes which change the three irradiance measures by an additive factor.

64

[R0; G0; B0] = [R+ c;G+ c;B + c] (4:15)

A more sophisticated color constancy algorithm would be a useful addition to Sieve. [Luong,
1991] presents a number of candidate approaches. More recent promising approaches are
described in [Nagao and Grimson, 1995] and [Freeman and Brainard, 1995].

VsPixelTransform

The VsPixelTransform �lter performs image transformations from one pixel representation

to another. The module is a stateless �lter that computes an output image, I 0, for each
input image, I, such that every output pixel is strictly a function of its corresponding input
pixel.

I 0(x; y) = f(I(x; y)) (4:16)

VsPixelTransform is used to process both color and gray scale images. The
colorTransform parameter speci�es the transformation that is performed for color im-

age inputs. One possible value for this parameter is matrix. When set to this value, the
module performs an arbitrary linear transformation on each input pixel. The coe�cients of
the matrix are speci�ed using the matrix parameter, the value of which is a list of twelve

coe�cients, fc1:::c12g, that are applied to color pixels, [p1, p2, p3], as follows:

2
64 p01
p02
p03

3
75 =

2
64 c1 c2 c3
c5 c6 c7
c9 c10 c11

3
75
2
64 p1
p2
p3

3
75+

2
64 c4

c8
c12

3
75 (4:17)

Other possible values for colorTransform are rgb2xyz, rgb2yiq, rgb2opp, xyz2rgb,
yiq2rgb, opp2rgb, and null. Some of these transformations map directly to matrix trans-
formations while others, such as rgb2yiq and yiq2rgb, are non-linear.

VsPixelTransform may be con�gured to produce gray scale images from color image by
extracting a single color component. The colorSelect parameter may be set to an integer

value between 0 and 3. A value of 0 disables this feature, while a value of 1 to 3 selects the
�rst, second, or third component of the color vector.

Finally, the grayTransform parameter speci�es the transformation that is performed for
gray image inputs. Possible values for this parameter are sign, window2gray, gray2window,
and null.

The parameters for VsPixelTransform are summarized as follows:

65

Parameter Value

input input port Input port

output output port Output port

grayTransform fsign window2gray ...g Default is null

colorTransform fmatrix rgb2yiq ...g Default is null

colorSelect f0 1 2 3g Default is 0

matrix oat oat ...

List of 12 oats

4.2.2 Edge Detection

Edge detection is a widely used image transformation in computer vision. Edge detectors

typically transform color or gray scale images into binary images where true valued pixels
represent edges in the input. The precise de�nition of an edge varies but may be roughly
thought of as an abrupt change in color or gray value.

Edge representations are useful because they correspond to boundaries in objects. Thus,
they are frequently used as features themselves or as the basis for higher level features

such as lines and corners. Edges are relatively invariant to changes in lighting. Lighting
invariance and the fact that edge maps remove a great deal of redundant information from
images motivated their direct use as the input feature compared by the Hausdor� module
described in section 4.1.3.

In principle, an edge detector is any algorithm which attempts to �nd or label abrupt

changes in pixel value. In practice, most edge detectors are based on two dimensional
operators which are convolved with the image. A given operator balances conicting per-
formance criteria: sensitivity (probability of detecting real edges), robustness (probability

of detecting false edges), accuracy in determining location, and so on. One of the more
successful algorithms was developed by Canny [1983]. Canny's edge detector combines a
family of operators based on the directional derivatives of two dimensional Gaussians at
di�erent orientations and scales. Canny uses a heuristic decision procedure, based on the

local estimate of the signal to noise ratio, to select the best operator at each location in the
image.

An implementation of Canny's edge detector, based on code written at Cornell by Greg
Klanderman, has been incorporated into Sieve as the VsEdge module.

VsEdge

VsEdge (�gure 4-9) transforms a stream of gray scale images into a stream of binary images

where the true valued pixels represent edge locations.

VsEdge is designed to support multiple edge detection algorithms. The type parameter
selects which method is used. Presently, this value may be set to canny or fast. The
default value, canny, selects the Canny edge detector described above, while fast, which
has been used primarily for demonstration, selects the simple transformation described by

the following equation:

66

Edge

Figure 4-9: VsEdge

I0(x; y) =

8><
>:

1 if I(x; y)� I(x� 1; y) � threshold

1 if I(x; y)� I(x; y� 1) � threshold

0 otherwise

(4:18)

Both algorithms make use of the threshold parameter to specify sensitivity (increasing
the threshold decreases the number of detected edges). In addition, the Canny algorithm

optionally makes use of a second threshold parameter, threshold2. The second threshold,
if non-zero, acts as the high threshold in the hysteresis scheme described in Canny's report
[1983].

Presently, the two algorithms implemented by VsEdge are de�ned for gray scale images only.
Thus, any payload which is not a a gray scale image is passed through unaltered. For this

reason, VsEdge is often preceded by a VsColorToGray module.

The parameters for VsEdge are summarized as follows:

Parameter Value

input input port Input port

output output port Output port

type ffast cannyg Default is canny

threshold int Default is 10

threshold2 int Default is 0

4.2.3 Histogram Transforms

Section 4.1.2 presented the VsHistMatch module as an example of a statistical matching
module based on an image histogram. For performance reasons, histogram generation was
built into the VsHistMatch module. This section presents the VsHistogram �lter as a

separate, modular component that transforms streams of images into streams of histogram
payloads.

VsHistogram

The VsHistogram �lter (�gure 4-10) transforms images or portions of images into his-
tograms. The present implementation restricts itself to histograms with uniform sized,

67

non-overlapping bins.

Histogram

Figure 4-10: Histogram transformation

By default, the histogram is computed from all the pixels in the image. However, by setting

the nullPixel parameter, the user may select a color or gray value which is not added to
any bin. The nullPixel may be used to \mask" o� regions of the image which are not
part of the object of interest. Such histograms may thus be used to characterize segmented
objects. Section 4.4 details the mechanisms for masking image regions.

The output of the histogram �lter is a payload object called a VsSignal. A VsSignal is

essentially an array of bins. As was the case with VsHistMatch the assignment of pixels
to bins is determined by the colorBits and grayBits parameters. For one dimensional
histograms (i.e. gray pixels) the assignment is straightforward as the most signi�cant bits
of the pixel value are used to index into the bin array.

For multi-dimensional histograms (i.e. color pixels) the assignment is only slightly more

complicated. Each component of the color pixel is reduced to its most signi�cant bits
according to the colorBits parameter (see section 4.1.2), to form a triple: [px,py,pz]. This
three dimensional number is then mapped to an index in a one dimensional array in a
manner analogous to how two dimensional image locations are mapped to one dimensional

array indices:

i = px + py � dimx + pz � dimx � dimy (4:19)

where dimx and dimy are the dimensions of the �rst two components of the color histogram.

The parameters for VsHistogram are summarized as follows:

Parameter Value

input input port Input port

output output port Output port

grayBits int Default is 8

colorBits int int int Default is f3 3 3g

nullPixel int Default is -1

68

4.2.4 Spatial Filtering

A large class of useful image processing transformations may be expressed as the convo-

lution of an image with a point spread function. In particular, convolution may be used
to implement any linear and shift invariant function where the value of each transformed
pixel is the weighted sum of its own value and the value of its neighbors. A stencil, which
is the discrete representation of the point spread function, represents the relative location

and values of the weights.

1 1

11

4

4

4

4

-20

Figure 4-11: Convolution of an image with a stencil approximating the Laplacian

Formally, the convolution of a scalar image, I(i; j) and an nxm stencil w(i; j) yields the
transformed image I 0(i; j) given by the following equation:

I 0(i; j) =
n�1X
k=0

n�1X
l=0

I(i+ k � n=2; j + l �m=2) � w(k; l) (4:20)

In order to de�ne convolution for color images, one must either adopt vector replacements

for scalar multiplication and summation or simply apply the scalar stencil to each of the
vector components independently.

Spatial �lters are commonly used to implement edge enhancement operators, such as the
Laplacian, or blurring operators, such as a Gaussian or boxed �lter. Figure 4-11 shows
the e�ect of convolving a scalar image with a stencil which implements the former, while

�gure 4-12 depicts the latter.

25
1

25
1

25
1

25
1

25
1

25
1

25
1

25
1

25
1

25
1

25
1

25
1

25
1

25
1

25
1

25
1

25
1

25
1

25
1

25
1

25
1

25
1

25
1

25
1

25
1

Figure 4-12: Convolution of an image with a box �lter

VsConvolve

VsConvolve takes a stream of input images and convolves each one with a user speci�ed

69

stencil. Presently, only gray scale images are supported, color images are passed unaltered.

The stencil itself is speci�ed by two parameters. The dimension parameter is a pair of

integers specifying the width and height of the stencil. These values are required to be odd
numbers so that the stencil is centered around the output pixel. The window parameter is
a list of oating point weights. The position of the weights in the stencil is interpreted as
starting in the upper left corner of the stencil and proceeding, row by row, to the bottom

right corner.

The parameters for VsConvolve are summarized as follows:

Parameter Value

input input port Input port

output output port Output port

dimensions int int Width and height of the stencil

window oat oat oat ... List of weights

4.3 Motion

This section is concerned with the detection and measurement of change in an image stream.

Since change in an image stream is often caused by the movement of objects in a scene,
change detection is closely related to, and often confused with, the problem of motion
detection. Indeed, this thesis itself does not make a strong distinction between the two and

uses the term \motion" loosely to refer to changes detected in image streams.

Motion has proven to be be a particularly valuable source of information in Sieve. Not only

is motion in an image relatively easy to detect, it indicates what is changing in a scene
so that it is frequently the information of greatest interest. In fact, the behavior of many
applications are essentially determined by whether or not the program detects change in

the scene. For example, the room monitor determines whether there are people in the room
essentially by monitoring the amount of motion in the scene. The whiteboard monitor �lters
its input to remove transitional motion and then makes decisions about whether to save an

image based on the longer term changes appearing on the board. The gesture analyzer is

concerned with recognizing and characterizing the motion in its view. These programs are
e�ective because the change in the scene is precisely the information in which the user is
interested.

Change detection is essentially the converse of matching. Rather than determine whether
two things are the same, change detection concerns itself with measuring how they di�er. As

a result, the methods for measuring change are closely related to those used for matching.
The main di�erence is that rather than compare two inputs which may have been captured
at di�erent times and under di�erent viewing conditions, motion detectors typically compare
inputs which have been captured from the same source at nearly the same time. As a result,

techniques like pixel matching may be applied directly to the image stream with little or
no preprocessing.

Sieve implements three motion �lters based on three di�erent image processing techniques:
VsDiffMotion, VsOptFlowMotion, and VsStatMotion. Each of these modules takes a

70

Motion

Figure 4-13: Motion detection

stream of images as input and produce a stream of binary images as output (�gure 4-

13). The binary image represents a foreground/background segmentation whereby the true
valued foreground pixels indicate the location on the image plane where change is occurring.

4.3.1 Di�erential Motion

The simplest of the three motion sensing techniques is based on calculating the amount by
which a pixel's value changes between successive images. Conceptually, the technique is akin

to computing the temporal derivative dI=dt of an image stream and thresholding the result.
Sieve implements this concept in the VsDiffMotion �lter which calculates the amount by
a which a pixel changes using the pixel distance metrics described in section 4.1.1.

Formally, VsDiffMotion takes a sequence of color or gray scale images: fIt(x; y)jt = 1:::ng
and computes a sequence of binary images fDt(x; y)jt = 1:::ng

Dt(x; y) =

(
1 if kIt(x; y)� It�1(x; y)k � threshold

0 otherwise
(4:21)

where kIt(x; y)�It�1(x; y)k represents the distance between two pixels at the same location

at times t and t� 1.

The output of a di�erential based method is clearly dependent on the time step between
images. For instance, when used to detect a solid colored moving object, a fast frame rate
would result in a relatively thin edge of pixels changing around the object whereas a slow
frame rate would result in a greater number of pixels changing between frames.

One means of accommodating varying frame rates is to vary the number of frames between

images. Thus, rather than restrict comparisons to be between It and It�1, VsDiffMotion
provides the parameter k, which may be used to specify that comparisons be made between
It and It�k for k � 1.

Di�erencing works well for locating moving objects when the image stream has been cap-
tured from a stationary camera. The simplicity of the technique results in dependable, high

quality output which may be obtained at low computational cost. Still, there are several
limitations. VsDiffMotion is of little use for processing output captured from a moving
camera. Since video produced for TV is packed with pans, zooms, and visual e�ects, more

71

Figure 4-14: The output of VsDiffMotion with the shadow artifact

sophisticated techniques must be used for analyzing production video. Another weakness
of VsDiffMotion for locating moving objects is that it can not distinguish between the
foreground and background. Thus, when an object moves across a stationary background,
both the location where the object has moved to and the location where the object has

moved from appear to have changed. The e�ect, which is similar to a shadow, is illustrated
in Figure 4-14.

VsDi�Motion

VsDiffMotion transforms a stream of color or gray scale images into a stream of binary im-
ages which indicate where change is occurring in the image plane. The �lter is implemented

as a compound module, composed of the four modules shown in Figure 4-15.

Delay

DiffDup Threshold

Figure 4-15: VsDi�Motion implementation

VsDiffMotion works by duplicating the input stream and passing the two copies to a

VsDiff module which computes a pixel by pixel di�erence for every pair of images in the
two streams. The VsDelay module causes the two input streams to be o�set by one or more
frames so that the computed di�erences indicate the amount that a particular pixel has
changed during that delay. Finally, a VsThreshold module transforms the 8-bit di�erence

measurements produced by VsDiff into boolean values by applying a thresholding function
to each pixel.

The VsDiffMotion module has several input parameters which it passes to its underly-
ing components. For example, the threshold and property parameters are passed to the
VsThreshold module, the delay parameter is passed to the VsDelay module, and both the

vectorMethod and scalarMethod parameters are passed to the VsDiff module. Descrip-
tions of these modules are provided below.

72

The parameters for VsDiffMotion are passed to its constituent modules as follows:

Parameter Value

input VsDup input

output VsThreshold output

threshold VsThreshold threshold

property VsThreshold property

delay VsDelay delay

scalarMethod VsDiff scalarMethod

vectorMethod VsDiff vectorMethod

VsDi�

VsDiff computes the pixel by pixel distance between pairs of input images. Its implemen-

tation is similar to that of VsPixelMatch, though in addition to computing a property,
VsDiff computes an output image as well. The output image is a single band image equal
in size to the two input images4 with eight bit pixel values. The interpretation of the pixel
values depends on the speci�ed distance method.

The two input streams are labeled input1 and input2. As was the case with VsPixelMatch,

one stream may be held constant while the other ows. The user may specify which stream
to hold with the hold parameter. The value of hold may be 1, 2 or 0 which respectively
speci�es for the �lter to hold the �rst input, second input, or neither input constant.

VsDiff implements several methods, shown in Table 4.2, for computing a distance between
pixels. As shown in the table, the user may specify the method for gray scale and color

images by setting the input parameters scalarMethod and vectorMethod respectively5.

Name Function

scalarMethod absDi� ja � bj
vectorMethod euclidean Equation 4.4

vectorMethod cityBlock Equation 4.5

vectorMethod maxDi� Equation 4.6

vectorMethod dotProduct Equation 4.7

vectorMethod crossProduct Equation 4.8

Table 4.2: Distance methods for VsDi�

The distance value computed by each of the methods is mapped to a value between 0 and
255, where 0 represents the minimum and 255 represents the maximum possible distance.

Thus, in the case of the absDiff or maxDiff methods, the output value is simply the value
computed by the formula shown in Table 4.2 while in the case of the cityBlock method,
this value is divided by a 3 and in the case of the crossProduct or dotProduct methods

(which produce a value between 0 and 1), the value is multiplied by 255. Finally, the value
computed by the euclidean method is divided by

p
3.

4
VsDiff assumes its two input images are the same size and type. If they are not, the module throws the

two images away, outputs a blank image, and issues a warning.
5Currently absDiff is the only method provided for gray scale images

73

The parameters for VsDiff are summarized as follows:

Parameter Value

input1 input port Input port

input2 input port Input port

output output port Output port

hold f0 1 2g Default is 0

scalarMethod fabsDiffg Default is absDi�

vectorMethod fcityblock euclidean maxDiff Default is cityblock

dotProduct crossProductg

VsThreshold

VsThreshold (�gure 4-16) converts gray scale images to binary images by applying a thresh-
olding function to the image pixels. Presently, the module is implemented as a simple �lter

which ignores all payload types other than gray scale images. Gray scale images, however,
are transformed according to the formula:

I0(x; y) =
(

1 if tmin � I(x; y) � tmax

0 otherwise
(4:22)

Threshold

Figure 4-16: VsThreshold

The values of tmin and tmax are set by the threshold parameter. VsThreshold may be
con�gured to produce a property which summarizes the percentage of pixels which have
been mapped to 1. The property parameter speci�es the name of this oating point value.

property =
1

hw

w�1X
x=0

h�1X
y=0

I 0(x; y) (4:23)

The parameters for VsThreshold are summarized as follows:

74

Parameter Value

input input port Input port

output output port Output port

threshold int int tmin tmax

property string Default is no property

VsDelay

The VsDelay module is used to bu�er payloads. It serves to simplify the implementation
of other modules by allowing them to be stateless. The module functions as a one input,
one output �lter which produces one output payload for each input payload. The output

payload it produces is the same as the previous payload it received. The only exception is
the �rst payload, for which there is no previous input. VsDelay handles the �rst payload
by duplicating it and sending one copy immediately while holding the other until the next

payload arrives. Thus, the output stream produced by a VsDelay module is the same as
the input stream with the �rst payload duplicated.

The e�ect of the duplicated payload is to push back the arrival of later payloads. An
alternative would be to have VsDelay drop, rather than duplicate, the �rst payload. Such
an implementation would indeed work, but the behavior of VsDiffMotion would be slightly

di�erent. While in the present implementation, VsDiffMotion produces exactly one output
payload for each input payload, the alternative implementation would result in a compound
module which does not produce an output payload until the arrival of the second input.
Thus the output stream would always contain one fewer payload than the input stream.

While it is not the case that every �lter is required to produce an output stream equal in
length to its input stream, those which do are generally easier to use. In particular, such
�lters may be placed in a pipeline without skewing the arrival of payloads with respect to
another stream.

An alternative to duplicating the �rst payload is to load an initial payload from an alternate

input stream. The initial parameter implements this alternative. The initial parameter
is an input port, which by default is disconnected. If, however, the initial port is connected
to another modules output port, VsDelay inserts the �rst payload which arrives at the initial
port into the input stream rather than duplicating the �rst payload that arrives at its input

port. The e�ect is, once again, to push pack the arrival input payloads.

Multiple payload delays may be speci�ed with the delay parameter, which may be any
integer value. Negative values cause the �rst n payloads to be dropped while positive
values cause the �rst payload to be duplicated n times. The default delay value is 1.

One caveat with the duplication approach is the result of having di�erent types of payloads
ow through the same channels in the processing network. As detailed in chapter 3, modules

are designed to ignore payloads which they don't recognize by passing them through. For
instance, the VsDiffmodule passes though any payload which is not a video frame. It would
be a mistake, therefore, for the VsDelay module in the VsDiffMotion �lter to duplicate the
�rst payload if it were not a video frame. In other applications, one may require the module

to delay payloads of some other type. The payloadType parameter is used to specify the
type of payload which will be delayed. Thus, when the VsDelay module receives a payload

75

it passes it through if it is not of type payloadType. Otherwise, it delays the payload by

passing though the previous payload of that type. The default value for payloadType is
VsVideoFrame.

The sequences below illustrate the behavior of a VsDelay module con�gured to delay video
payloads in a stream of interleaved audio payloads, an and video payloads vn.

input stream a1 a2 v1 a3 a4 v2 a5 v3 v4 :::

output stream a1 a2 v1 a3 a4 v1 a5 v2 v3 :::
(4:24)

The parameters for VsDelay are summarized as follows:

Parameter Value

input input port Input port

initial input port Input port

output output port Output port

delay int Default is 1

payloadType payload type Default is VsVideoFrame

4.3.2 Optical Flow

While the di�erential method described above provides a fast and robust means of detecting
which pixels are changing in an image, it provides little information about how they change.
This is unfortunate since there is a great deal of structure in the way an image changes
in response to the movement of objects in a scene. In particular, local brightness patterns

and textures in an image appear to move or \ow" from one location to another in the two
dimensional plane.

Optical ow is de�ned as the apparent two dimensional motion of the brightness patterns
in a sequence of images [Horn, 1986]. Optical ow may be represented by a vector �eld
which describes the two dimensional velocity of each point in the image plane.

OF (x; y) =

"
u(x; y)

v(x; y)

#
u = dx=dt

v = dy=dt
(4:25)

Tracking the brightness of individual pixels or small regions involves considerable ambiguity
while the tracking of larger groups of pixels is valid only if all the pixels in the group are

undergoing the same transformation. In addition, pixels which appear or disappear due to
occlusion as well as those which change in brightness due to changing imaging conditions
(such as imaging geometry or lighting) or even spontaneous change in appearance (such as
monitor icker), are problematic.

Despite these problems, many researchers have been successful in measuring and using

optical ow [Horn and Schunck, 1981], [Wang and Adelson, 1993], [Wood�ll, 1992], [Horswill,
1994]. Sieve has incorporated its own method based on code written by Satyajit Rao.

When compared to the di�erential technique, optical ow has the advantage that it provides
more information and works on input captured from moving cameras. The drawbacks are

76

that it requires considerably more computation and that it can be noisy, especially when

computed using some of the faster algorithms.

VsOptFlowMotion

VsOptFlowMotion transforms a stream of images into a stream of binary masks which
indicate where motion is being detected in the image plane. This �lter is a compound
module, similar in design to that of VsDiffMotion (�gure 4-17). The only di�erences

between the two are the use of a VsOptFlow module, rather than a VsDiff module, and the
addition of a VsColorToGray preprocessing module. The function of the VsColorToGray

is to convert color images in the input stream to gray scale, since that is the only format

currently accepted by VsOptFlow.

Delay

OptFlowDup ThresholdColorGray

Figure 4-17: VsOptFlowMotion implementation

The two input VsOptFlow module, described below, computes the vector �eld which de-
scribes the change in location of each pixel between the two inputs. Each vector is repre-
sented by a magnitude and a direction. For the purpose of this compound �lter, VsOptFlow
module is con�gured to output a scalar image representing only the magnitude values.

These values are then thresholded to produce the binary image, so that the output of this
motion detector is a binary image indicating where the displacement of pixels in the image
plane is greater than a speci�ed distance.

The parameters of VsOptFlowMotion are passed through to its component modules. In most
cases, the name of the VsOptFlowMotion parameter is the same as that for the underlying

module. In the case of the threshold parameter, however, ambiguity exists because two of
the underlying modules de�ne a threshold. VsOptFlowMotion distinguishes between the two
parameters by adopting the name flowThreshold to refer to the threshold parameter of the

underlying VsOptFlow module while retaining threshold as the name of the VsThreshold
threshold parameter.

Parameter Value

input VsColorToGray input

output VsThreshold output

threshold VsThreshold threshold

property VsThreshold property

delay VsDelay delay

sradius VsOptFlow sradius

pradius VsOptFlow pradius

flowThreshold VsOptFlow threshold

77

VsOptFlow

VsOptFlow (�gure 4-18) computes the ow �eld between two streams of images. The ow
�eld is a two dimensional array of two dimensional vectors. The vectors indicate the dis-
placement for each pixel in input1 to a corresponding pixel in input2.

OptFlow

Figure 4-18: VsOptFlow

VsOptFlow uses a correlation based algorithm to compute the correspondence between im-
ages. In particular, each pixel is matched by taking the rectangular region of its neighbor-

ing pixels and searching for the rectangular region in the second image which most closely
matches that region. The sum of the absolute di�erence between the pixel regions is used
as the matching metric. The size of the rectangular patch is speci�ed by the pradius pa-

rameter. A value of two, for instance, speci�es that a 5x5 neighborhood of pixels centered
around the pixel being matched is to be used.

The area that is searched for a match is limited to the vicinity of the location of the matching
pixel. The extent of this area is speci�ed by the sradius parameter. Unlike pradius, the
sradius is speci�ed relative to the dimensions of the image as a oating point value between

0 and 1.

Typically, a fair number of pixel regions will fail to closely match any regions in the second

input. Such is the case for regions which have moved beyond the search radius and for
regions which span object boundaries. Rather than assign a misleading value to such vectors,
the threshold parameter speci�es a cut-o� value for the sum of absolute di�erence, above

which the null vector is assigned.

The displacement vectors are represented by a magnitude and a direction. The VsOptFlow

may be con�gured with the select parameter to output both of these quantities as a vector
image or to output a scalar image representing either the magnitude or direction �elds. In
either case, both magnitude and direction are represented as 8 bit values. For magnitude,

this is simply a number between 0 and 255 representing the length of the vector in pixel
units. For direction, the value represents the angle measured counter clockwise from the x
axis in increments scaled so that the 256 values represent a full 360 degrees.

The parameters for VsOptFlow are summarized as follows:

78

Parameter Value

input1 input port Input port

input2 input port Input port

output output port Output port

sradius oat Default is 0.1

pradius int Default is 2

threshold int Default is 20

select fmagnitude direction vectorg Default is magnitude

hold f0 1 2g Default is 0

4.3.3 Background Motion

Finally, Sieve implements a third type of motion �lter which works by taking the di�erence
between the incoming stream of images and a known, stationary background. A binary
image is obtained by applying a threshold to the di�erence values (�gure 4-19).

Background

Sequence

Output

Figure 4-19: Background motion

The background technique is particularly suitable for producing a segmentation which dis-

tinguishes a moving object from the background. The reason for this is that images are not
compared strictly against recent images, so that moving objects do not \blend" with them-
selves. Blending occurs when pixels imaged from two di�erent objects which are similar in

value, happen to occupy the same location in the image plane. Blending between a moving
object and a background object is occasionally unavoidable. However, a more common
blending problem occurs when comparing successive images in which di�erent portions of
the same moving object blend with each other. The background technique avoids this latter

problem by comparing images to an estimate of the background.

The background technique has the additional advantages that its output is less sensitive

79

to variations in frame rate and that it eliminates the shadow e�ect depicted in Figure 4-

14. The disadvantage is that it depends strongly on the ability to accurately compute the
background, which can at times be problematic. Errors in the background calculation can
result in stationary portions of the image appearing to be part of a moving object. In
addition, the background computation is based on waiting for regions of the image to stay

unchanged for a speci�ed period of time so that delay is introduced into the system. The
background computation is performed by the VsStationary �lter described below.

VsStatMotion

VsStatMotion implements the background subtraction method of detecting motion. As
was the case with VsDiffMotion and VsOptFlowMotion, VsStatMotion takes a stream of
images and computes a stream of foreground/background segmentations which indicate

which portions of the image are changing.

Stationary

Diff ThresholdDup

Figure 4-20: VsStatMotion �lter

The VsStatMotion �lter is implemented as a compound module (�gure 4-20). The input is
duplicated into two identical streams by a VsDup module. One of these streams is passed
through a VsStationary �lter and then compared with the un�ltered stream using the
VsDiff module. The function of the stationary �lter, described below, is to �lter out the

moving objects from a scene so that what remains is a depiction of the background.

As was the case with VsDiffMotion, the output of the VsDiff module is passed to a
VsThreshold �lter which produces a binary image which indicates which pixels are di�erent
in the two streams.

The parameters of VsStatMotion are passed through to its component modules. How-
ever, several ambiguous parameter names exist because the VsStationary module itself

contains a VsDiff module. The threshold parameter is handled by passing threshold to
the VsThreshold module and using stationaryThreshold to refer to the threshold in the
VsStationary module. In addition scalarMethod and vectorMethod are passed to both
the VsDiff module and the VsStationary �lter so that these parameters are constrained

to be the same for both modules.

The following table summarizes how parameters for VsStatMotion are passed to the un-
derlying modules:

80

Parameter Value

input VsDup input

output VsThreshold output

threshold VsThreshold threshold

property VsThreshold property

blockSize VsStationary blockSize

constantCount VsStationary constantCount

moveBits VsStationary moveBits

stationaryThreshold VsStationary threshold

stationaryProperty VsStationary property

delay VsStationary delay

scalarMethod VsDiff scalarMethod & VsStationary scalarMethod

vectorMethod VsDiff vectorMethod & VsStationary vectorMethod

VsStationary

VsStationary (�gure 4-21) attempts to compute the background of a scene. The background

is de�ned to be the image that would have been observed by the camera if all of the moving
objects in the scene were removed. VsStationary acts as a one input, one output �lter
which produces an output image for each input image. The output image is the �lter's

current best estimate of the background, given the latest input.

Stationary

Figure 4-21: VsStationary

The �lter starts by storing the �rst image that arrives as its memory image and outputs a

copy of the image as its initial estimate of the background. Upon each additional arrival,
the memory image is updated and a copy is produced as output.

There are many possible algorithms which may be used to update the memory image.
Zentner [1993] explored several of these, namely frame averaging, random updating, and
selective averaging, using the VuSystem programming environment.

Presently, Sieve implements its own scheme based on counting the number of times that

each region of the image has remained unchanged. The regions are rectangular blocks
which may vary in size from one square pixel up to the full size of the image. A block
is considered to have changed if more than a speci�ed number of pixels in the block are
su�ciently di�erent in value from that of the previous image. Once a block has remained

81

unchanged for a speci�ed number of frames, its value in the memory image is updated to

be the same as that of the current input image.

The use of blocks to detect change helps prevent solid textured regions within moving objects
from appearing to be stationary. In addition, blocks of pixels contain more information than
singular pixels, so the block technique reduces blending by reducing ambiguity.

The stationary algorithm is capable of composing the background of scenes even when the
background is never fully exposed. A problem that arises, however, is that portions of the

scene which are composed from di�erent time periods are often captured under varying
lighting conditions. For example, even on a short time scale, a person walking through a
scene casts shadows, changes the white balance of the imaging system, and even changes
the character of the ambient light in the room. As a result, portions of the image which

are blocked from being updated (because they are obstructed by the moving object) may
be slightly lighter or darker than other portions of the background. The result is a ghosting
e�ect whereby the moving object appears as a slightly darkened or lightened region in the
background 6.

VsStationary is implemented as a compound module (�gure 4-22). The compound im-

plementation, consisting of a VsDup, VsDiffMotion, and VsStatGate module, allows Sieve
to use VsDiffMotion to determine which pixels are changing. VsStatGate takes both a
stream of images and a stream of binary motion segmentations and produces a stream of
images which are updated using the scheme described above.

DiffMotion

StatGateDup

Figure 4-22: VsStationary implementation

The parameters for VsStationary are passed to its constituent modules as follows:

Parameter Value

input VsDup input

output VsStatGate output

blockSize VsStatGate blockSize

constantCount VsStatGate constantCount

moveBits VsStatGate moveBits

property VsStatGate property

scalarMethod VsDiffMotion scalarMethod

vectorMethod VsDiffMotion vectorMethod

delay VsDiffMotion delay

threshold VsDiffMotion threshold

6While visible on a monitor, the ghosting e�ect is di�cult to reproduce in print because the di�erences
are faint and because the e�ect is more noticeable in video than in stills.

82

VsStatGate

VsStatGate is designed to work in conjunction with a motion �lter to implement a station-
ary �lter. The module takes two inputs, one labeled input, which is a stream of color or
gray scale images, and the other labeled mask, which is a stream of binary images. The
binary images are presumed to have been produced by a motion �lter. In the case of the

implementation described above, the VsDiffMotion �lter is used. The module produces
a stream of output images, one for each pair of inputs. The output images are the same
format (color or gray scale) as the input stream.

VsStatGate implements the background computation algorithm described above. The size
of the blocks is speci�ed by the blockSize parameter. The value of blockSize is a pair

of integers specifying the width and height. If blockSize is speci�ed as a single integer,
rather than a pair, that value is used for both the width and the height.

The moveBits parameter speci�es the number of pixels in a block which must be true in
the binary input image for the block to be considered to have changed.

The constantCount parameter speci�es the number of frames for which a block must be
considered to be unchanged before its value is updated in the memory image.

Finally, VsStatGate may be con�gured to produce a property which summarizes the per-
centage of pixels which have been updated for the current image. The property parameter

speci�es the name of this oating point value.

The parameters for VsStatGate are summarized as follows:

Parameter Value

input input port Input port

mask input port Binary mask input port

output output port Output port

blockSize int int width height

moveBits int Default 0

constantCount int Default 10

property string Default is no property

4.4 Binary Image Manipulation

The three motion detectors described in the previous section transform their input from

a stream of color and gray scale images into a stream of binary images which represent
where change or movement occurs in the image plane. In doing so, these modules expose
information that is of potential interest. More generally, any module that segments or
identi�es regions of interest in the image plane may represent its output in such a way. For

example, segmentations may be computed on the basis of color [Subirana and Sung, 1992],
texture [Bajcsy, 1973], or stereo disparity [Coombs et al., 1992].

This section describes several modules which analyze and manipulate binary images. Specif-
ically, the module VsBinaryProps analyzes binary images, attaching properties which char-
acterize the data. VsBinaryProps thus serves an important role in the transformation of

83

image data to symbolic form.

This section also presents VsMotionExtract. VsMotionExtract is a compound module

which incorporates several modules that manipulate and transform binary images. In par-
ticular, VsSpeck, VsMaskFill, and VsColor are all used, together with a motion �lter, to
segment and extract a moving object from a scene.

4.4.1 Binary Image Properties

The transformation of binary image data to discrete properties is performed by
VsBinaryProps. VsBinaryProps characterizes binary images by describing qualities about

the \foreground" or region of true valued pixels in the image plane.

VsBinaryProps

VsBinaryProps processes a stream of input payloads by attaching properties to binary
images. The properties reect characteristics of each such image, such as the fraction of
pixels which are true, the location of the center of mass, and so on.

The set of properties which VsBinaryProps computes is by no means exhaustive. Dur-

ing the development of Sieve, new properties continue to be added as needed. Presently,
VsBinaryProps supports four measurements, each of which may be independently turned
on or o� by setting the appropriate property name parameter. The countProp parameter,
for example, speci�es the name of the property that is used to hold a oating point value

representing the fraction of true value pixels in the image. Setting this parameter to the
null string causes VsBinaryProps not to compute its value.

Similarly, the parameter centerProp speci�es the base name of the pair of properties used
to record the location of the center of mass of true pixels. The center of mass is represented
by two oating point values between 0 and 1 which indicate the location of the center

relative to the width and height of the image. The names of the properties are the base
name concatenated with the string \.x" and \.y" respectively.

The connectProp parameter speci�es the name of the integer property used to indicate the
number of connected components in the image. The algorithm used to count the number
of connected components is described in [Horn, 1986].

Finally, the boxProp parameter speci�es the base name of a set of four properties used to

de�ne a bounding box around the region covered by the true valued pixels. The full names
of the four properties are the base name concatenated with the strings \.top", \.bottom",
\.left" and \.right". The properties are oating point numbers between 0 and 1 which
represent the rectangle relative to the image dimensions.

The boxFrac parameter is used to remove outliers from the edges of the image prior to

computing the bounding box. A boxFrac value of .05, for example, speci�es for the top-most
5%, bottom-most 5%, left-most 5%, and right-most 5% of true valued pixels be discarded.

84

Parameter Value

input input port Input port

output output port Output port

countProp string Default is no property

centerProp string Default is no property

boxProp string Default is no property

boxFrac oat Default 0

connectProp string Default is no property

There are many additional properties which could be added to VsBinaryProps. For ex-
ample, in addition to center of mass, geometric properties such as the orientation may be
represented as the axis of least second moment [Horn, 1986]. Topological properties such
as the Euler number (the di�erence between the number of objects and number of holes)

may also be used to characterize an image. Rosenfeld [Rosenfeld, 1969] presents methods
for computing these and other properties which characterize the shapes of regions in binary
images.

4.4.2 Segmentation

An important function of a binary image is to describe a region of interest in the image
plane. This section describes how such a region may be identi�ed and then used to segment

or extract an object from a scene.

VsMotionExtract

The VsMotionExtract attempts to extract a moving object from a stationary background
(�gure 4-23). The �lter takes a stream of color or gray scale images as input and produces a
stream of output images where the pixels that are not part of the moving object have been

masked or \removed". The e�ect is similar to that obtained using chroma-key segmentation,
whereby the boundary of a person or object is obtained by photographing the object in front
of a constant colored background. In this case, however, the person may be di�erentiated

from a cluttered background by using motion, rather than color.

The �lter is implemented as a compound module consisting of a VsDup, VsStatMotion,

VsSpeck, VsFill, and VsColor �lter (�gure 4-24). VsStatMotion computes the motion
segmentation which it represents as a binary image. VsSpeck and VsFill attempt to im-
prove the segmentation by using spatial properties in the binary image. VsColor composes

the binary with the original input to produce an image in which the pixels that are not part
of the moving object have been removed.

In the case of the VsStatMotion �lter, the threshold parameter determines the cuto� for
determining whether a pixel is considered to be in the foreground or the background. Too
low a threshold will cause noise and lighting variations to cause spurious pixels to appear

in the foreground while too high a threshold can cause portions of the moving object to
blend into the background. To reduce the former, the output is �rst passed through a speck
removal �lter, VsSpeck. Finally, to alleviate the latter, the output is passed through a �lter,
VsMaskFill, which uses the assumption of spatial coherence in the image plane to �ll in

85

Figure 4-23: VsMotionExtract output

gaps in the mask.

The parameters for VsMotionExtract are passed to its constituent modules as follows:

StatMotion

ColorDup

Speck MaskFill

Figure 4-24: VsMotionExtract

86

Parameter Value

input VsDup input

output VsColor output

blockSize VsStatMotion blockSize

constantCount VsStatMotion constantCount

moveBits VsStatMotion moveBits

scalarMethod VsStatMotion scalarMethod

vectorMethod VsStatMotion vectorMethod

delay VsStatMotion delay

threshold VsStatMotion threshold

stationaryThreshold VsStatMotion stationaryThreshold

speckWindow VsSpeck window

speckThreshold VsSpeck threshold

fillWindow VsMaskFill window

foreground VsColor foreground

background VsColor background

VsColor

VsColor composes binary images with color and gray scale images. The module takes two
input streams, labeled input and mask, and produces an output stream of composed images.

The image composition is governed by the foreground and background parameters. The
foreground parameter determines the value of output pixels which are true in the mask

image while the background parameter determines the value of pixels which are false. As
shown in Figure 4-25, a positive value causes each of the foreground or background pixels
to be set to the value of the parameter while a negative value causes the foreground or
background pixels to be replaced with the corresponding pixel in the input image.

The parameters for VsColor are summarized as follows:

Parameter Value

input input port Input port

mask input port Binary input port

output output port Output port

foreground int Default 0

background int Default -1

VsSpeck

The binary masks computed by the motion �lter typically consist of a dense cluster of object

points surrounded by a sparse region of spurious noise. The di�erence in character between
the dense cluster and the sparse noise permits a simple and e�ective means for �ltering out
the latter. VsSpeck (�gure 4-26) modi�es a stream of binary images by eliminating true
valued pixels which have little or no local \support".

87

Color

foreground= -1
background= -1

foreground= 0
background= 255

foreground= 255
background= -1

foreground= -1
background= 255

mask

input

Figure 4-25: VsColor

Speck

Figure 4-26: VsSpeck

VsSpeck employs two parameters, window and threshold. The window parameter speci�es
the size of a rectangular region de�ned around each pixel. A value of three, for instance,
speci�es a 3x3 region of points centered around the current pixel. VsSpeck goes to each

true valued pixel in the binary image and counts the number of true valued pixels in its
local region. If this number is less than the speci�ed threshold, the pixel value is set to
false. A window of 3 and a threshold of 1, for example, would eliminate all true valued

pixels which have no immediate true valued neighbors.

The parameters for VsSpeck are summarized as follows:

88

Parameter Value

input input port Input port

output output port Output port

window int Default 0

threshold int default 0

VsMaskFill

VsMaskFill (�gure 4-27) attempts to improve the segmentation computed by the

VsStatMotion �lter by �lling gaps in the binary image or mask caused by the blending

of the moving object with the background.

MaskFill

Figure 4-27: VsMaskFill

The algorithm used by VsMaskFill, though ad-hoc, does a credible job of �lling the gaps

and incurs low computational cost. The algorithm begins by computing four contours which
de�ne the top, bottom, left, and right boundaries of the region of true pixels in the image.
Next, the algorithm optionally smoothes the four contours using a median �ltering operation

described below. Finally, the set of pixels falling between both the top and bottom contours
and the left and right contours is calculated and output as the �lled mask.

VsMaskFill employs a median �lter to smooth the four boundary contours. The �lter treats
each contour as a one dimensional signal. In the case of the top and bottom contours, the
signal de�nes, for each column, a displacement to the top or bottom edge. The median

�lter transforms this signal by replacing each value by the median value of points in its
neighborhood. The number of columns in the neighborhood is speci�ed with the window

parameter. The left and right contours are treated analogously. A window value of 0 or 1
speci�es that median �ltering is not performed.

The algorithm for VsMaskFill works well on sequences where a single person or object is

moving about a scene. While the �lter does not correctly handle shapes with particular
concavities, and was not designed for multiple objects, it performs reasonably well under
such scenarios. Figure 4-28 demonstrates its ability in �lling several oddly shaped regions.

The parameters for VsMaskFill are summarized as follows:

89

Figure 4-28: VsMaskFill output

Parameter Value

input input port Input port

output output port Output port

window int Default is 0

4.5 Alternative Filters and Properties

This chapter has described how Sieve generates properties from unstructured video. The

coverage has focused on a range of �lters that have proven useful for the types of interactive
applications considered in this report. However, the existing library suggests many ways
that other types of �lters and associated properties could be incorporated. For example,
Sieve does not presently implement any modules based on 3D reconstruction from stereo.

For some applications, three dimensional features could be grouped and hypothesis tested to
generate properties representing correspondence to 3D models. For others, depth maps may
be �ltered to obtain binary image segmentations from which geometric and set properties
may be derived. Other techniques for summarizing such information are certain to emerge.

Thus, the descriptions of the current modules serve not only to document the existing
library, but more importantly, as examples for how additional techniques may be adapted
to the Sieve framework.

4.6 Summary

This concludes discussion of the processing that is used to perform direct manipulation
and analysis of the \bits" in the media stream. The next chapter describes ways in which
the properties derived from such processing may be used to dynamically adjust the sys-

tem. Chapter 6 then concludes discussion of the analytical processing, by describing the
transformation from properties to symbolic events.

90

Chapter 5

Property Processing

The previous chapter described the transformation of unstructured video into properties.
The next step is to transform these properties into events. Before taking this step, however,
this chapter describes how properties are used to dynamically adjust the behavior of the

system.

In short, properties are used by Sieve in three major ways:

1. Properties may e�ect the processing performed by a module. In particular, property
values may be used to modify a module's con�guration parameters.

2. Properties may be used to direct or route payloads through the processing network.

3. Properties and sequences of properties may be used to generate symbolic events.

The �rst two functions are discussed in this chapter. The third, generating events, represents
a higher level of abstraction and is discussed in chapter 6.

5.1 Parameter Setting

The behavior of a processing module is a function of its user speci�ed parameters and

the incoming payload data. The payload data includes both the media bits and their
associated properties, enabling modules to be programmed to use speci�c property values
in their output calculations. While such an approach allows properties to e�ect the behavior

of processing modules, a more exible mechanism which puts interactive user input on an
equal footing with processing output is desirable.

A cleaner approach to integrating processing derived information and user input is to allow
properties to change a module's parameters. Modules written to adopt this approach derive
all their symbolic input from their parameter settings. In this way, applications which

use such modules may be written to allow user input, process derived information (e.g.
properties), or both to e�ect each module's parameter values.

Sieve does not require a special mechanism to implement such an approach. Since properties
are used to generate events, and event handlers can adjust parameter values, a mechanism
already exists for allowing derived information to mix with user input. However, a serious

91

shortcoming arises from the separation of event processing from media processing. Although

this separation models the asynchronous nature by which participants interact with media
processing and provides exibility in implementation, the resulting asynchrony between
event processing and media processing makes it impossible to design applications which
tightly integrate these tasks.

The following example serves to clarify this limitation and to introduce Sieve's watchmech-

anism as a solution.

Example: Tracking

This example describes the implementation of a simple tracker. The input to the tracker
is a model object and a stream of images. The output is stream of properties describing
the object's location. As such, the tracker could be directly implemented using one of
the matching modules described in section 4.1. For example, a tracker built using the

VsHausdorff module is shown in �gure 5-1.

Edge Hausdorff
model

input

FileSource

parameters

User

properties
data

Figure 5-1: Fixed model tracker

Because the model is �xed, this implementation can only be used to track models with
features that remain constant as the object moves about the scene. Unfortunately, the
features generated by the edge �lter used in this example do not meet this criteria. Rather,
these features undergo constant change as the objects in the scene change viewing geometry,

orientation, and even shape. While it is di�cult to limit or parameterize such deformations
(particularly those due to changes in the shape of non-rigid objects), in many cases it is
reasonable to assume that such changes occur gradually. A tracker which updates the

model data used on each successive match may take advantage of these gradual variations
by setting the model data to be equal to the output data for the previous match. Figure 5-2
illustrates a simpli�ed example of such an approach.

Two issues which arise are how to initialize the feedback loop and how to arrange for the
region identi�ed by the VsHausdorffmatcher to serve as the model region for the subsequent

match. The initialization is handled by placing a VsDelay �lter (see section 4.3.1) in the
feedback loop. The VsDelay module must be con�gured to insert an initial model image
into the input stream to be compared to the �rst data payload.

The more di�cult issue is how to transform the property output identifying the region of
matched data into the parameter input identifying the region of the model. The approach

depicted by the cloud in the �gure 5-2 uses properties to trigger events (see chapter 6) which
would be handled in turn by procedures that set input parameters. The di�culty previously

92

Edge Hausdorff
model

input

Dup Analyzer

event

AA
AA
AA
A
A AAAAAAAA

AA
AA

AAAA
AAAA

AAAAAAA
AAAA Event Processing

parameters

Feedback

propertiesdata properties

Figure 5-2: Event based tracker for updating model data

alluded to, (event handlers executing asynchronously with the processing of media data),
prevents a guarantee that the event handler would be run before the arrival of the next

input payload.

The solution adopted by Sieve is to allow payloads themselves to carry the parameter
values. The mechanism for doing this is the watch method. This method allows a module
to watch an input stream for a speci�ed property symbol. Whenever a payload bearing that
symbol is encountered, the module sets the appropriate input parameter to the value of an

expression. The expression may include the values of other properties in the current input
payload. Thus, any module may be con�gured to change its operating parameters on the
basis of its input data.

The syntax for watch is as follows:

<module> watch {<property> <parameter> <expression>}

Typically, the expression will refer to the value of properties in the current payload. The

values are accessed using the special Tcl function, prop. The prop function is special
because it must executed from within the context of a payload. When executed as part of a
watch expression, this context is the payload which includes the speci�ed \watch" symbol.
The VsDerivemodule, described in section 5.2, also de�nes a context for the prop function.

Calling prop outside of a watch or derive expression results in an error.

The prop function takes as arguments the name of a property, its type and, optionally, a
default value. The type is either a float or int. An alternative syntax is to use prop.f

to return a oating point property and prop.i to return an integer property. The default
value is the value that is returned if the property does not exist in the current payload.

For example, if vs.motion is the name of a VsDiffMotion module, then one may use the

following command to cause the module's threshold parameter to be reset, whenever the
module receives a payload with the property \x" de�ned, to be twice the value of \x".

vs.motion watch {x threshold {2 * [prop.i x]}}

Figure 5-3 illustrates the data ow for a working Hausdor� tracker based on the watch
mechanism. The �gure is similar to that of the previous example (�gure 5-2) in that the

93

properties produced by the VsHausdorff module are used to derive the new location of the

model by setting the module's modelRect parameter. The new tracker di�ers, however, in
that it synchronizes the parameter settings with the data processing by using the properties
attached to the model data itself.

Edge Hausdorff
model

input

Dup

data properties

Delay
properties

watch
(parameters)

FileSource
initial

properties

Figure 5-3: Watch based tracker

The �gure also includes the VsDelay module described earlier that is used to initialize the
model input of the VsHausdorff module. The script for the working tracker is shown in

�gure 5-4.

VsEdge vs.edge

VsHausdorff vs.haus \
-input "bind vs.edge.output" \
-property "haus" \
-hold 0 \
-modelRect $initialRect \
-watch {haus {modelRect [list [prop.f haus.left] [prop.f haus.top] \

[prop.f haus.right] [prop.f haus.bottom]]}}
VsDup vs.dup \

-input "bind vs.haus.output" \
-numOutputPorts 2

VsFileSource vs.model \
-pathname "$modelFile"

VsDelay vs.delay \
-input "bind vs.dup.output1" \
-initial "bind vs.model.output"

vs.delay.output connect vs.haus.model

Figure 5-4: Script for implementing Hausdor� tracking

5.2 Routing

Data ow computation depends upon the arrangement of processing modules in a ow
graph. Routing may be used to make the arrangement that a payload encounters depend

upon \ow time" factors. Such factors may be due to the internal characteristics of the data
or due to external inputs such as those from an interactive user. In either case, modules
which route payloads may be used to reduce the computational load on downstreammodules
by splitting ows so that payloads can avoid unnecessary processing. It is even possible,

using network sources and sinks, to send di�erent payloads to di�erent machines for parallel
computation.

94

The basis for routing in Sieve is the VsClassify module. VsClassify is a simple module

that routes payloads to one of two output ports on the basis of a speci�ed payload property.
One may use this primitive module, often in combination with a VsDerive module or a
VsSync module (see below) to build many types of routing modules and sorting networks.

VsClassify

VsClassify (�gure 5-5) is a one-input, two-output module which directs each input payload
to either its true output port or its false output port depending on the binary value of a

speci�ed property.

Classify

True

Falsep=0p=1p=1

p=1

p=0

p=1

p=0p=0

property=p

Figure 5-5: VsClassify

The name of the property is speci�ed using the property parameter. The module examines
each incoming payload for this property and passes it to its output0 port if the integer value

of the property is zero or to its output1 port if it has any other value. In cases where the
speci�ed property is not de�ned, the module passes the payload to the port which is speci�ed
as the default. The default parameter is a boolean number which selects the output0 or
output1 port.

The parameters for VsClassify are summarized as follows:

Parameter Value

input input port Input port

output0 output port False output port

output1 output port True output port

property string Name of the property to examine

default f0 1g Default output port

The VsClassify module is fairly rigid in that it requires input properties to be boolean
valued. Since not all properties are of this form, it is often necessary to transform properties
from one type to another. The VsDerive module performs this function, in e�ect, acting
as an impedance matcher which matches the form of the output produced by one module

to the input required by another.

95

VsDerive

VsDerive generates properties by evaluating Tcl expressions. The module maintains a list
of property names and associated expressions. Each time a payload arrives, the VsDerive
module evaluates the expression for each property in the list and attaches the result to the
payload as the value of the property.

The derive method is used to add entries to the expression list. Syntax for the method is

as follows:

<module> derive {<property> <type> <expression> [<dependencies>]}

The \dependencies" is an optional list of property names that must be de�ned in the current
payload for the derive expression to be executed.

For example, to derive a boolean property fast (represented by an integer) from a oating
point property speed, one could use the following statement:

<module-name> derive {fast int {[prop.f speed] > 100}}

The VsDerive module's clear method, which takes no arguments, resets the expression
list.

Finally, the payloadType limits processing to payloads of a speci�ed type. For example,
the value VsVideoFrame limits processing to video payloads. Setting this parameter to null

(the empty string) causes all payloads to be processed.

The parameters and methods for VsDerive are summarized as follows:

Parameter Value

input input port Input port

output output port Output port

payloadType payload type Default is VsVideoFrame

derive prop type expr [dep1] [dep2] ... Method to add a derive expr

clear n/a Method to clear all expressions

96

VsClassify is meant to be used as a primitive module from which higher level routing

modules may be built. For example, one can easily generalize the boolean operation of the
module to that which routes payloads on the basis of an integer or oating point property
by using a VsDerive module to map ranges of integer or oating point values into booleans.
Indeed, several VsClassify modules together with a VsDerive �lter may be combined to

act as an n-way classi�er which routes payloads to any number of distinct output ports
depending on the range of values into which an integer or oating point property falls.
Figure 5-6 shows one such arrangement.

Derive Classify
(a)

Classify
(b)

Classify
(c)

1

0

1

0

1

0

derive a int x<.3
derive b int x<.6
derive c int x<.9

.9<x

x<.3

.3<x<.6

.6<x<.9

Figure 5-6: A 4-way Classi�er built using VsClassify

It is also possible to use a VsClassify together with a VsDerive and VsNullSinkmodule to
build a compound module which temporally down-samples a stream of payloads. Figure 5-7

shows an arrangement which uses the select procedure (de�ned in the �gure) to produce
an output stream which consists of every nth payload from its input.

Derive Classify
(a)

1

0

proc select {n} {
 global count
 return [expr [incr count]%$n==0]
}

derive a int [select $n] NullSink

Figure 5-7: A temporal down-sampler built using VsClassify

The select procedure in the down-sampler is an example of a derive expression that de�nes

state. In general, any derive expression may do so, thus enabling a property value to depend
on previous values of properties.

Finally, �gure 5-8 shows how a VsClassify and VsDerive �lter may be used to implement
a switch that routes payloads in the direction set by the last call to the switch procedure
(de�ned in the �gure).

Derive Classify
(a)

1

0

$m proc switch {out} {
 $self.derive derive a int $out
}

Figure 5-8: A switch built using VsClassify

97

One computational task for which the VsClassify module has proven to be particularly

useful is sifting through an input stream for payloads which meet a speci�c criteria. The
following describes how such computation may be applied to the problem of annotating
video.

Example: Video Annotations

This section describes the Sports Highlight Browser, a special purpose application, imple-
mented using Sieve, that was used to browse CNN's nightly sports broadcast. The browser,

shown in �gure 5-9, enabled users to retrieve the video highlights for a particular sporting
event. The application ran continuously as a demonstration on the World Wide Web for a
period of roughly a year beginning in early 1994 [Stasior and Tennenhouse, 1996] [Lindblad
et al., 1995].

Figure 5-9: Sports Highlight Browser

The browser made use of annotations which labeled speci�c images in the sports broadcast.
The browser took advantage of the broadcasting cliche whereby the viewer would �rst
be shown an announcer introducing the sporting event, then shown highlights from the

event, and �nally shown a scoreboard graphic summarizing the results (�gure 5-10). This
cliche would be repeated throughout the broadcast. The task of the annotation generator,
therefore, was to identify which frames were scoreboards and to recognize which teams
appeared in the scoreboard graphic. The highlight for a particular event, a Boston Celtics

basketball game for example, was thus assumed to be the video clip falling between the
Celtics scoreboard and the previous scoreboard.

98

Previous Scoreboard Anchor Highlight Clip Scoreboard

Figure 5-10: Sports highlight cliche

The graphics themselves were identi�ed using a bank of template matching �lters. A tem-
plate matcher compares a stream of input payloads to a �xed model. VsTemplate is an

abstraction which allows the combination of a two-input matcher with a VsFileSource to
be treated as a simple, one-input, one-output �lter. VsTemplatemay be used with any two-
input matcher that supports the necessary interfaces. The VsPixelMatch, VsHistMatch,
and VsHausdorff are all examples of modules which may be used by VsTemplate.

VsTemplate

A common use of a matching module is to compare a stream of payloads to a �xed model.

When used in such a way, the two-input matching module e�ectively becomes a single input,
single output �lter which attaches properties to the input stream.

VsTemplate (�gure 5-11) is a compound module which di�ers from most such modules in
that it takes the name of another module as an input parameter. The matchMod parameter
is a list whose �rst element is the name of a matching module. The rest of the list are

the parameter names and values which are passed to the matching module. For example,
the list fVsHistMatch -binMethod absDiffg would specify the matching module to be a
histogram comparator con�gured such that its binMethod parameter was set to absDiff

(see section 4.1.2).

Match

FileSource

Figure 5-11: VsTemplate

The match module must be a module with two input ports labeled input and model and
an output port labeled output. In addition, the match module must de�ne the hold and
property parameters. These parameters are not set in the matchMod list. Rather, they
are set as follows: input and output are aliased to be the input and output ports for the

compound �lter, model is connected to the output port of the VsFileSource, hold is set
to 1, and property is set to the value of the VsTemplate property parameter.

The pathname parameter is the name of the �le containing the model. The value of this
parameter is passed directly to the VsFileSource component.

99

The parameters for VsTemplate are summarized as follows:

Parameter Value

input input port Aliased to the match module's input port

output output port Aliased to the match module's output port

pathname string VsFileSource pathname

property string Match module's property

matchMod list Match module's name and parameters

For the purpose of detecting speci�c sports graphics, VsTemplate was used in conjunction
with a VsPixelMatch. Each pixel matching template �lter was con�gured to search a
speci�c region of the image for a particular graphic in the database.

VsClassify modules were used to organize the bank into an e�cient network where pay-
loads which match a given template are treated di�erently from those which do not. Thus,

for example, video frames which are identi�ed as being a scoreboard were further examined
to see what teams are represented, while frames which did not depict a scoreboard were
tested for other properties or simply ignored. The VsClassify modules were incorporated

by combining them with a template �lter and a VsDerive �lter in an abstract module, re-
ferred to as a VsClassProp. The VsClassProp module served as a unit whereby a property
could be computed and immediately used to route a payload. These units acted as the
building blocks for the annotation network.

VsClassProp

VsClassProp (�gure 5-12) combines a property generating �lter with a VsDerive and a
VsClassify module to produce a compound module which routes payloads on the basis

of a speci�c property measurement. The module accepts a stream of input payloads and
routes them to either its output0 or output1 port on the basis of a boolean expression.

0

1

Classify 1

0DeriveFilter

Figure 5-12: VsClassProp

The propMod parameter is treated in a manner similar to the matchMod parameter of
VsTemplate. The propMod parameter is a list whose �rst element is the name of a one-
input, one-output �lter; while the rest of the list are parameter names and values which
are passed to the �lter itself. The propMod module is required to support the parameters

input and output. The input parameter is used as the input to the VsClassProp module
while the output is connected to the VsDerive �lter's input port.

The VsDerive �lter is used to generate the property which routes the payload. The name of
the generated property is speci�ed using the property parameter while its value is computed

100

by evaluating the expression parameter. Typically, the expression will involve properties

generated by the propMod module.

The parameters for VsClassProp are summarized as follows:

Parameter Value

input input port Aliased to the property �lter's input port

output0 output port Aliased to the classify's output0 port

output1 output port Aliased to the classify's output1 port

property string Property �lter's property

expression tcl expression Tcl expression evaluating to 1 or 0.

propMod list Property �lter's name and parameters

One of the most important aspects of the VsClassPropmodule is that it is easily composed.
In particular, one may use several VsClassProp modules as components in a higher level

module that e�ciently classi�es payloads on the basis of boolean operators such as and and
or. The higher level module supports the same interfaces as the lower level VsClassProp
module and thus itself may be composed.

The VsClassPropmodules were used in stages to sort and ultimately identify payloads. The
�rst stage classi�ed video payloads into those which were scoreboards and those which were

not. A VsClassPropmodule, which incorporated a VsTemplate �lter, which itself was built
using a VsPixelMatch, was used to detect the presence or absence of a standard graphic
in the upper left corner of the image. Those which matched were classi�ed as scoreboards

while those which did not were passed along. It was soon discovered, however, that the
scoreboard graphic changed regularly and that on any given day, any one of three di�erent
graphics could be used (�gure 5-13).

Figure 5-13: Three di�erent graphic markers

In order to handle the di�erent possibilities, payloads which failed to match the original
graphic were subsequently tested against the second and then the third template. The
resulting arrangement is shown in �gure 5-14. In this arrangement, the three VsClassProp

modules and a VsMerge module act as a compound module which classi�es a payload as a
scoreboard if it matches any of the three templates. The computation is e�cient in that
only payloads failing to match the �rst template are matched against the second template
and so on.

The mechanism for implementing this arrangement is VsClassifyOr, an abstract mod-

ule which combines a list of VsClassProp modules (or any modules that implement
the VsClassProp input port, output port interface) into a compound module. The

101

ClassProp1

0

1

0

ClassProp1

0
M

erge

ClassProp
Scoreboard

Not Scoreboard

Figure 5-14: Classifying scoreboards

VsClassifyOr module itself implements the VsClassProp port interface, as does its coun-
terpart VsClassifyAnd. It thus possible to build a VsClassifyOr module which includes
VsClassifyAnd modules which include VsClassifyOr modules, and so on.

VsClassifyAnd, VsClassifyOr

VsClassifyOr and VsClassifyAnd are abstract modules, each of which, like the primitive
module VsClassify and the compound module VsClassProp, processes payloads arriving

at its input port by routing them to either its output0 or output1 port. Both modules
take a list of such classi�ers as their mods parameter and arrange them in the manner shown
in �gures 5-15 and 5-16.

ClassProp
(b)

1

0

0

1

a&b&c

ClassProp
(a)

1

0

ClassProp
(c)

1

0

M
erge Derive

Derive

Figure 5-15: Compound module for computing A and B

0

1

a|b|c

ClassProp
(b)

1

0

ClassProp
(a)

1

0

Derive
ClassProp

(c)

1

0

Derive

M
erge

Figure 5-16: Compound module for computing A or B

102

The result of the arrangement for the VsClassifyAnd module is to route payloads to the

compound module's output1 port if and only if all of the component classi�ers route the
payload to their output1 port. Similarly, the VsClassifyOr module's arrangement routes
a payload to the compound modules output1 port if any of the component classi�ers route
the payload to their output1 port.

Though not shown in the �gures, one may arrange for payloads passing through the com-

pound module to be tagged with a boolean property that is set to 1 if the payload is routed
to the output1 port and 0 if the payload is routed to the output0 port. The property

parameter supplies the name of this property. When this parameter is set to a value other
than the empty string, two VsDerive modules are placed just before the two output ports

to tag each outgoing payload.

The parameters for both VsClassifyAnd and VsClassifyOr are summarized as follows:

Parameter Value

input input port Input port

output0 output port False output port

output1 output port True output port

property string Property name

mods list List of classi�ers

In addition to the scoreboard graphic, a library of graphical templates was developed which
identi�ed each team1. As was the case with the scoreboard graphics, multiple graphics were

sometimes used to represent the same team (�gure 5-17). Thus, some teams were classi�ed
by a singular VsClassProp module while others were classi�ed by a VsClassifyOr module
built from multiple VsClassProp modules.

Figure 5-17: Two templates for the same team

Using these classi�cation modules for scoreboards and teams, the annotation network was
de�ned roughly as follows:

VsClassifyAnd
<Scoreboard>
<Scheduled Game>

Thus, each payload that was classi�ed as a scoreboard would subsequently be tested to see
whether it represented an athletic contest of interest from the day's schedule. While it was
not necessary to �rst test each payload to determine if it represented a scoreboard, the test

1Although optical character recognition could have been employed to identify these particular templates,
it was not used for two basic reasons: lack of a freely available, high quality ocr library and an interest in
maintaining the exibility to recognize teams represented as non-textual icons.

103

was included for e�ciency since it allowed most payloads to be skipped by the subsequent

test to see if the payload represented a contest of interest. The list of such contests would
vary but might consist of the day's pro basketball games or the day's major league baseball
games or a subset of such contests.

As stated previously, the classi�cation of a payload as a scoreboard was performed by a
VsClassifyOr module which sorted input payloads on the basis of comparisons to three

templates. Similarly, the classi�cation of a payload as one representing a contest of interest
was also performed by a VsClassifyOrmodule which tested to see if payloads matched the
expected layout for any individual contest.

VsClassifyAnd
VsClassifyOr

VsClassProp Scoreboard1
VsClassProp Scoreboard2
VsClassProp Scoreboard3

VsClassifyOr
<Game1>
<Game2>
<Game3>

The pseudo-code, \VsClassProp Scoreboard1", is shorthand for a VsClassProp module
de�ned using a VsTemplate �lter which compares a particular scoreboard graphic to each

input image. The actual code for such a module would be as follows:

VsClassProp \
-propMod {

VsTemplate -pathname scoreboard1.uv
-matchMod {

VsPixelMatch
-modelRect {$mLeft $mTop $mRight $mBottom}
-inputRect {$iLeft $iTop $iRight $iBottom}}}

where mLeft, mTop, mRight, mBottom, iLeft, iTop, iRight, and iBottom are parameters
which specify the model and input rectangles.

Finally, the test for whether a scoreboard matched a particular contest was performed by

a VsClassifyAnd module which tested to see whether the scoreboard contained both the
home team and away team in their proper locations (traditionally, the home team always
appears below the away team). For example, the following expression would be used to
search for highlights of basketball games on a night where the Celtics were scheduled to

play the Clippers, the Knicks were scheduled to play the Suns, and the Bulls were scheduled
to play the Rockets:

VsClassifyAnd
VsClassifyOr

VsClassProp Scoreboard1
VsClassProp Scoreboard2
VsClassProp Scoreboard3

VsClassifyOr
VsClassifyAnd -property CelticsAtClippers

VsClassProp Celtics (away)
VsClassifyOr

VsClassProp Clippers1 (home)
VsClassProp Clippers2 (home)

VsClassifyAnd -property KnicksAtSuns
VsClassProp Knicks (away)

104

VsClassProp Suns (home)
VsClassifyAnd -property BullsAtRockets

VsClassProp Bulls (away)
VsClassProp Rockets (home)

The property parameter used in this example causes the particular module to attach a
true valued boolean marker to payloads that are classi�ed as positive examples.

Figure 5-18 depicts the hierarchical arrangement for this classi�cation network. The entire
network acts as a classi�cation module which takes a stream of image payloads and sorts
them into two streams, one containing frames which depict scoreboards of interest and the

other containing all other frames. More importantly, the network acts to annotate the
payloads by attaching properties which identify the scoreboard payloads. One may, in fact,
merge the two output streams to produce a one-input, one-output �lter which annotates

payloads.

S-board2

S-board1

S-board3

OR

Rockets

Bulls

AND

Knicks

Suns

AND

Celtics

Clippers2

Clippers1

OR

AND

OR

AND

Figure 5-18: Classi�cation network

There is, however, one important caveat to such use of a classi�cation network. Namely,

payloads passing through such a network can become reordered. The reason for this is that
the di�erent payloads travel along di�erent paths which typically have unequal delays. In
such scenarios, the VsSync module may be employed.

VsSync

VsSync (�gure 5-19) takes two input streams, one of which is assumed to be ordered and one
of which can be unordered. By default, VsSync simply passes through the ordered stream
while discarding payloads in the unordered stream. The utility of VsSync comes from the
fact that VsSync does not pass a payload from the ordered stream until a payload with the

same timestamp arrives from the unordered stream. VsSync thus insures that the ordered
payload does not proceed until its unordered counterpart has passed through the processing
network. This can be useful when the payloads in the ordered stream and the unordered
stream are in fact shallow copies of one another. In such cases, the properties accumulated

by the unordered payloads exist for the ordered payloads by the time the ordered payloads
are forwarded through the VsSync module.

105

SyncDup

Classify Merge

p
4

p
5

p
6

p
4

p
5

p
6

p
1

p
2

p
3

Figure 5-19: VsSync used to \reorder" output from a classi�cation network

By default the ordered payloads are passed while the unordered payloads are deleted. Al-
ternatively, one may use the ordered parameter to specify for the payloads arriving at the
unordered port to be passed. In either case, the payloads will leave VsSync in order. In
the latter case, however, any transformations performed on the unordered stream will be

preserved. Setting ordered to 1 selects the ordered stream while setting the parameter to
0 selects the unordered stream.

The parameters for VsSync are summarized as follows:

Parameter Value

inputOrdered input port Ordered input port

inputUnordered input port Unordered input port

output output port Output port

ordered f0 1g Select which stream to pass

5.3 Summary

This section has described two ways that Sieve makes use of properties: parameter setting
and routing. Both mechanisms were illustrated by example. The Tracker used the param-
eter setting mechanism to update model parameters as a tracked object moves throughout

a scene. The Sports Highlight Browser used a classi�cation network to route images to
processing modules depending on their properties.

The next chapter describes a third way that Sieve uses properties: to generate symbolic
events.

106

Chapter 6

Generating Events

In this work, the problem of recognizing events in media streams has been addressed in terms
of matching patterns of properties of media input. Patterns are de�ned across sequences
of images and thus serve as the key mechanism for explicitly representing inter-frame re-

lationships. Pattern matching is performed by �lters monitoring streams of properties for
speci�c patterns and signaling events when those patterns occur (�gure 6-1).

properties
 Image

Processing

eventsimages Pattern
Matching

Figure 6-1: Generating events from images

This chapter is divided into three parts. The �rst part develops a methodology for rec-
ognizing media patterns. The approach is based on regular patterns which are recognized

by �nite state automata [Hopcroft and Ullman, 1979]. The second part describes VsVex,
a Sieve module which implements this methodology. The third part presents an example
applet which uses VsVex to recognize a simple gesture.

6.1 Methodology

The problem of matching patterns of symbols in an input stream is well studied in computer
science. Formally, a string is a sequence of symbols from a speci�ed alphabet and a language
is a set of strings. A pattern is a notation for a language. A pattern matcher is an automata

which examines an input stream and computes whether the input represents a string in the
language.

Traditionally an input string is a sequence of symbols from a limited alphabet whereas the
raw input from a stream of video is a sequence of images. In order to apply the tools from
computational language theory one must transform the stream of media into something

that resembles a stream of symbols.

For this purpose this thesis employs properties and predicates. Properties are measurements

that are made on the input stream. Predicates are boolean functions of properties which

107

map payloads in the input stream to true or false. Predicates act as the symbols in \media

strings".

Once media has been transformed into a sequence of predicates, one may apply standard
techniques for matching patterns. In particular, one may implement an automata which
scans the input for sequences which comprise a formal language.

Payloads Properties Predicates Patterns Events

size=.11
speed=.07

p1:=size>.2
p2:=speed>.1
p3:=p1&&p2

p1(p3*)p2 SaveClip

Figure 6-2: Processing methodology

A methodology (illustrated in �gure 6-2) for recognizing patterns of media is, therefore, to
transform streams of payloads into streams of properties. Properties are in turn used to
compute boolean valued predicates. Sequences of predicates are grouped into media strings
which are passed as input to pattern matching automata. Finally, the pattern matching

automata signal events in response to recognizing sequences of input.

6.1.1 Properties

The problem with treating a stream of media like a stream of characters is that media
streams contain vast amounts of information. It is impractical, for example, to enumerate
all possible images and it is overly restrictive to compare images directly. This thesis
addresses this problem by reducing images and media to their properties.

The issue of whether a sparse set of properties may be used to represent the important

information in an image is one which is likely to be raised by a methodology which relies
on such an approach. This thesis does not argue that such a representation is su�cient
to describe all the information in an image. Rather, this thesis uses properties as a means
towards reducing media to a sequence of discrete actions. Since these actions are relatively

sparse in their occurrences and descriptions, it is reasonable to assume that properties may
serve as a su�cient representation at some stage in this reduction.

6.1.2 Predicates

A predicate is a boolean function which maps vectors of properties in a payload to true
or false. Whereas in a text stream a given character is said to be equal or not equal to

a particular symbol, in a media stream a payload is said to be true or false for a given
predicate.

Predicates serve two important functions. First, predicates act as thresholding functions
which map numerical properties to boolean valued symbols which may be processed directly
by simple automata. Second, predicates provide a means of combining di�erent properties,

within a payload, into a single value. The following sample predicates demonstrate these

108

two uses:

[prop.f motion] > 0.2

[prop.f objSize] * [prop.f objSpeed] < 0.8

[prop.i John] == 1 && [Weekday] == Monday

The important di�erence between payload predicates and text symbols is that payload
predicates are non-exclusive. In other words, while an input character is equal to exactly
one symbol, an input payload may be true for more than one predicate.

6.1.3 Sequences

While individual images are matched against predicates, streams of images are matched
against sequences. A sequence is a concatenation of predicates which must be true, in

series, for a sequence of images. Thus, just as a predicate corresponds to a symbol in a
formal language, a sequence corresponds to a formal string.

The main di�erence between a string and a sequence is that a string is a �xed series of
mutually exclusive symbols. In other words, each element in a string is \true" for one
symbol and false for all others. Sequences, on the other hand, inherit the non exclusive

nature of predicates. An element in a sequence may be true for any number of predicates.

For example, assuming that the predicates p1 and p2 are de�ned for all possible input
images, then the sequence \p1 p1 p1 p2 p1" would match any series of �ve images where the
�rst three images were true for p1, the fourth was true for p2, and the �fth was true for p1.
It does not matter whether the �rst three images (or the �fth) are true for p2 or whether

the fourth image is true for p1. If this were important, i.e. if the fourth image should match
p2 and not p1, then one would need to de�ne a new predicate, p3 such that:

p3 = p2 ^ :p1

In general, if a sequence requires a single image to be tested against multiple predicates,

one must de�ne a compound predicate against which the image is tested.

In summary, predicates represent combinations of properties within an image while se-
quences represent combinations of images within a stream.

6.1.4 Language

In order to recognize patterns of predicates, one must have a language and a notation for
specifying patterns. Formally, a language represents a set of symbolic strings. A useful
language must have a concise means of representing rich sets of strings. For our purposes

a language must also have an e�cient means of computing whether a particular string is a
member of the language. Regular languages meet both these criteria.

Regular languages and their notational counterparts, regular expressions, have proven to
be an e�ective tool for parsing text. This thesis uses regular expressions to represent sets

109

of predicate sequences in a manner analogous to that of text parsers which use regular

expressions to represent sets of strings.

The three fundamental operators in a regular language are concatenation, closure, and
union. As discussed in the previous section, the concatenation of two sequences is the
sequence formed by appending the second sequence to the �rst. Likewise, the concatenation
of two languages, L1 and L2, is the language which is formed by taking all the sequences of

the second language and appending each one to every sequence in the �rst language.

concat(L1; L2) = fl1l2jl1 2 L1 and l2 2 L2g (6:1)

The notation or pattern for concatenation is simply the juxtaposition of the two patterns.

The closure of a language L is the language that contains all sequences which are formed by
zero or more concatenations of sequences in L. A recursive de�nition of a closure is given
by the following equation:

closure(L) = f;; L; concat(L; closure(L))g (6:2)

Closure of a pattern is denoted by appending the * operator. The * operator applies to the
element immediately to its left so that p1p2� denotes p1 concatenated with the closure of

p2. To denote the closure of p1p2, parentheses must be used.

p1p2� = fp1; p1p2; p1p2p2; p1p2p2p2; :::g (6:3)

(p1p2)� = f;; p1p2; p1p2p1p2; p1p2p1p2p1p2; :::g (6:4)

Finally, the union of two languages is the language formed by the union of all the sequences
in the two languages. The union of two patterns is speci�ed by placing the j operator
between the patterns.

union(L1; L2) = fljl 2 L1 or l 2 L2g (6:5)

Unlike the * operator, the notational convention for the j operator is for the union to apply
to as wide a pattern as possible so that p1p2jp2p1� would specify the union of the languages
p1p2 and p2p1�. Parenthesis may be used to limit the scope of the j operator so that

(p1p2jp2)p1� would specify the concatenation of p1p2jp2 with p1�.

p1p2jp2p1� = fp1p2; p2; p2p1; p2p1p1; :::g (6:6)

(p1p2jp2)p1� = fp1p2; p2; p1p2p1; p2p1; p1p2p1p1; p2p1p1; :::g (6:7)

In summary, a pattern represents a set of predicate sequences. This thesis implements
regular patterns as a notational means of concisely specifying such sets.

110

6.1.5 Automata

A language and a notation for describing sequences of input is of little use unless there is

a computational means of di�erentiating between inputs in the language and inputs not
in the language. An automata is a computational engine that scans an input string and
determines whether that string is in the language. The class of automata for recognizing
regular languages is well understood and widely used.

Regular languages are a subset of all possible languages, meaning that not every set of in-

puts can be described by a regular language. Indeed, some useful languages, such as the set
of all strings with balanced parentheses or the set of all strings which are palindromes are
famous examples of languages which are not regular. Still, regular languages are extremely
expressive, including for instance, the set of all strings of a given �nite length which are a

palindrome or the set of all strings of a given �nite length which contain matching parenthe-
ses, in addition to many in�nite sets of strings. Furthermore, while these limitations could
be avoided by adopting a di�erent language and automata (such as a push down automata)

than the �nite state automata described below, there is no formal advantage in doing so
because one may de�ne predicates functions with arbitrary state to augment the pattern
matching capabilities.

Finite state automata are the computational equivalents to regular languages. That is, the
set of languages which are regular is precisely the set of languages which can be computed by

a �nite state automata. Furthermore, simple, automatic techniques exist for transforming
the description of a regular language into a �nite state automata which can e�ciently
compute the language.

A �nite state automata is an automata whose behavior can be summarized by a set of
states, S, and a state transition function, T. The set of states includes a start state, s0 2 S

and subset of \accept" states, A 2 S. The state transition function is a mapping from S
and the input alphabet, � to S or the null state, ?:

T : S � �! S[? (6:8)

Finite state automata are either deterministic or nondeterministic. A deterministic �nite
state automata, DFA, operates as follows: beginning with the start state, s0, the automata
reads the �rst input symbol, x0 in the sequence and applies the transition function to s0, x0
to calculate the new state si. Continuing from this state, the automata continues to read
input symbols and make transitions from state to state. Eventually, one of three things
happens: the automata transitions to an accept state, si 2 A, the automata runs out of

input, or the automata transitions to a null state. In the �rst case, the automata is said
to accept the input sequence up to and including the most recently read character. If the
automata runs out of input without reaching an accept state or transitions to a null state,
the automata is said to reject the sequence.

A DFA may be represented by a state transition graph. The nodes in the graph represent

states and the directed edges represent transitions. The start node is depicted by an arrow
which points into the state but does not originate from any other state. Accept states
are depicted by concentric circles. Normally, transitions to the null state are not shown.
Figure 6-3 shows an example of a state transition graph for an example DFA.

111

a a

b

Figure 6-3: A DFA which accepts the strings \aa", \aba", \abba", \abbba", ...

A nondeterministic �nite state automata, NFA, is a generalization of a deterministic �nite
state automata whereby the automata may be in several states simultaneously. The tran-
sition function for a non-deterministic automata is a function that maps a state and input

symbol to a subset of states in S:

T : S � �! 2S 1 (6:9)

The name \nondeterministic" reects the fact that an NFA can be in many states simulta-
neously. Theoretically, one may view each transition from one state to multiple states as a
non-deterministic branch to multiple parallel DFAs. An NFA is said to accept its input if

any one of its nondeterministic branches results in the input being accepted. Like a DFA,
an NFA may be represented by a state transition graph with the only di�erence being that
a state may have multiple identically labeled edges leading out of it. Figure 6-4 shows the
state transition graph for a sample NFA.

a a

b

a a

c

Figure 6-4: An NFA which accepts the strings \aa", \aba", \aca", \abba", \acca", \abbba",
\accca", ...

A very important property of a DFA is that the e�ect of its entire computational history

can be summarized by its current state. This allows for an e�cient deterministic simulation
of an NFA in which parallel branches which arrive at the same state on the same input
are collapsed into a single branch. The algorithm for simulating an NFA is, therefore, as

12S denotes the power set of S

112

follows: Beginning with a state list of one or more start states, the automata reads the

�rst input symbol in the sequence and applies the transition function to each state/symbol
pair. The union of all the transition function results is subsequently used as the new state
list for the simulation. The simulation continues to transition from state list to state list
as it consumes its input. The automata is said to accept the input sequence up to and

including the most recently read symbol whenever the state list includes an accept state.
The automata is said to reject the input sequence whenever the state list is reduced to null
or when the automata runs out of input.

It is well known that the class of languages which may be computed by NFAs is no di�erent
from the class of languages which may be computed DFAs. Nevertheless, the generality of

the NFA model often proves to be helpful in specifying a computational task. In particular,
this is the case when transforming a regular expression to a �nite state automata. While
it is possible to transform a regular expression to a DFA, such a transformation may in

principle require a number of states which grows exponentially with respect to the length
of the expression.

The addition of � transitions is another generalization of the �nite state automata model
which does not change the class of languages which may be computed but proves be helpful,
particularly for transforming regular expressions. � transitions are non-deterministic tran-

sitions which, unlike the transitions described thus far (which will hereafter be referred to
as alpha transitions) can occur in the absence of input. An � transition acts very much like
a branch and forwarding pointer in the sense that an NFA that arrives in a state si that
has an � transition to sj is thereafter in states si and sj. There is no limit to the number of

� transitions an NFA may make between inputs. Thus, if sj has an � transition to sj , the
NFA would be in states si, sj, and sk. Figure 6-5 depicts an NFA with � transitions.

a

ε

b c d

ε

Figure 6-5: An NFA with � transitions which accepts the strings \ad", \abd", and \abcd"

The NFA model is particularly well suited for recognizing languages of predicates. Thus far,
the NFA and DFA models presented in this section have taken as input a stream of symbols.
As emphasized previously, the fundamental di�erence between a language of predicates and

a language of symbols is that for a given input, more than one predicate may be true. This
poses little problem for the NFA model whereby one state may transition to multiple states
on a given input. The alpha transition function simply becomes a function which maps a
state and a predicate, rather than a symbol, to a set of states. However, the way in which the

transition function is used must be changed in a subtle way. Since more than one predicate
may be true, the automata must compute, for each state and for each true predicate, the
set of states into which the automata transitions from that state. In theory, each predicate

represents a non-deterministic branch and each state in the transition set of states is again
a non-deterministic branch. However, as before, because the entire computational history
can be summarized by the �nite state automata's state, parallel branches that arrive at the

113

same state may be collapsed into a single branch.

The algorithm for simulating an NFA with both alpha and � transitions, which operates on

predicate sequences is as follows: Beginning with a list of one or more start states, the au-
tomata goes to each state in the list and determines, for each alpha transition corresponding
to a true predicate, the set of states into which the automata transitions. The union of these
states becomes the new, intermediate state list. Next, the automata determines the set of

states which may be reached by following � transitions from any state in the intermediate
set. This set, known as the � closure is subsequently used as the new state list for the next
input to the automata. As was the case with the non-augmented NFA, the automata is said
to accept the input sequence up to and including the most recently read symbol whenever

the state list comes to include an accept state. The automata is said to reject the input
sequence whenever the state list is reduced to null or when the automata runs out of input.

Finally, the transformation of a regular pattern of predicates to these NFAs is straightfor-
ward. Figures 6-6, 6-7, and 6-8 show how to construct NFAs which implement the three
basic operators: concatenation, union, and closure. By repeatedly applying these transfor-

mations to successively more complicated NFAs, a �nite state automata may be generated
to recognize any regular expression.

A B

A B
ε

AB

Figure 6-6: Concatenation of A and B

A

B

ε

ε

ε

ε

A|B

Figure 6-7: Transformation to AjB

6.2 Implementation

VsVex enables a programming style that permits the user to describe patterns of media

114

A
ε

A*

ε

ε

ε

Figure 6-8: Transformation of A to A*

which are of interest and to de�ne what actions should be taken when encountering such
patterns. Conceptually, the parameters to VsVex 2 are intended to act as a speci�cation of
the form:

definitions
pattern: action
pattern: action
pattern: action
...

In practice, VsVex is a compound module which implements the pattern matching method-
ology developed in the previous section. The parameters to VsVex allow the programmer
to explicitly specify the properties, predicates, and patterns used to generate events. VsVex

also supports bu�ering which enables a program to locally store the input data which
matches a pattern.

The following code fragment is an example of a simple VsVex de�nition. The module
implemented by this code monitors the amount of change in a scene and calls the procedure
Go when there is su�cient activity and Stop when the activity ends. The e�ect of employing

the patterns \MMMM" and \WWWW" (rather than simply \M" and \W") is to add
hysteresis to the module's behavior.

VsVex vs.vex \
-properties {
{VsDiffMotion -property motion -threshold 20}

} \
-predicates {

{M "\[prop.f motion] > .10"}
{W "\[prop.f motion] < .10"}

} \
-patterns {

{RegMatch "MMMM" "Go"}
{RegMatch "WWWW" "Stop"}

}

2The name Vex is derived from the name \Video Lex" which was chosen because of Vex's resemblance
to Lex [Aho et al., 1986], which is used for parsing text.

115

VsVex

VsVex is a compound module consisting of the three stages shown in �gure 6-9, each im-
plemented by a di�erent sub-module. The �rst stage is itself a ow-graph of modules
which generate the necessary properties. The second stage transforms these properties into
boolean valued predicates. The third stage is a pattern matching automata, that generates

events from these sequences of predicates.

Properties Predicates Patterns

Figure 6-9: Three stages of a VsVex module

The property generation stage of the computation consists of a pipeline of �lters which
measure properties in the input stream and tag the payloads with those measurements.
The pipeline is speci�ed using the properties parameters and is implemented by passing
the value of this parameter to a VsCompose module (see below) as that module's pipe

parameter.

The second stage of VsVex transforms the properties generated by stage one into the predi-
cates used by stage three. Predicates are implemented simply as boolean valued properties.
Thus, the transformations may be performed by a VsDerive module. The predicates

parameter of VsVex is a list of predicate descriptions. Each description is a pair consisting

of the name of the predicate and the expression that \derives" the predicate. Therefore,
each predicate description is processed by passing the name and expression to the derive
method of the VsDerive module.

The third stage of the computation is the pattern matching automata. The function of the
automata is to examine the input stream and to execute action procedures when patterns

are matched. VsAutomata implements this functionality as a state transition network which
analyzes the property lists of payloads in the input stream. The automata is con�gured
according to the patterns parameter of VsVex. As will be shown below, the value of
patterns is actually a list of procedure calls which generate the state transition network

executed by the automata module.

The parameters for VsVex are summarized in the following table. In addition to the pa-
rameters shown, VsVex inherits the methods and parameters from VsAutomata which are
described below.

Parameter Value

input input port Input port

output output port Output port

properties list List of processing �lters

predicates list List of predicate expressions

patterns list List of patterns

116

VsCompose

VsCompose, which is used to implement the �rst stage of the VsVex module, chains together
a sequence of one-input, one-output �lters into an abstract module which itself has one
input port and one output port.

The sequence of �lters is speci�ed as the pipe parameter. The value of the pipe parameter
is a list of �lter descriptions, each of which is treated in a manner similar to the propMod

module in VsClassProp. That is, each �lter description is itself a list in which the �rst
element is the name of a �lter and the rest is a list of parameter names and values.

Resize FaceDetectColorToGray

VsCompose

Figure 6-10: Example of a VsCompose pipeline

For example, the following code generates the pipeline shown in �gure 6-10:

VsCompose vs.compose \
-pipe {\

{VsResize -scale .25} \
{VsColorToGray} \
{VsFaceDetect -inputRect {.2 .2 .8 .8} -property face}}

The parameters for VsCompose are summarized as follows:

Parameter Value

input input port Input port

output output port Output port

pipe list List of processing �lters

VsAutomata

VsAutomata is a module that implements a state transition network3. Once con�gured, the
module acts as a one-input, one-output �lter which passes through a stream of payloads
without altering the data. Upon each arrival of a payload the automata module examines
the payload's properties and updates its internal computational state. In addition, whenever

the automata reaches a node with an action procedure the automata executes that procedure.

3In describing the computation of the automata, there is potential confusion between the states which
comprise the automata and the set of states which the automata is in. To avoid confusion, the states which
comprise the automata will be referred to as nodes and the set of states which the automata is in will be
referred to as the computational state of the automata.

117

Representation

VsAutomata represents the state transition network as a list of nodes. Each node contains

its own list of outward alpha transitions, � transitions, and action procedures.

Initially, the node list for an automata module is null. Nodes are added by calling the
module's makeState method. Each time makeState is called, a new node is allocated and
assigned an identi�er. The node identi�er, which is simply an integer, is returned as the
value of the makeState call.

An alpha transition is a set of links from a source node to one or more destination nodes.

The links are followed when the source node is active and the new input payload matches
the alpha transition's property name. An alpha transition is represented as a list where
the �rst element is a property name and the rest of the elements are destination node
identi�ers. Alpha transitions may be positive or negative. Positive alpha transitions are

followed when the value of the input property matching the transition's property name is
true while negative transitions are followed when that input propery is false. Negative alpha
transitions are speci�ed by preceding the property symbol with a \^".
The list of alpha transitions for a given node is set using the module's stateTransitions
method. The stateTransitions method takes as arguments the identi�er of the source

node and a list of alpha transitions.

<module> stateTransitions 5 [list propA 5 11] [list ^propB 3]

An � transition is a set of links from a source node to one or more destination nodes. When

the automata reaches the source node, these links are followed immediately, and thus behave
like forwarding pointers. Although they could be optimized out of a �nished state transition
network, they are a useful building block for composing compound networks out of sub-

networks. The list of � transitions for a given node is is set by the module's stateEtas
method. The stateEtas method takes as arguments the identi�er of the source node and
a list of destination node identi�ers.

<module> stateEtas 5 [list 1 4 9]

An action procedure is simply a Tcl callback which is run whenever an automata com-
putation reaches the node which contains the action procedure. The callback procedure
must accept two arguments, a starting time and an ending time which are the time stamps

for the payload that started and ended the sequence of inputs resulting in the automata
arriving at the current node. Action procedures are the observable output of the automata
and are the mechanism by which the module signals a pattern matching event to the event
processing core of the application4. The action procedure for a node is set by the module's

stateAction method which takes as arguments the identi�er of the node and the name of
the callback procedure.

<module> stateAction 5 SaveClip

4
VsAutomata does not explicitly represent �nal states. Rather, appropriately de�ned action procedures

may be used to reset the automata when the computation reaches a \�nal" state

118

Finally, the start nodes for the automata must be speci�ed. The startStates method

selects a set of nodes which act as start nodes in the automata.

<module> startStates 1 3 7

Computation

Once con�gured the automata maintains a set of \active" nodes. Whenever a new payload
arrives, the automata considers each active node and checks the node's alpha transitions.

An intermediate set of active nodes is computed as the union of the destination nodes for
all the active alpha transitions that are labeled with a true valued predicate.

From the intermediate set of active nodes, the automata computes the set of nodes which
may be reached from this set by following � transitions. This new set, referred to as the
� closure of the intermediate set, is subsequently used as the initial set of active nodes for

the next payload arrival. The algorithm for computing the � closure is the same as that
described in Hopcroft and Ullman [1979].

The active set is initialized from the automata's list of start nodes. If the module's
autoStart parameter is set to 0, the initialization occurs when the module's init pro-
cedure is explicitly executed. Otherwise the set of active nodes is augmented to include the

start nodes as each new payload arrives. In most cases, autoStart is set to 1 so that the
new start nodes are continually merged into the current state of the automata. This allows
an automata with a properly de�ned network to match a pattern starting with any payload
without backtracking.

Finally, after computing the � closure, the automata executes any action procedures from

the new set of active nodes. The action procedures are the only observable output of the
automata and therefore act as the \accept nodes" of the formal model. When executing
an action procedure, the automata provides as arguments the starting and ending time for
the matched sequence. The ending time is always the timestamp of the current payload.

The starting time is the timestamp of the oldest payload which contributed to the current
match. Computing the starting time requires a certain amount of bookkeeping. For this
purpose, the starting time of each active node is maintained. That is, as the automata

transitions from node to node, the starting time moves with the thread of computation. An
e�cient implementation was realized by understanding that when two threads transition
to the same node, only the older starting time need be preserved. Thus, the starting times
maintained by the automata reect the longest sequence of inputs which could have resulted

in the automata reaching the current node at the current time.

Bu�ering

An important di�erence between the problem of recognizing media events from that of
recognizing user events is that often, the media which triggered the event is of great interest.

VsAutomata provides the capability of bu�ering the input data. The bu�er is necessary
when, upon matching a pattern, the action procedure uses payloads prior to the last arrival.
For example, the action procedure SaveClip saves the entire matching sequence of payloads

119

to a �le. Without the bu�er, many of the payloads would have been deallocated by time

the analyzer has determined the match, and executed the SaveClip procedure.

The value of the buffer parameter a�ects the VsAutomata module's behavior as follows: if
buffer is 0, bu�ering is turned o� and VsAutomata simply passes all incoming payloads to
its output port as soon as it has updated its internal state. If buffer is 1, the automata
module stores each incoming payload in a queue until the payload is either garbage collected

or the module's sendmethod is executed. The maximum length of this queue may be limited
by setting the bufferLimit parameter. The arrival of any payload that would cause this
limit to be exceeded causes the oldest payload in the queue to be discarded. A value of zero
speci�es no limit.

The send method, which is typically called from an action procedure, takes two arguments:

a starting time and ending time. The send method causes VsAutomata to send all bu�ered
payloads which have time stamps falling between the two time values.

An important component of the bu�ering facility is the garbage collector. The garbage
collector discards payloads from the payload queue which are older than the time stamp of
the oldest active node. The rationale for this policy is that no such payload could be part

of a matching sequence.

Finally, a bu�ered automata can rapidly exhaust even large amounts of physical memory.
Early implementations of VsAutomata relied on virtual memory to provide the memory
required for large queues. Unfortunately, such implementations turned out to be impractical
on multi-tasked workstation because Sieve's vociferous use of virtual memory caused other

tasks (such as the window manager) to be swapped out of main memory. As a result, the
workstation (both Suns and Alphas) would slow to the point of being unusable. The current
implementation solves this problem by allowing VsAutomata to explicitly swap payloads to
and from a �le. Thus, when the payload queues exceed a speci�ed limit, VsAutomata writes

the payload data to a private swap �le which it explicitly manages.

The parameters and methods for VsAutomata are summarized as follows:

Parameter Value

input input port Input port

output output port Output port

buffer f0 1g Default 0

autoStart f0 1g Default 1

payloadType payload type Default is VsVideoFrame

makeState etaTrans alphaTrans Allocate a new node

stateTransitions node alphaTrans ... Set the alpha transitions for a node

stateEtas node node node ... Set the eta transitions for a node

stateAction procedure Set the action procedure for a node

startStates node node ... List of start nodes for the automata

init n/a Initialize the active nodes

clear n/a Clear the active nodes

send time time Send payload bu�er

bufferLimit int Default is no limit (0)

As alluded to earlier, the value of the VsVex patterns parameter is a list of procedure calls

120

which generate a state transition network within its VsAutomata module. More precisely,

the pattern parameter is a list of generators. Each generator is itself a list in which the �rst
element is the name of a generating procedure and the rest of which are arguments to that
procedure. VsVex processes its pattern argument by passing the identity of its automata
sub-module to the generating procedure along with the list of supplied arguments. The

generating procedure then builds a state transition network in the automata module and
returns the identity of the start node for the network. The returned value from each
generating procedure is subsequently added to the automata module's list of start nodes.

For example, the following is a valid generating procedure which generates the network
shown in �gure 6-3 for any pair of predicates, a and b, and accept procedure acceptProc:

proc GenExample {mod a b acceptProc} {
set s1 [$mod makeState]
set s2 [$mod makeState]
set s3 [$mod makeState]
$mod $s1 stateTransitions [list $a [list $s2]]
$mod $s2 stateTransitions [list $a [list $s3]] [list $b [list $s2]]
$mod $s2 stateAction $acceptProc
return $s1

}

Thus, using this procedure, one could con�gure a VsVex module to recognize and save
patterns of input which matched the sequences \XX", \XYX", \XYYX"... as well as the
sequences \UU", \UVU", \UVVU"..., by specifying the patterns parameter as follows5:

<mod> patterns {{GenExample X Y SaveClip} {GenExample U V SaveClip}}

An extremely useful generating procedure is RegMatch. RegMatch takes as arguments the

name of the automata module, a regular expression, and an action procedure. Using an
algorithm for converting regular expressions to state transition networks modeled after the
constructions presented earlier, RegMatch generates a state transition network that executes

the supplied action procedure whenever a sequence matching the regular expression occurs.
Thus, one could use RegMatch to generate a state transition network equivalent6 to the one
described above by setting the patterns parameter as follows:

<mod> patterns {{RegMatch "XY*X" SaveClip} {RegMatch "UV*U" SaveClip}}

As pointed out in the HeadHunter example of section 3.4, the RegMatch procedure imple-
ments two conventions that allow for a more compact syntax. First, RegMatch treats each

character in the regular pattern as the name of a predicate. Second, lower case characters
are reserved to represent the complement of uppercase properties. Thus, the character \a"
in a regular expression matches inputs where the property \A" is false. Should either of
these conventions prove to be too restrictive (for instance if one were to run out of single

character property names), one could always implement a new generating procedure that
uses a di�erent syntax.

5The patterns method passes the name of the module (self) to the generating function as the �rst
argument

6The network would be equivalent in its observable output though it would be implemented di�erently.

121

Example: Gesture Monitor

One of the motivations for this thesis is to demonstrate the potential for using video pro-

cessing to make computers aware of our physical world and in so doing, to change the way
humans and computers interact. One of the most direct ways of doing this is to enable
computers to recognize human gestures, such as the hand wave shown in �gure 6-11. The
following simple example serves both to demonstrate the functionality of VsVex and sug-

gest how such capability might be exploited to make the workstation more responsive to
the physical world.

Figure 6-11: Hand gesture

The code presented in �gure 6-12 describes a simple gesture recognition module. The
module is designed to recognize a hand wave. In particular, the module tracks the position

of the user's hand and attempts to recognize when the user has waved at the camera. The
gesture recognizer is implemented as a VsVex module.

The properties parameter con�gures the image processing pipeline to �rst reduce the res-
olution of the input to 160x120 and then matches it to a model template using a histogram
matching module. The output of the pipeline is a stream of images tagged with the proper-

ties hand, hand.left, hand.right, hand.top, and hand.bottom which indicate estimated
location of the hand and the quality of the match.

The predicates parameter speci�es six predicates to be derived. The �rst of these, Q, is set
to true if and only if the quality of the match exceeds a speci�ed threshold. The predicate
L is set to true if the hand moves to the left while the predicate R is set to true if the

hand moves to the right. Both L and R are de�ned to be false Q is false for the current or
previous input. In such cases, and in the case that the hand has remained relatively still,
the predicate S is set to true. Finally, the predicates, \ " and \ " are derived for the sole
purpose of setting state variables that record the previous position and match quality.

Finally, patterns parameter generates a state transition network capable of recognizing

two patterns. The �rst of these, described by the regular expression "LLr*RRl*LL", is
matched by input sequences where the hand moves �rst to the left, then the right, and
�nally back to the left. The �rst movement to the left is recognized by the sub-expression
"LLr*". The sub-expression matches any sequence of left and still inputs which begins with

at least two movements to the left. Likewise, "RRl*" matches any sequence of right and
still inputs which begins with at least two movements to the right.

When an input matching the full expression is encountered, the Match procedure is executed.
In testing, the Match procedure was de�ned to make the workstation say \Hello". The
second pattern, "SSSSSSSSSS", simply causes the pattern matcher to start over when it

encounters 10 consecutive inputs in which the hand does not appear or is judged to be still.
The reset is bene�cial because the gesture pattern does not itself limit the number of still

122

inputs which may be inserted into the sequence.

VsVex vs.vex
-properties {

{VsResize -scale .25}
{VsTemplate -property hand -pathname hand-model.uv

-matchMod {VsHistMatch
-modelRect {0.59 0.25 0.68 0.58}
-inputRect {0 0 1 1}

}
}

}
-predicate {

{Q int {[prop.f hand] < 1.1}}
{L int {[prop.i Q] && [prev Q] &&(([prev pos]-[prop.f hand.left])>.03)}}
{R int {[prop.i Q] && [prev Q] &&(([prev pos]-[prop.f hand.left])<-.03)}}
{S int {[prop.i L] || [prop.i R]}}
{_ int {[setPrev Q [prop.i Q]]}}
{__ int {[setPrev pos [prop.f hand.left]]}}

}
-patterns {

{RegMatch "LLr*RRl*LL" "Match"}
{RegMatch "SSSSSSSSSS" "Reset"}

}
}

Figure 6-12: VsVex de�nition for recognizing a hand gesture

6.3 Summary

This chapter has shown how properties are used to generate symbolic events and so con-

cludes the description of the analytical components of the Sieve toolkit. The next chapter
describes a higher level of abstraction, VsGrep. VsGrep is an application builder that takes
as input a high level speci�cation and produces as output an interactive content analyzing
application. The chapter also presents several applications built using this tool.

123

124

Chapter 7

Video Grep

The system described thus far is a toolkit for embedding video content analyzing capability
within an event driven application.

Figure 7-1: The VsGrep application

This chapter describes a higher level abstraction, VsGrep. VsGrep (shown in �gure 7-1)
is a general purpose tool, built using the Sieve toolkit, that enables the user to direct the
computer to identify sequences of images in video streams that match speci�c patterns

and to take the appropriate actions. VsGrep may be thought of as an application builder,
depicted in �gure 7-2, which takes as input a high level speci�cation and produces as output
an interactive content analyzing application.

By providing a high level means of turning a concise speci�cation into a complete, interactive
application, VsGrep achieves one of this thesis's major goals: bringing the user closer to the

video data and video processing. Still, VsGrep is not intended as a replacement for the lower
level programming system. Indeed, the VsGrep speci�cation language is itself an extension

125

Actions
Video

VsGrep

Specification

Custom Processing Video Clips

Figure 7-2: The VsGrep application builder

of the scripting language used within the underlying toolkit. Furthermore, though the
VsGrep program has been designed for exibility, it is limited by a �xed graphical interface

and a data ow framework that can be inconvenient for implementing certain processing
tasks. Thus, VsGrep aspires to be the powerful, though not universal, \grep"1 utility of
video processing tools, while embedded Sieve aspires to be the \regular expression library"
of video-capable programming systems.

7.1 The VsGrep program

The VsGrep program scans a video stream for user speci�ed patterns of input and produces
as output a sequence of video \strings" or clips which match the speci�ed patterns. Typ-

ically, though not always, these clips are stored in �les and are displayed to the user in a
dynamic video list as they are found.

The invocation of VsGrep is similar to that of grep. For example, assuming that the
predicates \M", \m", and \." have been de�ned, and that the modules needed to measure
the properties that make up the predicates have been speci�ed, one may execute VsGrep

using the command:

vsgrep "MMMM.*mmmm"

Such an invocation brings up the graphical shell shown in �gure 7-1 and causes VsGrep
to scan the default input device for sequences of images matching the regular pattern
"MMMM.*mmmm". As matching sequences are identi�ed, they are saved to disk and added
to the video list in the graphical shell. The user may select videos in the list for either

review or removal.

The de�nitions for the predicates and the arrangement of the processing modules is pro-
vided by a speci�cation �le. In the example above, a default speci�cation was used. More
commonly, the user supplies a speci�cation �le to VsGrep using the command line option
-f spec-file. For example, the following short but complete speci�cation de�nes the \."

1grep is a popular unix utility which allows the user to scan text documents for lines matching a user
speci�ed pattern.

126

predicate to be true for all images, \M" to be true for images which exhibit a certain amount

of motion, and \m" (by convention) to be the negation of \M".

vex properties {
{VsDiffMotion -threshold 40 -property motion}

}
vex predicates {

{. int 1}
{M int {[prop.f motion] > 0.001}}

}
vex buffer 1
vex filter 0

In the context of this speci�cation, the pattern "MMMM.*mmmm" causes VsGrep to act as a
motion detector which begins recording when four consecutive images depict motion and

stops recording when the motion disappears for four consecutive frames.

The speci�cation language bears a strong resemblance to the parameter syntax of a VsVex

module. In fact, the VsGrep program is a thin shell which makes the functionality of a VsVex
module available as an executable program with a graphical user interface (see �gure 7-
3). A VsGrep speci�cation �le is a Tcl script which augments the VsGrep application

(itself written in Tcl) with custom procedures and de�nitions that implement the required
properties, predicates, patterns and actions. An important procedure used by nearly all
VsGrep speci�cations is the vex command. The vex command provides access to the
program's underlying VsVex module. It simply passes its arguments directly to the VsVex

module so that one may use the command to set parameters.

Vex

WindowSink

Source Dup

FileSink

(Input Window)

Figure 7-3: The VsGrep data ow

One may specify a pattern either on the command line or in the speci�cation �le. When

speci�ed on the command line, the pattern is interpreted as a regular expression which,
when matched, executes the SaveClip procedure. Thus, an equivalent means of invoking
VsGrep would be to add the statement:

vex patterns {{RegMatch "MMMM.*mmmm" SaveClip}}

to the speci�cation �le and to run VsGrep with no command line arguments. The SaveClip
action procedure causes the payloads bu�ered in the VsVex module to be saved to a �le

and subsequently displayed in the video list. Capture and display are among the actions
which VsGrep may take, though in general, any action which can be scripted may be taken
in response to matching a video sequence.

The graphical interface to VsGrep (�gure 7-4) provides an input window that displays the
video input as it is processed. Below this window is a pair of buttons, \Control Panel"

and \Program", which bring up the standard control panel and visual programming panel

127

that are built into most Sieve applications (see section 3.4 for descriptions of these panels).

Below these buttons is a text box referred to as the message area. The message area provides
textual feedback to the user. Any action procedure may print textual output to this area
using the Message procedure.

Figure 7-4: The VsGrep graphical shell with a control panel and video player

To the right of the input window and message area is the output video list. The output
video list presents a scrollable list of video clips to the user. Video clips that are captured

using the SaveClip procedure appear automatically in this list. The user may select any
�le from the video list and either remove it from the list or launch a video player to play it
by clicking on the \Remove" or \Play" buttons, respectively, below the list.

Finally, the VsGrep command line syntax is as follows:

vsgrep [-f <file>] [-showList 0|1] [-showInput 0|1] [pattern] [video-source]

The -f option was explained earlier. The -showList and -showInput options permit the
user to change the program's graphical appearance. When set to 0, these options prevent

VsGrep from displaying the output video list and the input video window respectively.
Eliminating the input window moderately improves the applications throughput perfor-
mance while eliminating the output video list simpli�es the applications appearance in

128

cases where the video list is not used. Additional options to VsGrep (not shown here) are

passed directly to the video source. Thus, from a live source, one may select the source's
encoding, resolution, port, etc... The available options depend on the particular source and
are documented by Lindblad [1994].

The complete code for the program is provided in appendix B.

7.2 Gesture Recognizer

This �rst example of a VsGrep application demonstrates how the VsVex gesture code pre-
sented in section 6.2 may be implemented using a VsGrep speci�cation. The speci�cation
(�gure 7-6) de�nes a special purpose application that monitors a video stream for the
appearance of a simple hand wave gesture (�gure 7-5). The application responds to the

gesture by bringing up a world wide web browser window that shows the day's news stories
whenever the gesture is recognized.

Figure 7-5: The Gesture Recognizer

The beginning of the speci�cation de�nes the action procedures Match, which is run when-
ever the wave gesture is recognized and Reset, which is run when the inactivity sequence
is detected. The speci�cation then sets the values of the properties, predicates, and
patterns parameters for the VsVex module. These values are explained in section 6.2

which introduced the gesture example.

The gesture recognizer does a reasonable job of recognizing the hand gesture under a re-
stricted set of conditions. First, the hand in the model image must closely resemble that
of the user. This is not generally the case unless the model image was taken of the user's
hand under similar imaging conditions. Under such circumstances, the gesture recognizer

recognizes the hand wave roughly half the time and rarely mistakes a non-gesture for a
gesture (see chapter 8).

129

Action Procedures & Helper Functions
proc Match {args} {

Message "...Getting News"
catch {exec netscape -remote openURL(http://my.yahoo.com/)}
vex clear

}
proc Reset {args} {vex clear}

vex properties {
{VsResize -scale .25}
{VsTemplate -property hand -pathname hand-model.uv

-matchMod {VsHistMatch
-modelRect {0.59 0.25 0.68 0.58}
-inputRect {0 0 1 1}

}
}

}
Predicates: Q = quality of match
L = hand has moved to the left
R = hand has moved to the right
S = hand is stationary
_,__ = dummy predicates, defined only to call the setPrev proc
vex predicates {

{Q int {[prop.f hand] < 1.1}}
{L int {[prop.i Q] && [prev Q] &&(([prev pos]-[prop.f hand.left])>.03)}}
{R int {[prop.i Q] && [prev Q] &&(([prev pos]-[prop.f hand.left])<-.03)}}
{S int {[prop.i L] || [prop.i R]}}
{_ int {[setPrev Q [prop.i Q]]}}
{__ int {[setPrev pos [prop.f hand.left]]}}

}
vex patterns {

{RegMatch "LLr*RRl*LL" "Match"}
{RegMatch "SSSSSSSSSS" "Reset"}

}

Figure 7-6: Gesture Recognizer speci�cation

7.3 Room Monitor

The Room Monitor application (�gure 7-7) demonstrates VsGrep's ability to summarize
information by capturing video that is of interest to the user while discarding that which
is not. In particular, this application summarizes activity in a room by capturing video
whenever motion is detected. The application is intended to allow its user to use a camera

to keep track of visitors that drop by while the user is away.

Figure 7-7: The Room Monitor

The simplest version of the room monitor application was presented in section 7.1 of this
chapter. In that example, \M", \m", and \." were de�ned to represent motion activity, no
motion activity, and \true" respectively. The pattern "MMMM.*mmmm" matched sequences of

130

images which started with four consecutive frames of motion activity and ended with four

consecutive frames of inactivity. The requirement of consecutive frames adds hysteresis to
the program's behavior which prevents both transient motions from starting a sequence and
short pauses in activity from ending a sequence.

One di�culty with the simple version of the room monitor is that sequences may grow to
arbitrary length. A problem could, therefore, occur when a visitor came into the o�ce to

work for an extended period of time. In such an instance, the payload queue would likely
overow the storage requirements of the system. One solution is to limit the length of the
payload queue. The VsVex bufferLimit parameter may be used for this purpose. This
parameter causes the payload at the head of the bu�er queue (the oldest payload) to be

discarded whenever the limit is exceeded. Adding the statement:

vex bufferLimit 50

to the speci�cation causes the application to record at most the last 50 payloads in a
matching sequence.

One may prefer to capture the beginning, rather than the end, of a matching sequence.
Unfortunately, it is not possible to implement such a feature in as simple a manner as that
provided by the limit mechanism. One can not, for instance, simply employ a bu�ering

system that discards payloads at the tail of the queue since such payloads can move forward
in the queue as the match proceeds.

In the general case it is not possible to determine which payloads will comprise the start
of a matching sequence until the match is completed. In many speci�c cases, however, it is
possible to make such a determination. For instance, for the "MMMM.*mmmm" pattern, once

the "MMMM" at the start of the pattern is matched to four payloads, it is guaranteed that
the next matching sequence identi�ed by the pattern matcher will start with these four
payloads and run until the "mmmm" sequence is matched.

This observation was used to implement a modi�ed room monitor which captures sequences
of video that show the arrival of visitors. The modi�ed speci�cation, shown in �gure 7-8,

uses the same properties and predicates as the basic room monitor but di�ers in its use of

three simultaneous patterns:

vex patterns {
{RegMatch "MMMM.." "Match"}
{RegMatch "MMMM.*mmmm" "Match"}
{RegMatch "mmmm" "Reset"}

}

Once four consecutive \M" frames arrive, one of the �rst two patterns will eventually
match. The �rst pattern e�ectively limits the length of the matching video clip to 50

frames. The second terminates with the arrival of four consecutive \m" frames. In either
case, a successful match causes the Match procedure, which captures and displays the video
clip, to be executed. In addition, the procedure is implemented so that once it has been
executed, further calls have no e�ect until the Reset procedure has been executed. The

Reset procedure is executed whenever four consecutive \m" frames are encountered. The
de�nitions for both procedures are included in the speci�cation.

131

global occupied; set occupied 0

proc Match {args} {
global occupied
if {$occupied == 0} then {

set occupied 1
Message "Saved [apply SaveClip $args]"

}
vex clear

}
proc Reset {args} {

global occupied
if {$occupied == 1} then {

Message "Reset"
set occupied 0

}
vex clear

}
proc SaveClipCB {pathname} {

catch {exec vsgrep -f vsgrep.monitor-icon "" $pathname -show 0}
display $pathname

}
vex properties {

{VsDraw -fillRect {.14375 .516667 .4406 .691667}}
{VsDiffMotion -threshold 40 -property motion}

}
vex predicates {

{. int 1}
{M int {[prop.f motion] > 0.001}}

}
vex patterns {

{RegMatch "MMMM..." "Match"}
{RegMatch "MMMM.*mmmm" "Match"}
{RegMatch "mmmm" "Reset"}

}
vex buffer 1
vex filter 0

Figure 7-8: Room monitor speci�cation

The e�ectiveness of the room monitor application is largely dependent on the success or
failure of the VsDiffMotion module to measure activity in the room. The module is highly

e�ective at measuring activity in scenes which are not subject to periodic visual changes
from objects such as fans, lights, and (most commonly) computer screens. Since the location
of such disturbances is usually �xed, one may eliminate their e�ect by simply removing the
appropriate region of points from the image. A VsDraw module, which draws constant

colored shapes such as retangles and ovals on images, serves this purpose. The speci�cation
shown in �gure 7-8 includes the removal of a rectangular region of points from the image
stream in the property generating portion of the speci�cation.

Finally, the modi�ed speci�cation includes an additional feature which improves the look
and feel of the application. Normally the image depicting a video clip in the video list is

simply the �rst image from the clip. However, this default is not always the best choice. For
example, in the room monitor, the �rst image normally shows just the empty room. One
may, however, override this default by explicitly providing an icon image. By convention,

the icon image for a video clip is stored in a �le with the same name as the video clip, plus
the extension \.icon". Thus, before the room monitor displays a video clip in the output
list, it computes an icon image by selecting the \best" image from the saved clip.

132

The room monitor implements this feature by rede�ning the SaveClipCB procedure.

SaveClipCB is a callback procedure that is invoked after a video clip has been saved to
a �le. Normally, this procedure simply displays the video clip in the output list. The rede-
�ned procedure �rst computes the icon image by running a program that selects an image
from the video clip. Appropriately, the program used to select the \best" image from the

video clip is itself another VsGrep application.

The icon selection application attempts to �nd an image in the sequence in which the visitor
is prominently displayed in the center of the image. The application uses a VsStatMotion

�lter (section 4.3.3) and VsBinaryProp �lter (section 4.4.1) to generate a property vector
describing the size and shape of the moving object. This property vector is matched against

an ideal or \gestalt" vector. The image with the closest match is selected as the icon to
represent the clip. The speci�cation for the icon selection application is shown in �gure 7-9.

Compute the distance of the current properties to an ideal vector.
proc gestalt {} {

if {[prop.f count] < $minCount} then { return -1 }
set bestWidth .25;set bestHeight .575;set bestCount .13;set minCount .013

set sqMid [sq [expr "(([prop.f box.right]-[prop.f box.left])/2) - .5"]]
set sqWidth [sq [expr "[prop.f box.right]-[prop.f box.left] - $bestWidth"]]
set sqHeight [sq [expr "[prop.f box.bottom]-[prop.f box.top]-$bestHeight"]]
set sqCount [sq [expr "[prop.f count] - $bestCount"]]
return [expr "$sqMid + $sqWidth + $sqHeight + $sqCount"]

}
proc sq {x} {return [expr "$x * $x"]}

Returns true if current value is the smallest value passed thus far
proc minSoFarP {val} {

global minSoFar
if {$val < 0} then {return 0}
if {![info exists minSoFar] || $val<$minSoFar} then {

set minSoFar $val
return 1

}
return 0

}
After the image has been saved, clean up and exit the application
proc SaveClipCB {pathname} {

global argv;
exec mv $pathname [lindex [commandLineArguments $argv] 2].icon
exit

}
G is true iff current gestalt value is the smallest value seen thus far
vex predicates {

{G int {[minSoFarP [gestalt]]}}
}
vex properties {

{VsStatMotion -maskFill 1 -type count -threshold 40}
{VsBinaryProps -boxFrac 5 -countProp count -boxProp box -centerProp center}

}
Start over whenever a new minimum value is detected
vex patterns {

{RegMatch "G" "setPrev icon"} {RegMatchNoClear "Gg*" ""}
}
vex buffer 1; vex filter 0
Call SendExit at the end of the video sequence
proc SendExit {args} {apply SaveClip [prev icon]; vex start}
vex callback SendExit

Figure 7-9: Speci�cation for icon selection

133

7.4 Computer Librarian

The Computer Librarian application (�gure 7-10) allows one to use a workstation to monitor

one's book collection. The librarian keeps track of who has borrowed what books by saving
a video clip each time a visitor removes or returns a book from the shelf. The captured
video clips enable the owner of the book collection to answer the age old question \Who
borrowed my Java Reference Manual?" In doing so, this application may actually promote

an environment in which workers are willing to share resources more freely.

Figure 7-10: The Computer Librarian

The librarian processes a stream of video from a strategically placed camera pointed at

a bookshelf. The application makes use of the stationary �lter, VsStationary, (see sec-
tion 4.3.3) to remove the appearance of transitional objects, such as people, from the input
stream. The output of the stationary �lter is a stream of images in which only changes to the

bookshelf appear. The �ltered stream is passed through a motion detector, VsDiffMotion,
which measures the amount of change between frames. When the measured change exceeds
a certain threshold, a video clip is captured.

Because of the nature of the stationary �lter, change in the scene does not become apparent
in the output stream until a signi�cant amount of time after the change has occurred. Thus,

the captured video clip must be that which preceded the measured change by an amount
greater than the delay built into the stationary �lter. In addition, the captured video, like
that of the room monitor application, should consist of the un�ltered input rather than the
�ltered output since the input shows the person borrowing the book.

Figure 7-11 shows the speci�cation for the Computer Librarian. The parameters for the

stationary �lter con�gure the module such that the entire image is treated as a single block.
This proved to be the most robust technique for �ltering out transitional objects in cases
in which the entire bookcase was frequently unobscured. However, a smaller block size is
more appropriate for scenarios in which one portion or another of the bookcase is frequently

blocked. The bufferLimit parameter is set so that the application maintains a bu�er of the
last 50 images. The patterns parameter causes this bu�er to be saved to a �le whenever
change is detected.

134

vex properties {
{VsStationary -blockSize {320 240} -moveBits 200 -constantCount 20

-threshold 20 -speckThreshold 5 -speckWindow 5}
{VsDiffMotion -threshold 20 -speckThreshold 5 -speckWindow 5

-property changed }
}
vex predicates {

{. int 1}
{C int {[prop.f changed] > .01}

}
vex patterns {

{RegMatch ".*C" "SaveClip"}
}
vex buffer 1
vex filter 0
vex bufferLimit 50

Figure 7-11: Computer Librarian speci�cation

7.5 Whiteboard Recorder

The Whiteboard Recorder (�gure 7-12) is another application which analyzes and digests
video input in order to automatically summarize information for a human user. Using a
strategically placed camera, this application monitors the user's whiteboard, automatically

capturing a succinct set of images which summarize the content written on the board over
a period of time. The recorder, therefore, permits the user to bene�t from the storage and
retrieval capabilities of computers while working in a familiar environment.

Figure 7-12: The Whiteboard Recorder

Similar to the Computer Librarian, this program uses a stationary �lter to remove the
appearance of temporary obstructions from the input video stream. It is assumed that
the changes that appear in the �ltered stream represent changes made to the writing on

the board. These changes are subsequently analyzed to determine whether they represent
additions, subtractions (erasure), or both to the writing on the board. The application
then looks for \peaks" in the amount of writing content on the board. In other words, the
program saves images which contain new writing content just before any writing is erased

from the board.

The program makes use of a special purpose module, VsSuperSub, to determine whether
changes are due to writing or erasing. VsSuperSub generates two properties, super and
sub, which indicate, respectively, the fraction of pixels in the image that have darkened by
a speci�ed threshold or have lightened by a speci�ed threshold, since the previous image.

Since the application is specialized for recording information o� a whiteboard, it assumes
that darkened pixels represent new writing and lightened pixels represent new erasing.

135

The program accumulates the super and sub properties measured by the VsSuperSubmod-

ule into two variables: writeAccum and eraseAccum. The predicates, W and E are subse-
quently de�ned as being true when these accumulated values surpass a given threshold.
Finally, the program is con�gured to grab images when the pattern WE (which represents
peaks in the writing content) is recognized. Figure 7-13 shows the complete speci�cation.

global writeAccum; set writeAccum 1

proc GrabBoard {args} {
set first [lindex $args 0]
SaveClip $first $first

}
proc accum {var val} {

global $var
if {![info exists $var]} then {set $var 0}
return [set $var [expr "[set $var]+$val"]]

}
proc resetAccum {} {

if {[prop.i w] && [prop.i e]} then {
global writeAccum; set writeAccum [prop.f super]
global eraseAccum; set eraseAccum 0

}
return 1

}
vex filter 1
vex buffer 1

vex properties {
{VsStationary -blockSize {320 240} -moveBits 200 -constantCount 20

-threshold 30 -speckThreshold 5 -speckWindow 5}
{VsSuperSub -threshold 30}

}
Predicates: W = write
E = erase
vex predicates {

{W int {[accum writeAccum [prop.f super]] > .001}}
{E int {[accum eraseAccum [prop.f sub]] > .001}}
{. int {[resetAccum]}}

}
vex patterns {

{RegMatch "WE" "GrabBoard"}
}

Figure 7-13: Whiteboard Recorder speci�cation

136

7.6 Television Agent

The �nal application, TV Agent (�gure 7-14), demonstrates VsGrep's usefulness in building

applications that monitor streams of broadcast video for clips which are of specialized
interest to the user. The example speci�cation for VsGrep has been adapted from the
Sports Highlight Browser program presented in section 5.2. In particular, this speci�cation
causes VsGrep to capture video clips which depict Boston sporting events.

Anchor Highlight Scoreboard

Figure 7-14: The Television Agent

The application makes use of several model matching �lters: one which matches scoreboard
images, one which matches scoreboard images in which Boston is the home team, one which
matches scoreboard images in which Boston is the away team, and one which matches news
anchor people. These �lters are arranged in a classi�cation network which tests �rst to see

if each image is a scoreboard and if so, whether the image matches the Boston at home or
the Boston away template and if not, whether the image depicts an anchor person.

Figure 7-15 shows the property generating portion for the television agent's speci�cation.
The code makes use of a special purpose module, VsAnchor, which is also de�ned in the
speci�cation (see �gure 7-16). VsAnchor acts as a �lter which passes payloads which do

not depict scoreboard graphics to a VsFaceDetect �lter. The VsFaceDetect �lter looks for
faces with a size and position indicative of an anchor person.

The pattern matcher for TV Agent looks for sequences of video which end with a series of
Boston scoreboards and saves a video clip whenever such a pattern is encountered. The

challenge lies in determining where the video clip begins. The application uses three heuris-

tics to make the determination. The �rst choice is to begin the clip with a sequence of
anchor shots which preceded the Boston scoreboard. This heuristic is designed to capture
the cliche of an anchor person introducing a video clip, showing the video clip, and then

summarizing the video clip with a scoreboard graphic. This choice is made if and only if
an anchor spot has been detected more recently than the scoreboard which preceded the
Boston scoreboard. If, on the other hand, the previous scoreboard has been detected more
recently than the last anchor shot, the image just after the previous scoreboard is used as

the starting point for the clip. In either event, the bu�ered clip is limited in duration to
roughly 2 minutes. Thus, if neither an anchor shot or a scoreboard have been detected in
the 2 minutes prior to the Boston scoreboard, the resulting saved clip will consist of the
two minutes preceding the Boston scoreboard.

The pattern matcher groups sequences of anchor shots and scoreboard together by using

regular expressions of the form "A.*aaaaaa" and "B.*bbbbbb". The e�ect of such expres-
sions is that once a single image has matched the \A" or \B" predicate, the sequence will

137

VsClassifyAnd <scoreboard>
VsClassifyOr <Boston away>
<Boston home>
VsAnchor
vex properties {

{VsResize -scale .25}
{VsClassifyFilter

-classMod {VsClassifyAnd
-modList {

{VsClassProp -property score -expression {[prop.f p1]<100}
-propMod {

VsTemplate -pathname CNNFrames/scoreboard1.uv -property p1
-fileFilter {VsResize -scale .25}
-matchMod {VsPixelMatch

-modelRect {.0781 .1041 .5468 .2082}
-inputRect {.0625 .0833 .5625 .2291}

}}
}
{VsClassifyOr

-modList {
{VsClassProp -property bostonA -expression {[prop.f p2]<100}

-propMod
{VsTemplate

-fileFilter {VsResize -scale .25}
-pathname CNNFrames/boston-philadelphia.uv -property p2
-matchMod {VsPixelMatch

-modelRect {.0875 .3200 .5875 .4200}
-inputRect {.0775 .3100 .5975 .4300}

}}}
{VsClassProp -property bostonH -expression {[prop.f p3]<100}

-propMod
{VsTemplate

-fileFilter {VsResize -scale .25}
-pathname CNNFrames/boston-philadelphia.uv -property p3
-matchMod {VsPixelMatch

-modelRect {.0875 .3200 .5875 .4200}
-inputRect {.0775 .4800 .5875 .6000}

}}}
}}}}}

{VsAnchor}
}

Figure 7-15: The Television Agent property speci�cation

continue until multiple, consecutive images fail to match. As a result, the expression groups
sequences of images even in the presence of short drop-outs caused by noise and glitches.

Figure 7-17 shows the remainder of the television agent speci�cation. As shown, the applica-

tion simultaneously searches for three types of sequences: Boston scoreboards, non-Boston
scoreboards, and anchor shots. When either of the latter two sequences are matched, the
application acts by saving away the time-stamps of the matching sequence. When a Boston
sequence is matched, the program calls the Match procedure which examines the saved

time-stamps for the last anchor and scoreboard sequence to make a determination of where
to start the saved video clip.

7.7 Summary

This chapter has described VsGrep and shown how it may be used to implement customized
applications that analyze video content. The next chapter presents quantitative and quali-

138

VsTclClass VsAnchor -findSuperClass VsOpaque
VsAnchor proc create {m args} {

set input [keyarg -input $args]
set output [keyarg -output $args]

$self nextProc $m

VsClassify $m.class \
-input "alias $m.input" \
-property score

VsFaceDetect $m.face \
-input "bind $m.class.output0" \
-scale {.1667 .3333} \
-type fast_har \
-inputRect {.25 .05 .75 .80} \
-property anchor

VsMerge $m.merge \
-numInputPorts 2 \
-output "alias $m.output" \
-input0 "bind $m.class.output1" \
-input1 "bind $m.face.output"

if {$input != ""} {apply $m.input $input}
if {$output != ""} {apply $m.output $output}
return $m

}

Figure 7-16: The VsAnchor �lter

tative performance results for these programs.

139

proc Match {start end} {
set aStart [lindex [prev anchor {0 0}] 0]
set sStart [lindex [prev scoreboard {0 0}] 1]
if {$aStart >= $sStart} then {

Start with Anchor
SaveClip $aStart $end

} else {
Start with previous scoreboard (up to 720 frame limit)
SaveClip $sStart $end

}
}
B = boston scoreboard
S = other scoreboard
A = anchor person
vex predicates {

{. int 1}
{B int {[prop.i bostonA 0]||[prop.i bostonH 0]}}
{S int {[prop.i score 0]&&![prop.i B 0]}}
{A int {[prop.i anchor.top 0]}}

}
vex patterns {

{RegMatch ".*B.*bbbbbb" Match}
{RegMatch "A.*aaaaaa" "setPrev anchor"}
{RegMatch "SSS.*ssssss" "setPrev scoreboard"}

}
vex buffer 1
vex bufferLimit 720
vex filter 0

Figure 7-17: The Television Agent predicates and patterns

140

Chapter 8

Performance

Sieve enables a user armed with a multimedia workstation to build interactive applications
that analyze and interpret video input. Having developed the tools and methodology for
implementing such applications, this chapter explores the computational requirements and

qualitative performance of these programs. These considerations are particularly relevant to
this work because they bear direct consequence on two aspects of the objective: interactivity
and workstation viability.

Interactivity requires that the programs run in perceptual time. That is, in order to interact
with a human user, these programs must achieve throughputs and latencies which are

tolerable to the human participant. Furthermore, the nature of these applications, whereby
the user specializes the processing to a customized task, is such that they be accessible to
the end user. Thus, it is important that these programs are able to achieve the required
performance on readily available hardware, such as computer workstations.

In short, this chapter demonstrates that the computational requirements necessary to

achieve useful results are a�ordable. Furthermore, it will be shown that performance is
dominated by the image processing and that by comparison, the cost of the powerful pat-
tern recognition and abstraction mechanisms developed in this thesis are negligible.

These points are covered in three sections. Section 8.1 characterizes the computational
requirements of several di�erent applications. Section 8.2 describes the application's quali-

tative performance. Section 8.3 then documents the computational requirements for many
of the image processing modules in the Sieve library.

8.1 Application Throughput

Table 8.1 gives the performance breakdown for each of the applications presented in chap-

ter 7. Most of the applications were tested on video streams from live camera sources. The
input for these applications consisted of either 8 bit gray scale or 24 bit color images1. Sev-
eral applications were tested against both. The TV agent was tested on an 8 bit color video

1The input resolution of the images was set to 320x240 for each application, though the Gesture Recog-
nizer and the TV Agent both reduced the internal resolution used for analysis to 160x120

141

�le. The platform used for testing was a 166MHz Sun UltraSparc with a 512K external

cache, a 16K/16K internal I/D cache running Solaris 2.5.

Time/Rate I/O Properties Patterns
Application Input msec (fr/sec) msec (%) msec (%) msec (%)

Gesture color/camera 519ms (1.9) 73ms (14%) 419ms (81%) 26.6ms (5.1%)
Rm Monitor color/camera 152ms (6.6) 73ms (48%) 79ms (52%) 0.2ms (0.1%)
Rm Monitor gray/camera 80ms (12.5) 64ms (80%) 15ms (19%) 0.7ms (0.9%)
Whiteboard color/camera 242ms (4.1) 73ms (30%) 168ms (69%) 0.8ms (0.3%)
Whiteboard gray/camera 104ms (9.7) 64ms (62%) 38ms (37%) 1.4ms (1.4%)
Librarian color/camera 244ms (4.1) 73ms (30%) 169ms (69%) 2.4ms (1.0%)
Librarian gray/camera 107ms (9.3) 64ms (60%) 41ms (38%) 2.3ms (2.2%)
TV Agent color/�le 168ms (5.9) 16ms (10%) 145ms (86%) 6.4ms (3.8%)

Table 8.1: Throughput performance by application

� The �rst column of numbers represents the average total time spent processing each
image in the input stream. This value was arrived at by measuring the total running
time for the application to process a representative stream of 10000 images on an
otherwise lightly loaded workstation2. The corresponding value in parenthesis is simply

the total time inverted to represent frame rate.

� The second column of numbers represents the portion of this time spent on I/O. This
value was arrived at by measuring the time spent to process a similar input stream
(exactly the same for �le inputs) without measuring any properties or deriving any
patterns. Thus, this value represents the time taken to capture input from the digitizer

(or read the input from a �le) and display it in a window.

� The third column of numbers represents the time taken to perform the image process-
ing necessary to convert the image sequence into a stream of properties. This value
was arrived at by measuring the total time spent processing the input stream while
the pattern matching mechanisms were disabled and subtracting out the estimated

I/O overhead.

� Finally, the last column represents the time used to derive the predicates and patterns
from the property measurements. This time was computed by measuring the di�erence
between the total time taken by the application and the time taken by the application
with pattern matching disabled.

The table reveals that the processing requirements are dominated by image processing
(property generation) and I/O. Since the I/O processing time spent on each frame is roughly

�xed (for a given platform), the percentage of time spent on I/O for a particular application
is a direct reection of frame rate. If application requirements for time resolution remain
�xed, one may assume that increases in processor speed will result in more time being avail-
able to the image processing algorithms. In the near term, one may expect that applications

2The term lightly loaded is used in this chapter to refer to a workstation that is executing no other
major processing tasks. Such a workstation is not, however, disconnected from the network and is not put
in single user mode. Thus, performance on a lightly loaded workstation is meant to represent the best that
may be achieved by a general purpose, multi-tasking machine operating under realistic conditions. The
measurements made on the lightly loaded machine were obtained while using at least 95% of the CPU.

142

will take advantage of these technological improvements by increasing both frame rate and

the sophistication of the processing. Eventually, however, the bene�t to increased time
resolution will diminish as frame rates approach human perceptual limits. Thus, while I/O
remains an important component of computational cost, in the long term that cost should
become less signi�cant. The rest of the computational performance results (presented in

section 8.3), therefore, focus on the performance of the processing modules.

8.2 Qualitative Performance

Throughput is just one measure of performance { and not the most important one. Much

more important is how well the modules and the applications perform their task. Unfor-
tunately, these are some of the most di�cult measurements to make. Quality is subjective
in nature and is di�cult to quantify. Furthermore, the most meaningful measures of qual-
ity are those which characterize overall application performance { and thus, are dependent

upon the scenarios under which the applications are tested.

The following does not attempt to exhaustively characterize the applications. While the
number of repetitions are not su�cient to be conclusive, they are indicative and should
provide the reader with a sense of how well these techniques work in practice.

The metrics used here to characterize applications, recall and precision, are those commonly
used to describe the performance of retrieval systems. Recall represents the fraction of actual

occurrences that were successfully identi�ed. Precision represents the fraction of \hits" that
represent actual occurrences.

recall =
hits� false pos

hits+ false neg � false pos
(8:1)

precision =
hits� false pos

hits
(8:2)

The results of table 8.2 were obtained by running each application for a period of time
under realistic operating conditions. The number of hits represents the number of times
the application signaled the recognition of a pattern. The number of false positives repre-
sents the number of those hits that were judged to be in error. Likewise, the number of

false negatives represents the number of times it was judged that the application failed to
recognize a desired occurrence.

Application Time Hits False Pos False Neg Recall Precision

Librarian 540 min 16 2 2 0.9 0.9
Whiteboard 120 min 10 0 1 0.9 1.0
Gesture 180 min 9 1 7 0.5 0.9
Anchor (TV) 30 min 22 11 3 0.8 0.5

Table 8.2: Recall and Precision

The Computer Librarian functions as a reliable application. During testing, there were
two occurrences of false positives and one occurrence of a false negative. One of the false

143

positives was the result of accidently moving the camera during testing, the other occurred

when the lights were turned on, causing a sudden lighting change. The false negative was
the result of borrowing two di�erent books in close succession. The program misclassi�ed
the two events as a single occurrence.

The Whiteboard Recorder is also quite reliable. The only error that was made during testing
was a false negative that occurred because the view from the camera to the board never

became unobstructed for a su�cient period of time. In general, this application functions
well in scenarios in which the users make periodic trips to the board. The application does
not record changes that occur while the user remains in front of the board.

The Gesture Recognizer performs adequately only in restricted circumstances. In particular,
the gesture must be performed such that the gesturing hand closely resembles the model

hand. Experimentation showed that the resemblance was su�cient only in circumstances in
which the lighting of the scene and the distance from camera to the hand closely matched
the conditions the imaging conditions that were used to record the model. The results of
table 8.2 were obtained under such restrictions.

The TV Agent almost always correctly matches a scoreboard graphic unless the graphic

itself has been changed by the sports broadcaster. The primary variation in the TV Agent's
performance is its ability or inability to identify sports anchor people (see section 7.6). Thus,
the results documented in the table indicate the performance of the anchor detector portion
of the TV Agent. The anchor detector was tested on a 30 minute sports broadcast. Two

of the three false negatives were due to back to back anchor shots that were misclassi�ed
as a single shot. The third false negative was the result of the anchor person not being
placed in the center of the image3. All ten of the false positives were interviews of people.

Five were separate shots from the same interview. The inability to distinguish between an
interview shot and an anchor person shot is a basic limitation of the simple classi�cation
scheme. However, when joined by a human supervisor, the anchor detector is actually quite
successful at reducing a video broadcast to a handful of candidate anchor shots for the user.

3The location of the head is one of the criteria used to determine whether a face shot is indeed an anchor
shot. The inclusion of the o� center head location would result in more false positives

144

8.3 Image Processing Throughput

Image processing throughput varies considerably by processing module, parameter settings,

and input data. These variations allow the application designer to make performance trade-
o�s. This section documents the performance that was achieved under varying conditions
by various processing modules in Sieve. It also considers performance on di�erent platforms
and the performance improvement that can be anticipated through improvements in the

underlying hardware.

1/64

1/16

1/4

1

4

16

64

HistTr PixTr Edge HistM Face PixM HausM Stat DiffMot Diff2 StatMot OptMot

fr
am

es
/s

ec
on

d
(3

20
x2

40
 2

4
bi

t c
ol

or
 im

ag
es

)

Throughput performance for a 166 MHz UltraSparc

Figure 8-1: Throughput performance by �lter

Trial Declaration

HistTr VsHistogram -colorBits f3 3 3g
PixTr VsPixelTransform -colorTransform rgb2xyz -grayTransform window2gray

Edge VsColorEdge -type canny -threshold 50

HistM VsTemplate -matchMod fVsHistMatch -modelRect f.4 .4 .6 .6gg
Face VsFaceDetect -type har

HausM VsTemplate -matchMod fVsEdgeHausdorff -modelRect f.4 .4 .6 .6g
-threshold f1.5 1.5g -fraction f.8 .8gg

PixM VsTemplate -matchMod fVsPixelMatch -modelRect f.4 .4 .6 .6gg
Stat VsStationary -blockSize f10 10g -moveBits 10

-constantCount 3 -threshold 20 -speckThreshold 5 -speckWindow 5

Di�Mot VsDiffMotion -threshold 40

Di�2 VsDiffMotion -threshold 20 -speckThreshold 5 -speckWindow 5

StatMot VsStatMotion -blockSize f10 10g -moveBits 10 -stationaryThreshold 20

-constantCount 3 -speckThreshold 5 -speckWindow 5 -threshold 40

OptMot VsOptFlowMotion -threshold f0 -1g

Table 8.3: Filter declarations

145

Figure 8-1 provides a baseline for throughput performance of di�erent processing �lters given

the �lter declarations and input parameters listed in table 8.3. The ranges in value for a
given module reect the variation that was observed across ten di�erent input sequences.
Each input sequence consisted of 320x240, 24 bit color images. Thus, large ranges, such
as those observed for the VsFaceDetect and VsHausdorff �lters, are indicative of modules

whose processing time depends on image content.

The vertical line between \HausM" and \Stat" separates static �lters which treat each
image input independently (to the left), from those, such as motion �lters, which depend
on inter-frame relationships (to the right). The two sets of �lters were tested on di�erent test
sequences. The still image �lters were tested on a sequence of ten selected images, chosen

to be representative of di�erent application scenarios. The motion �lters were tested on ten
sequences which were chosen to represent realistic inter-frame relationships. Appendix A
shows the image stills and sequences that were used for testing.

The results were obtained using a 166 MHz Sun UltraSparc. Values were obtained by
measuring the total elapsed time required to repeatedly pass a short sequence of payloads

through the processing module. Care was taken to assure that the entire sequence resided
in memory so that system I/O was not a factor.

The following subsections document how processing requirements vary with input character-
istics (resolution and encoding type), parameter values, and platform architecture (sparc,
alpha, pentium). The data points represent average performances measured against the

representative inputs from appendix A.

8.3.1 Input Resolution

0

5000

10000

15000

20000

25000

160x120 226x169 277x207 320x240

m
ill

is
ec

on
ds

/fr
am

e

resolution

Processing time vs resolution for a 166 MHz UltraSparc (matching filters)

HistM

Face

PixM

HausM

Figure 8-2: Processing time versus resolution for template matching

146

Figures 8-2, 8-3, and 8-4 document variation in processing time due to changes in resolution.

The graphs have been drawn so that the number of pixels grows linearly along the x-axis.
As a result, modules which perform a constant amount of work per pixel appear as straight
lines. Such is the case for the motion and translation �lters shown in �gure 8-3.

0

20

40

60

80

100

120

140

160

160x120 226x169 277x207 320x240

m
ill

is
ec

on
ds

/fr
am

e

resolution

Processing time vs resolution for a 166 MHz UltraSparc (motion and translation filters)

HistTr

PixTr

Edge

Stat

DiffMot

Diff2

StatMot

Figure 8-3: Processing time versus resolution for motion and translation �lters

Other modules, for which both the number of pixels and the amount of work per pixel
grows linearly with the number of pixels in the image, exhibit quadratic growth. This
is the case for the VsPixelMatch module where the dimensions of the model region are

speci�ed as �xed percentages of the dimensions of the image, and the VsOptFlowMotion

module where the search radius is, likewise, speci�ed relative to the dimensions of the
image. Such speci�cations are appropriate for most applications since the model size and

the search radius are fundamentally related to real world objects and their relationship to
the camera. Figure 8-4 illustrates the dramatic contrast between the performance curves for
VsPixelMatch and VsHistMatch. The di�erence is remarkable because the processing time
per pixel for VsHistMatch is actually a constant plus a factor which grows as the square

root of the number of pixels. Thus, the order of growth for VsHistMatch is the number of
pixels raised to the power of 1.5.

Figure 8-5 illustrates the e�ect of varying resolution on the axes from the original baseline
graph (�gure 8-1).

These results con�rm that varying resolution is one of the most e�ective means of control-
ling processing requirements for a given application. Essentially, one may trade o� time

resolution (frames/second) for pixel resolution. This is hardly surprising, since resolution
has a direct impact on the size of the input. Another means of controlling the size of the
input is to change the \resolution" or depth (number of bits) in each pixel. While such a
change does indeed a�ect the size of the input data, it does not, for most algorithms on

147

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

160x120 226x169 277x207 320x240

m
ill

is
ec

on
ds

/fr
am

e

resolution

Processing time vs resolution for a 166 MHz UltraSparc (PixM, OptMot, and HistM)

OptMot

PixM

HistM

Figure 8-4: Processing time versus resolution for PixM and OptFlow (HistM shown for
reference)

most processors, a�ect the number of operations which must be performed. Still, memory

bandwidth is a�ected so that while bits per pixel does not normally have as great an impact
on performance as number of pixels per image, there is still a performance impact.

It would be somewhat di�cult to precisely characterize the potential e�ects of pixel depth
on processing performance because fully exploiting such variations requires considerable
experimentation with di�erent pixel packing encodings, algorithms, and so on. Informal

experiments indicated that while it was possible to obtain a performance bene�t, it was
common to obtain an unexpected performance loss. These losses appeared to be the result

of variations in pixel memory alignments and compiler optimizations, though a thorough
analysis was not performed. Tests were performed, however, comparing the di�erences in

performance obtained for 24 bit color images versus 8 bit gray scale images, for several
modules. Such comparisons include di�erences in the algorithms for the handling of color
vectors and scalar intensities.

Table 8.3.1 presents the results of comparing the throughput performance for 24 bit color
versus 8 bit gray scale. In most cases, the reduction in the size of the data and the al-

gorithmic change from vector operations to scalar operations, results in the performance
increasing by a factor of two to four. Two notable exceptions in the table are the case
of VsPixelMatch, which achieves a considerably higher performance improvement; and
VsFaceDetect, which is actually slower for gray scale than for color. The explanation for

VsPixelMatch is simply that the method used to compare scalar pixels is considerably more
e�cient than the comparable method to compare vector pixels (absolute di�erence versus
city-block di�erence { see section 4.1.1). The explanation for VsFaceDetect is that the �lter

uses color information, if it is available, to eliminate regions of pixels from consideration.

148

1/64

1/16

1/4

1

4

16

64

160x120 226x169 277x207 320x240

fr
am

es
/s

ec
 (

24
 b

it
co

lo
r

im
ag

es
)

resolution

Throughput performance vs resolution for a 166 MHz UltraSparc

HistTr

PixTr

Edge

HistM

Face

PixM

HausM

DiffMot

StatMot

OptMot

Figure 8-5: Throughput performance versus resolution

Filter Ratio Gray (fr/sec) Color (fr/sec)

HistTr 2.32 244.499 105.374
PixTr 4.08 89.977 22.067
HistM 2.18 0.923 0.423
Face 0.95 0.096 0.102
PixM 9.65 0.110 0.011
Stat 2.58 25.806 10.010
Di�Mot 4.46 60.350 13.526
Di�2 2.70 29.146 10.776
StatMot 3.14 18.587 5.914

Table 8.4: Throughput for 8 bit gray scale versus 24 bit color

As a result, the color algorithm runs slightly faster than the gray scale version.

149

8.3.2 Processing Parameters

One expects a module's throughput performance to depend on its input parameters. Ex-

perimental results verify that this is indeed the case. Rather than attempt to exhaustively
document the dependency of performance on parameters, this section presents two repre-
sentative examples.

The �rst example contrasts the behavior of three region matching modules: VsHistMatch,
VsPixelMatch, and VsHausdorff. Each of these modules scan an input region in the image

for the set of points that best matches a model region4. In each case, the region of model
points is speci�ed in relative coordinates using the modelRect parameter. The throughput
for the matching module is highly dependent on the size of the model rectangle relative
to the region of the image to be searched. The shapes of the curves in �gure 8-6 reect

the increasing cost per comparison as the model region is enlarged versus the decreasing
number of locations that must be compared.

0

2000

4000

6000

8000

10000

12000

14000

10%x10% 30%x30% 50%x50% 70%x70% 90%x90%

m
ill

is
ec

on
ds

/fr
am

e

model size

Processing time vs model size for a 166 MHz UltraSparc

HistM
Haus

PixM (1/4 resolution)

Figure 8-6: Processing time for matching modules as a function of model size. The resolution
of the images used to obtain the results shown for VsHausdor� and VsHistMatch (320x240)

was four times that used for VsPixelMatch (160x120).

The second example contrasts the varying computational costs associated with di�erent
algorithmic methods implemented by a single module. Figure 8-7 documents the varia-
tion in processing time due to di�erent settings of the vectorMethod parameter of the
VsDiffMotion �lter. In particular, the relative performance of the maxDiff, cityBlock,

euclidean, and dotProduct metrics (see section 4.3.1) are shown.

4In all cases, the input region was speci�ed to cover the complete image. The e�ect of reducing the input
area would be the same as increasing the model size and decreasing the resolution.

150

40

60

80

100

120

140

160

180

200

maxDiff cityBlock euclidean dotProduct

m
ill

is
ec

on
ds

 (
32

0x
24

0
24

 b
it

co
lo

r
im

ag
es

)

Processing time vs method for VsDiffMotion

Figure 8-7: Processing time of di�erent methods for VsDi�Motion �lter

8.3.3 Processing Platform

Finally, the performance measurements presented thus far in this chapter were achieved
using a 166 MHz UltraSparc. While this machine is a state of the workstation as of 1997,
technological advances will soon render this machine and these numbers obsolete. One

would like to be able to test performance on future workstations, but alas, this is not
currently possible. Instead, tests were performed on three state of the art machines and
their three predecessors. The results are summarized in �gure 8-8.

The graph presents six performance numbers for each of twelve trials5. All six numbers

represent throughput relative to that of the UltraSparc. The left most bars for each trial

indicates the relative performance for two Intel x86 machines running Linux. The middle
bars represents performance for two Sun Sparcs running Solaris 2, and the right most
bars represents performance for two Dec Alphas running OSF/1. Table 8.5 details the
speci�cations for each platform.

There are many interesting observations that one may make from �gure 8-8. First, the

relative performance of the di�erent architectures was wildly di�erent on the di�erent trials.
Each of the three architectures performed best on at least one trial and worst on at least
one trial. This suggests that technological advances will have an uneven e�ect on video
processing performance. In contrast to the relationship between di�erent architectures, the

relationship between di�erent platforms within the same architectural family was far more
consistent. In every experiment the newer platform outperformed its older counterpart,

5Exception: the HausM trial was performed only on the Sparc machines since this was the only architec-
ture to which the Hausdor� library was ported

151

0.25

0.5

1

2

HistTr PixTr Edge Stat HistM Face PixM HausM DiffMot Diff2 StatMot OptMot

T
hr

ou
gh

pu
t r

el
at

iv
e

to
 U

ltr
aS

pa
rc

Performance vs platform

200MHz Pentium Pro
133MHz Pentium

166MHz UltraSparc
50 MHz Sparc 10

200MHz Dec Alpha
133MHz Dec Alpha

Figure 8-8: Average throughput performance by �lter for di�erent platforms measured
relative to that of a 166 MHz UltraSparc

usually by a constant ratio.

Platform OS Clock (MHz) Cache
ext/int ext+I/D

Intel Pentium Pro Linux 2.0 66/200 256K+8/8
Intel Pentium Linux 2.0 66/133 256K+8/8
Sun UltraSparc M170 Solaris 2.5 83/167 512K+16/16
Sun Sparc 10 Solaris 2.5 40/50 1M+20/16
Dec Alpha 3000/800 OSF/1 3.2 40/200 2M+8/8
Dec Alpha 3000/400 OSF/1 3.2 27/133 512K+8/8

Table 8.5: Platform speci�cations

152

Chapter 9

Conclusions

This dissertation has shown that an interactive approach to the computerized processing
and interpretation of visual information is both feasible and powerful. In support of this
thesis, the following has been demonstrated:

� Symbolic representations partition the problem

Symbolic representations separate the tractable elements of image processing and mea-
surement from the unsolved problems of interpretation and meaning. The scriptable,
event-driven Sieve programming environment demonstrates that given a framework

through which unstructured media can be transformed to a symbolic representation,
the assignment of function and meaning may be made on a customized basis.

� Interactivity leverages the user's intelligence

An interactive system can leverage a human user's intelligence if it allows the user
to customize the system and interpret the results. The Head Hunter application,
presented in chapter 3, demonstrated both these elements by showing how a human
supervisor could con�gure the program and evaluate the results, so that an unsophis-

ticated program could be used to identify news anchor shots. The results presented
in chapter 8 demonstrate that such a program can achieve a relatively high degree of
accuracy.

� Applications that analyze media are powerful

Applications that react to media content are fundamentally di�erent than those which
treat media as an opaque data type. The applications presented in chapter 7 demon-

strate the potential for applications that analyze media information.

The following sections review additional contributions, insights, and future directions for
this research.

153

9.1 Contributions

The property ! predicate ! pattern ! event paradigm

This work has developed a computational framework in which information evolves from raw
sensory data to symbolic form. In doing so it de�nes the role that image processing and
pattern matching should play in an interactive, content analyzing application.

Sieve

Building a working system allowed the ideas put forth in this thesis to be tested, forced
those ideas to be re�ned, and contributed to many of the insights of the study. The system

also represents progress towards establishing an image analysis library. The complete source
code is available1 to anybody wishing to use Sieve for their own experiments, study the low
level details for themselves, or extract code fragments for reuse in other systems.

Visual Grep

The idea that vision needs a grep utility has been tossed around for some time. However,
the complexity of matching unstructured visual input has prevented the development of

such a tool. This dissertation puts forth VsGrep as a demonstration of how visual grep can
be implemented.

Novel Applications

The most important reason for developing the applications was to ground the research by
forcing the system to solve real problems. However, a second bene�t is the applications
themselves. In spite of all the research in vision and multimedia systems, there do not

appear to be working examples of desktop applications that perform functions like those
performed by the Whiteboard Recorder, Computer Librarian, TV Agent, or Room Monitor.

9.2 Insights

In the course of this research, many insights have been gained. The following subsections
introduce observations that may prove valuable to other researchers.

9.2.1 Computer vision libraries

It is surprisingly di�cult to obtain libraries of sophisticated vision code. The proli�c pub-
lishing of experiments and advanced techniques could easily lure one into believing that

1http://sds.lcs.mit.edu/sieve/

154

such libraries must be widely available. Unfortunately, this is not the case. As a result, it is

very di�cult to build upon other's work and nearly impossible to reproduce other's results.

Vision researchers must be encouraged to share more than just their �ndings. \Show me the
code!" should become motto of the research community. Towards this goal the complete
source code to Sieve (see contributions), with all its imperfections, has been made available.

9.2.2 Bu�ered NFAs

The non-deterministic �nite state automata implemented by Sieve have been augmented
with a bu�er that enables the automata to quarantine payloads until it is determined

whether they are part of a matching sequence. Since transitions are solely a function of
new inputs and the automata's internal state, the class of sequences that may be matched
is unchanged by this feature2.

The ability to quarantine payloads proved to be one of the most bene�cial functions of
the automata module. In particular, the automatic determination of what frames must be

saved and what frames may be released signi�cantly simpli�ed application design.

9.2.3 Regular expressions

Regular expressions are conveniently used to match patterns because they are compact and
e�cient. However, complex regular expressions such as those which attempt to match entire
video clips (i.e. the beginning, middle, and end) can yield unexpected results. Experience
showed that the expressions were best suited to �nding (and labeling) the beginnings and

endings of video clips. Procedural mechanisms were then used to group these labels into
clips (see the TV News Agent in section 7.6 for an example).

9.2.4 Composition of data ow modules

A feature that is missing from many programming systems that arrange modules into ow
graphs, is the ability to group modules into compound modules that may then be used as
primitives. This capability has proven to be amongst the most important in Sieve.

Source

Gate

Filter

Figure 9-1: Composition

Figure 9-1 demonstrates a useful example, in which a two-input gate becomes a one-input

2However, it should be noted that conceptually, the bu�er may store an in�nite sequence of payloads so,
strictly speaking, the augmented NFA violates the restriction of �nite state.

155

�lter by grouping the gate with a hidden source. The compound module can then be used

wherever a one-input, one-output �lter is required.

9.2.5 Flow graphs and blocking

Experience with ow graph applications has shown that they can be prone to blocking.
In particular, blocking may arise when synchronously merging two or more data streams.
Figure 9-2 illustrates a common example.

Filter

MergeSplit

Figure 9-2: Example of potential deadlock

The problem occurs if the �lter module does not produce exactly one output each time that
it receives an input. For instance, if the �lter produces fewer outputs than inputs, or merely

delays its output until it receives multiple inputs, then one input port to the merge module
is left waiting for the other. The splitter becomes blocked as it tries to forward copies of
the payload to each of its outputs before accepting another input3.

One solution is to implement �lter modules so that they produce exactly one output each
time an input is consumed. Often, this involves designing modules so that they initially

produce blank or default outputs while they build up su�cient state to produce more
meaningful results. Another solution is to provide bu�ering (perhaps in the splitter outputs
or the merge inputs) to absorb discrepancies between ows. Still another alternative is to

implement modules which merge streams in ways that do not require inputs to arrive in
pairs. Unfortunately, none of these solutions are satisfactory for all cases.

9.2.6 Latency and data ow

The programming model for Sieve is one where the application programmer de�nes the
input/output relationships of modules, arranges them in a ow-graph, and then allows the
system to schedule the ow of data through the graph. The model permits multiple payloads

to reside at di�erent stages in the processing pipeline at the same time. Potentially, this
ability could be used to schedule parallel execution of data processing. However, when
running on a serial processor, the scheduling algorithm can induce unanticipated latency.

Figure 9-3 illustrates the potential problem. The processing time required by the three
modules is labeled T1, T2, and T3. Ideally, therefore, the latency, as measured by the time

it takes for payload to travel from the source to the sink, is T1+ T2+ T3. However, latency

3Actually, the program functions if the �lter consumes exactly one payload without producing an output.
In such a case, the splitter forwards copies to both the merge and �lter inputs, and then receives the next
payload. The merge input is blocked but the �lter is not { so the splitter �rst passes a copy of the new
input to the �lter. The �lter then produces an output which clears both of the input ports to the merge
and the ow continues. The fact that deadlock doesn't occur until a second payload is \dropped" caused
the deadlock problem to go unnoticed for some time.

156

SinkSource T
1

T
2

T
3

Figure 9-3: Source to sink latency

can grow by a factor of n, where n is the number of processing modules, if the processing is
scheduled such that each module performs its function in turn, from the last module in the

chain back to the front. Such an ordering may seem unnatural, but is indeed the ordering
that occurs if the pipeline becomes full (perhaps because the sink temporarily becomes
blocked) and module processing is centrally scheduled on a �rst come �rst serve basis.

9.3 Future Work

The following are suggestions for future research that build upon the work presented in this
dissertation.

9.3.1 From data push to data pull

Computation in Sieve is modeled as the ow of media data through a network of processing
modules that �rst measure the media's properties and then look for patterns in those prop-

erties. An interesting alternative would be to replace this model, in which data is essentially
pushed forward from source to sink, with one in which data and processing are pulled, as
needed, by the sink.

The pull model could be used to implement lazy evaluation of properties. In other words,
a property value for a given payload would only be computed if it was required by a

downstream module. Requirements would ow from the pattern matching automata (which
depending on their state might require certain properties to make a transition, but not
others) back to the property generating �lters. For some patterns, the computational savings
would be substantial. For example, suppose one was looking for occurrences of an anchor

person appearing immediately after a commercial break; by searching for the appearance

of a face just after a shot change. One need not perform the computationally expensive
face detection algorithm for each image. The �nite state automata pattern matcher could

determine, from the state it was in, when the face property should be computed.

9.3.2 Example Based Programming and Reasoning

This work has focused on enabling a programmer to precisely specify the pattern of input
about which he or she is interested. The assumption is that the user knows the features of
interest and can determine the appropriate parameters. An alternative approach would be
for the user teach the system using examples and have the system reason about the data

to automatically derive parameters and possibly even the features.

It is suggested that the partitions between the property generating layer, the pattern recog-
nition layer, and the event handling layer could also be used as the underpinnings for an
example or reasoning based system. For example, such a system could attempt to classify

157

inputs by searching for both the properties and patterns which distinguish positive and

negative examples.

9.3.3 Integration with ActiveMovie

Sieve is a fully functioning, portable, stand-alone system that runs on many platforms.
However, it lacks the documentation and general support of a commercial system. Sieve
could be used by a wider group of users if it were integrated with an existing commercial
environment.

ActiveMovie has emerged as a commercial standard that implements the basic programming

model of the VuSystem. Augmenting ActiveMovie with the content analysis tools of Sieve
appears, therefore, to be a worthwhile endeavor.

9.3.4 Vision components

A major focus of future research will be the development of more sophisticated event recog-
nition through improvements in the underlying components which interpret imagery. Sieve
could make immediate use of more advanced techniques for region matching, motion sens-

ing, color constancy, and clustering. Specialized modules, such as the face detector, have
already proven themselves to be of great utility.

9.3.5 HCI applications

Programs that interpret visual information can change the way humans and computers in-
teract. Human beings have made remarkable strides towards adapting themselves to the
world of the computer. For example, graphical user interfaces make it easier for people to

work in the computer's environment by providing metaphors which aid the user in remem-
bering and understanding the computer's rules.

To date, a fundamental barrier to computers adapting themselves to us has been their
inability to \internalize" our environment, which is physical. People work on desktops,
write on blackboards, and handle documents. This thesis has shown that computers can

analyze and digest video information that is representative of the physical world. In so
doing, they can become more aware of our environment and therefore more responsive to
their human users.

158

Appendix A

Test Images

Chapter 8 demonstrated that the computational requirements of many of the image pro-
cessing modules is highly dependent on the content of the input. For this reason, realistic
images and image sequences were used to make the performance measurements.

Figure A-1 shows the ten still images used to test the image processing modules that treat

images independently.

Figure A-2 shows an image for each sequence used to test �lters which depend on inter-

frame relationships. The last sequence represented in �gure A-2 was composed from the ten
independent stills. The nine other sequences consist of related images depicting contiguous
motion. Figure A-3 shows one such sequence.

159

Figure A-1: Ten still images that were used for performance testing

160

Figure A-2: Representative images from the ten motion sequences used for testing

161

Figure A-3: A complete motion sequence

162

Appendix B

VsGrep Code

#
Procedures to be called from vsgrep scripts
#

Pre-fabricated action procedures

Display text message in message box
proc Message {msg} {

global GrepForm
set w $GrepForm
set cend [$w.message getInsertionPoint]
$w.message replace $cend $cend "$msg\n"

}

Save the current match as a video clip
proc SaveClip {args} {

global GrepFlow outFileBase
$GrepFlow.auto send $args
$GrepFlow.auto clear
set dir [file dir $outFileBase]
set file [file tail $outFileBase]
set path "$outFileBase.[getNextFileNumber $dir $file.].uv"
$GrepFlow.filesink pathname $path
$GrepFlow.filesink start
return $path

}

Default callback to be run after a video clip has been saved
This procedure may be redefined by vsgrep scripts
proc SaveClipCB {pathname} {

global EXIT
if {[info exists EXIT] && $EXIT == 1} then {

exit
} else {

display $pathname
}

}

Used by scripts to configure the VsVex module

Old definition
#proc vex {args} {
global GrepFlow
apply $GrepFlow.auto $args
#}
New version used for performance testing
adds the ability to disable property, predicate, and pattern processing

163

proc vex {args} {
global GrepFlow TestArgs

set cmd [lindex $args 0]
set test [keyarg -test $TestArgs]
set buffer [keyarg -buffer $TestArgs]

if {$cmd == "buffer"} then {
if {$test!="none" && $test!="prop"} then {

if {$buffer!={}} then {
$GrepFlow.auto buffer $buffer

} else {
apply $GrepFlow.auto $args

}
}

} elseif {$cmd== "properties"} then {
if {$test!="none"} then {

apply $GrepFlow.auto $args
}

} elseif {$cmd=="predicates" || $cmd=="patterns"} then {
if {$test!="none" && $test!="prop"} then {

apply $GrepFlow.auto $args
}

} else {
apply $GrepFlow.auto $args

}
}

Auxiliary procedures useful for predicates

proc setPrev {var args} {
global PrevVars
set PrevVars($var) $args

}
proc prev {var args} {

global PrevVars
set default [lindex $args 0]
if [info exists PrevVars($var)] then {

return $PrevVars($var)
} else {

return $default
}

}

#
Set up and configure the flow-graph
#

proc VsGrepFlow {w m args} {
global GrepFlow; set GrepFlow $m
set show [keyarg -show $args 1]
set showList [keyarg -showList $args $show]
set showInput [keyarg -showInput $args $show]

set info [keyarg -info $args 0]
set exit [keyarg -exit $args 0]

if {$info == 0} then {set info {}}
if {$info == 1} then {set info PutsPropList}

VsEntity $m
$m set showList $showList

Create video source
apply VsVideoSource $m.source \

-fileSourceEncoding 3 \
-parentWidget $w \
-captions [false] \

164

$args
set nextInput "bind $m.source.output"

If -show is not 0 then display input in a window
if $showInput then {

VsDup $m.dup \
-numOutputPorts 2 \
-input $nextInput

set nextInput "bind $m.dup.output0"

Run as fast as possible
VsReTime $m.reTime \

-speed 10000 \
-input $nextInput

set nextInput "bind $m.reTime.output"

Exit the program at the end of a video file
$m proc exitCallback {args} {

set sinkFinish [keyarg -sinkFinish $args 0]
if $sinkFinish then {exit}

}

Create the window sink
VsWindowSink $m.sink \

-widget $w.input.screen \
-input $nextInput

set nextInput "bind $m.dup.output1"
$m.sink callback "$m exitCallback"

}

If -exit is not 0 then this shuts down vsgrep after $exit frames
if $exit then {

VsExit $m.exit \
-input $nextInput \
-frames $exit

set nextInput "bind $m.exit.output"
}

Create the VsVex module
VsVex $m.auto \

-info $info \
-input $nextInput

set nextInput "bind $m.auto.output"

Display saved video clips in the VideoList
$m proc expose {pathname} {

if $showList then {
[[file root $self].inEntries addEntry $pathname] expose

}
}
Reset the file sink at the end of the video clip
$m proc sinkCallback {args} {

if [keyarg -sinkFinish $args 0] then {
set pathname [$self.filesink pathname]
$self.filesink pathname ""
SaveClipCB $pathname

}
}
File sink for saving video clips
VsFileSink $m.filesink \

-index {} \
-callback "$m sinkCallback" \
-input $nextInput

return $m
}

#

165

Set up the user interface
#

proc VsGrepForm {w m args} {
global GrepForm; set GrepForm $w
set margs [keyarg -margs $args]
set args [keyargs {-margs} $args exclude]

set show [keyarg -show $margs 1]
set showList [keyarg -showList $margs $show]
set showInput [keyarg -showInput $margs $show]

VsEntity $m
$m set w $w

apply Form $w \
$args

Form $w.input \
-resizable true

if $showInput then {
VsScreen $w.input.screen \

-resizable true
} else {

Box $w.input.screen \
-width [expr "[vsDefault -width]/2"] \
-borderWidth 0

}
Command $w.input.controlPanel \

-label "Control Panel" \
-callback "VsPanelShell $w.input.controlPanel.shell -obj $m" \
-fromVert $w.input.screen

Command $w.input.visualPanel \
-label "Program" \
-callback "VsVisualShell $w.input.visualPanel.shell -obj $m.flow" \
-fromHoriz $w.input.controlPanel \
-fromVert $w.input.screen

if {$showList && !$showInput} then {set height 354} else {set height 114}
AsciiText $w.message \

-width [expr "[$w.input.screen getValues -width]+10"] \
-height $height \
-displayCaret false \
-scrollVertical whenNeeded \
-wrap word \
-resizable true \
-fromVert $w.input

[$w.message getSource] setValues -string "" -editType append

if $showList {
apply VsGrepVideoList $w $m $args

}
return [apply VsGrepFlow $w $m.flow $margs]

}

Create the output VideoList
proc VsGrepVideoList {w m args} {

$m proc playSelection {args} {
set entry [$self.inEntries current]
if {[info commands $entry] != {}} {

catch {exec vsplay [$entry pathname] &}
}

}
$m proc removeSelection {args} {

set entry [$self.inEntries current]
if {[info commands $entry] != {}} {

exec rm [$entry pathname]

166

$self.inEntries deleteEntry $entry
}

}
VsVideoList $w.inEntries $m.inEntries \

-height 370 \
-fromHoriz $w.input

Command $w.play \
-label "Play" \
-callback "$m playSelection" \
-fromVert $w.inEntries \
-fromHoriz $w.input

Command $w.sub \
-label "Remove" \
-callback "$m removeSelection" \
-fromHoriz $w.play \
-fromVert $w.inEntries\
-fromHoriz $w.play

}

Display file in the video list
proc display {pathname} {vs.grep.flow expose $pathname}

#
Main routine and misc procedures
#

Evaluate the the vsgrep script
proc configure {pattern spec} {

if {[file exists $spec]} then {
source $spec

}
if {$pattern != {}} then {

vex patterns [list [list RegMatch $pattern SaveClip]]
}

}

Run the vex callback before actually quitting
proc quit {} {

if {[vex callback] == {}} then {
catch {vs destroy}; exit

} else {
[vex callback]

}
}

Main invocation
proc main {} {

global argv name class errorInfo outFileBase TestArgs

set name [lindex $argv 0]
set class VsGrep
set sources [commandLineArguments $argv]
set args [commandLineOptions $argv]

set margs [keyargs {-depth -visual} $args exclude]
set shArgs [keyargs {-depth -visual} $args]

set pattern [lindex $sources 1]

set videoSource [lindex $sources 2]
if {$videoSource != {}} {

set margs [concat -videoSource $videoSource $margs]
}
set outFileBase [keyarg -out $args grepout]
set TestArgs [keyargs {-test -buffer} $args]
set spec [keyarg -f $args]

xt appInitialize app_context $class argv {}

167

vs appInitialize app_context vs

apply VsShell $name.top \
-title VsGrep \
-cmd VsGrepForm \
-realize "configure [list $pattern] [list $spec]; vs start" \
-dismiss "quit" \
-args [concat vs.grep [list -margs $margs]] \
-allowShellResize true \
$shArgs

while {[catch {app_context mainLoop} msg]} {
VsErrorShell $name.err -summary $msg -detail $errorInfo

}
}

main

168

Bibliography

[Adam et al., 1993] J. F. Adam, H. H. Houh, and D. L. Tennenhouse. Experience with
the vunet: A network architecture for a distributed multimedia system. In Proceedings

of the IEEE Conference on Local Computer Networks, pages 70{76, Minneapolis MN,

September 1993.

[Aho et al., 1986] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley Publishing Company, Reading, MA, 1986.

[Apple, 1992] Apple. Inside MacIntosh. Addison-Wesley, Reading, MA, 1992.

[Asente and Swick, 1990] Paul Asente and Ralph Swick. X Window System Toolkit. Digital
Press, Bedford, MA, 1990.

[Bach et al., 1996] Je�rey R. Bach, Charles Fuller, Amarnath Gupta, Arun Hampapur,
Bradley Horowitz, Rich Humphrey, Ramesh Jain, and Chiao-Fe Shu. Virage image search
engine: an open framework for image management. In Proc. SPIE, March 1996.

[Bajcsy, 1973] R. Bajcsy. Computer identi�cation of visual surfaces. Computer Graphics

and Image Processing, 2(2):118{130, October 1973.

[Ballard and Brown, 1982] Dana Ballard and Christopher Brown. Computer Vision.

Prentice-Hall, Englewood Cli�s, NJ, 1982.

[Beymer, 1996] David Beymer. Pose-Invariant Face Recognition Using Real and Virtual

Views. PhD thesis, MIT, 1996. AI-TR 1574.

[Bregler, 1997] Christoph Bregler. Learning and recognizing human dynamics in video
sequences. In IEEE Conf. on Computer Vision and Pattern Recognition, 1997.

[Canny, 1983] John Canny. Finding edges and lines in images. AI Technical Report 720,
MIT, June 1983.

[Carson et al., 1996] Chad Carson, Serge Belongie, Hayit Greenspan, and Jitendra Malik.
Region-based image querying. Technical Report 941, UC Berkley, 1996.

[Cascia and Ardizzone, 1996] M. La Cascia and E. Ardizzone. Jacob: Just a content-

based query system for video databases. In IEEE International Conference on Acoustics,

Speech, and Signal Processing, 1996.

[Coombs et al., 1992] David Coombs, Ian Horswill, and Peter Von Kaenel. Disparity �l-
tering: proximity detection and segmentation. In Proc. SPIE Vol. 1825, pages 195{206.
The International Society for Optical Engineering, November 1992.

169

[Duda and Hart, 1973] Richard Duda and Peter Hart. Pattern classi�cation and scene

analysis. John Wiley, New York, 1973.

[Eakins et al., 1996] J. P. Eakins, K. Shields, and J. M. Boardman. Artisan - a shape
retrieval system based on boundary family indexing. In Proc. SPIE, March 1996.

[Flickner et al., 1995] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image
and video content: The QBIC system. IEEE Computer, 28(9):23{32, 1995.

[Freeman and Brainard, 1995] W. T. Freeman and D. H. Brainard. Bayesian decision the-
ory, the maximum local mass estimate, and color constancy. In Proceedings IEEE Inter-

national Conference on Computer Vision, pages 210{217, 1995.

[Funt and Finlayson, 1995] Brian V. Funt and Graham D. Finlayson. Color constant color
indexing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(5):522{
529, 1995.

[Grimson, 1990] W. Eric L. Grimson. Object Recognition by Computer. MIT Press, Cam-
bridge, MA, 1990.

[Heeger et al., 1992] David Heeger, Eero Simoncelli, and EJ Chichilnisky. Obvius: Object-

based vision and image understanding system, version 2.2. Vismod 195, MIT Media Lab,
1992.

[Hopcroft and Ullman, 1979] John E. Hopcroft and Je�rey D. Ullman. Introduction to

Automata Theory, Languages, and Computation. Addison-Wesley Publishing Company,
Reading, MA, 1979.

[Horn and Schunck, 1981] Berthold K. P. Horn and Brian G. Schunck. Determining optical
ow. Arti�cial Intelligence, 17:185{203, 1981.

[Horn, 1986] Berthold K. P. Horn. Robot Vision. MIT Press, Cambridge, MA, 1986.

[Horswill, 1994] Ian D. Horswill. Specialization of Perceptual Processes. PhD thesis, MIT,

1994. AI-TR-1511.

[Hurlbert, 1989] Anya C. Hurlbert. The computation of color. AI Technical Report 1154,

MIT, September 1989.

[Huttenlocher and Rucklidge, 1992] Daniel P. Huttenlocher and William J. Rucklidge. A
multi-resolution technique for comparing images using the hausdor� distance. Technical
Report TR 92-1321, Cornell University, 1992.

[Huttenlocher et al., 1992] Daniel P. Huttenlocher, Jae J. Noh, and William J. Rucklidge.
Tracking non-rigid objects in complex scenes. Technical Report TR 92-1320, Cornell

University, 1992.

[Ikeuchi and Hebert, 1990] Katsushi Ikeuchi and Martial Hebert. Task oriented vision. In
Proceedings of Darpa Image Understanding Workship, September 1990.

[Jackson et al., 1996] MacDonald H. Jackson, J. Eric Baldeschwieler, and Lawrence A.
Rowe. Berkeley cmt media toolkit api. Berkeley Multimedia Research Center, September
1996.

[Kandel and Schwartz, 1985] Eric R. Kandel and James H Schwartz. Principles of Neural

170

Science / 2nd ed. Elsevier, New York, 1985.

[Kelly and Cannon, 1995] P.M. Kelly and T.M. Cannon. Query by image example: the

candid approach. Technical Report LA-UR-95-374, Los Alamos National Laboratory,
1995.

[Land and McCann, 1971] Edwin H. Land and John. J. McCann. Lightness and retinex
theory. Journal of the Optical Society of America, 61:1{11, 1971.

[Lawrence et al., 1997] Steve Lawrence, C. Lee Giles, A.C. Tsoi, and A.D. Back. Face
recognition: A convolutional neural network approach. IEEE Transactions on Neural

Networks, 8(1):98{113, 1997.

[Lee and Xu, 1996] Christopher Lee and Yangsheng Xu. Online, interactive learning of

gestures for human/robot interfaces. In Proceedings of IEEE International Conference

on Robotics and Automation, volume 4, pages 2982{2987, Minneapolis, MN, 1996.

[Lindblad and Tennenhouse, 1996] Christopher Lindblad and David Tennenhouse. The
VuSystem, A Programming System for Compute-Intensive Multimedia. IEEE JSAC,
1996.

[Lindblad et al., 1995] Christopher Lindblad, David Wetherall, William Stasior, Joel

Adam, Henry Hou, Michael Ismert, David Bacher, Brent Phillips, and David Tennen-
house. Viewstation applications: Implications for network tra�c. IEEE JSAC, 13(5),
1995.

[Lindblad, 1994] Christopher J. Lindblad. A Programming System for the Dynamic Ma-

nipulation of Temporally Sensitive Data. PhD thesis, MIT, August 1994. LCS-TR-637.

[Luong, 1991] Q.-T. Luong. Color in computer vision. Handbook of pattern recognition and

computer vision, pages 311{368, 1991.

[Marr, 1979] David Marr. Early processing of visual information. Transactions of the Royal

Society of London B, 275:483{524, 1979.

[Matthews et al., 1993] James Matthews, Peter Gloor, and Fillia Makedon. Videoscheme:
A programmable video editing system for automation and media recognition. In Proceed-

ings of ACM Multimedia 93. ACM, August 1993.

[Microsoft, 1995] Microsoft. Programming with MFC, volume 2. Microsoft Press, 4 edition,
1995.

[Nagao and Grimson, 1995] Kenji Nagao and W. Eric. L. Grimson. Recognizing 3d objects
using photometric invariant. AI Memo 1523, MIT, February 1995.

[Niblack et al., 1993] Wayne Niblack, Ron Barber, Will Equitz, Myron Flickner, Eduardo

Glasman, Dragutin Petkovic, Peter Yanker, Christos Faloutsos, and Gabriel Taubin. The
qbic project: Querying images by content using color, texture, and shape. Technical
Report RJ 9203, IBM Research, February 1993.

[Ogle and Stonebraker, 1995] Virgina E. Ogle and Michael Stonebraker. Chabot: Retrieval
from a relational database of images. IEEE Computer, 28(9):40{48, 1995.

[Ousterhout, 1994] John Ousterhout. An Introduction to Tcl and Tk. Addison Wesley,

Reading, MA, 1994.

171

[Pentland et al., 1996] A. Pentland, R. W. Picard, and S. Sclaro�. Photobook: Content-

based manipulation of image databases. International Journal of Computer Vision,
18(03):233{254, 1996. MIT Media Lab Vismod Report 255.

[Picard and Minka, 1995] R. W. Picard and T. P. Minka. Vision texture for annotation.
ACM/Springer-Verlag Journal of Multimedia Systems, 3:3{14, 1995. MIT Media Lab
Vismod Report 302.

[Picard, 1996] R. W. Picard. A society of models for video and image libraries. IBM

Systems Journal, 35(3&4):292{312, 1996. MIT Media Lab Vismod Report 360.

[Pratt, 1991] William K. Pratt. Digital Image Processing / 2nd ed. John Wiley and Sons

Inc., New York, 1991.

[Rosenfeld, 1969] Azriel Rosenfeld. Picture Processing. Academic Press, New York, 1969.

[Rowley et al., 1995] Henry A. Rowley, Shumeet Baluja, and Takeo Kanade. Human face
detection in visual scenes. Technical Report CMU-CS-95-158, Carnegie Mellon University,
November 1995.

[Sclaro� et al., 1997] S. Sclaro�, L. Taycher, and M. La Cascia. Imagerover: A content-
based image browser for the world wide web. Technical Report TR97-005, Boston Uni-

versity, 1997.

[Smith and Chang, 1996] John R. Smith and Shih-Fu Chang. Visualseek: a fully auto-

mated content-based image query system. In Proceedings of ACM Multimedia 96. ACM,
November 1996.

[Smith and Kanade, 1995] M. Smith and T. Kanade. Video skimming for quick browsing
based on audio and image characterization. Technical Report CMU-CS-95-186, Carnegie
Mellon University, 1995.

[Starner and Pentland, 1996] Thad Starner and Alex Pentland. Real-time american sign

language recognition from video using hidden markov models. Vismod 375, MIT Media
Lab, 1996.

[Stasior and Tennenhouse, 1996] William Stasior and David Tennenhouse. The viewstation
collected papers ii. LCS TR 696, MIT, 1996.

[Subirana and Sung, 1992] Brian Subirana and Kah-Kay Sung. Ridge-detection for the
perceptual organization without edges. AI Memo 1318, MIT, December 1992.

[Sung and Poggio, 1994] Kah-Kay Sung and Tomaso Poggio. Example-based learning for
view-based human face detection. AI Memo 1521, MIT, December 1994.

[Sung, 1992] Kah-Kay Sung. A vector signal processing approach to color. AI Technical

Report 1349, MIT, January 1992.

[Swain and Ballard, 1991] Michael J. Swain and Dana H. Ballard. Color indexing. Inter-
national Journal of Computer Vision, 7(1):11{32, 1991.

[Swain and Stricker, 1993] Michael J. Swain and Markus A. Stricker. Promising directions
in active vision. International Journal of Computer Vision, 11(2):109{126, 1993.

[Swain, 1990] Michael J. Swain. Color Indexing. PhD thesis, University of Rochester, 1990.

172

[Tamura et al., 1978] Hideyuki Tamura, Shunji Mori, and Takashi Yamawaki. Textural

features corresponding to visual perception. IEEE Transactions on Systems, Man, and

Cybernetics, SMC-8(6):460{473, 1978.

[Tennenhouse et al., 1995] David Tennenhouse, Joel Adam, David Carver, Henry Houh,
Michael Ismert, Christopher Lindblad William Stasior, David Wetherall, David Bacher,
and Teresa Chang. The viewstation: A software-intensive approach to media processing

and distribution. Multimedia Systems Journal, 3:104{115, 1995.

[Therrien, 1989] Charles W. Therrien. Decision Estimation and Classi�cation. John Wiley
and Sons, New York, 1989.

[Turk, 1991] Matthew A. Turk. Interactive-Time Vision: Face Recognition as a Visual

Behavior. PhD thesis, MIT, 1991.

[Ullman, 1984] Shimon Ullman. Visual routines. Cognition, 18:97{159, 1984.

[Wactlar et al., 1996] Howard D. Wactlar, Takeo Kanade, Michael A. Smith, and Scott M.
Stevens. Intelligent access to digital video: Informedia project. IEEE Computer,
29(05):46{53, 1996.

[Wang and Adelson, 1993] John Wang and Edward Adelson. Layered representation for

motion analysis. Vismod 221, MIT Media Lab, April 1993.

[Wetherall and Lindblad, 1995] David Wetherall and Christopher J. Lindblad. Extending

Tcl for Dynamic Object-Oriented Programming. In Tcl/Tk Workshop, Toronto, Ontario,
July 1995.

[Wetherall, 1994] David Wetherall. An Interactive Programming System for Media Com-
putation. Master's thesis, MIT, 1994. LCS-TR-640.

[Wood�ll, 1992] John I. Wood�ll. Motion Vision and Tracking for Robots Dynamic Un-

structured Environments. PhD thesis, Stanford, 1992.

[Wu et al., 1995] J. K. Wu, A. Desai Narasimhalu, B.M. Mehtre, C.P. Lam, and Y.J.

Gao. Core: a content-based retrieval engine for multimedia information systems.
ACM/Springer-Verlag Journal of Multimedia Systems, 3:25{41, 1995.

[Young et al., 1995] Mark Young, Danielle Argiro, and Steven Kubica. Cantata: Visual
programming environment for the khoros system. Computer Graphics, 29(2):22{24, May
1995.

[Zentner, 1993] Daniel Zentner. Computing Times Square Empty. Bachelor's Thesis, MIT,
1993.

[Zhang et al., 1995] HongJiang Zhang, Shuang Yeo Tan, Stephen W. Smoliar, and Gong

Yihong. Automatic parsing and indexing of news video. ACM/Springer-Verlag Journal

of Multimedia Systems, 2:256{266, 1995.

173

