
Combining Abstraction with Byzantine Fault-Tolerance

Rodrigo Rodrigues

May 24, 2001

c
�

Massachusetts Institute of Technology 2001

This research was partially supported by DARPA under contract F30602-98-1-0237 monitored

by the Air Force Research Laboratory. The author was partially supported by a Praxis XXI fellow-

ship.

Massachusetts Institute of Technology

Laboratory for Computer Science

Cambridge, Massachusetts, USA

Combining Abstraction with Byzantine Fault-Tolerance

by

Rodrigo Rodrigues

Abstract

This thesis describes a technique to build replicated services that combines Byzantine fault tolerance
with work on abstract data types. Tolerating Byzantine faults is important because software errors
are a major cause of outages and they can make faulty replicas behave arbitrarily. Abstraction hides
implementation details to enable the reuse of existing service implementations and to improve the
ability to mask software errors.

We improve resilience to software errors by enabling the recovery of faulty replicas using state
stored in replicas with distinct implementations; using an opportunistic N-version programming
technique that runs distinct, off-the-shelf implementations at each replica to reduce the probability
of common mode failures; and periodically repairing each replica using an abstract view of the state
stored by the correct replicas in the group, which improves tolerance to faults due to software aging.

We have built two replicated services that demonstrate the use of this technique. The first is
an NFS service where each replica runs a different off-the-shelf file system implementation. The
second is a replicated version of the Thor object-oriented database. In this case, the methodology
enabled reuse of the existing database code, which is non-deterministic. These examples suggest
that our technique can be used in practice: Our performance results show that the replicated systems
perform comparably to their original, non-replicated versions. Furthermore, both implementations
required only a modest amount of new code, which reduces the likelihood of introducing more
errors and keeps the monetary cost of using our technique low.

Keywords: abstraction, abstraction function, abstract specification, Byzantine faults, fault tol-
erance, high availability, N-version programming, replication, software errors, wrapper.

Support: This research was partially supported by DARPA under contract F30602-98-1-0237
monitored by the Air Force Research Laboratory. The author was partially supported by a Praxis
XXI fellowship.

This report is a minor revision of the dissertation of the same title submitted to the Department
of Electrical Engineering and Computer Science, in partial fulfillment of the requirements for the
degree of Master of Science in that department. The thesis was supervised by Professor Barbara
Liskov.

Para o meu avô Vı́tor Hugo To my grandfather Vı́tor Hugo

O poeta é um fingidor. The poet is a pretender.

Finge tão completamente He pretends so absolutely

Que chega a fingir que é dor He manages to pretend a pain

A dor que deveras sente. From the real pain he feels.

Fernando Pessoa, Autopsicografia Fernando Pessoa, Self-Psychography

Contents

1 Introduction 13

1.1 Contributions . 14

1.2 Thesis Outline . 17

2 Practical Byzantine Fault Tolerance 19

2.1 System Model and Assumptions . 19

2.2 Algorithm Properties . 20

2.3 Algorithm Overview . 21

2.3.1 Processing Requests . 22

2.3.2 View Changes . 24

2.4 Proactive Recovery . 24

2.5 State Transfer . 25

2.6 Library Interface . 27

3 The BASE Technique 29

3.1 Methodology . 29

3.2 The BASE Library . 31

3.2.1 Interface . 31

3.2.2 Implementation Techniques . 35

4 Example I: File System 39

4.1 Abstract Specification . 39

4.2 Conformance Wrapper . 40

4.3 State Conversions . 42

4.4 Proactive Recovery . 44

7

4.5 Discussion . 45

5 Example II: Object-Oriented Database 47

5.1 System Overview . 47

5.1.1 Object format and fetching . 48

5.1.2 Transactions . 49

5.1.3 The Modified Object Buffer . 52

5.2 Abstract Specification . 54

5.3 Conformance Wrapper . 56

5.4 State Conversions . 58

5.5 Discussion . 59

5.5.1 Multiple Server Architecture . 59

5.5.2 Proactive Recovery . 61

5.5.3 Garbage Collector . 61

6 Evaluation 63

6.1 Replicated File System . 63

6.1.1 Overhead . 64

6.1.2 Code Complexity . 69

6.2 Replicated Object-Oriented Database . 69

6.2.1 Overhead . 69

6.2.2 Code Complexity . 73

7 Related Work 75

7.1 Software Rejuvenation . 75

7.2 N-Version Programming . 76

8 Conclusions 79

8.1 Summary . 79

8.2 Future Work . 81

8

List of Figures

2-1 BFT algorithm in normal case operation . 23

2-2 BFT view change algorithm . 25

2-3 BFT interface and upcalls . 27

3-1 BASE interface and upcalls . 31

3-2 Overview of BASE interface . 34

4-1 Software architecture . 41

4-2 Example of the abstraction function . 42

4-3 Inverse abstraction function pseudocode . 43

5-1 Applications, frontends and object repositories in Thor 48

5-2 Server organization . 53

6-1 Elapsed time, hot read-only traversals . 71

6-2 Elapsed time, hot read-write traversals . 71

6-3 Breakdown of T2b traversal . 72

6-4 Breakdown of checkpointing . 73

9

List of Tables

6.1 Andrew100: elapsed time in seconds . 66

6.2 Andrew500: elapsed time in seconds . 66

6.3 Andrew with proactive recovery: elapsed time in seconds. 67

6.4 Andrew: maximum time to complete a recovery in seconds. 67

6.5 Andrew100 heterogeneous: elapsed time in seconds 68

10

Acknowledgments

I was very fortunate to work with two of the most talented people I have ever met. Barbara Liskov

and Miguel Castro earned all the respect and admiration I have for them. I sincerely thank them for

all the guidance and support. This thesis would not be possible without their supervision.

All the people at the Programming Methodology Group were very supportive and contributed

to a great work environment. I want to thank all the group members I had the pleasure to work

with: Sarah Ahmed, Sameer Ajmani, Chandrasekhar Boyapati, Kyle Jamieson, Paul Johnson, Liuba

Shrira, Michiharu Takemoto, Ziqiang Tang, Shan-Ming Woo, and Yan Zhang. Special thanks to

Kincade Dunn for always taking care of us in such a spectacular way and for free therapy during

spare times.

Many people in the Laboratory for Computer Science helped me with this work. Everyone in

the Parallel and Distributed Operating Systems Group was very helpful in providing me with an

infrastructure to run some of my experiments. I would like to give special thanks to Chuck Blake,

Benjie Chen, Dorothy Curtis, Frank Dabek, Kevin Fu, Frans Kaashoek, Jinyang Li, David Mazières

and Robert Morris.

I want to thank everyone at the Distributed Systems Group of INESC for all the guidance that

led me to this point. I enjoyed very much the time I spent there, and it has also taught me a lot. I

certainly miss the endless conversations at lunchtime where everyone said what they thought about

subjects they knew nothing about. After I came here they have always welcomed me back to the

group whenever I needed and they have also given me valuable feedback about my work.

Living in Boston for the last two years has been an enriching experience. I was fortunate to

meet a variety of interesting people during my stay so far, and I hope to meet many more. I want to

thank the lovely gang here in Boston for all the friendship and support.

I want to thank my wonderful family. I cannot imagine myself here without your support,

dedication and love. Thanks to my father, sister, uncle, aunt, and Rosa for all the love they have

given me. I hope I was able to give you some as well.

Last, but definitely not least, I want to thank all my friends in Lisbon who never forget me and

make me always willing to return there. You have made coming here the most difficult decision in

my life, and at the same time I could not have made this without your love. Thanks to you I will

always know that home is where the heart is, and there is no need for you to worry: I am definitely

going back.

11

Chapter 1

Introduction

Software errors are becoming increasingly common due to both the growth in size and complexity

of software and the increasing need to move innovative products to the market as fast as possible. As

the importance of computers in society increases, the need to make these programs more dependable

also grows. Furthermore, there is an increasing number of malicious attacks that exploit software

errors to gain control or deny access to systems that provide important services [19].

Service reliability can be achieved by replication. The idea is that even though some replicas

may fail due to a hardware failure, software error, or malicious attack, the system as a whole can

continue to provide service because the other replicas are still running.

Replicated systems are implemented by means of a replication algorithm that ensures the system

as a whole behaves correctly even though some of the replicas are faulty. In the case of software

errors and malicious attacks, faulty nodes can behave in arbitrarily bad ways. Such failures are

called Byzantine failures. For example, a failed node may appear to be behaving properly, and yet

at the same time be corrupting its state.

In [16, 17, 13], Castro and Liskov propose BFT, a replication algorithm for Byzantine fault-

tolerance in asynchronous systems that offers good performance and strong correctness guarantees

provided no more than ����� of the replicas fail within a small window of vulnerability. Therefore,

this algorithm allows systems to be highly available provided the replicas are not likely to fail at the

same time.

However, BFT has two shortcomings that undermine its applicability.

1. It forces all replicas to agree on their entire state and update it in a deterministic way. This

greatly reduces the applications that can use it:

13

� It precludes the use of nondeterministic implementations, which are very common. Use-

ful nondeterministic operations include reading local clocks, using multi-threaded ac-

cess to common data, or even using distinct implementations of memory allocation al-

gorithms.

� It also precludes the use of distinct implementations at the replicas, yet using different

implementations is a plausible way of avoiding a replicated system in which all replicas

fail simultaneously due to a software error.

2. It does not make a clear separation between the application and the replica code. BFT forces

the application to define its state as a contiguous memory region, and to notify the replication

code whenever that state is about to be changed. This makes the reuse of existing implemen-

tations hard.

This thesis describes a replication technique that solves these problems by combining Byzantine

fault tolerance [47] with work on data abstraction [38]. The next section describes our contributions

in more detail.

1.1 Contributions

The replication technique presented in this thesis allows each replica to run distinct service imple-

mentations or to run implementations with non-deterministic behavior provided they share the same

abstract behavior. This improves tolerance to software faults by reducing the probability of several

replicas failing at the same time. Abstraction also improves fault tolerance by enabling the system

to periodically repair the state of each replica using the abstract states stored by the others while

hiding corrupt portions of their concrete states.

We propose a methodology to build replicated systems by reusing off-the-shelf implementations.

It is based on the concepts of abstract specification and abstraction function from work on abstract

data types [38]. We start by defining an abstract specification; the specification describes an abstract

state for the service and how that state is manipulated by each service operation. Then, for each

distinct service implementation we implement a conformance wrapper that maps from the concrete

behavior of that implementation to the required abstract behavior. We also implement the abstraction

function and one of its inverses to map from the concrete state of the implementation to the abstract

state and vice versa.

14

The methodology offers several important advantages.

� Reuse of existing code. BFT implements state machine replication [54, 33]. The state ma-

chine approach is useful because it allows replication of services that perform arbitrary com-

putations, but it requires determinism: all replicas must produce the same sequence of results

when they process the same sequence of operations. The use of a conformance wrapper that

hides nondeterminism in the behavior of the applications and the fact that replicas have to

agree on an abstract state instead of a concrete state enables the reuse of existing implemen-

tations without modifications.

� Software rejuvenation through proactive recovery. It has been observed [31] that there is a

correlation between the length of time software runs and the probability that it fails. Software

rejuvenation [31] is a fault-tolerance technique inspired by this observation. It periodically

stops an application, dumps its state to disk, and restarts the application from the saved state;

the hope is to restart soon enough that the saved state is still correct.

Our methodology makes it possible to use proactive recovery as a form of software reju-

venation. Replicas are recovered periodically even if there is no reason to suspect they are

faulty. When a replica is recovered, it is rebooted and restarted from a clean state. Then

it is brought up to date using a correct copy of the abstract state that is obtained from the

group of replicas. This improves on previous techniques by combining rejuvenation with

Byzantine-fault-tolerant replication:

– rejuvenation can be performed frequently because the service remains available during

rejuvenation;

– it works even if the state of the recovering replica is corrupt because it can obtain a

correct copy of the state from the group;

– it works even if all replicas have corrupt portions in their concrete states provided these

are hidden by abstraction; and

– recoveries are staggered such that individual replicas are highly unlikely to fail simulta-

neously because at any point they have been running for different lengths of time.

� Efficient and Opportunistic N-version programming. Replication is not useful when there

is a strong positive correlation between the failure probabilities of the different replicas (as

would be the case when there is a deterministic software bug). N-version programming [20]

15

exploits design diversity to reduce the probability of correlated failures, but it has several

problems [25] :

– First, it does not provide an efficient state comparison and transfer mechanism. Previous

work in N-version programming either ignores the issue of state checking and transfer

or addresses it with ad-hoc, impractical solutions.

We provide an answer to this problem by comparing the entire state of the replicas dur-

ing periodic checkpoints and after proactively recovering a replica. Furthermore, our

state comparison and transfer mechanism is efficient because it is based on maintaining

a tree with digests of the components of the state. This allows the state checking mech-

anism to quickly determine which components of the state are incorrect, and the check

requires a limited amount of data transfer. It also enables us to fetch only the incorrect

subset of the state.

The state checking and transfer is done periodically without any need of additional spe-

cialized code. This reduces the complexity of using our mechanism, avoiding the likeli-

hood of introducing additional errors. Doing checks automatically is also a good way to

avoid errors that might result from some correlation between the code and the checks.

Also, since we are comparing abstract state we allow greater diversity (and therefore re-

duce the likelihood of correlated errors) because the different implementations need not

implement identical specifications. Instead they only need to implement similar speci-

fications that can be mapped by conformance wrappers into the same abstract behavior

and they also only need to agree on the same abstract state via the abstraction function.

– Another problem is that N-version programming does not does not address the issue of

how to reintegrate a replica that has failed with the working system without interrupting

the service. Our methodology solves this problem since the use of abstraction permits us

to know the correct state of the system at any point. Therefore, we provide a framework

that allows the periodic repair of faulty replicas using proactive recovery and the abstract

state transfer mechanism.

– The other criticism that has been made of N-version programming is that it increases

development and maintenance costs by a factor of N or more, and adds unacceptable

time delays to the implementation.

Our methodology enables an opportunistic form of N-version programming by allowing

16

us to take advantage of distinct, off-the-shelf implementations of common services. This

approach overcomes the defects mentioned above: it eliminates the high development

and maintenance costs of N-version programming, and also the long time-to-market.

Opportunistic N-version programming is a viable option for many common services,

e.g., relational databases, HTTP daemons, file systems, and operating systems. In all

these cases, competition has led to four or more distinct implementations that were de-

veloped and maintained separately but have similar (although not identical) functional-

ity. Furthermore, the technique is made easier by the existence of standard protocols that

attempt to provide identical interfaces to different implementations, e.g., ODBC [23]

and NFS [2]. We can also leverage the large effort towards standardizing data represen-

tations using XML.

Our replication technique is implemented by the BASE library, which extends the BFT library

(BASE is an acronym for BFT with Abstract State Exchange). BASE overcomes BFT’s defects that

were mentioned above. This allows BASE to support our methodology in a simple and efficient

way.

This thesis also presents the design and implementation of two replicated services using our

replication technique: a replicated file service where replicas run different operating systems and

file systems, and an object-oriented database server that uses a single but non-deterministic imple-

mentation for all the replicas.

For this methodology to be successful, the conformance wrapper and the state conversion func-

tions must be simple to reduce the likelihood of introducing more errors and introduce a low over-

head. We provide an evaluation of our example applications using these metrics. Our results show

that our technique can be used in practice. The replicated versions for these systems require a small

amount of new code and perform comparably to the original systems.

1.2 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 describes the replication algorithm

that we extended to support the use of abstraction. In Chapter 3 we present our replication technique:

its methodology and the library that supports it, BASE. Chapters 4 and 5 describe the two example

services that were developed using our replication technique: an NFS file service and an object-

oriented database server, respectively. For each application we describe the implementation of the

17

various steps of our methodology in these two chapters. We present an experimental evaluation

for the two replicated services in Chapter 6. These results try to show that both services met the

requirements that we need for the technique to be successful: it must introduce a low overhead and

require a small amount of new code. We compare our approach to previous work in Chapter 7.

Finally, Chapter 8 concludes the thesis and mentions the areas for future work.

18

Chapter 2

Practical Byzantine Fault Tolerance

This chapter provides an overview of a practical Byzantine fault tolerance replication algorithm [16,

17] and BFT, the library that implements it. We discuss only those aspects of the algorithm and

library that are relevant to this thesis; for a complete description, see [13].

The algorithm enables proactive recovery of replicas, which allows it to tolerate any number of

faults over the lifetime of the system, provided less than 1/3 of the replicas become faulty within a

small window of vulnerability. The algorithm uses mainly symmetric cryptography, which allows it

to perform well so that it can be used in practice to implement real services.

We begin by describing the system model and assumptions. Section 2.2 describes the problem

solved by the algorithm and its underlying assumptions. Section 2.3 gives an overview of the algo-

rithm. Sections 2.4 and 2.5 discuss two important aspects of the algorithm: the proactive recovery

and the state transfer mechanisms, respectively. Finally, Section 2.6 presents the interface for the

BFT library.

2.1 System Model and Assumptions

The algorithm assumes an asynchronous distributed system where nodes are connected by a net-

work. The network may fail to deliver messages, delay them, duplicate them, or deliver them out

of order. It assumes a Byzantine failure model, i.e., faulty nodes may behave arbitrarily, subject

only to the restrictions mentioned below. An adversary is allowed to coordinate faulty nodes, delay

communication, inject messages into the network, or delay correct nodes in order to cause the most

damage to the replicated service. The adversary cannot delay correct nodes indefinitely, though.

Cryptographic techniques are employed to establish session keys, authenticate messages, and

19

produce digests. It is assumed that the adversary (and the faulty nodes it controls) is computationally

bound so that it is unable to subvert these cryptographic techniques.

These are all the assumptions that are required to provide safety if less than 1/3 of the replicas

become faulty during the lifetime of the system. To tolerate more faults a few additional assumptions

are needed: a secure cryptographic co-processor must be employed to sign and decrypt messages

without exposing the replica’s private key, so that it is possible to mutually authenticate a faulty

replica that recovers to the other replicas; a read-only memory must store a correct copy of the

service code to be used after a recovery; and a reliable mechanism such as a watchdog timer is

needed to trigger periodic recoveries.

With these assumptions, the system is able to perform frequent recoveries without relying on

system administrators to assist in the process.

2.2 Algorithm Properties

The algorithm is a form of state machine replication [54, 33]: the service is modeled as a state

machine that is replicated across different nodes in a distributed system. The algorithm can be

used to implement any replicated service with a state and some operations. The operations are not

restricted to simple reads and writes; they can perform arbitrary computations.

The service is implemented by a set of replicas
�

and each replica is identified using an integer

in �������������
	 � 	�� �� . Each replica maintains a copy of the service state and implements the service

operations. For simplicity, it is assumed that 	 � 	�� ����� � where � is the maximum number of

replicas that may be faulty.

Like all state machine replication techniques, this algorithm requires each replica to keep a local

copy of the service state. All replicas must start in the same internal state, and they also must be

deterministic, in the sense that the execution of an operation in a given state and with a given set of

arguments must always produce the same result and lead to the same state following that execution.

This algorithm ensures safety for an execution provided at most � replicas become faulty within

a window of vulnerability of size ��� . Safety means that the replicated service satisfies linearizabil-

ity [29]: it behaves like a centralized implementation that executes operations atomically one at a

time. A safety proof for a simplified version of the algorithm using the I/O automata formalism [39]

is sketched in [15].

The algorithm also guarantees liveness: non-faulty clients eventually receive replies to their

20

requests provided (1) at most � replicas become faulty within the window of vulnerability � � ; and

(2) denial-of-service attacks do not last forever, i.e., there is some unknown point in the execution

after which all messages are delivered (possibly after being retransmitted) within some constant

time � , or all non-faulty clients have received replies to their requests. A liveness proof for the same

simplified version of the algorithm is also provided in [51].

2.3 Algorithm Overview

The algorithm works roughly as follows. Clients send requests to execute operations to the replicas

and all non-faulty replicas execute the same operations in the same order. Since replicas are de-

terministic and start in the same state, all non-faulty replicas send replies with identical results for

each operation. The client waits for f+1 replies from different replicas with the same result. Since

at least one of these replicas is not faulty, this is the correct result of the operation.

The hard problem is guaranteeing that all non-faulty replicas agree on a total order for the

execution of requests despite failures. A primary-backup mechanism is used to achieve this. In such

a mechanism, replicas move through a succession of configurations called views. In a view one

replica is the primary and the others are backups. The primary of a view is chosen to be replica �

such that � ��������� 	 � 	 where � is the view number and views are numbered consecutively.

The primary picks the ordering for execution of operations requested by clients. It does this

by assigning a sequence number to each request. But the primary may be faulty. Therefore, the

backups trigger view changes when it appears that the primary has failed to propose a sequence

number that would allow the request to be executed.

To tolerate Byzantine faults, every step taken by a node in this system is based on obtaining a

certificate. A certificate is a set of messages certifying some statement is correct and coming from

different replicas. An example of a statement is: ”the result of the operation requested by a client

is r”.

The size of the set of messages in a certificate is either � � � or 	�� � � , depending on the type

of statement and step being taken. The correctness of the system depends on a certificate never

containing more than � messages sent by faulty replicas. A certificate of size � � � is sufficient

to prove that the statement is correct because it contains at least one message from a non-faulty

replica. A certificate of size 	�� � � ensures that it will also be possible to convince other replicas of

the validity of the statement even when � replicas are faulty.

21

Other Byzantine fault-tolerance algorithms [48, 32, 16] rely on the power of digital signatures

to authenticate messages and build certificates. This algorithm uses message authentication codes

(MACs) [9] to authenticate all messages in the protocol. A MAC is a small bit string that is a

function of the message and a key that is shared only between the sender and the receiver. The

sender appends this to the protocol messages so that the receiver can check the authenticity of the

message by computing the MAC in the same way and comparing it to the one appended in the

message.

The use of MACs substantially improves the performance of the algorithm — MACs, unlike dig-

ital signatures, use symmetric cryptography instead of public-key cryptography — but also makes it

more complicated: the receiver may be unable to convince a third party that a message is authentic,

since the third party must not know the key that was used to generate its MAC.

Since we wish to tolerate more than � faults throughout the execution, we must periodically

change the session keys that are used between each pair of replicas. When this happens, the replica

must discard all messages in its log that are not part of a complete certificate and it will reject any

messages it receives in the future that are authenticated with old keys. This ensures that correct

nodes only accept certificates with equally fresh messages, i.e., messages authenticated with keys

created in the same refreshment phase, so that they do not collect messages for a certificate over a

period of time that is so long that they end up with more than � messages from faulty replicas.

The messages used in the key exchange period are digitally signed using a secure co-processor

that stores the replica’s private key. This prevents an attacker from compromising the replica’s

private key, even if she gains control of the machine.

2.3.1 Processing Requests

When the primary receives a request, it uses a three-phase protocol to atomically multicast requests

to the replicas. The three phases are pre-prepare, prepare, and commit. The pre-prepare and pre-

pare phases are used to totally order requests sent in the same view even when the primary, which

proposes the ordering of requests, is faulty. The prepare and commit phases are used to ensure that

requests that commit are totally ordered across views.

Figure 2-1 shows the operation of the algorithm in the normal case of no primary faults. In this

example replica 0 is the primary and replica 3 is faulty. The client begins by sending a request to

the primary, which multicasts it to all replicas in a pre-prepare message. This message proposes

a sequence number for the request, and if the remaining replicas agree with this sequence number

22

they multicast a prepare message. When each replica collects a certificate with 	�� � � matching pre-

pare messages from different replicas (possibly including its own), it multicasts a commit message.

When a replica has accepted 	�� � � commit messages that match the pre-prepare for the request, it

executes the request, causing its state to be updated and producing a reply. This reply is sent directly

to the client, who waits for � � � replies from different replicas with the same result.

Figure 2-1: BFT algorithm in normal case operation

Each replica stores the service state, a log containing information about requests, and an integer

denoting the replica’s current view. The log records information about the request associated with

each sequence number, including its status; the possibilities are: unknown (the initial status), pre-

prepared, prepared, and committed. Figure 2-1 also shows the evolution of the request status as the

protocol progresses.

Replicas can discard entries from the log once the corresponding requests have been executed

by at least � � � non-faulty replicas, a condition required to ensure that request will be known after a

view change. The algorithm reduces the cost by determining the condition only when a request with

a sequence number divisible by some constant � (e.g., � � � 	��) is executed. The state produced

by the execution of such requests is called a checkpoint. When a replica produces a checkpoint, it

multicasts to other replicas a checkpoint message containing a digest of its state � , and the sequence

number of the last request whose execution is reflected in the state, � . Then, it waits until it has

a certificate with 	�� � � valid checkpoint messages for the same sequence number � and with the

same state digest � sent by different replicas. At this point the checkpoint is known to be stable and

the replica garbage collects all entries in its log with sequence numbers less than or equal to � ; it

also discards earlier checkpoints.

Creating checkpoints by making full copies of the state would be too expensive. Instead, the

library uses copy-on-write such that checkpoints only contain the differences relative to the current

23

state. The data structures used in efficiently computing the digest � of the state are presented in

Section 2.5.

2.3.2 View Changes

The view change protocol provides liveness by allowing the system to make progress when the

current primary fails. The protocol must preserve safety: it must ensure that non-faulty replicas

agree on the sequence numbers of committed requests across views. In addition, to provide liveness

it must ensure that non-faulty replicas stay in the same view long enough for the system to make

progress, even in the face of a denial-of-service attack.

View changes are triggered by timeouts that prevent backups from waiting indefinitely for re-

quests to execute. A backup is waiting for a request if it received a valid request and has not executed

it. A backup starts a timer when it receives a request and the timer is not already running. It stops

the timer when it is no longer waiting to execute the request, but restarts it if at that point it is waiting

to execute some other request.

If the timer of backup � expires in view � , the backup starts a view change to move the system

to view � � � . It stops accepting messages (other than checkpoint, view-change, and new-view

messages) and multicasts a view-change message to all replicas. Figure 2-2 illustrates this situation.

The new primary � for view � � � collects a certificate with 	�� � � valid view-change messages

for view � � � signed by different replicas. After obtaining the new-view certificate and making

necessary updates to its log, � multicasts a new-view message to all other replicas, and enters view

� � � : at this point it is able to accept messages for view � � � . A backup accepts a new-view

message for � � � if it is properly signed, if it contains a valid new-view certificate, and if the

message sequence number assignments do not conflict with requests that committed in previous

views. The backup then enters view � � � , and becomes ready to accept messages for this new view.

This description hides a lot of the complexity of the view change algorithm, namely the difficul-

ties that arise from using MACs instead of digital signatures. A detailed description of the protocol

can be found in [13, 17].

2.4 Proactive Recovery

Proactive recovery makes faulty replicas behave correctly again, allowing the system to tolerate

more than � faults over its lifetime. Recovery is periodic and independent of any failure detection

24

Figure 2-2: BFT view change algorithm

mechanism, since faulty replicas may appear to behave properly even when broken. After recovery,

each replica restarts from a correct, up-to-date checkpoint of the state that is obtained from the other

replicas.

Recoveries are staggered so that fewer than ����� of the replicas recover at the same time. This

allows the other replicas to continue processing client requests during the recovery. Additionally, it

should reduce the likelihood of simultaneous failures due to aging problems because at any instant

fewer than ����� of the replicas have been running for the same period of time.

Recoveries are triggered by a watchdog timer. When a replica is recovered, it reboots with

correct code (obtained from a read-only memory) after saving the replication protocol state and the

service state to disk. Then the replica is restarted, and the state that was previously saved is read

from disk.

The recovering replica must then change its session keys used to authenticate messages. This is

important because these keys may be known to the attacker if the recovering replica was faulty. By

changing these keys, we prevent the attacker from impersonating any client or another replica after

recovery, and bound the sequence number of messages forged by the attacker that may be accepted

by the other replicas.

Next, the library uses the hierarchical state transfer mechanism that we describe in Section 2.5

to efficiently compare the value of the state that was read from disk with the state values stored by

the other replicas, and fetch only the part of the state that is out-of-date or corrupt.

2.5 State Transfer

In BFT, state is defined as a fixed-size, contiguous region of memory. When a replica is initialized,

it must inform the library of the starting location and size of that region of memory that defines the

25

service state. All replicas must agree on the initial value and the transformations operated by each

request on the contents of that region.

As we mentioned, checkpoints are snapshots of the service state of each replica that are taken

periodically. A replica may learn about a stable checkpoint beyond the highest possible sequence

number in its log by receiving checkpoint messages or as the result of a view change. In this case,

it uses the state transfer mechanism to fetch modifications to the service state that it is missing.

It is important for the state transfer mechanism to be efficient because it is used to bring a

replica up to date during recovery, and we perform proactive recoveries frequently. The key issues

to achieving efficiency are reducing the amount of information transferred and reducing the burden

imposed on replicas.

To achieve this, we use a data structure called a partition tree that forms a hierarchical state

partition. The root partition corresponds to the entire service state and each non-leaf partition is

divided into � equal-sized, contiguous sub-partitions. We call leaf partitions pages and interior

partitions meta-data. The pages correspond to a fixed-size, contiguous subset of the replica’s state.

Each replica maintains one logical copy of the partition tree for each checkpoint. The copy is

created when the checkpoint is taken and it is discarded when a later checkpoint becomes stable. The

tree for a checkpoint stores a tuple ��� � � ��� for each meta-data partition and a tuple ��� � � � � ���
for each page. Here, � � is the sequence number of the checkpoint at the end of the last checkpoint

interval where the partition was modified, � is the digest of the partition, and � is the value of the

page.

The digests are computed efficiently as follows. For a given page, � is obtained by applying the

MD5 hash function [49] to the string obtained by concatenating the index of the page within the

state, its value of � � , and � . For meta-data, � is obtained by applying MD5 to the string obtained

by concatenating the index of the partition within its level, its value of � � , and the sum modulo a

large integer of the digests of its sub-partitions. Thus, we apply AdHash [8] at each meta-data level.

This construction has the advantage that the digests for a checkpoint can be obtained efficiently by

updating the digests from the previous checkpoint incrementally.

The copies of the partition tree are logical because copy-on-write is used so that only copies

of the tuples modified since the checkpoint was taken are stored. This reduces the space and time

overheads for maintaining these checkpoints significantly. The details of how this was implemented

will be mentioned in Section 3.2.2, when we discuss some of techniques used in the implementation

of our system.

26

When a replica is fetching state, it recurses down the hierarchy of meta-data to determine which

partitions are out of date by comparing its own digest and sequence number of last modification

with the ones it receives in response to fetch messages. When it reaches the leaves of the hierarchy

(which are the pages that make up a partition of the state), it sends a fetch request for each page that

it found to be corrupt or out of date.

To minimize the amount of data transferred and the overhead that is imposed on the replicas,

when the recovering replica sends a fetch message, one replica is designated as the replier. This

replica responds with the full page while the others only send the digest and last modification se-

quence number for the page. These are used to confirm that new value for the page is correct and

up-to-date.

2.6 Library Interface

The BFT library implements the algorithm that has been described before. Its basic interface is

depicted in Figure 2-3.

Client call:
int invoke(Byz_req *req, Byz_rep *rep, bool read_only);

Execution upcall:
int execute(Byz_req *req, Byz_rep *rep, int client, bool read-only);

Checkpointing:
void modify(char *mem, int size);

Figure 2-3: BFT interface and upcalls

The invoke procedure is called by the client to invoke an operation on the replicated service.

This procedure carries out the client side of the replication protocol and returns the result when

enough replicas have responded.

When the library needs to execute an operation at a replica, it makes an upcall to an execute

procedure that carries out the operation as specified for the service. The arguments to this procedure

include a buffer with the requested operation and its arguments, a buffer to fill with the operation

result, the identifier of the client who requested the operation, and a boolean flag indicating whether

a request was processed with the read-only optimization. The service code can use the client iden-

tifier to perform access control, and the read-only flag to reject operations that modify the state but

were flagged read-only by faulty clients.

27

Each time the execute upcall is about to modify a part of the state it is required to invoke a

modify procedure, which is supplied by the library, passing the starting address and size of the

memory region that is about to be modified as arguments. This is used to implement copy-on-write

to create checkpoints incrementally: the library keeps copies of the pages that were modified until

the corresponding checkpoint can be discarded.

28

Chapter 3

The BASE Technique

This chapter provides an overview of our replication technique. It starts by describing the method-

ology that we use to build a replicated system from existing service implementations. It ends with a

description of the BASE library. This technique was first proposed in [18] and a more comprehen-

sive description can be found in [50].

3.1 Methodology

The goal is to build a replicated system by reusing a set of off-the-shelf implementations, ��� ������������� ,

of some service. Ideally, we would like � to equal the number of replicas so that each replica can

run a different implementation to reduce the probability of simultaneous failures. But the technique

is useful even with a single implementation.

Although off-the-shelf implementations of the same service offer roughly the same function-

ality, they behave differently: they implement different specifications, � � ����������� � , using different

representations of the service state. Even the behavior of different replicas that run the same imple-

mentation may be different when the specification they implement is not strong enough to ensure

deterministic behavior. For instance, the specification of the NFS protocol [2] allows implementa-

tions to choose the values of file handles arbitrarily.

BASE, like any form of state machine replication, requires determinism: replicas must produce

the same sequence of results when they execute the same sequence of operations. We achieve

determinism by defining a common abstract specification, � , for the service that is strong enough

to ensure deterministic behavior. This specification defines the abstract state, an initial state value,

and the behavior of each service operation.

29

The specification is defined without knowledge of the internals of each implementation. It is

sufficient to treat implementations as black boxes, which is important to enable the use of existing

implementations. Additionally, the abstract state captures only what is visible to the client rather

than mimicking what is common in the concrete states of the different implementations. This sim-

plifies the abstract state and improves the effectiveness of our software rejuvenation technique.

The next step is to implement conformance wrappers, � � ����������� � , for each of � ��������������� . The con-

formance wrappers implement the common specification � . The implementation of each wrapper

��� is a veneer that invokes the operations offered by ��� to implement the operations in � ; in im-

plementing these operations the conformance wrapper makes use of a conformance rep that stores

whatever additional information is needed to allow the translation from the concrete behavior of

the implementation to the abstract behavior. The conformance wrapper also implements some ad-

ditional methods that allow a replica to be shutdown and then restarted without loss of information.

The final step is to implement the abstraction function and one of its inverses. These functions

allow state transfer among the replicas. State transfer is used to repair faulty replicas, and also to

bring slow replicas up-to-date when messages they are missing have been garbage collected. For

state transfer to work, replicas must agree on the value of the state of the service after executing a

sequence of operations; they will not agree on the value of the concrete state but our methodology

ensures that they will agree on the value of the abstract state. The abstraction function is used to

convert the concrete state stored by a replica into the abstract state, which is transferred to another

replica. The receiving replica uses the inverse function to convert the abstract state into its own

concrete state representation.

The BFT library requires all replicas to agree on the value of the concrete state. This effectively

rules out using different implementations or even using the same off-the-shelf implementation if it

is non-deterministic. In BASE, replicas agree on the value of the abstract state, not the concrete

state. Therefore, the state transfer mechanism transfers abstract state values.

It is not sufficient to have a mathematical model for the abstract state; it is necessary to define a

precise encoding that can be used to transfer state efficiently. For this purpose, we impose that the

abstract state must be defined as an array of objects. The array has a fixed maximum size, but the

objects it contains can vary in size. We also require the abstraction function and its inverse to be

implemented at the granularity of objects, instead of having a single map for the whole state, which

enables efficient state transfer.

30

3.2 The BASE Library

In this section we present the BASE library. This library extends BFT with the features necessary

to provide the methodology. We begin by presenting its interface and then discuss some implemen-

tation techniques.

3.2.1 Interface

The BASE library provides support for the methodology described in the previous section. Figure 3-

1 presents the library’s interface.

Client call:
int invoke(Byz_req *req, Byz_rep *rep,

bool read_only);

Execution upcall:
int execute(Byz_req *req, Byz_rep *rep, int client,

Byz_buffer *non-det, bool read-only);

State conversion upcalls:
- Abstraction function:

int get_obj(int i, char** obj);

- Inverse abstraction function:
void put_objs(int n-objs, char **objs, int *indices, int *sizes);

Checkpointing:
void modify(int n-objs, int* objs);

Non-determinism upcalls:
int propose_value(Seqno seqno, Byz_buffer *req, Byz_buffer *non-det);

int check_value(Seqno seqno, Byz_buffer *req, Byz_buffer *non-det);

Recovery upcalls:
void shutdown_proc(FILE *out);

void restart_proc(FILE *in);

Figure 3-1: BASE interface and upcalls

The invoke and execute procedures have the same interface and semantics as in the BFT

library (see Section 2.6), except for an additional parameter to execute that will be explained

shortly.

As mentioned earlier, to implement checkpointing and state transfer efficiently, we require that

the abstract state be encoded as an array of objects, where the array has a fixed maximum size but

31

the objects can have variable size. This representation allows state transfer to be done on just those

objects that are out of date or corrupted.

To implement state transfer, each replica must provide the library with two upcalls, which im-

plement the abstraction function and one of its inverses. These cannot be correspondences between

the entire concrete and abstract states, since the overhead of computing the entire mapping would

be prohibitively large. Instead, we require the application to implement the abstraction function at

the granularity of an object in the abstract state array. get obj receives an object index � , allocates

a buffer, obtains the value of the abstract object with index � , and places that value in the buffer. It

returns the size for that object and a pointer to the buffer.

The inverse abstraction function causes the application to update its concrete state using the new

value for the abstract state passed as argument. Again, this function should not update the entire

state, but it also cannot be defined to process just one object, since this may lead correct but slow

replicas to incoherent intermediate states, where certain invariants concerning the abstract state do

not hold.

We illustrate this problem with an example. Suppose we model a file system where an object in

the abstract state can be a file or a directory. If a correct but slow replica failed to create a directory

and a file inside that directory, the library must invoke the inverse abstraction function in order to

create these two objects in the concrete state. If it invoked this function twice, passing only the

file object in the first call and its parent directory in the second call, it would be impossible for the

implementation of the inverse abstraction function to update the concrete state after the first call,

since it would have no information on where to create the file. The reverse order also produces an

incoherent intermediate state, since we end up with a directory that has an entry whose type and

contents are not described in the abstract state. Also, even if a particular ordering might work, there

is no simple way to tell the library which order to use when invoking the inverse abstraction function

with multiple objects.

To avoid this situation, put objs receives a vector of objects with the corresponding sizes and

indices in the abstract state array. The library guarantees that this upcall is invoked with an argument

that brings the abstract state of the replica to a consistent value (i.e., the value of a valid checkpoint).

Similarly to what happened in the BFT library, each time the execute upcall is about to

modify an object in the abstract state it must invoke the modify procedure in order to implement

copy-on-write to create checkpoints incrementally. The interface of this procedure is different from

BFT, since we are now concerned about changes in the abstract state, and not the region of the

32

concrete state that has been modified. Therefore, the modify procedure supplied by the BASE

library takes as arguments an array with the indices in the abstract state array of the objects that are

going to be modified and the size of that array.

BASE implements a form of state machine replication that requires replicas to behave determin-

istically. Our methodology uses abstraction to hide most of the non-determinism in the implemen-

tations it reuses. However, many services involve forms of non-determinism that cannot be hidden

by abstraction. For instance, in the case of the NFS service, the time-last-modified for each file is

set by reading the server’s local clock. If this were done independently at each replica, the states of

the replicas would diverge.

Instead, we allow the primary replica to propose values for all non-deterministic choices by

providing the propose value upcall, which is only invoked at the primary. The call receives the

client request and the sequence number for that request; it selects a non-deterministic value and puts

it in non-det. This value is going to be supplied as an argument of the execute upcall to all

replicas.

The protocol implemented by the BASE library prevents a faulty primary from causing replica

state to diverge by sending different values to different backups. However, a faulty primary might

send the same, incorrect value to all backups, subverting the system’s desired behavior. The solution

to this problem is to have each replica implement a check value function that validates the choice

of non-deterministic values that was made by the primary. If ����� or more non-faulty replicas reject a

value proposed by a faulty primary, the request will not be executed and the view change mechanism

will cause the primary to be replaced soon after.

As explained in Section 2.4, proactive recovery periodically restarts each replica from a correct,

up-to-date checkpoint of the state (now, the commonly perceived abstract state) that is obtained

from the other replicas. During the replica shutdown, it must save the replication protocol state and

the service state to disk. In the BFT library, saving the service state to disk could be done by the

library code, since it had access to the concrete state of the service. In BASE, the state must be

accessed using upcalls that are implemented by the service.

Saving the entire abstract state to disk would be very expensive, especially if the concrete state

is already stored in disk, and we can reconstruct the abstract state from the concrete state just by

reconstructing a small additional amount data (typically the information stored in the conformance

rep). Therefore, we allow the service state to be saved by an upcall to the shutdown method

provided by the conformance wrapper; this method is responsible for saving enough information to

33

the file that is received as a parameter, so that it is possible to later reconstruct the abstract state.

In some cases, the information in the conformance rep is volatile, in the sense that it is no longer

valid when the replica restarts. In this case we must save some information that is persistent across

reboots, and that allows the conformance rep to be reconstructed from it after a reboot.

When the replica is restarted, the restart procedure of the conformance wrapper is invoked

to reconstruct the abstract state. This is done by reading the information that was previously stored

to disk from the file that is received as a parameter. The replica reconstructs the conformance rep

and the concrete state from the information in this file, which enables it to compute the abstract state

from the concrete state.

Next, the library uses the hierarchical state transfer mechanism to compare the value of the

abstract state of the replica with the abstract state values stored by the other replicas. This is efficient:

the replica uses cryptographic hashes stored in the state partition tree to determine which abstract

objects are out-of-date or corrupt and it only fetches the value of these objects.

The object values fetched by the replica could be supplied to put objs to update the concrete

state, but the concrete state might still be corrupt. For example, an implementation may have a

memory leak and simply calling put objswill not free unreferenced memory. In fact, implemen-

tations will not typically offer an interface that can be used to fix all corrupt data structures in their

concrete state. Therefore, it is better to restart the implementation from a clean initial concrete state

and use the abstract state to bring it up-to-date.

Figure 3-2: Overview of BASE interface

A global view of all BASE functions and upcalls that are invoked is shown in Figure 3-2.

34

3.2.2 Implementation Techniques

In this section we discuss some techniques that were used in implementing BASE. These describe

the main extensions to the BFT library that were made to support the definition of an abstract state.

Checkpoint Management

In Section 2.5, we described a data structure, the partition tree, that allows BFT to efficiently (1)

keep logical checkpoints that are based on the current state and old snapshots of pages that have

changed; (2) compute an incremental digest of the entire state, which is appended to checkpoint

messages that are sent after executing every � requests; and (3) determine which pages must be

fetched when the state of a replica is corrupt or out-of-date.

Recall that in BFT each replica maintains one logical copy of the partition tree for each check-

point that is not yet stable. The tree for a checkpoint stores a tuple � � � � � � for each meta-data

partition and a tuple � � � � � � � � for each page, where � � is the sequence number of the check-

point at the end of the last checkpoint interval where the partition was modified, � is the digest of

the partition, and � is the value of the page.

This is implemented by having the following items in virtual memory:

1. a copy of the current state (all pages) — this is actually shared between the application and

the replication library.

2. the digests in the partition tree computed in the last checkpoint

3. copies of pages and digests stored during an older checkpoint, provided that these pages or

digest have been modified after that checkpoint.

In BASE, things are a bit different since there is a clear distinction between the application state

(the concrete state) and the state that is managed by the library (the abstract state). Furthermore,

we now represent the state as an array of objects, instead of a contiguous chunk of memory that is

partitioned in pages.

Therefore, we need to change the partition tree, so that the leaves now store objects instead of

pages. So the new tuple stored in the partition tree leaves is � � � � ��� � � ��� � � � , where ��� is the size

of the object and � is the abstract object.

We still expect to keep one logical copy of the partition tree for each checkpoint that is not yet

stable. But this time, we only keep items (2) and (3) in the list above in virtual memory, i.e., we do

35

not expect to keep a copy of the entire current abstract state in memory, but instead we only ask for

copies of the abstract objects when we need them.

This way, we expect to free a large amount of virtual memory for the unmodified server process

that is invoked by the conformance wrapper. In BFT this was not a major problem since the state of

the library and the application that implemented the service were shared.

During normal case operation (i.e. if we exclude state transfers) the abstraction function will be

invoked on two kinds of occasions: during a checkpoint, to compute the new value of the object’s

digest, if it was changed during the last checkpoint interval; and before an object is modified for the

first time in a checkpoint interval, so that we can store a logical copy of the state during the previous

checkpoint (we only store copies of the abstract objects that change).

Normally, this will result in two consecutive calls of the abstraction function (first to compute

the digest during the checkpoint, and next when the object is subsequently modified). The abstract

object returned by these two calls will be the same.

We could minimize the overhead introduced by the abstraction function by keeping the abstract

object in memory between these calls. But the interval between these two calls may be very large,

and we would end up with almost the entirety of the abstract state in virtual memory.

Still, we can expect a certain locality in object access, and therefore we keep a small LRU cache

with objects that were computed by the abstraction function during a checkpoint. These may be

used to avoid another call to the abstraction function if the object is modified in the near future.

State Transfer

State transfer is now done at the granularity of objects instead of pages: the library detects which

objects are out of date or corrupt and fetches them, in an analogous way that it detected and fetched

out of date or corrupted pages in BFT. This raises a problem when we are trying to fetch an object

with a size larger than the maximum message size of the underlying transport mechanism (in our

case, UDP). To overcome this problem we must perform fragmentation of data messages (replies

to fetches). We do this by introducing a constant that defines the maximum fragment size. When

the recovering replica issues a fetch request, it must state which fragment of the object it is asking

for. In a data message, the replier must include the fragment number it is sending and the total size

of the object (so the recovering replica may know whether to send more fetches for the remaining

fragments of the same object).

A problem arises from the fact that we designate a replier to the fetch message (the remaining

36

replicas only send digests), and a malicious replier might send an object size that is excessively

large, causing the recovering replica to waste time sending various fetches for the same object. This

problem is solved by a mechanism that periodically changes the replier of the fetch request. When

the recovering replica notices a change in the object size it must restart the object fetch from the

beginning.

Fetches of large objects may be problematic, since we pay the penalty of sending several fetches

for the various fragments, even if only a small part of the object is incorrect. This problem may be

solved by changing the definition of the abstract state, such that it generates smaller objects. An

example of such an alteration will be shown in Section 4.5. In Section 8.2 we propose a modification

in the BASE library that overcomes this problem without the need to change the abstract state

specification.

Recoveries

After a replica restarts, the BASE library restores the state of the protocol using information that

was saved during shutdown, like the value for its own partition tree, and then invokes the restart

upcall of the conformance wrapper in order to reconstruct the abstract state from the concrete state

that is in disk plus some extra information that was saved by the conformance wrapper using the

shutdownmethod.

After that, the recovering replica must check its own abstract state and fetch those objects that

are out-of-date or corrupt. To do this, the replica compares the digests in its own partition tree with

the partition digests that it fetches from other replicas, assuming that the digest for the objects match

the values that the library stored during shutdown. Then, it initiates a state transfer for those objects

that are out-of-date or corrupt.

The time spent waiting for fetch replies is overlapped with computing digests for each of the

partition’s objects and comparing those digests with the ones in the partition tree. To obtain the

digests for the objects in the current abstract state, the recovering replica must invoke the abstraction

function on all the elements of the abstract state vector and compute the respective digests. Those

objects whose digests do not match are queued for fetching.

The application may increase the amount of parallelism between state checking and waiting for

fetch replies by only partially reconstructing the abstract state in the restart upcall, and use the

abstraction function to detect if there are data structures that still need to be reconstructed and doing

it if necessary. It is more efficient to reconstruct the state in the abstraction function since this is

37

done in parallel with fetching.

38

Chapter 4

Example I: File System

This chapter describes the first example application that is used to illustrate our methodology: a

replicated file system. The file system is based on the NFS protocol [2]. Its replicas can run different

operating systems and file system implementations.

The first three section in this chapter describe the how the successive steps in the methodology

were applied in this example: defining the abstract specification; implementing the conformance

wrapper; and defining the abstraction function and its inverse. Section 4.4 describes the proactive

recovery mechanism in this service and we conclude in Section 4.5 with a discussion of possible

optimizations.

4.1 Abstract Specification

The common abstract specification is based on the specification of the NFS protocol [2]. The

abstract file service state consists of a fixed-size array of pairs with an object and a generation

number. Each object has a unique identifier, oid, which is obtained by concatenating its index in

the array and its generation number. The generation number is incremented every time the entry

is assigned to a new object. There are four types of objects: files, whose data is a byte array;

directories, whose data is a sequence of � name, oid � pairs ordered lexicographically; symbolic

links, whose data is a small character string; and special null objects, which indicate an entry is free.

All non-null objects have meta-data, which includes the attributes in the NFS fattr structure, and

the index (in the array) of its parent directory. Each entry in the array is encoded using XDR [1].

The object with index � is a directory object that corresponds to the root of the file system tree that

was mounted. Initially, the root directory is empty.

39

Keeping a pointer to the parent directory is redundant, since we can derive this information

by scanning the rest of the abstract state. But it simplifies the inverse abstraction function and the

recovery algorithm, as we will explain later.

The operations in the common specification are those defined by the NFS protocol. There are

operations to read and write each type of non-null object. The file handles used by the clients are the

oids of the corresponding objects. To ensure deterministic behavior, we require that oids be assigned

deterministically, and that directory entries returned to a client be ordered lexicographically.

The abstraction hides many details; the allocation of file blocks, the representation of large

files and directories, and the persistent storage medium and how it is accessed. This is desirable

for simplicity and performance. Also, the more we abstract from implementation details such as

allocation issues, the grater resilience to software faults due to aging we have (e.g. we tolerate

resource leaks since these do not show up in the abstract state and we may fix them during recovery).

4.2 Conformance Wrapper

The conformance wrapper for the file service processes NFS protocol operations and interacts with

an off-the-shelf file system implementation using the NFS protocol as illustrated in Figure 4-1.

A file system exported by the replicated file service is mounted on the client machine like any

regular NFS file system. Application processes run unmodified and interact with the mounted file

system through the NFS client in the kernel. We rely on user level relay processes to mediate

communication between the standard NFS client and the replicas. A relay receives NFS protocol

requests, calls the invoke procedure of our replication library, and sends the result back to the NFS

client. The replication library invokes the execute procedure implemented by the conformance

wrapper to run each NFS request.

The conformance rep consists of an array that corresponds to the one in the abstract state but

it does not store copies of the objects; instead each array entry contains the type of object, the

generation number, and for non-empty entries it also contains the file handle assigned to the object

by the underlying NFS server, the value of the timestamps in the object’s abstract meta-data, and

the index of the parent directory. The rep also contains a map from file handles to oids to aid in

processing replies efficiently.

The wrapper processes each NFS request received from a client as follows. It translates the file

handles in the request, which encode oids, into the corresponding NFS server file handles. Then

40

Figure 4-1: Software architecture

it sends the modified request to the underlying NFS server. The server processes the request and

returns a reply.

The wrapper parses the reply and updates the conformance rep. If the operation created a new

object, the wrapper allocates a new entry in the array in the conformance rep, increments the gen-

eration number, and updates the entry to contain the file handle assigned to the object by the NFS

server and the index of the parent directory. If any object is deleted, the wrapper marks its entry in

the array free. In both cases, the reverse map from file handles to oids is updated.

The wrapper must also update the abstract timestamps in the array entries corresponding to

objects that were accessed. For this, it uses the value for the current clock chosen by the primary

using the propose value upcall in order to prevent the states of the replicas from diverging.

However, if a faulty primary chooses an incorrect value the system could have an incorrect behavior.

For example, the primary might always propose the same value for the current time; this would cause

all replicas to update the modification time to the same value that it previously held and therefore,

according to the cache consistency protocol implemented by most NFS clients [10] , cause the

clients to erroneously not invalidate their cached data, and thus leading to inconsistent values at

the caches of different clients. The solution to this problem is to have each replica validate the

choice for the current timestamp using the check value function. In this case, this function must

guarantee that the proposed timestamp is not too far from the replica’s own clock value, and that the

timestamps produced by each primary are monotonically increasing.

Finally, the wrapper returns a modified reply to the client, using the map to translate file handles

to oids and replacing the concrete timestamp values by the abstract ones.

When handling readdir calls the wrapper reads the entire directory and sorts it lexicographically

41

to ensure the client receives identical replies from all replicas.

4.3 State Conversions

The abstraction function in the file service is implemented as follows. For each file system object,

it uses the file handle stored in the conformance rep to invoke the NFS server to obtain the data

and meta-data for the object. Then it replaces the concrete timestamp values by the abstract ones,

converts the file handles in directory entries to oids, and sorts the directories lexicographically.

Figure 4-2: Example of the abstraction function

Figure 4-2 shows how the concrete state and the conformance rep are combined to form the

abstract state for a particular example. Note that the attributes in the concrete state are combined

with the timestamps in the conformance rep to form the attributes in the logical state. Also note

that the contents of the files and directories are not stored by the conformance rep, but only in the

concrete state.

The pseudocode for the inverse abstraction function in the file service is shown in Figure 4-3.

42

This function receives an array with the indices of the objects that need to be updated and the new

values for those objects. It scans each entry in the array to determine the type of the new object, and

acts accordingly.

function put objs(in modified object array)
for each entry � modified object array do

if new object’s type = file or symbolic link then
update directory(new object’s parent directory index)
update object’s meta-data in the conformance rep
set file attributes
write file’s new contents or update link’s target

else if new object’s type = directory then
update directory(this object’s index)
update object’s meta-data in the conformance rep

else if new object’s type = free entry then
update object’s type in the conformance rep

function update directory(in directory’s index)
if (directory has already been updated or

directory has not changed) then
do nothing

else
update directory(new directory’s parent directory index)
read directory’s old contents using NFS calls
for each entry in old directory do

if entry is not in new directory then
remove entry using NFS call

else if entry is in new directory but type is wrong then
remove entry

for each entry in new directory do
if entry is not in old directory then

create entry using NFS call

Figure 4-3: Inverse abstraction function pseudocode

If the new object is a file or a symbolic link, it starts by calling the update directory func-

tion, passing the new object’s parent directory index as an argument. This will cause the object’s

parent directory to be reconstructed if needed, and the corresponding object in the underlying file

system will be created if it did not exist already. Then it can update the object’s entry in the con-

formance rep, and issue a setattr and a write to update the file’s meta-data and data in the

concrete state. For symbolic links, it is sufficient to update their meta-data.

If the new object is a directory it suffices to call update directory passing its own index

as an argument, and then updating the appropriate entry in the conformance rep.

Finally, if the new object is a free entry it updates the conformance rep to reflect the new object’s

43

type and generation number. If the entry was not previously free, it must also remove the mapping

from the file handle that was stored in that entry to its oid. We do not have to update the parent

directory of the old object, since it must have changed and will be processed eventually.

The update directory function can be summarized as follows. If the directory that is

being updated has already been updated or is not in the array of objects that need to be updated

then the function performs no action. Otherwise it calls itself recursively passing the index of the

parent directory (taken from the new object) as an argument. Then, it looks up the contents of the

directory by issuing a readdir call. It scans the entries in the old state to remove the ones that are

no longer present in the abstract state (or have a different type in the abstract state) and finally scans

the entries in the new abstract state and creates the ones that are not present in the old state. When

an entry is created or deleted, the conformance rep is updated to reflect this.

4.4 Proactive Recovery

After a recovery, a replica must be able to restore its abstract state. This could be done by saving

the entire abstract state to disk before the recovery, but that would be very expensive. Instead we

want to save only the metadata (e.g., the oids and the timestamps). But to do this we need a way

of relating the oids to the files in the concrete file system state. This cannot be done using file

handles since they can change when the NFS server restarts. However, the NFS specification states

that each object is uniquely identified by a pair of meta-data attributes: � fsid,fileid � . We solve the

problem by adding another component to the conformance rep: a map from � fsid,fileid � pairs to

the corresponding oids. The shutdownmethod saves this map (as well as the metadata maintained

by the conformance rep for each file) to disk.

After rebooting, the restart method performs the following steps. It reads the map from

disk; performs a new mount RPC call, thus obtaining the file handle for the file system root; and

places null file handles in all the other entries in the conformance rep that correspond to all the other

objects, indicating that we do not know the new file handles for those objects yet. It then initializes

the other entries using the metadata that was stored by the shutdownmethod.

Then the replication library runs the protocol to bring the abstract state of the replica up to date.

As part of this process, it updates the digests in its partition tree using information collected from

the other replicas and calls get obj on each object to check if it has the correct digest. Corrupt or

out-of-date objects are fetched from the other replicas.

44

The call to get obj will determine the new NFS file handle if necessary. In this case, it goes

up the directory tree (using the parent index in the conformance rep) until it finds a directory whose

new file handle is already known. Then it issues a readdir to learn the names and fileids of the

entries in the directory, followed by a lookup call for each one of those entries to obtain their NFS

file handles; these handles are then stored in the position that is determined by the � fsid,fileid �

to oid map. Then it proceeds down the path of the object whose file handle is being reconstructed,

computing not only the file handles of the directories in that path, but also those of all their siblings

in the file system tree.

When walking up the directory tree using the parent indices, we need to detect loops so that the

recovery function will not enter an infinite loop due to erroneous information stored by the replica

during shutdown.

Computing the new file handles during the object check stage is efficient, since this is done in

parallel with fetching the objects that are out-of-date.

Currently, we restart the NFS server in the same file system and update its state with the objects

fetched from other replicas. We plan to change the implementation to start an NFS server on a sec-

ond empty disk and bring it up-to-date incrementally as we obtain the values of the abstract objects.

This has the advantage of improving fault-tolerance as discussed in Section 3.2. Additionally, it can

improve disk locality by clustering blocks from the same file and files that are in the same directory.

4.5 Discussion

The current design for the abstract state specification has one defect. When a file size grows, the

size of the object grows to the same size plus the size of the meta-data. As was mentioned in

Section 3.2.2, this can be a problem when those objects become corrupt or out of date at one replica

and have to be transferred from some other replica. In particular, if only a small part of the contents

of the object is incorrect, we are paying the penalty of transferring a very large object unnecessarily.

In Section 3.2.2, we mentioned that a possible solution would be to change the specification for the

abstract state such that it uses smaller objects. We exemplify how this could be done for the file

system.

An alternative design for the file system abstract state that overcomes this problem is to use an

indirection mechanism, where the data stored in objects that correspond to files that are larger than

a certain threshold are pointers to data block objects (i.e. their indices in the abstract state vector),

45

instead of the actual contents of the files.

This would imply storing an additional map in the conformance rep to relate the index of a data

block with the corresponding file object. This map would be used in determining which file to read

on an invocation of the get obj upcall for a data block object. The inverse map (from file objects

to the indices of the data blocks they are using) should also be kept in the conformance rep to allow

easier detection of which index of the abstract state array is changed when we write to a file (so it

can be passed to the modify procedure) and also to speed up the abstraction function for objects

that correspond to large files.

This optimization is done at the expense of an increased complexity in the conformance wrapper

and state conversions. As we will explain in Chapter 6, this can be problematic since it increases the

probability of the conformance wrapper or the state conversions introducing software errors. Since

all replicas share this code this induces an undesirable correlation in replica failure.

46

Chapter 5

Example II: Object-Oriented Database

The methodology described in Chapter 3 was applied to the Thor object-oriented database manage-

ment system (OODBMS) [36, 35]. In this example, the diversity in the replicas is not obtained from

using distinct implementations, but from using a single, non-deterministic implementation.

The first section in this chapter is an overview of the Thor system. Sections 5.2, 5.3, and 5.4

describe the three main steps in the methodology: defining the abstract specification, conformance

wrapper and state conversion, respectively. We conclude in Section 5.5 with a discussion of several

other aspects of the system that were not included in the current prototype.

5.1 System Overview

Thor is an object-oriented database management system intended to be used in heterogeneous dis-

tributed systems to allow programs written in different programming languages to share objects.

Thor objects are persistent in spite of failures, and are highly available. Each object has a global

unique id. Objects contain data and references to other objects. Thor provides a persistent root

for the object universe. An object becomes persistent if it becomes accessible from the persistent

root. If it subsequently becomes unreachable from the root, its storage is reclaimed by a distributed

garbage collector [42].

Objects are stored at server nodes that are distinct from the machines where application pro-

grams reside. The Thor system runs on both the application site and the server site. The component

that runs on the server side, called object repository (OR), is responsible for managing the storage of

persistent objects. For each application there is a dedicated process called frontend (FE) that handles

all the application requests. The universe of objects is spread across multiple ORs and application

47

programs can access these objects by interacting with their FEs. The FEs cache and prefetch objects

in order to run operations on objects locally, thus reducing the delay as observed by the clients. Thor

supports transactions [27] that allow users to group operations so that the database state is consistent

in spite of concurrency and failures. Figure 5-1 provides an overview of the system architecture of

Thor.

Figure 5-1: Applications, frontends and object repositories in Thor

The system creates a frontend process for an application whenever the latter want to access

objects from the Thor universe. When the FE interacts with an OR for the first time, it creates a

session with that server. The FE and the OR then maintain information about each other until the

session terminates. The OR discards all the per-FE information when the respective session ends.

Since the target of our replication technique is going to be the Thor OR, the OR will be the focus

the remainder of the system description. A detailed description of the FE can be found in [34, 14].

5.1.1 Object format and fetching

Each OR manages a subset of the Thor object universe. It stores a root directory object that contains

references to other objects or other directories. Applications can ask for the OR’s root directory and

access objects from that OR. However, the root directory serves only as an entry point to the universe

of persistent objects; objects are subsequently accessed by following pointers between objects or

directly using queries.

A fetch command issued to a particular OR identifies the required object by giving its oref. An

oref is a name local to that particular OR. The oref is divided into two parts: a page id and an object

number. The page id is used to locate the disk storage for the object’s page by looking it up in a

table. The first part of the contents of each page includes a table mapping the object number to an

48

offset within the page. This second level of mapping allows an object to move within the page and

change size without affecting its oref. Objects can be identified uniquely by the � OR-id, oref �

pair.

Orefs allow objects to refer to other objects at the same OR; objects point to objects at other

ORs indirectly via surrogates. A surrogate is a small object that contains the identifier of the target

object’s OR and its oref within that OR.

When an application requests an object that is not in the FE cache, the FE fetches the entire page

that contains the object from the corresponding OR. Fetching an entire page improves performance

because there is likely to be some locality within a page and therefore other objects on the page are

likely to be useful to the FE; also page fetches are cheap to process at both FEs and ORs.

The FE assigns new orefs to newly persistent objects. To avoid conflicts in the values that are

assigned by distinct FEs, only one FE has allocation rights for a particular page in each moment.

To obtain allocation rights, the FE must invoke an alloc page operation that returns a pageid for

a newly created page. The OR keeps track of which FE has allocation rights for each page using a

map from page number to the identifier of the FE with allocation rights, or a null identifier if there

is none.

The FE employs a client caching scheme called Hybrid Adaptive Caching or HAC [14]. HAC is

a hybrid between page and object caching that combines the virtues of each — low overheads and

low miss rates, respectively — while avoiding their problems. HAC adaptively partitions the FE

cache between objects and pages based on the current application behavior: pages in which locality

is high remain intact, while for pages in which locality is poor, only hot objects are retained. HAC

partitions the FE cache into page frames and fetches entire pages from the OR. To make room for

an incoming page, HAC selects some page frames for compaction, discards the cold objects in these

frames, and compacts the hot objects to free one of the frames. HAC maintains usage statistics on

a per-object basis with low space and time overheads. The technique combines both recency and

frequency information to make good replacement decisions.

5.1.2 Transactions

All operations of an application are executed as part of a Thor transaction; a new transaction is

started each time the previous one completes. A transaction consists of one or more calls to methods

of Thor objects. The application code ends a transaction by requesting a commit or abort. A commit

request may fail (causing an abort); if it succeeds, Thor guarantees that the transaction is serialized

49

with respect to all other transactions and that all its modifications to the persistent universe are

recorded reliably. If the transaction aborts, it is guaranteed to have no effect and all its modifications

are discarded.

To commit a transaction, a frontend sends the transaction information to one of the ORs and

waits for the decision. If all objects used by the transaction reside at that OR, committing can be

done locally there; otherwise, this OR, also known as the coordinator of the transaction, executes a

2-phase commit protocol [26, 45]. After the outcome of the transaction is known, it informs the FE

of the result. The application waits only until phase one of this protocol is over; the second phase is

executed in the background.

Aborts can occur for two reasons: stale data in FE caches, and actual conflicts between concur-

rent transactions. The former is detected using the information in the frontend invalid set, whereas

the latter is detected using a novel concurrency-control algorithm called Clock-based Lazy Opti-

mistic Concurrency Control or CLOCC [6, 5], which will be described below.

The frontend invalid set lists pending invalidations for an FE. As soon as an OR knows about a

commit of a transaction, it determines what invalidations it needs to send to what FEs. It does this

using a cached pages directory, which maps each page in the OR to the set of FEs that have cached

copies of that page. When a transaction commits, the OR adds a modified object to the invalid set

for each FE that has been sent that object’s page. An object is removed from an FE’s invalid set

when the OR receives an ack for the invalidation from the FE. The hybrid caching scheme described

above allows the FE to discard the invalid object while retaining the remaining objects of the page.

A page is removed from the cached pages directory for the FE when the OR is informed by the FE

that it has discarded the page.

All messages of the invalidation protocol are piggybacked in the other messages, which reduces

the communication costs associated with this protocol. To avoid long delays in sending invalidation

protocol messages when there are no requests, periodic ”I’m alive” requests are sent from the FEs

and replied immediately.

Concurrency control is done at the level of objects to avoid false conflicts [11]. Furthermore,

Thor uses an optimistic concurrency-control algorithm to maximize the benefit of the client cache

and avoid communication between FEs and ORs for concurrency control purposes. The FE runs a

transaction assuming that reads and writes of the objects in cache are permitted. When the transac-

tion attempts to commit, the FE informs an OR about the reads and writes done by the transaction,

together with the new values of any modified objects. The FE assigns the transaction a timestamp,

50

that is obtained by reading the time of its local clock and concatenating it with the or-id of the OR

that is being contacted to obtain a unique number. It is assumed that the clock values of all nodes

in the system are loosely synchronized to within a few tens of milliseconds of one another. This as-

sumption is not needed for correctness, but improves performance since it allows each OR to make

time-dependent decisions, e.g. when discarding old information. This assumption is a reasonable

one for current systems [44].

Every participant of the transaction will try to serialize the transaction relative to other transac-

tions. This is done using a backward validation scheme [28]: the committing transaction is com-

pared with other committed and committing transactions, but not with active transactions (since that

would require additional communication between FEs and ORs).

A transaction’s timestamp determines its position in the serial order, and therefore the system

must check whether it can commit the transaction in that position. For it to commit in that position

the following conditions must be true:

1. For each object it used (read or modified), it must have used the latest version, i.e., the modifi-

cation installed by the latest committed transaction that modified that object and that is before

it in the serialization order.

2. It must not have modified any object used by a committing or committed transaction that

follows it in the serialization order. This is necessary since otherwise we cannot guarantee

condition (1) for that later transaction.

An OR validates a transaction using a validation queue, or VQ, and the object sets from the

frontend invalid set. The VQ stores the read object set (ROS) and modified object set (MOS) for

committed and committing transactions. For now we assume that the VQ can grow without bounds;

we discuss how entries are removed below. If a transaction passes validation, it is entered in the VQ

as a committing transaction; if it aborts later it is removed from the VQ while if it commits, its entry

in the VQ is marked as committed.

A participant validates the transaction T by (1) checking whether any objects used by a trans-

action T are in the invalid set for T’s client; and (2) comparing T’s MOS and ROS against those of

all the transactions in the validation queue to see if the conditions above are violated. A complete

description of this check can be found in [6, 5].

Time is also used to keep the VQ small. A threshold timestamp is maintained, VQ.t, and the

VQ does not contain any entries for committed transactions whose timestamp is less than VQ.t. An

51

attempt to validate a transaction with timestamp smaller than VQ.t will fail, but this is an unlikely

situation given the loosely synchronized clocks assumption. VQ.t is set to the current time minus

some
�

that is large enough to make it highly likely that prepare messages for transactions for which

this OR is a participant will arrive when their timestamp is greater than the threshold.

When the transactions prepare and commit the usual information (the ROS, MOS, and new

versions of modified objects) is written to the transaction log. This is necessary to ensure that

effects of committed transactions survive failures.

5.1.3 The Modified Object Buffer

The fact that invalid objects are discarded from the client cache while other objects in that page are

retained means that it is impossible for FEs to send complete pages to the OR when a transaction

commits. Instead object shipping must be employed. However, ultimately the OR must write objects

back to their containing pages in order to preserve clustering. Before writing the objects it is usually

necessary to read the containing page from disk (this is called an installation read). Doing an

installation read while a transaction commits degrades performance, so another approach is needed.

The approach that is employed uses a volatile buffer in which recently modified objects are

stored; this buffer is called modified object buffer, or MOB [24]. When modified objects arrive at

the OR, they are stored in the MOB instead of being installed in a page cache. The modifications

are written back to disk lazily as the MOB fills up and space is required for new modifications. Only

at this point are installation reads needed.

The MOB architecture has several advantages over a conventional page buffer. First, it can be

used in conjunction with object shipping, and yet installation reads can be avoided when transactions

commit. Second, less storage is needed to record modifications in the MOB than to record entire

modified pages in a page cache. Therefore the MOB can record the effects of more transactions

than a page cache, given the same amount of memory; as a result, information about modifications

can stay in the MOB longer than in a page cache. This means that by the time we finally move an

object from the MOB to disk, there is a high probability that other modifications have accumulated

for its page than in the case of a page cache. We call this effect write absorption. Write absorption

leads to fewer disk accesses, which can improve system performance.

Now we describe how the MOB works; more information can be found in [24]. The OR contains

some volatile memory, disk storage, and a stable transaction log as shown in Figure 5-2. The

disk provides persistent storage for objects; the log records modifications of recently committed

52

transactions. The volatile memory is partitioned into a page cache and a MOB. The page cache

holds pages that have been recently fetched by FEs; the MOB holds recently modified objects that

have not yet been written back into their pages on disk.

Figure 5-2: Server organization

Modifications of committed transactions are inserted into the MOB as soon as the commit has

been recorded in the log. They are not written to disk immediately. Instead a background flusher

thread lazily moves modified objects from the MOB to disk. The flusher runs in the background

and does not delay commits unless the MOB fills up completely with pending modifications.

Pages in the cache are completely up-to-date: they contain the most current versions of their ob-

jects. However, pages on disk do not reflect modifications of recent transactions, i.e., modifications

in the MOB. Therefore a fetch request is processed as follows: If the needed page is not in the page

cache, it is read into the cache and then updated to reflect all the recent modifications of its objects

in the MOB. Then the page is sent to the FE. When the page is evicted from the cache, it is not

written back to disk even if it contains recent modifications; instead we rely on the flusher to move

these modifications to disk.

The page cache is managed using a LRU policy, but the MOB is managed in a FIFO order to

allow the log to be truncated in a straightforward way. The flusher scans the MOB and identifies a set

of pages that should be written to disk to allow a prefix of the log to be truncated. This set of pages

is read into the page cache if necessary (these are the installation reads). Then all modifications for

those pages are installed into the cached copies and removed from the MOB. Then the pages are

written to disk, and finally a prefix of the log is truncated. Therefore the operation of the flusher

replaces the checkpointing process used for log truncation in most database systems [27]. The log

may contain records for modifications that have already been installed on disk but this is not a

problem: the modifications will be re-installed if there is a failure (and re-entered in the MOB),

53

but failures are rare so that the extra cost to redo the installs is not an issue and correctness is not

compromised since installation is idempotent.

5.2 Abstract Specification

Now we will focus on how we applied the methodology to build a replicated version of the Thor

database. We will begin by defining the abstract specification for the database, then we describe the

conformance wrapper and the abstraction functions for this system. This description is based on a

single OR version of the system. The extensions required to support multiple ORs are discussed in

Section 5.5.

The abstract specification for the object-oriented database is based on the state and operations

of Thor, since in this case the replicated system is not meant to use different implementations, and

there is no standard way to access the state of an object-oriented database.

The operations defined in the abstract specification are those defined in the FE/OR interface of

Thor, and the semantics of the operations is the same as defined by Thor. These are the following.

� fetch — This operation requests the page that contains the object whose oref is passed as

an argument. It is assumed that the FE will cache the page that is being fetched.

� alloc page — This is used to allow the FE to request allocation rights for a new page.

Returns the page id for the new page or an error code.

� get root — Has no arguments and returns the oref of the root object.

� commit — Tries to commit a transaction, passing as arguments the NOS, ROS and MOS

(new, read and written object sets, respectively) and the timestamp for this transaction. Re-

turns the result of the transaction (commit or abort) and possibly an error code indicating why

it aborted.

� "I’m Alive" — Exchanged when there is no activity for a long period of time.

� Start / End Session— These messages are sent by the FE to initiate and end sessions

with a particular OR. This causes the OR to create or free, respectively, the data structures that

store all information that it needs to manage a session for that particular FE. This information

includes the frontend invalid set and all the information about that particular FE in the cached

pages directory.

54

All requests and replies may include additional information related to the invalidation protocol.

The only operation that is omitted from the abstract specification is the or stats operation,

which has no input arguments and retrieves a set of statistics from the OR, such as the amount of

time spent in each operation. It was omitted since different replicas have different values for these

statistics, and thus a common abstract operation is not the correct way to retrieve these values. This

operation is meant to be used for debugging and profiling, and is really not part of the system.

The common abstract state is defined as follows. The array of objects is divided in four fixed-

size subarrays. These define the following parts of the abstract state.

� OR pages — This defines the contents of the database. The OR objects are already clustered

in pages, so the contents of the entries in the abstract state are defined to be exactly the same as

the pages that are stored in disk. Also, OR pages are assigned page numbers deterministically;

this number will correspond to the position in the subarray of the abstract state that describes

the OR pages. Pages that have not been allocated can be identified by placing the invalid

OR number � in the page header. The first few bytes of each page contain a table that maps

from object numbers to their offsets within the page; this table is also included in the abstract

object.

� Validation Queue — The validation queue must be included in the abstract state because it

defines the outcome of future transactions that use objects that were also used by committing

or recently committed transactions. To efficiently represent a queue as an array of objects,

those objects should not be kept in order at the begining of the array. This is so because

an unnecessarily large number of objects would be changed when the queue is truncated

(namely those objects that remained in the queue but had their position in the array changed);

this works inefficiently with the incremental checkpointing scheme employed by the library,

since only the objects that changed since the last checkpoint have to be copied to a checkpoint.

Instead, we define that the position of a validation queue entry in the abstract state subarray

does not change while that entry remains in the validation queue. A deterministic procedure

is defined to assign a free position in the subarray to a new entry in the validation queue.

The entries in the abstract state that correspond to VQ entries contain the timestamp that was

assigned to that entry, the status of that transaction, the number of objects that were read and

written by that transaction, followed by the corresponding orefs. Free entries in this abstract

state sub-array contain a special null timestamp. The first entry in this subarray is a special

55

entry that contains the validation queue threshold.

� Frontend invalid set — This structure lists pending invalidations for each FE, and is used

in determining if a transaction has to abort due to having read stale versions of objects that

were changed by concurrent transactions. Therefore, this information is also included in the

abstract state. The abstract state for the frontend invalid set consists of an array with length

equal to the maximum number of FEs in the system. Each entry in the array contains the FE

identifier (or an invalid null identifier for free entries), the number of invalid objects followed

by the corresponding orefs. When an FE starts a session with a particular OR, it is assigned

a client number that is used to determine the position of its invalid set in this sub-array of the

abstract state.

� Cached pages directory — This keeps track of the set of FEs that have cached copies of

each page in the OR. It is used in determining the new frontend invalid sets after a transaction

commit. There is one entry in the array per OR page. As in the case of the OR page subarray,

the position of an entry in this subarray is equal to the page number. Each entry contains a

count of the FEs that have cached the page, followed by a list with the FE identifier and the

state (up-to-date or not) of the page they are holding. We also record here the identifier of the

FE that has allocation rights for this page.

The abstraction hides the details of caching and lazy modification write back at the server side,

giving a single view of the database contents. It therefore allows different replicas to cache different

pages, or write back objects to pages at different times, without having their abstract states diverge.

5.3 Conformance Wrapper

Unlike in the file system example, the conformance wrapper for the Thor object-oriented database

is not a separate process that invokes operations on an unmodified server. Instead we interposed the

wrapper code directly on that implementation.

As explained in Section 5.1, the FE assigns each transaction a timestamp that is used for con-

currency control purposes. A faulty FE could cause an excessive number of aborts in subsequent

transactions by assigning a timestamp that is too large. This is so because all future transactions

will be validated against this one and, assuming they have smaller timestamp values, they will abort

if they read or modified any object that was written by this transaction. To avoid this, when validat-

56

ing a transaction, the OR must abort it if the timestamp that is proposed is larger than the server’s

current time plus a tolerance constant � . Since the replicas will not agree on the local clock reading

used to perform the check, we must use the propose value upcall to obtain a unique local clock

value for all the replicas.

As in the previous example, a faulty primary might subvert the system’s desired behavior by

proposing an erroneous value for the current time, which might allow a transaction with an excessive

timestamp to commit. To avoid this situation, all replicas must use the check value upcall to

verify that the value that is proposed by the primary is within a range of
�

of their current clock

reading. As usual, if enough replicas refuse an erroneous value that is proposed by a faulty primary,

the request will not be able to execute, and eventually a timeout mechanism will cause the replicas

to start the view change procedure and a new primary will be chosen.

There is another check that the conformance wrapper needs to perform due to the fact that FEs

are no longer trusted. A malicious FE could exploit the fact that FEs decide the values for the orefs

of newly created objects to lead the database to an inconsistent state by either proposing an oref

value of an already existing object or by trying to create an object that does not fit in the page that it

is being placed. Therefore, the OR must verify if any of these conditions is violated, and if so abort

the correspondent transaction.

It does this by keeping a small additional amount of information on the cached pages directory.

In this structure, the OR already keeps track of which FE has allocation rights for this page. It must

also maintain information about the free space available in the page and the next object number to

be assigned (the system must now impose that object numbers are assigned sequentially). When

an FE creates an object, the OR checks if it has allocation rights for the corresponding page, if the

object fits the page and if it has been assigned a valid object number. If any of these conditions is

violated, the transaction that created the object is aborted.

In order to prevent a malicious client from requesting allocation rights for the entire database,

we must also limit the amount of pages that each FE can be granted these rights.

The conformance rep maintains two data structures: an array of size equal to the size of the

validation queue subarray in the abstract state, and another of size equal to the maximum number

of FEs in the system.

The entries in the first array are the timestamps of the VQ entries that correspond to the entry

with the same index in the abstract state subarray. The entries in the second array are pointers to the

data structure that Thor uses to maintain all the per-FE information. These two arrays are used in

57

the state conversions as described in Section 5.4.

The inverse correspondence (from objects in the concrete state to indices in the abstract state

array) is also maintained in the conformance rep to speed up the process of knowing which index to

pass as an argument to the modify procedure of the BASE library whenever that part of the state

is modified.

5.4 State Conversions

The abstraction function maps from the concrete state to the abstract state and is implemented in the

get obj upcall used by the BASE library. This upcall receives as an input parameter the index in

the abstract state array of the object that the library is trying to retrieve. So this function must begin

by determining which subarray the requested object belongs to. Then, the object in the abstract state

is computed accordingly:

� OR page — To compute this kind of object, we must first install all pending modifications in

that page. To do so, we invoke an existing OR method that retrieves all modifications for a

particular page, installs them and returns the updated version of that page. By doing this we

are not flushing the MOB, but only temporarily installing the modifications that belong to the

page that is being requested.

� Validation queue — If the object is in the validation queue subarray, and it is the first entry

in the sub-array, that means the object requested only holds the validation queue threshold,

so we just read that value and copy it to the object that is being returned. If it is a VQ entry,

we first retrieve the timestamp that corresponds to that entry from the timestamps array in

the conformance rep, and then fetch that entry from the VQ. Then, we just copy the number

of objects read and modified by the transaction and their orefs to compose the object in the

abstract state.

� Frontend invalid set — We begin by retrieving the data structure in the Thor implementation

that holds all the per-FE information using the respective array in the conformance rep. Then

we copy the FE identifier and the number of invalid objects with the corresponding orefs to

the newly created abstract object.

� Cached pages directory — In this case, we determine the page number that the requested

directory entry corresponds to by computing the offset to the beginning of the subarray, and

58

then we look up all the information about which FEs have cached this page, and the current

status of the cached page from the table. We also copy the identifier of the FE with allocation

rights to the page, that is stored in the same directory.

The inverse abstraction function works as follows. It receives an array with new values for the

abstract objects. We must iterate through the elements of that array and restore their state. Again,

there are four possible cases according to the type of object that we are restoring.

� OR page — If the contents of the new page object indicate that it no longer exists, we remove

the page from the OR, freeing up any resources that it had allocated. Otherwise, before we

update an entry that corresponds to an OR page that already existed we must remove the

entries in the MOB that correspond to that page, so that it has no pending modifications

and therefore the contents that we are going to install in the OR pages are not going to be

clobbered by those modifications. Then we fetch the page, placing it in the OR cache, and

then overwrite the contents with the ones we receive from the function, and force the page to

be written back to disk.

� Validation queue, frontend invalid set and cached pages directory — If the entry already

exists and it remains present in the new abstract state, we just update its value according to

the new abstract object value. Otherwise we must delete the entry if the new abstract object

describes a non-existent entry, or create the entry if it did not previously exist and fill in the

values that are described by the new abstract object. The conformance rep must be updated

accordingly.

5.5 Discussion

In this section we discuss several features of our system that are not included in the current prototype

but are expected to be implemented in the future. We present here their possible design.

5.5.1 Multiple Server Architecture

The current prototype only allows one OR in the Thor universe. We discuss here how the system

described above could be extended to support multiple ORs.

The only limitation of the current system that prevents us from having multiple ORs is that it

does not provide support for distributed transactions, i.e. transactions that use objects from more

59

than one OR. As we mentioned in Section 5.1, in a distributed transaction the client will send a

commit request to one of the ORs that is involved in the transaction. This OR, also known as the

coordinator of the transaction, executes along with the remaining ORs (called the participants) a

2-phase commit protocol and informs the FE of the result.

Therefore, we must extend the interface in Section 5.2 to support the 2-phase commit protocol

operations: prepare and commit. These operations are not invoked by an FE, but by a replicated

OR, i.e. there is a new scenario where a group of replicas (the coordinator OR) act as a client of

another replicated OR (one of the participants).

If each of the replicas in the coordinator OR sent independently a request to the participant OR

the number of messages with be prohibitively large. In fact, a simple analysis can prove that this

number is
���

����� , where � is the number of replicas in each OR.

A scalable solution to this problem is proposed in [7]. It is based on having the primary of

the client group perform the request on behalf of the other replicas in its group. After executing

the request, it sends the reply to all the backups. As usual, we must prevent a faulty primary from

causing the system to misbehave, namely, we have to prevent a faulty primary from (1) forging a

request that will cause the participant OR to change to an incorrect state (e.g. requesting a two

phase commit that was not invoked by a client); (2) forging the reply of the participant OR that is

communicated to the remaining replicas in the coordinator OR; and (3) not executing the operation,

causing the system to stall.

The first problem is solved imposing that all read-write requests from replicated clients have to

be sent along with a set of � � � message authentication codes [9] (or MACs) for that request from

other replicas, that provide proof that at least one non-faulty replica is invocating the request.

The second condition can also be assured using MACs. In the ordinary case (when there is a

single client), after executing a request, each replica authenticates the reply using the key of a single

client. When the client is a primary acting on behalf of a group of replicas, we impose that the

replicas that execute the request must authenticate the reply using the keys for each of the replicas

in the client group, which allows the backup replicas in that group to verify the authenticity of the

reply.

Finally, the third condition is taken care of by the view change mechanism that will cause the

faulty primary to be replaced if the request does not get executed after a certain time limit.

With this scheme, the number of messages that is exchanged per request in normal case opera-

tion (i.e. when the primary is non faulty) is only
���

��� .

60

5.5.2 Proactive Recovery

After recovery, we must be able to restore the abstract state of the database. The conformance

wrapper must save enough state to disk during shutdown to allow this to happen. We discuss how

this could be done separately for each subset of the abstract state.

� OR pages — For this part of the state there are two distinct possibilities for recovery. In the

first scheme, we drain the MOB during shutdown, causing all pending modifications to be

written to disk. In this case, during restart the OR pages are read from disk and we compute

digests over the values that we read. The other possibility is to save the MOB to disk during

shutdown. During recovery, this is read from disk together with the OR pages, and the pending

modifications are installed then. The second scheme has the advantage of avoiding installation

of pending modifications during shutdown, which can be more costly than saving the MOB

to disk. But at restart it has the penalty of additional reads from disk, and installation of

modifications in the MOB. This penalty could although be minimized if these operations are

done in parallel with fetches.

� Validation Queue — Since this part of the state changes very rapidly, it may not be worth

saving to disk during shutdown. In fact, if the time to reboot is larger than the validation queue

threshold plus the tolerance in the future � , we can guarantee that all existing VQ entries will

have been removed from the VQ when the replica restarts, and therefore saving them to disk

is pointless. Thus, the best solution is to save no information to disk concerning the VQ, and

declare the VQ to be empty after restart, so that only to non-null positions will have to be

fetched.

� Frontend invalid set and Cached pages directory — These represent a small amount of

information, and therefore we should be able to save all these structures to disk with low cost.

5.5.3 Garbage Collector

Thor includes a garbage collection mechanism to reclaim storage used by objects that are no longer

reachable from the persistent root [40, 42, 41, 43]. This scheme partitions the memory into indepen-

dently collectible areas to allow better scalability. Any policy can be used to select which partition

to collect next.

Garbage collection updates the contents of OR pages by removing objects that are no longer

61

reachable. Consequently, it changes the abstract state, as it was defined it in Section 5.2. Since

all replicas must agree on the contents of their abstract state after executing the same sequence of

operations, GC cannot be done independently at each replica, nor in parallel with the execution of

FE requests (e.g., using a background thread that collects unreachable objects).

We cannot change the abstract state definition to only include reachable objects either, since that

would imply performing GC on every operation, which would be too expensive.

The solution we propose is to define garbage collection as an operation that is invoked by the

primary and executed by all replicas using the normal protocol. This operation takes as an argument

the identifier of the partition to garbage collect. This way, we can serialize GC with the remaining

operations and keep all replicas agreeing on the abstract state.

As usual, we must prevent a faulty primary from doing wrong things like starting the garbage

collector more often than necessary or not invoking the garbage collection operation for a long time.

To detect this, replicas need to agree on a deterministic heuristic that determines when and which

partition to garbage collect.

We intend to use the validation of non-deterministic choices mechanism described in Section 3.2

to assure correct garbage collection operation. When a garbage collection operation is proposed, all

replicas use the check value upcall to verify if the garbage collection operation is being invoked

at the correct time, i.e., the heuristic that triggers garbage collection confirms the need to perform it

at that moment, and that the correct partition is going be updated. Also, when the primary does not

invoke the garbage collection operation for an excessive time, the other replicas may use this upcall

to prevent any other operation from being executed.

This way, when a faulty primary tries to cause incorrect or slower functioning of the system

by invoking too many or too few garbage collection operations, the non-faulty replicas will detect

it and reject the check value call. Consequently, the request will not be executed and the view

change mechanism will cause a new primary to be selected.

This GC algorithm uses an additional set of data structures that we did not define before [42].

Each partition must keep an inlist and an outlist. These are the objects that are referenced from other

partitions and objects that reference objects in other partitions. This information can be included in

the abstract state, but is redundant. It can be derived from the global view of the database. Still,

including it in the abstract state can speed up the inverse abstraction function, since that information

does not have to be derived.

62

Chapter 6

Evaluation

Our replication technique must achieve two goals to be successful: it must have low overhead when

compared to the implementations that it uses; and the code of the conformance wrapper and the

state conversion functions must be simple. It is important for the code to be simple to reduce the

likelihood of introducing more errors and to keep the monetary cost of using our technique low.

This chapter presents results to evaluate the performance and code complexity of the systems

that were described in Chapters 4 and 5. The results show that our replicated file system performs

comparably with the off-the-shelf, unreplicated NFS implementations it wraps; that the Byzantine

fault-tolerant version of the Thor object-oriented database performs comparably to its previous im-

plementation; and that in both applications the code added by the BASE technique is simple when

compared to the code of the original implementations.

This Chapter is divided in two parts. Section 6.1 shows the evaluation results for the replicated

file system and Section 6.2 describes the evaluation of the replicated object-oriented database.

6.1 Replicated File System

This section presents results of our experiments for the replicated file system. In Section 6.1.1 we

compare the performance of our replicated file system against the off-the-shelf, unreplicated NFS

implementations. In Section 6.1.2 we show that the wrapper and mappings that were introduced by

the BASE technique are simple when compared to the original implementations.

63

6.1.1 Overhead

Experimental Setup

Our technique has three advantages: reuse of existing code, software rejuvenation using proac-

tive recovery, and opportunistic N-version programming. We ran experiments with and without

proactive recovery in a homogeneous setup where all replicas ran the same operating system; these

experiments measured the overhead of our technique in systems that benefit from the first two ad-

vantages. We also ran experiments without proactive recovery in an heterogenous setup where each

replica ran a different operating system to measure the overhead in systems that benefit from the

first and third advantages.

All experiments ran with four replicas. Four replicas can tolerate one Byzantine fault; we expect

this reliability level to suffice for most applications.

In the homogeneous setup, clients and replicas ran on Dell Precision 410 workstations with

Linux 2.2.16-3 (uniprocessor). These workstations have a 600 MHz Pentium III processor, 512 MB

of memory, and a Quantum Atlas 10K 18WLS disk. The machines were connected by a 100 Mb/s

switched Ethernet and had 3Com 3C905B interface cards. Each machine was connected by a single

Category 5 cable to a full-duplex port in an Extreme Networks Summit48 V4.1 switch. This is a

store-and-forward switch that can forward IP unicast and multicast traffic at link speed. Addition-

ally, it performs IGMP snooping such that multicast traffic is forwarded only to the members of

the destination group. The experiments ran on an isolated network, and we used the Pentium cycle

counter to measure time accurately.

In the heterogeneous setup, the client and one of the replicas ran on machines identical to the

ones in the homogeneous setup. The other replicas ran on different machines with different operat-

ing systems: one ran Solaris 8 1/01; another ran OpenBSD 2.8; and the last one ran FreeBSD 4.0.

All these machines had Pentium III processors with frequencies between 600 and 700 MHz, had

between 256 and 512 MB of memory; and had disks with performance comparable to the model

mentioned above. The machines were connected by a 100 MB/s network but they were connected to

different switches. The network was not isolated and had some load. In these experiments, we had

to disable the IP multicast capabilities of the library since we were not able to perform IP multicast

across the different subnetworks that these machines were connected to.

The BASE library was configured as follows. (For a complete explanation of these parameters

see [13].) The checkpoint period � was 128 sequence numbers, which causes garbage collection of

64

the log to occur several times in each experiment. The size of the log � was 128 sequence numbers.

The state partition tree had 4 levels and each internal node had 256 children. Requests for operations

with argument sizes greater than 255 bytes were transmitted separately; the others were inlined in

pre-prepares. The digest replies optimization was not applied when the size of the operation was

less than or equal to 32 bytes. The window size for request batching was set to 1.

All experiments ran the modified Andrew benchmark [30, 46], which emulates a software de-

velopment workload. It has five phases: (1) creates subdirectories recursively; (2) copies a source

tree; (3) examines the status of all the files in the tree without examining their data; (4) examines

every byte of data in all the files; and (5) compiles and links the files. Unfortunately, the Andrew

benchmark is too small for current systems and therefore it does not exercise the NFS service. So

we increased the size of the benchmark by a factor of � similiarly to what was done in [17]. In this

scaled up version of the benchmark, phase 1 and 2 create � copies of the source tree, and the other

phases operate in all these copies. We ran a version of Andrew with � equal to 100, Andrew100,

that creates approximately 200 MB of data and another with � equal to 500, Andrew500, that cre-

ates approximately 1 GB of data. Andrew100 fits in memory at both the client and the replicas but

Andrew500 does not.

The benchmark ran at the client machine using the standard NFS client implementation in the

Linux kernel with the following mount options: UDP transport, 4096-byte read and write buffers,

allowing write-back client caching, and allowing attribute caching. All the experiments report the

average of three runs of the benchmark and the standard deviation was always below 7% of the

reported values.

Homogeneous

Tables 6.1 and 6.2 present the results for Andrew100 and Andrew500 in the homogeneous setup

with no proactive recovery. They compare the performance of our replicated file system, BASEFS,

with the standard, unreplicated NFS implementation in Linux with Ext2fs at the server, NFS-std. In

these experiments, BASEFS is also implemented on top of a Linux NFS server with Ext2fs at each

replica.

The results show that the overhead introduced by our replication technique is low: BASEFS

takes only 26% longer than NFS-std to run Andrew100 and 28% longer to run Andrew500. The

overhead is different for the different phases due to variations in the amount of time the client spends

computing between issuing NFS requests.

65

phase BASEFS NFS-std
1 0.9 0.5
2 49.2 27.4
3 45.4 39.2
4 44.7 36.5
5 287.3 234.7

total 427.65 338.3

Table 6.1: Andrew100: elapsed time in seconds

There are three main sources of overhead: (1) converting arguments and results and updating

the conformance rep; (2) maintaining checkpoints of the abstract file system state; and (3) the cost

of running the Byzantine-fault-tolerant replication protocol. The Byzantine fault-tolerance protocol

represents 77% of the total overhead, checkpointing is 17%, and argument and result conversion

is only 6%. Most of the time (74%) spent in checkpointing is invoking the abstraction function

(get obj). These results show that the overhead introduced by the conformance wrapper and state

conversions are quite low relative to the overhead of the algorithm.

phase BASEFS NFS-std
1 5.0 2.4
2 248.2 137.6
3 231.5 199.2
4 298.5 238.1
5 1545.5 1247.1

total 2328.7 1824.4

Table 6.2: Andrew500: elapsed time in seconds

We also ran Andrew100 and Andrew500 with proactive recovery. The results, which are labeled

BASEFS-PR, are shown in Table 6.3. The results for Andrew100 were obtained by recovering

replicas round robin with a new recovery starting every 80 seconds, and reboots were simulated by

sleeping 30 seconds. We obtained the results for Andrew500 in the same way but in this case a new

recovery was started every 250 seconds and reboots were simulated by sleeping 60 seconds. This

leads to a window of vulnerability of approximately 6 minutes for Andrew100 and 17 minutes for

Andrew500; that is, the system will work correctly as long as fewer than 1/3 of the replicas fail in a

correlated way within any time window of size 6 (or 17) minutes. The results show that even with

these very strong guarantees BASEFS is only 32% slower than NFS-std in Andrew100 and 30%

slower in Andrew500.

66

system Andrew100 Andrew500
BASEFS-PR 448.2 2375.8

BASEFS 427.65 2328.7
NFS-std 338.33 1824.4

Table 6.3: Andrew with proactive recovery: elapsed time in seconds.

Table 6.4 presents a breakdown of the time to complete the slowest recovery in Andrew100 and

Andrew500. Shutdown accounts for the time to write the state of the replication library and the

conformance rep to disk, and restart is the time to read this information back. Check is the time

to rebuild the oid to file handle mappings in the conformance wrapper, convert the state stored by

the NFS server to its abstract form and verify that the digests of the objects in the abstract state

match the digests in the partition tree that were stored before shutdown. Fetch is the time to fetch

out-of-date objects. This is done in parallel with converting and checking the state, so part of the

fetch protocol is taking place when the check time is being measured.

Andrew100 Andrew500
shutdown 0.07 0.51

reboot 30.05 60.09
restart 0.19 1.89
check 11.00 144.57
fetch 7.89 30.43
total 49.20 237.49

Table 6.4: Andrew: maximum time to complete a recovery in seconds.

The recovery time in Andrew100 is dominated by the time to reboot but as the state size in-

creases, reading, converting, and checking the state becomes the dominant cost; this accounts for

145 seconds in Andrew500 (61% of the total recovery time).

In the worst-case Andrew500 recovery shown above, the amount of data fetched during recov-

ery (i.e. the total size of the objects that were out-of-date) was over 100 MBytes. These results

encourage us to think that the performance degradation in the presence of software faults will be

limited. This is so because most of the time in recovery is spent checking the current state, which

will probably not increase in the presence of software faults. Furthermore, the amount of data trans-

ferred in a recovery for the Andrew500 benchmark is so large that, even if the error caused the entire

state to be corrupt, the penalty to transfer it would not be much larger than what is shown in the

results.

67

As mentioned, we would like our implementation of proactive recovery to start an NFS server

on a second empty disk with a clean file system to improve the range of faults that can be toler-

ated. Extending our implementation in this way should not affect the performance of the recovery

significantly. We would write each abstract object to the new file system asynchronously right after

checking it. Since the value of the abstract object is already in memory at this point and it is written

to a different disk, the additional overhead should be minimal.

Heterogeneous

Table 6.5 presents results for Andrew100 without proactive recovery in the heterogenous setup. In

this experiment, each replica in BASEFS runs a different operating system with a different NFS and

file system implementation. The table also presents results for the standard NFS implementation in

each operating system.

system elapsed time
BASEFS 1753.2
FreeBSD 1162.9
OpenBSD 1097.8

Solaris 1007.4
Linux 338.3

Table 6.5: Andrew100 heterogeneous: elapsed time in seconds

Since operations cannot complete without the cooperation of at least 3 replicas, the overhead

must be computed relative to OpenBSD which has the third fastest time. The overhead of BASEFS

in this experiment is 60%. The higher overhead is not intrinsic to our technique but is an artifact

of our experimental setup: we were unable to use IP multicast when running the Byzantine fault

tolerance library in this setup, and the machines were connected to two switches with some external

load on the link connecting them.

The substantial difference between the performance of the Linux implementation of NFS and

the performance in the remaining operating systems is explained by the fact that the NFS implemen-

tation in Linux does not ensure stability of modified data and meta-data before replying to the client

(as required by the NFS protocol [53]). An interesting fact about our performance results is that if

we compare the performance of our homogeneous setup for BASEFS shown in Table 6.1 (which

ensures stability of data before replying by replicating it) with the non-replicated implementations

that also ensure stability of modified data (the FreeBSD, OpenBSD and Solaris implementations),

68

we conclude that those implementations are � ��� � ����	�� slower than BASEFS-Linux.

6.1.2 Code Complexity

To implement the conformance wrapper and the state conversion functions, it is necessary to write

new code. It is important for this code to be simple so that it is easy to write and not likely to

introduce new bugs. We measured the number of semicolons in the code to evaluate its complexity.

Counting semicolons is better than counting lines because it does not count comment and blank

lines.

The code has a total of 1105 semicolons with 624 in the conformance wrapper and 481 in the

state conversion functions. Of the semicolons in the state conversion functions, only 45 are specific

to proactive recovery. To put these numbers in perspective, the number of semicolons in the code in

the Linux 2.2.16 kernel that is directly related with the file system, NFS, and the driver of our SCSI

adapter is 17735. Furthermore, this represents only a small fraction of the total size of the operating

system.

6.2 Replicated Object-Oriented Database

This section presents results of our experiments for the replicated version of the Thor object-oriented

database. Again, we divide this in two parts. Section 6.2.1 shows the overhead introduced by repli-

cation and Section 6.2.2 shows the complexity of the wrapper and mappings that were introduced

by the BASE technique.

6.2.1 Overhead

Experimental Setup

The experimental setup was similar to the homogeneous setup that was described in Section 6.1.1

for the BASEFS system, and the BASE library was also configured in a similar way. We com-

pared the our version developed using the BASE technique against the original version of the Thor

database, which also uses replication to achieve persistence. It uses a much simpler primary-backup

replication scheme [37]. It was configured with one primary and two backups, and consequently it

tolerates a single benign fault (i.e., a faulty replica may not produce incorrect results).

Our workloads are based on the OO7 benchmark [12]; this benchmark is intended to match the

characteristics of many different CAD/CAM/CASE applications. The OO7 database contains a tree

69

of assembly objects, with leaves pointing to three composite parts chosen randomly from among 500

such objects. Each composite part contains a graph of atomic parts linked by connection objects;

each atomic part has 3 outgoing connections. All our experiments ran on the medium database,

which has 200 atomic parts per composite part.

The OO7 benchmark defines several database traversals; these perform a depth-first traversal of

the assembly tree and execute an operation on the composite parts referenced by the leaves of this

tree. Traversals T1 and T6 are read-only; T1 performs a depth-first traversal of the entire composite

part graph, while T6 reads only its root atomic part. Traversals T2a and T2b are identical to T1

except that T2a modifies the root atomic part of the graph, while T2b modifies all the atomic parts.

In general, some traversals will match the database clustering well while others will not, and we

believe that on average, one cannot expect traversals to use a large fraction of each page.

The OO7 database clustering matches traversal T6 poorly but matches traversals T1, T2a and

T2b well; our results show that on average T6 uses only 3% of each page whereas the other traversals

use 49%.

The objects in the databases in both systems are clustered into 4 KB. The database takes up 38

MB in our implementation, and it was accessed by a single client. In Thor, each OR had a 20 MB

cache (of which 16 MB were used for the MOB); the FE cache had 16MB. All the results we report

are for hot traversals: we preload the caches by running a traversal twice and timing the second run.

This database size is quite small for current standards. We tried to make up for that fact by

maintaining small caches both at the client and server side, so that the entire database did not fit in

their caches.

Overhead Performance Results

The first set of results we show are for read-only traversals. We measured elapsed times for T1 and

T6 traversals of the database, both in the original implementation and the version that is replicated

using the BASE technique, BASE-Thor.

The results in Figure 6-1 indicate that BASE introduces only a reasonable amount of overhead

for read-only traversals. Relative to the original implementation, BASE takes 7% more time to com-

plete the T1 traversal, and 44% more time to complete the T6 traversal. The reason the percentage

overhead is greater in T6 is because the commit operation represents a larger part of the time elapsed

in T6. Since the commit operation involves a lot of communication between the FE and the OR, T6

is relatively more affected by BASE than T1.

70

Figure 6-1: Elapsed time, hot read-only traversals

Figure 6-2 shows elapsed times for read-write traversals. In this case, BASE adds an overhead

relative to the original implementation of 12% in T2a and 50% in T2b. The difference in these

relative overheads is also due to distinct relative weight of the commit operation.

Figure 6-2: Elapsed time, hot read-write traversals

Now, we will try to explain the sources of this overhead. Figure 6-3 shows a breakdown of the

time spent in a T2b traversal.

The elapsed time is divided in the time spent in the FE for the traversal (23%) and commit time

(77%).

The commit time is further divided into the execution of the request (i.e. updating the Thor state

such as the validation queue, MOB, etc.) which takes 10% of the time, checkpointing, which takes

71

Figure 6-3: Breakdown of T2b traversal

51%, and the remaining 39% are essentially overhead introduced by the replication protocol.

Figure 6-4 shows a breakdown for the cost of checkpointing. This is dominated by calls to

the abstraction function of objects that correspond to OR pages. This consists of fetching the corre-

sponding page, which takes 65% of the total checkpointing time, and copying it to the newly created

object, which is 10% of the total time. The remaining 25% of the checkpointing time consist of in-

voking the abstraction function for other objects and computing digests to form the state partition

tree.

Fetching a page from the OR consists essentially of cache lookup and management operations

(21%), reading pages from disk (53%), and installing pending modifications (26%).

We can conclude from these results that checkpointing is responsible for most of the penalty

introduced by the BASE technique in this example. Most of the work during checkpoints takes

place in fetching OR pages from disk.

Therefore, the fact that we use a small cache for OR pages (only 4 MB) accounts for a substantial

overhead in checkpointing. A larger cache in the OR would help alleviate the overhead introduced

by the BASE technique.

We mentioned before that the small cache size was used to prevent the entire database from

fitting into memory. So the question is what would happen if we had a larger cache and a larger

database. We believe that the performance of checkpointing would improve, since we would not

need to fetch most of the pages from disk during a checkpoint, because these were changed during

72

Figure 6-4: Breakdown of checkpointing

the last checkpoint interval and therefore are likely to be cached. Furthermore, the fact that we

are increasing the database size should not generate cache contention during a checkpoint interval,

since the number of pages that are changed in a checkpoint interval is limited by the number of

operations in the interval, which in our case was 128.

6.2.2 Code Complexity

We perform here a code complexity analysis similar to the one in Section 6.1.2.

The code has a total of 658 semicolons with 345 in the conformance wrapper and 313 in the

state conversion functions. To put these numbers in perspective, the number of semicolons in the

original Thor code is 37055.

Furthermore, this analysis excludes the operating system code that implements all the system

calls invoked by the original Thor code.

73

Chapter 7

Related Work

This is, to the best of our knowledge, the first work to combine abstraction and Byzantine fault-

tolerance to allow the reuse of off-the-shelf implementations in a replicated system. In this chapter,

we will present previous work on software fault-tolerance that closely relates to ours.

Section 7.1 discusses software rejuvenation and N-version programming is discussed in Sec-

tion 7.2.

7.1 Software Rejuvenation

When a software application runs continuously for long periods of time the processes that execute

it start to age or slowly degrade with respect to effective use of their system resources. The causes

of the process aging are memory leaks, unreleased file locks, file descriptor leaks, data corruption,

etc. Process aging affects the performance of the application and may lead it to fail.

Resource leaks and other problems causing processes to age are due to bugs in the application

program, in the libraries it uses, or in the application execution environment (e.g. the operating

system). Identifying and fixing bugs from such diverse sources can be difficult or even impossible.

Software rejuvenation [31, 22] is the concept of periodically and preemptively terminating an

application, and restarting it at a clean internal state to prevent failures (caused by process aging) in

the future.

The solution proposed through software rejuvenation is only preventative: it is not intended to

allow programs to recover from failures but only to avoid them. Therefore it does not replace other

failure recovery mechanism but complements them by reducing the likelihood that such failures will

occur.

75

We complement the prophylactic action of periodically restarting processes with state checking

and correction that is done both after the process restarts and periodically, during checkpoints.

In the original software rejuvenation approach, the server in a client-server application will be

unavailable during rejuvenation, which increases the downtime of the application. Although these

are planned and scheduled downtimes, which allows them to have a less disruptive effect on the

system, the fact that the system is unavailable while it is being rejuvenated is a problem: to reduce

downtime, rejuvenation should be done infrequently, but to reduce failures due to software aging,

rejuvenation should be done often.

Our technique for software rejuvenation is based on the proactive recovery technique imple-

mented in BFT [17]. This solves the problem of additional downtime since it maintains availability

during the recovery period by having the replicas that are not recovering executing the requests.

Furthermore, it allows frequent recovery without undermining the performance of the system.

In order to implement a graceful shutdown and restart when rejuvenating a process, it may

be necessary to checkpoint the internal data structures of the application and restore them during

restart. The original scheme does not impose any restrictions on what these checkpoints should

be, so it is entirely up to the application to clean up its state during shutdown so it can continue

executing after restart.

BFT allows frequent and complete checkpoints of the service state. It clearly defines the granu-

larity of those checkpoints, so that only the incorrect part of the state needs to be fetched from other

replicas. BASE improves on BFT since our use of abstraction allows us to fix an incorrect state

using the states of replicas with different implementations, and it also allows us to tolerate software

errors due to aging that could not be tolerated in BFT, e.g., resource leaks in the service code.

7.2 N-Version Programming

N-Version Programming [20] exploits design diversity to reduce common mode failures. It works

as follows: N software development teams produce different implementations of the same service

specification for the same customer; the different implementations are then run in parallel; and vot-

ing is used to produce a common result. This technique has been criticized for several reasons [25]:

it increases development and maintenance costs by a factor of N or more, adds unacceptable time

delays to the implementation, and it does not provide efficient state checking and recovery mech-

anisms. In general, this is considered to be a powerful technique, but with limited usability since

76

only a small subset of applications can afford its cost.

BASE enables low cost N-version programming by reusing existing implementations from dif-

ferent vendors. Since each implementation is developed for a large number of customers, there

are significant economies of scale that keep the development, testing, and maintenance costs per

customer low. Additionally, the cost of writing the conformance wrappers and state conversion

functions is kept low by taking advantage of existing interoperability standards. The end result is

that our technique will cost less and may actually be more effective at reducing common mode fail-

ures because competitive pressures will keep the implementations of different vendors independent.

Recovery of faulty versions has been addressed in the context of N-Version Programming, but,

to the best of our knowledge, the approaches that were developed suffered from two problems.

First, they are inefficient and cannot scale to services with large state. Second, they require detailed

knowledge of each implementation, which make the reuse of existing implementations difficult.

Community error recovery [55] is a method for recovering faulty versions based on two levels

of recovery: more frequent cross-check points where program variables in an application-chosen

subset are compared and corrected if needed; and less frequent recovery points where the entire

program state is compared and recovered. This approach is clearly inefficient since cross-check

points only provide partial recovery and recovery points impose a large overhead (which forces

them to be infrequent) and imply the transfer of a prohibitively large amount of data for most

services (e.g., in a file system it must transfer all the files and directories). To compare the state

from different implementations, this work proposes mappings for transferring internal states, which

are similar to our mappings except that there is only one mapping from the whole service state to

the common representation and another in the opposite direction.

Our technique improves on this by comparing the entire state frequently during checkpoints

and after proactively recovering a replica. The state checking and transfer mechanism is efficient:

it is done at the granularity of objects in the abstract state array and the state digest hierarchy

allows a replica to compute a digest of the entire state and determine which objects are corrupt very

efficiently, and only transfer and restore the state of those objects.

Furthermore, the abstract state is based on what is common across the implementations of the

different versions and the conversion functions have glass-box access to each implementation. The

BASE technique allows us to treat each implementation as a black box — the state conversion func-

tions use only existing interfaces, which is important to allow the reuse of existing implementations.

Furthermore, we derive the abstract state from an abstract behavioral specification that captures what

77

is visible to the client succinctly; this leads to better fault tolerance and efficiency.

In a recent work [52] on N-version programming, Romanovsky proposes to apply N-version

programming to develop classes and objects in object-oriented systems. This way, when applying

the community error recovery techniques, there would exist one mapping per class, instead of a

mapping for the whole service state. But this approach only changes the unit of diversity, and does

not solve the state comparison and state transfer problems mentioned above.

78

Chapter 8

Conclusions

In this thesis, we have presented a technique to build replicated services that allows the use of

nondeterministic or distinct implementations without modifications. In this chapter, we summarize

our work and also present areas for future research.

8.1 Summary

Software errors are a major cause of outages and they are increasingly exploited in malicious attacks

to gain control or deny access to important services. Byzantine fault-tolerance allows replicated

systems to mask some software errors, but it has been expensive to deploy.

This thesis describes a novel replication technique that combines work on Byzantine fault-

tolerance and abstract data types to reduce the cost of deploying Byzantine fault-tolerance and

improve its ability to mask software errors.

This technique reduces cost because it enables reuse of off-the-shelf service implementations

without modifications. It improves resilience to software errors by allowing efficient state compar-

ison and correction of the state using copies of the abstract state stored in replicas that run distinct

implementations, opportunistic N-version programming, and software rejuvenation through proac-

tive recovery.

The reuse of existing implementations without modifying them and the recovery of faulty repli-

cas in a replicated system where different replicas run different implementations of the service code

are possible since abstraction hides implementation details that cause the concrete state or the be-

havior of different or nondeterministic replicas to diverge.

Opportunistic N-version programming runs distinct, off-the-shelf implementations at each repli-

79

ca to reduce the probability of common mode failures. To apply this technique, we must define a

common abstract specification for the behavior and state of the service, implement appropriate con-

version functions for the request and replies of each implementation in order to make them behave

according to the common specification, and implement state conversions to allow state transfer

between implementations with distinct concrete representations for the service state. These tasks

are greatly simplified by basing the common specifications on standards for the interoperability

of software from different vendors; these standards are increasingly common, e.g., ODBC [23],

NFS [2], and POSIX [3]. Opportunistic N-version programming improves on previous N-version

programming techniques by avoiding the high development, testing, and maintenance costs without

compromising the quality of individual versions.

Proactive recovery allows the system to remain available provided no more than ����� of the

replicas become faulty and corrupt the abstract state (in a correlated way) within a window of

vulnerability. Abstraction may enable more than ����� of the replicas to be faulty because it can

hide corrupt portions of the concrete state of faulty replicas. Our experimental results indicate that

recovery can be performed frequently to reduce the size of the window of vulnerability and improve

fault tolerance with little impact on service performance.

The methodology to build replicated systems by reusing off-the-shelf service implementations is

supported by a library, BASE, that is also presented here. BASE is an extension to BFT, a Byzantine

fault-tolerance library with good performance and strong correctness guarantees. We implemented

BASE as a generic program library with a simple interface. We were able to add an abstraction layer

to the BFT library without sacrificing performance or correctness guarantees.

The thesis described a replicated NFS file system implemented using our technique, where

replicas ran different operating systems and file system implementations. The conformance wrapper

and the state conversion functions in our prototype are simple, which suggests that they are unlikely

to introduce new bugs and that the monetary cost of using our technique would be low.

We ran the Andrew benchmark to compare the performance of our replicated file system and

the off-the-shelf implementations that it reuses. Our performance results indicate that the overhead

introduced by our technique is low; it is usually around 30% for this benchmark. We have also

shown an implementation where the system is running a different operating system and a different

implementation of the NFS service in each one of the four replicas.

We have also used the methodology to implement a Byzantine fault-tolerant version of the Thor

object-oriented database and made similar observations. We used the OO7 benchmark to measure

80

the performance of this system. In this case, the methodology enabled reuse of the existing database

code, which is non-deterministic.

8.2 Future Work

The current prototype for the replicated version of the Thor object-oriented database does not in-

clude important aspects such as proactive recovery, support for transactions that use objects from

more than one server, or garbage collection. We would like to implement these features using the

design discussed in Section 5.5.

Also we would like to obtain a more complete performance evaluation of our work, namely by

repeating the experiments with a heterogeneous setup in a better environment (with all the machines

in the same network) and we would like to experiment measuring the performance of the system in a

situation where the state is corrupted and correct state has to be fetched after proactively recovering

the replica.

An important direction for future work is to apply the methodology to other services. There

are two services that seem of particular relevance. The first is a relational database. Applying the

methodology to a relational database is a challenging problem because the state is much more com-

plex than the state of the applications we studied and the standard used to access that state (ODBC)

is also more complex and includes certain interfaces that are difficult to translate, such as operations

to discover which functions the underlying database management system implements [23]. The

second service that we would like to apply our technique to is version 4 of the NFS protocol [4].

This version of the NFS protocol is more complex than the version we present in this thesis, and

it would be useful to assess the amount of increased complexity in the design of the wrapper and

mappings for this version.

We would also like to measure the effectiveness of opportunistic N-version programming in

tolerating software errors. The way we intend to do this is by running fault injection experiments.

Ideally, we would like to collect from bug logs all the bugs that were discovered (until the present

date) in the four implementations of NFS that we used in our replicated file system. Then, we

could reproduce them and evaluate the availability of our replicated system under different loads.

Unfortunately, bug logs are not available for all of these implementations. Debian [21] provides

a bug tracking system for the GNU/Linux distribution (this includes the Linux implementation of

NFS). This system records details of bugs reported by users and developers. This information could

81

be used to reproduce actual bugs in this system, but similar information does not seem to be available

for other implementations.

An alternative approach to achieve this goal is to inject random faults. Doing this enables us

to measure the availability of the system as a function of the failure probability at each node and

the correlation between the failures at distinct nodes. Therefore, we must add a fault injection

module to the conformance wrapper that, with a certain probability ����� �����	��
 injects a random fault

in the file system operation (e.g., changing the value of an argument or a reply) and with another

probability ���� ����
�� ��� � � � replicates that failure in more than one replica. It is important to measure

these two parameters so that we can see how effective this technique is both when software errors

occur independently at distinct implementations and when different design teams produce the same

errors.

In Section 3.2.2 we mentioned a shortcoming of the BASE library, namely the need to fetch a

large object from other replicas, even when only a small part of that object needs to be updated. We

proposed a solution that was based on changing the abstract state specification in Section 4.5. But

this approach represents a conflict between a simple abstract representation and reasonably small

objects. To avoid this conflict, we can include more efficient support for large objects in the BASE

library. This could be done by applying the hierarchical state partitioning scheme to large objects

automatically, i.e., when an object grows larger than a certain size the library divides it in fixed-size

blocks and computes digests of those blocks individually. The digest of the object can be obtained

incrementally from the block digests the same way that it is done for the non-leaf nodes in the

partition tree. This way, fetches can be done at the granularity of blocks and not objects, whenever

the object size is larger than the block size.

To make the task of writing state conversions easier, we would like to develop a library of

mappings between abstract and concrete states for common data structures. This would further

simplify our technique.

82

Bibliography

[1] Network working group request for comments: 1014. XDR: External data representation stan-
dard, June 1987.

[2] Network working group request for comments: 1094. NFS: Network file system protocol
specification, March 1989.

[3] IEEE std 1003.1-1990, information technology Portable Operating System Interface (POSIX)
part 1: System application program interface (API) [C language]. IEEE, New York, 1990.

[4] Network working group request for comments: 2624. NFS version 4 design considerations,
June 1999.

[5] A. Adya. Transaction Management for Mobile Objects Using Optimistic Concurrency Control.
Master’s thesis, Massachusetts Institute of Technology, January 1994. Also available as MIT
Laboratory for Computer Science Technical Report MIT/LCS/TR-626.

[6] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficient Optimistic Concurrency Control
using Loosely Synchronized Clocks. In Proc. of ACM SIGMOD International Conference on
Management of Data, pages 23–34, San Jose, CA, May 1995.

[7] S. Ahmed. A scalable byzantine fault tolerant secure domain name system. Master’s thesis,
Massachusetts Institute of Technology, 2001.

[8] M. Bellare and D. Micciancio. A New Paradigm for Collision-free Hashing: Incrementality at
Reduced Cost. In Advances in Cryptology – EUROCRYPT’ 97, 1997.

[9] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast and Secure
Message Authentication. In Advances in Cryptology - CRYPTO’99, pages 216–233, 1999.

[10] B. Callaghan. NFS Illustrated. Addison-Wesley, 1999.

[11] M. Carey, M. Franklin, and M. Zaharioudakis. Fine-Graned Sharing in a Page Server
OODBMS. In Proceedings of the 1994 ACM SIGMOD, Minneapolis, MN, May 1994.

[12] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The OO7 Benchmark. In Proc. of ACM
SIGMOD International Conference on Management of Data, pages 12–21, Washington D.C.,
May 1993.

[13] M. Castro. Practical Byzantine Fault-Tolerance. PhD thesis, Massachusetts Institute of Tech-
nology, 2000.

83

[14] M. Castro, A. Adya, B. Liskov, and A. Myers. HAC: Hybrid Adaptive Caching for Distributed
Storage Systems. In Proc. 16th ACM Symp. on Operating System Principles (SOSP), pages
102–115, St. Malo, France, October 1997.

[15] M. Castro and B. Liskov. A Correctness Proof for a Practical Byzantine-Fault-Tolerant Repli-
cation Algorithm. Technical Memo MIT/LCS/TM-590, MIT Laboratory for Computer Sci-
ence, 1999.

[16] M. Castro and B. Liskov. Practical byzantine fault tolerance. In Proceedings of the Third
Symposium on Operating Systems Design and Implementation, New Orleans, LA, February
1999.

[17] M. Castro and B. Liskov. Proactive recovery in a byzantine-fault-tolerant system. In Proceed-
ings of the Fourth Symposium on Operating Systems Design and Implementation, San Diego,
CA, October 2000.

[18] M. Castro, R. Rodrigues, and B. Liskov. Using abstraction to improve fault tolerance. In The
8th Workshop on Hot Topics in Operating Systems (HotOS-VIII), May 2001.

[19] CERT Analysis Center. http://www.cert.org/, 2001.

[20] L. Chen and A. Avizienis. N-Version Programming: A Fault-Tolerance Approach to Reliabil-
ity of Software Operation. In Fault Tolerant Computing, FTCS-8, pages 3–9, 1978.

[21] Debian bug tracking system. http://www.debian.org/Bugs/, 2001.

[22] S. Garg, Y. Huang, C. Kintala, and K. Trivedi. Minimizing completion time of a program
by checkpointing and rejuvenation. In ACM SIGMETRICS Conference on measurement and
modeling of compuer systems, pages 252–261, May 1996.

[23] Kyle Geiger. Inside ODBC. Microsoft Press, 1995.

[24] S. Ghemawat. The Modified Object Buffer: a Storage Management Technique for Object-
Oriented Databases. PhD thesis, Massachusetts Institute of Technology, 1995. Also available
as MIT Laboratory for Computer Science Technical Report MIT/LCS/TR-656.

[25] J. Gray and D. Siewiorek. High-availability computer systems. IEEE Computer, 24(9):39–48,
September 1991.

[26] J. N. Gray. Notes on database operating systems. In R. Bayer, R. Graham, and G. Seegmuller,
editors, Operating Systems: An Advanced Course, number 60 in Lecture Notes in Computer
Science, pages 393–481. Springer-Verlag, 1978.

[27] J. N. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann Publishers Inc., 1993.

[28] T. Haerder. Observations on Optimistic Concurrency Control Schemes. Information Systems,
9(2):111–120, June 1984.

[29] M. P. Herlihy and J. M. Wing. Axioms for Concurrent Objects. In Proceedings of 14th ACM
Symposium on Principles of Programming Languages, pages 13–26, January 1987.

84

[30] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and
M. West. Scale and performance in a distributed file system. ACM Transactions on Com-
puter Systems, 6(1):51–81, February 1988.

[31] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Software rejuvenation: Analysis, modules
and applications. In Fault-Tolerant Computing, FTCS-25, pages pages 381–390, Pasadena,
CA, June 1995.

[32] K. Kihlstrom, L. Moser, and P. Melliar-Smith. The SecureRing Protocols for Securing Group
Communication. In Proc. of the Hawaii International Conference on System Sciences, Hawaii,
January 1998.

[33] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications
of the ACM, 21(7):558–565, July 1978.

[34] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber, U. Maheshwari, A. Myers,
and L. Shrira. Safe and Efficient Sharing of Persistent Objects in Thor. In Proc. of ACM SIG-
MOD International Conference on Management of Data, pages 318–329, Montreal, Canada,
June 1996.

[35] B. Liskov, M. Castro, L. Shrira, and A. Adya. Providing persistent objects in distributed
systems. In Proceedings of the 13th European Conference on Object-Oriented Programming
(ECOOP ’99), Lisbon, Portugal, June 1999.

[36] B. Liskov, M. Day, and L. Shrira. Distributed object management in Thor. In Tamer Özsu,
Umesh Dayal, and Patrick Valduriez, editors, Distributed Object Management, pages 79–91.
Morgan Kaufmann, San Mateo, California, USA, 1993. Also published as Programming
Methodology Group Memo 77, MIT LCS.

[37] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M. Williams. Replication in the
Harp File System. In Proc. 13th ACM Symp. on Operating System Principles (SOSP), pages
226–238. ACM Press, 1991.

[38] B. Liskov and J. Guttag. Program Development in Java: Abstraction, Specification, and
Object-Oriented Design. Addison-Wesley, 2000.

[39] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[40] U. Maheshwari and B. Liskov. Fault-Tolerant Distributed Garbage Collection in a Client-
Server Object-Oriented Database. In Third International Conference on Parallel and Dis-
tributed Information Systems, Austin, September 1994.

[41] U. Maheshwari and B. Liskov. Collecting Cyclic Distributed Garbage by Controlled Migra-
tion. Distributed Computing, 10(2):79–86, 1997.

[42] U. Maheshwari and B. Liskov. Partitioned Collection of a Large Object Store. In Proc. of
SIGMOD International Conference on Management of Data, pages 313–323, Tucson, Ari-
zona, May 1997. ACM Press.

[43] U. Maheswari and B. Liskov. Collecting Cyclic Distributed Garbage using Back Tracing. In
Proc. of the ACM Symposium on Principles of Distributed Computing, Santa Barbara, Califor-
nia, August 1997.

85

[44] D. L. Mills. Network time protocol (version 1) specification and implementation. DARPA-
Internet Report RFC 1059, July 1988.

[45] C. Mohan and B. Lindsay. Efficient commit protocols for the tree of processes model of
distributed transactions. In Proceedings of the Second Annual Symposium on Principles of
Distributed Computing, pages 76–88. ACM, August 1983.

[46] J. Ousterhout. Why Aren’t Operating Systems Getting Faster as Fast as Hardware? In Proc.
of USENIX Summer Conference, pages 247–256, Anaheim, CA, June 1990.

[47] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the Presence of Faults. Journal
of the ACM, 27(2):228–234, April 1980.

[48] M. Reiter. A secure group membership protocol. IEEE Transactions on Software Engineering,
22(1):31–42, January 1996.

[49] R. Rivest. The MD5 message-digest algorithm. Internet RFC-1321, April 1992.

[50] R. Rodrigues, M. Castro, and B. Liskov. BASE : Using abstraction to improve fault tolerance.
In preparation.

[51] R. Rodrigues, K. Jamieson, and M. Castro. A Liveness Proof for a Practical Byzantine Fault-
Tolerant Replication Algorithm. In preparation.

[52] A. Romanovsky. Faulty version recovery in object-oriented N-version programming. IEE
Proceedings - Softw., 147(3):81–90, June 2000.

[53] R. Sandberg et al. Design and implementation of the sun network filesystem. In Proceedings
of the Summer 1985 USENIX Conference, pages 119–130, June 1985.

[54] F. Schneider. Implementing fault-tolerant services using the state machine approach: A tuto-
rial. ACM Computing Surveys, 22(4):299–319, December 1990.

[55] K. Tso and A. Avizienis. Community error recovery in N-version software: A design study
with experimentation. In Fault-Tolerant Computing, FTCS-17, pages 127–133, Pittsburgh, PA,
July 1987.

86

