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Abstract. We present a technique that enables the focused application
of multiple analyses to different modules in the same program. Our re-
search has two goals: 1) to address the scalability limitations of precise
analyses by focusing the analysis on only those parts of the program that
are relevant to the properties that the analysis is designed to verify, and
2) to enable the application of specialized analyses that verify proper-
ties of specific classes of data structures to programs that simultaneously
manipulate several different kinds of data structures.
In our approach, each module encapsulates a data structure and uses
membership in abstract sets to characterize how objects participate in
its data structure. Each analysis verifies that the implementation of the
module 1) preserves important internal data structure representation
invariants and 2) conforms to a specification that uses formulas in a set
algebra to characterize the effects of operations on the data structure.
The analyses use the common set abstraction to 1) characterize how
objects participate in multiple data structures and to 2) enable the inter-
analysis communication required to verify properties that depend on
multiple modules analyzed by different analyses.
We characterize the key soundness property that an analysis plugin must
satisfy to successfully participate in our system and present several anal-
ysis plugins that satisfy this property: a flag plugin that analyzes modules
in which abstract set membership is determined by a flag field in each
object, and a graph types plugin that analyzes modules in which abstract
set membership is determined by reachability properties of objects stored
in tree-like data structures.

Keywords: Program Analysis, Program Verification, Shape Analysis, Typestate,
Formal Methods, Programming Language Design

1 Introduction

Data structure consistency is important for the successful execution of programs
— if an error corrupts a program’s data structures, the program can quickly ex-
hibit unacceptable behavior or even crash. Motivated in part by the importance
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of this problem, researchers have developed many algorithms for verifying that
programs preserve important consistency properties [5, 7, 9, 19,24,50,55].

However, two problems complicate the successful application of these kinds of
analyzes to practical programs: scalability and diversity. Because data structure
consistency often involves quite detailed object referencing properties, many an-
alyzes fail to scale. Because of the vast diversity of data structures, each with its
own specific consistency properties, it is difficult to imagine that any one algo-
rithm will be able to successfully analyze all of the data structure manipulation
code that may be present in a sizable program.

This paper presents a new perspective on the data structure consistency
problem: instead of attempting to develop a new algorithm that can analyze some
set of consistency properties, we instead propose a technique that developers can
use to apply multiple pluggable analyzes to the same program, with each analysis
applied to the data structures for which it is appropriate. The key features of
this technique include:

– Modular Analysis, Shared Objects, and Encapsulated Fields: In our
approach, the program contains a set of modules, each of which encapsulates
the implementation of one of the data structures. Instead of attempting to
analyze the entire program, each analysis operates on a single module. By
focusing each analysis on only those parts of the program that are relevant
for the properties it is designed to verify, we enable the application of so-
phisticated analyzes to sizable programs composed of multiple modules.
One factor that complicates this approach is the need for objects to par-
ticipate in multiple data structures and therefore the need to share objects
between modules analyzed by different algorithms. To eliminate the possi-
bility that one module may corrupt another’s data structure (and to ensure
that each algorithm analyzes all of the relevant code), modules encapsulate
fields (and not objects): the underlying language prevents one module from
accessing the fields of another module. Each module therefore encapsulates
all of the fields required to implement its data structure; objects that partic-
ipate in multiple data structures from multiple modules contain fields from
each of these modules.

– Specification via Set Abstraction: Each module has an implementation
and a specification. It is the responsibility of the analysis to verify that the
implementation correctly implements the specification. Instead of exposing
the implementation details of the encapsulated data structure, the speci-
fication uses a collection of abstract sets to summarize the effect of each
procedure. This collection of sets characterizes how objects participate in
various data structures. For example, the specification for a linked list might
have an abstract set that contains all of the objects in the linked list. The
specification for the insert procedure would indicate that the procedure adds
the inserted object into the set; the specification for the remove procedure
would indicate a corresponding removal.

– Abstraction Functions and Internal Data Structure Consistency:
Each analysis uses an abstraction function to establish the connection be-
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tween the concrete data structure implementation and abstract set mem-
bership. This abstraction function enables the analysis to translate the set
membership properties of objects that cross module boundaries back into
concrete data structure properties. These concrete properties are often cru-
cial for preserving the internal consistency of the data structure.
For example, a list insert procedure may require that an object to be inserted
must not already be a member of the abstract set containing all of the objects
in the list. This set membership property, in turn, enables the analysis to
verify that the object is not already in the list, which may be the precondition
required to preserve the internal consistency of the list data structure.

– Invariants Involving Multiple Modules: Systems often have consistency
properties that involve multiple data structures and therefore cross encapsu-
lation boundaries. For example, some systems may require the objects that
participate in two data structures to be disjoint; others may require that
every object in one data structure to also be present in another. Note that
because these properties involve objects shared across multiple modules, dif-
ferent analyzes must somehow interoperate if they are to successfully verify
the property.
In our approach, these kinds of invariants are expressed using a boolean alge-
bra of abstract set inclusion properties and locally verified at the appropriate
program points by each analysis. This approach eliminates the need to apply
complex (and therefore potentially unscalable) analyzes across large regions
of the program. It instead promotes the appropriately focused application
of arbitrarily sophisticated analyzes to individual modules within large sys-
tems, with the results of these analyzes combined to enable the verification
of broad properties that involve multiple modules.

– Analysis Scopes: Data structure updates may legitimately violate invari-
ants as long as they restore the invariants before they complete. For in-
variants that involve multiple modules, this restoration usually requires the
coordinated invocation of procedures from multiple modules.
Our approach uses analysis scopes to identify the regions of the program
in which each invariant may be legitimately violated. Each analysis scope
contains an invariant and a collection of modules that are analyzed together
to verify the invariant. Some of these modules are exported and can be
invoked from outside the scope; the other modules may be invoked only
from within the scope. When our analysis verifies an exported module it
ensures that, if the invariants hold upon entry to the exported modules, then
they are restored upon exit. For properties that involve multiple modules,
this approach verifies that procedure invocations are properly coordinated
to preserve the invariants.

Together, these features enable the focused application of a full range of
precise, sophisticated analyzes to programs that contain multiple data structures
encapsulated in multiple modules. They promote the development of a range of
pluggable analyzes that developers can deploy as necessary to verify important
data structure consistency properties. Abstract sets enable different analyzes to
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communicate and interoperate to verify properties that cross module boundaries
to involve multiple data structures. Our approach supports the appropriately
verified participation of objects in multiple data structures, including patterns in
which objects migrate sequentially through different data structures and patterns
in which objects participate in multiple data structures simultaneously.

1.1 Contributions

This paper makes the following contributions:

– Pluggable Analyzes: It shows how to apply multiple precise analyzes to
multiple data structures encapsulated within multiple modules, with the
analysis results appropriately combined to verify properties that involve mul-
tiple modules. The approach supports sharing patterns in which objects move
between different data structures and patterns in which objects participate
in multiple data structures simultaneously.

– Set Abstraction: It introduces the use of abstract sets as the key ab-
straction that each analysis uses to characterize how objects participate
in encapsulated data structures. The connection between sets and concrete
data structure consistency properties enables modules to express the data
structure participation requirements that externally accessible objects must
satisfy without exposing the data structure representation to their clients.
The set abstraction also enables different analyzes to interoperate to verify
properties that span multiple data structures and modules.

– Analysis Scopes: It shows how to use analysis scopes to identify the regions
of the program that the analysis must process to verify invariants involving
multiple modules.

– Analysis Plugins: It presents two plugins: a flag typestate plugin designed
to analyze modules in which set membership is determined by the value of
a flag field in each object and a tree reachability plugin designed to analyze
modules in which set membership is determined by reachability properties
in tree-like data structures.

1.2 Structure

The remainder of this paper is structured as follows. Section 2 presents an ex-
ample that introduces our technique for writing modular programs and checking
them using analysis plugins. Section 3 presents the syntax and semantics of our
implementation language. Section 4 presents our module specification language.
Section 5 presents scopes, which are used to express and verify inter-module con-
sistency properties. Section 6 describes our analysis technique in detail, defines
the responsibilities of analysis plugins, and presents the flag and graph types
plugins. Section 7 presents the related work, and Section 8 concludes.
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2 Example

We next present a process scheduler example. The scheduler maintains a list of
running processes and a priority queue of suspended processes. The wakeUpFirst
procedure selects a process from the priority queue and moves it to the running
list; the suspend procedure removes the process from the running list and inserts
it back into the queue. There are three modules: the running list module, the
priority queue module, and the scheduler module, which invokes procedures in
the running list and priority queue modules.

2.1 Running List Module

Figure 1 presents the running list implementation module. The module maintains
a reference root to the first Process object in the list. The format statement
specifies that all Process objects have a next and prev field that together
implement a circular doubly-linked list. These fields are accessible only within the
RunningList module1. Note that other implementation modules may also use
additional format statements to add their own fields to Process objects. When
the program runs, each Process object will contain all of the fields declared in
all of these format statements. The module exports two procedures: the add
procedure, which inserts its parameter p into the running list, and the remove
procedure, which removes its parameter p from the running list.

Figure 2 presents the specification module for the running list. The specifica-
tion has a single abstract set, InList, which contains all of the Process objects
in the running list. The requires clause of the specification of the add proce-
dure requires the parameter p to not already be in InList. The ensures clause
states that effect of the add procedure is to add the parameter p to InList (the
notation InList’ denotes the new version of InList after the add procedure
executes; the unprimed InList denotes the old version before it executes). The
modifies clause indicates that the procedure modifies the InList set only.

Our technique allows the application of an appropriate analysis to verify that
the running list implementation satisfies its specification. An analysis based on
monadic second-order logic over trees (as implemented, for example, in the PALE
analysis tool [50] based on previous work on graph types [18, 31, 35]) is able to
verify this correspondence, but it needs some additional information to do so.
The abstraction module in Figure 3 contains this information.

The abstraction module starts by identifying the plugin to use to perform the
verification, in this case the graph types plugin. It then specifies the abstraction
function that establishes the correspondence between the concrete data structure
implementation and the abstract sets in the specification. In this case, the InList
set is defined to be all objects reachable by following next fields starting from
the root.
1 This implementation places the next and prev fields directly in the Process objects. Our

approach also supports the more common implementation that uses auxiliary encapsulated
list objects to refer to the Process objects; in that implementation the auxiliary list objects
(and not the Process objects) contain the next and prev fields.
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To verify the correspondence, the analysis plugin establishes a simulation
relation between the specification and the implementation. The plugin shows
the simulation relation for each procedure of the module by first using the ab-
straction function to map the requires, ensures, and modifies clauses to the
precondition and postcondition of the concrete data structure, and then verify-
ing the implementation of the procedure with respect to this precondition and
postcondition.

For example, to show the simulation relation for the add procedure, the plugin
assumes that p is not in the list of nodes reachable from root and shows that
the set of reachable objects at the end of the procedure is equal to the original
set extended with p.

impl module RunningList {
reference root : Process;
format Process { next, prev : Process }

proc add(p : Process) {
if (root=null) then {
root := p; p.next := p; p.prev := p;

} else { p.next := root.next; root.next := p;
p.prev := root; root.prev := p; } }

proc remove(p : Process) {
if (p=root) then {
p.next := null; p.prev := null; root := null;

} else {
Process pp, pn; pp := p.prev; pn := p.next;
pp.next := pn; pn.prev := pp;
p.next := null; p.prev := null;

} } }

Fig. 1. Running List Implementation Module

spec module RunningList {
format Process;
sets InList : Process;

proc add(p : Process)
requires not (p in InList)
modifies InList
ensures InList’ = InList + p;

proc remove(p : Process)
requires p in InList
modifies InList
ensures InList’ = InList - p; }

Fig. 2. Running List Specification Module

abst module RunningList {
use plugin GraphTypes;
InList = {x : Process | x elem root.next*};
GraphType List = { next : List | List[$];

prev : List[this.~next] }
invariant root : List | null; }

Fig. 3. Running List Abstraction Function Module
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The simulation relation need not hold unless the data structure satisfies sev-
eral internal consistency properties; we call such properties representation in-
variants. The abstraction module identifies these properties using an invariant
statement to specify that root points to a circular doubly-linked list, as iden-
tified by the List graph type declaration. As appropriate for the graph types
plugin, this declaration uses (a syntactic sugar for) monadic second-order logic
to specify that the prev field is the inverse of the next field. During the analysis
of the implementation module, the plugin assumes that this invariant holds at
the start of each procedure and proves that it holds at the end of each procedure.
In effect, the representation invariants are conjoined with the precondition and
postcondition of each public procedure. The circular doubly-linked list invariant
is crucial for proving the simulation relation: unless prev is an inverse of next,
the procedure remove(p) could not guarantee the removal of p from the set of
reachable nodes of the list.

All implementation and specification modules are written in a common lan-
guage. Section 3 discusses the common implementation language; Section 4 dis-
cusses the common specification language. But each abstraction module is writ-
ten in a language appropriate for its corresponding plugin. We expect all abstrac-
tion modules to specify, at a minimum, the abstraction function that establishes
the connection between the implementation and the specification. We also ex-
pect that abstraction modules will often identify the representation invariants
they need to establish the correspondence. The syntax of these invariants will de-
pend on the requirements of the specific analysis plugin. In general, abstraction
modules may contain any additional information useful for the analysis (such as
properties of objects that are useful to track during fixpoint computation).

2.2 Priority Queue Module

The priority queue module implements a priority queue of suspended processes
using a binary search tree. Figure 4 presents the skeleton of the SuspendedQueue
implementation module. The module introduces three new fields into the
Process format: the priority field is the sorting criterion for Process objects
in the tree, whereas left and right fields implement the tree structure.

The priority queue contains three procedures. The isEmpty procedure checks
whether the root is null. The add procedure inserts the node into the binary
search tree. The removeFirst removes the root of the binary search tree. We
omit the implementation details of this implementation.

Figure 5 presents the specification of the SuspendedQueue module. The speci-
fication summarizes priority queue procedures in terms of the set InQueue, which
is the set of all Process objects stored in the queue: isEmpty tests set emptiness,
add(p) inserts object p into the set, whereas removeFirst removes an object
from the set and returns it as the result.

Figure 6 presents the abstraction module that establishes the connection be-
tween the implementation and the specification of the priority queue by defining
the set InQueue as the set of all objects reachable along left and right fields. As
in the case of RunningList module, the correspondence between implementation
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impl module SuspendedQueue {
reference root:Process;
format Process {

priority : int;
left, right : Process; }

proc isEmpty() returns b : boolean { ... }
proc add(p : Process) { ... }
proc removeFirst() returns p : Process { ... }

}

Fig. 4. Skeleton of the Priority Queue Implementation Module

spec module SuspendedQueue {
format Process;
sets InQueue : Process;

proc isEmpty() returns b : boolean ensures b <=> InQueue = {};

proc add(p : Process)
requires not (p in InQueue)
modifies InQueue
ensures InQueue’ = InQueue + p;

proc removeFirst() returns p : Process
requires InQueue != {}
modifies InQueue
ensures InQueue’ = InQueue - p;

}

Fig. 5. Priority Queue Specification Module

abst module SuspendedQueue {
use plugin GraphTypes;
InQueue = {x : Process | x elem root.<left+right>*};
GraphType Tree = {left, right : Tree | null}
invariant root : Tree | null;

}

Fig. 6. Priority Queue Abstraction Module

and specification is verified using the graph types plugin. The representation in-
variant specifies that the data structure referenced by root satisfies the property
Tree, which is a simple graph type with only backbone edges [35].

2.3 Scheduler Module

Figure 7 presents the Scheduler implementation module. This module uses a
format declaration to add a status field to Process objects; this field is 0 if
the process is suspended and 1 if the processes is running. This field encodes the
conceptual state of each process (either running or suspended) and enables the
module to quickly determine the status of a process. The Scheduler module uses
the RunningList and SuspendedQueue modules to actually store the running
and suspended processes.

The specification module in Figure 8 has two abstract sets: the Running
set of running processes and the Suspended set of suspended processes. These
sets correspond to the conceptual states that Process objects can be in. The
specifications of the procedures (suspend, hasSuspended, and wakeUpFirst)
therefore reflect the movement of objects between the various states.
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impl module Scheduler {
format Process { status : int; }

proc suspend(p : Process) {
p.status := 0;
RunningList.remove(p);
SuspendedQueue.add(p); }

proc hasSuspended() returns b : boolean {
b := not SuspendedQueue.isEmpty(); }

proc wakeUpFirst() {
p := SuspendedQueue.removeFirst();
p.status := 1;
RunningList.add(p); }

}

Fig. 7. Scheduler Implementation Module

spec module Scheduler {
format Process;
sets Running, Suspended;

proc suspend(p : Process)
requires p in Running
modifies Running, Suspended
calls RunningList.remove, SuspendedQueue.add
ensures Suspended’ = Suspended + p and

Running’ = Running - p;

proc hasSuspended() returns b : boolean
calls SuspendedQueue.isEmpty
guarantees b <=> Suspended!={};

proc wakeUpFirst()
requires Suspended != {}
modifies Running, Suspended
calls SuspendedQueue.removeFirst, RunningList.add
ensures exists p in Suspended.

Suspended’ = Suspended - p and
Running’ = Running + p;

}

Fig. 8. Scheduler Specification Module

abst module Scheduler {
use plugin flags;
Running = {x : Process | x.status=1};
Suspended = {x : Process | x.status=0};

}

Fig. 9. Scheduler Abstraction Module

The abstraction module in Figure 9 uses the status flag to define the
Running and Suspended sets. The flags plugin described in Section 6.3 can use
this abstraction function to verify that the scheduler implementation correctly
implements its specification.

When verifying the conformance of the suspend procedure, the flag plu-
gin must take into account the effects of the RunningList.remove and
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SuspendedQueue.add procedures, which are located in modules outside the
Scheduler module. It turns out that the relevant modules, RunningList and
SuspendedQueue, are analyzed using an entirely different plugin, namely the
tree reachability plugin. Nevertheless, the flag plugin can take into account the
effect of these procedures using their specifications, because these specifications
are expressed in the common specification language based on sets.

2.4 Scope Invariants

The process scheduler should satisfy several properties that involve data struc-
tures in multiple modules. Specifically, the Running set from the scheduler mod-
ule should contain the same objects as the running list, the Suspended set should
contain the same objects as the priority queue, and the Running and Suspended
sets should be disjoint.

Note that these properties are legitimately (but temporarily) violated when
the scheduler is running as it assigns the status flag and calls procedures in
the running list and priority queue modules. Note also that there must be some
mechanism to prevent external modules from calling running list and priority
queue procedures directly without going through the scheduler module — such
uncoordinated calls could cause the scheduler data structures to fall out of synch
with each other, violating the properties listed above.

We address these issues with analysis scopes; Figure 10 presents the analysis
scope for our example. In general, scopes are a collection of modules and invari-
ants; each scope may have private modules and exported modules. The purpose
of scopes is to specify invariants that involve multiple modules, specify a policy
on when the invariants should hold, and control access to module procedures
from outside the scope.

scope ProcessScheduler {
modules Scheduler, RunningList, SuspendedQueue;
exports Scheduler;
invariant disjoint(Scheduler.Running, Scheduler.Suspended) and

(Scheduler.Running = RunningList.InList) and
(Scheduler.Suspended = SuspendedQueue.InQueue);

}

Fig. 10. Scope Declarations

Our example scope contains contains an invariant with three clauses that
together express the set equality and disjointness properties discussed above.
It also identifies a list of modules within which the invariant may be violated
(these include the Scheduler, RunningList, and SuspendedQueue modules).
Finally, it exports the Scheduler module, indicating that the RunningList and
SuspendedQueue modules can be called only from within the other modules in
the scope. Scheduler procedures, on the other hand, can be invoked from outside
the scope. The flag analysis of the Scheduler module assumes the invariant holds
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at the start of each procedure and must show that it holds at the exit of the
procedure.

Note that the flag analysis uses the specifications of the SuspendedQueue
and RunningList modules (which are expressed in terms of abstract sets) to
verify the invariant. Note also that these specifications are verified using an
independent shape analysis based on graph types that is capable of analyzing
recursive linked data structures. By encapsulating the complexity of the internal
data structure properties inside the relevant modules, our technique enables the
use of expensive analyzes in those modules that require them, while allowing the
use of simpler and faster analyses in the remainder of the program.

2.5 Combining Sets and Invariants

This example illustrates how our set-based system can capture relationships be-
tween object states based on properties such as data structure participation and
the contents of object fields. It is, of course, possible to build more sophisticated
relationships. Consider, for example, a data structure that should contain only
objects whose (primitive) fields satisfy a certain property. The developer could
enforce this constraint by defining the abstract set of objects that satisfy the
property, the abstract set of objects in the data structure, and a scope invariant
that requires the first set to be a superset of the second. This invariant would
enable analyses to recognize that all objects fetched from the data structure
satisfy the property.

Consider a program that first modifies the fields of an object in a way that
may violate the property, then removes the object from the data structure. In
period between the modification and the removal, the analysis tracks the vio-
lation of the invariant and hence is able to recognize that objects fetched from
the data structure during this period may not satisfy the property. The restora-
tion of the invariant after the removal also restores the ability of the analysis to
recognize that objects fetched from the data structure satisfy the invariant.

3 Implementation Language

The implementation language is a simple imperative language with procedures,
object references, and dynamic object allocation. All modules are implemented
in this implementation language. With the exception of formats, which enable
the distributed declaration of encapsulated object fields, the language is fairly
standard.

3.1 Implementation Language Syntax

Figure 11 presents the syntax for the implementation language. Each implemen-
tation module may contain format declarations, module variables, and proce-
dures. Each format declaration describes the fields that the module contributes
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to objects of the specified type [12, 42]. Each module variable contains a refer-
ence to an object; references serve as persistent roots of data structures. Each
procedure contains a sequence of imperative statements that manipulate refer-
ences and objects. Note that the language has a built-in extension point: the A
production allows assertions, which analysis plugins may use (after they verify
that the assertion holds) to help establish the connection with the corresponding
specification module.2

The type checker ensures that any well-typed program accesses only fields
that exist and are visible to the executing module; it also ensures the correctness
of calls clauses from specifications. It checks three properties: that the types
of the actual and formal parameters match at call sites; that each field access
refers to a field declared in a format declaration from the enclosing module; and
that the calls clause in the specification of a procedure accurately describes its
implementation.

M ::= impl module m {F ∗R∗P ∗}
F ::= format t {Fd∗}

Fd ::= f∗ : t;
R ::= reference v : t;
P ::= proc pn(p1 : t1, . . . , pn : tn)[returns r : t] { St∗ }
St ::= {St} | Ld∗ | El:=E; | [m.] pn(E) | return r |

if (B) then St1 else St2 | while B do St | assert A
Ld ::= t l∗;
El ::= l | l.f | v | p | r
E ::= El | null | [m.]pn(E)
B ::= E=E | E!=E
A − analysis plugin-specific syntax for assertions

Fig. 11. Implementation Language Grammar

Implementation Language Operational Semantics The operational se-
mantics of the implementation language (see the Appendix) tracks a program
state consisting of the program counter, stack, and a garbage-collected heap.
The heap contains values for references, fields and local variables. The semantics
assumes that structured code has been converted to a control-flow graph and
that nested expressions have been normalized into three-address code.

4 Specification Language

Figure 12 presents the syntax for the module specification language. Abstract
set declarations identify the module’s abstract sets. Procedure specifications use
2 The implementation language compiler ignores assertions — they are used only during the

analysis and, unlike assertions in many other languages, do not dynamically check conditions
that the developer expects to be true.
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these sets to identify the effects of each procedure in the module. The requires
and ensures clauses in the procedure specifications use arbitrary boolean clauses
B over abstract sets to specify these effects. The calls clause specifies which
procedures may be called by a procedure; this information is checked by the
implementation language typechecker, and allows the construction of call graphs
using only module specifications. The modifies clause bounds the collection
of sets directly modified by a procedure; note that modifies clauses need not
declare sets modified by the transitive callees of a procedure.

M ::= spec module m {F ∗D∗P ∗}
F ::= format t∗;
D ::= sets S∗ : t;
P ::= proc pn(p1 : t1, . . . , pn : tn)[returns r : t]

[requiresB] [modifesS∗] [calls c∗ ] ensuresB
c ::= M [.p]
B ::= SE1 = SE2 | SE1 ⊆ SE2 | B ∧B | B ∨B | ¬B | ∃S.B | card(SE)=k

SE ::= ∅ | [m.] S | [m.] S′ | SE1 ∪ SE2 | SE1 ∩ SE2 | SE1 \ SE2

| disjoint (S1, S2)

Fig. 12. Grammar for Module Specification Language

The expressive power of boolean clauses B is the first-order theory of boolean
algebras, which is decidable [36, 45]. As described in Section 6.3, the dataflow
analysis for the typestate flag plugin uses this fact to synthesize loop invariants,
to implement the transfer function for each statement, and to check implication
when verifying ensures clauses. We expect other plugins to use this decidability
property in similar ways.

5 Specifying Inter-Module Invariants Using Scopes

In our system, scopes serve two purposes: they enable the specification and verifi-
cation of cross-module invariants by identifying the subset of a program in which
an invariant is expected to hold, and they combat specification aggregation by
hiding irrelevant sets from callers. Scopes are key to the verification of invariants
containing sets from different modules: by designating certain modules as public
access points, we ensure that scope invariants always hold outside their declaring
scope. (For verification of invariants associated with objects see [6].) Scopes also
shield callers from irrelevant detail: only sets from exported modules are visible
to modules in different scopes. This serves to bound the detail required in pro-
cedure specifications: the specification of procedure p belonging to scope C need
only contain the effects of procedures on sets in C and exported sets outside C.
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5.1 Definition of Scopes

Figure 14 presents the syntax of scope declarations. A scope declaration contains
a set of module names, some of which are exported, and a set of scope invariants.
Note that a module may be a member of multiple scopes; this allows modules
to be grouped along orthogonal axes of their functionality.
How Scopes Restrict Method Calls Recall that each scope declares some of
its modules to be exported. When a module M is exported in a scope C, then
procedures of M may be invoked from modules outside of C. Other modules M ′

of C are private members of that scope, and their procedures cannot be called
from outside scope C. We now formally explain how scopes restrict method
calls; the restrictions induced by scopes allow our technique to guarantee the
soundness of invariants and of set hiding.

Let scopes(M) denote the set of scopes C such that C declares M in
its modules clause, and let exportingScopes(M) denote the set of scopes C
such that C declares M in its exports clause. Clearly, exportingScopes(M) ⊆
scopes(M). We define the “private yard” of module M by yard(M) = scopes(M)\
exportingScopes(M); note that M may only be accessed by modules M ′ such that
yard(M) ⊆ scopes(M ′). In particular, we say that module M ′ calls module M if
the body of some procedure in the implementation of module M ′ contains a call
to a procedure declared in module M . A procedure call from M ′ to M is allowed
if and only if M is exported in every scope C ∈ scopes(M) \ scopes(M ′) of the
scope difference; formally, we require the following inter-scope call condition to
be satisfied for every pair of modules (M ′,M):
Inter-Scope Call Condition: If module M ′ calls module M , then

scopes(M) \ scopes(M ′) ⊆ exportingScopes(M)

or, equivalently, yard(M) ⊆ scopes(M ′), as stated above.
Hence, to introduce a new module M ′ such that M ′ is allowed to call M , we

must add M ′ to all scopes in yard(M). Note also that introducing new scopes
into program only makes the condition yard(M) ⊆ scopes(M ′) stronger, never
weaker.

Figure 13 illustrates two scopes and two permissible inter-scope calls. In this
example, we declare scopes A and B; scope A contains modules M and N, while
scope B contains N and P. Module N is exported from A, while P is exported from
B. The illustrated call chain from P through N to M is legal: P may call N because
the scope difference between P and N contains the scope A, and N is exported
from A. On the other hand, N may call M because their scope difference is ∅. The
table in Figure 13 exhaustively lists all possible inter-scope calls for our example.

5.2 Uses of Scopes

Scopes allow our technique both to check invariants between sets and to combat
specification aggregation.
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scope A

{ modules M, N; exports N; }

scope B

{ modules N, P; exports P; }

spec module P

{ proc f() calls N.g; }

spec module N

{ proc g() calls M.q; }

spec module M

{ proc q(); }

outside → P X M → P X N → P X
outside → N × P → N X M → N ×
outside → M × P → M × N → M X

Fig. 13. Example of permissible inter-scope method calls

Scope Invariants Scope invariants are boolean clauses expressing relationships
between sets in different modules. Scope invariants must be true in the initial
state of the program, before any code is executed. If scope C declares scope
invariant I, the basic idea is that I is assumed to hold whenever control is
transferred into C, and therefore must be proved when exiting C; Section 6.1
provides full details of our policy on invariants.

S ::= scope s {modules M∗; exports M∗; invariant B; }

Fig. 14. Grammar for Scope Declarations

On Specification Aggregation Boolean clauses in a specification of module
M refer to sets from modules in scopes(M) plus sets from exported modules.
Scopes enhance modularity by allowing developers to separate different parts
of programs and ensuring that these parts only communicate by invoking ex-
ported modules, which (visibly) only manipulates sets belonging to these ex-
ported modules. In particular, one consequence of using scopes is that module
M need not report the effects of a transitive callee M ′, if M ′ is unexported and
scopes(M) ∩ scopes(M ′) = ∅. Module M need not (indeed, it may not) declare
sets of M ′ in its modifies and ensures clauses; on the other hand, a module M0

sharing a scope with M ′ may refer to sets in M ′ in its modifies and ensures
clauses, as required.
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6 Modular Analysis using Analysis Plugins

To analyze a program, our technique uses an analysis plugin to check each mod-
ule in turn; the program successfully verifies iff each of the modules successfully
verifies in isolation. To analyze a module M , the system uses the following in-
formation:

– the implementation, specification, and abstraction module for M ;
– specifications of modules whose procedures are called from the implementa-

tion module for M ;
– whether any callsites in the implementation of M are potentially module-

reentrant or scope-reentrant;
– declarations of scopes in scopes(M); and
– the sets scopes(M ′) for every module M ′ called from M .

Plugins and Abstraction Modules The analysis of M is performed primar-
ily by the analysis plugin specified in the abstraction module for M . Figure 15
presents the generic syntax of abstraction modules; each analysis plugin aug-
ments this syntax with its plugin annotation language (denoted A). In addition,
abstraction modules may supply additional information in a form expected by
the analysis plugin. The plugin annotation language is used both to write the
abstraction function defining the representation of each set and to state the
representation invariant. All plugin annotation languages extend the set speci-
fication language of Section 4 with specialized constructs of the plugin property
language (denoted Fp) for describing properties of concrete data structures of the
implementation of M . The key responsibility of the plugin is to verify that the
implementation of a procedure conforms to a given requires/ensures clause
expressed in the plugin annotation language.
Specification Module Robustness Conditions We require two conditions
on abstraction function modules. These conditions ensure that the new state-
ment never changes the values of sets in specification modules. More specifically,
consider module M1 containing the statement s: x = new t, and set S declared
in some specification module M2 6= M1. Then, for the representation invariant
IR in M2, the execution of statement s does not change the validity of IR. Fur-
thermore, let S′ represent the contents of set S after the execution of statement
s. Then S′ = S.

M ::= abst module m {U D∗ I }
U ::= use plugin p;
D ::= S={x : f |Fp(x)};
I ::= invariant A;
A ::= Fp | ¬A | A1 ∧A2 | A1 ∨A2 | let S={x : f |Fp(x)} in B

Fig. 15. Syntax of Abstraction Modules
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Analysis Summary The overall process of analyzing module M consists of
the following sequence of steps:

1. Checking Inter-Scope Call Permissions: For each procedure invocation
M1.p in the implementation of M , ensure that M1 is exported in every scope
in scopes(M1) \ scopes(M).

2. Modifies Clause Expansion: For each procedure p of module M with
modifies clause m and ensures clause e, augment e to yield

e′ := e ∧
^

S∈U\m∗
S′=S,

where m∗ is the union of m and the modifies clauses m′ of transitive callees
of p, and U contains all sets in scopes(M) and all sets belonging to exported
modules called in the implementation of p.

3. Reentrant Call Detection Using the call graph constructed from the pro-
gram’s set specifications, mark module-reentrant and scope-reentrant call
sites. A module-reentrant site directly calls procedure p belonging to some
module M ′ 6= M , which in turn transitively calls p′ ∈M . Similarly, a scope-
reentrant site directly calls p belonging to scope C ′ 6∈ scopes(M), which
transitively calls p′ belonging to C ∈ scopes(M).

4. Scope Invariant Distribution: For every scope C that exports M , add
the scope invariant of C to the following program points:
(a) requires and ensures clause of each procedure declared in M ;
(b) each scope-reentrant call to a procedure declared outside C.

5. Module Projection: If a procedure p in M calls a procedure p′ in module
M ′ and the specification of p′ uses a set S not declared in any of the scopes
scopes(M), then project the specification of p′ by quantifying over S.

6. Requires/Ensures Clause Mapping: Use the abstraction function for
sets specified in the abstraction function module for M to transform the
requires and ensures clause of all procedure specifications so that each
clause refers to the concrete data structure from the implementation module
of M instead of the abstract set specified in the specification module of M .

7. Representation Invariant Distribution: Add the representation invari-
ant of M to the following program points:
(a) requires and ensures clause of each procedure declared in M ;
(b) each module-reentrant call to a procedure declared outside M .

8. Ensuring the Simulation Relation: Using the analysis plugin specified in
the abstraction module for M , verify that the implementation of the body of
each procedure P declared in M conforms to the effective requires/ensures
clause pair for P , as computed in the previous steps.

We next describe each of these steps in greater detail.

6.1 Invariant Distribution and Mapping

The first step in analysing a module M consists of preprocessing the invariants
relevant to M and mapping the requires/ensures clauses into a form suit-
able for analysis by the appropriate analysis plugin specified in the abstraction
module for M .
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Invariants express key intramodule and intermodule properties of programs.
We adopt the policy whereby an invariant may be temporarily violated in some
program region as long as it is reestablished upon exit from that region. Invariant
distribution implements this policy by adding appropriate checks for invariants
upon exit from the region, and by allowing the the analysis to rely on the invari-
ants when they are guaranteed to hold. To specify precisely when an invariant
holds, we introduce the notion of being in control: a module M is in control if
the activation record of some procedure p declared in M is on the top of the call
stack; a scope C is in control if some module declared in C is in control.

A scope invariant for scope C holds whenever C is not in control. Similarly,
a representation invariant for module M holds whenever M is not in control.
Scope Invariant Distribution When analyzing the body of procedure p in
an exported module of C, the analysis distributes scope invariant IS to p by
conjoining IS to the requires and ensures clauses of p:

ensuresSI(p) = ensures(p) ∧ IS
requiresSI(p) = requires(p) ∧ IS

Furthermore, invariant distribution inserts a statement assert IS before each
procedure call inside C which invokes a method outside C, forcing the analysis
plugin to check IS before the control leaves C. These assertions ensure that IS
holds, even in the presence of reentrant calls back into C.

Scope invariants must be explicitly checked prior to scope-reentrant calls.
Scope invariant distribution therefore adds assert IS before any scope-reentrant
call. After returning from a call that reenters a scope C, analysis plugins are
required to “flush stale state” by erasing all information about the sets declared
in modules not exported in C.

The conditions inserted by invariant distribution allow the analysis to pre-
serve the policy that either IS is true, or C is in control. A consequence of our
policy is that IS holds at any program point outside C. In particular, IS holds
at any call site T to procedure p originating outside C, and thus need not be
checked at T . This policy generalizes standard techniques for information hiding
and invariant enforcement.

Module Projection Module projection is used to map ensures clauses at
callsites which invoke procedures in different scopes and use sets which are not
in scope at the caller. Consider the case where module M executes an inter-
scope call to M ′; let yard(M ′) ⊆ scopes(M) and scopes(M ′) 6⊆ scopes(M). Then
M may call M ′, but private sets—sets belonging to modules in scopes(M ′) \
scopes(M)—are not of interest to the client module M . We show how to project
the definition of module M ′ onto sets declared in modules {M1 | scopes(M) ∩
scopes(M ′) ∩ scopes(M1) 6= ∅} that are relevant to both M and M ′.

The projection technique applies to any program whose state can be de-
scribed using a finite set of variables. Let x1, . . . , xn (or −→x for short) denote
variables for which information should be preserved, and let y1, . . . , ym (or −→y
for short) denote the variables for which information should be ignored. We then
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apply the transformation:

requires r(−→x ,−→y )
ensures e(−→x ,−→y ,−→x ′,−→y ′) =⇒ requires ∀−→y .r(−→x ,−→y )

ensures ∃−→y .e(−→x ,−→y ,−→x ′,−→y ′)
The transformation for the requires/ensures clause is justified by the rela-
tional semantics of requires/ensures clauses [28] of the form

requires r(−→x ,−→y ) ensures e(−→x ,−→y ,−→x ′,−→y ′) ≡
(r(−→x ,−→y ) ∧ ok)⇒(e(−→x ,−→y ,−→x ′,−→y ′) ∧ ok′)

with projection corresponding to existential quantification over −→y ,−→y ′.
Requires/Ensures Clause Mapping Let sets(M) = {S1, . . . , Sn} be the
sets declared in the specification of module M , and let Si = {x : ti | Fi(x)} be
the definition of set Si for 1 ≤ i ≤ n. The requires/ensures clause mapping
translates requires and ensures clauses, as well as assertions, into a form that
exposes the definitions of sets S1, . . . , Sn using formulas F1, . . . , Fn. (In additition
to S1, . . . , Sn, these specifications use abstract sets declared in other specification
modules; these abstract sets are not affected by the mapping.)

First, consider the mapping of the assertion assert B(S1, . . . , Sn) where
B(S1, . . . , Sn) is a formula in the language of boolean algebras described in
Figure 12. The mapping of this assertion is the formula:

assert ( let S̄1 = {x : t1 | F1(x)} in . . . let S̄n = {x : tn | Fn(x)} in
B(S̄1, . . . , S̄n) )

We next describe the mapping of requires/ensures clauses. (Recall that all
modifies clauses have been translated into augmented ensures clauses at this
point.) The mapping of the requires/ensures clause

requires B(S1, . . . , Sn)
ensures B′(S1, . . . , Sn, S

′
1, . . . , S

′
n)

is a requires/ensures clause with let-bindings:

let S̄1 = {x : t1 | F1(x)} in . . . let S̄n = {x : tn | Fn(x)} in
requires B(S̄1, . . . , S̄n)
ensures ( let S̄′1 = {x : t1 | F ′1(x)} in . . . let S̄′n = {x : tn | F ′n(x)} in

B′(S̄1, . . . , S̄n, S̄
′
1, . . . , S̄

′
n) )

Here F ′i (x) denotes the formula Fi(x) where the occurence of each field f is
replaced with the expression f ′ referring to the value of the field in the state
after execution of the procedure. Note that the sets S̄i are evaluated in the initial
(precondition) state but are also used in the postcondition state. Moreover, the
only way in which the postcondition formula refers to the initial state is through
the values of sets evaluated in the initial state; there is no direct comparison of
values of fields in pre and post state, which makes the verification of the ensures
clauses easier.
Representation Invariant Distribution Representation invariants are sim-
ilar to scope invariants: they ensure that, when a module is not in control, its
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representation invariant holds. Representation invariants are expressed in the
annotation language of the appropriate analysis plugin. Sets have unspecified
values when the representation invariant does not hold. However, using informa-
tion about the program’s call graph, our technique ensures that modules never
rely on values of sets when the relevant representation invariants are violated.

When analyzing the procedures of module M , our analysis conjoins repre-
sentation invariants IR to the mapped requires and ensures clauses:

ensuresR(p) = map(ensuresSI(p)) ∧ IR
requiresR(p) = map(requiresSI(p)) ∧ IR

In the presence of a module-reentrant callsite c, representation invariant dis-
tribution adds the condition assert IR just before c. After returning from c,
analysis plugins are required to flush stale state by removing any information
about private data structures of M from the post-state of c.

As was the case with scope invariants, representation invariant distribution
guarantees that module invariants always hold unless module M is in control.
This ensures that the abstract sets in the specification modules accurately sum-
marize the state of the heap at important points in the program.

6.2 Ensuring Simulation Relation Using Plugins

An analysis plugin verifies the correctness of the implementation of module M by
verifying the correctness of each procedure in M . To verify a procedure p in mod-
ule M , the plugin uses: 1) the implementation of procedure p; 2) requires and
ensures clauses for p (after invariant distribution and mapping of Section 6.1);
3) requires and ensures clauses for all procedures called from p; and 4) the
abstraction function for module M .

The responsibility of each analysis plugin is to establish that the specified
abstraction function is a simulation relation between the implementation and
specification modules. More specifically, when analyzing module M , an analysis
plugin ensures the existence of a simulation relation r between the abstract state,
containing only abstract sets, and the concrete state, where the sets declared
in M are replaced by the concrete data structures from the implementation
of M , and the remaining sets remain abstract. The relation r is the result of
extending the abstraction function from the abstraction module of M onto the
entire state; it acts as the identity function on all remaining sets. Suppose that
we have verified such a simulation relation for every module. Because different
modules implement data structures using disjoint fields, the composition of these
relations is a simulation relation between the abstract state containing only sets
and the concrete state where all sets are implemented using corresponding data
structures.

Below, we state a condition which is sufficient to guarantee the existence of
the simulation relation between the abstract state and the concrete data struc-
ture. Our condition is formulated purely in terms of the operational semantics
for the implementation language and abstraction functions, obviating the need
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to specify an operational semantics whose states mix abstract sets and concrete
data structures.

A procedure execution fragment is a sequence of steps in the operational
semantics corresponding to the execution of a procedure; such a trace starts
with procedure invocation and ends with the corresponding return from the
procedure.

Definition 1 Let S1, . . . , Sn denote all sets in the program, and let α1, . . . , αn be
the corresponding abstraction functions. Let F be a procedure execution fragment
for procedure p. Let s be the first state of F , and let s′ be the final state of F .
Let r be the requires clause, and let e be the ensures clause, for p. Then, F
conforms to its specification iff

[[r]][S1 7→ α1(s), . . . , Sn 7→ αn(s)] ⇒
[[e]][S1 7→ α1(s), . . . , Sn 7→ αn(s), S′1 7→ α1(s′), . . . , S′n 7→ αn(s′)]

where [[ϕ]][x1 7→ v1, . . . , xn 7→ vn] denotes the interpretation of formula ϕ where
variable xi is assigned the value vi for 1 ≤ i ≤ n.

If F is a procedure execution fragment for procedure p, then an immediate
subfragment of F is a maximal procedure execution fragment that is a strict
subfragment of F .

Definition 2 Let M be a module containing sets S1, . . . , Sm with abstraction
functions α1, . . . , αm. Let p be a procedure in module M . We say that procedure
p conforms to its specification, if for all programs (contexts) containing proce-
dure p and containing some additional sets Sm+1, . . . , Sn with some abstraction
functions αm+1, . . . , αn, for every procedure execution fragment of p, if all im-
mediate subfragments of p conform to their specifications, then p conforms to its
specification.

If all procedures in a program conform to their specification, then by induction on
the stack depth of execution fragments, we can show that procedure fragments of
all procedure execution fragments of the program conform to their specifications.
(The basis of the induction is the set of leaf procedure execution fragments
containing no subfragments.)

We say that a plugin is sound iff whenever plugin succeeds in verifying a
procedure p, then p conforms to its specification. If all modules successfully ver-
ify using the corresponding plugins, and all plugins satisfy the plugin soundness
condition, then every procedure fragment conforms to its specification. In other
words, the abstraction functions induce a simulation relation between the ab-
stract states containing only sets and concrete states containing only concrete
data structures.

6.3 Flag Typestate Plugin

The flag typestate plugin is designed to verify modules that use integer flags to
indicate the typestate of objects containing the flag. Implementations of such
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modules use a different integer value for each typestate. There is an abstract
set in the specification module for each typestate, and the abstraction module
defines the abstraction function by specifying the correspondence between flag
values and abstract sets. The developer may also specify representation invari-
ants constraining the possible values of flags.
Flag Typestate Plugin Annotation Language Equation (1) presents the
syntax for the flag typestate’s plugin property language, which instantiates the
generic syntax of Figure 15.

Fp ::= x.f=c (1)

The abstraction function of the flag abstraction module defines set member-
ship based on integer field values. Flag abstraction modules may also contain
representation invariants.

To illustrate a concrete example, consider the requires clause for the
suspend procedure from our process scheduler example of Section 2:

requires p in Running

The Scheduler module belongs to the ProcessScheduler scope, which declares
the following invariant:

invariant disjoint(Scheduler.Running, Scheduler.Suspended) and
(Scheduler.Running = RunningList.InList) and
(Scheduler.Suspended = SuspendedQueue.InQueue);

Invariant distribution gives the following augmented requires clause:

|p| <= 1 ∧ p ⊆ Running ∧ Running ∩ Suspended=∅
∧ Running = RunningList.InList

∧ Suspended = SuspendedQueue.InQueue

Our mapping uses the declaration of the Running and Suspended sets,

Running = {x : Process | x.status=1};
Suspended = {x : Process | x.status=0};

to translate the augmented requires clause into:

let Running = {x : Process | x.status=1} in

let Suspended = {x : Process | x.status=0} in

|p| <= 1 ∧ p ⊆ Running ∧ Running ∩ Suspended=∅ ∧
Running = RunningList.InList ∧
Suspended = SuspendedQueue.InQueue

There are no representation invariants in this module, so the above clause is our
effective requires clause.
Flag Typestate Plugin Analysis Algorithm This plugin performs dataflow
analysis on the implementation language to approximate the contents of each
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set, as well as typestate information (in the form of set membership) for each
local variable. It does this by using boolean clauses T as its dataflow fact. The
dataflow fact T starts with a set of let clauses, followed by a boolean clause B.
In this analysis, the let clauses are fixed throughout the analysis of a procedure;
we therefore focus only on the boolean algebra clause B. Our dataflow facts
conform to the following grammar (note that B is defined using a subset of the
grammar from Figure 12):

T ::= B | let S={x : f |Fp(x)} in T

B ::= E1 = E2 | E1 ⊆ E2B1 ∧B2 | B1 ∨B2 | ¬B
| card(S)=0 | card(S)=1 | card(S)≥2

E ::= ∅ | S′ | S | E1 ∪ E2 | E1 ∩ E2 | E1 \ E2

The purpose of cardinality constraints in typestate plugin analysis is to dis-
tinguish local variables from sets; the local variables are represented as sets of
cardinality 1. In the analysis, S′ is used to refer to the value of set S after a
statement, while S refers to the value of the set before the statement.

The initial dataflow fact at the start of a procedure is the requires condition
for that procedure. At a merge point, our analysis combines boolean formulas
using disjunction. Termination is guaranteed because our lattice is finite. Namely,
there are exactly three kinds of permitted cardinality constraints, so the number
of non-equivalent boolean algebra formulas is finite. Our analysis checks that
the ensures clause holds at all exit points of the procedure; in particular, since
implication is decidable, our analysis can check that for each exit point e, the
computed typestate predicate Be implies the ensures clause.

The transfer functions in the dataflow analysis update the boolean formulas
to reflect the effect of each statement. Let B be a boolean clause denoting a
relation between the state at procedure entry and the state at current program
point and let Bs be the boolean clause describing the effect of statement s. The
incorporation operation B[Bs] changes the boolean clause B by composing it
with the boolean clause Bs. We compute B[Bs] by applying quantifier elimina-
tion to the formula ∃Ŝ1, . . . , Ŝn. B[Ŝi/S′i]∧Bs[Ŝi/Si] (See [2], [40, Section 3.2] for
quantifier elimination for the full first-order theory of boolean algebras, [4, 48]
for fragments of boolean algebras with better complexity bounds and further
references.) The result of quantifier elimination are positive boolean combina-
tions of formulas |S| ≥ k and |S| = k. We approximate the resulting formula
to eliminate set constraints with cardinality greater than 2 using the following
rules:

Original Formula Constraint Coarsened Formula

card(S)≥k k ≥ 2 card(S)≥2
card(S)=k k ≥ 2 card(S)≥2
card(S)≥1 card(S)=1 ∨ card(S)≥2
card(S)≥0 card(S)=0 ∨ card(S)=1 ∨ card(S)≥2
otherwise original formula

Figure 16 presents the formulas that the plugin uses to generate the transfer
functions for the statements in the implementation language.
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Provided that R = {x : format(x)|x.status = v} is in the abstraction module:

Jx := nullK(B) = B[x = ∅ ∧VS 6=x S
′ = S]

Jx.status := vK(B) = B[R = R̂ ∪ x ∧VS∈alts(R) S
′ = S \ x ∧VS 6∈{R,alts(R)} S

′ = S]

Jif(x.status = v)K(B) = B[x ⊆ R ∧VS S′ = S] (true branch)
Jif(x.status = v)K(B) = B[x ∩R = ∅ ∧VS S′ = S] (false branch)

where

alts(R) = R′ such that abstraction module contains R′ = {x : format(x)|x.status = v′}

Fig. 16. Rules for typestate analysis

For a procedure call x=proc(y), our transfer function checks that proc’s
requires condition holds, and incorporates proc’s ensures condition:

Jx = proc(y)K(B) =
{
B[ensures′(proc)] if B ⇒ requires′(proc)
false otherwise

where both ensures′ and requires′ substitute caller actuals for formals of proc.
Most modules are obliged to remove internal state from the analysis representa-
tion after a module-reentrant call; however, because the flag typestate plugin has
no private internal state3, module-reentrant calls need not be treated specially.
For a scope-reentrant call, this analysis plugin, like all others, projects out all
unexported sets belonging to the current scope from the result of the procedure
call, B[ensures′(proc)].

Example Let B ≡ y′ = y ∧ x′ = x ∧ S′ = S ∧ S = x; we show how
to abstractly execute the statement y = x. We therefore wish to incorporate
Bs ≡ y′ = x′ ∧ x′ = x ∧ S′ = S. Substituting and applying quantifiers gives

∃Ŝ, x̂, ŷ. (ŷ = y ∧ x̂ = x ∧ Ŝ = S ∧ S = x) ∧
(y′ = x′ ∧ x′ = x̂ ∧ S′ = Ŝ),

which simplifies to S′ = S ∧ x′ = x ∧ y′ = x.

6.4 Graph Types Plugin

The purpose of the graph types plugin is to verify properties of objects partici-
pating in recursive tree-like data structures called graph types [35]. A graph type
is a dynamically allocated data structure with a distinguished set of data fields
whose values form a backbone of the graph type. The backbone is a spanning
tree of the data structure. In addition to data fields, a graph type may contain
routing fields [35] (corresponding to pointer fields of [50]) that do not belong to
the spanning tree and are functionally determined by the backbone.
3 Program state for the flag typestate plugin is represented by set membership, as expressed

by boolean clauses.
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Graph Types Plugin Annotation Language The basis of the graph types
plugin is weak monadic second-order logic interpreted over an infinite binary
tree (MSOL). This logic is decidable; the MONA tool [33] implements a decision
procedure for MSOL along with important optimizations that make the tool
useful in practice [34].

Fp ::= ∃x of t. Fp | ∃S of t. Fp | ¬Fp | Fp1 ∧ Fp2 |
| x ∈ SE | SE1 = SE2 | SE1 ⊆ SE2 | card(SE)=k | R

R ::= x | R.f | R.∼f | R1 +R2 | R∗
Fig. 17. Graph Types Plugin Annotation Language

Figure 17 presents the graph types plugin property language, which cor-
responds to the language in [50, Section 2]. Because it is based on monadic
second-order logic, the property language allows quantification not only over ob-
jects (using ∃x of t.F ), but also over sets of objects in the heap (using ∃S of t.F ).
Quantification over sets of objects allows this logic to define the transitive clo-
sure of binary relations on objects, which is important for specifying reachability
properties of heap objects participating in recursive data structures. The lan-
guage supports regular expressions for denoting sets of objects reachable from
some root object along given paths (the notation ∼ denotes following a field
backwards).

The property language in Figure 17 is used as part of the annotation language
of Figure 15. Boolean algebra expressions and let-bindings of Figure 15 add
no additional expressive power to the graph types plugin property language,
because let S = {x : t | F (x)} in B(S) translates into ∃S of t. (∀x.x ∈ S ⇐⇒
F (x))∧B(S). (Note that B(S) is a valid formula of second-order logic, because
the logic properly contains boolean algebra of sets.)

In addition to using the property language for describing invariants and ab-
straction functions, the graph types plugin uses the same language for constrain-
ing the values of pointer fields in data structures. Because each pointer field in
a data structure is uniquely determined by a known formula in the graph types
property language, the addition of pointer fields preserves the decidability of
the logic. In addition to abstraction functions and representation invariants, ab-
straction modules for the graph types plugin may contain graph type definitions,
which introduce a graph type by specifying its data fields, and specifying pointer
fields along with the formula defining the pointer field [50].

Graph Types Plugin Analysis Algorithm The analysis behind the graph
types plugin is essentially the analysis implemented in the PALE tool [50]. Our
main observation is that this analysis naturally fits with our technique for com-
bining analyses that communicate through set interfaces.
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Note that the let-bindings for the requires/ensures pair can be translated
into logical variables. Specifically, the clause

let S̄1 = {x : t1 | F1(x)} in . . . let S̄n = {x : tn | Fn(x)} in
requires B(S̄1, . . . , S̄n)
ensures ( let S̄′1 = {x : t1 | F ′1(x)} in . . . let S̄′n = {x : tn | F ′n(x)} in

B′(S̄1, . . . , S̄n, S̄
′
1, . . . , S̄

′
n) )

can be represented in the syntax of PALE tool by adding appropriate logical
variables, precondition, and postcondition to the body c of a procedure:

set S1 : t1; . . . set Sn : tn
[P1(S1) ∧ . . . ∧ Pn(Sn) ∧B(S1, . . . , Sn)]
{c}
[∃S′1, . . . , S′m. P1(S′1) ∧ . . . ∧ Pn(S′n) ∧B′(S′1, . . . , S′n, S1, . . . , Sn)]

where Pi for 1 ≤ i ≤ n is given by the PALE predicate definition

pred Pi(S) = ∀x.x ∈ S ⇐⇒ Fi(x)

and indicates that S is equal to the value of the set Si in the current state.

type List = {data next:List;}

pred roots(pointer x,y:List, set R:List) =
allpos p of List: p in R <=> x<next*>p | y<next*>p;

pred abst(pointer l:List, set R:List) =
allpos p of List: p in R <=> l<next*> p;

proc reverse(data list:List):List
set R:List;

[abst(list,R)]
{
data res:List;
pointer temp:List;
res = null;
while [roots(list,res,R)] (list!=null) {

temp = list.next;
list.next = res;
res = list;
list = temp;

}
return res;

}
[abst(return,R)]

Fig. 18. A list reverse program with verification conditions that ensure that the set of elements in
the list remains the same.

Figures 18 and 19 show example programs in Pointer Assertion Logic Engine
(PALE) [50]. The programs are modified versions of examples distributed with
PALE. The predicate abst specifies a relation between the root of the list and a
set which represents the content of the list. The precondition [abst(list,R)]
indicates that the set R is the content of the list passed as the input. The
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type Tree = {data left, right: Tree;}
pred inTree(pointer x:Tree) =
root<(left+right)*>x;

pred abst(set R:Tree) =
allpos x of Tree: x in R <=> inTree(x);

data root:Tree;

proc insert(data e:Tree):void
set R:Tree;
[abst(R) &
e.left = null & e.right = null]
{ pointer current:Tree; bool go;
if (root=null) {

root = e;
} else {

current = root;
go = true;
while [(go => abst(R) & e.left=null & e.right=null &

inTree(current) & current != null) &
(!go => abst(R union {e}))] (go) {

if (?) {
/* e < current */
if (current.left=null) {

current.left = e;
go = false;

} else {
current = current.left;

}
} else {

if (current.right=null) {
current.right = e;
go = false;

} else {
current = current.right;

}
}

}
}
split [abst(R union {e})]

} [true]

Fig. 19. A tree insertion program with verification conditions that ensure that the set of elements
in the tree is increased by the element inserted.

postcondition [abst(return,R)] indicates that the content of the list returned
as a result is the same set R. Therefore, the specification of the first example
indicates that the set of elements in the list is preserved. In the second example,
the content of the tree is increased by the elements inserted.

6.5 Other Plugins

The set of analysis plugins suitable for our technique is not limited to the plugins
we have presented so far.

The parametric shape analysis [55] can also be used as one of the possible
plugins. One of the strengths of the parametric shape analysis approach is that
it is applicable to general graph structures and not only tree-like structures.
The underlying logic of [55] is first-order logic with transitive closure. As in the
graph types plugin, abstraction functions can use regular expressions to define
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the contents of a set as the set of nodes stored in a data structure. [55] uses
three-valued structures, but the approach can be adapted to use only two-valued
logic [41,53,59].

Role logic [39] can also be used to express sets stored in data structures. For
non-recursive data structures it suffices to use a decidable subset of role logic
corresponding to two-variable logic with counting [27].

Interactive theorem proving techniques [23,30,47,49] can also be incorporated
into our framework, in this case the abstraction module would also contain the
proof script for proving the conditions arising from the simulation relation condi-
tion. Sounds versions of more automated techniques [16,24] are also appropriate
for our framework.

7 Related Work

We next discuss some further related work.
Formal Methods and Program Specification The Java Modelling Lan-
guage [8] is a Java extension which allows developers to embed design informa-
tion into Java source code, using Java-like syntax. Using JML, developers can
specify method preconditions and postconditions, as well as invariants. These
are expressed in quantified boolean formulas, primarily over fields. The JML is
a framework which allows researchers to develop tools checking the specification
tools; the jmlc tool, for instance, checks some of the JML assertions at runtime,
while LOOP and ESC/Java can check some JML assertions statically. Note that
checking any JML condition involving abstract sets appears to require the use
of interactive theorem proving technology. Like JML, our technique also allows
developers to tightly couple preconditions, postconditions and invariants to pro-
gram source. Our focus, however, is on static checking of design information.
Using our abstraction techniques, it is possible to harness, for instance, shape
analysis technology to automatically verify the correctness of complicated imple-
mentations. Because we define the notions of modules and formats, our technique
has stronger support for separating different parts of programs and ensuring that
they do not interfere. JML also supports callable clause that corresponds to our
calls clauses; JML uses the callable clause to ensure correct subclassing in the
presence of dynamic dispatch [54].
Shape Analysis The goal of shape analysis is to verify that programs pre-
serve consistency properties of (potentially recursive) linked data structures.
Researchers have developed many shape analyses and the field remains one of
the most active areas in program analysis today [10,11,21,25,26,38,39,41,43,50–
53,55,58,59]. Our goal is to enable developers of precise or specialized analyses
(such as almost all shape analyses) to cooperatively apply their analysis, along
with other analyses, in a modular fashion to large programs, with each analysis
operating on only that part of the program relevant for the properties that it is
designed to verify.
Typestate Systems Typestate systems track the conceptual states that each
object goes through during its lifetime in the computation [15,17,20–22,57] . In
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our approach, object state is determined by its membership in abstract sets. In
addition to supporting traditional typestate classifications, this perspective also
promotes the following generalizations of the standard typestate approach:

– Orthogonal Composition: In our system an object can be a member of
sets from multiple modules simultaneously. Each object’s conceptual state
can therefore be an orthogonal composition of state aspects from each of the
modules in which it participates. The advantages of this approach include
better modularity (because each module deals only with those aspects of ob-
ject states that are relevant for its operation) and support for polymorphism
(because each module can operate successfully on multiple objects, each of
which may participate in different ways in other modules).

– Hierarchical Classifications: Our system supports dynamic hierarchical
classifications in which a collection of sets partitions a more general set, with
subset inclusion capturing the hierarchy. Unlike the classification hierarchies
in object-oriented languages, which are fixed over the lifetimes of objects, our
classification hierarchies can change to reflect the effects of program actions
that change the conceptual states of the objects in the program.

– Data Structure Participation: In standard typestate systems, the type-
state of an object is determined by either the values of its fields or by its
procedure invocation history [13, 15, 19, 57]. In our approach, set member-
ship can also capture how the object participates in each data structure. We
have shown how analyses can leverage the resulting correlation between ab-
stract set membership and internal data structure representation properties
to verify data structure representation invariants. An object’s set member-
ship properties can also characterize how it is (or is not) shared between
multiple data structures, which may support more effective reasoning (both
automated reasoning and reasoning by human developers) about the object’s
role in the computation.

Simulation Relations The foundation of our approach for specifying imple-
mentation modules using set-based specification modules is the notion of simu-
lation relations [1,3,14,32,46]. We apply these general simulation relation tech-
niques to the case of forward simulation relations that are partial functions. The
domain of our simulation relations is the set of states whose data structures sat-
isfy representation invariants; the result of mapping a state under the simulation
relation is a state where concrete data structures are replaced by global sets. In
our case, the forward simulation relation condition essentially reduces to verify-
ing that the transition relation given by a procedure implementation is a subset
of the transition relation given by the requires/ensures pair. The rules for map-
ping requires/ensures statements under an abstraction function are presented in
e.g. [14, Chapter 7].
Decision Procedure for Boolean Algebras We use first-order logic formu-
las in the language of boolean algebras as the basis of our module specification
language. The decidability of the satisfiability problem for the first-order theory
of boolean algebras dates back to [45,56] and is presented in [2, Chapter 4]. The
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complexity of this problem is alternating exponential time [37] (that is, expo-
nential deterministic space [29, Page 36]). The complexity of the satisfiability
problem for quantifier-free formulas in the language of boolean algebras is NP-
complete [48]. Quantifier-free fragment of boolean algebras is too restrictive for
our specifications because it cannot express constraints of the form |x| ≤ 1 and
|x| = 1, which arise naturally when using sets to model local variables and pro-
cedure parameters. The monadic class [4] allows quantified first-order variables
corresponding to sets x with |x| = 1 as well and free second-order variables;
the satisfiability problem for monadic class with equality is nondeterministic
exponential time complete [44]. Due to absence of quantification over sets, the
monadic class would not allow us to perform precise relation composition which
is important for procedure calls, and precise projection of interfaces. Neverthe-
less, algorithms for deciding the quantifier free fragment and the monadic class
can be applied in the cases when the specifications have the restricted form and
may be useful for improving the performance of the general decision procedure.
To our knowledge, the only implemented decision procedure that can decide the
first-order theory of boolean algebras is MONA tool [34], which implements the
more general decision procedure for monadic second-order logic over trees, and
has non-elementary complexity in general.

8 Conclusion

The program analysis community has produced many precise analyses that are
capable of extracting or verifying quite sophisticated data structure properties.
Issues associated with using these analyses include scalability limitations and the
diversity of important data structure properties, some of which will inevitably
elude any single analysis.

This paper shows how to apply the full range of analyses to large programs
composed of multiple modules. The key elements of our approach include mod-
ules that encapsulate object fields and data structure implementations, specifi-
cations based on membership in abstract sets, and invariants that use these sets
to express (and enable the verification of) properties that involve multiple data
structures in multiple modules analyzed by different analyses. We anticipate that
our techniques will enable the productive application of precise analyses to verify
important data structure consistency properties in large programs built out of
multiple modules.
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27. Erich Grädel, Martin Otto, and Eric Rosen. Two-variable logic with counting is decid-
able. In Proceedings of 12th IEEE Symposium on Logic in Computer Science LICS ‘97,
Warschau, 1997.

28. C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall, Inc.,
1998.

29. Neil Immerman. Descriptive Complexity. Springer-Verlag, 1998.

30. Bart P. F. Jacobs and Erik Poll. Java program verification at nijmegen: Developments
and perspective. Technical Report NIII-R0318, Nijmegen Institute of Computing and
Information Sciences, September 2003.

31. Jacob L. Jensen, Michael E. Jørgensen, Nils Klarlund, and Michael I. Schwartzbach. Au-
tomatic verification of pointer programs using monadic second order logic. In Proc. ACM
PLDI, Las Vegas, NV, 1997.

32. He Jifeng, C. A. R. Hoare, and Jeff W. Sanders. Data refinement refined. In ESOP’86,
volume 213 of LNCS, 1986.

33. Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual. BRICS Notes Series
NS-01-1, Department of Computer Science, University of Aarhus, January 2001.

34. Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. MONA implementation se-
crets. In Proc. 5th International Conference on Implementation and Application of Au-
tomata. LNCS, 2000.

35. Nils Klarlund and Michael I. Schwartzbach. Graph types. In Proc. 20th ACM POPL,
Charleston, SC, 1993.

36. Dexter Kozen. Complexity of boolean algebras. Theoretical Computer Science, 10:221–
247, 1980.

37. Dexter Kozen. Logical aspects of set constraints. In Proc. 1993 Conf. Computer Science
Logic (CSL’93), volume 832 of Lecture Notes in Computer Science, pages 175–188, 1993.

38. Viktor Kuncak, Patrick Lam, and Martin Rinard. Role analysis. In Proc. 29th POPL,
2002.

39. Viktor Kuncak and Martin Rinard. On role logic. Technical Report 925, MIT CSAIL,
2003.

40. Viktor Kuncak and Martin Rinard. On the theory of structural subtyping. Technical
Report 879, Laboratory for Computer Science, Massachusetts Institute of Technology,
2003.

41. Viktor Kuncak and Martin Rinard. Boolean algebra of shape analysis constraints. In 5th
International Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI’04), 2004.

42. K. Rustan M. Leino, Arnd Poetzsch-Heffter, and Yunhong Zhou. Using data groups to
specify and check side effects. In Proc. ACM PLDI, 2002.

43. Tal Lev-Ami, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Putting static analysis
to work for verification: A case study. In International Symposium on Software Testing
and Analysis, 2000.

44. Harry R. Lewis. Complexity results for classes of quantificational formulas. J. Comput.
Syst. Sci., 21(3):317–353, 1980.
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Appendix: Operational Semantics

The state of the heap is a pair 〈[p, r]◦s,H〉, where p contains the program counter
and current module, r is an activation record, s is the call stack of pairs [p, r],
and H is the garbage-collected heap. Note that the program counter contains
static information about the program point: pc(p) points to the CFG node to
be executed, while mod(p) indicates the module to which pc(p) belongs. The
heap contains several types of tuples; these track module variable contents, field
contents, and local variable contents. A triple 〈m, v, o〉 inH indicates that module
variable v in module m points to the heap object o. The tuple 〈m, o1, f, o2〉 ∈ H
means that the field o1.f encapsulated in module m points to object o2. Finally,
the triple 〈r, `, o〉 ∈ H means that the activation record r contains a local variable
` pointing to heap object o.
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Statement Transition Constraints
p: x = null; 〈[p, r] ◦ s,H ] {〈r, x, 〉}〉 →

〈[p′, r] ◦ s,H ] {〈r, x, null〉}〉
p: x = y; 〈[p, r] ◦ s,H ] {〈r, x, 〉, 〈r, y, o〉}〉 → type(p, x) = type(p, y)

〈[p′, r] ◦ s,H ] {〈r, x, o〉, 〈r, y, o〉}〉
p: x = new t; 〈[p, r] ◦ s,H ] {〈r, x, 〉}〉 → o fresh

〈[p′, r] ◦ s,H ] {〈r, x, o〉}〉 type(p, x) = t

p: x = y.f; 〈[p, r] ◦ s,H ] {〈r, x, 〉, 〈r, y, id〉, 〈mod(p), id, f, o〉}〉 → t = type(p, y) ∧ hasField(mod(p), t, f) ∧
〈[p′, r] ◦ s,H ] {〈r, x, o〉, 〈r, y, id〉, 〈mod(p), id, f, o〉}〉 type(p, x) = fieldType(mod(p), t, f)

p: x.f = y; 〈[p, r] ◦ s,H ] {〈r, x, id〉, 〈mod(p), id, f, 〉, 〈r, y, o〉}〉 → t = type(p, x) ∧ hasField(mod(p), t, f) ∧
〈[p′, r] ◦ s,H ] {〈r, x, id〉, 〈mod(p), id, f, o〉, 〈r, y, o〉}〉 fieldType(mod(p), t, f) = type(p, y)

p: x = v; 〈[p, r] ◦ s,H ] {〈r, x, 〉, 〈mod(p), v, o〉}〉 → type(p, x) = varType(mod(p), v)
〈[p′, r] ◦ s,H ] {〈r, x, o〉, 〈mod(p), v, o〉}〉

p: v = x; 〈[p, r] ◦ s,H ] {〈r, x, o〉, 〈mod(p), v, 〉}〉 → varType(mod(p), v) = type(p, x)
〈[p′, r] ◦ s,H ] {〈r, x, o〉, 〈mod(p), v, o〉}〉

p: goto p1; 〈[p, r] ◦ s,H〉 → 〈[p1, r,m],H〉
p: if (B) goto p1; 〈[p, r] ◦ s,H〉 → 〈[p1, r,m],H〉 eval(H, B) = true

p: if (B) goto p1; 〈[p, r] ◦ s,H〉 → 〈[p′, r] ◦ s,H〉 eval(H, B) = false

p: x = m2.proc(a); 〈[p, r] ◦ s,H ] {〈r, a, id〉}〉 p′′ entry point for m2.proc

→ 〈[p′′, r′] ◦ [p′, r] ◦ s, r′ fresh
H ] {〈r, a, id〉 ] hProcSetup(r′, m2.proc, id)} argType(m2.proc) = type(r, a)

p: return x; 〈[p, r′] ◦ [p′, r] ◦ s,H ] {〈r′, x, idx〉,
〈r′, retval, X〉}〉

→ 〈[p′, r] ◦ s,H ] {〈r,X, idx〉} \ {〈r′, , 〉}〉

where p′ satisfies mod(()p′) = mod(p) ∧ pc(()p′) = succ(pc(()p)) in the control-flow graph, and:

type(p, x) = declared format of local variable x in p’s context

varType(mod(p), v) = declared format of variable v of module mod(p)

hasField(mod(p), t, f) = true iff format t in module mod(p) declares field f

fieldType(mod(p), t, f) = declared format of field f in format t of module mod(p)

hProcSetup(r′, m2.proc, id) = {〈r′, retval, x〉, 〈r′, fn, id〉, 〈r′, `1, null〉, . . . , 〈r′, `n, null〉}
argType(m2.proc) = declared type of formal of m2.proc

Fig. 20. Operational Semantics for Implementation Language
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