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ABSTRACT
This paper presents an approach to fault-tolerant stream
processing. In contrast to previous techniques that handle
node failures, our approach also tolerates network failures
and network partitions. The approach is based on a prin-
cipled trade-off between consistency and availability in the
face of failure, that (1) ensures that all data on an input
stream is processed within a specified time threshold, but
(2) reduces the impact of failures by limiting if possible the
number of results produced based on partially available in-
put data, and (3) corrects these results when failures heal.
Our approach is well-suited for applications such as envi-
ronment monitoring, where high availability and “real-time”
response is preferable to perfect answers.

Our approach uses replication and guarantees that all pro-
cessing replicas achieve state consistency, both in the ab-
sence of failures and after a failure heals. We achieve consis-
tency in the former case by defining a data-serializing oper-
ator that ensures that the order of tuples to a downstream
operator is the same at all the replicas. To achieve consis-
tency after a failure heals, we develop approaches based on
checkpoint/redo and undo/redo techniques.

We have implemented these schemes in a prototype dis-
tributed stream processing system, and present experimen-
tal results that show that the system meets the desired
availability-consistency trade-offs.

1. INTRODUCTION
In recent years, a new class of data-intensive applica-

tions requiring the “real-time” processing of large volumes
of streaming data has emerged. These stream processing ap-
plications arise in several different domains, including com-
puter networks (e.g., intrusion detection), financial services
(e.g., market feed processing), medical information systems
(e.g., sensor-based patient monitoring), civil engineering
(e.g., highway monitoring, pipeline health monitoring), and
military systems (e.g., platoon tracking, target detection).

In all these domains, stream processing entails the com-
position of a relatively small set of time-oriented operators
(e.g., filters, aggregates, and correlations) on “windows” of
data. In addition, most stream processing applications re-
quire results to be continually produced at low latency, in
the face of high and variable input data rates. As has
been widely noted [1, 8, 13], these features and require-
ments render traditional data base management systems
(DBMSs) based on the “store-then-process” model inade-
quate for high-rate, low-latency stream processing.

Stream processing engines (SPEs) (also known as data
stream managers [1, 30] or continuous query processors [13])
are a class of software systems that handle the data pro-
cessing requirements mentioned above. Much work has been
done on data models and operators [1, 5, 15, 28, 40], efficient
processing [6, 7, 11, 30, 42], and resource management [12,
16, 30, 35, 37] for SPEs. Stream processing applications are
inherently distributed, both because input streams often ar-
rive from multiple geographically distributed data sources,
and because running SPEs on multiple nodes enables better
performance under high load [14, 35].

In this paper, we add to the body of work on SPEs by
addressing fault-tolerant stream processing, presenting algo-
rithms, implementation details, and experiments that enable
distributed SPEs to cope with a variety of network and sys-
tem failures. Our work differs from previous approaches [25,
35] to high-availability and fault tolerance in streaming sys-
tems in that those approaches can survive only the failure
of processing nodes and are not tolerant to other types of
failures, such as network failures, network partitions, and
transient failures of input streams. Our approach addresses
all of these types of failure in a single framework.

As in most previous work on masking software failures,
we use replication [22], running multiple copies of the same
query network on distinct processing nodes. Each SPE pro-
duces result streams that are either sent to applications or
downstream SPE nodes for additional stream processing.
When a downstream processing node stops receiving data (or
“heartbeat” messages signifying liveness) from its upstream
SPE node, it picks a different upstream replica (if it can find
one) from which to obtain the missing input streams.

For a downstream SPE to be able to correctly continue
its processing from a new upstream replica, the upstream
replicas must all be consistent with each other. They must
process their inputs in the same order, progress at roughly
the same pace, and their internal computational state must
be the same. To ensure replica consistency, we define a sim-
ple data-serializing operator, called SUnion, that takes mul-
tiple streams as input and produces one output stream with
deterministically ordered tuples.

At the same time, if a downstream SPE is unable to find
a suitable upstream data source for a previously available
input stream, it must decide whether to continue process-
ing with the remaining (partial) inputs, or block until the
failure heals. If it chooses the former option, a number of
“wrong” results will be produced, while the latter option
greatly reduces availability because applications will see a
partial failure as a complete one.
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Our approach gives the user explicit control of trade-offs
between consistency and availability in the face of network
failures [10, 22] in an SPE. To provide high availability, each
SPE guarantees that input data is processed and results for-
warded within a user-specified time threshold of its arrival,
even if some of its inputs are currently unavailable. At the
same time, to prevent downstream nodes from unnecessarily
having to react to unstable data, an SPE should try to avoid
or limit the number of unstable tuples it produces.

We introduce an enhanced streaming data model in which
results based on partial inputs are marked as unstable, with
the understanding that they may subsequently be modified;
all other results are considered stable and immutable. When
a failure heals, each SPE that saw unstable data reconciles
its state by re-running its computation on its correct and
complete input streams. While correcting its internal state,
the replica also stabilizes its output by replacing the previ-
ously unstable output with stable data tuples forwarded to
downstream clients. We argue that traditional approaches
to record reconciliation [27, 41] are ill-suited for streaming
systems, and adapt two approaches similar to known check-
point/redo and undo/redo schemes [17, 23, 22, 29, 38] to
allow SPEs to reconcile their states.

Specifically, we address the problem of minimizing the
number of unstable result tuples while guaranteeing that the
results corresponding to any new tuple are sent downstream
within a specified time threshold. This trade-off between
availability (the specified threshold) and consistency (num-
ber of unstable result tuples, since that is often a reason-
able proxy for replica inconsistency) is well-suited for many
streaming applications where having perfect answers at all
times is not essential (see Section 2). Our approach also per-
forms well in the face of the non-uniform failure durations
observed in empirical measurements of system failures: most
failures are short, but most of the downtime of a system com-
ponent is due to long-duration failures [18, 23].

We implemented our approach in the Borealis distributed
stream processing system and present the results of several
experiments. We find that Borealis can handle failures of
variable duration while ensuring that new tuples are pro-
cessed within a pre-defined threshold (3 seconds per node in
our experiments), even when query networks span multiple
processing nodes. We also show that our scheme has low
runtime overhead. The main latency overhead comes from
SUnion, which needs to buffer tuples temporarily to account
for variable propagation delays.

2. MODEL, ASSUMPTIONS, AND GOALS
This section describes our distributed stream processing

model, the failure assumptions underlying our work, and
our design goals.

2.1 Query and Failure Model
A loop-free, directed graph of operators processing data

arriving on streams forms a query network. In many stream
processing applications, input streams arrive from multiple
sources across the network, and are processed by a Union
operator that produces a FIFO order of the inputs before
further processing. These inputs may come directly from
data sources, such as network monitors sending synopses of
connection or other activity, or may be the results of pro-
cessing at upstream SPE nodes. Figure 1 illustrates a query
network distributed across four SPEs.
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Figure 1: Query network in a distributed SPE.

To avoid blocking in face of infinite input streams, oper-
ators process windows of tuples. Some operators, such as
Join may still block when some of their inputs are miss-
ing. In contrast, a Union is an example of a non-blocking
operator because it can perform meaningful processing even
when some of its inputs streams are missing. In Figure 1,
the failure of a data source would not prevent the system
from processing the remaining streams. Failure of node 1 or
2 would not block node 3 but would block node 4.

When a partial failure occurs upstream from a non-
blocking operator and causes some (but not all) of its input
streams to be unavailable, it is often useful to process the
inputs that remain available. There are many applications,
including real-time network monitoring and sensor network
data monitoring, where continuing processing with partially
available data is preferable to blocking.

For example, in real-time network monitoring, even if only
a subset of monitors are currently available, processing their
data might help quickly identify potential attackers or other
network anomalies. The information provided by the subset,
however, may not lead to accurate conclusions in all cases.
For instance, some source IP addresses might just happen to
send all their traffic through a subset of monitors and might
appear more active than they should just because the total
count is lower than the actual value. Hence, it is important
to arrange for an SPE to correct its internal state and for-
ward correct results downstream when a failure heals and
previously unavailable data streams are made available.

2.2 Failure Assumptions
Our approach handles non-Byzantine fail-stop failures

(e.g., software crashes), network failures, and network par-
titions where any subset of SPE nodes lose connectivity to
one another. When each processing node has N replicas (in-
cluding itself), we tolerate at most N −1 simultaneous node
failures. If a network connection delays tuples longer than a
pre-defined period, we assume that a failure has occurred.

We assume data sources and clients also implement the
fault-tolerance protocols described in the next section. This
can be achieved by having clients use a fault-tolerant library
or by having them communicate with the system through
proxies (or nearby processing nodes) that implement the re-
quired functionality. These proxies can then perform the
failure handling on their client’s behalf. For instance, when
a node receives data straight from a data source, it can log it
persistently (e.g., in a transactional queue [9]) and transmit
it to all replicas that should process that stream.

Our scheme is optimized for the case when the SPE nodes
change infrequently and are interconnected with relatively
high-bandwidth links (tens of Mbits/s or more). Nodes com-
municate with each other with a reliable, in-order protocol
like TCP. The query network at any SPE node is replicated
at a small number of other nodes.
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2.3 Design Goals
Our goal is to ensure that any data tuple on an input

stream is processed within a specified time bound, regardless
of whether failures have occurred on other input streams or
not. Among the many possible ways to achieve this goal,
we seek methods that produce the fewest unstable tuples
during a failure. If Delaynew is the maximum delay before
an SPE node processes a new input tuple, and Nunstable the
number of unstable tuples produced by that SPE, our goal is
to minimize (for each SPE) Nunstable, subject to Delaynew <
X. X is an application- or user-specified time threshold.

Reducing Nunstable has two benefits. First, it reduces the
amount of resources consumed by downstream nodes in pro-
cessing unstable tuples. Second, Nunstable may be thought of
as a (crude) substitute for the degree of divergence between
replicas when the set of input streams is not the same at the
replicas. Reducing replica divergence makes it easier and
faster to reconcile replica state after a failure heals.

Our approach ensures that as long as some path of process-
ing non-blocking operators is available between one or more
data sources and client application, the client will receive
results. If multiple such paths are available, our schemes fa-
vor stable results over unstable ones, but do not guarantee
that. Once failures heal, however, we ensure that the client
receives stable versions of all results, and that all the replicas
converge to the same state. We handle both single failures
and multiple overlapping (in time) failures.

3. APPROACH
This section describes our replication scheme and un-

derlying algorithms. Each SPE implements the state ma-
chine shown in Figure 2 that has three states: STABLE, UP-

STREAM FAILURE, and STABILIZING.
As long as all upstream neighbors of an SPE are produc-

ing stable tuples, the SPE is in STABLE state. In this state,
it processes tuples as they arrive and passes stable results to
downstream nodes. To maintain consistency between repli-
cas that may receive inputs in different orders, we define a
data-serializing operator, SUnion. Section 3.2 discusses the
STABLE state and the SUnion operator.

Each SPE node sends periodic heartbeat messages to its
downstream nodes. When an SPE finds a broken upstream
connection, a missing heartbeat, or receives unstable tuples,
it goes into the UPSTREAM FAILURE state. In that state, the
SPE has three options for processing new data:

1. Suspend until the failure heals and the failed upstream
nodes start producing data again.

2. Delay without suspending the processing of each tuple.
3. Process each tuple without any delay.
The first option favors consistency for availability. It does

not produce any unstable tuples but it may be used only
for short failures given our goal to process new tuples with
bounded delay. The latter two options both produce re-
sult tuples that are marked “unstable”; the difference be-
tween the options is in the latency of results and the num-
ber of unstable tuples produced. Section 3.3 discusses the
UPSTREAM FAILURE state.

A failure heals when a previously unavailable upstream
node starts producing stable tuples again or when a node
finds another replica upstream that can provide stable tu-
ples. The SPE transitions to the STABILIZING state at this
stage (Section 3.4). In this state, the upstream node sends
correct (stable) versions of previously missing or unstable
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Figure 2: The Borealis state machine.

tuples for the SPE to process. If the downstream node
processed any unstable tuples during UPSTREAM FAILURE it
must reconcile its state and stabilize its outputs. We explore
two approaches for state reconciliation: a checkpoint/redo
scheme and an undo/redo scheme.

While reconciling, new input tuples are likely to continue
to arrive. The SPE has the same three options mentioned
above for processing these tuples: suspend, delay, or pro-
cess without delay. Processing new tuples while reconciling
entails setting up two versions of the SPE’s query network:
a time-shifted version that reconciles state by reprocessing
the stable versions of previously missing or unstable tuples,
and a current version to process newly arriving tuples (and
possibly output additional unstable tuples.)

Once the reconciliation is complete, the node transitions
to the STABLE state if there are no other current failures, or
to the UPSTREAM FAILURE state otherwise.

3.1 Data Model
With our approach, SPE nodes and client applications

must distinguish between results produced based on sta-
ble inputs and other results. Furthermore, stable tuples
produced after stabilization may override previous unsta-
ble ones, requiring a node to correctly process these amend-
ments. To accommodate these new tuple semantics, we
adopt and extend the data model introduced in Borealis [2].

A stream is an append-only sequence of tuples of the form:
(k, a1, . . . , am), where k uniquely identifies the tuple in the
stream, (e.g., with a timestamp) and a1, . . . , am are attribute
values. As in Borealis, we extend tuples to take the form:

(tuple type, tuple id, t min, a1, . . . , am)

In this extended model:
1. tuple type indicates the type of the tuple. Tradition-

ally, all tuples are stable insertions. We introduce two
new types of tuples: UNSTABLE and UNDO. An UNSTA-

BLE tuple is one that may subsequently be amended
with a stable version. UNDO indicates that all tuples
following the identified one seen thus far on the stream
are to be deleted, and the associated state of any oper-
ators rolled back. Stable tuples that follow the UNDO

replace the undone unstable tuples. We use a few ad-
ditional types of tuples in our approach but they do
not fundamentally change the data model. Some tu-
ples even only exist on separate control streams that
our new operators use to communicate with their SPE.
Table 1 summarizes the new tuple types.

2. tuple id uniquely identifies the tuple in the stream.
3. t min is the timestamp of the earliest input tuple that

affected the value of this tuple.
With this model, applications that do not tolerate incon-
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Tuple type Description
Data streams
STABLE Regular tuple
UNSTABLE Tuple that may be corrected later
UNDO All tuples following the one identified should

be removed
BOUNDARY All following tuples will have a timestamp

equal or greater to the one indicated
UNDO START Control message from runtime to SUnion to

trigger undo-based recovery
REC DONE Tuple that indicates the end of reconciliation
Control streams
UNSTABLE SUnion signals the beginning of a failure
REC REQUEST SUnion signals that a failure healed and the

state should be reconciled
REC DONE SOutput signals the end of reconciliation

Table 1: Types of tuples

sistencies may simply drop all unstable and undo tuples.

3.2 Stable State
A stream processing operator is deterministic if its results

do not depend on the times at which its inputs arrive (i.e.,
the operator does not use timeouts); of course, the results
will usually depend on the input data order. Our replication
scheme handles query networks composed of deterministic
operators. When multiple replicas of an SPE node receive
inputs from the same upstream sources, we need a way to
ensure that each replica of an operator processes data in the
same order; otherwise, the replicas will diverge even in the
absence of failures. Ideally, this task should not require any
inter-replica communication.

To meet this goal, we propose a simple data-serializing
operator, SUnion. SUnion takes multiple streams as input
and applies a deterministic sort function on buckets of tuples.
This sort ensures that all tuples in a bucket are processed
by the next operator in the same order by all the replicas,
assuming that all the replicas have seen the same data tuples
(albeit possibly in different orders).

SUnion requires that all data sources, or SPE nodes act-
ing on their behalf, timestamp tuples (i.e., set their t min)
with a synchronized clock and stream them to all replicas.
Each replica buffers tuples whose t min fall in a pre-defined
bucket and sorts them once the bucket is full. Within each
timestamp-defined bucket, any sort order may be used. The
sort may operate on any attribute of the tuples, not just the
timestamp, and that attribute may be selected dynamically.
We assume that when an SPE is in STABLE state, the differ-
ence in tuple arrival times between streams falls within at
most a few buckets.

To distinguish between failures and lack of data, data
sources send periodic heartbeats in the form of boundary
tuples. These tuples have tuple type = BOUNDARY and each
data source guarantees while sending a boundary tuple that
no tuples with t min smaller than the boundary’s t min will be
sent subsequently. BOUNDARY tuples are similar to punctua-
tion tuples [39] or heartbeats [36]. The time interval between
such tuples should be no larger than the size of a bucket to
avoid delaying tuples unnecessarily. Missing boundary tu-
ples indicate a failure.

Figure 3 illustrates the serialization of three streams. Tu-
ples in bucket i can be sorted and forwarded as stable be-
cause boundary tuples with timestamps greater than the
bucket boundary have arrived. Neither of the other buckets
can be processed. Both buckets are missing boundary tuples

[t1,t1+d)[t1+d,t1+2d)[t1+2d,t1+3d)

time

Bucket i+2 Bucket i+1 Bucket i
s1

s2

s3

bb

u
u
u

bbb

Figure 3: Example of serialization of streams s1, s2,
and s3 with boundary interval d. Tuples are grouped
into buckets by timestamp values. The u’s denote
unstable inserts and b’s denote boundary tuples.

and bucket i + 2 even contains unstable tuples.
Our approach is similar to the Input Manager in

STREAM [36]. In contrast to the Input Manager, whose
goal is to sort tuples by increasing timestamp order and de-
duce heartbeats if applications do not provide them, our
goal is to ensure that replicas process tuples in the same or-
der and for nodes to distinguish between failures and delays
on the input streams. In case of failure or excessive delay,
a node should proceed with the remaining tuples. As we
discuss in the next section, when the failure heals and the
missing tuples become available, the node should reconcile
and reprocess its inputs. The Input Manager does not make
such distinctions; it assumes that delays are bounded.

Because tuples on streams may not be ordered on any at-
tribute or on boundary timestamps, SUnions placed deeper
in the query network must use the same boundary times-
tamps to organize tuples into buckets and sort them. We
thus propagate boundary tuples through the query network.

Tuples entering the system have t min set by the data
sources (or the first processing nodes). When operators pro-
duce a tuple, they set the t min to be the oldest timestamp
of all input tuples that contributed to this output tuple. For
a join, it is the lower of the two timestamps of the joined
tuples. For an aggregate it is the minimum timestamp of all
tuples in the window.

3.3 Upstream Failure
When a failure occurs an upstream node may fail, block,

become unreachable, or start producing unstable outputs.
The downstream node then stops receiving boundary tuples
and either stops receiving data or receives unstable data from
that neighbor. In both cases, the downstream node enters
the UPSTREAM FAILURE state.

The goal of our approach is to reduce Nunstable subject
to Delaynew < X. For short failures, a replica should thus
block and ensure Nunstable = 0 while Delaynew = D + P ,
where D is the duration of the failure and P is the normal
processing delay (including queuing delays).

To avoid producing unstable tuples even for longer fail-
ures, we propose that a node in UPSTREAM FAILURE tries
to find an alternate stable upstream replica, within a time
smaller than X time units. We denote this time by αX. α
must satisfy αX < X−P . To enable such replica switching,
downstream nodes must monitor all upstream replicas not
just the one currently sending data. For that, we propose
that downstream nodes periodically requests heartbeat re-
sponses from all replicas. These responses include the state,
stable or unstable, of their output streams. When a failure
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Figure 4: Example of replicated SPEs. Rij is the
j’th replica of processing node i.

occurs, the downstream node uses the information from the
latest such messages to find an available replica, possibly
trying all of them in turn.

Because the new replica should continue sending data from
the same point in the stream, stabilizing it first if necessary,
when switching to a new replica, a node sends the identifiers
of the last stable and unstable tuples it received. We fur-
ther discuss switching between upstream neighbors in var-
ious consistency states in Section 3.5. The result of these
switches is that any replica can forward data streams to any
downstream replica or client and that the outputs of some
replicas may not be used, as illustrated in Figure 4.

If the downstream node fails to find a stable replica within
αX time-units, it must unblock new tuples and continue pro-
cessing them to ensure the required availability level. When
this occurs, SUnion operators serialize the available tuples,
labeling them as UNSTABLE, and buffering them in prepara-
tion for future reconciliation. In the example from Figure 3
if the boundary for stream s2 does not arrive within αX
of the time the first tuple entered bucket i + 1 or bucket
i + 2 still contains unstable tuples αX time units after the
first tuple entered that bucket, the remaining tuples in these
buckets are stored and forwarded as unstable. As the SPE
processes unstable tuples, its state may start to diverge.

As the node processes unstable tuples it can do one of
two things: delay new tuples as much as possible or process
them without delay. Continuously delaying new tuples helps
reduce the number of unstable tuples produced during failure
but it constrains what the node can do during stabilization,
as we discuss next.

3.4 Stabilization
A failure heals when a node that was missing an input

stream is able to communicate again with a stable upstream
replica for that stream, and receives a replayed version of the
missing inputs. To ensure consistency, the node must recon-
ciles its state to reach a consistent state and stabilizes its out-
puts; i.e., replace previously unstable tuples with their sta-
ble counterparts thus allowing its downstream neighbors to
reconcile their states and stabilize their outputs in turn. We
present state reconciliation and output stabilization tech-
niques in this section.

In the STABILIZING state, while reconciling its state, a
node may need to continue processing new tuples to meet
the Delaynew < X availability requirement. To achieve that,
we present an approach based on running two versions of a
query network, one handling reconciliation and one process-
ing new data. The two versions can run on a single node or
they can be two existing replicas.

3.4.1 State Reconciliation
Because no replica may have the correct state after a fail-

ure and because the state of an SPE depends on the exact
sequence of tuples it processed, we propose that an SPE

node reconciles its state by reverting it to a pre-failure state
and reprocessing all input tuples since then. To revert to
an earlier state, we explore two approaches: reverting to a
checkpointed state or undoing the effects of unstable tuples.
Both approaches require that the node suspends processing
new input tuples while reconciling its state.

Checkpoint/redo reconciliation. In this approach,
the SPE periodically checkpoints the state of the query net-
work when it is in the STABLE state. SUnion operators
buffer input tuples between checkpoints and they continue
to do so during UPSTREAM FAILURE. Input tuples must be
buffered between checkpoints because they will be replayed
if the node restarts from the checkpoint. When a checkpoint
occurs, however, SUnion operators truncate all buckets that
were processed before that checkpoint.

To perform a checkpoint, the SPE suspends all tuple pro-
cessing and iterates through all operators and intermediate
queues to make a copy of its state. Checkpoints could be op-
timized to copy only the difference in the state since the last
checkpoint thus reducing the CPU overhead when the state
changes slowly compared with the checkpoint interval. We
do not investigate this optimization in the paper, though.

To reconcile its state, a node re-reads its state from the
checkpoint and reprocesses all buffered input tuples. The
reconciliation time is thus the time to copy the state and
reprocess all tuples that arrived since the last checkpoint
before failure.

Undo/redo reconciliation. To avoid the CPU over-
head of checkpointing and to recover at a finer granularity
by rolling back only the state on paths affected by the fail-
ure, another approach is to reconcile by undoing the pro-
cessing of unstable tuples and redoing that of their stable
counterparts. With undo/redo, SUnion operators only need
to buffer unstable buckets, truncating stable ones as soon as
they process them.

To support such an approach, all operators should imple-
ment an “undo” method, where they remove a tuple from
their state and, if necessary, bring some tuples previously
evicted from the state back into the current window. Sup-
porting undo in operators may not be straightforward—for
example, suppose an input tuple, p, caused an aggregate op-
erator to close a window and output a value. To undo p, the
aggregate must undo its output but must also bring back all
the evicted tuples and reopen the window.

Instead, we propose that operators buffer their input tu-
ples and undo by rebuilding the state that existed right before
they processed the tuple that must now be undone. To de-
termine how far back in history to restart processing from,
operators maintain a set of stream markers for each input
tuple. The stream markers for a tuple p in operator u are
identifiers of the oldest tuples on each input stream that
still contribute to the operator’s state when u processes p.
To undo the effects of processing all tuples following p, u
looks up the stream markers for p, scans its input buffer un-
til it finds that bound, and reprocesses its input buffer since
then, stopping right after processing p. A stream marker is
typically the beginning of the window of tuples to which p
belongs. Stream markers do not hold any state. They are
rather like pointers to some location in the input buffer.

Operators that keep their state in aggregate form must
explicitly remember the first tuple on each input stream
that begins the current aggregate computation(s). In the
worst case, determining the stream markers may require a
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linear scan of all tuples in the operator’s state. To reduce
the runtime overhead, operators may set stream markers pe-
riodically at the expense of a slightly longer reconciliation
time. The reconciliation times is thus the time spent pro-
cessing the undo history backwards up to the correct stream
markers and reprocessing all tuples since then.

3.4.2 Stabilizing the Output Streams
Independently of the approach chosen by a replica to rec-

oncile its state, a node always stabilizes its output streams
by producing a single UNDO tuple followed by the stable
versions of all the deleted tuples. UNDO indicates that all
tuples following the identified one should be removed and
their effects rolledback

When they receive an UNDO tuple, SUnion operators at
downstream nodes stabilize the input streams by replacing
the tuples in their buffers with their stable counterparts and
triggering a state reconciliation at the node.

With undo/redo reconciliation, operators process and pro-
duce UNDO tuples, which propagate also to downstream
nodes. To generate an UNDO tuple with checkpoint/redo,
we introduce a new operator, SOutput that we place on all
output streams. At runtime, SOutput acts as a pass-through
filter that also remembers the last stable tuple it produced.
During checkpoint recovery, SOutput drops duplicate stable
tuples and produces the UNDO tuple.

Once stabilization completes, a node transmits a
REC DONE tuples to its downstream neighbors. Reconcili-
ation finishes when the node re-processes all previously un-
stable input tuples and catches up with normal execution
(i.e., it clears its queues) or another failure occurs and the
node goes back into UPSTREAM FAILURE. SOutput operators
generate and forward the REC DONE tuples.

3.4.3 Processing New Tuples During Reconciliation
After long failures, the reconciliation itself may take longer

than X. A node then cannot suspend new tuples while rec-
onciling. It must produce both corrected stable tuples and
new unstable tuples. We propose to achieve this by using
two replicas of a query network: one replica remains in un-
stable state and continues processing new input tuples while
the other replica performs the reconciliation. Both replicas
stream their outputs in parallel. Hence, unstable tuples that
appear between an UNDO and a REC DONE correspond to
new tuples while stable tuples correct earlier unstable ones.
Unstable tuples that appear after the REC DONE correspond
to a new failure. We discuss how to ensure these semantics
in spite of failures during recovery in Section 3.5.

Once again, we have a trade-off between availability and
consistency. Suspending new tuples during reconciliation
reduces the number of unstable tuples but may eventually
break the availability requirement. Processing new tuples
during reconciliation increase the number of unstable tuples
but the SPE may still attempt to reduce their number by
delaying new tuples as long as possible. We compare these
alternatives in Section 5.1.

To create the second version of the query network, a node
can replicate its state in another locally running SPE and
run both versions of the query network locally. Because we
already use replication, however, we propose that replicas
use each other as the two query network versions as fol-
lows. When a pair of replicas can hear each other during
a failure, they form a partnership. The first partner that

needs reconciliation moves its clients to the second partner.
The second partner postpones its own reconciliation until
the first one finishes. When the first partner completes its
reconciliation, it takes both sets of clients back and sends
them the corrected output streams in the form of a single
UNDO tuple followed by the final correct information. The
partner’s downstream clients might need to undo from a dif-
ferent position in the stream but this information can easily
be exchanged with the list of clients. The second replica can
then perform its own reconciliation. In case both partners
need to reconcile simultaneously, they can use their node
identifiers to break the tie. Replicas establish partnership
with randomly chosen other replicas.

3.5 Analysis
In this section, we discuss the main properties of our ap-

proach. To help us state these properties, we start with a
few definitions.

A data source contributes to a stream, s, if it produces
a stream that become s after traversing some sequence of
operator replicas, called a path. The union of paths that
connect a set of sources to a destination (i.e., a client or an
operator), such that any operator that appears on more than
one path corresponds to the same replica of that operator,
forms a tree. If the set of sources contains all data sources
that contribute to the stream, the tree is stable, because
it produces stable tuples during execution. If any of the
missing sources from a tree would connect to it through non-
blocking operators, the tree is unstable. Otherwise, the tree
is blocking.

Property 1. In a static failure state, if there exists a sta-
ble tree, a destination receives stable tuples. If only unstable
trees exist, the destination receives unstable tuples from one
of the unstable trees. Otherwise, the destination may block.

The above property comes directly from the ability of
downstream nodes to monitor and switch upstream neigh-
bors, preferring stable ones over unstable ones.

Property 2. A destination receives the results from in-
put streams reachable through a stable or unstable tree within
at most a kX time unit delay, where k is the number of pro-
cessing nodes on the longest path in the tree.

Our model is that an application-defined maximum end-
to-end delay, kX, gets equally divided across processing
nodes. Each node processes new tuples within X time units.
We examine this property further in Section 5.

Property 3. Switching between trees never causes dupli-
cate tuples and may only lose unstable tuples.

We discuss the above property by examining each possi-
ble upstream-neighbor switching scenario. In our approach,
every node buffers its input and output tuples. We assume
that these buffers can hold more tuples than the maximum
number that can be delivered during a single failure and re-
covery. In case of excessively long failures, buffers could be
written to disk. To trim these buffers, node could use queue
trimming methods as in [25].

1. Switching between stable upstream neighbors: Because
the downstream node indicates the identifier of the last
stable tuple it received, a new stable replica can con-
tinue from that point in the stream either by waiting
to produce that tuple or replaying its output buffer.
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2. Switching from an unstable to a stable upstream neigh-
bor: Because the downstream node indicates the identi-
fiers of the last stable and unstable tuples it received,
the new neighbor can stabilize the stream and then
continue with stable tuples.

3. Switching to an unstable upstream neighbor: This is the
only scenario where a node must drop unstable tuples.
In this scenario, the new neighbor may be in a com-
pletely different state than the previous one and it may
have been unstable longer. Because nodes cannot undo
stable tuples, the new upstream and downstream pair
may have to continue processing tuples while in mutu-
ally inconsistent states. To avoid duplicating any re-
sults even partially, we add a second timestamp, t max

to tuples. t max of a tuple p is the timestamp of the
most recent input tuple that affected p. To avoid dupli-
cations, the new upstream node forwards only output
tuples that have a t min greater than the highest t max

that the downstream node previously received. This
ensures that the new tuples result from processing a
non-overlapping sequence of tuples but may result in
unstable tuple loss for the downstream node.

Property 4. As long as one replica of each processing
node never fails, when all failures heal, the destination re-
ceives the complete and corrected stable stream.

When all failures heal, the processing nodes that receive
their inputs directly from sources, receive if necessary, the
replay of the complete correct input. They reconcile their
states and stabilize their outputs. Their downstream neigh-
bors can then reconcile in turn. The procedure continues
until all nodes reconcile their state. Each node corrects all
unstable tuples it produced, so the destination eventually
receives the correct stable stream.

Property 5. Stable tuples are never undone.

We now show that our approach correctly handles failures
during failures without the risk of undoing stable tuples.
Let’s assume that a node starts reconciling its state using
undo/redo. SUnion produces an undo tuple followed by the
stable version of all tuples processed during the failure. If
new unstable tuples come from upstream they are processed
afterward and the new failure follows the reconciliation with-
out affecting it. Each operator will undo and redo its state
before seeing the new unstable tuples, hence no previously
stable tuple will need undoing.

Now let’s assume that while the undo tuple propagates, a
different input stream becomes unstable and both streams
merge at one operator. Independently of which tuples arrive
at the operator first, when the operator finally processes the
UNDO tuple, it rebuilds the state it had before the first failure
and processes all tuples that it processed during that failure
before starting to process any new unstable tuples. The oper-
ator thus produces an UNDO tuple followed by stable tuples
that correct the first failure, followed by the unstable tuples
from the new failure. Once again, the new failure appears
to occur after stabilization.

If a node uses checkpoint redo, we assume it reverts the
whole query network to a pre-failure state and starts process-
ing tuples since then. To avoid undoing any stable tuples,
the runtime must force a checkpoint between the time SOut-
put operators produced their UNDO tuples and the time any
of the SUnion operators push new unstable tuples into the
query network. This will be a snapshot of the reconciled
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state and the node will restart from this new checkpoint
after the second failure heals. To achieve this, SUnion oper-
ators must simply delay serializing new unstable tuples until
they have seen a checkpoint.

Hence, in all cases when a failure occurs before the end
of reconciliation, the downstream node sees an UNDO tu-
ple followed by stable tuples correcting those from the first
failure and followed by unstable tuples from the new fail-
ure. SOutput produces a REC DONE tuple between the
last stable and first unstable tuples that it sees.

4. IMPLEMENTATION
In this section, we present the implementation of our ap-

proach in Borealis. In addition to inserting SUnion and
SOutput operators into the query network, we add a Consis-
tency Manager and an HA (“high availability”) component
to each SPE node. We assume nodes already have com-
ponents that manage query distribution. Figure 5 and 6
illustrate these modifications (arrows indicate communica-
tion between components). We also require operators to
implement a simple API.

The HA component monitors all replicas of a node and all
its upstream neighbors (and their replicas). It informs the
query processor of changes in their states.

The Consistency Manager makes all decisions related
to failure handling. In STABLE state, it periodically re-
quests that the SPE checkpoints the state of the query net-
work. When the node must reconcile its state, the Consis-
tency Manager chooses whether to use undo/redo or check-
point/redo and when to ask a partner to produce new tu-
ples. In case of undo/redo, the Consistency Manager in-
jects an UNDO START tuple on one the affected SUnion in-
put streams. For checkpoint redo, the Consistency Manager
requests that the SPE performs checkpoint recovery.

In addition to their tasks described in previous sections,
SUnion and SOutput communicate with the Consistency
Manager through extra control output streams. When an
SUnion can no longer delay tuples, it informs the Consis-
tency Manager about the UPSTREAM FAILURE, by producing
an UNSTABLE tuple on its control stream. Similarly, when
input streams are corrected and the node can reconcile its
state, SUnion produces a REC REQUEST tuple. Once recon-
ciliation finishes, SOutput forwards a REC DONE tuple on its
control stream.

Borealis requires the following modifications to existing
operators. For checkpoint/redo, operators need the abil-
ity to take snapshots and recover their state ((un)packState
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methods). For undo/redo, each operator must periodically
compute its stream markers and must re-read tuples from its
input queue when an undo tuples arrives. This functionality
can be implemented with a wrapper, requiring that the op-
erator itself only implements two methods: clear() clears the
operator’s state and findOldestTuple(int stream id) returns the
oldest tuple from input stream, stream id, that is currently
in the operator’s state. To propagate boundary tuples, op-
erators must implement findOldestTimestamp() method that
returns the oldest timestamp in the operator’s state. This
value is the smaller of the oldest timestamp present in the
operator’s state and the oldest timestamp in the boundary
tuples received on all input streams.

In our approach, nodes communicate with each other
through the data they exchange but also through separate
control messages that enable the nodes to rebuild failed data
paths and handle each other’s clients during reconciliation.
To modify the data path, nodes send each other subscribe

and unsubscribe messages with either their own information
if they need to receive a stream or information about their
clients if they would like the other node to handle these
clients temporarily during reconciliation. We assume that
every node has enough bandwidth to handle a large sub-
set of all downstream clients and replicas. If this is not the
case, a node may have to distribute its clients across multiple
other replicas during reconciliation.

When a node fails and recovers, we assume it restarts its
query diagram fragment from an empty state and refuses
new clients until it processes sufficiently many tuple to reach
a consistent state.

5. EVALUATION
In this section, we evaluate the performance of the ap-

proach through experiments with our prototype implemen-
tation. All experiments were performed on a 3 GHz machine
with 2 GB of memory running Linux (Fedora Core 2).

We first examine the performance of a single Borealis node
in the face of temporary failures of its input streams. In
particular, we compare in terms of Delaynew and Nunstable

different strategies regarding suspending, delaying, and pro-
cessing new tuples during upstream failure and reconcilia-
tion. In these experiments the node uses checkpoint/redo
to reconcile its state. Second, we examine the performance
of our approach when failures and reconciliation propagate
through a sequence of processing nodes. Third, we com-
pare the undo/redo and checkpoint/redo reconciliation tech-
niques. We finally discuss the overhead of our approach.

In our prototype, it takes a node approximately 40 ms to
switch between upstream neighbors. Given that this value
is small compared with αX, our system masks node failures
within the required availability constraints. We thus focus
the evaluation on failures of input streams.

5.1 Single-Node Performance
The optimal approach to handling failures shorter than

αX, is to delay processing new tuples until the failure heals.
This minimizes Nunstable without breaking the constraint on
Delaynew (we use α = 0.9 in all experiments). When a failure
exceeds αX, a processing node can either continuously delay
new tuples by αX or catch-up and process new tuples almost
as they arrive. We call these alternatives Process and Delay
and examine their impact on Delaynew and Nunstable.

We run a query network composed of an SUnion, a Join,
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Figure 7: Delaying tuples during UPSTREAM FAILURE

reduces Nunstable. Y-Axes: left Delaynew, right
Nunstable. Failure duration: 5 s.

and SOutput with three input streams and an aggregate
rate of 3000 tuples/s. The join serves as a generic query
network with a 100 tuple state size thus creating a light load.
We cause a 5 s failure during which we continue producing
tuples but do not send them on one of the streams. After the
failure, we send all missing tuples while continuing to stream
new tuples. We vary αX from 500 ms to 6 s and observe
Delaynew and Nunstable until after stabilization completes for
both Process and Delay. Figure 7 shows the results.

The techniques differ significantly in the number of unsta-
ble tuples they produce. With Process, as soon as the initial
delay is small compared with the failure duration (αX ≤ 4 s
for a 5 s failure), the node has time to catch-up and pro-
duces a number of unstable tuples almost proportional to
the failure duration. The Nunstable graph approximates a
step function. In contrast, Delay reduces the number of un-
stable tuples proportionally to αX. With both approaches,
Delaynew increases linearly with αX. It is slightly lower for
Process because the first new tuple after reconciliation has
been in the queue for a shorter time but also appears later in
that queue. From the perspective of our optimization, Delay
is thus better than Process for upstream failures.

Delaying new tuples as much as possible during UP-

STREAM FAILURE leads to fewer unstable tuples. When the
failure heals, however, the node may be forced to continue
processing new tuples because there is no room left for added
delays. The question is whether it is ever better to process
tuples faster during upstream failure in order to have more
slack to suspend producing new tuples completely or at least
continue delaying new tuples during stabilization. This is
particularly interesting because failures cause nodes to pro-
cess fewer input tuples, thus possibly producing fewer output
tuples in UPSTREAM FAILURE than during STABILIZATION.

To answer the above question, we examine all six com-
binations of processing (Process) and delaying (Delay) new
tuples during failure and later either suspending new tuples
while reconciling the state (Suspend) or having a second
version of the SPE continue processing them with or with-
out delay (Delay or Process). Figure 8 shows Delaynew and
Nunstable for each combination and for increasing failure du-
rations. Figure 9 shows the same results for longer failures.
We only show results for failures up to 1 minute. Longer
experiments were continuing the same trends. We use the
same experimental setup as above but with 4500 tuples/s to
emphasize differences between approaches and with X = 3 s.
Each point is an average of four experiments.
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Figure 8: Delaynew (top) and Nunstable (bottom)
for each combination of delaying, processing, and
suspending during UPSTREAM FAILURE and STABILIZA-

TION. Each approach offers a different consistency-
availability trade-off. X-axis starts at 2 s.

Because blocking is optimal for short failures, all ap-
proaches block for αX = 2.7 s and produce no unstable
tuples for failures below that threshold. Delaying tuples
in UPSTREAM FAILURE and suspending them during STABI-

LIZATION (Delay & Suspend) is unusable for failures longer
than 3 s because it breaks the Delaynew < X requirement
as reconciliation last longer than 300 ms. (Figure 8(top)).
This combination is therefore of no interest.

Continuously processing new tuples during both upstream
failure and stabilization (Process & Process) ensures that the
maximum delay always remains below αX independently of
failure duration but produces the most unstable tuples as it
produces them for the duration of the whole failure and rec-
onciliation. We can save some unstable tuples by delaying
new tuples during stabilization (Process & Delay) without
hurting Delaynew. We can also save some unstable tuples
by delaying new tuples during upstream failure (Delay &
Process). The savings is less than with Process & Delay,
however. Indeed, when stabilization starts and we switch
from delaying new tuples to processing them, the second
replica quickly catches up and undoes most effects of the
initial delay. We save most unstable tuples by delaying new
tuples both during failure and reconciliation (Delay & De-
lay). The problem with this approach, however, is that the
node is continuously on the verge of breaking the availability
guarantee and any burst on input streams may cause it to
do so. As shown in Figure 9(top), for the 45 s failure, be-
cause we stream all corrected tuples in one burst, Delaynew

slightly exceeds the pre-defined threshold.
More importantly, as D becomes large compared with X

(Figure 9), the difference between delaying and processing
becomes insignificant compared with the total number of un-
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Figure 9: Same experiment as Figure 8 but for fail-
ures up to 1 minute.

stable tuples. Since continuously processing unstable tuples
reduces latency during the failure and leaves slack for the
node to absorb larger bursts in its input streams, it is the
most appropriate approach for long failures.

For short failures, however, Process & Suspend may win
even over Delay & Delay. If reconciliation is longer than αX
(for D > 6 s in the experiment), Process & Suspend produces
fewer unstable tuples. It is thus better for such failures to
process tuples during the failure in order to suspend new
tuples during reconciliation. Once reconciliation becomes
longer than X, though (for D > 9 s), Process & Suspend
causes Delaynew to exceed X. Hence Process & Suspend
outperforms Delay & Delay only for failures between 6 and
9 s. Therefore, there exists only a small window when it is
better to process new tuples quickly during failures in order
to be able to suspend new tuples during reconciliation.

These experiment shows that nodes should handle failures
as follows. In UPSTREAM FAILURE, first delay new tuples as
long as possible. As the failure duration increases, process
tuples faster. When stabilizing after a short failure, attempt
to first suspend new tuples but if reconciliation takes too
long, continue processing new tuples with a delay.

5.2 Multiple Nodes
We now examine the performance of our approach in a

distributed SPE. We run a network of 1 to 4 SPEs placed
in series. Each SPE has one replica and all nodes run the
same query network composed of an SUnion, a Join, and
an SOutput. Because we run multiple nodes, we reduce the
input rate to 1000 tuples/s. We set X = 2 seconds, and we
cause a 20 second failure on one of the three input streams. It
takes about 2 s for the first node to recover. Nodes reconcile
their states one after the other.

Figure 10(top) shows the maximum end-to-end processing
delay for new tuples. For Process & Process, Delaynew is
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Figure 10: Effects of path length on Delaynew and
Nunstable. Delay or Suspend decrease availability with
path length. Delay during UPSTREAM FAILURE does
not reduce Nunstable for sufficiently long paths.

lowest at αX plus the processing delay through the sequence
of nodes. For Delay & Delay, Delaynew increases by αX for
each node in the sequence. Both Process & Process and
Delay & Delay keep the end-to-end delay within kX, where
k is the number of nodes. For Process & Suspend, Delaynew

is the sum of the stabilization delays. This delay increases
for each consecutive node because it has to undo and redo
more tuples than its upstream neighbor. Thus, the 3rd and
4th nodes do not meet the Delaynew < X requirement.

Figure 10(bottom) shows Nunstable received by the client
application. Process & Suspend produces unstable tuples
only during the failure. Tuples in the pipeline when the fail-
ure heals are never output as nodes reconcile their state in-
stead (in our prototype nodes process tuples only when new
tuples arrive). With Process & Process, Nunstable increases
with the length of the chain because all nodes produce un-
stable tuples while they stabilize and they stabilize one after
the other. Interestingly, the savings offered by Delay & De-
lay decrease with the length of the chain. When stabilization
starts, each consecutive node in the sequence runs behind by
αX more than its upstream neighbor. When that neighbor
stabilizes, both downstream replicas receive all tuples until
the most recent ones. Because the replica that continues pro-
cessing new tuples is only supposed to delay new tuples by
αX, it catches up and it does so while processing 50% more
tuples than the savings during UPSTREAM FAILURE because
all three streams are up and running after the failure.

Overall, for a chain of nodes, Process & Process is clearly
the best approach as it maximize availability without paying
much penalty in unstable tuples.

5.3 Reconciliation
We now compare the overhead and performance of check-

point/redo and undo/redo reconciliation. Table 2 summa-
rizes the results. P is the per-node processing delay. pcomp

is the time to read and compare a tuple. pcopy is the time
to copy a tuple, and pproc is per-operator processing time.

Figure 11 (left and middle) shows the maximum delay im-
posed on new tuples during reconciliation, which effectively
measures the reconciliation time as we increase the state
size, S, of the query network or the number of tuples to re-
process (i.e., Dλ, where D is the failure duration and λ is
the aggregate rate on all input and intermediate streams).
In this experiment, D is 5 seconds and we vary λ. For both
approaches, the time to reconcile increases linearly with S
and Dλ. When we vary the state size or tuple rate, we keep
the other parameter low at 1000 tuples/s and 20 tuples re-
spectively. Each point is the average of three experiments
as experiments produced almost identical values.

Undo/redo takes longer to reconcile primarily because it
must rebuild the state of the query network (S(pcomp +
pproc)) rather than recopy it (Spcopy), as shown in Fig-
ure 11(left). Interestingly, even when we keep the state
size small and vary the number of tuples to reprocess
(Figure 11(middle)), checkpoint beats undo/redo, while we
would expect the approaches to perform the same (∝ (D +
0.5l)λpproc). The difference is not due to the undo history
because when we do not buffer any unstable tuples in the
undo buffer (Undo “limited history” curve), the difference
remains. In fact, an SPE always blocks for αX (1 s in this
experiment) before going into UPSTREAM FAILURE. Because
we continue checkpointing every 200 ms during that time, we
effectively always checkpoint the pre-failure state and avoid
reprocessing on average 0.5lλ tuples, which corresponds to
tuples that accumulate between the checkpoint and the be-
ginning of the failure. Undo/redo always pays this penalty,
as stream markers are computed only when the join pro-
cesses new tuples. Splitting the state across two operators
in series, simply doubles λ.

Checkpoint/redo achieves faster reconciliation but at the
cost of a higher CPU overhead at runtime. Figure 11(right)
shows that the time our prototype takes to compute a set of
stream markers (i.e., scan the state of one operator) is signif-
icantly lower than the time to copy the state of one operator,
which is lower than the time to actually perform a checkpoint
in a query network composed of a union and a join with in-
creasing state size (i.e., window size). Checkpoints include
the overhead of checkpointing all operator’s input and out-
put queues. Results are medians of 300 samples. Undo/redo
does not incur any CPU overhead for buffering tuples as we
simply leave them in the operator’s input queues.

The memory overhead for checkpoint/redo is the state size
plus the input tuples that accumulate between checkpoints
(S + lλin, where λin is the aggregate input rate). The mem-
ory overhead for undo/redo is higher. Assuming, for sim-
plicity, that the number of tuples to read in order to rebuild
the state is equal to the state size, S, the overhead is propor-
tional to the failure duration, D, the state size S, the interval
between stream marker computations, l, and λstateful, the ag-
gregate rate on all input and intermediate streams that feed
stateful operators.

Checkpoint/redo thus appears superior to undo/redo.
The main advantage of the undo-based approach, however,
is the flexibility to undo any suffix of the input streams and
propagate reconciliation only on paths affected by failures.

5.4 Runtime Overhead
In Borealis , in addition to the undo and checkpoint over-

heads discussed above, the main cause of latency overhead is
the SUnion operator. If the sorting function requires the op-
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Approach Delaynew CPU Overhead Memory Overhead

Checkpoint P + Spcopy + (D + 0.5l)λpproc
Spcopy

l
S + lλin

Undo P + S(pcomp + pproc) + (D + 0.5l)λ(pcomp + pproc)
Spcomp

l
S + (l + D)λstateful

Table 2: Performance and overhead of checkpoint/redo and undo/redo reconciliations.
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Punctuation interval (ms) 50 100 150 200 250 300
Average processing delay 69 120 174 234 298 327
Stddev of the averages 0.5 4 10 28 55 70

Table 3: Latency overhead of serialization.

erator to wait until a bucket is fully bounded before proceed-
ing to the next one, the processing delay increases linearly
with bucket size (i.e., boundary interval). Table 3 shows the
average end-to-end delay for tuples processed by one node
running an SUnion and a Join operator with window size
20 and aggregate input rate 3000 tuples/s (averages of nine
20 second experiments).

With our approach, operators must also check tuple types
but this overhead is negligible. They must process bound-
ary tuples for an overhead equivalent to that of computing
stream markers. SOutput must also save the last stable tu-
ple that it sees in every burst of tuples that it processes.

6. RELATED WORK
Until now, work on high availability in stream process-

ing systems has focused on fail-stop failures of processing
nodes [25, 35]. These approaches have limited tolerance
to network failures or partitions—when such failures occur,
they either block awaiting data or drop out-of-order data in-
discriminately. Other techniques use punctuation [39, 40],
heartbeats [36], or statically defined slack [1] to tolerate
bounded disorder and delays on input streams. These ap-
proaches, however, also block or drop tuples when disorder
or delay exceed expected bounds.

Traditional query processing also addresses trade-offs be-
tween result speed and consistency, materializing query out-
puts one row or even one cell at the time [31, 34]. In contrast
to these schemes, our approach supports possibly infinite
data streams and ensures that once failures heal all replicas
produce the same final output streams in the same order.

Fault-tolerance through replication is widely studied and
it is well known that it is not possible to provide both con-
sistency and high availability in the presence of network par-
titions [10]. Eager replication favors consistency by having
a majority of replicas perform every update as part of a
single transaction [19, 21] but it forces minority partitions
to block. With lazy replication all replicas process possi-
bly conflicting updates even when disconnected and must

later reconcile their state. They typically do so by applying
system- or user-defined reconciliation rules [27, 41], such as
preserving only the most recent version of a record [22]. It
is unclear how one could define such rules for an SPE. We
could copy the state of one replica onto that of another but
such reconciliation would be expensive because the state of
any node is large and rapidly changing. Additionally, SPEs
must also reconcile their input and output tuples to ensure
they process the same sequence of tuples after reconciliation.

Other replication approaches use tentative transactions
during partitions and reprocess transactions possibly in a
different order during reconciliation [22, 38]. With these
approaches, all replicas eventually have the same state and
that state corresponds to a single-node serializable execu-
tion. Replicas notify clients if the output of their tentative
transaction changes. Our approach applies the ideas of ten-
tative (unstable) data to stream processing.

Some schemes offer users fine-grained control over the
trade-off between precision (or consistency) of query re-
sults and performance (i.e., communication resource uti-
lization) [32, 33]. In contrast, we explore consis-
tency/availability trade-offs in face of failures and produce
unstable (possibly incorrect) results followed by stable ones.

Workflow management systems [4, 3, 24] commit the re-
sults of each execution step (or messages these steps ex-
change) and use forward recovery in case of failures. The
storage servers themselves use one of the standard HA ap-
proaches: hot standby, cold standby, 1-safe, or 2-safe [26].
These approaches, however, rely on the assumption that
each execution step processes its messages in isolation. This
assumption does not hold in a streaming system.

Workflows and systems that process long transactions [20,
43] use compensation to undo the effects of aborted sub-
transactions. The difficulty in adapting a similar model for
streams is that tuples represent data rather than operations.
It is unclear how to compensate the effects of a data tuples
other than with an undo and redo.

Approaches that reconcile the state after a failure us-
ing combinations of checkpoints, undo, and redo are well
known [17, 22, 23, 29, 38]. We adapt and use these tech-
niques in the context of fault-tolerance and state reconcili-
ation in an SPE and comparatively evaluate their overhead
and performance in these environments.
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7. CONCLUSION
In this paper, we presented an approach to fault-tolerant

stream processing that handles node failures, network fail-
ures, and network partitions. Our approach is based on
replication and uses a new data model that distinguishes
between unstable tuples, which result from processing par-
tial inputs and may later be corrected, and stable tuples
that are immutable. When failures occur, our approach fa-
vors availability and produces unstable tuples that it later
replaces with their stable counterparts. While ensuring that
each node processes new tuples within a pre-defined delay,
X, our approach favors failure-handling techniques that re-
duce the number of unstable tuples.

To ensure consistency at runtime, we introduce a data-
serializing operator called SUnion. To ensure consistency
after failures heal, nodes reconcile their states using either
checkpoint/redo or undo/redo. We find that checkpoints
lead to a faster reconciliation but undo can help a node limit
the scope of reconciliation to paths affected by the failure.

We implemented the approach in Borealis and showed
results from experiments with our prototype. We find that
for failures shorter than X time units, to minimize unsta-
ble tuples, SPE nodes should block while looking for an
available stable upstream replica. As failures become longer,
nodes should first delay new tuples as much as possible but
then quickly transition to processing tuples as they arrive.
Once failures heal, replicas should take turns reconciling
their state to ensure that downstream nodes continuously
receive the results of processing the most recent data.
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[11] D. Carney, U. Çetintemel, A. Rasin, S. Zdonik,
M. Cherniack, and M. Stonebraker. Operator scheduling in
a data stream manager. In 29th VLDB, Sept. 2003.

[12] S. Chandrasekaran and M. J. Franklin. Remembrance of
streams past: Overload-sensitive management of archived
streams. In 30th VLDB, Sept. 2004.

[13] Chandrasekaran et al. TelegraphCQ: Continuous dataflow
processing for an uncertain world. In CIDR, Jan. 2003.

[14] Cherniack et al. Scalable distributed stream processing. In
CIDR, Jan. 2003.

[15] C. Cranor, T. Johnson, V. Shkapenyuk, and O. Spatscheck.
Gigascope: A stream database for network applications. In
SIGMOD, June 2003.

[16] A. Das, J. Gehrke, and M. Riedewald. Approximate join
processing over data streams. In SIGMOD, June 2003.

[17] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols in
message-passing systems. ACM Comput. Surv.,
34(3):375–408, 2002.

[18] N. Feamster, D. G. Andersen, H. Balakrishnan, and
F. Kaashoek. Measuring the Effects of Internet Path Faults
on Reactive Routing. In ACM Sigmetrics - Performance
2003, June 2003.

[19] H. Garcia-Molina and D. Barbara. How to assign votes in a
distributed system. Journal of the ACM, 32(4):841 – 860,
Oct. 1985.

[20] H. Garcia-Molina and K. Salem. Sagas. In SIGMOD, 1987.
[21] D. K. Gifford. Weighted voting for replicated data. In 7th

SOSP, Dec. 1979.
[22] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers

of replication and a solution. In SIGMOD, June 1996.
[23] J. Gray and A. Reuters. Transaction processing: concepts

and techniques. Morgan Kaufmann, 1993.
[24] M. Hsu. Special issue on workflow systems. IEEE Data

Eng. Bulletin, 18(1), Mar. 1995.
[25] J.-H. Hwang, M. Balazinska, A. Rasin, U. Çetintemel,
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