
Towards An Extensible Virtual Machine

Chandrasekhar Boyapati
MIT Laboratory for Computer Science, Cambridge, MA 02139

chandra@lcs.mit.edu

Area Exam Report: January 2002

Abstract
The Java Virtual Machine Language (JVML) is rapidly emerg-
ing as the de-facto standard for representing portable code
and Java Virtual Machines (JVMs) are increasingly being
used as standard platforms for running applications. But
how suitable are the JVMs and the associated JVML for
this purpose? This paper argues that JVML has a serious
drawback in that it is not extensible enough. This lack of ex-
tensibility hinders the process of deploying new innovations
in applications that run on the JVM platform.

This paper also describes how a standard for portable code
can be designed to be significantly more extensible than
JVML. The paper explores the issues involved in design-
ing such an extensible virtual machine (EVM), and reviews
some recent research on formal techniques like type systems,
logic frameworks, and analysis algorithms to show how an
EVM can safely execute untrusted code.

1 Introduction
Standardized protocols and languages are essential in any
heterogeneous networked environment. For example, TCP/IP
has long been the standard way of exchanging bytes and has
been fundamental to the growth of the Internet. More re-
cently, XML is increasingly being accepted as the standard
way shipping data across the web. Similarly, the Java byte-
codes, or the Java Virtual Machine Language (JVML) [30]
is becoming the de-facto standard for shipping computation
and Java Virtual Machines (JVMs) are increasingly being
used as a standard platform for running applications—so
much so that they are beginning to resemble operating sys-
tems in the scope of their functionality.

The idea of standardized machine independent program rep-
resentations is quite old. The first intermediate language
UNCOL (UNiversal Computer Oriented Language) [46] was
proposed in 1961 for use in compilers to reduce the develop-
ment effort of compiling many different languages to many
different architectures.

There are many reasons why portable code is useful in net-
worked environments. In terms of efficiency, when repeated
interactions with a remote site are needed, it can be more
effective to send the computation to the remote site and
to interact locally. In terms of extensibility, mobile code
supports a far more flexible programming model compared
to the classic client-server paradigm. And if heterogeneous
sites have to exchange code, then the sites have to have a
standard format for representing code.

The Java Virtual Machine Language (JVML) is a portable
intermediate code representation designed at Sun Microsys-
tems in conjunction with the Java [20] programming lan-
guage. JVML runs on top of an abstract computing machine
known as the Java Virtual Machine (JVM) [30]. JVMs have
been deployed on a wide range of architectures and operating
systems and are available on most modern machines.

JVML has been carefully designed with portability in mind.
Unlike C and C++, there are no implementation dependent
aspects of the specification. For example, uninitialized fields
always set to their default values. The sizes of the primitive
data types are specified, as is the behavior of arithmetic on
them. An int always means a signed two’s complement 32 bit
integer, and a float always means a 32-bit IEEE 754 floating
point number. The order of evaluation of sub-expressions
in a complex expression is well-defined. The JVM platform
specification also includes a set of standard libraries that pro-
vide, among other things, general purpose data structures,
support for graphical user interface, and access to network
communication. Programs written using these libraries are
supposed to run unchanged on any standard JVM.

In addition to portability, another significant feature of the
JVM platform is its security. JVML is a type safe language.
Type safety forms the basis behind the security provided
by a JVM. A JVM statically verifies the absence of cer-
tain errors in code originating from untrusted sources before
executing the code. A JVM also uses a technique known
as stack inspection [50] to provide fine-grained access con-
trol. Code from multiple principals having different access
privileges can co-exist in the same address space and call
one other. Thus, unlike conventional operating systems like
Unix [33] which rely on processes executing under the con-
trol of a privileged kernel, a JVM provides security without
any hardware support and with little runtime overhead.

But one significant drawback of JVMs is that they are not
extensible enough. JVML is a high-level language and there-
fore it is limited in its flexibility. JVML was designed to
closely resemble its source programming language Java. But
the goals that guide the design of a source level language like
Java are not necessarily the same as the goals of a common
intermediate language. For example, making a source level
language object-oriented may be a good design choice be-
cause of software engineering reasons, but making a common
intermediate language object-oriented is not necessarily the
right design choice.

1



Over the last few years, researchers have proposed several ex-
tensions to the JVM platform that enhance the JVM func-
tionality in various ways. But because JVML is not suffi-
ciently flexible, many of these extensions require JVM mod-
ifications. Unfortunately, the only way any of these exten-
sions can be deployed in the real world is if Sun Microsystems
decides to include it as part of the JVM standard.

Ideally, it should be just as easy for a user to download and
install any of these extensions as it is to download and run
application code. This can be possible if the virtual machines
exposed a more extensible interface. Like other researchers
have argued for having extensible operating systems [14, 4], I
believe that it is necessary to have virtual machines that are
more extensible. That way, the virtual machine architecture
will impose less barriers on new innovations and experimen-
tations. The primary goal of this paper is to build the case
for extensible virtual machines.

This paper also describes how a standard for portable code
can be designed to be significantly more extensible than
JVML. The paper explores the issues involved in design-
ing such an extensible virtual machine (EVM), and reviews
some recent research on formal techniques like type systems,
logic frameworks, and analysis algorithms to show how an
EVM can safely execute untrusted code.

The rest of this paper is organized as follows. Section 2 lists
several research proposals that require JVM modifications,
motivating the need for having extensible virtual machines.
Section 3 describes how an EVM can be designed starting
from first principles. Section 4 examines other prominent
intermediate languages proposed in literature. Finally, Sec-
tion 5 presents our conclusions.

2 Motivating Examples
This section builds the case for extensible virtual machines.
It presents several research proposals that enhance the JVM
platform in various ways. In each case, the best way to
implement the extension requires JVM modifications. Other
JVM compatible implementations either compromise on the
semantics of the system or involve significant performance
penalties or both.

2.1 Parameterized Types for Java
Parametric polymorphism [37, 1, 8, 10, 49] is recognized as
a key language mechanism for augmenting the expressive-
ness and safety of a programming language. It provides the
ability to abstract a piece of code from one or more types,
making the code reusable in many different contexts. Many
JVM compatible approaches have been proposed to add pa-
rameterization to Java. These approaches can be broadly
classified as follows.

1. Type erasure [8, 10]: It is the most common technique
and is based on the idea of deleting the type parameters (so
Stack〈T〉 erases to Stack). Casts are inserted to recover the
erased type information wherever it is needed in the trans-
formed program text. GJ [8], the candidate solution for fu-
ture releases of Java, relies on this technique. The primary
disadvantage of type erasure is that it limits the expressive-

ness of the language. Since objects of parametric types do
not carry all the type information at runtime, type erasure
cannot support some type dependent primitive operations
such as new T[...].

2. Code duplication [1]: Polymorphism is supported by cre-
ating specialized classes/methods, each supporting a differ-
ent instantiation of a parametric class/method. This tech-
nique supports a more expressive form of parameterized classes
than type erasure, but it often leads to an unacceptable foot-
print in memory and disk space.

3. Type passing [37, 49]: In this technique, information on
type parameters is explicitly passed to code requiring them.
This technique involves significant space and time overhead
at runtime.

The lesson in each case appears that if the virtual machine
does not support polymorphism, the end result will suffer.
While there are known techniques for supporting parametric
polymorphism efficiently and without language restrictions
by modifying the virtual machine [37, 22], these techniques
cannot be deployed in the real world unless they become
part of the JVM standard.

2.2 Persistent Java
Persistent object systems offer a simple yet powerful pro-
gramming model that allows applications to safely share
objects both in space and time. Such systems have dis-
tinguished objects known as persistent roots. All objects
reachable from persistent roots are automatically stored in
persistent storage by the system—the rest of the objects are
garbage-collected.

Since Java has no persistence model built into it, many re-
search systems have been proposed that add persistence to
Java. These include PJama [3], JPS [6], GemStone/J [17]
and PSEJ [42]. Of these, only PSEJ is JVM compatible.
PSEJ uses the technique of bytecode rewriting. Bytecode
rewriting has become an established technique for extend-
ing Java. But PSEJ has severe problems both in terms of
its semantics and its performance. For example, PSEJ does
not support garbage collection of persistent objects.

To support the persistent programming model, a object-
oriented virtual machine requires the ability to traverse the
object graph, ability to install hooks into method calls and
field accesses, and the ability to replace objects with stub
objects, among other things. These can be efficiently im-
plemented in a modified JVM. In fact, all the other sys-
tems mentioned above—PJama, JPS, and GemStone/J—
use modified JVMs to support persistence. These systems
provide the natural semantics for persistence, and are fairly
efficient as well. This once again suggests that the JVM
interface is too rigid to support many extensions.

2.3 Software Evolution in Persistent Java
Software systems evolve over time to meet new demands.
Persistent object systems contain long lived objects, so any
practical persistent object system must provide a mechanism
for upgrading the persistent objects. These upgrades involve

2



changes to the code implementing the persistent objects, as
well as changes to the persistent objects themselves.

Much research has been done on software evolution in per-
sistent object systems. PJama [3, 12], JPS [6, 31] and Gem-
Stone [17, 40] support some form of software evolution using
modified JVMs. Software evolution cannot be implemented
on unmodified JVMs.

2.4 Reflective Interface for Java
Metaobject protocols [23] offer a principled way of extend-
ing the behavior of programs. Metaobjects can be used to
transparently implement non-functional requirements such
as fault tolerance, security and distribution [52]. The Java
Reflection package java.lang.reflect only provides the ability
to introspect a program but not to alter program behavior.

There are a number of extensions to Java that address this
limitation. Many of these extensions including AspectJ [24],
Kava [52], Dylang [53], and Javassist [11] use the technique of
code rewriting to be compatible with standard JVMs. How-
ever, these extensions have limited reflective capabilities. In
particular, they are limited in their ability to dynamically
alter the behavior of a program. Other implementations like
Guarana [39] and MetaXa [19] provide a more flexible reflec-
tive interface, but they use custom JVMs to do so.

2.5 Region Based Memory Management
Many software systems such as file servers and database
servers require fine-grained control over data representations
and memory management. High level, type safe languages
like Java fail to give programmers the control needed to build
low level systems. Low level languages like C avoid these
drawbacks, but they admit a wide class of safety violations
such as buffer overruns, dangling pointer dereferences, and
memory leaks.

Region based memory management [48] offers an alterna-
tive to the above systems. Languages like Cyclone [21] use
regions to offer programmers significant control over mem-
ory management without violating memory safety. Cyclone
is a type safe language, yet Cyclone programs cannot be
translated to JVML. This is because JVML is a high level
language with automatic memory management and garbage
collection, and it provides no way to get around that.

2.6 Consistent Java RMI Semantics
Java supports remote method invocation (RMI) [43], which
is a form of RPC and is based on the Modula-3 network
objects [5]. But the Java RMI semantics for argument pass-
ing are inconsistent. While arguments to local methods calls
are passed by reference, arguments to remote methods are
sometimes passed by reference and sometimes by value.

Ideally, all arguments to methods should be passed by refer-
ence to provide consistent semantics for method calls. But
suppose an object x residing on one machine is passed by
reference as an argument to a remote method on second
machine. If the remote method repeatedly uses x, then it
will generate a lot of network traffic. One way to reduce the

amount of network traffic is to migrate x to the second ma-
chine. But this cannot be implemented on standard JVMs
because standard JVMs do not support object migration.
This is yet another example where the inflexibility of the
JVM interface prevents developers from implementing their
ideas on standard JVMs.

2.7 Partial Classfile Loading
Sometimes, distributed applications may run on low band-
width networks. To reduce the amount of code transferred
on such systems, some researchers have proposed splitting
classfiles into frequently used hot portions and infrequently
used cold portions. The cold portions are shipped only when
required [26]. But the bytecode verifier in a JVM verifies
code on a per-class basis and the JVM loads code on a per-
class basis, making it difficult to implement this optimization
on standard JVMs.

2.8 JVM Optimizations
Besides projects that enhance the JVM interface, there are
numerous other projects that focus on improving JVM per-
formance. Many of them use static analysis to perform opti-
mizations such as removal of redundant null pointer checks,
array bounds checks and runtime typecasts. Projects such as
Jalapeno [9], Marmot [15], and Flex [16] use custom JVMs
to implement such optimizations.

Unfortunately, application vendors shipping JVML cannot
use the optimization techniques mentioned above to optimize
their code. This is because there is no way to represent the
optimized code in JVML. For example, there is no way to
indicate in JVML that a particular array access is safe and
does not need a runtime bounds check.

3 Design of an Extensible VM
This section describes how a portable and secure interme-
diate language (and an associated virtual machine) can be
designed starting from first principles, while keeping the lan-
guage as extensible as possible.

3.1 Instruction Set Architecture
The essence of the problem with JVML as a general purpose
instruction set is that it is a CISC—a high level, highly en-
coded instruction set that is carefully tuned to the demands
of the Java language. The problem with CISC instruction
sets is that they are brittle encodings. If a computation fits
the instruction set exactly, things are good. The computa-
tion can be encoded compactly and executed efficiently. But
if a computation is just slightly different, there is no simple,
efficient encoding. The numerous examples presented in Sec-
tion 2 illustrate this point.

I therefore believe that a standard for representing portable
code should consist of a low level, RISC-like instruction set.
The resulting extensible virtual machine (EVM) platform
will give application developers tremendous flexibility in im-
plementing their ideas and innovations. Compilers at the
code producer side will have more room for maneuver when
producing optimized code for the EVM platform. In fact,
all the projects presented in Section 2 that required JVM

3



modifications can be expressed efficiently in a low level in-
struction set.

The main problem with low level code is that it is hard for
the VM to ensure any form of security. JVML, on the other
hand, is a type safe language. JVMs statically type check
programs before running them, and type correct JVML pro-
grams cannot cause certain security violations. The next few
sections will explore how an EVM can also provide a secure
execution platform.

3.2 Mechanisms for Providing Security
Traditional operating systems like Unix rely on processes
executing under the control of a privileged kernel to provide
security. But this approach requires special hardware which
may not be available on many platforms. Therefore, this
approach cannot be used for portable code. The rest of this
section discusses the different security mechanisms that are
suitable for a portable platform for running code.

Cryptographic Signatures: The use of cryptographic signa-
tures is one mechanism to provide security. In this approach,
the code producer (or some trusted authority) signs the code
certifying that the code obeys certain security policies. Code
consumers run the code only if they trust the signing author-
ity. The problem with this approach is that there are too
many application vendors, and hence too many authorities
to be trusted. Moreover, this approach only protects code
consumers from malicious code. Signatures do not offer any
protection against unintended bugs.

Dynamic Checks: Another way a system can provide se-
curity is by the use of dynamic checks. Dynamic checking
can be implemented either by inserting code around unsafe
instructions, or by hard coding the VM implementation to
perform these checks. The problem with dynamic check-
ing is that it degrades performance because of the runtime
overhead involved.

Static Checks: A system can also provide security through
static checking. In this approach, the VM statically veri-
fies the absence of certain errors before running code. This
approach avoids the above-mentioned problems associated
with signatures and dynamic checks, and is ideally suited
for portable code. The problem, however, is that it is often
hard to come up with statically verifiable proofs of safety
properties for low level code. The next section describes the
state of the art in static checking of low level code.

3.3 Static Checking of Low Level Code
Much recent work in static checking of low level code focuses
on using types and logics to reason about the safety of pro-
grams. This section explores some of the prominent research
projects in this area.

Typed Assembly Language [36] : Typed assembly language
(TAL) is designed for environments where untrusted low
level code must be checked for safety before being executed.
TAL is based on a generic RISC assembly language. Its
static type system provides support for enforcing high level
language abstractions. TAL is powerful enough to automat-

ically generate well-typed code from high level languages
like ML. The typing constructs in TAL also admit program
transformations like CPS and closure conversion as well as
most conventional low level compiler optimizations such as
register allocation, copy propagation, constant folding, and
dead code elimination.

FLINT [45, 28]: The FLINT project provides another
framework for generating typed low level object code from
high level languages. The FLINT type system is general
enough to support multiple high level source languages (in-
cluding object oriented languages like Java and languages
with higher order functions like ML) as well as multiple low
level target languages. FLINT can not only generate proofs
for memory safety like TAL and PCC (discussed below), but
FLINT can also generate proofs of advanced properties such
as for type and effect systems [32].

Proof-Carrying Code [38]: Proof-carrying code (PCC) is
another framework for verifying safety properties in low level
programs. PCC encodes the relevant operational content of
simple type systems using extensions to first order predicate
logic. Because PCC uses a general logic framework, PCC can
encode complex security properties that cannot be expressed
in TAL or FLINT type systems. On the other hand, the
proofs generated by PCC are often longer than proofs in
TAL or FLINT.

Foundational Proof-Carrying Code [2]: Foundational proof-
carrying code (FPCC) is designed to minimize the size of the
trusted computing base of systems that run low level code
from untrusted sources. In FPCC, the operational seman-
tics of low level code is defined in a logic that is suitably
expressive to serve as a foundation of mathematics. FPCC
uses higher order logic with a few axioms of arithmetic, from
which it is possible to build up most of modern mathematics.
FPCC is general enough to verify any property expressible
in Church’s higher order logic.

As we can see from the previous discussion, the current tech-
nology is not limited by the expressiveness of frameworks for
representing proofs. Moreover, for programs written in high
level languages like Java or ML, technology already exists to
generate proofs that encode the safety properties expressed
in the type systems of those languages. It is interesting to
note that all the JVM extensions presented in Section 2 are
memory-safe extensions. It is thus only a matter of engi-
neering to produce safety proofs for programs written using
these extensions.

The current technology is, however, limited by our ability
to automatically generate proofs for some complex program
properties. For example, both the Java and ML runtime sys-
tems include trusted code that performs garbage collection.
If a garbage collector is to be shipped as part of the applica-
tion code in the EVM framework, then the garbage collector
must contain a proof of safety. Generating safety proofs
for something like a garbage collector reduces to statically
proving complex heap properties in programs with destruc-
tive updates. Next section explores state of the art in this
area.

4



3.4 Static Checking of Heap Properties
This section explores some recent research in the area of
statically proving heap properties.

Three-Valued-Logic Analyzer [29, 44]: The three-valued-logic
analyzer (TVLA) deals with proving complex heap proper-
ties in languages with destructive updates. For certain pro-
grams with pre- and post-conditions, TVLA is able to to
determine such properties as when the input to the program
is a list (or tree), the output is also a list (or tree). TVLA
has been used to analyze programs that manipulate doubly
linked lists and circular lists, as well as some sorting pro-
grams.

Pointer Assertion Logic Engine [34]: The pointer asser-
tion logic engine (PALE) is another framework for checking
data structure invariants in programs can contain pre- and
post-conditions as well as loop invariants. PALE can verify
a large class of data structures, namely all those that can
be expressed as graph types [25]. Graph types consist of
data structures that must be represented by a spanning tree
backbone, with possibly additional pointers that do not add
extra information. Graph types include data structures like
doubly linked lists, trees with parent pointers, and threaded
trees.

Role Analysis [27]: While TVLA and PALE are primarily
intraprocedural, Role Analysis supports compositional in-
terprocedural analysis and verifies similar properties. Roles
capture the notion that the type of an object should depend
not only on the fields and methods of the object, but also
on the data structures in which the object participates. As
objects move between data structures, their types change to
reflect their changing relationship with other objects.

But the technology for static verification of heap properties
is still in early stages. For example, we still cannot statically
verify the correctness of a practical garbage collector, even
though some recent advances offer partial solutions to the
problem [35, 51].

3.5 Architecture of a Secure EVM
To summarize the discussion so far, this paper argues that
the interface to a portable EVM should consist of a low
level instruction set and an expressive logic framework for
representing safety proofs. Programs to be run on EVMs
must be accompanied by safety proofs. An EVM will stati-
cally verify the corresponding proof before executing a pro-
gram. The EVM framework will provide application devel-
opers with tremendous flexibility to implement their ideas
and innovations. But the EVM framework will also place a
responsibility on code producers to produce safety proofs for
the low level EVM code they generate.

For programs written in high level languages like Java or
ML, technology already exists to generate proofs that en-
code the safety properties expressed in the type systems of
those languages. But the technology for static verification
of heap properties is still in early stages. An EVM must
therefore also have the ability to run code signed by trusted
authorities. For program components such as a practical

Signed
Code

Code in my new 
Innovative Language

My Translator,

Generator
Proof

TAL/
FLINT/

PCC

ML
Code

TAL/
FLINT/

PCC

JVML
Code

Low Level Instruction Set
Expressive Logic for Proofs
Signatures for Trusted Code

The EVM Interface:

Figure 1: The EVM Interface

garbage collector that cannot be proved safe with current
technology, an EVM can install and run such a component
if the component is signed by a trusted authority. As tech-
nology for static checking improves, there will be less need
to use signatures for ensuring security. Figure 1 provides an
illustration of the EVM interface.

4 Other Portable Code Formats
This section reviews some prominent portable intermediate
code formats other than JVML.

4.1 Microsoft Intermediate Language
The Microsoft .NET architecture is a new computing envi-
ronment designed to support a variety of distributed appli-
cations. .NET software components are distributed in an
intermediate language, Microsoft IL, executed by the Mi-
crosoft Common Language Runtime (CLR).

The design of IL is similar in spirit to the design of JVML.
Like JVML, IL is a high level language and includes class-
based objects, inheritance, garbage collection, and a secu-
rity mechanism based on type safe execution. There is also
on-going work to extend IL to support parametric polymor-
phism [22] and features like first class functions, closures,
and thunks (to make it easier to support functional lan-
guages) [47].

But IL suffers the same problems like JVML. Being a high
level language, IL is not very flexible. Every time an appli-
cation writer come up an idea that is just slightly different
from what is supported, there is no simple way to express
the innovation in IL.

4.2 Limbo
Limbo [13] is a programming language designed at Lucent
Technologies to be part of the Inferno [41] operating system.
Inferno was created for supporting distributed services. In
addition to traditional computing systems, Inferno was in-
tended to be used in a variety of network environments, for
example, those supporting advanced telephones, hand-held
devices, television set-top boxes, and inexpensive network
computers. The Inferno system was designed at about the
same time as Java, and the project had similar goals as that
of Java. However, unlike Java, it failed to become as popu-
lar.

5



Limbo itself is a source programming language. Limbo is
type safe. It borrows its expression syntax and control flow
from C, but it also includes declarations as in Pascal, ab-
stract data types, typed channels, first class modules, au-
tomatic memory management, and preemptive threads. It
excludes pointer arithmetic and casts.

Programs written in Limbo are compiled to a portable in-
termediate format. Unlike JVML, the Limbo intermediate
format is low level and is designed to closely match with
the modern processor architectures. But unlike JVML, the
intermediate code in Inferno is not type checkable. Inferno
relies on trusted compilers to sign the intermediate code.

5 Conclusions
The spread of the JVM platform offers the real possibility of
realizing a write once, run everywhere environment. JVMs
provide a portable and secure platform to run code. But
unfortunately, JVMs are not sufficiently extensible. This
paper presents many examples to illustrate this point.

This paper also presents the design of an extensible virtual
machine (EVM) that can be used as a standard platform for
portable code. The paper describes how the EVM platform
can provide a flexible, efficient, and secure environment for
running code.

References
[1] O. Agesen, S. N. Freund, and J. C. Mitchell. Adding

type parameterization to the Java language. In
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), October 1997.

[2] A. W. Appel and A. P. Felty. A semantic model of
types and machine instructions for proof-carrying
code. In Principles of Programming Languages
(POPL), January 2000.

[3] M. P. Atkinson, M. J. Jordan, L. Daynes, and
S. Spence. Design issues for persistent Java: A
type-safe, object-oriented, orthogonally persistent
system. In Persistent Object Systems (POS), May
1996.

[4] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. Fiuczynski, D. Becker, C. Chambers, and
S. Eggers. Extensibility, safety and performance in the
SPIN operating system. In Symposium on Operating
Systems Principles (SOSP), December 1995.

[5] A. Birrell, G. Nelson, S. Owicki, and E. Wobber.
Network objects. In Symposium on Operating Systems
Principles (SOSP), December 1993.

[6] C. Boyapati. JPS: A distributed persistent Java
system. SM thesis, Massachusetts Institute of
Technology, September 1998.

[7] C. Boyapati and M. Rinard. A parameterized type
system for race-free Java programs. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 2001.

[8] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler.
Making the future safe for the past: Adding genericity
to the Java programming language. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 1998.

[9] M. G. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind,
V. Sarkar, M. J. Serrano, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeno dynamic
optimizing compiler for Java. In ACM Java Grande
Conference, June 1999.

[10] R. Cartwright and G. Steele. Compatible genericity
with run-time types for the Java programming
language. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), October
1998.

[11] S. Chiba. Load-time structural reflection in Java. In
ECOOP Symposium on Objects and Databases, June
2000.

[12] M. A. Dmitriev and C. Hamilton. Towards scalable
and reliable object evolution for the PJama persistent
platform. In ECOOP Symposium on Objects and
Databases, June 2000.

[13] S. Dorward, P. Winterbottom, and R. Pike. The
Limbo programming language, 1997. Available at
http://inferno.lucent.com/inferno/limbo.html.

[14] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr.
Exokernel: An operating system architecture for
application-specific resource management. In
Symposium on Operating Systems Principles (SOSP),
December 1995.

[15] R. Fitzgerald, T. B. Knoblock, E. Ruf, B. Steensgaard,
and D. Tarditi. Marmot: An optimizing compiler for
Java. In Software—Practices and Experience 30(3),
March 2000.

[16] The FLEX compiler infrastructure. Available at
http://www.flex-compiler.lcs.mit.edu.

[17] GemStone/J. Available at
http://www.gemstone.com/products/j/main.html.

[18] R. Ghiya and L. J. Hendren. Is it a tree, a DAG, or a
cyclic graph? A shape analysis for heap-directed
pointers in C. In Principles of Programming
Languages (POPL), January 1996.

[19] M. Golm. Design and implementation of a meta
architecture for Java. Master’s thesis, University of
Erlang, January 1997.

[20] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

[21] D. Grossman, G. Morrisett, T. Jim, M. Hicks,
Y. Wang, and J. Cheney. Region-based memory
management in Cyclone. CS Technical Report
TR2001-1856, Cornell University, 2001.

6



[22] A. Kennedy and D. Syme. Design and implementation
of generics for the .NET Common Language Runtime.
In Programming Language Design and Implementation
(PLDI), June 2001.

[23] G. Kiczales, J. des Rivieres, and D. G. Bobrow. The
Art of Metaobject Protocol. The MIT Press, 1991.

[24] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of AspectJ.
In ECOOP Symposium on Objects and Databases,
June 2001.

[25] N. Klarlund and M. I. Schwartzbach. Graph types. In
Principles of Programming Languages (POPL),
January 1993.

[26] C. Krintz, B. Calder, and U. Holzle. Reducing transfer
delay using Java class file splitting and prefetching. In
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), October 1999.

[27] V. Kuncak, P. Lam, and M. Rinard. Role analysis. In
Principles of Programming Languages (POPL),
January 2002.

[28] C. League, Z. Shao, and V. Trifonov. Representing
Java classes in a typed intermediate language. In
International Conference on Functional Programming
(ICFP), September 1999.

[29] T. Lev-Ami and M. Sagiv. TVLA: A system for
implementing static analyses. In Static Analysis
Symposium (SAS), June 2000.

[30] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, 1997.

[31] B. Liskov, C.-H. Moh, S. Richman, L. Shrira,
Y. Zhang, and C. Boyapati. Safe lazy software
upgrades in object-oriented databases. Submitted for
publication, March 2002.

[32] J. M. Lucassen and D. K. Gifford. Polymorphic effect
systems. In Principles of Programming Languages
(POPL), January 1988.

[33] M. K. McKusick, K. Bostic, M. J. Karels, and J. S.
Quartermen. The Design and Implementation of the
4.4 BSD UNIX Operating System. Addison-Wesley,
1996.

[34] A. Moller and M. I. Schwartzbach. The pointer
assertion logic engine. In Programming Language
Design and Implementation (PLDI), June 2000.

[35] S. Monnier, B. Saha, and Z. Shao. Principled
scavenging. In Programming Language Design and
Implementation (PLDI), June 2001.

[36] G. Morrisett, D. Walker, K. Crary, and N. Glew. From
System F to typed assembly language. In Principles of
Programming Languages (POPL), January 1998.

[37] A. C. Myers, J. A. Bank, and B. Liskov.
Parameterized types for Java. In Principles of
Programming Languages (POPL), January 1997.

[38] G. C. Necula. Proof-carrying code. In Principles of
Programming Languages (POPL), January 1997.

[39] A. Oliva and L. E. Buzato. Design and implementation
of Guarana. In Conference on Object-Oriented
Technologies and System (COOTS), May 1999.

[40] D. J. Penney and J. Stein. Class modification in the
GemStone object-oriented DBMS. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 1987.

[41] R. Pike, D. Presotto, S. Dorward, D. M. Ritchie,
H. Trickey, and P. Winterbottom. The Inferno
operating system. Bell Labs Technical Journal 2(1),
Winter 1997.

[42] ObjectStore PSE for Java. Available at
http://www.odi.com/products/psej.html.

[43] Java Remote Method Invocation. Available at
http://java.sun.com/products/jdk/1.2/docs/guide-
/rmi.

[44] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. In Principles of
Programming Languages (POPL), January 1999.

[45] Z. Shao, B. Saha, V. Trifonov, and N. Papaspyrou. A
type system for certified binaries. In Principles of
Programming Languages (POPL), January 2002.

[46] T. B. Steel. A first version of UNCOL. In Western
Joint Computer Conference, May 1961.

[47] D. Syme. ILX: Extending the .NET Common IL for
functional language interoperability. In Workshop on
Multi-Language Infrastructure and Interoperability
(BABEL), September 2001.

[48] M. Tofte and J.-P. Talpin. Region-based memory
management. In Information and Computation 132(2),
February 1997.

[49] M. Viroli and A. Natali. Parametric polymorphism in
Java: An approach to translation based on reflective
features. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), October
2000.

[50] D. S. Wallach and E. W. Felten. Understanding Java
stack inspection. In IEEE Symposium on Security and
Privacy, May 1998.

[51] D. C. Wang and A. W. Appel. Type-preserving
garbage collectors. In Principles of Programming
Languages (POPL), January 2001.

[52] I. Welch and R. J. Stroud. Kava—Using bytecode
rewriting to add behavioral reflection to Java. In
Conference on Object-Oriented Technologies and
Systems (COOTS), June 2001.

[53] I. Welch and R. J. Stroud. Dalang—A reflective
extension for Java. Technical Report CS-TR-672,
University of Newcastle upon Tyne, September 1999.

7


