
Programming language techniques for modular
router configurations

Eddie Kohler, Benjie Chen, M. Frans Kaashoek,
Robert Morris, and Massimiliano Poletto∗

Abstract

This paper applies programming language techniques to a high-level system
description, both to optimize the system and to prove useful properties about
it. The system in question is Click, a modular software router framework [13].
Click routers are built from components called elements. Elements are written
in C++, but the user creates a configuration using a simple, declarative data
flow language. This language is amenable to data flow analysis and other con-
ventional programming language techniques. Applied to a router configuration,
these techniques have high-level results—for example, optimizing the router or
verifying its high-level properties. This paper describes several programming lan-
guage techniques that have been useful in practice, including optimization tools
that remove virtual function calls from router definitions and remove redundant
parts of adjacent routers. We also present performance results for an extensively
optimized standards-compliant IP router. On conventional PC hardware, this
router can forward up to 456,000 64-byte packets per second.

1 Introduction

Click [13] is a software architecture for building routers from modular components.
Click components are called elements; they tend to be fine-grained, and perform
small, focused tasks like decrementing an IP packet’s time-to-live field. Complex
router behavior is built by composing elements together. This design makes Click
flexible—users can implement arbitrary routing decisions, dropping and scheduling
policies, and packet manipulations by rearranging elements. Element source code is
written in C++, but a simple, declarative data flow language specifies how a particular
router configuration is composed. This language definition is a high-level description
of the system’s behavior, which makes the system easy to understand and modify.
∗Parallel and Distributed Operating Systems Group, Laboratory for Computer Science, MIT, Cam-

bridge, Massachusetts. Email: click@pdos.lcs.mit.edu.
This research was supported by a National Science Foundation (NSF) Young Investigator Award

and the Defense Advanced Research Projects Agency (DARPA) and Rome Laboratory under agreement
number F30602-97-2-0288. In addition, Eddie Kohler was supported by a National Science Foundation
Graduate Research Fellowship.

1

Unfortunately, Click’s modularity has consequences for its performance. If a router
contains many modules, then packets passing through it must traverse many mod-
ule boundaries; the cost of this crossing is inexpensive in Click, but it is not free.
Furthermore, the division of router functionality into modules may cause redundant
computation.

In this paper, we attack the performance problems caused by Click’s modularity by
leveraging that modularity. In particular, we use programming language techniques,
such as data flow analyses, to analyze and optimize router configurations in the
Click language. When applied to router configurations, which are high-level system
descriptions, these techniques can optimize the entire system and prove properties
about it as a whole. For example, we can optimize configurations based on user-
specified patterns, create fast versions of particular elements, remove virtual function
calls from the entire system, and prove that packet data will be aligned correctly
throughout the router. We can also combine definitions from multiple routers on a
network into a single configuration file, and perform optimizations on each router
based on global properties of the network. These optimizations make Click’s IP
processing time 39% faster (or 51% faster, if you include a sample optimization
enabled by a multiple-router configuration). On a 700 MHz Pentium III, this Click
IP router can forward up to 456,000 64-byte packets per second, which appears to
be close to the maximum performance allowed by the hardware’s I/O bus.

Our main contribution is demonstrating that programming language techniques
applied at the level of software components can significantly increase the performance
of a networking system. Other contributions include a modular, flexible, and fast IP
router built on commodity PC hardware and extensive performance analysis of that
router configuration.

In the rest of this paper, we give an overview of Click (Section 2) and the Click
language (Section 3), describe our language-level optimizations (Section 4), present
performance results (Section 5), discuss related work (Section 6), and conclude (Sec-
tion 7).

2 Click

This section summarizes a recent article describing the Click system [13]. It may be
safely skipped by those already familiar with Click.

Click routers are built from components called elements. Elements are modules
that process packets; they control every aspect of router packet processing. Router
configurations are directed graphs with elements as the vertices. The edges, called
connections, represent possible paths that packets may travel. Inside a running router,
elements are represented as C++ objects and connections are pointers to elements.
A packet transfer from one element to the next is implemented with a single virtual
function call.

Each element belongs to an element class that determines the element’s behavior.
An element’s class specifies which code to execute when the element processes a

2

Tee(2)input port output ports

element class

configuration string

Figure 1: A sample element. Triangular ports are inputs and rectangular ports are outputs.

FromDevice(eth0) Counter Discard

Figure 2: A router configuration that drops all packets.

packet. Each element class corresponds to a subclass of the C++ class Element. A
do-nothing element class can be written in 9 lines of C++.

Each element also has input and output ports, which serve as the endpoints for
packet transfers. Every connection leads from an output port on one element to an
input port on another. Each element has an arbitrary number of each kind of port.
Different ports can have different semantics; for example, the second output port is
sometimes used for erroneous packets.

Finally, each element has an optional configuration string that provides configu-
ration arguments, such as maximum queue lengths or RED parameters. The configu-
ration string is generally used to initialize parts of an element’s private state. Figure 1
shows how we diagram an element, and Figure 2 shows a simple router configuration.

Elements tend to be fine-grained: each element performs a simple, well-specified
task. Complex functionality is implemented by composing elements together, as this
gives the user more flexibility when creating configurations. Figure 3 shows a basic,
standards-compliant two-interface IP router configuration. There are 16 elements on
its forwarding path. We adapted this IP router configuration for our benchmarks.

Click supports two packet transfer mechanisms, called push and pull. In push
processing, a packet is generated at a source and passed downstream to its destination.
In pull processing, the destination element picks one of its input ports and asks that
source element to return a packet. The source element returns a packet or a null
pointer (indicating that no packet is available). Here, the destination element is in
control—the dual of push processing. In a running router, each packet transfer is
implemented by a single virtual function call. There are two relevant virtual functions,
push and pull, corresponding to push and pull processing respectively. Figure 4
illustrates how this works. Note that queueing in Click is implemented with an
explicit element, called Queue.

Click runs as a dynamically loadable module inside a Linux 2.2 kernel. There is
also a user-level implementation.

3

PollDevice(eth0) PollDevice(eth1)

Classifier(...) Classifier(...)

ARPQuerier(1.0.0.1, ...)

ToDevice(eth0)

ARPQuerier(2.0.0.1, ...)

ToDevice(eth1)

ARPResponder
(1.0.0.1, ...)

ARPResponder
(2.0.0.1, ...)

IPGWOptions(1.0.0.1)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(1.0.0.1)

CheckPaint(1)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

IPGWOptions(2.0.0.1)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(2.0.0.1)

CheckPaint(2)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

Paint(1) Paint(2)

Strip(14)

CheckIPHeader(...)

GetIPAddress(16)

LookupIPRoute(...)

ARP
queries

ARP
responses IP

ARP
queries

ARP
responses IP

to Queue to Queueto ARPQuerier to ARPQuerier

from Classifier from Classifier

to Linux

Figure 3: A Click IP router with two network interfaces.

4

FromDevice X X ToDevice
push(p) push(p)

return
return

pull()
pull()

return p return p

receive
packet p

enqueue p
transmit
complete
interruptdequeue p

and return it

send p

Figure 4: Functions called as a packet moves through a simple router. The central element is a Queue.
During the push, control flow moves forward through the element graph starting at the receiving
interface; during the pull, control flow moves backward through the graph, starting at the transmitting
interface. The packet p always moves forward. The port colors indicate whether a connection is using
push or pull processing: black means push and white means pull.

3 Language

Click is programmed using a simple, declarative configuration language. It speci-
fies a data flow property—namely, how packets will flow between elements—and is
therefore a dataflow language, albeit a very simple one. This section describes the
language in some detail, particularly the properties that made the optimization tools
of Section 4 possible.

The core language has two constructs: declaring elements and declaring connec-
tions. The ‘n :: C(s)’ statement declares an element named n with element class
C and, optionally, configuration string s. The ‘a [p] -> [q] b’ statement creates a
connection between two named elements (specifically, between a’s output port p and
b’s input port q). There is some syntactic sugar to enhance readability; for example,
‘a -> b’ is equivalent to ‘a [0] -> [0] b’, and new elements can be declared inside
a connection. Figure 5 shows the language in use; it describes a portion of the IP
router in Figure 3.

Since the Click language is wholly declarative—it shows how elements should
be connected, rather than describing procedurally how individual packets should be
processed—a router configuration can be considered apart from its eventual exe-
cution environment. (In contrast, systems such as Berkeley ns [17] do not separate
configuration from execution.) This facilitates the construction of tools, such as our
optimizers, that process router configurations off line, as do these features:

• Any program in the configuration language corresponds to exactly one configu-
ration graph, and a functionally equivalent program can be recovered from any
configuration graph. Thus, tools can manipulate configuration graphs without
losing important information when the graphs are translated back into pro-
grams. This requirement affected the design of higher-level language features
like compound elements (Section 3.1).

• A configuration file can be unambiguously parsed without prior knowledge

5

strip :: Strip(14);

lookup_route :: LookupIPRoute(...);

from eth0 -> Paint(1)

-> strip

-> CheckIPHeader(...)

-> GetIPAddress(16)

-> lookup_route;

lookup_route[1] -> DropBroadcasts

-> cp0 :: CheckPaint(1)

-> gw0 :: IPGWOptions(1.0.0.1)

-> FixIPSrc(1.0.0.1)

-> dt0 :: DecIPTTL

-> fr0 :: IPFragmenter(1500)

-> to eth0;

Figure 5: A portion of a Click-language description of Figure 3.

of the element classes it uses. Thus, tools can meaningfully manipulate router
configurations without understanding their components.

• Configuration files can be archives that contain a Click-language program plus
arbitrary collections of data. Tools use archives to store extra information
about the configurations they produce. In particular, tools that generate new
C++ element classes store the resulting object files in an archive along with the
configuration program. The system will automatically link against those object
files when installing that configuration.

3.1 Compound elements

Users can extend Click’s collection of elements by writing new element classes in
C++ or by creating compound elements in the Click language. Compound elements
are configuration fragments that can be named and created like single elements.
They behave like inlined functions for configuration graphs, and provide an easy
way to abstract common code into a library. They are also useful for other system
components; for example, the pattern optimizer (Section 4.1) uses compound elements
to specify patterns and their replacements.

Compound elements are just configuration fragments enclosed in braces. Con-
nections between the compound and the rest of the router take place through two
special elements, input and output; see Figure 6. Using a compound element is ex-
actly equivalent to using its component elements, since the compound’s boundary is
compiled away by the language parser. This means that optimizations and analyses
need no special processing to handle compound elements—as a first step, they can
compile compounds away.

6

elementclass SFQ {

h :: HashDemux(...);

s :: RoundRobinSched;

input -> h; s -> output;

h[0] -> Queue -> [0]s;

h[1] -> Queue -> [1]s;

}

HashDemux(...)

RoundRobin...

Figure 6: A compound element implementing a simple stochastic fair queue. Its language definition is
on the left; a diagram of the compound is on the right.

3.2 Discussion

The configuration language specifies what elements should be created and how they
are to be connected together, but it does not specify the semantics of the element classes
themselves. In our system, different language processors have different ideas of the
semantics of each element class. For example, the router itself defines each element
class by its C++ implementation, but the tools described in the next section need
much less information—for example, several tools only need to know which ports
are push and which are pull. Rather than attempt to extract this information from the
C++ implementations—a difficult, if not impossible, task—we supply several parallel
definitions for each element class. For example, each element has a C++ definition
and a push/pull definition; some elements have additional definitions as required by
the tools. These additional definitions are textually embedded in the C++ definition.

In this approach, the user creates simple, high-level specifications for each element–
property pair. These specifications are focused and easy to write, and it facilitates
incremental specification—the behavior of an element is specified as tools are built.
However, this forces the user to write many specifications for each element, and as
new tools become available, old element classes may need to be updated with new
specification information.

In contrast, one could write each element once in a language that facilitated anal-
ysis, then extract all necessary information from that single definition. For example,
in the Ensemble system [14] for composing network protocol stacks, components
are written in Objective Caml. However, Objective Caml’s generality means that a
complex theorem prover is required to analyze a configuration.

4 Language optimizations

This section describes particular tools that manipulate router configuration programs.
Each tool reads a configuration, analyzes and/or manipulates that configuration,
reports errors, and writes out the (possibly modified) configuration. The output of

7

one tool is suitable as input for another, so tools can be composed in any user-specified
order.

We present a tool for transforming a configuration based on user-specified pat-
terns; two optimization tools that generate C++ source code; a tool that proves simple
properties about a router, namely packet data alignment; and a tool that combines
two or more router definitions into one “virtual router”, enabling global optimiza-
tions and analyses on a collection of routers. We conclude with some minor tools and
discussion.

We categorize each tool based on three properties:

1. Language-only or language plus source code? Some tools work entirely at the
configuration language level, while others additionally generate new C++ source
code.

2. Element semantics. Some tools work without understanding the semantics of
individual elements. Others need to know some element semantics, ranging
from simple (are the ports push or pull?) to more complex (how does this
element affect packet data alignment?).

3. Graph analyses and manipulations. Some tools require only simple graph anal-
yses and manipulations; others run different relaxation-based data flow algo-
rithms on graphs; and others perform expensive graph operations like subgraph
isomorphism calculations.

4.1 Pattern replacement

The pattern replacement tool, click-xform, is a generic search-and-replace tool for
configuration graphs. It accepts a router configuration and a collection of patterns and
replacements. It looks in the configuration for occurrences of each pattern, replacing
each match it finds with the corresponding replacement. When there are no more
occurrences of any pattern, it outputs the transformed configuration.

Click-xform patterns are quite general—in fact, they are as general as compound
elements, for patterns and replacements are both written as compound elements. A
pattern compound element matches a subset of a router configuration iff replacing
that subset with an occurrence of the compound would result in an identical config-
uration (modulo element names). This definition is quite flexible—for example, the
user can specify that the pattern must be isolated from the rest of the router, or that
the pattern is connected to the router in a constrained way. Searching a configuration
graph for an occurrence of a pattern is a variant of subgraph polymorphism, a well-
known NP-complete problem. Luckily, the patterns and router configurations seen
in practice are well-served by Ullmann’s algorithm for subgraph polymorphism [20],
and click-xform’s observed performance is good, taking about one minute on router
graphs with thousands of elements (and much less on normal-sized routers).

The pattern replacement tool has uses for optimization and for generic router
transformation. One simple optimization is replacing a slow element, or a collection

8

Paint(1)

CheckIPHeader(...)

Strip(14)

GetIPAddress(16)

LookupIPRoute(...)

IPGWOptions(1.0.0.1)

DropBroadcasts

CheckPaint(1)

FixIPSrc(1.0.0.1)

DecIPTTL

IPFragmenter(1500)

from eth0

to eth0

from other devices

to Linux to other devices

to ICMP error
generators

Figure 7: A portion of the IP router configuration (Figure 3), corresponding to the language fragment
in Figure 5.

IPInputCombo(1, ...)

LookupIPRoute(...)

IPOutputCombo(1, 1.0.0.1, 1500)

IPFragmenter(1500)

from eth0

from other devices

to Linux to other devices

to ICMP error
generators

to eth0

Figure 8: A router fragment equivalent to Figure 7 using faster “combo” elements.

9

Paint($p)

CheckIPHeader(...)

Strip(14)

GetIPAddress(16)

IPInputCombo($p, ...) CheckIPHeader(...)

Strip(14)

GetIPAddress(16)

Pattern Replacement

Figure 9: A pattern/replacement pair suitable for the click-xform pattern replacement tool. This is one
of three patterns that, together, can transform Figure 7 into Figure 8.

of slow elements, with a single more specialized and faster element. For example,
we have designed elements that combine the work of common IP router elements;
Figure 8 shows a router fragment equivalent to Figure 7, but using these combination
elements. This optimization can be done by hand, but that is tedious, error-prone, and
inflexible: the faster element is often more complex and less general than the slower
elements. Given an appropriate set of patterns—including the pattern/replacement
pair shown in Figure 9—click-xform can automatically transform the router fragment
in Figure 7 into Figure 8, gaining speed without sacrificing modularity.

As an example of a generic transformation enabled by click-xform, a simple pair
of patterns can add random early detection, or RED [9], to any router by inserting a
RED element before every Queue in the configuration.

The pattern replacement tool works entirely at the language level and without any
knowledge of element semantics. (Semantic knowledge is encoded in the patterns and
replacements, but these are written by a user.) It performs extensive, and expensive,
graph analysis and manipulation.

Pattern replacement has been implemented in several systems—for example,
Scout [18] has a rule-based global optimizer, and instruction selectors like BURG [10]
attack similar problems for tree structures. Click-xform’s pattern language is more
powerful than any of these, however.

4.2 Fast classifiers

The fast classifier tool, click-fastclassifier, optimizes configurations that contain Clas-
sifier elements. Classifier is a generic packet classification element; it has one input
port and many output ports, and sends each incoming packet to one of its outputs
based on analysis of the packet’s data. In particular, Classifier traverses a decision
graph whose intermediate nodes check packet data against fixed values, and whose

10

leaves represent particular output ports. The normal Classifier element builds this
decision tree when the router is initialized and represents it in a data structure. Click-
fastclassifier makes the configuration faster by compiling the decision tree into C++
code. Each different Classifier is compiled into a different C++ element class.

Click-fastclassifier also combines adjacent Classifier elements when possible, cre-
ating a single fast classifier that does the work of both. This reduces the number of
elements a packet must travel through, and is particularly useful in the presence of
compound elements, where a user may create adjacent Classifiers without realizing it
(since the Classifiers are encapsulated inside compounds).

The fast classifier tool both changes the configuration program and compiles new
element classes. It depends intimately on the semantics of Classifier, but requires little
graph analysis or manipulation.

Similar optimization strategies have been developed for BPF [2], DPF [8], and
other packet filters. The Click language provides a generic context for this filter
optimization work, showing that it exemplifies a class of optimizations—where a
faster element is swapped in for a slower one. For example, a tool that generated new
element classes for some other element could share much of click-fastclassifier’s code.

4.3 Devirtualization

The element devirtualizer tool, click-devirtualize, optimizes configurations by remov-
ing virtual function calls from their elements’ source code. Virtual function calls,
also called dynamic dispatches, are made through a table of function pointers; on a
Pentium III, a mis-predicted virtual function call takes dozens of cycles. (A correctly
predicted call takes about 7 cycles, similar to direct function calls.) Packet handoff
between elements is implemented in Click with virtual function calls, since element
source code is written before the element’s context is known. It would be possible to
use a direct function call if the element author knew the next element’s class, but Click
was designed to avoid that kind of fixed dependency. However, once the configuration
program is known, every virtual function call in the system could conceptually be
removed.

Click-devirtualize automatically does exactly this. The tool reads a configuration
program, then reads and partially parses the C++ source code for each element class
used in that configuration. Then it generates new C++ element classes—one per
element—where each virtual function call for packet handoff has been replaced with
the right direct function call. For example, consider an element whose first output
port is connected to the first input port of a Counter element. Then code like this, in
the normal element class,

Element *next = output(0).element();

// call goes through virtual function table

next->push(output(0).port(), packet_ptr);

is transformed by click-devirtualize into code like this:

Counter *next = (Counter *)output(0).element();

// call is resolved at compile time

11

next->Counter::push(0, packet_ptr);

The next input port number has been inlined: the reference to ‘output(0).port()’
has been changed to ‘0’. The actual transformation inlines other method calls as well,
such as those that return how many inputs or outputs an element has.

While click-devirtualize can generate a new element class for every element, it usu-
ally does not, because even specialized elements can often share code. For example, all
Discard elements can share code, since Discard throws away every packet it receives:
there are no virtual function calls to devirtualize. Because of this, two elements can
share code if they have the same class—say, Counter—and they are each connected to
a single Discard element. This is because the two Discard elements share an element
class, and therefore the push virtual function calls in the Counters both resolve to
the same static function (namely, Discard::push). Similarly, two elements with the
same class, each connected to one of the two Counters, can also share code, and so
forth. Two elements cannot share code if any of the following properties is true:

1. The elements have different classes.

2. The elements have different numbers of input or output ports.

3. There exists an input or output port where that port is push on one element,
but pull on the other.

4. There exists a pull input port, or a push output port, where the elements
connected to that port cannot share code. (For example, the port is connected
to a Counter on one element, but a Strip on the other.)

In our IP router configurations, such as Figure 3, analogous elements in different
interface paths can always share code.

Virtual function calls do have some advantages. For example, infrequently exe-
cuted paths may not be important enough to devirtualize, particularly if there are
several such paths whose elements cannot share code; in this case, the i-cache cost
of expanded source code may outweigh the performance savings of removing virtual
functions. To address this, click-devirtualize can be told that certain elements should
not be devirtualized.

Click-devirtualize can inline function calls as well as devirtualizing them. This can
improve performance significantly, but it currently requires some hand intervention.

The devirtualization tool both changes the configuration program and compiles
new element classes. It depends only on the push/pull properties of each element,
not on more complex semantic properties; although it requires that every element’s
source code be available, it does not analyze or understand this source code in depth. It
requires configuration graph analysis, both to discover the push/pull properties of the
graph and to determine whether elements can share code. Both analyses are relatively
simple data flow algorithms. It does not require substantial graph manipulation.

Devirtualization is a well-known technique in object-oriented programming lan-
guages such as Java. Mosberger et al. [16] demonstrate that path inlining, essentially

12

devirtualization with inlining, is useful for decreasing protocol latency in a modu-
lar networking system (the x-kernel [11]), but they implement it by hand. To our
knowledge, neither the x-kernel nor Scout [18] can implement devirtualization auto-
matically.1

4.4 Packet data alignment

The packet data alignment tool, click-align, ensures that packet data is aligned cor-
rectly within a router. The Click packet abstraction follows Linux’s example; it is
basically a flat array of bytes. However, many elements require that the packet data
is correctly aligned on a word boundary. For example, the IP header should be
word-aligned or elements such as CheckIPHeader will fail. Other elements, such as
Classifier, can adapt to any single alignment, but require that every packet has the
same alignment. The click-align tool solves these problems by ensuring elements have
the alignments they require, and telling elements what packet alignment they can
expect.

Packet data alignment is a global property. It depends both on the initial alignment
and on any modifications that happened to the packet on its path through the router.
For example, the Strip element strips a specified number of bytes from the packet’s
header by bumping a pointer; a packet’s alignment after passing through Strip(1) will
be different than its alignment before. The alignment problem could be solved by
inserting Align elements anywhere a particular alignment is requested, but this would
be quite expensive—Align fixes alignment problems by making packet copies.

A better solution is to add Align elements only where they are needed. Click-align
calculates the packet data alignment at every point in a configuration by performing
a simple data flow analysis, resembling availability analysis [1], that takes alignment-
modifying elements into account. It then inserts Align elements at every point where
the existing alignment is incorrect and reruns the analysis. Finally, it removes re-
dundant Align elements and adds an AlignmentInfo element, which informs every
other element of the alignment that element can expect. Our IP router configura-
tion requires no Align elements, but the tool is necessary anyway, as it provides the
Classifier element with alignment information.

On the Intel x86 architecture, the click-align tool is optional—unaligned accesses
are legal, and are not any slower than aligned accesses. (An unaligned access can
cause two d-cache misses if it straddles two cache lines, but this is not a problem in
practice, as the packet data is always in the cache.) On other architectures, however,
configurations that have not been checked with click-align cause Click to crash.

The alignment tool works entirely at the language level. It does require knowledge
of element semantics—specifically, the alignment-related semantics of each element.
It relies on relatively simple data flow analysis and graph manipulations.

1Scout paths are specialized automatically, but this optimization largely consists of removing un-
needed queues. Click avoids unneeded queues a priori.

13

4.5 Multiple routers

The click-combine tool can combine several router configurations into one larger
configuration that gives a detailed picture of the overall network. For example, if
the output interface of one router is connected to the input interface of another by
a point-to-point link, then the combined configuration will have explicit connections
between the relevant interfaces. This unified Click graph can be analyzed and manip-
ulated using language techniques like the ones described above, ensuring properties
of the network—for instance, that the frame formats at either end of each link are
compatible—and optimizing away redundant computation performed by more than
one router. The click-uncombine tool can then separate the combined configuration
into its component router parts. The rest of this section describes three possible
multiple-router optimizations: removing redundant IP fragmentation checks, remov-
ing redundant IP header checks, and ARP query optimization.

The IPFragmenter element in Figure 3 fragments the packet about to be trans-
mitted into packets no larger than the link’s MTU. However, if every path in the
unified Click graph—and hence every network link—upstream of that element con-
tains an IPFragmenter with a same or smaller MTU, then the packet already has the
appropriate size, and no fragmentation is necessary. A simple availability analysis
over the combined flow graph can determine this condition and remove redundant
fragmenters.

Similarly, CheckIPHeader is not always necessary. This element only forwards a
packet if the packet’s length is reasonable, the checksum and certain other IP fields
are valid, and the IP source address is a legal unicast address. Assuming that bit
errors within the network are rare, and that the remaining ones can be caught at the
endpoints, CheckIPHeader only needs to run once, at the entry to the network. Again,
we can perform an availability analysis over the unified Click graph, and eliminate
any instance of CheckIPHeader that is preceded on all paths by another instance of
that element. (In this case, we must also ensure at the upstream instances are not
invalidated by subsequent elements that may damage the IP header. One example
of such an element is RandomBitErrors, which randomly flips bits on the packets it
forwards.)

Finally, if two routers are connected by a point-to-point Ethernet link, there is no
need to have a full ARP mechanism in place on that link. To perform this optimization,
we may search the graph downstream of an ARPQuerier element: if ARP packets
can reach at most one ARPResponder, and packets at that ARPResponder must
have passed through that ARPQuerier, then both elements can be removed, and the
ARPQuerier can be replaced by an EtherEncap element that prepends the appropriate
Ethernet header. Furthermore, since the downstream interface will no longer receive
ARP queries or responses, the associated Classifier can also be removed.

These optimizations are inherently dangerous. They produce correct results only
if the user correctly and completely represents every router attached to a particular
link as a Click configuration. Furthermore, the user must re-run the optimizations
every time the devices on a link are changed. These requirements are only realistic

14

between routers controlled by the same administrative entity, or where the routers
could exchange information about their configurations automatically. A safer use
for the click-combine and click-uncombine would be to check for properties like
loop freedom. However, to demonstrate what optimizations are possible, we report
performance results for a simple version of the ARP optimization in Section 5. (We
have not yet fully implemented the standalone ARP optimization; instead, we used a
set of patterns and the click-xform pattern replacer tool.)

Click-combine, click-uncombine, and the hypothetical multiple-router optimiza-
tions all work entirely at the language level. The click-combine and click-uncombine
tools do not need to understand element semantics, but the optimizations do—to
understand that RandomBitErrors can destroy a valid IP header, for example. Click-
combine and click-uncombine perform extensive, but simple, graph manipulations
and analyses. The analyses required for the optimization tools are more complex.

Multiple-router optimizations resemble some kinds of programming language
optimizations, such as interprocedural optimizations.

4.6 Discussion

Besides the tools described above, we have also begun work on a suite of checking
tools. These tools check configurations for correctness before they are installed—
for example, checking the use of push and pull ports, checking that IP processing
elements are preceded by an element that verifies the IP header’s correctness, and so
on. They work entirely at the language level, and rely on detailed element semantics
and complex data flow analyses.

The router itself is a tool that manipulates router configurations, and, like the
tools, it uses some programming language techniques. For example, it applies simple
data flow algorithms to the configuration graph to determine push and pull process-
ing, and to implement flow-based router context [13] (a way for one element to find
another, distant element).

5 Performance results

This section presents performance measurements for unoptimized and optimized
Click routers.

5.1 Experimental Platform

Our testing configuration has a total of 9 Intel PCs running Linux 2.2.14: four source
hosts, the router being tested, and four destination hosts.

Our router hardware is a 700 MHz Intel Pentium III CPU, an Intel L440GX+
motherboard, and eight DEC 21140 Tulip [6] 100 Mbit PCI Ethernet controllers (on
multi-port cards). The L440GX+ motherboard has two 32-bit 33 MHz PCI buses,
and the Ethernet controllers were evenly divided between them. The Pentium III has
a 16 KB L1 instruction cache, a 16 KB L1 data cache, and a 256 KB L2 unified cache.

15

The Click router uses the IP router configuration in Figure 3, modified to have a
total of eight input and output interfaces rather than two. Unless otherwise specified,
performance numbers given in this section and the next section refer to experiments
using this router configuration.

The source and destination hosts are 200 MHz Pentium Pro CPUs, each with a
DEC 21140 Ethernet controller. The source-to-router and router-to-destination links
are point-to-point full-duplex 100 Mbit Ethernet. The source hosts generate UDP
packets using a Click configuration. They produce packets at specified rates, and can
generate up to 147,900 64-byte packets per second. The destination hosts count and
discard the forwarded UDP packets using another Click configuration. The 64 bytes
include a 14-byte Ethernet header, a 20-byte IP header, an 8-byte UDP header, 18 null
bytes, and a 4-byte Ethernet CRC. When the 64-bit preamble and 96-bit inter-frame
gap are added, a 100 Mbit Ethernet link can carry up to 148,800 such packets per
second.

The base Click system uses augmented device drivers that support polling as well
as interrupts. (Conventional Linux device drivers only support interrupts.) Interrupt
overhead and device handling dominate the performance of a non-polling Click sys-
tem, consuming over 80% of the time required to forward a packet and leading to
receive livelock [15]. The polling system avoids much of this overhead by entirely
eliminating interrupts and programmed I/O interaction with device hardware. (In the
conventional system, some PIOs were only necessary to manage the device’s interrupt
generation logic. To remove the last PIO, we configured the Tulip to check the trans-
mit DMA queue periodically for new packets. As a result, all communication between
Click and the device hardware takes place indirectly through the shared DMA queues
in main memory, in the style of the Orion [7] network adaptor.)

Polling Click runs as a single kernel thread executing a task queue. Most of the
tasks on this queuecorrespond to the router configuration’s PollDevice and ToDevice
elements. A PollDevice task examines its device’s receive DMA queue for newly
arrived packets and pushes them through the configuration, while a ToDevice task
examines its device’s transmit DMA queue for empty slots which it tries to fill by
pulling packets from its input.

5.2 Effects of language optimizations

Table 1 breaks down the costs of forwarding a packet on an unoptimized Click router.
Costs are measured in nanoseconds by accumulating Pentium III cycle counters [12]
before and after each block of code, and dividing the totals over a 10-second run by
the total number of packets forwarded. Polling packet is the time PollDevice spends
taking a packet from Tulip’s receive DMA ring. Refill receive DMA ring is the time
PollDevice spends replacing the DMA descriptor of the packet it just received with a
new descriptor, so that the Tulip may receive a new packet. The Click IP forwarding
path (see Figure 3) is broken down into a push path and a pull path. An input packet
is pushed through the forwarding path by the PollDevice element until it reaches
the Queue element before the appropriate transmitter. When the ToDevice element is

16

Task Time(ns/packet)

Polling packet 528
Refill receive DMA ring 90
Push through Click forwarding path 1565
Pull from Click queue 103
Enqueue packet for transmit 161
Clean transmit DMA ring 351

Total 2798

Table 1: Microbenchmarks of tasks involved in the IP forwarding path of an unoptimized Click router.

ready to send, it pulls from Queue. Enqueue packet for transmit is the time ToDevice
spends enqueuing a packet onto the Tulip’s transmit DMA ring. Clean transmit DMA
ring is the time ToDevice spends removing DMA descriptors of transmitted packets.
The total cost of 2798 ns measured with the performance counters implies a maximum
forwarding rate of about 357,000 packets per second, consistent with the observed
maximum loss free forwarding rate (MLFFR) of 360,000 packets per second.

The language optimizations described in this paper reduce the cost of the push
through the Click forwarding path, shown in the third row of Table 1. Figure 10
illustrates the effects of these language optimizations. The leftmost column represents
the cost of pushing a packet through the Click forwarding path when no optimizations
are performed. Applying all router-local optimizations—fast classifier, devirtualizer,
and pattern replacement—to a router graph reduces the push cost from 1562 ns to
948 ns. Applying multiple-router optimization alone reduces the push cost from 1562
ns to 1276 ns. Applying both multiple-router and router-local optimizations reduces
the cost from 1562 ns to 764 ns.

Of the three router-local optimizations, pattern replacement is the most effective.
It reduces the cost of the push path by 33%. Although the devirtualizer provides a
similar performance improvement, its optimization opportunities overlap with those
of pattern replacement. As a result, applying both of these optimizations is not much
more useful than applying either one alone.

Although the fast classifier optimization reduces the cost of the push path only
slightly (to be precise, by 36 cycles), it improves the performance of the Classifier
element by an average of 22%. Before applying the optimization, the average time
spent in the Classifier element is 121 cycles per packet. After applying the fast classifier
optimization, this number decreases to 94 cycles per packet.

Optimization opportunities that result from analysis of multiple routers are inde-
pendent from those of pattern replacement and devirtualization. In our example, fast
classifier no longer applies because the Classifier element is optimized away.

Forwarding a packet through Click incurs just four data cache misses (measured
using Pentium III performance counters): one to load the receive DMA descriptor, two
to read the packet’s Ethernet and IP headers, and one to remove the packet from the
transmit DMA queue after it has been sent. Click runs without incurring any other

17

Base FC DV PR All MR MR+All
Optimization

0

500

1000

1500

N
an

os
ec

on
ds

 f
or

 p
us

h
th

ro
ug

h
fo

rw
ar

di
ng

 p
at

h

Figure 10: Effects of language optimizations on Click. Base denotes the time required to push a packet
through the Click forwarding path when no optimizations are applied. The following three columns
indicate the time when only the indicated optimization is performed: FC is “fast classifier”, DV is “de-
virtualizer”, and PR is “pattern replacement”. All denotes all three optimizations applied together. MR
denotes multiple-router optimization. MR+All denotes optimization across multiple routers, combined
with all the other local optimizations.

0
50

100
150
200
250
300
350
400
450
500

0 100 200 300 400 500 600

O
ut

pu
t

ra
te

 (
K

pa
ck

et
s/

s)

Input rate (Kpackets/s)

Linux
Base

All
MR+All

Figure 11: Forwarding rate as a function of input rate for 64-byte packets. An ideal router that forwarded
every packet would appear as a straight line y = x. The Linux plot shows the performance of a standard
Linux IP router. The Base plot shows an unoptimized polling Click. The All plot shows the effect of all
three language optimizations: pattern replacement, fast classifier, and devirtualizer. The MR+All plot
shows the effects of these optimizations in addition to multiple-router optimization.

18

data or instruction cache misses. With all three router-local optimizations turned
on, just 988 instructions are retired during the forwarding of a packet. This implies
that significantly more complex Click configurations could be supported without
exhausting the Pentium III’s 16K L1 instruction cache.

5.3 Forwarding rates

An unoptimized polling Click router has an MLFFR of 360,000 packets per second.
It does not suffer from receive livelock under high input load. (Compare an ordinary,
interrupt-driven Linux IP router, which has a MLFFR of 84,000 packets per sec-
ond and exhibits receive livelock.) After applying language optimizations—pattern
replacement, devirtualization, and fast classifier optimizations—Click has an MLFFR
of 456,000 packets per second, a 6 to 1 improvement over the original version of the
Click router [13].

5.4 PCI limitations

As shown in Figure 10, pushing a packet through the Click forwarding path when
all optimizations are turned on (MR+All) requires fewer cycles than when multiple-
router optimizations are not used (All). As a result, the per-packet forwarding cost—
including the other tasks listed in Table 1—is 2.0 µs in the MR+All case, and 2.19 µs
in the All case. Despite this fact, the MLFFR in the MR+All case is no higher than
that in the All case. This suggests that packet processing in Click is not a bottleneck,
and that the language optimizations have shifted the bottleneck to other components
of the system.

The 2.19 µs per packet forwarding cost for the All case implies a theoretical
MLFFR of 456,000 packets per second if Click were a bottleneck. An observed
MLFFR of 456,000 packets per second, therefore, indicates that Click is indeed a
bottleneck. However, as the input rate increases beyond 456,000 packets per second,
the forwarding rate of the router first flattens, then drops, then flattens again. At an
input rate of 500,000 packets per second, where the forwarding rate in the All case
begins to drop, all eight Tulip cards indicate that packets are being dropped because
the DMA engine cannot transfer data to main memory quickly enough, a sign that
both PCI buses are congested.

In the MR+All case, the Tulips begin to report these errors immediately after
they reach the observed MLFFR of 456,000 packets per second. This is reflected in
Figure 11 by the fact that the MR+All curve drops immediately after reaching the
MLFFR, and suggests that 456,000 64-byte packets per second is very close to the
limit achievable with our dual PCI buses.

6 Related work

In this section, we compare our work with other research into software routers on
commodity hardware, focusing on performance research and flexible routers.

19

Scout [18] is a new operating system designed for high performance network-
ing. The basic abstraction of Scout is the path, which are somewhat similar to Click
elements, although there are substantial differences. Like our Click language opti-
mizations, Scout features several transformations on paths to improve performance.
Optimizations implemented by hand for a Scout TCP forwarder [19] address similar
problems to those we attacked for our IP router—for instance, the number of compo-
nents on the forwarding path. The Scout IP router has reported performance roughly
comparable to unmodified Linux [19].

The Router Plugins system [5] allows configurable packet processing by placing
“gates” at fixed points in the NetBSD IP forwarding code; packets passing the gates
are passed to “plugin” modules selected by a flow classifier. The plugins system is
reported to forward about 34,100 packets per second on a 233 MHz Pentium II; the
unmodified NetBSD code forwards 36,800.

ALTQ [3] provides configurable traffic management in FreeBSD. Unlike Click,
ALTQ does not provide configurability beyond specification of one queuing policy
per output interface.

Mogul and Ramakrishnan [15] describe the problem of receive livelock and ana-
lyze polling as a solution.

Click interacts with the Tulip [6] hardware using techniques similar to those used
by Osiris [7]. Both eliminate programmed I/O interactions between device hardware
and driver, so that the two communicate in a de-coupled fashion using DMA descrip-
tor rings. As a router, Click uses network interfaces somewhat differently than most
hosts. Click loads only packet headers into the CPU and caches; packet payload can
remain in RAM only. Click also has more relaxed buffering requirements than hosts,
since it doesn’t need to move data into user space. These considerations make pure
DMA more attractive for Click than the CPU-directed copying used by host adaptors
like the Afterburner [4].

7 Conclusion

We have presented a collection of language-based tools for analyzing and optimiz-
ing Click router configurations. These tools apply common programming-language
techniques to Click’s simple and declarative configuration language, obtaining opti-
mizations of the system as a whole. The uniform framework provided by the language
makes it easy to design novel optimizations. For example, tools that combine mul-
tiple router configurations into a single configuration let us optimize routers using
information about the entire network. Together with device driver and polling im-
provements, the result is a flexible IP router that can route 456,000 64-byte packets
per second on a 700 MHz Pentium III.

20

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, 1986.

[2] Andrew Begel, Steven McCanne, and Susan L. Graham. BPF+: Exploiting global
data-flow optimization in a generalized packet filter architecture. In Proc. ACM
SIGCOMM Conference (SIGCOMM ’99), pages 123–134, August 1999.

[3] Kenjiro Cho. A framework for alternate queueing: towards traffic manage-
ment by PC-UNIX based routers. In Proc. USENIX 1998 Annual Technical
Conference, pages 247–258, June 1998.

[4] C. Dalton, G. Watson, D. Banks, C. Calamvokis, A. Edwards, and J. Lumley.
Afterburner. IEEE Network Magazine, pages 36–43, July 1993.

[5] Dan Decasper, Zubin Dittia, Guru Parulkar, and Bernhard Plattner. Router
plugins: A software architecture for next generation routers. In Proc. ACM
SIGCOMM Conference (SIGCOMM ’98), pages 229–240, October 1998.

[6] Digital Equipment Corporation. DIGITAL Semiconductor 21140A PCI Fast
Ethernet LAN Controller Hardware Reference Manual, March 1998. http://
developer.intel.com/design/network/manuals.

[7] P. Druschel, L. Peterson, and B. Davie. Experiences with a high-speed net-
work adaptor: A software perspective. In Proc. ACM SIGCOMM Conference
(SIGCOMM ’94), pages 2–13, August 1994.

[8] Dawson Engler and M. Frans Kaashoek. DPF: Fast, flexible message demulti-
plexing using dynamic code generation. In Proc. ACM SIGCOMM Conference
(SIGCOMM ’96), pages 53–59, August 1996.

[9] Sally Floyd and Van Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Trans. Networking, 1(4):397–413, August 1993.

[10] C. W. Fraser, R. R. Henry, and T. A. Proebsting. BURG—fast optimal instruction
selection and tree parsing. SIGPLAN Notices, 27(4):68–76, April 1992.

[11] N. C. Hutchinson and L. L. Peterson. The x-kernel: an architecture for imple-
menting network protocols. IEEE Trans. Software Engineering, 17(1):64–76,
January 1991.

[12] Intel Corporation. Pentium Pro Family Developer’s Manual, Volume 3, 1996.
http://developer.intel.com/design/pro/manuals.

[13] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans
Kaashoek. The Click modular router. ACM Trans. Computer Systems, 18(4),
November 2000.

21

[14] Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason Hickey, Mark
Hayden, Kenneth Birman, and Robert Constable. Building reliable, high-
performance communication systems from components. In Proc. of the 17th
ACM Symposium on Operating Systems Principles (SOSP), pages 80–92, De-
cember 1999.

[15] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in
an interrupt-driven kernel. ACM Trans. Computer Systems, 15(3):217–252,
August 1997.

[16] David Mosberger, Larry L. Peterson, Patrick G. Bridges, and Sean O’Malley.
Analysis of techniques to improve protocol processing latency. In Proc. ACM
SIGCOMM Conference (SIGCOMM ’96), pages 73–84, August 1996.

[17] UCB/LBNL/VINT network simulator NS homepage. Available from
http://www-mash.cs.berkeley.edu/ns/.

[18] Larry L. Peterson, Scott C. Karlin, and Kai Li. OS support for general-purpose
routers. In Proc. 7th Workshop on Hot Topics in Operating Systems (HotOS-
VII), pages 38–43. IEEE Computer Society Technical Committee on Operating
Systems, March 1999.

[19] Oliver Spatscheck, Jorgen S. Hansen, John H. Hartman, and Larry L. Peterson.
Optimizing TCP forwarder performance. IEEE/ACM Trans. Networking, April
2000.

[20] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM,
23(1):31–42, January 1976.

22

