
Performance Nonmonotonicities:

A Case Study of the UltraSPARC Processor

by

Nathaniel A. Kushman

Submitted to the Department of Electrical Engineering and Computer Science

in partial ful�llment of the requirements for the degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1998

c Nathaniel A. Kushman, MCMXCVIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly

paper and electronic copies of this thesis document in whole or in part, and to grant

others the right to do so.

Author .

Department of Electrical Engineering and Computer Science

June 1, 1998

Certi�ed by. .

Volker Strumpen

Postdoctoral Associate

Thesis Supervisor

Certi�ed by. .

Charles E. Leiserson

Professor

Thesis Supervisor

Accepted by .

Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Performance Nonmonotonicities:

A Case Study of the UltraSPARC Processor

by

Nathaniel A. Kushman

Submitted to the Department of Electrical Engineering and Computer Science
on June 1, 1998, in partial ful�llment of the

requirements for the degrees of
Bachelor of Science in Electrical Engineering and Computer Science

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Modern microprocessor architectures are very complex designs. Consequently, they exhibit many id-
iosyncrasies. In fact, situations exist in which the addition or removal of a single instruction changes
the performance of a program by a factor of 3 to 4. I call such situations performance anomalies.
Avoiding these situations requires detailed understanding of the underlying architecture. Unfor-
tunately, due to market competition, microprocessor vendors are unwilling to release the detailed
implementation information necessary to understand an architecture until long after the micropro-
cessors have been on the market. Through a case study of the SUN UltraSPARC, I show how these
anomalies can be concealed, although only limited information is provided by the vendor. I explain
the cause of four performance anomalies observed on the UltraSPARC, and present an algorithm to
conceal each of them. I implemented these algorithms in an assembly code restructuring tool which
yields speedups of 2.2% on average for the SPECint benchmark suite, and up to 8.9% on individual
benchmarks.

Thesis Supervisor: Volker Strumpen
Title: Postdoctoral Associate

Thesis Supervisor: Charles E. Leiserson
Title: Professor

3

Acknowledgments

First and foremost, I am indebted to Dr. Volker Strumpen. His unending persistence in working

through problems down to the last detail has allowed me to gain a more complete understanding

of the UltraSPARC. Additionally, his constant desire for clarity and precision in all forms of ex-

planation, has allowed this document to reach it's current form. Without his willingness to spend

hours working through my explanations, many parts of this thesis would have remained unclear and

imprecise. For all of this, I give Volker my perpetual gratitude.

I would like to thank the other members of the Cilk group and the Computer Architecture group

for their insights into the problems, and their suggestions on this document. I would especially like

to thank Charles for his suggestions on this thesis, and on academic life in general.

The research in this thesis was supported in part by the Defense Advanced Research Projects

Agency (DARPA) under Grant F30602-97-1-0270. Additionally, I would like to thank Sun Microsys-

tems for the use of the Xolas UltraSPARC SMP cluster.

Lastly, I would like to thank my friends and family for their support through many late nights.

Therefore, I thank Greg Christiana and Carissa Little for helping me survive the last few weeks

spent writing this document. I would also especially like to thank my parents; my mom for putting

up with me when I didn't return her phone calls because I was too busy; and my dad for his constant

support throughout my four years at MIT.

4

Contents

1 Introduction 9

2 Related Work 15

3 UltraSPARC Case Study 19

3.1 The Architecture of the UltraSPARC-I . 21

3.2 Next Field Predictor . 24

3.3 Fetching Logic . 27

3.4 Grouping Logic . 31

3.5 Branch Prediction Logic . 33

4 Experimental Results 37

5 Conclusion 47

5

6

List of Figures

1-1 Program A runs in between 6.3 and 8.4 seconds and Program B runs in 2.1 seconds. 11

3-1 Snippets of the assembly code generated from the C-code in Figure 1-1, used to create

a microbenchmark. 19

3-2 A microbenchmark created from the assembly code in Figure 3-1. 20

3-3 The nine-stage pipeline of the UltraSPARC. 21

3-4 The design of the front end of the UltraSPARC. 22

3-5 The NFP's for code without any predicted-taken CTI's point to the succeeding I-cache

group. 23

3-6 The NFP's for I-cache groups containing the delay slot of a predicted-taken CTI,

point to the target of the CTI. 24

3-7 Assembly code fragment demonstrating the NFP misprediction problem. 25

3-8 State of NFP's when foo returns. 26

3-9 Assembly code fragment similar to Figure 3-7, that does not exhibit next �eld mis-

prediction. 27

3-10 Assembly code demonstrating the Fetching Limitation Problem. 28

3-11 I-cache alignment of the code in Figure 3-10 that executes in 3 cycles per iteration. . 29

3-12 I-cache alignment of the code in Figure 3-10 that executes in 6 cycles per iteration. . 29

3-13 Assembly code loop which is executed at the maximum execution rate of 4 instructions

per cycle. 31

3-14 Assembly code loop produced by exchanging two instruction in the code in Figure 3-

13, which cannot execute at the rate of 4 instructions per cycle because of the grouping

limitation. 32

3-15 Assembly code fragments demonstrating the odd-fetch performance anomaly. 34

7

8

Chapter 1

Introduction

In early computers, most instructions were executed in the same amount of time, and the overall

execution time could be estimated by counting the number of instructions executed [9]. As ma-

chines became more complex, however, this situation changed quickly. Machines were pipelined,

and dependencies between instructions became important. When caches were developed, the lay-

out of instructions and data in memory became important. With the introduction of superscalar

processors, evaluating processor performance has become problematic. In these processors, mul-

tiple instructions are executed at each stage of a multiple-stage pipeline. There may be multiple

outstanding memory references, and the dependencies between instructions a�ect their execution

sequence. These processors are so complex that it is di�cult to predict their performance.

Because of this complexity, signi�cant time and e�ort in the design of a processor is spent on

performance modeling [15]. The e�ect of individual design decisions on the overall performance

is often unclear without tools to aid the designers' intuitions. Therefore, hardware designers use

performance models to assist them in making di�cult design decisions. Unfortunately, the validity

of these models is debatable. If these models are in fact invalid, as argued by Black and Shen [6],

a huge potential for performance anomalies exists. These performance anomalies are the focus of

this thesis.

In the remainder of this chapter, I introduce a taxonomy of performance anomalies, I give

an example to show how performance anomalies can be revealed in a computer system, I discuss

the di�culty in avoiding performance anomalies and I present the approach to the problem of

performance anomalies that underlies this thesis.

Performance Anomalies

A performance anomaly is an unexpected runtime behavior of a program. I present three types

of performance anomalies|discontinuity, nonmonotonicity, and nondeterminism|and de�ne them

9

according to the relationship of work (W) and execution time (T). I use the term work to refer to

the total number of instructions executed to completion.

In general, as the amount of work in a program increases, the execution time increases propor-

tionally. Performance anomalies are situations in which this is not the case. The following de�nitions

provide an intuition into the understanding of performance anomalies, but are not rigorous de�ni-

tions. For each anomaly, I assume that a program has work W and executes in time T . Modifying

this program produces a second program that has work W 0 and executes in time T 0.

Performance Discontinuity: A performance discontinuity is an unexpected, disproportionate

jump in execution time.

If work increases from W to W 0, then T 0 increases disproportionately compared to T :

W 0 > W) T 0 � T

If work decreases from W to W 0, T 0 decreases disproportionately compared to T :

W 0 < W) T 0 � T

Performance Nonmonotonicity: If work and execution time change in opposite directions, a

performance nonmonotonicity is revealed.

Although work W does not increase, execution time T increases:

W 0 �W) T 0 > T

Although work W does not decrease, execution time T decreases:

W 0 �W) T 0 < T

Performance Nondeterminism: If the same program is executed twice without changing work

W , and the execution time T changes, then a performance nondeterminism is revealed:

W 0 =W) T 0 6= T

A common type of performance anomaly in today's computer systems is performance disconti-

nuity. Bailey [4] shows that caching causes machines to exhibit performance discontinuities. Four

examples of performance discontinuities are presented in this thesis. Each of them is also an example

of a performance nonmonotonicity.

This thesis focuses on avoiding performance nonmonotonicities. If the relationship of work and

execution time of a program contains performance nonmonotonicities, it is almost impossible for a

programmer to converge on a high-performing version of his code. Programming for performance is

even more di�cult if the relationship of work and execution time contains discontinuous performance

nonmonotonicities. An example of nonmonotonic performance in the Intel Pentium is presented

by Krech [10]. Krech's example of nonmonotonicity was exhibited when performing a particular

sequence of memory reads. In Chapter 3, I present four examples of performance nonmonotonicities

on the SUN UltraSPARC and show how to conceal them.

10

foo(){}

main()

{

int i;

for (i = 0; i < 100000000; ++i)

foo();

}

foo(){}

main()

{

int i;

foo();

for (i = 0; i < 100000000; ++i)

foo();

}
Program A Program B

Figure 1-1: Program A runs in between 6.3 and 8.4 seconds and Program B runs in 2.1 seconds.

Nondeterministic performance anomalies are the most extreme type of performance anomaly.

It is nearly impossible to program for performance if the relationship of execution time and work

is nondeterministic. Performance nondeterminism is often observed in timeshared environments,

even if the system is used by only one user. The operating system, and speci�cally, the virtual

memory page mapping algorithms are often identi�ed as the cause of this nondeterminism [5]. I

have found, however, that the processor itself also exhibits performance nondeterminism. Two of

the performance nonmonotonicities identi�ed on the UltraSPARC are also examples of performance

nondeterminism. I shall present algorithms to conceal the performance nondeterminisms, but I was

unable to determine their cause.

An Example

The code fragment in Figure 1-1 Program A exhibits all three performance anomalies to the user:

performance discontinuity, performance monotonicity, and performance nondeterminism. Program

A in Figure 1-1 iterates a hundred million times in a loop calling an empty function foo. Compiling

this code with Sun's C-compiler (cc) using -O and executing it on a SUN UltraSPARC (143MHz)

yields nondeterministic execution times between 6.3 and 8.4 seconds. If work is added to that

program by inserting a call to the empty function foo before the loop, the program executes deter-

ministically in 2.1 seconds. The modi�ed program is shown in Figure 1-1 as programB. Surprisingly,

adding a tiny amount of work reduces execution time by a factor of 3 or 4. Consequently, this code

fragment is an example of all three performance anomalies: performance discontinuity, performance

nonmonotonicity, and performance nondeterminism. We shall revisit this code fragment in Chap-

ter 3.

The Dilemma

Avoiding performance anomalies seems even more di�cult than avoiding correctness bugs. I hy-

pothesize that this issue will become more signi�cant as microprocessor complexity increases. The

11

sti� competition in the microprocessor industry prevents vendors from releasing implementation

details to the public until long after the processors have been on the market. Consequently, most

performance anomalies that exist in an architecture remain a mystery to the users of the system.

Users are left with little or no information about the cause of these performance problems, and no

systematic way to avoid them exists to date. Additionally, since the introduction of RISC, micropro-

cessor complexity has been increasing steadily. If this increase continues to the one-billion transistor

microprocessors of the future [24], I fear that the performance problems caused by the complexity

of current microprocessors will increase without bound. I propose the following resolution to this

dilemma.

The Resolution

Unless processors are designed without performance anomalies, a method to prevent programmers

from observing these anomalies is desired. Experience has shown us that it is di�cult to avoid

performance anomalies in the design of current microprocessors. We should be able to conceal

these anomalies from the programmer, however, such that they are never observed in the execution

of compiled code. I do this by �rst understanding the cause of each performance anomaly, and then

developing an instruction scheduling algorithm to conceal it.

I wish to understand a microprocessor to the extent that I can characterize the situations in

which it exhibits nonmonotonic performance. Yet, in general, we have very little information on

the implementation details of the processor itself. This situation is comparable to that of a chemist

who wishes to understand a chemical reaction without a-priori knowledge of how the reaction works.

I present an approach to the problem of performance anomalies that is based on the methods of

experimental science.

I employ an iterative approach that uses the data derived from microbenchmarks in conjunction

with information provided by the microprocessor vendor to create a model of the machine. In

contrast to the performance models created in the past [25], I create a very detailed model of

particular aspects of the architecture. This model allows me to focus speci�cally on the architectural

features which cause performance anomalies. I attempt to verify the accuracy of my model through

the use of microbenchmarks. The results from these microbenchmarks are used to re�ne the model

and create more microbenchmarks. This iterative process is repeated until the performance anomaly

is understood to the extent that an instruction scheduling algorithm can be developed to conceal

the anomaly from the user.

Outline of the Thesis

In order to identify and conceal processor performance anomalies I decompose the problem into

three constituent parts: (1) �nding, (2) understanding, and (3) concealing performance anomalies.

12

To begin work on the problem of performance anomalies, code sequences must be found that

exhibit a performance anomaly. Figure 1-1 shows an example of such a code sequence. There

appears to be no systematic way to �nd such code sequences, however. The performance anomalies

discussed in this thesis were found either from information provided by the microprocessor vendor

or circumstantially.

To conceal a performance anomaly, we must identify what aspect of the processor design is causing

it. Then, we can design a code sequence to isolate the anomaly. Chapter 2 presents other methods

used for identifying and concealing performance anomalies and explains the problems with each. I

employed the iterative approach described in the previous section to understand four performance

anomalies on the SUN UltraSPARC. This understanding is one of the main contributions of this

thesis and is presented in Chapter 3.

Once an insight into the cause of a performance anomaly is gained, a general method for con-

cealing it should be developed. Ideally, these methods should be implemented within the compiler.

Generally, we are unable to modify SUN's compiler, however, so I have implemented these methods

through a restructuring tool for assembly code. The algorithms for the restructuring of assembly

code, are the second contribution of this thesis. In Chapter 4, I show how they were used to obtain

speedups of up to 9% on the SPECint benchmarks [23]. Finally, in Chapter 5, I conclude.

13

14

Chapter 2

Related Work

Little research has been focused on the problem of processor performance anomalies. In this Chapter,

I discuss �ve approaches to assessing hardware performance problems. The �rst three approaches,

architecture simulation, hardware performance monitoring, and performance modeling can help

to understand a performance problem. The last two approaches, architectural design and code

restructuring, can be used to actually conceal known performance problems.

Architecture Simulation

A widely used technique for understanding and designing processors is architecture simulation. If not

enough information can be obtained by running a program directly on the hardware, the architecture

is simulated with su�cient detail to obtain the desired information.

Architecture simulation ranges from the Instruction Set Architecture (ISA) level [12] down to the

transistor level [13]. Generally, the more detail the simulation provides, the worse the performance.

The Stanford SIMOS project [17] provides an excellent example of the trade-o� between detail and

speed. This simulator provides several di�erent modes, each with a distinct locale in the trade-o�

between detail and speed. In the so-called direct-execution mode, where the simulator runs the code

directly on the host architecture, the simulated application runs only a factor of 2 slower than the

code running natively. Alternatively, when SIMOS is running with the highest level of detail, storing

information on the movement of instructions through the pipeline, the simulation runs up to a factor

of 50,000 slower than the native code.

Architecture simulation has been used extensively for two purposes. First, it is the main ap-

proach used to evaluate hardware design decisions during the design phase. Second, simulators for

existing architectures are used for performance tuning of programs that run on these machines. At

the Swedish Institute of Computer Science, the SimICS system [12] has been used to show that

architecture simulators, when used for performance tuning, can achieve up to an order of magnitude

15

speedup on some speci�c applications.

To my knowledge however, architecture simulators have not been applied to the problem of

identifying processor performance anomalies in processors currently on the market. I did not use

such simulators, because speci�c information on the implementation of an architecture is required

to produce the detailed simulators necessary to understand performance anomalies. In general,

microprocessor vendors do not release information of su�cient detail to produce such simulators.

Hardware Performance Monitoring

Monitoring performance within the hardware avoids the problems presented by architecture sim-

ulation. First, hardware monitors are implemented as part of the architecture, so no information

on the implementation of the architecture is necessary to use them. Secondly, they are designed to

have no e�ect on the execution of the program, which helps ensure that any performance problems

that occur during the normal execution of a program also occur when using hardware performance

monitoring to observe the performance, and vice versa.

Hardware performance monitoring is accomplished through hardware counters. These counters

accumulate the number of times that events occur within the architecture. The countable events

include cache-misses, branch mispredictions, decoded instructions, retired instructions, and other

events that might indicate the hardware is not performing optimally [14]. Hardware counters have

been around for several years [20, 26]. Today, almost all mainstream microprocessors implement

hardware counters. Additionally, many vendors have either developed special software to use the

counters [2, 3] or have integrated their use into their existing pro�ling packages [1, 28]. Some

vendors do not distribute commercial packages, but use proprietary software for tuning benchmarks

and commercial software packages.

Hardware counters provide information on the number of times events occur within a section

of code, but they do not allow a user to tell exactly which instruction triggered these events. For

this reason, hardware counters are usually used in conjunction with other techniques such as path

pro�ling and continuous pro�ling [1, 2, 3].

Work has been done to show the utility of hardware counters in improving the interaction between

the hardware and the software. To my knowledge, however, none of this work has included any

discussion of processor performance anomalies. Nevertheless, hardware counters can be used to help

�nd and understand performance anomalies. I use hardware counters to monitor the performance of

microbenchmarks, allowing me to isolate the particular instruction sequences that cause an anomaly.

Performance Modeling

Performance models are mathematical models used to predict the performance of an application on

a computer system. The performance of a computer system is represented using a small number of

16

measurements. The mathematical model then uses these measurements to predict the performance

of an application on the given system [8, 18]. Toledo [25] presents a model where a small amount of

dynamic information is used to produce a more accurate model.

Performance modeling techniques are focused on two areas: software design and hardware design.

Performance models help a programmer discover what parts of the code are causing the hardware

to stall. They also help a hardware designer determine the performance bottlenecks in the design

of an architecture. To my knowledge, however, performance modeling has not been applied to

the problem of identifying and �xing performance anomalies. Past techniques have included only

ISA-level modeling of an entire computer system. I use information provided by the vendor, and

results from running microbenchmarks to produce an architecture-level model of particular features

of a processor. The model I produce is more than just a performance model though. My model

represents a detailed understanding of how the instruction sequence interacts with the particular

features of the architecture.

Architectural Design

The ideal solution to the problem of processor performance anomalies is to avoid them altogether

in the design of the processor architecture. Currently, architectural designers spend a signi�cant

amount of time and energy to avoid performance bottlenecks, making use of performance modeling

techniques to aid them in their design decisions [6, 7, 15]. Errors in these models, however, make it

di�cult to design an architecture for performance.

Performance models used by hardware designers are attempts to extract the information that

a�ects performance from the design. Unfortunately, there is no rigorous method for �nding errors

in these performance models. These errors are situations where the performance model incorrectly

predicts the performance of the hardware. Developers simply check the plausibility of the results

the models predict. If they �nd surprising results, they look for possible errors in their performance

model. Unfortunately, this method of validation by inspection is error-prone, and research is being

done to develop better methods for validating performance models. Even more rigorous methods of

validation, such as those proposed by Black and Shen [6], rely on developer-written test suites that

may not test the model e�ectively.

Improved methods for validation of performance models may eventually reduce the number of

performance problems. The current method of avoiding performance anomalies during the hard-

ware design phase, however, is still relatively haphazard, leaving processors with many performance

anomalies.

17

Code Restructuring

The term \code restructuring" has been used to refer to a variety of di�erent techniques. In the fol-

lowing, code restructuring refers to transforming an executable code into a semantically equivalent

executable code by rearranging the order of instructions.

Code restructuring is useful in circumstances where the original source code is not readily avail-

able. Often, older binaries are restructured to perform better on a new implementation of the same

ISA [16]. For example, binaries compiled for the Pentium may be restructured to be optimized for

the Pentium Pro [19]. Analogously, restructuring can be used to reschedule executables to conceal

performance anomalies.

A disadvantage of code restructurers is that their construction involves signi�cant implementa-

tion e�ort. Unfortunately, the process of restructuring code is not as simple as disassembling the

code, rearranging instructions, and then reassembling it. The di�culty arises from the fact that

rearranging code changes the the placement of branch targets within the code sequence. Therefore,

the restructurer must ensure that the destination of each branch instruction is correct, requiring

the modi�cation of instructions rather than only reordering. Ensuring this condition becomes prob-

lematic in the presence of indirect jumps, where branch targets are extremely hard to determine,

because the target of some branches is actually stored as data. Additionally, some binaries contain

data stored within the text segment, making it di�cult to even detect which sections of the binary

can be restructured and which must remain untouched. The engineering e�ort required to write a

code restructuring tool may outweigh its possible bene�ts.

Several tools have been introduced to aid in the process of developing code restructuring tools [11,

16, 21]. These tools provide a high-level abstraction of the binary code which greatly simpli�es the

process of writing a code restructurer. The abstraction layer presented by these tools, however, does

not allow the user to control the exact layout of instructions because implementation details handled

by the tools may require the insertion of additional instructions. I found that it was necessary

to control the exact layout of instructions in order to conceal processor performance anomalies.

Therefore, I did not use such tools to write a code restructurer.

I choose instead to conceal performance anomalies by restructuring the assembly code produced

by the compiler. In this assembly code all branch targets are represented by labels. Consequently, all

branch targets can be assigned by the assembler, allowing changes to be made to the assembly code

without worrying about the destination of branch instructions. Concealing performance anomalies

through the restructuring of assembly code requires access to the assembly code produced by the

compiler, but simpli�es the implementation e�ort considerably.

18

Chapter 3

UltraSPARC Case Study

To show that performance anomalies constitute a serious problem on commercial microprocessors,

I performed a case study of the UltraSPARC Microprocessor, developed by Sun Microsystems [22].

The UltraSPARC is an implementation of the SPARC-V9 ISA1 [27]. Through this study, I identi�ed

four performance anomalies caused by the design of the architecture. Each of these anomalies was

caused by a speci�c feature of the architecture: next �eld predictors, fetching logic, grouping logic,

and branch prediction logic. I created a set of microbenchmarks for each feature. I use information

from the UltraSPARC User's Manual [14], and from the execution times of these microbenchmarks

to identify the cause of each anomaly.

foo:

retl

nop

:

.LL7:

call foo,0

add %l0,-1,%l0

cmp %l0,0

bg .LL7

nop

Figure 3-1: Snippets of the assembly code generated from the C-code in Figure 1-1, used to create
a microbenchmark.

The example from Chapter 1 is used to show the process of creating microbenchmarks. The

process is begun with a short code sequence that exhibits a performance anomaly. For this example,

the code sequence in Figure 3-1 is used. This code sequence is produced by compiling the the C

code in Figure 1-1, and thus exhibits all three types of performance anomalies. A code sequence is

1This is an open standard developed by SPARC International, Inc.

19

.LL7: (align 32)

nop

nop

add %l0,-1,%l0

nop

nop

nop

br foo

nop

nop

nop

nop

.LL8:

nop

nop

nop

nop

cmp %l0,0

nop

nop

nop

nop

bg .LL7

nop

foo: (align 32)

nop

nop

nop

nop

nop

nop

nop

nop

br .LL8

nop

Figure 3-2: A microbenchmark created from the assembly code in Figure 3-1.

then created that is similar to the original, yet does not exhibit any performance anomalies. Such

a code sequence is shown in Figure 3-2. This code sequence was created from the code sequence in

Figure 3-1 by inserting nops to isolate all instructions and replacing the call and return instructions

with explicit branch instructions. Finally, this code sequence is carefully changed to produced a set

of microbenchmarks, each of which is intended to test one possible cause of the performance anomaly.

This process allowed the code sequence in Figure 3-1 to be decomposed into two microbenchmarks,

each exhibiting only one performance anomaly.

I have observed four performance anomalies, on the UltraSPARC processor, each caused by a

speci�c feature of it's design. In the remainder of this chapter, I present my understanding of the

design of the UltraSPARC and explain how the speci�c features cause performance anomalies. In

the �rst section I give an overview of the portion of the architecture that is the source of all four

observed performance anomalies. I describe two architectural features, the I-bu�er and the next �eld

predictors, both of which are important to understanding the observed performance anomalies. The

following four sections describe the features of the architecture that cause the observed performance

anomalies. These features include the next �eld predictor table, the fetching logic, the grouping

logic, and the branch prediction logic. For each of these features I provide a description of my

understanding of the logic design, a characterization of the associated performance anomaly, the

microbenchmarks used to identify the anomalies, and the algorithm used to conceal the anomaly.

20

Figure 3-3: The nine-stage pipeline of the UltraSPARC.

3.1 The Architecture of the UltraSPARC-I

This section gives an overview of the front-end of the UltraSPARC processor which is the source of

the observed performance anomalies. The UltraSPARC processor produced by Sun Microsystems

contains the nine stage pipeline shown in Figure 3-3. The �rst three stages (Fetch, Decode and

Group) constitute the front end of the processor, and are shown in detail in Figure 3-4. I identi�ed

the front end to be the source of all four performance anomalies, therefore I do not describe the

remaining stages. In the front end, the instructions are loaded from memory, decoded, and then

grouped together to be passed to the execution stage. It is essential for optimal performance that

the front end maintain a rate of instructions ow, from the I-cache to the execution units, that

is not smaller than that which the execution units can handle. If this rate cannot be maintained,

the execution units become underutilized, and the processor performance drops. The instruction

sequence determines which instructions must be fetched from the I-cache. Consequently, this se-

quence can have a signi�cant e�ect on the performance of the front end. The following two sections

describe the instruction bu�er and the next �eld predictor. Understanding these features aids in the

understanding of the observed performance anomalies.

Instruction Bu�er

The UltraSPARC executes instructions at a maximum rate of 4 instructions per cycle. To move

instructions from the I-cache to the execution units at this rate, an instruction-bu�er (I-bu�er)

that holds 12 instructions is used, as shown in Figure 3-4. I assume the I-bu�er is implemented

21

Figure 3-4: The design of the front end of the UltraSPARC.

as a circular bu�er, managed by two pointers2. During each cycle, up to 4 instructions are loaded

from the I-cache into the I-bu�er. Simultaneously up to 4 instructions, previously loaded into the

I-bu�er, are passed to the grouping logic.

Next Field Predictor

The UltraSPARC associates a Next Field Predictor (NFP) with each half of an I-cache line.

The NFP predicts the index of the I-cache line of the instruction to be scheduled for execution next,

which allows the throughput of 4 instructions per cycle to be maintained when loading instructions

from the I-cache in the presence of Control Transfer Instructions (CTI's). Each I-cache line

contains 8 instructions, and separate NFP's are associated with both words 0{3 and words 4{7 of

each I-cache line. I call each of these halves of an I-cache line an I-cache group . The NFP value

is the index used to predict the next I-cache line to be fetched. The NFP values are stored in the

separate Next Field Prediction table shown in Figure 3-4, where each NFP value has an NFP slot

in which it is stored.

The NFP value is determined by the instructions in its associated I-cache group, according to

the following two cases:

Code without predicted-taken CTI's: The NFP indexes the I-cache line of the next instruction

2The UltraSPARC-I User's Manual tells us only that the bu�er is managed by two pointers.

22

Figure 3-5: The NFP's for code without any predicted-taken CTI's point to the succeeding I-cache
group.

in the code sequence. In Figure 3-5, the instruction to be scheduled for execution after the

instructions in I-cache group A is the �rst instruction of I-cache group B. The NFP does

not index the instruction to be scheduled for execution next, but to the I-cache line of the

instruction to be scheduled for execution next. Thus, the NFP slot associated with group A

holds the index of the I-cache line containing group B, which is i. Accordingly, the NFP slot

associated with group B holds the index of I-cache line j.

Code with predicted-taken CTI's: The NFP addresses the I-cache line of the target of the CTI,

as shown in Figure 3-6. The SPARC-V9 ISA used by the UltraSPARC includes a delay slot

after all CTI's. The design of the UltraSPARC requires the instruction in the delay slot of a

CTI always to be loaded, even if it will not be executed. Therefore, the NFP of an I-cache

group indexes the target of the CTI if the I-cache group contains the delay slot of a CTI. If

an I-cache group contains more than one CTI delay slot, the NFP slot associated with that

group holds the target index of the last CTI taken.

The NFP is loaded as instructions are loaded into the I-bu�er. I assume that the UltraSPARC

architecture includes a NFP register into which the current NFP value is loaded, as shown in

Figure 3-4. I call the group of instructions loaded into the I-bu�er an I-bu�er group . This group

can be any of up to 4 contiguous instructions of a single I-cache line, and may contain instructions

from more than one I-cache group. Instructions from multiple I-cache lines cannot be loaded in

a single cycle. The I-bu�er group determines the NFP slot from which the current NFP value is

loaded, according to the following two cases:

23

Figure 3-6: The NFP's for I-cache groups containing the delay slot of a predicted-taken CTI, point
to the target of the CTI.

I-bu�er group without the delay slot of any predicted-taken CTI's: The NFP value asso-

ciated with the I-cache group that contains the �rst instruction in the I-bu�er group is loaded

into the NFP register.

I-bu�er group containing the delay slot of a predicted-taken CTI: The NFP value associ-

ated with the I-cache group that contains the delay slot of the CTI is loaded into the NFP

register.

When the I-cache is accessed next, only instructions of the I-cache line indexed by the currently

loaded NFP value can be loaded. If the NFP value is mispredicted, a 2-cycle stall is caused while the

correct I-cache line is fetched, and the correct instructions are loaded. As the correct instructions

are loaded, the index of the correct I-cache line is loaded into the NFP slot of the associated I-cache

group.

3.2 Next Field Predictor

The next �eld predictor is the �rst of the four features that I identi�ed as the cause of a performance

anomaly in the UltraSPARC. The next �eld contains the index of the I-cache line and the associa-

tivity number (or way) of the I-cache line that should be fetched next [14, p. 258]. The 2-cycle stall

caused when the NFP is mispredicted produces the most pronounced performance anomaly.

The e�ect of next �eld prediction on performance is studied by means of the code fragment shown

in Figure 3-7, which contains a loop with a call to the empty function foo(). The corresponding

24

nop ! 32-byte aligned

nop

L0: nop

call foo

add %l0,-1,%l0

nop

bg L0

cmp %l0,0

:

nop ! 32-byte aligned

foo: retl

nop

Figure 3-7: Assembly code fragment demonstrating the NFP misprediction problem.

instruction layout in the I-cache is shown in Figure 3-8, assuming that the code fragment in Figure 3-7

is aligned to a 32-byte (I-cache line) boundary.

The call instruction to foo occupies word 3 of the I-cache line, and its delay slot|occupied by

the add instruction|word 4. The NFP value associated with the call target is stored in NFP slot

B, because NFP slot B is associated with the I-cache group (words 4{7) that contains the delay

slot of the call. The misprediction of the NFP value in slot B causes a performance anomaly, as

explained in the following.

Assume that initially, all NFP values in Figure 3-8 are unde�ned.3 When entering loop L0, the

instructions in I-cache group 0{3 of line i are loaded into the I-bu�er, and the call instruction is

scheduled for execution. After the associated next �eld prediction, the index of I-cache line i is

assigned to NFP slot A, because the delay slot of the call (word 4) must be loaded next. When

scheduling the delay slot for execution, the value for NFP slot B is computed. This value is the

index of I-cache line j, which contains the code of function foo. Analogously, when executing the

retl instruction of foo, the value for NFP slot C is computed, which is the index of I-cache line i.

The state of the NFP's when returning from foo is shown in Figure 3-8.

The cause of the performance anomaly is a misprediction of the NFP values both on the return

from, and the call to foo:

1. After returning from foo, the NFP values are the values shown in Figure 3-8 and instruction

bg L0 is scheduled for execution. This instruction branches to word 2 of the same I-cache line,

i. Consequently, the next I-bu�er group to be fetched originates from line i. The predicted

I-cache line index in the associated NFP slot B is line j, however. This misprediction causes

a 2-cycle stall, during which the index of the correct I-cache line, which is i, is computed and

stored in NFP slot B.

3It is not clear to me how the NFP values are initialized in the NFP table.

25

Figure 3-8: State of NFP's when foo returns.

2. The second misprediction occurs during execution of the next call to foo. The just-corrected

value in NFP slot B, associated with the delay slot of the call, is now incorrect, because the

code of foo is cached in line j. Consequently, another 2-cycle stall occurs, during which the

index of I-cache line i is assigned to NFP slot B.

Each execution of the call to foo in I-cache line i causes 2 mispredictions and 4 lost cycles due

to stalls.

Performance Nonmonotonicity Bug

Next �eld mispredictions can be exposed as performance nonmonotonicities. In Figure 3-9, I added

work in the form of 3 add instructions in front of loop L0 from Figure 3-7. Although work is added,

the execution of the code in Figure 3-9 can be up to 2.25 times faster than the execution of the

original code in Figure 3-7, cf. Table 3.1.

Bug Fix

The performance nonmonotonicity caused by next �eld misprediction can be concealed by realigning

the instructions such that the delay slot of the call to foo occupies the last word of an I-cache group,

which is either word 3 or word 7 of an I-cache line.

Next Field Prediction Fix: Align all call instructions to word 2 or word 6 of an I-cache line.

26

nop ! 32-byte aligned

nop

add %l0,+2,%l0

add %l0,-1,%l0

add %l0,-1,%l0

L0: nop

call foo

add %l0,-1,%l0

nop

bg L0

cmp %l0,0

...

foo: retl

nop

Figure 3-9: Assembly code fragment similar to Figure 3-7, that does not exhibit next �eld mispre-
diction.

Performance Figure 3-7 Figure 3-9

(original) (rescheduled)

Time (secs) 5.6 { 6.3 2.8

Cycles/Iteration 8 { 9 4

Table 3.1: Performance of the NFP misprediction microbenchmarks in Figure 3-7 and Figure 3-9.

In the example in Figure 3-7, the mispredictions are independent of the loop around the function

call to foo. The next I-cache line is predicted correctly only if the function call is allocated to word 2

or 6 of an I-cache line.

Table 3.1 compares the performance of the loop shown in Figure 3-7 with its aligned version shown

in Figure 3-9. The data in the table was obtained by executing one-hundred million iterations of each

loop on a Ultra-SPARC-I (143 MHz) machine. Realigning the code conceals the nondeterminism

observed in the original code, however, the source for the nondeterminism could not be found.

3.3 Fetching Logic

The fetching logic of the UltraSPARC determines the rate at which instructions are fetched from the

I-cache. Performance degrades if the rate at which instructions are fetched is smaller than the rate

at which they can be executed. The fetching logic allows instructions from only a single I-cache line

to be fetched in each cycle. I call this restraint the fetching limitation . This limitation implies

that \When the fetch address mod 32 is equal to 20, 24, or 28, then three, two or one instruction(s)

27

A

(L1: nop00

br L2: ! 32-byte aligned

nop01
nop02

nop03

nop04

nop05

nop06

B

(L2: nop07

br L3: ! 32-byte aligned

nop08
nop09

nop10

nop11

nop12

nop13

C

(
L3: cmp %l0,0

bg L1: !32-byte aligned

add %l0,-1,%l0

Figure 3-10: Assembly code demonstrating the Fetching Limitation Problem.

respectively will be added to the instruction bu�er" [14], rather than four.

I de�ne an execution group to be a group of up to 4 consecutive instructions that can be

scheduled for execution during a single cycle. Execution groups that cross I-cache (32-byte) bound-

aries expose the fetching limitation. Loading such execution groups into the I-bu�er takes 2 cycles,

because instructions from 2 di�erent I-cache lines are loaded, and each load takes 1 cycle.

The code fragment in Figure 3-10 contains three execution groups, A, B, and C. Figure 3-11

shows one possible alignment of the code in the I-cache. Due to the branch instructions, only the

bracketed code in Figure 3-10 (highlighted code in Figure 3-11), is actually executed. Executing

100,000,000 iterations of the loop shown in Figure 3-10 takes 2.1 seconds on an UltraSPARC-I

(143MHz) machine when it is aligned in the I-cache as shown in Figure 3-11. Each iteration of the

loop executes in 3 cycles4. Consequently, during each cycle the instructions of one of the execution

groups, A, B, or C, must be loaded from the I-cache. The branch target prediction mechanism of

the UltraSPARC allows it to predict the target of branches before they are passed to the grouping

logic [14, pg. 13]. I assume the branches of the code fragment are always predicted correctly, since

each iteration of the loop executes in 3 cycles.

Realigning the code in the I-cache, we produce the instruction sequence shown in Figure 3-12.

Since each execution group in this alignment spans 2 I-cache lines, each requires 2 cycles to be loaded

from the I-cache. Consequently, at least 6 cycles are required each iteration to load the instructions.

Since the branch target prediction logic predicts all branches correctly, exactly 6 cycles are required.

4(143,000,000 cycles per sec/100,000,000 iterations) � 2.1 sec = 3 cycles/iteration

28

Figure 3-12: I-cache alignment of the code in Figure 3-10 that executes in 6 cycles per iteration.

Performance Nonmonotonicity Bug

The assembly code in Figure 3-10 reveals a performance nonmonotonicity caused by the fetching

limitation. If the code is aligned as shown in Figure 3-12, inserting a single add instruction before

L1 will realign the loop to the alignment shown in Figure 3-11. This example reveals a performance

nonmonotonicity, since as stated earlier, the code aligned as in Figure 3-11 executes in half the time

of the code as aligned in Figure 3-12.

Bug Fix

Some instruction sequences that exhibit this bug can be avoided by realigning instructions using the

following algorithm.

Fetching Limitation Fix: Insert nops to align to 32-byte boundaries all basic blocks immediately

29

Number Crossing an Time(secs) Cycles/Iteration

I-cache Line Boundary

0 2.1 3

1 2.8 4

2 3.5 5

3 4.2 6

Table 3.2: Performance of the Fetching Limitation microbenchmark shown in Figure 3-10, with
four di�erent alignments of the code in the I-cache.

following unconditional CTI's.

Execution groups in the instruction sequence that cross I-cache line boundaries must be avoided to

conceal the fetching limitation performance anomaly. To avoid such execution groups, we would like

to realign execution groups to I-cache line boundaries. Realigning instructions in the cache, however,

requires instructions to be inserted into the code. If these instructions are executed, then we may

lose the single cycle gained by avoiding an execution group that spans I-cache lines. Additionally,

if the fetching of instructions is not the execution bottleneck, then inserting instructions in the

code may decrease performance by requiring more instructions to be executed. Instructions inserted

immediately after the delay slot of an unconditional CTI (such as a branch always or a jump),

execute only if they are the target of a branch. Therefore, any instructions inserted after the

delay slot of an unconditional CTI, and before the following label, can never be executed. Only

at this place can we insert instructions and know they can never be executed. Consequently, the

algorithm realigns only execution groups immediately following the delay slot of an unconditional

CTI. Without information on the control ow of the program, it seems this is the best that can be

done. By using the compiler to conceal the fetching limitation performance nonmonotonicity bug,

however, information on control ow would be available and a better �x could be implemented.

The e�ect of aligning execution groups A, B, and C in the I-cache is shown in Table 3.2. Inserting

a nop before L3, group C is aligned to a 32-byte boundary. Similarly, inserting a nop before L2,

realigns groups B and C, and inserting a nop before L1 realigns all three groups simultaneously.

One-hundred million iterations of the loop are executed on an Ultra-SPARC-I running at 143 MHz.

The results show clearly that whenever an execution group spans I-cache lines, an additional cycle

of execution time is added to each iteration of the loop.

30

3.4 Grouping Logic

The design of the Ultra-SPARC-I includes two oating-point execution units, and two integer exe-

cution units. Each integer unit can only execute a subset of the integer instructions, however, and

each oating-point unit can only execute a subset of the oating-point instructions [14]. This design

restricts which instructions of an instruction stream can be scheduled for execution during the same

cycle. The grouping logic ensures that none of the restrictions are violated when instructions are

passed to the execution units. Other limitations, such as data dependencies, also restrict which

instructions can be scheduled for execution during the same cycle. When a limitation exists between

two instructions presented to the grouping logic in the same cycle, it a forces a group break between

the two instructions. All instructions following the group break are scheduled for execution in later

cycles.

The grouping logic itself imposes a constraint on the instruction stream, as stated in the UltraSPARC-

I User's Manual [14]:

\UltraSPARC-I can execute up to 4 instructions per cycle. The �rst 3 instructions in a

group occupy slots that are interchangeable with respect to resources. [...] The fourth

slot can only be used for PC-based branches or for oating-point instructions."

I call this the grouping constraint . If this constraint is violated by the instruction stream, a group

break forms before the instruction in the \fourth slot", since it cannot be scheduled for execution in

the same cycle as the other instructions.

L1: fmuls %f4,%f4,%f4

nop

nop

fmovs %f7,%f7

3
75

���������������
fmovs %f5,%f5

nop

add %l0,-1,%l0

fmuls %f6,%f6,%f6

3
75

���������������
*nop

cmp %l0,0

bg L1

*fmovs %f9,%f9

3
75

Figure 3-13: Assembly code loop which is executed at the maximum execution rate of 4 instructions
per cycle.

Figure 3-13 shows an instruction sequence for which instructions are executed at the maximum

execution rate of 4 instructions per cycle. The brackets show the execution grouping of the instruc-

tions for which the execution rate of 4 instructions per cycle can be achieved. All of the group breaks

in this instruction sequence are \normal" groups breaks, and not \forced" group breaks.

31

L1: fmuls %f4,%f4,%f4

nop

�
1 ��������������

nop

fmovs %f7,%f7

i
2 ��������������

fmovs %f5,%f5

nop

add %l0,-1,%l0

fmuls %f6,%f6,%f6

3
75

3 ���������������
fmovs %f9,%f9

cmp %l0,0

bg L1

#

4 ���������������
nop e

Figure 3-14: Assembly code loop produced by exchanging two instruction in the code in Figure 3-
13, which cannot execute at the rate of 4 instructions per cycle because of the grouping limitation.

The code sequence shown in Figure 3-14 can be produced by exchanging the instructions marked

with a star in Figure 3-13. In Figure 3-14, each of the group breaks is numbered and marked with a

dashed line. Groups breaks 1, 2, and 4 are \forced" group breaks, while group break 3 is a \normal"

group break. In the following, I explain the cause of each group break:

1. Both the last instruction in the whole sequence, a nop, and the �rst 2 instructions, an fmuls

and a nop, are in the execution group preceding this break. This preceding group contains

2 integer instructions|the nops|and only 2 integer instructions can be executed each cycle.

Since the �rst instruction in the group following the break is also an integer instruction, it

cannot be scheduled for execution in the same cycle, and a group break forms.

2. Only one of the oating-point units can execute fmovs instructions, so only one fmovs instruc-

tion can be executed each cycle. Consequently, a group break forms between the two fmovs

instructions.

3. Only 4 instructions can be scheduled for execution each cycle, forming the group between

group breaks 2 and 3. Group break 3 does not represent a forced group break, but rather a

normal grouping with maximum utilization of the functional units.

4. The grouping limitation dictates that if 4 instructions are to be scheduled for execution during

the same cycle, the 4th instruction must be either a oating-point instruction or a PC-based

branch instruction. The instruction in the 4th slot is neither a oating-point operation nor

a branch, but a nop. Consequently only 3 instructions can be scheduled for execution in the

execution group preceding this break.

Given the grouping shown in Figure 3-14, each iteration of the loop takes 4 cycles rather than 3.

32

Performance Nonmonotonicity Bug

The grouping limitation causes performance nonmonotonicities. Exchanging the position of two

instructions in the code sequence in Figure 3-13 to produce the code in Figure 3-14 increases the

execution time by 1/3. The amount of work has not increased, although the execution time has,

thereby revealing a performance nonmonotonicity.

Bug Fix

The grouping limitation performance nonmonotonicity is concealed by ensuring that, if possible, the

4th slot of every execution group contains either a oating-point operation or a CTI. Starting with

the code fragment in Figure 3-14, we can conceal the bug by rescheduling the instructions to produce

the code fragment in Figure 3-13. A general restructuring algorithm to conceal this performance

nonmonotonicity was not developed, due to the complexity of the other limitations imposed by the

architecture. It would be more appropriate to implement such an algorithm as part of a compiler,

where more control ow information is accessible.

Performance Code in Figure 3-13 Code in Figure 3-14

Time (secs) 2.1 2.8

Cycles/Iteration 3 4

Table 3.3: Performance of the grouping limitation microbenchmark in Figure 3-13 compared to the
microbenchmark in Figure 3-14.

Table 3.3 compares the performance of the code in Figure 3-13 to the code in Figure 3-14 when

it is run on a SUN UltraSPARC-I (143 MHz) machine. This table shows that each iteration of the

loop in Figure 3-13 can be executed in 3 cycles, whereas each iteration of the code in Figure 3-14

takes 4 cycles.

3.5 Branch Prediction Logic

A 2-bit branch prediction mechanism is used on the UltraSPARC [14]. A single 2-bit predictor is

associated with every two instructions. The branch prediction logic exhibits a performance anomaly

called odd-fetch which is explained in the Ultra-SPARC User's Manual [14]:

\When the target of a branch is word one or word three of an I-cache line, and the 4th

instruction to be fetched is a branch, the branch prediction bits from the wrong pair of

instructions are used."

33

nop ! 32-byte aligned

L1: cmp %g1, 0

add %g2,1,%g2

add %g5,1,%g5

bg,a,pt %icc, L1

sub %g1,1,%g1

add %l0,0,%l0 ! 32-byte aligned

nop

L1: cmp %g1, 0

add %g2,1,%g2

add %g5,1,%g5

bg,a,pt %icc, L1

sub %g1,1,%g1

Program A Program B

Figure 3-15: Assembly code fragments demonstrating the odd-fetch performance anomaly.

The microbenchmark shown in Figure 3-15 program A exhibits the branch misprediction caused

by the odd-fetch problem. In this example, the bg instruction is the 3rd instruction after the

branch target L1. Thus, when the bg instruction is fetched, it is the 4th instruction to be fetched.

Additionally, the branch target L1 is word 1 of an I-cache line, assuming that the nop before L1 is

aligned to a 32-byte boundary.

Performance Nonmonotonicity

The assembly code in Figure 3-15 exposes the odd-fetch performance nonmonotonicity. Inserting an

extra add instruction before the loop in Figure 3-15 program A produces the code in Figure 3-15

program B. In program B, the loop is aligned such that the target of the branch is no longer the

1st or 3rd word in an I-cache line, but instead the 2nd word. This addition of work decreases the

execution time by a factor of 3 or more, exhibiting nonmonotonic performance.

Bug Fix

To conceal the odd-fetch performance nonmonotonicity problem, we avoid all instances of the in-

struction sequence described in the citation from the UltraSPARC User's Manual.

Odd-Fetch Fix: Insert a single nop before all branch targets that are word 1 or word 3 of an

I-cache line, and for which the 4th instruction, word 5 or word 7 respectively, is a branch.

By avoiding the problematic instruction sequence described in the User's Manual, we prevent the

use of the wrong branch prediction bits, and conceal the odd-fetch performance nonmonotonicity.

Performance Program A in Figure 3-15 Program B in Figure 3-15

C-code 4.2 - 4.9 seconds 1.4 seconds

Assembly Code 6 - 7 cycles/iteration 2 cycles/iteration

Table 3.4: Performance of the odd-Fetch microbenchmarks in Figure 3-15.

34

Table 3.4 compares the performance of the two versions of the code in Figure 3-15 when they are

executed on an UltraSPARC-I (143 MHz). Realigning the code also conceals the nondeterminism

exhibited by Program A. Again, the source for the nondeterminism in the unaligned code could not

be found, however.

35

36

Chapter 4

Experimental Results

To show that performance anomalies appear not only in contrived examples, but also in real pro-

grams, I implemented an assembly-code restructuring tool. This tool implements the algorithms

described in Chapter 3 for concealing performance anomalies. I show that using this tool during

the compilation of the SPECint benchmarks [23] provides speedups of up 2.2% on average across

compilers1. I �rst describe the experimental setup, and then present and discuss the performance

gains of restructuring.

The Experiment

The instruction sequences of the SPECint benchmarks were restructured at the assembly-code level.

I implemented a restructurer that uses the algorithms described in Chapter 3 for aligning instructions

by means of inserting nops. To simplify the process of aligning instructions in the assembly �le, all

functions are aligned to I-cache line (32-byte) boundaries with the assembly code macro .align.

The two compilers used in this study are the GNU C-compiler version 2.7.2 (gcc), and the

SUN Workshop Compiler version 4.2 (cc). With each compiler I created a set of fully optimized

executables and a set of executables that excluded function inlining. For gcc, I used -O3 to build the

fully optimized executables and -O2 to build the executables without inlining. For the GNU compiler

the -O3 option also includes the loop unrolling optimization, in addition to procedure inlining. To

build the fully optimized executable with cc, I used the same options used by SUN to obtain the

published SPECint results for the UltraSPARC: -Xc -xarch=v8 -xchip=ultra -fast -xO4 -xdepend.

The executables without function inlining were built using the option -xO3 in place of -xO4. In the

following, I use the notation ccO4 , ccO3 , gccO3 , and gcc O2 to denote the four sets of compiled

executables. The instrumented executables were obtained by compiling the benchmarks with -S

1The 2.2% given is obtained by averaging the 2.1% achieved on executables compiled with SUN's C-compiler using
full optimization and the 2.3% achieved using GNU's C-compiler with full optimization.

37

to produce an assembly �le. Subsequently, my restructurer was used to produce an instrumented

assembly �le. Finally, the instrumented assembly �les were assembled using the compiler they were

originally created with. Fortunately, SUN's and GNU's assemblers don't treat the assembly code

as another intermediate representation. Rather than performing optimizations during the assembly

phase, as SGI's C-compiler does, these assemblers perform a one-to-one translation of assembly

mnemonic into bit strings. This allows my restructurer to correctly align code at the assembly-code

level.

All experiments were performed on SUN UltraSPARC-I machines running at 142 MHz. The

machines have 64 MB memory and run Solaris 2.5.1. In order to reduce the variance of the execution

times, produced by the operating system, the machine was booted in single user mode. All results

were obtained by rebooting the machine, running each executable three times, rebooting the machine

again, running each executable 3 additional times and selecting the smallest of the six execution

times. I observed that 3 executions was enough to allow the performance to stabilize, and picking

the lowest of 6 executions reduced the variance to between 1 and 2 percent.

The Results

This section contains the results obtained for each of the four optimization levels|ccO4, ccO3,

gccO3, gccO4|and a brief discussion of each set of results. Table 4.1 contains the results for ccO4,

Table 4.2 the results for ccO3, Table 4.3 the results for gccO3, and Table 4.4 the results for gcc O2.

Each table presents execution times in the upper section, and performance increases in the lower

section. Performance is represented by SPECMARKS. Therefore, higher SPECMARK numbers

represent lower execution times. Performance increases are represented by percentages.

Five sets of SPECMARKS were obtained for each optimization level and are presented in the

5 columns of the upper part of each table. In each table, the original (unaligned) column shows

the SPECMARKS achieved by the original instrumented executables2. The columns next �eld mis-

prediction, fetching limitation, and odd fetch present SPECMARKS of the executables restructured

to conceal the respective performance anomaly. The all column presents SPECMARK data for

executables restructured to conceal all three performance anomalies. The lower part of each table

presents the performance increases calculated from the SPECMARKS. Each column shows the dif-

ference in performance between the original executable and the executables restructured to conceal

the performance anomalies.

2These results di�er from SUN's published results because a di�erent machine setup was used.

38

Sun C-compiler using -xO4

The executables built with ccO4 produce the results shown in Table 4.1. The maximum performance

increase obtained by concealing performance anomalies is the 5.5% increase obtained for li. The

SPECint rating of 4.75 is the highest rating achieved with the optimization levels I tested. Addi-

tionally, restructuring these executables produced consistent speedups, with performance increases

on all benchmarks except vortex. Surprisingly, the m88ksim benchmark produced negative results

for concealing individual performance anomalies, but obtains a performance gain of 3.4% when all

performance anomalies are concealed.

Sun C-compiler using -xO3

The results obtained using ccO3 are shown in Table 4.2. The maximum performance increase

is the 6.7% increase for go. The performance increases are generally higher than those obtained

using ccO4. I assume that inlining function calls partially conceals the next �eld misprediction

performance anomaly by reducing the number of function calls. Therefore, executables without

inlined functions calls present a greater opportunity for performance increase due to the concealment

of the next �eld misprediction performance anomaly. We can see this by comparing the results

of individual benchmarks in Table 4.2 to those in Table 4.1. For example, concealing next �eld

misprediction achieves only a 0.6% performance increase for the benchmark gcc compiled using

ccO4. A performance increase of 4.1% is obtained when gcc is compiled using ccO3, however. It is

not clear, though, why all of the benchmarks do not produce similar speedups.

GNU C-compiler using -O3

The results obtained using gccO3 are shown in Table 4.3. The largest performance gain is the

8.9% for perl. This performance increase is the largest I obtained for the entire SPECint suite.

Additionally, a increase of 2.3% was obtained for the entire suite which was the highest SPECint

rating increase that I obtained. The lowest performance increase obtained for executables compiled

with the GNU C-compiler using -O3 is -1.6% for compress, which is surprising since a performance

increase of 5.4% was obtained when this benchmark was compiled with SUN's C-compiler using

-xO4. Results such as these indicate that performance anomalies depend heavily on the compiler

used.

GNU C-compiler using -O2

The results obtained using the GNU C-compiler with the -O2 option are shown in Table 4.4. The

highest performance increase obtained is the 2.5% increase for m88ksim. Surprisingly, the perfor-

mance gains are the lowest of all compilations tested. Concealing individual performance anomalies

39

SPECMARKS

Benchmark original next �eld fetching odd fetch all

(unaligned) misprediction limitation

go 5.71 5.26 5.74 5.45 5.75

m88ksim 4.14 4.13 3.67 3.98 4.28

gcc 5.06 5.09 5.07 5.00 5.08

compress 5.21 5.23 5.28 5.28 5.49

li 3.97 4.15 4.14 4.08 4.19

ijpeg 5.04 4.99 5.09 4.84 5.05

perl 4.57 4.65 4.58 4.48 4.74

vortex 4.55 4.58 4.60 4.54 4.49

SPECint Rating 4.75 4.74 4.73 4.68 4.85

PERCENTAGE INCREASE IN PERFORMANCE

next �eld fetching odd fetch all

Benchmarks misprediction limitation

go -7.8 0.5 -4.6 0.7

m88ksim -0.2 -11.3 -3.9 3.4

gcc 0.6 0.2 -1.2 0.4

compress 0.2 1.3 1.3 5.4

li 4.5 4.3 2.8 5.5

ijpeg -1.0 1.0 -4.0 0.2

perl 1.8 0.2 -2.0 3.7

vortex 0.7 1.1 -0.2 -1.3

SPECint Rating -0.2 -0.4 -1.5 2.1

Table 4.1: Concealing performance anomalies in executables compiled with SUN cc -xO4 provided
performance increases of up to 5.5% for the SPECint benchmarks, as shown in the all column of
the performance increase section. All execution times are given in SPECMARKS, for which higher
number represent better performance. All performance increases are given as percentages.

40

SPECMARKS

Benchmark original next �eld fetching odd fetch all

(unaligned) misprediction limitation

go 5.36 5.41 5.55 5.17 5.72

m88ksim 3.95 3.73 3.91 3.97 3.95

gcc 4.81 5.01 5.05 4.75 5.11

compress 4.94 4.74 4.80 4.75 4.83

li 3.48 3.46 3.57 3.49 3.54

ijpeg 4.62 4.68 4.65 4.68 4.67

perl 4.27 4.31 4.48 4.28 4.49

vortex 4.43 4.38 4.55 4.51 4.36

SPECint Rating 4.45 4.42 4.53 4.42 4.54

PERCENTAGE INCREASE IN PERFORMANCE

next �eld fetching odd fetch all

Benchmarks misprediction limitation

go 0.9 3.5 -3.5 6.7

m88ksim -5.6 -1.0 0.5 0.0

gcc 4.1 5.0 -1.2 6.0

compress -4.0 -2.8 3.8 -2.2

li -0.6 2.6 0.3 1.7

ijpeg 1.3 0.6 1.3 1.1

perl 0.9 4.9 0.2 5.1

vortex -1.1 2.7 1.8 -1.6

SPECint Rating -0.7 1.8 -0.7 2.0

Table 4.2: Concealing performance anomalies in executables compiled with SUN cc -xO3 provided
performance increases of up to 6.7% for the SPECint benchmarks, as shown in the all column of
the performance increase section. All execution times are given in SPECMARKS, for which higher
number represent better performance. All performance increases are given as percentages.

41

SPECMARKS

Benchmark original next �eld fetching odd fetch all

(unaligned) misprediction limitation

go 5.49 5.31 5.42 5.20 5.60

m88ksim 3.86 3.86 3.99 4.08 4.07

gcc 5.01 5.03 5.02 4.99 5.02

compress 5.10 4.99 4.84 4.75 5.02

li 3.40 3.41 3.42 3.44 3.44

ijpeg 3.30 3.31 3.40 3.41 3.33

perl 4.36 4.37 4.60 4.65 4.75

vortex 4.25 4.46 4.11 4.25 4.37

SPECint Rating 4.28 4.28 4.99 4.30 4.38

PERCENTAGE INCREASE IN PERFORMANCE

next �eld fetching odd fetch all

Benchmarks misprediction limitation

go -3.27 -1.3 -5.3 2.0

m88ksim 0.0 3.4 5.7 5.4

gcc 0.4 0.2 -0.4 0.2

compress -2.2 -5.1 -6.9 -1.6

li 0.3 0.6 1.2 1.2

ijpeg 0.3 3.0 3.3 0.9

perl 0.2 5.5 6.7 8.9

vortex 4.9 -3.3 0.0 2.8

SPECint Rating 0.0 0.2 0.5 2.3

Table 4.3: Concealing performance anomalies in executables compiled with GNU gcc -O3 provided
performance increases of up to 8.9% for the SPECint benchmarks, as shown in the all column of
the performance increase section. All execution times are given in SPECMARKS, for which higher
number represent better performance. All performance increases are given as percentages.

42

SPECMARKS

Benchmark original next �eld fetching odd fetch all

(unaligned) misprediction limitation

go 5.28 5.17 5.43 5.30 5.35

m88ksim 4.06 4.16 4.00 4.11 4.09

gcc 4.95 4.98 4.96 4.97 4.96

compress 5.09 4.99 4.83 4.77 4.99

li 3.38 3.38 3.44 3.46 3.43

ijpeg 3.27 3.29 3.40 3.39 3.33

perl 4.47 4.55 4.03 4.42 4.44

vortex 4.42 4.32 3.97 4.11 4.43

SPECint Rating 4.30 4.30 4.20 4.27 4.32

PERCENTAGE INCREASE IN PERFORMANCE

next �eld fetching odd fetch all

Benchmarks misprediction limitation

go -2.1 2.8 0.4 1.3

m88ksim 4.3 0.3 3.0 2.5

gcc 0.6 0.2 0.4 0.2

compress -2.0 -5.4 -6.7 -2.0

li 0.0 1.8 2.4 1.5

ijpeg 0.6 4.0 3.7 1.8

perl 1.8 -9.8 -1.1 -0.6

vortex -2.2 -10.2 -7.0 0.2

SPECint Rating 0.0 -2.3 -0.7 0.4

Table 4.4: Concealing performance anomalies in executables compiled with GNU gcc -O2 provided
performance increases of up to 2.5% for the SPECint benchmarks, as shown in the all column of
the performance increase section. All execution times are given in SPECMARKS, for which higher
number represent better performance. All performance increases are given as percentages.

43

even tends to produce negative results. I assume, the reason is that the code produced by this opti-

mization level is less optimized than the code produced by the other optimization levels. As shown

in Chapter 3, concealing performance anomalies avoids situations for which the execution bottle-

neck is the ow of instructions from the I-cache to the execution units. If the code is compiled such

that other parts of instruction execution are the bottleneck, however, then concealing performance

anomalies will not produce any increase in the performance.

Discussion of the Results

The experimental results show that concealing performance anomalies through assembly code re-

structuring leads to performance gains of up to 8.9% compared to the original executables. The

results also indicate however, that e�ects outside of my study make the results somewhat unpre-

dictable. I believe, though, that this unpredictability can be explained by the combined e�ects of

the operating system and performance anomalies.

Signi�cant e�ort was spent to produce deterministic execution times. All measurements were

conducted in single user mode, and the machine was rebooted between each run of 3 executions.

Running executables without these precautions produced variances of the execution time that were

greater than the performance increases obtained. By rebooting before each execution, and executing

in single user mode, however, I was able to reduce the variance to a tolerable 1 to 2 percent. I believe

this observed variance was caused by the operating system, and speci�cally it's management of the

memory pages. This 1 to 2 percent variance helps to explain some of the smaller inconsistencies

observed in the results.

It is not possible to completely isolate the e�ect of concealing a single performance anomaly using

my restructurer. The restructuring policy of inserting nops a�ects the performance of the code in

two unpredictable ways. First, it is possible that inserting a nop to conceal only one of the observed

performance anomalies may inadvertently conceal or reveal another of the observed performance

anomalies. Additionally, it seems likely that the UltraSPARC contains many performance anomalies

that I have not identi�ed. Inserting nops to conceal the observed performance anomalies may conceal

or reveal these unknown performance anomalies as well contributing to the unpredictability of the

results.

A few observations can be explained by assuming that the results presented do not completely

isolate the e�ect of concealing individual performance anomalies. First, we observe that concealing

the odd-fetch performance anomaly does not seem to improve the overall performance of executa-

bles compiled with the optimization levels tested. This may be partially caused by the fact that

the odd-fetch performance anomaly occurs with a frequency of approximately 1/10 that of the other

performance anomalies. Additionally, by inserting a single nop to conceal an odd-fetch, we realign all

44

of the following instructions. This realignment may reveal or conceal many occurrences of next �eld

misprediction, and of the fetching limitation. I believe the variance in the performance produced by

this revealing and concealing hides the performance gains of concealing the odd-fetch performance

anomaly. Additionally, we observe that the performance increases obtained by individually conceal-

ing the three observed performance anomalies do not accumulate to produce the performance gained

by concealing all three performance anomalies together. This is because, with my restructurer, it is

di�cult to isolate the e�ect of concealing individual performance anomalies.

The SPECint benchmarks were chosen because of their acceptance as a benchmarking standard.

I believe that similar, and possibly greater, performance can can be obtained for programs that

contain tight loops, such as numerical codes.

45

46

Chapter 5

Conclusion

This thesis has presented the problem of processor performance anomalies. Current microprocessors

are so complex that there exist situations for which the insertion of a single instruction can a�ect the

execution time of a program by a factor of 3 or 4. I call situations like this performance anomalies.

In this thesis I provide �ve contributions:

1. I have identi�ed the problem of performance anomalies in commercial microprocessors.

2. I have provided a detailed description of the cause of four performance anomalies observed on

the SUN UltraSPARC.

3. I have provided algorithms used to conceal each of the anomalies.

4. I have developed an assembly-code restructuring tool which implements the algorithms.

5. I have shown that through the use of my restructuring tool, performance gains of up to 9%

can be obtained on some of the SPECint benchmarks.

In short, I have shown that current microprocessors contain performance anomalies and that

signi�cant performance gains can be obtained by concealing them. This work identi�es what I believe

to be the most important set of performance problems in the design of current microprocessors.

We take it for granted that a correct program will produce correct results when run on current

microprocessors, yet we tend to accept the fact that it is near impossible to predict the execution

time. Programmers who desire high performance must rely on a high degree of performance pre-

dictability, just as all programmers rely on the guarantee of correctness. The correctness of results

can only be guaranteed with such a high degree of certainty, however, because processors are be-

ing designed for testability. I propose that an analogous philosophy be applied to the problem of

performance anomalies. I believe that the only way to fully avoid performance anomalies is for

microprocessor designers to design for performance monotonicity.

47

Until microprocessors are designed with monotonic performance, however, we can use the ap-

proach presented in this thesis of concealing performance anomalies. The use of an assembly-

code restructuring tool has shown that appropriate instruction scheduling can conceal performance

anomalies. The restructuring method of realigning code through the insertion of nops has many

problems, however. The addition of nops increases both the total size of the executable �le and the

number of instructions that are executed. Additionally, the insertion of a single nop changes the

scheduling of all following instructions. This makes it di�cult to isolate the e�ect of concealing indi-

vidual performance anomalies. I believe these problems can be avoided by implementing algorithms

for concealing performance anomalies as part of the instruction scheduling phase of a compiler. The

availability of control ow information would allow for proper alignment of instructions possibly

without the insertion of nops. The implementation of algorithms to conceal performance anomalies

within the compiler would avoid both the increase in executable size and the increase in the number

of executed instructions, as well as isolate the e�ect of concealing individual performance anomalies.

This implementation must be done by the compiler writers, however, and I hope that this thesis

provides su�cient evidence to motivate the inclusion of such algorithms within the compiler.

Until we can rely on the compiler writers, however, performance anomalies can be concealed

through code restructuring. Unfortunately, my method of restructuring is limited by its reliance on

access to the assembly code output by the compiler. I chose to restructure assembly code rather

than binaries because of the reduced implementation e�ort. Implementing instruction rescheduling

algorithms as part of a binary restructurer, however, would allow the rescheduling of code for which

the assembly code is not available. This type of restructuring would allow anyone using an Ultra-

SPARC machine to obtain performance increases such as the ones presented in this thesis. I believe

the performance gains presented in this thesis justify the additional e�ort for implementing a binary

restructurer.

The algorithms presented in this thesis conceal performance anomalies of the SUN UltraSPARC,

and are presumably not applicable to other processors. Krech [10] has shown that similar perfor-

mance anomalies exist on the Pentium, however, and I believe that the design of all modern micro-

processors includes performance nonmonotonicities. I hope that my explanation of the performance

anomalies on the UltraSPARC sparks the discovery of performance anomalies on other processors.

If, as I suspect, all modern microprocessors do include such anomalies, this lends even more support

to my belief that future microprocessors must be designed for performance monotonicity.

48

Bibliography

[1] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hardware performance counters

with ow and context sensitive pro�ling. In Proceedings of the 1997 ACM SIGPLAN Conference

on Programming Language Design and Implementation, June 1997.

[2] Jennifer M. Anderson, Lance M. Berc, Je�ery Dean, Sanjay Ghemawat, Monika R. Hen-

zinger, Shun-Tak A. Leung, Richard L. Sites, Mark T. Vandevoorde, Carl A. Waldspurger,

and William E. Weihl. Continuous pro�ling: Where have all the cycles gone? In Proceedings of

the 16th ACM Symposium on Operating Systems Principles, St. Malo. France, October 1997.

[3] Mark Atkins and Ramesh Subramaniam. PC software performance tuning. IEEE Computer,

pages 47{54, August 1996.

[4] David H. Bailey. RISC microprocessors and scienti�c computing. In Proceedings of the Confer-

ence on High Performance Computing and Communications, pages 645{654, November 1993.

[5] L. A. Belady, R. A. Nelson, and G. S. Shedler. An anomaly in space-time characteristics of

certain program running in a paging machine. Communications of the ACM, 12(6):349{353,

June 1969.

[6] Bryan Black and John Paul Shen. Calibration of microprocessor performance models. IEEE

Computer, pages 59{65, May 1998.

[7] Pradip Bose and Thomas M. Conte. Performance analysis and its impact on design. IEEE

Computer, pages 41{49, May 1998.

[8] Philip Heidelberger and Stephen Lavenberg. Computer performance evaluation methodology.

IEEE Transactions on Computers, C-33(12):1195{1220, December 1984.

[9] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1996.

[10] Michael Krech, February 1998. http://www.intelligentfirm.com.

49

[11] James R. Larus and Eric Schnarr. EEL: Machine-independent executable editing. In Proceed-

ings of the SIGPLAN '95 Conference on Programming Language Design and Implementation

(PLDI), pages 291{300, June 1995.

[12] Peter S. Magnusson and Johan Montelius. Performance debugging and tuning using an

instruction-set simulator. Technical Report SICS-T{97/02-SE, Swedish Institute of Computer

Science, June 1997.

[13] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

[14] Sun Microelectronics. STP1030BGA UltraSPARC-I User's Manual. Sun Microsystems, Moun-

tainview, CA, 1996.

[15] Matt Reilly and John Edmondson. Performance simulation of an Alpha microprocessor. IEEE

Computer, pages 50{58, May 1998.

[16] Ted Romer, Geo� Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank Levy, Brad Chen,

and Brian Bershad. Instrumentation and optimization of Win32/Intel executables using Etch.

In Proceedings of the USENIX Windows NT Workshop, pages 1{7, August 1997.

[17] Mendel Rosenblum, Stephen A. Herrod, Emmett Witchel, and Anoop Gupta. Complete com-

puter simulation: The SimOS approach. IEEE Parallel and Distributed Technology, Fall 1995.

[18] Rafael Saavedra-Barrera, Alan Smith, and Eugene Miya. Machine characterization based on

an abstract high-level language machine. IEEE Transactions on Computers, 38(12):1659{1679,

December 1989.

[19] Eric Schnarr and James R. Larus. Instruction scheduling and executable editing. In Proceedings

of the Workshop on Compiler Support for System Software, February 1996.

[20] Ashok Singhal and Aaron J. Goldberg. Architectural support for performance tuning: A case

study on the SPARCcenter 2000. In Proceedings of the 21st Annual International Symposium

on Computer Architecture, April 1994.

[21] Amitabh Srivastava and Alan Eustace. ATOM: A system for building customized program

analysis tools. In Proceedings of SIGPLAN '94, Orlando, Florida, June 1994.

[22] Sun Microsystems. The UltraSPARC processor { technology white paper.

http://www.sun.com/microelectronics/whitepapers/UltraSPARCtechnology/.

[23] The Standard Performance Evaluation Corporation. http://www.specbench.org/osg/spec95.

[24] The Standard Performance Evaluation Corporation, September 1997. Theme Feature: One-

billion transistor microprocessors.

50

[25] Sivan Avraham Toledo. Quantitative Performance Modeling of Scienti�c Computations. PhD

thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, May 1995.

[26] G. Michael Uhler, Debra Bernstein, Larry L. Biro, John F. Brown III, John H. Edmondson,

Je�rey D. Pickholtz, and Rebecca L. Stamm. The NVAX and NVAX+ high-performance VAX

microprocessors. Digital Technical Journal, 4(3):1{19, summer 1992.

[27] David L. Weaver and Tom Germond. The SPARC Architecture Manual. PTR Prentice Hall,

Englewood Cli�s, New Jersey, 1994.

[28] Marco Zagha, Brond Larson, Steve Turner, and Marty Itzkowitz. Performance analysis using

the MIPS R10000 performance counters. In Proceedings of Supercomputing '96, November 1996.

51

