
MIT Laboratory for
 Computer Science

Massachusetts
 Institute of
 Technology

545 Technology Square Cambridge, Massachusetts 02139 (617) 253−5851

MIT LCS TR-8XX

Immediate-Mode Ray-Casting

John Alex

Brown Computer

Graphics Group

Seth Teller

MIT Computer

Graphics Group

June 1999

This technical report (TR) has been made

available free of charge from the MIT Laboratory

for Computer Science, at www.lcs.mit.edu.

Immediate-Mode Ray-Casting

John Alex Seth Teller

Brown CG Group MIT CG Group

http://graphics.lcs.mit.edu

June 1999

Abstract

We propose a simple modi�cation to the classical polygon rasterization pipeline that enables

exact, e�cient raycasting of bounded implicit surfaces without the use of a global spatial data struc-

ture or bounding hierarchy. Our algorithm requires two descriptions for each object: a (possibly

non-convex) polyhedral bounding volume, and an implicit equation (including, optionally, a num-

ber of clipping planes). Unlike conventional raycasters, the modi�ed pipeline is unidirectional and

operates in immediate mode, making hardware implementation feasible. We discuss an extension to

the OpenGL state machine that enables immediate-mode raycasting while making no modi�cation

to OpenGL's architecture for high-performance polygon rendering. A software simulation of our al-

gorithm generates scenes of visual �delity equal to those produced by a conventional raycaster, and

superior to those produced by a polygon rasterizer, signi�cantly faster than either existing method

alone.

1 Introduction

The problem of reducing 3-D scenes to 2-D images is fundamental in computer graphics. This \rendering"

problem has typically been de�ned as the process of producing 2-D images (arrays of pixels) from 3-D

geometric models (collections of geometric objects) and lighting descriptions. The rendering process can

be split into the subproblems of visible surface determination (VSD) and illumination. VSD, as the name

suggests, determines the visible surfaces as seen from a particular viewpoint; a subsequent illumination

computation determines the color of the surface fragments visible to the observer. This paper addresses

the VSD subproblem, which has typically been solved either through Z-bu�ered scan-conversion [9], or

raycasting [4]. Although these methods are usually regarded as mutually exclusive, we describe a hybrid

algorithm which exploits favorable properties of each. The next two sections preface this description by

reviewing both existing methods.

1.1 Scan Conversion with Z-bu�ering

Transforming a scene description into polygons, then incrementally scan-converting each polygon onto

a discrete pixel grid, was �rst proposed in the late 1960's [36, 31]. The frontmost polygons could be

established simply by drawing the polygons, one over the other, in back-to-front order. However, depth-

sorting the polygons, as in [31], proved expensive (worse than linear in the number of objects) and

di�cult (due to many special cases, particularly the occasional need to split polygons). In contrast,

z-bu�ering, proposed in [9], did not require polygon ordering, but resolved visibility independently at

1

each pixel through repeated depth comparisons. Although this method was initially regarded as overly

memory-intensive, it did have time complexity linear in the scene description size; as available memory

grew and cheapened, depth bu�ering gained favor over object space methods.

While the z-bu�er was introduced to accelerate rendering of curved surface patches (tesselated into

polygons), it has been extended to other surface types. Blinn describes an algorithm for scan-converting

parametrically de�ned surfaces [7]. Heckbert describes algorithms for scan-converting general quadrics

into a Z-bu�er using �nite di�erences [17]. In principle, higher-order polynomials or even non-polynomial

functions could also be scan-converted through �nite di�erencing, though this would require considerable

case analysis and dedicated code for each type of surface treated.

Scan-converting has enjoyed its widest usage for polygon rendering. Specialized hardware \geometry

engines" have been built to accelerate the extensive calculations inherent in polygon transformation,

clipping, shading and rasterization [11]. Such dedicated rendering architectures have since formed a

major development path, as successive versions have incorporated depth-bu�ering, texturing, and many

other extended capabilities (e.g., [3, 1, 2, 22, 32]).

Polygons have proven to be a versatile geometric modeling primitive. However, they exhibit several

limitations when used to render curved surfaces. First, polygonal approximations exhibit geometric

aliasing due to their reduction of all shapes to piecewise-linear surfaces. One solution, of course, is

adaptive subdivision, but this e�ectively drives the polygon size to a single pixel, defeating the economies

inherent in edge setup, etc., for polygons larger than a pixel, and causing the Gouraud-interpolation

hardware to be essentially unused. More sophisticated tessellation schemes exist to terminate subdivision

above the pixel level [35] but for arbitrary implicit surfaces, the choice of a well-spaced set of vertices

from a dynamically speci�ed viewpoint may be computationally di�cult.

Second, the lighting in polygonal surface rendering arises from linear interpolation of discrete lighting

values from polygon vertices. Even the expensive modi�cation of re-computing the normal at each visible

surface fragment [26] does not produce an entirely correct result, due to the underlying faceted geometry's

generally incorrect position.

Third, for a given desired shape, the storage space required to describe an accurate tesselation of

the shape is typically much greater than that required to describe the shape as an implicit surface.

This is a classic space-time tradeo�, typically resolved in favor of static tessellation. However, under

dynamic viewing conditions, given the substantial power of a graphics rendering workstation and the

relatively lesser power and bandwidth of the host processor and its connection to the graphics subsystem

respectively, it is desirable (as we show below) to resolve the tradeo� in favor of lower space usage, i.e.,

in favor of more compact surface descriptions.

1.2 Raycasting

An alternative approach would be a renderer that takes curved surfaces as primitives, rendering them

\exactly" { that is, sampled geometrically, then shaded, at each pixel. This approach sidesteps the

drawbacks to implicit surface tesselation listed above. Ray casting, �rst introduced for polyhedra in [4],

and implicit surfaces in [33], is such an algorithm; it cleanly and uniformly handles both polygons and

general implicit surfaces. That is, ray casting renders any implicit equation F (x; y; z) = 0, given the

ability to solve those equations for an arbitrary ray. Unlike scan-conversion, ray casting does not require

any specialized knowledge of surface geometry.

However, polygon scan-conversion has remained the de facto standard for interactive work because

ray casting, while very general, is also slow, at least when using a modest number of modern general-

purpose processors. In order to determine correct visibility, in principle every object must be checked

along each sight ray. The classic running time for a naive raycaster, assuming one sample ray per pixel, is

O(n � r), where n is the number of objects, and r is the number of pixels, respectively. While ray-casting

acceleration hardware has been built (e.g., [12]), it does not scale well to complex scenes. However, in

special circumstances, for example with large numbers of processors [23, 24], or with specialized parallel

hardware [28] or for restricted scene geometries [18], or CSG applications [12] it has proven useful.

1.3 Raycasting Bounded Objects

Bounding volume hierarchies (e.g., [10, 30]) change the practical scaling behavior of ray casting. Reason-

ably tight bounding volumes are often analytically discoverable for �nite surfaces. (For implicit equations

about which no a priori bounding information is known, an in�nite bounding volume, while ine�cient,

will still produce correct results). Kay and Kajiya [20] describe methods for computing arbitrarily tight

convex bounding volumes (if they exist) for polyhedra, implicit surfaces, and compound objects. Heck-

bert [17] describes such methods speci�cally for quadrics. Cameron gives e�cient conservative bounding

algorithms for full CSG hierarchies [8].

While tessellations need be of a certain density in order to guarantee image quality from a given

viewpoint, bounding volumes are conservative, viewpoint-independent, and unrelated to image quality;

they serve solely to accelerate rendering. They have generally been used in ray casting as a trivial-reject

mechanism involving an extra ray-bound intersection: if a ray misses the bounding volume or intersects

it at a deeper point than the closest object hit so far, the enclosed object need not be tested. In order

to be useful, such bounding volumes should be simple in order to admit e�cient intersection tests. This

creates an intricate tradeo�: simpler bounding volumes lead to cheaper ray-bounds test, but also to

more spurious ray-object tests. In practice, cuboids and spheres are often used.

Bounding volumes also enable the use of spatial data structures, such as spatial subdivisions [13, 14]

or hierarchies of bounding volumes [30, 20]. These allow each ray to be tested against a tightly bounded

set of objects in nearly front-to-back order; each ray can stop soon after �nding an intersection. However,

spatial data structures require two non-trivial operations, one-time creation and per-pixel traversal. This

situation engenders another tradeo�: the more objects are in a cell (we use the term to refer to both

a bounding volume or a node of a spatial subdivision), the easier it is to construct and traverse the

tree, but the more time is spent inspecting each cell for intersections. This tradeo� is crucial to the

speed of software raycasters, but not yet well understood. In any event, these structures are commonly

employed in software ray casting implementations, but are di�cult to incorporate into hardware due to

the complexity of represented state.

Spatial data structures are also ill-suited to scenes with moving objects; the structure must be

repopulated in each frame, a prohibitively expensive operation when the number of moving objects is

large. Most importantly, hardware acceleration { the key to polygon rendering's success { is unlikely

for classical ray casting because storing such large structures in hardware state is impractical. Much

of the literature on raytracing in hardware has focused on parallel processing issues that are relevant

but beyond the scope of this paper. That is, they concentrate on doing a �xed amount of work faster,

rather than reducing the required work. An overview of such methods, which covers the acceleration of

secondary as well as primary ray computations, can be found in [19].

1.4 A Hybrid of Scan-conversion and Raycasting

The separation of raycasting and scan-conversion has cemented into the now-traditional characterization

of the two algorithms: scan-conversion maps single objects \forward" to many pixels, while raycasting

maps one pixel \backward" to many objects. However, we note that practitioners have cleverly im-

plemented both algorithms to run e�ciently on a broad range of objects and scenes by adopting each

other's techniques.

Bounding volumes are ideally simple, and scan-conversion excels at rendering simple shapes; yet

bounding volumes are used most in raycasting. Actual modelled objects are ideally complex and exact,

and raycasting cleanly handles such surfaces; yet such objects are instead approximated with many

small triangles. We suggest a transposition: bounding volumes should be tessellated, while actual

objects should be raycast. We proceed to describe a hybrid representation which combines the strengths

of both approaches, while exhibiting the disadvantages of neither.

2 Immediate-Mode Ray-Casting

This section describes a set of proposed modi�cations to an existing polygon scan-conversion system to

enable immediate-mode raycasting of bounded implicit objects. We �rst review the popular OpenGL [25]

architecture. This requires an immediate-mode speci�cation of a collection of polygons, with optional

normal, texture, etc. coordinates speci�ed at each vertex. The essence of the standard OpenGL polygon

rasterization pipeline, for example, is summarized by the following pseudocode. For this pipeline, scene

objects are issued in immediate mode as collections of polygons (here, for simplicity, assumed to be

triangles):

For each incoming triangle

transform and clip vertices

if back-face cull, done

light vertices

for each x,y,z produced by the rasterizer

interpolate texture coordinates; do texture lookup

combine texture and lighting values

read Z-buffer at (x,y)

if fragment depth is less than current Z-buffer value

write visible, lit fragment to depth and color buffers

In our proposed method, for polygonal rendering, the classical rasterization pipeline architecture is

unchanged. However, to render a bounded implicit primitive in immediate mode, four items must be

issued to the rasterization pipeline for that primitive:

�An implicit surface equation f(x; y; z) = 0;

�A polygonal description of any bounding polyhedral volume containing that portion of the implicit

surface which is to be rendered;

�Clip plane equations, if desired; and

�Functions u(x; y; z) and v(x; y; z), to generate texture coordinates (u; v) from object-space points

(x; y; z).

Surface normals can be produced analytically from the implicit surface equation, so need not be issued

separately from the surface geometry as with polygon rasterization. This analytic solution is thus

dependent on the form of implicit equations accepted by each particular implementation.

Pseudocode for our proposed hybrid algorithm is below, with changes indicated. The triangles issued

now comprise bounding surfaces around the implicit scene objects.

-> receive surface, clip equations; store them in immediate-mode state

for each incoming triangle

transform vertices

-> [no lighting of vertices]

if back-face cull, done

for each x,y,z produced by the rasterizer

read Z-buffer at (x,y)

-> if newly rasterized depth is closer than stored depth

-> generate ray through center of pixel in object-space

-> compute ray-object intersection using current implicit equation

-> if no such intersection, done

-> if intersection point passes all active clip planes

if fragment depth is less than current Z-buffer value

-> compute normal and u,v using object, texture equations

-> light fragment

-> do texture lookup

combine texture and lighting values

write visible, lit fragment to depth and color buffers

Note that z values (distance along the look vector) arise from screen-space rasterization, while the

t values (distance along a sight ray) arise from ray-object intersection in an arbitrary space (in our

implementation, eye space). Thus the t value of any intersection must be transformed into 3D screen

space for correct comparisons to stored z values. This is accomplished with an inner product against

the look vector, and a scaling to map the interval zn::zf to �1::1.

Figure 1 shows a screen-space view of the process. The algorithm could either be serialized to operate

one pixel at a time, �rst scan-converting and then conditionally raycasting, or could be evaluated in

parallel at every pixel in the manner of Pineda rasterization [27].

tessellated bounding volume rasterized pixel footprint

tessellated bounding polyhedron

implicit surface

not considered

hit

33
33miss

raycast results
to be conditionally stored in

color and depth buffers

333 33

33
33

3
3

33 33
33333

33
33

33 3
33
333

3
33
33
33
3333
33

Figure 1: Raycasting a completely visible sphere.

Consider the behavior of this hybrid algorithm on objects whose bounding volumes are completely

occluded. Only the bounding volume each such object will be scan-converted; no raycasting will be done,

since all scan-converted samples fail the conservative depth test. The depth test has been extensively

accelerated with special-purpose hardware, so will be quite fast.

Visible or partially visible objects incur some additional work (Figure 2): their potentially visible

samples (those samples, generated from bounding volume rasterization, that pass the z-test) will be

raycast, providing exact object sample points.

The bounding volume provides a close approximation to the actual screen-space footprint of the

object. This has two implications. First, rays are cast only where this tight bound passes the depth

tessellated bounding volume rasterized pixel footprint

tessellated bounding polyhedron

implicit surface

hit

miss

raycast results
to be conditionally stored in

color and depth buffers

333333

3
3
33
33
33
33

33

333
33
33

3
3

333333

33
33
33
33
3
3

33

3333
33
33

33
33

33
33bvol occluded; intersection skipped

Figure 2: Raycasting a partially occluded sphere.

test; thus, relatively few rays will miss the underlying object. Second, of those rays that hit the object,

few will produce fragments which fail the z-test, as the bounding volume provides a tight (but con-

servative) approximation to depth. In other words, most visible pixels arising from bounding volume

scan-conversion will produce visible fragments. Thus, the method achieves tight generally non-convex

bounds around each rendered object, while avoiding tests for ray intersection with a complex bounding

hierarchy, as would be performed by classical ray casting.

2.1 Discussion

The modi�ed rasterization pipeline above, like a scan-converter, takes objects to pixels, albeit indirectly.

The scan conversion step takes bounding volumes to pixels; the raycasting step, given pixels and im-

plicit equations, produces samples lying on implicit surfaces. It is also general, making no assumptions

about the implicit surfaces (convexity of either the surface or the bounding volume, for example, is not

required).

Our algorithm does not require global state for complex scenes, as would traditional e�cient raycast-

ers. By processing each object completely, one at a time (rather than processing each ray completely)

and storing its results in a z-bu�er, raycasting can be done in immediate mode, with all the advantages

that entails. By adding ray-object intersection capabilities to the already formidable polygon render-

ing capabilities of today's hardware, we create a \one-way" raycasting pipeline, amenable to the same

optimization and parallelization that polygon hardware has undergone.

The time complexity for this algorithm is relative to the number of pixels covered by each object's

bounding polyhedron, and the frequency with which such pixels pass the depth test. Assuming one

bounding volume per object, the time complexity is a combination of rasterization e�ort and raycasting

e�ort:

T ime = O(# objects � # front-facing polygons per bounding volume

� # samples per front-facing polygon

+

objects � # front-facing polygons per bounding volume

� # visible samples per front-facing polygon)

This cost will in general be less than that for rendering tesselated implicit surfaces, for two reasons.

First, our method requires far fewer (5-10x, according to our data) polygon scan conversions, since

polygons are used only to describe bounding polyhedra, and can do so quite crudely. Second, normals

need not be issued along with polygon vertices, as in standard rasterization. The cost will also be less

than that for ray-casting implicit surfaces, as intersecting rays are discovered not by ray-bounds tests,

but by relatively cheap scan-conversion of bounds. Finally, we note that while classical scan conversion

gains nothing from front-to-back traversal, our algorithm exploits this by avoiding most unnecessary ray

casts.

2.2 Comparison and Contrast

Our scheme is similar in one respect to the hierarchical z-bu�ering architecture of [15], in that it uses

visibility information about a conservative object bound to pass, or suppress, processing of the infor-

mation inside that bound. There are two important di�erences, however. First, in that scheme the

appearance of even one visible pixel would mean the processing of the entire contents of the bounding

volume. Second, that scheme was not unidirectional; as there could be an unbounded amount of state

inside each cell of the hierarchy, a feedback mechanism was required to elicit from the hardware informa-

tion about the bounding box visibility. If the bounding volume was reported visible, the rendering host

would proceed to rasterize the contents of the volume. This organization would introduce signi�cant

latency and memory tra�c in practice.

The hybrid rasterization scheme presented here bears some similarity to the SOID renderer described

nearly �fteen years ago by Heckbert [17], with three important di�erences, detailed below.

First, Heckbert's work included only quadratic implicit surfaces, and derived from each implicit

equation the screen-space bounding box of the corresponding implicit surface. We demonstrate our

method using quadratic implicit surfaces as well, but note that the issues of equation complexity and

root-�nding are independent of the ideas presented here. That is, should an improved (faster, more

general, etc.) root-�nder be proposed, its incorporation into our algorithm is trivial, and immediately

enables the renderer to use higher-order surfaces. (An analogous design consideration arises in renderers

based on surface tesselation; for high-order surfaces, either parametric descriptions must be obtained,

or the surface must be sampled, to produce polygons suitable for tesselation.)

Secondly, Heckbert's algorithm cast a ray for every pixel within the screen-space axis-aligned bound-

ing box of the implicit object. Our method casts signi�cantly fewer rays, both because the bounding

polyhedron will (in general) map to fewer pixels than will any axial bounding box, and because bounding

volume samples which are occluded or back-facing will not cause rays to be cast.

Finally we note that, whereas Heckbert's method used axial (screen- aligned) bounding boxes, our

method handles general, non-convex, bounding polyhedra, which can be computed o�-line if desired.

Thus an interesting tradeo�, not present in earlier methods, arises: a rendering system may expend

o�-line computation (for example, to discover a simpler, or tighter, bounding polyhedon) to achieve

better performance during subsequent rendering.

We believe the immense power of polygon rasterization hardware { which are growing on a per-

formance curve even steeper than that of general-purpose CPUs { makes it worthwhile to re-examine

older techniques, to determine whether they are now suitable for wider adoption in the service of par-

ticular problem domains. Ray-casting is one such older technique; rendering curved, implicit surfaces

with accurate geometry and shading is one such problem domain. In the next section we discuss how a

combination of the two techniques can be e�ectively realized through a modest set of changes to a pop-

ular existing immediate-mode rendering architecture, to achieve a hybrid algorithm superior to existing

methods.

3 Implementation Issues

This section describes the issues that arose in the implementation of the hybrid scheme.

3.1 Generation of Bounding Polyhedra

One implementation issue is the e�cient creation of e�ectively tight bounding polyhedra. These bound-

ing volumes need be generated only once for a static model, but may be di�cult to compute e�ciently.

For convex implicit shapes like cylinders or spheres, successively better approximations that remain on

the \outside" of the object are easy to construct. The intersection of slabs produced by the algorithm

described in [20] can be used to produce convex bounding volumes. We do not here address the problem

of generation of e�cient, non-convex bounding polyhedra, except to state that, as improved techniques

for such generation emerge, they can be easily incorporated into the method we describe.

We also make an observation that may prove useful in the creation of these bounding volumes.

These volumes can be thought of as \windows" onto their contained objects. The object can only be

seen \through" its bounding volume, that is, only where its bounding volume contributes visible pixels.

This suggests that in certain situations, a strict bounding volume is not required. For example, if the

user is constrained to the inside of a building, and a given implicit surface is outside the building and

visible only through a certain window, a polygon covering the window could be used as the \bounding

volume" of the surface and would work correctly.

3.2 Near-Plane Clipping

eye pt

clipped by near plane

the extra face

not clipped

partially clipped;
use to calculate
the extra face

near plane

Figure 3: Near plane clipping.

Conceptually, the polyhedral bounds supplied with each object represent solid volumes, in the sense

that the corresponding implicit object could be anywhere inside the given bounds. Thus when the near

clipping plane clips a front-facing polygon of the bounding volume, but not the back-facing polygon

along the same sightline (Figure 3), the pseudo-code given above would render incorrectly. The front

face is clipped, and generates no rasterized samples. Samples on the back-face lie \behind" the implicit

surface as viewed from the eye, and may be obscured by previously rendered fragments, even though

the surface itself is not; thus these too generate no rasterized samples. Thus, if our method does not

account for this case, fragments of the implicit surface which should appear would not get drawn. There

are at least two possible methods for handling near-plane clipping correctly.

First, when clipping, the host could generate a new face, coplanar with the near plane, that covers

all the pixels of the clipped faces. The algorithm to accomplish this is simple. One additional polygon

should be constructed; its vertices are generated in order from any faces that cross the near plane [34].

The faces would be drawn in adjacency order using for example a winged-edge data structure [5].

The second method uses graphics hardware to apply a \capped" solid technique (e.g., [29, 21]) to

the bounding polyhedron of each implicit object. This would ensure the generation of polygon fragments

on the near plane, causing in turn the appropriate ray-object intersection to occur at each pixel in the

capping area.

3.3 OpenGL Extensions

We retained, of course, OpenGL's rapid polygon-rasterization capability. We modi�ed the OpenGL

pipeline as described in x2, to enclose each primitive with a BEGIN/END pair, including a description

of the implicit equation (and any clipping planes) to be rendered. The polyhedral bounding volume was

then issued using OpenGL's existing mechanisms. Whenever a bounding sample passed the rasterization

depth test, ray casting was performed on the underling implicit surface. OpenGL's existing lighting

model was then applied on a per-pixel basis.

We considered the issue of placement of the lighting operation in the hybrid method. While in

raycasting samples must be lit per-sample, polygons are lit per-vertex in OpenGL. For our hybrid

algorithm, we chose to retain per-vertex lighting while rendering ordinary polygons, and to perform

per-pixel lighting while rendering implicit primitives. This seemed the fairest choice in terms of timing

comparisons. In the �rst case, our method's behavior matches that of OpenGL. In the second case, we

\charge" the hybrid method for per-pixel shading, reasoning that this was an upper bounding on the

shading work that would be performed by any polygon-based algorithm. Note that the hybrid method

still should gain the advantage, since per-pixel lighting is done only for samples that pass the ray casting

step (whereas ordinary rasterization, in contrast, unconditionally lights every vertex of every polygon,

regardless of visibility).

3.4 Geometry, Normals and Texture

The set of allowable implicit equations is in no way constrained by our algorithm. Indeed, any root-

�nding method can be incorporated into our algorithm. As a compromise between generality and ease of

hardware implementation, we chose a ten-parameter approach, su�cient to describe any quadric: three

for the squared terms, six for the linear and bilinear terms, and one constant. As implicit surfaces can

be unbounded, we adopted OpenGL's semantics of up to twelve additional clipping planes, augmenting

the six planes of the view frustum. Note that the shape so produced (e.g., a bounded hyperboloid)

can be non-convex, and as such would admit a non-convex bounding polyhedron. Just as in ordinary

rasterization, in our method one would typically render bounding polyhedra with back-face culling

enable. Otherwise, front and back faces of a bounding volume that cover the same screen-space sample

would trigger duplicate ray-object intersection tests.

There is no need to issue per-vertex normals in our method, as normals can be generated, analytically

and on-demand, from the implicit surface equation.

The usual notion of per-vertex texture coordinates does not apply, since there are no longer vertices

to be rendered. Instead, we adopted OpenGL's notion of texture coordinate generation using distance

from a plane speci�ed in eye, world, or object space. More sophisticated approaches, for example the

issuance of a function that takes a surface point as input and returns texture coordinates, could be

incorporated straightforwardly into OpenGL syntax.

3.5 Back-Sample Culling and Capped Solids

We note two straightforward extensions of OpenGL semantics to the implicit surface rasterization scheme

presented here, neither of which we implemented. First, we extend back-face culling to \back-sample

culling" by (conditionally) discarding those samples produced by raycasting which are back-facing with

respect to the look vector. If this rejection is disabled, as when back-face culling is disabled in standard

OpenGL, the observer can \look inside" of an ordinarily closed implicit volume and see its \back-

samples". This e�ect is achieved in our algorithm simply by retaining, and generating a pixel write for,

the nearest back-facing fragment identi�ed along the sample ray.

Second, the capping technique described in [29, 21] may be extended to the rendering of implicit

surfaces clipped by an arbitrary plane. In this case, when processing all the roots generated by the ray-

surface intersection, rather than simply identify the closest intersection, we identify the closest parametric

interval which contains the surface, then modify the nearer (front-facing) t value so that the generated

sample lies on the clipping plane, and replace the sample's normal with that of the clip plane. Note that

this technique requires that the boundary polyhedron itself to be rendered as a capped solid (x3.2) in

order to ensure that scan-converted samples are appropriately generated, which will in turn cause the

production of the required ray-cast samples.

4 Results

This section demonstrates the implemented algorithm on a commercially available workstation of mod-

erate power (a Sun Ultra 2 Model 2/200). The machine has Creator 3-D graphics capability, which in

our tests was used only for writing the 24-bit framebu�er. We instrumented the existing and proposed

algorithms while rendering several models. Below, we report each algorithm's performance under a

number of metrics.

We implemented our proposed extensions inside Mesa, a public domain pure-software implementation

of the OpenGL rendering architecture [25]. We then rendered a variety of scenes using three methods:

�RC, an optimized raycaster with ray-cell walking [14];

�Mesa, unmodi�ed Mesa (using a tesselated version of each object); and

�IMR, our modi�ed pipeline, implemented as a software extension to Mesa.

4.1 Test Models

We used the following test models from Eric Haines' 1987 \Standard Procedural Databases":

�Rings, a sphere-and-cylinder ring model;

�Tree, a sphere-and-cylinder tree; and

�Shell, a seashell model, which states in its documentation that it \tends to bring ray tracers to

their knees"[16] as it is composed of several thousand tightly emplaced spheres.

The number of tessellated polygons created for each scene in order to supply it to Mesa is reported

in table 1. We chose a tesselation level to make the following comparisons \fair" in the following sense.

In a preprocessing step, we applied adaptive tessellation until each object's tessellated rendering covered

approximately ninety percent of the pixels covered by its raycast equivalent. This metric is easily

computable, guarantees a certain quality level, and is resolution independent.

4.2 Performance Measures

We instrumented each rendering method to measure various performance attributes, which we tabulate

below. For RC, we always used a spatial subdivision, since naive raycasting is far too slow. For both

immediate-mode algorithms (Mesa and IMR), objects were rendered both in random order and with

rough front-to-back ordering, at two resolutions: 129x129 (\lo") and 513x513 (\hi"). To our knowledge,

these are the �rst reported comparisons between scan-conversion and ray casting on scenes with curved

objects. The instrumented quantities were:

�Rasterizer Load, the number of triangles issued, and the number of pixel samples arising;

�Raycasting Load, the number of bounding box and implicit surface intersections performed, as

well as the number of ray-cell traversals;

�Raycasting E�ciency, the ratio of hits to tests in ray casting;

�Lighting Load, the number of point sample lighting operations executed.

�Rendering Time, the average seconds per frame required;

Below, \M" refers to millions, \K" to thousands, and \s" to seconds.

4.3 Rasterizer Load

This section reports the amount of polygon scan-conversion done by Mesa and IMR (RC performs no

scan-conversion). Values for back-to-front rendering are identical to those for unordered rendering. We

do not report rasterizer e�ciency (in terms of number of samples rejected by the depth test), as Mesa

and RC are roughly equivalent in e�ciency for a given rendering order; that is, if the actual tessellated

object passes the depth test, the tessellated bounding volume (though it is slightly larger) also passes

the depth test in the vast majority of cases.

Model Mesa IMRBIS IMRBIS savings

Rings 450K 93K 4.8x

Tree 1.7M 330K 5.15x

Shell, lo 2.5M 460K 5.4x

Shell, hi 4.1M 460K 8.9x

Table 1: Number of triangles sent down pipeline

Table 1 shows that at high resolution, Mesa required more triangles to render the shell model so

as to maintain a curved appearance for the bigger spheres in the scene. Note that IMR processes a

signi�cantly lower number of triangles, since it requires only that the triangles describe conservative

bounds around each curved object.

Model Mesa IMR IMR increase

Rings, lo 17K 20.6K 21%

Rings, hi 289K 331.5K 15%

Tree, lo 1131 1436 27%

Tree, hi 22.7K 27.5K 21%

Shell, lo 631.2K 726.9K 15%

Shell, hi 10.2M 11.5M 12.7%

Table 2: Number of pixels covered by triangles per frame.

The number of pixels covered by the conservative bounds, while higher than that for the tessellated

objects, is not signi�cantly higher (see Table 2); this reects the decreasing return in terms of accuracy as

the number of triangles per object increases. The \sweet spot" for bounding volume tessellations (where

added triangles pay o� the most in tighter bounding volumes) is far lower than the object tessellation

required to get the accuracy provided by raycasting, as the data in x4.9 will demonstrate.

4.4 Raycasting Load

Table 3 reports the raycasting load for each algorithm, as measured by the number of ray-bound tests,

the number of ray-object tests, the number of ray-cell walks, and the success rate of the ray-object tests.

We group the ray-cell walks with the other ray-object tests because each walk includes a ray-bound test

against a cell boundary.

Model RC total IMR ray-object IMR ray-object IMR total

(ray-bound, ray-object, ray-cell walks) savings savings

Rings,lo 897K (800K, 25K, 72K) 7.1K 3.5x 126.3x

Rings,hi 14M (12.5M, 386K, 1.1M) 114K 3.3x 122.8x

Tree,lo 403K (291K, 2.8K, 109K) 1216 2.3x 331.4x

Tree,hi 6.3M (4.6M, 46K, 1.7M) 22K 2.1x 286.3x

Shell,lo 5.5M (4.8M, 700K, 7.7K) 295K 2.4x 18.6x

Shell,hi 86M (75M, 11M, 121K) 4.6M 2.4x 18.6x

Table 3: Ray-object intersection tests.

Use of a spatial data structure and front-to-back ordering decreased the number of ray-object inter-

sections by approximately 10% in all cases. Note that IMR performs signi�cantly fewer ray intersections

than the optimized raycaster. IMR does not use standard cell-walking; however, when rendering front-

to-back, it does initialize and traverse a k � d tree [6]. IMR does not test bounding-boxes for ray

intersection; rather, it scan-converts each bounding volume. The third column, ray-object savings, illus-

trates the e�ect of IMR's more complex bounding volumes over RC's axially-aligned bounding boxes.

The fourth column shows the overall work reduction achieved by IMR.

4.5 Raycasting E�ciency

The following table (Table 4) shows the number of ray-object hits compared to the number of ray-object

intersection tests. IMR, because of its polygonal bounding volumes, is far more e�cient with its tests.

Where RC �nds a ray-object intersection as few as one in thirty times, IMR �nds an intersection at least

�ve in six times, and often nearly nineteen out of twenty times.

Model RC IMRBIS

Rings,lo 3.13 93.8

Rings, hi 3.08 94.1

Tree,lo 33.4 87.8

Tree, hi 32.3 85

Shell,lo 19.1 87.8

Shell, hi 19.1 88.7

Table 4: Percentage of ray-object hits vs. tests

4.6 Lighting Load

Table 5 reports the amount of lighting work performed. We chose this metric because the less work done

lighting, the more e�ective the visible surface technique. Note that RC exhibits minimal lighting load,

as it defers lighting until after visibility determination.

Model RC Mesa (vs. RC) IMRBIS (vs. RC)

Rings,lo 4.5K 1.3M(288.9x) 6.7K(1.5x)

Rings, hi 72K 1.3M(18.0x) 107K(1.48x)

Tree,lo 899 5.9M(6562.8x) 1058(1.17x)

Tree, hi 14.3K 5.9M (412.6x) 19K(1.33x)

Shell,lo 2.9K 7.6M(2620.7x) 262K(90.34x)

Shell, hi 45K 12.5M(277.8x) 4.1M(91.1x)

Table 5: Number of fragment lighting operations performed by Mesa, RC and IMBRIS

However, since IMR lights only those fragments which pass the depth test, it incurs far fewer lighting

operations than Mesa, which unconditionally lights every vertex in the scene. That is, Mesa wins only

when there are a small number of large polygons; i.e., for geometrically simple scenes. Finally, we observe

that the number of lighting calculations incurred by IMR decreased 5-10% given front-to-back ordering,

matching the decrease in ray-object tests as shown in previous tables. Again, front-to-back ordering

does not a�ect Mesa, and is not applicable to RC.

4.7 Overall Rendering Speed

This section (see Table 6) reports the frame time of each algorithm, measured by repeatedly drawing the

scene from a �xed viewpoint and calculating the average time per frame. With one exception, IMR is

Model RC Mesa IMRBIS

Rings, lo 2.8 3.5/3.9 .75/1.1

Rings, hi 44.4 4.4/8.2 2.3/6.1

Tree, lo 1.7 15.8/15.5 2.8/2.4

Tree, hi 28 15.8/19.6 3.4/6.9

Shell, lo 11.5 11.6/11.6 4.1/4.6

Shell, hi 167.2 39/44 34/33

Table 6: E�ective frame time, in seconds (front-to-back/unordered).

two to twenty times faster than traditional ray casting (RC) and two to �ve times faster than standard

scan-conversion (Mesa). In the latter case, IMR achieves the speedup despite producing more accurate

geometry and lighting.

The exception for RC was the tree model at low resolution, where the traditional raycaster was 30%

faster than IMR. In this case, most of the primitives had very small pixel footprints (taking away the

screen coherence exploited by scan-conversion) and most of the scene was occluded, allowing RC to take

maximal advantage of its spatial data structure. On the other hand, even in this case case, IMR without

a spatial data structure is still competitive with RC.

The exception for Mesa was the shell rendering at high resolution; here IMR was only 10% faster

than Mesa. In this case, the spheres were piled atop one another, making the bounding volume depth

test less e�ective in reducing raycasting e�ort. Even in this worst case, however, IMR is still faster (and

more accurate) than classical scan-conversion.

4.8 Resolution Sensitivity

This section tabulates the slowdowns incurred by each method when the framebu�er resolution was

increased by a factor of sixteen.

Model RC ray-object RC total IMRBIS (front-to-back/unordered)

Rings 15.4 15.6 15.8/16.1

Tree 16.4 15.6 16.9/18.1

Shell 15.7 15.6 19.8/15.5

Table 7: Factor of raycasting work increase when image size increased by 15.8 (129x129 to 513x513).

The data in Table 7 shows that the workload of both IMR and RC increases nearly linearly with

window size.

Model RC Mesa(front-to-back/unordered) IMRBIS (front-to-back/unordered)

Rings 15.85 1.25/2.1 3.06/5.5

Tree 16.4 1.0/1.26 1.20/2.87

Shell 14.5 3.36/3.79 8.29/7.17

Table 8: Factor of slowdown when image size increased by 15.8 (129x129 to 513x513).

However, this does not carry over into overall frame time. The data in Table 8 demonstrates that

IMR scales far better with screen resolution than RC, even though both demonstrate a linear relation in

the amount of raycasting work required. This is due to IMR's hybrid nature. It spends only a fraction

of its time raycasting; the rest is spent rasterizing. The rasterization time, as demonstrated by the Mesa

results, is nearly independent of screen resolution (and, due to the lower polygon count and disabling of

lighting, is far lower than Mesa's time). Thus only a fraction of IMR's time complexity increases linearly

with screen resolution. It does not scale as well as standard scan-conversion; this is to be expected since

IMR must do more raycasting, while standard scan-conversion need only interpolate more interior pixels,

a relatively cheap operation. On the other hand, this cost has its bene�ts. IMR continues to provide

sharp curves (both in the silhouette and in the internal geometry) at the greater resolution, while curves

in Mesa degrade (only sharp polygon edges are maintained). Mesa fares worse in the case of the Shell

model where the object tessellation was increased for Mesa in order to remove highly visible artifacts of

linearity at the higher resolution. This explains the jump in Mesa's slowdown factor for the Shell model.

4.9 Bounding Volume Complexity

An important factor in the speed of this algorithm is the tightness of the bounding volume. This section

examines the tradeo� between amount of tessellation and pixel accuracy (measured as a ratio of screen

footprint sizes: the actual object's divided by the bounding volume's) for spheres and cylinders. The

\tessellation values" for tables 9 and 10 are the number of slices and stacks for the spheres and the

number of slices for cylinders. The objects were tessellated using the same algorithm as OpenGL's

gluSphere and gluCylinder functions. The radius for a bounding object was precomputed by generating

a tessellation of the given complexity at an arbitrary radius, then calculating the closest distance of any

point on the generated surface to the center (the center point of the sphere or the central axis of the

cylinder). The arbitrary radius was then scaled by the ratio of the closest distance to the desired radius.

This resulting radius, when passed to gluSphere or gluCylinder, is the smallest possible one that still

bounds the object. In these tables, the tessellation value is on the vertical axis; the implicit object's

screen footprint is on the horizontal axis.

Tesselation value 113 pixels 2933 pixels 13457 pixels

4 77.9 77.4 81.56

7 87.59 87.7 89.19

10 90.4 95.2 94.55

15 96.58 97.2 97.01

20 100 98.92 98.3

25 98.26 99.52 99.23

Table 9: Accuracy of bounding volume silhouette for a sphere.

Tesselation value 135 pixels 6707 pixels 14339 pixels

4 63.28 73.24 91.93

7 100 93.55 93.4

11 98.4 95.2 95.1

15 100 97.44 99.15

Table 10: Accuracy of bounding volume silhouette for a cylinder.

The data shows that the bene�t per triangle falls steadily as the number of triangles increases. Even

at very low tessellation values, the accuracy rate is around 90% and only weakly dependent on the pixel

size of the object, which suggests that low tessellation values are ideal for the fastest rendering of visible

objects with IMR. This number can also be interpreted, from a traditional scan-conversion perspective,

as the silhouette error for a given tessellation. While 90% is unusually high as a raycasting hit rate, it

is not as good a �gure for visible silhouette error.

We did not instrument depth error produced by the algorithms, though doing so would further

demonstrate IMR's advantages. IMR calculates depth exactly at each sample; scan-conversion does not.

Thus IMR renders both lighting and geometry (e.g., interpenetrating curved surfaces) more accurately

than does Mesa.

5 Conclusion

This paper describes a hybrid algorithm which combines rasterization and ray casting to produce an

e�cient, immediate-mode algorithm suitable for expression in hardware. There are at least two aspects

of the method that we do not address. First, though our algorithm uses polyhedral bounding volumes,

we leave the method for their generation unspeci�ed. Similarly, our algorithm depends on polynomial

root-�nding in its innermost loop. As improved algorithms for both sub-tasks emerge, they can be

incorporated straightforwardly into our algorithm.

By utilizing bounding volumes, we believe raycasting renderers can become not only interactive

but superior in performance to polygon renderers, exploiting fast rasterization capability to provide a

useful visibility test (rather than simply a polygon fragment generator). We described an algorithm

that combines the strengths of both rendering methods: the speed of a polygon rasterization pipeline,

and the generality and precision of raycasting. Its key step is to feed tessellated bounding volumes to a

Z-bu�ered scan-converter, implicating tight sets of rays to be intersected with each object.

Our algorithm is e�cient, exact, general, and amenable to hardware implementation. It uses no

spatial index or bounding hierarchy, and so necessarily touches every scene object while rendering. How-

ever, it should be suitable for rendering large scenes quickly in hardward. We propose that this hybrid

scan-conversion and raycasting algorithms �nd adoption in a next-generation graphics workstation, to

enable the rendering of curved primitives at interactive rates while freeing processor and connection

bandwidth for other purposes.

References

[1] Akeley, K. The Silicon Graphics 4D/240GTX superworkstation. IEEE Computer Graphics and

Applications 9, 4 (July 1989), 71{83.

[2] Akeley, K. RealityEngine graphics. Computer Graphics 27, Annual Conference Series (1993),

109{116.

[3] Akeley, K., and Jermoluk, T. High-performance polygon rendering. Computer Graphics 22,

Annual Conference Series (1988), 239{246.

[4] Appel, A. Some techniques for shading machine renderings of solids. In Proceedings of SJCC

(1968), Thompson Books, Washington, D.C., pp. 37{45.

[5] Baumgardt, B. Winged-edge polyhedron representation. Tech. Rep. No. CS-320, Stanford Arti-

�cial Intelligence Report, Computer Science Department, 1972.

[6] Bentley, J. Multidimensional binary search trees used for associative searching. Communications

of the ACM 18 (1975), 509{517.

[7] Blinn, J. F. A scan line algorithm for displaying parametrically de�ned surfaces. Computer

Graphics 12, 3 (Aug. 1978), 27{27.

[8] Cameron, S. Approximation hierarchies and s-bounds. In Proc. of 1991 ACM/Siggraph Sympo-

sium on Solid Modeling Foundations and CAD/CAM Applications (1991), pp. 129{137.

[9] Catmull, E. E. A Subdivision Algorithm for Computer Display of Curved Surfaces. PhD thesis,

University of Utah, Dec. 1974. Also TR UTEC-CSc-74{133, CS Dept., University of Utah.

[10] Clark, J. H. Hierarchical geometric models for visible surface algorithms. CACM 19, 10 (1976),

547{554.

[11] Clark, J. H. The geometry engine: A VLSI geometry system for graphics. Computer Graphics

16, 3 (July 1982), 127{133.

[12] Ellis, J. L., Kedem, G., Lyerly, T. C., Thielman, D. G., Marisa, R. J., Menon, J. P.,

and Voelcker, H. B. The raycasting engine and ray representations: A technical summary.

Internat. J. Computational Geometry and Appl. 1, 4 (1991), 347{380.

[13] Fuchs, H., Kedem, Z., and Naylor, B. On visible surface generation by a priori tree structures.

Computer Graphics (Proc. Siggraph '80) 14, 3 (1980), 124{133.

[14] Glassner, A. S. Space subdivision for fast ray tracing. IEEE Computer Graphics and Applications

4, 10 (1984), 15{22.

[15] Greene, N., Kass, M., and Miller, G. Hierarchical Z-bu�er visibility. In Proceedings of

Siggraph '93 (Aug. 1993), pp. 231{238.

[16] Haines, E. A. A proposal for standard graphics environments. IEEE Computer Graphics and

Applications 7, 11 (Nov. 1987), 3{5. also in SIGGRAPH '87, '88, '89 Introduction to Ray Tracing

course notes, code available via FTP from princeton.edu:/pub/Graphics.

[17] Heckbert, P. The mathematics of quadric surface rendering and SOID. Tech. Rep. 3-D Technical

Memo No. 4, New York Institute of Technology, July 1984.

[18] Isakovic, K. 3D Engines List DOS & Doom/Wolfenstein,

http://cg.cs.tu-berlin.de/~ki/3de_hard_dos_doom.html. Tech. rep., 1997.

[19] Jansen, E., and Chalmers, A. Realism in real time In Fourth Eurographics Workshop on

Rendering (June 1993), M. F. Cohen, C. Puech, and F. Sillion, Eds., Eurographics, pp. 27{46. held

in Paris, France, 14{16 June 1993.

[20] Kay, T. L., and Kajiya, J. T. Ray tracing complex scenes. In Computer Graphics (SIGGRAPH

'86 Proceedings) (Aug. 1986), D. C. Evans and R. J. Athay, Eds., vol. 20, pp. 269{278.

[21] Kurt Akeley, S. G. I. capping.c, demonstration of gl/opengl rendering of capped solids, 1991.

[22] Montrym, J. S., Baum, D. R., Dignam, D. L., and Migdal, C. J. In�niteReality: A real-time

graphics system. In SIGGRAPH 97 Conference Proceedings (Aug. 1997), T. Whitted, Ed., Annual

Conference Series, ACM SIGGRAPH, Addison Wesley, pp. 293{302. ISBN 0-89791-896-7.

[23] Muuss, M. J. Workstations, Networking, Distributed Graphics, and Parallel Processing. Springer-

Verlag, 1990.

[24] Muuss, M. J. Towards real-time ray-tracing of combinatorial solid geometric models. In Proceedings

of BRL-CAD Symposium '95 (1995).

[25] Neider, J., Davis, T., and Woo, M. OpenGL Programming Guide. Addison-Wesley, 1993.

[26] Phong, B.-T. Illumination for computer generated pictures. Communications of the ACM 18, 6

(June 1975), 311{317.

[27] Pineda, J. A parallel algorithm for polygon rasterization. Computer Graphics (Proc. Siggraph '88)

(1988), 17{20.

[28] Potmesil, M., and Hoffert, E. M. The pixel machine: A parallel image computer. J. Lane,

Ed., vol. 23, pp. 69{78.

[29] Rossignac, J., Megahed, A., and Schneider, B.-O. Interactive inspection of solids: Cross-

sections and interferences. Computer Graphics 26, 2 (July 1992), 353{360.

[30] Rubin, S. M., and Whitted, T. A 3-dimensional representation for fast rendering of complex

scenes. Computer Graphics 14, 3 (July 1980), 110{116.

[31] Schumacker, R. A., Brand, B., Gilliland, M., and Sharp, W. Study for applying computer-

generated images to visual simulation. Tech. Rep. AFHRL TR-69-14, U.S. Air Force Human Re-

sources Laboratory, 1969.

[32] Silicon Graphics, I. O2 uni�ed memory architecture. Tech. Rep. Whitepaper 1352, Silicon

Graphics, Inc., 1997.

[33] Whitted, T. An improved illumination model for shading display. CACM 23, 6 (1980), 343{349.

[34] Winget, J. Advanced graphics hardware for �nite element results display. Advanced Topics in

Finite Element Analysis, PVP 143 (June 1987).

[35] Witkin, A. P., and Heckbert, P. S. Using particles to sample and control implicit surfaces.

Computer Graphics 28, Annual Conference Series (July 1994), 269{278.

[36] Wylie, C., Romney, G., Evans, D., and Erdahl, A. Half-tone perspective drawings by

computer. In Proceedings of AFIPS 1967 FJCC (1967), vol. 31, pp. 49{58.

