
A Formal Venture into Reliable Multicast Territory

Carolos Livadas Nancy A. Lynch

Lab. for Computer Science

Massachusetts Institute of Technology

November 6, 2002

Abstract

In this paper, we present a formal model of the reliable multicast service that ensures eventual
packet delivery with, possibly, some timeliness guarantees. This model dictates precisely what it
means to be a member of the reliable multicast group and which packets are guaranteed delivery
to which members of the group. Moreover, it is reasonable, implementable, and broad; that is,
it captures the intended behavior of a large collection of reliable multicast protocols. We also
present a formal model of the Scalable Reliable Multicast (SRM) protocol [1]. We show that
our model of SRM is safe, in the sense that it is a faithful implementation of our model of the
reliable multicast service; that is, it may only deliver appropriate packets to each member of
the reliable multicast group. We also show that, under certain constraints, the implementation
is live, in the sense that it guarantees the timely delivery of the appropriate packets to the
appropriate members of the reliable multicast group.

1 Introduction

With the increasing use of the Internet, multi-party communication and collaboration applications
are becoming mainstream. Reliable multicast is a communication service that facilitates such
applications. In the recent past, a slew of protocols have been proposed to reliably multicast
packets efficiently [1–4, 7, 8]. However, reliability in the multicast setting has assumed many
meanings, ranging from in-order eventual delivery to timely delivery where a small percentage
of packet losses is tolerable. The many notions of reliability stem from the varying assumptions
regarding the communication environment and the goals and requirements of the applications to
which particular reliable multicast protocols cater.

Most often, the behavior of reliable multicast protocols is described informally. To our surprise,
a protocol’s description is seldom accompanied by a precise definition of its reliability guarantees.
In its simplest form, reliability is informally defined as the eventual delivery of all multicast
packets to all group members; other notions of reliability include ordering, no-duplication, and
timeliness guarantees. Although intuitive, this simplistic reliability definition does not precisely
specify which packets are guaranteed delivery to which members of the group, especially when the
group membership is dynamic. Moreover, protocol descriptions put little emphasis on the behavior,
or the analysis of the behavior, of the protocol when the group membership is dynamic, either due
to failures or frequent joins and leaves. As hosts become more mobile, a better understanding
of the behavior of such services and protocols in the context of a dynamic group membership is
increasingly important.

In this paper, we present a formal model of the reliable multicast service, which we henceforth
refer to as the reliable multicast specification (RMS). Specifying the reliable multicast service is

1

not straightforward. The plethora of reliable multicast protocols cater to diverse applications that
impose diverse correctness and performance requirements. Clearly, capturing the functionality of all
reliable multicast protocols using a single specification would be quite complex and unwieldy. Our
reliable multicast service specification formalizes the behavior of a number of protocols, such as
SRM [1] and LMS [7], that strive to provide eventual delivery with, possibly, some timeliness
guarantees. We stipulate that, in the context of dynamic group membership, membership is
intrinsically intertwined with reliability; that is, membership and reliability must be addressed
together. Thus, our specification dictates precisely what it means to be a member of a reliable
multicast group and which packets are guaranteed delivery to which members of the reliable
multicast group. We parameterize our specification with a delivery latency bound, which specifies
an upper bound on the latency incurred to reliably deliver multicast packets. This parameterization
results in a reliable multicast service specification that encompasses the behavior of a collection
of reliable multicast protocols, some with loose and others with potentially stringent timeliness
guarantees.

We also present a formal model of the Scalable Reliable Multicast (SRM) protocol [1]. Our model
of SRM, which we henceforth refer to as the reliable multicast implementation (RMI), involves
several components with distinct functionalities, such as the maintenance of the reliable multicast
group membership and the packet loss recovery. This decomposition simplifies the reasoning and
facilitates future modifications to the implementation. We show that RMI is safe, in the sense that
it is a faithful implementation of RMS; that is, it may only deliver appropriate packets to each
member of the reliable multicast group. We also show that, under certain constraints, RMI is live,
in the sense that it guarantees the timely delivery of the appropriate packets to the appropriate
members of the group.

The rest of the paper is organized as follows. Section 2 presents our modeling framework. Section 3
presents the abstract view of the physical system that we adopt in our work. Section 4 presents
RMS and its eventual and timely reliability properties. Section 5 presents RMI, derives constraints
on RMI’s packet loss recovery parameters, and analyzes RMI’s safety and liveness with respect to
RMS. Finally, Section 6 presents the paper’s contributions and future work directions.

2 Modeling Framework and Notation

In this paper, we use the timed input/output (I/O) automaton (TIOA) modeling framework
(introduced as the general timed automaton model in Ref. 6); a framework for modeling timed
systems. A timed I/O automaton A is a state-machine in which transitions are labeled by actions.
A’s actions (acts(A)) are partitioned into input (in(A)), output (out(A)), internal (int(A)), and
time-passage sets. Time-passage actions model the passage of time. The input and output actions
of A are collectively referred to as external ; denoted ext(A). Input, output, and time-passage
actions are collectively referred to as visible; denoted vis(A). A timed I/O automaton A is
defined by its signature (input, output, internal, and time-passage actions), states (states(A)),
start states (start(A)), and state-transition relation (trans(A)). The state-transition relation of
A is a cross product of states, actions, and states that dictates A’s allowable transitions; that is,
trans(A) ⊆ states(A)× acts(A)× states(A) and a transition of A from s to s′ through action π is
denoted by the tuple (s, π, s′).

A timed execution fragment α of A is a finite or infinite alternating sequence, α = s0π1s1π2s2 . . . ,
of states and actions consistent with A’s state-transition relation; that is, sk ∈ states(A),
πk+1 ∈ acts(A), and (sk, πk+1, sk+1) ∈ trans(A), for all k ∈ N. For any two timed execution
fragments α and α′ of A, we use the notation α ≤ α′ to denote that α is a prefix of α′. A timed
execution fragment of A is admissible if an infinite amount of time elapses within the particular

2

fragment. An admissible timed execution fragment α of A is fair when no action is enabled in
every state of a suffix of α without appearing in the given suffix. The time of occurrence of an
action πk, for k ∈ N+, within a timed execution fragment α of A is the time elapsing within α prior
to the occurrence of πk. Letting s, s

′ ∈ states(A) be any two states occurring in a timed execution
fragment α of A, we use the notation s ≤α s

′ (s <α s
′) to denote that the particular occurrence of

s appears no later than (prior to, respectively) the particular occurrence of s′ in α.

The timed trace β of a timed execution fragment α of A is the sequence of visible actions in α, each
paired with its time of occurrence. For any two timed traces β and β ′ of A, we use the notation
β ≤ β′ to denote that β is a prefix of β ′.

A timed execution of A is a timed execution fragment of A that begins in one of A’s start states.
We let aexecs(A) denote the set of all admissible timed executions of A, attraces(A) denote the
timed traces of all executions in aexecs(A), fair-aexecs(A) denote the set of all fair admissible timed
executions of A, and fair-attraces(A) denote the timed traces of all executions in fair-aexecs(A).

Two timed I/O automata A1 and A2 are compatible if int(Ai)∩acts(Aj) = ∅ and out(Ai)∩out(Aj) =
∅, for i, j ∈ {1, 2}, i 6= j. The composition of compatible timed I/O automata yields a timed I/O
automaton. The hiding operation reclassifies output actions of a timed I/O automaton as internal.
Letting A,B be timed I/O automata with the same external interface, B implements A, denoted
B ≤ A, when its external behavior is allowed by A; that is, when attraces(B) ⊆ attraces(A).
The implementation relation among two timed I/O automata is often shown by defining a timed
simulation relation; that is, relating states of B to states of A and showing that for any step of B
there is a timed execution fragment of A with the same timed trace as the step of B that preserves
the state relation.

We use a precondition-effect style notation to define the state-transition relations of timed I/O
automata. Moreover, we use the notation S1 ∪= S2, S1 \= S2, and s :∈ S as shorthand for
S1 := S1 ∪ S2, S1 := S1\S2, and the assignment of an arbitrary element of S to the variable s.

3 The Physical System

We assume that the physical system is comprised of an infinite set of hosts that interact through an
underlying network. This network involves a set of interconnected routers. Each host is connected
to a particular router of the underlying network; for each host, we refer to this particular router
as the gateway router of the particular host. Hosts and routers are connected among themselves
through bi-directional communication links.

We assume that all hosts are of comparable processing power and storage resources. Resident
on each host are a set of processes. We assume that hosts are symmetric in the sense that the
same set of processes reside on each host. The set of processes on each host consists of a single
application process and several additional communication service processes. Henceforth, we refer
to the application process at each host as the client at the given host. The communication service
processes, either individually or collectively, provide the communication services required by the
client. For instance, the IP unicast service may be modeled as a set of processes, one such process
for each host. Clients may thus exchange IP unicast packets through their respective IP unicast
processes; these may in turn interact with the hosts’ gateway routers.

In terms of system faults, we consider only host crashes and packet drops on the communication
links. Once a host crashes it remains crashed thereafter. A host is said to be operational prior to
crashing and to have crashed thereafter. All the processes on each host are fate-sharing ; that is, if
a host crashes, then all of its processes crash. Router failures and network partitions are assumed
to be ephemeral. Such failures are modeled as numerous consecutive packet drops.

3

Figure 1 Reliable Multicast Specification Component Interaction

�� �
� �
� �
�

�� �
� �
� � �
�	

 �

�� �
�� �
 ����
�

�� �
��	
� ����
�

�� �
� �
� ��
�

�� �
� �
� ��
�
�	

 �

�� �
� �
� �
�

�� �
� �
� � �
�	

 �

�� �
�� �
 ����
�

�� �
��	
� �
���
�

�� �
� �
� ��
�

�� �
� �
� ��
�
�	

 �

������������ "!$#&%
')("*,+.- %

���/�������0 1!$#32
'4("*,+.- 2

57698;:=<

Since crashes are assumed to be permanent, we model host restarts implicitly. We think of the
restarting of a host as its reincarnation as a completely new host; that is, after crashing, a host
may assume the identity of another host that has up to that point in time been idle. This modeling
simplification is equivalent to explicitly modeling host restarts and having hosts choose a unique
host identifier each time they restart. Such an identifier could involve, for instance, the processor
identifier and an infinite reincarnation counter that is stable across crashes.

4 Reliable Multicast Specification (RMS)

We abstractly model the reliable multicast service as a single component that interacts with all
client processes. Thus, the reliable multicast service encapsulates the behavior of all communication
service processes at all hosts and the underlying network. For simplicity, we assume that there is
a single reliable multicast group. Since we assume a single client per host and a single reliable
multicast group, we do not distinguish among the client process and the host when considering
reliable multicast group membership. In fact, we often use the terms client and host interchangeably.

Throughout our treatment of reliable multicast, we adopt the packet naming scheme used by
Floyd et al. [1]. In this scheme, clients (applications) assign unique sequence numbers to each
packet they multicast. These sequence numbers are assigned in a continuous fashion as hosts join,
leave, and rejoin the reliable multicast group; that is, consecutive packets sent by each host are
assigned consecutive sequence numbers. Thus, packets are uniquely and persistently identified by
a pair involving their source host and their sequence number. Since the clients (applications) are
responsible for naming packets, packets are referred to as application data units (ADUs).

4.1 Formal Model

We formally specify the reliable multicast service and each of the client processes using timed I/O
automata. The automaton RM(∆), for ∆ ∈ R≥0 ∪ ∞, models the reliable multicast service.
RM(∆) defines what it means to be a member of the reliable multicast group and specifies
precisely which packets are guaranteed delivery to each member of the reliable multicast group.
The parameter ∆ specifies an upper bound on the amount of time required by the reliable multicast
service to reliably deliver each packet. The automaton RM-Clienth models the client at the host
h. We let RM-Clients denote the composition of all client automata and RMS(∆), for any
∆ ∈ R≥0 ∪∞, denote the composition of the reliable multicast service and all client automata;
that is, RMS(∆) = RM(∆) × RM-Clients. Figure 1 depicts the interaction of the RM(∆) and
RM-Clienth, for h ∈ H, automata.

We proceed by presenting some preliminary definitions and, subsequently, defining the RM(∆) and

4

Figure 2 Reliable Multicast Specification Definitions
H Set of all hosts.

Status = {idle, joining, leaving, member, crashed}

PRM-Client = Set of packets such that ∀ p ∈ PRM-Client

source(p) ∈ H
seqno(p) ∈ N
data(p) ∈ {0, 1}∗

id(p) ∈ H × N : id(p) = 〈source(p), seqno(p)〉
suffix(p) = {〈s, i〉 ∈ H × N | source(p) = s ∧ seqno(p) ≤ i}

RM-Clienth automata.

4.1.1 Preliminary Definitions

Figure 2 includes several set definitions pertaining to our reliable multicast service specification.
H is the set of all hosts that could potentially participate in the reliable multicast communication.

The set Status consists of all possible valuations of the reliable multicast membership status of a
host. The value idle indicates that the host is idle with respect to the reliable multicast group;
that is, it is neither a member, nor in the process of joining or leaving the reliable multicast
group. The value joining indicates that the host is in the process of joining the reliable multicast
group; that is, the client has issued a request to join the reliable multicast group and is awaiting
an acknowledgment of this join request from the reliable multicast service. The value leaving

indicates that the client is in the process of leaving the reliable multicast group; that is, the client
has issued a request to leave the reliable multicast group and is awaiting an acknowledgment of
this leave request from the reliable multicast service. The value member indicates that the client is
a member of the reliable multicast group. The value crashed indicates that the host has crashed.

The set PRM-Client represents the set of packets that may be transmitted by the client processes
using the reliable multicast service. According to the ADU naming scheme described above, data
segments are identified by their original source and a sequence number. Thus, for any packet
p ∈ PRM-Client the operations source(p), seqno(p), and data(p) extract the source, sequence
number, and data segment corresponding to the packet p. The operation id(p) extracts the source
and sequence number pair corresponding to the packet p. Such pairs comprise unique packet
identifiers. We also define the suffix (p) to be the subset of PRM-Client comprised of all packets
whose source is that of p and whose sequence number is greater than or equal to that of p.

4.1.2 The RM(∆) Automaton

Figure 3 presents the signature, the variables, and the discrete transitions of RM(∆). The RM(∆)
automaton maintains the set of members of the reliable multicast group. Hosts initiate the process
of joining and leaving the reliable multicast group by issuing join and leave requests to the reliable
multicast service. A request to join the reliable multicast group is effective only when the host is
idle with respect to the reliable multicast group; that is, it is operational and neither a member of
nor in the process of joining or leaving the reliable multicast group. A host becomes a member of
the reliable multicast group upon the acknowledgment of an earlier join request. Hosts may only
send and receive packets through the reliable multicast service while they are both operational and
members of the reliable multicast group. Once a host issues a request to leave the reliable multicast
group, it ceases to be a member of the reliable multicast group and, thus, relinquishes its right to
receive any more reliable multicast packets. Leave requests overrule join requests in the sense that
if the client is already in the process of joining the group while it issues a leave request, then the
process of joining is aborted and the process of leaving is initiated. Once a host leaves the reliable

5

multicast group, it may later rejoin the reliable multicast group by re-issuing a join request. Hosts
may crash at any point in time. Once a host has crashed, the reliable multicast service ignores all
events pertaining to the crashed host. Recall that host restarts are treated implicitly by thinking
of host restarts as host reincarnations.

We say that a member h of the reliable multicast group has delivered the packet p if it has either
sent or received the packet p. We say that a member h of the reliable multicast group is aware
of a packet p, or is expecting p, if it has delivered either p or an earlier packet p′ from the source
of p. Moreover, we say that a packet p is active if at least one member of the reliable multicast
group that has become aware of p since last joining the reliable multicast group, has also delivered
it since last joining the reliable multicast group.

Once a host joins the reliable multicast group, the issue of catching up on any of the packets
multicast earlier is orthogonal to the transmission of future packets using the reliable multicast
service. Thus, once a host joins the reliable multicast group, the first packet it receives from
a particular source dictates the set of packets that are guaranteed delivery to the given host. In
particular, none of the earlier packets and any of the later packets that remain active after being sent
are guaranteed delivery, provided the host remains a member of the reliable multicast group. The
host may catch up on earlier packets from the given source through a separate service. For example,
earlier packets may be requested directly from the source through a unicast communication channel.
The rationale behind this modeling choice is that the recovery of a large number of earlier packets
may strain the reliable multicast service and wastefully expose the recovery of earlier packets to all
or a subset of the reliable multicast group.

If ∆ =∞, then RM(∆) guarantees that if a packet p remains active forever after its transmission
then any member that becomes aware of p and remains a member of the reliable multicast group
thereafter, delivers p. Equivalently, if two members become aware of a packet p, remain members
forever thereafter, and one member delivers p, then the other member delivers p also. It is important
to note that a host is not required to remain a member of the reliable multicast group indefinitely in
order for the packets it multicasts to be received by hosts that become aware of them; the eventual
reception of packets is guaranteed to all hosts that become aware of them provided the packets
remain active forever after they are sent.

If ∆ ∈ R≥0, then RM(∆) guarantees that if a packet remains active for ∆ time units past its
transmission, then it is delivered to all hosts that become aware of it within these ∆ time units
and, subsequently, remain members of the reliable multicast group for the remaining duration of
these ∆ time units elapse.

Parameters The RM automaton is parameterized by a time bound, ∆ ∈ R≥0 ∪ {∞}, which
specifies the maximum delay in delivering each packet sent to the appropriate members of the
reliable multicast group. The value ∞ corresponds to the case in which the reliable multicast
service guarantees the eventual delivery of all packets to the appropriate members of the reliable
multicast group. An instance of the RM automaton is denoted by RM(∆).

Variables The variable now ∈ R≥0 denotes the time that has elapsed since the beginning of an
execution of RM. Each variable status(h) ∈ Status, for h ∈ H, denotes the status of the host h.
Each of its valuations is described in the definition of the set Status. We say that the host h is
operational if it has not crashed. After a host h crashes, none of the input actions pertaining to h
affect the state of RM and none of the locally controlled actions pertaining to h are enabled.

Each variable trans-time(p) ∈ R≥0 ∪ ⊥, for p ∈ PRM-Client, denotes the transmission time of
the packet p; that is, the time the packet p was sent by its source. Prior to the transmission of p,

6

Figure 3 The RM(∆) Automaton

Parameters:

∆ ∈ R≥0 ∪ {∞}

Actions:

Input:

crashh, for h ∈ H
rm-joinh, for h ∈ H
rm-leaveh, for h ∈ H
rm-sendh(p), for h ∈ H, p ∈ PRM-Client

Output:

rm-join-ackh, for h ∈ H
rm-leave-ackh, for h ∈ H
rm-recvh(p), for h ∈ H, p ∈ PRM-Client

Time Passage:

ν(t), for t ∈ R≥0

Variables:

now ∈ R≥0, initially now = 0
status(h) ∈ Status, for all h ∈ H, initially status(h) = idle, for all h ∈ H
trans-time(p) ∈ R≥0 ∪ ⊥, for all p ∈ PRM-Client, initially trans-time(p) =⊥, for all p ∈ PRM-Client

expected(h, h′) ⊆ H × N, for all h, h′ ∈ H, initially expected(h, h′) = ∅, for all h, h′ ∈ H
delivered(h, h′) ⊆ H × N, for all h, h′ ∈ H, initially delivered(h, h′) = ∅, for all h, h′ ∈ H

Derived Variables:

idle = {h ∈ H | status(h) = idle}
joining = {h ∈ H | status(h) = joining}
leaving = {h ∈ H | status(h) = leaving}
members = {h ∈ H | status(h) = member}
intended(p) = {h ∈ H | id(p) ∈ expected(h, source(p))}, for all p ∈ PRM-Client

completed(p) = {h ∈ H | id(p) ∈ delivered(h, source(p))}, for all p ∈ PRM-Client

sent-pkts = {p ∈ PRM-Client | trans-time(p) 6=⊥}
active-pkts = {p ∈ PRM-Client | p ∈ sent-pkts ∧ intended(p) ∩ completed(p) 6= ∅}

Discrete Transitions:

input crashh

eff status(h) := crashed

foreach h′ ∈ H do:

expected(h, h′) := ∅
delivered(h, h′) := ∅

input rm-joinh

eff if h ∈ idle then
status(h) := joining

input rm-leaveh

eff if h ∈ joining ∪members then
status(h) := leaving

foreach h′ ∈ H do:

expected(h, h′) := ∅
delivered(h, h′) := ∅

input rm-sendh(p)

eff if h ∈ members ∩ {source(p)} then
if expected(h, h) = ∅ then
expected(h, h) := suffix(p)

if id(p) ∈ expected(h, h) then
trans-time(p) := now
delivered(h, h)∪= {id(p)}

output rm-join-ackh

pre h ∈ joining
eff status(h) := member

output rm-leave-ackh

pre h ∈ leaving
eff status(h) := idle

output rm-recvh(p)

pre h ∈ members\{source(p)}
∧p ∈ sent-pkts
∧(expected(h, source(p)) = ∅
⇒ now ≤ trans-time(p) + ∆)

∧(expected(h, source(p)) 6= ∅
⇒ id(p) ∈ expected(h, source(p)))

eff if expected(h, source(p)) = ∅ then
expected(h, source(p)) := suffix(p)

delivered(h, source(p))∪= {id(p)}

time-passage ν(t)

pre ∀ p ∈ active-pkts,
now + t ≤ trans-time(p) + ∆
∨intended(p) ⊆ completed(p)

eff now := now + t

trans-time(p) is equal to⊥. Each variable expected(h, h′) ⊆ H×N, for h, h′ ∈ H, is the set comprised
of the identifiers of the packets from h′ that the host h is aware of since it last joined the reliable
multicast group and, consequently, expects to deliver. Each variable delivered(h, h′) ⊆ H × N, for
h, h′ ∈ H, is the set comprised of the identifiers of the packets from h′ that the host h has delivered.

Derived Variables The derived variable idle ⊆ H is a set of hosts that is comprised of all the
hosts that are idle with respect to the reliable multicast group. The derived variable joining ⊆ H
is a set of hosts that are in the process of joining the reliable multicast group. The derived variable
leaving ⊆ H is a set of hosts that are in the process of leaving the reliable multicast group. The
derived variable members ⊆ H is a set of hosts that are members of the reliable multicast group.

7

The derived variable intended(p), for each p ∈ PRM-Client, is the set of hosts that are expecting
the delivery of the packet p. We henceforth refer to the set intended(p) as the intended delivery
set of p. The derived variable completed(p), for each p ∈ PRM-Client, is the set of hosts that have
delivered the packet p. Recall that we say that a host has delivered a packet p if it has either
sent or received p. We henceforth refer to the set completed(p) as the completed delivery set of p.
The derived variable sent-pkts is the set of packets that have been sent since the beginning of the
given execution of the RM(∆) automaton. The derived variable active-pkts is the set comprised of
the sent packets that have been delivered by at least one of the hosts in their respective intended
delivery sets.

Input Actions Each input action crashh, for h ∈ H, models the crashing of the host h. The
effects of crashh are to record that the host h has crashed by setting the variable status(h) to
the value crashed. Furthermore, the crashh action resets the set of packets that the host h is
expecting from each source and the set of packets it has delivered from each source. Thus, the RM

automaton is released of the obligation to deliver any of the active packets to the host h.

The input action rm-joinh models the client’s request at the host h to join the reliable multicast
group. The rm-joinh action is effective only while the host h is idle with respect to the reliable
multicast group. When effective, the rm-joinh action sets the status(h) variable to joining so
as to record that the host h has initiated the process of joining the reliable multicast group. If
the client is either a member of or in the process of joining the reliable multicast group, then the
rm-joinh action is superfluous. If the client is already in the process of leaving the group, then the
rm-joinh action is discarded so as to allow the process of leaving the reliable multicast group to
complete.

The input action rm-leaveh models the client’s request at the host h to leave the reliable multicast
group. The rm-leaveh action is effective only while the host h is a member of or in the process
of joining the reliable multicast group. When effective, the rm-leaveh action sets the status(h)
variable to leaving so as to record that the host h has initiated the process of leaving the reliable
multicast group. Moreover, the rm-leaveh action initializes the set of packets that the host h is
expecting from each source and the set of packets it has delivered from each source. Thus, the RM

automaton is released of the obligation to deliver any of the active packets to the host h. Leave
requests overrule join requests; that is, when a rm-leaveh action is performed while the host h is in
the process of joining the reliable multicast group, its effects are to abort the process of joining and
to initiate the process of leaving the reliable multicast group. If the client is either idle or already
in the process of leaving the reliable multicast group, then the rm-leaveh action is superfluous.

The client at h sends the packet p using the reliable multicast service through the input action
rm-sendh(p). The rm-sendh(p) action is effective only when the host h is both a member of the
reliable multicast group and the source of the packet p. If p is the first packet sent by the host h,
then the rm-sendh(p) action initializes the set of packets expected by h from h to the set suffix (p);
that is, all packets whose source is h and whose sequence number is greater or equal to that of p.
Then, if p is in the expected set of packets of h from h, the rm-sendh(p) records the transmission
time of p by setting the variable trans-time(p) to now and adds the packet p to the set of packets
from the host h that the host h has delivered.

Output Actions The output action rm-join-ackh acknowledges the join request of the client
at h. The action rm-join-ackh is enabled when the host h is in the process of joining the reliable
multicast group. Its effects are to set the status(h) variable to member so as to indicate that the
client at h has become a member of the reliable multicast group.

The output action rm-leave-ackh acknowledges the leave request of the client at h. The action

8

rm-leave-ackh is enabled when the host h is in the process of leaving the reliable multicast group.
Its effects are to set the status(h) variable to idle so as to indicate that the client at h has become
idle with respect to the reliable multicast group.

The output action rm-recvh(p) models the delivery of the packet p to the client at h. The
rm-recvh(p) action is enabled when the host h is a member of the reliable multicast group, the
host h is not the source of p, and p is an active packet. Moreover, if the expected deliver set of h
with respect to the source of p is undefined, then the delivery deadline trans-time(p)+∆ of p must
not have expired; that is, the first packet from any source to be delivered to any client must be
delivered prior to its delivery deadline. If the expected deliver set of h with respect to the source
of p has already been defined, then p must be expected by h. The effects of the rm-recvh(p) action
are: i) to define the expected delivery set of h with respect to the source of p to the set suffix (p),
unless already defined, and ii) to add the host h to the completed delivery set of p.

Time Passage The action ν(t) models the passage of t time units. Time is prevented from
elapsing past the delivery deadline of any active packet that has yet to be delivered to all the hosts
in its intended delivery set. Thus, prior to allowing time to elapse past the delivery deadline of an
active packet, all the hosts in its intended delivery set must either send or receive the packet, leave
the reliable multicast group, or crash.

4.1.3 The RM-Clienth Automata

Figure 4 presents the signature, the variables, and the discrete transitions of RM-Clienth. The
RM-Clienth automaton models a well-behaved client; that is, a client that: i) transmits packets
only when it is a member of the reliable multicast group, ii) transmits packets in ascending and
contiguous sequence number order, iii) issues join requests only when it is idle with respect to the
reliable multicast group, and iv) issues leave requests only when it is a member of the reliable
multicast group.

Variables The variable now ∈ R≥0 denotes the time that has elapsed since the beginning of an
execution of RM-Clienth. The variable status ∈ Status denotes the membership status of the
host h. It takes on one of the following values: idle, joining, leaving, member, and crashed.
These values indicate whether the host h either is idle, joining, leaving, a member of the reliable
multicast group, or has crashed, respectively. We say that a host h is operational if it has not
crashed. After a host h crashes, none of the input actions affect the state of RM-Clienth and
none of the locally controlled actions, except the time passage action, are enabled. The variable
seqno ∈ N ∪ ⊥ indicates the sequence number of the last packet to have been transmitted by
RM-Clienth — the value ⊥ indicates that RM-Clienth has yet to transmit a packet using the
reliable multicast service. The seqno variable is initialized to ⊥.

Input Actions The input action crashh models the crashing of the host h. The effects of crashh
are to record that the host h has crashed by setting the status variable to crashed.

The input action rm-join-ackh acknowledges the client’s join request at h. If the client is in the
process of joining the reliable multicast group, i.e., status = joining, then the rm-join-ackh

action sets the status variable to member so as to indicate that the client at h has become a member
of the reliable multicast group.

The input action rm-leave-ackh acknowledges the client’s leave request at h. If the client is in
the process of leaving the reliable multicast group, i.e., status = leaving, then the rm-leave-ackh

9

Figure 4 The RM-Clienth Automaton

Parameters:

h ∈ H

Actions:

Input:

crashh

rm-join-ackh

rm-leave-ackh

rm-recvh(p), for all p ∈ PRM-Client

Output:

rm-joinh

rm-leaveh

rm-sendh(p), for all p ∈ PRM-Client

Time Passage:

ν(t), for t ∈ R≥0

Variables:

now ∈ R≥0, initially now = 0
status ∈ Status, initially status = idle

seqno ∈ N ∪ ⊥, initially seqno =⊥
Discrete Transitions:

input crashh

eff status := crashed

input rm-join-ackh

eff if status = joining then

status := member

input rm-leave-ackh

eff if status = leaving then

status := idle

input rm-recvh(p)

eff None

output rm-joinh

pre status = idle

eff status := joining

output rm-leaveh

pre status = member

eff status := leaving

output rm-sendh(p)

pre status = member ∧ source(p) = h
∧(seqno =⊥ ∨seqno(p) = seqno + 1)

eff seqno := seqno(p)

time-passage ν(t)

pre None
eff now := now + t

action sets the status variable to idle so as to indicate that the client at h has become idle with
respect to the reliable multicast group.

The input action rm-recvh(p) models the delivery of the packet p to the client at h. This action
has no effects.

Output Actions The output action rm-joinh is performed by the client to initiate the process
of joining the reliable multicast group. This action is enabled only while the client is idle with
respect to the reliable multicast group. Its effects are to set the status variable to joining so as
to indicate that the client at h has initiated the process of joining the reliable multicast group.

The output action rm-leaveh is performed by the client so as to initiate the process of leaving the
reliable multicast group. This action is enabled only while the client is a member of the reliable
multicast group. Thus, the client waits for join requests to complete prior to issuing leave requests.
Its effects are to set the status variable to leaving so as to indicate that the client at h has initiated
the process of leaving the reliable multicast group.

The output action rm-sendh(p) models the client’s transmission of the packet p using the reliable
multicast service. The rm-sendh(p) action is enabled when the client is a member of the reliable
multicast group and the packet p is either the first or the next packet in the sequence of packets
to be transmitted by the client at h; that is, status = member, source(p) = h, and either seqno =⊥
or seqno(p) = seqno + 1. The effects of the rm-sendh(p) action are to set seqno to seqno(p) (or,
equivalently, to increment seqno), thus recording the transmission of the packet p.

Time Passage The action ν(t) models the passage of t time units. It is enabled at any point in
time and increments the variable now by t time units.

10

4.2 Preliminary Properties and Definitions

The automaton RM-Clienth, for any h ∈ H, satisfies transmission correctness, transmission
uniqueness, and in order transmission. Transmission correctness is the property that clients only
transmit packets for which they are actually the source. Transmission uniqueness is the property
that no two packets transmitted by a client share the same identifier. Finally, in order transmission
is the property that each client transmits packets through the reliable multicast group in ascending
sequence number order.

Lemma 4.1 (Transmission Correctness) Let β be any timed trace of RM-Clienth, for any
h ∈ H. If β contains the action rm-sendh(p), for some p ∈ PRM-Client, then the host h is the
source of p; that is, h = source(p).

Proof: Follows directly from the precondition of the action rm-sendh(p).

Lemma 4.2 (Transmission Uniqueness) Let β be any timed trace of RM-Clienth, for any
h ∈ H. For any packet identifier 〈s, i〉 ∈ H × N, at most one packet p ∈ PRM-Client is transmitted
within β; that is, β contains at most one action rm-sendh(p), for p ∈ PRM-Client, such that
id(p) = 〈s, i〉.

Proof: Let α be any timed execution of RM-Clienth such that β = ttrace(α). Within α each
action rm-sendh(p

′), for p′ ∈ PRM-Client such that source(p
′) = h, transmits the packet p′ whose

sequence number is equal to seqno and increments the variable seqno. Since no other actions affect
the variable seqno it follows that seqno monotonically increases each time a packet is transmitted.
Thus, β does not contain the transmission of more than one packets sharing the same sequence
number.

Lemma 4.3 (In Order Transmission) Let β be any timed trace of RM-Clienth, for h ∈ H,
that contains the actions rm-sendh(p) and rm-sendh(p

′), for p, p′ ∈ PRM-Client, such that h =
source(p) = source(p′) and seqno(p) < seqno(p′). Then, the action rm-sendh(p) precedes the
action rm-sendh(p

′) in β.

Proof: The effects of any rm-sendh(p
′′), for p′′ ∈ PRM-Client, are to increment the variable

RM-Clienth.seqno. Moreover, no other action affects the variable RM-Clienth.seqno. Thus is,
the variable RM-Clienth.seqno is monotonically non-decreasing in any execution of RM-Clienth.

The actions rm-sendh(p) and rm-sendh(p
′) are enabled only when seqno(p) = RM-Clienth.seqno

and seqno(p′) = RM-Clienth.seqno, respectively. It follows that rm-sendh(p) precedes the action
rm-sendh(p

′) in any timed execution of RM-Clienth such that β = ttrace(α).

The automaton RMS(∆), for any ∆ ∈ R≥0 ∪ ∞ satisfies transmission integrity. Transmission
integrity it the property that, within a timed trace of RMS(∆), the reception of a packet must be
preceded by the particular packet’s transmission.

Lemma 4.4 (Transmission Integrity) Let β be any timed trace of RMS(∆), for any ∆ ∈
R≥0 ∪ ∞. For h, h′ ∈ H and p ∈ PRM-Client, such that h 6= h′ and h = source(p), it is the
case that any rm-recvh′(p) action is preceded in β by a rm-sendh(p) action.

Proof: Let α be any timed execution of RMS(∆) such that β = ttrace(α). It suffices to show
that any rm-recvh′(p) action is preceded by a rm-sendh(p) action within α. This follows directly

11

from the precondition of the action rm-recvh′(p). In particular, the precondition of the action
rm-recvh′(p) requires that there is a tuple in pkts corresponding to the packet p. However, such a
tuple may be added to pkts only by the occurrence of the action rm-sendh(p). Thus, the occurrence
of any action rm-recvh′(p) within α is preceded by the occurrence of the action rm-sendh(p).

We proceed by defining the set of members of the reliable multicast group following a finite timed
trace of RMS(∆).

Definition 4.1 (Membership) Let β be any timed trace of RMS(∆), for any ∆ ∈ R≥0 ∪ ∞.
We define the members of β, denoted members(β), to be the set of all hosts h ∈ H such that β
contains a rm-join-ackh action that is not succeeded by either an rm-leaveh or a crashh action.
If a host h ∈ H is in the set members(β), then we say that h is a reliable multicast group member
of β.

The following lemma relates the set members(β) of Definition 4.1 to the derived variable members
of the automaton RM.

Lemma 4.5 Let ∆ ∈ R≥0 ∪∞ and α be any finite timed execution of RMS(∆). Letting s be the
last state in α and β be the timed trace of α, it is the case that s.members = members(β).

Proof: Follows directly from the definitions of s.members and members(β).

Lemma 4.6 Let ∆ ∈ R≥0 ∪ ∞, h ∈ H, and α be any timed execution of RMS(∆) such that
h ∈ members(ttrace(α)). Letting s be any state following the last occurrence of the rm-join-ackh
action in α, it is the case that h ∈ s.members.

Proof: Let α′, α′′ be the execution fragments of RMS(∆) such that α
′α′′ = α and the last action

in α′ is the last occurrence of the rm-join-ackh action in α. Letting s
′ = α′.lstate, the effects of the

rm-join-ackh action imply that s
′.status(h) = member. By the definition of members(ttrace(α)),

it follows that α′′ contains neither a rm-leaveh or a crashh action.

The rest of the proof involves showing that for any prefix αn of α
′′ of length n ∈ N, such that

sn = αn.lstate, it is the case that h ∈ sn.members. This follows by a simple induction on the length
n of αn. For the base case, consider α0. Since α0 = s′ and s′.status(h) = member, it follows that
s0.status(h) = member, as required. For the inductive step, consider αk+1. Let sk+1 = αk+1.lstate,
let αk be the prefix of αk+1 involving its first k steps, and sk = αk.lstate. The induction hypothesis
is the assertion that sk.status(h) = member. Since α′′ contains neither a rm-leaveh or a crashh

action, the k + 1-st step of αk+1 is neither an rm-leaveh or a crashh action. Moreover, since
sk.status(h) = member, the k + 1-st step of αk+1 is neither an rm-joinh, rm-join-ackh, nor
rm-leave-ackh action. The remaining actions do not affect the status(h) variable. Thus, it follows
that sk+1.status(h) = member, as required.

We proceed by defining the intended and completed delivery sets of a packet within a timed trace
of RMS(∆).

Definition 4.2 (Intended Delivery Set) Let β be any timed trace of RMS(∆), for any ∆ ∈
R≥0∪∞, containing the transmission of a packet p ∈ PRM-Client. We define the intended delivery

set of p within β, denoted intended(p, β), to be the members of β that have delivered either the
packet p or an earlier packet from the source of p since they last joined the reliable multicast group;
that is, h ∈ intended(p, β) if and only if h ∈ members(β) and the last rm-join-ackh action in β
is succeeded by either a rm-sendh(p

′) or a rm-recvh(p
′) action, where source(p′) = source(p) and

seqno(p′) ≤ seqno(p).

12

Lemma 4.7 Let β be any finite timed trace of RMS(∆), for any ∆ ∈ R≥0 ∪ ∞, containing the
transmission of a packet p ∈ PRM-Client. Then, it is the case that intended(p, β) ⊆ members(β).

Proof: Follows directly from Definition 4.2.

The following lemma relates the intended delivery set of a packet p within a timed trace β defined
in Definition 4.2 to the derived variable intended(p) of the RM automaton.

Lemma 4.8 Let ∆ ∈ R≥0 ∪∞, p ∈ PRM-Client, and α be any finite timed execution of RMS(∆)
that contains the transmission of p. Letting s = α.lstate and β = ttrace(α), it is the case that
s.intended(p) = intended(p, β).

Proof: Follows directly from the definition of the derived variable intended(p) and Definition 4.2.

Definition 4.3 (Completed Delivery Set) Let β be any timed trace of RMS(∆), for any
∆ ∈ R≥0 ∪∞, containing the transmission of a packet p ∈ PRM-Client. We define the completed

delivery set of p within β, denoted completed(p, β), to be the members of β that have delivered
the packet p since they last joined the reliable multicast group; that is, h ∈ completed(p, β) if and
only if h ∈ members(β) and the last rm-join-ackh action in β is succeeded by either a rm-sendh(p)
or a rm-recvh(p) action.

The following lemma relates the completed delivery set of a packet p within a timed trace β defined
in Definition 4.3 to the derived variable completed(p) of the RM automaton.

Lemma 4.9 Let ∆ ∈ R≥0 ∪ ∞, p ∈ PRM-Client, and α be any finite timed execution of
RM(∆)× rmClients that contains the transmission of p. Letting s = α.lstate and β = ttrace(α),
it is the case that s.completed(p) = completed(p, β).

Proof: Follows directly from the definition of the derived variable completed(p) and Definition 4.3.

We continue by defining the set of active packets within a timed trace of RMS(∆), for any
∆ ∈ R≥0 ∪ ∞. This set is comprised of the packets whose intended and completed delivery sets
within the given timed trace overlap; that is, the packets for which there is at least one host that
was and has remained a member of the reliable multicast group following the packet’s transmission
and, moreover, has either sent or received the packet.

Definition 4.4 (Active Packets) Let β be any timed trace of RM(∆) × rmClients, for any
∆ ∈ R≥0 ∪ ∞. We define the set of active packets within β, denoted active-pkts(β), to be
the set of all packets p ∈ PRM-Client such that intended(p, β) ∩ completed(p, β) 6= ∅. If a packet
p ∈ PRM-Client is in the set active-pkts(β), then we say that p is active within β.

The following lemma relates the set of active packets defined in Definition 4.4 to the derived variable
active-pkts of the RM automaton.

Lemma 4.10 Let ∆ ∈ R≥0 ∪ ∞, p ∈ PRM-Client, and α be any finite timed execution of
RM(∆)× rmClients that contains the transmission of p. Letting s = α.lstate and β = ttrace(α),
it is the case that s.active-pkts = active-pkts(β).

13

Proof: Follows directly from Lemmas 4.8 and 4.9, Definition 4.4, and the definition of the derived
variable active-pkts of the RM automaton.

Lemma 4.11 Let β, β′ be timed traces of RM(∆)×rmClients, for any ∆ ∈ R≥0∪∞, containing
the transmission of a packet p ∈ PRM-Client such that β

′ ≤ β. Then, it is the case that if
p ∈ active-pkts(β) then p ∈ active-pkts(β ′).

Proof: We prove the above claim by contradiction. Suppose that it is the case that p 6∈
active-pkts(β′) and p ∈ active-pkts(β). Thus, there must be some action π following β ′ such
that p 6∈ active-pkts(βπ) and p ∈ active-pkts(βπ · π), where βπ, β

′
π are the trace fragments of β such

that βπ · π · β
′
π = β.

Let α be any timed execution of RM(∆) × rmClients such that β = ttrace(α) and sπ and s′π
be the pre- and post-states of π within α. We proceed by considering the possibility of π being
any of the actions of the RMS(∆) automaton that affect the valuation of the derived variable
active-pkts. Since p 6∈ active-pkts(βπ), Lemma 4.10 implies that p 6∈ sπ.active-pkts. Thus, none of
the rm-recvh(p), for h ∈ H, are enabled. Lemma 4.1 implies that none of the actions rm-sendh(p),
for h ∈ H, except for h = source(p) are enabled. Moreover, since p has already been sent within
βπ, Lemma 4.2 implies that rm-sendh(p), for h = source(p), is not enabled in sπ. The only other
actions that affect the variable active-pkts are the crashh and rm-leaveh actions, for h ∈ H. The
effects of these actions are to remove the host h from both the intended(p) and completed(p) sets.
Clearly, if intended(p) ∩ completed(p) = ∅ in the state sπ, then the same holds for s

′
π. Thus, it

follows that p 6∈ s′π.active-pkts. Lemma 4.10 implies that p 6∈ active-pkts(βπ · π), which contradicts
our original supposition.

Lemma 4.12 Let ∆ ∈ R≥0 ∪ ∞, h ∈ H, p ∈ PRM-Client, and α be any timed execution of
RMS(∆) that ends with the discrete transition (s, π, s

′), for π = rm-sendh(p). Then, it is the case
that p ∈ s′.sent-pkts.

Proof: From the precondition of rm-sendh(p), it follows that s.status = member and source(p) = h.
Thus, the effects of the rm-sendh(p) are to set the variable trans-time(p) to the value of now . By the
definition of the derived variable sent-pkts of RM(∆), it follows that p ∈ s′.sent-pkts, as required.

Lemma 4.13 Let ∆ ∈ R≥0 ∪ ∞, p ∈ PRM-Client, s ∈ states(RM(∆)) be any reachable state of
RM(∆) such that p ∈ s.sent-pkts, and α be any timed execution fragment of RM(∆) such that
s = α.fstate. For any s′ ∈ states(RM(∆)) in α, it is the case that p ∈ s′.sent-pkts.

Proof: Follows from a simple induction on the length of the prefix of α leading to s′ and the fact
that none of the actions of RM(∆) reset the variable trans-time(p) to ⊥.

Lemma 4.14 Let h ∈ H, p ∈ PRM-Client, s ∈ states(RM(∆)), for ∆ ∈ R≥0 ∪ ∞, and α be any
timed execution fragment of RM(∆), such that s = α.fstate, h ∈ s.intended(p) (or, equivalently,
id(p) ∈ s.expected(h, source(p))), and α contains neither crashh nor rm-leaveh actions. Then,
for any state s′ ∈ states(RM(∆)) in α, it is the case that h ∈ s′.intended(p) (or, equivalently,
id(p) ∈ s′.expected(h, source(p))).

14

Proof: Follows from a simple induction on the length of the prefix of α leading to s′ and the
facts that: i) the variable expected(h, source(p)) may only be set to a non-empty set if it is empty,
and ii) the variable expected(h, source(p)) is reset to the empty set only by the actions crashh and
rm-leaveh.

Invariant 4.1 For h ∈ H and any reachable state s of RM(∆)× rmClients, for ∆ ∈ R≥0 ∪∞,
it is the case that s[RM-Clienth].status = s[RM(∆)].status(h).

Proof: Follows by a simple induction on the length of any timed execution of RMS(∆) leading
to s.

Invariant 4.2 Let h, h′ ∈ H and s be any reachable state of RMS(∆), for ∆ ∈ R≥0 ∪ ∞.
If s[RM(∆)].status(h) 6= member, then it is the case that s[RM(∆)].expected(h, h′) = ∅ and
s[RM(∆)].delivered(h, h′) = ∅.

Proof: Follows from a simple induction on the length of any execution of RMS(∆) leading
to s and the facts that: i) the actions that set the variable RM(∆).expected(h, h′) are only
enabled when RM(∆).status(h) = member, ii) the actions that add elements to the variable
RM(∆).delivered(h, h′) are only enabled when RM(∆).status(h) = member, and iii) the actions
that reset the variables RM(∆).expected(h, h′) and RM(∆).delivered(h, h′) also set the variable
RM(∆).status(h) to a value other than member.

Letting ∆ ∈ R≥0 ∪ ∞, the following invariant states that, for any active packet in any reachable
state of RM(∆)×rmClients, either ∆ time units have yet to elapse past the packet’s transmission
time, or the packet has been delivered to all members that are aware of it. Thus, ∆ bounds the
delivery latency of any active packet.

Invariant 4.3 Let s be any reachable state of the timed automaton RMS(∆), for any ∆ ∈ R≥0∪∞.
Then, for any active packet p ∈ PRM-Client in s, i.e., p ∈ s.active-pkts, it is the case that either
s.now ≤ s.trans-time(p) + ∆ or s.intended(p) ⊆ s.completed(p).

Proof: The proof is by induction of the number of steps n ∈ N of a timed execution α of RMS(∆)
leading to the state s. For the base case, consider a timed execution with no steps; that is, n = 0
and α = s for some s ∈ start(RMS(∆)). Since s.active-pkts = ∅, the invariant assertion is trivially
satisfied.

For the inductive step, consider a timed execution α with k + 1 steps. Let α′ be the prefix of
α containing the first k steps of α and s′ be the last state of α′. The induction hypothesis is
that for any active packet p′ ∈ PRM-Client in s′, i.e., p′ ∈ s′.active-pkts, it is the case that either
s′.now ≤ s′.trans-time(p′) + ∆ or s′.intended(p′) ⊆ s′.completed(p′). For the inductive step, we
show that for any active packet p ∈ PRM-Client in s, i.e., p ∈ s.active-pkts, it is the case that either
s.now ≤ s.trans-tims(p) + ∆ or s.intended(p) ⊆ s.completed(p).

Suppose that p ∈ s.active-pkts and consider two cases depending on whether p ∈ s′.active-pkts.
First, consider the case in which p 6∈ s′.active-pkts. Lemma 4.11 implies that the step from s′ to s
involves the action rm-sendh(p), for h = source(p). Its effects are to set the variable trans-time(p)
to now . It follows that s.now ≤ s.trans-time(p) +∆. Thus, the invariant assertion is satisfied in s.

Second, consider the case in which p ∈ s′.active-pkts. Then, the induction hypothesis implies that
either s′.now ≤ s′.trans-time(p)+∆ or s′.intended(p) ⊆ s′.completed(p). We proceed by considering
the effects of each of the actions that affect any of the variables present in the invariant assertion:

15

❒ crashh, for h ∈ H: the effects of this action are to remove the host h from the intended
and completed delivery sets of p. Thus, the induction hypothesis implies that either s.now ≤
s.trans-time(p) + ∆ or s.intended(p) ⊆ s.completed(p).

❒ rm-leaveh, for h ∈ H: the reasoning for this action is similar to that of the crashh action.

❒ rm-sendh(p), for h = source(p): since p ∈ s′.active-pkts it follows that p has been sent prior to
state s′ within α. Thus, Lemma 4.2 implies that the rm-sendh(p) action is not enabled in s

′.

❒ rm-recvh(p), for h ∈ H: we consider two cases depending on whether s′.expected(h, source(p))
is empty. First, if s′.expected(h, source(p)) = ∅, the precondition of rm-recvh(p) implies that
s′.now ≤ s′.trans-time(p) + ∆. Since the rm-recvh(p) action affects neither the now nor the
trans-time(p) variables, it follows that s.now ≤ s.trans-time(p)+∆. Thus, the invariant assertion
is satisfied in s. Second, if s′.expected(h, source(p)) 6= ∅, the precondition of rm-recvh(p) implies
that id(p) ∈ s′.expected(h, source(p)). The effects of rm-recvh(p) are to add the element
id(p) to the set delivered(h, source(p)). Thus, the induction hypothesis implies that either
s.now ≤ s.trans-time(p) + ∆ or s.intended(p) ⊆ s.completed(p).

❒ ν(t), for t ∈ R≥0: the effects of the time-passage action are to allow t time units to elapse.
However, the precondition of the action ν(t) implies that the invariant assertion is satisfied in s.

4.3 Reliability Properties

The RMS(∆) automaton, for any ∆ ∈ R≥0 ∪∞, satisfies the eventual delivery and, equivalently,
pairwise eventual delivery, properties. Eventual delivery is the property that if a host h is a
member of the reliable multicast group, becomes aware of a packet p, remains a member of the
group thereafter, and p remains active thereafter, then h delivers p since last joining the reliable
multicast group. Its pairwise counterpart is the property that if two hosts are members of the
reliable multicast group, become aware of the packet p, remain members of the group thereafter,
and one of them delivers p since last joining the reliable multicast group, then so does the other.
The eventual and pairwise eventual delivery properties are equivalent.

Theorem 4.15 (Eventual Delivery) Let β be any fair admissible timed trace of RMS(∆), for
any ∆ ∈ R≥0 ∪∞, containing the transmission of a packet p ∈ PRM-Client. If p ∈ active-pkts(β),
then p is delivered by each host in the intended delivery set of p within β since each such host last
joined the reliable multicast group; that is, intended(p, β) ⊆ completed(p, β).

Proof: Let α be any fair admissible timed execution of RMS(∆), such that β = ttrace(α). Suppose
that p ∈ active-pkts(β) and let h ∈ intended(p, β). It suffices to show that h ∈ completed(p, β).

First, we consider the case where h is the source of p. Since h ∈ intended(p, β), Definition 4.2
implies that the last rm-join-ackh action in β is succeeded by a rm-sendh(p

′) action, where
source(p′) = source(p) and seqno(p′) ≤ seqno(p). If seqno(p′) = seqno(p) and, consequently, p′ = p,
then it is the case that the last rm-join-ackh action in β is succeeded by a rm-sendh(p) action.
By Definition 4.3, it follows that h ∈ completed(p, β), as needed. If seqno(p′) < seqno(p), then
Lemma 4.3 implies that the transmission of p in β succeeds the transmission of p′ in β. Since the
rm-sendh(p

′) action succeeds the last rm-join-ackh action in β, so does the rm-sendh(p) action.
By Definition 4.3, it follows that h ∈ completed(p, β), as needed.

Second, consider the case where h is not the source of p. Since h ∈ intended(p, β), Definition 4.2
implies that the last rm-join-ackh action in β is succeeded by a rm-recvh(p

′) action, where
source(p′) = source(p) and seqno(p′) ≤ seqno(p). If seqno(p′) = seqno(p) and, consequently,

16

p′ = p, then it is the case that the last rm-join-ackh action in β is succeeded by a rm-recvh(p)
action. By Definition 4.3, it follows that h ∈ completed(p, β), as needed.

Now, consider the case where seqno(p′) < seqno(p). Let (s′−, π, s
′
+) be the discrete transition

in α corresponding to the particular occurrence of the rm-recv h(p
′) action in β and α′ be the

suffix of α that starts in the post-state s′+ of (s
′
−, π, s

′
+). Moreover, let sα′ be any state in α′.

Since h ∈ intended(p, β), Lemma 4.7 implies that h ∈ members(β). Since α′ succeeds the last
rm-join-ackh action in α, Lemma 4.6 implies that h ∈ sα′ .members. Since h 6= source(p), it
follows that h ∈ sα′ .members\{source(p)}. The precondition and the effects of the rm-recv h(p

′)
action imply that id(p) ∈ s′+.expected(h, source(p)). Moreover, Lemma 4.14 implies that id(p) ∈
sα′ .expected(h, source(p)).

Moreover, let (s′′−, π, s
′′
+) be the discrete transition in α corresponding to the occurrence of the

rm-sendh′(p) action in β, for h
′ = source(p), and α′′ be the suffix of α that starts in the post-state

s′′+ of (s
′′
−, π, s

′′
+). Moreover, let sα′′ be any state in α

′′. Lemma 4.12 implies that p ∈ s′′+.sent-pkts
and Lemma 4.13 implies that p ∈ sα′′ .sent-pkts.

Now, let α∗ be any timed execution fragment that is a common suffix of α′ and α′′ and let
s∗ be any state in α∗. Since h ∈ sα′ .members\{source(p)}, p ∈ sα′′ .sent-pkts, and id(p) ∈
sα′ .expected(h, source(p)), it is the case that h ∈ s∗.members\{source(p)}, p ∈ s∗.sent-pkts, and
id(p) ∈ s∗.expected(h, source(p)). Thus, the rm-recvh(p) action is enabled in s∗; that is, the
rm-recvh(p) action is enabled in any state in α

∗.

Since α∗ is a suffix of α and α is an admissible timed execution of RMS(∆), it is the case that
α∗ is infinite. Since the rm-recvh(p) action is enabled in any state of α

∗, the rm-recvh(p) action
is enabled infinitely often in α∗. Since α is fair, the rm-recvh(p) action occurs in α∗. Thus, the
rm-recvh(p) action succeeds the last rm-join-ackh action in α. By Definition 4.3, it follows that
h ∈ completed(p, β), as needed.

The following theorem defines the pairwise eventual delivery property of RMS(∆). It states that
if two hosts are members of the reliable multicast group, become aware of the packet p, remain
members of the group thereafter, and one of them delivers p, then so does the other. The pairwise
eventual delivery is equivalent to the eventual delivery property defined in Theorem 4.15.

Corollary 4.16 (Pairwise Eventual Delivery) Let β be any fair admissible timed trace of
the RMS(∆) automaton, for any ∆ ∈ R≥0 ∪ ∞, that contains the transmission of a packet
p ∈ PRM-Client and the hosts h, h

′ ∈ H,h 6= h′ be any two distinct hosts in the intended delivery set
of p within β. Then, if h delivers p within β, then so does h′.

Proof: Since h is in the intended delivery set of p within β and it delivers p within β, it follows
that p is active within β; that is, p ∈ active-pkts(β). Since h′ is in the intended delivery set of p
within β, Theorem 4.15 implies that h′ delivers p within β.

The following theorem defines the notion of time-bounded delivery ; that is, the property that any
packet that remains active for at least ∆ ∈ R≥0 time units past its transmission is delivered within
these ∆ time units to all hosts that become aware of it within these ∆ time units.

Theorem 4.17 (Time-Bounded Delivery) Let β be any admissible timed trace of RM(∆) ×
rmClients, for any ∆ ∈ R≥0, that contains the transmission of a packet p ∈ PRM-Client. Let β

′

be the finite prefix of β ending with the transmission of p; that is, the last action contained in β ′

is the action rm-sendh(p), for h ∈ H,h = source(p). Let β ′′ be any finite prefix of β, such that
β′ ≤ β′′ ≤ β and t′ + ∆ < t′′, with t′, t′′ ∈ R≥0 being the time of occurrence of the last actions
of β′ and β′′, respectively. Suppose that the host h′ is in the intended delivery set of p within β ′′

17

and that the packet p is active within β ′′. Then, the host h delivers the packet p within β ′′; that is,
h′ ∈ completed(p, β′′).

Proof: Let α be any admissible execution of RM(∆) × rmClients such that β = ttrace(α).
Moreover, let α′ and α′′ be finite prefixes of α such that α′ ≤ α′′ ≤ α, β′ = ttrace(α′),
β′′ = ttrace(α′′), and the last actions in α′ and α′′ are the last actions in β ′ and β′′, respectively.
Finally, let s′ and s′′ be the last states of α′ and α′′, respectively.

Since t′ + ∆ < t′′, it follows that s′′.trans-time(p) + ∆ < s′′.now . Since p ∈ active-pkts(β ′′),
Lemma 4.10 implies that p ∈ s′′.active-pkts. Since p ∈ s′′.active-pkts and s′′.trans-time(p) + ∆ <
s′′.now , Invariant 4.3 implies that s′′.intended(p) ⊆ s′′.completed(p). Lemmas 4.8 and 4.9, imply
that intended(p, β′′) ⊆ completed(p, β′′). Finally, since h′ ∈ intended(p, β′′), it follows that
h′ ∈ completed(p, β′′); that is, the host h′ delivers the packet p within β ′′.

5 Reliable Multicast Implementation (RMI)

In this section, we present RMI — a formal model of the Scalable Reliable Multicast (SRM)
protocol [1]. RMI precisely specifies the behavior of the basic version of SRM — more sophisticated
versions involve adaptive and local recovery schemes [1, 5].

5.1 Overview of RMI’s Functionality

RMI consists of two distinct functional components: i) packet loss recovery, and ii) session message
exchange. We proceed by describing each of these components.

Packet Loss Recovery Receivers detect packet losses by identifying sequence number gaps in
the stream of packets received from each source. Upon detecting the loss of a packet p, a host
h initiates a new recovery round for p by scheduling a retransmission request for p. This request
is scheduled for transmission at a point in time in the future that is uniformly chosen within the
interval [C1d̂hs, (C1 + C2)d̂hs], where C1, C2 ∈ R≥0 are request scheduling parameters and d̂hs is
half of h’s round-trip-time (RTT) estimate to the source s of the packet p.

Upon either the transmission of a request for p or the reception of a request for p while a request
for p is pending transmission, the host h initiates a new recovery round for p by rescheduling the
request for p for transmission at a point in time in the future that is uniformly chosen within the
interval 2k−1[C1d̂hs, (C1+C2)d̂hs], where k ∈ N+ is the number of recovery rounds for p that h has
already initiated. In effect, the request for p is rescheduled by performing an exponential back-off.
If h receives p while a request for p is pending transmission, then the request for p is canceled.

Once h reschedules its request for p, it observes a back-off abstinence period. During this period,
it refrains from backing-off its request for p. Any requests for p received during this period are
considered to pertain to prior recovery rounds and are discarded. Thus, back-off abstinence periods
prevent requests from being backed-off multiple times by requests pertaining to the same recovery
round. The back-off abstinence period for p expires at the point in time that is 2k−1C3d̂hs time
units in the future, where k ∈ N+ is the number of recovery rounds for p that h has already initiated
and C3 ∈ R≥0 is the back-off abstinence parameter.
Our modeling of back-off abstinence periods departs slightly from SRM. Floyd et al. [1] propose
two schemes for ensuring that requests are backed off only once per recovery round. The first
scheme involves back-off abstinence periods that expire once half the time to the transmission time
of the respective request has elapsed. Our use of a parameter for specifying how long to abstain

18

from backing off allows more tuning freedom. Moreover, having back-off abstinence periods expire
once half the time to the transmission time of the respective request has elapsed allows for the
back-off abstinence period to overlap the interval within which requests are scheduled. This seems
to go against the intention of the abstinence period. Requests received within the interval within
which the current request was scheduled, should be considered to be requests of the current round
and, thus, should result in the rescheduling of the current request. The second scheme annotates
requests with their recovery round and backs off requests only upon receiving a request pertaining
to the same or, presumably, a later round.

If a host h′ receives a request for the packet p from the host h and it has already either
sent or received p, then it schedules a reply for (retransmission of) p. This reply is scheduled
for transmission at a point in time in the future that is uniformly chosen within the interval
[D1d̂h′h, (D1 + D2)d̂h′h], where D1, D2 ∈ R≥0 are reply scheduling parameters and d̂h′h is half of
h′’s RTT estimate to h (the requestor of p). If h′ receives a reply for p while its own reply for p is
pending transmission, then h′ cancels its own reply for p.

Once h′ either receives a reply for p or retransmits p itself, it observes a reply abstinence period ;
a period during which it refrains from scheduling replies to requests for p. The reply abstinence
period for p expires at the point in time that is D3d̂hh′ time units in the future, where D3 ∈ R≥0 is
the reply abstinence parameter. The reply abstinence period prevents multiple requests pertaining
to a given recovery round from generating multiple replies.

Session Message Exchange The reliable multicast group members periodically exchange
session messages. These messages carry transmission state and timing information that allow
the prompt detection of packet losses and the calculation of inter-host distance estimates; within
SRM, inter-host distances are quantified by the one-way transmission latency between hosts. For
simplicity, we assume that hosts transmit session messages with a fixed period. In practice however,
so as to limit the overhead associated with the exchange of session messages, the frequency of session
message transmission is reduced as the size of the reliable multicast group grows.

Receivers detect packet losses by detecting sequence number gaps in the stream of packets received
from each source. However, this approach presumes either that later packets within the sequence
of transmitted packets are received, or that receivers get informed of the transmission progress
of each source through a separate service. Unfortunately, relying solely on the reception of later
packets may result in long recovery latencies. This is evident when the total number of packets
within a sequence is unknown a priori and either long transmission pauses, or long loss bursts are
considered. Session messages mitigate this problem by allowing reliable multicast group members to
exchange transmission progress state, in terms of ADU sequence numbers that they have observed
with respect to each source. Discrepancies in the observed transmission progress for each source
by each host reveal whether and which packets a particular host is missing.

In addition to contributing to packet loss detection, session messages are used to calculate inter-host
distance estimates. Hosts estimate the one-way transmission latencies between them by exchanging
timing information through their session messages. For the purposes of illustration, we demonstrate
how a host h calculates its distance estimate to a host h′. This calculation is initiated when the host
h transmits a session message, p. This session message includes a field containing its transmission
time ts. Let t

′
r denote the time the host h

′ receives p. Upon receiving p, h′ records the times at
which p was transmitted and received, i.e., it records a tuple of the form 〈ts, t

′
r〉. Subsequently, the

host h′ includes the tuple 〈ts, t
′
d〉 within its next session message, p

′, where t′d corresponds to the
time elapsed since the host h′ received p and the time h′ transmits p′. Finally, letting tr denote the
point in time that h receives p′, h estimates its distance d̂hh′ to h

′ as (tr − t′d − ts)/2 time units.

Although the above scheme for calculating inter-host transmission latencies is simple, it presumes

19

that inter-host transmission latencies are symmetric — the one way inter-host transmission
latency is estimated as half the round-trip-time (RTT) between hosts. Another drawback of this
scheme is the dependence of its accuracy on the frequency of session message transmission. The
frequency of calculating inter-host distance estimates is dictated by the frequency of session message
transmission. Thus, if the frequency of session message transmission were adjusted based on the
size of the reliable multicast group, then as the group would increase in size the accuracy of the
inter-host distance estimates would drop.

5.2 Formal Model of RMI

Presuming the abstract view of the physical system introduced in Section 3, RMI involves the
interaction of a set of client processes, one process per host, a set of reliable multicast processes,
one process per host, and an IP multicast service component. The client processes are identical to
those presented in Section 4. The reliable multicast processes execute the SRM protocol. The IP
multicast service component encapsulates the behavior of all communication processes at all hosts
and the underlying network and provides the best-effort multicast primitive.

We model each reliable multicast process as four interacting components, each with distinct
functionalities. The membership component manages the reliable multicast group membership of
the host. It handles the join and leave requests of the client process and issues join and leave requests
to the underlying IP multicast service. The IP buffer component buffers all packets either received
from or to be transmitted using the underlying IP multicast service. The recovery component
incorporates all the functionality pertaining to the detection and recovery of missing packets.
Finally, the reporting component incorporates all the functionality pertaining to the exchange of
session messages among the members of the reliable multicast group. Session messages are used to
exchange transmission state and inter-host round-trip-time (RTT) information. This information
aids the detection of losses, in particular during transmission gaps, and the calculation of inter-host
round-trip-time estimates, which are required by the recovery component.

Figure 5 depicts the interaction of the various components of RMI. The reliable multicast process
SRMh at each host h is the composition of the automata SRM-memh, SRM-IPbuffh, SRM-rech,
and SRM-reph. The reliable multicast implementation as a whole, denoted SRM, is the
composition of the SRM processes and the underlying IP multicast service after hiding all output
actions that are not output actions of the specification RM(∆), for any ∆ ∈ R≥0 ∪ ∞; that is,
SRM = hideΦ(

∏

h∈H SRMh × IPmcast), with Φ = out(
∏

h∈H SRMh × IPmcast)\out(RM(∆)).
Finally, we define RMI to be the composition of the reliable multicast implementation with all the
client automata; that is, RMI = SRM×RM-Clients.

5.2.1 Preliminary Definitions

Figure 6 contains a list of set definitions that specify the format of the various types of packets
used throughout the following sections. The set PRM-Client represents the set of packets that may
be transmitted by the client processes using the reliable multicast service. As defined in Section 4,
for any packet p ∈ PRM-Client the operations source(p), seqno(p), and data(p) extract the source,
sequence number, and data segment corresponding to the packet p. For shorthand, we use the
operation id(p) to extract the identifier of p; that is, its source and sequence number pair.

The set PSRM is comprised of all packets whose format is that used by the reliable multicast process.
The format of each packet p ∈ PSRM depends on its type. The type of the packet p, type(p), is
one of the following: DATA, RQST, REPL, and SESS. The type of p denotes whether the packet is an
original transmission, a repair request, a repair reply, or a session packet, respectively. Depending

20

Figure 5 Reliable Multicast Implementation Component Interaction

����������	
	�����������������

�����
��� �
�����
�������! �" �
��#$��&%�$ �
��#$��&%�$����! '" �

(�$�)�*�,+&$-�
. �
/10�2

�,+-$-��. � /10�2
��(�$
 -% �
/10�2

3 45�6
787:9

3 45�6;<
=>??
9

(�$-@��A�,+-$-�
. � /B0C2
(�$-@��.��!+�D �
/FE
GIHKJGL2
(�$-@��
+-$)M&��� � /ONHQPR2

(-����+-$&�
. � /10C2
(-���-(�$� '% �
/10C2

(-��������A� �
(-��������A������ �" �
(-����#$
�-%�$ �
(-����#$
�-%�$��!�! �" �

S7
T UV8W
X 9

3 4
5 6
S8
Y 9

;<
7Y
Z [
X

3 45�6
S8\
9

]_^a` �

S7
T UV8W
X[

 '(��
+*b �

]_^a`
on its type, the packet p supports a different set of operations.

When the packet p is an original transmission, that is, when type(p) = DATA, p supports the
operations sender(p), source(p), seqno(p), data(p), and strip(p). These operations extract the
sender, source, sequence number, data segment, and ADU corresponding to p. In the case of
original transmissions, it is the case that sender(p) = source(p). When p is a repair request, that
is, when type(p) = RQST, p supports the operations sender(p), source(p), and seqno(p). These
operations extract the sender, source, and sequence number corresponding to the packet p. When
p is a repair reply, that is, when type(p) = REPL, p supports the operations sender(p), source(p),
seqno(p), data(p), and strip(p). These operations extract the sender, source, sequence number,
data segment, and ADU packet corresponding to p. For DATA, RQST, and REPL packets, we also use
the operation id(p) to extract the identifier of p; that is, its source and sequence number pair.

When the packet p is a session packet, that is, when type(p) = SESS, p supports the operations
sender(p), time-sent(p), dist-rprt? (p), dist-rprt(p, h), and seqno-rprts(p). The operation sender(p)
extracts the sender of the session packet. The operation time-sent(p) extracts the time the session

21

packet p was sent. The operation dist-rprt? (p) extracts the set of hosts for which the session
packet is distance reporting. The operation dist-rprt(p, h) extracts the distance report for h within
p; that is, dist-rprt(p, h) corresponds to a tuple comprised of two elements: the time the most
recently observed session packet sent by h was received by the sender of p and the time that
elapsed between the reception of h’s session packet by the sender of p and the transmission of
p. The operation seqno-rprts(p) extracts the state reports included in p; that is, seqno-rprts(p)
corresponds to a set of tuples, each of which is comprised of two elements: the source and the
maximum sequence number observed by the sender of p to have been transmitted by this source.

The set PIPmcast-Client represents the set of packets that may be transmitted by the clients of the
IP multicast service. For any packet p ∈ PIPmcast-Client the operations source(p), seqno(p), and
strip(p) extract the source, the sequence number, and the data packet encapsulated in p.

The set PIPmcast is comprised of tuples, each of which describes the transmission progress of a
particular packet transmitted using the IP multicast service. We refer to the tuples comprising
PIPmcast as IP multicast progress packets or transmission progress tuples. For any element pkt
of PIPmcast, the operations strip(pkt), intended(pkt), completed(pkt), dropped(pkt) extract the
packet, the intended delivery set, the completed delivery set, and the dropped set corresponding
to pkt . Letting p = strip(pkt), the intended delivery set of pkt is the set of hosts that were and
have remained members of the IP multicast group following the transmission of p. The completed
delivery set of pkt is the set of hosts to which p has already been delivered. The dropped set of
pkt is the set of hosts to which the IP multicast service can no longer deliver the packet p due to
packet drops.

Figure 7 contains a list of set definitions used throughout the following sections.

5.2.2 The Membership Component — SRM-memh

The SRM-memh timed I/O automaton specifies the membership component of the reliable
multicast process. Figures 8 and 9 present the signature, the variables, and the discrete transitions
of SRM-memh.

Variables The variable now ∈ R≥0 denotes the time that has elapsed since the beginning
of an execution of SRM-memh. The variable status captures the status of the host h. It
evaluates to one of the following: idle, join-rqst-pending, join-pending, join-ack-pending,
leave-rqst-pending, leave-pending, leave-ack-pending, member, and crashed.

The value idle indicates that the host h is idle with respect to the reliable multicast group; that
is, it is neither a member, nor in the process of joining or leaving the reliable multicast group. The
value join-rqst-pending indicates that SRM-memh has received a join request from the client
but has yet to issue a join request to the underlying IP multicast service. The value join-pending
indicates that SRM-memh has issued a join request to the underlying IP multicast service and
is awaiting a join acknowledgment. The value join-ack-pending indicates that SRM-memh has
successfully joined the underlying IP multicast service but has yet to issue a join acknowledgment
to the client. The value member indicates that the host h is a member of the reliable multicast
group. The value leave-rqst-pending indicates that SRM-memh has received a leave request
from the client but has yet to issue a leave request to the underlying IP multicast service. The
value leave-pending indicates that SRM-memh has issued a leave request to the underlying IP
multicast service and is awaiting a leave acknowledgment. The value leave-ack-pending indicates
that SRM-memh has successfully left the underlying IP multicast service but has yet to issue a
leave acknowledgment to the client. The value crashed indicates that the host h has crashed.
While the host h has not crashed, we say that it is operational. Once the host h crashes, none

22

Figure 6 SRM Packet Definitions
PRM-Client = Set of packets such that ∀ p ∈ PRM-Client

source(p) ∈ H
seqno(p) ∈ N
data(p) ∈ {0, 1}∗

id(p) ∈ H × N : id(p) = 〈source(p), seqno(p)〉
suffix(p) = {〈s, i〉 ∈ H × N | source(p) = s ∧ seqno(p) ≤ i}

PRM-Client[h] = {p ∈ PRM-Client | source(p) = h}

PSRM = Set of packets such that ∀ p ∈ PSRM

type(p) ∈ {DATA, RQST, REPL, SESS}

DATA :
sender(p) ∈ H
source(p) ∈ H
seqno(p) ∈ N
data(p) ∈ {0, 1}∗

strip(p) ∈ PRM-Client

id(p) ∈ H × N : id(p) = 〈source(p), seqno(p)〉
RQST :
sender(p) ∈ H
source(p) ∈ H
seqno(p) ∈ N
id(p) ∈ H × N : id(p) = 〈source(p), seqno(p)〉

REPL :
sender(p) ∈ H
source(p) ∈ H
seqno(p) ∈ N
data(p) ∈ {0, 1}∗

strip(p) ∈ PRM-Client

id(p) ∈ H × N : id(p) = 〈source(p), seqno(p)〉
SESS :
sender(p) ∈ H
time-sent(p) ∈ R≥0

dist-rprt?(p) ⊆ H
dist-rprt(p, h) ∈ {〈t, t′〉 | t, t′ ∈ R≥0}, for all h ∈ H
seqno-rprts(p) ⊆ {〈s, i〉 | s ∈ H, i ∈ N}

PIPmcast-Client = Set of packets such that ∀ p ∈ PIPmcast-Client:
source(p) ∈ H
seqno(p) ∈ N
strip(p) ∈ {0, 1}∗

PIPmcast = Set of packets such that ∀ pkt ∈ PIPmcast:
strip(pkt) ∈ PIPmcast-Client

intended(pkt) ⊆ H
completed(pkt) ⊆ H
dropped(pkt) ⊆ H

Figure 7 SRM Set Definitions
Pending-Rqsts = {〈s, i, t〉 | s ∈ H, i ∈ N, t ∈ R≥0}
Scheduled-Rqsts = {〈s, i, t, k〉 | s ∈ H, i ∈ N, t ∈ R≥0, k ∈ N}
Pending-Repls = {〈s, i, t〉 | s ∈ H, i ∈ N, t ∈ R≥0}
Scheduled-Repls = {〈s, i, t, r〉 | s, r ∈ H, i ∈ N, t ∈ R≥0}

SRM-Status = {idle, member, crashed}
Joining = {join-rqst-pending, join-pending, join-ack-pending}
Leaving = {leave-rqst-pending, leave-pending, leave-ack-pending}
SRM-Mem-Status = SRM-Status ∪ Joining ∪ Leaving
Action-Pending = {join-rqst-pending, join-ack-pending, leave-rqst-pending, leave-ack-pending}

IPmcast-Status = {idle, joining, leaving, member, crashed}

23

Figure 8 The SRM-memh Automaton — Signature

Parameters:

h ∈ H

Actions:

input

crashh

rm-joinh

rm-leaveh

mjoin-ackh

mleave-ackh

output

mjoinh

mleaveh

rm-join-ackh

rm-leave-ackh

time-passage

ν(t), for t ∈ R≥0

Figure 9 The SRM-memh Automaton — Variables and Discrete Transitions

Variables:

now ∈ R≥0, initially now = 0
status ∈ SRM-Mem-Status, initially status = idle

Discrete Transitions:

input crashh

eff status := crashed

input rm-joinh

eff if status = idle then

status := join-rqst-pending

input rm-leaveh

eff if status ∈ Joining ∪ {member} then
status := leave-rqst-pending

input mjoin-ackh

eff if status ∈ Joining then
status := join-ack-pending

input mleave-ackh

eff if status ∈ Leaving then
status := leave-ack-pending

output mjoinh

pre status = join-rqst-pending

eff status := join-pending

output mleaveh

pre status = leave-rqst-pending

eff status := leave-pending

output rm-join-ackh

pre status = join-ack-pending

eff status := member

output rm-leave-ackh

pre status = leave-ack-pending

eff status := idle

time-passage ν(t)

pre status 6∈ Action-Pending
eff now := now + t

of the input actions of SRM-memh affect the state of SRM-memh and none of the internal and
output actions of SRM-memh, except the time passage action, are enabled.

Input Actions The input action crashh models the crashing of SRM-memh. The effects of
crashh are to set the u variable to False, denoting that SRM-memh has crashed.

The input action rm-joinh models the client’s request to join the reliable multicast group. It is
effective only when the host h is idle with respect to the reliable multicast group. If the client
h is already either a member of, or in the process of joining, the reliable multicast group (that
is, status ∈ Joining ∪ {member}), then the scheduling of rm-joinh is superfluous. If the client h
is already in the process of leaving the reliable multicast group (that is, status ∈ Leaving), then
rm-joinh is ignored so as to allow the ongoing process of leaving the reliable multicast group to
complete. When effective, rm-joinh initiates the process of joining the reliable multicast group by
setting the status variable to join-rqst-pending.

The input action rm-leaveh models the client’s request to leave the reliable multicast group.
It is effective only when the host h is either a member of, or in the process of joining, the
reliable multicast group. If the host h is either already in the process of leaving, or idle with
respect to the reliable multicast group, then the rm-leaveh action is superfluous. When effective,
rm-leaveh initiates the process of leaving the reliable multicast group by setting the status variable
to leave-rqst-pending.

24

The input action mjoin-ackh acknowledges that the host h has successfully joined the underlying IP
multicast group. It is effective only when the host h is in the process of joining the reliable multicast
group; that is, when status ∈ Joining . When effective, mjoin-ackh enables the I/O component to
acknowledge the client’s join request by setting the status variable to join-ack-pending.

The input action mleave-ackh acknowledges that the host h has successfully left the underlying
IP multicast group. It is effective only when the host h is in the process of leaving the reliable
multicast group; that is, when status ∈ Leaving . When effective, mleave-ackh sets the status
variable to leave-ack-pending. Thus, it enables the I/O component to acknowledge the client’s
leave request.

Output Actions SRM-memh initiates the process of joining of the underlying IP multicast group
by scheduling the output action mjoinh. This action is enabled whenever the client has effectively
requested to join the reliable multicast group; that is, when status = join-rqst-pending. Its
effects are to record the fact that SRM-memh has requested to join the IP multicast group; that
is, it sets the status variable to join-pending. Joining the underlying IP multicast group is not
always immediate. In order for the IP multicast service to forward packets to the host h, it may
have to extend the IP multicast tree to include the host h. The time involved in extending the IP
multicast tree to include the host h heavily depends on the location of the host h and the reach of
the current IP multicast tree.

SRM-memh initiates the process of leaving of the underlying IP multicast group by scheduling
the output action mleaveh. This action is enabled whenever the client has effectively requested to
leave the reliable multicast group; that is, status = leave-rqst-pending. Its effects are to record
the fact that SRM-memh has requested to leave the IP multicast group; that is, it sets the status
variable to leave-pending.

SRM-memh acknowledges the client’s request to join the reliable multicast group by scheduling the
rm-join-ackh output action. This action is enabled whenever the join acknowledgment is pending;
that is, status = join-ack-pending. Time is not allowed to elapse while a join acknowledgment is
pending. Thus, a join acknowledgement is sent immediately after SRM-memh determines that it
has successfully joined the IP multicast group.

SRM-memh acknowledges the client’s request to leave the reliable multicast group by scheduling
the rm-leave-ackh output action. This action is enabled whenever the leave acknowledgment
is pending; that is, status = leave-ack-pending. Time is not allowed to elapse while a leave
acknowledgment is pending. Thus, a leave acknowledgement is sent immediately after SRM-memh

determines that it has successfully left the IP multicast group.

Time Passage The action ν(t) models the passage of t time units. Time is prevented from
elapsing while there are pending actions — either pending requests to join or leave the underlying
IP multicast group, or pending acknowledgments that the client has successfully joined or left the
reliable multicast group. The effects of the ν(t) action are to increment the variable now by t time
units.

5.2.3 The IP Buffer Component — SRM-IPbuffh

The SRM-IPbuffh timed I/O automaton specifies the IP buffer component of the reliable multicast
process. Figures 10 and 11 present the signature, the variables, and the discrete transitions of
SRM-IPbuffh.

25

Figure 10 The SRM-IPbuffh Automaton — Signature

Parameters:

h ∈ H

Actions:

input

crashh

rm-join-ackh

rm-leaveh

mrecvh(p), for p ∈ PIPmcast-Client

rep-msendh(p), for p ∈ PSRM

rec-msendh(p), for p ∈ PSRM

output

process-mpkth(p), for p ∈ PSRM

msendh(p), for p ∈ PIPmcast-Client

time-passage

ν(t), for t ∈ R≥0

Figure 11 The SRM-IPbuffh Automaton — Variables and Discrete Transitions

Variables:

now ∈ R≥0, initially now = 0
status ∈ SRM-Status, initially status = idle

seqno ∈ N, initially seqno = 0
msend-buff ⊆ PIPmcast-Client, initially mrecv-buff = ∅
mrecv-buff ⊆ PIPmcast-Client, initially mrecv-buff = ∅

Discrete Transitions:

input crashh

eff status := crashed

input rm-join-ackh

eff if status 6= crashed then status := member

input rm-leaveh

eff if status 6= crashed then

Reinitialize all variables except now and seqno.

input mrecvh(p)

eff if status = member then mrecv-buff ∪= {p}

input rep-msendh(p)

eff if status = member then

msend-buff ∪= {comp-IPmcast-pkt(h, seqno, p)}
seqno := seqno + 1

input rec-msendh(p)

eff if status = member then

msend-buff ∪= {comp-IPmcast-pkt(h, seqno, p)}
seqno := seqno + 1

output process-mpkth(p)

choose pkt ∈ PIPmcast-Client

pre status = member ∧ pkt ∈ mrecv-buff ∧ p = strip(pkt)
eff mrecv-buff \= {pkt}

output msendh(p)

pre status = member ∧ p ∈ msend-buff
eff msend-buff \= {p}

time-passage ν(t)

pre status = crashed ∨ (msend-buff = ∅ ∧mrecv-buff = ∅)
eff now := now + t

Variables The variable now ∈ R≥0 denotes the time that has elapsed since the beginning of an
execution of SRM-IPbuffh. The variable status captures the status of the host h. It evaluates to
one of the following: idle, member, and crashed. While the host h has not crashed, we say that
it is operational. Once the host h has crashed, none of the input actions of SRM-IPbuffh affect
the state of SRM-IPbuffh and none of the internal and output actions of SRM-IPbuffh, except
the time passage action, are enabled. The variable seqno ∈ N is a counter of the number of packets
transmitted by SRM-IPbuffh using the underlying IP multicast service.

The sets msend-buff and mrecv-buff are used to buffer all packets to be sent by and received from,
respectively, the underlying IP multicast service.

Input Actions The input action crashh models the crashing of SRM-IPbuffh. The effects of
crashh are to set the status variable to crashed, denoting that the host h has crashed. After the
host h has crashed, the SRM-IPbuffh automaton does not restrict time from elapsing.

The input action rm-join-ackh informs the SRM-IPbuffh automaton that the host h has joined
the reliable multicast group. If the host h is operational, then the action rm-join-ackh records
the fact that the host h has joined the reliable multicast group by setting the variable status to
member.

The input action rm-leaveh informs the SRM-IPbuffh automaton that the host h has left the

26

reliable multicast group. If the host h is operational, then the action rm-leaveh reinitializes all the
variables of SRM-IPbuffh except the variables now and seqno.

The input action mrecvh(p) models the reception of the packet p from the underlying IP multicast
service. If the host h is a member of the reliable multicast group, then the mrecvh(p) action adds
the packet p to the mrecv-buff buffer. Thus, the contents of the packet p may subsequently be
processed by the reliable multicast service and, when appropriate, delivered to the client.

The input actions rep-msendh(p) and rec-msendh(p) are performed by the reporting and recovery
components, respectively, so as to transmit the packet p using the underlying IP multicast service.
In the case of the rep-msendh(p) action, the packet p is a session packet. In the case of a
rec-msendh(p) action, the packet p is either a data, a request, or a reply packet.

If the host h is a member of the reliable multicast group, then SRM-IPbuffh encapsulates h,
seqno, and p into a packet pkt , buffers pkt in msend-buff for transmission using the underlying IP
multicast service, and increments seqno. In effect, the encapsulation of p annotates it with the host
h and the value of seqno. Since the variable seqno is persistent across host joins and leaves, packets
transmitted by the SRM-IPbuffh automata, for h ∈ H, are unique.

Output Actions The output action process-mpkth(p) models the processing of the packet p by
the reporting and recovery components. It is enabled when the host h is a member of the reliable
multicast group and there is a packet pkt in the mrecv-buff buffer, such that strip(pkt) = p. Its
effects are to remove the element pkt from the mrecv-buff buffer.

The output action msendh(p) models the transmission of the packet p using the underlying IP
multicast service. It is enabled when the host h is a member of the group and the packet p is in
the msend-buff buffer. Its effects are to remove the packet p from the msend-buff buffer.

Time Passage The action ν(t) models the passage of t time units. Time is prevented from
elapsing while the host h is operational and either of the buffers msend-buff and mrecv-buff is
non-empty. The effects of the ν(t) action are to increment the variable now by t time units.

5.2.4 The Recovery Component — SRM-rech

The SRM-rech timed I/O automaton specifies the recovery component of the reliable multicast
service. Figure 12 presents the signature of SRM-rech, that is, its parameters, and actions.
Figure 13 presents the variables of SRM-rech. Figures 14 and 15 present the discrete transitions
of SRM-rech. In order to provide the appropriate context, the description of each of the parameters
of SRM-rech is deferred to appropriate places within the description of its variables and actions.

Variables The variable now ∈ R≥0 denotes the time that has elapsed since the beginning of an
execution of SRM-rech. The variable status captures the status of the host h. It evaluates to
one of the following: idle, member, and crashed. While the host h has not crashed, we say that
it is operational. Each of the dist(h′) ∈ R≥0 variables, for h′ ∈ H,h′ 6= h, denotes the host h’s
distance estimate to the host h′. Each of the dist(h′) variables are initialized to the parameter
DFLT-DIST. Each of the min-seqno(h′) ∈ N and max-seqno(h′) ∈ N variables, for h′ ∈ H, denotes
the minimum and maximum ADU sequence numbers observed to have been transmitted by the
host h′. The variable archived-pkts ⊆ PRM-Client × R≥0 is comprised of pairs involving the ADUs
that have either been sent by or buffered for delivery to the client at h and the first point in time
at which each ADU has either been sent by or buffered for delivery to the client at h. The variable
to-be-requested ⊆ H × N denotes the set of ADU packets that have been identified as missing and

27

for which a request has yet to be scheduled. The elements of to-be-requested are tuples of the form
〈s, i〉, with s ∈ H and i ∈ N denoting the source s and the sequence number i of the missing ADU.
The set pending-rqsts ⊆ Pending-Rqsts is comprised of tuples that correspond to packets for which
a request is pending; that is, a request for the particular packet has recently either been sent or
received and a reply is being awaited. The tuples of pending-rqsts are of the form 〈s, i, t〉, with
s ∈ H, i ∈ N, t ∈ R≥0; s and i represent the source and sequence number of the packet whose
request is pending and t represents the back-off abstinence deadline; that is, the time before which
the request timeout timer for the given packet may not be backed off. A pending request expires
when time elapses past its back-off abstinence timeout. Prior to its expiration, a pending request
is said to be active.

The set scheduled-rqsts ⊆ Scheduled-Rqsts is comprised of tuples that correspond to packets for
which a request has been scheduled and is awaiting transmission. The tuples of scheduled-rqsts are
of the form 〈s, i, t, k〉, with s ∈ H, i ∈ N, t ∈ R≥0, k ∈ N; s and i correspond to the source and
sequence number of the packet to be requested, t is the time for which the request is scheduled
for transmission, and k is the number of times a request for the given packet has already been
scheduled.

The set pending-repls ⊆ Pending-Repls is comprised of tuples that correspond to packets for which
a reply has recently been either sent or received. The tuples of pending-repls are of the form 〈s, i, t〉,
with s ∈ H, i ∈ N, t ∈ R≥0; s and i correspond to the source and sequence number of the packet for
which a reply has already been either sent or received and t is the abstinence timeout of the reply;
that is, a deadline before which replies for the given packet may not be scheduled by the host h.
A pending reply expires when time elapses past its abstinence timeout. Prior to its expiration, a
pending reply is said to be active.

The set scheduled-repls ⊆ Scheduled-Repls is comprised of tuples that correspond to packets for
which a reply has been scheduled and is awaiting transmission. The tuples comprising the set
scheduled-repls are of the form 〈s, i, t, r〉, with s, r ∈ H, i ∈ N, t ∈ R≥0; s and i correspond to the
source and sequence number of the packet to be retransmitted, t is the time for which the reply is
scheduled for transmission, and r is the host whose request induced the scheduling of the particular
reply.

The set to-be-delivered ⊆ PRM-Client is used to buffer the packets that are to be subsequently
delivered to the client. The set msend-buff ⊆ PSRM is used to buffer the packets that are to
be subsequently multicast using the underlying IP multicast service; that is, it contains the data
packets of the client and the requests and replies of the recovery component to be transmitted by
the host h.

Derived Variables The derived variable proper? (h′), for h′ ∈ H, is the set comprised of the
identifiers of the packets from h′ whose sequence numbers are no less than min-seqno(h′). The
derived variable window? (h′), for h′ ∈ H, is the set comprised of the identifiers of the packets from
h′ whose sequence numbers are no less than min-seqno(h′) and no greater than max-seqno(h′).

The derived variable archived-pkts? ⊆ H × N identifies all the packets for which there is a
corresponding tuple in the set archived-pkts. The derived variable archived-pkts? (h′) ⊆ H × N,
for h′ ∈ H, identifies all the packets from h′ for which there is a corresponding tuple in the set
archived-pkts.

The derived variable to-be-requested(h′) ⊆ H × N, for h′ ∈ H, identifies all the packets from h′

that are in the set to-be-requested . The derived variable to-be-delivered? ⊆ H ×N identifies all the
packets for which there is a corresponding tuple in the set to-be-delivered . The derived variable
to-be-delivered? (h′) ⊆ H × N, for h′ ∈ H, identifies all the packets from h′ that are in the set

28

Figure 12 The SRM-rech Automaton — Signature

Parameters:

h ∈ H,C1, C2, C3, D1, D2, D3 ∈ R≥0, DFLT-DIST ∈ R≥0

Actions:

input

crashh

rm-join-ackh

rm-leaveh

rm-sendh(p), for p ∈ PRM-Client

rep-disth(h
′, d′), for h′ ∈ H,h′ 6= h, d′ ∈ R≥0

rep-seqnoh(s, i), for s ∈ H, s 6= h, i ∈ N
process-mpkth(p), for p ∈ PSRM

time-passage

ν(t), for t ∈ R≥0

internal

schdl-rqsth(s, i), for s ∈ H, i ∈ N
send-rqsth(s, i), for s ∈ H, i ∈ N
send-replh(s, i), for s ∈ H, i ∈ N

output

rm-recvh(p), for p ∈ PRM-Client

rec-msendh(p), for p ∈ PSRM

Figure 13 The SRM-rech Automaton — Variables

Variables:

now ∈ R≥0, initially now = 0
status ∈ SRM-Status, initially status = idle

dist(h′) ∈ R≥0, for all h′ ∈ H,h′ 6= h, initially dist(h′) = DFLT-DIST, for all h′ ∈ H,h′ 6= h
min-seqno(h′) ∈ N ∪ ⊥, for all h′ ∈ H, initially min-seqno(h′) =⊥, for all h′ ∈ H
max-seqno(h′) ∈ N ∪ ⊥, for all h′ ∈ H, initially max-seqno(h′) =⊥, for all h′ ∈ H
archived-pkts ⊆ PRM-Client × R≥0, initially archived-pkts = ∅
to-be-requested ⊆ H × N, initially to-be-requested = ∅
pending-rqsts ⊆ Pending-Rqsts, initially pending-rqsts = ∅
scheduled-rqsts ⊆ Scheduled-Rqsts, initially scheduled-rqsts = ∅
pending-repls ⊆ Pending-Repls, initially pending-repls = ∅
scheduled-repls ⊆ Scheduled-Repls, initially scheduled-repls = ∅
to-be-delivered ⊆ PRM-Client, initially to-be-delivered = ∅
msend-buff ⊆ PSRM, initially msend-buff = ∅

Derived Variables:

for all h′ ∈ H, proper?(h′) =

{

∅ if min-seqno(h′) =⊥

{〈s, i〉 ∈ H × N | s = h′,min-seqno(h′) ≤ i} otherwise

for all h′ ∈ H, window?(h′) =

{

∅ if min-seqno(h′) =⊥

{〈s, i〉 ∈ H × N | s = h′,min-seqno(h′) ≤ i ≤ max-seqno(h′)} otherwise

archived-pkts? = {〈s, i〉 ∈ H × N | ∃ p ∈ PRM-Client, t ∈ R≥0 : 〈p, t〉 ∈ archived-pkts ∧ id(p) = 〈s, i〉}
archived-pkts?(h′) = {〈s, i〉 ∈ archived-pkts? | s = h′}, for all h′ ∈ H
to-be-requested(h′) = {〈s, i〉 ∈ to-be-requested | s = h′}, for all h′ ∈ H
to-be-delivered? = {〈s, i〉 ∈ H × N | ∃ p ∈ to-be-delivered : 〈s, i〉 = id(p)}
to-be-delivered?(h′) = {〈s, i〉 ∈ to-be-delivered? | s = h′}, for all h′ ∈ H
scheduled-rqsts? = {〈s, i〉 ∈ H × N | ∃ t ∈ R≥0, k ∈ N : 〈s, i, t, k〉 ∈ scheduled-rqsts}
scheduled-rqsts?(h′) = {〈s, i〉 ∈ scheduled-rqsts? | s = h′}
scheduled-repls? = {〈s, i〉 ∈ H × N | ∃ t ∈ R≥0, r ∈ H : 〈s, i, t, r〉 ∈ scheduled-repls}
pending-rqsts? = {〈s, i〉 ∈ H × N | ∃ t ∈ R≥0 : now ≤ t ∧ 〈s, i, t〉 ∈ pending-rqsts}
pending-repls? = {〈s, i〉 ∈ H × N | ∃ t ∈ R≥0 : now ≤ t ∧ 〈s, i, t〉 ∈ pending-repls}

to-be-delivered? .

The derived variable scheduled-rqsts? ⊆ H × N identifies all the packets for which there
is a corresponding scheduled request tuple in the set scheduled-rqsts. The derived variable
scheduled-rqsts? (h′) ⊆ H × N, for h′ ∈ H, identifies all the packets from h′ whose identifiers
are in the set scheduled-rqsts? . The derived variable scheduled-repls? ⊆ H × N identifies all the
packets for which there is a corresponding scheduled reply tuple in the set scheduled-repls.

The derived variable pending-rqsts? ⊆ H × N identifies all the packets for which there is an active
pending request; that is, there is a corresponding tuple in the set pending-rqsts whose back-off
abstinence timeout has not yet expired. The derived variable pending-repls? ⊆ H ×N identifies all
the packets for which there is an active pending reply; that is, there is a corresponding tuple in the
set pending-repls whose abstinence timeout has not yet expired.

29

Input Actions The input action crashh models the crashing of the host h. The effects of crashh
are to set the status variable to crashed. Once the host h has crashed, none of the input actions
of SRM-rech affect its state, none of the internal and output actions of SRM-rech are enabled,
and time is not restricted from elapsing.

The input action rm-join-ackh informs the SRM-rech automaton that the host h has joined the
reliable multicast group. If the host h is operational, then the rm-join-ackh action records the
fact that the host h has joined the reliable multicast group by setting the variable status to member.
Subsequently, SRM-rech may transmit, process, and deliver packets and schedule packet requests
and replies.

The input action rm-leaveh informs the SRM-rech automaton that the host h has left the reliable
multicast group. If the host h is operational, then the action rm-leaveh reinitializes all the variables
of SRM-rech except the variable now . Subsequently, SRM-rech automaton ceases transmitting,
processing, and delivering packets and scheduling packet requests and replies.

The input action rm-sendh(p) models the transmission of the packet p by the client at h using
the reliable multicast service. rm-sendh(p) is effective only when the host h is a member of the
reliable multicast group and the host h is the source of the packet p. If p is the first packet
to be transmitted by the client since it last joined the reliable multicast group, the rm-sendh(p)
action sets the min-seqno(h) variable to the sequence number of p. Otherwise, SRM-rech ensures
that p corresponds to the next packet awaited; that is, the packet whose sequence number is one
larger than the sequence number of the latest packet transmitted by h. If so, SRM-rech updates
max-seqno(h), archives p, and generates a DATA packet to subsequently be transmitted to the other
members of the reliable multicast group through the underlying IP multicast service. The operation
comp-data-pkt(p) composes a DATA packet corresponding to the client packet p.

Each input action rep-disth(h
′, d′), for h′ ∈ H,h′ 6= h, d′ ∈ R≥0, reports to SRM-rech an

updated distance estimate d′ to h′. If the host h is a member of the reliable multicast group, then
the rep-disth(h

′, d′) action sets the variable dist(h′) to the value d′.

Each input action rep-seqnoh(s, i), for s ∈ H, s 6= h, i ∈ N, reports to SRM-rech the
latest observed sequence number i for the source s. If the host h is a member of the reliable
multicast group, 〈s, i〉 corresponds to a proper packet, and i is greater than max-seqno(s),
then the rep-seqnoh(s, i) action adds the packets from s with sequence numbers ranging from
max-seqno(s) + 1 to i to the set to-be-requested and sets max-seqno(s) to i.

The input action process-mpkth(p) models the processing of the packet p by SRM-rech. The
packet p is processed only when the host h is a member of the reliable multicast group. We proceed
by describing the effects of process-mpkth(p) depending on the type of the packet p. When p is
either a DATA, RQST, or REPL packet, we let sp ∈ H and ip ∈ N denote the source and the sequence
number pertaining to the packet p.

First, consider the case where p is a DATA packet. If h is not the source of p and p is the first
packet from sp to be received by h, then the variables min-seqno(sp) and max-seqno(sp) are set
to ip. Following this initial assignment of min-seqno(sp) to ip, all DATA, RQST, and REPL packets
pertaining to ADUs from sp with sequence numbers less than ip are considered improper and are
discarded. Conversely, all DATA, RQST, and REPL packets pertaining to ADUs from sp with sequence
numbers equal to or greater than ip are considered proper and are processed.

The processing of packet p proceeds only while it is considered a proper packet. Unless either h
is the source of p or p is already archived, p is archived by adding the tuple {〈strip(p),now〉} to
archived-pkts. Unless h is the source of p, the ADU contained in p is buffered in to-be-delivered so
that it may subsequently be delivered to the client. Thus, the reliable multicast process does not
deliver packets sent by a client to itself. Moreover, the reliable multicast service may also deliver

30

Figure 14 The SRM-rech Automaton — Discrete Transitions

input crashh

eff status := crashed

input rm-join-ackh

eff if status 6= crashed then status := member

input rm-leaveh

eff if status 6= crashed then

Reinitialize all variables except now .

input rm-sendh(p)

eff if status = member ∧ h = source(p) then
〈sp, ip〉 = id(p)
\\ Record foremost DATA packet

if min-seqno(sp) =⊥ then min-seqno(sp) := ip
\\ Only consider next packet

if max-seqno(sp) =⊥
∨ip = max-seqno(sp) + 1

then

max-seqno(sp) := ip
\\ Archive packet

archived-pkts ∪= {〈p,now〉}
\\ Compose data packet

msend-buff ∪= {comp-data-pkt(p)}

input rep-disth(h
′, d′)

eff if status = member then

dist(h′) := d′

input rep-seqnoh(s, i)

eff if status = member

∧min-seqno(s) 6=⊥ ∧max-seqno(s) < i
then

to-be-requested ∪=
{〈s, i′〉 | i′ ∈ N,max-seqno(s) < i′ ≤ i}

max-seqno(s) := i

internal schdl-rqsth(s, i)

pre status = member ∧ 〈s, i〉 ∈ to-be-requested
eff \\ Schedule new request

kr := 1; dr := dist(s)
tr :∈ now + 2kr−1[C1dr, (C1 + C2)dr]
scheduled-rqsts ∪= {〈s, i, tr, kr〉}
\\ Pkt request has been scheduled

to-be-requested \= {〈s, i〉}

internal send-rqsth(s, i)

choose t ∈ R≥0, k ∈ N
pre status = member

∧t = now ∧ 〈s, i, t, k〉 ∈ scheduled-rqsts
eff \\ Compose request packet

msend-buff ∪= {comp-rqst-pkt(h, 〈s, i〉)}
\\ Back-off scheduled request

scheduled-rqsts \= {〈s, i, t, k〉}
kr := k + 1; dr := dist(s)
tr :∈ now + 2kr−1[C1dr, (C1 + C2)dr]
scheduled-rqsts ∪= {〈s, i, tr, kr〉}
\\ A request becomes pending

pending-rqsts \= {〈s, i, t∗〉 | t∗ ∈ R≥0}
tr := now + 2kr−1C3dr

pending-rqsts ∪= {〈s, i, tr〉}

internal send-replh(s, i)

choose t ∈ R≥0, r ∈ H
pre status = member

∧t = now ∧ 〈s, i, t, r〉 ∈ scheduled-repls
eff \\ Compose reply packet

choose p ∈ PRM-Client, t ∈ R≥0

where 〈p, t〉 ∈ archived-pkts ∧ id(p) = 〈s, i〉
msend-buff ∪= {comp-repl-pkt(h, p)}
\\ A reply becomes pending

pending-repls \= {〈s, i, t∗〉 | t∗ ∈ R≥0}
trepl := now +D3dist(r)
pending-repls ∪= {

〈

s, i, trepl
〉

}
\\ Cancel scheduled reply

scheduled-repls \= {〈s, i, t, r〉}

output rm-recvh(p)

pre status = member ∧ p ∈ to-be-delivered
∧(@ p′ ∈ to-be-delivered :
source(p′) = source(p) ∧ seqno(p′) < seqno(p))

eff to-be-delivered \= {p}

output rec-msendh(p)

pre status = member ∧ p ∈ msend-buff
eff msend-buff \= {p}

time-passage ν(t)

pre status = crashed

∨(to-be-requested = ∅ ∧ to-be-delivered = ∅
∧msend-buff = ∅
∧ no requests scheduled earlier than now + t
∧ no replies scheduled earlier than now + t)

eff now := now + t

the same ADU to the client multiple times. The identifier of the ADU pertaining to p is removed
from the to-be-requested set and any scheduled requests and replies for the ADU pertaining to p
are canceled. Finally, unless h is the source of p, SRM-rech adds any trailing missing packets to
the set to-be-requested , so that a request for each of them may subsequently be scheduled.

Second, consider the case where p is a REPL packet. The processing of a a REPL packet is similar
to that of a DATA packet. The differences are that p is processed only if it pertains to a proper
ADU and that in addition to the effects of processing a DATA packet, a reply for the given ADU
becomes pending. While this pending reply is active, SRM-rech does not schedule replies for the
ADU pertaining to p.

Third, consider the case where p is a RQST packet. Once again, p is processed only if it pertains to
a proper ADU. If p pertains to an ADU that has been archived and for which a reply is neither
scheduled, nor pending, then SRM-rech schedules a retransmission of the requested ADU. This
retransmission is scheduled for a point it time in the future that is chosen uniformly within the
interval now +[D1drepl , (D1+D2)drepl], with drepl = dist(sender(p)). If p pertains to an ADU that

31

has not been archived, then the effects of process-mpkth(p) depend on whether there is a request
for the given ADU already scheduled. If h is not the source of p and there is no request for the ADU
of p already scheduled, then a request for the given ADU is scheduled. This request is scheduled for
a point it time in the future that is chosen uniformly within the interval now+2[C1dr, (C1+C2)dr],
with dr = dist(sp); that is, the request is scheduled as if a first round request is being backed off.
If h is not the source of p, there is a request for the ADU of p already scheduled and there, are
there are no pending requests for the ADU of p still active, then the request for the ADU of p
that is already scheduled is exponentially backed off. When either a new request is scheduled or
an existing request is backed-off, a request for the given ADU becomes pending with a back-off
abstinence timeout equal to now + 2k−1C3dr, where k is the round of the rescheduled request and
dr = dist(sp). Finally, unless h is the source of p, SRM-rech adds any trailing missing packets to
the set to-be-requested , so that a request for each of them may subsequently be scheduled.

Finally, in the case where p is a SESS packet, the process-mpkth(p) action does not affect the state
of SRM-rech; SESS packets are in effect discarded by the SRM-rech automaton.

Internal Actions Each internal action schdl-rqsth(s, i), for s ∈ H, s 6= h, i ∈ N, schedules a
request for the packet 〈s, i〉. The precondition of the schdl-rqsth(s, i) action is that the host h is a
member of the reliable multicast group and the tuple 〈s, i〉 is in the set to-be-requested . The effects
of the schdl-rqsth(s, i) action are to schedule a new request for a point in time in the future that
is chosen uniformly within the interval now +[C1dr, (C1+C2)dr], with dr = dist(s), and to remove
the tuple 〈s, i〉 from the set to-be-requested .

Each internal action send-rqsth(s, i), for s ∈ H, i ∈ N, models the expiration of the transmission
timeout of a scheduled request for the packet 〈s, i〉. The precondition of send-rqsth(s, i) is
that the host h is a member of the reliable multicast group and a previously scheduled request
for the packet 〈s, i〉 has expired; that is, there is a tuple 〈s, i, t, k〉 in scheduled-rqsts such that
t = now . Let the tuple 〈s, i, t, k〉 be the element of scheduled-rqsts corresponding to the packet
〈s, i〉. send-rqsth(s, i) composes a request packet and adds it to the buffer msend-buff . The
operation comp-rqst-pkt(h, 〈s, i〉) composes a RQST packet from h for the packet 〈s, i〉.

Moreover, the request 〈s, i, t, k〉 is backed off and a request for the given ADU becomes pending.
The timeout timer of the rescheduled request is set to a point it time in the future that is chosen
uniformly within the interval now + 2kr−1[C1dr, (C1 + C2)dr] and the back-off abstinence timeout
of the pending request is set to now + 2kr−1C3dr, with kr = k + 1 and dr = dist(s).

Each internal action send-replh(s, i), for s ∈ H, i ∈ N, models the expiration of the transmission
timeout of a scheduled reply for the packet 〈s, i〉. The precondition of send-replh(s, i) is that the
host h is a member of the reliable multicast group and a previously scheduled reply for the packet
〈s, i〉 has expired; that is, there is a tuple 〈s, i, t, r〉 in scheduled-repls such that t = now . Let the
tuple 〈s, i, t, r〉 be the element of scheduled-repls corresponding to the packet 〈s, i〉. send-replh(s, i)
composes a reply packet and adds it to the buffer msend-buff . The operation comp-repl-pkt(h, p)
composes a REPL packet from h for the packet p.

Moreover, the tuple corresponding to 〈s, i〉 is removed from the set scheduled-repls and a tuple
corresponding to 〈s, i〉 is added to the set pending-repls. The reply abstinence timeout of this
pending reply is set to now +D3dist(r). This pending reply prevents the scheduling of replies for
the given ADU for D3dist(r) time units.

Output Actions Each output action rm-recvh(p), for p ∈ PRM-Client, models the delivery of
the packet p to the client. It is enabled when the host h is a member of the reliable multicast group
and the packet p is the packet in the to-be-delivered buffer with the smallest sequence number.

32

Figure 15 The SRM-rech Automaton — Discrete Transitions (Cnt’d)

input process-mpkth(p)

where type(p) = DATA

eff if status = member then

〈sp, ip〉 = id(p)
\\ Record foremost DATA packet

if h 6= sp ∧min-seqno(sp) =⊥ then

min-seqno(sp) := ip; max-seqno(sp) := ip
\\ Only consider proper packets

if min-seqno(sp) 6=⊥ ∧min-seqno(sp) ≤ ip then
\\ Archive and deliver packet

if h 6= sp ∧ 〈sp, ip〉 6∈ archived-pkts? then
archived-pkts ∪= {〈strip(p),now〉}

if h 6= sp then to-be-delivered ∪= {strip(p)}
\\ Pkt need not be requested

to-be-requested \= {〈sp, ip〉}
\\ Cancel any scheduled requests and replies

scheduled-rqsts \= {〈sp, ip, t, k〉 | t ∈ R≥0, k ∈ N}
scheduled-repls \= {〈sp, ip, t, r〉 | t ∈ R≥0, r ∈ H}
\\ Cancel any pending requests

pending-rqsts \= {〈sp, ip, t〉 | t ∈ R≥0}
\\ Discover any trailing missing packets

if h 6= sp ∧max-seqno(sp) < ip then
to-be-requested ∪=
{〈sp, i〉 | i ∈ N,max-seqno(sp) < i < ip}

max-seqno(sp) := ip

input process-mpkth(p)

where type(p) = REPL

eff if status = member then

〈sp, ip〉 = id(p)
\\ Only consider proper packets

if min-seqno(sp) 6=⊥ ∧min-seqno(sp) ≤ ip then
\\ A reply becomes pending

pending-repls \= {〈sp, ip, t∗〉 | t∗ ∈ R≥0}
trepl := now +D3dist(sp)
pending-repls ∪= {

〈

sp, ip, trepl
〉

}
\\ Archive and deliver packet

if h 6= sp ∧ 〈sp, ip〉 6∈ archived-pkts? then
archived-pkts ∪= {〈strip(p),now〉}

if h 6= sp then to-be-delivered ∪= {strip(p)}
\\ Pkt need not be requested

to-be-requested \= {〈sp, ip〉}
\\ Cancel any scheduled requests and replies

scheduled-rqsts \= {〈sp, ip, t, k〉 | t ∈ R≥0, k ∈ N}
scheduled-repls \= {〈sp, ip, t, r〉 | t ∈ R≥0, r ∈ H}
\\ Cancel any pending requests

pending-rqsts \= {〈sp, ip, t〉 | t ∈ R≥0}
\\ Discover any trailing missing packets

if h 6= sp ∧max-seqno(sp) < ip then
to-be-requested ∪=
{〈sp, i〉 | i ∈ N,max-seqno(sp) < i < ip}

max-seqno(sp) := ip

input process-mpkth(p)

where type(p) = RQST

eff if status = member then

〈sp, ip〉 = id(p)
\\ Only consider proper packets

if min-seqno(sp) 6=⊥ ∧min-seqno(sp) ≤ ip then
if h 6= sp then

if 〈sp, ip〉 ∈ archived-pkts? then
if 〈sp, ip〉 6∈ scheduled-repls?
∧〈sp, ip〉 6∈ pending-repls?

then

\\ Schedule a new reply

drepl := dist(sender(p))
trepl :∈ now + [D1drepl , (D1 +D2)drepl]
rrepl := sender(p)
scheduled-repls ∪= {

〈

sp, ip, trepl , rrepl
〉

}
else

if 〈sp, ip〉 6∈ scheduled-rqsts? then
\\ Schedule a backed-off request

kr := 2; dr := dist(sp)
tr :∈ now + 2kr−1[C1dr, (C1 + C2)dr]
scheduled-rqsts ∪= {〈sp, ip, tr, kr〉}
\\ Pkt request has been scheduled

to-be-requested \= {〈sp, ip〉}
\\ A request becomes pending

pending-rqsts \= {〈sp, ip, t∗〉 | t∗ ∈ R≥0}
tr := now + 2kr−1C3dr

pending-rqsts ∪= {〈sp, ip, tr〉}
else

if 〈sp, ip〉 6∈ pending-rqsts? then
\\ Backoff scheduled request

choose t ∈ R≥0, k ∈ N
where 〈sp, ip, t, k〉 ∈ scheduled-rqsts

scheduled-rqsts \= {〈sp, ip, t, k〉}
kr := k + 1; dr := dist(sp)
tr :∈ now + 2kr−1[C1dr, (C1 + C2)dr]
scheduled-rqsts ∪= {〈sp, ip, tr, kr〉}
\\ A request becomes pending

pending-rqsts \= {〈sp, ip, t∗〉 | t∗ ∈ R≥0}
tr := now + 2kr−1C3dr

pending-rqsts ∪= {〈sp, ip, tr〉}
\\ Discover any trailing missing packets

if h 6= sp ∧max-seqno(sp) < ip then
to-be-requested ∪=
{〈sp, i〉 | i ∈ N,max-seqno(sp) < i < ip}

max-seqno(sp) := ip

input process-mpkth(p)

where type(p) = SESS

eff None

This ordering constraint ensures that the foremost packet received of any source is delivered to the
client prior to any other packet from the particular source. Its effects are to remove the packet p
from the rm-recv-buff buffer.

Each output action rec-msendh(p), for p ∈ PSRM, hands off the packet p from SRM-rech to
SRM-IPbuffh so that it may subsequently be multicast by SRM-IPbuffh using the underlying
IP multicast service. The precondition of the rec-msendh(p) action is that the host h is a member
of the reliable multicast group and p is in the msend-buff buffer. Its effects are to remove p from
the msend-buff buffer.

33

Time Passage The action ν(t) models the passage of t time units. If the host h has crashed,
then time is allowed to elapse. Otherwise, time is prevented from elapsing while either there are
packets in the delivery and IP multicast transmission buffers or there are packets which have been
declared missing but for which a request has yet to be scheduled; that is, while either the buffer
to-be-delivered , the buffer msend-buff , or the set to-be-requested is non-empty. Furthermore, time
is prevented from elapsing past the transmission deadline of any scheduled requests or replies.

5.2.5 The Reporting Component — SRM-reph

The SRM-reph timed I/O automaton specifies the reporting component of the reliable multicast
process at each host h ∈ H. Figures 16, 17, and 18 present the signature, the variables, and the
discrete transitions of SRM-reph, respectively.

Variables The variable now ∈ R≥0 denotes the time that has elapsed since the beginning of
an execution of SRM-reph. The variable status captures the status of the host h. It evaluates
to one of the following: idle, member, and crashed. While the host h has not crashed, we say
that it is operational. The variable rep-deadline ∈ R≥0∪ ⊥ denotes the point in time at which the
next session packet is scheduled for transmission. The variable rep-deadline is equal to ⊥ when
undefined.

The variable dist-rprt(h′) ∈ R≥0 × R≥0∪ ⊥, for each h′ ∈ H,h′ 6= h, records the transmission and
the reception times of the most recent session packet of h′ to be received by the host h. That
is, for each h′ ∈ H, the variable dist-rprt(h′) is a tuple of the form 〈tsent , trcvd 〉, where tsent is
the transmission time of the most recent session packet of h′ to be received by h and trcvd is the
reception time of this session packet by h. If the host h has not received a session packet from the
host h′ since joining the reliable multicast group, then the variable dist-rprt(h′) is undefined; that
is, dist-rprt(h′) =⊥.

The variable dist(h′) ∈ R≥0×R≥0, for each h′ ∈ H,h′ 6= h, records the most up-to-date estimate of
the distance from h to the host h′. Such distance estimates are ordered by the transmission time
of the session packet of h that initiated their calculation; that is, a distance estimate calculated
as a result of the transmission of a more recent session packet of h is considered more up-to-
date. If two calculations are initiated by the same session packet of h, then the later calculation
is considered more up-to-date. Thus, for each h′ ∈ H, the variable dist(h′) is a tuple of the
form 〈trprt , tdist〉, where trprt is the transmission time of the session packet of h that initiated the
particular distance estimate calculation and tdist is the distance estimate obtained as a result of
the particular calculation.

The variable max-seqno(h′) ∈ N ∪ ⊥, for each h′ ∈ H,h′ 6= h, records the latest sequence number
of h′ to have been observed by h. Recall that h may observe the transmission progress of other
hosts by examining any type of packet. If the host h has not yet observed the transmission of any
packets from the host h′, then the variable max-seqno(h′) is undefined; that is, max-seqno(h′) =⊥.

The variable dist-buff ⊆ H contains the hosts whose distance estimates have recently been updated
but have not yet been reported to the SRM-rech automaton. Similarly, the variable seqno-buff
contains the hosts whose maximum observed sequence numbers have recently been updated but
have not yet been reported to the SRM-rech automaton.

Derived Variables The derived variable dist-rprt records the transmission and the reception
times of the most recent session packet of all other hosts. dist-rprt is the set of tuples of the form
〈h′, ts, tr〉, with 〈ts, tr〉 = dist-rprt(h

′), for h′ ∈ H,h′ 6= h, and dist-rprt(h′) 6=⊥. In effect, dist-rprt
summarizes the information recorded by the dist-rprt(h′) variables, for all h′ ∈ H,h′ 6= h.

34

Figure 16 The SRM-reph Automaton — Signature

Parameters:

h ∈ H, DFLT-DIST ∈ R≥0, SESS-PERIOD ∈ R+

Actions:

input

crashh

rm-join-ackh

rm-leaveh

process-mpkth(p), for p ∈ PSRM

time-passage

ν(t), for t ∈ R≥0

output

rep-msendh(p), for p ∈ PSRM

rep-disth(h
′, d′), for h′ ∈ H,h′ 6= h, d ∈ R≥0

rep-seqnoh(s, i), for s ∈ H, s 6= h, i ∈ N

Figure 17 The SRM-reph Automaton — Variables

Variables:

now ∈ R≥0, initially now = 0
status ∈ SRM-Status, initially status = idle

rep-deadline ∈ R≥0∪ ⊥, initially rep-deadline =⊥
dist-rprt(h′) ∈ R≥0 × R≥0∪ ⊥, for all h′ ∈ H,h′ 6= h, initially dist-rprt(h′) =⊥
dist(h′) ∈ R≥0 × R≥0, for all h′ ∈ H,h′ 6= h, initially dist(h′) = 〈0, DFLT-DIST〉
max-seqno(h′) ∈ N ∪ ⊥, for all h′ ∈ H,h′ 6= h, initially max-seqno(h′) =⊥
dist-buff ⊆ H, initially dist-buff = ∅
seqno-buff ⊆ H, initially seqno-buff = ∅

Derived Variables:

dist-rprt = ∪h′∈H,h′ 6=h,dist-rprt(h′)6=⊥{〈h
′, tsent , trcvd 〉 | dist-rprt(h

′) = 〈tsent , trcvd 〉}
max-seqno = ∪h′∈H,h′ 6=h,max-seqno(h′)6=⊥{〈h

′,max-seqno(h′)〉}

The derived variable max-seqno records the transmission progress of all other hosts. max-seqno
is the set of tuples of the form 〈h′,max-seqno(h′)〉, for h′ ∈ H,h′ 6= h, and max-seqno(h′) 6=⊥.
In effect, max-seqno summarizes the information recorded by the max-seqno(h′) variables, for all
h′ ∈ H,h′ 6= h.

Input Actions As in the case of the SRM-IPbuffh and SRM-rech automata, the input action
crashh models the crashing of the host h. The effects of the action crashh are to set the status
variable to crashed, denoting that the host h has crashed. Once the host h has crashed, none of the
input actions affect the state of SRM-reph, none of the internal and output actions are enabled,
and time is not restricted from elapsing.

The input action rm-join-ackh informs the SRM-reph automaton that the host h has joined the
reliable multicast group. If the host h is operational, then the rm-join-ackh action records the
fact that the host h has joined the reliable multicast group by setting the variable status to member.
Moreover, it schedules the transmission of a session packet no later than SESS-PERIOD time units
in the future by setting the rep-deadline variable to a value that is uniformly chosen within the
interval now + (0, SESS-PERIOD].

The input action rm-leaveh informs the SRM-reph automaton that the host h has left the reliable
multicast group. If the host h is operational, then the action rm-leaveh reinitializes all the variables
of SRM-reph except the variable now .

The input action process-mpkth(p) processes the packet p. Recall that the functionality of the
reporting component includes tracking the transmission progress of all sources and estimating the
distance estimates from the host h to all other reliable multicast group members. Provided the
host h is a member of the reliable multicast group, the packet p is processed according to its packet
type.

We first consider the case where p is a SESS packet. Letting sp denote the sender of p, SRM-reph
checks whether p is either the first or the most recent session packet of sp to be received by h. If
so, the variable dist-rprt(sp) is set to 〈time-sent(p),now〉 to record the reception of a more recent

35

session packet from the host sp.

Then, if p is distance reporting for h and the session packet that initiated this report is at least
as recent as the session packet that initiated the calculation of the current distance estimate to sp,
then a new distance estimate to sp is calculated. If the calculation of the current distance estimate
was initiated by the same session packet as the new calculation, then the new distance estimate is
considered more recent since the latency observed from sp to h is more recent. SRM-reph records
the new distance estimate to sp by reassigning the tuple dist(sp). Furthermore, sp is added to
the dist-buff buffer so that SRM-reph may subsequently report to SRM-rech the new distance
estimate to sp.

Finally, SRM-reph goes through the transmission state reports contained in p to determine
whether sp has observed further progress in the transmission of any of the sources; that is,
whether sp has observed the transmission of later ADU packets by any of the sources. For
each state report indicating further transmission progress, the corresponding max-seqno variable
is updated. Moreover, the respective source is added to the seqno-buff buffer so that SRM-reph
may subsequently report this transmission progress of the respective source to SRM-rech.

We now consider the case where p is either a DATA, RQST, or REPL packet. Let sp and ip denote the
source and sequence number of the ADU packet contained in p. If the packet p is a DATA packet and
is the first data packet to be received from sp, that is, if max-seqno(sp) =⊥, then max-seqno(sp) is
set to ip. If the packet p is either a DATA, RQST, or REPL packet and ip is greater than max-seqno(sp),
then max-seqno(sp) is set to ip.

Output Actions The output action rep-msendh(p), for p ∈ PSRM, hands off the packet p to
SRM-IPbuffh so that it may subsequently be multicast by SRM-IPbuffh using the underlying
IP multicast service. The precondition of the rep-msendh(p) action is that the host h is a member
of the reliable multicast group, the variable now equals the session packet deadline rep-deadline,
and the packet p corresponds to a session packet pertaining to the current state of the SRM-reph
automaton. The operation comp-sess-pkt(h,now , dist-rprt , seqno) composes the session packet p.
rep-msendh(p) schedules the transmission of the next session packet by setting the rep-deadline to
SESS-PERIOD time units in the future. The parameter SESS-PERIOD of the SRM-reph automaton
specifies the period with which the host h transmits session packets.

The output action rep-disth(h
′, d′) reports to SRM-rech the most recent distance estimate d

′ to
the host h′. The action rep-disth(h

′, d′) is enabled when the host h is a member of the reliable
multicast group, the distance estimate to h′ has recently been updated but has yet to be reported
to SRM-rech, that is, h

′ ∈ dist-buff , and the distance d′ is the most recent distance estimate to
h′, that is, it is the distance component of the tuple dist(h′). The effects of rep-disth(h

′, d′) are
to remove the host h′ from the dist-buff buffer.

The output action rep-seqnoh(s, i) reports to SRM-rech the most recent maximum sequence
number observed for the source s. The action rep-seqnoh(s, i) is enabled when the host h is
a member of the reliable multicast group, the maximum sequence number for the source s has
recently been updated but has yet to be reported to SRM-rech, that is, s ∈ seqno-buff , and i is
the most recently recorded maximum sequence number for the source s, that is, i = max-seqno(s).
The effects of rep-seqnoh(s, i) are to remove the source s from the seqno-buff buffer.

Time Passage The time passage action ν(t) models the passage of t time units of time. If the
host h has crashed, then time is allowed to elapse. Otherwise, time is allowed to elapse neither
past the transmission of the next session packet, rep-deadline, nor while there are pending reports;
that is, the reporting buffers dist-buff and seqno-buff are non-empty.

36

Figure 18 The SRM-reph Automaton — Discrete Transitions

input crashh

eff status := crashed

input rm-join-ackh

eff if status 6= crashed then

status := member

rep-deadline :∈ now + (0, SESS-PERIOD]

input rm-leaveh

eff if status 6= crashed then

Reinitialize all variables except now .

input process-mpkth(p)

where type(p) = SESS

eff if status = member then

sp := sender(p)
if dist-rprt(sp) =⊥ then

dist-rprt(sp) := 〈time-sent(p),now〉
else

〈tsent , trcvd 〉 := dist-rprt(sp)
if tsent ≤ time-sent(p) then
dist-rprt(sp) := 〈time-sent(p),now〉

if h ∈ dist-rprt?(p) then
〈

tsent , tdelayed
〉

:= dist-rprt(p, h)
〈trprt , tdist 〉 := dist(sp)
if trprt ≤ tsent then

t′
dist

:= (now − tdelayed − tsent)/2
dist(sp) :=

〈

tsent , t′dist
〉

dist-buff ∪= {sp}
foreach 〈h′′, i′′〉 ∈ seqno-rprts(p) do:
if max-seqno(h′′) < i′′ then
max-seqno(h′′) := i′′

seqno-buff ∪= {h′′}

input process-mpkth(p)

where type(p) 6= SESS

eff if status = member then

〈sp, ip〉 := id(p)
if max-seqno(sp) =⊥
∧type(p) = DATA

then

max-seqno(sp) := ip
if max-seqno(sp) 6=⊥
∧max-seqno(sp) < ip

then

max-seqno(sp) := ip

output rep-msendh(p)

pre status = member ∧ now = rep-deadline
∧p = comp-sess-pkt(h,now , dist-rprt , seqno)

eff rep-deadline := now + SESS-PERIOD

output rep-disth(h
′, d′)

choose t′ ∈ R≥0

pre status = member ∧ h′ ∈ dist-buff ∧ 〈t′, d′〉 = dist(h′)
eff dist-buff \= {h′}

output rep-seqnoh(s, i)

pre status = member ∧ s ∈ seqno-buff ∧ i = max-seqno(s)
eff seqno-buff \= {s}

time-passage ν(t)

pre status = crashed

∨(dist-buff = ∅ ∧ seqno-buff = ∅
∧(rep-deadline =⊥ ∨now + t ≤ rep-deadline))

eff now := now + t

Figure 19 The IPmcast Automaton — Signature

Actions:

input

crashh, for h ∈ H
mjoinh, for h ∈ H
mleaveh, for h ∈ H
msendh(p), for h ∈ H, p ∈ PIPmcast-Client

internal

mgrbg-coll(pkt), for pkt ∈ PIPmcast

output

mjoin-ackh, for h ∈ H
mleave-ackh, for h ∈ H
mrecvh(p), for h ∈ H, p ∈ PIPmcast-Client

mdrop(p,Hd), for p ∈ PIPmcast-Client, Hd ⊆ H
time-passage

ν(t), for t ∈ R≥0

5.2.6 The IP Multicast Component — IPmcast

In this section, we give an abstract specification of the IP multicast service; the IP primitive that
provides best-effort point to multi-point communication. In order to simplify the presentation, we
assume that only a single multicast group exists. Furthermore, we abstract away the specifics of
the underlying protocols that collectively provide the IP multicast service. In our model, hosts
join, leave, and send data packets to the IP multicast group by issuing join and leave requests and
by multicasting data packets, respectively. Following the initial service model of IP multicast, a
host need not be a member of the IP multicast group to send messages addressed to the group.
However, a host must join the IP multicast group in order to receive packets addressed to the IP
multicast group. The IP multicast service guarantees that only hosts who are members of the IP
multicast group actually receive IP multicast packets.

Figures 19 and 20 present the signature, variables, and discrete transitions of the the IPmcast

timed I/O automaton; an abstract specification of the IP multicast service.

37

Variables The variable now ∈ R≥0 denotes the time that has elapsed since the beginning of
an execution of IPmcast. Each variable status(h) ∈ IPmcast-Status, for h ∈ H, denotes the IP
multicast membership status of the host h. The value idle indicates that h is idle with respect to
the IP multicast group; that is, it is neither a member, nor in the process of joining or leaving the
IP multicast group. The value joining indicates that h is in the process of joining the IP multicast
group; that is, the client has issued a request to join the IP multicast group and is awaiting an
acknowledgment of this join request from the IP multicast service. The value leaving indicates
that h is in the process of leaving the IP multicast group; that is, the client has issued a request to
leave the IP multicast group and is awaiting an acknowledgment of this leave request from the IP
multicast service. The value member indicates that h is a member of the IP multicast group. The
value crashed indicates that h has crashed. When the host h has crashed, none of the input actions
pertaining to h affect the state of IPmcast and none of the locally controlled actions pertaining
to h are enabled. While the host h has not crashed, we say that it is operational.

The variable mpkts ⊆ PIPmcast is comprised of the tuples that track the transmission progress of
the packets transmitted during the particular execution of IPmcast. Of course, the size of the
intended delivery set of each transmission progress tuple decreases monotonically as the hosts it
consists of may leave the IP multicast group or crash.

Derived Variables The derived variable up ⊆ H is the set of hosts that are operational; that is,
the set of hosts that have not yet crashed. The derived variable idle ⊆ H is a set of hosts that are
idle with respect to the IP multicast group. The derived variable joining ⊆ H is a set of hosts that
are in the process of joining the IP multicast group. The derived variable leaving ⊆ H is a set of
hosts that are in the process of leaving the IP multicast group. The derived variable members ⊆ H
is a set of hosts that are members of the IP multicast group.

Input Actions Each input action crashh, for h ∈ H, models the crashing of the host h. The
crashh action records the fact that h has crashed by setting the status(h) variable to crashed.
Moreover, the crashh action removes the host h from the intended delivery set of any packet in
the set of pending packets mpkts.

The input action mjoinh models the request of the client at h to join the IP multicast group. The
mjoinh action is effective only while the host is idle with respect to the IP multicast group. When
effective, the mjoinh action sets the status(h) variable to joining so as to record that the host h
has initiated the process of joining the IP multicast group. If the client is either a member of or in
the process of joining the IP multicast group, then the mjoinh action is superfluous. If the client
is already in the process of leaving the group, then the mjoinh action is discarded so as to allow
the process of leaving the IP multicast group to complete.

The input action mleaveh models the request of the client at h to leave the IP multicast group. The
mleaveh action is effective only while the host is either a member of or in the process of joining the
IP multicast group. When effective, the mleaveh action sets the status(h) variable to leaving so
as to record that the host h has initiated the process of leaving the IP multicast group. Moreover,
the mleaveh action removes the host h from the intended delivery set of any packet in the set of
pending packets mpkts. Leave requests overrule join requests; that is, when a mleaveh action is
performed while the host h is in the process of joining the IP multicast group, its effects are to
abort the process of joining and to initiate the process of leaving the IP multicast group. If the
client is either idle with respect to or already in the process of leaving the IP multicast group, then
the mleaveh action is superfluous.

The input action msendh(p) models the transmission by the client at h of the packet p using the IP
multicast service. The msendh(p) action is effective only if the client is operational; recall that a

38

Figure 20 The IPmcast automaton — Variables and Discrete Transitions

Variables:

now ∈ R≥0, initially now = 0
status(h) ∈ IPmcast-Status, for all h ∈ H,
initially status(h) = idle, for all h ∈ H

mpkts ⊆ PIPmcast, initially mpkts = ∅

Derived Variables:

up = {h ∈ H|status(h) 6= crashed}
idle = {h ∈ H|status(h) = idle}
joining = {h ∈ H|status(h) = joining}
leaving = {h ∈ H|status(h) = leaving}
members = {h ∈ H|status(h) = member}

Discrete Transitions:

input crashh

eff if h ∈ up then
status(h) := crashed

foreach pkt ∈ mpkts do:
intended(pkt) \= {h}

input mjoinh

eff if h ∈ idle then
status(h) := joining

input mleaveh

eff if h ∈ joining ∪members then
status(h) := leaving

foreach pkt ∈ mpkts do:
intended(pkt) \= {h}

input msendh(p)

eff if h ∈ up then
mpkts ∪= {〈p,members, {h}, ∅〉}

internal mgrbg-coll(p)

choose pkt ∈ PIPmcast

pre pkt ∈ mpkts ∧ p = strip(pkt)
∧intended(pkt) ⊆ (completed(pkt) ∪ dropped(pkt))

eff mpkts \= {pkt}

output mjoin-ackh

pre h ∈ joining
eff status(h) := member

output mleave-ackh

pre h ∈ leaving
eff status(h) := idle

output mrecvh(p)

choose pkt ∈ PIPmcast

pre h ∈ members\dropped(pkt)
∧pkt ∈ mpkts ∧ p = strip(pkt)

eff completed(pkt)∪= {h}

output mdrop(p,Hd)

choose pkt ∈ PIPmcast

pre pkt ∈ mpkts ∧ p = strip(pkt)
∧Hd ⊆ members\(completed(pkt) ∪ dropped(pkt))

eff dropped(pkt)∪= Hd

time-passage ν(t)

pre None
eff now := now + t

client need not be a member of the IP multicast group to multicast packets using the IP multicast
service. The effects of the msendh(p) action are to add a tuple corresponding to the transmission
of the packet p to mpkts. This tuple is initialized as follows: its intended delivery set is initialized
to the current members of the IP multicast group, its completed delivery set is initialized to the
host h as if the packet p has already been delivered to the client at the host h, and its dropped set
is initialized to the empty set.

Output Actions The output action mjoin-ackh acknowledges the join request of the client at h.
The mjoin-ackh action is enabled only when the host is in the process of joining the IP multicast
group. Its effects are to set the status(h) variable to member so as to indicate that the client at h
has become a member of the IP multicast group.

The output action mleave-ackh acknowledges the leave request of the client at h. The action
mleave-ackh is enabled when the host is in the process of leaving the IP multicast group. Its
effects are to set the status(h) variable to idle so as to indicate that the client at h has become
idle with respect to the IP multicast group.

The output action mrecvh(p) models the delivery of the packet p to the client at h. The mrecvh(p)
action is enabled when p is a pending packet, the host h is both a member of the IP multicast
group and absent from the dropped set of the transmission progress tuple pkt in mpkts pertaining
to p. The effects of the mrecvh(p) action are to add the host h to the completed delivery set of p’s
transmission progress tuple pkt .

The output action mdrop(p,Hd), for any p ∈ PIPmcast-Client and Hd ⊆ H, models the drop of the
packet p on a link of the underlying IP multicast tree whose descendants are the hosts in the set Hd.
The mdrop(p,Hd) action is enabled when p is a pending packet and Hd is comprised of members

39

of the IP multicast group for which the delivery of the packet p has neither completed, nor failed
due to prior packet drops. The mdrop(p,Hd) action adds the hosts comprising Hd to the dropped
set of the transmission progress tuple pkt in mpkts pertaining to p.

Internal Actions The internal action mgrbg-coll(p) models the garbage collection of the packet
p. A packet p may only be garbage collected after all the hosts comprising its intended delivery set
either receive the packet or suffer a loss that prevents the packet from being forwarded to them. The
effects of the mgrbg-coll(p) action are to remove the transmission progress tuple pkt pertaining
to p from the set mpkts.

Time Passage The time-passage action ν(t), for t ∈ R≥0, models the passage of t time units.
The action ν(t) is enabled at any point in time and increments the variable now by t time units.

Properties

Lemma 5.1 (Transmission Integrity) For any timed trace β of IPmcast, it is the case that
any mrecvh(p) action, for h ∈ H, in β is preceded in β by a msendh′(p) action, for some h

′ ∈ H.

Proof: Let α be any timed execution of IPmcast such that β = ttrace(α). Consider a particular
occurrence of an action mrecvh(p) in α, for h ∈ H. Let (u, mrecvh(p), u

′) ∈ trans(IPmcast) be
the discrete transition in α corresponding to the particular occurrence of the action mrecvh(p) in
α. From the precondition of mrecvh(p), it is the case that there is a packet pkt ∈ u.mpkts, such
that p = strip(pkt). However, such a packet may be added to mpkts only by the occurrence of an
action msendh′(p), for some h ∈ H. It follows that the occurrence of any action mrecvh(p) in α is
preceded by the occurrence of an action rm-sendh′(p), for some h

′ ∈ H.

5.3 Constraints on RMI’s Parameters

Figure 21 illustrates the behavior of RMI’s packet loss recovery scheme. In particular, for any
k ∈ N+, it depicts the transmission of a k-th round request by h, the scheduling of a k+1-st round
request by h, and the scheduling of a reply to h’s k-th round request by a host h′. th is the point in
time at which h schedules its k-th round request, t′h is the point in time for which h schedules its
k-th round request, th′ is the point in time h

′ receives h’s k-th round request, and t′h′ is the point

in time for which h′ schedules its reply to h’s k-th round request. d̂hs is half of h’s RTT estimate
to the source s of the packet being recovered, dhh′ and dh′h are the actual transmission latencies
between h and h′, and d̂h′h is half of the RTT estimate of h

′ to h.

RMI must ensure that the back-off abstinence intervals do not overlap with request intervals.
From Figure 21, this requirement is enforced by imposing the parameter constraint C3 < C1.
Moreover, RMI must ensure that requestors schedule their retransmission requests such that they
succeed the reception of replies pertaining to prior recovery rounds. Prematurely transmitting
requests would result in wasteful recovery traffic. From Figure 21, this requirement corresponds
to the satisfaction of the inequalities dhh′ + (D1 + D2)d̂h′h + dh′h < 2kC1d̂hs, for k ∈ N+.
Presuming that inter-host transmission latencies are fixed and symmetric and that RMI’s inter-
host RTT estimates are accurate, these inequalities are satisfied if D1 + D2 + 2 < 2C1. Finally,
RMI must also ensure that a particular round’s requests are not discarded by potential repliers
because they are received during the repliers’ abstinence periods pertaining to the prior recovery
round. From Figure 21, this requirement corresponds to the satisfaction of the inequalities
dhh′+(D1+D2)d̂h′h+D3d̂h′h < 2

kC1d̂hs+dhh′ , for k ∈ N+. Presuming that inter-host transmission

40

Figure 21 Timing Diagram of SRM’s Loss Recovery Scheme

���������
	����������� �����������
������������� !�#"%$������&�
�����#������� &��'�� ()�*������������� &��'�� (+����,��� ���������-�*���������.���

/,0 /,0-132�4%57698 6;:< 0�=

/*> 0

/,0?1@2�4�5;6.AB8 6 138!C.D :< 0�=

/*> 0 132 4 8�E :< 0.=

/ 0�F / 0�F 13G 6;:< 0.FB0 / 0.F 1HA*G 6 1@GIC.D :< 0.FB0

/ > 0 F / > 0 F 1JG E :< 0 F 0

/ > 0 1@2�4KAB8 6 1@8!C.D :< 0.=/ > 0 1@2�4�8 6;:< 0.=

 &��"%$�������	.�MLON!�QPR��� �Q���

 &��'�� �Q���&L > N&� P+��� �Q���

/*> >0

/*> 0.F 1 < 0.FB0

/*> >0 1 < 0�0 F

latencies are fixed and symmetric and that RMI’s inter-host RTT estimates are accurate, these
inequalities are satisfied if D1 +D2 +D3 < 2C1.

The following assumption summarizes the constraints on RMI’s parameters.

Assumption 5.1 RMI ’s parameters C1, C2, C3, D1, D2, and D3 satisfy the following constraints:
C3 < C1, D1 +D2 + 2 < 2C1, and D1 +D2 +D3 < 2C1.

To our knowledge, these constraints on SRM’s request/reply scheduling parameters, or even similar
ones, have not been expressed to date. In fact, most analyses and simulations presume that no
recovery packets are lost; that is, they presume that the initial recovery round is always successful.
Our timing analysis illustrates that if the parameters are chosen arbitrarily it is possible to cause
either superfluous requests and replies or the failure of a recovery round due to replier abstinence.
Although in practice, due to inaccurate inter-host RTT estimates and varying and non-symmetric
inter-host transmission latencies, superfluous traffic and/or recovery round failure may indeed be
unavoidable, it is still important to realize their tie to SRM’s parameters.

5.4 Safety and Liveness Analysis of RMI

We begin this section by defining some history variables that facilitate the proof that RMI
implements RMS. We then define a relation between the states of RMI and RMS and prove that
this relation is indeed a timed forward simulation relation. This proof establishes that RMI is safe
with respect to RMS; that is, it may only deliver appropriate packets to each member of the reliable
multicast group. We conclude by showing that, under certain constraints, RMI is live with respect
to RMS; that is, under the given constraints, RMI guarantees the timely delivery of the appropriate
packets to the appropriate members of the reliable multicast group, as formalized in Section 4.

5.4.1 History Variables

Figure 22 introduces history and derived history variables for the automata SRM-rech and SRM ,
respectively.

The history variables of the SRM-rech automata, for h ∈ H, are the variables trans-time(p), for
all p ∈ PRM-Client[h], expected(h

′) ⊆ H × N, for h′ ∈ H, and delivered(h′) ⊆ H × N, for h′ ∈ H.

41

Figure 22 History and Derived History Variables

History Variables of SRM-rech:

trans-time(p) ∈ R≥0∪ ⊥, for all p ∈ PRM-Client[h], initially trans-time(p) =⊥, for all p ∈ PRM-Client[h]
expected(h′) ⊆ H × N, for all h′ ∈ H, initially expected(h′) = ∅, for all h′ ∈ H
delivered(h′) ⊆ H × N, for all h′ ∈ H, initially delivered(h′) = ∅, for all h′ ∈ H

Derived History Variables of SRM:

sent-pkts = {p ∈ PRM-Client | trans-time(p) 6=⊥}
sent-pkts? = {〈s, i〉 ∈ H × N | ∃ p ∈ sent-pkts : id(p) = 〈s, i〉}
intended(p) = {h ∈ H | id(p) ∈ SRM-rech.expected(source(p))}, for all p ∈ PRM-Client

completed(p) = {h ∈ H | id(p) ∈ SRM-rech.delivered(source(p))}, for all p ∈ PRM-Client

active-pkts = {p ∈ PRM-Client | p ∈ sent-pkts ∧ intended(p) ∩ completed(p) 6= ∅}

Figure 23 SRM-rech History Variable Assignments

input crashh

eff ...
foreach h′ ∈ H do:

expected(h′) := ∅
delivered(h′) := ∅

input rm-leaveh

eff if status 6= crashed then

Reinitialize all variables except now .
foreach h′ ∈ H do:

expected(h′) := ∅
delivered(h′) := ∅

input rm-sendh(p)

eff ...
\\ Record foremost DATA packet

if min-seqno(sp) =⊥ then

...
expected(h) := suffix(p)

...
if max-seqno(sp) =⊥
∨ip = max-seqno(sp) + 1

then

...
trans-time(p) := now
delivered(h)∪= {id(p)}

output rm-recvh(p)

pre ...
eff ...

〈sp, ip〉 := id(p)
if expected(sp) = ∅ then
expected(sp) := suffix(p)

delivered(sp)∪= {id(p)}

Each trans-time(p) variable, for p ∈ PRM-Client[h], records the transmission time of the packet p
by the host h. Each expected(h′) variable , for h′ ∈ H, is comprised of the identifiers of the packets
from h′ that the host h expects to deliver since it last joined the reliable multicast group. Each
delivered(h′) variable, for h′ ∈ H, is comprised of the identifiers of the packets from h′ that the
host h has already delivered since it last joined the reliable multicast group. Figure 23 specifies
how the actions of SRM-rech affect these history variables.

The derived history variables of SRM are the set of identifiers of all packets sent since the beginning
of the execution, sent-pkts, the intended delivery set of p, intended(p), for all p ∈ PRM-Client, the
completed delivery set of p, completed(p), for all p ∈ PRM-Client, and the set of active packets,
active-pkts.

5.4.2 Preliminary Invariants and Lemmas

In this section, we present several preliminary invariants and lemmas that are later used in the safety
and liveness proofs of the RMI automaton. We begin by presenting several invariants pertaining
to the SRM-rech automaton, for h ∈ H.

Invariant 5.1 For h, h′ ∈ H and any reachable state u of SRM-rech, if u.status 6= member, then
u.expected(h′) = ∅ and u.delivered(h′) = ∅.

Proof: Let α be any finite timed execution of SRM-rech leading to u. The proof is by induction
on the length n ∈ N of α. For the base case, consider the finite timed execution α of length 0; that is,

42

α = u. Since u is a start state of SRM-rech, it follows that u.status = idle, u.expected(h′) = ∅,
and u.delivered(h′) = ∅. Thus, the invariant assertion is satisfied in u. For the inductive step,
consider a timed execution α of length k + 1, for k ∈ N. Let αk be the prefix of α containing the
first k steps of α and uk = αk.lstate. For the step from uk to u we consider only the actions that
affect the variables status, expected(h′), and delivered(h′).

❒ crashh: the action crashh sets the variable status to crashed and the variables expected(h′)
and delivered(h′) to ∅. Thus, the invariant assertion is satisfied in u.

❒ rm-join-ackh: if uk.status 6= crashed, then the action rm-join-ackh sets the variable status
to member. Thus, the invariant assertion is satisfied in u. Otherwise, if uk.status = crashed,
then the action rm-join-ackh does not affect the state of SRM-rech. Thus, the induction
hypothesis implies that the invariant assertion is satisfied in u.

❒ rm-leaveh: if uk.status 6= crashed, then the action rm-leaveh sets the variable status to idle
and the expected(h′) and delivered(h′) variables to ∅. Thus, the invariant assertion is satisfied
in u. Otherwise, if uk.status = crashed, then the action rm-leaveh does not affect the state of
SRM-rech. Thus, the induction hypothesis implies that the invariant assertion is satisfied in
u.

❒ rm-sendh(p), for p ∈ PRM-Client: first, consider the case where ¬(uk.status = member ∧ h =
source(p)). In this case, rm-sendh(p) does not affect the state of SRM-rech. Thus, the induction
hypothesis implies that the invariant assertion holds in u.

Second, consider the case where uk.status = member and h = source(p). Since uk.status =
member and the rm-sendh(p) does not affect the status variable, it follows that u.status = member.
Thus, the invariant assertion is satisfied in u.

❒ rm-recvh(p), for p ∈ PRM-Client: the precondition of the action rm-recvh(p) implies that
uk.status = member. Since the rm-recvh(p) does not affect the status variable, it follows that
u.status = member. Thus, the invariant assertion is satisfied in u.

Invariant 5.2 For h, h′ ∈ H and any reachable state u of SRM-rech, if u.min-seqno(h
′) 6=⊥,

then u.min-seqno(h′) ≤ u.max-seqno(h′).

Proof: Let α be any finite timed execution of SRM-rech leading to u. The proof is by induction
on the length n ∈ N of α. For the base case, consider the finite timed execution α of length 0; that
is, α = u. Since u is a start state of SRM-rech, it follows that u.min-seqno(h) =⊥. Thus, the
invariant assertion is satisfied in u. For the inductive step, consider a timed execution α of length
k + 1, for k ∈ N. Let αk be the prefix of α containing the first k steps of α and uk = αk.lstate.
For the step from uk to u we consider only the actions that affect the variables min-seqno(h

′) and
max-seqno(h′).

❒ rm-leaveh: if uk.status 6= crashed, then the action rm-leaveh sets the variables min-seqno(h
′)

and max-seqno(h′) to ⊥. Thus, the induction assertion is satisfied in u. Otherwise, if
uk.status = crashed, then the action rm-leaveh does not affect the state of SRM-rech. Thus,
the induction hypothesis implies that the invariant assertion is satisfied in u.

❒ rm-sendh(p), for p ∈ PRM-Client, such that source(p) = h′: letting 〈sp, ip〉 = id(p), we analyze
the effects of rm-sendh(p) by cases. First, consider the case where ¬(uk.status = member ∧ h =
sp). In this case, rm-sendh(p) does not affect the variables min-seqno(h

′) and max-seqno(h′).
Thus, the induction hypothesis implies that the invariant assertion is satisfied in u.

Second, consider the case where uk.status = member and h = sp. Since sp = h′, it follows
that h = h′ = sp. If p is the foremost packet from sp, that is, uk.min-seqno(sp) =⊥, then

43

the rm-sendh(p) action sets both min-seqno(h
′) and max-seqno(h′) to ip. It follows that

u.min-seqno(h′) ≤ u.max-seqno(h′). Thus, the invariant assertion is satisfied in u.

If p is the next packet from sp, then the action rm-sendh(p) does not affect min-seqno(h
′) and

sets max-seqno(h′) to ip; that is, u.min-seqno(h
′) = uk.min-seqno(h

′) and u.max-seqno(h′) =
uk.max-seqno(h

′) + 1. Since ip = uk.max-seqno(h
′) + 1, it follows that uk.max-seqno(h

′) <
u.max-seqno(h′). The induction hypothesis implies that uk.min-seqno(h

′) ≤ uk.max-seqno(h
′).

Thus, since it follows that u.min-seqno(h′) ≤ u.max-seqno(h′), as needed.

If p is neither the foremost nor the next packet from sp, then the action rm-sendh(p) does not
affect the variables min-seqno(h′) and max-seqno(h′). Thus, the induction hypothesis implies
that the invariant assertion holds in u.

❒ rep-seqnoh(s, i), for s ∈ H and i ∈ N, such that s = h′: first, consider the case where
¬(uk.status = member ∧ uk.min-seqno(s) 6=⊥ ∧uk.max-seqno(s) < i). In this case, the action
rep-seqnoh(s, i) does not affect the state of SRM-rech. Thus, the induction hypothesis implies
that the invariant assertion holds in u.

Second, consider the case where uk.status = member∧ uk.min-seqno(s) 6=⊥ ∧uk.max-seqno(s) <
i. In this case, rep-seqnoh(s, i) does not affectmin-seqno(h

′) and setsmax-seqno(h′) to i; that is,
u.min-seqno(h′) = uk.min-seqno(h

′) and u.max-seqno(h′) = i. Since uk.max-seqno(h
′) < i and

u.max-seqno(h′) = i, it follows that uk.max-seqno(h
′) < u.max-seqno(h′). From the induction

hypothesis, it is the case that uk.min-seqno(h
′) ≤ uk.max-seqno(h

′). Thus, it follows that
u.min-seqno(h′) ≤ u.max-seqno(h′), as needed.

❒ process-mpkth(p), for p ∈ PSRM, such that source(p) = h′: letting 〈sp, ip〉 = id(p), we analyze
the effects of process-mpkth(p) by cases. First, if uk.status 6= member, then process-mpkth(p)
does not affect the state of SRM-rech. Thus, the induction hypothesis implies that the invariant
assertion holds in u.

Second, consider the case where uk.status = member. If p is the foremost packet from sp, that is,
type(p) = DATA, h 6= sp, and uk.min-seqno(sp) =⊥, then the action process-mpkth(p) sets both
min-seqno(h′) and max-seqno(h′) to ip. It follows that u.min-seqno(h

′) ≤ u.max-seqno(h′), as
needed.

If p is not the foremost packet from sp but is proper, that is, uk.min-seqno(sp) 6=⊥ and
uk.min-seqno(sp) ≤ ip, then the action process-mpkth(p) does not affect min-seqno(h

′) and
may increase the value of max-seqno(h′). It follows that u.min-seqno(h′) = uk.min-seqno(h

′)
and uk.max-seqno(h

′) ≤ u.max-seqno(h′). From the induction hypothesis, it is the case that
uk.min-seqno(h

′) ≤ uk.max-seqno(h
′). Thus, it follows that u.min-seqno(h′) ≤ u.max-seqno(h′),

as needed.

Otherwise, if p is neither the foremost nor a proper packet from sp, then process-mpkth(p)
does not affect the variables min-seqno(h′) and max-seqno(h′). Thus, the induction hypothesis
implies that the invariant assertion holds in u.

Invariant 5.3 For h, h′ ∈ H and any reachable state u of SRM-rech, if u.status = member, then
it is the case that u.archived-pkts? (h′) = u.delivered(h′) ∪ u.to-be-delivered? (h′).

Proof: Let α be any finite timed execution of SRM-rech leading to u. The proof is by induction
on the length n ∈ N of α. For the base case, consider the finite timed execution α of length 0;
that is, α = u. Since u is a start state of SRM-rech, it follows that u.status = idle. Thus, the
invariant assertion holds in u. For the inductive step, consider a timed execution α of length k+1,

44

for k ∈ N. Let αk be the prefix of α containing the first k steps of α and uk = αk.lstate. For the
step from uk to u, we consider only the actions that affect the variables archived-pkts, delivered(h

′),
and to-be-delivered? (h′).

❒ crashh: the action crashh sets the variable status to crashed. Thus, the invariant assertion
holds in u.

❒ rm-leaveh: if uk.status 6= crashed, then the action rm-leaveh sets the variable status to idle.
Thus, the invariant assertion holds in u.

Otherwise, if uk.status = crashed, then the action rm-leaveh does not affect the state of
SRM-rech. It follows that u.status = crashed. Thus, the invariant assertion holds in u.

❒ rm-sendh(p), for p ∈ PRM-Client, such that source(p) = h′: letting 〈sp, ip〉 = id(p), we analyze
the effects of rm-sendh(p) by cases. First, if ¬(uk.status = member ∧ h = sp), then rm-sendh(p)
does not affect the state of SRM-rech. Thus, the induction hypothesis implies that the invariant
assertion holds in u.

Second, consider the case where uk.status = member ∧ h = sp. If p is either the foremost or the
next packet from h, then rm-sendh(p) archives p and records it as having been delivered. Thus,
the induction hypothesis and the fact that the packet p is both archived and recorded as having
been delivered imply that the invariant assertion holds in u.

Otherwise, if p is neither the foremost nor the next packet from h, then the action rm-sendh(p)
does not affect the variables archived-pkts? (h′), delivered(h′), and to-be-delivered? (h′). Thus,
the induction hypothesis implies that the invariant assertion is satisfied in u.

❒ rm-recvh(p), for p ∈ PRM-Client, such that source(p) = h′: rm-sendh(p) removes id(p) from
to-be-delivered? (h′) and adds it to delivered(h′). Thus, the induction hypothesis implies that
the invariant assertion holds in u.

❒ process-mpkth(p), for p ∈ PSRM, such that source(p) = h′: letting 〈sp, ip〉 = id(p), we analyze
the effects of process-mpkth(p) by cases. First, if uk.status 6= member, then rm-sendh(p) does
not affect the state of SRM-rech. Thus, the induction hypothesis implies that the invariant
assertion holds in u.

Second, consider the case where uk.status = member. We begin by considering the case
where type(p) ∈ {DATA, REPL}. In this case, consider the case where p is either the fore-
most or a proper packet from sp and h 6= sp. In this case, if p has not already been
archived, then process-mpkth(p) adds id(p) to both archived-pkts? (h

′) and to-be-delivered? (h′).
This fact and the induction hypothesis imply that the invariant assertion is satisfied in
u. Otherwise, if p has already been archived, then process-mpkth(p) adds id(p) to
to-be-delivered? (h′) only. Since id(p) ∈ uk.archived-pkts? (h

′) and process-mpkth(p) does not af-
fect archived-pkts, it follows that u.archived-pkts? (h′) = uk.archived-pkts? (h

′) and, thus, id(p) ∈
u.archived-pkts? (h′). Moreover, since process-mpkth(p) adds id(p) to to-be-delivered? (h

′), it
follows that u.to-be-delivered? (h′) = uk.to-be-delivered? (h

′) ∪ {id(p)}. From the induction hy-
pothesis, it is the case that uk.archived-pkts? (h

′) = uk.delivered(h
′) ∪ uk.to-be-delivered? (h

′).
Since process-mpkth(p) does not affect delivered(h

′), it follows that the invariant assertion
holds in u.

Otherwise, if either p is neither the foremost nor a proper packet from sp or h = sp,
process-mpkth(p) does not affect archived-pkts? (h

′), delivered(h′), and to-be-delivered? (h′).
Thus, the induction hypothesis implies that the invariant assertion is satisfied in u.

If type(p) ∈ {RQST, SESS}, then the action process-mpkth(p) does not affect archived-pkts? (h
′),

delivered(h′), and to-be-delivered? (h′). Thus, the induction hypothesis implies that the invariant
assertion is satisfied in u.

45

Invariant 5.4 For h, h′ ∈ H and any reachable state u of SRM-rech, it is the case that
u.archived-pkts? (h′) ⊆ u.window? (h′).

Proof: Let α be any finite timed execution of SRM-rech leading to u. The proof is by induction
on the length n ∈ N of α. For the base case, consider the finite timed execution α of length 0;
that is, α = u. Since u is a start state of SRM-rech, it is the case that u.min-seqno(h

′) =⊥ and
u.archived-pkts? (h′) = ∅. Since u.min-seqno(h′) =⊥, it is the case that u.window? (h′) = ∅. Thus,
it follows that u.archived-pkts? (h′) ⊆ u.window? (h′), as needed. For the inductive step, consider a
timed execution α of length k + 1, for k ∈ N. Let αk be the prefix of α containing the first k steps
of α and uk = αk.lstate. For the step from uk to u we consider only the actions that affect the
variables min-seqno(h′), max-seqno(h′), and archived-pkts? (h′).

❒ rm-leaveh: if uk.status 6= crashed, then the action rm-leaveh reinitializes all the variables
of SRM-rech except the variable now . Thus, it is the case that u.min-seqno(h

′) =⊥ and
u.archived-pkts? (h′) = ∅. Since u.min-seqno(h′) =⊥, it is the case that u.window? (h′) = ∅.
Thus, it follows that u.archived-pkts? (h′) ⊆ u.window? (h′), as needed.

Otherwise, if uk.status = crashed, then the action rm-leaveh does not affect the state of
SRM-rech. Thus, the induction hypothesis implies that the invariant assertion holds in u.

❒ rm-sendh(p), for p ∈ PRM-Client, such that source(p) = h′: letting 〈sp, ip〉 = id(p), we analyze
the effects of rm-sendh(p) by cases. First, consider the case where ¬(uk.status = member ∧ h =
sp). In this case, rm-sendh(p) does not affect the variables min-seqno(h

′) and max-seqno(h′).
Thus, the induction hypothesis implies that the invariant assertion is satisfied in u.

Second, consider the case where uk.status = member and h = sp. Since sp = h′, it follows
that h = h′ = sp. If p is the foremost packet from sp, that is, uk.min-seqno(sp) =⊥, then
the rm-sendh(p) action sets both min-seqno(sp) and max-seqno(sp) to ip and adds the element
〈p,now〉 to archived-pkts. Since uk.min-seqno(sp) =⊥, it is the case that uk.window? (h

′) =
∅. Thus, the induction hypothesis implies that uk.archived-pkts? (h

′) = ∅. It follows that
u.archived-pkts? (h′) = {id(p)}. Moreover, since u.min-seqno(h′) = u.max-seqno(h′) = ip,
it follows that uk.window? (h

′) = {id(p)}. Thus, if follows that u.archived-pkts? (h′) ⊆
u.window? (h′), as needed.

If p is the next packet from sp, that is, uk.min-seqno(sp) 6=⊥ and ip = uk.max-seqno(sp) + 1,
then rm-sendh(p) sets max-seqno(sp) to ip and adds the element 〈p,now〉 to
archived-pkts. It follows that u.archived-pkts? (h′) = uk.archived-pkts? (h

′) ∪ {id(p)}
and u.window? (h′) = uk.window? (h

′) ∪ {id(p)}. From the induction hypothesis,
it is the case that uk.archived-pkts? (h

′) ⊆ uk.window? (h
′). Thus, it follows that

u.archived-pkts? (h′) ⊆ u.window? (h′), as needed.

❒ process-mpkth(p), for p ∈ PSRM, such that type(p) ∈ {DATA, REPL} and source(p) = h′: letting
〈sp, ip〉 = id(p), we analyze the effects of process-mpkth(p) by cases.

First, consider the case where p is the foremost packet from sp; that is, type(p) = DATA,
h 6= sp, and uk.min-seqno(sp) =⊥. Since uk.min-seqno(sp) =⊥, it is the case that
uk.window? (sp) = ∅. Thus, the induction hypothesis implies that uk.archived-pkts? (sp) = ∅.
Since process-mpkth(p) sets both variables min-seqno(h

′) and max-seqno(h′) to ip and adds
〈strip(p),now〉 to archived-pkts, it follows that u.archived-pkts? (h′) = u.window? (sp) = {id(p)}.
Thus, it follows that u.archived-pkts? (h′) ⊆ u.window? (h′).

Second, consider the case where p is not the foremost packet from sp but is proper; that is,
uk.min-seqno(sp) 6=⊥ and uk.min-seqno(sp) ≤ ip. In this case, the process-mpkth(p) action:

46

i) adds the element 〈strip(p),now〉 to archived-pkts, if h 6= sp ∧ 〈sp, ip〉 6∈ uk.archived-pkts? , and
ii) sets max-seqno(sp) to ip, if uk.max-seqno(sp) < ip. It follows that u.archived-pkts? (sp) ⊆
uk.archived-pkts? (sp)∪{id(p)} and uk.window? (sp)∪{id(p)} ⊆ u.window? (sp). Moreover, from
the induction hypothesis, it is the case that uk.archived-pkts? (h

′) ⊆ uk.window? (h
′). Thus, it

follows that u.archived-pkts? (h′) ⊆ u.window? (h′), as needed.

Invariant 5.5 For h ∈ H, p ∈ PRM-Client, and any reachable state u of SRM-rech, if p ∈
u.to-be-delivered, then u.min-seqno(source(p)) 6=⊥ and u.min-seqno(source(p)) ≤ seqno(p).

Proof: From the effects of the process-mpkth(p) action, for h ∈ H and p ∈ PSRM, such that
id(p) = 〈sp, ip〉, it follows that a packet p may be added to to-be-delivered only if h is not the source
of p and p is a proper packet; that is, h 6= sp, min-seqno(sp) 6=⊥, and min-seqno(sp) ≤ ip.

Invariant 5.6 For h, h′ ∈ H and any reachable state u of SRM-rech, it is the case that:

1. u.min-seqno(h′) =⊥⇒ u.expected(h′) = ∅,

2. u.delivered(h′) ⊆ u.expected(h′),

3. h = h′ ∧ u.status 6= crashed⇒ u.expected(h′) = u.proper? (h′), and

4. u.expected(h′) 6= ∅ ⇒ u.expected(h′) = u.proper? (h′)

Proof: Let α be any finite timed execution of SRM-rech leading to u. The proof is by induction
on the length n ∈ N of α. For the base case, consider the finite timed execution α of length 0;
that is, α = u. Since u is a start state of SRM-rech, it is the case that u.min-seqno(h

′) =⊥,
u.delivered(h′) = ∅, u.expected(h′) = ∅, and u.proper? (h′) = ∅. Thus, the invariant assertion is
satisfied in u. For the inductive step, consider a timed execution α of length k + 1, for k ∈ N. Let
αk be the prefix of α containing the first k steps of α and uk = αk.lstate. For the step from uk to
u we consider only the actions that affect the variables min-seqno(h′), delivered(h′), expected(h′),
and proper? (h′).

❒ crashh: the crashh action sets delivered(h
′) and expected(h′) to ∅. Thus, the invariant assertion

is satisfied in u.

❒ rm-leaveh: if uk.status 6= crashed, then the action rm-leaveh reinitializes all the variables of
SRM-rech except the variable now and sets the variables delivered(h

′) and expected(h′) to ∅. It
follows that u.min-seqno(h′) =⊥, u.delivered(h′) = ∅, u.expected(h′) = ∅, and u.proper? (h′) = ∅.
Thus, the invariant assertion is satisfied in u.

Otherwise, if uk.status = crashed, then the action rm-leaveh does not affect the state of
SRM-rech. Thus, the induction hypothesis implies that the invariant assertion is satisfied in
u.

❒ rm-sendh(p), for p ∈ PRM-Client, such that source(p) = h′: letting 〈sp, ip〉 = id(p), we analyze
the effects of rm-recvh(p) by cases. First, if ¬(uk.status = member ∧ h = sp), then rm-sendh(p)
does not affect the state of SRM-rech. Thus, the induction hypothesis implies that the invariant
assertion holds in u.

Second, consider the case where uk.status = member ∧ h = sp. If p is the foremost packet to
be transmitted by sp; that is, uk.min-seqno(sp) =⊥, then rm-sendh(p) sets min-seqno(h

′) to ip,
sets expected(h′) to suffix (p), and adds id(p) to delivered(h′). The induction hypothesis and the
fact that uk.min-seqno(sp) =⊥ imply that uk.expected(sp) = ∅. Moreover, from the induction

47

hypothesis it is the case that uk.delivered(sp) ⊆ uk.expected(sp). Since uk.expected(sp) = ∅,
it follows that uk.delivered(sp) = ∅. Thus, from the effects of rm-sendh(p), it follows that
u.expected(sp) = suffix (p) and u.delivered(sp) = {id(p)}. Since id(p) ∈ suffix (p), it follows
that u.delivered(h′) ⊆ u.expected(h′). Moreover, since u.proper? (h′) = suffix (p), it follows that
u.expected(h′) = u.proper? (h′). Since u.min-seqno(sp) = ip, u.delivered(h

′) ⊆ u.expected(h′),
and u.expected(h′) = u.proper? (h′), it follows that the invariant assertion is satisfied in u.

If p is the next packet from sp, that is, uk.min-seqno(sp) 6=⊥ and ip = uk.max-seqno(sp) + 1,
then rm-sendh(p) does not affect min-seqno(h

′), sets max-seqno(h′) to ip, and adds id(p)
to delivered(h′); that is, u.min-seqno(sp) = uk.min-seqno(sp), u.max-seqno(sp) = ip, and
u.delivered(sp) = uk.delivered(sp) ∪ {id(p)}.

Since h = h′ ∧ uk.status 6= crashed, the induction hypothesis implies that uk.expected(h
′) =

uk.proper? (h
′). Since rm-sendh(p) affects neither min-seqno(h

′) nor expected(h′), it follows that
u.proper? (h′) = uk.proper? (h

′) and u.expected(h′) = uk.expected(h
′). Thus, it follows that

u.expected(h′) = u.proper? (h′), as needed.

From the induction hypothesis, it is the case that uk.delivered(h
′) ⊆ uk.expected(h

′).
Since ip = uk.max-seqno(sp) + 1 and u.max-seqno(sp) = ip, it is the case that
uk.max-seqno(sp) < u.max-seqno(sp). Thus, Invariant 5.2 implies that uk.min-seqno(sp) < ip.
Since uk.min-seqno(sp) < ip, it follows that id(p) ∈ uk.proper? (h

′). Since
uk.expected(h

′) = uk.proper? (h
′), it follows that id(p) ∈ uk.expected(h

′). Since
u.delivered(sp) = uk.delivered(sp) ∪ {id(p)}, uk.delivered(h

′) ⊆ uk.expected(h
′),

id(p) ∈ uk.expected(h
′), and u.expected(h′) = uk.expected(h

′), it follows that
u.delivered(h′) ⊆ u.expected(h′). Since u.min-seqno(sp) 6=⊥, u.delivered(h

′) ⊆ u.expected(h′),
and u.expected(h′) = u.proper? (h′), it follows that the invariant assertion is satisfied in u.

❒ rm-recvh(p), for p ∈ PRM-Client, such that source(p) = h′: letting 〈sp, ip〉 = id(p), we analyze
the effects of rm-recvh(p) by cases. First, consider the case where uk.expected(h

′) = ∅. From
the induction hypothesis, it is the case that uk.delivered(h

′) ⊆ uk.expected(h
′). Thus, it follows

that uk.delivered(h
′) = ∅. Since uk.expected(h

′) = ∅, rm-recvh(p) sets expected(h
′) to suffix (p)

and adds id(p) to delivered(h′); that is, u.expected(sp) = suffix (p) and u.delivered(sp) = {id(p)}.
Since id(p) ∈ suffix (p), it follows that u.delivered(h′) ⊆ u.expected(h′), as needed.

Since uk.delivered(h
′) = ∅, Invariant 5.3 implies that uk.archived-pkts? (h

′) =
uk.to-be-delivered? (h

′). From the precondition of rm-recvh(p), it follows that p is h’s foremost
packet from h′; that is, ip = uk.min-seqno(h

′). Since suffix (p) = {〈s, i〉 ∈ H×N | sp = s∧ip ≤ i},
it follows that u.proper? (h′) = suffix (p). Thus, it follows that u.expected(h′) = u.proper? (h′),
as needed.

Finally, since p ∈ uk.to-be-delivered , Invariant 5.5 implies that uk.min-seqno(sp) 6=⊥. Since
rm-recvh(p) does not affect min-seqno(sp), it follows that u.min-seqno(sp) 6=⊥. Since
u.min-seqno(sp) 6=⊥, u.delivered(h

′) ⊆ u.expected(h′), and u.expected(h′) = u.proper? (h′), it
follows that the invariant assertion is satisfied in u.

Second, consider the case where uk.expected(h
′) 6= ∅. In this case, rm-recvh(p) does not

affect min-seqno(sp), does not affect expected(h
′), and adds id(p) to delivered(h′); that is,

u.proper? (h′) = uk.proper? (h
′), u.expected(sp) = uk.expected(sp), and u.delivered(sp) =

uk.delivered(sp) ∪ {id(p)}. Since uk.expected(h
′) 6= ∅, the induction hypothesis implies that

uk.expected(h
′) = uk.proper? (h

′). Since u.proper? (h′) = uk.proper? (h
′), u.expected(sp) =

uk.expected(sp), it follows that u.expected(h
′) = u.proper? (h′), as needed.

Since p ∈ uk.to-be-delivered , Invariant 5.3 implies that id(p) ∈ uk.archived-pkts? (h
′). Thus,

Invariant 5.4 implies that id(p) ∈ uk.window? (h
′). By definition it follows that window? (h′) ⊆

proper? (h′). Thus, it is the case that id(p) ∈ uk.proper? (h
′) and, since u.proper? (h′) =

48

uk.proper? (h
′), id(p) ∈ u.proper? (h′). Thus, it follows that u.delivered(sp) ⊆ u.expected(sp),

as needed.

Finally, since p ∈ uk.to-be-delivered , Invariant 5.5 implies that uk.min-seqno(sp) 6=⊥. Since
rm-recvh(p) does not affect min-seqno(sp), it follows that u.min-seqno(sp) 6=⊥. Since it is
the case that u.min-seqno(sp) 6=⊥, u.delivered(h

′) ⊆ u.expected(h′), and u.expected(h′) =
u.proper? (h′), it follows that the invariant assertion is satisfied in u.

❒ process-mpkth(p), for p ∈ PSRM, such that source(p) = h′: letting 〈sp, ip〉 = id(p), we analyze
the effects of process-mpkth(p) by cases.

First, if type(p) = DATA, uk.status = member, h 6= sp, and uk.min-seqno(h
′) =⊥, then the action

process-mpkth(p) sets min-seqno(h
′) to ip and affects neither delivered(h

′) nor expected(h′).
Since uk.min-seqno(h

′) =⊥, the induction hypothesis implies that uk.expected(h
′) = ∅. More-

over, from the induction hypothesis, it is the case that uk.delivered(h
′) ⊆ uk.expected(h

′). Thus,
since uk.expected(h

′) = ∅, it follows that uk.delivered(h
′) = ∅. Since process-mpkth(p) affects

neither delivered(h′) nor expected(h′), it follows that u.delivered(h′) = ∅ and u.expected(h′) = ∅.
Thus, it follows that u.delivered(h′) ⊆ u.expected(h′), as needed. Since h 6= sp and sp = h′, it
follows that h 6= h′. Thus, since u.min-seqno(h′) 6=⊥, u.delivered(h′) ⊆ u.expected(h′), h 6= h′,
u.expected(h′) = ∅, it follows that the invariant assertion is satisfied in u.

Otherwise, process-mpkth(p) does not affect min-seqno(h
′), delivered(h′), and expected(h′).

Thus, the induction hypothesis implies that the invariant assertion holds in u.

Invariant 5.7 Let h ∈ H and u be any reachable state u of SRM-rech. For any p ∈ PSRM, such
that type(p) ∈ {DATA, REPL} and p ∈ u.msend-buff , it is the case that id(p) ∈ u.archived-pkts? .

Proof: Let α be any finite timed execution of SRM-rech leading to u. The proof is by induction
on the length n ∈ N of α. For the base case, consider the finite timed execution α of length 0; that
is, α = u. Since u is a start state of SRM-rech, it is the case that u.msend-buff = ∅. Thus, the
invariant assertion is trivially satisfied in u. For the inductive step, consider a timed execution α of
length k+1, for k ∈ N. Let αk be the prefix of α containing the first k steps of α and uk = αk.lstate.
For the step from uk to u we consider only the actions that affect the variables msend-buff and
archived-pkts.

❒ rm-leaveh: the action rm-leaveh initializes the variables msend-buff and archived-pkts. Thus,
the invariant assertion holds in u.

❒ rm-sendh(p), for p ∈ PRM-Client: the action rm-sendh(p) adds the packet comp-data-pkt(p) to
msend-buff if and only if it adds the element 〈p,now〉 to the variable archived-pkts. This fact
and the induction hypothesis imply that the invariant assertion holds in u.

❒ send-replh(s, i), for s ∈ H and i ∈ N: the action send-replh(s, i) adds the packet pkt =
comp-repl-pkt(h, p), for p ∈ PRM-Client, t ∈ R≥0, such that 〈p, t〉 ∈ archived-pkts, and id(p) =
〈s, i〉 to msend-buff . Since id(pkt) ∈ uk.archived-pkts? and the send-replh(s, i) action does
not affect the variable archived-pkts, it follows that id(pkt) ∈ u.archived-pkts? . The induction
hypothesis and the facts that pkt ∈ u.msend-buff and id(pkt) ∈ u.archived-pkts? imply that the
invariant assertion is satisfied in u.

❒ process-mpkth(p), for p ∈ PSRM, such that source(p) = h′: process-mpkth(p) does not
affect msend-buff and may only add the element id(p) to archived-pkts? . Thus, the induction
hypothesis implies that the invariant assertion holds in u.

49

Invariant 5.8 For h ∈ H, p ∈ PRM-Client, and any reachable state u of SRM-rech, if p ∈
u.to-be-delivered, then source(p) 6= h.

Proof: From the effects of the process-mpkth(p) action, for h ∈ H and p ∈ PSRM, it follows that
a packet p may be added to to-be-delivered only if source(p) 6= h.

Invariant 5.9 For h, h′ ∈ H and any reachable state u of SRM-rech, if u.expected(h
′) 6= ∅, then

u.to-be-delivered? (h′) ⊆ u.expected(h′).

Proof: Suppose that u.expected(h′) 6= ∅. Invariant 5.1 implies that u.status = member. Moreover,
Invariant 5.6 implies that u.expected(h′) = u.proper? (h′). From Invariant 5.4, it is the case that
u.archived-pkts? (h′) ⊆ u.window? (h′). Moreover, since u.status = member, Invariant 5.3 implies
that u.to-be-delivered? (h′) ⊆ u.window? (h′). Since by definition u.window? (h′) ⊆ u.proper? (h′), it
follows that u.to-be-delivered? (h′) ⊆ u.proper? (h′). Finally, since u.expected(h′) = u.proper? (h′),
it follows that u.to-be-delivered? (h′) ⊆ u.expected(h′).

Invariant 5.10 For h, h′ ∈ H and any reachable state u of SRM-rech, it is the case that
u.to-be-requested(h′) ⊆ u.window? (h′).

Proof: Let α be any finite timed execution of SRM-rech leading to u. The proof is by induction
on the length n ∈ N of α. For the base case, consider the finite timed execution α of length 0;
that is, α = u. Since u is a start state of SRM-rech, it follows that u.min-seqno(h

′) =⊥ and
u.to-be-requested(h′) = ∅. Thus, the invariant assertion is satisfied in u. For the inductive step,
consider a timed execution α of length k + 1, for k ∈ N. Let αk be the prefix of α containing the
first k steps of α and uk = αk.lstate. For the step from uk to u we consider only the actions that
affect the variables min-seqno(h′), max-seqno(h′), and to-be-requested(h′).

❒ rm-leaveh: if uk.status = crashed, then rm-leaveh does not affect the state of RM-Clienth.
Thus, the induction hypothesis implies that the invariant assertion is satisfied in u. Otherwise,
if uk.status 6= crashed, then rm-leaveh reinitializes all the variables of SRM-rech except the
variable now . It follows that u.min-seqno(h′) =⊥ and u.to-be-requested(h′) = ∅. Thus, the
invariant assertion holds in u.

❒ rm-sendh(p), for p ∈ PRM-Client, such that source(p) = h′: letting 〈sp, ip〉 = id(p), we analyze
the effects of rm-sendh(p) by cases. First, if ¬(uk.status = member ∧ h = sp), then rm-sendh(p)
does not affect the state of RM-Clienth. Thus, the induction hypothesis implies that the
invariant assertion is satisfied in u.

Second, consider the case where uk.status = member ∧ h = sp. If uk.min-seqno(h
′) =⊥,

then rm-sendh(p) sets min-seqno(h
′) and max-seqno(h′) to ip. Since uk.min-seqno(h

′) =⊥,
it follows that uk.window? (h

′) = ∅. Thus, the induction hypothesis implies that
uk.to-be-requested(h

′) = ∅. Since rm-sendh(p) does not affect the variable to-be-requested , it
follows that u.to-be-requested(h′) = ∅. Thus, the invariant assertion holds in u.

Otherwise, if uk.min-seqno(h
′) 6=⊥, then rm-sendh(p) may only increase the value of the vari-

able max-seqno(h′) and does not affect the variable to-be-requested ; that is, uk.window? (h
′) ⊆

u.window? (h′) and u.to-be-requested(h′) = uk.to-be-requested(h
′). Thus, the induction hypothe-

sis implies that the invariant assertion holds in u.

❒ rep-seqnoh(s, i), for s ∈ H, s 6= h and i ∈ N, such that s = h′: first, if ¬(uk.status =
member∧ uk.min-seqno(s) 6=⊥ ∧uk.max-seqno(s) < i), then rep-seqnoh(s, i) does not affect the

50

state of SRM-rech. Thus, the induction hypothesis implies that the invariant assertion holds
in u.

Otherwise, if uk.status = member, uk.min-seqno(s) 6=⊥, and uk.max-seqno(s) < i, then the
action rep-seqnoh(s, i) adds {〈s, i

′〉 | i′ ∈ N, uk.max-seqno(s) < i′ ≤ i} to to-be-requested
and sets max-seqno(s) to i. Invariant 5.2 and the fact that uk.max-seqno(s) < i imply that
uk.min-seqno(s) < i. Since rep-seqnoh(s, i) does not affect the variable min-seqno(s), it follows
that u.min-seqno(s) < i. Thus, since u.min-seqno(s) < i and u.max-seqno(s) = i, it follows
that {〈s, i′〉 | i′ ∈ N, uk.max-seqno(s) < i′ ≤ i} ⊆ u.window(h′). This fact and the induction
hypothesis imply that u.to-be-requested(h′) ⊆ u.window? (h′).

❒ schdl-rqsth(s, i), for s ∈ H and i ∈ N, such that s = h′: the action schdl-rqsth(s, i)
removes the element 〈s, i〉 from the set uk.to-be-requested and does not affect min-seqno(h

′)
and max-seqno(h′). Thus, the induction hypothesis implies that the invariant assertion holds in
u.

❒ process-mpkth(p), for p ∈ PSRM, such that type(p) = DATA and source(p) = h′: letting
〈sp, ip〉 = id(p), we analyze the effects of the process-mpkth(p) action by cases. First, if
uk.status 6= member, then process-mpkth(p) does not affect the state of SRM-rech. Thus, the
induction hypothesis implies that the invariant assertion holds in u.

Second, consider the case where uk.status = member. If h 6= sp and uk.min-seqno(sp) =⊥, then
process-mpkth(p) sets the variables min-seqno(h

′) and max-seqno(h′) to ip and does not affect
the variable to-be-requested . Since uk.min-seqno(h

′) =⊥, it follows that uk.window? (h
′) = ∅.

Thus, the induction hypothesis implies that uk.to-be-requested(h
′) = ∅. Since process-mpkth(p)

does not affect the variable to-be-requested , it follows that u.to-be-requested(h′) = ∅. Thus, the
invariant assertion holds in u.

If uk.min-seqno(sp) 6=⊥, uk.min-seqno(sp) ≤ ip, h 6= sp, and uk.max-seqno(sp) < ip, then the
action process-mpkth(p) adds {〈sp, i〉 | i ∈ N, uk.max-seqno(sp) < i < ip} to to-be-requested
and sets max-seqno(h′) to ip. Since uk.min-seqno(h

′) ≤ ip and process-mpkth(p) does not affect
the variable min-seqno(h′), it follows that u.min-seqno(h′) ≤ ip. Since u.min-seqno(h

′) ≤ i and
u.max-seqno(h′) = i, it follows that {〈sp, i〉 | i ∈ N, uk.max-seqno(sp) < i < ip} ⊆ u.window(h′).
This fact and the induction hypothesis imply that u.to-be-requested(h′) ⊆ u.window? (h′).

Otherwise, process-mpkth(p) does not affect the variables min-seqno(h
′), max-seqno(h′), and

to-be-requested(h′). Thus, the induction hypothesis implies that the invariant assertion holds in
u.

❒ process-mpkth(p), for p ∈ PSRM, such that type(p) ∈ {REPL, RQST} and source(p) = h′: letting
〈sp, ip〉 = id(p), we analyze the effects of the process-mpkth(p) action by cases. First, if
uk.status 6= member, then process-mpkth(p) does not affect the state of SRM-rech. Thus, the
induction hypothesis implies that the invariant assertion holds in u.

Second, consider the case where uk.status = member. If it is the case that uk.min-seqno(sp) 6=⊥,
uk.min-seqno(sp) ≤ ip, h 6= sp, and uk.max-seqno(sp) < ip, then the action process-mpkth(p)
adds {〈sp, i〉 | i ∈ N, uk.max-seqno(sp) < i < ip} to to-be-requested and sets max-seqno(h

′) to ip.
Since uk.min-seqno(h

′) ≤ ip and process-mpkth(p) does not affect the variable min-seqno(h
′),

it follows that u.min-seqno(h′) ≤ ip. Thus, since u.min-seqno(h
′) ≤ i and u.max-seqno(h′) = i,

it follows that {〈sp, i〉 | i ∈ N, uk.max-seqno(sp) < i < ip} ⊆ u.window(h′). This fact and the
induction hypothesis imply that u.to-be-requested(h′) ⊆ u.window? (h′).

Otherwise, process-mpkth(p) does not affect the variables min-seqno(h
′), max-seqno(h′), and

to-be-requested(h′). Thus, the induction hypothesis implies that the invariant assertion holds in
u.

51

Invariant 5.11 For h, h′ ∈ H and any reachable state u of SRM-rech, it is the case that
u.scheduled-rqsts? (h′) ⊆ u.window? (h′).

Proof: Let α be any finite timed execution of SRM-rech leading to u. The proof is by induction
on the length n ∈ N of α. For the base case, consider the finite timed execution α of length 0;
that is, α = u. Since u is a start state of SRM-rech, it follows that u.min-seqno(h

′) =⊥ and
u.scheduled-rqsts? (h′) = ∅. Thus, the invariant assertion is satisfied in u. For the inductive step,
consider a timed execution α of length k + 1, for k ∈ N. Let αk be the prefix of α containing the
first k steps of α and uk = αk.lstate. For the step from uk to u we consider only the actions that
affect the variables min-seqno(h′), max-seqno(h′), and scheduled-rqsts? (h′).

❒ rm-leaveh: if uk.status = crashed, then rm-leaveh does not affect the state of RM-Clienth.
Thus, the induction hypothesis implies that the invariant assertion is satisfied in u. Otherwise,
if uk.status 6= crashed, then rm-leaveh reinitializes all the variables of SRM-rech except the
variable now . It follows that u.min-seqno(h′) =⊥ and u.scheduled-rqsts? (h′) = ∅. Thus, the
invariant assertion is satisfied in u.

❒ rm-sendh(p), for p ∈ PRM-Client, such that source(p) = h′: letting 〈sp, ip〉 = id(p), we analyze
the effects of rm-sendh(p) by cases. First, if ¬(uk.status = member ∧ h = sp), then rm-sendh(p)
does not affect the state of RM-Clienth. Thus, the induction hypothesis implies that the
invariant assertion is satisfied in u.

Second, consider the case where uk.status = member ∧ h = sp. If uk.min-seqno(h
′) =⊥,

then rm-sendh(p) sets min-seqno(h
′) and max-seqno(h′) to ip. Since uk.min-seqno(h

′) =⊥,
it follows that uk.window? (h

′) = ∅. Thus, the induction hypothesis implies that
uk.scheduled-rqsts? (h

′) = ∅. Since rm-sendh(p) does not affect the variable scheduled-rqsts, it
follows that u.scheduled-rqsts? (h′) = ∅. Thus, the invariant assertion holds in u.

Otherwise, if uk.min-seqno(h
′) 6=⊥, then rm-sendh(p) may only increase the value of the vari-

able max-seqno(h′) and does not affect the variable scheduled-rqsts; that is, uk.window? (h
′) ⊆

u.window? (h′) and u.scheduled-rqsts(h′) = uk.scheduled-rqsts(h
′). Thus, the induction hypothe-

sis implies that the invariant assertion holds in u.

❒ rep-seqnoh(s, i), for s ∈ H, s 6= h and i ∈ N, such that s = h′: first, if ¬(uk.status =
member∧ uk.min-seqno(s) 6=⊥ ∧uk.max-seqno(s) < i), then rep-seqnoh(s, i) does not affect the
state of SRM-rech. Thus, the induction hypothesis implies that the invariant assertion holds
in u.

Otherwise, if uk.status = member, uk.min-seqno(s) 6=⊥, and uk.max-seqno(s) < i, then the ac-
tion rep-seqnoh(s, i) setsmax-seqno(h

′) to i. Since uk.max-seqno(h
′) < i and u.max-seqno(h′) =

i, it follows that uk.max-seqno(h
′) < u.max-seqno(h′). The induction hypothesis and the fact

that uk.max-seqno(h
′) < u.max-seqno(h′) imply that the invariant assertion holds in u.

❒ schdl-rqsth(s, i), for s ∈ H and i ∈ N, such that s = h′: schdl-rqsth(s, i) adds the
tuple 〈s, i〉 to scheduled-rqsts? (h′). From the precondition of schdl-rqsth(s, i), it follows
that 〈s, i〉 ∈ uk.to-be-requested(h

′). Thus, Invariant 5.10 implies that 〈s, i〉 ∈ uk.window? (h
′).

Since schdl-rqsth(s, i) does not affect the variables min-seqno(h
′) and max-seqno(h′), it

follows that u.window? (h′) = uk.window? (h
′). From the induction hypothesis, it is the case

that uk.scheduled-rqsts? (h
′) ⊆ uk.window? (h

′). Since u.window? (h′) = uk.window? (h
′) and

u.scheduled-rqsts? (h′) = uk.scheduled-rqsts? (h
′) ∪ 〈s, i〉, it follows that the invariant assertion

hold in u.

❒ send-rqsth(s, i), for s ∈ H and i ∈ N, such that s = h′: from the precondition of the action
send-rqsth(s, i), it is the case that 〈s, i〉 ∈ uk.scheduled-rqsts? (h

′). Since send-rqsth(s, i)
simply backs-off the request scheduled for 〈s, i〉, it does not affect min-seqno(h′), max-seqno(h′),

52

and scheduled-rqsts? (h′). Thus, the induction hypothesis implies that the invariant assertion
holds in u.

❒ process-mpkth(p), for p ∈ PSRM, such that type(p) = DATA and source(p) = h′: letting
〈sp, ip〉 = id(p), we analyze the effects of the process-mpkth(p) action by cases. First, if
uk.status 6= member, then process-mpkth(p) does not affect the state of SRM-rech. Thus, the
induction hypothesis implies that the invariant assertion is satisfied in u.

Second, consider the case where uk.status = member. If p is neither the foremost nor a
proper packet from sp, then process-mpkth(p) affects neither of the variables min-seqno(h

′),
max-seqno(h′), and scheduled-rqsts? (h′). Thus, the induction hypothesis implies that the
invariant assertion holds in u.

If p is the foremost packet from sp, then process-mpkth(p) sets the variables min-seqno(h
′) and

max-seqno(h′) to ip. From the induction hypothesis, it follows that uk.scheduled-rqsts? (h
′) = ∅.

Since process-mpkth(p) may only remove elements from scheduled-rqsts? (h
′), it follows that

u.scheduled-rqsts? (h′) = ∅. Thus, the invariant assertion holds in u.

Finally, if uk.min-seqno(sp) 6=⊥, then process-mpkth(p) may only remove elements from the
set scheduled-rqsts? (h′) and increase the value of max-seqno(h′). Thus, the induction hypothesis
implies that the invariant assertion holds in u.

❒ process-mpkth(p), for p ∈ PSRM, such that type(p) = REPL and source(p) = h′: letting
〈sp, ip〉 = id(p), we analyze the effects of the process-mpkth(p) action by cases. First, if
uk.status 6= member, then process-mpkth(p) does not affect the state of SRM-rech. Thus, the
induction hypothesis implies that the invariant assertion is satisfied in u.

Second, consider the case where uk.status = member. If p is not a proper packet, then the action
process-mpkth(p) does not affect the state of SRM-rech. Thus, the induction hypothesis
implies that the invariant assertion holds in u.

If p is a proper packet, then process-mpkth(p) may only remove elements from the variable
scheduled-rqsts? (h′) and increase the value of max-seqno(h′). Thus, the induction hypothesis
implies that the invariant assertion holds in u.

❒ process-mpkth(p), for p ∈ PSRM, such that type(p) = RQST and source(p) = h′: letting
〈sp, ip〉 = id(p), we analyze the effects of the process-mpkth(p) action by cases. First, if
uk.status 6= member, then process-mpkth(p) does not affect the state of SRM-rech. Thus, the
induction hypothesis implies that the invariant assertion is satisfied in u.

Second, consider the case where uk.status = member. If p does not pertain to a proper packet,
then the action process-mpkth(p) does not affect the state of SRM-rech. Thus, in this case,
the induction hypothesis implies that the invariant assertion holds in u.

If p pertains to a proper packet and h is not the source of p, then process-mpkth(p) may add the
tuple id(p) to scheduled-rqsts? (h′) and ensures that ip ≤ u.max-seqno(h′). Thus, the induction
hypothesis implies that the invariant assertion holds in u.

Invariant 5.12 For h, h′ ∈ H and any reachable state u of SRM-rech, it is the case that
u.to-be-requested(h′) ∩ u.archived-pkts? (h′) = ∅.

Proof: Let α be any finite timed execution of SRM-rech leading to u. The proof is by induction
on the length n ∈ N of α. For the base case, consider the finite timed execution α of length 0;
that is, α = u. Since u is a start state of SRM-rech, it follows that u.to-be-requested(h

′) = ∅ and
u.archived-pkts? (h′) = ∅. Thus, the invariant assertion is satisfied in u. For the inductive step,

53

consider a timed execution α of length k + 1, for k ∈ N. Let αk be the prefix of α containing the
first k steps of α and uk = αk.lstate. For the step from uk to u we consider only the actions that
affect the variables to-be-requested(h′) and archived-pkts? (h′).

❒ rm-leaveh: if uk.status = crashed, then rm-leaveh does not affect the state of RM-Clienth.
Thus, the induction hypothesis implies that the invariant assertion is satisfied in u. Otherwise,
if uk.status 6= crashed, then rm-leaveh reinitializes all the variables of SRM-rech except the
variable now . It follows that u.to-be-requested(h′) = ∅ and u.archived-pkts? (h′) = ∅. Thus, the
invariant assertion holds in u.

❒ rm-sendh(p), for p ∈ PRM-Client, such that source(p) = h′: letting 〈sp, ip〉 = id(p), we analyze
the effects of rm-sendh(p) by cases. First, if ¬(uk.status = member ∧ h = sp), then rm-sendh(p)
does not affect the state of RM-Clienth. Thus, the induction hypothesis implies that the
invariant assertion is satisfied in u.

Second, consider the case where uk.status = member ∧ h = sp. If p is the foremost packet to be
transmitted by h′, that is, uk.min-seqno(h

′) =⊥, then it follows that uk.window? (h
′) = ∅. Thus,

Invariants 5.4 and 5.10 imply that uk.archived-pkts? (h
′) = ∅ and uk.to-be-requested(h

′) = ∅.
If p is the next packet from h′, that is, uk.min-seqno(h

′) 6=⊥ and ip = uk.max-seqno(h
′) + 1,

then it is the case that id(p) 6∈ uk.window? (h
′). Thus, Invariants 5.4 and 5.10 imply that

id(p) 6∈ uk.archived-pkts? (h
′) and id(p) 6∈ uk.to-be-requested(h

′).

In either case the rm-sendh(p) adds id(p) to the variable archived-pkts? (h
′) and does not

affect to-be-requested(h′). It follows that u.to-be-requested(h′) = uk.to-be-requested(h
′) and

u.archived-pkts? (h′) = uk.archived-pkts? (h
′) ∪ id(p). From the induction hypothesis, it is

the case that uk.to-be-requested(h
′) ∩ uk.archived-pkts? (h

′) = ∅. Since it is the case that
id(p) 6∈ uk.to-be-requested(h

′), it follows that u.to-be-requested(h′) ∩ u.archived-pkts? (h′) = ∅.

❒ rep-seqnoh(s, i), for s ∈ H, s 6= h and i ∈ N, such that s = h′: first, if ¬(uk.status =
member ∧ uk.min-seqno(s) 6=⊥ ∧uk.max-seqno(s) < i), then rep-seqnoh(s, i) does not affect
the state of SRM-rech. Thus, the induction hypothesis implies that the invariant assertion
holds in u.

Otherwise, if uk.status = member, uk.min-seqno(s) 6=⊥, and uk.max-seqno(s) < i, then the ac-
tion rep-seqnoh(s, i) adds {〈s, i

′〉 | i′ ∈ N, uk.max-seqno(s) < i′ ≤ i} to to-be-requested(h′) and
does not affect archived-pkts? (h′). From Invariant 5.4, it is the case that uk.archived-pkts? (h

′) ⊆
uk.window? (h

′). Thus, it follows that uk.archived-pkts? (h
′)∩{〈s, i′〉 | i′ ∈ N, uk.max-seqno(s) <

i′ ≤ i} = ∅. From the induction hypothesis, it is the case that uk.to-be-requested(h
′) ∩

uk.archived-pkts? (h
′) = ∅. Thus, it follows that u.to-be-requested(h′)∩ u.archived-pkts? (h′) = ∅,

as needed.

❒ schdl-rqsth(s, i), for s ∈ H, i ∈ N, such that s = h′: the schdl-rqsth(s, i) action removes the
element 〈s, i〉 from to-be-requested(h′) and does not affect archived-pkts? (h′). From the induction
hypothesis, it is the case that uk.to-be-requested(h

′) ∩ u.archived-pkts? (h′) = ∅. Thus, it follows
that u.to-be-requested(h′) ∩ u.archived-pkts? (h′) = ∅, as needed.

❒ process-mpkth(p), for p ∈ PSRM, such that type(p) ∈ {DATA, REPL, RQST}, 〈sp, ip〉 = id(p),
and sp = h′: the action process-mpkth(p) adds {〈sp, i

′〉 | i′ ∈ N, uk.max-seqno(sp) <
i′ < i} to to-be-requested(h′) only if h 6= sp and uk.max-seqno(sp) < i. Moreover, the
action process-mpkth(p) removes 〈sp, ip〉 from to-be-requested(h′) whenever it adds it to
archived-pkts? (h′).

Invariant 5.4 implies that uk.archived-pkts? ∩ {〈sp, i
′〉 | i′ ∈ N, uk.max-seqno(sp) < i′ < i} = ∅.

From the induction hypothesis, it is the case that uk.to-be-requested(h
′)∩u.archived-pkts? (h′) =

∅. Thus, it follows that the invariant assertion holds in u.

54

Invariant 5.13 For h, h′ ∈ H and any reachable state u of SRM-rech, it is the case that
u.scheduled-rqsts? (h′) ∩ u.archived-pkts? (h′) = ∅.

Proof: Let α be any finite timed execution of SRM-rech leading to u. The proof is by induction
on the length n ∈ N of α. For the base case, consider the finite timed execution α of length 0;
that is, α = u. Since u is a start state of SRM-rech, it follows that u.scheduled-rqsts? (h

′) = ∅
and u.archived-pkts? (h′) = ∅. Thus, the invariant assertion is satisfied in u. For the inductive step,
consider a timed execution α of length k + 1, for k ∈ N. Let αk be the prefix of α containing the
first k steps of α and uk = αk.lstate. For the step from uk to u we consider only the actions that
affect the variables scheduled-rqsts? (h′) and archived-pkts? (h′).

❒ rm-leaveh: if uk.status = crashed, then rm-leaveh does not affect the state of RM-Clienth.
Thus, the induction hypothesis implies that the invariant assertion is satisfied in u. Otherwise,
if uk.status 6= crashed, then rm-leaveh reinitializes all the variables of SRM-rech except the
variable now . It follows that u.scheduled-rqsts? (h′) = ∅ and u.archived-pkts? (h′) = ∅. Thus, the
invariant assertion holds in u.

❒ rm-sendh(p), for p ∈ PRM-Client, such that source(p) = h′: letting 〈sp, ip〉 = id(p), we analyze
the effects of rm-sendh(p) by cases. First, if ¬(uk.status = member ∧ h = sp), then rm-sendh(p)
does not affect the state of RM-Clienth. Thus, the induction hypothesis implies that the
invariant assertion is satisfied in u.

Second, consider the case where uk.status = member ∧ h = sp. If p is the foremost packet to be
transmitted by h′, that is, uk.min-seqno(h

′) =⊥, then it follows that uk.window? (h
′) = ∅. Thus,

Invariants 5.4 and 5.11 imply that uk.scheduled-rqsts? (h
′) = ∅ and uk.archived-pkts? (h

′) = ∅.
If p is the next packet from h′, that is, uk.min-seqno(sp) 6=⊥ and ip = uk.max-seqno(sp) + 1,
then it is the case that id(p) 6∈ uk.window? (h

′). Thus, Invariants 5.4 and 5.11 imply that
id(p) 6∈ uk.scheduled-rqsts? (h

′) and id(p) 6∈ uk.archived-pkts? (h
′).

In either case the rm-sendh(p) adds id(p) to the variable archived-pkts? (h
′) and does not

affect scheduled-rqsts? (h′). It follows that u.scheduled-rqsts? (h′) = uk.scheduled-rqsts? (h
′) and

u.archived-pkts? (h′) = uk.archived-pkts? (h
′) ∪ id(p). From the induction hypothesis, it is

the case that uk.scheduled-rqsts? (h
′) ∩ uk.archived-pkts? (h

′) = ∅. Since it is the case that
id(p) 6∈ uk.scheduled-rqsts? (h

′), it follows that u.scheduled-rqsts? (h′)∩ u.archived-pkts? (h′) = ∅,
as needed.

❒ schdl-rqsth(s, i), for s ∈ H, i ∈ N, such that s = h′: the schdl-rqsth(s, i) action schedules
a request for 〈s, i〉 and does not affect archived-pkts? (h′); that is, u.scheduled-rqsts? (h′) =
uk.scheduled-rqsts? (h

′) ∪ 〈s, i〉 and u.archived-pkts? (h′) = uk.archived-pkts? (h
′).

From the precondition of schdl-rqsth(s, i), it follows that 〈s, i〉 ∈ uk.to-be-requested(h
′).

From Invariant 5.12, it follows that 〈s, i〉 6∈ uk.archived-pkts? (h
′). Since it is the case that

u.archived-pkts? = uk.archived-pkts? , it follows that 〈s, i〉 6∈ u.archived-pkts? (h′). From the
induction hypothesis, it is the case that uk.scheduled-rqsts? (h

′) ∩ uk.archived-pkts? (h
′) = ∅.

Thus, it follows that u.scheduled-rqsts? (h′) ∩ u.archived-pkts? (h′) = ∅, as needed.

❒ send-rqsth(s, i), for s ∈ H, i ∈ N, such that s = h′: from the precondition of send-rqsth(s, i),
it is the case that 〈s, i〉 ∈ uk.scheduled-rqsts? (h

′). Since send-rqsth(s, i) simply backs-off
the request scheduled for 〈s, i〉, it follows that u.scheduled-rqsts? (h′) = uk.scheduled-rqsts? (h

′).
Moreover, send-rqsth(s, i) does not affect the variable archived-pkts? (h

′). Thus, it follows that
u.archived-pkts? (h′) = uk.archived-pkts? (h

′). Thus, the induction hypothesis implies that the
invariant assertion holds in u.

❒ process-mpkth(p), for p ∈ PSRM, such that type(p) ∈ {DATA, REPL} and source(p) = h′: in
this case, if the process-mpkth(p) action archives the packet strip(p), then it also cancels any

55

requests scheduled for id(p). Thus, the induction hypothesis implies that the invariant assertion
holds in u.

❒ process-mpkth(p), for p ∈ PSRM, such that type(p) = RQST and source(p) = h′: in this
case, the process-mpkth(p) action schedules a request for id(p) only if h 6= sp and id(p) 6∈
uk.archived-pkts? (h

′). Thus, the induction hypothesis implies that the invariant assertion holds
in u.

Invariant 5.14 Let u be any reachable state of SRM-rech. For s ∈ H, i ∈ N, t, t′ ∈ R≥0, and
k ∈ N+, if 〈s, i, t〉 ∈ pending-rqsts and 〈s, i, t′, k〉 ∈ scheduled-rqsts, then t < t′.

Proof: From Assumption 5.1, it is the case that C3 < C1. Thus, the expiration time of the
back-off abstinence period precedes the transmission time of the respective request.

Invariant 5.15 Let u be any reachable state of SRM-rech. For h, s ∈ H and i ∈ N, if
the action send-rqsth(s, i) is enabled in u, i.e., u.Pre(send-rqsth(s, i)) = True, then 〈s, i〉 6∈
u.pending-rqsts? .

Proof: Suppose that u.Pre(send-rqsth(s, i)) = True. From the precondition of the action
send-rqsth(s, i), it follows that there exists k ∈ N+ such that 〈s, i, t′, k〉 ∈ scheduled-rqsts, for t′ =
u.now . Invariant 5.14 implies that there does not exist t ∈ R≥0 such that 〈s, i, t〉 ∈ pending-rqsts
and t′ ≤ t. Since t′ = u.now , it follows that 〈s, i〉 6∈ u.pending-rqsts? .

We proceed by presenting several lemmas pertaining to the RMI automaton.

Lemma 5.2 Let p ∈ PRM-Client, α be any finite timed execution fragment of RMI , and u, u′ ∈
states(RMI), such that u = α.fstate and u′ = α.lstate. If p ∈ u[SRM].sent-pkts, then it is the case
that p ∈ u′[SRM].sent-pkts.

Proof: Follows directly from the fact that the variable trans-time(p) may only be set by the
automaton RMI to a value other than ⊥. In particular, the variable trans-time(p) may only be set
by the action rm-sendh(p), for h = source(p), to the value of the variable now of the automaton
SRM-rech.

Lemma 5.3 Let s, h ∈ H, i ∈ N, and u ∈ states(RMI) be any reachable state of RMI , such that
〈s, i〉 ∈ u[SRM-rech].archived-pkts? . Moreover, let α be any timed execution fragment of RMI

that starts in u, does not contain a rm-leaveh action, and ends in some u
′ ∈ states(RMI). Then,

it is the case that 〈s, i〉 ∈ u′[SRM-rech].archived-pkts? .

Proof: Follows from a simple induction on the length of α. The key point of the induction is
that none of the actions of SRM-rech, except the action rm-leaveh which is not contained in α,
remove elements from or initialize the set SRM-rech.archived-pkts? .

Lemma 5.4 Let s, h ∈ H, i ∈ N, and u ∈ states(RMI) be any reachable state of RMI , such that
〈s, i〉 ∈ u[SRM-rech].scheduled-rqsts? . Moreover, let α be any timed execution fragment of RMI

that starts in u, does not contain a rm-leaveh action, and ends in some u
′ ∈ states(RMI). Then,

either 〈s, i〉 ∈ u′[SRM-rech].scheduled-rqsts? or 〈s, i〉 ∈ u′[SRM-rech].archived-pkts? .

56

Proof: Follows from a simple induction on the length of α. The key points of the induction
are that: i) whenever the elements of SRM-rech.scheduled-rqsts pertaining to 〈s, i〉 are removed
from SRM-rech.scheduled-rqsts then either another element pertaining to 〈s, i〉 is added to
SRM-rech.scheduled-rqsts or 〈s, i〉 ∈ SRM-rech.archived-pkts? , and ii) from Lemma 5.3, none
of the actions of SRM-rech, except the action rm-leaveh which is not contained in α, remove
elements from the set SRM-rech.archived-pkts? .

Lemma 5.5 Let s, h ∈ H, i ∈ N, t ∈ R≥0, k ∈ N+, and u ∈ states(RMI) be any reachable state of
RMI , such that u[SRM-rech].status = member and 〈s, i, t, k〉 ∈ u[SRM-rech].scheduled-rqsts.
Moreover, let α be any timed execution fragment of RMI that starts in u, contains neither
crashh nor rm-leaveh actions, and ends in some u

′ ∈ states(RMI), such that t < u′.now and
〈s, i, t′, k′〉 ∈ u′[SRM-rech].scheduled-rqsts, for t

′ ∈ R≥0 and k′ ∈ N+. Then, it is the case that
k < k′.

Proof: Invariant 5.13 and Lemma 5.4 imply that in any state u′′ in α it is the case that
〈s, i〉 ∈ u′′[SRM-rech].scheduled-rqsts? . However, since 〈s, i, t, k〉 ∈ u[SRM-rech].scheduled-rqsts,
t < u′.now and time is not allowed to progress past the scheduled transmission time of any request,
it follows that the request for 〈s, i〉 is rescheduled for transmission in α for a point in time no
earlier than u′.now . The only actions that may reschedule the request for 〈s, i〉 are the actions
send-rqsth(s, i) and process-mpkth(p), for p ∈ PSRM, such that id(p) = 〈s, i〉 and type(p) = RQST.
Whenever either of these actions reschedule the request for 〈s, i〉, they increment the element of
the tuple corresponding to the round count.

Lemma 5.6 The occurrence of an action send-rqsth(s, i), for h, s ∈ H, and i ∈ N, in any
admissible timed execution α of RMI is instantaneously succeeded in α by the occurrence of either
a crashh, rm-leaveh, or rec-msendh(p) action, where p ∈ PSRM is a retransmission request for
the packet 〈s, i〉.

Proof: The send-rqsth(s, i) action adds a RQST packet for 〈s, i〉 to the variable
SRM-rech.msend-buff . Moreover, SRM-rech prevents time from elapsing while it is
the case that SRM-rech.status 6= crashed ∧ SRM-rech.msend-buff 6= ∅.

Lemma 5.7 The occurrence of an action send-replh(s, i), for h, s ∈ H and i ∈ N, in any
admissible timed execution α of RMI is instantaneously succeeded in α by the occurrence of either
a crashh, rm-leaveh, or rec-msendh(p) action, where p ∈ PSRM is a retransmission of (reply for)
the packet 〈s, i〉.

Proof: The send-replh(s, i) action adds a REPL packet for 〈s, i〉 to the variable
SRM-rech.msend-buff . Moreover, SRM-rech prevents time from elapsing while it is
the case that SRM-rech.status 6= crashed ∧ SRM-rech.msend-buff 6= ∅.

Lemma 5.8 The occurrence of an action rec-msendh(p), for h ∈ H and p ∈ PSRM, in any
admissible timed execution α of RMI is instantaneously succeeded in α by the occurrence of either
a crashh, rm-leaveh, or msendh(pkt) action, for pkt ∈ PIPmcast-Client, such that strip(pkt) = p.

Proof: The rec-msendh(p) action adds an element to the variable SRM-IPbuffh.msend-buff .
Moreover, SRM-IPbuffh prevents time from elapsing while SRM-IPbuffh.status 6= crashed ∧
SRM-IPbuffh.msend-buff 6= ∅.

57

Lemma 5.9 The occurrence of an action mrecvh(pkt), for h ∈ H and pkt ∈ PSRM, in a state
u ∈ states(RMI) in any admissible timed execution α of RMI , such that u[SRM-memh].status =
member, is instantaneously succeeded in α by the occurrence of either a crashh, rm-leaveh, or
process-mpkth(p) action, for p ∈ PSRM, such that p = strip(pkt).

Proof: Since u[SRM-memh].status = member, the particular occurrence of the mrecvh(pkt)
action adds an element pertaining to pkt to the variable SRM-IPbuffh.mrecv-buff . More-
over, SRM-IPbuffh prevents time from elapsing while SRM-IPbuffh.status 6= crashed ∧
SRM-IPbuffh.mrecv-buff 6= ∅.

Lemma 5.10 Let α be any admissible execution of RMI containing the discrete transition
(u, π, u′), for u, u′ ∈ states(RMI), h ∈ H, p ∈ PRM-Client, 〈sp, ip〉 = id(p), and π = rm-sendh(p).
If it is the case that either u[SRM-rech].min-seqno(sp) =⊥ or u[SRM-rech].min-seqno(sp) 6=⊥
∧ip = u[SRM-rech].max-seqno(sp) + 1, then the discrete transition (u, π, u

′) is instantaneously
succeeded in α by the occurrence of either a crashh, rm-leaveh, or rec-msendh(p

′) action, for
p′ = comp-data-pkt(p).

Proof: Suppose that either u[SRM-rech].min-seqno(sp) =⊥ or u[SRM-rech].min-seqno(sp) 6=⊥
and ip = u[SRM-rech].max-seqno(sp) + 1. Then, the discrete transition (u, π, u′) adds the
element p′ to SRM-rech.msend-buff . Moreover, SRM-rech prevents time from elapsing while
SRM-rech.status 6= crashed ∧ SRM-rech.msend-buff 6= ∅.

We now present some invariants pertaining to the RMI automaton.

Invariant 5.16 For h ∈ H and any reachable state u of RMI , it is the case that:

1. u[RM-Clienth].status = idle⇔ u[SRM-memh].status = idle,

2. u[RM-Clienth].status = member⇔ u[SRM-memh].status = member,

3. u[RM-Clienth].status = crashed⇔ u[SRM-memh].status = crashed,

4. u[RM-Clienth].status = joining⇔ u[SRM-memh].status ∈ Joining, and

5. u[RM-Clienth].status = leaving⇔ u[SRM-memh].status ∈ Leaving.

Proof: Let α be any finite timed execution of RMI leading to u. The proof is by induction on
the length n ∈ N of α. For the base case, consider the finite timed execution α of length 0; that
is, α = u. Since u is a start state of RMI , it is the case that u[RM-Clienth].status = idle and
u[SRM-memh].status = idle. Thus, the invariant assertion is satisfied in u. For the inductive
step, consider a timed execution α of length k + 1, for k ∈ N. Let αk be the prefix of α containing
the first k steps of α and uk = αk.lstate. For the step from uk to u we consider only the actions
that affect the variables RM-Clienth.status and SRM-memh.status.

❒ crashh: the action crashh sets both variables RM-Clienth.status and SRM-memh.status to
the value crashed. Thus, the invariant assertion holds in u.

❒ rm-joinh: from the precondition of the rm-joinh action, it follows that
uk[RM-Clienth].status = idle. From the induction hypothesis it follows that
uk[SRM-memh].status = idle. Thus, the action rm-joinh sets RM-Clienth.status to joining
and SRM-memh.status to join-rqst-pending; that is, u[RM-Clienth].status = joining and
u[SRM-memh].status ∈ Joining . It follows that the invariant assertion holds in u.

58

❒ mjoinh: from the precondition of the mjoinh action, it follows that uk[SRM-memh].status ∈
Joining . From the induction hypothesis it follows that uk[RM-Clienth].status = joining.
The action mjoinh sets the variable SRM-memh.status to join-pending and does not affect
the variable RM-Clienth.status. Thus, it is the case that u[SRM-memh].status ∈ Joining and
u[RM-Clienth].status = joining. It follows that the invariant assertion holds in u.

❒ mjoin-ackh: we first consider the case where uk[SRM-memh].status 6∈ Joining . In this case,
mjoin-ackh affects neither RM-Clienth.status nor SRM-memh.status. Thus, the induction
hypothesis implies the invariant assertion in u.

Second, we consider the case where uk[SRM-memh].status ∈ Joining . In this case,
mjoin-ackh sets the variable SRM-memh.status to join-ack-pending and does not affect
RM-Clienth.status. Since uk[SRM-memh].status ∈ Joining , the induction hypothesis
implies that uk[RM-Clienth].status = joining. Moreover, since mjoin-ackh does not affect
RM-Clienth.status, it follows that u[RM-Clienth].status = joining. Thus, the invariant
assertion holds in u.

❒ rm-join-ackh: from the precondition of rm-join-ackh, it follows that uk[SRM-memh].status ∈
Joining . From the induction hypothesis it follows that uk[RM-Clienth].status = joining.
Thus, the rm-join-ackh action sets both SRM-memh.status and RM-Clienth.status to
member. It follows that the invariant assertion holds in u.

❒ rm-leaveh: the reasoning for this action is analogous to that of rm-joinh.

❒ mleaveh: the reasoning for this action is analogous to that of mjoinh.

❒ mleave-ackh: the reasoning for this action is analogous to that of mjoin-ackh.

❒ rm-leave-ackh: the reasoning for this action is analogous to that of rm-join-ackh.

Invariant 5.17 For h ∈ H and any reachable state u of RMI , it is the case that
u[RM-Clienth].seqno = u[SRM-rech].max-seqno(h).

Proof: Let α be any finite timed execution of RMI leading to u. The proof is by induction
on the length n ∈ N of α. For the base case, consider the finite timed execution α of length
0; that is, α = u. Since u is a start state of RMI , it follows that u[RM-Clienth].seqno =⊥
and u[SRM-rech].max-seqno(h) =⊥. Thus, the invariant assertion is satisfied in u. For the
inductive step, consider a timed execution α of length k + 1, for k ∈ N. Let αk be the prefix of α
containing the first k steps of α and uk = αk.lstate. For the step from uk to u, we consider only
the rm-sendh(p) action, since this is the only action that affects the variables RM-Clienth.seqno
and SRM-rech.max-seqno(h).

From the precondition of rm-sendh(p), it is the case that uk[RM-Clienth].status = member,
source(p) = h, and either uk[RM-Clienth].seqno =⊥ or seqno(p) = uk[RM-Clienth].seqno + 1.
The effects of rm-sendh(p) are to set RM-Clienth.seqno to seqno(p).

Since uk[RM-Clienth].status = member, Invariant 5.16 implies that it is the case that
uk[SRM-rech].status = member. From the induction hypothesis, it is the case that
uk[RM-Clienth].seqno = uk[SRM-rech].max-seqno(h). Thus, it is the case that either
uk[SRM-rech].max-seqno(h) =⊥ or seqno(p) = uk[SRM-rech].max-seqno(h) + 1. In either
case, the rm-sendh(p) sets SRM-rech.max-seqno(h) to seqno(p). Thus, it follows that
u[RM-Clienth].seqno = u[SRM-rech].max-seqno(h).

Invariant 5.18 For h ∈ H and any reachable state u of RMI , it is the case that:

59

1. u[SRM-memh].status = crashed⇔ u[SRM-IPbuffh].status = crashed

∧u[SRM-memh].status = member⇔ u[SRM-IPbuffh].status = member,

2. u[SRM-memh].status = crashed⇔ u[SRM-rech].status = crashed

∧u[SRM-memh].status = member⇔ u[SRM-rech].status = member, and

3. u[SRM-memh].status = crashed⇔ u[SRM-reph].status = crashed

∧u[SRM-memh].status = member⇔ u[SRM-reph].status = member.

Proof: We prove that u[SRM-memh].status = crashed⇔ u[SRM-IPbuffh].status = crashed ∧
u[SRM-memh].status = member⇔ u[SRM-IPbuffh].status = member; the proofs of the remaining
claims are analogous.

Let α be any finite timed execution of RMI leading to u. The proof is by induction on the
length n ∈ N of α. For the base case, consider the finite timed execution α of length 0; that
is, α = u. Since u is a start state of RMI , it follows that u[SRM-memh].status = idle and
u[SRM-IPbuffh].status = idle. Thus, the invariant assertion is satisfied in u. For the inductive
step, consider a timed execution α of length k + 1, for k ∈ N. Let αk be the prefix of α containing
the first k steps of α and uk = αk.lstate. For the step from uk to u, we consider only the actions
that affect the variables SRM-memh.status and SRM-IPbuffh.status.

❒ crashh: the action crashh sets both variables SRM-memh.status and SRM-IPbuffh.status to
the value crashed. Thus, the invariant assertion holds in u.

❒ rm-joinh: from the precondition of rm-joinh, it follows that uk[RM-Clienth].status =
idle. Invariant 5.16 implies that uk[SRM-memh].status = idle. Since
uk[SRM-memh].status 6∈ {crashed, member}, the induction hypothesis implies that
uk[SRM-IPbuffh].status 6∈ {crashed, member}.

Since rm-joinh sets SRM-memh.status to join-rqst-pending, it follows that
u[SRM-memh].status 6∈ {crashed, member}. Since rm-joinh does not affect the vari-
able SRM-IPbuffh.status, it follows that u[SRM-IPbuffh].status 6∈ {crashed, member}.
Thus, it follows that the invariant assertion holds in u.

❒ mjoinh: from the precondition of mjoinh, it follows that uk[SRM-memh].status ∈ Joining ; that
is, uk[SRM-memh].status 6∈ {crashed, member}. Thus, the induction hypothesis implies that
uk[SRM-IPbuffh].status 6∈ {crashed, member}.

Since the action mjoinh sets the variable SRM-memh.status to join-pending, it follows that
u[SRM-memh].status 6∈ {crashed, member}. Moreover, since mjoinh does not affect the variable
SRM-IPbuffh.status, it follows that u[SRM-IPbuffh].status 6∈ {crashed, member}. Thus, it
follows that the invariant assertion holds in u.

❒ mjoin-ackh: first, consider the case where uk[SRM-memh].status 6∈ Joining . Since in this
case mjoin-ackh affects neither SRM-memh.status nor SRM-IPbuffh.status, the induction
hypothesis implies that the invariant assertion holds in u.

Second, consider the case where uk[SRM-memh].status ∈ Joining . Since
uk[SRM-memh].status 6∈ {crashed, member}, the induction hypothesis implies that
uk[SRM-IPbuffh].status 6∈ {crashed, member}. Since uk[SRM-memh].status ∈ Joining ,
the action mjoin-ackh sets SRM-memh.status to join-ack-pending; that is,
u[SRM-memh].status 6∈ {crashed, member}. Since mjoinh does not affect the variable
SRM-IPbuffh.status, it follows that u[SRM-IPbuffh].status 6∈ {crashed, member}. Thus, it
follows that the invariant assertion holds in u.

❒ rm-join-ackh: from the precondition of rm-join-ackh, it is the case that
uk[SRM-memh].status ∈ Joining . Since uk[SRM-memh].status 6∈ {crashed, member},
the induction hypothesis implies that uk[SRM-IPbuffh].status 6∈ {crashed, member}.

60

The action rm-join-ackh sets SRM-memh.status to member. Since uk[SRM-IPbuffh].status 6=
crashed, it also sets SRM-IPbuffh.status to member. It follows that the invariant assertion
holds in u.

❒ rm-leaveh: from the precondition of the action rm-leaveh, it follows
that uk[RM-Clienth].status = member. Thus, Invariant 5.16 implies that
uk[SRM-memh].status = member. Moreover, the induction hypothesis implies that
uk[SRM-IPbuffh].status = member.

Since uk[SRM-memh].status = member, the rm-leaveh action sets SRM-memh.status
to leave-rqst-pending and SRM-IPbuffh.status to idle. Thus, it is the case that
u[SRM-memh].status 6∈ {crashed, member} and u[SRM-IPbuffh].status 6∈ {crashed, member}.
Thus, it follows that the invariant assertion holds in u.

❒ mleaveh: the reasoning for this action is analogous to that of mjoinh.

❒ mleave-ackh: the reasoning for this action is analogous to that of mjoin-ackh.

❒ rm-leave-ackh: from the precondition of the action rm-leave-ackh, it follows that
uk[SRM-memh].status = leave-ack-pending. Since uk[SRM-memh].status 6∈
{crashed, member}, the induction hypothesis implies that uk[SRM-IPbuffh].status 6∈
{crashed, member}.

The action rm-leave-ackh sets SRM-memh.status to idle and does not affect the variable
SRM-IPbuffh.status. Thus, it follows that u[SRM-memh].status 6∈ {crashed, member} and
u[SRM-IPbuffh].status 6∈ {crashed, member}. Thus, it follows that the invariant assertion
holds in u.

Invariant 5.19 For any reachable state u of RMI , it is the case that
u[SRM-rech].archived-pkts? ⊆ u[SRM].sent-pkts? , for all h ∈ H.

Proof: Let α be any finite timed execution of RMI leading to u. The proof is by strong induction
on the length n ∈ N of α. For the base case, consider the finite timed execution α of length 0; that
is, α = u. Since u is a start state of RMI , it is the case that u[SRM-rech].archived-pkts? = ∅, for
all h ∈ H, and u[SRM].sent-pkts? = ∅. Thus, the invariant assertion is trivially satisfied in u. For
the inductive step, consider a timed execution α of length k+1, for k ∈ N. Let αk be the prefix of α
containing the first k steps of α and uk = αk.lstate. For the step from uk to u we consider only the
actions that affect the variables SRM-rech.archived-pkts? , for all h ∈ H, and SRM.sent-pkts? .

❒ rm-leaveh, for h ∈ H: the action rm-leaveh reinitializes the variable SRM-rech.archived-pkts.
Thus, since u[SRM-rech].archived-pkts = ∅, it follows that u[SRM-rech].archived-pkts? ⊆
u[SRM].sent-pkts? .

❒ rm-sendh(p), for h ∈ H and p ∈ PRM-Client: the action rm-sendh(p) adds the element 〈p,now〉 to
the variable SRM-rech.archived-pkts if and only if it sets the variable SRM-rech.trans-time(p)
to now ; that is, it adds the element id(p) to SRM-rech.archived-pkts? if and only if it adds it to
SRM.sent-pkts? . Thus, the induction hypothesis implies that u[SRM-rech].archived-pkts? ⊆
u[SRM].sent-pkts? .

❒ process-mpkth(p), for h ∈ H and p ∈ PSRM, such that type(p) ∈ {DATA, REPL}: from the pre-
condition of process-mpkth(p), it follows that there exists pkt ∈ uk[SRM-IPbuffh].mrecv-buff ,
such that strip(pkt) = p. Since the only action that may add pkt to the variable
SRM-IPbuffh.mrecv-buff is mrecvh(pkt), it follows that the action process-mpkth(p) is pre-
ceded in αk by an action mrecvh(pkt). Let (u2, mrecvh(pkt), u1) be the discrete transition in

61

αk corresponding to the particular occurrence of the action mrecvh(pkt). Lemma 5.1 implies
that the action mrecvh(pkt) is preceded in αk by an action msendh′(pkt), for some h

′ ∈ H. Let
(u4, msendh′(pkt), u3) be the discrete transition in αk corresponding to the particular occurrence
of the action msendh′(pkt). From the precondition of the action msendh′(pkt), it follows that
pkt ∈ u4[SRM-IPbuffh′].msend-buff .

Since the only action that may add packets of type DATA or REPL to the variable
SRM-IPbuffh′ .msend-buff is the action rec-msendh′(p), it follows that an action
rec-msendh′(p) precedes u4 in αk. Let (u6, rec-msendh′(p), u5) be the discrete transition
in αk corresponding to the particular occurrence of the action rec-msendh′(p). From the
precondition of the action rec-msendh′(p), it follows that p ∈ u6[SRM-rech′].msend-buff .
Invariant 5.7 implies that id(p) ∈ u6[SRM-rech′].archived-pkts? . From the induction
hypothesis it is the case that u6[SRM-rech′].archived-pkts? ⊆ u6[SRM].sent-pkts? . Thus,
Lemma 5.2 implies that id(p) ∈ u[SRM].sent-pkts? . Since the action process-mpkth(p)
may only add the tuple 〈strip(p),now〉 to the variable u[SRM-rech].archived-pkts,
the fact that id(p) ∈ u[SRM].sent-pkts? and the induction hypothesis imply that
u[SRM-rech].archived-pkts? ⊆ u[SRM].sent-pkts? , as needed.

Invariant 5.20 For h ∈ H and any reachable state u of RMI , it is the case that
u[SRM-rech].to-be-delivered? ⊆ u[SRM].sent-pkts?.

Proof: Invariant 5.3 implies that, for h′ ∈ H, it is the case that
u[SRM-rech].to-be-delivered? (h

′) ⊆ u[SRM-rech].archived-pkts? (h
′). Thus, it is the case

that u[SRM-rech].to-be-delivered? ⊆ u[SRM-rech].archived-pkts? . Invariant 5.19 implies that
u[SRM-rech].to-be-delivered? ⊆ u[SRM].sent-pkts?.

5.4.3 Relation Definition

We define a relation, R, from RMI to RMS(∆), for any ∆ ∈ R≥0 ∪∞.

Definition 5.1 Let R be the relation between states of RMI and RMS(∆), for any ∆ ∈ R≥0 ∪∞,
such that for any states u and s of RMI and RMS(∆), respectively, (u, s) ∈ R provided that, for
all h, h′ ∈ H and p ∈ PRM-Client, such that 〈sp, ip〉 = id(p), it is the case that:

s.now = u.now

s[RM-Clienth].status = u[RM-Clienth].status

s[RM-Clienth].seqno = u[RM-Clienth].seqno

s[RM(∆)].status(h) =

idle if u[SRM-memh].status = idle

joining if u[SRM-memh].status ∈ Joining

leaving if u[SRM-memh].status ∈ Leaving

member if u[SRM-memh].status = member

crashed if u[SRM-memh].status = crashed

s[RM(∆)].trans-time(p) = u[SRM-recsp].trans-time(p)

s[RM(∆)].expected(h, h′) = u[SRM-rech].expected(h
′)

s[RM(∆)].delivered(h, h′) = u[SRM-rech].delivered(h
′)

62

5.4.4 Safety Analysis

In this section, we show that our reliable multicast implementation RMI indeed implements the
reliable multicast service specification RMS(∞). The following lemma states that the relation R
of Definition 5.1 is a timed forward simulation relation from RMI to RMS(∞).

Lemma 5.11 R is a timed forward simulation relation from RMI to RMS(∞).

Proof: We must show that: i) if u ∈ start(RMI), then there is some s ∈ start(RMS(∞)) such
that (u, s) ∈ R, and ii) if u is a reachable state of RMI , s is a reachable state of RMS(∞) such
that (u, s) ∈ R, and (u, π, u′) ∈ trans(RMI), then there exists a timed execution fragment α of
RMS(∞) such that: α.fstate = s, ttrace(α) = ttrace(uπu′), the total amount of time-passage in α
is the same as the total amount of time-passage in uπu′, and (u′, s′) ∈ R, for s′ = α.lstate.

The satisfaction of the start condition is straightforward. For the step, we consider only the actions
in acts(RMI) that affect the variables of RMI that are used in R to obtain the corresponding state
in RMS(∞). Moreover, since the client automata RM-Clienth, for all h ∈ H, are identical in
both RMI and RMS(∞), we do not consider the effect of the actions of RMI on the state of the
client automata. Thus, we consider only the actions of the SRM component of RMI that affect
the variables of SRM that are present in R.

❒ crashh, for any h ∈ H: the corresponding execution fragment of RMS(∞) is comprised solely of
the crashh action. The crashh action of RMI simply sets the variable u[SRM-memh].status to
crashed and resets u[SRM-rech].expected(h

′) and u[SRM-rech].completed(h
′), for all h′ ∈ H.

It is straightforward to see that the crashh action of RMS(∞) mirrors these effects. Thus, it
follows that (u′, s′) ∈ R.

❒ rm-joinh, for any h ∈ H: the corresponding execution fragment of RMS(∞) is comprised solely
of the rm-joinh action. It is straightforward to see that the effects of the rm-joinh action in
the specification correspond to those in the implementation.

❒ mjoinh, for any h ∈ H: the corresponding execution fragment of RMS(∞) is the empty
timed execution fragment. Since the mjoinh action is enabled in state u, it follows that
u[SRM-memh].status ∈ Joining . Thus, R implies that s[RM(∞)].status(h) = joining. The
effects of the mjoinh action are to set the status variable to join-pending. It follows that
u′[SRM-memh].status ∈ Joining . Since the corresponding execution fragment of RMS(∞) is the
empty timed execution fragment it is the case that s′ = s and s′[RM(∞)].status(h) = joining.
Thus, it follows that (u′, s′) ∈ R.

❒ mjoin-ackh, for any h ∈ H: the corresponding execution fragment of RMS(∞) is the
empty timed execution fragment. The mjoin-ackh action affects the state of the SRM-memh

automaton only when the host h is in the process of joining the reliable multicast group; that
is, u[SRM-memh].status ∈ Joining . Thus, R implies that s[RM(∞)].status(h) = joining. The
effects of the mjoin-ackh action are to set the status variable to join-ack-pending. It follows
that u′[SRM-memh].status ∈ Joining . Since the corresponding execution fragment of RMS(∞)
is the empty timed execution fragment it is the case that s′ = s and s′[RM(∞)].status(h) =
joining. Thus, it follows that (u′, s′) ∈ R.

❒ rm-leaveh, for any h ∈ H: the corresponding execution fragment ofRMS(∞) is comprised solely
of the rm-leaveh action. From the precondition of the rm-leaveh action in the RM-Clienth
automaton, it follows that u[RM-Clienth].status = member. Thus, Invariant 5.16 implies that
u[SRM-memh].status = member and, since (u, s) ∈ R, it is the case that s[RM(∞)].status(h) =
member.

63

Since u[SRM-memh].status = member, the rm-leaveh action of RMI sets the status variable
of SRM-memh to leave-rqst-pending. The rm-leaveh action of RMS(∞) sets the status(h)
variable of RM(∞) to leaving. Thus, it follows that u′[SRM-memh].status ∈ Leaving and
s′[RM(∞)].status(h) = leaving, as required by R.

Moreover, the rm-leaveh action of RMI resets the expected and delivered packet sets of
SRM-rech; that is, u

′[SRM-rech].expected(h
′) = ∅ and u′[SRM-rech].delivered(h

′) = ∅,
for all h′ ∈ H. Similarly, the rm-leaveh action of RMS(∞) also resets the variables
expected(h, h′) and delivered(h, h′), for h′ ∈ H; that is, s′[RM(∞)].expected(h, h′) = ∅ and
s′[RM(∞)].delivered(h, h′) = ∅. Thus, it follows that (u′, s′) ∈ R.

❒ mleaveh, for any h ∈ H: the corresponding execution fragment of RMS(∞) is the empty
timed execution fragment. Since the mleaveh action is enabled in state u, it follows that
u[SRM-memh].status ∈ Leaving . Thus, R implies that s[RM(∞)].status(h) = leaving.
The effects of the mleaveh action of RMI are to set the status variable of SRM-memh to
leave-pending. It follows that u′[SRM-memh].status ∈ Leaving . Since the corresponding
execution fragment of RMS(∞) is the empty timed execution fragment it is the case that s

′ = s
and s′[RM(∞)].status(h) = leaving. Thus, it follows that (u′, s′) ∈ R.

❒ mleave-ackh, for any h ∈ H: the corresponding execution fragment of RMS(∞) is the
empty timed execution fragment. The mleave-ackh action affects the state of the SRM-memh

automaton only when the host h is in the process of leaving the reliable multicast group; that is,
u[SRM-memh].status ∈ Leaving . In this case, R implies that s[RM(∞)].status(h) = leaving.
The effects of the mleave-ackh action of RMI are to set the status variable of SRM-memh to
leave-ack-pending. It follows that u′[SRM-memh].status ∈ Leaving . Since the corresponding
execution fragment of RMS(∞) is the empty timed execution fragment it is the case that s

′ = s
and s′[RM(∞)].status(h) = leaving. Thus, it follows that (u′, s′) ∈ R.

❒ rm-join-ackh, for any h ∈ H: the corresponding execution fragment of RMS(∞) is comprised
solely of the rm-join-ackh action. We begin by showing that the rm-join-ackh action of
RMS(∞) is enabled in s. The precondition of the rm-join-ackh action of RMI implies that
u[SRM-memh].status ∈ Joining . Since (u, s) ∈ R, it follows that s[RM(∞)].status(h) =
joining. Thus, it follows that the rm-join-ackh action of RMS(∞) is enabled in s.

The rm-join-ackh action of RMI sets the status variable of SRM-memh to member. Similarly,
the rm-join-ackh action of RMS(∞) sets the status(h) variable of RMS(∞) to member. Thus,
it follows that (u′, s′) ∈ R.

❒ rm-leave-ackh, for any h ∈ H: the corresponding execution fragment of RMS(∞) is comprised
solely of the rm-leave-ackh action. We begin by showing that the rm-leave-ackh action
of RMS(∞) is enabled in s. The precondition of the rm-leave-ackh action of RMI implies
that u[SRM-memh].status ∈ Leaving . Since (u, s) ∈ R, it follows that s[RM(∞)].status(h) =
leaving. Thus, it follows that the rm-leave-ackh action of RMS(∞) is enabled in s.

The rm-leave-ackh action of RMI sets the status variable of SRM-memh to idle. Similarly,
the rm-leave-ackh action of RMS(∞) sets the status(h) variable of RMS(∞) to idle. Thus,
it follows that (u′, s′) ∈ R.

❒ rm-sendh(p), for any h ∈ H and p ∈ PRM-Client: the corresponding execution fragment of
RMS(∞) is comprised solely of the rm-sendh(p) action. Let sp and ip denote the source and
sequence number of p, respectively.

From the precondition of the rm-sendh(p) action of RMI , it follows that
u[RM-Clienth].status = member and h = sp. Invariant 5.16 implies that
u[SRM-memh].status = member and, since (u, s) ∈ R, it is the case that
s[RM(∞)].status(h) = member.

64

We consider the effects of rm-sendh(p) according to whether p is the foremost packet
from h. First, consider the case where p is the foremost packet from h; that is,
u[SRM-rech].min-seqno(sp) =⊥. In this case, the rm-sendh(p) action of RMI sets the
expected set from h to the set suffix (p), adds id(p) to the set of delivered packets from h, and
records the transmission time of p.

Since it is the case that u[SRM-rech].min-seqno(sp) =⊥, Invariant 5.6 implies that
u[SRM-rech].expected(sp) = ∅. Since (u, s) ∈ R, it follows that s[RM(∞)].expected(h, h) = ∅.
Thus, the rm-sendh(p) action of RMS(∞) matches the effects of the rm-sendh(p) action of
RMI . It follows that (u

′, s′) ∈ R.

Second, consider the case where p is not the foremost packet from h; that is,
u[SRM-rech].min-seqno(sp) 6=⊥. In this case, Invariant 5.17 and the precondition of
rm-sendh(p) imply that ip = u[SRM-rech].max-seqno(sp) + 1. Thus, the rm-sendh(p) action
of RMI records the transmission time of p and adds id(p) to the set of delivered packets from
h.

Since it is the case that ip = u[SRM-rech].max-seqno(sp) + 1, Invariant 5.2 implies that
u[SRM-rech].min-seqno(sp) < ip. Thus, it follows that id(p) ∈ u[SRM-rech].proper? (h).
Since u[SRM-memh].status = member, Invariant 5.6 implies that u[SRM-rech].expected(h) =
u[SRM-rech].proper? (h). Thus, it follows that id(p) ∈ u[SRM-rech].expected(h). Since
(u, s) ∈ R, it is the case that s[RM(∞)].expected(h, h) = u[SRM-rech].expected(h). Thus,
it follows that id(p) ∈ s[RM(∞)].expected(h, h). Thus, the rm-sendh(p) action of RMS(∞) also
records the transmission time of p and adds p to the set of delivered packets from h. Thus, it
follows that (u′, s′) ∈ R.

❒ rm-recvh(p), for any h ∈ H and p ∈ PRM-Client: the corresponding execution fragment of
RMS(∞) is comprised solely of the rm-recvh(p) action. Let sp and ip denote the source and
sequence number of p, respectively.

We first show that the rm-recvh(p) action of RMS(∞) is enabled in the state s. From the pre-
condition of the rm-recvh(p) action of RMI , it follows that u[SRM-rech].status = member

and p ∈ u[SRM-rech].to-be-delivered . Invariant 5.18 implies that u[SRM-memh].status =
member and, since (u, s) ∈ R, it follows s[RM(∞)].status(h) = member. Since p ∈
u[SRM-rech].to-be-delivered , Invariant 5.8 implies that h 6= source(p). Moreover, Invariant 5.20
implies that p ∈ u[SRM].sent-pkts. Since (u, s) ∈ R, it follows that p ∈ s[RM(∞)].sent-pkts.

We proceed by showing that s satisfies the last two terms in the precondition of rm-recvh(p)
in RMS(∞). Since the delivery delay parameter ∆ is equal to ∞ for the RMS(∞) automaton,
s[RM(∞)] trivially satisfies the term expected(h, sp) = ∅ ⇒ now ≤ trans-time(p) + ∆.

Finally, we show that s[RM(∞)] satisfies the term expected(h, sp) 6= ∅ ⇒ id(p) ∈ expected(h, sp).
Suppose that it is the case that s[RM(∞)].expected(h, sp) 6= ∅. Since (u, s) ∈ R, it follows that
u[SRM-rech].expected(sp) 6= ∅. Thus, since p ∈ u[SRM-rech].to-be-delivered , Invariant 5.9
implies that id(p) ∈ u[SRM-rech].expected(sp). Finally, since (u, s) ∈ R, it follows that
id(p) ∈ s[RM(∞)].expected(h, sp), as needed.

The rm-recvh(p) action of RMI sets the expected set of packets from sp to the set suffix (p),
unless already non-empty, and adds p to the set of delivered packets from sp. The rm-recvh(p)
action of RM(∞) matches precisely the effects of the rm-recvh(p) action of RMI . Thus, it
follows that (u′, s′) ∈ R.

❒ ν(t), for any t ∈ R≥0: the corresponding execution fragment of RMS(∞) is comprised solely of
the ν(t) action. Since the effects of the ν(t) actions of the RMI and the RMS(∞) automata
are identical, it suffices to show that the ν(t) action is enabled in s. Since the delivery delay
parameter ∆ is equal to ∞ for the RMS(∞) automaton, the term now + t ≤ trans-time(p) +∆

65

of the precondition of the ν(t) action of RMS(∞) is satisfied for all p ∈ PRM-Client. Thus, it
follows that the ν(t) action of RMS(∞) is enabled in s.

Theorem 5.12 RMI ≤ RMS(∞)

Proof: Follows directly from Lemma 5.11.

5.4.5 Liveness Analysis

In this section, we show that, under certain constraints, RMI implements RMS(∆), for any
∆ ∈ R≥0.

Definitions

Suppose p ∈ PRM-Client, pkt ∈ PSRM, and α is an admissible timed execution of RMI that contains
the transmission of p; that is, α contains the action rm-sendh(p), for h ∈ H,h = source(p). For
pkt ∈ PSRM, we say that pkt pertains to p if type(pkt) ∈ {DATA, RQST, REPL} and id(pkt) = id(p).
We let PSRM[p] denote the elements of PSRM that pertain to p.

We let the number of packet drops in α pertaining to p, denoted α.drops(p), be the number of packet
drops suffered by packets pertaining to p; that is, α.drops(p) is the number of occurrences of an
action mdrop(pkt ′, Hd) in α, for pkt

′ ∈ PIPmcast-Client and Hd ⊆ H, such that strip(pkt ′) ∈ PSRM[p].

We let aexecsk(RMI), for k ∈ N+, be the set of admissible timed executions of RMI in which the
number of packet drops suffered by the packets pertaining to the transmission and, potentially, the
recovery of any packet p is at most k. That is, α ∈ aexecsk(RMI) iff α.drops(p

′) ≤ k, for any packet
p′ ∈ PRM-Client transmitted in α. Finally, we let attracesk(RMI) be the traces of all executions of
RMI in aexecsk(RMI).

We let the transmission time of p in α, denoted α.trans-time(p), be the point in time in α at
which p is transmitted; that is, the time of occurrence of rm-sendh(p) in α. Since packets are
transmitted by the clients of the reliable multicast service at most once (Lemma 4.2), it follows
that the transmission time of any packet transmitted in any admissible timed execution of RMI is
well-defined and unique.

Execution Constraints

We proceed by defining several constraints on admissible executions of RMI . These constraints
facilitate the statement of conditional claims regarding the timely transmission of packets for RMI .

Constraint 5.1 (No Crashes) Let α be any admissible timed execution of RMI . None of the
hosts crash in α; that is, for any h ∈ H, no crashh actions occur in α.

Constraint 5.2 (No Leaves) Let α be any admissible timed execution of RMI . None of the hosts
leave the reliable multicast group in α; that is, for any h ∈ H, no rm-leaveh actions occur in α.

Let d, d ∈ R≥0, such that d > 0, d > 0, and d ≤ d. The following constraint specifies the set of
executions of RMI in which the transmission latency between any two hosts h, h

′ ∈ H,h 6= h′ is
bounded from below and above by d and d, respectively.

66

Constraint 5.3 (Bounded Inter-host Transmission Latencies) Let α be any admissible
timed execution of RMI and h, h′ be any two distinct hosts in H. The transmission latency
incurred by any packet multicast using the IP multicast service by h and received by h′ in α lies
in the interval [d, d]; that is, if p ∈ PIPmcast-Client is a packet multicast by h in α, then the time
elapsing from the time of occurrence of the action msendh(p) to that of any action mrecvh′(p) lies
in the interval [d, d].

The following constraint specifies the set of executions of RMI in which the fate of any packet
transmitted using the IP multicast service is resolved within d time units.

Constraint 5.4 (Bounded Transmission Resolution) Let α be any admissible execution of
RMI containing the discrete transition (u, π, u

′), for u, u′ ∈ states(RMI), h ∈ H, p ∈
PIPmcast-Client, and π = msendh(p). Then, for all h

′ ∈ u[IPmcast].members, h′ 6= h, either a
crashh′ , rm-leaveh′, mrecvh′(p), or mdrop(p,Hd), for Hd ⊆ H, h′ ∈ Hd, action occurs no later
than d time units after the particular occurrence of the discrete transition (u, π, u′) in α.

The following constraint specifies the set of executions of RMI in which the inter-host distance
estimates of any host always lie in the interval [d, d]. The satisfaction of this constraint requires
that DFLT-DIST ∈ [d, d].

Constraint 5.5 (Bounded Inter-host Distance Estimates) Let α be any admissible timed
execution of RMI . For any state u of RMI in α, the inter-host distance estimates of the
recovery component of each reliable multicast process of RMI lie in the interval [d, d]; that is,
u[SRM-rech].dist(h

′) ∈ [d, d], for all h, h′ ∈ H,h 6= h′.

Letting DET-BOUND ∈ R≥0, such that d ≤ DET-BOUND, the following constraint specifies the set of
executions of RMI in which the delay in detecting packet losses is bounded by DET-BOUND.

Constraint 5.6 (Bounded Detection Latency) Let α be any admissible timed execution of
RMI . Let p ∈ PRM-Client be any packet transmitted in α, id(p) = 〈sp, ip〉, and h ∈ H,h 6= sp.
Moreover, let u be any state of RMI in α such that α.trans-time(p) + DET-BOUND < u.now.
Then, if id(p) ∈ u[SRM-rech].expected(sp), then either id(p) ∈ u[SRM-rech].delivered(sp) or
id(p) ∈ u[SRM-rech].scheduled-rqsts? .

Let C-aexecs(RMI) be the set of all admissible timed executions of RMI in aexecs(RMI) that
satisfy Constraints 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6. Let C-attraces(RMI) be the traces of all
the executions of RMI in C-aexecs(RMI). Let C-aexecsk(RMI), for k ∈ N+, be the subset of
aexecsk(RMI) comprised of all admissible timed executions of RMI that satisfy Constraints 5.1,
5.2, 5.3, 5.4, 5.5, and 5.6; that is, for k ∈ N+, C-aexecsk(RMI) = aexecsk(RMI)∩C-aexecs(RMI).
Moreover, let C-attracesk(RMI) be the traces of all executions of RMI in C-aexecsk(RMI).

Execution Definitions

Let α′ be any admissible timed execution in C-aexecs(RMI). We say that the host h detects the
loss of p in α′ if it schedules a request for p ∈ PRM-Client in α′. If the host h detects the loss of
p in α′, then we let α′.det-timeh(p) denote the point in time in α′ at which h detects the loss of
p. We let α′.det-latencyh(p) denote the loss detection latency of p for h in α′; that is, the time
elapsing from the time p is transmitted to the time the host h detects the loss of p in α′. We let

67

α′.rec-latencyh(p) denote the loss recovery latency of p for h in α
′; that is, the time elapsing from

the time the host h detects the loss of p to the time it receives p in α′.

When a host h ∈ H schedules a request for p ∈ PRM-Client with a back-off of k−1, for any k ∈ N+,
we say that it initiates a k-th recovery round for p. Each recovery round (except the first) also
initiates a back-off abstinence period. Any request for p received during this back-off abstinence
period is discarded. If the packet p is received while a scheduled request for p by h is awaiting
transmission, then the scheduled request is canceled. Once the back-off abstinence period expires,
either the reception of a request for p or the transmission of the scheduled request for p by h
initiates the k + 1-st recovery round for p at h. In this case, we define the k-th round request of h
for p to be the request for p upon whose reception or transmission the host h initiates the k+ 1-st
recovery round for p. Moreover, we define the completion time of the k-th recovery round for p of
h to be the point in time at which h either receives p or initiates its k + 1-st recovery round for p.

Suppose that a host h′ ∈ H receives the k-th round request of h for p while it is a member of
the reliable multicast group and after archiving the packet p. When h′ receives this request, either
i) a reply for p is already scheduled, ii) a reply for p is already pending, or iii) a reply for p is
neither scheduled, nor pending. In the case where a reply for p is already scheduled, h’s request
for p is discarded. Moreover, the reply that is already scheduled at h′ is considered to be the reply
pertaining to the k-th round request of h for p. In the case where a reply for p is already pending,
h’s request for p is discarded. Moreover, the reply that is pending at h′ is considered to be the reply
pertaining to the k-th round request of h for p. Finally, in the case where a reply for p is neither
scheduled, nor pending, h′ schedules a reply for p. The reply that is either received or transmitted
by h′ and that results in the cancellation of the reply scheduled by h′ for p is considered to be the
reply to the k-th round request of h for p.

Liveness Proof

Lemma 5.13 Let α be any admissible timed execution of RMI that satisfies Constraint 5.3
and contains the occurrence of a discrete transition (u, π, u′), for u, u′ ∈ states(RMI), h ∈ H,
p ∈ PIPmcast-Client, and π = mrecvh(p). Then, any other mrecvh′(p), for h

′ ∈ H,h′ 6= h, in α
occurs no earlier and no later than d − d time units from the particular occurrence of (u, π, u′) in
α.

Proof: Let (v, π, v′), for v, v′ ∈ states(RMI), h
′ ∈ H,h′ 6= h, p ∈ PIPmcast-Client, and

π = msendh′(p) be the discrete transition in α involving the transmission of p. Constraint 5.3
implies that the time elapsing from the time of occurrence of the action msendh′(p) to that of any
action mrecvh′′(p), for h

′′ ∈ H,h′′ 6= h′ lies in the interval [d, d]. Thus, any two such actions are
separated in time by at most d− d time units.

Definition 5.2 Let h ∈ H, k ∈ N+, p ∈ PRM-Client, 〈s, i〉 = id(p), and α ∈ C-aexecs(RMI).
We say that h either sends or receives its k-th round request for p and schedules its k + 1-
st round request for p upon the occurrence of a discrete transition (u, π, u′) in α such that
〈s, i, t, k〉 ∈ u[SRM-rech].scheduled-rqsts and 〈s, i, t

′, k + 1〉 ∈ u′[SRM-rech].scheduled-rqsts, for
some t, t′ ∈ R≥0.

Lemma 5.14 Let k ∈ N+, k > 1, h ∈ H, p ∈ PRM-Client, and α ∈ C-aexecs(RMI) such that α
contains the transmission of p. Suppose that the host h schedules k-th and k+1-st round requests for
the packet p in α. Let tk, tk+1 ∈ R≥0 be the points in time in α at which the host h schedules its k-th
and k+1-st round requests for p, respectively. Then, it is the case that tk+1 ≤ tk+2

k−1(C1+C2)d.

68

Proof: This follows from the fact that time in the SRM-rech automaton is not allowed to elapse
past the transmission time of any scheduled request. Constraint 5.5 implies that the k-th round
request is scheduled for transmission no later than tk + 2

k−1(C1 + C2)d. Thus, if no request is
received by h prior to the time at which its k-th round request for p is scheduled for transmission,
then h transmits its k-th round request. Thus, h either sends or receives its k-th round request for
p no later than tk + 2

k−1(C1 + C2)d, as required.

Corollary 5.15 Let k ∈ N+, h ∈ H, p ∈ PRM-Client, and α ∈ C-aexecs(RMI) such that α contains
the transmission of p. Suppose that the host h schedules k-th and k + 1-st round requests for the
packet p in α. Let tk+1 ∈ R≥0 be the point in time in α at which the host h either sends or receives
its k-th round request for p and schedules its k + 1-st round request for p. Then, it is the case that
tk+1 ≤ α.det-timeh(p) + (2

k − 1)(C1 + C2)d.

Proof: Follows from Lemma 5.14 and the fact that h detects the loss of p at the point in time
when it first schedules a request for p. According to the SRM-rech automaton, the first request
scheduled for a packet is either a 1-st or 2-nd round request for the given packet.

Lemma 5.16 Let k ∈ N+, k > 1, h ∈ H, p ∈ PRM-Client, and α ∈ C-aexecs(RMI) such that α
contains the transmission of p. Suppose that the host h schedules k-th and k + 1-st round requests
for the packet p in α. Let tk, tk+1 ∈ R≥0 be the points in time in α at which the host h schedules its
k-th and k + 1-st round requests for p, respectively. Then, it is the case that tk + 2

k−1C3d < tk+1.

Proof: Constraint 5.5 implies that the k-th round back-off abstinence period expires no earlier
than 2k−1C3d time units past tk; that is, no earlier than tk +2

k−1C3d in α. From Assumption 5.1,
it is the case that C3 < C1. Thus, the k-th round request is scheduled for transmission at a point
in time that succeeds tk + 2

k−1C3d in α.

The host h schedules its k + 1-st round request for p when it either sends or receives its k-th
round request for p; that is, upon the occurrence of either a send-rqsth(s, i) action, such that
〈s, i〉 = id(p), or a process-mpkth(pkt) action, for pkt ∈ PSRM, such that id(pkt) = id(p)
and type(pkt) = RQST. In the case of a send-rqsth(s, i) action, Invariant 5.15 implies that if
the send-rqsth(s, i) action is enabled, then a request for p is not pending. In the case of a
process-mpkth(pkt) action, the effects of the action process-mpkth(pkt) imply that the k-th round
request for p is backed-off only while a request for p is not pending.

It follows that the point in time at which the host h either sends or receives its k-th round request
for p succeeds the expiration time of the back-off abstinence period of the k-th round request of h
for p; that is, tk + 2

k−1C3d < tk+1.

Lemma 5.17 Let h, h′ ∈ H,h 6= h′, p ∈ PRM-Client, and α ∈ C-aexecs(RMI) such that α contains
the transmission of p. Suppose that h′ receives a request for p from h at time t′ ∈ R≥0 in α. Suppose
that when h′ receives this request, it is a member of the reliable multicast group and has already
archived p. Then, the reply of h′ pertaining to the particular request of h for p is either sent or
received by h′ no later than t′ + (D1 +D2)d in α.

Proof: Constraint 5.5 implies a reply is scheduled for transmission no later than (D1 + D2)d
time units past its scheduling time. When h′ receives the request of h for p, a reply for p is either
already scheduled, already pending, or neither scheduled nor pending. We consider each of these
scenarios separately. First, if a reply for p is already scheduled, its transmission time is no later

69

than t′+(D1+D2)d in α. Thus, if either an original transmission or a reply for p is not received by
h′ by the scheduled transmission time of its own reply, then the host h′ transmits its own reply. It
follows that the reply of h′ pertaining to the particular request of h for p is either sent or received
by h′ no later than the point in time t′ + (D1 + D2)d in α. Second, if a reply for p is already
pending, then the reply of h′ pertaining to the particular request of h for p has already been either
sent or received; that is, the reply of h′ pertaining to the particular request of h for p is either
sent or received by h′ no later than t′. Finally, if a reply for p is neither scheduled nor pending,
then the reply of h′ pertaining to the particular request for p from h is scheduled for no later than
t′ + (D1 +D2)d. In either scenario, the reply of h

′ pertaining to the particular request of h for p is
either sent or received by h′ no later than t′ + (D1 +D2)d in α.

Lemma 5.18 Let h, h′ ∈ H,h 6= h′, p ∈ PRM-Client, and α ∈ C-aexecs(RMI) such that α contains
the transmission of p. Suppose that h′ receives a request for p from h at time t′ ∈ R≥0 in α. Suppose
that when h′ receives this request, it is a member of the reliable multicast group and has already
archived p. Then, the reply abstinence period of the reply of h′ pertaining to the particular request
of h for p expires no later than t′ + (D1 +D2 +D3)d in α.

Proof: Constraint 5.5 implies that the reply abstinence period of any reply expires no later than
(D1 + D2 + D3)d time units past its scheduling time. The rest of the proof is analogous to the
proof of Lemma 5.17.

Lemma 5.19 Let k ∈ N+, h, h′ ∈ H,h 6= h′, p ∈ PRM-Client, and α ∈ C-aexecs(RMI) such that α
contains the transmission of p. Suppose that the host h schedules k-th and k + 1-st round requests
for the packet p in α. Suppose that the host h′ receives the k-th round request of h for p. Let
tk+1 ∈ R≥0 be the point in time in α at which the host h either sends or receives its k-th round
request for p and schedules its k+1-st round request for p. Then, the host h′ receives the k-th round
request of h for p no later than tk+1 + d in α.

Proof: The host h either sends or receives its k-th round request for p and schedules its k + 1-st
round request for p upon the occurrence of either a send-rqsth(s, i) or a process-mpkth(pkt)
action, where id(pkt) = id(p) and type(pkt) = RQST. We consider there two cases separately.

First, in the case of a send-rqsth(s, i) action, Constraints 5.1 and 5.2 and Lemmas 5.6 and 5.8
imply that the send-rqsth(s, i) action is instantaneously followed by a msendh(pkt

′) action, for
pkt ′ ∈ PIPmcast-Client, such that id(strip(pkt

′)) = id(p) and type(strip(pkt ′)) = RQST. Furthermore,
Constraint 5.3 implies that h′ receives this request within at most d time units.

Second, in the case of a process-mpkth(pkt) action, a mrecvh(pkt
′) action, for

pkt ′ ∈ PIPmcast-Client, such that pkt = strip(pkt
′), instantaneously precedes process-mpkth(pkt).

Lemma 5.13 implies that h′ receives this request within at most d− d time units.

Lemma 5.20 Let α be any admissible timed execution of RMI that contains the transmission
of a packet p ∈ PRM-Client. For any state u ∈ states(RMI) in α, if u.trans-time(p) 6=⊥, then
u.trans-time(p) = α.trans-time(p).

Proof: The only action that sets the variable trans-time(p) is the action rm-sendh(p), for h =
source(p). By Lemma 4.2, the action rm-sendh(p) occurs only once in α. Let (v, rm-sendh(p), v

′) be
the discrete transition in α involving the action rm-sendh(p). By the definition of α.trans-time(p),
it follows that α.trans-time(p) = v.now . The action rm-sendh(p) sets the variable trans-time(p) to
the value of now . It follows that v′.trans-time(p) = α.trans-time(p).

70

Since the action rm-sendh(p) occurs in α only once, it follows that for any v−, v+ ∈ α, such
that v− ≤α v and v′ ≤α v+, it is the case that v−.trans-time(p) =⊥ and v+.trans-time(p) =
v′.trans-time(p). Since v′.trans-time(p) = α.trans-time(p), it follows that v+.trans-time(p) =
α.trans-time(p).

Lemma 5.21 Let h, h′ ∈ H, α ∈ aexecs(RMI), u, u
′ ∈ states(RMI) be any states in α, such

that u ≤α u′, and αuu′ be the finite execution fragment of α starting in u and ending in u′. If
u[SRM-rech].expected(h

′) 6= ∅ and αuu′ contains neither crashh nor rm-leaveh actions, then it
is the case that u[SRM-rech].expected(h

′) = u′[SRM-rech].expected(h
′).

Proof: The proof is by induction on the length n ∈ N of αuu′ . For the base case, consider
a finite execution fragment αuu′ of length n = 0. Since u = u′, it trivially follows that
u[SRM-rech].expected(h

′) = u′[SRM-rech].expected(h
′).

For the inductive step, consider an execution fragment αuu′ of length n = k+1. Let αk be the prefix
of αuu′ involving the first k steps and uk = αk.lstate. Suppose that u[SRM-rech].expected(h

′) 6= ∅
and αuu′ contains neither crashh nor rm-leaveh actions. The induction hypothesis implies that
u[SRM-rech].expected(h

′) = uk[SRM-rech].expected(h
′).

Now, consider the step from uk to u
′. The only actions of SRM-rech that may affect the variable

SRM-rech.expected(h
′) are the actions crashh, rm-leaveh, rm-sendh(p), and rm-recvh(p), for p ∈

PRM-Client. αuu′ contains neither crashh nor rm-leaveh actions. The action rm-sendh(p) affects
the variable SRM-rech.expected(h

′) only when h′ = h = source(p) and SRM-rech.expected(h
′) =

∅. The action rm-recvh(p) affects the variable SRM-rech.expected(h
′) only when h′ = source(p)

and SRM-rech.expected(h
′) = ∅. Since u[SRM-rech].expected(h

′) 6= ∅, the step from uk to
u′ does not affect the variable SRM-rech.expected(h

′); that is, uk[SRM-rech].expected(h
′) =

u′[SRM-rech].expected(h
′). Since u[SRM-rech].expected(h

′) = uk[SRM-rech].expected(h
′), it

follows that u[SRM-rech].expected(h
′) = u′[SRM-rech].expected(h

′).

Lemma 5.22 Let h, h′ ∈ H, α ∈ aexecs(RMI), u, u
′ ∈ states(RMI) be any states in α, such that

u ≤α u′, and αuu′ be the execution fragment of α starting in u and ending in u′. If αuu′ contains
neither crashh nor rm-leaveh actions, then it is the case that u[SRM-rech].expected(h

′) ⊆
u′[SRM-rech].expected(h

′).

Proof: Suppose that αuu′ contains neither crashh nor rm-leaveh actions. If it is the case
that u[SRM-rech].expected(h

′) = ∅, then it trivially follows that u[SRM-rech].expected(h
′) ⊆

u′[SRM-rech].expected(h
′). Otherwise, if u[SRM-rech].expected(h

′) 6= ∅, then Lemma 5.21
implies that u[SRM-rech].expected(h

′) = u′[SRM-rech].expected(h
′). It follows that

u[SRM-rech].expected(h
′) ⊆ u′[SRM-rech].expected(h

′).

Lemma 5.23 Let h, h′ ∈ H, α ∈ aexecs(RMI), u, u
′ ∈ states(RMI) be any states in α, such that

u ≤α u
′, and αuu′ be the finite execution fragment of α starting in u and ending in u

′. If αuu′ con-
tains neither crashh nor rm-leaveh actions, then it is the case that u[SRM-rech].delivered(h

′) ⊆
u′[SRM-rech].delivered(h

′).

Proof: Follows by induction on the length n ∈ N of the finite execution fragment αuu′ after
recognizing that all actions, except crashh and rm-leaveh, may only add elements to the variable
SRM-rech.delivered(h

′).

71

Lemma 5.24 Let k ∈ N+, p ∈ PRM-Client, and α be any admissible timed execution of RMI in
C-aexecsk(RMI) that contains the transmission of p. Moreover, let h ∈ H and u be any state of
RMI in α such that α.trans-time(p) + d < u.now and id(p) ∈ u[SRM-rech].expected(source(p)).
For any state u′ ∈ states(RMI) in α such that α.trans-time(p) + d < u′.now and u′ ≤α u, it is the
case that id(p) ∈ u′[SRM-rech].expected(source(p)).

Proof: Let id(p) = 〈sp, ip〉 and p
′ ∈ PRM-Client, such that id(p

′) = 〈sp, i
′〉, be the earliest packet

expected from sp by h in the state u; that is, id(p′) ∈ u[SRM-rech].expected(sp) and for all
〈sp, i

′′〉 ∈ u[SRM-rech].expected(sp) it is the case that i
′ ≤ i′′. Thus, it follows that i′ ≤ i.

The variable SRM-rech.expected(sp) is set in α upon either the transmission (when h = sp)
or the reception (when h 6= sp) of p

′. Let v ∈ states(RMI) be the state following either the
transmission or the reception of p′ by h in α, respectively. By definition of v, it is the case
that v[SRM-rech].expected(sp) 6= ∅. Since α contains neither crashh nor rm-leaveh actions
(Constraints 5.1 and 5.2), Lemma 5.21 implies that for any v′ ∈ states(RMI) in α, such that
v ≤α v

′, it is the case that v[SRM-rech].expected(sp) = v′[SRM-rech].expected(sp).

Constraint 5.3 implies that v.now ≤ α.trans-time(p′) + d. Moreover, Lemma 4.3 implies that
α.trans-time(p′) ≤ α.trans-time(p). Since α.trans-time(p) + d < u′.now , it follows that v.now <
u′.now . Since v.now < u′.now , it follows that v ≤α u′. Thus, since v ≤α u′, u′ ≤α u,
and v[SRM-rech].expected(sp) 6= ∅, Lemma 5.21 implies that v[SRM-rech].expected(sp) =
u′[SRM-rech].expected(sp) and v[SRM-rech].expected(sp) = u[SRM-rech].expected(sp). Thus,
it is the case that u′[SRM-rech].expected(sp) = u[SRM-rech].expected(sp). Since id(p) ∈
u[SRM-rech].expected(sp), it follows that id(p) ∈ u′[SRM-rech].expected(sp).

Let k∗ = dlog2[(D1 + D2 + D3 + 2)d − d] − log2(C3d)e. The following lemma states that, under
Constraints 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6, k∗ is the number of requests that must be scheduled
before the request scheduling delays become large enough to ensure that one round’s replies do not
interfere with the next round’s requests.

Lemma 5.25 Let k ∈ N+, k ≥ k∗, p ∈ PRM-Client, h, h
′ ∈ H,h 6= h′, and α ∈ C-aexecsk(RMI),

such that α contains the transmission of p.

Let u ∈ states(RMI) be any state in α, such that id(p) ∈ u[SRM-rech].expected(source(p)) and
id(p) 6∈ u[SRM-rech].scheduled-rqsts? , following which h schedules a k+2-nd round request for p.

Let u′ ∈ states(RMI) be any state in α, such that id(p) ∈ u′[SRM-rech′].delivered(source(p)),
following which h′ receives the k-th and k + 1-st round requests of h for p.

The replies of h′ to the k-th and k + 1-st round requests of h for p are distinct.

Proof: It suffices to show that the reply abstinence period pertaining to h′’s reply to the k-th
round request of h for p expires prior to the time at which h′ receives the k+1-st round request of
h for p.

Let tk, tk+1 ∈ R≥0 be the points in time in α at which h schedules its k-th and k + 1-st round
requests for p. From Lemma 5.19, h′ receives the k-th round request of h for p no later than
tk+1 + d. From Lemma 5.18, the abstinence period of the reply of h to the k-th round request of h
for p expires no later than tk+1 + d+ (D1 +D2 +D3)d.

From Lemma 5.16, h either receives or transmits its k + 1-st round request after the point
in time tk+1 + 2

kC3d. From Lemma 5.13, h′ receives such a request after the point in time
tk+1 + 2

kC3d − d + d. Since k∗ = dlog2[(D1 + D2 + D3 + 2)d − d] − log2(C3d)e and k ≥ k∗, it
follows that tk+1 + d+ (D1 +D2 +D3)d ≤ tk+1 + 2

kC3d− d+ d.

72

Recall that h′ receives the k+1-st round request of h for p after the point in time tk+1+2
kC3d−d+d.

Since tk+1 + d + (D1 +D2 +D3)d ≤ tk+1 + 2
kC3d − d + d, it follows that h′ receives the k + 1-st

round request of h for p after the expiration of the abstinence period of the reply of h′ to the k-th
round request of h for p. It follows that the replies of h′ to the k-th and k+ 1-st round requests of
h for p are distinct.

Let REC-BOUND(k) = [(2k − 1)(C1 + C2) +D1 +D2 + 2]d, for k ∈ N+. The following lemma states
that, for k ∈ N+, the recovery of any packet in an admissible execution α ∈ C-aexecsk(RMI)
involves at most k∗ + k recovery rounds. Following the k∗-th recovery round, one round’s replies
do not interfere with the next round’s requests. Thus, all recovery rounds that follow the first k∗

recovery rounds may fail only due to packet drops. Since the number of packet drops pertaining
to the recovery of any packet in α is at most k, it follows that at most k∗ + k recovery rounds are
needed to recover any packet in α.

Lemma 5.26 Let k ∈ N+, α ∈ C-aexecsk(RMI), and u, u′ ∈ states(RMI) be any states in
α such that u.now + REC-BOUND(k∗ + k) < u′.now. For any h ∈ H and p ∈ PRM-Client, if
id(p) ∈ u[SRM-rech].scheduled-rqsts? , then id(p) ∈ u′[SRM-rech].delivered(source(p)).

Proof: Since α ∈ C-aexecsk(RMI), Constraints 5.1 and 5.2 imply that the source sp of p neither
crashes nor leaves the reliable multicast group following the transmission of p. Thus, it is capable
of replying to any of the retransmission requests for p sent in α.

Suppose that id(p) ∈ u[SRM-rech].scheduled-rqsts? and let v ∈ states(RMI) be the first state in
α such that id(p) ∈ v[SRM-rech].scheduled-rqsts? and v′ ∈ states(RMI) be the first state in α
such that v.now + REC-BOUND(k∗+ k) < v′.now . By definition, it follows that v ≤α u and v

′ ≤α u
′.

Since α ∈ C-aexecsk(RMI), it contains at most k packet drops pertaining to the transmission and
recovery of p. The loss of the original transmission of the packet p accounts for at least one such
packet drop. Thus, at most k − 1 packet drops may occur during the recovery p. Lemmas 5.4
and 5.5 imply that following the state v in α, the host h continues initiating recovery rounds for p
until p is recovered. We proceed by showing that the host h recovers p by the completion time of
its k∗ + k recovery round for p.

Consider the interaction of sp and h pertaining to h’s recovery of p. From Lemma 5.25, the replies
of sp to the requests of the recovery rounds of h following the k

∗-th round of h are distinct. Thus,
each recovery round following the k∗-th recovery round may fail either due to the loss of the request
or the loss of the reply of the given round; that is, each recovery round following the k∗-th recovery
round that fails accounts for at least one packet drop. It follows that at most k∗+k recovery rounds
are required for h to successfully recover p.

Corollary 5.15, Lemma 5.17, and Constraint 5.3 imply that h completes its k∗ + k recovery rounds
no later than REC-BOUND(k∗ + k) time units past the point in time at which it schedules its first
request for p. Since v is the first state in α such that id(p) ∈ v[SRM-rech].scheduled-rqsts? and
v.now + REC-BOUND(k∗ + k) < v′.now , it follows that h receives p prior to v′ in α. Lemma 5.23
implies that id(p) ∈ v′[SRM-rech].delivered(sp).

Since v′ ≤α u′ and id(p) ∈ v′[SRM-rech].delivered(sp), Lemma 5.23 implies that id(p) ∈
u′[SRM-rech].delivered(sp).

Lemma 5.27 Let k ∈ N+, ∆ = DET-BOUND + REC-BOUND(k∗ + k), p ∈ PRM-Client, α be any
admissible timed execution of RMI in C-aexecsk(RMI) that contains the transmission of p, and
u ∈ states(RMI) be any state in α such that α.trans-time(p) + ∆ < u.now. For any h ∈ H, if
h ∈ u.intended(p), then it is the case that h ∈ u.completed(p).

73

Proof: Let sp = source(p) and suppose that h ∈ u.intended(p). Since h ∈ u.intended(p), it follows
that id(p) ∈ u[SRM-rech].expected(sp). Let u

′ ∈ states(RMI) be the earliest state in α such that
α.trans-time(p)+DET-BOUND < u′.now . Since d ≤ DET-BOUND, it follows that α.trans-time(p)+d <
u′.now . Since id(p) ∈ u[SRM-rech].expected(sp), α.trans-time(p) + d < u′.now , and u′ ≤α u,
Lemma 5.24 implies that id(p) ∈ u′[SRM-rech].expected(sp). Constraint 5.6 implies that either
id(p) ∈ u′[SRM-rech].delivered(sp) or id(p) ∈ u′[SRM-rech].scheduled-rqsts? .

First, consider the case where id(p) ∈ u′[SRM-rech].delivered(sp). Since either u
′ ≤α u and

id(p) ∈ u′[SRM-rech].delivered(sp), Lemma 5.23 implies that id(p) ∈ u[SRM-rech].delivered(sp).
It follows that h ∈ u.completed(p).

Second, consider the case where id(p) ∈ u′[SRM-rech].scheduled-rqsts? . Let (u
′
−, π, u

′) be the
discrete transition in α leading to the particular occurrence of u′. Since, u′ is the earliest state in
α such that α.trans-time(p) + DET-BOUND < u′.now , it follows that π is a non-stuttering time-
passage action, u′−.now < u′.now , and u′−.now ≤ α.trans-time(p) + DET-BOUND. Since time-
passage actions do not affect the derived variable SRM-rech.scheduled-rqsts? , it follows that
id(p) ∈ u′−[SRM-rech].scheduled-rqsts? . Since u′−.now ≤ α.trans-time(p) + DET-BOUND and
α.trans-time(p) + ∆ < u.now , it follows that u′−.now + REC-BOUND(k∗ + k) < u.now .

Since u′−.now + REC-BOUND(k∗ + k) < u.now and id(p) ∈ u′−[SRM-rech].scheduled-rqsts? ,
Lemma 5.26 implies that id(p) ∈ u[SRM-rech].delivered(sp); that is, h ∈ u.completed(p).

We conclude by showing that any timed trace of RMI in the set C-attracesk(RMI) is also a timed
trace of the specification automaton RMS(∆), for ∆ = DET-BOUND+REC-BOUND(k∗+k). Thus, given
Constraints 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6 and assuming that the number of packet drops pertaining
to the transmission and, potentially, the recovery of any packet is bounded, RMI implements the
timely reliable multicast service specification RMS(∆).

The proof of this claim involves showing that the relation R of Definition 5.1 is a timed forward
simulation relation from RMI to RMS(∆), under the aforementioned constraints and assumptions.
The key part of the proof involves showing the correspondence of the time-passage steps. In
particular, we show that active packets are delivered to all the hosts is their intended delivery sets
within ∆ time units.

Theorem 5.28 Let k ∈ N+ and ∆ = DET-BOUND+ REC-BOUND(k∗ + k). Then, it is the case that
C-attracesk(RMI) ⊆ attraces(RMS(∆)).

Proof: It suffices to show that the relation R of Definition 5.1 is a timed forward simulation
relation from RMI to RMS(∆), for any execution in the set C-attracesk(RMI).

The proof that R is indeed a timed forward simulation relation is identical to that of Lemma 5.11
with the exception that in this case showing the correspondence of the time passage transitions is
nontrivial.

Consider any discrete transition (u, π, u′) ∈ trans(RMI), where π = ν(t), for some t ∈ R≥0, that
occurs in any admissible execution of RMI in the set C-attracesk(RMI). It suffices to show that,
for any reachable state s of RMS(∆) such that (u, s) ∈ R, there exists a timed execution fragment
α of RMS(∆) such that α.fstate = s, α.lstate = s′, ttrace(α) = ttrace(uπu′), the total amount of
time-passage in α is the same as the total amount of time-passage in uπu′, and (u′, s′) ∈ R.

Let s be any reachable state of RMS(∆) such that (u, s) ∈ R. The timed execution fragment
of RMS(∆) corresponding to the step (u, π, u

′) is comprised solely of the ν(t) action. We must
show that the ν(t) action is enabled in s; that is, we must show that, for any active packet
p ∈ s.active-pkts, it is the case that either s.now + t ≤ s.trans-time(p) + ∆ or s.intended(p) ⊆
s.completed(p). Since (u, s) ∈ R, it suffices to show that, for any active packet p ∈ u.active-pkts, it

74

is the case that either u.now + t ≤ u.trans-time(p) + ∆ or u.intended(p) ⊆ u.completed(p).

Consider any active packet p ∈ u.active-pkts. It suffices to show that if u.trans-time(p) + ∆ <
u.now + t, then u.intended(p) ⊆ u.completed(p). Let h ∈ H be any host in u.intended(p). Since
the action ν(t) of RMI does not affect the derived history variable SRM.intended(p), it follows
that h ∈ u′.intended(p). Moreover, since u.trans-time(p) + ∆ < u.now + t and the action ν(t)
increments the now variable by t time units, it follows that u.trans-time(p) + ∆ < u′.now . Since
∆ = DET-BOUND + REC-BOUND(k∗ + k), u.trans-time(p) + ∆ < u′.now , and h ∈ u′.intended(p),
Lemmas 5.20 and 5.27 imply that h ∈ u′.completed(p). Since the action ν(t) of RMI does not
affect the derived history variable SRM.completed(p), it follows that h ∈ u.completed(p).

6 Contributions & Future Work

The contributions of this paper are several. First, we present a timed I/O automaton model of the
reliable multicast service. This model formally specifies the behavior of several reliable multicast
protocols that strive to provide eventual delivery with, possibly, some timeliness guarantees. In
particular, it dictates what it means to be a member of a reliable multicast group and which packets
are guaranteed delivery to which members of the reliable multicast group. Moreover, we present a
timed I/O automaton model of the SRM protocol. This model decomposes the functionality of the
reliable multicast service, thus facilitating reasoning and the future modeling of either variations
and extensions to SRM’s recovery scheme, or other reliable multicast protocols altogether. We
show that our model of SRM is safe, in the sense that it may only deliver appropriate packets to
each member of the reliable multicast group. We also show that, under certain constraints, our
implementation is live, in the sense that it guarantees the timely delivery of the appropriate packets
to each member of the reliable multicast group.

In the future, we intend to relax the constraints used in our liveness analysis of SRM and to analyze
the performance of SRM in the context of a dynamic group membership. We also intend to model,
analyze, and compare the performance of extensions to SRM and other reliable multicast protocols.
The safety analysis of each such protocol will guarantee that the protocols are compared on an equal
footing; something rarely done precisely when comparing protocols.

Acknowledgments

We thank Idit Keidar for helpful comments and suggestions.

References

[1] Floyd, S., Jacobson, V., McCanne, S., Liu, C.-G., and Zhang, L. A Reliable Multicast
Framework For Light-Weight Sessions And Application Level Framing. IEEE/ACM Transactions on
Networking 5, 6 (Dec. 1997), 784–803.

[2] Holbrook, H. W., Singhal, S. K., and Cheriton, D. R. Log-Based Receiver-Reliable Multicast
For Distributed Interactive Simulation. In Proc. Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, ACM Special Interest Group on Data Communication
(ACM/SIGCOMM’95) (1995), ACM Press, New York, pp. 328–341.

[3] Li, D., and Cheriton, D. R. OTERS (On-Tree Efficient Recovery using Subcasting): A Reliable
Multicast Protocol. In Proc. 6th IEEE International Conference on Network Protocols (IEEE/ICNP’98)
(Austin, Texas, 1998), pp. 237–245.

75

[4] Lin, J. C., and Paul, S. RMTP: Reliable Multicast Transport Protocol. In Proc. 15th Annual
Joint Conference of the IEEE Computer and Communications Societies, Networking the Next Generation
(IEEE/INFOCOM’96) (San Francisco, CA, Mar. 1996), vol. 3, pp. 1414–1424.

[5] Liu, C.-G., Estrin, D., Shenker, S., and Zhang, L. Local Error Recovery in SRM: Comparison of
Two Approaches. IEEE/ACM Transactions on Networking 6, 6 (Dec. 1998), 686–692.

[6] Lynch, N. A. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1996.

[7] Papadopoulos, C., Parulkar, G., and Varghese, G. An Error Control Scheme For Large-
Scale Multicast Applications. In Proc. 17th Annual Joint Conference of the IEEE Computer and
Communications Societies (IEEE/INFOCOM’98) (San Francisco, CA, Mar. 1998), vol. 3, pp. 1188–
1196.

[8] Paul, S., Sabnani, K. K., Lin, J. C., and Bhattacharyya, S. Reliable Multicast Transport
Protocol (RMTP). IEEE Journal on Selected Areas in Communications 15, 3 (Apr. 1997), 407–421.

76

