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Abstract 
 
A service-providing system consists of hosts that provide services such as data, content, 
computational and memory resources and data-based services to other entities in the system. 
Consumers that wish to use services describe their needs with a set of high-level objectives. In 
this thesis, we address the problem of locating services in a large-scale distributed system using 
their descriptions, rather than their addresses. We propose a network architecture that is based on 
the concept of dividing the service-providing hosts into Regions. A Region is a grouping of 
elements of the network that share a set of common characteristics and policies. Members of a 
region manage their interactions with other regions and their elements according to some defined 
rules and policies. Hosts can be divided into regions based on various properties such as their 
content, their commercial model or their security characteristics to name a few. The service 
provided by a region is an aggregate of the services provided by all its member hosts. The 
region-based architecture routes a service request through the network efficiently based on its 
description and on the advertisements from regions providing services. Division of hosts into a 
set of independent regions partitions the search space and produces a scalable structure. The 
architecture also does not impose any rules on the internal organization of regions making the 
system flexible and dynamic. 
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Chapter 1 

Introduction 
  

 

With the rapid increase of data and services offered through networks, there is a need for 

mechanisms that enable users to locate the network services and resources easily. Specifically, 

an architectural capability is needed for such large-scale distributed systems where services can 

be accessed by specifying their characteristics, rather than their addresses. We use the term 

‘Service-Providing Distributed System’ to refer to a distributed environment that contains hosts 

which provide services and resources for the use of other entities in the system. Consumers of 

services describe their needs by providing a description of their objectives. The question we are 

addressing in this thesis is the following: how can services be located in a large-scale service 

providing distributed system through their descriptions? The network architecture that we 

propose in the thesis is based on the concept of dividing the service-providing hosts into groups 

called Regions. The idea is that by dividing the hosts into smaller groups, we get a scalable 

structure where a Region becomes the element of scaling. 

 We start by introducing the problem and providing some background on it. We then 

introduce our proposed solution by discussing the concept of Regions, which is at the core of this 

work. In order to provide a context for the related work, we give an overview of the proposed 

architecture. After this, we present a summary of our contributions and an outline of the 

remainder of the thesis. 
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1.1  Motivation 

The objective of our system is to search and locate services and resources using descriptions, 

rather than addresses. This is a valuable capability for a large-scale network where the elements 

that provide services are numerous and widely-distributed. The services we are considering 

could include data, content, resources such as computational and memory resources, and data-

based services. For users, it is much easier to describe their needs in terms of properties or 

characteristics of the information or resource they are looking for, rather than to know the 

hostname or address of the host providing it. It is also not sufficient for the consumers to go 

through an entity that simply indexes all the resources in the system with their addresses because 

this method will not work well for a large system. Our aim is to provide a scalable architectural 

solution to this problem. 

 The problem of locating data using its description or content has been identified and 

addressed a number of times. Publish/Subscribe schemes deliver content to users by matching 

their criteria with the message ([2],[7]). The provider of the information is the sender of the 

message and the destination is decided based on the content of the message. A shortcoming of 

such schemes is that communication is initiated by the sender of information. In our system, we 

want the users to be able to initiate the search for services. We also want them to be able to avail 

themselves of a wider variety of services such as memory and computational resources, rather 

than being restricted to accessing content on a subject. 

 Resource Discovery Systems are another class of systems that are designed with the 

purpose of locating resources and services in a network. They specify a naming scheme for the 
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resources and a discovery architecture that aids in the finding of these names. Most of them 

maintain an index of the resources and the hosts that provide them. In order to develop a more 

scalable system, we need a structure more complex than an index from the resources to their 

locations. Our research proposes a divide-and-conquer strategy for the situation in which hosts 

are divided into smaller, independently-managed groups called regions. Since the groups are 

self-configured and managed, the system only needs to concern itself with interfacing with them. 

 

1.2  Regions 

The current Internet structure consists of a loosely coupled federation of separately defined, 

operated, and managed entities, interconnected to varying degrees, and often differing drastically 

in internal requirements and implementation [40]. It is natural to think of each of these entities as 

existing in a region of the network, with each region having coherent internal technology and 

policies, and each region managing its interactions with other regions of the net according to 

some defined set of rules and policies. A region is a grouping and partitioning mechanism that is 

a key design element in architectures for extremely large scale, wide distribution and 

heterogeneous networks. 

 We apply the region abstraction to the problem of locating services in a large scale 

network. Individual hosts that provide services are members of regions. Regions are formed 

based on certain principles and thus, the members of a region share characteristics and policies. 

The service provided by a region is an aggregate of the services provided by all its member 

hosts. Essentially, the service search space is partitioned into regions. In order to avail 
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themselves of services, consumers go to regions that have characteristics that they are interested 

in. Besides providing scalability, regions help in dealing with the dynamism of hosts and services 

by containing the changes within a boundary. This makes it easier to manage changes than 

attempting to do so altogether in a large-scale system. 

 

1.3  System Overview 

This section presents a brief overview of the proposed architecture. To enable the consumers in a 

service-providing distributed system to search for services, the providers have to advertise what 

they are offering. In our architecture, the hosts that provide services are members of regions. 

Each host has a description of the services that it offers. The service description of the region is 

the aggregate of the service descriptions of all its member hosts. 

The intents of the consumers in the system are represented by Mobile Agents.  Mobile 

agents are the mechanism that is used by the consumers of services to communicate with the 

providers. They are the means by which services are searched for and located. Mobile agents are 

entities that combine both program code and data i.e. they have state and algorithms. They are 

launched into the network by their creator and then travel from host to host performing 

computations or utilizing resources on the behalf of their owner. In our system, the agents are 

autonomous which means that they determine their own path through the network. They do not 

need to be given a list of addresses to visit when they are launched, but they compute their own 

path using information about the objectives of their creator. They essentially use a high level 
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description of the consumer’s objectives in order to find appropriate services that will fulfill the 

objectives. 

Lastly, the consumers represented by the agents need to be connected with the regions 

advertising services. This role is performed by the Directory Server Network. Regions send their 

aggregate service advertisements to directory servers in this network. Agents go to the directory 

server network in order to obtain information about the locations of services. The directory 

servers are organized as an application-level overlay network. The information about the services 

of regions is distributed among the various servers. When an agent arrives at a directory server, 

its objectives are matched against the service advertisements that the directory server is carrying. 

The agent is referred to regions and other directory servers that match. 

 

1.4  Contributions 

In this thesis, we present a network architecture that enables location of services in a large-scale 

distributed system. Services in the form of data, content or resources can be located through their 

descriptions, without knowing their exact address in the system. This is a valuable and essential 

requirement for large-scale systems that provide any kind of services.  

We apply the region abstraction [40] in the system and argue that it provides the basis for 

a scalable solution to the problem. The region is a construct proposed for designing large scale, 

widely distributed and heterogeneous networks. In this particular problem, regions provide a 

means to partition the search space of services by grouping together hosts that have common 

characteristics. We describe, in subsequent chapters, a detailed design and mechanism for how 
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regions can be used to achieve the above objective and what other elements are needed in the 

system. We do not impose any properties on the regions or constrain their internal organization. 

They are treated as independent entities that organize themselves and have their own 

characteristics that determine their properties and membership. 

In order to evaluate the proposed architecture, we implemented the entire system in Java. 

The implementation provides a general framework that can be used by applications with or 

without specialization. The base architecture uses a general-purpose language for representation 

of services and communication between the various entities. If this is sufficient for the 

application, it can use the framework directly. The architecture is also flexible such that the 

necessary components can be extended to make them more specific for the application. We also 

performed a set of simulations with the implemented system to measure its performance with 

respect to various factors. We present the results of the experiments and analysis of the system 

properties and features in the thesis. 

This work is also a study in further exploring the regions abstraction. It investigates the 

utility of regions as an architectural mechanism by applying the concept to a specific network 

scenario. This work helps in providing insight about regions, their membership and their 

properties. As an exercise in building a system that involves various regions and entities that 

move in and out of regions, it has helped us explore what happens when processes cross the 

boundary of regions. Through the work, we have been able to generalize the actions that can take 

place upon a boundary crossing, which is an important property of regions. 

The remainder of the thesis is organized as follows. In Chapter 2, we present related work 

in publish/subscribe systems and resource discovery systems that also aims at discovery of 
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services or resources using their content or descriptions rather than addresses. In Chapter 3, we 

present the proposed architecture in detail by describing all its components and the 

communication between the components. Chapter 4 describes the implementation of the system 

and a few extensions to it. It then presents the results of the simulations that attempt to measure 

the performance of the base system. Finally, Chapter 5 concludes with a summary of 

contributions and suggestions for future work. 
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Chapter 2 

Background and Related Work 
 

In this chapter, we discuss the research that has been done on topics related to this thesis. First, 

we present summaries of other systems that aim at locating data or services based on their 

content or descriptions. Then we discuss the previous work done on the region abstraction and its 

applications. Lastly, we present briefly some previous work on the subject of mobile agents, 

which form one of the components of the architecture that we are proposing in this thesis. 

 

2.1  Service Location Systems 

The primary feature of the proposed architecture is that it enables us to find data and services 

residing at remote locations without knowing the exact destination address. This is achieved by 

matching service advertisements coming from regions with the objectives that describe the 

service needs of a user. There are a number of different models of addressing and routing in a 

network based on some form of ‘content’ instead of IP addresses. These are generally referred to 

as data-based addressing or content-based addressing techniques. In [11], Carzaniga et al. 

present foundational concepts of content-based networking, and relate them to the corresponding 

concepts in traditional networking. 
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The most common among these techniques are the content-based Publish/Subscribe 

schemes that treat the provider of information to be the sender of the message and the destination 

is decided based on the content of the message ([2],[7]). The information reaches consumers who 

have expressed interest in delivery of messages that satisfy some arbitrary predicates on their 

content (independent of who produced it). The responsibility of routing lies within the 

infrastructure which typically uses ‘access points’ where the producers of notifications advertise 

or publish and interested parties subscribe for individual notifications. The selection of 

notifications is performed using filters (which are attributes and constraints on values) and 

patterns (which are matched against two or more notifications). [30] defines a taxonomy for 

comparing and contrasting publish/subscribe systems and provides a survey of the 

publish/subscribe systems existing at the time. In [34] and [35], Mühl presents mechanisms to 

improve scalability of content-based publish/subscribe systems such as filter merging and also 

advanced routing algorithms that do not rely on global knowledge. 

The publish/subscribe model is based on a ‘push’ methodology because the provider of 

information is the one that initiates the communication. Although this is suitable for some 

applications, it is a restrictive model in general because it does not allow consumers to search for 

content when they want it. Also, the current schemes are limiting because they can only publish 

and subscribe to data and not to services or resources. The architecture we propose is a scalable 

and dynamic content-based network where the consumers can access data and services they need 

without knowing the exact addresses of the hosts that provide them. Also, using mobile agents 

allows for a richer communication paradigm because agents can go to multiple hosts in order to 

find all the information they need in the same trip and collect and aggregate this information if 

desired by the consumer. Besides collecting data, they can perform computations and processing 
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on the servers they visit, hence making use of services and resources in the network. In 

publish/subscribe systems, the access points receive messages and possibly store and forward 

them. In the proposed system, the directory servers and hosts in the region store aggregated and 

condensed versions of individual advertisements and not the entire data or message. 

Another related area of research is that of resource discovery systems. These systems are 

designed with the purpose of locating resources and services in a network. They specify a 

naming scheme for the resources and a discovery architecture that aids in the finding of these 

names. Most of them are targeted for pervasive computing environments and use one or more 

directories that maintain an index of the resources and the hosts that provide them. [17] presents 

SDS (Secure Service Discovery Service), a secure and fault-tolerant service for locating services 

in the wide-area network. [52] introduces a resource discovery system for the World Wide Web 

that uses a vector space retrieval model, relevance feedback mechanisms and a hypertext 

mapping technique. 

The Intentional Naming System (INS) is a resource discovery and service location system 

for dynamic and mobile networks that integrates resolution and routing and allows both anycast 

and multicast message formats [1]. Our architecture is based on INS in some of its features such 

as the spanning tree topology of the directory servers and the soft-state periodic advertisements 

from services to discover names. The resolvers in INS, which are like the directory servers in our 

system, form a spanning tree based on the round-trip latency between them. The paper states that 

time to process the name updates was the bottleneck in many cases and identifies the need for a 

technique to partition the namespace among resolvers to alleviate the problem and briefly 

discusses the idea of ‘virtual spaces’ as a solution. The most important difference between our 

architecture and INS is that our system uses Regions to group the hosts, hence using divide-and-
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conquer to make the system more scalable. Another difference is that in INS, each service 

attaches itself to a resolver and can advertise only a single application-based metric based on 

which incoming requests are routed. In our system, the aggregated advertisement of the region 

can contain any number of properties and the incoming agents will be routed based on any 

properties that the agent cares about. A matching algorithm is used that takes into account all the 

policy rules of the agent and the properties of the region. This makes the system more general 

purpose for any number of applications and also more scalable. Also, in INS, each service 

advertisement is propagated through the entire resolver network, which means that every 

resolver knows about every single service in the system. This solution does not scale very well 

for our purposes. We instead propose a method that considers the trade-off between the 

scalability and efficiency of the functioning of the directory server network1. 

There are other resource discovery and information retrieval systems that are based on 

the idea of dividing resources into groups. [12] proposes an application-level protocol that 

enables data sharing among different domains containing resources. This work mentions the idea 

of having ‘data clusters’ with a set of directories that share related information. A ‘cluster’ is 

distributed, self-organizing, responsive to data mobility, and robust to failures. Using 

application-defined data schemas, ‘clusters’ organize themselves into a hierarchy for efficient 

querying and network resource usage. ‘Ingrid’ [20] is a distributed, scalable and self-configuring 

information navigation infrastructure. In this system, links are automatically placed between 

individual resources based on their topic-similarity in such a way that clusters of term 

combinations are formed. This is again based on the idea of dividing the resources in some 

                                                 
1 Details of the method are presented in the discussion of the directory server architecture in section 3.2.4. 
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manner. In our system, we formalize and generalize the idea of grouping services by introducing 

regions. 

 

2.2  Regions 

In this section, we will present some of the previous work on regions. This work is part of the 

Regions project ([40], [42]) and explores the use of regions as an architectural mechanism. The 

concept of regions is proposed as a key design element in an architecture for extremely large 

scale, widely distributed, and heterogeneous networks, and is a mechanism for grouping, 

partitioning, and formalizing boundaries around those groups and partitions. Regions are based 

on the notion that the Internet is an increasingly complex network of networks where elements 

are connected and interrelated by a set of common invariants. A region is thus a partition of the 

network where the member nodes share common state, policy or knowledge. An example of a 

region is the set of nodes within an autonomous system (AS) [36]. The regions project seeks to 

provide an architectural mechanism with which to define and use regions. 

Previous work on regions includes the following. Law [28] looks at the issues that arise 

when entities of a region are no longer part of the region, due to a request to leave the region, an 

eviction by the region, or component or network failures. Consequently, the references to these 

entities must be garbage collected. In another work, Li [29] explores the utility of informing 

members in one region of the membership of those same entities in different regions and 

specifically improves peer-to-peer networks with information derived from Autonomous 

Systems. His work provides a general peer-to-peer simulation framework for different 
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optimization schemes and also achieves performance improvements in the lookup, caching and 

replication of peer-to-peer systems. Beverly [8] proposes a reorganization algorithm, based on 

the region abstraction, to exploit the natural structure in overlays that stems from common 

interests. His architecture leverages the inherent heterogeneity of users and places within the 

system their incentives and ability to affect the network. 

 

2.3  Mobile Agents 

The use of mobile agents in our architecture was motivated by their rich functionality and the 

asynchronous communication model that they enable. A mobile agent is defined as an entity that 

combines both program code and data and has the ability to move around in a network from one 

host to another and execute on them [49]. There is a large body of research on the subject of 

mobile agents. The Open-Agent architecture [14] and Agent Cities Network architecture [50] 

projects each present frameworks for constructing agent-based systems, making it possible for 

software services to be provided in distributed systems. In [13], Chandra et al. address the 

feasibility of meeting resource management needs in an environment where multiple mobile 

agents are utilizing resources at a host. [31] discusses systems that use mobile software agents to 

manage complex real-world networks and describes a strategy for using a collection of 

cooperating mobile agents to solve routing problems for dynamic, peer-to-peer networks. The 

implementation of mobile agent systems can be classified into two categories based on the 

characteristics of the base language used to program the agent paradigm [47]. One category of 

mobile agent systems uses object-oriented languages. Agents are defined as first-class objects, 

and the system provides support for their migration in the network. Such systems offer the 
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natural advantages of object-orientation, such as encapsulation and code reuse via inheritance. 

Most famous examples of such systems are Telescript [45] and Aglets [26]. The second class of 

agent-based systems uses script languages like Tcl, Python or Perl, for defining mobile agents. 

The advantage of such systems is their simplicity and the existence of mature interpreter 

environments which permit efficient access to local resources. Agent Tcl [22] is an example of a 

Tcl-based system. The agent system in our architecture is based on Ajanta [3] which is a mobile 

agent programming system aimed at building an infrastructure for mobile agent execution that 

incorporates security and robustness as integral features of its design [48]. Ajanta is an object-

oriented mobile agent system implemented in Java. 

In [24], Kotz et al. discuss several technical and non-technical hurdles along the path of 

adoption of mobile agents. Roth [37] presents the obstacles to the use of mobile agents, in 

particular, the lack of applications versus the lack of a sufficient installation base and security 

considerations. The main drawbacks of using mobile agents are the possible security concerns 

related to use of agents on remote hosts. It is hoped that these concerns can be circumvented in 

our system by security guarantees provided by regions and security measures taken by them such 

as screening and authenticating agents before they enter a region.  

This concludes the chapter on background and related work. In this chapter, we discussed 

systems that aim to locate data and resources based on their content, including publish/subscribe 

schemes and resource discovery systems. In view of the existing work, we argued for the need of 

a scalable system where users can search for a wide variety of services based on their 

descriptions. We then presented previous work based on the regions abstraction. Finally, we 

briefly discussed some existing mobile agent systems. The next chapter presents details of the 

architecture that we are proposing in this thesis. 
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Chapter 3 

System Architecture 
  

 

This section describes the details of the proposed architecture for service-providing distributed 

systems that is based on Regions. A service-providing distributed system has been defined to be 

a distributed environment that contains hosts which provide services for the use of other external 

entities in return for monetary or some other form of compensation. Our architecture is a design 

for such a system where there are suppliers and consumers of services. Consumers have the 

ability to search for one or more services of which they would like to avail themselves. Services 

that are provided could include data, content, computational or memory resources and data-based 

services. The objective of the system is to provide a scalable solution to automate the process of 

searching and locating these widely distributed resources and then making use of the services 

and data they provide. The key idea in the architecture is to use the concept of Regions to group 

together the service-providing hosts that have similar characteristics and then use a Region as an 

atomic unit in the organization of the system. 

There are four major components of the architecture: service-providing hosts, regions, 

directory servers and mobile agents. Hosts are the entities that make various services such as 

data, information and resources available to anyone who needs them. They send descriptions of 

these services to the directory servers through their regions in order to advertise them. Any entity 

that wants to use the services sends a mobile agent through the network to locate them. The 

intent of the agent’s creator is expressed in the mission and policy of the agent and is used to 
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derive a path for the agent through the network. The directory servers are the elements which aid 

in this process by providing agents with information about the available services from hosts. The 

directory server network performs the function of matching desired properties of agents with 

advertisements from regions, directing agents to regions or to other directory servers. Regions 

facilitate the interaction between the hosts and the agents by grouping hosts that have common 

properties together. They aggregate advertisements from their member hosts and send them to 

the directory servers. Therefore regions take the responsibility of advertising the services of hosts 

and could also provide the hosts with additional services such as security guarantees, commercial 

services and acting as the administrative entity. Once an agent finds out about the regions it is 

interested in from the directory servers and it visits a region, the infrastructure of the region 

directs the agent to the appropriate hosts. Hence regions provide services to both hosts and 

agents. Regions take care of hosts joining or leaving the network and changing properties as well 

as failure of hosts, hence making the system dynamic. The indirection introduced by the regions 

also makes the architecture scalable because regions can be treated as a single entity at the level 

of the directory servers. 

The rest of this chapter discusses each of these components in further detail. Section 3.1 

outlines the Regions model, the functions of regions in the architecture and other interesting 

problems related with regions. Section 3.2 describes the directory server network – its 

architecture and functions. Section 3.3 describes the mobile agents, the abilities they provide and 

the process with which they perform service location in the system. Section 3.4 outlines the 

communication model for the system including the language used for describing and searching 

for services and the communication between different entities of the system. Lastly, Section 3.5 
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talks broadly about the properties of the architecture – the ones it does have and the ones it does 

not. 
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3.1  Regions 

A Region is defined as a grouping of elements of the network that have coherent internal 

technology or a set of common policies. It is a network entity that manages its interactions with 

other regions and their elements according to some defined set of rules and policies [40]. In the 

context of a service-providing distributed system, a region represents an entity in the system that 

groups together a set of service-providing hosts that share common characteristics. A region is 

independently managed and provides infrastructure to the member hosts to perform their 

activities. The membership of a region could range in size from a few hosts to thousands of 

hosts. It could be formed around various principals, or in other words a region could have several 

different characteristics that form a unique combination. 

Regions are an integral part of the proposed architecture. They relate to the other 

elements of the architecture in the following way. The hosts that are members of the region 

provide services such as data, content and resources in return for monetary or some other form of 

compensation. Regions are the medium through which these hosts advertise their services to the 

outside world. A region collects the service advertisements from all its member hosts and 

advertises that to the directory server network as the services provided by that region. After 

obtaining information about these services from directory servers, mobile agents are directed to 

appropriate regions that have advertised services that the agent is interested in. Once an agent 

reaches a region, it is directed to the appropriate hosts using the infrastructure in the region.  
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3.1.1   Motivation for using Regions 

The fundamental purpose of having regions in a service-providing environment is to reduce the 

size of the search space by partitioning it. Regions act as atomic entities at the level of the 

directory servers advertising some aggregate form of the services of all their member hosts. If 

there were no regions, each host would have to advertise its services directly to the directory 

servers. In the case of a large scale distributed system in this scenario, in order to search for one 

of these services, the agent would possibly have to go through the advertisements of a large 

number of services. There would also not be any relation between two hosts that are providing 

very similar services. This design does not entail a scalable search. By introducing regions that 

group together hosts with similar characteristics, the advertisements from a number of different 

hosts could be combined reducing the search space for the agent. At the level of the directory 

server network, a region is an atomic entity that provides a set of services and is independently 

managed. Since it actually represents a number of other hosts, it significantly cuts down on the 

number of entries in the directories. Also, two hosts providing similar services are ‘close’ to each 

other in the sense of belonging to the same region. This makes the location and use of similar 

services more efficient as an agent could visit all the hosts in the same region at one time. 

Related to the concept of cutting down the search space for service location is the fact 

that regions provide a service to their member hosts in doing so. They advertise the hosts’ 

services to the world and provide infrastructure to direct incoming agents to the hosts where they 

can consume services they are interested in. They facilitate administration by providing natural 

boundaries for managing a set of hosts. The large scale system is hence made more manageable 

by division and an additional layer of indirection (between the service-providing hosts and the 

 
 

26



directory servers). Regions could also provide additional services to their members such as 

security, privacy guarantees, etc. 

A region would be effective in partitioning the service space only if it groups together 

hosts with common properties and not just a random collection of hosts. This notion is perfectly 

consistent with the definition of a region as a region is inherently based on a set of invariants that 

are inherited by all its members [40]. This definition implies that a region could be created along 

certain specific principles which can be expressed in its invariants. The defining invariants of a 

region need not necessarily be unique i.e. there could be two or more regions with the same 

invariants. The invariants can be used to define a region in different ways to enforce the purpose 

it was created with. For example, a region could be defined such that all hosts that are members 

agree with its principles by providing services that are consistent with the principles. This means 

that the services will have certain properties desired by the region. Or a region could be defined 

such that hosts that would like to avail of the services that the region is providing could become 

members. This means that the world can be divided into regions in various ways. A few possible 

divisions of regions are discussed below: 

1. Division into regions based on content – each region has an idea of the kind of content it 

will specialize in and all the members of that region provide services and serve content related to 

that category. In this scenario, all the hosts that are interested in a particular topic would be 

grouped together. For example, there could be a region that serves information about astronomy 

such as data, computational services, etc. There could be another one that serves information 

related to geography such as maps. The division based on content can be achieved by only 

admitting hosts that have a particular set of properties in their service advertisement. 
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2. Division into regions based on commercial activity – the region provides a differentiated 

service to the hosts that are its members and the agents that are visiting it and charges a fee in 

return for this service. Servers that agree with the service model of the region can become part of 

it. The region may or may not specialize in certain kind of content. For example, a region may 

provide certain guarantees on performance in return for a fee such as a bound on the time in 

which the agent will be able to process its query. Another region could guarantee the maximum 

amount an agent will spend at any one host. A region could charge a host for bringing a 

minimum level of traffic to that host.1 

3. Division of regions based on security and privacy characteristics – the region will have 

some security credentials such as a guarantee that it conducts all of its transactions in a secure 

manner. Some agents might need that kind of security for their actions, and therefore they might 

choose to go to a region that offers them that service. Or a region can guarantee that it will not 

disclose the queries that an agent is making and so an agent seeking privacy might choose to go 

to such a region. Hence the defining characteristic of a region could be based on the kind of 

security and privacy it provides to its member hosts and to the agents that visit it. The kind of 

access control imposed by secure transactions has two sides: an agent might want to go to 

regions with specific security characteristics and also, a region might also want to admit only 

those agents that have certain security credentials.2 

4. Division of regions based on administration – a region consists of all hosts that are 

administered by a single entity. The administrator can decide the policies of the region, negotiate 

billing contracts with other regions, etc. Boundary of the region is the administrative boundary of 

                                                 
1 Commercial models for the existence of regions are discussed in detail in section 3.1.6. 
2 Access control by regions and agents is one of the actions that happens at the boundaries of regions and is 
discussed in greater detail in Section 3.1.5. 
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control of the owner of the region. In this case, all the hosts that are owned by the administrator 

would be part of the region. 

The above divisions are examples of the kinds of characteristics that a region could be 

organized around. There could be any number of other possible divisions. An important 

observation is that one region could provide more than one or all of the above services, i.e. it 

could be created based on all the four kinds of divisions discussed above. For example, there 

could be a region that charges for providing some premium content on a particular subject 

matter. It could be administered by one entity and also provide some security and privacy 

guarantees. Hence, a region can be based on any arbitrary set of characteristics and all the hosts 

that are members of the region will inherit these characteristics. 

 

3.1.2   Creation and Membership of Regions 

Regions are created by some entity for the purpose of providing services in a distributed system. 

Each region has a unique name, which is used to identify it. There can be two forms of creation 

of regions: creation by an administrator and self-creation by a group of hosts. In the first case, an 

entity who is interested in providing some kind of service to hosts and/or agents in the system 

can create a region. This entity would be the administrator of the region and would decide on the 

policies and properties of the region. The administrator of the region is free to organize the 

region internally as it wishes, but has to make sure that the region provides the basic 

functionality that is required of all regions in the system for them to be functional and useful 

(required functionality is discussed in section 3.1.4). The administrator can also install hosts that 

are members of the region and provide services in the region. Also, there can be existing hosts 
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that could want membership in the region because of its properties. New hosts can thus become 

members of the region at any point after it is created. 

 The other method of creation of a region is self-organization of hosts with similar 

interests into a group. In this case, a set of hosts that are providing services that are related to 

each other or that have common properties could decide to form a region in order to make the 

process of searching for their services more efficient. They could collectively decide on the 

policies and properties of the region. They would also have to share responsibility in providing 

the required functionality of the region. The region may or may not want to admit newer member 

hosts depending on its policies. The administrative tasks of the region could be handled by a 

single host or a group of hosts. If it is a group of hosts, they would have to act together and take 

atomic actions or make atomic decisions. 

 Following from the modes of creation of regions are the ways that hosts could become 

members of regions. They could either already be part of the region when it was created such as 

the case when a group of hosts self-organize into a region or when an administrator sets up some 

hosts while creating a region. The other case occurs when an existing host asks for membership 

in an existing region.1 The region can grant or deny membership to any host depending on its 

policies. Also, another important point to note is that the same host could be a member of 

multiple regions. It could advertise part of its services through one region and the some other 

services through another region. 

                                                 
1 For the purposes of this work, we do not discuss the process of how a host learns about new regions and goes about 
asking for their membership or how a newly formed region invites membership from hosts. We are assuming that 
hosts are already members of the regions since the focus of the work is on the architecture required for the hosts 
inside regions to advertise their services and for enabling search and usage of these services by agents. 
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 When a host becomes a member of a region, it inherits all the invariants of the region. 

The host still has its own service advertisement and properties, but it now also has to follow the 

principles of the region it is in which translates to the host having certain properties that the 

region requires. This may or may not require a change in the host depending on whether the host 

already has the properties or not. Conversely, the content that the region will serve is aggregated 

over all its member hosts. Thus, even though the region has its own properties, the service 

description it advertises will be a combination of its own properties and the service 

advertisements of all its members. For an external observer, this aggregate description is the 

advertisement of the region since the region is viewed as an atomic entity externally. 

 

3.1.3   Components and Internal Organization of Regions 

A region is characterized by three components: its members, its invariants and its boundary. In 

our architecture, regions can have two kinds of member hosts. One is the service-providing hosts 

that offer some kind of content, resources or data services by advertising them through the 

region. The hosts providing services can move within the region and they could also move from 

one region to another as services could be mobile. The other kinds of hosts are those needed for 

the functioning of a region. These could include hosts that perform administrative functions such 

as deciding on policies of the region and controlling its boundary. There could be hosts that aid 

in the routing of incoming agents to the appropriate service-providing hosts and those that 

communicate with other entities in the system such as directory servers on behalf of the region. 

Also, there could be hosts for performing other functions that are specific to the particular region 

such as a host that collects billing information for a region that bills agents for its services and 
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then processes it for each agent that is about to leave the region. All these hosts do not directly 

provide services to agents but are needed for running the region. They need to be maintained by 

the entity that owns and administers the region. 

 The second component of a region is the set of invariants it was created with. These are 

the defining properties that a region is based on and that are inherited by all its members. They 

can be used to represent the properties as well as the policies of the region. They will define the 

distinguishing characteristics of the region and the services it provides to its member hosts and 

agents. Some of these properties will determine what kinds of hosts are admitted into the region 

as members. Only hosts that agree with or satisfy the invariants will become members. They will 

also determine the kinds of agents that will be able to enter the region. Some instances of 

defining properties for a region are the subject of the content served by its hosts, the commercial 

model that the region uses and the security and privacy characteristics of the region. For 

example, a region could define a security standard in its invariants and all agents attempting to 

gain access to the region have to meet this standard. 

The third component of a region is its boundary. The boundary represents the logical 

separation of the region from the rest of the world. The boundary has controlled crossing points 

which provide entry into and exit from the region. In our architecture, the boundary is physically 

manifested by hosts that sit at the edge of the region and are the first points of contact for an 

agent trying to enter the region from outside. There can also be exit border points that the agent 

has to pass though before it can leave the region. Both the entry and exit access points are called 

Border Way Points. The entry and exit boundary points can be used for various functions by a 

region. For example, a region can check the credentials of an agent for authenticity at the entry 

border hosts. The exit point could be used for charging an agent for all the services it has used 
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while it was inside the region. There are also a number of other actions and exchanges that could 

take place at the boundary. Section 3.1.5 discusses the actions that take place when there is a 

boundary crossing. 

The preceding paragraphs discussed the various components of a region. Different 

regions could implement these components in different ways or use them for different functions. 

Regions can be very diverse and could vary in size from a few members to thousands of 

members. They could also be providing a variety of different kinds of services to their members 

and to agents. Because of this variety in the form and functions of regions, we do not impose any 

strict rules on how the region should be organized internally in the architecture. Different 

organizations may be suitable for different kinds of regions and since a region is an 

independently managed and administered entity, the internal organization is left up to the region 

as long as it provides certain basic functionality. This functionality is needed for performing 

some basic functions for the architecture to work and also for providing a platform for 

communication between regions and the other entities in the system such as agents which are the 

consumers of the services and directory servers that aid in the process of locating services. For 

instance, once an agent enters a region, it needs to be directed to hosts that provide services that 

it desires. There has to be an infrastructure in place inside the region to provide this functionality 

to the region. How exactly it is implemented could depend on the region. In a region with 10 

members for example, there could be a single server that stores all the host names and 

advertisements and directly directs the agent to the appropriate host by searching through all its 

entries. For a region with thousands of hosts, this approach would be inefficient and a possible 

approach is a hierarchical structure where the hosts are at the leaves and other hosts that serve as 

directories (referred to as Way Points [51]) are the internal nodes. The internal nodes direct the 
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agent at every level. It would not be practical for deployment if each region in a large scale 

system had to have identical organization. Thus, as long the regions follow the required 

interface, the architecture is independent of the implementation of a region’s internals. This is a 

key feature of the architecture and makes it viable for a large scale distributed system. We have 

implemented one possible internal organization that is flexible for regions of different sizes in 

our system and it is discussed in detail in the implementation section 4.2. 

 

3.1.4   Functionality provided by Regions 

In the previous section, it was discussed that a region can be internally organized as it chooses 

given that it provides some functionality that is needed for the system to work. This section 

discusses the functions that the region needs to provide so that it can advertise its services and 

agents can locate and avail of these services. It describes the protocol that regions need to follow 

to interface with other regions and with agents and directory servers. The functionality is 

independent of implementation or of the internal organization of a region. The functionality can 

be divided into three categories: 

1. Communication with directory servers 

2. Actions at boundaries of regions 

3. Functionality for agents inside the region 

Each of these areas of function sets is now discussed in detail. 
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1. Communication with directory servers 

The purpose of directory servers is to advertise services of regions and direct agents searching 

for services to appropriate regions. The communication between a region and a directory server 

consists of advertisements of services sent from the region to the directory server. Each region 

has a designated directory server that it advertises with. Once a new region is formed, it obtains 

the name of its directory server from the Central Resolver and then registers with the directory 

server. It can then start sending its advertisements to the directory. The directory servers 

maintain a soft state [16] for the advertisements. This means that when a directory server 

receives a service advertisement from a region (called REGION-TO-DS-AD-MESSAGE), it 

stores the ad as an entry with a timeout value. After the region has sent the advertisement once, it 

can send it as often as it wishes depending on how frequently it is changing. If the services of a 

region are changing frequently, the region may wish to send messages to its designated directory 

within time periods much less than the timeout value. Or the region may choose to wait and only 

report the services once in a while if the changes are minor. This again depends on the nature of 

the region. However, if the advertisement of the region is not changing often, it has to keep 

sending a Keep Alive message (called REGION-TO-DS-KEEPALIVE-MESSAGE), to the 

directory at least once every timeout period so that the directory knows that the region still exists 

and its advertisement is valid even though it has not changed. The directory server maintains the 

same advertisement for the region until it receives a new one.  

If the directory does not hear from the region again before the time period expires, it 

deletes the entry for the region. In this way, regions do not need to be explicitly deregistered and 

this also takes care of failure scenarios if a region has stopped functioning abruptly due to 
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problems, the directory server will eventually delete the entry. When a directory server is 

deleting the entry of a region, it sends a message to the region (called DS-TO-REGION-

DELETING-ENTRY-MESSAGE) saying that its ad is being deleted. This is useful because if the 

region’s ads or keep alives did not reach the directory server for any reason, it is now aware that 

its entry has been deleted so that if it is still alive and functioning, it can send a new REGION-

TO-DS-AD-MESSAGE to the directory. This is one of the many ways in which the system is 

made fault-tolerant and it can recover from failures of message delivery. 

 This function of communication with the designated directory server can be performed by 

any host or group of hosts in the region. The region can have a host that is permanently dedicated 

to sending out ads and keep alives. Or the region could change the servers it uses to do this over 

time. Or a group of servers could share the task. The directory does not care which particular 

host in the region is sending the message. It however does need to verify that the message is 

authentic i.e. it has legitimately come from the region it claims to be coming from and also 

possibly do an authorization check. There are a variety of techniques that can be used for this 

authentication such as certificates, keys, etc. Related work in the area of authentication shows 

how this can be done ([18], [19], [44]). The only case in which a directory server has to send a 

message to the region is DS-TO-REGION-DELETING-ENTRY-MESSAGE. The directory 

sends this to the server from the region that sent the last ad or keep alive message. Also, an 

integrity check needs to be done when the message is received at the directory server to make 

sure that it did not get corrupted or changed on the way. 

 We will now discuss the content of the ad messages sent by the regions to the directory 

servers. The message contains the name of the region which is used to identify its entry. The 

most important part of the ad message is the service description of the region. This is an overall 
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description of all the services provided by the various hosts in the region. Each of these hosts can 

advertise their own services and the region has to aggregate all the ads to form the composite one 

that it will send to the directory server. The service advertisements of individual hosts are 

described as attributes and values. The ad of the region can have multiple values for the same 

attribute if more than one host has it. Therefore the final form of the service part of the ad will be 

a map from attributes to a set of values for each attribute. The directory server will do the 

matching of the agent’s mission to the advertised attributes and all their associated values1. The 

region can choose to aggregate these properties of the hosts as it wishes. It may wish to advertise 

only the important attributes for example and therefore might create a summary or selection from 

all the advertised attributes. It chooses the properties that it wants to advertise and puts them in 

the REGION-TO-DS-AD-MESSAGE. 

 The other component of the region advertisement is the set of requirements that a region 

has for the agents that are going to visit it. It also contains the invariants, characteristics and 

policies of the region that would be relevant to the agent. This could include the language which 

the region communicates in, the credentials required of the agents and so on. Since there can be a 

large number of diverse regions, it is conceivable that they might communicate in a variety of 

different languages or use different protocols for communication. If an agent does find a match 

against a region at a directory, it can use these requirements and properties to check if it would 

actually be permitted to enter the region or if it does not meet the requirements. If it does not, it 

could decide to go back to its creator and get the additional features. This list of requirements 

that the region advertises need not be the entire list of all the possible requirements and policies 

                                                 
1 It is assumed for simplicity throughout this work that the names used for attributes and values have identical 
meanings globally, which means that the same attribute means the same thing in all regions. If an agent is looking 
for A, an exact string matching of A is performed. For a detailed discussion of this point, see section 3.4. 
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since that might be very complicated and depend on the particular agent and the particular 

services that it is requesting. Furthermore, some of the policies can be negotiated at the entry 

point of the region.1 The requirements advertised to the directory would preferably be the 

minimum ones that the agent absolutely needs to have before it attempts to gain entry into the 

region. 

 The last part of the advertisement from the region to the directory server is the name of 

the host that an agent interested in visiting the region should go to first. This is the host that acts 

as the entry point for the region and all the agents that want to visit the region have to go through 

this host. Once the agent is at the entry point and has been permitted to enter the region, it is 

directed by the entry point to other hosts in the region where it can get services that it is 

interested in. What the region advertises to the directory server in the REGION-TO-DS-AD-

MESSAGE is an identifier or a name for the host that is the entry point. This name can be used to 

refer to different actual physical hosts at different times2. The region can again implement the 

process of choosing an actual host as an entry point (if it has multiple candidates) independently 

as long as it provides resolution of the advertised name to the correct host at any time. There 

could be many reasons that the region would want to have different hosts acting as the entry 

point at different times such as load balancing, choosing entry points closer to the directory 

server to improve efficiency, etc. The region implements an algorithm that picks a host to be the 

entry point when a query is made about the region’s ad. This resolution is done at the directory 

server and then the agent is transferred to the chosen entry point to gain access to the region. As 

the gateway to the region, the entry point can perform many functions such as checking that the 

agent meets the region’s requirements, negotiating the entry of the agent, charging the agent fees 
                                                 
1 See section 3.1.5 for discussion of actions at boundaries. 
2 See section 3.4.2 for details on how the resolution to multiple addresses can be implemented. 
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for entering the region, referring the agent to the appropriate hosts within the region and so on. 

The exact functions that the border points perform can vary from one region to another. 

 The above section discussed the functionality set of regions with respect to 

communication with the directory servers. An issue with this system that might arise is that a 

region could advertise false properties about itself to the directory to attract more agents but 

when the agent reaches the region, it would find that the services did not exist. There are two 

forms in which this can happen. The first is the case of a malicious region when it is purposely 

trying to advertise false properties. In the second case, even if the region is not malicious, there is 

only an asynchronous relation between the services of the region and the advertisement at the 

directory. Services might have moved, died or new ones might have been added since the 

advertisement was sent to the directory or since the agent read the advertisement. The aggregated 

ad that the region itself has of its services might be outdated depending on the way it is compiled 

since there might be a delay between the time a service changed to the time the region discovers 

about it. Therefore, the agent might have the wrong impression about the services in the region 

and would discover after actually visiting the region that things have changed. This is a natural 

result of having a distributed system since the information cannot be up-to-date at all points at 

every instance. Therefore, such problems cannot be completely eliminated from the system. One 

of the ways in which the agent has been designed to handle the possible inaccuracy of the 

information it receives about a region from the directory server is that when it actually reaches 

the region, it can ask the entry point for the updated service map of the region. It then evaluates 

again whether it still needs the services of the region if they have changed since the time the 

agent read them. In similar spirit is the mechanism that has been put into place for the agent to 

get the updated information when it reaches a service-providing host. The agent always asks the 
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host first which services it has available in case they are different from what it was told by other 

servers in the region.  

 For the first case of a malicious region problem, there are some possible solutions. 

Regions could be certified for their trustworthiness and agents could demand these certificates as 

a guarantee that the region will behave honestly. Agents could also blacklist regions or give them 

low ratings so that future business with the region is impacted. These ratings could be made 

available to the all the other agents from the region the agent originated from and to other 

regions if they are interested. Therefore, some incentives can be put into place for the regions to 

behave honestly. 

2. Actions at the boundaries of regions 

The boundary of a region is represented by the hosts called Border Way Points that sit at the 

edge of the region and are the point of entry and exit for the agents visiting the region. The 

actions that happen at the boundary are performed when the agent is attempting to gain access to 

the region and when it is leaving the region after using some services from its member hosts. The 

Border Way Points are not necessarily geographically or topologically at the boundary of the 

region, but functionally they are the crossing points for any entity or process wishing to enter or 

leave the region. 

 One of the most important actions that happens when an agent is at a border way point 

for entry is access control. Regions can control some agents from accessing them and agents can 

control themselves from accessing some regions. Details of why and on what basis the regions 

and agents can perform access control are discussed in section 3.1.5. In this section, we discuss 

the mechanism for how this is enabled in the system. Regions might want to screen agents at the 
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entry point if they have some security or other kinds of constraints. For this the region would 

need to find out information about the agent. The agent has a file (called AGENT-

PROPERTIES) that contains all its public properties in attribute-value format. The border way 

point can request the agent for this file at entry and then the region can process this information 

to determine whether it wants to admit the agent or not. The region could also decide to admit 

the agent with certain constraints on its behavior while it is within the region. The agent is 

programmed to handle denial of access by a region – it could go to the next item in its itinerary 

or to a directory server for more region recommendations or it could go back to its creator to get 

more information for being admitted into the region. There is no public information that is 

required for all agents to have. Each agent can put its own choice of properties into its AGENT-

PROPERTIES file. 

 The other side of the access control is performed by the agent. An agent could have its 

own constraints on what kinds of regions it wants to visit due to security, privacy or performance 

standards. Also, the agent has to check again what the current services offered by the region are 

since they might have changed since it read the region’s ad at a directory server. The agent can 

request this information at the border way point. The border way points should either have the 

aggregated ad or they should have a mechanism to request it from another place in the region or 

a mechanism to perform the aggregation of services at the point when it is queried. Along with 

the service advertisement, any other relevant public properties of the region are also returned to 

the agent. The agent would use its policy to decide whether to visit the region or not based on the 

properties and services. Also, if the region has imposed constraints on the functioning of the 

agent, then the agent could decide that it is not worthwhile for it to visit the region. 
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 This exchange between the region and the agent at the entry point could be viewed as a 

negotiation in which both parties give each other information about themselves in order to reach 

an agreement (about entering the region). Therefore, this exchange could take place in stages like 

a handshake. Some of the information might be restricted and is not allowed to be revealed until 

the other party has proved itself trustworthy. Therefore at each stage of the handshake, the two 

parties might reveal more and more information. This will continue until both parties are 

satisfied. It is also possible that if the region required some information that the agent does not 

currently have, it could return to its owner to obtain this information and then come back and 

resume the negotiation. The exact mechanics of the negotiation would be very dependent on the 

application and could be programmed into the agents and the border way points. 

 Before the agent leaves the region, it has to pass through an exit point at the boundary of 

the region. This point can be added at the end of the agent’s itinerary for the region at the entry 

point itself. This ensures that the agent will visit the exit point after it is done in the region 

whether it has visited any other hosts or not. When an agent exits a region, it is the responsibility 

of the exit border way point to transfer it to the next item in its itinerary. If the agent is going 

next to another region, the identifier for the entry point would need to be resolved to an actual 

hostname. Also, other functions could be performed at the exit point depending on the region. 

Some regions might want to bill the agent for all the services it has used while it was in the 

region at the end, for example. This task would be performed by the exit point. Thus, the entry 

and exit points have some basic functions to perform but they can also be made more 

sophisticated if required by the application. 
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3. Functionality for agents inside regions 

Once the agent is inside the region, the region has to perform three basic functions for the agent: 

provide it the advertised services through its member hosts; direct the agent to appropriate 

servers that provide the desired services; and transfer the agent to hosts within the region that it 

is interested in. Each host should have the ability to transfer the agent to another host in the 

region. A region could have servers that do both the first two functions or it could have 

specialized servers to do each task separately. The agent has to identify what functions the host 

offers when it arrives at a host. For uniformity and ease of use, each host implements the 

interfaces for both the functions. This enables the agent to invoke either of the interfaces at every 

host and gather information. If the host does not provide the particular functionality, it could 

return no results when that interface is invoked. 

 Every host in the system will implement three basic methods for the first two functions 

from above. The first one (called AVAILABLE-SERVICES) would return the services that the 

host is currently offering. The services could include a variety of things like data, content, 

computational resources, memory resources, etc. The names of the services are represented as 

attributes and their characteristics by values1. Thus, the host returns a map from attributes to 

values. Each service will have one entry in the map with one value for its attribute. If the host 

does not offer any services but performs other functions such as helping to route the agent within 

the region or making recommendations for which hosts the agent should visit given its mission 

(such hosts are referred to as Way Points [51]), the host will just return NULL when this 

interface is invoked. As mentioned before, we are assuming that the names of attributes are 

                                                 
1 For services which are identified only by their names and do not have any values as such, the value field in the 
map could just be a boolean representing TRUE. This would mean that the service is present at the host. 
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universal and mean the same thing semantically everywhere. This means that when the agent is 

looking for a particular attribute, it performs exact string matches for the services advertised by 

the hosts and if it finds a match, we assume that it is the same attribute it wanted. This is a 

simplistic view of the world because the same word or attribute could in reality have different 

meanings to different entities. In other words, two different entities could represent the same 

attribute with different names. 

 The second method (called SERVICE-INFORMATION) also pertains to hosts that offer 

services. It is used for obtaining detailed information about a service that the host offers. 

AVAILABLE-SERVICES only provides a listing of the services, but if the agent is interested in 

using a particular service, it might need other information about the host and the service such as 

security credentials, protocol used for communication, performance guarantee on using the 

service and so on. SERVICE-INFORMATION will take a particular service name as the 

argument and will return all the relevant information as an attribute-value map. This method is 

only meaningful for hosts providing services, and not way points. 

 The third method (called FORWARD-AGENT) is for hosts that direct the agent to service-

providing hosts within the region. Directory servers are the hosts that do this at the level of 

directing agents to regions. But once the agent is inside the region, it has to know which hosts to 

go to find the services that it needs for completing its mission. Depending on the size of the 

region, this function could be performed just by one host within the region (this could be entry 

point or any other host) or it could be performed by a number of hosts each of which contains 

information about a few hosts within the region. Thus the agent might have to go to one or more 

way points in order to find out about the possible hosts that it could visit. The number and nature 

of way points in a region is determined by its internal organization. FORWARD-AGENT is 
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implemented by the hosts that have information about the properties of other hosts. When an 

agent arrives at a host, it can invoke this method passing its mission and policy as arguments. 

The host will return a list of Uniform Resource Names (URNs) ([43], [39]) corresponding to 

hosts that match the agent’s mission. The hosts that are returned could include both service hosts 

and other way points where the agent can get further information about specific service hosts. 

These are put into the itinerary of the agent and it will then visit them in order. If the host only 

provides services and does not have information about other hosts, it can return NULL for this 

method. 

 An issue that could arise with this kind of routing of the agent within the region is that the 

agent might keep getting randomly forwarded by a malicious region and not get to a useful host 

so that the agent can spend more time in the region and possibly be charged more. The argument 

against this kind of behavior by a region is that it is in the best interest of the region to provide 

good service to the region in order to ensure future business from the region the agent originated 

in. The agent may keep track of the number of hosts it has to visit in order to get to one that 

provides it the service it needed. If this number is very high, the agent can give the region a bad 

rating and it could also include it in a list of regions that have bad performance. The ratings and 

list could be circulated to all hosts in the originating region of the agent and it could also be 

made public to other regions. Also, there could be an incentive for good behavior built into the 

commercial model of the system. For example, if the agent only pays for the services it receives, 

it is wasteful for a region to forward it around aimlessly unless it receives a service. Thus, 

although this kind of behavior is possible by a region, it can be discouraged by building the 

appropriate mechanisms into the system. 
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 Another possible issue with the design as presented so far is that of a malicious agent that 

does not pass through the exit border way point of the region after using its services. In some 

cases, this might not matter much but in others, the region might want to charge the agent for all 

the services only at the end and if the agent does not pass through the exit point, the region will 

not be able to do so. The exit point is put at the end of the agent’s itinerary in the region at the 

entry border way point itself. But the agent could bypass it if it did not want to pay. The 

following method can be used to prevent this from happening. The Uniform Resource Names 

(URNs) ([43], [39]) of the hosts are put into agent’s itinerary only by the way points in the 

region (including the entry point that puts in the exit point). The way points include a flag along 

with the URN that says whether the host belongs to the same region. They encrypt and sign this 

information before putting it into the agent’s itinerary. All the hosts in the region have the public 

key so that they can decrypt the itinerary to transfer the agent to the next host. Before 

transferring, they check whether the next host is in the same region. If it is not, they send the 

agent to the exit point of the region for any exit processing. If it is in the same region, they just 

transfer it to the next host. Thus, the agent is forced to go to the exit point with this method. 

 The last point to discuss about this part of the architecture is the failure scenario when the 

agent is inside the region. The failures could consist of link failures and node failures. If there is 

a link failure, the agent will not be able to get transferred to the next item it its itinerary. The 

possibilities in this case are for the agent to attempt to transfer a few more times and if still 

unsuccessful, to proceed to the next item it its itinerary or look for more hosts. If the destination 

node fails, then the situation is also the same as link failure. The other case is failure of the node 

that the agent is currently at. Depending on the type of failure, it may be possible for the system 

to recover from the crash and restore the agent. Also, some resources might need to be released 
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and some external reconciliation might need to be done (for example, if the agent had pre-paid 

for some services and the node crashed without the agent having used the service, the money 

needs to be credited back to the agent).  It depends on the application how the transactions that 

the agent was performing are reconciled and how much of the information is still available and 

how the resources are released. In case the machine crashed completely and the agent died, the 

region might want to inform the creator of the agent of the event. To do this, it would have to 

find out if there were any agents present at the node when it crashed. Logs kept by the region of 

the basic information about agents visiting it such as their URNs, creators, etc and those kept by 

hosts about the times of agent visits can aid in the process of recovery. The region can then use 

these logs to backtrack and find out which agents died with the node crash and what their status 

was at that stage. 

 This concludes the discussion on the functionality required of regions for their 

communication with directory servers, actions that occur at their boundaries and functions that 

the agent needs while it is inside them. The next section discusses in further detail the processes 

that happen when the boundary of a region is crossed. 

 

3.1.5   Actions at the Boundaries of Regions 

The previous section outlined the mechanism in place in the regions for processes to take place 

when their boundary is crossed. This section discusses the different kinds of events that can 

happen when activities touch or cross the boundary and the reasons for their occurrence. The 

boundary is the logical separation of a region from the rest of the world. The key characteristic of 

the boundary is that we can know when it has been touched or crossed, and hence it is possible 
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for an action to occur, such as modification of some piece of state or transmission of a 

notification [40]. In the context of a service-providing region, agents will be the entities that will 

cross region boundaries when they enter regions to avail of their services and then exit them. 

 There are a few different elements in the system that are affected by the crossing of a 

region boundary by an agent. These are the places where changes can take place because of a 

boundary crossing. The first is the region that the agent is entering and specifically, the entry 

border way point it is entering through and also possibly at other places in the region that keep 

track of the boundary. There might be a change at the host that owns the agent or is responsible 

for the agent because it might want to be notified of the agent’s actions such as entering a new 

region. Also, if the agent is entering a new region from an old one or in other words, it is 

crossing over from one region to another, the region it is leaving will also be affected by the 

crossing of the boundary. There might be state changes at the exit border way point or other 

hosts in the previous region that have to track the agents in the region. Lastly, the agent itself will 

be affected since it will have to change its own state to reflect its new position and also might 

have to notify other entities like its owner. 

 There are two main categories of actions that can occur at the boundary. The first is the 

process of access control by the region and the agent. This involves the evaluation of the agent 

by the region to determine whether it should be allowed to enter the region and the evaluation of 

the region by the agent to determine whether the agent wants to enter the region. The second 

category of actions could be classified as side-effects of the boundary crossing. These are actions 

that occur as a result of the first process and can include notifications being sent between any 

two of the entities that were discussed above or state changes in any of them. State changes could 

occur at the agent (for example, in its itinerary), at the region which the host is entering and at 
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the owning host or region of the agent or a third-party responsible for the agent. Notifications 

could also be sent between any of these entities or between hosts within the region. 

 A region will use some criteria to determine whether an agent that is requesting access 

should be approved or denied. There are different criteria that the region could use: 

characteristics of the agent; characteristics of the owning host or owning region of the agent; and 

characteristics of the region that is performing the access control itself. The characteristics of the 

agent that the region might be interested in evaluating before it grants access could include its 

mission and its policy, its security credentials, its spending policy, etc. The region can analyze 

the mission to find out what kind of data the agent is collecting. It can analyze the spending 

policy to find out the form of payment the agent uses or what is the maximum amount it is 

willing to spend at the region. There could also be other factors in the history of the agent’s life 

that the region might want to know about such as the region the agent is transferring from, the 

regions or hosts that it has visited in the past and what its spending history and pattern have been 

so far. All these points aid the region in learning about the past behavior of the agent so that its 

future behavior can be predicted. 

The second criteria that the region considers are the characteristics of the owning host 

and region of the agent. The region might have a policy regarding from which regions and hosts 

it accepts agents and from which ones it does not, because of its own past experience or 

information from other sources. Granting access could also depend on whether the region has a 

billing or other contractual relationship with the originating region, on the terms of the contract 

and the behavior of the other region regarding the contract. Security credentials of the originating 

host and region and behavior of past agents from those sources are other factors that could be 

considered. 
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 The last criterion that the region uses is its own state at the time access is requested. If the 

traffic within the region is too high, it might temporarily suspend access for any new agents. It 

could also look at the state of the network and services within itself at the moment. For example, 

if too many services are down, it might not be able to support any more agents. Also, it could 

check whether it still has the services that the agent is looking for. 

 From the above three categories, the specific criteria that a region will use will depend on 

its policy and features. The parts of information that are needed from the agent will vary from 

one region to another and will depend on the application. Also, it will vary from one agent to 

another whether it keeps track of any of this information and whether it is willing to present it to 

the region. The region could also use other sources for obtaining information about the agent. 

There could be a public repository that maintains information about various agents that are 

currently active in various regions or maintains information about hosts and regions that have 

sent out agents in the past. Alternatively, the region could request information from other regions 

and hosts by sending them notifications. It could inquire about the history and behavior of the 

agent either from regions that the agent has been to by asking it for its past itinerary or the region 

could have contracts with regions to mutually share information. 

 The other important part of the access control action is the set of constraints that can be 

applied to the agent upon boundary crossing as a result of the region’s analysis. This means that 

the agent can be allowed into the region but with restrictions imposed upon its abilities or the 

kinds of actions it can perform while it is inside the region or conditions it has fulfilled before it 

leaves the region. This can happen if the region decides for example that it is safe to let the agent 

use certain services but not others. Restrictions could be imposed on the resources that the agent 

can utilize such that it is only permitted to go to certain hosts or avail of certain services. There 
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could be a requirement that the agent has to go to a minimum or maximum number of hosts or 

services. There could also be restrictions on the maximum and minimum amount of time and 

money that the agent spends in the region or the amount of time and money it spends at a host. In 

terms of capabilities of the agent, it could be restricted to performing only some transactions or 

there can be restrictions on what it can do with the data that it collects from the region. 

 After the region has decided on the set of constraints on the agent if any, it informs the 

agent of these. Then the agent can decide if it still wishes to visit the region with those 

constraints. As mentioned before, this exchange between the region and agent of information to 

decide on the access and constraints could be modeled as a negotiation. Both parties could give 

more and more information about themselves at each stage after they have decided on the 

trustworthiness of the other party. This continues until they reach a decision about the agent’s 

visit to the region. Thus, the process of access control encompasses a rich class of actions not 

only because of the diverse characteristics of the regions and agents and the information they 

have and require but also because of the process of negotiation which can lead to different results 

in similar circumstances. 

 

3.1.6   Commercial Models for the System 

In section 3.1.1, it was discussed that commercial activity is one of the reasons for creation of 

regions. Moreover, commercial incentives are essential for the existence and functioning of the 

entire system and its deployment. [10] discusses an economic market in mobile agent systems 

where agents purchase resources from host sites and sell services to users and other agents. In 

this section, we present a few different examples of commercial models for service-providing 
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systems. The models entail the commercial relationships between the different elements of the 

system and how each element receives compensation in return for the services it provides, thus 

motivating its presence. There are two cases that are considered: the first one is when the 

service-providing hosts are independent entities that make money for themselves in return for 

their services and the second case is when the hosts are owned by the regions such that the region 

as a whole is the entity that is making money for its services. 

Independent hosts 

In this scenario, the hosts that provide services to agents are members of regions, but operate as 

independent commercial entities such that they seek compensation for their services on their 

own. In this commercial model there are four actors: the service-providing hosts, agents, regions 

and third-parties. Hosts are the providers of content, data and resources and seek to make money 

by providing these services. They charge a fee for their services which can be either given to 

them by agents or by regions. They need to have a pricing scheme for their services. They also 

might need to pay regions for being their members. Since the same host can be a member of 

multiple regions, it might have to pay multiple regions. The second actors, the agents1, are the 

consumers of the services and are willing to pay money in return for using them. They pay to the 

hosts and/or to the regions. The third parties are entities that facilitate the financial transactions 

of the system and provide other financial services. Examples are banks, credit card agencies, 

credit-checking agencies, etc. They make money both from merchants which are regions and 

hosts in this case and from customers which are the agents. They can provide a variety of 

                                                 
1 Agents represent the interests of their owners i.e. the hosts that created them. When we say that an agent is 
consuming and paying for the service, it is really the owning host that is consuming the service through the agent 
and paying for it. Therefore, although we refer to the agents themselves as the consumers throughout the work, it is 
important to remember that they are only the means used by some host and could be replaced by another mechanism 
to avail of services. 
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services to the system such as facilitating financial transactions (banks), giving credibility to the 

customers and taking on some of the risk making money through interest payments (credit card 

agencies) and providing information that helps in financial transactions (credit agencies). 

Regions, the fourth actor in the commercial model, act as the brokers between the 

providers and consumers of services. They provide infrastructure such as way points and border 

way points to route agents through the network to the hosts. Regions could make money from the 

agents because they ease the search of information and provide services of their own (such as 

security). They can charge a premium for the quality of infrastructure and other specialized 

services they provide. Regions could also make money from the hosts by bringing more traffic to 

them (since regions are areas of concentrated interest, it would be easier for an agent to locate 

them). They provide services to hosts such as screening the agents for security when they enter 

so that the hosts can be guaranteed a certain level of protection when they join the region. When 

a host joins the region, it agrees to the particular service model of the region and pays for the 

services it uses. Thus, the regions provide different sets of services to hosts and to agents and can 

charge both of them for the respective set of services. In essence, regions act as referral services, 

referring agents to hosts. Other examples of referral services are the telephone yellow pages and 

apartment locator services that act as sources of information and may do quality checking. 

Regions can charge the customers (agents) for using the referral service and the advertisers 

(hosts) for advertising and providing referrals which generate business for the advertiser (since 

the host is an independent entity that makes money on its own). 

All models in this scenario where the hosts are independent will involve the agent paying 

the region and/or the hosts. There can be different relationships however between the hosts and 
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the region and how they handle monetary exchange between themselves. There can be two cases: 

the hosts pay the region and the region pays the hosts. 

In the first case, a host pays the region for one or more of several services. Being part of 

the region helps bring more traffic to the host because of the infrastructure that the region 

provides to advertise and search for services. The region also provides services to the hosts such 

as security, privacy and performance guarantees. Since the host is paying the region, it will 

charge the agents directly for its services with the aim of making more than it has to pay the 

region. The region will receive money from the hosts and possibly from the agent and it aims at 

making that higher than the cost of infrastructure setup and maintenance and the cost of 

providing the other services. The amount that the region can directly charge the agent however 

should be low or none since the agent will already be paying the individual hosts for their 

services. 

When the region is charging its member hosts, it could either treat all its members 

equally, that is, have a uniform payment scheme for all members or it could charge different 

members differently based on the number or quality of services that the host provides. There are 

various schemes that the region could use to charge the hosts. The region could have a joining 

fee that each member host pays when it initially joins the region. There could be a periodic flat 

fee in which the host pays a fixed amount every time period. There could also be a periodic 

variable fee in which the host is charged every time period depending on how much traffic it 

brought into the region (i.e. how many hosts visited that host for its services). Depending on the 

expense mechanics of the particular region, this could either be an inverse relationship wherein 

the more traffic a host brings, the less it has to pay to the region or it could be the opposite, that 

is, the more traffic a host brings into the region, the higher it has to pay. This depends on whether 
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the region incurs higher expenses as more and more agents come in or whether the cost per agent 

decreases as more agents come in. The last payment scheme is share of earnings, where each 

host pays the region a fixed percentage of the money it makes from the agents visiting it. These 

are a few schemes, but the region could also have its own variation of any of them. Also, it can 

use an arbitrary combination of the above methods. 

The second case of the commercial relationship between regions and hosts is when a 

region pays hosts for being its members. This relationship is economically feasible when the 

region collects a lot of money from the agents and distributes it to the hosts. Then, the hosts 

cannot individually charge an agent because it would already be paying a huge sum to the region 

(so that the region can in turn make enough to pay the hosts). The region could charge either a 

constant amount to each agent or it could charge an amount proportional to the number of hosts 

that the agent has visited while it was in the region. The region could also give each host a fixed 

share every time period or it could give each host a share proportional to its popularity (i.e. the 

number of agents that visited the host in the time period). In order to make a profit, the region 

will have to charge the agents more than what it pays the hosts and its costs. 

Thus, in this model, the region collects money from agents and in effect, distributes it 

among the hosts. Hosts do not charge agents directly. The region could use different schemes for 

paying the hosts. A region could give a host a joining payment, which is a fixed amount paid at 

the beginning when the host joins the region. There is no further exchange of money between the 

host and the region. Essentially, the host has been ‘bought’ by the region or ‘rented’ for a period 

of time for a fixed fee. The region could also give a periodic fixed payment to the host in every 

time period for being a member of the region or a periodic variable payment, where the amount 

depends upon the traffic the host has brought into the region. Lastly, the region could use a share 
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of earnings payment scheme, where it distributes a fixed percentage of its earnings in every time 

period among all its members. 

Hosts owned by regions 

The second commercial model for the system is for the case when the hosts are owned by the 

regions and are not independent commercial entities. The region is the only entity that is making 

money as a whole and it operates the hosts which is part of its costs. There are three actors in this 

model: regions, agents and third parties. Regions are the providers of data, content, resources and 

infrastructure through their member hosts. They charge agents for the services they provide. 

Agents are the consumers of the services and pay regions for them. They could use several 

different methods to make the payment such as by cash, through contracts between regions or 

through third-parties like banks. Third parties, as in the previous case, facilitate financial 

transactions and make money from the merchants as well as the customers.  

 A region could use several schemes to charge an agent. It could have a flat charge where 

every agent is charged a constant amount regardless of how many hosts it visits or how many 

services it uses. The region could use to impose this charge either at entry or exit. The region 

could also use a variable charge where the agent has to pay an amount depending on the number 

and type of services it actually used. The region could use different metrics for measuring the 

‘quantity’ of services the agent has used such as the time it was in the region, the number of 

hosts it visited, the average time spent at each host, etc. If the region only has a variable charge, 

the agent would be charged nothing if it just entered and exited the region without using any 

services. Different regions could use other schemes or combinations of the above schemes 

depending on the application. 
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 This concludes the discussion on commercial models to motivate the existence of service 

providing regions and hosts. The section outlined a few models but there are many others 

possible. The agent will be informed of the particular scheme a region uses either through the 

requirements section of the advertisement of the region or at the entry point when the agent is 

attempting to gain access to the region. The agent can analyze whether it agrees with the 

commercial model of the region and that would be one of the factors affecting its decision to 

visit the region. 
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3.2  Directory Server Network 

The next important component of the architecture is the directory server network, which 

connects the regions that provide services to entities interested in using these services. Regions 

send a composite announcement of all their services to the directory servers. Entities that are 

interested in using any service create mobile agents and encode their service needs and policies 

into the agents. Agents start out their journey through the system at the directory servers where 

they can get information about the services that regions are providing. Directory servers perform 

matching of the agents’ needs with the service announcements that they have and refer the agents 

to appropriate regions if they find a match. Agents then visit the regions to use the services. If 

agents need to visit more regions, they can go back to the directory server network to find out 

about other regions that might be interesting to them. 

 Directory servers are an essential feature of the system because without the directory 

servers, the agents would have to visit each and every region to find out the services they offer 

which is not feasible in a large scale system. Also, directory servers give the agents other 

important information such as the requirements of the region for the agents that it permits and the 

border points where they can go to enter the region. The information about all the regions is 

distributed among a number of directory servers that coordinate as a network to provide results 

to agents when they query about a service. The exact number of directory servers depends on the 

size and nature of the system. In essence, the directory server network behaves as a search engine 

for services which an agent can query with services it is interested in finding and it will receive 

search results that match its query. The search results are a set of regions which the agent can 

then visit individually to use the services. 
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 The directory servers form a spanning tree network which means that each server has one 

neighbor in the network. The regions are distributed among the directory servers. Each directory 

server is responsible for some regions – it carries the advertisements of those regions and if an 

agent comes to it, it checks if any of them contain services that the agent wants. The main 

functions of the directory server network are to collect service advertisements from regions and 

refer agents looking for services to appropriate regions by matching their objectives with the 

region advertisements. The first two sections will give an overview of how the two functions are 

performed by the directory server network. After that, the internal architecture and functioning of 

the network will be described. 

 

3.2.1   Advertising for Regions 

 This section describes the process of advertising a region’s services to the directory 

server network. Each region has one directory server that it advertises with. When the region 

comes into existence, it sends a message (called REGION-TO-CR-GET-DS) to a central server 

called the Central Resolver that is part of the directory server network and knows about all the 

directory servers1. The job of the central resolver is to find a directory server that will be 

responsible for the region. It finds a directory server for the region and sends a message (called 

CR-TO-REGION-GET-DS-REPLY) with its URN to the new region. This is now the 

designated directory for the region and it sends all its advertisements to this server. The directory 

server network itself might replicate the service ad data, but the regions do not advertise to 

multiple directories. Since the central resolver is responsible for assigning directory servers to 

                                                 
1 We assume that the new regions are pre-configured with the URN of the Central Resolver. 
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regions, it can query the directories about their load and perform load-balancing for the network. 

Thus, the regions do not need to concern themselves with load-balancing or replication of their 

advertisements. They find out their directory server at the beginning and after that they can 

continue to advertise with it unless there is a failure scenario. If the directory server fails, the 

region sends another REGION-TO-CR-GET-DS message to the central resolver to find a new 

directory server. 

 The entry for each region in the directory server has four parts: name of the region, 

aggregated services of the region, agent requirements/region properties and the entry point of the 

region1. The region uses some mechanism to perform aggregation of service descriptions of all 

its member hosts. The aggregate has the format of attributes and values describing the services. 

Each attribute could have multiple values since different hosts within the region might have 

different values for the same attribute. Different hosts in the region can send the attribute-value 

map to the directory server in different messages – it does not have to be the same host every 

time. The directory server will do the matching of the agent’s mission to the advertised attributes 

and all their associated values. The requirements for the agent consist of the information that the 

agent needs to know before attempting to gain access to the region and the relevant policies of 

the region. This could include the language which the region communicates in, the credentials 

required of the agents and so on. This part of the message could also contain the invariants of the 

region and any other characteristics that it wants to advertise. If an agent does find a match 

against a region at a directory, it can use these requirements and properties to check if it would 

actually be permitted to enter the region or if it does not meet the requirements.  The last part of 

the advertisement from the region to the directory server is the identifier for the entry point for 

                                                 
1 The advertisement message was discussed in detail in section 3.1.4. 
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the region. Since a region could use different entry points at different times or for different 

agents, the identifier is resolved to an actual location at the time an agent wishes to visit the 

region (which could be from a directory server or from another region). The region has an 

algorithm to pick an entry point when an agent wishes to visit it and it provides resolution of the 

advertised name to the correct host. 

 As mentioned in section 3.1.4, the directory servers maintain a soft state for the 

advertisements. When they receive a service advertisement from a region, they store it as an 

entry with a timeout value. After the region has sent the advertisement (REGION-TO-DS-AD-

MESSAGE) once, it can send it as often as it wishes depending on how frequently its services are 

changing. If the advertisement is not changing often, the region sends Keep Alive messages to the 

directory so that its entry is not timed out.  The keep alives should be sent by the region at least 

once every timeout period. The directory server maintains the same advertisement for the region 

until it receives a new one. If the directory does not get a message (either REGION-TO-DS-

AD-MESSAGE or REGION-TO-DS-KEEPALIVE-MESSAGE) from the region in two 

consecutive time periods, it assumes that the region has died and deletes its entry. In this way, 

regions do not need to be explicitly deregistered and this also takes care of failure scenarios. 

When a directory server is deleting the entry of a region, it sends a DS-TO-REGION-

DELETING-ENTRY-MESSAGE to the host in the region from which it received the last message 

saying that the region’s ad is being deleted. This is useful because if the region’s ads or keep 

alives did not reach the directory server for any reason, it is now aware that its entry has been 

deleted. If it is still functioning, it can send a new REGION-TO-DS-AD-MESSAGE to the 

directory. Thus the system can recover from failures of ad delivery. If the directory server is 

overloaded and needs to delete the entry of a region, it can send a similar message to the region. 

 
 

61



In this case, the region would have to go back to the Central Resolver in order to find another 

directory server. 

 

3.2.2   Locating Services for Agents 

Agents are created with the purpose of using services which could include collecting data, 

getting content on a particular subject from a remote host, using resources such as memory to 

perform a computation on another machine and using data services on other hosts to process data 

and derive results. In order to use any of these services that regions (or specifically the member 

hosts within regions) provide, the agent first has to search and locate them. The search is based 

on the agent’s mission that was given to it by its creator. The mission is represented in terms of a 

set of objectives each of which contains combinations of attributes and values that describe the 

desired services. The role of a directory server is to look at each objective in the mission of the 

agent and match it with the service advertisements of regions that it contains. Based on the 

results of the matching, it suggests regions that the agent should visit for separately 

accomplishing each of its objectives. 

 Since the information about the regions is distributed among the directory servers, the 

agent will possibly need to go to multiple locations to find out all the information it needs. 

Therefore, it is not enough for a directory server to refer an agent only to regions whose ads the 

directory contains because if no matches were found at this directory, the agent would have 

nowhere to go. In addition, there might be matches in regions that were advertised at other 

directories which the agent would want to know about. There might be matches for only some of 

the agent’s objectives at one directory and it would need to go elsewhere to find matches for its 
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other objectives. Thus, directory servers should also be able to refer agents to other directory 

servers. In order to accomplish this, other than region ads (called REGION-ADS), each directory 

server also carries ads of a few other directory servers1 (called OTHER-DS-ADS). Therefore, it 

can refer the agent to regions and to other directory servers.  

The initial itinerary of the agent consists of a single host, which is the directory server 

that it starts at. The agent is autonomous, so it figures out the rest of its path as it goes along. It is 

pre-configured with the first host by its creator. The creator finds the directory server from its 

region – the region could use the same directory server that it advertises with or it could use 

another one to start off its agents. The process of service location begins with the agent arriving 

at the directory server. The directory server looks for the attributes from each of the agent’s 

objectives in the REGION-ADS. If it finds any of the attributes, it looks at the values of those 

attributes. If they match with the values that the agent requires, a match is found. At the end of 

this process, the directory would have found 0, 1 or more matching regions for each of the 

agent’s objectives. The matching regions are sorted in the order of their usefulness to the agent 

which is computed from its preferences for the various objectives. The entry points of all 

matching regions are put into the agent’s itinerary in this order.  

After this, the directory server will look through the OTHER-DS-ADS and repeat the 

same process of matching, ordering and adding them to the itinerary. If no matches are found in 

the OTHER-DS-ADS, the directory puts the URN of its neighboring directory server after all the 

region entry points. This is necessary so that the agent has a directory server to go to after it has 

finished visiting the current set of regions and still not completed all its objectives. After visiting 

the first set of regions, the agent will go to the directory servers in its itinerary. The same process 
                                                 
1 The details of the other ads a directory server carries and what they contain is described in section 3.2.4. 
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is repeated at every directory server. Thus, the agent is either forwarded to directory servers that 

have matches or it is forwarded down the spanning tree to find about other regions that the 

current directory server does not have information about. The agent updates its mission after 

visiting every region to reflect the services it has already used and the ones it still needs to locate. 

The process of searching for services continues until the agent has used all the services that it 

wanted that were present in the system. 

 

3.2.3   Architecture of the Directory Server Network 

The directory server network is a self-configuring overlay network. The directory servers share 

the tasks of advertising information of all the regions and locating particular services from these 

advertisements for agents. Each of them is responsible for advertising a few regions. They match 

the objectives of agents that come to them with the service announcements they are carrying. But 

they also need to have information about the other directory servers in order to forward the agent 

to other locations where it may find relevant information. In order to achieve this, they need to 

organize themselves into a network by establishing neighbor connections among themselves. The 

servers form a Spanning Tree network in which each new node connects itself to one other node 

in the network. In a spanning tree, every node has one out-neighbor – the one that it connects to. 

A node may have multiple in-neighbors if more than one node is connected to it. The neighbors 

can be chosen based on some metric that the network is trying to optimize. For example, in a 

network based on round-trip latency as the metric, each node would try to find the neighbor that 

is closest to it in terms of the time it takes to send a message from the node to its neighbor. Any 
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messages that need to be exchanged in the system are passed along the spanning tree, which 

means each node passes it along to its one neighbor. 

 In the directory server network, when a new directory server joins the network, it 

discovers the other directory servers that are already part of the system and then chooses a 

neighbor from among them. Thus, the neighbor connections are formed dynamically and in a 

distributed way by each node that joins the system. In order to choose a neighbor, when a 

directory server joins the network, it needs to know the locations of the other servers so that it 

can send messages to them and measure the metric that the network is based on. There is a well-

known entity in the system, called the Central Resolver, which maintains the locations of all the 

currently active directory servers.  A new directory first obtains this list from the CR (Central 

Resolver). It then sends a message (called DS-TO-DS-PING) to each of the other directory 

servers that are currently in the system to obtain the metric from each of them. Once it receives 

their replies, it compares all of them to find the one with the maximum or minimum value 

depending on what property the network is based on. This node is made the neighbor and the 

resulting topology is a spanning tree1. Once the neighbor has been picked, the node forwards any 

messages that it needs to send through the system to its neighboring node. The spanning tree 

network of the directory servers is based on the ‘resolver network’ from the Intentional Naming 

System (INS), which is a resource discovery and service location system [1]. 

In order to maintain a list of active directory servers, the Central Resolver needs to 

communicate with them regularly. The directory servers send Keep Alive messages to the CR 

                                                 
1 Each node except the first one in the system has one node ahead of it in linear order (assuming the nodes are 
joining one at a time). Thus, the resulting graph is connected. Also, since each node has exactly one neighbor, the 
number of links formed in an n-node network is exactly n-1. Any connected graph with n nodes and n-1 edges is a 
tree. 
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(called DS-TO-CR-KEEPALIVE) at least once every time period of length equal to the timeout 

value of directory server entries at the CR. In the keep alive message, the servers also report their 

current load to the CR. As discussed in section 3.2.1, when a new region is formed, it first goes 

to the CR to find a directory server. The CR uses the load of directory servers reported in the 

keep alive messages to assign new regions to them. It chooses a random directory from all the 

ones with the lowest load and gives its URN to the region. Thus, the keep alive messages serve 

the purpose of telling the resolver that the directory is alive and of reporting its status so that 

load-balancing can be performed. 

The CR also maintains a soft state map of the neighbors of all the nodes in the system. 

Thus, after a directory joins the system and finds its neighbor, it sends a message to the CR 

(called DS-TO-CR-NEIGHBOR) to inform it of its neighbor. The neighbor map is needed so 

that in case of a node death, the CR can inform the node’s neighbors that they need to find 

another neighbor. Such mechanisms make the system robust in failure scenarios. If the CR does 

not receive a DS-TO-CR-KEEPALIVE from a directory server for 2 consecutive time periods, 

it assumes that the directory is dead and deletes its entry. Thus, directory servers do not need to 

explicitly deregister and also in case of a failure, their entry is automatically deleted and no 

regions are assigned to them. When the CR deletes the entry of a directory server x from the 

system, it looks for all the nodes whose out-neighbor was x by doing a reverse lookup in the 

neighbor map. It then informs these nodes that x is dead by sending them a CR-TO-DS-

NEIGHBOR-DEATH message which means that they need to find a new out-neighbor. They can 

do this by repeating the process they followed when they joined the network for the first time: 

query the CR for all active directories, sending them pings to make measurements, choosing a 

neighbor and reporting it back to the CR. 
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This section described the process of formation of the directory server network and the 

role of the Central Resolver in the process. It also discussed how the network is made self-

organizing and dynamic through soft state message exchanges. A self-organizing network also 

has to protect itself against failures. There are mechanisms in place that help the directory server 

network recover from node failure such as the CR informing nodes of their neighbor’s death. The 

CR could be a potential vulnerability since it is a single point of failure. However, this should not 

be a major concern in general for the following reason. The CR is mainly used when new 

directory servers and new regions wish to join the system. In general, the addition of new regions 

or directories would happen on a relatively large time scale and therefore, the potential for the 

CR becoming overloaded is low. Even if the CR fails, the only effect would be that new regions 

or directories will not be able to join until it is restored, but the functioning of the rest of the 

system is not affected. The CR can be replicated for fault-tolerance. There should be some 

redundancy built into the directory servers as well in order to protect the data that they hold (i.e. 

the service advertisements of regions). For this purpose, the directory servers could be replicated 

or some of their data could be stored in multiple locations. It is sufficient in most cases to 

maintain a weak consistency between the replicated data. A partial replication could be 

performed where only some of the data is replicated in a dynamic way depending on factors such 

as its popularity, the load on the server, etc. The replication would be hidden from the regions 

and encapsulated in the directory server network so that each region would only have to 

communicate with one directory server for its advertisement. 
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3.2.4   Exchange of Information among the Directory Servers 

The itinerary decision process of the agent consists of charting out a path through the directory 

server network with the help of information from the directory servers. If scalability was not a 

consideration, each directory server could know about the ads of all the other directory servers, 

so it could direct the agent to the exact location that it needs to go to find a service. This is the 

approach followed in INS [1] where every service advertisement is propagated to the entire 

network of resolvers through the spanning tree. Thus, every resolver knows about every service 

in the system and when it receives a request for a service, it can directly point it to the original 

resolver that the service is attached to. This solution is not scalable for large-scale systems 

because each directory would need to contain advertisements of all the other directory servers 

and for our system, this means that each directory server would know about all the possible 

regions. The other extreme would be for the agent to take a random walk through the directory 

server network. This is the scenario when the directory servers do not have much information 

about each other’s contents and therefore randomly forward the agent through the network. This 

solution, although scalable, has the problem that it might take the agent a long time to locate all 

the services that it needs since it is operating with very low information. The solution we propose 

is midway between the above two extremes and strikes a compromise between the scalability of 

the system and the efficiency of the agent’s operation. Each directory server carries the ads of a 

few others, so it can possibly give the agent some locations where it can find matches. But there 

is also an element of randomness as the directory servers do not know about the advertisements 
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of the entire network. The agent will have to be forwarded blindly at times when no matches are 

found in the information that a directory server has1. 

 It was pointed out in section 3.2.2 that other than the advertisements of regions, directory 

servers also carry ads from other directory servers (called OTHER-DS-ADS). Each directory 

does not carry OTHER-DS-ADS of all the other directory servers in the network because that is 

not scalable. It is only required to carry the ad of its neighbor, but other than that, it only has to 

carry as many as OTHER-DS-ADS as it has excess capacity for. This section describes how the 

OTHER-DS-ADS are created and how they are exchanged among the directory servers. 

 Firstly, each directory server aggregates all its region advertisements. The directory only 

needs to aggregate the service announcement part of the region entries, and not the name of the 

region or its agent requirements or its entry point. This is because the itinerary decision of the 

agent only depends on the service announcement of the region. It can be forwarded to the 

appropriate directory server with all the detailed information once the services match and the 

exact region with which the agent matched can be found there. Thus, the region aggregates the 

services over all the regions and advertises that as its ad message. It is possible that the directory 

server does not include each and every service of the regions in its advertisement. It could filter 

out some of the less important properties if it has some way to learn which ones they are. 

Learning algorithms could be used to learn over time which services of the region can be filtered 

out. Also, encoding could be used to shorten the length of the advertisements [25]. Various 

techniques such as these could be used to reduce the load on the system by making the 

advertisements from directory servers more specific. Another point to note is that only the 

                                                 
1 The agent is actually forwarded to the neighbor of the directory server in the spanning tree in such situations. 

 
 

69



regions ads are included in the aggregate and not the ads from other directory servers that this 

directory might be carrying. 

 The next step is for each directory server to send the aggregated advertisement to its 

neighboring node in the spanning tree. This is sent as a DS-TO-DS-NEIGHBOR-AD message. It 

contains the URN of the directory server and its aggregated service announcement. The service 

announcement itself is a mapping from attributes to values aggregated over all the regions. The 

directory server can decide how often it wants to send this ad. If it is receiving frequent updates 

from its regions, such that its ad is changing often, it might perform the aggregation often and 

send it to the neighbor. Or it might choose to wait and not send very frequent updates if the 

changes are not that significant. The minimum requirement is that the advertisement has to be 

sent at least once every time period before it is timed out at the receiving server. This 

communication is similar to the one between a region and its directory server. The timing out of 

these ads also ensures that any stale entries for regions or directory servers that are no longer 

functioning are cleaned out periodically. 

 Each directory server will possibly have one or more in-neighbors, i.e. neighbors that 

send their messages to it. It will receive DS-TO-DS-NEIGHBOR-AD messages from all of 

them. Upon receiving an ad, the directory server puts in an entry for it in the OTHER-DS-ADS. 

The forwarding location for this entry would be the URN of the directory server that it came 

from instead of the entry point of a region. When an agent comes to the directory, it matches the 

objectives of the agent against the OTHER-DS-ADS as well as the REGION-ADS. If a match is 

found with another directory server, its URN is put into the agent’s itinerary so that the agent can 

visit it for a detailed matching and for finding out the exact region that has services that it is 

interested in. The process of forwarding of neighbor ads and other ads is illustrated with an 
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example spanning tree in Fig 1. 

 Each directory server also forwards the ads from its in-neighbors on to its own out-

neighbor as DS-TO-DS-OTHER-AD messages. The form of this message is similar to the DS-

TO-DS-NEIGHBOR-AD message. The only distinction between these two kinds of messages is 

that each directory has to keep its neighbor’s entry, where as it can choose if it wants to keep 

entries of other directories or not depending on its capacity. The OTHER-DS entries also have a 

timeout value and so the OTHER-DS-ADS should be forwarded at least once every timeout 

period to prevent them from getting deleted if they are still valid. When a directory server 

receives a DS-TO-DS-OTHER-AD message, it can decide whether it wants to add the entry to 

itself or not. Each directory server has a metric for the maximum number of other entries it can 

have that depends on its processing power and its current load. It can change this metric over 

time. This is the metric that the directory server uses to determine whether it should add another 

entry or not. Thus, each directory performs matching for an agent with all its region ads and 

neighbor ads. Depending on its remaining capacity, it can also match against ads of other 

directories. It will also forward OTHER-DS-ADS on to the network depending on its capacity to 

1-other-ad 

1 
1-neighbor-ad 

2
2-neighbor-ad 2-other-ad 

3 5 
1-other-ad 3-neighbor-ad 

4-other-ad 

4-neighbor-ad

4

Fig 1. Exchange of ads between the directory servers. Circles denote the directory servers. Arrows 
denote the directions in which ad messages are sent. 
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do so. Thus, the directory servers are not forced to forward or match against each and every ad 

they receive if they are busy. This maintains the scalability of the system and makes the directory 

servers more efficient. 

 If a directory server has reached its maximum capacity for OTHER-DS-ADS and it 

receives another DS-TO-DS-OTHER-AD message, it has a choice for what it can do. One 

option is to ignore the message completely and not process it since it has already reached 

capacity for what it can process. The other option is to replace an entry that currently exists with 

the new entry so that the total number is still the same. The replacement scheme is up to the 

directory server – for example, it could eliminate the least recently used entry, the oldest entry, 

etc. Also, if the directory server is operating at capacity and cannot process any other 

advertisements, it could send a message to the sender asking it to reduce the rate at which it 

forwards OTHER-DS-ADS. The sender can then perform a backoff and increase the rate it sends 

messages gradually. 

 Also, another issue that might arise with this mechanism is that a directory could receive 

two different DS-TO-DS-OTHER-AD messages for the same directory server from two 

different neighbors. It is possible that even though one of the ads is received later, it might 

actually be outdated if it has been forwarded through a longer path and the one received 

previously could reflect the latest information. To prevent this from happening, time stamps are 

included with all advertisements. When a directory server aggregates its information and first 

sends out an ad, it puts the current time stamp on it. This time stamp is carried through for all the 

neighbor-ad and other-ad messages. Whenever a directory server receives an ad for a URN that 

is already has an entry for, it checks the timestamps of the two entries and only replaces the 

original one if it is older. If the new entry has an older time stamp, it is discarded and not 
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forwarded on in the network. In this way, the network will eventually converge to the latest copy 

of the ads and the older ads do not need to be explicitly removed. 

 Another optional functionality that could be added to the directory server network to 

improve its performance is caching. With the caching mechanism, the agent is not randomly 

forwarded to other directory servers, but its query is sent through the network and the answer is 

given to the agent at the same directory server. When a directory server receives a query from an 

agent that does not produce any matches from its own region and other ads, it sends the query to 

its neighbor while the agent waits at the first directory for the answer to come back. The query is 

forwarded as far as needed to find a match and the answer is returned back along the path that 

the query was sent. The contents of the answer are cached by every directory server on the way 

back. Once the directory that originally sent the query receives the answer, it caches it and also 

gives the response to the agent that was waiting for it. If it does not receive a response in a 

certain amount of time, it can assume that the answer was not found. In this case, it is up to the 

agent what it wants to do next – it could either try to send a query again or it could go to a 

different directory server or it could go back to its creator. The benefit of the cached entries is 

that in the future, if an agent queries for the same services, the directory server knows where they 

are located and can directly answer the agent without having to send out more query messages 

into the network. 

 This section described how the directory servers exchange information by forwarding 

their aggregated advertisements down the spanning tree. Each directory will only carry as many 

other entries as it has excess capacity for. This ensures that the system does not get overwhelmed 

with messages as it grows and maintains the balance between its scalability and the performance 

of service location. This also concludes the section on the functions and architecture of the 
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directory server network. The next section discusses the purpose and functioning of mobile 

agents in the architecture. 
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3.3  Autonomous Mobile Agents 

Mobile agents represent the consumers of services provided by regions and hosts. The entities in 

the system that wish to avail themselves of services launch a mobile agent into the system. A 

mobile agent is an entity that combines both program code and data and moves around in a 

network from one host to another and executes on them [49]. A mobile agent can be given a list 

of hosts to visit. This list is called the itinerary as the agent will travel to each of destinations in 

order and then possibly return to its creator with the results of its execution. The agent can also 

be programmed to perform common or specific tasks at each of these hosts. An autonomous 

mobile agent is one that can determine its path through the network on its own once it is given an 

objective at the time of its creation.  

An autonomous agent does not need to be given an entire list of addresses to visit when it 

is launched. It is only given a high level description of its purpose. As it moves around in the 

network, it looks for information about the services that it needs for achieving its objective. 

Whenever an agent learns about a host that is providing such a service, it adds the location of the 

host to its itinerary so that it can visit it later. Thus, the agent constructs its itinerary on its own 

based on the information it discovers. There is a decision process that the agent goes through to 

decide which hosts it should visit. For our purposes, we have chosen a simple algorithm. 

However, the decision process can be made as sophisticated as the creator of the agent wishes in 

order to make the agent collect some data, perform a computation, use a service, etc. 

Additionally, the agent could also deliver data or provide an action to a host. It also has to decide 

where in the itinerary it should put a host. This depends on the rules that the agent has for 

deciding what properties it should prefer and how critical the service is to the agent’s mission. 
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In order to support the operation of autonomous agents, there is an infrastructure needed 

through which an agent can gather information about services as it moves through the network. 

The agent needs to be able to enquire about services and also enquire about hosts that have 

information about services. This is where the directory servers and regions come in. Regions 

collect and combine information about a number of service-providing hosts and advertise them 

to the directory servers. An agent can go to a directory server to find out about regions and also 

about other directory servers. Once an agent is inside a region, there is infrastructure in the 

region to direct it to appropriate hosts. 

There can be other models of communication that could be used for achieving the 

purpose of consuming services such as packets, remote invocation and continuations [42]. The 

advantage of using the mobile agent model is that it enables the consumers to avail themselves of 

a larger class of services rather than just data collection because the agents are programs and not 

static messages, and hence they can actually perform computation at remote hosts. They can do 

processing on the servers they visit, hence making use of services and resources in the network. 

They also facilitate asynchronous and loosely coupled communication between the senders of the 

agents and the providers of services, making the architecture more flexible [23]. Also, using 

mobile agents allows for a richer communication paradigm because agents can go to multiple 

hosts in order to find all the information they need in the same trip and collect and aggregate this 

information if desired by the creator. It is important to note though that mobile agents could be 

replaced by any other model and the architecture could still be used to perform the same 

functions with the appropriate modifications. 
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3.3.1   Components of Mobile Agents 

The main function of autonomous mobile agents in our system is to locate and use services on 

their owners’ behalf. A mobile agent is composed of the following components: an itinerary, a 

mission, a policy, a properties file, and procedures to compute the itinerary. Fig 2 shows all the 

components with examples for each. The itinerary is the current list of hosts that the agent plans 

to visit. The initial itinerary of the agent consists of only one directory server that the agent will 

visit first. If the creator of the agent knows about more directory servers, it could put those into 

the initial itinerary as well so that the agent can visit them all. When the agent goes to a directory 

server, it gets referred to some regions and possibly some other directory servers. It puts the 

URNs of the region entry points and the directory servers at the end of the itinerary to visit them 

in the future and continues to the next host in the list. The agent may also remove items from the 

itinerary if it does not need to visit them any more. This can happen, for example, if it has 

already found a piece of data that it was looking for. Thus, the itinerary is constantly modified by 

the agent as it goes along. 

 Agent

Itinerary Mission Properties file Policy 

Components 

Procedures to 
compute itinerary 

Examples 

1. (totalCost, 300) Priority – 
network data 

1. (data, traffic) ∧ 
(location, MIT) ∧ 
(year, 2005) 

1. (creator, host3) 1. DS1 ∧ (perRegion, 50)  
2. EntryPoint1  ∧ (perHost, 30) 2. (region, reg234) 
3. EntryPoint2 Find about cost 

from region and 
check with policy

  
3. (purpose, network 
monitoring) 

4. DS7 2. (authorization, 
true) 

2. (map, Boston) ∧ 
(type, satellite) 

Fig 2. Components of a mobile agent. The five components are shown with examples for each 
below them for an agent.  
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 The mission of the agent is given to it by its creator. The mission expresses the intent of 

the creator in launching the agent by describing the services that it needs to use. On a high level, 

it can be considered as a set of conditions that should be met for the mission to be fulfilled. In the 

implementation of the mission, the conditions are represented as attributes and values1. When the 

agent visits a host whose service advertisement consists of the same attributes and values, then 

the agent would have fulfilled that part of the mission. Thus, the mission is subdivided into 

smaller independent objectives – each objective represents one service that the agent wants to 

use and it consists of one or more conditions that together represent that service. Each condition 

itself is an attribute-value pair and the objective is a boolean combination of the conditions2. For 

each objective to be completed, the entire boolean combination of conditions has to be true at the 

same host. The agent can independently complete the different objectives at different hosts. The 

mission as a whole is not modified by the agent, but it keeps track of the objectives that it has 

already completed at any point and the ones that it still needs to complete. Thus, after visiting 

each host where it uses some service, the agent updates the list of services that it is still looking 

for. 

 The policy is a set of guiding principles for the agent to follow when it is trying to 

achieve its mission. The policy consists of general constraints that do not relate to a specific 

objective, but the agent would prefer or require while going about its mission. They could be 

characteristics that the agent wants the regions and hosts it visits to have. For example, the 

security requirement of an agent is something that would be incorporated into the policy. If an 

agent expects a certain level of security in its operation, it would prefer to go to hosts that 

                                                 
1 We have used a simple general-purpose attribute-value representation for the mission as well as the service 
advertisements. It can be imagined that this part would be replaced by a more sophisticated language for specific 
applications. 
2 See section 3.4.3 for an example of a mission. 
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provide it that security. It is something that pertains to all the functions the agent performs and is 

not directly part of the mission. Additional requirements and preferences for the agent’s 

operation such as these are included in the policy. The agent can decide whether it should visit a 

region or not on the basis of its policy. The policy is also represented in terms of attributes and 

values. One of the components of a region’s advertisement to the directory server is the set of 

requirements, characteristics and policies of the region that are relevant to an agent wishing to 

visit it. The agent would look for its policy attributes in this section of the advertisement after its 

objectives gave a match with the region’s services. If its policy agrees with the region’s 

properties, it would include it in the itinerary. Also, the agent would check its policy when it is at 

the entry point of the region and also before it decides to use a service at a host. 

 The properties file of an agent contains any public information that the agent wants to 

disclose about itself, its creator and its owning region. The purpose of the properties file is to 

make information available to a region when the agent is attempting to gain access to it. The 

region uses the properties of the agent to decide whether it will grant or deny access. For 

example, a region might not want the data collected from it to be used in a commercial product. 

Therefore, it would want to know from the agent what kind of use the data that it collects is put 

to. It could also be used by hosts to make sure that the agent has certain characteristics that they 

require the consumers of their services to have. The properties do not apply to a specific service 

of a region or to a specific objective of an agent, but in general to the characteristics of the 

exchange between the agent and the region or the host. The properties file is also expressed in 

the same attribute-value language so that a region or host could look for the value of a specific 

attribute that it cares about. The properties file is presented by the agent upon request to the 

region at the entry point and to a host before using its service. As mentioned in section 3.1.4, 
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there could be a negotiation during the entry so that the agent could reveal parts of the properties 

file in stages. Thus, each agent would have its own mechanism for how it wants to use its 

properties file. 

 The last component of the agent consists of the procedures that are used to compute the 

itinerary of the agent. The itinerary decision process involves selecting the regions to visit (at the 

level of the directory servers) or selecting the hosts to visit (at the level of regions). It also 

involves ordering the matching regions or hosts before putting them into the itinerary so that the 

agent can visit them in an order that would be most efficient for its purposes. The decision 

process is thus a function of the agent’s mission, its policy and any other considerations that it 

has for selecting and ordering items in the itinerary. The agent needs to be programmed with an 

algorithm to do these tasks. For example, in the example implementation discussed in Chapter 4, 

each objective in the agent’s mission also has a numerical preference value associated with it. 

This represents which objectives are more important for the agent to complete and which are less 

important. When the agent finds 2 or more matching regions, it first looks through their services 

to find how many objectives each of them match against. It then computes a weighted sum for all 

the objectives that can be completed at each matching region based on the preference values. 

Thus, the agent creates an ordering such that it gives preference to regions that are most useful 

for completing its important objectives. Another example is that an agent might have a limit on 

the amount of money it can spend in a single region according to its policy. It will look at the 

region’s properties and if the fee of the region is higher than its limit, it might decide not to visit 

it even if the region has services that the agent is looking for. Thus, agents can have a variety of 

factors that they can consider for selecting and ordering regions. The architecture does not 

impose any such factors, but leaves it up to the creator of the individual agent to decide on what 
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is important for them. Therefore, each agent will have some form of an itinerary decision 

procedure which is derived from its mission, policy and other factors. 

 

3.3.2   Life Cycle of an Agent 

This section will discuss the path that the mobile agents take through the system, the role of the 

various components discussed above in their life cycle and their interactions with the other 

entities in the system including directory servers, regions and hosts. The life of an agent starts 

when it is launched by its creator. The agent is initialized with the mission, policy, properties and 

itinerary decision procedure. The initial itinerary of the agent consists of the URN of a directory 

server that the creator knows about. The creator can use the directory server that its region 

advertises with or could find out about directory servers from some other source (like the Central 

Resolver). If the creator host knows about more directory servers, it could put all of them into the 

agent’s initial itinerary. The initial address is necessary because the agent needs a place to start 

finding out information to build its itinerary. 

 When the agent arrives at a directory server, it makes its mission available to it. The 

directory uses this mission to perform matching against the advertisements of regions that it 

currently has. The overall idea is to look for the attributes in the agent’s mission and test if the 

desired values are present in any of the ads. The mission is subdivided into objectives and 

matching is done for each individual objective. An objective is a boolean combination of 

conditions and the entire expression has to evaluate to true for a match to be found. Each 

individual condition is an attribute and a corresponding value. The advertisements of regions also 

consist of attributes and one or more values corresponding to each attribute. The directory server 
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matches the attributes and values and evaluates the expression for each objective. It gives the 

agent a list of all matching regions. The agent then uses its itinerary decision procedure to check 

which of these it would actually include in its itinerary and in what order. In order to do this, the 

agent might have to look at the other properties and requirements that the region has advertised 

and also the specific regions that matched with the specific objectives1. Once the agent decides 

the order of regions, it puts the entry points of all the regions in its itinerary. 

 Besides referring the agent to regions, the directory server also refers it to other directory 

servers where the agent can go for information about additional regions. Each directory server 

carries the ad of its in-neighbor and probably those of some other servers in the network. It 

performs matching similar to above for the ads of the directory servers and presents the results to 

the agent. In this case, the agent does not yet know about the specific regions advertised at the 

other directory servers that matched with its mission but only knows that the directory as a whole 

has some matching ads. The agent puts the URN of the directory servers at the end of its 

itinerary so that it can visit them after the matching regions. In case, the directory server does not 

find any other matching directory servers, it can put the URN of its out-neighbor at the end of the 

agent’s itinerary so that the agent can at least have one other directory server to go to. The agent 

also has to make sure it has not already visited the directory server before. Similar to regions, the 

agent keeps track of all the directory servers it has visited as well and checks against them before 

adding a directory URN to its itinerary. 

                                                 
1 The system may or may not want to allow repeat visits to regions depending on the needs of the particular 
application. In some cases, the agent might want to visit a region a second time if there are dependencies in 
functionality between regions. If the agent only has to visit each region once to get all the information it needs, it can 
keep track of the names of all the regions it has visited and check against them before adding any region to its 
itinerary. 

 
 

82



 The agent then proceeds to the entry point of the first region on its itinerary after its 

identifier is resolved to the actual hostname. First, the agent will ask the region for its current 

service advertisement so that it can confirm that the region actually does have services that the 

agent is interested in. Once the agent is positive that it wants to visit the region, it asks the region 

to grant it permission to enter. At this point, the region can ask for the agent’s properties file. The 

agent can also ask the region for other detailed information that it might be interested in for 

conforming to the policy. The negotiation to grant entry to the agent continues until the region 

grants access to the agent. This could be either a simple one-step process where the region might 

grant permission to every agent that wants to visit or it could be a length exchange of 

information between the two entities to reach an agreement.  

 Once the agent has been authorized to visit the region, the entry point has to direct it to 

one or more hosts in the system that can provide it with services or information about where to 

find the services. The entry point itself might have information about where all the services in 

the region are located or there might be another server to do this task and the entry point can 

send the agent there. Also, the information could be distributed between various servers in the 

region and so the agent somehow has to be routed among them to discover the services. Each 

region can have its own method to route an agent that depends on its internal organization, its 

size and other factors. The agent has a standard interface to communicate with every host that it 

visits within a region1. It uses the function AVAILABLE-SERVICES to inquire about the 

services that the host offers. If it finds a service that it is interested in, it can use the method 

SERVICE-INFORMATION to get detailed information about a particular service. This 

information can include, for example, the name of the function that the agent has to invoke in 

                                                 
1 The interface was discussed in detail in the section on the functionality of the regions with respect to agents (3.1.4). 
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order to actually use the service. The agent uses any services that help in fulfilling its mission. If 

the current host only provides routing information and not any services as such, it can return 

NULL for these functions. The third method FORWARD-AGENT is used to get information about 

the locations of other services from the current host. The hosts that implement this method are 

called Way Points and are used for routing the agent to service-providing hosts in the region. 

They contain information about services provided by other hosts in attribute-value form. They 

perform matching of the agent’s mission with service advertisements similar to the matching at 

the directory servers. If they find any services that match the agent’s requirements, they give the 

URN of the corresponding service host to the agent. The agent can put it in its itinerary for the 

region to visit later. The two functions of providing services and routing the agents can either be 

performed by the same hosts in the region or by different hosts. Thus, within a region, the agent 

will go through a path containing service-providing hosts and way points until it cannot find any 

more hosts that have services it is interested in. 

 At the end of the agent’s journey in a region, it has to pass through an exit point which 

sits at the boundary of the region. The exit point can be put into the agent’s itinerary at the entry 

point itself and it would remain at the end of the itinerary for that region. The region can perform 

any exit functions on the agent here. For example, the region might want to bill the agent for all 

the services it has used while it was within the region at the exit point. The agent would not be 

allowed to leave the region until it pays for the services. Also, for the agent, the exit point would 

be a place where its mission gets updated to reflect which objectives have already been fulfilled 

through services it used in this region and which services it still has to look for. The agent could 

actually do this every time it uses a service at a host or it could do it all together in the end. Once 

the exit functions have been performed, the agent can proceed to the next item in its itinerary, 
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which could be a region or a directory server. If it is a region, its entry point identifier is resolved 

to the hostname at this point and the agent is transferred to it. Then the agent repeats the above 

process of visiting the directory servers and regions until all its objectives have been met.  

 At the end of its life cycle, the agent could return to a location that was specified by its 

creator, which could be the creator itself or a different host. It can report back the results of the 

functions that it performed such as the data it collected or the status of activities it carried out. In 

some cases, there might be no results to report back so that the agent will cease to exist after 

completing its mission without reporting back. 

 This concludes the discussion on autonomous mobile agents which are the means that 

consumers of services communicate with the providers. The life cycle of an agent was discussed 

as it travels through the network and determines its path by obtaining information from various 

sources. The next section focuses on the communication protocol between the different entities 

in the system and the language used for various advertisements and exchanges. 

 

3.4  Communication Protocol 

The various components of the architecture interact with each other at different points for 

functioning of the system. A protocol is needed for the communication that happens at all these 

points because different entities could have different languages for expressing their intents and 

properties. The languages and protocols we have used in the system have intentionally been 

made to be very simple and general purpose so that they can handle a diverse set of applications. 

The expectation is that each application will have its own specialized language which it would 
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use for its internal communication. The architecture permits an application to define the grammar 

and semantics of its own language. 

 Most aspects of the communication protocol have been discussed at various points in the 

description of the architecture in the previous sections of Chapter 3. Section 3.1.4 discussed the 

communication of regions with directory servers and the contents of the messages exchanged 

between them. It also discussed the interface for agents when they are visiting hosts inside 

regions. Section 3.2.4 explained the messages that are exchanged within the directory server 

network. This section will first describe the mechanism for sending messages between any two 

entities in the system. It will then discuss the protocol for service advertisements of regions and 

the language used for expressing an agent’s objectives. 

 

3.4.1   Message Exchange in the System 

The entities in the service-providing architecture have to communicate with each other in various 

situations when they need to inquire or relay information. The communication model in our 

system is for them to send messages to each other. Special-purpose mobile agents called 

notification agents are used to carry the messages. Notification agents are launched from the 

sender of the message to the receiver.  They may or may not carry data depending on the purpose 

of the message. For example, a REGION-TO-DS-AD-MESSAGE is sent from a region to a 

directory server when it wants to advertise its services. It contains some data, which is the set of 

services of the region, its requirements and its entry point. There are other messages that do not 

have any data such as a REGION-TO-DS-KEEPALIVE-MESSAGE, whose purpose is only to 

inform the directory server that the region is still alive and its ad is unchanged. When a 
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notification agent is received at a host, it has to take some actions in order to process the 

particular type of message it has received. For a message that is querying for information, the 

host has to send a notification agent in reply. For example, a directory server sends the DS-TO-

CR-JOIN-NETWORK message to the Central Resolver when it first joins the network. When the 

Central Resolver receives this message, it has to reply with the URNs of all the currently active 

directory servers so that the sending directory can pick a neighbor from among them. Thus, the 

Central Resolver sends a CR-TO-DS-JOIN-NETWORK-REPLY message back to the directory. 

 There are a number of messages that have already been defined in the system. An 

application that has its own special communication requirements can define its own notification 

agents. A notification agent needs to have a sender URN, a receiver URN and could have some 

additional data. It might also need to carry some credentials with it for authorization. A 

notification agent also has a function that is executed at the receiving host and is used for 

carrying out the processing of the message. In this manner, all the functions associated with an 

agent are encapsulated within the agent itself and each host does not need to define special 

methods in order to handle different kinds of agents. This property of mobile agents being able to 

encapsulate both data and functions was the main reason they were chosen as the communication 

model for the system. They can be used ubiquitously for all communication needs and are easy 

to define and use. Thus, hosts do not need to need to have individual mechanisms to process all 

the different kinds of messages. 

 Here is an example of the life cycle of a notification agent. A DS-TO-DS-NEIGHBOR-

AD message is sent from a directory server to its out-neighbor in order to advertise its regions. 

The directory server first has to aggregate the services of all the regions it is advertising in order 

to have the data to send in the agent. It initializes the notification agent with this data, the URN 
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of its out-neighbor and a time stamp to record the time at which the ad was created. The agent 

travels to its destination. The receiving host invokes the processing function of the agent which 

involves adding a new entry in the receiving directory server for the sender. The aggregated ad 

from the agent is put into the entry along with the time stamp. If the directory server already has 

another entry for that sender, it replaces the old entry after comparing the time stamps. When the 

processing of the agent is over, it ceases to exist. 

 

3.4.2   Service Advertisement Protocol 

Since the regions are independently managed entities, they can follow any protocol for 

communication between the hosts within the region. The hosts can be informed of the protocol 

when they join the region. However, they need to have a standard interface in order to 

communicate with entities external to the region such as the directory servers. This section 

describes the protocol for the communication between a region and a directory server which 

consists of the region sending its service advertisement to the region. 

The services of hosts are described in attribute-value form. An attribute is a category in 

which the service can be classified, for example ‘location’, ‘name’ or ‘cost’. Value is the 

classification within that category such as ‘MIT’, ‘traffic data’ or ‘20’. Attributes and values can 

be free-form strings or they could be restricted to having a particular data type by the application. 

For example, an application could restrict certain attributes such as ‘cost’ to have only decimal 

values.  The architecture also does not restrict the usage to a fixed set of attributes and values. 

However, an application may choose to impose such a restriction so that only a fixed set of 

attributes or values would be recognized and anything outside the set would be an error. Also, 
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regions can have their own rules about what kinds of services they allow in the region, and hence 

what kinds of attributes their hosts can have. The attribute-value descriptions serve the same 

purpose as name-specifiers [1] or resource descriptions [6] in resource discovery systems. An 

application can also have the attribute-value descriptions be hierarchical such that a pair 

dependent on another is a descendant of it. For example, for a news service, <City, Boston> 

would be below <Country, USA> in the hierarchy. Thus, each service is expressed as a map from 

free-form attributes to their values. 

 The region has to aggregate the service advertisements of all its member hosts to present 

a consolidated ad to the directory server. Regions can have their own algorithms for performing 

the aggregation which depends on their organization and also on how the attributes and values 

are expressed. Fig 3 shows an example of how a region could perform the aggregation: it collects 

the service ads from all its hosts and aggregates over all the attributes such that in the final ad, 

each attribute that has appeared in any of the hosts appears once. Each attribute could have 

multiple values if more than one host had the same attribute and different values for it. 

Host 1 ad: 

(weather, Boston) 

Aggregated ad: 
Host 2 ad: 

(weather, Boston | New York) (weather, New York) (maps, New York | Austin) (maps, New York) (local news, Austin) 
(traffic, Austin) 

Host 3 ad: 

(maps, Austin) 
(local news, Austin) 
(traffic, Austin) 

Fig 3. Example of how aggregation of ads can be performed. This is a region that serves local city 
information. On the left are service descriptions from 3 different hosts. On the right is the aggregated 
advertisement that the region sends to the directory server. 
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The region could choose to omit certain attributes and values in the final advertisement. It 

can also choose how often it updates the service advertisement. If the region’s services are 

changing frequently in very short intervals of time, it might not want to update the ad at the 

directory server every time there is a small change, but wait for a certain period of time and then 

report the new status at that point. Along with the services, the region can also advertise some of 

its properties and requirements. The properties would be those that would be relevant to the 

agents that wish to visit the region such as the language it uses for communication, its billing 

policy, etc. These properties do not apply to a particular service within the region, but they 

consist of information that would be helpful to the agent in determining that it wants to visit the 

region and also in its operation within the region if it does decide to visit it. The requirements 

refer to properties that the agent should have for it to be allowed into the region. This could 

include the security credentials that the agent needs to present, the language it needs to 

understand and so on. Both the properties and requirements are also expressed as maps from 

attributes to values for simplicity. An agent can look for the particular attributes that it 

understands. 

 The final part of the ad message from a region to a directory server is the entry point 

identifier for the region. The identifier is resolved to an actual hostname and address when an 

agent wants to enter the region. It was explained in section 3.1.4 how a region can pick its entry 

point and vary it over time. The name to multiple address resolution is required for several 

reasons: load balancing, resolving requests based on their origin, and resolving requests to hosts 

that are ‘closer’ to the requesting host. The actual process of resolving the identifier to multiple 

hosts could be implemented in a few different ways. One of the methods is to use the round-

robin resolution feature provided by DNS ([32], [33]). In the name record, there are multiple IP 
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addresses corresponding to the same name. If a query is made for that name, a list of IP 

addresses is returned. If the round-robin option is turned on, the list is rotated for every new 

query. The clients usually use the first name in the list and hence this provides a simple solution 

to load balancing. However, since the rotation is completely deterministic, it does not rotate the 

list of servers based on load or the number of queries, but rather rotates the list the same way on 

every single query. Thus, this is a simple solution that might be sufficient for some cases, but 

other applications might require more sophisticated solutions. 

 Another option is to use load-balancing name servers such as lbnamed [38], which is an 

addition to the BIND implementation of DNS [4] that performs load balancing. The lbnamed 

server polls hosts that have the common address and collects information about their load. The 

DNS response goes through the lbnamed server which returns the host with the minimum load. It 

is transparent so that users do not need to know that this load balancing name server is actually 

selecting the least-loaded machine for them. Other than lbnamed, there are also many other 

commercially available hardware and software load balancers available that could be used. 

 

3.4.3   Mobile Agent Language 

The intent of a mobile agent’s creator is expressed in its mission and policy. Agents have to 

follow a protocol for describing their missions and policies because these are the components 

that are visible to external entities such as directory servers and hosts inside regions. The 

directory servers have to match an agent’s objectives with the service advertisements from 

regions that they carry. At the basic level, the service requirements of an agent are expressed as 

attribute-value pairs. But a more sophisticated representation is needed to express more complex 
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combinations of these attribute-value pairs. This section describes how the mission and policy of 

an agent are structured. 

 A Constraint is used to express a restriction on the values an attribute can take. A few 

different kinds of constraints are defined in the architecture. More can be defined by an 

application. A MaxConstraint is used to express the condition that an attribute should have the 

maximum possible value that an agent can find. For a directory server that is trying to match this 

constraint for an agent, this means that it should look for all the services that have this attribute 

and the match would be the one that has the maximum value. For a MinConstraint, the directory 

has to look for the service with the lowest value for the given attribute. A RangeConstraint 

imposes the condition on the value of its attribute that it has to be between a given pair of values. 

This is only possible if the values can be ordered. The RangeConstraint consists on an attribute 

a, an upper bound u and a lower bound l. For satisfying this constraint, the service should have 

the attribute a with a value x such that x >= l and x <= u. The NotInRangeConstraint 

represents the opposite of a RangeConstraint such that the value has to less than the lower bound 

and greater than the upper bound. 

 A Constraint Expression is a used to express a boolean combination of individual 

Constraints. An AndConstraintExpression is used to represent a conjunction of individual 

constraints. In order to satisfy it, all individual constraints should be satisfied. The following is 

an example of an AndConstraintExpression:  

RangeConstraint(‘Year’, 1990, 2000) ∧ MaxConstraint(‘NumberOfDataPoints’) 
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An OrConstraintExpression is similarly used to represent a disjunction of individual constraints 

and satisfying any one of the constraints is sufficient to satisfy the expression. A NotExpression 

expresses the negation of a constraint or a constraint expression. 

 These individual constraints can be combined to form constraint expressions. Each 

objective of the mission is a single expression that is a combination of constraint expressions. 

The mission consists of a number of objectives. Each objective of the mission has to be satisfied 

in order for the agent’s entire mission to be achieved. The following example shows how the 

various building blocks are combined to form the mission for an agent. 

An example mission: 
 
Objective 1: (data, network traffic) ∧ (location, MIT) ∧ ((year, 2005) ∨ (year, 2004)) 
Objective 2: (map, Boston) ∧ (type, satellite) ∧ (color, true) 

 The policy of an agent is also constructed similarly out of constraints and constraint 

expressions. The constructs defined in the architecture are simple and general-purpose, but an 

application can define its own special constructs for expressing an agent’s mission as long as it 

defines the algorithm to find a match for them. An important assumption has been made 

throughout the system about the attribute-value language used by agents and regions to describe 

services. The assumption is that the language is universal which means that a given word is 

semantically equivalent for all different entities in the system and has the same interpretation for 

all of them. This implies that if an agent is looking for a particular attribute x and a region has 

advertised an attribute y whose string representation is the same as x, then y produces a match for 

x. As long as their string representations are the same, two words are interpreted the same way. It 

is important to note this assumption because in a real world scenario with a diverse set of 

regions, it is possible that 2 entities can have different interpretations of the same attribute. For 

example, the word ‘bank’ can be intended to mean ‘financial institution’ by one region and could 
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be interpreted as ‘the slope of land adjoining a body of water, like a river’ by an agent from 

another region. This and other considerations for designing a naming scheme for a system are 

discussed in [41]. 

 The languages used to represent services and the mission and policy of agents are 

intentionally chosen to be simple in order for them to be general-purpose. The expectation is that 

an application might have its own specific language that it will use for communication and for 

expressing its services. The system is flexible such that it can be extended to use other languages. 

There are a number of languages that have been designed to express policies, constraints and 

capabilities of systems such as RuleML [9], Web Services Description Language (WSDL) [15], 

Resource Description Framework (RDF) [27] and so on. Each of these and other resource and 

policy description languages has its own features, which might be suitable for different 

applications. 

 This concludes the section that described the details of the communication protocol that 

is used in the architecture, including the exchanged messages, service advertisements and agents’ 

language. This also concludes the chapter on the details of the architecture of the service-

providing distributed system. In this chapter, we discussed the various components of the 

architecture that enable location of services in a large-scale system. Regions help to partition the 

search space by grouping together hosts that share common characteristics. They can be based on 

any combination of features. They manage themselves independently and provide some basic 

functions and an interface for communication with the other components. They perform 

aggregation of service descriptions of their member hosts and advertise it to the directory 

servers. The directory server network is a self-configuring overlay network that advertises 

services for regions and aids agents in locating services that they want to use. It can adapt itself 
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to increasing load from regions by dynamically changing the number of advertisements that are 

exchanged between individual directory servers. The entities that wish to consume services are 

represented in the system by autonomous mobile agents. The intent of an agent’s creator is 

expressed through a mission and policy for the agent’s operation. Agents compute a path through 

the network based on their mission and policy and with the help of information from directory 

servers and regions. The next chapter discusses the implementation of the architecture described 

here and presents results from an experimental evaluation of the system. 
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Chapter 4 

Implementation and Evaluation 
 

This chapter describes the implementation and evaluation of the region-based service-providing 

system. The architecture that was discussed in the last chapter has been implemented in Java. It 

can be used for setting up regions to be integrated with the system. Service-providing hosts can 

be added to regions. The directory server component sets up the directory server network and 

provides complete functionality for it. Agents are implemented such that they can be initialized 

with a set of objectives and launched into the system. They will travel through the network to 

find services to complete their mission. The purpose of the implementation is to be a framework 

which can be extended by applications using it. There are two ways in which the extension can 

be done: one is to use the current general purpose framework and add regions and hosts in the 

application to it directly; the other is to inherit from parts of the current framework to develop a 

more specialized system for a specific application and implement rules and properties that are 

required for the application. 

 Regions are independently managed entities that can define their own internal 

organization and structure. A new region can be defined and added to the system. The only 

condition is that it has to implement a few methods of the standard interface for regions which is 

needed for their communication with the other entities of the system. For illustrating how a 

region can be defined, we have implemented an example internal organization for regions. This 

is not part of the basic framework, but an extension of it. Section 4.2 discusses this hierarchical 
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internal organization which is a flexible structure and could be suitable for regions of various 

sizes. The section after that briefly discusses an example application for the framework. The 

application is for a billing system where the service-providing hosts charge for their services. It 

implements parts of the commercial model that was discussed in section 3.1.6. It describes the 

different schemes that can be used for charging for the services and for payment by the agents. 

The system also includes a basic banking service. Notifications are used to make payments and 

verify identities.  

The last section in the chapter presents an evaluation of the architecture in terms of 

desirable properties for distributed systems. We performed simulations to measure the 

performance of the system as various factors affecting it were varied. The experimental 

evaluation and analysis of the design show that the system has some good properties in terms of 

scalability, robustness, and fault-tolerance and recovery. The results are presented in section 4.4. 

 

4.1  Implementation Details 

The major components of the system as discussed in Chapter 3 are: autonomous mobile agents, 

regions, service-providing hosts and the directory server network. The implementation of each of 

these components is discussed in the following sections. 
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4.1.1   Basic Agent Framework and its Extensions 

The agent framework we have used in the system is called Ajanta ([3], [48]) and was developed 

at the University of Minnesota. The implementation for mobile agents and agent servers comes 

from this system and the rest of the components have been implemented over it. All servers and 

agents are identified by URNs in Ajanta. Agents can be launched to a particular host and can be 

given a method name that they will execute on that host (assuming that the server has defined 

that method). They can also be initialized with a static list of host URNs that they will visit once 

they are launched. The hosts should have servers running on them to receive agents and process 

their requests. Ajanta takes care of resolving the URNs to IP addresses and of routing the agents 

to them so that the rest of the system can just use URNs for identifying and addressing hosts. 

 The main focus of the Ajanta design is on mechanisms for secure and robust executions 

of mobile agents in open systems [46]. In Ajanta, the mobile agent paradigm is based on the 

generic concept of a network mobile object. Agents in this system are active mobile objects, 

which encapsulate code and execution context along with data. Ajanta is implemented using the 

Java language and its security mechanisms are designed based on Java's security model. It also 

makes use of several other facilities of Java, such as object serialization, reflection, and remote 

method invocation [3]. It uses java bytecode to transfer the agents. 

 For the implementation of our system, we first enhanced the mobile agents from Ajanta 

to be autonomous i.e. to figure out their own path through the network given a set of objectives 

in terms of attributes and values to describe services. A Constraint is used to express 

conditions on the values that attributes can take. MaxConstraint, MinConstraint, 

RangeConstraint and NotInRangeConstraint are inherited from Constraint and 
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are used to define specific types of constraints1. A ConstraintExpression is used to 

express boolean combinations of individual constraints such as conjunction, disjunction and 

negation. The Mission of the agent is composed of a set of objectives. Each objective is a 

compound constraint expression that represents a particular service that the agent wishes to use 

along with its characteristics. The various objectives can be ordered by giving each of them a 

preference value that helps in deciding the order of regions and hosts to visit. The Policy is 

also constructed similarly but contains general requirements of the agent that are not related to a 

specific service. The agent has methods that it will execute when it arrives at a directory server 

and at a host inside a region. It also contains algorithms that can order a list of matching regions 

and/or hosts (returned to it by a directory server or a Way Point for example) and construct an 

itinerary out of them. The AutoAgent class combines all these elements to define a fully-

functional autonomous agent for the system. 

 AutoAgent can be extended for specific agents if needed. However, in order to provide 

additional flexibility to the applications to implement different kinds of agents that might have 

different languages for expressing their requirements, an interface is also defined for agents in 

the system. It is sufficient for an application to implement this interface for its agents since the 

rest of the system uses this interface to communicate with them. The AgentInterface 

defines methods for the basic functions of an agent that can be implemented by the application. It 

includes methods that the agent will execute when it is at a directory server, at a host inside a 

region and at a border host. It has accessor methods that return the various components of an 

agent such as its itinerary, mission, policy, public properties and its URN. AutoAgent 

implements the AgentInterface for a general-purpose agent. 

                                                 
1 See section 3.4.3 for a discussion on the structure of an agent’s mission. 
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4.1.2   Interfaces for Regions and Hosts 

The next part of the system is the interface for regions and hosts inside regions. Regions and 

hosts need to provide some basic functionality to the agents and to the directory servers. They 

can choose any implementation they like to provide the functionality for the methods in the 

interface. They could have additional functionality besides the basic methods in the interface. In 

the Region interface, there are methods to find a directory server from the Central Resolver 

when a region first joins the network and to send its ads and keep alives to the directory server 

after it joins. There are also methods which the agent interfaces with at the entry point of the 

region that ask for the agent’s properties and determine whether to grant it access. Lastly, there 

are accessor methods that return the values of various fields of a region such as its name, latest 

ad, entry point, directory server, agent requirements and so on. A RegionAdRecord is sent in 

the ad message from the region to the directory server and consists of the service map, 

requirements and the entry point. RegionID is the unique identifier for a region, which 

currently just consists of a string, but can be extended to define any kind of identifiers for 

regions. There are a number of notification agents as well that are associated with regions and 

are used to exchange messages needed for the above functions. All notifications are spawned off 

as separate threads and hence the servers can continue execution while they are being 

transmitted. 

The RegionHost interface is implemented by all the hosts inside a region that an agent 

can visit and consists of the basic operations that an agent needs to function at the host. It is 

required for the initial communication of an agent with a host. It has two methods dealing with 

services that the host offers: AVAILABLE-SERVICES returns the services that the host is 
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currently offering, and SERVICE-INFORMATION returns detailed information about a 

particular service that the agent is interested in. Region hosts also need to direct agents to other 

hosts inside the region that have services that the agent wants. FORWARD-AGENT is the method 

that takes the mission and policy of the agent and matches them against service advertisements 

from other hosts. If the host does not have information about services of any other hosts, it can 

return NULL for this method. There are also accessor methods in the RegionHost interface to 

get the URN of the host and the RegionID of its owning region. Special hosts inside the region 

such as the Border Way Points could have special implementations of this interface because they 

may not directly provide services to agents. They do have to forward the agent to other hosts 

however and they could also perform special functions such as putting an exit border point at the 

end of the agent’s itinerary for the region. A region can implement its own notifications for 

communication between its member entities. 

 

4.1.3   Directory Server Network Implementation 

The directory server network mainly consists of two components: DirectoryServer and 

CentralResolver. The DirectoryServer class has implementation for the various 

functions of directories. When they first join the network, they report to the Central Resolver 

(CR), obtain the list of currently active directories, send messages to each of them, measure the 

metric that the spanning tree is based on, choose one out-neighbor and report it back to the CR. 

This process results in a spanning tree organization of the directories. The next function is to 

receive ads and keep alives from regions that are advertising with each of them. Each ad entry 

that is placed in a directory (either from regions or from other directory servers) is associated 
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with a separate timer thread that deletes it when the timer expires. If a keep alive or another ad 

message is received before that, the timer thread is reset to start from the beginning. When a 

timer thread deletes an entry from a region, it also sends a message to the region informing it that 

the entry is being deleted, so that in case the region is still functioning, it can resend the ad. Each 

directory receives NEIGHBOR-ADS and OTHER-DS-ADS from its in-neighbor. It has to store 

all the NEIGHBOR-ADS, but it only stores as many OTHER-DS-ADS as it has the capacity for. 

It also forwards all the ads that it stores on to its out-neighbor. The other set of functions of 

directory servers is related to navigating the mobile agents. There are functions that take the 

mission and policy of an agent and return the regions and directories that have advertised 

services which the agent wants.  

 The CentralResolver has entries for all the currently active directory servers in the 

network and it maintains a list of their neighbors as well. It also uses timer threads to time out 

entries of directory servers that are not functioning any more. The CR also keeps track of the 

status of each directory server in terms of its load which is reported by the directory along with 

its keep alive. The CR uses this load information to assign directory servers to new regions. 

 This concludes the section on the implementation of the basic service-providing 

architecture. The next section discusses a particular internal organization of regions that was 

implemented as an extension to the system. 
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4.2  An Example Internal Organization for Regions 

This section presents a hierarchical scheme for organizing hosts within a region. This is an 

example of an internal architecture for regions that was implemented for illustration. It is a 

scalable and flexible tree structure that can be used for regions of various sizes. In this 

organization, there are a few different types of hosts inside a region: Service Hosts, Way Points, 

Top-Level Way Points, Border Way Points and the Region Information Server. They are 

described in the following sections. Fig 4 illustrates the proposed internal organization with an 

example. 

 

4.2.1   Components of the Internal Structure 

The core of a region is formed by two kinds of hosts: Service Hosts are the ones that 

Top-level way point 

  Way point 

  Service Host 

Border way point 

Fig 4. Hierarchical internal organization of regions. Arrows point in the direction that ads are sent. 
Agents are forwarded in the reverse direction. 
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provide services to agents visiting the region and Way Points are the ones that provide navigation 

facilities i.e. they direct agents to other hosts in the region. The hosts are organized as a tree 

structure and the number of levels of the tree depends on the complexity and size of the region. 

Way points are the internal nodes of the tree and service hosts are the leaves that attach 

themselves to the internal nodes. A way point can have both service hosts and other way points 

as its children and hence, the tree can be unbalanced. Service hosts have attribute-value 

descriptions of the services they provide that they advertise to attract consumers (agents). Each 

child advertises these services as its properties to its parent. The parent node aggregates the 

reported properties of all its children into a condensed representation. It then advertises this 

aggregated property as its own to its parent and this process continues recursively till the top of 

the tree. The properties are reported to parents through notifications. A child can 

add/delete/modify its properties at the parent at any time by sending a new notification. The 

parent then has to perform the aggregation again and report the modified properties to its parent 

and so on. 

If the tree is rooted at a single way point, that node will become the central point of delay 

or failure and might have excessive load. To prevent this in our organization, the root of the tree 

is not necessarily one single way point, but the hierarchy ends at a few Top-Level Way Points. 

Thus, the load is distributed among these top-level way points and it can be considered that the 

organization actually consists of multiple trees rooted at these few points. The top-level way 

points are all connected to each other, which means that they forward their aggregate properties 

to each other. Thus, they can forward agents to each other because they know the aggregated 

properties of the other trees. Another way of looking at this structure is as a singly-rooted tree, 

with a cluster at its root that serves the purpose of providing resiliency. 
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The Border Way Points are the servers that sit on the boundary of the region and control 

the agent traffic entering and exiting from the region. They can perform several functions to 

implement the region’s policies such as keep track of billing, authenticate the incoming agents 

according to the region's security policy, etc. They also have to forward incoming agents to 

appropriate hosts inside the region. For this purpose, each border way point is connected to at 

least one top level way point and it forwards all incoming agents to this top-level way point. 

From here, they can make their way into the internal network of the region and access the 

services they need. 

The Region Information Server (RIS) is the administrative authority for the region. It 

creates the rules and policies of the region and also provides all the information that is global to a 

region. There is one RIS per region and its creation signifies the creation of the region. It is also 

responsible for reporting the aggregated services of the region to its designated directory server. 

The service descriptions are distributed among the different top-level way points for the different 

sub-trees. They need to be combined before being sent to the directory server. To do this, the 

top-level way points report the aggregated properties from their sub-trees to the RIS. The RIS 

aggregates them and sends the complete service advertisement of the region to the directory. The 

frequency with which updates to properties are reported to the RIS and to the directory from 

there could vary from region to region and is thus configurable. The RIS can be replicated for 

fault-tolerance. Also, it is not necessary that the RIS is a single server – a group of servers could 

cooperate to act as the central authority for the region. For performing a function, the group 

would have to take a single combined action or make a single combined decision. 

The structure of the hierarchy of way points and hosts could depend on a number of 

factors such as size, complexity, functionality, resources and possibly the geographic location of 
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the entities. For example, a region with 10 hosts could have a flat hierarchy - 1 top-level way 

point with 10 children. A region with 1000 hosts might have 8 levels in the hierarchy. A region 

with 2 locations one in North America and the other in Asia might have 2 large sub-trees. Thus, 

the formation process of the hierarchy is region dependent and will be determined by the 

characteristics of the particular region. 

 

4.2.2   Routing of Agents 

An agent enters a region through a border way point and if it is granted access, the border way 

point forwards it to one of the top-level way points. Way points match the agent’s objectives 

with the service advertisements that they have similar to the directory servers. At the top-level, 

the results of the matching might include the children of the top-level point which the agent is at 

(which could include other way points or service hosts) and also other top-level way points. The 

agent makes its way through the tree by querying the way points for the properties that it is 

interested in at each level and including in its itinerary all the hosts that it finds matches with. 

Thus, the agent is routed by the way points deeper and deeper into the tree using the aggregated 

advertisements until it reaches a leaf of the tree which contains the service that had originally 

produced the matching. 

Each way point returns a list of hosts to the agent that have services it is interested in. An 

agent then weighs each of these servers based on its preferences for its various objectives. The 

itinerary is formed by arranging the selected hosts in decreasing order of their weights so that it 

can visit the most closely matching, which are potentially the most useful, hosts first. If it comes 

across a way point, it performs the query again and thus keeps modifying its itinerary 
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dynamically. The traversal will be similar to a depth-first traversal of the tree. Only matching 

hosts would be visited in the traversal. Another point to note is that the agent may sometimes not 

see the most recent version of an advertisement at a way point higher in the hierarchy if an 

update was sent from the service host but the modification process has not reached all the way up 

the tree yet. 

 

4.3  A Billing System Application 

We now discuss an application of the region-based architecture in a scenario where hosts charge 

money for the services they provide. In other words, agents are billed for the services they use in 

the regions that they visit. Regions can have different billing structures for how they charge 

agents. Agents can also use various methods for payment of the charges that they incur in these 

regions. We implemented an extension to the system described in section 4.1 to incorporate a 

general billing mechanism for regions. The extended system includes various policies for billing, 

different modes of payment and enhanced functionality of the components of regions to assist in 

the accounting of charges incurred by agents. The key elements of any billing system are the 

following: the payer, the payee, the product for which the payment is being made, location where 

the billing takes place (which may or may not be the same as the location where the product is 

exchanged) and possibly financial representatives of the payer and the payee that facilitate the 

transaction. In our system, the products are the services; the payers are the agents that use 

services on behalf of their creators; the payees are the regions and/or the hosts that provide 

services; the location could be a host or the exit point of the region; and the financial 

representatives could be banks of the payer and payee. Our system includes a Bank Server that 
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facilitates financial transactions that occur as a result of the billing. The actual transfer of money 

can be performed by various electronic payment systems ([5],[21]). 

 In a billing environment, the hosts that provide services firstly need to be aware of the 

billing policy of the region they are in. They might have charges associated with each of the 

services they provide and a bank account where the payments they get will be deposited. 

Depending on the payment model of the agents that use their services and the billing model of 

the region they are in, the hosts will have to send notifications about charges to a designated 

authority in the region or communicate directly with the bank or deduct the amount from the 

agent’s balance. 

 The purpose of the bank server is to serve as the authority that approves transactions 

involving transfer of money between accounts of regions or hosts within regions and accounts of 

agents. The bank is required when an agent is using the ‘On-Use Authorized’ model1 of 

payment. In this case, payments are made by the agent from the account of the host/region that is 

responsible for handling its payments. The bank needs to authorize each of these payments after 

checking if there is enough money in the charged account. Authorization requests are sent to the 

bank in the form of notifications from the hosts whose services the agent uses. The bank sends 

authorization replies in turn informing the hosts of the status of authorization. 

 

4.3.1   Billing Models for Regions 

Different regions can have different policies for how they are going to bill the agents that visit 

                                                 
1 See section 4.3.2 for payment models of agents. 
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the region and use the services of its member hosts. There are two kinds of models that have 

been implemented. The overall policy of a region can be any combination of these models. The 

two models are: 

 Flat Fee Billing model: In this model, the region charges a fixed amount to agents for 

entering a region. This amount can be charged to the agents when they enter the region 

through an entry point or at the end at an exit point. It will be deducted from the agent’s cash 

balance or authorization will be acquired from the bank depending on the payment model of 

the agent. 

 Per-Host Billing model: In this billing model, agents are charged for every host that they visit 

and use services from. Individual hosts can have different charges. It can be specified in the 

model whether the agent is charged before it uses the services at a host or after it uses the 

services. Also, it can be specified if the agent will have to wait for its payment authorization 

to be approved before it will be allowed to use the services at a host (if the charge-before 

option is chosen). There are two ways in which accounting of charges incurred at the hosts 

can be done. In the first, each host can individually bill the agent and ask for authorization 

from the bank if the agent’s payment model is to pay on use. In the second method, each host 

can send its bill to a designated server in the region (such as the Region Information Server 

described in section 4.2.1) which consolidates the bills for that agent from the entire region. 

Let this server be called the Agent Billing Server (ABS). The function of the ABS could be 

performed by an exit point in the region. Or it could be performed by another dedicated 

server which the agent will have to visit before it exits the region. The ABS will deduct the 

total amount from the agent’s cash balance or ask the bank for authorization of the charge 
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depending on the payment model of the agent. It can be specified, in the per-host billing 

model, which of these ways of accounting the region will be using.  

 

4.3.2   Agent Payment Models 

Agents can use different modes for making payments for the charges they incur when they use 

services of various regions. Three different modes of payment for agents are included in this 

system: 

 Contract Payment: In this payment model, it is assumed that the region where the agent 

originated has a regular billing contract with the region whose services the agent is using. 

This means that the details of the billing and payment have been negotiated beforehand by 

some administrative entities. The agent operates under the assumption that the specifications 

of the contract are being fulfilled by the regions. Therefore, the agent does not need to pay 

every time it uses the other regions’ services, but just has to show the contract to the billing 

host which can verify it if needed. 

 Cash Carry Payment: This model represents the pay-as-you-go mode of payment. It can be 

likened to the agent carrying a bag of cash with it, which it pays from every time it is billed. 

It starts out with a fixed amount of money, makes an immediate payment every time it is 

charged for a service and continues until it has no money left. No other entity needs to be 

notified in this case because the agent makes payments on the spot. 

 On-Use Authorized Payment: This is the payment model in which the agent makes the 

payment when it uses the services of a host through an authorized transfer from its bank 
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account. The agent does not carry cash with it, but there is a designated entity that is 

responsible for handling payments for the charges incurred by the agent. This entity could be 

one of the following: the host that launched the agent, the final destination of the agent or a 

third-party. The agent carries around with it the URN of the host to be billed, the URN of the 

bank and the account number from which payments will be made. If an agent using the On-

Use Authorized payment model incurs a charge, the billing entity obtains authorization from 

the bank for the charge. The authorization is granted if there is enough money in the account. 

The money is then transferred from the charged account to the account of the billing host. 

This concludes the discussion of the billing system. In this chapter so far, we have presented 

the implementation details of the service-providing architecture that we proposed in Chapter 3. 

Over the basic system, we built an extension that implements a specific scheme for internal 

organization of regions and another extension that implements a billing system as an example 

application. This concludes the discussion of the entire implementation. Next, we present an 

analysis of the system through results of simulations performed with the implemented 

framework. 
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4.4  Simulation Results and Analysis 

A set of simulations were carried out with the implemented system to measure the performance 

of the basic framework. The metrics we have used are application-independent and give an idea 

of the overall trends in the performance of the system as it increases in size and complexity. The 

exact numbers are not as important as the trends because the numbers will depend on the 

particular application and how it has implemented certain features of the system. The 

architecture is only an underlying framework that has general-purpose constructs and algorithms. 

For example, we cannot predict the performance of regions because they can be very diverse and 

their performance depends on how they are individually set up.  

In the first set of experiments, we analyze the effect on the performance of the system 

that comes from introducing regions and directory servers, which are key components of the 

proposed architecture. We compare the results of the following 3 scenarios: 

1. No regions and no directory server network: hosts report to a single central directory server 

2. No directory server network: hosts are members of regions and regions report to a single 

central directory server 

3. With regions and a directory server network: hosts are members of regions and regions report 

to a number of directory servers that form a network 

We first analyze how the scalability of the system improves with the introduction of regions and 

a directory server network. The scalability is measured in terms of the number of advertisement 

messages that are sent by the hosts in order to advertise their services. We also discuss the 

overhead in terms of messages that occurs with the proposed architecture. We then analyze how 
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regions help in handling the dynamism of hosts that enter and leave the system. We present 

experimental results for the behavior in the start-up phase when directory servers and regions 

join the system. Lastly, we analyze the service location performance by measuring the efficiency 

of an agent’s operation as the size of the system increases. 

 

4.4.1   Analysis of Scalability 

One of the main reasons for introducing regions in a service location architecture is the benefit 

they give in terms of the scalability. By grouping together hosts with similar characteristics and 

independently managing them, the load on the directory service for the system is significantly 

reduced since it now only has to deal with regions instead of individual hosts. The purpose of 

having a directory server network, instead of a single directory server, is to distribute the 

advertisement information. This eliminates a single point of failure and provides resiliency to the 

directory architecture. It also provides scalability as the load on each individual server reduces. 

In the experiments in this section, we attempt to measure this advantage in scalability that is 

provided by regions and directory servers. However, introduction of the directory server network 

also induces some overhead in the system that is required to keep the directory servers 

functioning as a network. This consists of the messages that are sent from the directory servers to 

the Central Resolver and also messages that are exchanged among the directory servers. We 

present results that measure this overhead, which is a cost to the system. We conclude that the 

improvement in scalability outweighs the cost and hence, the system gives better overall 

performance than the first 2 scenarios mentioned above. 
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For the following experiments, we are not considering the messages that are passed inside 

regions. This is because regions can have different internal organizations and methods for 

consolidating advertisements, and the number of messages that are passed depends on those two 

factors. We assume that each region will have sufficient infrastructure to perform the function of 

creating an aggregate service advertisement and hence, we do not consider the performance issue 

inside a region. Also, in the following experiments, for simplicity, we assume that the frequency 

of all message exchanges is fixed and that the directory servers are not performing backoffs in 

response to high load. In reality, each region could have a different frequency for sending its 

advertisements and it could change this over time. The same is true for ads that are exchanged 

between directory servers.  

 Graph 1 compares the scalability in the 3 cases as the total number of hosts is increased. 

It shows the average load per directory server which is measured as the total number of 

advertisement messages that are received by the directory in one time period. The topmost plot 
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line shows the case when there is only one central directory and all the hosts directly report to it. 

As expected, the load on the directory shows a linear increase. The middle plot line shows the 

case when regions are introduced. There are 10 regions in the system and the hosts are assumed 

to be uniformly distributed between them. A new region is formed every time an additional 10 

hosts join until the number of hosts reaches 100. After that, the additional hosts join the existing 

regions. We can see that introducing regions significantly reduces the load on the central 

directory in terms of the number of entries, as it now has to store only 1 entry for each region. 

The bottom plot line shows the case when there is a directory server network composed of 3 

directory servers along with regions. The plot shows the number of advertisements received from 

regions per directory server. The regions are randomly distributed among the 3 directory servers 

as they are formed. This shows that the load on each server is significantly reduced as one server 

has to only carry 3.3 entries on average. 

The improvement in scalability can be seen more clearly in Graph 2 which shows the  

average load per directory server for a fixed number of hosts (= 250) in 1 time period. The bars 

G raph  2  : Sca lab ility  in  term s o f load  per d irectory in  the 3  cases 
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show the number of messages that are exchanged in each of the three cases on a log scale, in 

order to exhibit the third case more clearly. There are 10 directory servers and 25 regions in this 

scenario. Hosts are uniformly distributed between regions and regions are randomly distributed 

between directory servers. The black portion at the top of the third bar shows the overhead in our 

proposed architecture. The overhead consists of additional messages (other than the 

advertisements) that are needed for the directory server network. We can see that in spite of the 

overhead, the proposed architecture shows a 97.8% improvement over case 1 and a 78% 

improvement over case 2 in terms of the average load per directory server. 

One of the major costs of having a directory server network is the overhead of the extra 

messag

number of messages in 1 time period. The other portion can be regarded as overhead and consists 

es that are needed for its set-up and functioning. In Graph 3, we show a breakdown of the 

different kinds of messages that are passed in the system after it has stabilized, that is, after all 

the directory servers and regions have joined and no more communication is needed for their 

setup. The advertisements from the regions to directory servers compose about 45% of the total 

Graph 3 : D istribution of different kinds of messages after the 
system  stabilizes (shaded area shows the overhead)
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of the following messages: keep alives from each directory server to the Central Resolver, 

NEIGHBOR-AD messages and OTHER-AD messages that are exchanged among the directory 

servers.  

From the above results, we can conclude that the introduction of regions and directory 

servers significantly improves the scalability of the system. Also, having a directory server 

networ

 

4.4.2   Analysis of Startup Phase 

Besides the improvement in scalability, another benefit of introducing regions in the system is 

that they can handle dynamism of hosts at a lower level. This means that if hosts were entering 

k provides better resiliency and reliability to the system than a single central server. There 

is a tradeoff between these benefits and the extra cost of maintaining the network. There are 

possible ways to reduce the message overhead such as reducing the frequency with which keep 

alives are sent to the CR since the directories will usually be relatively static. The number of 

NEIGHBOR-AD messages will be constant since each directory sends one message to its 

neighbor, but the number of OTHER-AD messages can be controlled depending on the load of 

the servers. 

and leaving the system and there was only one central server, it would have to change its state 

every time a change occurs in the hosts. A region is a grouping of a fewer number of hosts and 

hence is better suited to handle their dynamism. Also, since a region will be more stable relative 

to its member hosts, the entries at the directory will not have to be added or deleted as often. A 

region can make changes to its advertisement at an appropriate frequency and the directory does 

not even need to know of the entry or exit of individual hosts. The dynamism that our system 
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needs to handle is limited to the addition and deletion of regions and directory servers, which 

would in general be more stable. 

 In the next experiment, we analyze the effect on the system as new elements are added to 

it. We refer to this as the startup phase of the system. In Graph 4, the total number of messages 

start-up phase is far less for our architecture than for the first 2 scenarios. 

that are passed in the system is measured in each of the 3 scenarios as time passes. 1 host is 

joining the system every second in each of the cases. The topmost plot line shows the results 

with a single directory. The number of messages passed increases linearly. The middle plot line 

shows the results when regions are introduced into the system. As the first 10 hosts join, 1 region 

is formed every second for each of them. The additional hosts join the 10 regions after that. The 

bottom plot line shows the total number of messages (including overhead) per server with our 

architecture. There are 5 directory servers in the system. As in the second case, there are 10 

regions formed for the first 10 hosts and additional hosts join the existing regions after 10 

seconds. It can be seen from the graph that the number of messages per server needed during the 
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 We now focus on the start-up phase for our architecture and analyze it in Graph 5. In this 

experiment, there are 10 directory servers and 25 regions. The directories join the system 1 per 

second for the first 10 seconds and the regions join 1 per second from seconds 13 to 37. The 

lower plot line shows the number of startup messages and the upper plot line shows the total 

number of messages. During the densely shaded phase, each new directory that joins first sends a 

message to the Central Resolver in order to obtain a list of the currently active directories. It then 

sends messages to each of the current directories, receives their replies and then picks one of 

them to be its neighbor1. This is the start-up cost of addition of directories. After this phase, the 

directories continue to send keep alive messages to the CR. In the lightly shaded phase, as each 

region joins, it sends a message to the CR to obtain the URN of its directory server. Thus, the 

startup cost of regions is much lower in terms of the number of messages. As the number of 

regions increases, the number of advertisements at the directories increases and hence the 

amount of information they exchange between themselves in the form of NEIGHBOR-AD and 

                                                 
1 See section 3.2.3 for details on the architecture of the directory server network. 
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OTHER-AD messages increases as well. This accounts for the increase in the total number of 

messages during the addition of regions. 

  We can conclude from the above experiments that regions and directory servers help in 

containing the dynamism of hosts. The cost is dynamism of the regions and the directory servers 

themselves, which is significantly lower as seen in the graphs and will also occur less frequently. 

Hence, this is another area in which the proposed architecture presents an improvement over the 

rst 2 s

 

The last set of results demonstrates the performance of the system in service location for 

gents. One measure of the efficiency of an agent is the number of hosts it has to visit in order to 

achieve its objective. The architecture in general cannot control the number of hosts the agent 

will have to visit inside the region. Therefore, in the simulations, we restrict ourselves to 

measur

fi cenarios. 

4.4.3   Service Location Performance 

a

ing the number of directory servers that the agent has to visit to complete its mission. We 

present the effects of scaling different components of the system on this metric – first regions are 

increased while the directory servers remain constant and next, the directory servers are 

increased while regions remain constant. In the following experiments, the agent has only one 

objective in its mission. The service required to fulfill that objective is present in only one region 

out of all the regions. In this manner, we can isolate the effects of the agent searching for one 

location in the entire network and assess how long it takes to do so. The target region is picked 

randomly in every run. Also in every run, the directory server spanning tree is randomly 

generated and the agent starts out at a randomly picked node. 
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First, let us consider the number of directory servers that an agent will have to visit in 

order to find 1 region as the total number of regions is increased. As the number of regions 

increases, each directory server carries higher number of region advertisements. But the agent 

can still be directed through the network in the same number of hops, which means that the 

number of directories it visits remains constant even though the number of regions increases. 

This fact was verified experimentally. For instance, in a simulation with 25 directory servers and 

the number of regions increasing from 5 to 50, the agent visits 5 directory servers in every case. 

The matching time at an individual directory might increase because it would have to match 

against a higher number of ads. We are not considering the matching time as a measure of 

performance because it is highly dependent on the algorithm used which in turn depends on the 

specific application and its requirements. The number of directory servers visited is an absolute 

measure which is independent of the application. We can conclude that the system scales up well 

with respect to this property. 

ains constant even as the total number of directories increases, and 

hence the percentage reduces. Graph 7 shows the results of the same experiment repeated when 

the total number of directory servers is varied from 25 to 500. After the number of directories 

reaches around 400, the percentage visited stabilizes at around 2%. This result is independent of 

the number of regions in the system. 

Next, let us consider the number of directory servers that the agent will need to visit in 

order to find 1 region as the total number of directories is increased, but the number of regions is 

held constant. The results of 2 simulations are presented. In Graph 6, there are 25 regions and 

the number of directories increases from 2 to 26. The graph shows that the number of directories 

that the agent has to visit rem
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G ra p h  6 :  S c a la b ility  w ith  in c re a s in g  n u m b e r  o f 
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The behavior exhibited in the above simulations can be attributed to the spanning tree 

the average case the network graph becomes denser and denser. Therefore, the number of 

structure of the directory servers. As more and more directory servers are added to the system, in 

directories that the agent has to visit to locate one region does not increase by a lot even though 

now there are many more servers in total. This is true under the assumption that directories can 

G ra p h  7  : S c a la b ility  w ith  in c re a s in g  n u m b e r  o f d ire c to ry  
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carry the load of the additional neighbors. The denser structure arises due to the fact that in a 

spanning tree, each new node that joins can pick its neighbor from among all the existing nodes 

in the network. Since in every case, the spanning tree graph is randomly generated, in the 

average case, the structure is dense enough that the average path length from one node to another 

remains relatively stable.  

From the above results, we can conclude that the number of directory servers visited by 

an agent in order to locate a service scales well with increasing regions and directory servers in 

the system. The number of directory servers visited is an application-independent metric for 

service location performance. 

This concludes the presentation of the simulation results for the system. In this section, 

we first analyzed the scalability in terms of the number of messages passed in the system. We 

concluded that the introduction of regions and a directory server network significantly improves 

the scalability by reducing the average load per server. We also presented an analysis of the 

overhe

This also concludes the implementation and evaluation chapter of the thesis. In this 

chapter, we first presented details of the implementation of the architecture we are proposing in 

ad associated with the system. Next, we discussed the addition and deletion of elements of 

the system, specifically in the startup phase, when regions and directory servers are joining. We 

demonstrated that the startup costs in terms of additional messages are lower than if there are no 

regions and a single directory. We concluded that the proposed architecture is well suited to 

dealing with dynamism of hosts and other elements of the system. Finally, we analyzed the 

performance of service location for agents and concluded that it scales up well as the number of 

regions and directory servers is increased. 
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the thesis. We then presented two extensions to the system – an internal organization for regions 

and a billing application. Finally, we presented an analysis of the system that was done through 

simulations conducted with the implementation. In the next chapter, we present the conclusions 

of our work and discuss some areas for future research on the subject. 
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Chapter 5 

Conclusions and Future Work 
 

In this thesis, we presented a network architecture that can be used for location of services in a 

large-scale distributed system using their descriptions, rather than their addresses. The 

architecture that we propose is based on the concept of grouping together the service-providing 

hosts that share common characteristics. In this section, we present the conclusions of our study 

on this topic and then propose directions for future research on the subject. 

 

5.1  Conclusions 

We began this thesis with a study of the different kinds of existing service location systems. We 

argued the need for an architectural solution to the problem that would be suitable for large-scale 

systems and that would enable the use of services with a description of their characteristics. We 

proposed the idea of using regions as a fundamental architectural element that could be used for 

scaling such systems. The objective of automating the process of locating services is achieved 

through autonomous mobile agents that chart their own course through the network unsupervised 

by their creators and only with assistance from the infrastructure. 

Our architecture addresses some of the key properties of good distributed system design. 

The introduction of regions presents a natural entity using which the system can scale. In the 
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directory server network, the property that directories can change the number of advertisements 

they carry and process depending on their capacity, is a way to ensure that the network does not 

get overloaded as it increases in size. Analysis of the simulation results presented in Section 4.4 

supports these observations as well. The architecture is flexible and suitable for wide-scale 

deployment because each region is independent and can manage and organize itself in its own 

preferred manner. It is also dynamic as hosts, regions and directory servers can enter and leave 

the system at any time. Services can be mobile within regions. The directory server network 

design is largely self-configuring. Regions may or may not be self-configuring depending on 

their individual design and properties. Reliability is built into various parts of the system. For 

instance, agents always verify that the information they received from a directory server is 

accurate when they actually reach the region and they do the same when they reach a service-

providing host. Such actions help in improving reliability of advertisements. Lastly, there are 

many mechanisms built into the system that provide fault-tolerance and robustness. For example, 

regions and directory servers do not explicitly need to be deregistered from the system if they 

fail. 

An important property that our architecture does not address directly is security. There 

are many places in the system where security could be a concern such as functioning of agents, 

advertisements of regions, etc. In order to restrict the scope of this work, we are assuming that 

the transfer and operation of agents is secure. We are also assuming integrity for transfer of all 

kinds of messages in the system. It is possible that individual regions will have their own policies 

for enforcing security within their boundaries. Another issue that could arise in the scenario of 

availing services, and that we have not addressed, is privacy. We are assuming that the objectives 
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of agents as well as service advertisements by hosts are both going to be public to the 

infrastructure so that matching can be performed based on descriptions. 

In this thesis, we also presented details of the implementation of the proposed 

architecture in Java. The implemented system can be used as the basis for an application that 

uses regions for service location. The system provides facilities for creating regions, adding 

directory servers and launching agents into the network. If the general-purpose language used for 

service descriptions is sufficient for the application, the above actions can be performed directly. 

On the other hand, if an application wishes to define its own language and rules, the system is 

flexible so that it can be extended and specialized for an application’s purposes. Thus, the 

implementation provides a starting point for systems that wish to incorporate the ideas that we 

have discussed in this work. 

Finally, an important contribution of this work was the exploration of the Region 

abstraction. We showed how the concept of regions can be applied to the scenario of locating 

services. We discussed how elements could be grouped together into regions based on various 

different characteristics such as the subject of their services, their commercial activities, their 

administrative owner, etc. We presented some commercial models that can be used to motivate 

the existence of regions in this scenario. We concluded from these models that it is possible to 

design the system such that regions as well as hosts can benefit commercially from the services 

that they provide to each other and to consumers. This work also presented a study on the kinds 

of actions that can take place when processes are crossing the boundaries of regions. The actions 

can be classified into those related to the access control performed at the boundary and the side-

effects. Regions and agents exchange information at the boundary to negotiate access. This could 

result in permission to enter the region; denial; or permission with restrictions imposed on the 
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capabilities or functioning of the agent. The side-effects can include notifications being 

exchanged between the concerned parties and also change of state at any of the concerned 

elements. The discussion about the access control by regions and agents and other actions 

performed at the boundaries of regions can be generalized to any kind of process that is entering 

or exitting the region. 

 

5.2  Future Work 

There are many aspects of this work that can be further explored. The first one of these has to do 

with the formation of regions and their membership. In order to restrict the scope of the work, we 

did not focus on the details of how regions are initially formed and how they get members. [8] 

proposes one model for formation of regions, in which users with shared interests cluster to form 

self-organizing regions. We presented some commercial models to motivate the existence of 

regions, but more work could be done on other kinds of incentives for regions to be formed. 

Further research needs to be done to outline the mechanism of region formation and decisions 

about their policies and membership such as addition and deletion of members. Also, there are 

other issues which could be explored to make the system complete such as overlap of regions 

and regions within regions. 

The second area of future work could be in the topology of the directory server network. 

Currently, the directory servers are organized as a spanning tree where each node connects to 

another node in the network, based on minimizing (or maximizing) an application-specific 

metric. As mentioned in [1], despite each node making a local minimization (or maximization) 
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decision, the resulting spanning tree will not in general be the minimum (or maximum) one 

because nodes join in order and can only decide from among the nodes that have joined before 

them. Also, another shortcoming of a spanning tree structure is that if one of the nodes in the tree 

dies, the entire tree (specifically, all the nodes that joined after the node that died) needs to be 

reorganized. Further work could be done in eliminating these limitations of the spanning tree 

structure and also in exploring alternative structures for the directory server network. There are a 

number of engineering tradeoffs to consider in the organizational structure of the directory server 

network. For example, exchanging more queries between individual servers will give the agent a 

higher probability of finding the information it is looking for. Here, we are trading the scalability 

of the system (which will decrease as more queries are exchanged) with efficiency of the agent’s 

operation. Various parameters determine the performance of the system such as the number of 

neighbors of each directory, the amount of information that is exchanged between them, the 

directions of search queries, etc. Features of the spanning tree itself such as the branching factor 

and the depth will also affect the outcome. It is possible that structures resulting from different 

combinations of parameter values would be suitable for different kinds of applications. 

The third possible avenue for further work is in the area of the communication protocol 

used in the system, and specifically, in the service advertisement protocol and the language used 

by mobile agents to describe their objectives and policies. As mentioned before, we chose a 

simple and general-purpose representation for all the languages in the system. It would be useful 

to explore more complex representations such as hierarchical attribute structures and 

corresponding algorithms that provide matching for them. It might also be useful to build more 

aggregation schemes for regions. We proposed one particular hierarchical aggregation scheme in 

section 4.2. 
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Also, before actual deployment of a system like the one we propose, all the related 

security and privacy issues would have to be explored. As mentioned, we did not focus on these 

aspects of the system. Regions could handle the security and privacy individually, but 

considerations need to be made for these issues in the functioning of the directory server network 

and the mobile agents as well. Lastly, the value of the proposed architecture will be realized 

through applications built over it. Future work could be done in building particular applications 

over our system to study it further and explore more issues with it. This would also be valuable 

in collecting more data about the performance of the system and in analyzing how it behaves in 

different scenarios.  

We hope that the work we have done will be useful in providing the basis for future 

research in these and other directions. 
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