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Abstract

We present a simple, efficient, and self-contained construction of a wait-free regular register
from Byzantine storage components. Our construction utilizes a novel building block, called
1-regular register, which can be implemented from Byzantine fault-prone components with the
same round complexity as a safe register, and with only a slight increase in storage space.
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1 Introduction

In this paper we consider a problem of constructing wait-free distributed storage from Byzantine
fault prone components in asynchronous settings. Our specific objective is to devise a solution that
will be simple, efficient, and feasible in practice, yet providing meaningful semantics for higher level
applications. Roughly speaking, a wait-free object is one that always guarantees the liveness of
shared memory operations, including in the presence of any number of process (client) failures.

Constructing efficient storage solutions from Byzantine components received considerable atten-
tion recently, as such solutions are useful in a number of emerging application domains. Originally,
such solutions have been introduced in the context of scalable client-server systems. Such systems
achieve more scalability than traditional state-machine replication approaches by removing the di-
rect communication among the servers, and thus reducing the load that each client request (or
transaction) imposes on the servers. This approach was pioneered in the Fleet [17] system, and
adopted in many others, e.g., SBQ-L [18], Agile Store [11], Coca [28], and [5]. Similar solutions have
also been employed in the setting of Storage Area Networks (SANs). SAN technology allows clients
to access disks directly over the network so that the file server bottleneck is eliminated. Examples
of SAN-based systems that use disks for information sharing and coordination include Compaq’s
Petal [13] and Frangipani [23], Disk Paxos [7], Active Disk Paxos [6], and Byzantine Disk Paxos [1].
More recently, solutions of this nature have been adopted in peer-to-peer systems, which consist of
a collection of widely spread nodes storing data objects. Naturally, due to their Internet-wide de-
ployment, the storage nodes are prone to malicious attacks, which motivates adopting a Byzantine
failure model for the storage nodes. Examples of peer-to-peer systems that adopt storage-centric
replication to support availability in face of Byzantine failures include Rosebud [21] and [14].

Fault-prone storage systems as mentioned above can be formally modeled as an asynchronous
shared memory system where a threshold t of the memory objects may fail by being non-responsive [3,
10] or by returning arbitrary values [2, 10] (i.e., by being Byzantine); this failure model is called
non-responsive arbitrary (NR-Arbitrary) faults [10]. In this paper, we assume that less than one
fourth of the memory objects can fail. In [1] we show that this assumption is necessary for achieving
wait-free implementations as efficient as those presented in this paper; that is, every construction
that uses less than 4t + 1 objects must have a higher latency.

All existing wait-free Byzantine-resilient storage constructions provide safe register seman-
tics1 [10, 16, 1]. The only previous direct constructions of objects with stronger (regular or atomic)
semantics from Byzantine storage satisfy weaker (non-wait-free) termination conditions [18, 1]. In
this paper we focus on wait-free constructions. Safe register semantics, by themselves, are too weak
to be directly useful for applications. The focus on these semantics has been justified by the exis-
tence of known reductions from wait-free safe registers to stronger ones [19, 27, 8, 12, 24, 25, 26, 9].
However, this approach results in constructions that are not self-contained, and as we argue below,
are not tailored to the requirements of a distributed storage system. In this paper, we do not
use these reductions as black boxes, but instead capitalize on their techniques in order to derive
a new self-contained wait-free regular register construction that is simple, efficient, and feasible in
distributed storage environments.

Most existing constructions of strong memory objects are fairly elaborate. We believe that a
1A safe register guarantees that every read operation that does not overlap any write returns the latest written

value, or the initial value if no value was written; the result of a read operation that does overlap a write operation
may be arbitrary.

1



major reason for this complexity is the fact that they aim to achieve an atomic register. However,
recent studies indicate that storage with regular semantics is sufficient in most cases [7, 22, 1]. A
regular register is weaker than an atomic one; roughly speaking, a regular register guarantees that
every read operation returns the value that was written by a write operation invoked not earlier
than the last write operation that returns before the read is invoked, or the initial value if no value
is written before the read. We therefore focus on constructing regular registers in this paper.

Existing constructions of strong (regular or atomic) wait-free objects from weaker ones were not
designed with distributed storage in mind. In particular, such constructions have typically focused
on bounding the memory size rather than reducing the number of shared memory accesses. In a
distributed setting, however, every memory access incurs a latency of two message delays, whereas
storage space is typically abundant. Therefore, we believe that a practical construction for the
model we consider herein should focus on simplicity and reducing communication costs, even at
the cost of using unbounded counters. This is precisely the approach we take in this paper. We
give an algorithm that uses unbounded counters, (which is acceptable in practice), achieves better
latency than all existing regular register implementations, and is very simple to understand and
implement.

Our approach further differs from existing constructions in the basic building blocks employed.
Traditional shared memory constructions often use a collection of safe single-bit registers, which
are mathematical models of flip-flops. In contrast, in a distributed storage setting, we can assume
that each storage unit (representing a disk or a server) can support stronger objects. In this paper
we introduce a novel intermediate building block, called 1-regular register. We show that a 1-
regular register can be implemented from Byzantine fault-prone components with the same round
complexity as a safe register, and with only a slight increase in storage space. We then give a simple
and efficient implementation of a wait-free regular register using 1-regular ones.

Outline: The rest of this paper is organized as follows: In Section 3, we describe the formal
computation model used throughout the paper and give the definitions of various register types.
In Section 4, we construct a wait-free 1-regular register from n > 4t base registers up to t of which
can incur Byzantine faults. Finally, in Section 5, we show how to use 1-regular registers in order to
construct a wait-free regular register. We note that all but one of the 1-regular registers employed in
this construction can be replaced with (weaker) safe ones. Therefore, for completeness, we present
a direct safe register construction in the appendix. As noted above, using safe registers instead of
1-regular ones does not reduce the latency, but it slightly reduces the space requirements.

2 Related Work

Wait-free shared register constructions have been an actively researched area for several decades [19,
27, 8, 12, 24, 25, 26, 9]. Most of the constructions found in the literature aim to implement
atomic registers from safe bits. One notable exception is the construction by Lamport in [12],
which implements an n-valued regular register using O(n) safe bits. The construction of [27] was
purported to be an atomic register construction, but in fact, only provides regular semantics.

Peterson [19] and Tromp [24] present constructions of atomic registers from safe bit tracks
and atomic control bits. It appears that these constructions can be easily adapted to implement
regular registers by replacing the atomic control bits with regular ones, which in turn can be easily
obtained from safe bits as shown in [12]; nevertheless, this was neither claimed nor proven in those
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papers. Although both of these constructions have logarithmic space complexity, the number of
shared memory accesses they employ is rather high. Therefore, they are not directly applicable in
a distributed setting. Nonetheless, our work benefits from several techniques and ideas underlying
these constructions, e.g., using separate tracks to store copies of the register value, and using a
handshake mechanism to coordinate between the reader and the writer.

All the existing wait-free Byzantine-fault-tolerant register constructions for distributed storage
setting only provide safe semantics [16, 10, 1]. Other constructions achieve stronger semantics
at the cost of weaker termination guarantees: the protocols by [18] and [4] implement atomic and
regular registers, respectively, but do not guarantee termination in the face of client crashes; and the
algorithm of [1] implements a regular register where the read operation is guaranteed to terminate
only if it eventually runs in isolation for sufficiently long.

Our 1-regular register notion is a generalization of the pseudo-regular register of [20]. Whereas
a read operation on our 1-regular register can return ⊥ if it is concurrent with more than one write,
a read from the pseudo-regular register is allowed to return ⊥ if it is concurrent with any number
of writes. Hence, the guarantees it provides corresponds to 0-regularity in our terminology.

3 The System Model

We consider asynchronous shared memory systems consisting of a collection of processes interacting
with a finite collection of objects. Objects and processes are modeled as I/O automata [15]; for
space constraints, we do not repeat the details of the I/O model here.

An object automaton’s interface is determined by its type, which is a tuple consisting of the
following components: (1) a set V als of values; (2) a set of invocations; (3) a set of responses; and
(4) a sequential specification, which is a function from invocations × V als to responses × V als.
In a shared memory system consisting of processes P1, P2, . . . , an object of type T interacts with
a process Pi by means of input actions of the form ai, where a is an invocation of T , and output
actions of the form bi, where b is a response of T . An object’s external behavior is specified in
terms of the properties of its traces (i.e., executions consisting of external actions only). Liveness
properties are required to hold only in fair executions, i.e., executions where each output and
internal action has infinitely many opportunities to occur.

The interaction between a process and an object is well-formed if it consists of alternating
invocations and responses, starting from an invocation. We only consider systems where interactions
between processes and objects are well-formed. Well-formedness allows an invocation occurring in
an execution α to be paired with a unique response (when such exist). If an invocation has a
response in α, the invocation is complete; otherwise, it is incomplete. Note that well-formedness
does not rule out concurrent operation invocations on the same object by different processes. Nor
does it rule out parallel invocations by the same process on different objects, which can be performed
in separate threads of control.

A threshold t of the objects may suffer NR-Arbitrary failures [10], i.e., may fail to respond to
an invocation, or may respond with an arbitrary value. Any number of the processes may fail by
stopping.
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3.1 Registers

A read/write register (or simply, register) type supports an arbitrary set V als of values with an
arbitrary initial value v0 ∈ V als. Its invocations are read and write(v), v ∈ V als. Its responses
are v ∈ V als and ack. Its sequential specification, f , requires that every write overwrites the last
value written and returns ack (i.e., f(write(v), w) = (ack,w)); and every read returns the last value
written (i.e., f(read, v) = (v, v)). In a shared memory system consisting of processes P1, P2, . . . , a
process Pi interacts with a shared register by means of input actions of the form readi and write(v)i,
and output actions of the form vi and acki. A read/write register is called k-reader/m-writer if
only k (m) processes are allowed to read (resp. write) the register. We use the term multi-reader
when the particular number of readers is not important.

We now define several register properties that will be used throughout the paper. Fix x to be
a single-writer/multi-reader (SWMR) or single-writer/single-reader (SWSR) register, and let σ be
a sequence of invocations and responses of x.

Safe register. σ is safe [12] if every complete read operation that does not overlap any write
operation returns the register’s value when read was invoked (i.e., the latest written value or
the initial value v0 if no value was written). A register is called safe if it has only safe traces.

Regular register. σ is regular [12] if it is safe, and in addition, a read operation that does overlap
some write operations returns either one of the values written by overlapping writes or the
register’s value before the first overlapping write is invoked. A register is regular if it has only
regular traces.

1-regular register. σ is regular if it is safe, and in addition, a read operation that overlaps at most
one write operation returns either the value written by overlapping write or the register’s value
before the overlapping write is invoked. Otherwise, a read operation may return in addition
a special ⊥ value. A register is 1-regular if it has only 1-regular traces.

Wait Freedom. Register x is wait-free if in any fair execution of any shared memory system that
includes x, every invocation of x by a correct process is complete.

4 Wait-free 1-Regular Register Construction

The implementation of a wait-free SWMR 1-regular register from n > 4t wait-free SWMR regular
registers up to t of which can incur NR-arbitrary failures is depicted in Figure 1. The notation
invoke write(xi, v), (respectively, invoke tmp ← read(xi, )) means that a new thread is started
that performs a write on register xi with value v (respectively, a read of register xi whose response
will be stored in local variable tmp). The notation xi responded means that the last thread
created by an invoke operation has completed its execution on register xi. Note that this is well
defined because we maintain well formedness using control flags pending and enabled in such a
manner that there is at most one pending thread for each register. Each of the n base registers xi

consists of a cyclic two-value buffer whose elements are denoted xi[0] and xi[1] respectively. Each
write operation write(v) first chooses a unique monotonically increasing timestamp ts and then
writes the pair 〈ts, v〉 to the base registers xi provided that the kth write operation updates the k
mod 2th part of xi. This mechanism ensures that every read operation that is overlapped by at
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most one write operation will always be able to recover a good value (i.e., the value that upholds
regularity) from the values read from either part of the registers as explained below.

The read implementation reads the values from at least n−t base registers and stores the values
read from the xi[0] and xi[1] components in the arrays w0[1 . . . n] and w1[1 . . . n] respectively. The
predicate safe(c, w), where c ∈ TSV als (i.e., a timestamp-value pair) and w is a vector of TSvals,
evaluates to true if c appears in at least t + 1 elements of w. A value c which is safe in either w0 or
w1 is known to be returned by at least one correct register xi and therefore, was written by some
previously invoked write. However, the safe predicate by itself is insufficient to ensure regularity
since some old values could still be returned by t + 1 registers (e.g., if there are t registers which
are not up to date and 1 which is faulty). Hence, in order for a safe value c to be returned, we
must ensure that all values with a timestamp higher than c.ts are invalid, i.e., could not have been
written by a later complete write operation.

The validity check is accomplished by the predicate invalid(c, w), which returns true if and only
if for at least 2t + 1 elements w[j], w[j].ts < c.ts or w[j].ts = ts ∧ w[j].val �= c.val. Since every
completely written value can only be overwritten by a higher timestamped value, a value c is invalid
in w0 (resp. w1) if and only if it was either not written to at least n − t components xi[0] (resp.
xi[1]), or was not written at all. Hence, every value c which is both safe in w0 (resp. w1) and
for which all the higher timestamped values are invalid, is known to be not older than the value
written by the last write operation that writes xi[0] (resp. xi[1]) and completes before read is
invoked. Therefore, the highest timestamped such value is guaranteed to preserve regularity.

The informal discussion above is formalized in the following two lemmas:

Lemma 1. If read returns v �= ⊥, then v is either a value that was written by an overlapping
write, or the register’s value before the first overlapping write was invoked.

Proof. Let R be a read operation that completes. Let v be the value written by the last write
operation W that completes before R is invoked. By the write implementation, there exists a
timestamp ts such that 〈ts, v〉 is written to either xi[0] or xi[1] component of at least n − t base
registers xi. Hence, w.l.o.g. we can assume that 〈ts, v〉 was written to either one of two components,
say to xi[0]. Since read returns a value �= ⊥, by the read code, C0∪C1 �= ∅. There are two cases
to consider:

First, suppose that C0 = ∅ and C1 �= ∅. By line 5, this implies that either (1) ¬safe(c, w0) for
all c ∈ TSV als, or (2) for every c ∈ TSV als such that safe(c, w0) holds, higherValid(c, w0) is also
true. In both these cases, read overlaps at least one complete write operation that writes 〈ts′, v′〉
with ts′ > ts to the xi[1] component of the base registers xi. Hence, there are at most 2t base
registers xi such that xi[1].ts < ts or xi[1].ts = ts ∧ xi[1].v �= v. Thus, for any c′ ∈ TSV als such
that c′.ts < ts, higherValid(c′, w1) is true. Therefore, for each c1 ∈ C1, c1 was returned by at least
one correct register (safe(c1)), and c1.ts ≥ ts. Hence, c1.val was written by a write operation
that follows W . Since C1 �= ∅, the return value val is equal to c1.val for some c1 ∈ C1. Hence, the
regularity is maintained.

Finally, suppose that C0 �= ∅. In this case, there are at most 2t base registers xi such that
xi[0].ts < ts or xi[0].ts = ts ∧ xi[0].v �= v. Thus, for any c′ ∈ TSV als such that c′.ts < ts,
higherValid(c′, w0) is true. Since C0 �= ∅, then for each c0 ∈ C0, c0 was returned by at least one
correct register (safe(c0)), and c0.ts ≥ ts. Furthermore, by line 8, the value returned must have
been written with a timestamp which is at least as high as c0.ts. Hence, the return value upholds
regularity.
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Types: TSV als = TS × V als, with selectors ts, val;
Shared objects: regular registers xi ∈ TSV als × TSV als, 1 ≤ i ≤ n; whose
components are addressed by xi[0] and xi[1]; initially xi = 〈〈ts0, v0〉, 〈ts0, v0〉〉;

WRITE Emulation

Local variables:
enabled[1 . . . n], pending[1 . . . n] ∈ Boolean

initially ∀i enabled[i] = pending[i] = false;
w[2] ∈ TSV als, initially w[0] = w[1] = 〈ts0, v0〉;
turn ∈ {0, 1}, initially 0;
ts ∈ TS;

write(v):
choose ts ∈ TS larger than previously used;
w[turn] ← 〈ts, v〉;
for 1 ≤ i ≤ n, enabled[i] ← true;
repeat

check;
until |{i : ¬enabled[i]∧ ¬pending[i]}| ≥ n − t;
turn ← ¬turn;
return ack;

check:
if (∃i : enabled[i]∧ ¬pending[i]) then

〈enabled[i], pending[i]〉 ← 〈false, true〉;
invoke write(xi, 〈w[0], w[1]〉);

if (∃i : xi responded) then
pending[i] ← false;

READ Emulation
Local variables:

enabled[1 . . . n], pending[1 . . . n], old[1 . . . n] ∈ Boolean
initially ∀i enabled[i] = pending[i] = false;

w0[1 . . . n], w1[1 . . . n], tmp0[1 . . . n], tmp1[1 . . . n] ∈ TSV als;

Predicate and macro definitions:
invalid(〈ts, v〉, w) � |{i : w[i] = 〈ts′, v′〉∧

(ts′ < ts ∨ (ts′ = ts ∧ v �= v′))}| ≥ 2t + 1;
safe(c, w) � |{i : w[i] = c}| ≥ t + 1;
higherValid(c, w) � ∃i : w[i] = c′ ∧ c′.ts ≥ c.ts ∧ ¬invalid(c′, w);

read:
1: for 1 ≤ i ≤ n, if(pending[i]) then old[i] ← true;
2: for 1 ≤ i ≤ n, enabled[i] ← true;
3: for 1 ≤ i ≤ n: w0[i] ← ⊥, w1[i] ← ⊥;
4: repeat

check;
until |{i : ¬enabled[i]∧ ¬pending[i]}| ≥ n − t;

5: C0 ← {c0 ∈ TSV als : safe(c0, w0) ∧ ¬higherValid(c0, w0)};
6: C1 ← {c1 ∈ TSV als : safe(c1, w1) ∧ ¬higherValid(c1, w1)};
7: if (C0 ∪ C1 �= ∅) then
8: return c.val: c.ts = max{c′.ts : c′ ∈ C0 ∪ C1};
9: return ⊥;

check:
if (∃i : enabled[i] ∧ ¬pending[i]) then

〈enabled[i], pending[i]〉 ← 〈false, true〉;
invoke 〈tmp0[i], tmp1[i]〉 ← read(xi);

if (∃i : xi responded) then
if (¬old[i]) then

〈w0[i], w1[i]〉 ← 〈tmp0[i], tmp1[i]〉;
pending[i] ← false; old[i] ← false;

Figure 1: The 1-regular register emulation.

Lemma 2. If R = read returns ⊥, then R is concurrent with at least two writeoperations.

Proof. Let W = write(v) be the last write operation that completes before R is invoked, and ts
be the timestamp used to write v to the base registers. Suppose w.l.o.g. that 〈ts, v〉 was written
to the xi[0] component of the base registers xi. Assume by contradiction that read overlaps at
most one write operation W ′ = write(v′) and let ts′ be the timestamp used to write v′ to the
base registers. Since the base registers updated by W and W ′ intersect the base registers read by
R by at least t + 1 correct registers, either safe(〈ts, v〉, w0) or safe(〈ts′, v′〉, w1) (or both) are true.
Moreover, there are at most 2t registers xi such that xi[0].ts < ts ∨ (xi[0].ts = ts ∧ xi[0].val �= v)
or xi[1].ts < ts′ ∨ (xi[1].ts = ts′ ∧ xi[1]x.val �= v′). Hence, either ¬higherValid(〈ts, v〉, w0) or
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¬higherValid(〈ts′, v′〉, w1) is true. Therefore, C0 ∪ C1 �= ∅ so that ⊥ cannot be returned. A
contradiction.

The two lemmas above imply the following

Lemma 3 (1-Regularity). All the traces of the algorithm in Figure 1 are 1-regular.

Finally, both write and read are wait-free because neither one ever awaits more than n − t
replies and at least n − t base registers are responsive. We proved the following

Theorem 1. The algorithm in Figure 1 is an implementation of a wait-free 1-regular register from
n > 4t regular base registers at most t of which can incur NR-arbitrary faults.

5 Wait-free Regular Register Construction

We now present a regular register construction from 1-regular and safe ones. We note that only one
of the registers in this construction needs to be 1-regular; it suffices for the remaining regulars to
satisfy the weaker safe semantics. For completeness, we show in Appendix A a direct construction
of a wait-free safe register from n > 4t regular base registers up to t of which can be Byzantine
faulty, using a technique similar to that of [16].

The algorithm in Figure 2 uses one wait-free 1-writer/m-reader 1-regular registers, m 1-reader/1-
writer safe registers writeable by the writer, and m 1-reader/1-writer safe registers writeable by
the reader to construct a wait-free 1-writer/m-reader regular register.

The read and write operations to the shared safe and 1-regular registers are denoted read and
write. We construct write and read operations that maintain regularity.

The two writer’s registers are called P and B for primary and backup respectively. These
registers are used as buffers (or tracks) to store the values written by the writer. Each reader
process i, 1 ≤ i ≤ m uses a 1-writer/1-reader multi-valued safe register RLi to signal the writer
about a possible concurrent read in progress.

The construction works as follows: The writer starts by writing the primary register P (line
1). It then examines the reader registers RLi to see whether the value of some of these registers
has changed since the last time it was read by the writer. If so, it saves the last written value
in the backup registers Bj for every register RLj where a change was observed (lines 4–6) before
returning ack (line 7).

The reader i starts by writing the register RLi (line 2) and then proceeds to read the primary
track P (line 3). We consider the following two cases:

1. The read of the primary track by the reader (line 3) returns a value �= ⊥. In this case,
1-regularity of P ensures that the return value preserves regularity;

2. The read of the primary track by the reader (line 3) returns ⊥. In this case, 1-regularity
implies that read(P ) by i is concurrent with at least two writes to P by the writer. Therefore,
the writer’s code is executed in whole at least once since read(P ) has been invoked. This
implies that the writer observes the change in the value of the register RLi, and therefore,
writes the i’s backup track exactly one time before read(P ) completes. Therefore, when reader
i eventually returns from read(P ), it finds Bi already written, and therefore, returns a correct
value.
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Shared objects:
1-writer/1-reader safe registers RLi ∈ Integers, writeable by the reader i,
1 ≤ i ≤ m, and readable by the writer; initially 0;
1-writer/m-reader 1-regular register P ∈ V als ∪ ⊥ writeable by the writer
and readable by the readers; initially v0;
1-writer/1-reader safe register Bi ∈ V als writeable by the writer and read-
able by the reader i; initially v0;

Local to the writer:
Static wl[1 . . . m] ∈ Integers

initially ∀i wl[i] = 0;
ai ∈ Integers, for 1 ≤ i ≤ m;

write(v):
1: write(P, v);
2: ai ← read(RLi), for each i, 1 ≤ i ≤ m;
3: if (∃i : ai �= wl[i]) then
4: for each i, ai �= wl[i]:
5: wl[i] ← ai;
6: write(Bi, v);
7: return ack;

Local to the reader i, 1 ≤ i ≤ m:
Static rli ∈ Integers, initially 0;
x ∈ V als ∪ {⊥};

readi, 1 ≤ i ≤ m:
1: rli ← rli + 1;
2: write(RLi, rli);
3: x ← read(P );
4: if (x = ⊥) then
5: x ← read(Bi);
6: return x;

Figure 2: The 1-writer/m-reader Wait-Free Regular Register Construction.

We observe that all the writes to the backup registers (line 6) can be executed in parallel.
Hence in a distributed implementation, updating all Bi’s would incur only the single round-trip
message latency. This could be optimized even further by combining the writes targeted to the
same destinations within a single message.

Ri.write(RLi) Ri.read(P ) Ri.read(Bi)

W1.write(P )
W1

Ri

W2 W3

W2.read(RLi)

Figure 3: Several write operations overlapping read.

The above intuition is formalized by the following lemma:

Lemma 4. Let read overlap one or more write operations. Then read returns one of the values
written in an overlapping write, or the value written in the latest write operation preceding the
read.

Proof. (We refer the reader to Figure 3 for intuition on this proof.)
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Let Ri be a read operation by process i. Let Ri consist of a write Ri.write(RLi) to RLi; a
read Ri.read(P ) of P ; and potentially a read Ri.read(Bi) of Bi.

For any write operation W , we refer to specific operations within write as follows. We denote
by W.write(P ) the first write operation (to P ). We denote by W.read(RLi) the read from RLi,
W.ai the value returned from W.read(RLi), and W.wl the value of wl at the beginning of W . We
let W.write(Bi) denote the write to Bi, if exists.

Let W1 denote the latest write such that W1.write(P ) terminates before Ri.Write(RLi) com-
pletes. Let the two write operations succeeding W1 be denoted W2 and W3, respectively.

By choice of W1.write(P ), W2.read(RLi) strictly succeeds Ri.write(RLi) (see Figure 2). Hence,
if no write operation before W2 sees the value written in Ri.write(RLi), then W2 must have
W2.wl �= W2.ai, and W2.write(Bi) exists. Otherwise, some write preceding W2 already sees
Ri.write(RLi) and writes Bi. In any case, at the latest when W2 completes, a write to Bi completes.
Moreover, Bi is written at most once during Ri.write(RLi). The value stored in Bi in this write is
the most up-to-date value written in a write preceding or concurrent with Ri.

Now there are two possible cases. The first case is when Ri.read(P ) returns a value other than
⊥. Then by 1-regularity, it returns a good value from P (i.e., it returns a non-⊥ value of an
overlapping write or the latest write preceding the read).

The second case is when Ri.read(P ) returns ⊥. Then by 1-regularity, Ri.read(P ) overlaps
two write operations. Since W1 strictly precedes Ri.read(P ), we have that W2 and W3 overlap
Ri.read(P ). Hence, W2 completes before Ri.read(P ) terminates. As we show above, at the latest,
W2 is a write that sees Ri.write(RLi) and updates Bi. Since Ri.write(RLi) completes before
Ri.read(Bi) starts, and because no new write to Bi is invoked until Ri.read(Bi) returns, by safety
of Bi, Ri.read(Bi) returns a non-⊥ value that upholds regularity.

Finally, if a read operation Ri by a process i is not concurrent with any write, then by 1-
regularity of P , if there exists a write operation preceding Ri, then Ri returns the value written
to P by the latest such write. Otherwise, Ri returns v0, the initial value of the register. Also,
the algorithm is obviously wait-free since in a fair execution, it could never block forever in any
statement of the pseudocode. Hence, we proved the following:

Theorem 2. The algorithm in Figure 2 is an implementation of a 1-writer/m-reader wait-free
regular register from one 1-writer/m-reader wait-free 1-regular registers and 2m 1-writer/1-reader
safe registers.

6 Conclusions

We have presented a simple, efficient, and self-contained construction of a wait-free regular reg-
ister from Byzantine components. This yields a practical building block for distributed storage
applications tolerating Byzantine faults.
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A Wait-Free Safe Register Construction

In this section we present a wait-free SWMR safe register construction from n > 4t regular registers
up to t of which can be Byzantine faulty (see Figure 4). The implementation is based on techniques
similar to those of [16].

We now prove that the algorithm in Figure 4 is a safe register construction:

Lemma 5 (Safety). All traces of the algorithm in Figure 4 are safe.

Proof. Let R be a read operation that returns, and W = write(v) be a write operation that
returns before R is invoked, and assume that for no W ′ operation that follows W , W ′ is invoked
before R returns. We prove that R returns v, thereby upholding safety. Indeed, by the write
code, write(〈ts, v〉) terminates on at least n − t > 3t + 1 base registers before R is invoked. Since
read awaits responses from at least n − t registers, by regularity of xi, there are at least t + 1
correct registers that respond with 〈ts, v〉 to the base object reads issued during R. Therefore,
upon completion of line 4, safe(〈ts, v〉) is true. Thus, 〈ts, v〉 ∈ C after line 5. Finally, since no
write operation that follows W is invoked before R returns, there might be at most t (faulty) base
registers that return 〈ts′, v′〉 with ts′ > ts or ts′ = ts ∧ v′ �= v. Hence, 〈ts, v〉 is the only highest
timestamped value in C which is safe. By line 8, v must be the R’s return value in this case.

Finally, the construction is trivially wait-free since neither write nor read are ever awaiting
more than n− t responses and at least n − t registers are correct. Hence, we proved the following:

Theorem 3. The algorithm in Figure 4 is an implementation of a SWMR safe register from n > 4t
base regular register up to t of which can be Byzantine faulty.
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Shared objects
SWMR regular registers xi ∈ TSV als, 1 ≤ i ≤ n; initially xi = 〈ts0, v0〉;

WRITE Emulation

Local variables:
enabled[1 . . . n], pending[1 . . . n] ∈ Boolean

initially ∀i enabled[i] = pending[i] = false;
w ∈ TSV als; ts ∈ TS;

write(v):
choose ts ∈ TS larger than previously used;
w ← 〈ts, v〉;
for 1 ≤ i ≤ n, enabled[i] ← true;
repeat

check;
until |{i : ¬enabled[i]∧ ¬pending[i]}| ≥ n − t;
return ack;

check:
if (∃i : enabled[i]∧ ¬pending[i]) then

〈enabled[i], pending[i]〉 ← 〈false, true〉;
invoke write(xi, w);

if (∃i : xi responded) then
pending[i] ← false;

READ Emulation
Local variables:

enabled[1 . . . n], pending[1 . . . n], old[1 . . . n] ∈ Boolean
initially ∀i enabled[i] = pending[i] = false;

w[1 . . . n], tmp[1 . . . n] ∈ TSV als;

Predicate and macro definitions:
safe(c) � |{i : w[i] = c}| ≥ t + 1;

read:
1: for 1 ≤ i ≤ n, if(pending[i]) then old[i] ← true;
2: for 1 ≤ i ≤ n, enabled[i] ← true;
3: for 1 ≤ i ≤ n: w[i] ← ⊥;
4: repeat

check;
until |{i : ¬enabled[i] ∧ ¬pending[i]}| ≥ n − t;

5: C ← {c ∈ TSV als : safe(c, w)};
6: if (C �= ∅) then
7: return c.val: c.ts = max{c′.ts : c′ ∈ C};
8: return v0;

check:
if (∃i : enabled[i]∧ ¬pending[i]) then

〈enabled[i], pending[i]〉 ← 〈false, true〉;
invoke tmp[i] ← read(xi);

if (∃i : xi responded) then
if (¬old[i]) then

w[i] ← tmp[i];
pending[i] ← false; old[i] ← false;

Figure 4: The SWMR safe register emulation.
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