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Abstract 
This paper presents an algorithm for handling many types of filters in 
sensor networks that cannot be expressed using a simple predicate. 
Specifically, the action of the filter may be predicated on sensor produced 
data where an entire table of sensor-data/result-value pairs are needed to 
resolve the filter. We describe and evaluate three algorithms that can 
perform these filters that take advantage of database distributed join 
techniques. Our join-based algorithms are capable of running in very 
limited amounts of RAM, can distribute the storage burden over groups of 
nodes, and are tolerant to dropped packets and node failures.  REED is 
thus suitable for a wide range of event-detection applications that 
traditional sensor network database and data collection systems cannot be 
used to implement.  

1. Introduction 
A widely cited application of sensor networks is event-
detection where a large network of nodes is used to 
identify regions or resources that are experiencing some 
phenomenon of particular concern to the user.   Examples 
include condition-based maintenance in industrial plants 
[11], where engineers are concerned with identifying 
machines or processes that are in need of repair or 
adjustment.  Another example is process compliance in 
food and drug manufacturing [22], where strict regulatory 
requirements require companies to certify that their 
products did not exceed certain environmental parameters 
during processing. A third class of applications is centered 
around homeland security, where shippers are concerned 
with verifying that their packages and crates were not 
tampered with in some unsavory manner. 

A natural approach implementing such systems is to use an 
existing query-based data collection system for sensor 
networks. Through queries, a user can ask for the data he 
or she is interested in without concern for the technical 
details of how that data will be retrieved or processed.  A 
number of research projects, including Cougar [28], 

Directed Diffusion [9], and TinyDB [16,17] have 
advocated a query-based interface to sensornets, and 
several implementations of query systems have been built 
and deployed.   

Unfortunately, these existing query systems do not provide 
an efficient way to evaluate the complex predicates these 
event-detection applications require – for example, in 
TinyDB [16], queries are limited up to three conjunctive 

filters (e.g., “temp > 25° C AND nodeid = 7 AND 
hour_of_day BETWEEN 10 am and 6 pm”).  
TinyDiffusion [9] is similarly limited to just a few 
predicates.  Unfortunately, many condition-based 
monitoring and compliance applications may have tens to 
thousands of conditions that need to be detected and 
reported;  for example, we have been talking with Intel 
engineers deploying wireless sensornets for condition 
based maintenance in Intel’s chip fabrication plants who 
report that they have thousands of sensors spread across 
hundreds of pieces of equipment that are each involved in a 
number of different manufacturing processes that are 
characterized by different modes of behavior [10,11].   

In this paper, we present REED, a system for Robust and 
Efficient Event Detection in sensor networks that addresses 
this limitation, enabling the deployment of sensor networks 
for the types of applications described above.  REED is 
based on TinyDB, but allows users to express queries that 
include complex, time and location varying predicates over 
any number of conditions.  The key idea of REED is to 
store filter conditions as predicates in tables, and then use a 
fault tolerant protocol to distribute those tables throughout 
the network.  Once these tables have been disseminated, 
each node applies the predicates to its readings by 
checking each tuple of readings it produces against all of 
the predicates, outputting a list of predicates that the tuple 
satisfies.  This list of satisfying predicates is then 
transmitted out of the network to inform the user of 
conditions of interest.   By performing this filtration in-
network, REED can dramatically reduce the 
communications burden on the network topology, 
especially when there are relatively few satisfying tuples, 
as is typically the case when identifying failures in 
condition-based monitoring and process compliance 
applications. Reducing communication in this way is 
particularly important in many industrial monitoring 
scenarios when relatively high data rate sampling (e.g., 
100’s of Hertz) is required to perform the requisite 
monitoring [7].  Table 1 shows an example of the kinds of 
tables which we expect to transmit – in this case, the 
filtration predicates vary with time, and include conditions 
on both the temperature and humidity.  Our discussions 
with various commercial companies (e.g., Honeywell and 
ABB) involved in process control suggest that these kinds 
of predicates are representative of many sensor-based 
monitoring deployments in the real world. 

The database-savvy reader will have observed that the 
description of table-based predicate matching given above 
bears a great deal of similarity to joins in a database 
system.  Indeed, some of the optimizations that we 
describe for applying these predicates are inspired by join 
techniques developed in the database community, though 

Table 1: Example of a table of predicates used in 
condition-based monitoring 

Condition_type Time Temp_thresh Humid_thresh 

1 10 pm > 100° C > 95 % 

2 10 pm > 110° C > 90 % 

3 10 pm > 115° C > 87 % 

… … … … 



the small memory footprint and lossy and low bandwidth 
communication in sensornets requires significant 
alternations to traditional join techniques.  Interestingly, 
both TinyDB [16] and Cougar [28] initially eschewed joins 
in their query languages as their authors believed joins 
were of  limited utility – REED provides an excellent 
counter-example to this point of view.   In fact, we have 
added support joins between external tables and sensor 
readings to TinyDB; users can now write queries of the 
form: 
 SELECT s.nodeid, a.condition_type 
 FROM sensors AS s, alert_table AS a 
 WHERE s.temp > a.temp_thresh 
 AND s.humidity > a.humid_thresh 
 AND s.time = a. time 
 SAMPLE PERIOD 1s 

Here, we use TinyDB syntax, where sensors refers to 
the live sensors readings (produced once per second, in this 
case.)  In REED  the external alert_table (similar, for 
example, to Table 1) will be pushed into the network along 
with the query.  The filter conditions will be evaluated by 
having each node match the sensors tuples that it 
produces with the conditions in the table, with matches 
producing tuples of the form <nodeid, 
condition_type> which are then transmitted out to 
the user. 

Because storage on sensor network devices is typically at a 
premium (e.g., Berkeley motes have just a few kilobytes of 
RAM and half a megabyte of Flash), REED allows these 
predicate tables to be partitioned and stored across several 
sensors.  It also can transmit just a fragment of the  
predicate table into the network, forcing readings which do 
not have entries in the table to be transmitted out of the 
network and filtered externally.  REED attempts to 
determine which predicates are most important to send into 
the network based on historical observations of predicates 
which commonly are not satisfied. 

We end with a caveat:  the purpose of this paper is not to 
describe sophisticated signal processing or statistics-based 
algorithms for data filtration.  Instead, we focus on the 
systems issues related to efficiently propagating large 
tables of predicates and evaluating join-like queries over 
them.  We consider predicates that are individually simple, 
consisting of Boolean operations over real numbers.  We  
omit any discussion of more sophisticated predicates that 
are sometimes needed in the types of monitoring 
applications described above. We note, however, that our 
approach is generalizable to more complex predicates, in 
that TinyDB is fully amenable to known techniques for 
extending databases via user-defined functions and 
predicates [26] that have been shown to be viable for 
various time-series and signal-based analyses. 

1.1. Contributions 
In summary, the major contributions of this work are: 

• We show how complex filters can be expressed as 
tables of conditions, and show that those conditions 
can be evaluated using relational join-like operations. 

• We describe the REED system and our sensor network 
filtration algorithms, which are tailored to provide 
robustness in the face of network loss and to handle 
very limited memory resources. 

• We provide experimental results showing the 
substantial performance advantages that can be 
obtained by executing complex filters inside the 
sensor network, through evaluation in both simulation 
on a real, mote-based sensor network. 

• We discuss a number of variants and optimizations of 
our approach, some of which are motivated by join 
optimizations in traditional databases and others 
which we have developed to address the particular 
properties of sensor networks. 

Before describing the details of our approach, we briefly 
review the syntax and semantics of sensor network queries 
and the capabilities of current generation sensornet 
hardware.   

1.2. Background: Sensor Networks and Motes 
Sensor networks typically consist of tens to hundreds of 
small, battery-powered, radio-equipped nodes.  These 
nodes usually have a small, embedded microprocessor, 
running at a few Mhz, with a small quantity of RAM and a 
larger Flash memory.  Table 2 summarizes hardware 
characteristics of the Berkeley mica2 Mote, a popular 
sensor network hardware platform designed by UC 
Berkeley and sold commercially by Crossbow Corporation.   

Storage: The limited quantities of memory are of 
particular concern for query processing, as they severely 
limit the sizes of join and other intermediate result tables.  
Although future generations of devices will certainly have 
somewhat more RAM, large quantities of RAM are 
problematic because of their high power consumption.  
Non-volatile flash can make up for RAM shortages to 
some extent, but flash writes are quite slow (several 
milliseconds per page, with typical pages less than 1 KB) 
and consume large amounts of energy – almost as much as 
transmitting data off of the mote [25].  

Table 2: Hardware Attributes of the Mica2 Mote 

Attribute Value 
Processor 7Mhz Atmega 128 
Radio 38.6 Kbps CC1020 

Range: ~100 ft 
RAM 4 KB 
Flash 512 KB 
Battery 2xAA (2400 mAH) 
Active Power Consumption ~15 mA 
Sleep Power Consumption ~10 µA 
 

Sensors: Mica2 motes include a 51-pin expansion slot that 
accommodates a number of sensor boards.  Commonly 
available sensors can measure light, temperature, humidity, 
air-pressure, vibration, acceleration, and position (via 
GPS). 



Communication: Radio communication tends to be quite 
lossy – without retransmission, motes drop significant 
numbers of packets.  At very short ranges, loss rates may 
be as low as 5%; at longer ranges, these rates can climb to 
50% or more [27].  Though retransmission can mitigate 
these losses somewhat, nodes can still fail, move away, or 
be subject to radio interference that makes them 
temporarily unable to communicate with some or all of 
their neighbors.  Thus, any algorithm that runs inside of a 
sensor network must tolerate and adapt to some degree of 
communication failure. 

TinyOS: Motes run a basic operating system called 
TinyOS [9], which provides a suite of software libraries for 
sending and receiving messages, organizing motes into ad-
hoc, multihop routing trees, storing data to and from flash 
and acquiring data from sensors. 

Power: Because sensors are battery powered, power 
consumption is of utmost concern to application designers.  
Power is consumed by a number of factors;  typically, 
sensing and communicating dominate this cost [16,21].  In 
this paper, we focus on algorithms that minimize 
communication, as any join algorithm that includes all 
nodes in a network will pay the same cost for running 
sensors.  We note that, if careful power management is not 
used, the cost of listening to the radio will actually 
dominate the cost of transmitting, as sending a message 
takes only a few milliseconds, but the receiver may need to 
be on continuously, waiting for a message to arrive.  
TinyDB and TinyOS address this issue by using a 
technique called low-power listening [20], where receivers 
sample 1 out of every k bits on the radio to see if someone 
is sending a message;  if they detect a message, they wake 
up and begin receiving at full speed;  otherwise, they sleep 
for the remaining k-1 bit times.  Senders ensure that every 
message is preceded by a k-bit preamble.  In this way, 
receivers never miss a message, but  (by setting k to a large 
value, e.g., 100) it is possible reduce the cost of listening 
by approximately 1/k, while increasing transmission cost 
by only k bits1.  With appropriately aggressive low-power 
listening, the total number of messages transmitted on the 
radio channel dominates power consumption.  

1.3. Background:  TinyDB Data Model and Semantics  
REED adopts the same data model and query semantics as 
TinyDB.  Queries in TinyDB, as in SQL, consist of a 
SELECT-FROM-WHERE clause supporting selection, 
projection, and aggregation.  REED extends this list of 
operators with joins.  TinyDB treats data as a single table 
(sensors) with one column per sensor type.  Results, or 
tuples, are appended to this table periodically, at well-
defined intervals that are a parameter of the query, 
specified in the SAMPLE PERIOD clause. The period of 

                                                        
1 In practice, receivers may not be able to switch on and off in a single bit 
time.  In such cases, if the switching time of the radio is b bits, we can 
make the preamble b*k bits and still obtain a factor of k reduction in 
listening costs. 

time from the start of each sample interval to the start of 
the next is known as an epoch. Consider the query: 
SELECT nodeid, light, temp 
FROM sensors 
SAMPLE PERIOD 1s FOR 10s 
 

This query specifies that each sensor should report its own 
id, light, and temperature readings once per second for ten 
seconds. Thus, each epoch is one second long.  The virtual 
table sensors contains one column for every attribute 
available in the system and one row for every possible 
instant in time.  The term virtual means that these rows and 
columns are not physically materialized -- only the 
attributes and rows referenced in active queries are actually 
generated. 

1.4. Data Collection in TinyDB 
Query processing in the original TinyDB implementation 
works as follows.  The query is input on the user’s PC, or 
basestation.  This query is optimized to improve execution 
– currently, TinyDB only considers the order of selection 
predicates during optimization (as the existing version does 
not support joins).  Once optimized, the query is translated 
into a sensor-network specific format and injected into the 
network via a gateway node.  The query is sent to all nodes 
in the network using a simple broadcast flood (TinyDB 
also implements a form of epidemic query sharing which 
we do not discuss.)   

As the query is propagated, nodes learn about their 
neighbors and assemble into a routing tree;  in TinyDB, 
this is implemented using a standard TinyOS service 
similar to what is described in the work by Woo et al. [27].  
Each node in the network picks one node as its parent that 
is one network hop closer to the root than it is.  A node’s 
level is simply the number of radio hops required for a 
message it sends to reach the basestation.   

As a node produces query answers, it sends them to its 
parent; in turn, parents forward data to their parents, until 
answers eventually reach the root.  For some queries (and 
in our join implementation), parents will combine readings 
from children with local data to partially process queries 
within the network.  The basestation assembles partial 
results from nodes in the network, completes query 
processing, and displays results to the user. 

 

2. Applications and Query Classification 
Given this basic introduction to sensors and TinyDB, we 
now describe some applications of REED.  We use these 
applications to derive a classification of filter types that we 
will use to motivate the different algorithms we present in 
Section 3. 

2.1. Query Types 
REED extends the query language of TinyDB by allowing 
tables of filter predicates to appear in the FROM clause. In 
this section, we show the syntax of several example queries 
and describe their basic behavior.   



Industrial Process Control.  Chemical and industrial 
manufacturing processes often require temperature, 
humidity, and other environmental parameters to remain in 
a small, fixed range that varies over time [8]. Should the 
temperature fall outside this range, manufacturers risk 
costly failures that must be avoided.  Thus, they currently 
employ a range of wired sensing to avoid such problems 
[22,10].  Interestingly, companies in this area (e.g., GE, 
Honeywell, Rockwell, ABB, and others) are aggressively 
pursuing the use of mote-like devices to provide wireless 
connectivity, which is cheaper and safer than powered 
solutions as motes don’t require expensive wires to be 
installed and avoid the risks associated with running high-
voltage wires through volatile areas.  Of course, for 
wireless solutions to be cost-effective, they must provide 
many months of battery life as well as equivalent levels of 
information as existing solutions.  Thus, the power and 
communications efficiency of a system like REED is 
potentially of great interest.   

It is easy to write a REED query that filters readings from 
sensors located at various positions with a time-indexed 
table of predicates that encodes, for example, allowable 
temperature ranges in a process control setting. Should the 
temperature ever fall outside the required range, users can 
be alerted and appropriate action can be taken. Such a 
query might look like: 
(1) SELECT a.atemp 

FROM schedule_table AS s, 
     sensors AS a 
WHERE s.ts > t.tsmin AND 
      s.ts < t.tsmax AND 
      a.atemp > t.tempmin AND 
      a.atemp < t.tempmax AND 
      a.nodeid = t.nodeid 

 
Here, results are produced only when an exceptional 
condition is reached (the temperature is outside the desired 
range), and thus relatively few tuples will match.  We note 
that this is a low selectivity query, indicating that it outputs 
(selects) a small percentage of the original sensor tuples. 

Failure and Outlier Detection.  One of the difficulties of 
maintaining a large network of battery-powered, wireless 
nodes is that failures are frequent.  Sometimes these 
failures are fail-fast:  for example, a node’s battery dies 
and it stops reporting readings.  At other times, however, 
these failures are more insidious:  a node’s readings slowly 
drift away from those of sensors around it, until they are 
meaningless or useless.    Of course, there are times when 
such de-correlated readings actually represent an 
interesting, highly localized event (i.e., an outlier).  In 
either case, however, the user will typically want to be 
informed about the readings.  We have implemented a 
basic application that performs both these tasks in REED.  
It works as follows:  we build a list of the values that each 
node commonly produces during particular times of day 
from historical data and periodically update this list over 
time.  We then use this list to derive a set of low-
probability value ranges that never occur or that occur with 

some threshold probability ε or less frequently.  Then, we 
run a query which detects these unusual values.  For 
example, the following query detects outlier temperatures: 
SELECT s.nodeid, s.temp 
FROM sensors AS s, outlier_temp AS o 
WHERE s.temp  

BETWEEN o.low_temp AND o.hi_temp 
AND s.roomno = a.roomno 

This query reports all of the readings that are within an 
outlier range in a given room number.  Note that the 
outlier_temp table may be quite large in this case, but 
that the selectivity of this query is also low. 

Power Scheduling.  As a third example, consider a set of 
sensors in a remote environment where power conservation 
is of critical importance. To minimize power consumption 
in such scenarios, it is desirable to balance work across a 
group of sensors where each sensor only transmits its light 
reading some small fraction of the time.  We can do this 
with an external table as well;  for example: 
SELECT sensors.nodeid, sensors.light 
FROM sensors, roundrobin 
WHERE sensors.nodeid = roundrobin.nodeid 
  AND sensors.ts % |nodes| = roundrobin.ts 
 

For this query, the roundrobin table is small (≤ |nodes| 
entries), and can likely fit on one node. This filter also has 
a low selectivity, as only one or two nodes satisfy the 
predicate per time step. 

2.2. Query Classification and Optimization Tradeoffs 
These queries allow us to make several observations about 
how and where we should execute filters. In general, it is 
advantageous to perform filters with low selectivity in the 
sensor network. This is because there will be many fewer 
results than original data and thus a smaller number of 
transmissions needed to get data to the basestation.  

There are situations, however, when we might prefer not to 
push a filter into the network; for example, if the filter has 
a relatively high selectivity, and the size of the join table is 
very large, the cost of sending the filter into the network 
may exceed the benefit of applying the filter inside the 
network.  We may also be unable to push a filter into the 
network if the size of the predicate table exceeds the 
storage of a single node or a group of nodes across which 
the table may be partitioned. 

Thus, in REED, we differentiate between the following 
types of filters: 

- Small filter tables that fit in the memory of a single 
node. 

- Intermediate filter tables that exceed the memory of a 
single node, but can fit in the aggregate memory of a 
small group of nodes. 

- Large filter tables that exceed the aggregate memory 
of a group of nodes. 

We have developed filtration algorithms (all based on 
joins) that are suitable for all three classes of tables; we 
describe these algorithms in Sections 3 and 4 below.   



For small filter tables, REED always chooses to push them 
into the network if their selectivity is smaller than one.  For 
intermediate tables, the REED query optimizer makes a 
decision as to whether to push the filter into the network 
based on the estimated selectivity of the predicate (which 
may be learned from past performance or gathered 
statistics, or estimated using basic query optimization 
techniques [25]) and the average depth of sensor nodes in 
the network.  It uses a novel algorithm to store several 
copies of the filter table at different groups of neighboring 
nodes in the network, sending each sensor tuple to one of 
the groups for in-network filtration. 

For large filters, as well as intermediate filters that REED 
chooses not to place in-network, REED can employ a third 
set of algorithms that send a subset of the filter table into 
the network.  REED tags this subset with a logical 
predicate that defines which sensor readings it can filter.  
For example, for Query (1) above, a filter subset might be 
tagged with a  predicate indicating it is valid for nodes 1-5 
at times between 5 am and 5 pm.  For readings from these 
nodes in this time period, filters can be applied in-network; 
other readings will have to be transmitted out of the 
network and filtered externally.  We describe algorithms 
for this kind of partial filtering in Section 4.  If REED 
chooses not to apply partial filtering, all nodes transmit 
their readings out of the network where they are filtered 
externally.  

In the following section, we present two algorithms:  the 
first is a single-node algorithm for small filter tables.  The 
second shows how to generalize this single-node technique 
to a group of nodes that work together to collectively store 
the filter table.  We show that these algorithms are robust 
to failures and changes in topology as well as efficient in 
terms of communication and processing costs. 

 

3. Join-Based Filter Algorithms 
Once the query optimizer has decided to push a REED 
query into the network, we need an algorithm for applying 
our filters efficiently; in this section, we describe our 
approach for performing this computation.  We focus on 
distributing and executing our filters throughout the 
network in a power-efficient manner that is robust in the 
face of dropped packets and failed nodes.  Logically, our 
algorithms for filtration can be thought of as a nested-loops 
join between current sensor readings and a table of static 
predicates.  Thus, for the remainder of this paper, we 
describe our filter algorithms in terms of joins, as what we 
have implemented in REED is actually a general purpose 
join processor.   

Nested-loops joins are straightforward to implement in a 
sensornet, as shown by the following algorithm: 
Join(Predicate q) 
for each tuple tr in sensors do  
for each tuple ts in predicates do  
if q(tr, ts) is satisfied 

add tr ∪ ts to result set r 
end 

end 
return r 

There are two things to note about this algorithm. First, 
low selectivity filters might cause there to be fewer than 
one result (on average) per element of the outer loop, 
though it is in general possible for each tuple to match with 
more than one predicate. In such a scenario, it is 
advantageous to apply our filters as close as possible to the 
data source in a sensor network since this would reduce the 
total number of data transmissions in the network. Second, 
elements of predicates are independent of each other. 
Thus, predicates can be horizontally partitioned into a 
number of non-overlapping sub-tables, each of which can 
be placed on separate nodes. As long as the table partitions 
are disjoint, the union of the results of the filter on the 
independent nodes storing partitions of the table is equal to 
the results of the filter if the entire static table was stored at 
one location. 

These two observations motivate our algorithms. The join-
based filter is applied as close as possible to the data 
source. For the case where the static table fits on one 
sensor node, the static table is sent to every sensor node 
(using the TinyDB query flood mechanism) and the filter is 
performed on a sensor node as soon as the data is 
produced. For the case where the static table does not fit on 
one node, the predicates table (s) is horizontally partitioned 
into n disjoint segments s1, s2, …, sn (s=s1∪s2∪…∪sn). 
Each si is sent to a member of a group of sensor nodes in 
close proximity to each other formed specially to apply the 
filter. Each group is sent a copy of the predicates table.  
When a sensor data tuple is generated, it is sent to each 
node in exactly one of these groups to join with every 
partition (si) of the predicate table. 

In Section 3.1 we describe in more detail the case where 
the predicates table fits on one node. In Section 3.2 extend 
this basic algorithm with a distributed algorithm for the 
case where the table is too big to fit on one node. 

3.1. Single Node Join 
Our join algorithm leverages the existing routing tree to 
send control messages and tuples between the nodes and 
the root. When a query involving a join is received at the 
basestation, a message announcing the query is flooded 
down to all the nodes. This announcement (actually 
implemented as a set of messages) is an extended version 
of the TinyDB “new query” messages, and includes the 
schema of the sensor data tuples, the name, size, and 
schema of the join table, the schema of the result tuples, 
and a set of expressions that form the join predicate. Upon 
receiving the complete set of these messages, every node in 
the sensor network knows whether it is participating in the 
query (by verifying that it contains the sensors that produce 
the fields in the schema) and how many tuples of the join 
table can be locally stored (by comparing the size of each 
join table tuple with the storage capacity the node is 
willing to allocate to the query).  



If the node’s storage capacity is sufficient to store the filter 
predicates table, the node simply sends a message to the 
root, requesting the table and indicating that it intends to 
store the entire table locally. The root assumes that there 
will likely be other nodes who can also store the entire 
table, so it floods each tuple of the table throughout the 
sensornet. Once the entire table is received, the node can 
begin to perform the join locally, transmitting the join 
results rather than the original data.  Before then, nodes run 
a naïve join algorithm, where also sensor tuples are sent to 
the root of the network to be joined externally. 

A simple optimization that can be performed is that if the 
result of the join consists of more than one tuple, the node 
can simply send the original sensor tuple. The join for this 
tuple can then be performed at the basestation; this 
technique is equivalent to semi-joins, a well known 
technique for join evaluation in database systems [1]. 

   
Figure 1: REED routing and join tree with group 

overlays 
3.2. Distributed Join 
In this section, we describe our in-network join algorithm 
in detail.  Our algorithm consists of three distinct phases:  
group formation, table distribution, and query processing.  
We begin with a brief overview, and then describe each 
phase in turn. 

3.2.1. Algorithm Overview 
When the predicates table does not fit on one node, joins 
can no longer be performed strictly locally. Instead, the 
table must be horizontally partitioned.  A tuple can only 
immediately join with the local partition at the node and 
must be shipped to other nodes to complete the join. Once 
the original tuple has reached every node that contains a 
partition of the table, it can be dropped and results can be 
forwarded to the root.  Within each group, the members are 
within broadcast range of each other. Our group formation 
algorithm is described in detail in the next section. 

Figure 1 shows the setup of such a distributed join query. 
The figure shows a multi-hop routing tree where tuples are 
passed to their parents on their path to the root basestation. 
For example, a tuple produced by node 7 is sent to node 5 
which then sends the tuple to node 2 which sends the tuple 
to the basestation. Our join algorithm works by overlaying 
groups (shown as large circles in Figure 1) on top of this 

routing tree. The numbers in parentheses in the figure 
represent the set of nodes in broadcast range for that 
particular node.  A tuple that needs to be joined is 
broadcast from a node to the other members of its group.  
Each member sends any joined results up the original 
routing tree. For example, if node 7 produces a tuple to be 
joined, it broadcasts it to nodes 5 and 6. If node 5 contains 
a tuple in the table that successfully joins with 7’s tuple, it 
sends the result up to node 2 which forwards it to the root.  

Note that when node 7 produces a tuple, three 
transmissions results – this is the same as if the original 
data was sent up the routing tree in the naïve or single-
node case.  In the worst case, there would have been two 
extra tuples: if node 5 produced a tuple which joined with a 
tuple on node 7 a total of 4 transmissions would have been 
performed.  In general, no more than 2 + depth 
transmissions will be required, as any pair of nodes in the 
same group differ by no more than one level (by 
definition).  For joins with predicates of low selectivity 
there will be many cases where no element of the table 
joins with the original data. When this occurs, performing 
the join in the group rather than sending the tuple back to 
the root can provide savings proportional to the depth of 
that group (instead of the n hops to get the original data to 
the root, only one transmission of the original data is 
made). 

We now describe the algorithm that each node performs 
when it receives a join query with a predicates table whose 
size is too large to fit on that node.  We discuss how groups 

are formed, how the table is distributed, and then the group 
join operation. 

 

3.2.2. Group Formation 

Figure 2: Join Algorithm Finite State Machine.  The 
“TO” transitions represent timeouts, which are used 
to prevent deadlocks in the event of lost data or failed 
nodes. 



If a node calculates that it does not have enough storage 
capacity for the table, it initiates the group formation 
algorithm. To minimize the number of times an original 
tuple must be transmitted to make it to every member of a 
group, we require that all nodes in the group are within 
broadcast range of each other. A second required property 
of a group is that it must have enough cumulative storage 
capacity to accommodate the table of predicates. Group 
formation is a background task that happens continuously 
throughout the lifetime of the join query as nodes come 
and go and network connectivity changes. Every group can 
be uniquely identified by its groupid and the queryid to 
which the group belongs. To simplify group formation and 
table distribution, we only allow a node to belong to one 
group for a given query. A node may belong to different 
groups for different simultaneously running queries. 

Every node maintains a global, periodically refreshed list 
of neighbors that are within broadcast range.  For each 
neighbor, an estimate of incoming link quality is computed 
by snooping on messages sent by surrounding nodes. Each 
REED message contains a counter, and upon overhearing a 
message, a node can calculate how many messages it 
missed since the previous message by subtracting the 
previous message’s counter from the current counter. The 
receive rate can then be calculated by dividing the number 
of messages received by the total number of messages sent. 
Note that links may be asymmetric. For this reason, we 
assume that the neighbor list only contains information 
about incoming link quality from each node. Outgoing link 
quality is accounted for elsewhere. A neighbor node is 
placed on the neighbor list if the receive percentage is 
above some threshold (defaulting to 75%).  This algorithm 
is similar to the algorithm used for measuring link quality 
in the TinyOS multihop radio stack [27], and we have been 
able to use the standard TinyOS implementation of this 
table in our REED implementation. 

Once a node receives notification of a new query, it enters 
into a group formation finite state machine (FSM – see 
Figure 2). Each join query has its own FSM which, barring 
resource conflicts, operates independently. Every node is 
initialized to the Need Group state with a randomly set 
timeout value. Nodes transition between states in this 
diagram once per epoch. Groups are formed when a node 
(which will become known as the master node) in the Need 
Group state reaches a timeout and broadcasts a request to 
form a group to neighboring nodes (while transitioning to 
the Listen Group state). All nodes which hear this request 
and are also in the Need Group state (implying that they 
are not currently in groups and do not have offers pending 
to other potential masters) respond with offers to be 
members if the master node is in their neighbor list. These 
offer messages include the neighbor list of the sender and 
the number of join table tuples which the sender can 
locally store. Responding nodes move into the Possible 
Member state which prohibits them from offering 
themselves to other masters until a response is received or 
a timeout occurs. In order to minimize the probability that 

the master does not receive the reply and the node has to 
wait until it times out to be available again, a node in the 
Possible Member state retransmits its reply every fixed 
time period (one epoch) until it hears a response from the 
desired master.  

The master node collects responses from available nodes 
for a fixed duration (occasionally retransmitting the group 
formation request in case previous requests were lost). At 
the end of this duration, the master chooses the group 
members. The algorithm to choose the group members 
attempts to make a group that involves the maximum 
number of nodes such that every node is in radio range of 
every other. This is done using the neighbor lists that each 
neighbor sent to the master and the master’s own neighbor 
list.  The master also must ensure that the group has 
enough combined storage capacity to store the entire 
predicates table. Ideally, a node would use the neighbor list 
of every node to create the optimal group. However, since 
memory is severely limited (and we want to save as much 
memory as possible for the storage of the table) the master 
node does not store the neighbor list of every reply it 
receives, but instead keeps a running intersection of current 
candidate group members’ neighbor lists. Upon receiving a 
reply, the master takes the intersection of its current list 
with the neighbor list received in the reply. The master also 
keeps a running aggregate of the total storage available on 
all of the nodes. If the resulting intersection is sufficiently 
large (and the nodes previously accepted are still in the 
intersection), the master includes the node into the group 
and keeps the intersection. Otherwise, it rejects the node 
and rolls back to the previous intersection. Pseudo code for 
this greedy algorithm is shown in Figure 3.  

Note that this algorithm takes into account the possibility 
of asymmetric links. To be in the same group, every group 
member must appear on the neighbor list of every other 
member. Thus, (for the example of two nodes, a and b) 
node b must appear on node a’s neighbor list and node a 
must appear on node b’s neighbor list.  

At the end of the time out period, the master examines the 
current group’s aggregate storage space. If it is larger than 

t = some threshold parameter 
N = current neighborlist 
G = my.id //G will hold current group  
   // member list which is initialized  
   // to just contain the master 
space = my.space 
for every reply from node i do  
   id = i.id 
   M = i.neighborlist 
   P = intersect(N, M) 
   if (|P| > t) and (P ∩∩∩∩ G = G) do 
      N = P; 
      G = union(G, id) 
      space = space + i.space 
   end 
end 

Figure 3: Group Formation Algorithm 



the size of the predicates table, it can go ahead and inform 
the group of its successful creation. Otherwise, it must 
announce that it failed to create a group. If it succeeded in 
creating a group a message is broadcast containing the list 
of accepted members and the master transitions to the Wait 
Data state. Nodes that receive this broadcast check to see if 
they are on the accepted members list. If so, they also 
transition to the Wait Data state. Otherwise, they revert 
back to the Need Group state. As stated above, nodes in the 
Possible Member state periodically retransmit a group 
reply. Thus, if the group announcement broadcast is lost, 
these nodes will continue to send replies that will cause the 
master to retransmit the group announcement. Eventually, 
word will get to all possible members whether or not they 
are accepted. The group id of the resultant group is the 
node id of the master node. 

Although now officially a query group, nodes in the group 
cannot start processing tuples as a group until the join table 
has been distributed.  It is the responsibility of the 
basestation to keep track of which parts of the join table 
have been issued to which members of a group. This 
information is kept in a table indexed by group id and 
query id. Upon entering into a group and transitioning into 
the Wait Data state (either as a master node which just 
successfully formed a group or as a potential group 
member node which received the group accept broadcast), 
a node sends a join table request message to the root 
(which is periodically resent if no response from the root 
occurs before a timeout). This message includes the 
groupid, queryid, and the number of filter predicates that 
can be accepted. This number is computed from the space 
available at the node and the schema of the join table.  

The basestation receives the join table requests and, based 
on the queryid, groupid and tuple capacity, decides which 
portion of the join table should be sent back to the node.  

Upon receiving a set of join tuples from the root, a node 
transitions to the Wait Others Data state and broadcasts to 
its group the number of tuples it received (this message is 
also periodically rebroadcast while a node remains in the 
Wait Others Data state). Each node keeps track of which 
nodes have received how many tuples, and independently 
determines when the entire join table has been distributed 
to the group (since the join table size was distributed with 
the original query request). When any member of the group 
decides that the entire group has received the join table, it 
transitions to the In Group stage and broadcasts a group 
ready message. Nodes that hear the group ready message 
also transition to the In Group state. Nodes that do not hear 
the message will transition to the In Group state as soon as 
it overhears a message from one of the nodes who know 
that the group is ready (and is in the In Group state) that 
contains a broadcast a tuple for the group to join.  

3.2.3. Operation 
Sensor data tuples that need to be processed by a node are 
generated either by the sensors on the node itself or 
received from children in the REED routing tree. Nodes 

are responsible for forwarding child sensor data tuples at 
all times during the query, whether or not they are in an 
active join group. Until transitioning to the In Group state, 
all data tuples are forwarded up to the parent node in the 
REED tree. If all nodes along the way to the root 
basestation are not members of active groups, then the 
network behaves like the naive join with all the original 
sensor data tuples being forwarded to the root where the 
join is performed. 

However, if a node along the way is in the In Group state, 
then instead of forwarding the data message to its parent, it 
broadcasts the tuple to its group. Each group member then 
joins that data tuple with the locally stored portion of the 
join table and forwards the resulting joined tuples up the 
original REED tree; these result tuples need no more 
joining and can be output once they reach the root.  

Nodes in the In Group state eventually time out and 
attempt to dissolve the group. They also might choose to 
dissolve the group if it senses that a node has ceased to 
respond or if the message loss percentage from a node in 
the group rises above the desired threshold. A node 
dissolves a group by broadcasting a group dissolve 
message and transitioning to the Need Group state. Nodes 
that receive this message also transition to the Need Group 
state. Nodes that do not will continue to try to send data 
tuples to the group which will cause the node that 
dissolved the group to retransmit the dissolve message and 
forward these data tuples back up the original REED 
routing tree. 

3.3. Robustness Under Message Loss and Node Failure 
It is critical that the distributed join algorithm just 
described works properly in the face of message loss and 
node failure. If the table fails to distribute properly, or if 
nodes in a group incorrectly make assumptions regarding 
the data storage of other members of the group, data loss is 
compounded due to repeated errors in data processing 
within the group. For example, if node y times out (or fails 
or moves out of broadcast range) at any point in the group 
formation process and other nodes continue to process 
tuples as if that node were a group member, then all tuples 
processed by that group that joined node y’s partition will 
be lost. Since these errors are so important to avoid, we 
briefly discuss the robustness properties of this algorithm. 

The key attribute of this algorithm that allows it to avoid 
problematic scenarios is that each state is “soft” in the 
sense that if enough time elapses with a node stuck an any 
particular state, it gives up and returns to the Need Group 
state. Message loss and node failure are the primary 
reasons that a node might get stuck in a particular state. For 
example, a node that has sent out a response to a group 
offer might get stuck in the Possible Member state if the 
node it responded to either fails or further communication 
between the nodes is lost. For every state except the Wait 
Others Data and In Group states, reverting back to the 
Need Group state can happen for free, without causing any 
loss. This is because every node is transmitting data back 



to the basestation using the naïve algorithm until a group is 
formed, so until a node has announced that it owns a 
partition of the table, it has not made any promises to other 
nodes that it cannot easily renege. By timing out during the 
group formation process, a node might delay induction into 
a group for both itself and other nodes that it may have 
indicated interest in joining, but no data is lost.  

For the case where a node times out (or fails) while in the 
Wait Other Data or In Group states, we allow a bounded 
amount of data to be lost. Our initial implementation of 
REED used a reliable round-robin ACKing protocol 
between nodes.  In this protocol, a node in a group stored 
the last k tuples that it transmitted to its group. Every group 
member then sent an ACK at least once in every k epochs. 
If any group member failed to perform this ACK, the 
remaining group members assumed that none of their last k 
transmissions made it to this node and transmitted their 
stored block of k tuples via the naïve algorithm to the 
basestation. This aggressive reliability protocol turned out 
to be overkill since REED applications expected some 
amount of loss in the sensor network anyway, and the 
highly reliable communication within a REED group did 
not match the low reliability of transmissions once the data 
left the group. For this reason, REED reacts with a delay to 
node failure inside a group. We use the active neighbor list 
in the TinyOS multi-hop routing layer to detect failures. 
When a group member disappears from a node’s neighbor 
table, that node immediately commences the group 
dissolving process described above.  

 

4. Optimizations 
In this section, we extend the basic join algorithm 
described in the previous section with several 
optimizations that decrease the overall communication 
requirements of our algorithms and that allow us to apply 
in-network filters for large tables that exceed the storage of 
a group of nodes. 

4.1. Bloom Filters 
To allow nodes to avoid transmitting sensor data tuples 
that will not join with any entries in the join table, we can 
disseminate to every node in the network a k-bit Bloom 
filter [2], f, over the set of values, J, appearing in the join 
column(s) of the filter table.  We also program nodes with 
a hash function, H, which maps values of the join attribute 
a into the range 1…k. Bits in f are set as follows: 
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Thus, if bit i of f is unset, then no value which H maps to i 
is in J.  However, just because bit i is set does not mean 
that every value which hashes to i is included in J.  We 
apply Bloom filters as in R*[15]: when a node produces a 
tuple, t, with value v in the join column, it computes H(v) 
and checks to see if the corresponding entry is set in f.  If it 

is not, it knows that this tuple will definitely not join.  
Otherwise, it must forward this tuple, as it may join.  
Assuming simple, uniform hashing, choosing a larger 
value of k will reduce the probability of a false positive 
where a sensor tuple is forwarded that ultimately does not 
join, but will also increase the cost of disseminating the 
Bloom filter.  We can apply bloom filters with the group 
protocol, to avoid even one transmission of data to group 
members, or in isolation as a locally-filtered version of the 
naïve (external) filtration algorithm. 

4.2. Partial Filtering 
For situations in which there are a very large number of 
tuples in the join table, we can just disseminate information 
that allows sensors to identify tuples that definitely do not 
join with any filters.  Suppose we know that there are no  
filters on attribute a in the range a1 … a2.  If we transmit 
this range in the network, then a sensor tuple, t, with value 
t.a outside a1 … a2 is guaranteed to not join with any filters 
and need not be transmitted;  if t does intersect with the 
range, we must transmit it to the root to check and see if 
this tuple joins with any filters. Of course, for a 
multidimensional join query, there will be many such 
ranges with empty values, and we will want to send as 
many of them into the network as the nodes can store. 

Thus, the challenge in applying this scheme is to pick the 
appropriate values of a1 and a2 in each range we send into 
the network so as to maximize the benefit of this approach.   
If few tuples that are produced by the sensors are outside 
of this range, we can substantially decrease the number of 
tuples that nodes must transmit.  Of course, the range of 
values which commonly join may change over time, 
suggesting that we may want to change the subset of the 
table stored in the network adaptively, based on the values 
of sensor tuples we observe being sent out of the network.  
We discuss one such adaptive algorithm in the next 
section. 

4.2.1. Cache Diffusion 
The key idea of our approach is to observe the data that 
sensor nodes are currently producing. We assume that each 
node contains two cache tables. The first, the local value 
cache, contains the last k tuples that a node n produced. 
The second table (which is organized as a priority queue) 
holds empty range descriptions (ERDs) of the join.  An 
ERD is a range of values over all join attributes such that 
no combination of tuple values within the range joins with 
the filter table; e.g., an ERD for a query filtering by 
nodeid and temperature might consist of the range 
[20-25] on temperature and the range [5-7] on 
nodeid; a different ERD might consist of the range [23-
30] on temperature and [1-3] on nodeid.  Tuples that 
are within the range described by an ERD will not join.  
We define the size of an ERD to be the product of the 
width of the ranges in the ERD.  We define a maximal 
ERD for a non-joining tuple to be the ERD of the largest 
size that the tuple overlaps.  We currently compute the 
maximal ERD via exhaustive search at the basestation. 
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The cache diffusion algorithm then works as follows. 
Every time the root basestation receives a tuple that does 
not join, it sends the maximal ERD which that tuple 
intersects one hop in the direction that the tuple came from. 
This node then checks its local value cache for tuples that 
are contained within this ERD. If one is found, this value 
and any other values that overlap with the ERD are 
removed from the local value cache, and the ERD is added 
to the ERD cache table with priority 1. If no match is 
found, then the ERD is also placed in the ERD cache table, 
but we mark it with priority 0.  Priorities are used to 
determine which ERDs to evict first, as described below. 

Upon receiving a tuple from a child for forwarding, a node 
first checks the ERD cache to see if the tuple falls within 
any of its stored ERDs. If so, the node filters the tuple and 
sends the matching ERD to the child. Further, if node x 
overhears node y sending a tuple to node z (where node z is 
not the basestation), it also checks its ERD table for 
matching ERDs and, if, it finds one, forwards it to node y. 
The ERD cache is managed using 
an LRU policy, except that low-
priority ERDs are evicted first. 
Here “last-use” indicates the last 
time an ERD successfully filtered 
a tuple. 

Thus, for a node x of depth d, it 
takes d tuples that fall within an 
ERD to be produced before the 
ERD reaches node x.  Note that 
these d tuple productions do not 
have to be consecutive as long as 
the matching ERD that diffuses 
to node x does not get removed 
from the ERD cache of its 
ancestor nodes on its way. 
Further, note that despite the fact 
that it takes d tuples before node x receives the ERD, these 
tuples get forwarded fewer and fewer times while the ERD 
gets closer and closer to x. In total, d + (d-1) + (d-2) … + 1 
additional transmissions are needed before an ERD reaches 
node x.  The advantage of this approach over directly 
transmitting the ERD to the node that produced the non-
joining tuple is two fold:  first, we do not have to 
remember the path each tuple took through the network; 
second, we do not have to transmit every ERD d hops – 
only those which filter several tuples in a row.    

Once an ERD (or set of ERDs) arrive at node x, then as 
long as node x produces data within the ERD, no 
transmissions are needed. Thus, for joins with low 
selectivity on sensor attributes of high locality, we expect 
this cache diffusion algorithm to perform well, even for 
very large tables. 

 

5. Experiments and Results 
We have completed an initial REED implementation for 
TinyOS. Our code runs successfully on both real motes and 

in the TinyOS TOSSIM [13] simulator. We use the same 
code base for both TOSSIM and the motes, simply 
compiling the code for a different target.  Most of the 
experimental results in this section are reported from the 
TinyOS TOSSIM simulator, which allows us to control the 
size and shape of the network topology and measure 
scaling of our algorithms beyond the small number of 
physical nodes we have available.  We demonstrate that 
our simulation results closely match real world 
performance by comparing them to numbers from a simple 
five-mote topology.  

We are running TOSSIM with the packet level radio model 
that is currently available in the beta/TOSSIM-packet 
directory of the TinyOS CVS repository.  This simulator is 
much faster (approximately 1000x) than the standard 
TOSSIM radio model but still simulates collisions, 
acknowledgments, and link asymmetry.   The primary 
difference between this simulator and the standard 
TOSSIM radio model is that the standard model simulates 
the modulation of every bit of every packet over the radio, 
modeling collisions by ANDing together the bits written 
by different senders.  The packet simulator writes a whole 
packet at a time, delivering packets to receivers after an 
appropriate transmission delay (as long as other senders 
within radio range do not collide by writing packets during 
this delay period).  For the measurements reported here, 
our algorithms perform similarly (albeit much more 
slowly) when using the standard bit-level simulator. 

For the experiments below, we simulate a 20x2 grid of 
motes where there are 5 feet between each of the 20 rows 
and 2 feet between the 2 columns. The top-left node is the 
basestation. This is shown in Figure 4. With these 
measurements, a data transmission can reach a node of 
distance 1 away (horizontally, vertically, or diagonally in 
Figure 4) with more than 90% probability, of distance 2 
away with more than 50% probability, and rarely at further 
distances. However the collision radius is much larger: 
nodes transmitting data with distance <=5 away from a 
particular node can collide with that node’s transmission. 
For the distributed (group) join experiments, we set the 
group quality threshold described above to 75%, which 
yield groups almost always to consist of nodes all less than 
10 feet away from each other. We chose this topology 
because it allows us to easily experiment with large depths 
so that nodes towards the leaves of the network can still 
reliably send data to the basestation while not requiring the 
TinyOS link layer to perform retransmissions during data 
forwarding. We have also experimented with grid 
topologies (such as 5x5) to confirm that the algorithm still 
performs correctly under different topologies (as long as 
the network is dense enough so that groups can form). 

Our first set of experiments will examine the distributed 
(REED) join algorithm. We evaluate this algorithm along 
two metrics:  power savings and result accuracy.  We use 
number of transmissions as an approximation of power 
savings as justified in Section 1.2.  We compare those 
results to a naïve algorithm that simply transmits all 



readings to the basestation and performs the join outside 
the network.  We measure accuracy to determine whether 
our protocols have a significant effect on loss rates over an 
out-of-network join.  We also show how combining this 
algorithm with a predication filter (such as Bloom) can 
further improve our metrics. In these experiments, we 
simulate a Bloom filter that accurately discards non-joining 
tuples with a fixed probability. We analyze the dimensions 
that contribute to this probability in later experiments. 

For experiments of the distributed join, we use a join query 
like the industrial process control Query (1) described in 
Section 2 above, except that we use the same schedule at 
every node (so our query does not include a join on 
nodeid).  Our schedule table has 62 entries, representing 
62 different times and temperature constraints.  On our 
mica2 motes with 4K of RAM, each mote has sufficient 
storage for about 16 tuples – the remainder of the RAM is 
consumed by TinyDB and forwarding buffers in the 
networking stack.  We have also experimented with several 
other types of join queries and found similar results:  
irrespective of the query, join-predicate selectivity and 
average node depth have the largest effect on query 
execution cost for the distributed join algorithm. 

For all graphs showing results for the distributed join 
algorithm,, we show power utilization and result accuracy 
at steady state, after groups have formed and nodes are 
performing the join in-network. We do not include table 
distribution costs in the total transmission numbers. We 
choose to do this for two reasons. 

First, efficient data dissemination in sensor networks is an 
active, separate area of research [14,23]. Any of these 
algorithms can be used to disseminate the predicates table 
to the network. We use the most naïve of dissemination 
algorithms:  flooding the table to the network. For every 
tuple sent into the network, each node will receive it once 
and rebroadcast it once. Thus, if there n nodes in the 
network, and the table contains k filter predicates, then 
there will be n·k transmissions per table dissemination. 
However, since multiple tables are disseminated (one per 
group), our naïve dissemination algorithm requires n·k·g 
transmissions where g is the number of groups. A simple 
optimization would be to wait until all groups had been 
formed and transmit the table just once; doing this is non-
trivial as groups may break-up and reform over the course 
of the algorithm.  For the experiments we run, we found 
that on average 300 transmissions are made per predicate 
in the table for our 40 node network (since g is on average 
7.7). For the 60 predicate table size we experimented with, 
this added 18K transmissions.  

Second, applications of our join algorithm tend to be long 
running continuous queries. For this reason, we are more 
interested in how the algorithm performs in the long term, 

and we expect that these set up costs will be totally 
amortized over the duration of a query. For example, in 
500 epochs (the duration of our experiments below), we 
already accrue up to 160K transmissions - well above the 
18K transmissions needed to disseminate the table. 

Our second set of experiments analyzes and compares the 
Bloom Filter and Cache Diffusion algorithms. Again we 
use the number of transmissions as the evaluation metric. 
We observe how the size of the join attribute domain and 
locality of data are good ways to decide between which 
algorithm to use.  

5.1. Distributed Join Experiments 

The following two experiments examine how two 
independent variables affect the metrics of power savings 
and accuracy for each join algorithm: join predicate 
selectivity and average node depth. For all experiments, 
data is collected once the system reaches steady state for 
500 epochs. The table contains 62 predicates and each 
node has space for 16; resulting in groups of size 4 being 
created. Different numbers and combinations of groups 
form in different trial runs, so each data point is taken by 
averaging three trial runs. Error bars on graphs display 
95% confidence intervals. 

5.1.1. Selectivity 
For this set of experiments, we varied the selectivity of the 
join predicate and observed how each join algorithm 
performed.   

We model the benefit of the Bloom filter optimization 
described in Section 4.1 by inserting a filter that discards 
non-joining tuples with some probability p. We can 
directly vary p for the test query via an oracle which can 
determine whether or not a tuple will join, which is 
convenient for experimentation purposes. We will show 
later how in practice, the value of p can be obtained. 

Figure 5 shows that for highly selective predicates (low 
predicate selectivity), both the REED algorithm and the 
Bloomjoin optimization provide large savings in the 
amount of data that must be transmitted in the network. 
The naïve algorithm is unaffected by selectivity because it 
must send back all of the original data to the basestation 
before the data is analyzed and joined. The REED 
algorithm does not have this same requirement: those 
nodes that are in groups can determine whether a produced 
tuple will join with the predicates table without having to 
forward it all the way to the basestation. Thus, the savings 
of the algorithm is linear in the predicate selectivity. The 
Bloomjoin algorithm improves these results even more 
since nodes no longer always have to broadcast a tuple to 
its group (or to its parent if not in a group) to find out if a 
tuple will join.  In these experiments we filter 50% of the 
non-joining tuples in the Bloom filter. 



Figure 6: Breakdown of Transmission Types for 
Distributed Join with Varying Selectivity 

To better understand the performance of these algorithms, 
we broke down the type of transmissions into four 
categories: (1) the transmission of the originally produced 
tuple (to the node’s parent if not in a group; otherwise to 
the group), (2) the first transmission of any joined tuples, 
(3) any further transmissions to forward either the original 
tuple or a joined result up to a parent in a group or to a 
basestation, and (4) transmissions needed as part of the 
overhead for the group formation and maintenance 
algorithms.   Figure 6 displays this breakdown for the 
REED algorithm over varying selectivity. In this figure, the 
original tuple transmissions remain constant at 
approximately 20K. This is because every tuple needs to be 
transmitted at least once in the REED algorithm: if the 
node is not in a group, the tuple is sent to the node’s 
parent; otherwise it is sent to the group. Once a tuple is 
sent to a group, no further transmissions are needed if the 
tuple does not join with any predicate. For the 20-hop node 

topology used in this experiment, the forwarded messages 
dominate the cost. It is also worth noting that the figure 
shows that the group management overhead (at steady 
state) is negligible compared with any of the other types of 
transmissions. 

Since Figure 6 showed that the reason why the REED 
reduces the number of transmissions is because it reduces 
the number of forwarded messages that need to be sent, 
once possible explanation for this could be that the 

algorithm causes more loss in the network and messages 
tend to get dropped before reaching the basestation (so 
they do not have to be forwarded). To affirm that this is not 
the case, we measured the number of tuples that reach the 
basestation at varying selectivities and compared each 
algorithm. These results are shown in Figure 7. As can be 
seen, all algorithms perform similarly; however the naïve 
algorithm has slightly less loss at high selectivities and the 
REED algorithms have slightly less loss at low 
selectivities. This can be explained as follows: group 
processing of the join occasionally requires 1-2 extra hops. 
This is the case when a node x that stores a partition of the 
predicates table that will join with a particular tuple 
produced by node y and x is located at the same depth as y 
or 1 node deeper. The former case requires 1 extra hop, the 
latter 2 extra hops. With each extra hop, there is extra 
probability that a tuple can be lost. This explains why there 
is more loss at high join predicate selectivities. However, 
at low selectivities, this negative impact of REED is 
outweighed by its reduction in the number of transmissions 
and thus network contention. Since fewer messages are 
being sent in the network, there is an increased probability 
that each message will be transmitted successfully. 

5.1.2. Average Node Depth 

For this set of experiments, we fixed the join predicate 
selectivity at 0.5 and 0.1 and varied the topology of the 
sensor network (in particular varying average node depth) 
and observed each how join algorithm performed.  We 
varied node depth by subtracting leaf nodes from the 20x2 
topology described earlier. The baseline 20x2 topology has 
a average depth of 10.26 (each node’s parent is fixed to be 
the node above it in the network except for the top-right 
node which has the basestation as its parent). We 
eliminated the bottom 6 nodes to achieve an average depth 
of 8.76, another 6 nodes to achieve an average depth of 
7.26, etc. to achieve depths of 5.76, 4.26, and 2.78; and 
then the bottom pairs for nodes to achieve average depths 
of 2.29, 1.80, and 1.33. The number of transmissions for 
each of the three join algorithms is given in Figure 8.  
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Figure 9: Simulated vs. Real World Results 

These results show that the average depth necessary for 
REED (without using a Bloom filter) to perform better 
than the naïve algorithm is 1.8. The reason why REED 
performs worse than the naïve algorithm at low depths is 
twofold. The less significant reason is the small group 
formation and maintenance overhead incurred by REED. 
The more significant reason is that, as explained above, 
join processing occasionally requires 1-2 extra hops. At 
large depths, these extra hops get made up for in the saved 
forwarded transmissions, but for depths less than 2, this is 
not the case. However, if a Bloom filter is used, REED 
always outperforms the naïve algorithm. 

5.2. Real World Results 
Although we expected that TOSSIM would be an accurate  
simulation for TinyOS code, we verified for ourselves that 
our join algorithm worked on a simple five-node one hop 
network. We tracked the number of transmissions by 
passing this number with the result of each join result (for 
simulations we could more easily track number of 
transmissions using debug statements). A side effect of this 
method, however, is that we can not test our algorithm at 
low selectivities as we can not accurately calculate the 
number of transmissions of each node at a particular point 
in time. As a result, we ran our REED algorithm with the 
Bloom filter optimization varying selectivities above .5. 
We ran the same experiment in simulation and compared 
the two results in Figure 9. Simulation and practice 
perform similarly; however the non-simulated results have 
slightly decreased number of transmissions due to a 

slightly higher amount of loss than was modeled in 
simulation. 

5.3. Bloomjoin and Cache Diffusion 
Although the Bloomjoin and Cache Diffusion (CD) 
algorithms described above can help optimize the REED 
distributed join algorithm, they also can be applied 
independently where the predicate table is too large to fit 
on even a group of nodes. Whether applied as an 
optimization or independently, it is important to decide 
which algorithm will perform best as usually there is not 
enough free space on sensor nodes to perform both 
(besides which each algorithm improves performance if 
allocated more space). For these experiments, we allocated 
90 bytes total  space for the data structures needed by each 
algorithm. For the Bloomjoin algorithm, this allowed a 720 
bit Bloom filter to be distributed and for CD, this allowed 
9 tuples or ERDs to be cached. 

We found that the two most important dimensions that 
distinguish these algorithms from each other are domain 
size and data locality and thus we present our results using 
these dimensions as independent variables. The query used 
to run these experiments is the outlier detection query 
presented in section 2.1 except that we add light along with 
temperature as sensor produced data. In order to vary data 
locality as an independent variable, we generated data for 
each node using matlab where sensor readings are 
produced using a normal distribution with small variance 
and with a mean that is moved according to a cumulative 
sum of another normal distribution. Increasing and 
decreasing the variance of this second normal distribution, 
causes the mean to move around with decreased or 
increased jumps, affecting the locality of the data. We 
define locality in these experiments to be 1/(variance) of 
the second distribution. Figure 10 shows how total 
transmissions for a 5 node network of average depth=2 
running for 2500 epochs varies with data locality of the 
Bloomjoin and CD algorithms. 

In order to vary 
attribute domain 
size we simply 
mod these values 
by the desired 
domain size of 
each attribute. 
The size of the 
domain of the 

whole tuple is simply the multiplication of the domain 
sizes of each component attribute. Due to lack of space, we 
cannot show the graph for the Bloomjoin and CD 
algorithms with varying selectivity. In short, we found that 
domain size did not affect CD (however, this could be 
query dependent), but that Bloomjoin was greatly affected 
by it. If light was allowed to vary between only 64 values 
and temperature between 32 (resulting in a domain size of 
2048), Bloomjoin approached the naïve algorithm in terms 
of number of transmissions. But for smaller domains, 



Bloomjoin performed extremely well. Thus Bloomjoin is 
preferred over CD when joining over only one attribute, 
but CD is preferred over Bloomjoin when the domain is 
larger than one attribute, as long sensor data is produced 
with reasonable locality. 

6. Related Work 
Work on distributed query processing for relational 
databases began as early as the late 1970s. For example, 
Epstein et al. [6] introduced an algorithm for the retrieval 
of data from a distributed relational database with 
communication traffic as a cost criteria for which nodes 
should perform joins. Bernstein et al. [1] introduced a 
semi-join algorithm which reduces the communication 
overhead of performing distributed joins by taking the 
intersection of the schemas of the tables to be joined, 
projecting the resulting schema on one of the tables, 
sending this smaller version of the table to the node 
containing the other table and joining at this node, and then 
sending this result back to the node containing the original 
table and joining again.  This semi-join technique is an 
interesting possible optimization, though our Bloom-filter 
approach subsumes and likely outperforms it, for the same 
reasons as described in R* [15]. 

Determining how to horizontally partition a join table 
amongst a set of servers is classic problem in database 
systems.  The Gamma [5] and R* [11] systems both 
studied this problem in detail, analyzing a range of 
alternative techniques for allocating sets of tuples to 
servers, though both sought to minimize total query 
execution time rather than communication or energy 
consumption. 

TinyDB [16,17,18] and Cougar [28] both present a range 
of distributed query processing techniques for the sensor 
networks. However, these papers do not describe a 
distributed join algorithm for sensor networks.   

There are a large number non-relational query systems that 
have been developed for sensor networks, many of which 
include some notion of correlating readings from different 
sensors.  Such correlation operations resemble joins, 
though their semantics are typically less well defined, 
either because they do not impose a particular data model 
[9], or because they are probabilistic in nature [4] and thus 
fundamentally imprecise.  

The work that comes closest to REED is the work from 
Bonfils and Bonnet [3], which proposes a scheme for join-
operator placement within sensor networks.  Their work, 
however, focuses on joins pairs of sensors, rather than 
joins between external tables and all sensors.  They do not 
address the join-partitioning problem that we focus on. 

7. Conclusion 
REED extends the TinyDB query processor with facilities 
for efficiently executing complex, multi-predicate filtration 
queries inside of a sensor network.  Our join-based 
algorithms are capable of running in very limited amounts 
of RAM, can distribute the storage burden over groups of 

nodes, and are tolerant to dropped packets and node 
failures.  REED is thus suitable for a wide range of event-
detection applications that traditional sensor network 
database and data collection systems cannot be used to 
implement. Moving forward, because REED incorporates a 
general purpose join processor, we see it as the core piece 
of an integrated query processing framework, in which 
sensor networks are tightly integrated into more traditional 
databases, and users are presented with a seamless query 
interface. Beyond filtrations, power-efficient joins that 
allow the combination of tables of values outside the 
sensornet to be joined with streaming data generated by 
sensors will be extremely valuable. 
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