
MIT Technical Report, May 2000.

TCP-friendly Congestion Control for Real-time Streaming
Applications

Deepak Bansal and Hari Balakrishnan
M.I.T. Laboratory for Computer Science

Cambridge, MA 02139
Email: fbansal,harig@lcs.mit.edu

Abstract

This paper introduces and analyzes a class of nonlinear con-
gestion control algorithms called binomial algorithms, moti-
vated in part by the needs of streaming audio and video ap-
plications for which a drastic reduction in transmission rate
upon congestion is problematic. Binomial algorithms gen-
eralize TCP-style additive-increase by increasing inversely
proportional to a power k of the current window (for TCP,
k = 0) ; they generalize TCP-style multiplicative-decrease
by decreasing proportional to a power l of the current win-
dow (for TCP, l = 1). We show that there are an infinite
number of deployable TCP-friendly binomial algorithms, all
of which satisfy k + l = 1, and that all binomial algorithms
converge to fairness under a synchronized-feedback assump-
tion provided k + l > 0; k; l � 0. Our simulation results
show that binomial algorithms interact well with TCP across
a RED gateway. We focus on two particular algorithms,
IIAD (inverse-increase/additive-decrease, k = 1; l = 0) and
SQRT (k = l = 0:5), showing that they are well-suited to
applications that do not react well to large TCP-style win-
dow reductions. We also find that TCP-friendliness in terms
of the relationship between throughput and loss rate of an al-
gorithm does not necessarily imply fairness relative to TCP
performance, especially for drop-tail bottleneck gateways.

1 Introduction

The stability of the Internet to date has in large part been due
to the congestion control and avoidance algorithms [15] im-
plemented in its dominant transport protocol, TCP [28, 34].
Based on the principle of additive-increase/multiplicative-
decrease (AIMD) [6], a TCP connection probes for extra
bandwidth by increasing its congestion window linearly with
time, and on detecting congestion, reducing its window mul-
tiplicatively by a factor of two. Under certain assumptions
of synchronized feedback, Chiu and Jain have shown that an
AIMD control scheme converges to a stable and fair operat-
ing point [6], providing a sound basis for Jacobson’s algo-
rithms found in most current TCP implementations [1].

TCP is not well-suited for several emerging applications
such as streaming and real-time audio and video because the
reliability and ordering semantics it ensures increases end-
to-end delays and delay variations. To be safe for deploy-

ment in the Internet, however, the protocols used by these
applications must implement congestion control algorithms
that are stable and interact well with TCP. Such protocols
are called “TCP compatible” [3] or “TCP fair”. They ensure
that the TCP connections using AIMD get their fair allo-
cation of bandwidth in the presence of these protocols and
vice versa. One notion that has been proposed to capture
“TCP compatibility” is “TCP-friendliness”. It is well known
that the throughput � of a flow with TCP’s AIMD conges-
tion control (increase factor � = 1 packet, decrease factor
� = 1=2) is related to its loss rate p as � / S=(R

p
p), where

S is the packet size [19, 25, 10, 26]. An algorithm is TCP-
friendly [20] if its throughput � / S=(R

p
p) with the same

constant of proportionality as for a TCP connection with the
same packet size and round-trip time.

In this paper, we present and evaluate a new class of
nonlinear congestion control algorithms for Internet trans-
port protocols and applications. Our work is motivated by
two important goals. First, we seek to develop and analyze a
family of algorithms for applications such as Internet audio
and video that do not react well to the large “factor-of-two”
rate reductions that a TCP-style multiplicative-decrease en-
tails, because of the drastic degradations in user-perceived
quality that result. Second, we seek to achieve a deeper un-
derstanding of TCP-compatible congestion control by gen-
eralizing the class of linear control algorithms, and under-
standing how a TCP-friendly algorithm competes with TCP
for bottleneck resources.

An AIMD control algorithm may be expressed as:

I: wt+R wt + �;� > 0

D: wt+Æt (1� �)wt; 0 < � < 1; (1)

where I refers to the increase in window as a result of re-
ceipt of one window of acknowledgements in a RTT and D
refers to the decrease in window on detection of a loss by the
sender, wt the window size at time t, R the round-trip time
of the flow, and � and � are constants. We have assumed a
linear increase in window in the RTT.

To better understand the notions of TCP-friendliness and
the trade-offs between the increase and decrease rules, we
generalize the AIMD rules in the following way:

I: wt+R wt + �=wk
t ;� > 0

D: wt+Æt wt � �wl
t; 0 < � < 1 (2)

1

These rules generalize the class of linear controls. For k =
0; l = 1, we get AIMD; for k = �1; l = 1, we get MIMD
(multiplicative increase/multiplicative decrease used by slow
start in TCP [15]); for k = �1; l = 0, we get MIAD; and
for k = 0; l = 0 we get AIAD, thereby covering the class of
all linear controls.

We call this family of algorithms binomial congestion
control algorithms, because their control expressions involve
the addition of two algebraic terms with different exponents.
They are interesting because of their simplicity, and because
they possess the property that any l < 1 has a decrease
that is in general less than a multiplicative decrease, a desir-
able property for streaming and real-time audio and video.
If there exist values of k and l (other than k = 0; l = 1)
for which binomial algorithms are TCP-friendly, then it pro-
vides a spectrum of potentially safe congestion management
mechanisms that are usable by Internet applications which
do not react well to large and drastic rate reductions. It
should be noted that varying � and � also help in reduc-
ing the oscillations. However, they still keep the reduction
multiplicative and as a result, the same value of � and � can-
not be used across wide range of bandwidth*delay values by
an application that desires an absolute bound on the inherent
oscillations due to congestion control algorithm. For that
purpose (for example, if the layers in layered media are ad-
ditively spaced), � and � have to be made functions of cur-
rent window values which is what binomial algorithms help
achieve.

Our major finding is that TCP-friendly binomial conges-
tion control schemes do exist. Based on the analysis and
simulation, we present the following findings:

� The �-p relationship. For the binomial family of con-
trols, � / 1=p

1
k+l+1 . In particular, the linear control

protocols MIMD and AIAD have � / 1=p, which
is significantly more aggressive than the AIMD TCP-
compatible relationship, while MIAD is unstable.

� The k + l rule. A binomial algorithm is TCP-friendly
if and only if k+ l = 1 and l � 1 for suitable � and �.
This implies that there is a wide range of TCP-friendly
binomial controls parametrized by k and l, and appli-
cations can choose from this family depending on their
needs and the level of rate degradation they can sus-
tain. Furthermore, we show that under a synchronous
feedback assumption, all the binomial control proto-
cols converge to fairness as long as k � 0, l � 0 and
k + l > 0. In particular, all the TCP-friendly binomial
algorithms converge to fair allocations.

� IIAD and SQRT control. Of this family, we evaluate
two interesting TCP-friendly algorithms in the (k; l)
space: (k = 1; l = 0) and (k = 1=2; l = 1=2). We call
the first IIAD (inverse-increase/additive decrease) be-
cause its increase rule is inversely proportional to the
current window, and the second SQRT because both its
increase is inversely proportional and decrease propor-
tional to the square-root of the current window. Our
simulations show that both IIAD and SQRT interact

More
aggressive

TCP

Less
aggressive

Unstable
Region

k

l

0

1

1

SQRT

0.5

0.5

IIAD

MIMD

MIAD AIAD

AIMD

Unstable
Region

-1
0

friendly

Figure 1. The (k; l) space of nonlinear controls from our
family, with the k + l = 1 line showing the set of TCP-
compatible controls.

well with TCP AIMD across a wide range of network
conditions over a RED bottleneck gateway.

� TCP-friendliness vs. TCP compatibility. Over
a wide range of parameters, we discover that
TCP-friendliness does not necessarily imply TCP-
compatibility. The unfairness stems from the buffer
management algorithms implemented at a congested
gateway and how buffers are sized at a drop-tail (FIFO)
gateway. Fortunately, an active queue management
scheme like Random Early Drop (RED) at the bottle-
neck link alleviates this unfairness problem by explic-
itly equalizing packet loss rates across flows. Hence,
while binomial algorithms are TCP-friendly (because
they satisfy (�; p) relationship, they become TCP-
compatible in the presence of RED gateways.

Figure 1 summarizes the qualitative features of a bi-
nomial algorithms in the (k; l) space, including the points
where it corresponds to the four linear controls, the line
segment where it is TCP-friendly, and the regions where
it is more and less aggressive than TCP AIMD. An in-
teresting observation that follows from this figure and our
analysis is that of all the TCP-friendly binomial algorithms
(k + l = 1; l � 1) , AIMD is most aggressive in prob-
ing for available bandwidth. In this sense, AIMD is the
most efficient and best suited binomial algorithm for bulk
data transfer applications that can tolerate large reductions
in available capacity upon encountering congestion. (Note
that we assume that window size is always greater than 1, so
1=W k < 1). This observation shows the suitability of bino-
mial algorithms as a good theoretical framework for evalu-
ating additive increase/multiplicative decrease algorithms.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss and analyze the properties of binomial
algorithms. In Section 3, we delve into the IIAD and SQRT
controls, presenting several simulation results with RED
gateways and evaluating fairness with competing TCP con-
nections. In Section 4, we discuss the interactions between
binomial algorithms and TCP in the presence of drop-tail
gateways. We describe the performance results of our imple-

2

mentation of SQRT algorithm for an Internet audio applica-
tion in Section 5. We compare our work to past research on
congestion management in Section 7 and conclude in Sec-
tion 8.

2 Binomial congestion control algorithms

In this section, we present and analyze the properties of bi-
nomial congestion control algorithms. We start by providing
some intuition about the sample paths traversed by the con-
gestion window in a binomial algorithm, and showing that
it converges to fairness under simplified conditions of syn-
chronized feedback to sources. The intuition section makes
simplifying assumptions but later, we corroborate our results
by deriving an analytic formula that relates the throughput
of a binomial algorithm to the loss rate it observes. We then,
use this formula to obtain the conditions under which a bi-
nomial algorithm is TCP-friendly.

2.1 Intuition

We use the technique of Chiu and Jain and represent the two-
source case as a “phase plot,” where the axes correspond
to the current window sizes, xi, of each source (for conve-
nience, we normalize each xi to a number between 0 and 1,
so it represents the fraction of the total window size aggre-
gated across all competing sources). As the system evolves
with time, the two sources adjust their windows according to
the control equations, leading to a sample path in this phase
space. The key to understanding binomial controls is to re-
alize how these paths move in the phase space. To start with,
we summarize how linear controls behave [6]:

1. Additive-increase/decrease: Moves parallel to the 45o-
line. Additive-increase improves fairness (in the sense
of Jain’s fairness index1), additive-decrease reduces it.

2. Multiplicative-increase/decrease: Moves along the line
connecting (x1; x2) to the origin. Fairness is un-
changed.

Because binomial algorithms are non linear, their evolu-
tion in the phase plot is not always along straight line seg-
ments. Figure 2 shows a portion of one such sample path
highlighting the increase and decrease parts. For all val-
ues of k > 0, the increase in x1 and x2 are not equal—the
smaller of the two values increases more than the larger one.
It is clear that this leads to a fairer allocation than if both
sources did additive-increase by the same constant amount.
On the other hand, values of l < 1 in the decrease phase
worsen fairness. However, binomial algorithms still conver-
gence to fairness as we show in Section 2.2.

The parameters k and l represent the aggressiveness of
probing and conservativeness of congestion response of a bi-
nomial control algorithm. A small value for k implies that
the algorithm is more aggressive in probing for additional

1For a network with n connections each with a share xi of a
resource, the fairness index f = (

P
xi)

2=(n
P

x2i) [16].

bandwidth, while a large value of l implies that the algorithm
displays large window reductions on encountering conges-
tion. Thus, it would seem that there is a trade-off between k
and l in order for for a binomial protocol to achieve a certain
throughput at some loss rate.

Indeed, in Section 2.3, we show that at any loss rate, the
throughput depends on the sum of the two exponents, k + l.
As a corollary, we find that a binomial algorithm is TCP-
friendly if and only if k + l = 1 and l � 1. We call this the
k+ l rule, which represents a fundamental tradeoff between
probing aggressiveness and the responsiveness of window
reduction. Figure 1 shows the features of the (k; l) space.
We consider schemes for which l > 1 as unstable (Figure 1),
since there always exists a window size wt (assuming wt >
1) above which wt < �wl

t for any constant �. It can be
made stable by having it not cut down window by an amount
more than the current window but that involves modifying
the basic increase decrease rules and thus, we consider them
unstable. Similarly, schemes for which k + l � �1 are also
unstable because as k+ l rule will show, � does not decrease
with increasing p in this realm. As a result, the window for a
connection will keep on increasing (or remain same) as loss
rate is increased.

2.2 Convergence to fairness

In this section, we show that a network with two sources
implementing the same binomial control algorithm with
k; l � 0 converge to a fair and efficient operating point
(x1 = x2 = 1=2), provided that k + l > 0. The argument
is easily extended to a network of n > 2 sources by consid-
ering them pairwise. We assume that the network provides
synchronized feedback about congestion to all the sources 2.
We do not claim that this models the reality of Internet con-
gestion well, but this analysis provides good insight into the
results that follow.

Without loss of generality, suppose x1 < x2, which cor-
responds to points above the x2 = x1 equi-fairness line
in Figure 2 (an analogous argument can be made when
x2 < x1). First, consider the left-most picture that shows
how a window increase evolves. When k = 0, the increase
is additive, parallel to the 45o-line (along line AB). When
k > 0, the increase curve lies below the k = 0 line since
the amount of increase in x1 is larger than the corresponding
increase in x2 (note x1 < x2). Therefore, it intersects the
maximum-utilization line x1 + x2 = 1 at a point C, to the
right of where the k = 0 line intersects it. Such an increase
improves efficiency, since x1 + x2 increases, and moves to-
wards a fairer allocation (i.e., towards the intersection of the
equi-fairness and maximum-utilization lines).

Now, consider a window reduction. Observe that when
l = 0 (additive decrease), the window reduction occurs
along the 45o line (along line DE), worsening fairness.
When l = 1, the decrease is multiplicative and moves
along the line to the origin without altering fairness. For
0 < l < 1, the window reduction occurs along a curve with

2This is the same network model as in Chiu and Jain’s work [6].

3

k=-1

k=0

k>0
k>0

Maximum Utilization

Equi-fairness line

line (MUL)

Point of intersection with MUL
shifts right on each cycle

(see 45 lines as reference)
o

l

=0

=1

l

l
l

x2

x1x1

x2 x2

x1

<10< 0< <1

EF

D

B
C

A

Figure 2. Sample path showing the convergence to fairness for an inverse increase proportional decrease algorithm.

shape as shown in the middle picture of Figure 2; this curve
is in-between the previous two lines (l = 0 and l = 1 lines)
and causes the system to evolve to an under-utilized region
of the curve where x1 + x2 < 1. This curve lies strictly
below the l = 0 line because the tangent at each point has a
slope = xl2=x

l
1 > 1 when x2 > x1. Therefore, it intersects

the maximum-utilization line at a point F which is closer to
the fair allocation point relative to the previous intersection
of the sample path with that line.

The key to the convergence argument is to observe that
the successive points of intersection of a binomial curve with
the maximum-utilization line x1 + x2 = 1 always progress
toward the fair allocation point. When x2 > x1, this con-
tinually moves downwards, when x2 < x1, it continually
moves upwards towards the x2 = x1 point. Once x1 = x2,
a binomial algorithm behaves exactly like a linear algorithm,
moving on the x1 = x2 equi-fairness line.

It is easy to see that all we require in the above argu-
ment is for at least one of k and l to be larger than zero,
since the sample path needs to move to the right at some
stage. When k = l = 0, the algorithm is the linear
additive-increase/additive-decrease scheme, which does not
converge. The window evolution here remains on the 45 o-
line passing through any point (x1; x2), without moving to-
ward the fair allocation point.

This proof is valid under the synchronized feedback as-
sumption and shows that a network in which all sources im-
plement the same binomial control algorithm converges to
a fair operating point. We note that it does not address the
case of different binomial algorithms coexisting in the same
network.

2.3 Throughput

We now analyze the throughput of a binomial algorithm
as a function of the loss rate it experiences. We start with
the steady-state model studied for TCP by Lakshman and
Madhow [18] and Floyd [10]. Using the increase rule of
Equation 2, we get using a continuous fluid approximation

αW(t)=((k+1) t/R)
(1/(k+1))

N
d

Td

W

tt1 t2

Wm
βWm

Figure 3. Functional form of window vs time curve.

and linear interpolation of the window between w t and
wt+R:

dw

dt
=

�

wk :R
) wk+1

k + 1
=
�t

R
+ C

(3)

where C is an integration constant.
The functional form of this curve is shown in Figure 3.

We are interested in two parameters marked in the figure:
TD, the time between two successive packet drops, and ND,
the number of packets between two successive drops. Both
these are independent of “time-shifting” the curve along the
horizontal (time) axis, which implies that one can arrange
it such that a downward extrapolation of the curve passes
through the origin. That is, without loss of generality and
with no change to TD and ND, one can set C = 0.

LetWm be the maximum value of the windoww t at time
t2 (Figure 3), at which a packet drop occurs signifying con-
gestion to the sender. Then, one can write expressions for

4

TD and ND as follows:

TD = t2 � t1

Substitutingwt2 =Wm andwt1 = Wm��W l
m in Equation

3, we get

TD =
R

�(k + 1)
[W k+1

m � (Wm � �W l
m)k+1]

=
RW k+1

m

�(k + 1)
[1� (1� �W l�1

m)k+1]

=
RW k+1

m

�
�(W l�1

m +O(W 2l�2
m))

� �RW k+l
m

�
(when l < 1 and � << W 1�l

m) (4)

The leading term in TD therefore varies as W k+l
m , with

the succeeding terms becoming increasingly insignificant.
ND is the shaded area under the curve in Figure 3.

ND = (k + 1)
1

k+1

Z t2

t1

�
�t

R

� 1
k+1

=R dt (5)

Calculating the integral, we get:

ND =
1

(2 + k)�
W 2+k

m [1� (1� �W l�1
m)2+k]

� 1

(2 + k)�
W 2+k

m �(2 + k)W l�1
m (leading term)

=
�

�
W k+l+1

m (6)

The average throughput (in packets per second), � of a flow
using binomial congestion control is the number of packets
sent in each epoch between successive drops (ND) divided
by the duration between drops (TD). The packet loss prob-
ability, p = 1=ND. Writing � and p in terms of Wm by
substituting the expressions for ND and TD yields:

� = (
�

�
)1=(k+l+1) 1

Rp1=(k+l+1)
(7)

Thus, � / 1
p1=(k+l+1) for a protocol in this family. This

implies that for such a protocol to be TCP-friendly, � must
vary as 1

p1=2
, which implies that:

k + l = 1 (8)

To first order, choosing �=� to be the same as for TCP
would achieve similar performance. Note that in our analy-
sis above we have assumed a linear interpolation of window
between wt and wt+R i.e we assume an increase in window
by one in a RTT for TCP rather than an increase by 1/w on
receipt of each acknowledgement.

These results also hold for the random-loss model first
analyzed by Ott et al. in the context of TCP [25]. Un-
like in the steady-state model where losses happen period-
ically when the sender’s window reaches Wm, losses in the

random-loss model are modeled as Bernoulli trials where
each packet is independently lost with probability p.

We use the stochastic approximation technique for TCP
performance described by Wang and Schwartz [36]. We
treat the window value after receiving an acknowledgment
with sequence number t, wt, as a stochastic process and cal-
culate its average value in the steady state. If we run the
algorithm for a long time, the resulting congestion proba-
bility (the number of window reductions over the number
of packets sent) is p. Then, in the steady state, the random
process wt evolves as follows: given wt, with probability
(1 � p), the packet is not lost and the sender’s window in-
creases, so wt+1 = wt + �=wk+1

t , whereas with probability
p, the packet is lost, forcing the window to reduce giving
wt+1 = wt � �wl

t.
Using this, we can calculate the average “drift” D in the

window when wt = w. D(w) = (1 � p)�=wk+1 � p�wl.
Assuming that the stochastic process wt has a stationary
distribution, wt must have most of its probability around the
region for w =Wsteady such that D(Wsteady) = 0. Thus:

(1� p)�

W k+1
steady

= p�W l
steady (9)

) Wsteady � (
�

�p
)1=(k+l+1) if p << 1 (10)

We emphasize that p is the per-packet loss probability. As
shown in the steady-state analysis above, Wsteady is a good
approximation to the time average of the random processw t.
The result, that � � (��)

1=(k+l+1) 1
Rp1=(k+l+1) / 1

p1=(k+l+1)

therefore follows for the random-loss model as well.
This relationship establishes the fact that for a given loss

rate and identical conditions, TCP AIMD and a binomial al-
gorithm satisfying k + l rule can achieve the same through-
put. Further, it shows that for a given loss rate, two bi-
nomial connections will achieve same throughput provided
other conditions are same.

3 Simulation results

In this section, we present the results of our ns-2 [24] simu-
lations of binomial control algorithms. We start by investi-
gating the interactions between connections running a TCP-
friendly binomial control algorithm (i.e., one that satisfies
the k + l rule) and TCP, as a function of k, which deter-
mines how aggressive the window increase factor is. We
then investigate the performance of two specific members of
this family: IIAD (inverse-increase/additive-decrease; k =
1; l = 0) and SQRT (k = l = 0:5; this corresponds to an
increase proportional to the square-root of the current win-
dow and a decrease proportional to it). We conclude this
section by studying the performance of IIAD and SQRT in
the presence of multiple bottlenecks.

Our single bottleneck simulations used the topology
shown in Figure 4. It consists of n connections sharing a
bottleneck link with total bandwidth equal to b; all connec-
tions have an identical round-trip propagation delay equal

5

source-1

source-2

source-k

source-n

sink-1

sink-2

sink-k

sink-n

Router-1 Router-2

100Mb 100Mb

100Mb

100Mb

100Mb

100Mb 100Mb

100Mb

100Mb

100Mb

1ms
BW=b

Figure 4. Simulation topology (delays of links for which no
delay is specified are all equal such that the round-trip time
for each connection = RTT ms).

to RTT (we change b and RTT in various simulations).
We implemented the transport protocol by modifying the
congestion avoidance algorithm used by TCP; we replaced
AIMD with the binomial family. However, we did not mod-
ify the connection start-up or timeout routines; they continue
to use slow-start and timeouts as before. Thus, the effect of
slow start and timeouts on connection throughput is same as
for a normal TCP connection. Each source always has data
to send, modeled using ns’s “FTP” application. In all our
experiments, we simulated each topology and workload ten
times and calculated both the average and sample standard
deviation of the observed values. The figures and graphs
display this information.

In this section, we present performance results using
Floyd and Jacobson’s Random Early Drop (RED) buffer
management algorithm at the bottleneck gateway [12]. The
maximum queue sizeQ at the bottleneck was set to b�RTT ,
the bandwidth-delay product of the path. The minimum and
maximum drop thresholds (minth and maxth) were set to
0:2�Q and 0:8�Q respectively, and the connections used
a packet size of 1KByte. Each connection was started at uni-
formly chosen random times in [0; 2] seconds and through-
put was calculated from t = 10s to t = 20s to give sufficient
time for the connections to stabilize and to filter out startup
transients. Later in the section, we also present results show-
ing startup effects and impulse response of a binomial algo-
rithm on TCP and vice versa.

3.1 TCP-compatibility

Our first set of results (Figure 5) show how binomial al-
gorithms interact with each other and with TCP. To study
the effect of k and l on TCP, we simulated two connec-
tions (n = 2), one TCP and the other a binomial algorithm
parametrized by k. We show three sets of results correspond-
ing to the three cases k + l equal to, less than, and greater
than 1. For these simple scenarios, these results validate the
k+ l rule for TCP-friendliness, since the long-term through-
put for the binomial algorithms for which k+ l = 1 are close

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

T
C

P
 th

ru
pu

t/B
in

om
ia

l t
hr

up
ut

k

Fairness to TCP vs k for k+l=1
Fairness to TCP vs k for k+l=0.5
Fairness to TCP vs k for k+l=1.5

Figure 5. Ratio of the throughput of TCP AIMD to the
throughput of a binomial algorithm, as a function of k. The
algorithms that satisfy the k + l rule are the ones for which
this ratio is closest to unity. When k+ l = 0:5, the binomial
algorithm obtains much higher throughput relative to TCP
and when k + l = 1:5, TCP obtains much higher through-
put relative to binomial algorithm, as predicted by the anal-
ysis. The error bars show the 95% confidence interval of
the throughput ratio. In these experiments, b = 3 Mbps and
RTT = 50 ms.

to that of TCP. These results also show that TCP-friendliness
implies TCP-compatibility across RED gateways.

3.2 IIAD Algorithm

We now turn to IIAD, which is relatively less aggressive in
the rate at which it probes for bandwidth (k = 1), but at the
same time only reduces its window by a constant upon con-
gestion (l = 0). We choose the values of � and � such that
the theoretical throughput of IIAD is close to the through-
put of TCP AIMD. There are an infinite number of val-
ues for � and � corresponding to this; we pick one pair,
� = 1; � = 0:6.

We compare the fairness of IIAD relative to another
IIAD instance and to a TCP/Reno sharing the same bottle-
neck using the topology and workload in Figure 4. In these
experiments, n = 2 and each connection was started at a
random time in [0; 2] seconds. Each individual experiment
was conducted using a bottleneck bandwidth b of 1.5 Mbps
and the round-trip time RTT was varied between 50 ms and
200 ms.

Figure 6 plots the throughput ratio for two IIAD connec-
tions on one curve and for one IIAD and one TCP connec-
tion on the other curve. These results show that IIAD is fair
to both the IIAD and to TCP across a range of RTT val-
ues. However, the standard deviation of the results increases
as RTT increases. This is because as RTT increases, each
connection takes a greater amount of time to reach the op-
timum available bandwidth. Furthermore, when persistent
losses occur leading to a timeout (recall that these experi-

6

0

0.5

1

1.5

2

40 60 80 100 120 140 160

R
at

io
 o

f t
hr

ou
gh

pu
ts

RTT(ms)

IIAD conn throughput/another IIAD conn. thruput
TCP conn throughput/IIAD conn. thruput

Figure 6. Ratio of throughputs of two connections sharing
the bottleneck along with 95% confidence intervals (n =
2; b = 1:5 Mbps).

ments use a modified TCP source and sink), the congestion
window shrinks to one packet and slow start occurs. The ini-
tial start-up effects and response to timeouts take longer to
stabilize at higher delays, resulting in the correspondingly
higher variance. The start-up effects are exacerbated for
IIAD because it is less aggressive than AIMD, and responds
relatively slower to any spare bandwidth. This is the reason
that at higher delays, IIAD sometimes loses to TCP; the con-
nections experience losses during slow start and IIAD takes
longer to ramp to its share of bandwidth. Figure 6 shows that
IIAD and TCP AIMD are fair to each other over long time
scales. We observed the same results and behavior across a
range of bottleneck bandwidths.

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25

W
in

do
w

 (
pa

ck
et

s)

Time (sec)

IILD conn 1
IILD conn. 2

Figure 7. Congestion window evolution at the sender for
two IIAD connections that start at random times in [0; 2] sec-
onds. In this experiment, b = 1:5 Mbps and RTT = 50 ms.

For one of these experiments, we look at the evolution
of the congestion window. Figure 7 shows this for the two
IIAD connections, showing the expected increase and de-

0

10

20

30

40

50

60

70

80

0 5 10 15 20

IIAD
AIMD

Figure 8. Congestion window variation for the IIAD and
TCP Reno connections started at random times.

crease behavior as a function of time. For want of space,
we do not show the sequence trace for these two connec-
tions here, but the two connections quickly achieve the same
slopes signifying that they share bandwidth well with each
other. We observed such good sharing across a range of b
and RTT values.

More interesting is the interaction between IIAD and
TCP in terms of the evolution of their congestion windows
(Figure 8). We observe that the window values quickly be-
come similar, and even though the TCP connection started
later, it was able to obtain its share of bandwidth without
any difficulty.

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50

W
in

do
w

(p
ac

ke
ts

)

time(sec)

IILD conn. 1
IILD conn. 2

Figure 9. Slow start response of an IIAD flow to another
long-running IIAD flow. In this experiment, b = 1.5 Mbps,
RTT = 50 ms.

We now consider the impulse-response behavior of the
binomial control algorithms. Our experiences with these
experiments across several binomial algorithms have con-
vinced us that slow start (or a similar mechanism) is an im-
portant component of any practical protocol to ensure that a

7

connection converges relatively quickly, within a few RTTs
to the fair value. We show an example of this in Figure 9,
which shows how slow start enables a new IIAD connection
to catch up and share bandwidth with another long-running
IIAD connection.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50

W
in

do
w

(p
ac

ke
ts

)

time(sec)

TCP conn.
IILD conn.

Figure 10. Response of a long-lived IIAD flow to a TCP
impulse. In this experiment, b = 1.5 Mbps and RTT = 50
ms.

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40

W
in

do
w

(p
ac

ke
ts

)

time(sec)

TCP long lived
IILD impulse

Figure 11. Response of a long-lived TCP flow to an IIAD
impulse. In this experiment, b = 1:5 Mbps and RTT = 50
ms.

We observe the same behavior when a new TCP AIMD
connection impulse encounters a long-running IIAD, as
shown in Figure 10. The results of the converse experiment
are shown in Figure 11, where an IIAD impulse meets a
long-lived TCP AIMD. These figures show that IIAD and
TCP converge to their fair bandwidth share, with the im-
pulses using slow start.

These results hold when the number of connections is
increased as well. Figure 12 shows the window variation for
five of fifteen concurrent IIAD flows sharing the bottleneck
link. At time t = 20 seconds, a TCP AIMD connection starts

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40

W
in

do
w

 (
pa

ck
et

s)

time (sec)

IIAD conn 1
IIAD conn 2
IIAD conn 3
IIAD conn 4
IIAD conn 5

TCP/Reno conn

Figure 12. A TCP AIMD connection grabs its fair share in
the presence of many long-lived IIAD flows (n = 16; b = 9
Mbps; RTT = 50 ms). For clarity, we only show the win-
dow sizes of five IIAD connections and the TCP connection.

(the impulse at t = 20), and is able to grab its share of band-
width even in the presence of several other long-lived IIAD
connections as can be seen from the TCP window evolution
after about t = 25 seconds. Conversely, Figure 13 shows the
window evolution of an IIAD flow that starts at time t = 20
seconds in the presence of five concurrent long-lived TCP
connections (for clarity, we only plot the windows of two of
the TCPs).

3.3 SQRT algorithm results

We now investigate the performance of the SQRT algorithm,
which has k = l = 0:5.

Although we use � = 1 and � = 0:6 in the reported ex-
periments; we found that performance is relatively insensi-
tive to small changes in �. We do not report the results of all
the experiments we conducted with SQRT; in particular, we
found that the long-term fairness of SQRT connections with
each other and with TCP are high. We obtained results very
similar to Figure 6 (the IIAD experiments), across a wide
range of RTT and b values, showing that when the number
of connections is small, SQRT connections share bandwidth
fairly with each other and with TCP AIMD.

SQRT differs from IIAD in its aggressiveness in increas-
ing its window and in reducing its window upon congestion.
As a result, the details of its interaction with TCP AIMD are
different from those of IIAD. This is shown in Figure 14,
where a TCP impulse encounters a long-running SQRT con-
nection at the bottleneck. We see that the two connections
converge to their share of the bandwidth in fewer number of
round-trip times than in the TCP-IIAD case (Figure 10).

Figure 15 plots the time evolution of the congestion win-
dow for concurrent SQRT and AIMD connections. As ex-
pected, the window variations for SQRT are larger than for
IIAD (Figure 8), but its variations are markedly smaller than
TCP. As with IIAD, this does not affect bandwidth sharing

8

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40

W
in

do
w

 (
pa

ck
et

s)

time (sec)

TCP conn 1
TCP conn 2

IIAD conn

Figure 13. An IIAD flow grabs its fair allocation in the
presence of many long-lived TCP flows (n = 6; b = 9
Mbps; RTT = 50 ms). For clarity, we only show the win-
dow sizes of two TCP connections and the IIAD connection.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50

W
in

do
w

(p
ac

ke
ts

)

time(sec)

TCP conn.
IILD conn.

Figure 14. Response of a long-lived SQRT flow to a TCP
impulse. In this experiment, b = 3 Mbps and RTT = 50
ms.

as can be seen from the window plot. We observed similar
results for a range ofRTT and b values, and when we scaled
n to higher values.

Finally, we consider the sensitivity of our results to the
value of � in the binomial algorithms by showing our re-
sults for SQRT case (we obtained similar results for IIAD as
well). Figure 16 plots the effect of � on fairness to a TCP
connection sharing the bottleneck. We observe little varia-
tion in the throughput ratio, but notice that fairness to TCP
reduces at the extremes. When � is close to 0, TCP AIMD
loses and when � is close to 1, SQRT loses. This is expected
behavior based on the magnitude of SQRT window reduc-
tion upon congestion.

0

10

20

30

40

50

60

70

80

0 5 10 15 20

W
in

do
w

 (
pa

ck
et

s)

time(sec)

AIMD alg
SQRT alg

Figure 15. Graph showing window variation for SQRT
and TCP AIMD connections sharing the bottleneck (b = 3
Mbps; RTT = 50 ms).

3.4 Multiple connections and multiple bottle-
necks

This section investigates the impact of scale on binomial al-
gorithms along two dimensions: (i) increasing the number
of concurrent connections across a single bottleneck, and (ii)
investigating performance across multiple bottleneck links.

To understand how several connections using different
TCP-friendly binomial algorithms interact with each other,
our first series of experiments looks at several concurrent
connections running different algorithms sharing the bottle-
neck. The topology we use is same as in Figure 4 with
b = 50 Mbps and RTT = 50 ms. We choose values of
k = f0; 0:25; 0:5; 0:75; 1g and l = 1� k, and vary the total
number of connections n. For each value of k, we set up n=5
connections, and start each connection at a random time in
the interval [0; 2] seconds. In Figure 17, we plot the mean
value of Jain’s fairness index (ten runs for each data point)
along with 95% confidence intervals.

To study the impact of multiple bottlenecks and back-
ground traffic on the performance and fairness of binomial
algorithms, we simulated the topology shown in Figure 18.
The maximum number of HTTP connections for each HTTP
source was set to five and all other parameters were set to
the default values from ns-2 for the HTTP and CBR sources
and sinks. The window variation for the TCP AIMD and
IIAD sources are shown in figure 19. As can be seen from
this figure, the bottleneck bandwidth gets distributed fairly
among these sources even in the presence of multiple bottle-
necks. We observed the same behavior for other sources in
this simulation and also when we replaced the IIAD source
a SQRT source.

4 TCP friendliness vs TCP Compatibility

In this section, we study the interactions between binomial
algorithms and TCP AIMD over a drop-tail bottleneck gate-

9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2 0.4 0.6 0.8 1 1.2

T
C

P
 T

hr
ou

gh
pu

t/S
Q

R
T

 T
hr

ou
gh

pu
t

beta parameter

Beta Sensitivity

Figure 16. Plot showing fairness of SQRT to TCP/Reno
(throughput ratio) along with the 95% confidence-interval
for various values of � of the SQRT algorithm (b = 3Mbps,
RTT = 50 ms).

way, observing some surprising effects. Figure 20 shows the
window variation and bottleneck buffer occupancy for two
connections, one TCP AIMD and the other IIAD, sharing a
drop-tail bottleneck gateway. We see that TCP starts losing
out and its window keeps on decreasing until it starts to os-
cillate below its fair share because no buffers are available to
it. On the other hand, IIAD starts grabbing more and more
bandwidth. We observed similar behavior with other bino-
mial algorithms as well.

At first, we found this result puzzling because the theory
and the k + l rule had predicted that as long as k + l = 1,
the long-term throughput of a binomial algorithm would be
equal to TCP AIMD. However, closer examination of the
bottleneck buffer occupancy revealed the problem. In a con-
gested network, the “steady state” of the bottleneck queue
is close to full. IIAD is less aggressive than AIMD, and
when it reduces its window, does not completely flush the
queue. When a drop-tail gateway has been configured with
a queue size of b � RTT , it ensures that TCP-style “factor-
of-two” multiplicative decrease brings the reducing connec-
tion’s contribution to the bottleneck occupancy down to (or
close to) 0. This allows other competing connections to ramp
up and also ensures that sufficient buffers are available for
the window to increase before another “factor-of-two” re-
duction happens. In contrast, a non-AIMD TCP-friendly bi-
nomial algorithm, by its very design, ensures that window
reductions are not drastic. As a result, it ends up with more
than its fair share of the bottleneck; and a window reduc-
tion does not flush all of its packets from the queue. In fact,
the competing AIMD window oscillates as if it sees buffers
equal to the additive decrease term (the amount of buffer
freed by IIAD on a reduction) of the IIAD algorithm. The
result is that drop rates observed by the two flows competing
at a drop-tail bottleneck are not equal. This argument also
shows how buffer provisioning is intimately tied to the win-
dow adjustment algorithm of the end-systems for drop-tail

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35

Ja
in

’s
 F

ai
rn

es
s

In
de

x

Number (n) of connections

Mixture of TCP-compatible algorithms

Figure 17. Plot showing Jain’s Fairness Index as a func-
tion of the number of TCP-compatible connections sharing a
bottleneck. In each experiment, the total number of connec-
tions was divided equally into five categories corresponding
to k = 0; 0:25; 0:5; 0:75; 1. In these experiments, b = 50
Mbps, RTT = 50 ms. The (tiny) error-bars show 95% con-
fidence intervals.

Router-1 Router-2 Router-3

100Mb

100Mb

100Mb

100Mb

100Mb

100Mb100Mb100Mb

100Mb 100Mb

10Mb 10Mb
1ms 1ms

24ms

24ms

24ms

24ms 24ms

24ms 24ms

24ms

24ms

24ms

TCP/Reno

IIAD

HTTP Sink1HTTP Src1

HTTP Src2 HTTP Sink2CBR Src1

CBR Sink1

TCP Sink

IIAD Sink

Figure 18. Topology with multiple bottlenecks and back-
ground traffic.

gateways.
In contrast, RED gateways are designed to accommodate

bursts and maintain small average queue sizes by providing
early congestion indications. They seem ideally suited to
binomial algorithms because they do not tie buffer sizing
closely to the precise details of window adjustment of the
end-points. Instead they vary the drop rate as a function of
queue size making all flows see the same drop rate. This is
yet another among the many other compelling reasons for
the Internet infrastructure to move to a more active queue
management scheme like RED.

We do not view the TCP-unfairness of the binomial algo-
rithms across drop-tail gateways as a deployment problem:
first, the binomial algorithms obtain better throughput than
TCP AIMD with drop-tail gateways, which augurs well for
applications using them (and also provide an incentive for
Internet Service Providers to move to better queue manage-
ment schemes)! Second, any scalable scheme for detecting
flows using more than their share of bandwidth would likely

10

0

50

100

150

200

250

300

0 5 10 15 20 25 30

W
in

do
w

 (
in

 p
ac

ke
ts

)

time (in sec)

TCP/Reno
IIAD

Figure 19. Window variation vs. time for the topology with
multiple bottlenecks.

0

10

20

30

40

50

60

70

80

0 5 10 15 20

W
in

do
w

/Q
ue

ue
 S

iz
e

time(sec)

TCP
IIAD

Queue Size

Figure 20. Plot showing window/queue size variation for
TCP/Reno and SQRT algorithms sharing the bottleneck with
drop-tail gateways(b = 3 Mbps, RTT = 50 ms).

use an active queue management scheme and not a drop-tail
gateway, which would ensure that true fairness to TCP is
achieved. We emphasize that the adverse interactions of the
binomial algorithms with TCP are primarily a consequence
of the ill effects of drop-tail queue management.

An important consequence of the above findings and ar-
guments is that TCP-friendliness does not necessarily imply
TCP-compatibility since the theory assumes that drop rates
for competing flows are equal at a gateway. We therefore
conclude that justifying a congestion control algorithm as
safe for deployment on the Internet purely on the basis of the
TCP-friendly equation is dangerous. While our experience
indicates that this is reasonable with certain types of queue
management (such as RED), it is incorrect when congestion
occurs at a drop-tail gateway. We believe that deriving a set
of sufficient conditions for TCP-fair congestion control in
drop-tail networks requires further research.

0

5000

10000

15000

20000

15000 20000 25000 30000 35000 40000

C
on

ge
st

io
n

W
in

do
w

Kernel Time (in units of 10ms)

VAT using SQRT cong ctrl

Figure 21. Window variation for a vat session using SQRT
congestion control with a bottleneck configured using Dum-
mynet (b = 50 Kbps,RTT = 900 ms).

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

3.155e+06 3.16e+06 3.165e+06 3.17e+06 3.175e+06 3.18e+06 3.185e+06 3.19e+06

C
on

ge
st

io
n

W
in

do
w

Kernel Time (in units of 10ms)

VAT using SQRT cong ctrl

Figure 22. Window variation for a vat session using SQRT
congestion control across an Internet path.

5 Implementation

We have implemented the SQRT congestion control algo-
rithm in the Linux Kernel (version 2.2.9) to provide con-
gestion controlled UDP sockets. We experimented with the
Internet audio conferencing tool, vat in unicast mode. Fig-
ure 21 shows the congestion window variation for a transfer
as a function of 10ms time intervals for an audio session be-
tween two Linux machines. These machines were on the
same LAN but had a pipe of bandwidth 50Kbit/s and RTT
900ms between them, configured using Dummynet [8]. The
figure shows the effectiveness of SQRT congestion control
in alleviating the large TCP-style “factor-of-two” reductions.
The magnitude of oscillations are smaller than what AIMD
would observe.

Figure 22 shows the congestion window variation for a
vat transfer between two Linux machines, one at MIT and
the other at University of California, Berkeley. Again, the

11

magnitude of oscillations are much smaller than with AIMD.
The window keeps increasing because the bandwidth avail-
able between these two machines was much higher than the
64Kbps, rate at which vat samples audio data. This graph
also demonstrates the working of SQRT across the Internet,
since the occasional reductions are not drastic.

We note that our algorithms can be incorporated in the
Congestion Manager (CM) architecture to provide applica-
tions tunable congestion control [2]. The CM exports an API
that allows applications to learn about and adapt to the net-
work conditions; this API can easily be extended to allow
an application to pick the parameter (k) of a binomial algo-
rithm, with the CM using the k + l rule to ensure that the
choice is TCP-friendly. An audio or video application can
then, easily use one of the TCP-friendly binomial algorithms
over a UDP-based transport protocol. While it is unlikely
that elastic applications that run well over TCP today will
use a non-AIMD binomial algorithm, an implementor can
change the TCP sender with little implementation effort.

In fact, a protocol may switch between different TCP-
friendly binomial algorithms in real-time, adapting to chang-
ing network conditions. In particular, it can probe more ag-
gressively if it observes no congestion for a while, and probe
less aggressively otherwise.

6 Deployment of Binomial Controls in the In-
ternet

An issue of concern for wide scale deployment of IIAD algo-
rithms in the Internet may be that their relatively mild reduc-
tion in window on experiencing congestion may affect Inter-
net stability. However, we believe that the primary threat to
the Internet stability comes not from the flows using some
form of TCP-compatible congestion control but from flows
that do not use any congestion control at all. Moreover, pre-
vention of congestion collapse does not require that flows
reduce their sending rate by half in response to a single con-
gestion indication. The binomial algorithms, being window
based and TCP-friendly, cannot cause congestion collapse
simply by the fact that they send out data only in response
to receipt of successful acknowledgements (except during
timeouts) at the receiver. Moreover, in response to even a
single loss, these algorithms reduce their window and hence
alleviate congestion by stopping data transmission till the
network acknowledges (or delivers) sufficient data (equal to
cutdown) after that loss.

Another issue may be that � and � values of TCP’s
AIMD can be adjusted to provide a more stable congestion
control as against using binomial controls. As mentioned
earlier, adjusting � and � can only provide relative and not
absolute (or fixed) bounds on oscillations due to congestion
control. Moreover, binomial controls provide a framework
for studying window based congestion control for multime-
dia applications of which TCP AIMD is one possibility.

7 Related work

There has been significant work over the past fifteen years
in the area of network congestion management, especially
on end-system mechanisms.

Chiu and Jain analyze the performance of linear controls,
deriving the conditions for efficient convergence to fairness
under a synchronized-feedback assumption [6]. They allude
to non-linear controls and briefly discuss some of their prop-
erties, concluding that they seem more complex and inferior
to linear controls. To our knowledge, a thorough analysis
and evaluation of any family of nonlinear congestion control
algorithms has not been done until now. We also focus on
TCP-compatibility, recognizing the large deployed base of
TCP AIMD algorithms.

Much of the classical literature on end-system conges-
tion management was motivated primarily by reliable uni-
cast transport, and included both window- and rate-based
approaches. In addition to Jacobson’s TCP algorithms [15],
prominent examples and studies include Ramakrishnan and
Jain’s DECBit scheme that was linear with a multiplicative-
decrease factor (�) of 7=8, rate-based control in the Ver-
satile Message Transport Protocol (VMTP) [5], Clark et
al.’s NETBLT [7], Keshav’s packet-pair approach (which re-
quires flow isolation at congested routers) [17], and Faber et
al.’s Dynamic Time Windows [9].

Subsequent to the development and deployment of
TCP’s algorithms in the Internet, Wang and Crowcroft pro-
posed “Tri-S” (slow start and search) [37] to improve TCP’s
slow start. Brakmo and Peterson proposed TCP Vegas [4],
which attempted to improve TCP’s congestion avoidance
and loss recovery. More recently, a number of enhance-
ments have been proposed to TCP congestion control, in-
cluding the persistent fast recovery of Newreno [14], selec-
tive acknowledgments (SACK) [22], and forward acknowl-
edgments (FACK) [21]. RFC 2581 describes the recom-
mended algorithms for proper congestion control in TCP [1].
[13] has formulated congestion control as a global optimiza-
tion problem and has proposed a class of congestion control
policies based on rewards and costs.

While these TCP enhancements are interesting, signif-
icant recent trends in Internet applications and traffic have
led to a renewed interest in in end-system congestion con-
trol protocols. Several emerging applications including uni-
cast audio and video are best transported over an application-
level protocol running over UDP, rather than over TCP be-
cause they do not require a fully-reliable in-order deliv-
ery abstraction. Using TCP leads to a large delay varia-
tion caused by retransmissions, and perceptual quality shows
sudden degradations in the face of a TCP-style window re-
duction for these applications.

Much recent work has focused on congestion control for
adaptive applications. Rejaie et al.’s Rate Adaptation Pro-
tocol (RAP) uses AIMD, relying on frequent receiver ac-
knowledgments to adjust the sender’s rate [31]. They also
propose a quality adaptation algorithm for discretely-layered
streams at the receiver to handle the rate variations trig-
gered by AIMD [30]. In the context of multicast, McCanne

12

et al.’s receiver-driven layered multicast (RLM) incorpo-
rates a probing and rate reduction mechanism for layered
video [23]. Sisalem and Schulzrinne’s Loss-Delay-based
Adjustment (LDA) scheme uses an AIMD rate control at the
sender, using RTCP [32] for feedback [33]. Schemes like
RAP and LDA can use a binomial algorithm (e.g., IIAD or
SQRT) to avoid drastic rate reductions on encountering con-
gestion.

To combat the ill-effects of multiplicative decrease on
a single packet loss, various researchers have been look-
ing at the class of “equation-based control algorithms” [20,
27, 35]. These are schemes where the sender measures the
packet loss rate and round-trip time over some past time and
uses these estimates to determine a TCP-compatible trans-
mission rate based on an equation relating TCP throughput
to the loss rate [26]. The effectiveness of such schemes
depends critically on the method used to estimate loss
rate [29, 11]. It will be interesting to compare binomial al-
gorithms with equation-based control.

8 Concluding remarks

In this paper we presented and evaluated a new family of
nonlinear congestion management algorithms, called bino-
mial algorithms. They generalize the familiar class of linear
algorithms; during the increase phase, wt+r = wt + �=wk

t
and on experiencing a loss , wt+Æt = wt��wl

t. We showed
that a network with sources running the same binomial algo-
rithm converges to fairness under a synchronized-feedback
assumption if k + l > 0 and at least one of k or l is
positive, and that the throughput of a binomial algorithm
� / 1=p

1
k+l+1 , where p is the loss rate it encounters. As

a corollary, a binomial algorithm is TCP-friendly if and only
if k + l = 1 and l � 1 (the k + l rule).

The k+l rule represents a fundamental trade-off between
probing aggressiveness and congestion responsiveness, with
small values of l being less drastic in window reduction.
Hence, we believe that binomial algorithms with l < 1 are
well-suited to applications like audio and video that do not
react well to drastic multiplicative decrease. Our preliminary
experiments seem to justify this hypothesis, although more
validation and research is needed before widespread deploy-
ment can be recommended. For applications that simply
want to transmit as much data as quickly as they can without
worrying about the degree of rate variations while doing so,
the k + l rule shows that AIMD is a very good strategy. Of
all the TCP-friendly binomial algorithms, AIMD is the most
efficient in aggressively probing for bandwidth.

Our simulation results showed good performance and
interactions between binomial algorithms and TCP, espe-
cially using RED. We also found that TCP-friendliness
does not necessarily imply TCP-compatibility in a network
with drop-tail gateways—a binomial algorithm like IIAD or
SQRT obtains higher long-term throughput than TCP be-
cause of a higher average buffer occupancy. Active queue
management schemes like RED allow binomial algorithms
and TCP to interact well with each other, which may be

viewed as another among many important reasons to elimi-
nate drop-tail gateways from the Internet infrastructure.

We believe that the results presented in this paper lead to
a deeper understanding of the issues involved in the increase
and decrease phases of a congestion management algorithm
and in the notions of TCP-friendliness and TCP-fairness. We
hope that our findings will spur further research into conges-
tion control dynamics to obtain a fundamental understand-
ing of a future Internet with multiple coexisting congestion
control algorithms and protocols.

Acknowledgments

This work was supported by research grants from the NTT
Corporation, DARPA (Grant No. MDA972-99-1-0014), and
IBM Corporation. We thank David Andersen, John By-
ers, Dah Ming Chiu, David Clark, Sally Floyd, Allen Miu,
Srinivasan Seshan, Alex Snoeren, and Roshni Srinivasan for
helpful comments on earlier drafts of this paper.

References

[1] ALLMAN, M., AND PAXSON, V. TCP Congestion Control.
Internet Engineering Task Force, April 1999. RFC 2581.

[2] BALAKRISHNAN, H., RAHUL, H. S., AND SESHAN, S. An
Integrated Congestion Management Architecture for Internet
Hosts. In Proc. ACM SIGCOMM (Sep 1999).

[3] BRADEN, B., CLARK, D., CROWCROFT, J., DAVIE, B.,
DEERING, S., ESTRIN, D., FLOYD, S., JACOBSON, V.,
MINSHALL, G., PARTRIDGE, C., PETERSON, L., RA-
MAKRISHNAN, K., SHENKER, S., WROCLAWSKI, J., AND
ZHANG, L. Recommendations on Queue Management and
Congestion Avoidance in the Internet. Internet Engineering
Task Force, Apr 1998. RFC 2309.

[4] BRAKMO, L. S., O’MALLEY, S. W., AND PETERSON, L. L.
TCP Vegas: New Techniques for Congestion Detection and
Avoidance. In Proc. ACM SIGCOMM ’94 (Aug. 1994).

[5] CHERITON, D., AND WILLIAMSON, C. VMTP as the Trans-
port Layer for High-Performance Distributed Systems. IEEE
Commun. Mag. (June 1989), 37–44.

[6] CHIU, D.-M., AND JAIN, R. Analysis of the Increase and
Decrease Algorithms for Congestion Avoidance in Computer
Networks. Computer Networks and ISDN Systems 17 (1989),
1–14.

[7] CLARK, D., LAMBERT, M. L., AND ZHANG, L. NETBLT:
A High Throughput Transport Protocol. In Proc. ACM SIG-
COMM (Aug. 1988).

[8] Dummynet. http://www.iet.unipi.it/~luigi/ip_
dummynet, Sept. 1998.

[9] FABER, T., LANDWEBER, L., AND MUKHERJEE, A. Dy-
namic Time Windows: Packet Admission Control with Feed-
back. In Proc. ACM SIGCOMM (1992).

[10] FLOYD, S., AND FALL, K. Promoting the Use of End-to-
End Congestion Control in the Internet. IEEE/ACM Trans. on
Networking 7, 4 (Aug. 1999).

13

[11] FLOYD, S., HANDLEY, M., PADHYE, J., AND WIDMER,
J. Equation-Based Congestion Control for Unicast Applica-
tions. http://www.aciri.org/tfrc/, June 2000.

[12] FLOYD, S., AND JACOBSON, V. Random Early Detection
Gateways for Congestion Avoidance. IEEE/ACM Transac-
tions on Networking 1, 4 (Aug. 1993).

[13] GOLESTANI, S. J., AND S., B. A Class of End-to-End Con-
gestion Control Algorithms for the Interney. In Proc. ICNP
(1998).

[14] HOE, J. C. Improving the Start-up Behavior of a Conges-
tion Control Scheme for TCP. In Proc. ACM SIGCOMM ’96
(Aug. 1996).

[15] JACOBSON, V. Congestion Avoidance and Control. In Proc.
ACM SIGCOMM (Aug 1988).

[16] JAIN, R. The Art of Computer Systems Performance Analysis.
John Wiley and Sons, 1991.

[17] KESHAV, S. Packet-Pair Flow Control. IEEE/ACM Transac-
tions on Networking (Feb. 1995).

[18] LAKSHMAN, T. V., AND MADHOW, U. The Performance of
TCP/IP for Networks with High Bandwidth-Delay Products
and Random Loss. IEEE/ACM Trans. on Networking 5, 3
(1997).

[19] LAKSHMAN, T. V., MADHOW, U., AND SUTER, B.
Window-based Error Recovery and Flow Control with a Slow
Acknowledgement Channel: A study of TCP/IP Performance.
In Proc. Infocom 97 (April 1997).

[20] MAHDAVI, J., AND FLOYD, S. The TCP-Friendly Website.
http://www.psc.edu/networking/tcp friendly.html, 1998.

[21] MATHIS, M., AND MAHDAVI, J. Forward Acknowledge-
ment: Refining TCP Congestion Control. In Proc. ACM SIG-
COMM (Aug 1996).

[22] MATHIS, M., MAHDAVI, J., FLOYD, S., AND ROMANOW,
A. TCP Selective Acknowledgment Options. Internet Engi-
neering Task Force, 1996. RFC 2018.

[23] MCCANNE, S., JACOBSON, V., AND VETTERLI, M.
Receiver-driven Layered Multicast. In Proc ACM SIGCOMM
(Aug. 1996).

[24] ns-2 Network Simulator. http://www-mash.cs.berkeley.edu/-
ns/, 1998.

[25] OTT, T., KEMPERMAN, J., AND MATHIS, M. The Sta-
tionary Distribution of Ideal TCP Congestion Avoidance.
ftp://ftp.bellcore.com/pub/tjo/TCPwindow.ps, 1996.

[26] PADHYE, J., FIROIU, V., TOWSLEY, D., AND KUROSE, J.
Modeling TCP throughput: A Simple Model and its Empiri-
cal Validation. In Proc. ACM SIGCOMM (Sept. 1998).

[27] PADHYE, J., KUROSE, J., TOWSLEY, D., AND KOODLI, R.
A Model Based TCP-friendly Rate Control Protocol. In Proc.
NOSSDAV (July 1999).

[28] POSTEL, J. B. Transmission Control Protocol. Internet En-
gineering Task Force, September 1981. RFC 793.

[29] RAMESH, S., AND RHEE, I. Issues in Model-Based Flow
Control. Technical Report TR-99-15, Department of Com-
puter Science, North Carolina State University (1999).

[30] REJAIE, R., HANDLEY, M., AND ESTRIN, D. Quality Adap-
tation for Unicast audio and video. In Proc. ACM SIGCOMM
(September 1999).

[31] REJAIE, R., HANDLEY, M., AND ESTRIN, D. RAP: An
End-to-end Rate-based Congestion Control Mechanism for
Realtime Streams in the Internet. In Proc. IEEE INFOCOM
(March 1999).

[32] SCHULZRINNE, H., CASNER, S., FREDERICK, R., AND JA-
COBSON, V. RTP: A Transport Protocol for Real-Time Ap-
plications. Internet Engineering Task Force, Jan 1996. RFC
1889.

[33] SISALEM, D., AND SCHULZRINNE, H. The Loss-Delay Ad-
justment Algorithm: A TCP-friendly Adaptation Scheme. In
Proc. NOSSDAV (Jul 1998).

[34] STEVENS, W. R. TCP/IP Illustrated, Volume 1. Addison-
Wesley, Reading, MA, Nov 1994.

[35] TAN, W., AND ZAKHOR, A. Real-time Internet Video Us-
ing Error Resilient Scalable Compression and TCP-friendly
Transport Protocol. IEEE Trans. on Multimedia (May 1999).

[36] WANG, A., AND SCHWARTZ, M. Achieving bounded fair-
ness for multicast and TCP traffic in the Internet. In Proc.
ACM SIGCOMM (September 1998).

[37] WANG, Z., AND CROWCROFT, J. A New Congestion Con-
trol Scheme: Slow Start and Search (Tri-S). ACM Computer
Comm. Review 21, 1 (Jan. 1991), 32–43.

14

