
Fast Thread Communication and Synchronization

Mechanisms for a Scalable Single Chip Multiprocessor

by

Stephen William Keckler

B.S. Electrical Engineering, Stanford University, 1990

S.M. Computer Science, Massachusetts Institute of Technology, 1992

Submitted to the Department of Electrical Engineering and Computer Science

In Partial Ful�llment of the Requirements for the Degree of

Doctor of Philosophy

in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

June 1998

c1998 Massachusetts Institute of Technology.

All rights reserved.

Signature of Author

Department of Electrical Engineering and Computer Science

May 18, 1998

Certi�ed by

Dr. William J. Dally

Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by

Dr. Arthur C. Smith

Chairman, Committee on Graduate Students

Department of Electrical Engineering and Computer Science

Fast Thread Communication and Synchronization

Mechanisms for a Scalable Single Chip Multiprocessor

by

Stephen William Keckler

Submitted to the
Department of Electrical Engineering and Computer Science

on May 18, 1998, in partial ful�llment of
the requirements for the Degree of Doctor of Philosophy in

Electrical Engineering and Computer Science

Abstract

Much of the improvement in computer performance over the last twenty years has come from
faster transistors and architectural advances that increase parallelism. Smaller feature sizes have
decreased the transistor switching time but at the same time increased the resistance of intercon-
nect wires, resulting in slower signal transmission in on-chip wiring. Since future chips will have
more silicon area and include more execution units, a much larger demand for parallelism is emerg-
ing. However, the increased signi�cance of wire delay will require monolithic components, such as
processors and caches, to be small and that the communication wires connecting them be short.

Computer systems typically exploit concurrency using either instruction level parallelism (ILP)
or coarse-grain parallel threads running on a multiprocessor. This thesis proposes mechanisms
for exploiting on-chip parallelism at a �ne grain to bridge the gap between ILP and coarse-grain
multiprocessing. Fast interprocessor communication and synchronization enables the use of tasks
with run lengths as small as 10 cycles. At the same time, these interaction mechanisms are less
susceptible than conventional microprocessor designs to longer wire delays imminent in future silicon
process technologies. As �ne-grain parallelism is orthogonal to ILP and coarse-grain threads, it
complements both methods and provides an opportunity for greater speedup.

This thesis presents the architecture and implementation of the MIT Multi-ALU Processor (MAP),
a 5 million transistor custom VLSI microprocessor chip. The MAP architecture incorporates 9
function units, split into 3 independent processors. The processors communicate via interprocessor
register writes and synchronize using a hardware barrier instruction. These integrated mechanisms
allow threads to communicate 10 times faster and synchronize 60 times faster than using a shared
on-chip cache. The fast interprocessor interaction enables the MAP to exploit both instruction-level
parallelism and �ne-grain thread level parallelism. On a suite of applications, speedups of 1.2{2.4
are achieved using �ne-grain threads on a 3-processor MAP chip.

Thesis Supervisor: Dr. William J. Dally
Title: Professor of Electrical Engineering and Computer Science

Acknowledgments

It is good to have an end to journey toward, but it is the journey that matters in the end.

{ Ursula K. LeGuin

And quite a journey it has been. I am deeply indebted to my guide, mentor, and thesis advisor,
Professor William J. Dally. From the day I arrived at MIT, Bill has treated me as a colleague and
a partner. He has taught me the value of both breadth and depth in conducting systems research
and impressed upon me that in order to make a signi�cant contribution, one needs to span many
technological levels. Bill always had the knack to ask the hard questions that inspired me to look
at a problem in a new way or to continue to dig deeper. His willingness to give me leadership
responsibilities taught me valuable lessons in both research and project management. Thanks also
to my thesis readers at MIT, Professors John Guttag and Frans Kaashoek.

The M-Machine project was truly a collaborative e�ort, and without the cooperation of the design
team, the chip would not have come together. Many thanks to the other members of the MAP
processor design team: Andrew Chang, Whay Lee, and Nick Carter. In addition, I want to ac-
knowledge the e�orts Urban Jangren and his team at Cadence Spectrum Design, who were our
industrial parters in this venture. Without their support and collaboration, this MAP chip would
never have gotten much past the circuit design. I also had the pleasure of working with some very
talented undergraduate and masters students including Je� Bowers, Dan Hartman, Keith Klayman,
and Albert Ma. On the software side, thanks go to Daniel Maskit, Yevgeny Gurevich, and Andy
Shultz for their e�orts on the M-Machine compiler and runtime system.

Great thanks go to my many friends throughout my graduate career, including three I want to
mention by name. To Don Yeung, for being an awesome housemate and co-commiserator for many
years. To chief yogurthead Stuart Fiske, for dragging me out of the o�ce and making my move to
California easier. And to my o�cemate Scott Rixner, for being the perfect foil for so many jokes
and keeping the o�ce environment amusing at so many levels.

Last, but certainly not least, many thanks go to my parents, Bill and Joyce Keckler. They have
provided a tremendous amount of emotional, intellectual, and recreational support. Thanks also
go to Mom for brushing up on her computer science skills so that she was willing and able to help
edit my thesis. Finally, I thank them both for learning not to ask the question: \When are you
going to graduate?".

The research in this thesis has been supported by the Department of Defense through a National
Defense Science and Engineering Graduate Fellowship, by an Intel Graduate Fellowship, and by
the Defense Advanced Research Projects Agency monitored by the Air Force Electronic Systems
Division under contract F19628-92-C-0045.

6

Contents

1 Introduction 14

1.1 Technology Trends : 15
1.2 The Parallelism Gap : 19
1.3 The MIT M-Machine : 21
1.4 Contributions : 24
1.5 Background : 25
1.6 Thesis Roadmap : 27

2 M-Machine Overview 29

2.1 The MAP Chip Architecture : 30
2.1.1 MAP Execution Clusters : 31
2.1.2 Memory System : 34
2.1.3 Global Con�guration Space : 36
2.1.4 On-Chip Switches : 37
2.1.5 Communication Subsystem : 38
2.1.6 Exceptions : 39
2.1.7 Events : 40
2.1.8 Summary : 42

2.2 MAP Implementation : 43
2.3 Design Methodology : 45
2.4 Evolution of the MAP Design : 46
2.5 Scalability of the MAP Architecture : 48
2.6 Lessons from the Implementation : 52

3 MAP Chip Pipeline Design 54

3.1 Pipeline Components : 56
3.1.1 Instruction Fetch : 57
3.1.2 Register Read : 59
3.1.3 Synchronization : 60
3.1.4 Execution Units : 62
3.1.5 Write Back : 64

3.2 Data Synchronization : 65
3.3 Multithreading : 66

3.3.1 Pipeline Overhead : 66
3.3.2 Thread Selection : 66

7

3.4 Pipeline Mechanisms for Intercluster Interaction : 67
3.4.1 Register Synchronization : 67
3.4.2 Cluster Barrier : 68

3.5 Summary : 69

4 On-chip Interaction Mechanisms 70

4.1 Experimental Evaluation Tools : 71
4.2 Communication : 71

4.2.1 Communication Mechanisms : 72
4.2.2 Communication Costs : 73

4.3 Synchronization : 76
4.3.1 Memory Synchronization : 76
4.3.2 Instruction Synchronization : 77
4.3.3 Synchronization Costs : 78

4.4 Thread Creation : 81
4.4.1 New Threads : 81
4.4.2 Waiting Threads : 85
4.4.3 Invocation Costs : 85

4.5 Summary : 86

5 Instruction-Level Parallelism 89

5.1 Limits of ILP : 90
5.2 Instruction-Level Parallelism on the MAP chip : 92

5.2.1 Loosely Coupled Execution Streams : 92
5.2.2 Comparison to Superscalar : 94
5.2.3 Comparison to VLIW : 96

5.3 Evaluation of Loose Coupling : 96
5.3.1 Synthetic Benchmark : 97
5.3.2 Application Kernels : 100

5.4 Summary : 102

6 Thread-Level Parallelism 103

6.1 Parallel Procedure Call : 104
6.2 Synthetic Benchmark Study : 106

6.2.1 Granularity : 107
6.2.2 Argument Count : 109

6.3 Parallel Applications : 110
6.4 Inner-Loop Parallelism : 112

6.4.1 Task Granularity : 113
6.4.2 Communication Comparison : 114

6.5 Outer-Loop Parallelism : 117
6.5.1 Task Granularity : 117
6.5.2 Synchronization Comparison : 118

6.6 Summary : 121

7 M-Machine Project Retrospective 124

8

7.1 Processor Coupling : 124
7.1.1 SZ Stage Placement : 125
7.1.2 Cluster Synchronization : 126
7.1.3 Remote Scoreboard Invalidation : 126

7.2 Register Limitations : 127
7.3 Simulation Environment : 128
7.4 Project Complexity : 129

8 Conclusion 131

8.1 MAP Chip Summary : 132
8.2 Architectures for Future Chips : 135
8.3 Software Support : 137

A MAP Instruction Set Architecture 139

A.1 Operation Fields : 139
A.2 Integer Operations : 141

A.2.1 Arithmetic Operations : 141
A.2.2 Byte Manipulation : 142
A.2.3 Comparison Operations : 142
A.2.4 Data Movement : 142
A.2.5 Control Flow Operations : 142
A.2.6 Address Calculation : 142
A.2.7 Immediate Operations : 143
A.2.8 Con�guration Space Operations : 143
A.2.9 Communication Operations : 143

A.3 Memory Operations : 143
A.3.1 Standard Memory Access : 143
A.3.2 Synchronizing Operations : 143
A.3.3 Address Calculation : 144
A.3.4 Special Memory Operations : 144
A.3.5 Thread Management Operations : 144
A.3.6 Arithmetic Operations : 144

A.4 Floating-point Operations : 145
A.4.1 Floating-point Arithmetic Operations : 145
A.4.2 Integer Arithmetic Operations : 145
A.4.3 Data Movement : 145
A.4.4 Data Conversion : 145
A.4.5 Comparison Operations : 145
A.4.6 Immediate Operations : 146
A.4.7 Communication Operations : 146

B Graphs of Application Results 147

B.1 Inner{Loop Parallelism : 148
B.2 Outer{Loop Parallelism : 154

9

List of Figures

1.1 Timeline of microprocessor performance and clock rate improvements : : : : : : : : 16
1.2 Scaling of transistor and wire delays : 17
1.3 Impact of wire delay on corner-to-corner communication latency across a chip : : : : 17
1.4 Schematic diagram of superscalar and VLIW architectures : : : : : : : : : : : : : : : 18

2.1 Block diagram of the MAP architecture : 30
2.2 The components of a MAP cluster : 31
2.3 Multicluster and multithreaded parallelism on the MAP : : : : : : : : : : : : : : : : 34
2.4 Register{register send instruction between two MAP chips : : : : : : : : : : : : : : 38
2.5 Writing an event record into the event queue : 41
2.6 Preliminary plot of the MAP chip : 43
2.7 Modi�ed MAP architecture scaled for 0.1�m CMOS technology : : : : : : : : : : : : 49

3.1 Comparison of basic RISC and MAP pipelines : 55
3.2 Block diagram of all cluster pipeline modules : 56
3.3 The MAP Instruction Fetch Unit : 57
3.4 MAP synchronization stage : 61
3.5 MAP execution units : 63
3.6 Data synchronization and delivery in the MAP pipeline : : : : : : : : : : : : : : : : 65
3.7 Cluster barrier state machine : 68

4.1 A remote register write via the Cluster Switch : 72
4.2 Technology scaling of communication mechanisms : 74
4.3 Barrier instruction spanning all three clusters : 78
4.4 Technology scaling of barrier synchronization : 80
4.5 Program fragment to fork a thread into Cluster 1 using memory mapped registers : 82
4.6 Program fragment to fork a thread into Cluster 1 using an hfork instruction : : : : 83
4.7 Program fragment that uses memory to fork into a waiting thread : : : : : : : : : : 84
4.8 Program fragment that uses registers to fork into a waiting thread : : : : : : : : : : 84
4.9 Components of thread invocation and return : 86

5.1 Dependence graph for the inner loop of dot product : : : : : : : : : : : : : : : : : : 91
5.2 Assembly code for 4-point relaxation on 2 MAP clusters : : : : : : : : : : : : : : : : 93
5.3 Optimized assembly code for 4-point relaxation on 2 MAP clusters : : : : : : : : : : 94
5.4 The e�ect of overlapping memory latencies : 97
5.5 Sequential memory access program : 98

10

5.6 Overlapped memory access program : 98
5.7 The e�ect of slip among instruction streams : 99
5.8 ILP cycle breakdown for MG-core and CG-core : 101

6.1 Parallel procedure call fork and join : 104
6.2 Slave standby handler for parallel procedure call : 105
6.3 Synthetic benchmark pseudocode : 106
6.4 Synthetic benchmark granularity measurements : 108
6.5 E�ect of granularity on execution time for �xed problem size : : : : : : : : : : : : : 108
6.6 E�ect of increased number of arguments on execution time : : : : : : : : : : : : : : 109
6.7 Inner{loop task length versus problem size : 113
6.8 Normalized execution time versus problem size for Inner{Loop FFT : : : : : : : : : 114
6.9 Cycle breakdown of execution time for Inner{Loop FFT : : : : : : : : : : : : : : : : 115
6.10 Normalized execution time versus problem size for Inner{Loop Multigrid : : : : : : : 116
6.11 Cycle breakdown of execution time for Inner{Loop Multigrid : : : : : : : : : : : : : 117
6.12 Outer{Loop task length versus problem size : 118
6.13 Normalized execution time versus problem size for Outer{Loop FFT and Multigrid : 119
6.14 Cycle breakdown of Outer{Loop FFT : 119
6.15 Cycle breakdown of Outer{Loop Multigrid : 120
6.16 Execution time and cache penalties for Inner and Outer-Loop applications : : : : : : 121
6.17 Comparison of Inner versus Outer-Loop parallelizations : : : : : : : : : : : : : : : : 122

7.1 Chronology of the MAP chip design : 129

B.1 MG cycle breakdown using inner-loop parallelism : 148
B.2 FFT cycle breakdown using inner-loop parallelism : : : : : : : : : : : : : : : : : : : 149
B.3 EM3D cycle breakdown using inner-loop parallelism : : : : : : : : : : : : : : : : : : 150
B.4 CG cycle breakdown using inner-loop parallelism : 151
B.5 EAR cycle breakdown using inner-loop parallelism : : : : : : : : : : : : : : : : : : : 152
B.6 Summary of inner{loop execution times : 153
B.7 MG cycle breakdown using outer-loop parallelism : 154
B.8 FFT cycle breakdown using outer-loop parallelism : : : : : : : : : : : : : : : : : : : 155
B.9 EM3D cycle breakdown using outer-loop parallelism : : : : : : : : : : : : : : : : : : 156
B.10 CG cycle breakdown using outer-loop parallelism : 157
B.11 Summary of outer{loop execution times : 158

11

List of Tables

1.1 Interaction latencies of recent parallel computers : 19
1.2 Comparison of communication and synchronization mechanisms : : : : : : : : : : : : 22

2.1 Designated uses of the MAP's six thread slots : 42
2.2 MAP chip pin usage : 44
2.3 Area costs for the components of the MAP chip : 45
2.4 Area costs for original MAP architecture : 47

3.1 Encoding for instruction compression : 58

4.1 Communication latencies between threads on di�erent clusters : : : : : : : : : : : : 73
4.2 Barrier latency : 79
4.3 Thread invocation overhead : 87

5.1 Intercluster interactions in MG-core and CG-core : 100

6.1 Synthetic benchmark execution models : 107
6.2 Application benchmark summary : 111

A.1 Instruction packing to eliminate NOPs : 140
A.2 Predicates used to conditionally execute each instruction : : : : : : : : : : : : : : : : 141

12

13

Chapter 1

Introduction

Over the last 20 years, the computer industry has become accustomed to a doubling of micropro-

cessor performance every 18 months. This exponential growth is due to improvements in silicon

process technology which has produced both faster clock rates and enabled architectural innova-

tions that have improved performance. Smaller feature sizes have decreased the transistor switching

time but at the same time increased the resistance of interconnect wires, resulting in slower signal

transmission in on-chip wiring. Technology has already reached a point in which VLSI designers

must take wire delay into account for high-speed chips.

In order to get faster performance from computer systems, architects have turned to parallelism

at two extremes of granularity: instruction-level parallelism (ILP) and coarse-thread parallelism.

Very long instruction word (VLIW) and superscalar processors exploit ILP with a grain size of a

single instruction, while multiprocessors extract parallelism from coarse threads with a granular-

ity of many thousands of instructions. Instruction-level and coarse-thread parallelism both have

their limits. ILP in applications is restricted by control ow and data dependencies [Wal91]. For

multicomputers, there is limited coarse thread parallelism at small problem sizes and in many

applications.

This thesis focuses on mechanisms that enable more parallelism to be exploited on-chip without

negatively a�ecting the clock rates of future technologies. The architectural innovations incorpo-

rate multiple processors on a chip that are linked with fast synchronization and communication

mechanisms. Threads running on di�erent on-chip processors communicate by writing into each

other's register �les. They synchronize by blocking on a register that is the target of a remote write

14

1.1. TECHNOLOGY TRENDS 15

or by executing a fast barrier instruction. In addition to exploiting instruction-level parallelism,

these mechanisms enable a new type of �ne{grain thread level parallelism.

The fast communication and synchronization primitives are incorporated into the Multi-ALU

processor (MAP) chip, which is a part of the MIT M-Machine. This thesis describes how these

mechanisms are integrated into a processor pipeline and presents their implementation in a 5-

million transistor custommicroprocessor designed at MIT. Through simulation studies, the register-

register communication and barrier synchronization instruction are shown to be signi�cantly faster

than their counterparts that use only the local on-chip cache. Using a set of real applications, the

integrated interaction mechanisms of the MAP chip enable speedups of up to 2.4 times on 3 on-chip

processors using �ne-grain threads with run lengths of less than 300 cycles.

1.1 Technology Trends

Advances in semiconductor technology over the last twenty years have resulted in dramatic per-

formance and density improvements. Gate delays have dropped substantially, increasing micropro-

cessor clock rates from less than 1MHz to more than 500MHz. Architectural innovations such as

pipelining, caching, and dynamic instruction scheduling have also helped push the performance of

microprocessors. Figure 1.1 plots the performance of the family of Intel microprocessors over the

last 20 years [Gwe95]. The diagram shows both integer performance and clock rate normalized to

an 8MHz 8088 microprocessor released in 1981. Based on its past history, the computer industry

and its customers have come to expect exponential performance improvements of 55% per year,

with about half of the improvement coming from increased clock rate, and the rest coming from

architectural advances that increase parallelism. In order to continue to get additional performance

each year, future microprocessors must employ architectures that do not slow the clock.

Technology scaling is now having a profound e�ect on both gate and wire delay. Figure 1.2 shows

the absolute delay for both transistors and on-chip wires over several generations of silicon process

technologies [Sem97, Boh96]. Due to reduced transistor channel lengths, transistor switching delays

are decreasing at a rate of 25% per generation. However, scaling is less kind to interconnect

as the RC wire delay is doubling every generation. As wires get smaller, their cross-sectional

area decreases, resulting in higher wire resistance. In addition, the wires are closer together,

contributing to higher coupling capacitance between wires in the same layer. Lower resistance

16 CHAPTER 1. INTRODUCTION

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
Date of First Volume Shipments

0.1

1

10

100

1000
R

el
at

iv
e

In
te

ge
r

P
er

fo
rm

an
ce

Performance
Clock Rate

40%

55%

8088/5
8088/8

80286/10

386/16
486/25

Pentium/66

PPro/150

PentiumII/300

Figure 1.1: Relative performance of the Intel x86 family of microprocessors from 1979{1998, nor-
malized to the 8MHz 8088 of 1981. The total performance improved 55% per during the 1990s,
with the clock speed accounting for about half of the speedup.

wires such as copper, in conjunction with lower dielectric insulators would reduce the RC product

at each generation, but would merely delay the inevitable impact on long wires.

Figure 1.3 shows the e�ect of technology scaling by plotting the delay in clock cycles to transmit

a signal on a wire between two opposite corners of a chip. The computed propagation latency

assumes optimal placement of repeaters in order to minimize the e�ect of RC delay. Nonetheless,

the combination of increased wire resistance, repeater delay, faster clock rates, and larger chips

results in more than 26 cycles to transmit a bit from corner to corner in a 0.1�m, 2GHz process.

On-chip communication latency is no longer uniform and independent of distance. As a result,

computer architects are faced with constraints limiting wire lengths in order to achieve high clock

rates.

Today's microprocessor architectures, however, are on an evolutionary path that requires global

communication, as shown in Figure 1.4. Superscalar microprocessors can be characterized as hav-

ing both global control and global data. Centralized instruction issue logic examines an instruction

window to determine which instructions can be executed simultaneously. The concurrent instruc-

tions are then delivered to the execution units which may be distributed throughout the chip. In

an attempt to reduce the complexity of the issue logic, a global register �le is typically used to

1.1. TECHNOLOGY TRENDS 17

0.65 0.5 0.35 0.25 0.18 0.13 0.1
Generation (microns)

0

10

20

30

40

D
el

ay
 (

ps
)

Gate
Wire (Al)
Wire (Cu)

Figure 1.2: Absolute delay of transistors and wires over a several generations of silicon process
technologies. The gate delay is decreasing at 25% per generation, while RC wire delay is doubling
every generation.

0.35 0.25 0.18 0.13 0.10
0

5

10

15

20

25

30

35

O
pt

im
al

 W
ir

e
D

el
ay

 (
cl

oc
ks

)

Wire (Al)
Wire (Cu)

Generation (microns)
(300MHz) (750MHz) (1.2GHz) (1.6GHz) (2GHz)

Figure 1.3: Communication latency from chip corner-to-corner using optimal repeater placement.
The latency is expressed in terms of the number of clock cycles at the clock rate of the designated
process generation. Corner-to-corner delay is increasing dramatically due to slower wires, faster
clocks, and larger chips.

18 CHAPTER 1. INTRODUCTION

VLIW

P
ro

gr
am

C
ou

n
te

r

File
Register

File
Register

File
Register

Superscalar

Register File

w
in

d
ow

in
st

ru
ct

io
n

Figure 1.4: Block diagram for two modern microprocessor organizations. Superscalar architectures
dynamically schedule instruction level parallelism from a central instruction window and typically
employ a global register �le. VLIW processors statically schedule instructions in a compiler, and
can more readily use local register �les.

hold the data for all of the execution units. As the number of execution units increases, the wire

lengths between centralized components (the issue logic and the register �le) and the distributed

execution units will increase. In a 0.1�m process using copper interconnect, a signal can travel ap-

proximately 2.5mm in one 2GHz clock cycle. Thus to run at full speed, a superscalar processor in

this technology must locate all execution units within one clock cycle of the instruction scheduling

logic or pipeline more deeply between the scheduling logic and the execution units. Since a circular

area of silicon with 2.5mm radius occupies less than 2% of the area of a 32.5mm square chip, it

is clear that a single chip uniprocessor using a centralized dynamic scheduling discipline will not

be e�cient. Other factors will also limit the scalability of superscalar processors. The complexity

of the issue logic is proportional to the product of the instruction window size and the number of

execution units. In addition, the size of the register �le grows quadratically with the number of

register �le ports, which can become large with increasing numbers of execution units.

Very long instruction word (VLIW) architectures have been built for supercomputer applica-

tions [CNO+88] and are being used in digital signal processors. In a VLIW, a programmer or

compiler discovers instruction level parallelism and statically schedules the code across a series of

execution units. The register �les can be partitioned and placed close to an execution unit with the

compiler scheduling the communication among them. The static scheduling and distributed data

solves some of the constraints of superscalar architectures. However, a VLIW still has only a single

program counter, and branch targets must be broadcast to all execution units.

Today's architectures that require frequent global communication are not well-matched with the

1.2. THE PARALLELISM GAP 19

Latency
Machine Clock Frequency Interaction time cycles

Berkeley NOW [MVCA97] 167MHz round trip message 21.6�s 3600
Intel Paragon [CLMY96] 50MHz round trip message 19.9�s 995
Meiko CS-2 [CLMY96] 66MHz round trip message 20.3�s 1340
SGI Origin [LL97] 195MHz remote memory read 540ns 105
Sun Ultra [CPWG97] 250MHz remote memory read 550ns 138
Hal Mercury [WGH+97] 200MHz remote memory read 1.1�s 220

Table 1.1: Interaction latencies of recent parallel computers.

technology of the near future. Instead, future architectures must exploit physical locality on-chip to

keep wires short. Incorporating multiple processors on a chip that can communicate e�ciently with

one another via processor registers is well suited to these emerging technological constraints. By

doing this, the MIT MAP chip keeps all control and most communication local to each processor,

enhancing locality and diminishing the e�ects of slow wires. Global communication is abstracted

out of the local processor design and can be optimized or pipelined independently. Compared to

alternative methods of controlling large numbers of execution units, register-coupled processors

o�er both simple implementation and attractive speedups.

1.2 The Parallelism Gap

Conventional computer systems exploit parallelism at two extremes. Instruction-level parallelism

comes from instructions in a single stream that can be executed concurrently. During scheduling,

each instruction can be considered its own task, and communication between instructions typically

takes place through data registers. In order to e�ectively exploit ILP, the communication must be

fast (1{2 cycles) and have essentially no overhead.

At the other end of the spectrum are coarse grained parallel computers, with interactions

requiring 100s of cycles (�1�s) on conventional multiprocessors, and 1000s of cycles (�10�s) on

multicomputers. Table 1.1 details interaction latencies for some recent commercial and research

machines. The Berkeley, Intel, and Meiko results include all components of a round trip message.

The SGI, Sun, and Hal numbers include only the latency of performing a remote read that can

20 CHAPTER 1. INTRODUCTION

be completely satis�ed in hardware by a remote memory module. Communication between two

threads running in parallel on separate processors will take much longer. In either case, exploiting

parallelism on machines with such long interaction latencies requires very coarse{grain threads with

infrequent communication and synchronization. Consequently, coarse-thread parallelism typically

comes from outer loops of applications that are identi�ed by hand or using a loop-parallelizing

compiler.

The di�erence between ultra-�ne instruction-level and coarse multiprocessor parallelism exposes

a parallelism gap. This gap will continue to widen as microprocessor clock rates are increasing faster

than multiprocessor interconnection network latency. The fast communication and synchronization

mechanisms of the MAP chip can be used to bridge the parallelism gap between ILP and coarse{

threads. Fine{grain threads which communicate and synchronize frequently can run on-chip and

exploit parallelism that is not available with multiprocessor communication latencies. Because of

the long interaction latencies between processors, typical multiprocessors require applications with

large data sets in order to achieve signi�cant parallel speedup. In fact, most reports of parallel

speedup includes increasing the size of the applications data set as more processors are used.

However, the programs that people run every day are not large scienti�c applications. Many

applications, such as electronic circuit simulation, have small data sets, large computation require-

ments, and ample concurrency. Unfortunately, simulation of a relatively small circuit that may

require four hours on a uniprocessor is not likely to get faster on a conventional multiprocessor.

Parallelizing this application will require partitioning of the data set across the processors. The

overhead from slow multiprocessor communication mechanisms will overwhelm any bene�t from

�ne-grain concurrency. With su�ciently fast communication and synchronization between pro-

cessors, the models of the di�erent transistors can be evaluated concurrently which will enable

signi�cant speedup even on small problem sizes. Inner{loops of applications are also prime targets

for �ne{grain threads. This inner{loop parallelism is orthogonal to coarse-thread parallelism and

ILP, and can be used in concert with conventional methods to achieve faster performance. Since

future chips will have more silicon area and include more execution units, a much larger demand

for parallelism is emerging. At the same time, the increased signi�cance of wire delay will require

monolithic components, such as processors and caches, to be small and that the communication

wires connecting them to be short. By using e�cient mechanisms for communication and syn-

1.3. THE MIT M-MACHINE 21

chronization, programs can exploit �ne-grain concurrency in the parallelism gap and allow parallel

processing techniques to be applied to many important small applications.

1.3 The MIT M-Machine

The MIT M-Machine is designed to exploit parallelism at all granularity levels. The M-Machine

consists of a collection Multi-ALU processor (MAP) chips connected via an integrated network

interface and a 2-dimensional network. Each MAP chip has 3 clusters of execution units that

communicate with one another through registers using an on-chip communication switch. Each

cluster has three execution units, two register �les, and a local instruction cache. Instruction

level parallelism can be exploited within a cluster and across the clusters using register{register

communication. Fine-grain threads can exploit inner loop parallelism on-chip, with the independent

clusters communicating and synchronizing using the integrated interaction mechanisms of the MAP

chip. Coarse grain threads are spread across multiple M-Machine nodes to exploit outer-loop

parallelism.

The MAP chip, which is the focus of this thesis, is itself a prototype for future microprocessor

designs. While the baseline MAP chip design contains three processors, this particular implemen-

tation, unlike current microprocessors, is scalable. The architecture of the MAP chip mitigates the

e�ect of the long wire delays present in current and future silicon process technologies by partition-

ing the execution units into independent processor clusters. Three execution units are included in

a cluster so that all local wires can easily be driven in a small fraction of the clock cycle. Long

global wires are necessary to connect the clusters and the cache banks in the memory system. Each

of these components operates independently from one another and can tolerate multiple cycles of

communication latency. The computation power in the MAP chip can be scaled in two dimensions.

Limited scalability is achieved by incorporating additional execution units into each cluster, subject

to the local wiring latency constraints. A greater degree of scalability comes from increasing the

number of processor clusters. The number of clusters is restricted by the silicon area on a chip and

the scalability of the communication mechanisms between clusters. With three processors on the

MAP chip, a simple crossbar communication system is su�cient. A more scalable communication

substrate that exploits physical locality can enable more clusters built on a single chip without re-

quiring long wires between remote clusters. Multiprocessor network topologies, such as meshes and

22 CHAPTER 1. INTRODUCTION

MAP Chip J-Machine Alewife Monsoon
[NWD93] [ABC+95, LA94] [PC90]

Communication:
Form register-register messages shared memory messages dataow tokens
Packet size 1 word >2 words 4 words >2 words 1 token
Latency 1 cycle 11 cycles 38 cycles 42 cycles 8 cycles

Synchronization:
Data Form scoreboard message dispatch spin lock message dispatch data arrival
Barrier Form cbar instruction messages spin locks messages N/A
Overhead 1 cycle 55 cycles 64 cycles 128 cycles N/A

Table 1.2: Comparison of communication and synchronization mechanisms.

trees, could certainly be used to extend the scalability of a single-chip implementation. Regardless

of the con�guration of the processors, the key to the scaling the execution resources on a single

chip is to exploit locality.

The contributions of the MAP chip architecture come not only from the partitioning of execution

units into clusters, but also from the mechanisms employed to interact among them. The MAP

chip integrates communication and synchronization mechanisms into the core of each processing

element which results in drastically lower latencies than available even in other experimental �ne-

grain parallel computers. Table 1.2 compares the on-chip communication and synchronization

mechanisms of the MAP chip to those of other experimental parallel computers. The communication

between di�erent MAP processors takes place through registers, as an instruction on one processor

can write into the register �le of another processor with a latency of one cycle. The J-Machine

integrates a network interface very closely with the processor and allows a user program to send

messages directly from the contents of a register �le. Two adjacent processors can communicate in

11 cycles including instruction and network interface overhead on both ends. The Alewife shared

memory multiprocessor integrates hardware support for both shared memory and message passing

communication between processors. Fetching data that resides in a remote cache line requires 38

cycles, while message communication between two processors requires 42 cycles.

For synchronization, the MAP chip introduces two novel instructions: empty and cbar. The

empty instruction can modify a MAP cluster's register scoreboard which is used for data synchro-

nization. Instructions that need data from remote processors wait in a synchronization pipeline

stage. When a remote register write completes, the scoreboard bit for the designated register is

1.3. THE MIT M-MACHINE 23

marked full, enabling execution of any instruction that is waiting for the value. A scoreboard entry

is marked full automatically when registers are written and is emptied manually using a user-level

empty instruction. Data synchronization on message passing systems such as the J-Machine or

Alewife typically takes place when the message arrives at a remote processor. The dispatch of code

that handles the message can signal to the thread that is waiting for the value. In a shared memory

machine, data synchronization is enforced using spin locks in memory. For control synchronization,

the MAP chip implements a barrier instruction (cbar) which enables threads on all three proces-

sors to synchronize with only one cycle of overhead. Barrier synchronization on message passing

machines, even only two processors, requires many more cycles to complete (55 cycles for the J-

Machine and 128 cycles on Alewife). Shared memory barriers which are implemented using locks in

memory can also be expensive, requiring 64 cycles to synchronize two Alewife processors. With its

integrated mechanisms and on-chip interactions, the MAP chip can communicate and synchronize

more than an order of magnitude faster than previous �ne-grain parallel machines. This provides

the opportunity to exploit forms of parallelism that have been previously unavailable.

In many ways, the MAP chip's mechanisms are similar to those found in a dataow machine.

The Monsoon dataow computer was built to process dataow tokens, which typically consist of

a single instruction. When a token �res, it computes a result and transmits it to other tokens

that are waiting to use that result as an operand. When the operand arrives, it can immediately

enable a token for execution. Data is delivered directly from one instruction to another on di�erent

processing elements, and individual instructions stall until all of their operands arrive. The MAP

chip's register communication and synchronization are analogous to the communication between

computation tokens in Monsoon. Using these mechanisms, the MAP chip can provide extremely

fast interprocessor communication to conventional programs and allow them to exploit parallelism

at a �ner granularity than ever before.

The experimental methodology used to evaluate the MAP chip includes both simulation and

implementation. A highly accurate simulator is used to investigate the performance of the architec-

ture and in particular the communication and synchronization mechanisms. The MAP chip project

is also somewhat unique among academic architecture research in that it veri�es the feasibility of

the architecture through silicon implementation. The MAP prototype is a 5 million transistor

custom VLSI chip implemented in a 0.5�m CMOS technology. All of the logic and circuit design

24 CHAPTER 1. INTRODUCTION

of the MAP chip is complete, and tapeout is anticipated for May 1998. Further investigations on

the hardware prototype will follow when the chips are tested and incorporated into a 16 processor

M-Machine system in Autumn 1998. Building the prototype is extremely valuable because it allows

us to \close the loop" by examining not only the performance of the proposed mechanisms, but

also the design complexity and area cost in a real piece of silicon. Furthermore, it validates the

assumptions made during high level simulation and provides the designers with valuable insight for

future projects.

1.4 Contributions

The primary contributions of this research are:

� A scalable microprocessor architecture and implementation that partitions execution units

into independent clusters to mitigate the e�ects of the emerging wire delay constraints of

present and future silicon process technologies.

� Direct register-register transfers between on-chip processors for single-cycle communication

between threads.

� A register scoreboard to enforce local and remote data synchronization that is updated by

register writes but is also under software control. An empty instruction allows a user to

manually invalidate registers.

� A fast barrier instruction (cbar) that enables threads on di�erent on-chip processors to syn-

chronize their instruction streams with only one cycle of overhead.

� An experimental evaluation of �ne and coarse-grain parallelism, quantifying the bene�t of

using integrated register communication and synchronization mechanisms instead of a locally

shared cache.

� A custom VLSI chip that demonstrates the physical feasibility of the mechanisms. The logic

design of the chip shows how a register scoreboard and a synchronization pipeline stage unify

data synchronization for arithmetic, memory, and communication instructions, and how the

hardware structures can be incorporated into a microprocessor pipeline.

1.5. BACKGROUND 25

� A design, implementation, and physical evaluation of zero-cycle multithreading, which com-

bines both instruction and thread level parallelism to interleave instructions from multiple

threads over a common set of execution units.

1.5 Background

Computer systems designers have exploited parallelism to help improve application performance.

However, the nature of the parallelism that can be exploited is dictated largely by the overhead

to communicate and synchronize among the parallel components. The study of synchronization

cost performed by Chen, Su, and Yew [CSY90] explored a spectrum of granularities including

instruction, statement, and loop level parallelism. They found that statement oriented parallelism

was far more sensitive to synchronization overhead than loop level parallelism. However, even

with substantial synchronization overhead the statement level parallelism still yielded 4 to 20 times

speedup over sequential. This study suggests that the amount of �ne-thread parallelism available

in applications is considerably greater than what we have exploited so far using simple approaches

to parallelization, and that it scales well beyond three processors. It also shows that to extract this

parallelism requires very low-overhead synchronization.

Previous architectures and machines have exploited parallelism at a large grain size, typically

using loops, because they did not have su�ciently low latency communication mechanisms. How-

ever, some architectures have integrated �ne{grain mechanisms into their computation engines to

enable faster interactions among parallel threads.

Register Communication: The Cray X-MP implemented two central vector processing units

with a bank of shared address, scalar data, and semaphore registers that could be accessed by either

processor [RR87]. These registers were typically used for self scheduling of loops. The registers

were not general purpose and values were copied to a processor's local register set prior to using

the data. The CMU iWarp employed a form of register{register communication between processors

to enable systolic communication and computation [BCC+90, PSW91]. Communication channels

were established between processors, and words could be sent to a remote communication unit

through the channel. At the receiver, a communication unit copied the data into a register visible

by a computation unit.

26 CHAPTER 1. INTRODUCTION

Multithreaded Systems: Architectures that support �ne{grain threads in a multiprocessor

typically implement fast thread creation and dispatch mechanisms. The *T architecture, whose

threads are in the range of 15 instructions, implements fork, join, and next instructions that

interact with a memory task queue and a synchronization coprocessor to allow threads on di�erent

processors to communicate with one another [NPA92].

Like the MAP chip, the Tera Computer System [ACC+90] also exploits �ne-grain threads using

a multithreaded multiprocessor architecture. In a Tera machine, interaction between threads takes

place only through memory, and full-empty bits are provided on each memory location to enable

fast synchronization. In addition, Tera's architecture penalizes single threaded code by providing

no support for data locality, and by a hardware scheduling policy which prohibits a single thread

from using the execution resources on every cycle.

On-chip Thread Parallelism: The Hydra and Simultaneous Multithreading (SMT) architec-

tures aim to scale on-chip parallelism beyond the limits of ILP. The Hydra architecture explores the

design tradeo�s of building a single-chip multiprocessor, focusing on the memory system [NHO96].

Coarse grained tasks execute independently and communicate via a level-1 or level-2 cache. SMT

adds multithreading to a traditional superscalar to exploit both instruction and thread-level paral-

lelism [TEL95]. Execution resources are dynamically assigned to di�erent threads, and instructions

from them may execute simultaneously. Both Hydra and SMT provide only memory-based mecha-

nisms for communication and synchronization between threads and are thus limited to threads that

can tolerate longer communication latencies. The work in this thesis is complementary to these

projects in that register-based mechanisms could easily be incorporated into these architectures,

extending the granularity of parallelism they are able to exploit.

The Multiscalar architecture attempts to deduce �ne{grain parallelism at runtime [SBV95].

Basic blocks of the program are assigned dynamically to di�erent execution units, while hardware

is responsible for enforcing the data dependencies among the blocks. Communication takes place

via a unidirectional ring to which each thread can read or write. This promising approach to

extracting speculative �ne-thread parallelism is well matched to implementation using register-

based mechanisms in lieu of the special hardware suggested in [SBV95].

1.6. THESIS ROADMAP 27

1.6 Thesis Roadmap

This thesis focuses on communication and synchronization mechanisms that are used to exploit

both instruction level and �ne-thread parallelism across multiple processors within the MAP chip.

Chapter 2 describes the architecture of the MAP processor, including the organization of execu-

tion units, the memory system, and the network interface. This chapter also details the physical

implementation of MAP architecture in a 5 million transistor custom VLSI chip using a 0.7�m

drawn process. An area analysis of the components of the MAP chip show that an implementation

of a MAP processor with all of the architecture's oating-point units and more on-chip memory

capacity and bandwidth could easily be built using a 0.35�m process.

Chapter 3 details the cluster pipeline of the MAP chip, including the bypassing and instruction

issue mechanisms that enable fast cluster interaction. This chapter presents a new synchroniza-

tion pipeline stage that determines when a thread can execute its next instruction, based on the

instruction's data requirements and the availability of execution resources. In addition, the syn-

chronization stage dynamically interleaves instructions from multiple threads on a cycle-by-cycle

basis to tolerate instruction, memory and communication latencies.

In order to determine the bene�t of the MAP's on-chip interprocessor communication and

synchronization mechanisms, a simulation study using the Verilog logic design of the MAP chip

was performed. This study, detailed in Chapter 4, shows that a remote thread can be created in

11 cycles, and that two threads can communicate or synchronize in a single cycle. Communication

is 10 times faster and synchronization is 60 times faster than using only an on-chip cache.

Chapter 5 describes how the register communication and synchronization mechanisms can be

used to exploit instruction-level parallelism across the independent MAP processors. Hand schedul-

ing of procedures that contain ILP splits the code into independent streams that execute simulta-

neously on separate clusters. Synchronizing explicitly when communication is necessary is shown

to be competitive with the implicit synchronization of a VLIW.

The boundaries of the parallelism gap are explored in Chapter 6. A suite of applications is

characterized by parallelizing their inner and outer loops to quantify the bene�ts of the MAP's

mechanisms over using just a shared on-chip cache. On the �ne{grain parallelism that is found

in the inner loops, the MAP's mechanisms provide speedups of up to 2.4 times using 3 on-chip

processors, while communicating through memory yields less speedup and sometimes slowdown. On

28 CHAPTER 1. INTRODUCTION

coarser grain outer-loop parallelism, processor interactions are infrequent enough that the MAP's

barrier instruction provides little performance improvement.

Chapter 7 discusses some of the lessons learned from the MAP design and implementation,

including the value of controlling complexity. Finally, Chapter 8 contains the conclusions of this

work and outlines future research.

Chapter 2

M-Machine Overview

The M-Machine is intended to exploit parallelism at all levels and to extract more parallelism

from problems of �xed size, rather than requiring enormous problems to achieve peak performance.

The M-Machine consists of a collection of computing nodes interconnected by a bidirectional 2-D

mesh network [FKD+95]. Each six-chip node contains a Multi{ALU (MAP) chip and 1 MWord

(8 MBytes) of synchronous DRAM (SDRAM) with error correction (ECC). Three clusters of

execution units are implemented on each MAP chip, and mechanisms are employed to enable fast

communication and synchronization between them. This enables the on-chip execution units to

interact frequently and exploit both instruction and thread-level parallelism. The MAP chip also

includes a network interface and router that are integrated into the execution unit pipeline. The

bandwidth from the processor core to the local synchronous DRAM (SDRAM) and to each network

channel is balanced at 8 bytes per processor cycle. The low latency and high bandwidth network

interface and router allows threads on di�erent MAP chips to communicate e�ciently. To connect

to peripheral devices, the MAP chip includes a dedicated I/O bus. In the M-Machine, I/O devices

may be connected to either every node or a subset of nodes, such as those on an edge of the mesh.

This chapter focuses on the architecture and implementation of the MAP chip. Section 2.1

describes the components of the MAP chip, including the processing, memory, and communication

subsystems. Sections 2.2 through 2.4 discuss the physical implementation of the MAP chip and how

the design was modi�ed to meet the on-chip area constraints. Section 2.5 analyzes the scalability of

the MAP chip for future process generations. Finally, Section 2.6 concludes with some interesting

lessons about conducting a project such as this in an academic environment.

29

30 CHAPTER 2. M-MACHINE OVERVIEW

Network

MAP chip

Memory Interface Bus

Router

Network
Output

Network
InputGTLB

Cluster 1Cluster 0 Cluster 2

Memory
Interface

LTLB

External
Memory

Cache
Bank 0

Cache
Bank 1

M−Switch

C−Switch

GCFG

Figure 2.1: Block diagram of the MAP architecture.

2.1 The MAP Chip Architecture

As shown in the block diagram of Figure 2.1, a MAP chip consists of four major subsystems:

processing clusters, communication switches, memory banks units, and a network unit. The pro-

cessing subsystem contains three execution clusters, each of which is an independent processor. A

cluster includes an instruction cache, two register �les, and three execution units. The memory

subsystem is composed of a shared uni�ed cache organized into two banks so that it can process

two memory requests simultaneously. The Global Con�guration Space (GCFG) controller enables

the control registers of the MAP to be accessed via memory operations. Two crossbar switches

interconnect these components. Clusters make memory requests to the appropriate bank of the in-

terleaved cache over the 142-bit wide (51 address bits, 66 data bits, 25 control bits) 3�2 M{Switch.

The 88-bit wide (66 data bits, 22 control bits) 7�3 C{Switch is used for inter-cluster communica-

tion and to return data from the memory system. Both switches support up to three transfers per

2.1. THE MAP CHIP ARCHITECTURE 31

Integer Memory FPU

Floating Point
Register File

Integer
Register File

In
st

ru
ct

io
n

C
ac

h
e

Issue
Logic

Memory Switch

Cluster Switch

Figure 2.2: A MAP cluster consists of 3 execution units, 2 register �les, an instruction cache and
ports onto the memory and cluster switches.

cycle; each cluster may send and receive one transfer per cycle. The network subsystem contains

the network interface units and a router. A cluster can communicate with another MAP chip

by injecting a message directly into the router, which automatically delivers the message to the

destination using the routers on intermediate MAP chips.

2.1.1 MAP Execution Clusters

Each of the three MAP clusters is an independent 64-bit pipelined processor with a local 4KB

instruction cache. Figure 2.2 shows a block diagram of a cluster, including three execution units,

two register �les, and interfaces to the global switches. The integer unit executes arithmetic, logical,

shift, and comparison operations. The memory unit executes load and store operations to memory,

as well as most of the integer unit operations, excepts shifts and compares. The oating-point unit

includes a 4 stage multiply-add pipeline and an iterative divide/square-root unit. It executes all

oating-point operations, as well as integer multiply and integer divide.

32 CHAPTER 2. M-MACHINE OVERVIEW

The integer and oating-point register �les each contains six banks of 16 registers. The integer

register banks share four read ports and three write ports that are read and written independently

by both the integer and memory units. The oating-point register banks are accessed through

four read ports and two write ports. The oating-point unit reads three operands (for multiply-

accumulate) and writes one result to the oating-point register �le. The memory unit also reads

one operand from the oating-point register �le for oating-point store operations. The additional

write port on each register �le allows the Cluster Switch to update registers without interfering

with local writes. Integer register 0 (i0) and oating-point register 0 (f0), are both hard wired to

the value zero, while integer register 1 (i1) is mapped to the program counter. Both the integer and

oating-point units can write results to remote register �les via the Cluster Switch. The Cluster

Switch is also used to move data between the integer and oating-point register �les on the same

cluster. The memory unit sends its load and store instructions to the shared on-chip cache using

its port to the Memory Switch. Misses in the instruction cache generate load operations that go

to the uni�ed cache as well. In addition to the data registers, a cluster also has six banks of 16

one-bit condition code (CC) registers. These registers hold results of comparison operations and

are used for conditional branches and predicated execution of instructions. Of the 16 condition

code registers, 8 are reserved for local access while the other 8 are global and can be written by

remote clusters.

Each MAP instruction may contain 1, 2, or 3 operations, with one operation for each execution

unit. Operations are scheduled statically by a compiler and packed into instruction words. The

MAP's instruction scheduling hardware does not reorder instructions. Operations in a single in-

struction must issue together but may complete out of order. Synchronization between instructions

must take place through hardware enforced data dependencies in order to prevent write-after-write

hazards to the register �le. Load and store operations to the memory system that issue from a given

cluster will access the memory system and complete in order. Every operation may be conditionally

executed depending on the one-bit value of one of the condition code registers.

Concurrency is exploited within a cluster using multithreading. Up to six instruction streams

may be simultaneously loaded in the processor pipeline, each residing in its own thread slot consist-

ing of a set of pipeline registers and private portions of the register �les. Each thread can access

one bank of the integer, oating-point, and condition code register �les. The instruction streams

2.1. THE MAP CHIP ARCHITECTURE 33

are called V-Threads, as instructions from them drop vertically into a common set of execution

resources on a cluster. Instructions from di�erent V-Threads are interleaved over the execution

units on a cycle-by-cycle basis. If one thread is waiting for a result from a previous instruction, an-

other thread may use the execution units instead. Consecutive instructions entering the execution

pipeline may be from distinct V-Threads, or they may be from the same V-Thread. This exible

interleaving allows the MAP to exploit multithreaded parallelism and to mask variable pipeline,

memory, and communication delays. The pipeline design required to implement this multithreading

is discussed further in Chapter 3.

The MAP also supports concurrency by executing threads in parallel across its arithmetic

clusters. Threads executing on di�erent clusters are known as H-Threads since they can enter their

own execution pipelines horizontally and concurrently. H-Threads that occupy the same thread slot

number on di�erent clusters are members of the same V-Thread. To facilitate closer interaction

between clusters, H-Threads within the same V-Thread may communicate and synchronize with one

another by writing into each other's register �les. Two threads that reside in di�erent V-Threads

can communicate with one another through memory. Because memory operations issued by threads

on separate clusters may complete out-of-order, synchronization through registers, a cluster barrier,

or on a memory location is necessary to coordinate memory communication between clusters.

The combination of multiple clusters and fast interactions among them can be used to support

multiple execution models, including instruction, thread, and loop level parallelism. Because of the

integrated register communication, the MAP chip can exploit �ne-grain thread level parallelism

that would be infeasible on a traditional multiprocessor.

To exploit instruction-level parallelism, the compiler can schedule an instruction across all three

clusters using H-Threads from the same V-Thread. The compiler must insert explicit register-based

synchronization operations or use the cluster barrier instruction to enforce instruction ordering be-

tween H-Threads. Unlike the lock-step execution of traditional VLIW machines, H-Thread synchro-

nization occurs only as required by data or resource dependencies. While explicit synchronization

incurs some overhead, it allows H-Threads to slip relative to one other in order to accommodate

variable{latency operations such as memory accesses. These intercluster communication synchro-

nization and communication mechanisms are examined in more detail in Chapter 4.

The partitioning of V-Threads and H-Threads across the clusters is shown in Figure 2.3. The

34 CHAPTER 2. M-MACHINE OVERVIEW

TIME
SHARE

SHARESPACE

instrV3:

instrV4:

instrV1:

instr p

instr p+1

instr q

instr q+1

instr q+n instr r+n

instr r+1

instr r

instr p+n

1 2
CLUSTER CLUSTER

EX EX

CLUSTER

EX
0

V0

V5
V4

V3
V2

V1

V−Thread 0

V2: instr

V0: instr

V4: instr

Figure 2.3: Multiple V-Threads are interleaved dynamically over the cluster resources. Each V-
Thread consists of 3 H-Threads which execute on di�erent clusters.

state for each of the six V-Threads (V0{V5) is stored in the pipeline registers and register �les in

each cluster. One H-Thread from each V-Thread resides on each cluster and consists of a sequence of

3-wide instructions containing integer, memory, and oating-point operations. As shown for cluster

0, the instructions from each V-Thread are dynamically interleaved over the execution units, so that

an instruction from V3 can follow one from V1 without any pipeline stalls. A cluster's execution

resources are time-shared by those V-Threads that are executing. Each cluster is independently

controlled, and instructions from the same V-Thread need not be executed simultaneously on all

clusters. The parallel clusters and multithreading at each cluster allow the execution resources to

exploit both instruction and thread-level parallelism and achieve high utilization of the function

units.

2.1.2 Memory System

The MAP's memory system is designed to provide high bandwidth and low latency access to the

on-chip cache and o�-chip memory. As illustrated in Figure 2.1, the 32KB uni�ed cache is organized

2.1. THE MAP CHIP ARCHITECTURE 35

as two word-interleaved 16KB banks which permits references to consecutive addresses to proceed

in parallel. On a memory reference, a virtual address is used to access the cache directly and no

virtual to physical translation is required. However, since all processes reside in the same global

virtual address space, the cache will never contain any aliases. Each cache line consists of 8 words

(64 bytes). The external memory interface includes virtual memory support and a synchronous

DRAM (SDRAM) controller to manage the o�{chip memory. The SDRAM controller exploits the

pipeline and page modes of the external memory and performs single error correction and double

error detection on the memory transfers.

Each cache bank receives memory operations from the clusters via the Memory Switch. For a

load operation that hits in the cache, the data is immediately returned to the requesting cluster

on the Cluster Switch. Operations that miss in the cache are delivered to the external memory

interface (EMI), which accesses the local translation lookaside bu�er (LTLB) to �nd a virtual to

physical translation for the requesting address. If a translation is found, the EMI accesses the

SDRAM, returns the data to the requesting cluster through the Cluster Switch, and inserts the line

containing the data into the cache. If a translation is not found, an LTLB miss event is triggered

and handled in software on cluster 0. Physical page frames and virtual pages are 4 Kbytes (64

8-word cache blocks) in length. Cache hits have a 3 cycle latency including both Memory and

Cluster Switch traversal. Cache misses require 8{15 cycles to resolve, depending on whether the

SDRAM can be accessed in page or pipeline mode. The memory system implements uncached

load instructions which allow data to be accessed without polluting the cache. In addition, it

implements two block bu�ers which serve as both a victim cache and a write bu�er when a cache

block is evicted [Jou90].

In memory, each MAP word is composed of a 64-bit data value, one synchronization bit, and

one pointer bit. The synchronization bit is used to implement �ne-grain memory synchronization

on a word-by-word basis. A pair of special load and store operations specify a precondition and a

postcondition. If the precondition matches the synchronization bit, the bit is set to the postcon-

dition and the load or store completes normally. Two possible outcomes exists if the precondition

test fails. If the memory operation is unfaulting, then the programmer is noti�ed in a condition

code register that the operation failed. The program can then retry the operation and spin if nec-

essary. If the memory operation is faulting, the request is placed in a hardware queue and nothing

36 CHAPTER 2. M-MACHINE OVERVIEW

is returned to the program. A software handler can later retry the memory operation or cause the

user program to block.

The pointer bit is used to provide data and code protection in a single global virtual address

space through guarded pointers [CKD94]. Guarded pointers implement a light-weight capability

system that organizes the global address space into segments which must be accessed with un-

forgeable pointers. Paging manages the relocation of data in physical memory within the virtual

address space. The protection and paging mechanisms are independent so that data integrity may

be preserved on variable-size segments of memory. Segmentation checks are performed in the clus-

ter during address calculation. When a memory operation executes, the permission of the pointer is

examined to determine if the operation is legal. If the check determines that a memory operation is

illegal, a cluster's memory unit triggers an exception. Data is controlled on a segment-by-segment

basis which can prevent protected data from being read, and read-only segments from being writ-

ten. These mechanisms of guarded pointers enable multiple protection domains to be resident in

the processor simultaneously, and allow an individual thread to change its addressing environment

very inexpensively

The memory system also includes support for sharing data across multiple MAP chips. Each

LTLB and page table entry includes two block-status bits for each cache line in the page (128 bits

total). These bits encode four possible cache line states, including Read-only, Read-write, Dirty,

and Invalid. Copies of a cache line may reside simultaneously on di�erent M-Machine nodes, and

the block-status bits are used to help keep the data coherent. For example, a write to a Read-only

cache line will trap to a software routine which can then retrieve an exclusive copy of the line by

sending a message to the home node of the data. Remote data can be cached locally in both the

on-chip cache and local memory. A more complete description and evaluation of the hardware and

software support for shared memory on the M-Machine can be found in [Car98].

2.1.3 Global Con�guration Space

The Global Con�guration Space (GCFG) controller enables a program to access the MAP chip's

internal registers and control state. These locations are mapped into the con�guration address

space, which is separate from the virtual and physical memory address spaces. GCFG requests are

accepted from the Memory Switch and results are returned via the Cluster Switch. Centralized

2.1. THE MAP CHIP ARCHITECTURE 37

state, such as the global cycle counter, the performance monitoring controllers and counters, the

thread status bits, and the I/O interface are located within the GCFG controller.

The GCFG controller communicates with local con�guration space controllers to access other

state that is distributed throughout the MAP chip. In each cluster, all of the registers and score-

boards can be read and written via con�guration space. To read a remote cluster's register, a

load is performed to the appropriate con�guration space location. Upon receiving it, the GCFG

controller forwards it over the Cluster Switch to the local con�guration space (LCFG) controller

in the target cluster. The LCFG controller accesses the register by injecting a synthetic operation

into the pipeline that delivers the data to the requesting cluster using the Cluster Switch. In this

fashion, threads can be started, stopped, and swapped in and out by using a sequence of load and

store operations. Since remote access using the GCFG is somewhat slow, it is not intended to

be used intensively by application programs. However, some thread control instructions are made

available to the user. Both the hfork and hexit instructions, which allow a thread to be created

and destroyed, are interpreted as GCFG store operations. In response to one of these requests, the

GCFG performs a series of transactions that update the appropriate registers in both the GCFG

state and the cluster. This serves as a shortcut for creating and terminating threads, allowing faster

thread interaction with less overhead.

2.1.4 On-Chip Switches

The Memory and Cluster Switches connect the di�erent asynchronously executing components of

the MAP chip. The Memory Switch allows clusters to make memory requests to both of the on-chip

cache banks as well as the Global Con�guration Space controller. The Memory Switch has 3 input

ports, one for each cluster, and 2 output ports, one for each cache bank; the GCFG controller

shares an output port with Bank 1. In each cluster, both the memory unit and the instruction

fetch unit compete for the Memory Switch port, using a round-robin arbitration scheme.

The Cluster Switch is used to return requested data from the memory system to the clusters, to

allow clusters to communicate with one another using register-register transfers, and to transfer the

contents of outgoing messages from the registers of the sending cluster to the network output unit.

Most Cluster Switch transactions include only a single word, but a burst mode is used to trans-

fer atomically a stream of words from the cluster to the network interface for send instructions.

38 CHAPTER 2. M-MACHINE OVERVIEW

SEND

Node 0 Node 1

Register
File

GTLB

Network

Register
File

Figure 2.4: The MAP send instruction transfers data from the register �le on one M-Machine node
to the register �le of another.

Arbitration is performed among the seven requesters to determine which requests will be satis-

�ed. External Memory Interface (EMI) requests have the highest priority, followed by the Global

Con�guration Space controller. At the next tier, round robin arbitration selects between the two

cache banks. At the lowest level, a round robin strategy selects among the three clusters. Since all

data returned from the memory system is ultimately in response to cluster based memory requests,

placing the clusters at the lowest priority for the Cluster Switch provides natural backpressure to

the execution units. Thus a cluster's execution units will stall if previous switch transactions are

clogging the Cluster Switch.

2.1.5 Communication Subsystem

In order to reduce the latency to communicate between di�erent MAP chips, the M-Machine

provides a fast, protected, user-level message passing substrate [LDK+98]. Each MAP chip includes

a highly integrated network interface and a 2-dimensional mesh router. As shown in Figure 2.4,

messages are composed in a thread's general registers and launched atomically with a user-level

send instruction. A state machine sequences the message contents over the Cluster Switch to the

network output unit (NETOUT). The NETOUT injects the message into the network using a

port into the router located on-chip. The message is routed to its destination using the routers on

other MAP chips that lie along the message's path. When the message arrives at its destination,

it is queued in a hardware FIFO that is mapped to a register in an H-Thread belonging to the

system V-Thread (V-Thread 5). A system-level message handler removes the message contents

2.1. THE MAP CHIP ARCHITECTURE 39

from queue, and performs the required action. Two network priorities are provided, one each for

requests and replies. Messages are routed in dimension order using up to four virtual channels.

The router connects MAP chips together using 36 pins for each of the 4 physical channels. The

network operates at twice the clock frequency as the MAP core so that one 64-bit word can be sent

every cycle. Adjacent MAP chips communicate using a bidirectional signalling discipline, in which

they both can simultaneously transmit and receive data on the same wire [DLD93].

Most message passing computers prevent users from monopolizing the network and from com-

municating with unauthorized remote processors by only allowing protected system code to access

the network interface. The MAP chip eliminates the system call overhead of messaging by employ-

ing a send instruction, which speci�es a destination pointer, an instruction pointer (handler ip),

and a message length of up to 8 words. To prevent a user from sending a message to an unautho-

rized node, the destination must be a pointer to a virtual address. The send instruction determines

whether the pointer is valid, and the NETOUT unit automatically translates the pointer into a

physical node identi�er via a global translation lookaside bu�er (GTLB). The GTLB caches en-

tries of a software global destination table (GDT), much like a TLB caches page table entries. The

handler ip speci�es what procedure is to run when the message arrives at the destination. In order

to restrict the code that can be invoked remotely, the send instruction checks that the handler ip

is a valid pointer of type execute message.

2.1.6 Exceptions

The MAP chip minimizes the downtime of threads due to exceptions by reducing the overhead for

each exception and providing mechanisms to eliminate as many exceptions as possible. On each

cluster, V-Thread 3 is reserved for handling local exceptions that can be detected during the �rst

half of the execution unit clock cycle. These exceptions include executing a privileged instruction

while in user mode, storing to an illegal pointer, and sending to an illegal address. When the

execution unit detects an exception, it stalls the pipeline and writes the information associated

with the exception into the registers of the dedicated exception V-Thread. Since the exception

is executed in its own thread slot, the thread that caused the exception merely waits until the

exception is complete. No user registers need to be saved and restored and the pipeline does not

need to be restarted. As a result, a null exception handler can start and complete in less than 5

40 CHAPTER 2. M-MACHINE OVERVIEW

cycles.

The exception record includes the address of the instruction that faulted and the reason for

the exception. At that time all user threads are prohibited from executing instructions, so that a

second exception cannot occur while the exception handler is busy. When the exception handler

is complete, it re-enables the user threads. An exception caused by the exception handler or by a

system level event handler is a system software error and results in an unrecoverable catastrophic

exception.

In order to enable speculative execution of instructions, the MAP provides a mechanism for

deferring exceptions. Deferred exceptions can result from creating of an illegal pointer or loading

from an illegal address. When a deferrable exception is detected, a special pointer called an ER-

RVAL (error value) is written into the result register. The ERRVAL is a tagged guarded pointer

that encodes the address of the instruction that created it, and the reason for its creation. ER-

RVALs can propagate through subsequent arithmetic instructions, allowing a stream of speculative

instructions to occur without the risk of an unwanted exception. Instructions that have no result

(such as a store) and comparison operations that write into a single-bit condition code register

cannot propagate an ERRVAL and must take an exception.

2.1.7 Events

Exceptions that occur outside the MAP cluster are termed events and are handled asynchronously

by generating an event record and placing it in a hardware event queue. Local TLB misses, block

status faults, memory synchronizing faults, and message arrivals are events that are handled without

blocking execution of any user level program. These events are precise in the sense that the faulting

operation and its operands are speci�cally identi�ed in the event record, but they are handled

asynchronously, without stopping the thread. Each H-Thread in V-Thread 5 handles one class of

events. Local TLB misses are handled on cluster 0, and arriving messages are handled on clusters

1 and 2, depending on the priority of the message. Memory synchronization and status faults are

handled in V-Thread 4 and can use all three H-Threads in its thread slot to execute the event

handler.

The dedicated handlers process event records to complete the faulting operations. When an

LTLB miss occurs, the external memory interface hardware formats an event record containing the

2.1. THE MAP CHIP ARCHITECTURE 41

Cluster 1

Cache Bank 0

event record

C−Switch

Event
Queue

Integer
Register File

Execution
Units

Figure 2.5: An event, such as a synchronization failure, writes an event record from the cache bank
into the event queue in Cluster 1.

faulting address as well as the data to write or the address to read. The event record is written

directly into the register �le of V-Thread 5 on cluster 0. The software TLB miss handler reads

the record, places the requested page table entry in the TLB, and restarts the memory reference.

The thread that issued the reference does not block until it needs the data from the reference that

caused the miss.

For message arrival and general memory events, the event record is written into a hardware

queue. Figure 2.5 shows the path from a cache bank into the event queue for a memory event

such as synchronization failure. For these events, a handler reads event records from the queue and

processes them sequentially. Integer registers are mapped to the queue so that a read to i14 will

dequeue the word at the head of the queue, and a read to i15 will pop the current event record from

the queue and return the �rst word from the next record. Reading from an empty queue causes

the event handler to stall until the next word is available. An arriving priority 0 message is placed

in the queue of cluster 1 while priority 1 messages are handled in cluster 2.

Handling events asynchronously obviates the need to cancel all of the issued operations follow-

ing the faulting operation, a signi�cant penalty in a 9-wide machine with deep pipelines. Dedicat-

42 CHAPTER 2. M-MACHINE OVERVIEW

Cluster 0 Cluster 1 Cluster 2

V-Thread 0 user user user
V-Thread 1 user user user
V-Thread 2 user user user
V-Thread 3 exception exception exception
V-Thread 4 general events system system
V-Thread 5 LTLB events priority 0 message priority 1 message

Table 2.1: The six threads are partitioned into three user slots, 1 exception slot, and two event
slots. Synchronization and coherency events can use all of the clusters in V-Thread 4 if necessary.

ing H-Threads to this purpose accelerates event handling by eliminating saving and restoring of

thread state and allowing concurrent (interleaved) execution of user threads and event handlers.

Asynchronous event handling does require su�cient queue space to handle the case where every

outstanding instruction generates an event. If insu�cient space exists in the event queue, user

threads must be stalled to prevent additional events from overowing the queue. In the MAP chip,

as many as 13 memory instructions may be outstanding in various memory system pipeline stages.

Since each event record is four words, the event queue must be at least 52 words long. The MAP

implements a 128 word event queue so that user threads need not be prematurely stalled.

2.1.8 Summary

The MAP chip enables a high degree of on-chip parallelism with all of the components designed

for concurrency. Each of the three clusters is able to extract instruction-level parallelism using its

three execution units. Both instruction and thread-level parallelism can be executed across all three

clusters using the fast intercluster communication and synchronization mechanisms. Two memory

operations can access the on-chip cache simultaneously, and the paths to and from the memory

system are deeply pipelined. Multithreading allows the execution resources of a cluster to be used

when one thread stalls for a short or long period of time. Table 2.1 shows how the di�erent thread

slots are allocated to user programs and system services. User threads can be placed in thread

slots 0, 1, and 2, while the remaining slots are reserved for specialized system code. To increase

concurrency, even the exception and event systems allow user programs to continue running in

situations where other processor designs require user code to suspend. For example a message

2.2. MAP IMPLEMENTATION 43

Figure 2.6: Preliminary plot of the MAP chip, measuring 18.3mm � 18.25mm and containing
approximately 5 million transistors.

arrival or a TLB miss does not stall any processor or require a context switch. The hardware

resources are available to immediately service asynchronous events simultaneously with execution

of user code. Coupling these on-chip mechanisms with the integrated network interface and router

enables parallelism at all levels to be exploited across an M-Machine multiprocessor composed of

multiple MAP chips.

2.2 MAP Implementation

A preliminary layout plot of the entire MAP chip is shown in Figure 2.6. The chip is 18.3mm

� 18.25mm and consists of approximately 5 million transistors in a 5 metal layer, 0.7�m drawn

(0.5�m e�ective) process. Approximately 2.7 million transistors are in SRAM memory arrays, 1.2

million are in the datapaths, and 1.1 million are in random logic. In terms of the number of logic

44 CHAPTER 2. M-MACHINE OVERVIEW

Pin Use Count

Network 160
Memory interface 98
Special power/electrical control 96
I/O Channel 23
Diagnostic Interface 11
Clock 5
Power/Ground 631

Total: 1024

Table 2.2: Breakdown of pin usage on the MAP chip.

transistors, the MAP is similar to the Sun Ultra II microprocessor [GAB+97]. IBM Corporation

is manufacturing the MAP chip for MIT. The package for the MAP is a 1024 pin ball grid array,

which uses 393 pins for signals and 631 for power and ground. Table 2.2 summarizes the pin usage

on the MAP chip.

The physical organization of the MAP chip is quite similar to the block diagram in Figure 2.1.

The cluster datapath and control modules occupy the bottom 60% of the chip, the network interface

(NIF) and router are in the middle 15%, and the memory system is in the top 25%. Cluster 0 is

signi�cantly larger than the others since it includes a oating-point unit. Within cluster 0, the

oating-point datapath runs along the right-hand side, the integer and memory unit datapaths are

the left, and the instruction cache is the regular structure at the bottom. The remainder of the

area in a cluster is occupied by control logic. The translation lookaside bu�er (LTLB) and the

external memory interface (EMI) are both located near bank 1. The event queue and the global

con�guration space controller sit between the oating point unit and cache bank 0.

The Cluster Switch runs horizontally in metal-4 at the midpoint of the clusters and consumes

only 8% of the metal-3 and metal-4 routing in the cluster region. However, the wiring congestion

near the Cluster Switch is signi�cant since the switch runs over the cluster pipeline control modules.

The Memory Switch is at the bottom of the memory system region and occupies about 6% of the

metal-3 and metal-4 routing resources there. Table 2.3 summarizes the area costs for the di�erent

components of the chip. The area is expressed both in mm2 and �2, where � is one half the feature

size. For our process, � = 0:25�m, which is one half of the minimum e�ective transistor length.

2.3. DESIGN METHODOLOGY 45

Area % of
Component (mm2) (M�2) total area

Integer Units (3) 55.9 894 16.7
Memory Units (3) 42.4 678 12.7
16KB Data Cache Banks (2) 36.9 590 11.0
Floating{point Unit 33.4 534 10.0
NIF/2-D Router 26.8 429 8.0
I/O Pads 26.6 426 8.0
Instruction Caches (3) 17.7 283 5.3
EMI + 64 entry TLB 8.3 133 2.5
Clock drivers 5.7 91 1.7
Event Queue 5.6 90 1.7
GCFG 3.3 53 1.0
Switch drivers 3.1 50 0.9
Misc. Control/Wiring 68.3 1089 20.5

Total 334 5340

Table 2.3: Area costs for the components of the MAP chip.

2.3 Design Methodology

The design and implementation of the MAP chip was truly a team e�ort, with cooperation between

MIT and several industrial partners. The core team at MIT consisted of one faculty member, three

PhD students, and one research sta� member. All of the logic design, logic validation, circuit

design, and timing analysis was performed at MIT. Over the course of the project, six masters and

undergraduate students contributed to the design as well. A portion of the physical design and

layout was performed by the Microelectronics Center of North Carolina. Cadence Spectrum Design

Services in Rancho Bernardo, California was the principal industrial partner. Cadence did the clock

distribution design and analysis, provided tools and methodology that smoothed the design ow,

and completed the bulk of the physical design, including cell layout, chip assembly, and veri�cation.

In order to reduce the amount of e�ort for our small team, we tried to use an e�cient design

methodology, consisting of some full-custom and some cell-based layout. All of the SRAM arrays,

including the instruction and data caches, as well as the TLB, are full-custom designs with circuits

that were carefully evaluated using the HSPICE circuit simulator. Most of the design uses static

CMOS gates, but some custom high-speed circuits were needed. The oating-point multiply array

46 CHAPTER 2. M-MACHINE OVERVIEW

uses dynamic domino circuits to accumulate the partial products. Other custom circuits are found

in the simultaneous bidirectional pads as well as in the clock recovery circuitry, which adjusts data

arriving from the network into the local clock domain.

Datapath components such as the 64-bit adders and the oating-point multiply array are full

custom layouts and are treated as custommacrocells. Other datapath modules were built from a cell

library that matched the datapath cell pitch. The cells were placed using the Cadence Smartpath

oorplanning tool, and the routing was completed automatically using the Cell3 router. All of

the control logic was synthesized from the Verilog register transfer level (RTL) model of the MAP

chip, using the Cadence Synergy logic synthesis tool, and mapped to our control cell library. The

cells were then assembled and connected using the Cell3 place and route tool. The top level wiring

is a combination of manual and automated routes. In all, the MAP chip includes approximately

231,038 placed cells, including datapath, control, and custom macro cells.

Schematics were drawn using the Cadence Composer schematic entry tool, and layout was

generated using the Virtuoso layout editor. Dracula was used to perform the design rule checks

(DRC) and the layout versus schematic (LVS) comparisons. We constructed a timing model of the

entire chip from the MAP's schematics and a library of timing models from individual layout cells.

This model was annotated with the wiring parasitics from the top level layout. We then used a

static timing analyzer to identify long paths and underdriven nodes. The �nal routing of the chip

is complete and tapeout is scheduled for May 1998.

2.4 Evolution of the MAP Design

During the design and implementation of the MAP chip, we were forced to reduce the scope of the

project in order to make all of the components �t on chip and to complete it in a timely fashion.

The original MAP architecture was much more aggressive than what we were able to implement.

It called for four clusters, each with a oating-point unit and an 8 KByte instruction cache, four

32 KByte cache banks, a 3-dimensional network, and larger event and message queues. As the

components were assembled, we realized that most modules were larger than anticipated and that

they would not all �t on the chip. In our �rst reduction, we eliminated one cluster, cut each cache

bank in half, and reduced the network to two dimensions. In a subsequent chip amputation, we

removed two oating-point units, two cache banks, and all of the control registers for one thread

2.4. EVOLUTION OF THE MAP DESIGN 47

Area % of
Component (M�2) total area

Integer Units (4) 1192 10.0
Memory Units (4) 900 7.6
32KB Data Cache Banks (4) 2700 22.7
Floating{point Unit (4) 2136 18.0
NIF/3-D Router 644 5.6
I/O Pads 597 5.0
Instruction Caches (4) 755 6.3
EMI + 128 entry TLB 213 1.8
Clock drivers 182 1.5
Event Queue 180 1.5
GCFG 53 0.5
Switch drivers 100 0.8
Wiring 2288 18.7

Total 11940

Table 2.4: Area costs for original MAP architecture.

slot on each cluster. This left us with three clusters, seven total execution units, one oating-point

unit, and �ve thread slots.

We also made several design decisions intended to reduce the amount of engineering e�ort

required for the project. Our choice to use a datapath cell methodology reduced the amount of

custom layout required, but as a result, each module grew in size. The clock rate was another

area in which we decided to reduce our engineering e�ort. All of the datapath logic is designed

and veri�ed to run at 100MHz. However, we chose not to optimize any of the critical paths in

the control logic that emerged from our logic synthesis. Consequently, the control logic will run at

40MHz, according to our static timing analysis.

With a state-of-the-art process, many of the MAP's area constraints would be reduced or

eliminated. Table 2.4 summarizes estimates for the area of the original MAP speci�cation based

on the three-cluster implementation. The resulting area required is approximately 11:9G�2 or

about twice the area of the actual MAP chip. To implement the original MAP in a chip of

the same dimensions (18.25�18.3mm) requires a feature size of approximately 0:35�m, which is

surpassed already by today's 0:25�m chips. Additional area savings are possible by re-implementing

the cell-based datapath modules. While full custom datapaths would have required more time

48 CHAPTER 2. M-MACHINE OVERVIEW

to design, they would also be substantially smaller and faster. The speed of the chip could be

dramatically increased with further optimization. Since the MAP is partitioned into clusters, all

of the automatically generated wires are short, while the long wires, such as those in the Memory

and Cluster Switches, could use low voltage swing circuits or could be pipelined if additional speed

were required. The control logic has a small number of critical paths that could be hand designed

to reduce the depth of logic and the number of gates on the paths.

2.5 Scalability of the MAP Architecture

By partitioning the on-chip execution units into independent processor clusters, the MAP archi-

tecture can be easily extended to larger chips by adding more clusters. However, while most of the

wires are short, some global communication is still required. The wires that implement the Memory

Switch, the Cluster Switch, global condition code registers, and the cluster barrier instruction all

are global since they connect remote cluster or memory modules. Because the MAP chip allocates

an entire clock cycle for signals to traverse any of these paths, the global wire delay is not a limiting

factor for clock rate for the current design. However, with future process technologies and higher

clock rates, any long wire will be a problem.

Figure 2.7 outlines MAP-2007, which is a projection of the MAP architecture targetted for a

0.1�m technology. The implementation statistics from Table 2.3 are used to estimate the area

of the processor and memory components. With roughly 80 times the silicon area of the 0.5�m

MAP chip, the scaled MAP chip may contain 80 processor clusters, each with its own 32KB level-1

cache for fast local memory access. Multiple processors would be clustered around a larger 256KB

level-2 cache. This organization is a variant of the existing MAP implementation with the most

notable di�erence being a private level-1 cache for each processor. Because of the inuence of

wire delay, sharing a level-1 cache among multiple processors could result in an 8 cycle access

latency due to arbitration and switch traversal. Using copper interconnect and a low permittivity

dielectric a signal can travel only about 2.5mm in one 2GHz clock cycle. Widening and thickening

the wires beyond minimal width would further reduce wire resistance and help speed up global

communication. However it is clear that the global wires designed for the 3 cluster MAP chip are

not appropriate for the 80-cluster MAP chip.

Aside from local memory organization, the primary inuence of global wire delay is in interpro-

2.5. SCALABILITY OF THE MAP ARCHITECTURE 49

32.5mm

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

C2 C2C2C2

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

C2 C2C2C2

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

C2 C2C2C2

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

P

C1

C2 C2C2C2

32
.5

m
m

Figure 2.7: Modi�ed MAP architecture scaled for 0.1�m CMOS technology. The chip might
contain 80 processor clusters (P), each with it own 32KB level-1 cache (C1). Five processors
are clustered around a 256KB level-2 cache (C2), and global cache coherence could be maintained
using a hardware protocol.

cessor communication. A single global Cluster Switch would require at least 26 cycles to transmit

a word from processors at remote corners of the chip. Furthermore using one global bus per cluster

to implement the Cluster Switch would require 6400 global wires and unreasonably complicated

arbitration logic. Even if wire resistance was miniscule, the wire bandwidth required for this archi-

tecture would be prohibitively expensive. To implement direct communication between processor

clusters, the Cluster Switch can be replaced by a hierarchical network in which a small number of

processor clusters would share the equivalent of a local Cluster Switch.

Communication between processors in di�erent groups would go through additional levels of

switch hierarchy. Alternatively, the processor groups can be connected in a mesh network to their

nearest neighbors. Remote writes would travel over or through other processor groups to get

50 CHAPTER 2. M-MACHINE OVERVIEW

to their destination. Communication between processors can take place at wire speeds, namely

four 2GHz clock cycles for 5 local processors. Communication between remote processors would

depend on a combination of wire and switch delay. Communication between processors using

the global condition code registers would require similar scalable communication implementations

and could perhaps be incorporated into the data communication network. To encode enough

identi�ers to capture 80 processors would require a total of 7 bits in each arithmetic instruction

format. Increasing the MAP's instruction encoding to 48 bits would provide ample space for remote

processor identi�ers as well as for 64 registers per register �le.

The cluster barrier instruction (cbar) also requires global wiring to connect all of the processor

clusters that are synchronizing. A natural extension to the cbar instruction that is well matched

to the groupings described above is to allow synchronization across a subset of the processors. A

barrier across an entire 5-processor group would require four 2GHz clock cycles. Barriers across

multiple groups can take place in hardware via a hierarchical synchronization network. The latency

of the barrier depends on how many processors are involved and how far away they are. A full 80-

processor barrier will still require at least 26 cycles of wire delay to accumulate and distribute the

barrier requests. Barriers across subsets of processors can be encoded directly into the instruction

set using bitmasks. Since all 80 processors can not be named individually in a limited size bit �eld,

barriers on subsets of processors can be encoded on a processor group basis. A processor could

then synchronize with individual processors within its own group or with remote processor groups

as a whole.

The least scalable component of the current MAP architecture is the centralized memory sys-

tem. If the processors are located at one end of the chip and the memory is at the other, then

each memory reference can take as many as 26 cycles to resolve, just from wire delay. The scaled

Multi-ALU processor in Figure 2.7 solves this initial problem by allocating a small cache to each

processor. This eliminates switch traversals between processors and memory and can reduce the

minimum memory access time from 3 cycles in the current MAP architecture to 1 cycle. A subse-

quent complication is associated with data sharing among di�erent processors. In the MAP chip,

each on-chip processor sees exactly the same memory system hierarchy. The scaled MAP archi-

tecture would require hardware support to keep the caches coherent. This is relatively easy to

accomplish among a processor group with a shared level-2 cache. However, global data sharing is

2.5. SCALABILITY OF THE MAP ARCHITECTURE 51

much more complicated and may ultimately be too expensive to implement. With the high degrees

of concurrency that will be available, a better memory system organization may eliminate cache

hierarchies and instead use high density DRAM for the primary storage at each processor. Data

communication would then be explicit between processors using register-register or register-memory

transfers. The changing balance between on-chip computation and communication latencies will

present a rich set of challenges for programming systems and software support for scheduling and

resource management.

In order to take advantage of the increasing numbers of transistors made possible by shrinking

device sizes, scalable mechanisms must be used to increase the on-chip computation power and

memory capacity. Unfortunately, current architectures are distinctly not scalable. Superscalar

microprocessors rely on centralized instruction issue logic to control its execution units. In the

example 0.1�m process, an instruction would require 6.5ns just in wire delay to travel from an

instruction window in the center of the chip to an execution unit located at a corner. If the chip

is to run at 2GHz, the delay is equivalent to 13 clock cycles, which would require extremely deep

pipelines in order to run at full speed. With such deep pipelines, any mispredicted branch or jump

will result in a substantial penalty due to ushing the pipeline of useless instructions that have

already been fetched. An equally unattractive alternative to pipelining is to reduce the clock rate

to less than 200MHz to allow more time for the signals to propagate. One �nal issue with today's

ILP architectures is that the notion of massive scaling of superscalar processors requires a dubious

assumption of an abundance of parallelism in primarily sequential applications.

Using the silicon to build a single-chip multiprocessor with large shared caches has its own set

of problems. Large monolithic cache structures will be unacceptably slow due to long propagation

delays in the word and bit lines. Furthermore, as will be described further in Chapter 4, large

wire latencies and memory access delays between the execution units and storage at the other end

of the cache hierarchy will render memory communication useless for �ne-grain parallelism. The

instruction overhead associated with synchronizing through memory also contributes to the overall

performance cost of memory only mechanisms. Partitioning chips into independent processors with

local memory is necessary in order to scale the number of on-chip execution units and still maintain

high clock rates. The direct communication and synchronization mechanisms will then allow the

multiple processors to work together e�ciently and e�ectively.

52 CHAPTER 2. M-MACHINE OVERVIEW

2.6 Lessons from the Implementation

In implementing the MAP chip, we faced a very di�erent set of challenges from those in an industry

product development group. As a result, we have learned a lot of lessons, both technical and in

project management, about tackling a project of this magnitude in an academic environment.

Our early architectural studies included estimates of the chip area required to implement each

of the major modules of the MAP. When the chip assembly began, we realized that our estimates

were overly optimistic, and we had to eliminate an entire cluster and reduce the sizes of the on-

chip memories. Some of the inaccuracy in our estimates resulted from choosing a cell-based design

methodology in the datapath regions, rather than full-custom. While this decision was necessary

to reduce design time, the datapaths in the semicustom regions grew by up to 60% due to the

increased cell area and wiring requirement [Cha98]. In addition, our estimate for control logic

cell utilization rates was optimistic, and the additional latches and multiplexors to implement

multithreading required more wiring tracks than predicted. As a result, the control logic regions

are approximately twice as large as anticipated.

Wiring also constituted a larger than estimated fraction of the area in the control logic regions.

The cell{area utilization in di�erent control logic regions varied unexpectedly. We found that the

architecture greatly a�ected the estimation accuracy, and that a single cell density metric is not

su�cient for all control logic regions. In our arithmetic control regions, 55% of the area is occupied

by logic cells, with the remaining area dedicated to interconnect. In the pipeline control, which

replicates the pipeline registers to implement multithreading, the logic could only occupy 40% of

the area and still be routable.

Another key lesson is that the design e�ort needs to be balanced on all aspects of the chip. Our

early datapath pitch selection of 14 wire tracks per bit was exactly the correct number required

by the physical implementation. This allowed us to complete the datapath logic design and begin

the circuit design at a very early stage in the project. Most of the datapaths, such as the register

�les and arithmetic blocks were straightforward, but additional circuit design was required for the

the data cache and the oating-point unit. In order to support the memory synchronization bits,

the data cache needs to implement a read-modify-write cycle. This required that the data cache

be clocked by a special delay line in order to �nish the write at the beginning of the subsequent

cycle. The oating-point multiply array required a self-timed domino design and aggressive time

2.6. LESSONS FROM THE IMPLEMENTATION 53

borrowing in order to complete all of the partial product summations. As a result of these circuit

optimizations, the datapath modules all met the 100MHz clock rate target.

The full-chip logic design was not completed until much later and, in order to meet our deadlines,

we focused primarily on logic validation. In retrospect, it would have been bene�cial to spend less

time optimizing the datapaths, and instead complete the control logic sooner. Because of the

greater complexity of the control logic and the need to use automated design tools to generate the

circuits, a clock rate of 100MHz was much more di�cult to reach. According to our static timing

analysis, the worst case path is in the exponent calculation of the oating-point divide/square-root

unit, which is 15ns over budget and limits the clock rate to 40MHz. This path and the others that

restrict the clock rate could be shortened at the expense of a substantial amount of design time. In

retrospect, a better balance between the time spent optimizing the datapath and control circuits

could have resulted in a higher overall clock rate. However, it must be noted that a functional

prototype is far more important than a fast clock rate for an academic project such as this.

One of the most important factors in the success of the implementation was our partnership with

Cadence Spectrum Design. In addition to taking responsibility for the physical design, layout, and

chip assembly, they provided a substantial amount of technical feedback and expertise. Their review

of our cell density metrics and their place and route experiments allowed us to easily identify which

MAP modules to eliminate in order for the remaining modules to �t on chip. In addition, Cadence's

experience with the particular fabrication process was vital in the design and implementation of

the clock and power distribution, as well as in the chip assembly process. Finally, the MAP chip's

size and large number of transistors pushed the limit of the veri�cation tools. In order to perform

layout veri�cation, Cadence developed new methodologies and used some new tools. In short, our

industrial partnership allowed our team at MIT to focus more heavily on the novel architecture

mechanisms, while relying on the skills of Cadence to perform the physical design.

Chapter 3

MAP Chip Pipeline Design

The processor pipeline of the MAP chip is designed to exploit parallelism within each MAP cluster

and to enable �ne-grain parallelism between clusters. The pipeline includes mechanisms to execute

multiple instructions concurrently and to interleave instructions from multiple threads. In addi-

tion, the intercluster communication and synchronization components are integrated tightly into a

cluster's pipeline.

Figure 3.1 highlights the di�erences between a simple reduced instruction set (RISC) pipeline

and the MAP pipeline. The example RISC pipeline includes �ve stages: Instruction Fetch (IF),

Register Read (RR), Execute (EX), Data Fetch (DF), and Write Back (WB). A program counter

accesses the instruction cache in the IF stage, and passes the next instruction to the RR stage

where registers are renamed and the register �le is read. The subsequent EX stage executes the

instruction and, for loads and stores, begins the data cache access. In the DF stage, the cache

access completes and the result is sent to the WB stage where it is written back into the register

�le.

The MAP pipeline is a variant of the basic RISC pipeline with several novel features to support

parallelism within a cluster and between clusters. First, the pipeline and data registers in the �rst

three stages are replicated to enable multiple threads to be loaded simultaneously in a cluster. A

new synchronization pipeline stage (SZ) interleaves the instruction streams of up to six threads over

the execution units, and can switch threads on a cycle-by-cycle basis with no switching overhead.

The SZ stage includes reservation stations where the instructions from multiple threads wait until

all of their operands are available. Thread scheduling can be controlled in software through a

54

55

EX

WB

IF

DF

Register
File

D$

PC

Basic RISC Pipeline

R
en

am
e

I$

RR

I$

EX

WB

SZ

IF

Issue
Logic

Nullify?

Cluster Switch

cbar

gcc

Register
Files

Memory Switch

S
co

re
bo

ar
d

MAP Cluster Pipeline

PC’s

RR

Figure 3.1: Comparison of basic RISC and MAP pipelines.

combination of programmable thread priorities and mechanisms to prevent thread starvation. A

novel instruction fetch unit supplies instructions for all of the threads and expands instructions

on the y from a dense encoding that has the NOPs compressed into the instruction format used

within the pipeline.

Intercluster communication is integrated into the pipeline by enabling the arithmetic units to

write directly to the Cluster Switch during the Write Back (WB) stage. In addition, single bit

condition code values may be broadcast to other clusters using the global condition code (GCC)

registers. The pipeline uses a scoreboard in the register read stage to track data dependencies and

enable data synchronization on register writes between clusters. The scoreboard can be manipulated

by a new empty instruction which marks a register invalid pending arrival of remote data. Control

synchronization across the clusters is implemented with a cluster barrier instruction. Finally,

the MAP employs a shared lockup-free cache in which memory requests are decoupled from the

processor pipeline, eliminating the data fetch stage from the processor pipeline. Load and store

56 CHAPTER 3. MAP CHIP PIPELINE DESIGN

EX_IU EX_MU EX_FPU

WB_FPUWB_MUWB_IU

ISSUE

IOP MOP FOP
TSEL

RR_FPURR_MURR_IU

SZ_FPUSZ_CT SZ_IU SZ_MU

IFU IF

RR

SZ

EX

WB

Figure 3.2: Block diagram of all cluster pipeline modules.

operations are sent to the uni�ed cache via the Memory Switch, and the scoreboard ensures that

subsequent instructions that need the result do not issue until the data is returned.

This chapter describes the MAP pipeline and the novel mechanisms that enable parallelism

both within a cluster and between clusters. Section 3.1 details the design and implementation of

each pipeline stage. The use of the scoreboard to enforce data synchronization between instruc-

tions is discussed in Section 3.2. Section 3.3 characterizes the impact of multithreading including

the additional interaction between pipeline stages and the exibility of the thread selection logic.

Finally, Section 3.4 describes the integration of mechanisms for interthread interaction into the

MAP pipeline.

3.1 Pipeline Components

Figure 3.2 shows the pipeline stages for all of a cluster's execution units. A single instruction fetch

unit (IFU) delivers operations to each of the integer, memory, and oating-point pipelines. Each

execution unit has its own register read (RR), synchronization (SZ), execute (EX), and write back

(WB) stages. A central synchronization stage controller (SZ CT) determines which instruction to

3.1. PIPELINE COMPONENTS 57

M−Switch C−Switch

PC

branch−PC

T0
T1
T2
T3
T4
T5

Swizzle

TSEL

Fetch Engine

Operation
Engine

Miss
Engine

IOP MOP FOP

Instruction
Cache

miss−PC

fetch−PC

current−PC

operation
buffer

Figure 3.3: The MAP Instruction Fetch Unit.

issue from the SZ stage to the EX stage. The SZ CT logic delivers the thread selection decision on

the TSEL (thread select) wires to the IFU and to all of the execution pipelines.

3.1.1 Instruction Fetch

The instruction fetch unit (IFU) provides instructions from the cluster's instruction cache to the

pipeline and re�lls the instruction cache from the uni�ed cache when a miss occurs. As shown

in Figure 3.3, each thread has its own program counter (current-PC) which points to the next

instruction to leave the IFU and enter the RR stage. Each thread also has a fetch program counter

(fetch-PC) which is used to optimistically fetch instructions from the instruction cache into the

operation bu�er. The thread select (TSEL) signal determines which thread will deliver the next

program counter and instruction. Since all threads reside in the same global virtual address space,

the instruction cache can be shared among them.

58 CHAPTER 3. MAP CHIP PIPELINE DESIGN

Pack Bits Meaning

First operation 00 IU operation only
01 MU operation only
10 FPU operation only
11 Multi-operation instruction

Second operation 00 IU-MU instruction
01 IU-FPU instruction
10 IU-MU-FPU instruction
11 MU-FPU instruction

Table 3.1: Instruction pack bits to compress NOPs from instruction stream. If the instruction
contains two or three operations, the pack bits from the second operation are required.

The IFU consists of three state machines that are largely independent: the fetch engine, the

operation engine, and the miss engine. The fetch engine contains a bank of fetch program counters

(Fetch-PC), one for each thread. On each cycle, the fetch engine selects a PC, uses it to fetch

four operations (128 bits) from the cache, and places the operations in the operation bu�er. The

selected PC is then incremented and returned to the fetch-PC bank. In order to prevent a thread

from stalling due to instruction fetch, the fetch engine tries to keep the operation bu�er full at all

times.

The operation engine contains a bank of current program counters (one for each thread) and the

operation bu�er, which is a queue of eight 30-bit operations for each thread. The MAP instruction

format provides a dense encoding to eliminate NOPs in the instruction stream when not all three

units are needed by a particular instruction. Table 3.1 shows how two pack bits from each 32-bit

operation are used to encode the length of an instruction (one, two, or three operations), and the

execution units that are included. If the instruction has only a single operation, the pack bits from

the operation determine whether it belongs to the integer, memory, or oating-point unit. If the

instruction has more than one operation, then the pack bits from the second operation are necessary

to complete the encoding. NOP operations are inserted automatically when the instruction leaves

the instruction fetch unit. In response to TSEL, the operation engine retrieves the next program

counter and the next three-operation instruction for the selected thread and delivers them to the

register read pipeline stages. The pack bits are decoded and the instruction swizzler directs each

operation from the operation bu�er to the correct execution pipeline. The program counter is then

3.1. PIPELINE COMPONENTS 59

incremented by the number of operations that were included in the instruction.

When a cache miss occurs, the miss engine captures the miss address in one of two miss-PC

registers and initiates an instruction cache re�ll. The re�ll engine sends load requests to the global

mixed cache to fetch subsequent instructions in the program. A re�ll consists of eight fetches of

64-bit words, and each word is requested by a memory operation similar to a load. Each request

reaches the memory system via the Memory Switch and the resulting data is returned via the

Cluster Switch. Control bits in the request and reply packet return the result to the instruction

cache, rather than to the register �le. Since each operation is 32-bits long, an instruction cache re�ll

cycle loads 16 operations into the IFU. Two miss handlers are implemented, with one dedicated

to the TLB miss thread and the other shared among the remaining �ve thread slots. A dedicated

miss handler for the TLB thread is necessary to prevent deadlock when an instruction cache miss

causes a TLB miss. An instruction cache miss that occurs while the miss handler is already busy

is delayed until the miss handler becomes free again.

The interface between the instruction fetch unit and the rest of the pipeline includes thread select

(TSEL), instruction-fetch available (if avail), and the branch program counter (branch PC). The

if avail signals indicates which threads have four operations in the operation bu�er. If if avail

for a thread is deasserted, then the synchronization stage will not advance that thread since there

may not be enough operations ready to enter the register read stages. When a branch instruction

is executed, the target instruction pointer is delivered to the IFU, where it is immediately loaded

into the fetch-PC. On the next TSEL, the operation bu�er for that thread is cleared, an instruction

cache fetch is immediately initiated, and the new instruction pointer is loaded from the fetch-PC

into the current-PC.

3.1.2 Register Read

The register read (RR) stage contains register �les and pipeline registers for each thread. The

integer register �le is accessed by the integer and memory pipelines, while the oating-point register

�le is read by the memory pipeline and the oating-point pipeline. In addition to the 64-bit data

registers, the RR stage also holds the condition code (CC) registers, which are used for conditional

branches or predicated execution. The CC registers are divided into local and global; four CC

registers are purely local and may only be written by the cluster in which they reside. The remaining

60 CHAPTER 3. MAP CHIP PIPELINE DESIGN

12 CC registers are global, with four assigned to each cluster. A cluster may only write to one of

its four assigned global CC registers, and that update is broadcast to the corresponding global CC

register in every cluster.

After accessing the register �les, incoming instructions wait in the RR stage pipeline registers

before advancing to the SZ stage. The thread select (TSEL) signal from the synchronization stage

controls the RR stage. When TSEL is asserted, the RR stage outputs the designated thread's

next instruction and latches the subsequent instruction for the same thread coming in from the

instruction fetch unit. Instructions waiting in the RR stage have results bypassed directly to them

from local write-back stages as well as from memory or remote clusters via the Cluster Switch. The

register �les are only accessed once per instruction.

The RR stage also contains the register scoreboard, which has one full/empty scoreboard bit

for each register. The scoreboard indicates whether the data in the register is valid and can be

used as an instruction operand. Operations mark their destination registers empty upon issue and

full upon completion. When an empty instruction executes, the bit vector that identi�es which

registers to empty is sent to the RR stage which then modi�es the scoreboard.

3.1.3 Synchronization

The synchronization (SZ) pipeline stage is the central control unit of the cluster and contains both

instruction reservation stations [Tom67] and instruction issue logic. Each of the execution pipelines

has its own reservation station, which holds one operation for every thread. Operations wait in the

reservation station until their instruction is selected by the issue logic in the synchronization control

module (SZ CT). Both data and register validations are bypassed directly into the reservation

stations. As with the register �le, the reservation stations can be written from the local execution

units as well as from the Cluster Switch. The SZ CT module communicates with the reservation

stations in the integer, memory, and oating-point pipelines to determine which thread's instruction

is ready to issue. When an instruction issues, the instruction fetch and register read stages for the

selected thread advance and a new instruction enters the SZ stage. Once a thread's instruction

issues, it will complete without any further intervention from the scheduler in the synchronization

stage. As shown in Figure 3.4, thre process of selecting a threads includes checking for operands,

masking out low priority threads, and arbitrating among the remaing contenders.

3.1. PIPELINE COMPONENTS 61

operand_rdy
EX_rdy

cbar_0

cbar_1 cbar_2

T5

tokenoperand_rdy
EX_rdy

cbar_0

T0 T0

Arbitrate

priority

priority
T0

Priority Mask

TSEL_0

TSEL_1

TSEL_2

TSEL_3

T5

token

T5 TSEL_5

TSEL_5

cbar_1 cbar_2

Resource Check

if_avail

if_avail

Figure 3.4: MAP synchronization stage.

Resource Check: The Resource Check module examines all of the operations in the synchro-

nization stage reservation stations and determines which threads are ready to issue. In order for

an instruction to be eligible to issue, it must satisfy the following conditions:

� All of the instruction's operands are present (operand rdy).

� All of the arithmetic units needed by the instruction, such as the oating-point divide/square-

root unit, are available, and none of the execution units are stalled waiting for the Memory

or Cluster Switches (EX rdy).

� The instruction fetch unit is able to deliver at least three operations from the operation bu�er

to the register read stage for the chosen thread (if avail).

� If the instruction contains a cluster barrier, the other clusters have also reached the barrier.

Priority Mask: The priority mask module examines each thread that is ready to issue and gives

preference to those threads that have a higher priority. The thread slots are divided into two

categories, system and user, and each thread has two priority levels. The system threads include

the event and exception handlers running in slots 3, 4, and 5, while the user threads run in slots

0, 1, and 2. A simple three state priority scheme is used to determine which threads are the

most important. High priority system threads are the most important and can monopolize the

execution resources when necessary. Low priority system threads and high priority user threads

62 CHAPTER 3. MAP CHIP PIPELINE DESIGN

are at the same level and have equal access to the execution units. At the bottom of the hierarchy

are low priority user threads. The two user levels enable applications to run their critical sections

at a higher priority, which can increase overall performance [FD95]. Section 3.3.2 describes other

features of the SZ CT that ensure a thread is not starved of issue slots inde�nitely.

Arbitration: Placed after the priority mask, the arbiter considers only those threads that are

both ready to issue and have priority. The arbiter uses round robin scheduling to allocate the

cluster execution resources fairly among the threads. A token is inserted into the arbiter at the

stage whose thread was last granted. The token ows between arbitration stages until it reaches a

requesting thread. The arbiter's decision is broadcast to the rest of the cluster in the thread select

(TSEL) signals. Performance monitoring counters are built into the SZ CT module to track when a

thread is selected and when a thread has all of its operands ready but is not selected.

3.1.4 Execution Units

The Execute (EX) stage contains three execution pipelines, including an integer unit (IU), a mem-

ory unit (MU), and a oating-point unit (FPU). The integer unit executes all of its arithmetic

instructions in a single cycle, but the memory and oating-point units encompass multiple pipeline

stages. The arithmetic units receive instructions and operands from the SZ stages, execute the

instructions, and forward the results to the write-back stage. Data from previous instructions is

bypassed directly to the front of each execution unit. Unlike the �rst three pipeline stages, the

EX stage pipeline registers are shared by all of the threads. Arbitration for the Cluster Switch is

performed during the EX stage, one cycle before the result is ready. If the Cluster Switch is not

granted, the entire cluster stalls and arbitration is performed again on the next cycle. Since the IU

and FPU share a port to the Cluster Switch, a simple local arbiter determines which unit will be

granted access. Exceptions are detected at the beginning of the EX stage; if an exception occurs,

the pipeline stalls while a state machine in the hardware updates the registers in the exception

thread slot. Figure 3.5 details the arithmetic units contained within the EX stage. An abbreviated

description of the MAP's instruction set architecture can be found in Appendix A.

Integer Unit: The integer unit (IU) contains a 64-bit adder, a barrel shifter, and a boolean

logic unit. In addition to executing integer arithmetic instructions, the IU performs byte insertion

3.1. PIPELINE COMPONENTS 63

Shift

WB

Add

B
oo

l

iop1 iop2

Integer Execute fop1 fop2 fop3

Floating−point Execute

WB M−Switch

Add

ad
d

re
ss

fop1iop1 iop2

Memory Execute

WB

FP

F
P

 D
S

Q

FP

Figure 3.5: MAP execution units.

into and extraction out of a 64-bit word. The IU also has a mask unit to detect segmentation

violations that occur during address calculation. Although not shown in the diagram, the IU

includes a send unit to transmit a message that has been composed in the integer register �le to

the network interface for delivery to a remote MAP chip. The send state machine sequences the

message contents from the registers to the network interface unit via the Cluster Switch.

Memory Unit: The memory unit (MU) includes a 64-bit adder, an address calculation unit, and

a path to the Memory Switch. The MU can execute a subset of the integer arithmetic instructions,

but its primary function is to issue loads and stores. Since indexed and displacement addressing

are not supported in the MAP chip, the address for the memory operation is known immediately

when the instruction enters the MU. This allows the MU to arbitrate for a Memory Switch path

to the correct cache bank during �rst half of the MU execute cycle. If the switch is granted, the

address (and data for a store) is transferred on the second half cycle. If the switch is not granted,

the pipeline blocks. The MU has two sets of pipeline registers, one for normal requests, and one for

TLB requests. The TLB handler can continue executing even if all of the other threads are blocked.

Load and store operations can perform address calculations concurrently with the Memory Switch

access. A post-increment value is added to the address using the adder in the MU, and the result

is written back the local register �le.

64 CHAPTER 3. MAP CHIP PIPELINE DESIGN

Floating-point Unit: The oating-point unit (FPU) includes a multiply-add unit (MULA) and

a divide/square-root unit which both adhere to the IEEE oating-point format [IEE85]. The MULA

unit executes oating-point add, subtract, and multiply instructions, as well as integer multiply.

The four-stage pipeline consists of a multiplier followed by an adder to implement a fused multiply-

add (A�B+C). Multiplies and multiply-adds need all four pipeline stages, but other instructions,

such as oating-point add, only use the last two stages. If the upper pipeline stages are empty, a low

latency operation may skip them and drop directly into the stage it needs. However, the MULA

pipe will not reorder instructions. The multiplier uses a radix-8 booth encoder and two-branch

Wallace tree to accumulate the partial products. The carry-save adders in the multiply array are

implemented in domino-logic, while the surrounding datapath logic is in static CMOS. A more

complete description of the circuit implementation of the MULA unit can be found in [Har96].

The divide/square-root (FDSQ) unit implements oating-point divide, oating-point square-

root, and integer divide. The FDSQ unit is not pipelined, but uses a radix-4 iterative SRT algo-

rithm. The divide and the square-root functions share much of the same datapath logic, but use

di�erent lookup tables to determine the next quotient bits [Fan87, EL90]. Each iteration requires

half a clock cycle; latches and multiplexors are implemented to allow the iterative logic to be used

during both halves of a clock cycle. The oating-point divide/square-root instructions have a 20

cycle latency, while integer divide requires 23 cycles. When the FDSQ unit is busy, the SZ stage

is prevented from issuing any divide or square-root instructions. Since the MULA and FDSQ

units share the same write-back register, the FDSQ stalls the MULA pipeline when a divide or

square-root instruction completes.

3.1.5 Write Back

During the write-back stage (WB), data is written into the local register �les and bypassed into

the RR, SZ, and EX stages. For a remote register write, the data is transmitted on the Cluster

Switch during the WB stage and can be used by the remote cluster on the subsequent cycle. The

Cluster Switch is also used to transfer data between the integer and oating-point register �les. A

dedicated path between the integer and oating-point datapaths was purposely omitted from the

design in order to reduce the wiring complexity within the cluster.

3.2. DATA SYNCHRONIZATION 65

IF RR SZ WBEX2

IF RR WBEX2

invalidate

SZ SZ

validate bypass

EX1SZ

EX4EX1 EX3

SZ

FMUL:

FADD:

Figure 3.6: Data synchronization and delivery in the MAP pipeline.

3.2 Data Synchronization

The MAP pipeline enforces all data dependencies between instructions using register scoreboarding

for pipeline interlocks and bypassing for data delivery. Figure 3.6 shows a pipeline timing diagram

for a four cycle oating-point multiply (fmul), followed by a oating point add (fadd) that consumes

the result. When the fmul issues from the SZ stage to the EX stage, it empties its destination

register in the scoreboard and invalidates the fadd in the SZ stage. One cycle before the result

is available (during the last EX stage), the register is validated in the scoreboard and in the SZ

stage, allowing the fadd to issue and meet the result of the fmul at the beginning of the EX

stage. For single cycle latency instructions, the destination is validated in the EX stage, but it is

not invalidated. A load instruction also marks its destination register empty upon issue, and the

register is marked full when the data is returned on the Cluster Switch.

In addition to data synchronization, the MAP chip provides support for detecting when memory

operations have completed. Because the memory system is heavily pipelined, a program may not be

able to determine when a store instruction has written its data to memory. Furthermore, a protected

procedure call must be able to prevent the code that called it from leaving an outstanding load that

may corrupt the register �le when it returns. To enforce memory ordering and detect completion of

memory operations, the MAP implements a memory barrier (mbar) instruction which stalls until

all outstanding memory references for a thread have �nished. When a load or store instruction

is issued, a thread's mbar counter is incremented; when data returns on the Cluster Switch, the

counter is decremented. Even though store operations do not return any data, they do include

a Cluster Switch transaction to decrement the counter. When an mbar instruction enters the SZ

66 CHAPTER 3. MAP CHIP PIPELINE DESIGN

stage, it stalls until the mbar counter is zero, meaning that all outstanding loads and store have

completed. Up to 31 memory references for each thread may be outstanding. If the maximum

number has been reached, subsequent load and store operations must wait in the SZ stage.

3.3 Multithreading

Multithreading has typically been exploited in multiprocessors to tolerate memory latencies. In

block multithreading, as found in the Alewife machine [ALKK90], a thread switch is typically

triggered by a cache miss or a write-hit to shared data. Fine grain multithreading, which is employed

in the Tera machine [ACC+90], typically requires a thread switch on every cycle. The MAP chip

implements �ne-grain interleaving of instructions based on data availability, rather than a strict

round robin scheduling scheme. Thus, the MAP chip can tolerate both long memory latencies and

short instruction latencies, while still executing at full capacity even if only one thread is present.

The term zero-cycle multithreading indicates that no dynamic overhead is incurred to switch among

threads when programs are executing in the pipeline.

3.3.1 Pipeline Overhead

In order to implement zero-cycle multithreading, the register �les and pipeline registers in the IF,

RR, and SZ stages are replicated. In the MAP chip, the additional state in both the datapath and

control logic increases the size of the cluster by 80% over a similar pipeline without multithreading.

A substantial amount of this area is in the control logic regions, where more gates and wiring are

needed. In addition to the state registers, multiplexors and demultiplexors are required at each

interface to the RR and SZ stages so that the instruction information can pass from stage to stage

on a common set of wires. Multithreading also requires more communication between pipeline

stages as the thread select signal (TSEL) must be broadcast to the IF, RR, and SZ pipeline stages.

3.3.2 Thread Selection

The MAP chip uses a three-level priority scheme to enable important threads to use more of the

execution resources. However, a low priority thread may be starved by higher priority threads. The

synchronization stage implements a preempt state to guarantee that a thread cannot be starved

3.4. PIPELINE MECHANISMS FOR INTERCLUSTER INTERACTION 67

inde�nitely. Each thread has a preempt state machine which includes a counter and a limit register.

The counter is incremented for every cycle that the thread is ready to issue but is not granted the

pipeline. If the thread issues, the counter is reset to zero. When the counter reaches the value in

the limit register, the thread enters the preempt state and elevates to the highest priority. This

essentially guarantees each thread at least one issue slot every N cycles, where N is the value in

the limit register. In the MAP, the counter and limit register are 8 bits each, so a ready thread

will stall for at most 255 cycles.

In addition, a second set of counters keeps track of the number of cycles that a thread idles

while waiting for its data to become available. This stall cycle counter is incremented on every

cycle that any operand is invalid. It is reset to zero when all of the operands become available. A

system software scheduler can use the counter to monitor the threads and determine if they are

making progress. The thread priority levels, preempt limit registers, and stall cycle counters can

all be modi�ed through the con�guration space interface, which allows applications and operating

systems to e�ciently control hardware thread scheduling.

3.4 Pipeline Mechanisms for Intercluster Interaction

The MAP chip implements mechanisms that enable fast communication and synchronization be-

tween clusters. Arithmetic units on one cluster can write directly into a register �le of another

cluster. The data is also delivered to the remote SZ and EX stages using bypass paths so that

a remote arithmetic unit can use the data immediately. A cluster barrier cbar instruction can

synchronize the pipelines in all of the clusters. Because these mechanisms are integrated tightly

into the arithmetic pipelines, they can be used with very little overhead.

3.4.1 Register Synchronization

When a value is sent to a remote cluster, the destination must be noti�ed of its arrival. The

MAP chip incorporates this synchronization into a register scoreboard that is already needed for

data synchronization within a cluster. When data arrives from a remote cluster, its destination

register is marked full. However, unlike local arithmetic and memory operations, the destination

register is not automatically emptied when the remote register write instruction issues. Instead, an

empty instruction must execute at the destination cluster prior to data arrival. The empty takes

68 CHAPTER 3. MAP CHIP PIPELINE DESIGN

TSEL

C0_CBAR C1_CBAR C2_CBAR

C1_CBAR C2_CBARC0_CBAR

CBAR
foundno CBAR

CBAR stall

Figure 3.7: Cluster barrier state machine.

a bit vector as an argument which allows the remote cluster to manually invalidate one or several

registers. An instruction at the destination that needs the data from the source cluster will stall

until the data arrives. The empty instruction eliminates the need for any global wires for remote

invalidation. Even if instructions could invalidate remote registers, an additional synchronization

between the consumer and producer clusters would still be necessary to prevent the producer from

delivering the data prematurely.

3.4.2 Cluster Barrier

Synchronization between threads on di�erent clusters is supported in the MAP chip using a cluster

barrier (cbar) instruction. The cbar acts as a gate such that no thread can proceed past the barrier

until all threads have reached it. The state machine diagram used to implement cbar is shown in

Figure 3.7. When a cbar enters the SZ stage, the state machine transitions to the CBAR stall state

which causes the thread to wait. When both of the other clusters reach their barrier instructions,

the state machine transitions to the CBAR found state in which the thread is again enabled to

issue. When the thread is selected (TSEL), the state machine returns to the no CBAR state. If

all three threads reach a barrier at the same time, the CBAR stall state can be skipped, and they

3.5. SUMMARY 69

can all issue immediately. The memory execute unit converts the the cbar into a NOP after it

issues. Three states and six global wires are required to prevent back to back cbar instructions

from becoming misaligned across the clusters. Each thread has its own state machine and global

barrier wires so that cluster barriers and threads are independent.

3.5 Summary

The MAP chip pipeline employs novel features to implement zero-cycle multithreading and fast

intercluster synchronization. A synchronization (SZ) pipeline stage orchestrates instruction execu-

tion across all three arithmetic units within a cluster. Instructions from each thread wait in the

reservation stations of the SZ stage until all operands are present. The SZ stage examines the in-

structions from each thread and selects one to issue based on data availability, thread priority, and

arbitration. The MAP also uses valid bits in a register scoreboard and in pipeline registers to unify

nearly all instruction synchronization through data dependence, eliminating additional pipeline in-

terlocks. The scoreboard tracks the data from local arithmetic operations, memory operations, and

remote register writes. Intercluster synchronization takes place through data transfer or by using a

cluster barrier instruction which is implemented in the SZ pipeline stage. The one drawback of the

SZ stage is that it is an additional pipeline stage between the instruction fetch and execute stages,

which leads to a larger penalty when a branch is mispredicted.

The architecture and implementation of a cluster are driven mainly by wiring constraints. The

SZ stage is a central cluster resource and must communicate with most of the pipeline stages within

the cluster. Thus there is a limit to the number of execution units that can be incorporated into

a cluster without causing wiring delays to become a signi�cant fraction of the cycle time. Wiring

track limitations also inuence the partitioning of the cluster into distinct integer and oating-

point components. A uni�ed integer and oating-point register �le is not attractive because of the

need for more register �le ports. In addition, pitch-matching the register �le to all three execute

datapaths, which would reduce wiring complexity, is di�cult.

Chapter 4

On-chip Interaction Mechanisms

Parallel speedup of applications is typically limited by the amount of concurrency available and

the overhead of the mechanisms provided by the computer system to exploit it. Traditional multi-

processors have very expensive mechanisms for managing parallelism, typically requiring hundreds

or thousands of cycles to invoke a thread, or to communicate and synchronize between threads.

With long interaction latencies, thread communication, synchronization, and invocation must be

infrequent in order to prevent the execution time from being dominated by interaction overheads.

For example, if a communication costs 1000 cycles, then threads must spend more than 10,000 cy-

cles executing between communications to keep the overhead under 10%. Parallelism that requires

more frequent communication cannot be exploited e�ectively.

The MAP chip is designed to reduce the overhead of on-chip thread management, providing

hardware support for thread communication, synchronization, and invocation. Communication

between clusters takes place via direct register-register transfers which require only one cycle to

deliver the data. A global cluster barrier (cbar) instruction enables a barrier synchronization

across clusters, with only one cycle of overhead. A new thread can be forked into a separate MAP

cluster in 14 cycles, using a user level hfork instruction. As shown in Chapters 5 and 6, these

fast mechanisms can be used by independent processors to exploit instruction-level parallelism and

�ne-grain thread-level parallelism that has not previously been available. This chapter describes

each of these thread management mechanisms, evaluates their overhead, and compares them to

alternatives that lack hardware support.

70

4.1. EXPERIMENTAL EVALUATION TOOLS 71

4.1 Experimental Evaluation Tools

Speci�c microbenchmarks are used to directly evaluate the �ne-grain thread control, communi-

cation, and synchronization mechanisms of the MAP chip. The microbenchmarks are written in

MAP assembly code [DKC+94], and an executable is generated using the MMAS assembler and

linker [Gur94]. MMAS is derived from the Multiow assembler, and inherits the Multiow macro-

processor and instruction format.

The test programs are run on both MSIM and the MAP chip register transfer level (RTL)

simulator. MSIM, a functional-level simulator of the MAP chip, is implemented in C. It executes

400-1000 MAP cycles per second, depending on the number of active clusters. In addition to exe-

cuting programs, MSIM includes a breakpoint facility and mechanisms for debugging and pro�ling

programs. MSIM can simulate an M-Machine with a network of multiple MAP chips, and has been

parallelized to run on a multiprocessor.

The RTL is the logic design of the MAP chip, implemented in Verilog [TM91]. The RTL

model, composed of 810 unique modules and 78,000 lines of code, was used to verify the MAP chip

schematics. It accurately represents all of the modules of the chip and is exactly cycle accurate to

the silicon. The control logic schematics of the MAP chip were synthesized directly from Verilog

modules. Due to its detail, the RTL is much slower than MSIM, executing less than 15 cycles per

second on a 300MHz Sun Ultra 2 workstation. The cycle accuracy of MSIM was determined by

comparing it to the RTL model using the MAP chip veri�cation suite, consisting of 663 programs

containing 174,000 lines of assembly test code. The test programs were generated by hand, by our

compiler, and by an automated random test generator. Over that test suite, MSIM and the RTL

di�er in cycle count by less than 5% per test.

4.2 Communication

In coarse grained multiprocessors, communication between threads is exposed to the application

through memory references or messages. Today's distributed shared memory multiprocessors use

a hardware cache coherence protocol to automatically transfer data between processors. A remote

read that does not initiate any additional protocol messages between remote processors requires

nearly 140 cycles on a high end symmetric multiprocessor [CPWG97]. Most message passing

72 CHAPTER 4. ON-CHIP INTERACTION MECHANISMS

RegFile

Cluster 0 Cluster 1

Cluster Switch

RegFile

add i4, i5

sub i5, i7 i8

h1.i7

Figure 4.1: A remote register write via the Cluster Switch. When the add instruction on Cluster
0 executes, it writes its result into integer register 7 (i7) on Cluster 1. The sub instruction on
Cluster 1 can later use the result.

multiprocessors lack integrated support for message injection and extraction, which results in even

slower communication latencies (500 cycles on an Intel Paragon [CLMY96]). However, a message

can convey more information than a single word transmission through shared memory. As a result

of slow communication, today's multiprocessors are unable to exploit �ne grain parallelism. In

contrast, by incorporating multiple processors onto a single integrated circuit, the MAP chip enables

fast communication between di�erent threads. Threads may communicate through the on-chip

cache, through the shared o�-chip DRAM, or through registers. Since the data need not leave

the chip to be transferred from one thread to another, communication is fast and well suited to

�ne{grain parallelism.

4.2.1 Communication Mechanisms

The MAP chip implements two mechanisms for communicating between clusters. Using the

shared on-chip cache and local DRAM, threads can communicate with one another by loading

and storing data to the same memory locations. Alternatively, a thread on one cluster can write

directly into the register �le of another cluster, via the Cluster Switch. As shown in Figure 4.1,

the result of any arithmetic operation may be sent directly to a remote register, without interfering

with memory references or polluting the cache. The add operation on cluster 0 writes into the

register �le of cluster 1, where it can subsequently be used by the subtract. Register{register

transfers are extremely fast, requiring only one more cycle to write to a remote register than to

4.2. COMMUNICATION 73

Producer Consumer Transfer
Operation Overhead Overhead Latency

Memory (cache miss) 2 2 36
Memory (cache hit) 2 2 10
Register 1 0 2

Table 4.1: Communication latencies between threads on di�erent clusters.

a local register. Since the size of the register �le limits the storage for communicated values,

register communication is particularly suited to passing small amounts of data quickly, such as

transferring signals, arguments, and return values between threads. One drawback is that register

communication requires an additional synchronization between consumer and producer to prevent

values in the destination cluster from being illegally overwritten. Memory communication is less

prone to this because of the abundance of communication locations.

4.2.2 Communication Costs

Communication latency and overhead are evaluated with a producer-consumer microbenchmark.

Both memory and register mechanisms are examined by passing a value back and forth between two

clusters. The memory version uses two memory locations, one for each communication direction.

Spin locks using the MAP's memory synchronization bits implement the synchronization between

the threads. The producer stores its value to the target location and marks the memory location

full, while the receiver spins on the location, waiting for the data to arrive. The register version

uses the empty instruction and remote register writes. The producer empties its receiving register

and writes the value to the consumer's register �le. The consumer stalls on the register until the

value is written and the scoreboard is marked full.

Three components contribute to the latency of cross-cluster communication. The producer

overhead is the number of cycles that the producer must spend initiating the transfer. The consumer

overhead is the number of cycles that the consumer must spend executing instructions to synchronize

with the data arrival. The transfer latency is the total time from the producer initiation to the use

by the consumer. Table 4.1 shows the producer overhead, consumer overhead, and transfer latency

for memory and register communication. Before transferring the data, the memory versions must

74 CHAPTER 4. ON-CHIP INTERACTION MECHANISMS

0.5 0.35 0.25 0.18 0.10
0

10

20

30

40

50

60

C
om

m
un

ic
at

io
n

L
at

en
cy

 (
cl

oc
ks

) Cache (global)
Cache (local)
Register (global)
Register (local)

Generation (microns)
(3P, 100MHz) (4P, 300MHz) (10P, 750MHz) (20P, 1.2GHz) (80P, 2GHz)

Figure 4.2: Technology scaling of communication mechanisms. As devices become smaller, more
processors can be incorporated on-chip and the latency between remote processors increases.

�rst compute the address of the communication location, which takes 3 cycles. In the register

version, the remote location for the data is encoded in the instruction performing the transfer,

resulting in only a single cycle producer overhead. In fact, if the data is delivered by an arithmetic

instruction, the producer overhead is zero cycles, as the instruction is necessary regardless of its

destination. If all memory accesses hit in the cache, memory communication has a 10 cycle transfer

latency, including the producer overhead and two memory latencies, one each by the producer and

consumer. If both producer and consumer memory references miss in the cache, then the total

transfer latency can be as long as 36 cycles. Register communication has only one additional cycle

of latency for the Cluster Switch traversal, and the consumer is able to use the data immediately.

Figure 4.2 shows how register and memory communication mechanisms are likely to scale with

advances in silicon process technology. As described in Section 2.5 future process technologies will

enable the number of processor clusters to grow from three in a 0.5�m technology (3P) to eighty

in a 0.1�m process (80P). For the three largest chip models (10, 20, and 80 processor clusters), the

processors are divided into groups of 5 processors sharing a second level cache. Latencies are shown

for both global communication between two remote processors (global) and local communication

between two processors in the same group (local). The Register lines show the latency to transmit

4.2. COMMUNICATION 75

a values between processors using remote register writes. As this latency is dominated by wire

delay, it increases linearly with distance. The latency to communicate within a processor group

increases only to a maximum of four cycles as the decrease in physical area of a processor group

due to smaller devices counterbalances the increasing wire delay. Global communication rises more

dramatically, reaching 26 cycles in a 0.1�m process, because both the e�ective distance between

remote processors and the wire delay is increasing with advancing technology.

The latency to communicate between remote processors using a cache (Tcache) is indicated by

the Cache lines. In this model for Tcache, a source processor writes the shared data into a local

memory module. A remote processor then loads the data and must wait a full round-trip delay to

fetch the data from the source. This delay can be expressed by the following equation:

Tcache = 2 cycles for store overhead at source +

2 cycles for load overhead at destination +

2 � (round trip communication latency)

Figure 4.2 shows both the global and the local cache communication latencies using this simple

wire delay dominated model. Similar to the local register latencies, memory communication within

a group of processors does not increase dramatically. The increasing wire delay and the shrinking

group size o�set one another. However, the latency for remote cache communication grows at

approximately twice the rate as direct register communication and reaches 56 cycles for 80 proces-

sor clusters in a 0.1�m process. There are opportunities for optimizing cache communication by

selecting the communication location to be close to the destination. In this case only one corner-

to-corner delay is in the critical communication path as the source can store directly into a remote

memory location. In reality, though, using caches can be even worse than shown in the graph

due to additional overheads of indirect communication. Traversing the memory hierarchy can add

overhead at each level because the data must drop down into a location in a memory array which

may require multiple cycles to access. Memory communication requires also requires spinning or

polling which incurs both instruction and memory bandwidth overheads. Direct communication

can be synchronized explicitly using the scoreboard, which causes the destination processor to stall

rather than poll while waiting. Another overhead of memory communication is that the memory

location which is being used as the communication point may not be on a direct path between

the source and the destination processors. Thus the wire delay can be much larger than just the

76 CHAPTER 4. ON-CHIP INTERACTION MECHANISMS

corner-to-corner latency. The gap between indirect communication through memory and direct

communication through registers is already signi�cant and is increasing with faster transistors and

slower wires of future process technologies.

4.3 Synchronization

In a concurrent system, synchronization must be used to indicate when a task is to be started,

when it is complete, or when two running threads must communicate. Multiprocessors, such as

Alewife [AKK+93], have typically provided memory based synchronization instructions and used

those to build barriers and producer/consumer locks. Some, such as the CM-5, implement a

global barrier mechanism in hardware using a hierarchical barrier network [LAD+96]. The MAP

chip allows on-chip threads to synchronize through memory, registers, and a hardware barrier

instruction, while threads on separate MAP chips synchronize using messages.

4.3.1 Memory Synchronization

In the MAP chip, every memory location has a synchronization bit that exists both in the o�-

chip DRAM and in the cache, enabling locking on a location-by-location basis. Special load and

store operations allow atomic testing and setting of the bit. The code fragment below shows how

a spin-lock may be implemented using a memory synchronization bit. The load and synchronize

operation (ldsu) loads the value at the address held in register i8, into i9. In the memory system

the synchronization bit is compared to the precondition pre 1. If they are the same, the operation

succeeds: the synchronization bit is set to post 0, the contents of the location are returned to i9,

and the value true is returned to condition code register cc0. Otherwise, the location remains

unchanged, and false is returned to the condition code register. The subsequent branch will cause

the loop to spin until the operation succeeds.

_loop:

instr memu ldsu pre_1, post_0, i8, i9, cc0;

/* load from address in i8,

compare memory synchronization bit to pre_1,

set memory synchronization bit to post_0,

return result of test in cc0 */

instr ialu cf cc0 br _loop; /* if test fails, try again */

4.3. SYNCHRONIZATION 77

A similar operation is used to store a value and set the synchronization bit. This synchro-

nization mechanism can be incorporated with memory communication between threads, allowing

synchronization on a word by word basis. However, a consumer thread waiting for a producer will

continue to make memory requests while spinning, which can slow down other threads trying to

access the memory system. As an alternative to spinning, the MAP chip can implement blocking

and automatic retry. When the memory system detects a synchronization failure from a speci�c

set of synchronizing load and store instructions, it triggers a trap to software. When the user code

tries to use the result of a synchronizing load that trapped, it stalls in the pipeline waiting for the

data to return. The trap handler can run in parallel with the user code and can retry to faulting

reference or swap out the waiting thread.

4.3.2 Instruction Synchronization

The MAP chip uses full/empty bits in a register scoreboard to determine when values in registers are

valid. When an operation issues, it marks the scoreboard for its destination register invalid. When

the operation completes, it writes its result to the destination register and marks the scoreboard

valid. Any operation that attempts to use the register while it is empty will stall until the register

is valid. To reduce the amount of interaction between physically distant clusters, an operation that

writes to a remote cluster does not mark its destination register invalid. Instead, the consumer

must execute an explicit empty instruction to invalidate the destination register prior to receiving

any data. When the data arrives from a remote register write, the scoreboard is marked valid and

any operation waiting on the register is allowed to issue. Using register{register communication

fuses synchronization with data transfer in a single operation and allows the consumer to stall

rather than spin.

The simplest synchronization mechanism implemented by the MAP is the cluster barrier in-

struction cbar. The cbar instruction stalls a thread's execution until the threads on the other two

clusters have also reached a barrier. Threads waiting for cluster barriers do not spin or consume

any execution resources, so other threads can use the execution units instead. Figure 4.3 shows

how cbar can be used to orchestrate intercluster interactions. In order to guarantee correct data

synchronization, the cbar ensures that the empty of register i7 on cluster 1 executes before the

add that transfers the data from cluster 0. In addition, cbar can be used to enforce order between

78 CHAPTER 4. ON-CHIP INTERACTION MECHANISMS

Cluster 0 Cluster 1 Cluster 2

cbar

load i2, i3

cbar
store i8, i9
cbar

empty i7

sub i5, i7, i8add i4, i5, h1.i7

Figure 4.3: The cluster barrier cbar instruction enforces synchronization across all three clusters.

load and store instructions on di�erent clusters that may reference the same address.

For purposes of experimenting with instruction-level parallelism, the MAP provides a tightly

coupled (TC) mode bit that enables the MAP to simulate a VLIW machine across all three clusters.

In tightly coupled mode, each instruction contains an implicit cbar and instructions on separate

clusters issue in pseudo lock-step. Aligned instructions do not issue simultaneously across the

clusters, but instruction i + 1 on one cluster will not issue until instruction i on all of the other

clusters has issued. This provides the compiler with guarantees about the execution order of

instructions across the clusters so that it can use VLIW scheduling techniques. Tightly-coupled

mode will be discussed further in Chapter 5.

4.3.3 Synchronization Costs

Not all synchronization can be easily expressed using a producer-consumer model. A barrier can be

used to conglomerate several synchronizations into a single action. Fast barriers reduce the overhead

of using parallelism, which is vital if the parallelism to be extracted has short task execution times

between synchronizations. Four implementations of barriers across three clusters are examined:

memory, register, condition-code, and CBAR. The memory implementation uses four memory

locations; one location holds the barrier counter, and each thread has its own location on which

to spin. Upon reaching the barrier, each thread performs a fetch and increment on the counter,

using the MAP's memory synchronization bits. If the barrier count is less than 2, the thread begins

spinning on its own memory location. If the barrier count equals 2, then the other threads have

already reached the barrier. The last arriving thread resets the counter to zero, and releases the

spinning threads by marking their memory locations full.

4.3. SYNCHRONIZATION 79

Barrier
Method Latency

Memory (cache hit) 61
Register 6
Condition Code 5
CBAR 1

Table 4.2: Latency to execute a barrier across all three clusters. Even with an on-chip cache,
synchronizing using memory is more than ten times as expensive as using registers or the cbar

instruction.

The register barrier microbenchmark consists of an even phase barrier, followed by an odd phase

barrier. Upon reaching the barrier in an even phase, a thread empties its odd phase registers, and

writes into the even phase registers of both of its neighbor threads. It then reads from its own even

phase registers, stalling until they have been written by the neighbors. Two registers per phase

are necessary to allow each of the neighbors to communicate independently. The Condition Code

barrier is similar except that with the broadcast capability of global condition code registers, only

one instruction is required to signal to both neighbor threads. The CBAR barrier uses the cbar

instruction, without requiring any registers or auxiliary instructions to be executed.

Each mechanism is implemented in a simple program that does 100 successive barriers. The

time per barrier in the steady state is measured and shown in Table 4.2. The cbar instruction is the

fastest and can complete a barrier every cycle. The register and condition code barriers are similar,

with Condition Code being one cycle faster since only one write is necessary to communicate with

both neighbors. The memory barrier requires 61 cycles, even with all accesses hitting in the cache.

For each thread, approximately 20 cycles are needed for the control overhead of testing the barrier

counter, while the remaining cycles are consumed contending for the on-chip cache and waiting

for the other threads to arrive at the barrier. In order to exploit �ne{grain parallelism with task

lengths in the 10s of cycles, long latency memory-based barriers cannot be used.

Figure 4.4 shows estimates of the scalability of barrier synchronization to larger numbers of

processor clusters for the same process technologies described in Section 4.2. Latencies are shown

for global barriers encompassing all of the on-chip processor clusters (global) and for local barriers

synchronizing within a processor group (local). The CBAR lines represents the time to perform

80 CHAPTER 4. ON-CHIP INTERACTION MECHANISMS

0.5 0.35 0.25 0.18 0.10
0

100

200

300

400

500

600

700

800

900

1000

B
ar

ri
er

 L
at

en
cy

 (
cl

oc
ks

)

Cache (global)
Cache (local)
CBAR (global)
CBAR (local)

Generation (microns)
(3P, 100MHz) (4P, 300MHz) (10P, 750MHz) (20P, 1.2GHz) (80P, 2GHz)

Figure 4.4: Technology scaling of barrier synchronization.

a barrier in hardware using a global barrier instruction. This latency is composed primarily of

wire delay and increases linearly with the maximum distance between synchronizing processors.

The time to complete a local barrier among processors in a common group increases only slightly

(from 1 to 4 cycles) as the shrinking of a processor group counterbalances the increasing e�ect

of wire delay. For a global barrier, the barrier time is equivalent to the on-chip corner-to-corner

transmission latency, which is 26 cycles for a 0:1�m process with 80 processors.

The latency to synchronize via on-chip memory (Cache) requires a more complicated software

protocol. The model for software barriers is that the processor clusters are placed at the leaves of

a tree, where each internal node of the tree has 3, 4, or 5 children depending on the total number

of clusters. A barrier is performed locally �rst by all clusters with a common parent in the tree.

Subsequent barriers are performed hierarchically up the tree toward the root. After synchronization

at the root has been completed, the barrier status is distributed down the tree until it reaches the

leaves. The latency to perform this barrier can be expressed by the following equations.

Tcache =
Pm�1

i=0 n�(8 + 4�(latencycc
m�i

))

m = depth of tree

n = number of clusters grouped at leaf level

latencycc = corner-to-corner wire latency

4.4. THREAD CREATION 81

Tcache is the sum of barrier times across all levels of the tree and accounts for the barrier latency

at each level. The time to execute a barrier at each level is approximated by 8 instructions and 4

memory references. The time to execute a memory reference depends upon the distance between

the components participating in the barrier which is in turn determined by the level of the barrier

in the tree. Barriers among a local group of processor clusters can use local memory references

with short latencies. The local barrier time starts at 60 cycles for 3 processors in the 0.5�m process

and only increases to 140 cycles for 5 processors in a 0.1�m process. The primary factor in this

increase is a larger delay to the memory shared by the processors in the group. A global barrier

across all of the on-chip processors requires global communication. This simple model shows that

the cost to execute a barrier using memory for communication between processors is already quite

expensive and will become even more costly in future technologies. At least 850 cycles will be

required to synchronize 80 processors in a 0.1�m process. The increase is due both to longer global

wire delays and to more processors participating in the barrier. More direct mechanisms, such as

a cluster barrier instruction that can synchronize directly between processors, require far less time

to complete a barrier.

4.4 Thread Creation

Invoking a thread on a remote processor is typically an expensive operation. The source thread

must send a message that contains a pointer to the invoked function as well as all of the necessary

arguments. At the destination, a kernel call is used to set up the stack and to initialize all of

necessary data structures for the new thread. Finally, the function arguments are unmarshalled

and passed to the thread for execution. The overhead to initialize the thread can be in the 10s of

microseconds, which renders conventional methods inappropriate for �ne-grain parallelism in which

threads are invoked frequently.

4.4.1 New Threads

In the MAP chip, a new thread can be invoked on a remote cluster either by modifying the thread

control state through a series of store instructions, or by executing a single user level hfork

instruction. A privileged thread can update thread control state by writing to the thread control

registers through the memory mapped global con�guration space interface. Figure 4.5 shows the

82 CHAPTER 4. ON-CHIP INTERACTION MECHANISMS

#define C1_PC 0xc0240000000011a8 /* Cluster 1 program counter */

#define V0_HRUN 0xc028000000000408 /* H-Thread Run bits */

#define V0_HACT 0xc028000000000808 /* H-Thread Active bits */

#define C1_INIT 0xc024000000001150 /* Cluster 1 initialize */

instr ialu imm (_c1_proc - _here), i4; /* offset for procedure */

_here:

instr ialu lea i1, i4, i6; /* create instruction pointer */

/* Generate GCFG address for cluster 1 program counter */

instr ialu imm ##XTR(C1_PC,48,63), i9;

instr ialu shoru ##XTR(C1_PC,32,47), i9;

instr ialu shoru ##XTR(C1_PC,16,31), i9;

instr ialu shoru ##XTR(C1_PC,0,15), i9;

instr ialu setptr i9, i9;

/* Generate GCFG address for cluster 1 initialization */

instr ialu imm ##XTR(C1_INIT,48,63), i10

memu st i6, i9; /* store IP into C1_PC */

instr ialu shoru ##XTR(C1_INIT,32,47), i10;

instr ialu shoru ##XTR(C1_INIT,16,31), i10;

instr ialu shoru ##XTR(C1_INIT,0,15), i10;

instr ialu setptr i10, i10;

/* Generate GCFG address for H-Thread Run bits */

instr ialu imm ##XTR(V0_HRUN,48,63), i11

memu st i0, i10; /* initialize cluster 1 */

instr ialu shoru ##XTR(V0_HRUN,32,47), i11

instr ialu shoru ##XTR(V0_HRUN,16,31), i11;

instr ialu shoru ##XTR(V0_HRUN,0,15), i11;

instr ialu setptr i11, i11;

/* Generate GCFG address for H-Thread Active bits */

instr ialu imm ##XTR(V0_HACT,48,63), i12

memu mov ##0x3, i3;

instr ialu shoru ##XTR(V0_HACT,32,47), i12

memu st i3, i11; /* set cluster 1 H-Thread run */

instr ialu shoru ##XTR(V0_HACT,16,31), i12;

instr ialu shoru ##XTR(V0_HACT,0,15), i12;

instr ialu setptr i12, i12;

instr memu st i3, i12; /* set cluster 1 H-Thread active */

Figure 4.5: Fork a thread into Cluster 1 using the Global Con�guration Space controller.

4.4. THREAD CREATION 83

instr ialu imm (_c1_proc - _here), i4; /* offset for procedure */

_here:

instr ialu lea i1, i4, i6; /* create instruction pointer */

instr memu hfork i6, #1, cc0; /* fork procedure into cluster 1 */

instr ialu cf cc0 br _hfork_fail; /* jump to fail if cluster 1 is busy */

Figure 4.6: Fork a thread into Cluster 1 using an hfork instruction.

MAP assembly code executed in thread slot 0 of cluster 0 to generate the con�guration space

addresses and update the remote thread state in thread slot 0 of cluster 1. First, the pointer to the

remote procedure c1 proc is created in i6 using an immediate o�set from the current instruction

pointer (stored in i1). The global con�guration space address for the remote program counter is

generated through a series of immediate (imm) and shift-and-or-unsigned (shoru) operations. The

XTR macro extracts a 16 bit �eld from the constant C1 PC. The 64-bit constant is turned into

a guarded pointer using the set pointer (setptr) instruction. After storing the function pointer

into the remote program counter, the pipeline registers from the remote thread slot are cleared by

storing to C1 INIT. Finally, the HRUN and HACTIVE bits for thread slot 0 of cluster 1 are set to allow

the instructions from the new thread to be fetched and executed. Both HRUN and HACTIVE �elds

consist of three bits, one for each cluster. These �elds are set to (011) (which is equivalent to 0x3)

to allow both both cluster 0 and cluster 1 to run. The entire operation requires 23 instructions and

must run in system mode to allow the privileged setptr instruction to execute.

As a much faster alternative, the MAP chip introduces an hfork instruction, shown in Fig-

ure 4.6. To fork a thread, the new instruction pointer must be created as before, but all of thread

management is encapsulated in the hfork. The hfork instruction speci�es the instruction pointer

to run (i6) and the cluster in which the new thread will reside (#1). The hfork also speci�es a

return condition code register (cc0) in which a single bit indicating the success or failure of the

fork is written. If cluster 1 is already executing, then zero is returned in cc0; otherwise the hfork

succeeds and one is returned. The hfork is treated as a store operation by the cluster and deliv-

ered directly to the global con�guration space controller. There it starts a simple state machine

which initializes the target pipeline registers, writes the program counter, and updates the thread

active and run bits. This operation requires only 4 instructions at the source and can be executed

completely in an unprivileged mode.

84 CHAPTER 4. ON-CHIP INTERACTION MECHANISMS

_master_code:

instr ialu imm (_c1_proc - _here), i4; /* offset for procedure */

_here:

instr ialu lea i1, i4, i6; /* create instruction pointer */

instr ialu imm _slave_loc, i8; /* offset for shared memory location */

instr ialu lea i3, i8, i8; /* generate pointer to memory */

instr memu stsu ua, 1, i6, i8, cc3; /* store IP and mark location full */

_slave_code:

instr ialu imm _slave_loc, i8; /* offset for shared memory location */

instr ialu lea i3, i8, i8; /* generate pointer to memory */

_slave_spin: /* spin wait for master */

instr memu ldsu ct, 0, i8, i3, cc0; /* load and set location empty */

instr ialu cf cc0 br _slave_spin; /* spin if location still empty */

instr; /* branch delay slots */

instr;

instr;

instr ialu jmp i3; /* jump to _c1_proc */

instr; /* branch delay slot */

instr;

instr ialu lea i1, #4, i4; /* calculate procedure return pointer */

instr ialu br _slave_code; /* branch to _slave_code for next call */

Figure 4.7: Fork into a waiting thread in Cluster 1 using memory communication.

_master_code:

instr ialu imm (_c1_proc - _here), i4; /* offset for procedure */

_here:

instr ialu lea i1, i4, i6; /* create instruction pointer */

instr ialu mov i6, h1.i5; /* write IP to slave thread */

_slave_code:

instr ialu jmp i5; /* jump to _c1_proc */

instr; /* branch delay slot */

instr;

instr ialu lea i1, #4, i4; /* calculate procedure return pointer */

instr ialu br _slave_code; /* branch to _slave_code for next call */

instr ialu empty ##0x0020; /* empty i3 for call */

Figure 4.8: Fork into a waiting thread in Cluster 1 using register{register communication.

4.4. THREAD CREATION 85

4.4.2 Waiting Threads

A second method of fast thread invocation can be implemented by installing a simple dispatch

handler on the remote thread. The dispatcher waits until a source thread sends an instruction

pointer. Figure 4.7 shows the assembly code to invoke a remote thread using the shared on-chip

cache, with the master code running on cluster 0, and the slave code running on cluster 1. The

dispatch handler in the slave thread (starting at slave code) spins on a memory location waiting

for it to be marked full. The master thread must generate the pointer to the shared communication

location with the slave loc o�set from the shared heap pointer in i3. The master then stores

the program counter into that memory location, and marks it full with a synchronizing store

operation stsu. When slave loc is full, the slave jumps to the instruction pointer and stores the

procedure return pointer in i4. When the subroutine is complete, the slave resumes its spinning

on slave loc.

The MAP chip can avoid using the memory system for thread invocation by sending the instruc-

tion pointer from the master to the slave using a remote register write. As shown in Figure 4.8,

the slave stalls on an empty register i5, waiting for it to be written by the master. After creating

the instruction pointer, the master writes it directly into i5 on cluster 1, marking the destination

register full. The slave then jumps to the invoked procedure, and writes the function return pointer

in i4 as before. When the subroutine is complete, the slave re-empties i5 and branches back to

wait for a new instruction pointer.

4.4.3 Invocation Costs

Four methods for starting a thread on a remote cluster, including two cold start and two standby,

are examined. The �rst cold start method invokes the thread using the global con�guration space

controller, while the second uses the hfork instruction. The standby methods already have a slave

thread running in the remote cluster waiting for a new task from the master. The two standby

methods di�er in how the master and slave communicate with one another, using either registers

or memory.

Figure 4.9 shows the four components of a null thread call and return. The master call overhead

is the number of cycles that the master must spend executing instructions to create the new thread.

The slave invoke latency is the time from the beginning of the master call to the execution of the

86 CHAPTER 4. ON-CHIP INTERACTION MECHANISMS

master call master return

slave invoke

slave return

Master

Slave

Figure 4.9: Components of thread invocation and return.

slave's �rst instruction. The slave return latency is the time for the slave to signal to the master.

Finally the master return is the overhead for the master to resynchronize with the slave.

Table 4.3 summarizes the components of latency for each of the four methods. GCFG is the

most expensive due to the address calculation required. In addition, GCFG needs several registers

to perform the address calculation, and may ultimately require spilling some live values to memory

if no free registers are available. The hfork instruction and the standby register method are the

most e�cient, with only 1 cycle of overhead for the master at the call and return. Standby register

is a little faster overall as the slave invocation time is shorter. Standby memory is almost three

times worse than the register version because of the memory spin loops the master and slave use

to synchronize.

Although hfork is faster than standby register, both standby versions have an advantage when

the thread is invoked more than once. When an hfork instruction executes, the target thread's

registers are cleared automatically. Thus any stack or heap pointers that the target thread needs,

must be transmitted from the master to the slave on every invocation. When the thread idles in

the standby methods, only the function pointer and its arguments need to be transferred, since the

other registers can be persistent across invocations.

4.5 Summary

In order to e�ciently execute �ne{grain parallel programs, the underlying system, including both

the hardware and system software, must support fast thread interaction. Traditional multiprocessor

interactions based on shared memory or messaging mechanisms are inadequately slow. In a single

4.5. SUMMARY 87

Master Slave Slave Master
Operation Call Invoke Return Return Total

GCFG 21 27 10 9 46
hfork 1 11 2 1 14
standby memory 3 21 6 9 36
standby register 1 7 2 1 10

Table 4.3: Latencies for the overheads associated with thread invocation. The total time is end{
to{end latency of a null remote invocation. Using the hfork instruction or register communication
yields an overhead three times smaller than using memory operations.

chip multiprocessor, interactions can become much faster if certain novel features are employed. The

MAP chip introduces fast on-chip interprocessor mechanisms such as single cycle communication, a

single cycle barrier instruction, and 10 cycle thread invocation. Microbenchmark studies show that

these mechanisms allow communication that is 10 times faster, and synchronization that is 60 times

faster than mechanisms that use only an on-chip cache. As more processor clusters are incorporated

in future chips with smaller feature sizes, the gap between direct interaction mechanisms and

interacting through memory will continue to widen. With 80 on-chip processors in a 0.1�m process,

cross chip communication will require at least 56 cycles using the memory operations and only 26

cycles with direct register writes. Both of these communication latencies scale linearly with the

distance between the processors, but cache communication will incur additional constant software

overheads. The latency for memory based global synchronization will increase to more than 850

cycles. With direct hardware support for barrier synchronization, such as the cbar instruction, the

latency scales linearly with the maximum distance between processors participating in the barrier

and can be as low as 26 cycles. Synchronizing through memory scales approximately at a rate of

d�lg(n) where d is the global wire delay and n is the total number of processors to synchronize. The

additional software overhead for coordinating a hierarchical barrier is a substantial contributor to

the overhead of the barrier. Thread invocation can also be signi�cantly faster with a small amount

of hardware support. Using the hfork instruction or invoking a remote procedure by sending the

function pointer and arguments to the registers of a standby thread is three times faster than the

corresponding methods that uses load and store instructions.

The fast communication, synchronization, and thread invocation mechanisms described in this

88 CHAPTER 4. ON-CHIP INTERACTION MECHANISMS

chapter are extremely important to future single-chip computer systems. The increasing number of

transistors combined with the constraint of slower wires between the active devices dictates archi-

tectures that partition their execution units into a large number of independent processors. This

creates a tremendous demand for concurrency that cannot be met using traditional coarse-grained

application parallelism. With fast and scalable communication and synchronization mechanisms,

�ne-grain thread level parallelism can be extracted from the applications that people run every day.

In today's technology, the MAP implementation shows that threads need only to execute 10 cycles

between interactions to keep the overhead below 10%. Fine grain threads that execute for less

than 100 cycles are already feasible. In future technologies, physical locality will become even more

important, requiring processors that communicate frequently to be located close to one another.

Hardware support for direct communication and synchronization will allow the interaction latency

between processors to increase only linearly with the distance between interacting processors. As

will be shown in Chapter 5, communication and synchronization is fast enough to enable execution

of instruction level parallelism across physically distributed and independent processors.

Chapter 5

Instruction-Level Parallelism

Instruction-level parallelism (ILP) has long been an attractive method for improving computer

system performance, as it typically can be used without modifying applications. Today's dynam-

ically scheduled superscalar microprocessors examine instructions held in a scheduling window,

determine which can be executed concurrently, and distribute them to multiple execution units.

To avoid some of the limits of ILP [Wal91], superscalars employ increasingly complicated microar-

chitectures which automatically expose more parallelism in existing binary programs. Techniques

such as register renaming, adaptive branch prediction, and out-of-order execution are all intended

to increase the number of instructions that can be considered for execution.

At the other end of the spectrum from dynamic scheduling are Very Long Instruction Word

(VLIW) architectures, which have been used in scienti�c supercomputers such as the Multiow

Trace [CNO+88] and more recently incorporated into digital signal processors like those in the

Texas Instruments TMS320C6x family [Dil97]. VLIW machines statically schedule their instruc-

tion streams across multiple arithmetic units, avoiding the hardware complexity of superscalars.

A VLIW compiler also uses a notion of an instruction window for scheduling, but the software

window size can be much larger than one �xed in hardware. Thus with compiler scheduling,

instructions from very di�erent parts of the program can execute concurrently. Since software

scheduling is also limited by control dependencies, a number of compiler algorithms, such as trace

scheduling [LFK+93], software pipelining [Lam88], and hyperblocks [MLC+92], have all been used

to increase the amount of ILP visible to the compiler. These compilation techniques have also

proven to be useful in scheduling code for superscalar machines.

89

90 CHAPTER 5. INSTRUCTION-LEVEL PARALLELISM

With the faster gates and slower wires of future silicon process technologies, microprocessor

chips must be partitioned into components that exploit local communication and limit global com-

munication. The global control of superscalar processors will prevent them from being scaled

beyond 8{16 arithmetic units. Static VLIW machines are better suited for scalability, but still

require a central control unit.

This chapter discusses how instruction-level parallelism can be exploited on the independent

on-chip processors of the MAP chip, using its fast intercluster communication and synchronization

mechanisms. Section 5.1 describes the constraints that limit ILP and result in an uneven amount

of parallelism in di�erent parts of the program. Section 5.2 discusses the relaxed synchronization

across the clusters of the MAP and compares it to both superscalar and VLIW architectures.

Finally, Section 5.3 uses a synthetic benchmark and two application kernels to evaluate the loose

coupling between MAP processors on ILP code, by comparing it to a lock-step VLIW execution

discipline.

5.1 Limits of ILP

Amajor factor that limits the availability of instruction-level parallelism is uncertainty in the control

and data ow of a program. Control uncertainty stems from conditional branches which determine

the dynamic path through a program. As the direction of a branch is often not known until

only slightly before the branch is executed, the instructions that can be considered for scheduling

may be restricted. Both hardware and software branch prediction techniques are currently used

by computer systems in an attempt to increase the window of instructions that can be examined

for scheduling or execution. Predicated execution of instructions, in which each instruction may

be conditionally executed based on the value of a condition code, may also be used to eliminate

some conditional branches and prevent the linear execution of an instruction stream from being

interrupted.

Data uncertainty is typically a result of being unable to determine in advance whether a load

and a store instruction reference the same address. If the address is di�erent, then the load

and store may be reordered, but if they reference the same location, the instructions must be

executed sequentially. Compilers have had some success with memory disambiguation, particularly

with languages that use structured array accesses [GKT91]. Performing memory disambiguation in

5.1. LIMITS OF ILP 91

lea A, i, t1

ld t1, t2 ld t3, t4

add i, #1, i

ilt i, #10, t5

(cf t5) br _loop

lea B, i, t3

mul t2, t4, t6

add C, t6, C

Figure 5.1: Dependence graph for inner loop of dot product. Data dependence is indicated with
the solid arrows, while control dependence is indicated with the dashed arrow. The performance of
the schedule is limited by the critical path, and the instruction-level parallelism varies throughout
the program.

hardware has also been proposed [FS96], but this is a cumbersome process that requires complicated

address comparisons to be performed dynamically.

If all of the control and data uncertainty could be correctly predicted, the only limit to the

amount of ILP would be the sequential data dependent instructions that form the critical path of

an application. The degree of ILP can vary throughout di�erent parts of the program. Figure 5.1

shows the dataow graph for the inner loop of the dot product code shown below:

for(i=0; i<10; i++) {

C = C + A[i]*B[i];

}

In this example without loop unrolling, the degree of ILP varies from one to three instructions.

The critical path for data dependencies has 4 instructions, including an address calculation (lea),

a load from memory (ld), and two arithmetic operations. The loop control instructions are aligned

in a separate 3 instruction path, but control dependencies may require the branch to be executed

after the �nal add. The solid data arcs in the graph indicate communication between instructions,

and if instructions are placed on di�erent execution units, the communication overhead can limit

92 CHAPTER 5. INSTRUCTION-LEVEL PARALLELISM

the amount of instruction-level parallelism that can be exploited. A scalable system for executing

ILP code must employ fast communication mechanisms between the execution units, and if possible

schedule the program so that the amount of communication needed between instructions on di�erent

execution units is minimized.

5.2 Instruction-Level Parallelism on the MAP chip

In the MAP chip, each processor cluster has its own program counter, and the integrated com-

munication and synchronization mechanisms enable fast intercluster interactions. A single ILP

instruction stream can be partitioned into substreams that are placed on di�erent clusters. Data

is transferred explicitly from one stream to another by writing into a remote cluster's register �le.

Results of comparisons can be broadcast to all clusters allowing each of them to perform the same

conditional branch. Clusters synchronize only when necessary for control or data dependencies.

If a stream stalls while waiting for a long latency operation, the instruction streams on the other

clusters can proceed until they reach the next synchronization point.

5.2.1 Loosely Coupled Execution Streams

Instructions streams on di�erent MAP clusters are loosely coupled, which means their instructions

do not execute in lock-step. Instead, synchronization is explicit in the program and is only inserted

when needed to coordinate control or data dependencies between instructions. Figure 5.2 details

the assembly code for two MAP clusters to execute the inner-loop of a linear relaxation:

for(i=0; i<imax; i++) {

A[i] = (A[i+1] + A[i+2] + A[i-1] + A[i-2]) / 4;

}

Cluster 0 performs the address calculations and arithmetic operations for A[i+1] and A[i+2],

while cluster 1 does the same for A[i-1] and A[i-2]. In this partitioning of the work, three

communications are required between the clusters and a total of 15 instructions lie on the critical

path. At the beginning of the loop, the index variable i is passed to cluster 1 in register i7. Remote

registers are named by pre�xing a cluster identi�er to the register number. Destination clusters are

indicated with relative names so that h1 is next numerically named cluster. After computing its

5.2. INSTRUCTION-LEVEL PARALLELISM ON THE MAP CHIP 93

Cluster 0
top 0:

instr memu cbar;

instr ialu mov i7, h1.i7

memu lea i6, i7, i8;

instr ialu add i7, #1, i7

memu add i7, #2, i11;

instr ialu lea i6, i7, i9;

memu lea i6, i11, i10;

instr memu ld i9, i9;

instr ialu empty fi12g
memu ld i10, i10;

instr memu cbar;

instr ialu add i9, i10, i10;

instr ialu add i10, i12, i10;

instr ialu lsh i10, #-2, i10;

instr memu st i10, i8;

instr memu cbar;

instr ialu ilt i7, i3, h0.cc0;

instr ialu ct h0.cc0 br top 0;

Cluster 1
top 1:

instr ialu empty fi7g
instr memu cbar;

instr ialu sub i7, #1, i8

memu sub i7, #2, i9;

instr ialu lea i6, i8, i8

memu lea i6, i9, i9;

instr memu ld i8, i8;

instr memu ld i9, i9;

instr memu cbar;

instr ialu add i8, i9, h2.i12;

instr ialu empty fh2.cc0g

instr memu cbar;

instr ialu ct h2.cc0 br top 1;

Figure 5.2: Assembly code for 4-point relaxation on 2 MAP clusters.

sum, cluster 1 returns it by writing the result of the add directly into i12 in cluster 0. Cluster 1

writes to registers in cluster 0 by pre�xing the h2 to the register number. At the end, cluster 0 tests

i against the loop limit and uses the integer less than (ilt) instruction to broadcast the comparison

result to cluster 1. Each communication is preceded by an empty instruction and a barrier (cbar) to

guarantee that the consumer receives the correct data. Without the synchronization, the programs

running on the two clusters may end up operating on di�erent iterations and pass the wrong values

data between them.

The communication and synchronization overhead can be reduced in two manners. First, the

multiple barrier and empty instructions can be coalesced into a small number of empty instructions

and a single barrier. Second, some variables can be replicated and maintained independently on

di�erent clusters. Figure 5.3 shows an optimized schedule for the relaxation that requires only

one communication and one barrier for the entire loop. Here the index variable i is stored and

incremented on both clusters, eliminating its transfer at the beginning of the loop. In addition, the

comparison to determine if the end of the loop has been reached can now be performed on each

94 CHAPTER 5. INSTRUCTION-LEVEL PARALLELISM

Cluster 0
top 0:

instr ialu empty fi12g;
instr memu cbar;

instr memu lea i6, i7, i8;

instr ialu add i7, #1, i7

memu add i7, #2, i11;

instr ialu lea i6, i7, i9

memu lea i6, i11, i10;

instr memu ld i9, i9;

instr memu ld i10, i10;

instr ialu add i9, i10, i10;

instr ialu add i10, i12, i10;

instr ialu lsh i10, #-2, i10;

instr memu st i10, i8;

instr ialu ilt i7, i3, cc0;

instr ialu ct cc0 br top 0;

Cluster 1
top 1:

instr memu cbar;

instr ialu sub i7, #1, i8

memu sub i7, #2, i9;

instr ialu lea i6, i8, i8

memu lea i6, i9, i9;

instr memu ld i8, i8;

instr memu ld i9, i9;

instr ialu add i7, #1, i7

instr ialu ilt i7, i3, cc0;

instr ialu add i8, i9, h2.i12;

instr ialu ct cc0 br top 1;

Figure 5.3: Optimized assembly code for 4-point relaxation on 2 MAP clusters.

cluster and the result need not be broadcast. Finally, the empty of i12, which receives the result

of the add from cluster 1, can be pushed to the top of the loop. If enough registers are available,

all of the barriers can be eliminated by using and odd-even strategy in which the loop is unrolled

and the communication registers are split into two sets. During the even section of the iteration,

the odd registers are emptied for the next part of the loop. The phases of computation can be kept

separate by an interlocking producer{consumer relationship between the two threads.

The number of required synchronizations depends on the number of registers needed to hold

live variables. If the code has many live variables, then reserving registers for communication may

require more register spills to memory. However, by exposing the interactions explicitly to the

programmer or compiler, tradeo�s can be made between communication and storage that make the

best use of the hardware resources.

5.2.2 Comparison to Superscalar

By partitioning the execution units into independent clusters, making interactions explicit, and

requiring compiler scheduling of the communication, the MAP chip implementation is far simpler

than dynamically scheduled superscalar architectures. Since the instruction issue logic in the MAP

5.2. INSTRUCTION-LEVEL PARALLELISM ON THE MAP CHIP 95

is distributed throughout the clusters, scaling to more execution units has no impact on a single

cluster's complexity. Adding more execution units to a superscalar architecture faces problems

in both the issue logic and in the register �le. Since a superscalar's issue logic must schedule

instructions from the instruction window to the execution units, its complexity is proportional to

the product of the window size and the number of execution units. By increasing the number

of execution units, the instruction window must grow so that more instructions can be evaluated

simultaneously. Thus the issue logic complexity increases with the square of the number of execution

units, which is not an attractive equation for scalability. In addition, the wire delay required to

deliver an instruction from the central instruction window to a remote execution unit is likely to

limit the clock rate.

The second problem in scaling superscalar microprocessors stems from the demand for more

register bandwidth to supply all of the execution units with data. One alternative is to maintain

a single monolithic register �le in which all registers are accessible from all execution units. This

is attractive because a dynamic scheduling algorithm need only to be concerned with instruction

placement and not data placement. However, each additional register �le port requires one more

horizontal and vertical track per register cell to connect to the word and bit lines. As a result,

the size of the register �le grows with the square of the number of ports. With a large number of

execution units, the register �le becomes too large and too slow. Perhaps even more severe is the

complexity of the bypass logic to deliver data from the output of one execution unit to the input

of another. To do full bypassing among N execution units requires N2 busses, which results in

designs that become wire limited even when N is small.

An alternative to a superscalar's monolithic register �le is to partition it into multiple banks,

such as in the DEC 21264 [Gwe96]. However, this places additional burdens on the dynamic in-

struction scheduling logic as instruction and data placement must both be managed. Combined

with a larger scheduling window, this scheduling problem is likely to be too di�cult to accom-

plish in an aggressive clock cycle. Incorporating the MAP's mechanisms is attractive for scaling

superscalar technology to larger numbers of execution units. Each MAP cluster could contain a

dynamically scheduled superscalar processor, but clusters would still independent and use explicit

communication and synchronization.

96 CHAPTER 5. INSTRUCTION-LEVEL PARALLELISM

5.2.3 Comparison to VLIW

A VLIW processor has a single program counter and a single instruction stream which issues in

lock-step across the execution units. The data dependencies are enforced by static knowledge of all

of the instruction latencies. If the latencies change, a given program must be rescheduled in order

to run correctly. In the MAP chip, the register scoreboard enforces the data dependencies between

operations. Therefore, changing the memory or instruction execution latencies has no e�ect on the

correctness of the program. In addition, since the MAP clusters are not synchronized in lock-step,

long latency operations on di�erent clusters can be overlapped, instead of sequentialized.

The Multiow Trace/500 VLIW supercomputer used a distributed instruction cache to hold its

instructions. When a branch was taken, the target was broadcast to all of the execution units. In

order to reduce the memory size of the executable program, instructions were stored in a dense

format which eliminated null operations (NOPs) corresponding to unused execution units. A com-

plicated instruction cache re�ll engine was required to expand from the main memory format into

the sparse format that was executed by the arithmetic units. The independent clusters of the MAP

simplify the hardware required for instruction sequencing. Branch instructions are purely local

operations within a cluster, and if an ILP program using all of the clusters changes control ow,

then all of the clusters branch independently. Because synchronization between instructions on

di�erent clusters is explicit, NOP placeholders are not required. If a cluster's execution units are

not used, then the MAP's synchronization pipeline stage will automatically issue NOPs while the

thread waits at the next synchronization point.

5.3 Evaluation of Loose Coupling

In strictly statically scheduled VLIW machines, no hardware interlocks are used to enforce data

or control dependencies. The compiler schedules the instructions, taking into account all of the

hardware latencies at compile time. Unpredictable latencies, such as those associated with a cache

memory system, are di�cult to statically schedule. Either the compiler can assume the worst-case

for all memory latencies, or the hardware can implement interlocks, such as a scoreboard, to enforce

the data dependencies. However, if strict lock-step instruction execution is preserved, latencies on

di�erent execution units may be sequentialized, resulting in a longer critical path.

5.3. EVALUATION OF LOOSE COUPLING 97

Cluster 0

Cluster 1

Cluster 2

T
IM

E

load

use

load

load

use

use

Cluster 0
Cluster 1

Cluster 2

load

load
load

use
use

use

Overlapped ScheduleSequential Schedule

Figure 5.4: The e�ect of overlapping memory latencies.

Figure 5.4 shows the execution of two VLIW schedules consisting of three loads and three uses.

In each case an instruction stream must wait at the point of use until the data from the load has

returned. In the sequential schedule, a cluster's load follows the previous cluster's use, resulting

in multiple waiting times. The overlapped schedule allows the loads to proceed in parallel and the

clusters wait together for the data to return.

The MAP chip automatically overlaps latencies of all types by allowing its independent process-

ing clusters to slip relative to one another. Synchronization is not implicit and lock-step, but instead

is performed only when needed. However, synchronization is not free, as additional instructions

are needed to coordinate the clusters. This section evaluates the advantages and disadvantages

of loose coupling on the MAP chip compared to a VLIW emulated by the MAP's tightly coupled

mode which enforces lock-step synchronization across the clusters. A simple synthetic benchmark

is used to determine the bene�t of slip in a program with unpredictable latencies. The cores

of two applications are then examined to quantify the e�ect of slip and the overhead of explicit

synchronization.

5.3.1 Synthetic Benchmark

Figure 5.5 shows a synthetic benchmark program in which each of 3 clusters sum the contents of a

series of memory locations. The contents of the address increment register i6 can be set to make the

loads either hit or miss in the cache. When executed with lock-step instruction synchronization,

98 CHAPTER 5. INSTRUCTION-LEVEL PARALLELISM

Cluster 0
lp c0:

instr memu ld i5, i7;

instr ialu add i10, i7, i10;

instr ialu lea i5, i6, i5;

instr;

instr;

instr;

instr;

instr ialu add i8, #1, i8;

instr ialu ile i8, i9, cc0;

instr ialu ct cc0 br lp c0;

Cluster 1
lp c1:

instr;

instr;

instr memu ld i5, i7;

instr ialu add i10, i7, i10;

instr ialu lea i5, i6, i5;

instr;

instr;

instr ialu add i8, #1, i8;

instr ialu ile i8, i9, cc0;

instr ialu ct cc0 br lp c1;

Cluster 2
lp c2:

instr;

instr;

instr;

instr;

instr memu ld i5, i7;

instr ialu add i10, i7, i10;

instr ialu lea i5, i6, i5;

instr ialu add i8, #1, i8;

instr ialu ile i8, i9, cc0;

instr ialu ct cc0 br lp c2;

Figure 5.5: Sequential memory access program.

Cluster 0
lp c0:

instr memu ld i5, i7;

instr ialu add i10, i7, i10;

instr ialu lea i5, i6, i5;

instr;

instr;

instr;

instr;

instr ialu add i8, #1, i8;

instr ialu ile i8, i9, cc0;

instr ialu ct cc0 br lp c0;

Cluster 1
lp c1:

instr memu ld i5, i7;

instr ialu add i10, i7, i10;

instr ialu lea i5, i6, i5;

instr;

instr;

instr;

instr;

instr ialu add i8, #1, i8;

instr ialu ile i8, i9, cc0;

instr ialu ct cc0 br lp c1;

Cluster 2
lp c2:

instr memu ld i5, i7;

instr ialu add i10, i7, i10;

instr ialu lea i5, i6, i5;

instr;

instr;

instr;

instr;

instr ialu add i8, #1, i8;

instr ialu ile i8, i9, cc0;

instr ialu ct cc0 br lp c2;

Figure 5.6: Overlapped memory access program.

5.3. EVALUATION OF LOOSE COUPLING 99

0

10000

20000

30000

40000

50000

60000

C
yc

le
s

VLIW-sequential
VLIW-overlap
Loosely-Coupled

Cache Miss Cache Hit

Figure 5.7: The e�ect of slip among instruction streams. A better VLIW schedule to overlap
memory references improves performance 6{9%, while removing lock-step synchronization entirely
results in a 12{20% improvement.

none of the memory latencies are overlapped, and each load must wait until the previous load

completes. Figure 5.6 shows a similar program, in which the memory references are scheduled to

execute in parallel in the same instruction and are overlapped. The null instructions are maintained

so that the only di�erence between the sequential and overlapped schedules is the waiting time.

Each loop is run for 1536 iterations and the experiment is run twice, once in which all memory

references hit in the cache, and again with all references cache missing.

Figure 5.7 shows the e�ects of overlapping the memory latencies. VLIW-sequential is the

lock-step execution of the sequential program and VLIW-overlap is the lock-step execution of the

overlapped program. Loosely-coupled uses the normal mode of the MAP chip in which no implicit

synchronization is enforced across the clusters and executes the same program as VLIW-sequential.

Compared to VLIW-sequential, the better scheduling in VLIW-overlap results in a 6% speedup

for cache misses and a 9% speedup for cache hits when memory latencies on di�erent threads are

overlapped. Loosely-coupled performs 12% faster for cache misses and 20% faster for cache hits than

VLIW-sequential because the lack of synchronization allows overlap not only of memory operations,

but also of other loop overhead such as instruction fetch unit stalls. In addition, the slip skews the

load instructions so that fewer conicts to the on-chip cache banks occur. The improvement from

overlapping the memory latencies is smaller when the references miss in the cache, as each cluster

must spend a greater fraction of its time waiting.

100 CHAPTER 5. INSTRUCTION-LEVEL PARALLELISM

Program Total Cycles CBAR Remote Write GCC broadcast

MG-core 147161 5498 12115 2041
CG-core 277752 5654 10691 2041

Table 5.1: Intercluster interactions in MG-core and CG-core with explicit synchronization.

5.3.2 Application Kernels

Two application kernels are used to evaluate execution of instruction-level parallelism using both

lock-step and explicit synchronization. MG-core is the relaxation subroutine of a multigrid bench-

mark, consisting of a triply nested loop that computes a 27-point weighted sum on all points in a

3-dimensional 12�12�12 space. CG-core is the primary subroutine of a 3-dimensional conjugate

gradient that consists of a triply nested loop implementing a wavefront of computation across the

diagonal of a 12�12�12 cube. Each kernel was hand coded and optimized for a single MAP cluster

(SEQ), and was hand-scheduled for three MAP clusters using the intercluster communication and

synchronization mechanisms. One version of the three cluster program has all of the explicit syn-

chronization required for loosely coupled execution (Loosely Coupled), while another uses implicit

lock-step synchronization (VLIW).

Table 5.1 shows the total cycles required to execute the two application kernels in Loosely

Coupled mode, and includes the number of intercluster interactions required for explicit synchro-

nization. On average, MG-core synchronizes using the cluster barrier every 27 cycles, but the

clusters communicate every 10 cycles. Likewise, CG-core synchronizes every 49 cycles, and clus-

ters communicate every 22 cycles. The interaction frequencies show that the data ow graph for

each kernel contains somewhat independent instruction sequences that can be placed on separate

clusters. In addition, the optimization of emptying multiple registers at a given cluster barrier is

evident by the ratio 2.3{2.5 communications per barrier.

Figure 5.8 shows the breakdown of the execution time for both MG-core and CG-core. The

number of cycles spent executing instructions is shown by Execute. Stalls due to instruction fetch,

including both instruction cache misses and branch penalties, are signi�ed by IFU. Stalls due to

memory latencies, including both cache hits and misses, and data dependent instruction latencies

are included in Memory. Sync comprises the time spent while waiting at a barrier or waiting for

5.3. EVALUATION OF LOOSE COUPLING 101

0

50000

100000

150000

200000

C
yc

le
s

Sync
Memory
IFU
Execute

SEQ VLIW Loosely Coupled
C0 C1 C2 C0 C1 C2

MG-core

0

100000

200000

300000

C
yc

le
s

Sync
Memory
IFU
Execute

SEQ VLIW Loosely Coupled
C0 C1 C2 C0 C1 C2

CG-core

Figure 5.8: ILP cycle breakdown for MG-core and CG-core.

data to be delivered from a remote cluster.

For MG-core, lock-step VLIW synchronization yields a speedup of 28% while Loosely Coupled

speeds up the kernel by a total of 32%. A perfect factor of three speedup on the parallel versions

is not attained, due in part to overhead and contention. Both VLIW and Loosely Coupled execute

more total instructions than SEQ because some code, including as branches and address calcula-

tions, is replicated on multiple clusters. The cumulative time spent waiting for memory requests on

all clusters is larger than SEQ for both parallel versions. More memory instructions are required,

due to replication, and there is more contention for the shared on-chip cache. As a result, the

sequential version spends 83% of its time executing useful instructions, while VLIW and Loosely

Coupled spend only 52{62%. The overall speedup of the parallel models is also limited by imperfect

parallelization, as neither loop unrolling nor software pipelining was used to scheduling the inner

loop. Since these techniques require many registers to hold variables from multiple iterations, the

MAP chip is somewhat disadvantaged with its limited register set. In Loosely Coupled, cluster 0

does slightly more work, which results in more time spent waiting for synchronization on clusters

1 and 2. In VLIW, all execution units execute the same number of instructions, but some of these

are NOPs where parallelism is not able to �ll instruction slots in all of the clusters. Finally, due

to its lock-step execution, VLIW spends slightly more time synchronizing than Loosely Coupled,

resulting in a 5% performance advantage for the explicitly synchronized program.

For CG-core, the performance advantage of instruction-level parallelism is much smaller, only

13% for both VLIW and Loosely Coupled. In its inner loop, this kernel contains accesses to

102 CHAPTER 5. INSTRUCTION-LEVEL PARALLELISM

multidimensional arrays, requiring several memory references for each array element, and a 20

cycle latency oating-point divide. As a result, the sequential version spends only 32% of its cycles

executing instructions, and the time to complete the program is limited by the memory and pipeline

latencies. Both parallel versions are load balanced and the sum of the instructions executed across

all clusters is 45% more than SEQ. However, the load instructions and the divide in the inner loop

of cluster 0 cause the memory and synchronization overheads to skyrocket. In VLIW, each cluster

spends as much as 41% of the total execution time waiting for the other clusters. Although the

divide is executed in cluster 0, the time spent waiting for it to return is incorporated into Sync, as

some of the divide latency is covered by time waiting for other clusters. For Loosely-Coupled, the

divide latency is a part of Memory because cluster 0 does not need to wait for the other clusters

before using the divide result. The other component of the long Memory time of cluster 0 is

contention for the Memory Switch and the on-chip cache.

5.4 Summary

This chapter demonstrates the viability of exploiting instruction-level parallelism on the MAP chip.

The communication and synchronization mechanisms are fast and are easily exposed to a compiler.

Orchestrating the communication between clusters is straightforward and can be accomplished

using a barrier and an empty instruction to guarantee that the synchronization will occur on data

delivery. The overhead resulting from inserting the synchronization instructions is low, and can be

reduced through a variety of optimizations, including emptying multiple registers at a given barrier.

These intercluster mechanisms on the MAP are scalable as only the intercluster communication

network and global barrier busses would require modi�cation in a system with more clusters.

The performance of explicitly synchronized ILP is competitive with implicitly synchronized

VLIW architectures. Loosely coupled clusters allow instruction streams to slip relative to one

another and to overlap, instead of sequentialize, their long latency operations. This slip is also ben-

e�cial when the instruction streams need to access a limited resource, such as the on-chip cache.

The di�erent streams will naturally align themselves so that they do not all access the resource at

the same time. Explicitly synchronizing the streams only when necessary is not only simpler to

implement in hardware, but also faster (up to 5%) on the application cores than implicitly synchro-

nized streams, even when counting the overhead for executing the synchronization instructions.

Chapter 6

Thread-Level Parallelism

In traditional parallel computers, the communication latencies between threads on di�erent pro-

cessors can be as high as 100 to 1000 cycles. Each processing node is typically a commodity

microprocessor which is connected to a custom network through the memory interface pins. For

each transfer between processors, a substantial penalty must be paid to traverse the deep on-chip

memory hierarchy just to get to the network. The software overhead to receive and synchronize

with an incoming transfer can also be quite large. Because of these high overheads, most parallel

applications use only coarse-grain threads with many thousands of cycles between interactions.

The MAP chip changes the relationship between computation and communication in a single

chip multiprocessor. Fast interaction mechanisms are integrated directly into the processor pipeline,

enabling threads on di�erent clusters to communicate and synchronize in a single cycle. Fine-grain

threads can use these mechanisms to parallelize applications that require frequent communication,

and those that have small data sets and large computational needs, such as electronic circuit

simulation.

This chapter focuses on the e�ectiveness of the MAP's on-chip communication and synchroniza-

tion mechanisms at exploiting on-chip �ne and coarse-grained parallelism on a range of scienti�c

applications. The coarse-grained parallelism comes from the outer loops of the applications, mainly

by dividing the data set across the processors and assigning independent loop iterations to them.

The �ne{grain parallelism is added by examining the inner loops of the applications to �nd subrou-

tines and expressions that can be executed concurrently. Section 6.1 discusses the encapsulation and

invocation of parallel tasks using a parallel procedure call (PPC). Section 6.2 compares register

103

104 CHAPTER 6. THREAD-LEVEL PARALLELISM

C code

fork(eval node, cur node, i);

��� compute ���

join(cost);

Assembly

instr memu empty i14; /* for join */

instr ialu mov i6, h1.i6; /* cur node */

instr ialu mov i7, h1.i7; /* i */

instr ialu mov i8, h1.i3; /* function pointer */

��� compute ���

instr ialu mov i14, i6; /* wait for result */

Figure 6.1: Parallel procedure call fork and join.

communication to memory communication between threads, using a �ne-grain synthetic bench-

mark. Section 6.3 details the set of parallel applications used in this study to explore the bene�ts

of the MAP's integrated communication and synchronization mechanisms. Sections 6.4 examines

�ne-grain inner-loop parallelizations of the applications, while Section 6.5 looks at more traditional

outer-loop methods of exploiting concurrency.

6.1 Parallel Procedure Call

In this study, thread level parallelism is exploited using a parallel procedure call (PPC) which is

similar to a future [KHM89]. A master thread runs on cluster 0 and controls the ow of the program,

while slave threads run on clusters 1 and 2 and wait to be forked by the master. When the master

encounters a parallel procedure call, it forks the procedure to a slave thread and continues executing.

The slave executes the procedure and returns the value to the master. At a join, the master must

wait until the slave has completed its task.

Figure 6.1 shows the C code and the corresponding assembly code that runs on the master

thread during a parallel procedure call. The fork macro expands into a sequence of assembly

language instructions to transfer the pointer to the eval node function and the two arguments

to cluster 1. Register i14 is �rst emptied to prepare for the synchronization at the join. The

procedure's parameters (cur node and i) are transferred into cluster 1's argument registers (i6,

i7), matching the compiler's function calling protocol. Finally, the master delivers the eval node

function pointer to cluster 1 in register i3. When the master reaches the join, it resynchronizes with

6.1. PARALLEL PROCEDURE CALL 105

slave loop: /* slave code */

instr ialu jmp i3; /* wait for new IP, then jump */

instr; /* delay slot */

instr; /* delay slot */

instr ialu lea i1, #4, i4; /* calculate return IP */

��� compute function ���

slave return: /* slave code */

instr ialu br slave loop

memu mbar; /* commit all memory accesses */
instr ialu empty i3; /* empty IP register */

instr ialu mov i6, h2.i14 /* transfer result to master */

instr; /* delay slot */

Figure 6.2: Slave standby handler for parallel procedure call.

the slave, by reading i14. If the slave has already completed, i14 will be full, and the synchronizing

move operation will execute immediately. Otherwise the master will stall until the slave completes

and delivers the function's return value.

Prior to any parallel procedure call, the master starts a standby handler in the slave thread

on cluster 1, giving it a stack pointer and a heap pointer. These remain persistent throughout

execution of the program, and are not passed from the master to the slave at every call. The

assembly code for the standby handler, shown in Figure 6.2, waits for i3 to be marked full. When

the master writes the function pointer into i3, the slave handler jumps to the pointer, and in the

last branch delay slot, computes the function return pointer and places it in i4. When the parallel

procedure call completes, the slave handler resumes control. It �rst executes an mbar instruction

that waits for any outstanding memory references so that no registers are inadvertently overwritten.

The handler then empties i3 for the next invocation and passes the function's return value from

i6 to the master's synchronization register, i14. Finally it returns to slave loop to wait for the

next call.

The same master/slave protocol can also be implemented using only the local on-chip cache to

transfer data between threads. At the fork, the master empties the synchronization bit associated

with a memory location in preparation for the return value. The arguments and function pointer

are written to memory and the locations are marked full to signal to the slave. The slave spins until

the memory location holding the function pointer is full, loads the arguments into registers for the

106 CHAPTER 6. THREAD-LEVEL PARALLELISM

for(i=0; i<global_num; i++) {

res1 = sub_loop(sub_num);

res2 = sub_loop(sub_num);

res3 = sub_loop(sub_num);

total_res = res1 + res2 + res3;

}

Figure 6.3: Pseudocode for synthetic benchmark. Each instance of sub loop is executed on a
di�erent cluster for the parallel measurements.

function call, and jumps to the forked procedure. Upon return, the slave handler �rst empties its

input argument memory locations and stores the return value into the designated return location,

marking it full. At the join, the master spins on the return location until the slave has completed.

The experiments throughout this chapter compare the performance of communicating between the

master and slave using registers or memory.

6.2 Synthetic Benchmark Study

A synthetic benchmark is �rst used to further examine the e�ect of the interthread register and

memory communication latencies of the MAP chip. With fast mechanisms for thread invocation

and communication, extremely �ne{grain thread parallelism can be exploited. If the mechanisms

are slower, as is on-chip memory communication, �ne{grain parallelism can still be exploited, but

the granularity of the tasks must be larger. The synthetic benchmark, shown schematically in

Figure 6.3, consists of a single loop containing three function calls, each of which may be run in

parallel. Varying sub num changes the time to execute each of the function calls (a�ecting both

grain size and problem size), while global num dictates the number of outer loop iterations.

In the parallel versions, the master thread invokes one instance of sub loop on each of the

neighboring clusters, using a parallel procedure call (PPC), and executes the third instance itself.

The slave threads operate in standby mode waiting to be signalled by the master. When a slave

completes, it returns its result to the master, which performs the join before beginning another

iteration of the outer loop. Each of the di�erent versions is implemented in hand generated assembly

code and is itemized in Table 6.1.

6.2. SYNTHETIC BENCHMARK STUDY 107

Synthetic Program Description

SEQ Baseline sequential
PPC REG Parallel with register synchronization
PPC MEM Parallel with memory synchronization

Table 6.1: Synthetic benchmark execution models.

6.2.1 Granularity

The communication frequency and cost has a substantial impact on the e�ectiveness of paralleliza-

tion over multiple clusters. When task granularity is small, communication between the master

and the slaves is frequent. The MAP's fast register-register communication is required in order

to see performance improvements when �ne grain tasks are used. Figure 6.4 shows the time for

one iteration of the outer loop as a function of the granularity of the inner loops, normalized to

the sequential execution time. The granularity, in turn, is a function of the number of inner loop

iterations, which is varied from 0 to 30. When no iterations are executed within sub loop, the

procedure call overhead and test inside the slave function still requires 19 cycles. Each increment

in grain size corresponds to an additional loop iteration in each subroutine. At the smallest grain

size, PPC REG is 1.6 times faster than SEQ, while PPC MEM is 1.2 times slower, due to the

additional cost for the master to store the arguments into memory and for the slave to retrieve

them. Both PPC REG and PPC MEM improve substantially as more work is done inside the inner

loops. However, their execution time relative to sequential attens out above granularities of 110

cycles as they approach the maximum of 3 times speedup. PPC REG still maintains an advantage

over PPC MEM, but that diminishes as the granularity increases.

Scaling the problem size may be an acceptable method of increasing the grain size and reducing

communication overhead. However, if the problem to be solved is a �xed size, then the speedup that

can be attained through parallelism is limited directly by the cost for threads to interact. Adding

more processors decreases the grain size, but the interaction overhead overwhelms any parallelism

bene�t. The second experiment examines the total execution time of a constant problem size as a

function of variable grain size. The number of outer loop iterations is varied from 1 to 100, while the

number of iterations in each sub loop call is varied from 100 to 1, with the sum of all of the inner

108 CHAPTER 6. THREAD-LEVEL PARALLELISM

0 20 40 60 80 100 120 140 160 180

Granularity (cycles)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
R

el
at

iv
e

E
xe

cu
ti

on
 T

im
e

SEQ
PPC_MEM
PPC_REG

Figure 6.4: Outer loop iteration time as a function of inner loop grain size, normalized to sequential.
At the smallest grain size (19 cycles of work in slave threads) PPC REG is 1.6 times faster than
SEQ. PPC MEM becomes faster than SEQ at grain sizes of greater than 30 cycles.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Granularity (cycles)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

SEQ
PPC_MEM
PPC_REG

Figure 6.5: Normalized execution time for a �xed problem size as a function of grain size. At low
granularities, the high overhead in PPC MEM results in no speedup, while it approaches PPC REG
as the granularity increases.

6.2. SYNTHETIC BENCHMARK STUDY 109

0 1 2 3 4 5 6 7 8

Subroutine Arguments

0

50

100

150

It
er

at
io

n
T

im
e

SEQ
PPC_MEM
PPC_REG

Granularity = 27

Figure 6.6: Outer loop iteration time as a function of the number of arguments passed from master
to slave with a grain size of 27 cycles. PPC REG requires two additional cycles per argument, one
cycle for each slave thread. PPC MEM requires almost four cycles per additional argument, two
cycles for each slave.

loop iterations �xed at 300. Figure 6.5 displays the total execution time normalized to the execution

time of SEQ for each of the experimental versions. When the granularity is small (ie. the number

of sub loop iterations per outer loop iteration is small), the sequential overheads, including loop

and thread call overhead, dominate for each of the parallel versions. As a result of the lower parallel

procedure call and return overheads, PPC REG is almost twice as fast as PPC MEM. Because the

register communication mechanisms are so fast, the relative execution time of PPC REG su�ers

very little as grain size decreases. Using more on-chip processors to increase parallelism in �xed

size problems is a viable option as the communication overhead is not substantial. At granularity

greater than 50 cycles, PPC REG levels out at 1.8 times as fast as SEQ. PPC MEM reaches a limit

of 1.4 times as fast as SEQ at the largest grain size. Even with as large a grain size as possible and

fast communication, a perfect factor of three speedup cannot be achieved due to the unparallelized

control overhead of the program.

6.2.2 Argument Count

The cost to invoke a procedure on a remote cluster can be divided into the time to invoke a null

function and the incremental time to transfer the function's arguments. Figure 6.6 shows the

110 CHAPTER 6. THREAD-LEVEL PARALLELISM

result of an experiment that examines the relative overhead of starting a thread versus passing

it arguments. In this experiment, the program executes two inner loop iterations for each outer

loop iteration, which corresponds to a grain size of 28 cycles. The number of arguments passed

between the master and the slaves is varied from 0 to 8. For PPC REG, approximately two cycles

are required for each additional argument, one cycle for each slave thread. PPC REG experiences a

slight upturn when going from 6 to 8 arguments. Since only six arguments can be passed in registers,

arguments 7 and 8 must be passed on the stack, which requires additional address calculation and

memory operations. PPC MEM requires almost four cycles per additional argument, two cycles for

each slave to perform an address calculation and a store. However, the most signi�cant component

of the overhead for PPC MEM is clearly in starting the slave threads. When zero arguments are

passed, PPC MEM requires 56 more cycles (28 cycles per slave thread) for each outer loop iteration.

Combining these results with the thread creation experiments in Chapter 4 gives a simple model

for cost of starting a remote thread. Using register communication takes 10 cycles for invocation

and 1 cycle for each parameter. Creating a thread using the on-chip cache requires 36 cycles for

invocation and 2 cycles for each parameter.

6.3 Parallel Applications

As shown in the synthetic benchmark, the communication and synchronization mechanisms of

the MAP chip allow threads to be invoked quickly and communicate e�ciently with one another.

The next sections explore the utility of these mechanisms in applications using inner{loop and

outer{loop parallelism. Inner{loop parallelism is discovered by examining the inner loops of the

applications to �nd subroutines and expressions that can be executed concurrently. Outer{loop

parallelism comes from the outer loops of the applications, mainly by dividing the data set across

the processors and assigning independent loop iterations to them.

The applications in this study are compiled using MMCC, the MAP C compiler, which is a

derivative of the Multiow C compiler [LFK+93]. The compiler is able to generate a schedule for

all three processor clusters from a sequential program. However, for the experiments reported in

this paper, MMCC produces sequential single cluster code, using all three execution units within

a cluster as a 3 instruction wide statically scheduled machine. MARS, the runtime system for the

M-Machine, is used to provide system services, including memory allocation, terminal I/O, and �le

6.3. PARALLEL APPLICATIONS 111

Benchmark Description Source Problem Size

MG Multigrid Alewife [CLB+96] 64{2744 doubles
FFT Fast-Fourier Transform Alewife [CLB+96] 4{128 complex doubles
EM3D Electromagnetic simulation UC Berkeley [CDG+93] 6{30 node pairs
CG Conjugate Gradient Yeung [YA93] 27{1728 doubles
EAR Cochlea simulation Spec92 [SPE92] 10{100 doubles

Table 6.2: Application benchmark summary.

I/O [Gur95]. While both MARS and the MAP support virtual memory, all experiments were run

in a physical address space, with no translation lookaside bu�er (TLB) miss handling required.

Inner-loop parallelism is implemented by encapsulating independent expressions and function

calls inside procedures, which are then forked from a master thread to a slave thread using a parallel

procedure call. Outer-loop parallelism is explicit in the applications and exploits concurrency at

outer loops with data dependent phases separated by barriers. The applications are detailed below

and summarized in Table 6.2.

MG is a solution to a 3D Poisson partial di�erential equation. It is based on the multigrid kernel

from the NAS parallel benchmarks and SPEC95. The outer{loop parallel code assigns a subset

of the three dimensional data space to each processor, and the di�erent computation phases are

separated by barriers. For inner-loop parallelism, two versions with di�erent thread granularities

are used. MG-E parallelizes only the contents of the innermost loop of the Relax (relaxation)

subroutine by placing independent arithmetic expressions on di�erent clusters. MG-L parallelizes

the Relax subroutine by executing di�erent iterations of the inner loop concurrently. The volume

of the cubic space to be solved is varied from 64 to 2744 double precision oating-point numbers.

FFT solves a 1-dimensional partial di�erential equation using forward and inverse FFTs. With

outer-loop parallelism, each processor is assigned a subsection of the array and computes one level of

the buttery on its subarray before placing the result into a temporary array. After a barrier, each

processor copies its section of the temporary array to the global array and barriers again. Inner-loop

parallelism is extracted by executing inner-loop expressions and subroutines concurrently. The size

of the input array is varied from 4 to 128 complex double precision oating-point numbers.

112 CHAPTER 6. THREAD-LEVEL PARALLELISM

EM3D simulates electromagnetic interactions and consists of alternating phases of computation

on e-nodes and h-nodes. To exploit outer{loop parallelism, each processor is assigned a subset

of the nodes and at each timestep computes new values for its e-nodes, barriers, computes new

values for its h-nodes, and barriers again. Inner{loop parallelism is exploited by computing all of

the interactions for a given node concurrently. Each of the MAP's clusters is assigned a subset of

the connecting nodes. After computing its subset's local contribution, a cluster delivers the result

to cluster 0 to be accumulated with the results from all three clusters. The EM3D initialization

routines are not included in any results. The problem size is varied from 6 e-node/h-node pairs

to 30 pairs, and each node is connected to 5 other nodes.

CG implements a Modi�ed Incomplete Cholesky Conjugate Gradient method for 3-D boundary

value problems. The outer{loop parallelism pro�le forms a wavefront across the central diagonal of

a cube that forms the problem space. At each iteration, a processor computes its assigned portion

of the wavefront and then executes a barrier. The inner{loop version only parallelizes the innermost

computation loop, which consists of a set of arithmetic operations combined with boundary checks

to handle corners, edges, and faces of the cube. The volume of the cube is varied from 27 to 1728

double precision oating-point numbers.

EAR, from the SPEC92 suite, simulates the propagation of sound in the human cochlea (inner

ear). The application consists of a sequential outer loop, containing a sequence of 12 parallel inner

loops. Iterations of the outer loop must execute sequentially, and iterations from di�erent inner

loop nests cannot be run concurrently. Thus, EAR consists only of inner-loop parallelism. Ten

time steps are simulated and the size of the input vector is varied from 10 to 100 double precision

oating-point numbers.

6.4 Inner-Loop Parallelism

This section examines the task granularity of inner-loop parallelism and compares the e�ectiveness

of register and memory communication methods in exploiting it. The applications in this study have

parallel task lengths that are as short as 70 cycles. For the memory and communication latencies in

the MAP chip, register communication is approximately 15% faster than using the on-chip cache,

and overall speedups of up to 2.4 times can be achieved using only inner-loop parallelism.

6.4. INNER-LOOP PARALLELISM 113

4 16 32 64 274410 100 1000

Problem Size

10

100

1000

10000

100000

T
as

k
L

en
gt

h
(c

yc
le

s)

EAR
MG-L
FFT
CG
EM3D
MG-E

Figure 6.7: Inner{loop task length versus problem size. The task length is the average time for
the slaves to execute their parallel tasks. FFT, CG, EM3D, and MG-E exploit expression oriented
parallelism in the inner loop, with granularity independent of problem size. EAR and MG-L exploit
inner loop level parallelism and have granularities that increase with problem size.

6.4.1 Task Granularity

The granularity for inner-loop parallelism exploited using the fork/join model is de�ned as the

average time for a slave thread to execute a parallel task. Figure 6.7 shows the inner-loop task

granularity for all �ve applications as a function of problem size on a log{log plot. The problem

sizes are indicative of the relative amount of work for each benchmark, but cannot be compared

across di�erent applications. For EM3D, CG, and MG-E, the task granularity is less than 100

cycles, with EM3D as low as 70 cycles. FFT also has a constant granularity curve, but the average

task length is approximately 280 cycles. In order for the slaves to provide a bene�t, the overhead

for forking and joining must be low. For these four applications, the granularity remains essentially

constant, regardless of problem size. Each application is parallelized by partitioning expressions and

subroutines across the clusters. Consequently, the overall work within the inner loop is independent

of the size of the data set. For example in EM3D, since each node of the data graph is connected

to exactly �ve other nodes, so that regardless of the total number of nodes the amount of work in

the inner loop does not increase with problem size.

The inner-loop parallelism for EAR and MG-L is exploited by running loop iterations concur-

114 CHAPTER 6. THREAD-LEVEL PARALLELISM

4 8 16 32 64 128
Problem Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

Cache
Register
Optimal

FFT

Figure 6.8: Normalized execution time versus problem size for Inner{Loop FFT. The higher inter-
action latencies of Cache cause it to be consistently 15% slower than Register.

rently. Increasing the data set size results in more loop iterations and more work for each slave

thread. Thus the task granularities for EAR and MG-L start out at about 200 cycles for the

smallest problem sizes, and increase linearly to about 1000 cycles at the largest problem sizes. If

the data sets were large enough, both of these applications could be reclassi�ed as coarse grain.

The application granularity is not necessarily inherent, but rather it is a function of the method of

parallelization. However, with e�cient communication mechanisms, �ne grain parallelism can be

extracted using methods that have been previously infeasible.

6.4.2 Communication Comparison

The cost to communicate between the master and slaves has a direct impact on the performance of

inner-loop parallelizations. Figure 6.8 shows the execution time for FFT across all of the problem

sizes, normalized to the sequential execution time on a single MAP cluster. The Cache line shows

the relative execution time when using the on-chip cache to communicate between the master and

the slave threads, while Register uses the MAP's register communication mechanisms. Optimal

is a measure of the execution time if all of the communication between the master and slaves occurs

instantaneously. All three versions of the application improve relative to the sequential code as the

problem size increases, with a 1.4 times speedup for Register at the largest data set. This is due

to the application spending a greater fraction of the execution time in the parallel sections of the

program and less time in the sequential sections. For all problem sizes, register communication is

6.4. INNER-LOOP PARALLELISM 115

0

5000

10000

15000

C
yc

le
s

Comm
Memory
IFU
Execute

FFT - 4

SEQ Cache
M S1 S2

Register
M S1 S2

0

100000

200000

300000

400000

500000

600000

700000

C
yc

le
s

Comm
Memory
IFU
Execute

FFT - 128

SEQ Cache
M S1 S2

Register
M S1 S2

Figure 6.9: Cycle breakdown of execution time for Inner{Loop FFT.

approximately 15% faster than using the on-chip cache. However, the speedup of using multiple

clusters is limited by the amount of parallelism in the application and the method of extracting it,

rather than by the communication overhead. Even when communication is free (Optimal), only

an additional 10{15% performance improvement is attained. The speedup for FFT is minimal at

small problems sizes and improves as the size of the data set increases. With a 4 element input

vector, FFT executes only 6 iterations of its inner loop. The total execution time is dominated by

the sequential component of the application.

Figure 6.9 illustrates these limitations by decomposing the running time of FFT with problem

sizes of 4 and 128 into execution and overhead components. The cycle breakdown is shown for

a single cluster (SEQ) as well as for the parallel versions using the on-chip cache or registers to

communicate. For the parallel versions, both the master (M) and two slaves (S1, S2) are shown.

The master runs on cluster 0, while the slaves run on clusters 1 and 2. The running time is

broken down into the cycles spent executing instructions (Execute), waiting for the instruction

fetch unit and instruction cache (IFU), waiting for data from the memory system (Memory), and

communicating between the clusters (Comm). The primary factor that limits the overall speedup

is the load imbalance seen in the parallel versions, as there is signi�cant sequential work performed

only by the master. Using a longer input vector shows better load balance because more total time

is spent inside the inner loop. However, the performance is still limited, not by the communication

116 CHAPTER 6. THREAD-LEVEL PARALLELISM

64 216 1000 2744
Problem Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

Cache
Register
Optimal

MG-E

64 216 1000 2744
Problem Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

Cache
Register
Optimal

MG-L

Figure 6.10: Normalized execution time versus problem size for Inner{Loop Multigrid.

mechanisms, but instead by the e�ciency of the parallelization. The communication overhead using

registers is less than one half that of using the cache, but the overall impact on performance is only

15%.

Similar results are seen in Multigrid, as shown in Figure 6.10. The relative execution time

for MG-E stays constant regardless of problem size, because only the contents of the inner loop

are parallelized. In this case, Register is also 15% faster than Cache, but it is much closer to

Optimal than in FFT. For MG-L, the relative execution time compared to sequential improves as

the problem size gets larger, achieving a factor of two speedup at the largest problem size. The

increase in speedup at larger problem sizes is due to both more time spent in the inner loops

and less frequent communication. As shown above, the task granularity for MG-L increases with

problem size since the parallelism comes from executing loop iterations concurrently. Thus the

communication frequency decreases and performance of Cache approaches that of Register as the

problem size increases. At the smallest problem size, Register is 12% faster than Cache, while at

the largest problem size, it only is 8% faster.

These e�ects can be seen in the cycle breakdown of MG shown in Figure 6.11, for problem sizes

of 64 and 2744. The results for using expression oriented parallelism (MG-E), are shown in Cache-E

and Register-E. At the smaller problem size, MG-L and MG-E have nearly the same execution

time, with the coarser grain parallelization having a slight advantage. At the larger problem size,

MG-L shows better load balance across the clusters and less communication overhead. For MG-E,

6.5. OUTER-LOOP PARALLELISM 117

50

100

150

200

250

300

350
C

yc
le

s
(t

ho
us

an
ds

)

Comm
Memory
IFU
Execute

MG - 64

SEQ Cache-E
M S1 S2

Register-E
M S1 S2

Cache-L
M S1 S2

Register-L
M S1 S2

5000

10000

15000

20000

25000

30000

35000

C
yc

le
s

(t
ho

us
an

ds
)

Comm
Memory
IFU
Execute

MG - 2744

SEQ Cache-E
M S1 S2

Register-E
M S1 S2

Cache-L
M S1 S2

Register-L
M S1 S2

Figure 6.11: Cycle breakdown of execution time for Inner{Loop Multigrid.

register communication has substantially less overhead than memory communication, while MG-L

shows a much smaller di�erence between registers and memory, due to a lower communication

frequency. The other applications exhibit similar behaviors which can be seen in Appendix B.1.

6.5 Outer-Loop Parallelism

Outer{loop parallelism is exploited using the multiprocessor parallelizations of each of the appli-

cations, in which outer parallel loops are identi�ed and executed concurrently on each of the three

MAP clusters. The clusters communicate using the shared on-chip cache and can synchronize either

through memory, or using the cbar instruction. Memory synchronization, using the memory syn-

chronization bits of the MAP chip, requires threads to spin on locks until all threads have reached

the barrier.

6.5.1 Task Granularity

Figure 6.12 shows the outer{loop task granularity on the same scale as the inner{loop granular-

ity of Figure 6.7. Outer{loop task granularity is de�ned as the number of cycles spent between

barriers. The outer-loop parallel tasks are much larger than inner-loop tasks and their granularity

increases dramatically with data set size. The gap in grain size between the inner and outer loop

118 CHAPTER 6. THREAD-LEVEL PARALLELISM

4 16 32 64 274410 100 1000

Problem Size

10

100

1000

10000

100000

T
as

k
L

en
gt

h
(c

yc
le

s)

MG
FFT
CG
EM3D

Figure 6.12: Outer{Loop task length versus problem size, where the task length is the average time
between barriers.

parallelizations is more than a factor of 10 for EM3D, MG, and CG, even on the smallest problem

size, and it widens to a factor of 550 at a problem size of 1728 for CG. FFT exhibits the narrowest

range, with a factor of 6 at vector length 4, to a factor of 70 at vector length 128. The large

task lengths of the coarse-grained applications stem from their original implementation on shared

memory multiprocessors, with single word communication latencies requiring hundreds of cycles.

Exploiting parallelism in the 70-200 cycle range would be infeasible with such high interaction costs.

6.5.2 Synchronization Comparison

The e�ect of this increasing granularity can be seen in Figure 6.13, which shows the execution time

of FFT and MG as a function of problem size, normalized to the sequential execution time. Cache

shows the execution time when the barrier is implemented using the on-chip cache, while CBAR

shows the execution time when the barrier instruction is used. CBAR is equivalent to an optimal

barrier since the cbar instruction is so e�cient. Outer{loop parallelism results in shorter execution

times than inner{loop, as more of the code is parallelized and the larger grain size requires less

communication and synchronization. FFT improves from no speedup on a 4 element vector to 2.4

times speedup on a 128 element vector. MG improves from 1.5 to 2.7 times speedup as the problem

size increases. The improvement in speedup is a direct result of both the increasing granularity

6.5. OUTER-LOOP PARALLELISM 119

4 8 16 32 64 128
Problem Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

Memory
Cache
CBAR/Optimal

FFT

64 216 1000 2744100 1000
Problem Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

Memory
Cache
CBAR/Optimal

MG

Figure 6.13: Normalized execution time versus problem size for Outer{Loop FFT and Multigrid.
As problem size increases, the di�erence between synchronizing via o�-chip memory (Memory),
the on-chip cache (Cache) and the barrier instruction (CBAR) diminishes.

0

2000

4000

6000

8000

10000

12000

C
yc

le
s

Barrier
Memory
IFU
Execute

FFT - 4

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

0

100000

200000

300000

400000

500000

600000

700000

C
yc

le
s

Barrier
Memory
IFU
Execute

FFT - 128

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

Figure 6.14: Cycle breakdown of Outer{Loop FFT.

120 CHAPTER 6. THREAD-LEVEL PARALLELISM

50

100

150

200

250

300

350
C

yc
le

s
(t

ho
us

an
ds

)
Barrier
Memory
IFU
Execute

MG - 64

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

5000

10000

15000

20000

25000

30000

35000

C
yc

le
s

(t
ho

us
an

ds
)

Barrier
Memory
IFU
Execute

MG - 2744

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

Figure 6.15: Cycle breakdown of Outer{Loop Multigrid.

and the larger fraction of time spent in the parallel sections as the problem size increases. Another

consequence of the coarse granularity is that the performance of the fast barrier CBAR and the

memory barrier Cache are practically indistinguishable. Since so much time is spent between

synchronizations, the cost of the barrier is inconsequential.

Figure 6.14 shows the cycle breakdowns for FFT at problem sizes of 4 and 128. The Execute,

IFU, and Memory represent the same components of running time as in the previous section, but

Barrier is the time spent waiting for other clusters to reach a barrier. The sequential version

uses only cluster 0, while the parallel versions use all three clusters (C0, C1, and C2). At a small

problem size, a substantial load imbalance can be seen, which is nearly completely eliminated at

problem size 128. The di�erence between Cache and CBAR, which is small at problem size 4,

essentially disappears at problem size 128. The same e�ects can be seen for MG, as shown in

Figure 6.15. A load imbalance is evident at the smaller problem size, as four iterations are spread

over three clusters, leaving cluster 2 with little work to do. At problem size 2744, the load is

balanced perfectly across the clusters, and the di�erence in synchronization costs is irrelevant. The

results for the other applications are similar and are found in Appendix B.2.

The coarse grained applications see substantial speedups on relatively small problem sizes for

two reasons. First, synchronization cost is low, even using memory locks, because all of the accesses

are local. Second, all of the data for the threads is shared either in the on-chip cache or in local

6.6. SUMMARY 121

0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

Cache Penalty
Inner-Loop (REG)
Outer-Loop (CBAR)

EM3D CG EARMG FFT

Fine Grain

6 9 15 21 30 27 21
6

72
9

27
44 10 20 4064 21
6 4 8 16 32 64 12
8

Medium Grain

EM3D CG EARMG FFT

6 9 27 60 80 10
0

10
00

27
44 4

Coarse Grain

EM3D CGMG FFT

15 21 30 21
6

72
9

17
2864 21
6

10
00

27
44 8 16 32 64 12
8

Figure 6.16: Normalized execution time of all 5 applications, including inner and outer{loop par-
allelization, across all problem sizes. The penalties for interacting using on-chip cache can be
substantial, depending on the task granularity.

memory. However, in a traditional multiprocessor, the communication costs are signi�cantly higher.

Inter-node barriers are more expensive, and any shared data must be passed from node to node. The

Memory curve in Figure 6.13 is intended capture some of the e�ect of additional synchronization

cost by increasing the barrier overhead to 1000 cycles. If the grain size is small, as with the small

problem sizes, the cost for long latency synchronization can cause substantial slowdowns, rather

than speedups. As the problem sizes increase, the synchronization frequency decreases, which

renders the synchronization cost irrelevant. However, in an actual system, the cost for threads

to communicate with one another through o�-chip memory is likely to be the limiting factor for

performance.

6.6 Summary

Figure 6.16 summarizes the execution time for all 5 applications, with MG-L representing the inner-

loop parallelization of Multigrid. The line at 1:0 indicates the sequential execution time, while the

line at 0:33 is the lower bound on speedup using three clusters. The programs can be partitioned

based on their task granularity into �ne, medium, and coarse grain. Fine{grain tasks are typically

less than 300 cycles, medium grain tasks are between 300 and 1500 cycles, and coarse grain tasks

are greater than 1500 cycles. The task granularity is a function of the method of parallelization

(inner{loop versus outer{loop), as well as problem size. The dark caps on the execution time

122 CHAPTER 6. THREAD-LEVEL PARALLELISM

0.0

0.5

1.0

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

Inner-Loop (REG)
Outer-Loop (CBAR)

EAREM3DFFTMG CG

10 20 40 60 80 10
06 9 15 21 304 8 16 32 64 12
864 21
6

10
00

27
44 27 21
6

72
9

17
28

Figure 6.17: Normalized execution time for all applications comparing inner to outer loop paral-
lelization.

bars signify the penalty for using the on-chip cache instead of the integrated communication and

synchronization mechanisms of the MAP chip. As is evident from the graph, in order to exploit

�ne-grain tasks, the integrated mechanisms are a necessity. Medium grain tasks su�er only a small

performance penalty when using the on-chip cache for communication and synchronization. Coarse

grain tasks require no special mechanisms for synchronization since interaction frequency is small.

As shown in Chapter 4, the gap between direct communication through registers and indirect

communication through memory will increase dramatically in chips implemented in future process

technologies. Consequently, to get the bene�ts of concurrency available using �ne-grain threads,

architectures must supply applications with fast and direct communication mechanisms.

When outer-loop parallelism is available, it generally yields faster execution times than inner-

loop parallelism, as demonstrated in Figure 6.17. However, some applications such as EAR have

no outer-loop parallelism and require �ner grain parallelism and additional hardware support for

communication and synchronization to improve performance. In addition, since inner and outer-

loop parallelism exploit concurrency in di�erent components of the program, they can be used in

concert to further improve application performance.

The experiments in this section demonstrate that there is considerable �ne{grain thread paral-

lelism in typical applications and that register-based communication and synchronization provides

su�ciently low overhead to exploit this parallelism e�ciently. The MAP's fast interaction mecha-

6.6. SUMMARY 123

nisms (10 cycle thread invocation, 1 cycle communication and synchronization) enable application

speedups of up to 2.4 on three processors, using only inner{loop parallelism. The granularity of this

�ne-thread parallelism is typically between 80 and 200 instructions and is largely independent of

problem size. Conventional multiprocessor mechanisms with long interaction latencies are unable

to exploit �ne threads at all. The coarse{thread parallelism that can be exploited in multipro-

cessors has a granularity of 103 to 105 instructions and is strongly dependent on problem size.

Based on examination of the code, we expect that �ne{thread parallelism will continue to scale

with more processors and that more aggressive parallelization can yield smaller grain sizes, greater

concurrency, and better performance.

Chapter 7

M-Machine Project Retrospective

At the end of a large design and implementation project, it is valuable to look back and try to

identify the parts of the project that went well and to evaluate those parts that could have been

more successful. This chapter examines the evolution of the MAP chip architecture and takes a

retrospective look at the M-Machine project. The architecture of the M-Machine and the MAP chip

originated in the studies of Processor Coupling [KD92]. Section 7.1 describes Processor Coupling in

some detail and describes three areas in which the MAP chip departs from the early architectural

designs. Section 7.2 details the decisions that led to a small number of registers and some of the

complications of using a limited register set in the MAP chip. Section 7.3 describes the simulation

and software environment for the MAP chip and how it met many of our needs, but lacked some

features that would have allowed better evaluation of the system. Finally, Section 7.4 discusses

some of the issues associated with undertaking a complex hardware project in an academic setting.

7.1 Processor Coupling

Processor Coupling used compile-time and runtime scheduling to exploit instruction-level paral-

lelism while maintaining high function unit utilization. A compiler scheduled each thread across

multiple ALUs to exploit instruction level parallelism. The schedules of several active threads were

interleaved at runtime by coupling threads to ALUs on a cycle-by-cycle basis. This interleaving

made use of resources that would otherwise have been left idle due to holes in a single thread's

schedule and stalls caused by synchronization and statically undetermined latencies. This com-

124

7.1. PROCESSOR COUPLING 125

bination of instruction-level and thread-level parallelism enabled fast execution of single threaded

code as well as high instruction throughput and arithmetic unit utilization during periods of low

ILP.

The study of Processor Coupling in [KD92] suggested a machine con�guration with four clusters,

each with an integer and a oating-point unit. The cluster communication experiments indicated

that an interconnection network consisting of two global busses per cluster was a reasonable balance

between wire costs and execution performance. The MAP chip was built on the results of this study,

but some of the arithmetic units were eliminated in order to make the design �t into the available

chip area. The cluster interconnection network also was reduced due to physical implementation

constraints, resulting in only one global bus per cluster. The other major modi�cations to the

Processor Coupling architecture are in the pipeline design, in the intercluster control, and in the

mechanisms for data synchronization.

7.1.1 SZ Stage Placement

The Processor Coupling pipeline was very similar to the MAP's pipeline described in Chapter 3,

except that the synchronization (SZ) stage came before the register read (RR) stage. An instruction

would wait in the SZ stage's reservation station until its operands were marked valid. When the

instruction was selected by the SZ stage issue logic, it read the register �le before proceeding to

the execution units. In order to reduce pipeline stalls, operands were validated two cycles before

the data was produced. An instruction that consumed a previous instruction's result could read

the data from the register �le, or have it bypassed at the head of the execution stages.

In the MAP chip the SZ stage occurs after the RR stage, reducing the latency between validation

and production of data to a single cycle. Data can be transferred more easily between back to back

instructions, as the second instruction is enabled to issue when the �rst instruction enters the

execute (EX) stage. By placing it next to the (EX) stage, the MAP's SZ stage clearly de�nes the

instruction issue point. Any instruction that leaves the SZ stage has all of its operands and can

begin execution immediately. When an exception occurs, the SZ stage immediately stops issuing

instructions. The entire state of each of the user threads is captured in the instruction fetch, register

read, and synchronization pipeline stages. Rolling back the pipeline is not necessary because the

instruction after the one that caused the exception is still in the SZ stage. After an exception is

126 CHAPTER 7. M-MACHINE PROJECT RETROSPECTIVE

handled, the user threads are enabled to issue and can pick up immediately where they left o� prior

to the interruption.

7.1.2 Cluster Synchronization

Like a VLIW, Processor Coupling used a single program counter to control all of the clusters and to

exploit instruction-level parallelism. Each cluster had its own instruction sequencer and instruction

cache, but branch and jump destinations would be broadcast to all of the clusters. The clusters

executed in a loose lock-step discipline, similar to tightly-coupled mode described in Chapter 5, in

which the all of the operations for a given instruction must issue before any of the operations from

the next instruction. This allowed some slip across the clusters and a limited overlapping of long

latency operations. Multiple threads were interleaved over all of the clusters, and if a thread stalled

on one cluster, another thread could use that issue slot instead.

By using a single program counter and centralizing the control of all of the clusters, the imple-

mentation of Processor Coupling became quite complicated. Branch targets were broadcast to all

of the execution units, and a global NOT DONE line was required to control the slip across clusters.

Since a cluster could be one instruction ahead or behind the others, swapping threads required

complex bookkeeping. When a thread was swapped out, the software had to detect whether each

cluster had issued the instruction corresponding to the program counter. Swapping a thread back

in required setting the pipeline back to the original state which could have some clusters out of

synchronization with others. The MAP chip solved all of these complexities by decoupling the

clusters and giving each one its own program counter. All branches are detected and taken locally,

and thread swapping only requires capturing the program counters on each of the clusters. While

tightly-coupled mode can simulate Processor Coupling, we realized that decoupling would reduce

the synchronization constraints between the clusters without a�ecting performance.

7.1.3 Remote Scoreboard Invalidation

Processor Coupling behaved much like a multithreaded VLIW machine except that a scoreboard

was added to tolerate both unpredictable latencies from memory operations and transactions for

intercluster communication. For transfers between execution units, the remote scoreboard was

marked empty by the source unit when the instruction issued. When the data arrived, the register

7.2. REGISTER LIMITATIONS 127

was marked full in the scoreboard so that a consuming operation could use the data. The primary

disadvantage to this is that two remote transfers are required, one for the invalidation and one

for the validation and data delivery. If two clusters are writing to a third cluster, both sources

must invalidate their destination registers, which may require enough scoreboard ports for all

possible writers. An alternative is to arbitrate between the writers to determine which is allowed

to invalidate a remote register. However, unlike the arbitration for data delivery, the decision of

which cluster to grant access to the invalidation port must be made prior to instruction issue. This

greatly complicates the issue logic of the synchronization stage and results in pipeline stalls that

can be easily avoided by having the destination cluster, instead of the source cluster, empty the

target register.

In the MAP chip, automatic invalidation is even less useful, as the clusters are sequenced

independently. Automatically invalidating a destination register is meaningless since the source

cluster has no control over which instruction the destination cluster is executing. Synchronization

is still necessary in order to guarantee that the instruction that consumes the data from a remote

write will in fact wait until the data arrives. The empty instruction moves the invalidation from the

source to the destination, eliminating one cross chip communication per data transfer. However,

the empty must still occur prior to the transfer to guarantee correct data synchronization. The

instruction ordering across clusters can be enforced by inserting a cluster barrier instruction or

by using already existing producer-consumer relationships elsewhere in the program. The empty

instructions have little overhead as they can often be placed in empty issue slots.

7.2 Register Limitations

With multithreading, the register �le's e�ect on chip area can be severe since each register name

must have a physical register for each thread on every cluster. In addition to reducing the silicon

area required for the register �les, the MAP chip limits each thread to 16 integer and 16 oating-

point registers to simplify the instruction fetch logic. Operations are encoded in 32 bits so that

all instructions, regardless of whether they include one, two, or three operations, lie on 32-bit

boundaries. Two bits in each 32-bit operation are reserved to implement the dense instruction

encoding to eliminate NOPs. Six more bits are required to implement predicated execution with

two bits to determine the predicate and four bits to specify the condition register. With the

128 CHAPTER 7. M-MACHINE PROJECT RETROSPECTIVE

MAP's large instruction set, as many as 9 bits are needed to encode each instruction in such a

way that makes the hardware decoder simple and fast. Since each instruction can specify a remote

destination register, three more bits are required to encode the destination cluster identi�er and

the destination register �le (integer or oating-point). This leaves a total of 12 bits to encode two

source registers and one destination register (4 bits each), which limits architecture to 16 named

registers.

At the same time, the MAP chip places additional demands on register �le capacity. Registers

that implement synchronization and communication between clusters cannot be used for other

purposes during a program's communication phases. In addition, when a cluster sends a message

to a remote MAP chip, it must compose the message in the general register �le. With a limited

number of registers, this can cause many values to be spilled to memory. Experience with the MAP

compiler and assembly programs shows that more registers would greatly improve the code quality.

In retrospect, the register �les could have been larger, as they currently occupy a relatively small

fraction of the MAP chip's area. Changing the instruction encoding to use 42-bit operations would

have allowed us to easily encode as many as 64 registers per thread. While this would have increased

the complexity of the instruction decode logic and sacri�ced code density (only 3 operations per

128 bit packet instead of 4), it would have likely improved overall performance.

7.3 Simulation Environment

The M-Machine simulator (MSIM) was designed for both architectural evaluation and logic valida-

tion. As it evolved from a relatively simple architecture simulator to a cycle accurate model of the

chip, it became slower and less con�gurable. MSIM originally used a con�guration �le to specify the

number of registers, register �les, threads, execution units, and clusters. A simple prototype com-

piler used the same con�guration information, and the early architectural studies were performed

using this parameterizable simulation environment. After the instruction encoding was selected, we

began to port an industrial strength compiler and assembler, and for reasons of expedience, chose

to eliminate the con�gurability of the system. In hindsight, we should have maintained a exible

interface between the assembler and simulator, instead of �xing the binary encodings for all of the

instructions. Had we integrated the con�guration interface into our port of the Multiow Compiler

as well, we would have been able to run more experiments to examine the utility of additional

7.4. PROJECT COMPLEXITY 129

93 94 95 96 97 98

place/route

92

architecture

custom circuits

cell libraries

logic design

T
A

P
E

O
U

T
!

Figure 7.1: Chronology of the MAP chip design.

hardware resources.

MSIM was not only a tool for examining the performance of the architecture. It was also useful

for evaluating the complexity of di�erent hardware design decisions. There were many cases in which

a particular feature, such as remote register invalidation, was deemed unreasonable for the MAP

chip because the implementation in MSIM was too complex. As MSIM became a more accurate

representation of the MAP chip, its execution time slowed to approximately 800 simulated cycles per

second. Two di�erent approaches could have greatly increased simulation speed. With a substantial

amount of e�ort, we could have optimized MSIM's execution loop and boosted simulation speed

to perhaps 2500 cycles per second. In the second approach, we could have built a fast instruction

simulator or interpreter in addition to the slower cycle accurate simulator. While not reecting

all of the characteristics of the MAP chip, such a fast simulator would have enabled earlier and

easier development of our software infrastructure, including the compiler, runtime system, and

applications.

7.4 Project Complexity

The �nal lesson from the M-Machine project is that a large system building endeavor can be quite

time consuming, especially when the design team is small. Figure 7.1 shows a rough timeline of the

MAP project, from 1992{1998. Although much of the logical and physical design was performed

concurrently, the �nal placement and routing was contingent on completion and validation of the

130 CHAPTER 7. M-MACHINE PROJECT RETROSPECTIVE

logic design, which took longer than anticipated. In addition, we did not forsee the amount of

time that would be required to iterate between the chip assembly and logic design in order to �t

everything onto the chip. With our combination of full-custom and semi-custom cells, we had to

choose our process technology relatively early in the project, which locked us into 0:5�m design

rules. As an alternative, we might have selected a purely standard cell plus memory array method-

ology, which would have reduced our design time and enabled us to have a more advanced process

technology. It is possible that the smaller feature size would have o�set the density advantage of

custom datapaths and would have enabled us to implement the same functionality, with less e�ort.

Some researchers believe that designing and building hardware like this is not worthwhile in

an academic environment. I strongly disagree, as the alternative of performing only architectural

simulations can be grossly misleading. Since silicon technology provides a set of fundamental

constraints on computer systems, proposed architectures that ignore it produce results that are

academically interesting but potentially irrelevant. With the MAP chip implementation, the M-

Machine project was �rmly grounded in the realities of VLSI. Building the prototype of the chip

has been extremely valuable because it has allowed us to validate our assumptions in a way that

would not be possible if we had stopped at simulation. In retrospect though, perhaps we were too

aggressive in our goals to investigate processor, memory system, and network interface technologies

all in the same project. Focusing on one of these components would have drastically reduced the

complexity and shortened the design time of the chip. We did �nd, however, that combining all

three subsystems necessitated some novel mechanisms that we might not otherwise have needed.

In order to have a successful hardware research project, the right balance must be struck between

the research goals and the functionality and design time of the prototype.

Chapter 8

Conclusion

The most signi�cant constraint facing high speed integrated circuit designers is the increase in

on-chip wire delay [Sem97]. By 2007, nearly thirty 500ps clock cycles are expected to be needed

to send a signal across the diagonal of a single chip. Today's microprocessor designs which re-

quire long wires between centralized controllers and distributed execution units will be impractical

in future silicon technologies. Emerging microprocessor architectures must minimize global com-

munication and the large latencies they imply. Since traditional multiprocessor architectures face

similar constraints in the tradeo�s between local and global communication, incorporating multiple

independent processors on a single chip is certainly a promising use of the silicon area. Moreover,

adding integrated interprocessor communication and synchronization mechanisms will increase the

utility of the execution units. More parallelism can be extracted at �ner grain sizes if the latency

and overhead for communicating between tasks is greatly reduced.

Instruction-level parallelism (1 cycle tasks) and coarser grained multiprocessor concurrency

(10,000 cycle tasks) dominate the parallelism landscape. However, today's 4{8 issue superscalar

processors are nearing the limits of ILP, and most applications have limited coarse-grain parallelism,

particularly at smaller problem sizes. To continue to achieve higher performance with every genera-

tion of microprocessor, new forms of parallelism must be exploited on a single chip. The four orders

of magnitude between the task granularities of ILP and coarse grain threads expose a tremendous

gap in which parallelism exists but cannot be extracted with today's computer systems. Fine-grain

thread-level parallelism, with tasks lengths less than 100 cycles, are made possible by low cost

communication and synchronization mechanisms and are well suited to �ll this performance gap.

131

132 CHAPTER 8. CONCLUSION

Fine-grain threads are also well matched to the cluster organizations of future microprocessors.

Most applications, even those with small problem sizes, have considerable �ne-thread parallelism.

This parallelism, because of its limited extent, has a smaller cache footprint than coarse-thread

alternatives [FD95]. However, the development of �ne{grain programs has been a chicken{and{

egg proposition. Fine{grain applications are not prevalent because there are no machines with

�ne{grain mechanisms, and vice versa.

The contribution of this thesis is the design, implementation, and evaluation of a single chip

parallel computer that meets the wire latency constraints of silicon process technology and provides

opportunities for new forms of parallelism. The prototype is the MIT Multi-ALU Processor (MAP)

chip which includes three independent on-chip processors in a 5 million transistor custom VLSI

implementation. The key features include fast register-register communication between processors,

a global processor barrier instruction, and zero-cycle multithreading. The novel mechanisms used

to implement these features include a register scoreboard that can be manipulated by a user level

empty instruction, and a synchronization pipeline stage to determine when an instruction's operands

are present. This thesis has discussed the design issues associated with each of these hardware

mechanisms to support on-chip concurrency, and described how they can be incorporated into a real

processor pipeline. The interprocessor communication and synchronization mechanisms are used

to extend the use of instruction-level parallelism to multiple independent processors and to exploit

�ne-grain thread level parallelism. In the evaluation of the integrated interaction mechanisms, this

thesis has demonstrated how to use �ne-grain threads to achieve speedups of up to 2.4 times on

three processors when only the code within an application's inner loop are parallelized.

8.1 MAP Chip Summary

The MAP chip, which forms the foundation of the M-Machine, is intended to exploit parallelism at

all levels and to extract more parallelism from problems of �xed size, rather than requiring enormous

problems to achieve peak performance. On-chip execution units are organized into independent

processor clusters which are connected to a shared cache memory system. Each of the three clusters

is able to extract instruction-level parallelism using its three execution units. Both instruction

and thread level parallelism can be executed across all three clusters using the fast intercluster

communication and synchronization mechanisms. Threads on separate clusters communicate by

8.1. MAP CHIP SUMMARY 133

writing into each other's register �les via the Cluster Switch, and synchronize using a global barrier

instruction. Two memory operations can access the on-chip cache simultaneously and the paths to

and from the memory system are deeply pipelined. Multithreading allows the execution resources

of a cluster to be used when one thread stalls for a short or long period of time. Coarse-grain

thread-level parallelism can be exploited across multiple MAP chips by connecting them together

through the integrated on-chip network interface and router.

The MAP chip pipeline employs novel features to implement zero-cycle multithreading and

fast intercluster synchronization. A synchronization (SZ) pipeline stage orchestrates instruction

execution across all three arithmetic units within each cluster. Instructions from each thread wait

in the reservation stations of the SZ stage until all operands are present. The SZ stage examines

the instructions from each thread and selects a thread to issue based on data availability, thread

priority, and arbitration. The MAP also uses valid bits in a register scoreboard and in pipeline reg-

isters to unify nearly all instruction synchronization through data dependence, eliminating pipeline

interlocks. The scoreboard tracks the data from local arithmetic operations, memory operations,

and remote register writes. Intercluster synchronization takes place through data transfer or by

using a cluster barrier instruction which is implemented in the SZ pipeline stage. Because the

thread communication and synchronization mechanisms are implemented primarily by augmenting

the existing cluster to memory communication paths, their cost is small.

The MAP's highly-integrated processor interaction mechanisms are substantially faster than

the alternative of using the shared memory system. Communication between threads on di�erent

clusters requires only one cycle of latency when using the Cluster Switch to transfer a word to a

remote register �le, while communicating though memory takes at least 10 cycles. Threads can

synchronize in a single cycle using the cluster barrier instruction, but need 60 cycles to execute a

barrier through the on-chip cache. The MAP chip also implements a user level thread invocation

instruction (hfork), which initiates a thread on a remote cluster. This instruction enables thread

invocations at one-third the latency of using load and store instructions to access the MAP chip's

thread control registers. With communication and synchronization latencies of a single cycle,

threads need only to execute 10 cycles between interactions to keep the overhead below 10%. Thus

with such low overhead operations, �ne-grain threads that execute for less than 100 cycles are

feasible.

134 CHAPTER 8. CONCLUSION

With the fast register communication and synchronization mechanisms, the MAP chip can

execute instruction-level parallel code on independent processors. Instead of lock-step VLIW-style

synchronization, the MAP chip allows these ILP programs to synchronize only when necessary,

which enables streams on di�erent clusters to slip relative to one another and overlap their long

latency operations. Explicitly synchronizing the streams is simpler to implement in hardware and is

up to 5% faster on the application cores than implicitly synchronized streams, even when counting

the overhead for executing the synchronization instructions.

In this study, the MAP's fast communication mechanisms are also used to implement �ne-grain

thread-level parallelism via a parallel procedure call (PPC), in which a master thread dynamically

assigns work to the slave threads on the other execution units. Parallelizing the inner loops of several

applications using PPC yields performance improvements of 1.2{2.4 times even on small problem

sizes. The register communication mechanisms result in a 15-20% improvement over communication

via the on-chip cache. To put this performance improvement into perspective, several studies have

shown that increasing the number of execution units in a dynamic superscalar processor from 2

to 4 also results in a 15-20% speedup on integer applications [SLH90, TW92]. The measured

speedup is limited by both the overhead of thread control, and by the sequential components

of the program which are not accelerated. When outer-loop parallelism is available, it generally

yields faster execution times than inner-loop parallelism, as less communication and synchronization

are required. However, some applications have no outer-loop parallelism and require �ne-grain

parallelism and additional hardware support for communication and synchronization to improve

performance. In addition, since inner and outer-loop parallelism exploit concurrency in di�erent

components of the program, they can be used in concert to further improve application performance.

While the performance improvement using direct communication instead of the cache is only 15-

20% in today's technologies, it will be much more signi�cant in the future. As shown in Chapter 4,

over the next several process generations the latency for global communication using a cache will

increase from 10 to 56 cycles, while register communication latency will increase from 1 to 26

cycles. In fact, the actual remote cache communication latency is likely to be more than 56 cycles

due to intermediate cache access delays and software overhead for spinning or polling to synchronize

on data arrival. The divergence in global synchronization latency between hardware methods and

using a cache hierarchy is even more signi�cant. The synchronization latency using caches increases

8.2. ARCHITECTURES FOR FUTURE CHIPS 135

from 60 to 860 cycles, while the latency for a mechanism such as the cluster barrier instruction

(cbar) only increases from 1 to 26 cycles. As a result of this divergence in costs to communicate

and synchronize, future chips that provide hardware support for fast interprocessor interactions are

likely to yield signi�cant speedups over chips that only allow interactions through memory.

Since silicon technology provides a set of fundamental constraints on computer systems, archi-

tecture research that ignores it produces results that can be grossly misleading. With the imple-

mentation of a complex custom VLSI microprocessor, the M-Machine project was �rmly grounded

in the realities of VLSI. The success of the project has been due to a tremendous amount of

hard work by the design team at MIT, as well as a successful collaboration e�ort with an indus-

trial partner. By combining investigations into processor, memory system, and network interface

technologies, we discovered novel mechanisms that enabled better interaction between these three

subsystems that we might not otherwise have needed. While pushing the technology aggressively

for multiple subsystems required quite a bit of e�ort, the end result was much more valuable than

the alternative of focusing only in one area. In order to have a successful hardware research project,

the right balance must be struck between the research goals and the functionality and design time

of the prototype.

8.2 Architectures for Future Chips

The driving force behind faster microprocessors has been technology advances that have reduced

transistor and wire dimensions. Moore's law has accurately predicted a doubling of the number of

MOS transistors on a single chip every 1-2 years [Moo95]. Since the on-chip clock rate has been

historically dominated by transistor delay, smaller transistors have led directly to faster cycle times.

However, the dramatic change in the balance between transistor and wire delays is placing new

constraints on existing microarchitectures. Based on projections for a 2GHz 0.1�m CMOS chip,

all wires must be less than 2.5mm long, even if using copper interconnect, in order to have less

than one clock cycle transmission latency. This means that large monolithic structures such as

high capacity caches and memory arrays will not be feasible as the word and bit lines will be too

long and too slow. Furthermore, modules that need to communicate with one another at 2GHz

must be located in close proximity. Scaling existing superscalar and VLIW microarchitectures or

increasing monolithic on-chip cache or memory arrays in future technologies is not feasible. Even

136 CHAPTER 8. CONCLUSION

extending a traditional shared multi-level cache memory hierarchy for multiple on-chip processors

will be inappropriate as the latencies between processors and remote reactive caches will be too

great.

As the number of transistors that can be fabricated on a single chip increases, so will the

number of arithmetic execution units. However, the changing balance between gate delay and wire

delay will require decentralization of control so that the execution units will be partitioned into

independent processors. The processors must be small enough so that all local wires are short,

to allow a processor to run at the full clock rate. Likewise, each primary memory array must be

small and located very close to a processor to enable high bandwidth and low latency access. The

abundance of processors will create a large demand for �ne-grain parallelism that cannot be met

using existing architectures.

E�cient mechanisms are required to allow processors to interact, to access remote memory, and

to overlap local operations with remote accesses. Processors will communicate with one another

and with remote memory modules via an on-chip network. The interface to this network will be

integrated into the instruction set. Processors will communicate by writing into remote registers

or FIFOs that can be read locally by a destination processor. With low overhead interfaces to this

on-chip network, communication latency will be dominated by wire delay. Nearby processors will

be able to communicate with one another in less than �ve 2GHz cycles, while remote processor

communication may take thirty cycles. A promising approach to further reduce remote memory ac-

cess time is for a processor to communicate directly and proactively with a remote memory module.

Thus a data producer may write directly into a consumer's memory enabling subsequent accesses

by the consumer to be local. A hierarchical synchronization network will also be implemented

to enable multiple processors to synchronize simultaneously. Localized groups of processors will

be able to synchronize at the latency of a local communication (5 cycles), while synchronization

across all of the processors will require global communication (30 cycles). Architectures for future

process technologies will be motivated by the constraints of wire delay and the opportunities of

high on-chip bandwidth resulting from narrow wires and high wire density. Combining proactive

communication techniques with the increased on-chip bandwidth may be able to o�set the e�ect

of large on-chip latencies. Without partitioning a chip into independent processors and providing

fast integrated communication and synchronization mechanisms, the large numbers of transistors

8.3. SOFTWARE SUPPORT 137

in future process generations will not be used e�ectively to increase overall system performance.

The results of this thesis demonstrate that engineers of future computer systems must design

for physical locality even within a single chip. The fundamental importance of wire delay dictates

that those components of the chip that communicate frequently with one another must be placed

in close proximity. This implies that memory arrays must be small and that execution units and

memory modules must be close together in order to have fast memory access. Moreover, the

communication latency between on-chip processors increases with the physical distance between

them. The granularity of parallelism that can be exploited will depend on the distance between

processors to which parallel tasks are assigned. Tasks mapped to nearby processors will be able

to execute very �ne-grain parallelism, while tasks mapped to distant processors will execute at a

coarser grain. The e�ects of wire delay present both challenges and opportunities to applications

since the ability to exploit locality will have a profound impact on a program's performance.

8.3 Software Support

Software support will be required to discover �ne{grain parallelism in existing programs. Aside

from hand parallelization, compilers may be able to analyze and partition inner loop iterations,

procedure calls, and expressions. New research in compiler algorithms and analysis will be required,

as current parallelizing compilers assume large communication and synchronization latencies. Other

avenues, such as pipelining dependent do-across loop iterations across the on-chip processors, or

speculatively executing components of the program in parallel are possible as well. Regardless of

the technique, �ne{grain threads enable a di�erent and orthogonal type of parallelism than that

found in outer loops. Reducing the synchronization and communication costs between parallel tasks

will enable �ne{grain parallelization of programs, and allow existing problems, such as personal or

business applications, to be solved faster without scaling their size.

At a more fundamental level, automatic parallelization of inherently sequential programs has

limited bene�t. Many of today's applications are sequential due to the selected algorithm and the

programming language, rather than because the problem to be computed lacks concurrency. For

example, many applications that use linear compression could alternatively employ an algorithm

that breaks a data stream into multiple streams and compresses them simultaneously. To e�ec-

tively exploit the concurrency available on a future chip will require parallelism to be explicit at all

138 CHAPTER 8. CONCLUSION

levels, ranging from the hardware/software interface to the algorithms developed for solving prob-

lems. Explicit parallelism will certainly require innovations in programming languages as well as

compile-time and runtime resource management. Dynamic compilation is a promising technique for

enabling compatibility across di�erent chip con�gurations by separating hardware resource man-

agement from the programming language target. While retro�tting existing applications to execute

well in concurrent environments will be di�cult, emerging applications such as media and speech

processing will be more amenable for execution in future chips. As they interact in the changing en-

vironment of the physical world, these applications have very dynamic behaviors with concurrency

at many granularities. E�cient communication and synchronization mechanisms will be critical for

exploiting parallelism and enabling high performance and e�cient execution of future applications.

Appendix A

MAP Instruction Set Architecture

The MAP uses a custom instruction set architecture that is similar to many of the commercial

RISC load/store microprocessor architectures. In addition to the usual memory and arithmetic

operations, the MAP provides special instructions for protection, address space management, thread

invocation, and o�-chip communication. Each MAP instruction consists of three operations, one

each for the integer, memory, and oating-point units in a cluster. Each operation is encoded in

32 bits and NOP operations in an instruction are stored in a compressed format in memory. The

NOPs are expanded on the y for instruction execution. This appendix provides a brief description

of the MAP instruction set architecture, including a listing of all of the instructions. The entire

instruction set architecture description, including all bit encodings, is detailed in [DKC+94].

A.1 Operation Fields

The following instruction sequence shows two sequential MAP instructions. The �rst contains

an integer, a memory, and a oating point operation, while the second contains only an integer

operation.

instr ialu add i5, i6, i7

memu ld i11, i12

falu fadd f3, f4, h1.f2;

instr ialu sub i7, i8, f13;

The memory and oating-point NOPs in the second instruction will be inserted on the y by

139

140 APPENDIX A. MAP INSTRUCTION SET ARCHITECTURE

Pack Bits Meaning

First operation 00 IU operation only
01 MU operation only
10 FPU operation only
11 Multi-operation instruction

Second operation 00 IU-MU instruction
01 IU-FPU instruction
10 IU-MU-FPU instruction
11 MU-FPU instruction

Table A.1: Instruction pack bits to compress NOPs from instruction stream. If the instruction
contains two or three operations, the pack bits from the second operation are required.

the MAP instruction fetch unit. Integer registers are i2{i15, and the oating-point registers are

f1{f15. Registers i0 and f0 are mapped to the value zero, and i1 is the value of the program

counter for the executing instruction. Each instruction can target a register �le in a remote cluster

by pre�xing the destination register with h1 or h2. Destination clusters are indicated with relative

names so that h1 is the next numerically named cluster. The clusters are numbered 0{2, and the

names wrap back to 0 after 2.

The �gure below shows a sample operation encoding for the integer arithmetic instructions.

Each operation is encoded using 32 bits, and all operations share the packing and predicated

execution �elds. The other �elds may vary among operations, but the format of all operations is

similar.

pack cond cr opcode dh dr imm dest src2 src1

2 2 4 5 2 1 1 4 7 4

The pack �eld is used to compress NOPs from the instruction stream and reduce the space

required to store a program. If an instruction stream has only one operation, the pack bits from that

operation determine whether it is for the integer, memory, or oating-point unit. If the instruction

has more than one operation, the pack bits from the second operations must be examined. Table A.1

enumerates the possible encodings. In instruction sequence above, the �rst instruction has pack

bits of 11 and 10 in its �rst and second operations. The second instruction, with only an integer

operation, has pack bits of 00.

The cond and cr �elds are used to implement predicated execution. The cond �eld identi�es

A.2. INTEGER OPERATIONS 141

Condition Encoding Function

CF 00 conditionally execute if FALSE
CT 01 conditionally execute if TRUE
UA 10 unconditionally execute always
UN 11 unconditionally execute never

Table A.2: Predicates used to conditionally execute each instruction.

on what condition the operation will be executed or conditionally nulli�ed, as shown in Table A.2.

The cr �eld identi�es which condition register to test to determine nulli�cation. In the following

example, the branch instruction is executed if the value of cc1 is true. Otherwise the instruction

is nulli�ed and turned into a NOP at execution time.

instr ialu ct cc1 br loop;

The opcode �eld identi�es the operation to execute. The dh �eld indicates the cluster to which

cluster the operation's result is sent. If dh == 0, the operation writes its result to a local register

�le. The dr �eld identi�es the destination register �le, either integer or oating-point. The imm

bit determines whether src2 is an immediate or a register name. Finally, src1 and src2 are the

operands, and dest is the destination register name.

A.2 Integer Operations

A.2.1 Arithmetic Operations

add integer signed add

addu integer unsigned add

sub integer signed subtract

subu integer unsigned subtract

ash arithmetic shift

lsh logical shift

rot rotate

and bitwise logical and

or bitwise logical or

xor bitwise logical exclusive-or

142 APPENDIX A. MAP INSTRUCTION SET ARCHITECTURE

not bitwise logical negation

ccand condition code logical and

ccor condition code logical or

ccnand condition code logical nand

A.2.2 Byte Manipulation

extb extract byte from 8-byte word

exth extract 4-byte halfword from 8-byte word

insb insert byte into 8-byte word

insh insert 4-byte halfword into 8-byte word

A.2.3 Comparison Operations

ilt integer less-than

ile integer less-than or equal

ult unsigned less-than

ule unsigned less-than or equal

ine integer not-equal

ieq integer equal

A.2.4 Data Movement

mov move immediate or register

empty invalidate vector of integer registers

ccempty invalidate vector of condition code registers

A.2.5 Control Flow Operations

br relative branch

jmp absolute jump

ill user generated illegal instruction

A.2.6 Address Calculation

lea load e�ective address

leab load e�ective address from segment base

setptr set pointer bit

unsetptr unset pointer bit

isptr test pointer bit

iserr test for errval

A.3. MEMORY OPERATIONS 143

A.2.7 Immediate Operations

imm create 16-bit immediate

shoru shift-then-or unsigned 16-bit immediate

A.2.8 Con�guration Space Operations

igtwr write to global translation lookaside bu�er (GTLB)

igtrd read from global translation lookaside bu�er (GTLB)

igprb probe global translation lookaside bu�er (GTLB)

A.2.9 Communication Operations

isnd0 send priority 0 message (user level)

isnd0o send priority 0 message and preserve message ordering (user
level)

isnd0p send priority 0 message using physical address

isnd0po send priority 0 message using physical address and preserve mes-
sage ordering

isnd0pnt send priority 0 message using physical address with no message
throttling

isnd0pnto send priority 0 message using physical address with no message
throttling and preserve message ordering

isnd1pnt send priority 1 message using physical address with no message
throttling

isnd1pnto send priority 1 message using physical address with no message
throttling and preserve message ordering

A.3 Memory Operations

A.3.1 Standard Memory Access

ld load register

st store integer register

fst store oating-point register

luc load register and if a cache miss occurs, place the incoming line
into the block bu�er instead of the cache

A.3.2 Synchronizing Operations

lds load register and fault if memory synchronization fails

144 APPENDIX A. MAP INSTRUCTION SET ARCHITECTURE

ldscnd load register and return result of memory synchronization test

ldsu load register and return result of memory synchronization test;
ignore memory block status failure

sts store integer register and fault if memory synchronization fails

stscnd store integer register and return result of memory synchroniza-
tion test

stsu store integer register and return result of memory synchroniza-
tion test; ignore memory block status failure

fsts store oating-point register and fault if memory synchronization
fails

fstscnd store oating-point register and return result of memory syn-
chronization test

fstsu store oating-point register and return result of memory syn-
chronization test; ignore memory block status failure

A.3.3 Address Calculation

lea load e�ective address

leab load e�ective address from segment base

A.3.4 Special Memory Operations

cbar cluster barrier

srs store integer register and overwrite memory synchronization bit

fsrs store oating-point register and overwrite memory synchroniza-
tion bit

flne ush cache line

getcstat read cache line block status

putcstat write cache line block status

mbar memory barrier; block until all outstanding memory references
complete

A.3.5 Thread Management Operations

hfork invoke thread in another cluster

hexit terminate current thread

A.3.6 Arithmetic Operations

add integer signed add

sub integer signed subtract

A.4. FLOATING-POINT OPERATIONS 145

mov move immediate or register

and bitwise logical and

or bitwise logical or

xor bitwise logical exclusive-or

not bitwise logical negation

A.4 Floating-point Operations

A.4.1 Floating-point Arithmetic Operations

fadd oating-point add

fsub oating-point subtract

fmul oating-point multiply

fdiv oating-point divide

fmula oating-point fused multiply-add

fsqrt oating-point square-root

A.4.2 Integer Arithmetic Operations

imul integer multiply (low 64 bits of 128 bit product)

hmul integer multiply (high 64 bits of 128 bit product)

idiv integer divide

idivu unsigned integer divide

A.4.3 Data Movement

mov move immediate or register

fempty invalidate vector of oating-point registers

A.4.4 Data Conversion

itof integer to oating-point conversion

ftoi oating-point to integer conversion

A.4.5 Comparison Operations

flt oating-point less-than

fle oating-point less-than or equal

feq oating-point equal

fne oating-point not-equal

146 APPENDIX A. MAP INSTRUCTION SET ARCHITECTURE

A.4.6 Immediate Operations

fimm create 16-bit immediate

fshoru shift-then-or unsigned 16-bit immediate

A.4.7 Communication Operations

fsnd0 send priority 0 message (user level)

fsnd0o send priority 0 message and preserve message ordering (user
level)

fsnd0p send priority 0 message using physical address

fsnd0po send priority 0 message using physical address and preserve mes-
sage ordering

fsnd0pnt send priority 0 message using physical address with no message
throttling

fsnd0pnto send priority 0 message using physical address with no message
throttling and preserve message ordering

fsnd1pnt send priority 1 message using physical address with no message
throttling

fsnd1pnto send priority 1 message using physical address with no message
throttling and preserve message ordering

Appendix B

Graphs of Application Results

Figures B.1{ B.5 in Section B.1 show the cycle breakdowns for each of the applications of Chapter 6,

using inner-loop parallelism. The application set includes multigrid (MG), fast-Fourier transform

(FFT), electromagnetic simulation (EM3D), conjugate gradient (CG), and a simulation of the

human cochlea (EAR). The applications are parallelized by examining the inner loops to �nd sub-

routines and expressions that can be executed concurrently. The Cache bars show the components

of running time when using the on-chip cache to communicate between the master and the slave

threads, while Register uses the MAP's register communication mechanisms. Each application is

run on a variety of data sets, ranging from small to medium sizes. The running time is broken down

into the cycles spent executing instructions (Execute), waiting for the instruction fetch unit and

instruction cache (IFU), waiting for data from the memory system (Memory), and communicat-

ing between the clusters (Comm). Figure B.6 summarizes the execution time of the applications

across all of the problem sizes.

Figures B.7{ B.10 in Section B.2 shows the cycle breakdowns for each of the applications using

outer-loop parallelism. Outer{loop parallelism comes from the outer loops of the applications,

mainly by dividing the data set across the processors and assigning independent loop iterations to

them. The di�erent phases of the computation are separated by barriers, which are implemented

either in memory (Cache) or using the cluster barrier instruction CBAR. The cycle breakdown

is categorized like the inner{loop graphs except that the Barrier bars are used to indicate the sum

of the barrier overhead and the time spent waiting at a barrier. Figure B.11 summarizes the total

execution time for each of the outer-loop applications.

147

148 APPENDIX B. GRAPHS OF APPLICATION RESULTS

B.1 Inner{Loop Parallelism

50

100

150

200

250

300

350

C
yc

le
s

(t
ho

us
an

ds
)

Comm
Memory
IFU
Execute

MG - 64

SEQ Cache-E
M S1 S2

Register-E
M S1 S2

Cache-L
M S1 S2

Register-L
M S1 S2

200

400

600

800

1000

1200

1400

C
yc

le
s

(t
ho

us
an

ds
)

Comm
Memory
IFU
Execute

MG - 216

SEQ Cache-E
M S1 S2

Register-E
M S1 S2

Cache-L
M S1 S2

Register-L
M S1 S2

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

C
yc

le
s

(t
ho

us
an

ds
)

Comm
Memory
IFU
Execute

MG - 1000

SEQ Cache-E
M S1 S2

Register-E
M S1 S2

Cache-L
M S1 S2

Register-L
M S1 S2

5000

10000

15000

20000

25000

30000

35000

C
yc

le
s

(t
ho

us
an

ds
)

Comm
Memory
IFU
Execute

MG - 2744

SEQ Cache-E
M S1 S2

Register-E
M S1 S2

Cache-L
M S1 S2

Register-L
M S1 S2

Figure B.1: MG cycle breakdown using inner-loop parallelism.

B.1. INNER{LOOP PARALLELISM 149

0

5000

10000

15000

C
yc

le
s

Comm
Memory
IFU
Execute

FFT - 4

SEQ Cache
M S1 S2

Register
M S1 S2

0

5000

10000

15000

20000

25000

C
yc

le
s

Comm
Memory
IFU
Execute

FFT - 8

SEQ Cache
M S1 S2

Register
M S1 S2

0

10000

20000

30000

40000

50000

60000

C
yc

le
s

Comm
Memory
IFU
Execute

FFT - 16

SEQ Cache
M S1 S2

Register
M S1 S2

0

20000

40000

60000

80000

100000

120000

140000

C
yc

le
s

Comm
Memory
IFU
Execute

FFT - 32

SEQ Cache
M S1 S2

Register
M S1 S2

0

50000

100000

150000

200000

250000

300000

C
yc

le
s

Comm
Memory
IFU
Execute

FFT - 64

SEQ Cache
M S1 S2

Register
M S1 S2

0

100000

200000

300000

400000

500000

600000

700000

C
yc

le
s

Comm
Memory
IFU
Execute

FFT - 128

SEQ Cache
M S1 S2

Register
M S1 S2

Figure B.2: FFT cycle breakdown using inner-loop parallelism.

150 APPENDIX B. GRAPHS OF APPLICATION RESULTS

0

5000

10000

15000

20000

25000

30000

35000

40000

C
yc

le
s

Comm
Memory
IFU
Execute

EM3D - 6

SEQ Cache
M S1 S2

Register
M S1 S2

0

10000

20000

30000

40000

50000

60000

C
yc

le
s

Comm
Memory
IFU
Execute

EM3D - 9

SEQ Cache
M S1 S2

Register
M S1 S2

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

C
yc

le
s

Comm
Memory
IFU
Execute

EM3D - 15

SEQ Cache
M S1 S2

Register
M S1 S2

0

20000

40000

60000

80000

100000

120000
C

yc
le

s
Comm
Memory
IFU
Execute

EM3D - 21

SEQ Cache
M S1 S2

Register
M S1 S2

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

C
yc

le
s

Comm
Memory
IFU
Execute

EM3D - 30

SEQ Cache
M S1 S2

Register
M S1 S2

Figure B.3: EM3D cycle breakdown using inner-loop parallelism.

B.1. INNER{LOOP PARALLELISM 151

20

40

60

80

100

120

140

C
yc

le
s

(t
ho

us
an

ds
)

Comm
Memory
IFU
Execute

CG - 27

SEQ Cache
M S1 S2

Register
M S1 S2

200

400

600

800

1000

1200

1400

1600

1800

C
yc

le
s

(t
ho

us
an

ds
)

Comm
Memory
IFU
Execute

CG - 216

SEQ Cache
M S1 S2

Register
M S1 S2

1000

2000

3000

4000

5000

6000

7000

8000

C
yc

le
s

(t
ho

us
an

ds
)

Comm
Memory
IFU
Execute

CG - 729

SEQ Cache
M S1 S2

Register
M S1 S2

5000

10000

15000

20000

25000

C
yc

le
s

(t
ho

us
an

ds
)

Comm
Memory
IFU
Execute

CG - 1728

SEQ Cache
M S1 S2

Register
M S1 S2

Figure B.4: CG cycle breakdown using inner-loop parallelism.

152 APPENDIX B. GRAPHS OF APPLICATION RESULTS

0

10000

20000

30000

40000

50000

60000

70000

80000

C
yc

le
s

Comm
Memory
IFU
Execute

EAR - 10

SEQ Cache
M S1 S2

CBAR
M S1 S2

0

20000

40000

60000

80000

100000

120000

140000

C
yc

le
s

Comm
Memory
IFU
Execute

EAR - 20

SEQ Cache
M S1 S2

CBAR
M S1 S2

0

50000

100000

150000

200000

250000

300000

C
yc

le
s

Comm
Memory
IFU
Execute

EAR - 40

SEQ Cache
M S1 S2

CBAR
M S1 S2

0

50000

100000

150000

200000

250000

300000

350000

400000

C
yc

le
s

Comm
Memory
IFU
Execute

EAR - 60

SEQ Cache
M S1 S2

CBAR
M S1 S2

0

100000

200000

300000

400000

500000

600000

C
yc

le
s

Comm
Memory
IFU
Execute

EAR - 80

SEQ Cache
M S1 S2

CBAR
M S1 S2

0

100000

200000

300000

400000

500000

600000

700000

C
yc

le
s

Comm
Memory
IFU
Execute

EAR - 100

SEQ Cache
M S1 S2

CBAR
M S1 S2

Figure B.5: EAR cycle breakdown using inner-loop parallelism.

B.1. INNER{LOOP PARALLELISM 153

64 216 1000 2744
Problem Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

Cache
Register
Optimal

MG-E

64 216 1000 2744
Problem Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

Cache
Register
Optimal

MG-L

4 8 16 32 64 128
Problem Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

Cache
Register
Optimal

FFT

6 9 15 21 3010
Problem Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2
R

el
at

iv
e

E
xe

cu
ti

on
 T

im
e

Cache
Register
Optimal

EM3D

27 216 729 1728
Problem Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

Cache
Register
Optimal

CG

10 20 40 60 80 10010 100
Problem Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

Cache
Register
Optimal

EAR

Figure B.6: Summary of inner{loop execution times.

154 APPENDIX B. GRAPHS OF APPLICATION RESULTS

B.2 Outer{Loop Parallelism

50

100

150

200

250

300

350

C
yc

le
s

(t
ho

us
an

ds
)

Barrier
Memory
IFU
Execute

MG - 64

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

200

400

600

800

1000

1200

1400

C
yc

le
s

(t
ho

us
an

ds
)

Barrier
Memory
IFU
Execute

MG - 216

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

C
yc

le
s

(t
ho

us
an

ds
)

Barrier
Memory
IFU
Execute

MG - 1000

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

5000

10000

15000

20000

25000

30000

35000

C
yc

le
s

(t
ho

us
an

ds
)

Barrier
Memory
IFU
Execute

MG - 2744

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

Figure B.7: MG cycle breakdown using outer-loop parallelism.

B.2. OUTER{LOOP PARALLELISM 155

0

2000

4000

6000

8000

10000

12000

C
yc

le
s

Barrier
Memory
IFU
Execute

FFT - 4

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

0

5000

10000

15000

20000

25000

C
yc

le
s

Barrier
Memory
IFU
Execute

FFT - 8

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

0

10000

20000

30000

40000

50000

60000

C
yc

le
s

Barrier
Memory
IFU
Execute

FFT - 16

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

0

20000

40000

60000

80000

100000

120000

140000

C
yc

le
s

Barrier
Memory
IFU
Execute

FFT - 32

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

0

50000

100000

150000

200000

250000

300000

C
yc

le
s

Barrier
Memory
IFU
Execute

FFT - 64

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

0

100000

200000

300000

400000

500000

600000

700000

C
yc

le
s

Barrier
Memory
IFU
Execute

FFT - 128

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

Figure B.8: FFT cycle breakdown using outer-loop parallelism.

156 APPENDIX B. GRAPHS OF APPLICATION RESULTS

0

10000

20000

30000

40000

C
yc

le
s

Barrier
Memory
IFU
Execute

EM3D - 6

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

0

10000

20000

30000

40000

50000

C
yc

le
s

Barrier
Memory
IFU
Execute

EM3D - 9

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

0

10000

20000

30000

40000

50000

60000

70000

80000

C
yc

le
s

Barrier
Memory
IFU
Execute

EM3D - 15

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

0

20000

40000

60000

80000

100000

120000

C
yc

le
s

Barrier
Memory
IFU
Execute

EM3D - 21

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

0

20000

40000

60000

80000

100000

120000

140000

160000

C
yc

le
s

Barrier
Memory
IFU
Execute

EM3D - 30

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

Figure B.9: EM3D cycle breakdown using outer-loop parallelism.

B.2. OUTER{LOOP PARALLELISM 157

20

40

60

80

100

120

140

C
yc

le
s

(t
ho

us
an

ds
)

Barrier
Memory
IFU
Execute

CG - 27

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

200

400

600

800

1000

1200

1400

1600

C
yc

le
s

(t
ho

us
an

ds
)

Barrier
Memory
IFU
Execute

CG - 216

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

1000

2000

3000

4000

5000

6000

7000

8000

C
yc

le
s

(t
ho

us
an

ds
)

Barrier
Memory
IFU
Execute

CG - 729

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

5000

10000

15000

20000

25000

C
yc

le
s

(t
ho

us
an

ds
)

Barrier
Memory
IFU
Execute

CG - 1728

SEQ Cache
C0 C1 C2

CBAR
C0 C1 C2

Figure B.10: CG cycle breakdown using outer-loop parallelism.

158 APPENDIX B. GRAPHS OF APPLICATION RESULTS

64 216 1000 2744100 1000
Problem Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

Memory
Cache
CBAR/Optimal

MG

4 8 16 32 64 128
Problem Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e
Memory
Cache
CBAR/Optimal

FFT

6 9 15 21 3010
Problem Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

Memory
Cache
CBAR/Optimal

EM3D

27 216 729 1728
Problem Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

Memory
Cache
CBAR/Optimal

CG

Figure B.11: Summary of outer{loop execution times.

Bibliography

[ABC+95] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. Johnson, David Kranz,
John Kubiatowicz, Beng-Hong Lim, Kenneth Mackenzie, and Donald Yeung. The MIT
alewife machine: Architecture and performance. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages 2{13, 1995.

[ACC+90] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porter�eld,
and Burton Smith. The Tera computer system. In Proceedings of the International
Conference on Supercomputing, pages 1{6, June 1990.

[AKK+93] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim, Donald Yeung,
Godfrey D'Souza, and Mike Parkin. Sparcle: an evolutionary processor design for
large-scale multiprocessors. IEEE Micro, 13(3):48{61, June 1993.

[ALKK90] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz. APRIL: A pro-
cessor architecture for multiprocessing. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pages 104{114, 1990.

[BCC+90] S. Borkar, R. Cohn, G. Cox, T. Gross, H.T. Kung, M. Lam, M. Levine, B. Moore,
W. Moore, C. Peterson, J. Susman, J. Sutton, J. Urbanski, and J. Webb. Supporting
systolic and memory communication in iWarp. In Proceedings of the 17th International
Symposium on Computer Architecture, pages 70{81, May 1990.

[Boh96] Mark T. Bohr. Interconnect scaling { the real limiter to high performance ULSI. Solid
State Technology, 39(9):105{111, September 1996.

[Car98] Nicholas P. Carter. Hardware Support for Software Shared Memory on the M-Machine.
PhD thesis, Massachusetts Institute of Technology, Department of Electrical Engineer-
ing and Computer Science, expected 1998.

[CDG+93] David E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishnamurthy,
Steven Lumetta, Thorsten von Eiken, and Katherine Yelick. Parallel programming
in Split-C. In Supercomputing, pages 262{273, November 1993.

[Cha98] Andrew Chang. VLSI datapath choices: Cell-based versus full-custom. Master's the-
sis, Massachusetts Institute of Technology, Department of Electrical Engineering and
Computer Science, February 1998.

[CKD94] Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. Hardware support for
fast capability-based addressing. In Proceedings of the Sixth International Conference

159

160 BIBLIOGRAPHY

on Architectural Support for Programming Languages and Operating Systems (ASPLOS
VI), pages 319{327, October 1994.

[CLB+96] Frederic T. Chong, Beng-Hong Lim, Ricardo Bianchini, John Kubiatowicz, and Anant
Agarwal. Application performance on the MIT alewife machine. IEEE Computer,
29(12):57{64, December 1996.

[CLMY96] David E. Culler, Lok Tin Liu, Richard P. Martin, and Chad O. Yoshikawa. Assessing
fast network interfaces. IEEE Micro, 16(1):35{43, February 1996.

[CNO+88] Robert P. Colwell, Robert P. Nix, John J. O'Donnell, David B. Papworth, and Paul K.
Rodman. A VLIW architecture for a trace scheduling compiler. IEEE Transactions on
Computers, 37(8):967{979, August 1988.

[CPWG97] Alan Charlesworth, Andy Phelps, Ricki Williams, and Gary Gilbert. Gigaplane-XB:
Extending the ultra enterprise family. In Proceedings of Hot Interconnects V, pages
97{112, August 1997.

[CSY90] Ding-Kai Chen, Hong-Men Su, and Pen-Chung Yew. The impact of synchronization
and granularity on parallel systems. In Proceedings of the 17th International Symposium
on Computer Architecture, pages 239{248, May 1990.

[Dil97] Thomas J. Dillon. The VelociTI architecture of the TMS320C6xxx. In Proceedings
of the International Conference on Signal Processing Applications and Technology,
September 1997.

[DKC+94] William J. Dally, Stephen W. Keckler, Nick Carter, Andrew Chang, Marco Fillo, and
Whay S. Lee. The MAP instruction set reference manual v1.0. Concurrent VLSI
Architecture Memo 59, Massachusetts Institute of Technology, Arti�cial Intelligence
Laboratory, January 1994.

[DLD93] Larry R. Dennison, Whay S. Lee, and William J. Dally. High-performance bidirectional
signalling in VLSI systems. In Proceedings of the Symposium on Research on Integrated
Systems, pages 300{319. MIT Press, March 1993.

[EL90] Milo�s D. Ercegovac and Tomas Lang. Radix-4 square root without initial PLA. IEEE
Transactions on Computers, 39(8):1016{1024, August 1990.

[Fan87] Jan Fandrianto. Algorithm for high speed shared radix 4 division and radix 4 square
root. In Proceedings of the 8th Symposium on Computer Arithmetic, pages 73{79, May
1987.

[FD95] Stuart Fiske and William J. Dally. Thread prioritization: A thread scheduling mecha-
nism for multiple-context parallel processors. In Proceedings of the First IEEE Sympo-
sium on High-Performance Computer Architecture, pages 210{221, Raleigh, NC, Jan-
uary 1995.

[FKD+95] Marco Fillo, Stephen W. Keckler, William J. Dally, Nicholas P. Carter, Andrew Chang,
Yevgeny Gurevich, and Whay S. Lee. The M-Machine Multicomputer. In Proceedings
of the 28th International Symposium on Microarchitecture, pages 146{156, Ann Arbor,
MI, December 1995.

BIBLIOGRAPHY 161

[FS96] Manoj Franklin and Gurinar S. Sohi. ARB: a hardware mechanism for dynamic re-
ordering of memory references. IEEE Transactions on Computers, 45(5):552{571, May
1996.

[GAB+97] David Greenhill, Eric Anderson, James Bauman, Andrew Charnas, Rakesh Cheerla,
Hao Chen, Manjunath Doreswamy, Phillip Ferolito, Srinivasa Gopaladhine, Ken-
neth Ho, Wenjay Hsu, Poonacha Kongetira, Ronald Melanson, Vinita Reddy, Raoul
Salem, Harikaran Sathianathan, Shailesh Shah, Ken Shin, Chakra Srivatsa, and Robert
Weisenbach. A 330mhz 4-way superscalar microprocessor. In Proceedings of the IEEE
International Solid-State Circuits Conference, pages 166{167, February 1997.

[GKT91] Gina Go�, Ken Kennedy, and Chau-Wen Tseng. Practical dependence testing. In
Proceedings of ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, pages 15{29, June 1991.

[Gur94] Yevgeny Gurevich. An assembler and linker system for the M-machine software project.
Bachelor's Thesis, Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, April 1994.

[Gur95] Yevgeny Gurevich. The M-Machine operating system. Master's thesis, Massachusetts
Institute of Technology, Department of Electrical Engineering and Computer Science,
September 1995.

[Gwe95] Linley Gwennap. Processor performance climbs steadily. Microprocessor Report, Jan-
uary 1995.

[Gwe96] Linley Gwennap. Digital 21264 sets new standard. Microprocessor Report, October
1996.

[Har96] Daniel K. Hartman. M-Machine oating-point multiplier datapath. Master's thesis,
Massachusetts Institute of Technology, Department of Electrical Engineering and Com-
puter Science, May 1996.

[IEE85] IEEE std. 754-1985, standard for binary oating-point arithmetic, 1985.

[Jou90] Norman P. Jouppi. Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch bu�ers. In Proceedings of the 17th Interna-
tional Symposium on Computer Architecture, pages 364{373, 1990.

[KD92] Stephen W. Keckler and William J. Dally. Processor coupling: Integrating compile
time and runtime scheduling for parallelism. In Proceedings of the 19th International
Symposium on Computer Architecture, pages 202{213, May 1992.

[KHM89] David A. Kranz, Robert H. Halstead, and Eric Mohr. Mul-T: A high-performance
Lisp. In Sigplan '89 Symposium on Programming Language Design and Implementation,
pages 1{10, June 1989.

[LA94] Beng-Hong Lim and Anant Agarwal. Reactive synchronization algorithms for multipro-
cessors. In Sixth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VI), pages 25{35, October 1994.

162 BIBLIOGRAPHY

[LAD+96] C.E. Leiserson, Z.S. Abuhamdeh, D.C. Douglas, C.R. Feynman, M.N. Ganmukhi, J.V.
Hill, W.D. Hillis, B.C. Kuszmaul, M.A. St Pierre, D.S. Wells, M.C. Wong-Chan, Shaw-
Wen Yang, and R. Zak. The network architecture of the connection machine CM-5.
Journal of Parallel and Distributed Computing, 33(2):145{158, March 1996.

[Lam88] Monica Lam. Software pipelining: An e�ective scheduling technique for VLIW ma-
chines. In SIGPLAN '88 Conference on Programming Language Design and Imple-
mentation, pages 318{328. ACM, ACM, June 1988.

[LDK+98] Whay Sing Lee, William J. Dally, Stephen W. Keckler, Nicholas P. Carter, and Andrew
Chang. E�cient, protected message interface in the MIT M-Machine. To appear in
the IEEE Computer Special Issue on Design Challenges for High-Performance Network
Interfaces, November 1998.

[LFK+93] P. G. Lowney, S. G. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P. Nix, J. S.
O'Donnell, and J. C. Ruttenberg. The multiow trace scheduling compiler. The Journal
of Supercomputing, 7(1-2):51{142, May 1993.

[LL97] James Laudon and Daniel Lenoski. The SGI Origin: a ccNUMA highly scalable server.
In Proceedings of the 24th International Symposium on Computer Architecture, pages
241{251, June 1997.

[MLC+92] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and Roger A.
Bringman. E�ective compiler support for predicated execution using the hyperblock.
In Proceedings of the 25th International Symposium on Microarchitecture, pages 45{54.
ACM, December 1992.

[Moo95] Gordon E. Moore. Lithography and the future of Moore's law. In SPIE Vol. 2440
Proceedings of the International Society for Optical Engineering, pages 2{17, February
1995.

[MVCA97] Richard P. Martin, Amin M. Vahdat, David E. Culler, and Thomas E. Anderson.
E�ects of communication latency, overhead, and bandwidth in a cluster architecture.
In Proceedings of the 24th International Symposium on Computer Architecture, pages
85{97, June 1997.

[NHO96] Basem A. Nayfeh, Lance Hammond, and Kunle Olukotun. Evaluation of design alter-
natives for a multiprocessor microprocessor. In Proceedings of the 23rd International
Symposium on Computer Architecture, pages 67{77, May 1996.

[NPA92] Rishiyur S. Nikhil, Gregory M. Papadopoulos, and Arvind. *T: A multithreaded mas-
sively parallel architecture. In Proceedings of the 19th International Symposium on
Computer Architecture, pages 156{167, May 1992.

[NWD93] Michael D. Noakes, Deborah A. Wallach, and William J. Dally. The J-Machine multi-
computer: An architectural evaluation. In Proceedings of the 20th International Sym-
posium on Computer Architecture, pages 224{235, San Diego, California, May 1993.

BIBLIOGRAPHY 163

[PC90] Gregory M. Papadopoulos and David E. Culler. Monsoon: an explicit token-store
architecture. In The 17th Annual International Symposium on Computer Architecture,
pages 82{91. IEEE, 1990.

[PSW91] C. Peterson, J. Sutton, and P. Wiley. iWarp: a 100-MOPS, LIW microprocessor for
multicomputers. IEEE Micro, 11(3):26{29, 81{87, June 1991.

[RR87] Kay A. Robbins and Steven Robbins. The Cray X-MP/Model 24. Springer-Verlag,
1987.

[SBV95] Gurindar S. Sohi, Scott E. Breach, and T.N. Vijaykumar. Multiscalar processors. In
Proceedings of the 22nd International Symposium On Computer Architecture, pages
414{425, May 1995.

[Sem97] The national technology roadmap for semiconductors. Semiconductor Industry Asso-
ciation, 1997.

[SLH90] Michael D. Smith, Monica S. Lam, and Mark A. Horowitz. Boosting beyond static
scheduling in a superscalar processor. In Proceedings of the 17th International Sympo-
sium on Computer Architecture, pages 344{354, June 1990.

[SPE92] Spec benchmark release v1.1, 1992.

[TEL95] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multithreading:
Maximizing on-chip parallelism. In Proceedings of the 22nd International Symposium
On Computer Architecture, pages 392{403, May 1995.

[TM91] Donald E. Thomas and Philip Moorby. The Verilog Hardware Description Language.
Kluwer Academic Publishers, 1991.

[Tom67] R.M. Tomasulo. An e�cient algorithm for exploiting multiple arithmetic units. IBM
Journal, 11:25{33, January 1967.

[TW92] Than Tran and Chuan-lin Wu. Limitation of superscalar microprocessor performance.
In Proceedings of the 25th International Symposium on Microarchitecture, pages 33{36,
December 1992.

[Wal91] David W. Wall. Limits of instruction-level parallelism. In Proceedings of the Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 176{188. ACM, 1991.

[WGH+97] Wolf-Dietrich Weber, Stephen Gold, Pat Helland, Takeshi Shimizu, Thomas Wicki, and
Winfried Wilcke. The mercury interconnect architecture: A cost-e�ective infrastructure
for high-perfomance servers. In Proceedings of the 24th International Symposium on
Computer Architecture, pages 98{107, June 1997.

[YA93] Donald Yeung and Anant Agarwal. Experience with �ne-grain synchronization in
MIMD machines for preconditioned conjugate gradient. In Proceedings of the 4th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 187{
197, May 1993.

