
Matrix Approximation and Projective Clustering

via Iterative Sampling

Luis Rademacher∗ Santosh Vempala∗ Grant Wang∗

Abstract

We present two new results for the problem of approximating a given real m × n matrix A
by a rank-k matrix D, where k < min{m,n}, so as to minimize ||A−D||2F . It is known that by
sampling O(k/ε) rows of the matrix, one can find a low-rank approximation with additive error
ε||A||2F . Our first result shows that with adaptive sampling in t rounds and O(k/ε) samples in
each round, the additive error drops exponentially as εt; the computation time is nearly linear in
the number of nonzero entries. This demonstrates that multiple passes can be highly beneficial
for a natural (and widely studied) algorithmic problem. Our second result is that there exists a
subset of O(k2/ε) rows such that their span contains a rank-k approximation with multiplicative
(1 + ε) error (i.e., the sum of squares distance has a small “core-set” whose span determines
a good approximation). This existence theorem leads to a PTAS for the following projective
clustering problem: Given a set of points P in Rd, and integers k, j, find a set of j subspaces
F1, . . . , Fj , each of dimension at most k, that minimize

∑
p∈P mini d(p, Fi)2.

1 Introduction

Given data consisting of points in high-dimensional space, it is often of interest to find a low-
dimensional representation. In this paper, we consider the general problem of finding one or more
(up to j) subspaces, each of dimension at most k, and representing each point by its orthogonal
projection to the nearest subspace. Our goal will be to minimize the sum of squared distances of
each point to its nearest subspace, a measure of the “error” incurred by this representation.

This problem has been called projective clustering, since the j subspaces induce a partition of
the point set. Algorithms and systems based on projective clustering have been applied to facial
recognition, data-mining, and synthetic data [5, 25, 6], motivated by the observation that no single
subspace performs as well as a few different subspaces. It should be noted that the advantage of a
low-dimensional representation is not merely in the computational savings, but also the improved
quality of retrieval. We discuss related theoretical work in Section 1.2.

The case of j = 1, i.e., finding a single k-dimensional subspace is an important problem in itself
and can be solved efficiently (for j ≥ 2, the problem is NP-hard [23], even for k = 1 [11]). Viewing
the points as the rows of an m×n matrix A, we find the top k right singular vectors of this matrix
via the Singular Value Decomposition (SVD). The projection itself is given by the rank k matrix
Ak = AY Y T where the columns of Y are the top k right singular vectors of A. Note that among all
rank k matrices D, Ak is the one that minimizes ||A−D||2F =

∑
i,j(Aij−Dij)2. The running time of

∗Mathematics Department and CSAIL, MIT. Email:{lrademac, vempala, gjw}@mit.edu.

1

this algorithm, dominated by the SVD computation, is O(min{mn2, nm2}). Although polynomial,
this is still too high for some applications.

For problems on data sets that are too large or expensive to store/process in their entirety, one
can view the data as a stream and the goal is to store/process a subset chosen judiciously on the
fly and then extrapolate from this subset. Motivated by the question of finding a faster algorithm,
Frieze et al. [16] showed that any matrix A has a subset of k/ε rows whose span contains an
approximately optimal rank k approximation to A. In fact, the subset of rows can be obtained as
independent samples from a distribution that depends only on the lengths of the rows. (In what
follows, A(i) denotes the ith row of A, as a column vector.)

Theorem 1 ([16]). Let S be a sample of s rows of an m×n matrix A, each chosen independently
from the following distribution: Row i is picked with probability

Pi ≥ c
||A(i)||2

‖A‖2
F

.

If s ≥ k/cε, then the span of S contains a matrix Ãk of rank at most k for which

‖A− Ãk‖2
F ≤ ‖A−Ak‖2

F + ε‖A‖2
F .

This can be turned into an efficient algorithm based on sampling [11] 1. The algorithm makes one
pass through A to figure out the sampling distribution and another pass to sample and compute the
approximation. Its complexity is O(min{m,n}k2/ε4). These results lead to the following questions:
(1) Can the error be reduced significantly by using multiple passes through the data? (2) Can we
get multiplicative (1+ε) approximations? (3) Do these sampling algorithms have any consequences
for the general projective clustering problem?

1.1 Our results

Our first result is that the additive error term drops exponentially with the number of passes. Thus,
low-rank approximation is a natural problem for which multiple passes through the data are highly
beneficial.

The idea behind the algorithm is quite simple. As an illustrative example, suppose the data
consists of points along a 1-dimensional subspace of Rn except for one point. The best rank 2
subspace has zero error. However, one round of sampling will most likely miss the point far from
the line. So we consider the following two-round approach. In the first pass, we get a sample
and find a rank 2 approximation using it. Then we sample again, but this time with probability
proportional to the error of the approximation. If the lone far-off point is missed in the first pass,
it will have a very high probability of being chosen in the second pass. The span of the full sample
now contains a very good rank 2 approximation. In the general theorem below, for a set of rows S
of a matrix A, we denote by πS(A) the matrix whose rows are the projection of the rows of A to
the span of S.

1Frieze et al. go further to show that there is an s × s submatrix for s = poly(k/ε) from which the low-rank
approximation can be computed in poly(k, 1/ε) time in an implicit form.

2

Theorem 2. Let S = S1 ∪ · · · ∪ St be a random sample of rows of an m × n matrix A where
for j = 1, . . . , t, each set Sj is a sample of s rows of A chosen independently from the following
distribution: row i is picked with probability

P
(j)
i ≥ c

‖E(i)
j ‖2

‖Ej‖2
F

where E1 = A, Ej = A − πS1∪···∪Sj−1(A) and c is a constant. Then for s ≥ k/cε, the span of S

contains a matrix Ãk of rank k such that

ES(‖A− Ãk‖2
F) ≤ 1

1− ε
‖A−Ak‖2

F + εt‖A‖2
F .

The proof of Theorem 2 is given in Section 2. The resulting algorithm, described in Section 3
uses 2t passes through the data and O(Mst + (m + n)s2t2) computation time where M is the
number of nonzeros in A. Although the sampling distribution is modified t times, the matrix itself
is not changed and so its sparsity is maintained. The algorithm fits the streaming model in that
the entries of A can arrive in any order (see Section 1.2). The space used is O

(
(m + n)kt/ε

)
.

Theorem 2 implies that for any matrix A, there exists a subset of kt/ε rows whose span contains
a rank-k matrix whose error is within an additive εt||A||2F of the best rank-k matrix. Can this be
improved? In particular, is there a small subset of rows whose span contains a rank-k matrix whose
error is within a (1+ε) multiplicative factor of the error of the best possible rank-k approximation?
Our next theorem answers this question affirmatively.

Theorem 3. For any matrix A, there exists a subset of 4k2/ε rows in whose span lies a rank-k
matrix Ãk such that

||A− Ãk||2F ≤ (1 + ε)||A−Ak||2F .

The proof of this theorem also uses iterative sampling, albeit in a “backwards” manner and
yields a simple sampling-based algorithm for finding such an approximation only for k = 1. The
proof for general k is by induction on k, and uses the sampling algorithm for k = 1 to extend
the (approximately) best (k − 1)-dimensional subspace to an approximately best k-dimensional
subspace. Although this existence result does not imply an algorithm faster than the SVD for
finding such an approximation, it will be the key ingredient in our last result—a polynomial-time
approximation scheme (PTAS) for the general projective clustering problem (j ≥ 2).

We restate the problem using the notation from computational geometry: Let d(p, F) be the
orthogonal distance of a point p to a subspace F . Given a set of n points P in Rd, find a set of j
k-dimensional subspaces F1, . . . , Fj such that

C({F1 . . . Fj}) =
∑
p∈P

min
i

d(p, Fi)2

is minimized. When subspaces are replaced by flats, the case k = 0 corresponds to the j-means
problem (with the sum of squares objective function).

Theorem 3 suggests an enumerative algorithm. The optimal set of k-dimensional subspaces
induces a partition P1, . . . , Pj of the given point set. In each set Pi, there is, by Theorem 3, a
subset of size O(k2/ε) in whose span lies a (1 + ε) approximation to the optimal k-dimensional
subspace for this set Pi. So we consider all possible combinations of j subsets each of size O(k2/ε),

3

and a δ-net of k-dimensional subspaces in the span of each subset. The δ-net depends on the points
in each subset and is not just a grid, as is often the case. Each possible combination of subspaces
induces a partition and we simply output the best. Since the subset size is bounded (and so is the
size of the net), this gives a PTAS for the problem (see Section 5).

Theorem 4. Given n points in Rd and parameters B and ε, in time

d
(n

ε

)O(jk3/ε)

we can find a solution to the projective clustering problem which is of cost at most (1+ε)B provided
there is a solution of cost B.

Our technique can also be viewed as an extension of the idea of core-sets. Roughly stated,
a core-set is a small subset of the data which captures a near-optimal solution to the entire set.
Theorem 3 states that there is a core-set of size O(k2/ε) for minimizing the squared error to a
rank k subspace. Unlike proofs of core-sets for other problems, our proof relies on the probabilistic
method along with the properties of the SVD. Finally, our result can be extended to finding affine
subspaces instead of linear subspaces.

1.2 Related work

Following the work of [16] and [11] which introduced matrix sampling for fast low-rank approxima-
tion, Achlioptas and McSherry [1] gave an alternative sampling-based algorithm for the problem.
Their algorithm achieves similar bounds (see [1] for a detailed comparison) using only one pass. It
does not seem amenable to the multipass improvements presented here. Subsequently, Bar-Yossef
[9] has shown that the bounds of these algorithms for one or two passes are optimal up to polynomial
factors in 1/ε.

These algorithms can also be viewed in the streaming model of computation [20]. In this model,
we do not have random access to data; the data comes as a stream and we are allowed one or
a few sequential passes over the data. Algorithms for the streaming model have been designed
for computing frequency moments [7], histograms [17], etc. and have mainly focused on what
can be done in one pass. There has been some recent work on what can be done in multiple
passes [12, 15]. The “pass-efficient” model of computation was introduced in [20]. Our multipass
algorithm fits this model and investigates the tradeoff between approximation and the number of
passes. Feigenbaum, et. al [15] show such a tradeoff for computing the maximum unweighted
matching in bipartite graphs.

The results of our paper connect two previously separate fields — low-rank approximation and
projective clustering. As mentioned earlier, projective clustering has been used in various contexts
[5, 25, 6]. In [4], the authors consider the same problem as in this paper, and propose a variant of
the j-means algorithm for it. Their paper has promising experimental results but does not provide
any theoretical guarantees. There are theoretical results for special cases of projective clustering,
especially the j-means problem (k = 0, find j 0-dimensional affine subspaces, i.e., points). Drineas
et al. [11] gave a 2-approximation to j-means using SVD. Subsequently, Ostrovsky and Rabani
[24] gave the first randomized polynomial time approximation schemes for j-means (and also the
j-median problem). Matoušek [22] and Effros and Schulman [14] both gave deterministic PTAS’s
for j-means. Fernandez de la Vega et al. [10] describe a randomized algorithm with a running time
of O(n(log n)O(1)).z Using the idea of core-sets, Har-Peled and Mazumdar [18] showed a (1 + ε)

4

approximation algorithm that runs in linear time for fixed j, ε. Kumar et al. [21] give a linear-
time PTAS that uses random sampling. There is a PTAS for k = 1 (lines) as well [2]. Other
objective functions have also been studied, e.g. sum of distances (j-median when k = 0, [24, 18])
and maximum distance (j-center when k = 0, [8]). For general k, Har-Peled and Varadarajan [19]
give a (1 + ε) approximation algorithm for the maximum distance objective. Their algorithm runs
in time dnO(jk6 log(1/ε)/ε5) and is based on core-sets (see [3] for a survey).

1.3 Notation and Preliminaries

Let A ∈ Rm×n. Let A(i) denote the ith row of A, seen as a column vector. Any matrix accepts a
singular value decomposition, that is, it can be written in the form

A =
r∑

i=1

σiu
(i)v(i)T

where r is the rank of A and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 are called the singular values; {u(1), . . . , u(r)} ∈
Rm, {v(1), . . . , v(r)} ∈ Rn are sets of orthonormal vectors, called the left and right singular vectors,
respectively. It follows that AT u(i) = σiv

(i) and Av(i) = σiu
(i) for 1 ≤ i ≤ r.

The Frobenius norm of a matrix A ∈ Rm×n having elements (aij) is denoted ‖A‖F and is given
by

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

aij .

It satisfies ‖A‖2
F =

∑r
i=1 σ2

i .
For a subspace V ⊆ Rn, let πV,k(A) denote the best rank-k approximation (under the Frobenius

norm) of A with its rows in V . Let πk(A) = πRn,k(A) =
∑k

i=1 σiu
(i)v(i)T be the best rank-k

approximation of A. Also πV (A) = πV,n(A) is the orthogonal projection of A onto V . When we say
“a set (or sample) of rows of A” we mean a set of indices of rows, rather than the actual rows. For
a set S of rows of A, let span(S) ⊆ Rn be the subspace generated those rows; we use the simplified
notation πS(A) for πspan(S)(A) and πS,k(A) for πspan(S),k(A).

For subspaces V,W ⊆ Rn, the sum of them is denoted V + W and is given by

V + W = {x + y ∈ Rn : x ∈ V, y ∈ W}.

The following elementary properties of the operator πV will be used:

• πV is linear, that is, πV (λA+B) = λπV (A)+πV (B) for any λ ∈ R and matrices A,B ∈ Rm×n.

• If V,W ∈ Rn are orthogonal linear subspaces, then πV +W (A) = πV (A) + πW (A), for any
matrix A ∈ Rm×n.

For a random vector v, its expectation, denoted E(V), is the vector having as components the
expected values of the components of v.

5

2 A random sample contains a good approximation

We will prove Theorem 2 in this section. It will be convenient to formulate an intermediate theorem
as follows.

Theorem 5. Let A ∈ Rm×n. Let V ⊆ Rn be a vector subspace. Let E = A − πV (A). For a fixed
c ∈ R, let S be a random sample of s rows of A from a distribution such that row i is chosen with
probability

Pi ≥ c
‖E(i)‖2

‖E‖2
F

. (1)

Then, for any nonnegative integer k,

ES(‖A− πV +span(S),k(A)‖2
F) ≤ ‖A− πk(A)‖2

F +
k

cs
‖E‖2

F .

Proof. For S = (ri)s
i=1 a sample of rows of A and 1 ≤ j ≤ r, let

w(j) = πV (A)T u(j) +
1
s

s∑
i=1

u
(j)
ri

Pri

E(ri).

Then, ES(w(j)) = πV (A)T u(j) +ET u(j) = σjv
(j). Now we will bound ES(‖w(j)−σjv

(j)‖2). Use the
definition of w(j) to get

w(j) − σjv
(j) =

1
s

s∑
i=1

u
(j)
ri

Pri

E(ri) − ET u(j).

Apply the norm squared to each side and expand the left hand side:

‖w(j) − σjv
(j)‖2 =

∥∥∥∥∥1
s

s∑
i=1

u
(j)
ri

Pri

E(ri)

∥∥∥∥∥
2

− 2
s

s∑
i=1

u
(j)
ri

Pri

E(ri) · (ET u(j)) + ‖ET u(j)‖2. (2)

Observe that

ES

(
u

(j)
ri

Pri

E(ri)

)
=

m∑
i=1

Pi
u

(j)
i

Pi
E(i) = ET u(j), (3)

which implies that

ES

(
2
s

s∑
i=1

u
(j)
ri

Pri

E(ri) · (ET u(j))

)
= 2‖ET u(j)‖2.

Using this, apply ES to Equation (2) to get:

ES(‖w(j) − σjv
(j)‖2) = ES

∥∥∥∥∥1
s

s∑
i=1

u
(j)
ri

Pri

E(ri)

∥∥∥∥∥
2
− ‖ET u(j)‖2 (4)

Now, from the left hand side, and expanding the norm squared,

ES

∥∥∥∥∥1
s

s∑
i=1

u
(j)
ri

Pri

E(ri)

∥∥∥∥∥
2
 =

1
s2

s∑
i=1

ES

(
‖u(j)

ri E(ri)‖2

P 2
ri

)
+

+
2
s2

∑
1≤i<l≤s

ES

(
u

(j)
ri E(ri)

Pri

· u
(j)
rl E(rl)

Prl

) (5)

6

where
s∑

i=1

ES

(
‖u(j)

ri E(ri)‖2

P 2
ri

)
=

s∑
i=1

m∑
l=1

Pl
‖u(j)

l E(l)‖2

P 2
l

= s
m∑

l=1

‖u(j)
l E(l)‖2

Pl
(6)

and, using the independence of the ri’s and Equation (3),

∑
1≤i<l≤s

ES

(
u

(j)
ri E(ri)

Pri

· u
(j)
rl E(rl)

Prl

)
=

∑
1≤i<l≤s

ES

(
u

(j)
ri E(ri)

Pri

)
· ES

(
u

(j)
rl E(rl)

Prl

)

=
s(s− 1)

2
‖ET u(j)‖2.

(7)

The substitution of Equations (6) and (7) in (5) gives

ES

∥∥∥∥∥1
s

s∑
i=1

u
(j)
ri

Pri

E(ri)

∥∥∥∥∥
2
 =

1
s

m∑
i=1

‖u(j)
i E(i)‖2

Pi
+

s− 1
s

‖ET u(j)‖2.

Using this in Equation (4) we have

ES(‖w(j) − σjv
(j)‖2) =

1
s

m∑
i=1

‖u(j)
i E(i)‖2

Pi
− 1

s
‖ET u(j)‖2,

and, using the hypothesis for Pi (Equation (1)), remembering that u(j) is a unit vector and dis-
carding the second term we conclude

ES(‖w(j) − σjv
(j)‖2) ≤ 1

cs
‖E‖2

F . (8)

Let ŷ(j) = 1
σj

w(j) for j = 1, . . . , r, let k′ = min{k, r} (think of k′ as equal to k, this is the

interesting case), let W = span{ŷ(1), . . . , ŷ(k′)}, and F̂ = A
∑k′

t=1 v(t)ŷ(t)T . We will bound the error
‖A−πW (A)‖2

F using F̂ . Observe that the row space of F̂ is contained in W and πW is the projection
operator onto the subspace of all matrices with row space in W with respect to the Frobenius norm.
Thus,

‖A− πW (A)‖2
F ≤ ‖A− F̂‖2

F . (9)

Moreover,

‖A− F̂‖2
F =

r∑
i=1

‖(A− F̂)T u(i)‖2 =
k′∑

i=1

‖σiv
(i) − w(i)‖2 +

r∑
i=k′+1

σ2
i . (10)

Taking expectation and using (8) we get

ES(‖A− F̂‖2
F) ≤

n∑
i=k+1

σ2
i +

k

cs
‖E‖2

F = ‖A− πk(A)‖2
F +

k

cs
‖E‖2

F .

This and Equation (9) give

ES(‖A− πW (A)‖2
F) ≤ ‖A− πk(A)‖2

F +
k

cs
‖E‖2

F . (11)

7

Finally, the fact that W ⊆ V + span(S) and dim(W) ≤ k imply that

‖A− πV +span(S),k(A)‖2
F ≤ ‖A− πW (A)‖2

F ,

and, combining this with Equation (11), we conclude

ES(‖A− πV +span(S),k(A)‖2
F) ≤ ‖A− πk(A)‖2

F +
k

cs
‖E‖2

F .

We can now prove Theorem 2 inductively using Theorem 5.

Proof. (of Theorem 2). We will prove the slightly stronger result

ES(‖A− πS,k(A)‖2
F) ≤

1− (k
cs)

t

1− k
cs

‖A− πk(A)‖2
F +

(
k

cs

)t

‖A‖2
F

by induction on t. The case t = 1 is precisely Theorem 1.
For the inductive step, let E = A− πS1∪···∪St−1(A). By means of Theorem 5 we have that,

ESt(‖A− πS1∪···∪St,k(A)‖2
F) ≤ ‖A− πk(A)‖2

F +
k

cs
‖E‖2

F .

Combining this inequality with the fact that ‖E‖2
F ≤ ‖A− πS1∪···∪St−1,k(A)‖2

F we get

ESt(‖A− πS1∪···∪St,k(A)‖2
F) ≤ ‖A− πk(A)‖2

F +
k

cs
‖A− πS1∪···∪St−1,k(A)‖2

F .

Taking the expectation over S1, . . . , St−1:

ES(‖A− πS1∪···∪St,k(A)‖2
F) ≤ ‖A− πk(A)‖2

F +
k

cs
ES1,...,St−1

(
‖A− πS1∪···∪St−1,k(A)‖2

F

)
and the result follows from the induction hypothesis for t− 1.

3 Algorithm

In this section, we present the multipass algorithm for low-rank approximation. We first describe
it at a conceptual level and then give the details of the implementation.

Informally, the algorithm will find an approximation to the best rank-k subspace (the span
of v(1), . . . , v(k) by first choosing a sample T of s random rows with density proportional to the
squared norm of each row (as in Theorem 1). Then we focus ourselves on the space orthogonal to
the span of the chosen rows, that is, we consider the matrix E = A − πT (A), which represents in
some sense the error of our current approximation, and we sample s additional rows with density
proportional to the squared norm of the rows of E. We consider the union of this sample with our
previous sample, and we continue adding samples in this way, up to the number of passes that we
have chosen. Theorem 2 gives a bound on the error of this procedure.

8

Fast SVD

Input: A ∈ Rm×n, integers k ≤ m, t, error parameter ε > 0.
Output: h1 . . . , hk ∈ Rn such that with probability at least 3/4 their span V satisfies

‖A− πV (A)‖2
F ≤

(
1 +

4ε

1− ε

)
‖A− πk(A)‖2

F + 4εt‖A‖2
F . (12)

1. Let S = ∅, s = k/ε.

2. Repeat t times:

(a) Let E = A− πS(A).

(b) Let T be a sample of s rows of A according to the distribution that assigns probability
‖E(i)‖2
‖E‖2F

to row i.

(c) Let S = S ∪ T .

3. Let h1, . . . , hk be the top k right singular vectors of πS(A).

Let M be the number of non-zeros of A.

Theorem 6. Algorithm Fast SVD is correct and has running time O
(
M kt

ε + (m + n)k2t2

ε2

)
.

Proof. For the correctness, observe that πV (A) is a random variable with the same distribution as
πS,k(A) as defined in Theorem 2. Also, ‖A− πS,k(A)‖2

F − ‖A− πk(A)‖2
F is a nonnegative random

variable and Theorem 2 gives a bound on its expectation:

ES(‖A− πS,k(A)‖2
F − ‖A− πk(A)‖2

F) ≤ ε

1− ε
‖A− πk(A)‖2

F + εt‖A‖2
F .

Markov’s inequality applied to this variable gives that with probability at least 3/4

‖A− πV (A)‖2
F − ‖A− πk(A)‖2

F ≤ 4ε

1− ε
‖A− πk(A)‖2

F + 4εt‖A‖2
F .

which implies inequality (12).
We will now bound the running time. We maintain a basis of the rows indexed by S. In

each iteration, we extend this basis orthogonally with a new set of vectors Y , so that it spans
the new sample T . The residual squared length of each row, ‖E(i)‖2, as well as the total, ‖E‖2

F ,
are computed by subtracting the contribution of πT (A) from the values that they had during the
previous iteration. In each iteration, the projection onto Y needed for computing this contribution
takes time O(Ms). In iteration i, the computation of the orthonormal basis Y takes time O(ns2i)
(Gram-Schmidt orthonormalization of s vectors in Rn against an orthonormal basis of size at most
s(i+1)). Thus, the total time in iteration i is O(Ms+ns2i); with t iterations, this is O(Mst+ns2t2).
At the end of Step 2 we have πS(A) in terms of our basis (an m × st matrix). Finding the top
k singular vectors in Step 3 takes time O(ms2t2). Bringing them back to the original basis takes
time O(nkst). Thus, the total running time is O(Mst + ns2t2 + ms2t2 + nkst) or, in other words,
O
(
M kt

ε + (m + n)k2t2

ε2

)
.

9

4 Existence of a subset with multiplicative (1 + ε) error

In this section, we will prove Theorem 3. The first step is to show that for any matrix A, there is
a row a such that the span of a is a factor 2 approximation to the best rank-1 subspace.

Lemma 7. In any matrix A, there is a row a such that

‖A− πspan(a)(A)‖2
F ≤ 2‖A− π1(A)‖2

F .

Proof. As in the proof of Theorem 5, let b be (the index of) a random row of A picked according
to the distribution that assigns probability Pi = ||A(i)||2/‖A‖2

F to row i. Define the random vector

w =
u

(1)
b

Pb
A(b)

where u(1) is the top left singular vector of A. Then, we have E(w) = σ1v
(1) and, by expanding∥∥w − σ1v

(1)
∥∥2, we also have

E
(∥∥w − σ1v

(1)
∥∥2
)

= E

∥∥∥∥∥u
(1)
b A(b)

Pb

∥∥∥∥∥
2

− 2σ1
u

(1)
b A(b)T v(1)

Pb
+ σ2

1

and, writing the expectation as a sum and using the definition of Pb,

=

(
m∑

b=1

‖A‖2
F

‖u(1)
b A(b)‖2

‖A(b)‖2

)
− σ2

1

= ‖A‖2
F − σ2

1

= ‖A− π1(A)‖2
F .

Therefore, as in Equations (9) and (10),

E(‖A− πspan(b)(A)‖2
F) ≤ E

(∥∥w − σ1v
(1)
∥∥2
)

+
r∑

i=2

σ2
i ≤ 2‖A− π1(A)‖2

F .

and hence there exists a row that proves the lemma.

Proof. (of Theorem 3.) We will prove by induction on k that for integers s, k and A ∈ Rm×n there
exists a subset S of rows of A of size (s + 1)k such that

‖A− πS,k(A)‖2
F ≤

(
1 +

2
s

)k

‖A− πk(A)‖2
F .

By Lemma 7, there is a row b of A such that

‖A− πspan(b)(A)‖2
F ≤ 2‖A− π1(A)‖2

F .

10

For k = 1, apply Theorem 5 with V = span (b); we get that there is a set S of s indices of rows
of A such that

‖A− πS∪{b},1(A)‖2
F ≤ ‖A− π1(A)‖2

F +
1
s
‖A− πspan(b)(A)‖2

F

≤
(

1 +
2
s

)
‖A− π1(A)‖2

F .

Now, to extend this to higher k, one might consider the approach of finding such a sample to
approximate the best rank 1 subspace, projecting orthogonal to it and repeating. This does not
work. The reason is that the error incurred by a higher rank approximation could be much smaller:
an ε multiplicative error at an earlier stage (e.g., for the first stage, multiplicative with respect to
‖A− π1(A)‖2

F , the best rank-1 approximation) is already too large (given that at the end we want
a multiplicative error with respect to ‖A− πk(A)‖2

F , the best rank-k approximation).
Instead, for proving the inductive step, we will use the sampling idea backwards. In our context,

finding a rank-(k + 1) approximation to A is equivalent to finding a (k + 1)-dimensional subspace
V onto which to project, so that πV (A) is the approximation. If we think of our problem as finding
such a subspace, then the quality of subspace V is given by ‖A − πV (A)‖2

F . We want to find a
(k + 1)-dimensional subspace in the span of (s + 1)(k + 1) rows of A that is worse than the best
possible only by a multiplicative factor of (1+2/s)k+1.We will first show the existence of s+1 rows
such that if we replace v(1) in the best rank-k + 1 subspace (generated by v(1), . . . , v(k+1)) with a
vector in the span of those rows, then the resulting k + 1-dimensional subspace is worse that the
best by at most a (1 + 2/s) multiplicative factor. Then we will focus on our problem projected
onto the orthogonal complement of span(b) to get from the inductive hypothesis that the best k-
dimensional subspace it this restricted problem (which happens to be generated by v(2), . . . , v(k+1))
can be replaced by another k-dimensional subspace in the span of (s+1)k rows, which is worse that
the best by a multiplicative factor of at most (1+2/s)k. The combination of these two replacements
will give the desired result.

Suppose inductively that for some k and any matrix A and 1 ≤ k′ ≤ k, there exists a subset of
rows of A of size (s + 1)k′ such that

‖A− πS,k′(A)‖2
F ≤

(
1 +

2
s

)k′

‖A− πk′(A)‖2
F .

To prove this for k + 1, let V be the optimal rank-(k + 1) subspace. Let V ′ be the subspace of V
orthogonal to v(1). Project the rows of A orthogonal to V ′ to get a matrix C, i.e.,

C = A− πV ′(A).

Applying the hypothesis with k′ = 1 to C, we get that there exists a vector b in the span of a set
S′′ of s + 1 rows of C such that

‖C − πspan(b)(C)‖2
F ≤

(
1 +

2
s

)
‖C − π1(C)‖2

F =
(

1 +
2
s

)
‖C − πspan(v(1))(C)‖2

F . (13)

Notice that V ′ and span(b) are orthogonal subspaces, this implies that

‖A− πV ′+span(b)(A)‖2
F = ‖A− πV ′(A)− πspan(b)(A)‖2

F .

11

This combined with the fact that πspan(b)(A) = πspan(b)(C) and the definition of C gives

‖A− πV ′+span(b)(A)‖2
F = ‖C − πspan(b)(C)‖2

F .

We can now apply Equation (13) to get

‖A− πV ′+span(b)(A)‖2
F ≤

(
1 +

2
s

)
‖C − πspan(v(1))(C)‖2

F .

Use the definition of C again and the fact that πspan(v(1))(C) = πspan(v(1))(A) to conclude

‖A− πV ′+span(b)(A)‖2
F ≤

(
1 +

2
s

)
‖A− πV ′(A)− πspan(v(1))(A)‖2

F

=
(

1 +
2
s

)
‖A− πV (A)‖2

F .

(14)

Now project A to the subspace orthogonal to b to get a matrix A′ = A− πspan(b)(A). Applying
the inductive hypothesis to A′ and k′ = k, we get a set S′ of (s + 1)k rows such that (remember
that V ′ is k-dimensional)

‖A′ − πS′,k(A′)‖2
F ≤

(
1 +

2
s

)k

‖A′ − πk(A′)‖2
F ≤

(
1 +

2
s

)k

‖A′ − πV ′(A′)‖2
F . (15)

The combination of the rows that we got from the two applications of the induction hypothesis
gives us a set S = S′ ∪ S′′ of (s + 1)(k + 1) rows of A, and we will see now that this set proves the
induction for k + 1.

Note that πspan(b)(A)−πS′,k(A′) is a matrix of rank at most k +1 whose row-space is contained
in span (S). This implies

‖A− πS,k+1(A)‖2
F ≤ ‖A− πspan(b)(A)− πS′,k(A′)‖2

F ,

using the definition of A′:

= ‖A′ − πS′,k(A′)‖2
F ,

and using Equation (15):

≤
(

1 +
2
s

)k

‖A′ − πV ′(A′)‖2
F

¿From this, the fact that πV ′ as a projection satisfies ‖A′− πV ′(A′)‖2
F ≤ ‖A′−B‖2

F for any matrix
B ∈ Rm×n having row-space in V ′ gives us:

‖A− πS,k+1(A)‖2
F ≤

(
1 +

2
s

)k

‖A′ − πV ′(A)‖2
F ,

using the definition of A′ again:

≤
(

1 +
2
s

)k

‖A− πspan(b)(A)− πV ′(A)‖2
F ,

12

using the orthogonality of span(b) and V ′:

=
(

1 +
2
s

)k

‖A− πV ′+span(b)(A)‖2
F ,

and using Equation (14),

≤
(

1 +
2
s

)k+1

‖A− πV (A)‖2
F .

This finishes the induction. The choice of s = 4k
ε gives us the theorem.

5 Application: projective clustering

In this section, we give an approximation algorithm for the projective clustering problem described
in Section 1.1. The algorithm is motivated by Theorem 3. Let V1, . . . , Vj be the optimal subspaces
partitioning the point set into P1, . . . , Pj , where Pi is the subset of points closest to Vi. Theorem 3
states that there exists a subset P̂i ⊆ Pi of size 4k2/ε in whose span lies an approximately optimal
k-dimensional subspace Wi. We can enumerate over all combinations of j subsets, each of size
4k2/ε to find the P̂i, but we cannot enumerate the infinitely many k-dimensional subspaces lying
in the span of P̂i.

Thus, we cannot hope to find Wi given P̂i. A natural approach to solve this problem would be
to put a finite grid on the points in the span of P̂i. The hope would be that there are k grid points
g1, . . . , gk whose span G is “close” to Wi, since each basis vector for Wi is close to a grid point.
Although G may be “close” to Wi, there may be a point p ∈ Pi for which d(p, G)2 � d(p, Wi)2,
i.e. G incurs a much greater error than Wi. Indeed, consider a point p ∈ Pi whose distance to the
origin is very large. Although the distance between a basis vector and a grid point might be small,
the error induced by projecting a point onto the grid point will be proportional to its distance to
the origin.

The problem described above implies that a grid construction must be dependent on the point
set Pi. Our grid construction does depend on Pi; we consider grid points in balls around a subset
of Pi. The grid is laid down in the span of P̂i (actually, a subspace of slightly higher dimension) to
reduce the size of the grid, which is exponential in the dimension of the points. In Lemma 8, we
show that there is a subspace Fi that is the span of k grid points such that

∑
p∈Pi

d(p, Fi)2 is not
much worse than

∑
p∈Pi

d(p, Wi)2. This construction avoids the problem that points far away from
the origin will have error proportional to their distance to the origin, since there are grid points
close to such points. Although we find Fi in the span of P̂i, it can be brought back up to Rd, where
its error with respect to Wi is the same as in P̂i. This is because Wi lies in the span of P̂i.

The algorithm is given below.

13

Algorithm Cluster

Input: P ⊆ Rd, error parameter 0 < ε < 1, and B.
Output: A set of j k-dimensional subspaces F1 . . . Fj , such that

C({F1 . . . Fj}) =
∑
p∈P

min
i

d(p, Fi)2

is at most (1 + ε)B provided a solution of cost B exists.

1. Set δ = ε
√

B

16jk
√

(1+ ε
2
)n

, R =
√

(1 + ε
2)B + 2δk.

2. For each subset T of P of size 8jk2/ε + jk:

(a) For each equipartition of (T1 . . . Tj) of T into j parts:

i. Construct a δ-net Di with radius R for each Ti in the span of Ti.

ii. For each way of choosing j subspaces F1, . . . , Fj , where Fi is the span of k
points from Di:

A. Compute the cost C({F1 . . . Fj}).

3. Report the subspaces F1 . . . Fj of minimum cost C({F1 . . . Fj}).

In Step 2(a)i, we construct a δ-net Di. A δ-net D with radius R for a point set S is a set of
points such that for any point q within distance R of some p ∈ S, there exists a g ∈ D such that
d(q, g) ≤ δ. To construct a δ-net D for a point set S with radius R, we simply put a box of side
length 2R around each point p ∈ S. Each point at grid length δ/

√
d in each box is in D, where d is

the dimension of the points in S. The size of the δ-net is thus exponential in the dimension of the
points in S. This is why it is crucial that we constuct the δ-net for Ti in the span of Ti; if we were
to simply create a δ-net for Ti in the original Rd space, the size of the net would be exponential in
d! By constructing the δ-net Di in the span of Ti in Step 2(a)i, the size of Di is instead exponential
in just 8k2/ε + k, the number of points in Ti.

The correctness of the algorithm relies crucially on the next lemma.

Lemma 8. Let P be a point set, and let W be a subspace of dimension k such that∑
p∈P

d(p, W)2 ≤ α.

There exists a set C ⊆ P of k points such that there is a subspace F with the following properties:

1. F is the span of k points from a δ-net D with radius
√

α + 2δk for C.

2. F is not too far from W :∑
p∈P

d(p, F)2 ≤
∑
p∈P

d(p, W)2 + 4k2nδ2 + 4kδ
∑
p∈P

d(p, W). (16)

14

Proof. We simultaneously construct F and choose the k points p1, . . . , pk in C in k steps. Let
F0 = W . Inductively, in step i, we choose a point pi to put in C and rotate Fi−1 so that it includes
a grid point gi around pi. The subspace resulting from the last rotation, Fk, is the subspace F with
the bound promised by the lemma. To prove that (16) holds, we prove the following inequality for
any point p ∈ P going from Fi−1 to Fi

d(p, Fi) ≤ d(p, Fi−1) + 2δ. (17)

Summing over the k steps, squaring, and summing over n points, we have the desired result.
Let G1 = {~0}. Gi will be the span of the grid points {g1, g2, . . . , gi−1}. We describe how to

construct the rotation Ri. Let pi ∈ P maximize

||πG⊥
i
(πFi−1(p))||

and let gi ∈ D minimize
d(πFi−1(pi), gi).

Put pi in C. Consider the plane Z defined by πG⊥
i
(gi), πG⊥

i
(πFi−1(pi)), and ~0. Let θ be the angle

between πG⊥
i
(gi) and πG⊥

i
(πFi−1(pi)). Let Ri be the rotation in the plane Z by the angle θ, and

define Fi = RiFi−1. Set Gi+1 = Gi + span{gi}.
Now we prove inequality (17). We do so by proving the following inequality by induction on i

for any point p:
d(πFi−1(p), RiπFi−1(p)) ≤ 2δ. (18)

Note that this proves (17) by applying the triangle inequality, since:

d(p, Fi) ≤ d(p, Fi−1) + d(πFi−1(p), πFi(p))
≤ d(p, Fi−1) + d(πFi−1(p), RiπFi−1(p)).

The base case of the inequality, i = 1, is trivial. Consider the inductive case; here, we are bounding
the distance between πFi−1(p) and RiπFi−1(p). It suffices to bound the distance between these two
points in the subspace orthogonal to Gi, since the rotation Ri is chosen orthogonal to Gi. That is,

d(πFi−1(p), RiπFi−1(p)) ≤ d(πG⊥
i
(πFi−1(p)), RiπG⊥

i
(πFi−1(p))).

Now, consider the distance between a point πG⊥
i
(πFi−1(p)) and its rotation, RiπG⊥

i
(πFi−1(p)). This

distance is maximized when ||πG⊥
i
(πFi−1(p))|| is maximized, so we have, by construction, that the

maximum value is achieved by pi:

d(πG⊥
i
(πFi−1(p)), RiπG⊥

i
(πFi−1(p))) ≤ d(πG⊥

i
(πFi−1(pi)), RiπG⊥

i
(πFi−1(pi))).

By the triangle inequality we have:

d(πG⊥
i
(πFi−1(pi)), RiπG⊥

i
(πFi−1(pi))) ≤ d(πG⊥

i
(πFi−1(pi)), πG⊥

i
(gi)) + d(πG⊥

i
(gi), RiπG⊥

i
(πFi−1(pi))).

To bound the first term, d(πG⊥
i
(πFi−1(pi)), πG⊥

i
(gi)), note that

d(πG⊥
i
(πFi−1(pi)), πG⊥

i
(gi)) ≤ d(πFi−1(pi), gi).

15

We show that πFi−1(pi) is within a ball of radius R around pi; this implies

d(πFi−1(pi), gi) ≤ δ (19)

by construction of the δ-net around pi. We have:

d(pi, πFi−1(pi)) ≤ d(pi, F0) +
i−2∑
j=1

d(πFj (pi), πFj+1(pi))

≤
√

α +
i−2∑
j=1

d(πFj (pi), Rj+1πFj (pi))

≤
√

α + 2δk = R.

The third line uses the induction hypothesis.
Now we bound the second term, d(πG⊥

i
(gi), RiπG⊥

i
(πFi−1(pi))). Note that RiπG⊥

i
(πFi−1(pi)))

is just a rescaling of πG⊥
i
(gi) and that ||πG⊥

i
(πFi−1(p

∗))|| = ||RiπG⊥
i
(πFi−1(p

∗))||, since rotation
preserves norms. The bound on the first term implies that ||πG⊥

i
(gi)|| ≥ ||πG⊥

i
(πFi−1(p

∗))|| − δ, so

d(πG⊥
i
(gi), RiπG⊥

i
(πFi−1(pi))) ≤ δ. (20)

Combining (19) and (20), we have proved (18).

Now, we are ready to prove Theorem 4, which proves the correctness of the algorithm.

Proof. Assume that the optimal solution is of value at most B. Let V1, . . . , Vj be the optimal
subspaces, and let P1, . . . , Pj be the partition of P such that Pi is the set of points closest to Vi.
Let ni = |Pi|, with

∑
i ni = n. By Theorem 3, there exists a subset Si of Pi of size at most 8k2/ε

such that there is a subspace Wi in the span of Si with∑
p∈Pi

d(p, Wi)2 ≤
(
1 +

ε

2

)∑
p∈Pi

d(p, Vi)2. (21)

Consider each subset Pi and its corresponding subspace Wi. Now, apply Lemma 8 to Pi and Wi

using R, δ as in the algorithm. Since the optimal solution is of value at most B, we have that, for
every i: ∑

p∈Pi

d(p, Wi)2 ≤
(
1 +

ε

2

)
B.

Let Ci, Fi be the set of k points and subspace, respectively, promised by the lemma. Fi is the span
of k points from a δ-net of Ci and obeys the following inequality:∑

p∈Pi

d(p, Fi)2 ≤ (1 +
ε

2
)
∑
p∈Pi

d(p, Vi)2 +
ε

4j
B +

ε

4j
B.

Let T =
⋃

i Si∪Ci. We have that |T | = 8jk2/ε+jk. The algorithm will enumerate some set T ′ ⊇ T
in Step 2. Furthermore, it will consider a partition {T ′

1 . . . T ′
j} such that T ′

i ⊇ Si ∪ Ci in Step 2a.

16

Let D′
i be the δ-net for T ′

i projected to the span of T ′
i . Since the algorithm enumerates over

all subspaces lying in the span of D′
i, the algorithm will consider the subspaces F1, . . . , Fj whose

existence is proven above. The cost associated with F1, . . . , Fj is:

C({F1 . . . Fj}) ≤
j∑

i=1

∑
p∈Pi

d(p, Fi)2

≤
(
1 +

ε

2

) j∑
i=1

∑
p∈Pi

d(p, Vi)2 +
ε

4
B +

ε

4
B

≤ (1 + ε)B.

The running time analysis follows by the following bounds. The number of subsets of size
8jk2/ε + jk is at most n8jk2/ε+jk. The number of equipartitions of a set of size 8jk2/ε + jk into j
parts is at most j8jk2/ε+jk. Recall that the δ-net D for a point set T of dimension d is implemented
by putting a box with side length 2R of grid width δ/

√
d around each point in T . Let X be the set

of grid points in the box around a point p. The number of subspaces in each δ-net Di is therefore at
most

((
8k2/ε + k

)
|X|
)k, so the number of j subspaces that one can choose for a partition (T1 . . . Tj)

is
((

8k2/ε + k
)
|X|
)jk. The computation of projecting points, finding a basis, and determining the

cost of a candidate family of subspaces takes time O(ndjk). The cardinality of X is (remember
that ε < 1):

|X| =

(
2R

δ/
√

8k2/ε + k

)8k2/ε+k

≤
(

O
(
jk

√
n

ε

))8k2/ε+k

.

Therefore, the running time of the algorithm is at most

O(ndjk) n8jk2/ε+jkj8jk2/ε+jk
((

8k2/ε + k
)
|X|
)jk = d

(n

ε

)O(k3j/ε)
.

References

[1] D. Achlioptas, F. McSherry, “Fast Computation of Low Rank Approximations.” Proceedings
of the 33rd Annual Symposium on Theory of Computing, 2001.

[2] P. Agarwal, C. Procopiuc, K. Varadajan. “Approximation Algorithms for k-line center.” Pro-
ceedings of European Symposium on Algorithms, 2002.

[3] P. Agarwal, S. Har-Peled, K. Varadajan. “Geometric Approximations via Coresets.”
Manuscript, 2004. http://valis.cs.uiuc.edu/~sariel/papers/04/survey/.

[4] P. Agarwal, N. Mustafa. “k-Means Projective Clustering.” Proceedings of PODS, 2004.

[5] R. Agarwal, J. Gehrke, D. Gunopulos, P. Raghavan. “Automatic subspace clustering of high
dimensional data for data mining applications.” Proceedings of SIGMOD, 1998.

17

http://valis.cs.uiuc.edu/~sariel/papers/04/survey/

[6] C. Aggarwal, C. Procopiuc, J. Wolf, P. Yu, J. Park. “Fast Algorithms for Projected Clustering.”
Proceedings of SIGMOD, 1999.

[7] N. Alon, Y. Matias, M. Szegedy, “The space complexity of approximating the frequency mo-
ments.” Journal of Computer and System Sciences, 58(1):137-147, Feb. 1999.

[8] M. Bădoiu, S. Har-Peled, P. Indyk. “Approximate Clustering via Core-Sets.” Proceedings of
34th Annual Symposium on Theory of Computing, 2002.

[9] Z. Bar-Yosseff. “Sampling Lower Bounds via Information Theory.” Proceedings of the 35th
Annual Symposium on Theory of Computing, 2003.

[10] W.F. de la Vega, M. Karpinski, C. Kenyon, Y. Rabani. “Approximation schemes for clustering
problems.” Proceedings of the 35th Annual ACM Symposium on Theory of Computing, 2003.

[11] P. Drineas, A. Frieze, R. Kannan, S. Vempala, V. Vinay. “Clustering in large graphs and
matrices.” Proceedings of 10th SODA, 1999.

[12] P. Drineas, R. Kannan. “Pass Efficient Algorithm for approximating large matrices,” Proceed-
ings of 14th SODA, 2003.

[13] P. Drineas, R. Kannan, M. Maloney. “Fast Monte Carlo Algorithms for Matrices II:
Computing a Low-Rank Approximation to a Matrix.” Yale University Technical Report,
YALEU/DCS/TR-1270, 2004.

[14] M. Effros, L. J. Schulman, “Deterministic clustering with data nets,” ECCC TR04-050, 2004.

[15] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, J. Zhang. “On Graph Problems in a Semi-
Streaming Model.” Proceedings of the 31st ICALP, 2004.

[16] A. Frieze, R. Kannan, S. Vempala. “Fast Monte-Carlo algorithms for finding low-rank approx-
imations.” Proceedings of 39th FOCS, 1998.

[17] S. Guha, N. Koudas, K. Shim. “Data-streams and histograms.” Proceedings of 33rd ACM
Symposium on Theory of Computing, 2001.

[18] S. Har-Peled, S. Mazumdar. “Coresets for k-means and k-median clustering and their appli-
cations.” Proceedings of the 36th Annual Symposium on Theory of Comptuing, 2004.

[19] S. Har-Peled, K. Varadarajan. “Projective Clustering in High Dimensions using Core-Sets.”
Proceedings of Symposium on Computation Geometry, 2002.

[20] M. Henzinger, P. Raghavan, S. Rajagopalan. “Computing on Data Streams.” Technical Note
1998-011, Digital Systems Research Center, Palo Alto, CA, May 1998.

[21] A. Kumar, Y. Sabharwal, S. Sen. “A simple linear time (1 + ε)-approximation algorithm for
k-means clustering in any dimensions.” Proceedings of the 45th Annual IEEE Foundations of
Computer Science, 2004.

[22] J. Matoušek. “On approximate geometric k-clustering.” Discrete and Computational Geome-
try, pg 61-84, 2000.

18

[23] N. Megiddo, A. Tamir. “On the complexity of locating linear facilities in the plane.” Operations
Research Letters, 1 (1982), 194-197.

[24] R. Ostrovsky, Y. Rabani. “Polynomial time approximation schemes for geometric clustering
problems.” Journal of the ACM, 49(2):139-156, March, 2002.

[25] C. Procopiuc, P. Agarwal, T. Murali, M. Jones. “A Monte Carlo Algorithm for Fast Projective
clustering.” Proceedings of SIGMOD, 2002.

19

	Introduction
	Our results
	Related work
	Notation and Preliminaries

	A random sample contains a good approximation
	Algorithm
	Existence of a subset with multiplicative (1+) error
	Application: projective clustering

