Copy No. \qquad of \qquad chs.

ESD RECORD COPY

RETURN TO
SCIENTIFIC \& TECHNICAL Information division (ESTH. BUHDING 124

THE COMPUTATION OF CERTAIN COMMUNICATION CHANNEL
ERROR PROBABILITIES BY AN APPLICATION OF DIFFERENCE EQUATION METHODS

JULY 1966
S. Berkovits
E. L. Cohen

Prepared for

DEPUTY FOR COMMUNICATIONS SYSTEMS
ELECTRONIC SYSTEMS DIVISION AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE
L. G. Hansoom Field, Bedford, Massachusetts

This document may be reproduced to satisfy official needs of U.S. Government agencies. No other reproduction authorized except with permission of Hq. Electronic Systems Division, ATTN: ESTI.

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related government procurement operation, the government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

THE COMPUTATION OF CERTAIN COMMUNICATION CHANNEL ERROR PROBABILITIES BY AN APPLICATION OF DIFFERENCE EQUATION METHODS

JULY 1966
S. Berkovits
E. L. Cohen

Prepared for

DEPUTY FOR COMMUNICATIONS SYSTEMS
 ELECTRONIC SYSTEMS DIVISION AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE

L. G. Hanscom Field, Bedford, Messachusetts

Project 7560
Distribution of this document is unlimited.

ABST RACT

A model for a channel is given. For this model, the recursive method is presented in order to calculate the probability of K symbol errors in a block of $n \mathrm{~m}$-bit symbols. The blocks can be interleaved or not.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

EDGAK A. GRABHORN, Lt. Colonel, USAF
Director of Communications Development
Deputy for Communications Systems

TABLE OF CONTENTS

Page
SECTION I THE MODEL 1
SECTION II RECURSIONS - PART I 3
SECTION III RECURSIONS - PART II 6
SECTION IV INPUT FOR THE PROGRAM 10
SECTION V OUTPUT FOR THE PROGRAM 11
APPENDIX PROGRAM 13
REFERENCES 18

SECTION I

THE MODEL

Abstract

In estimating the performance of an error-correcting device on a specific communication channel, it is necessary to find a meaningful, yet tractable, mathematical model for that channel. An examination of data from real channels suggests that most channels pass through three distinct phases. The first phase, which nearly any errorcorrecting scheme can handle successfully, is that of long periods of practically error-free transmission. The second phase, which is the antithesis of the first phase in that no scheme can expect to correct it, is that of complete loss of signal for substantial periods of time. The third phase might be described as a generalized sputter or bursts of error bursts, and it is this phase, if it occurs frequently, for which error correctors should be designed. This third phase may sometimes be described by means of a two-state model. The three phases suggest a Markov process with four states, but such a process is mathematically unwiedly. However, when the three phase picture is reasonably correct and the sputter phase is accurately modeled for purposes of estimating coder performance, it is a simple matter to make corrections in such estimates for those periods when transmission is nearly error free or when the signal is lost.

The use of such a two-state model was suggested to us by some work by Gilbert [1]. Gilbert describes a model for binary error distributions

in channels subject to noise bursts. Let $\left\{x_{i}\right\}$ be the error process with $x_{i}=1$ for an error in the $i^{t h}$ demodulated bit, $x_{i}=0$ for no error. Two states, designated G and B, of the channel are postulated such that at the $i^{\text {th }}$ bit the state S_{i} is G or B, and the state S_{i+1} at bit $i+1$ depends only on S_{i}. Thus, the state sequence $\left\{S_{i}\right\}$ is a simple Markov chain described by the two transition probabilities, $P: G \rightarrow B$ and $P: B \rightarrow G$. We also use Gilbert's notation $Q=1-P$ and $q=1-p$ for the $G \rightarrow G$ and $B \rightarrow B$ transitions respectively Let h, k denote respectively the probabilities of a correct bit in B and in G. Then $P\left\{x_{i}=1\right\}=1-h=h^{\prime}$ if $S_{i}=B$ and $P\left\{x_{i}=1\right\}=1-k=k^{\prime}$ if $S_{i}=G$.

Using this model with $k=1$, Gilbert obtained a good fit to certain phone line error data. The statistic fitted was the probability of occurrence of zero (= error free) runs of length at least K. (The use of $\mathrm{k}<1$ has also been considered by Elliott [5].)

At MITRE, we have found sets of values for the model parameters P, p, h, k, which yield good fits to error data for several different types of communication media. One important statistic involved is the probability of specific error densities in various length blocks.

Given that we have $p, P, h, k,[2,3,4]$, we present the recursive method used to calculate the probability of K symbol errors in a block of n symbols where each symbol consists of m bits.

In Appendix II of [2] (or Appendix B of [3] or [4]) we presented a brief outline of the recursive method used to calculate the probability of K symbol errors in $a \operatorname{block}$ of n symbols where each symbol consists of m bits. Now we present the outline in full. Since the last documentation, the technique has been extended to permit the n-symbol blocks to be interleaved or time spread. (To interleave s blocks means to transmit sequentially the first symbol of each of s blocks followed by the second symbol of each of those blocks, etc. Thus, a given m-bit symbol is transmitted s symbol times after the symbol preceding it in its block.)

Letting T and U represent either of the states G and B, we define

$$
\begin{aligned}
& \operatorname{TOU}(t)=P\left(x_{1}=\cdots=x_{t}=0 \text { and } S_{t}=U \mid S_{0}=T\right) \\
& \operatorname{TIU}(t)=P\left(\text { for some } i \leq t, x_{i}=1 \text { and } S_{t}=U \mid S_{0}=T\right)
\end{aligned}
$$

Then

$$
\begin{array}{ll}
\mathrm{GOG}(1)=\mathrm{Qk} & \mathrm{GOB}(1)=\mathrm{Ph} \\
\mathrm{GIG}(1)=\mathrm{Qk}^{\prime} & \mathrm{G} 1 \mathrm{~B}(1)=\mathrm{Ph}^{\prime} \\
\mathrm{BOB}(1)=\mathrm{qh} & \mathrm{BOG}(1)=\mathrm{pk} \\
\mathrm{BlB}(1)=\mathrm{qh}^{\prime} & \mathrm{B} 1 \mathrm{G}(1)=\mathrm{pk}^{\prime}
\end{array}
$$

and

$$
\begin{aligned}
& G 0 G(t)=[G O B(t-1) p+G O G(t-1) Q] k \\
& G 1 G(t)=[G 0 B(t-1) p+G 0 G(t-1) Q] k^{\prime}+G 1 B(t-1) p+G 1 G(t-1) Q
\end{aligned}
$$

```
\(\operatorname{GOB}(t)=[\operatorname{GOB}(t-1) q+\operatorname{GOG}(t-1) \mathrm{p}] h\)
\(G 1 B(t)=[G 0 B(t-1) q+G 0 G(t-1) P] h^{\prime}+G 1 B(t-1) q+G 1 G(t-1) P\)
\(B O B(t)=[B O B(t-1) q+B O G(t-1) P] h\)
\(B 1 B(t)=[B 0 B(t-1) q+B 0 G(t-1) P] h^{\prime}+B 1 B(t-1) q+B 1 G(t-1) P\)
\(B 0 G(t)=[B 0 G(t-1) Q+B O B(t-1) p] k\)
\(B 1 G(t)=[B 0 G(t-1) Q+B 0 B(t-1) p] k^{\prime}+B 1 B(t-1) p+B 1 G(t-1) Q\)
```

Shortly after the program was written, we discovered that GOG(m), $\operatorname{COB}(m), G 1 G(m), G 1 B(m), B 0 G(m), B 0 B(m), B 1 G(m), B 1 B(m)$ could be obtained from a difference equation in powers of J and L (see below). Since on our computer (IBM 7030), it took under a second to compute all eight quantities, we decided not to use the difference equation. However, we work out two, and give all eight results.

$$
\begin{aligned}
& G O G(t)=\{G 0 G(t-1) Q+G O B(t-1) p\} k \\
& G O B(t)=\{G O B(t-1) q+G O G(t-1) p\} h
\end{aligned}
$$

The eigenvalues come from the 2 nd order linear difference equation:

$$
f_{t+1}-(Q k+q h) f_{t}-(p-Q) f_{t-1}=0
$$

that is, $\quad 2 J=Q k+q h+\sqrt{(Q k+q h)^{2}+4 h k(p-Q)}$
and

$$
2 L=Q k+q h-\sqrt{(Q k+q h)^{2}+4 h k(p-Q)} .
$$

Thus we have

$$
\begin{aligned}
& \operatorname{GOG}(t)=\alpha_{1} \mathrm{~J}^{\mathrm{t}}+\alpha_{2} \mathrm{~L}^{\mathrm{t}} \\
& \operatorname{GOB}(t)=\beta_{1} \mathrm{~J}^{\mathrm{t}}+\beta_{2} \mathrm{~L}^{\mathrm{t}}
\end{aligned}
$$

and we get $\alpha_{1}, \alpha_{2}, \beta_{1}$ and β_{2}
from the initial conditions

$$
\operatorname{GOG}(0)=1, \operatorname{GOG}(1)=\mathrm{Qk}
$$

and

$$
\mathrm{GOB}(0)=0, \mathrm{GOB}(1)=\mathrm{Ph} .
$$

So

$$
\begin{aligned}
& \alpha_{1}+\alpha_{2}=1, \alpha_{1} J+\alpha_{2} L=Q k, \text { which yields } \\
& G 0 G(t)=\{(Q k-L) /(J-L)\} J^{t}+\{(J-Q k) /(J-L)\} L^{t}
\end{aligned}
$$

Also, $\quad \beta_{1}+\beta_{2}=0, \beta_{1} \mathrm{~J}+\beta_{2} \mathrm{~L}=\mathrm{Ph}$, which yields

$$
\operatorname{GOB}(t)=\{\operatorname{Ph} /(J-L)\}\left(J^{t}-L^{t}\right)
$$

All eight solutions are as follows:

$$
\begin{aligned}
G 0 G(m) & =\{(Q k-L) /(J-L)\} J^{m}+\{(J-Q k) /(J-L)\} L^{m} \\
G 0 B(m) & =\{P h /(J-L)\}\left(J^{m}-L^{m}\right) \\
B 0 G(m) & =\{p k /(J-L)\}\left(J^{m}-L^{m}\right) \\
B 0 B(m) & =\{(q h-L) /(J-L)\} J^{m}+\{(J-q h) /(J-L)\} L^{m} \\
G 1 G(m) & =p /(p+P)+\{P /(p+P)\}(Q-p)^{m}-\{(J-q h) /(J-L)\} J^{m} \\
& -\{(q h-L) /(J-L)\} L^{m} \\
G 1 B(m) & =\frac{P}{p+P}\left[1-(Q-p)^{m}\right]-\frac{P h}{J-L}\left(J^{m}-L^{m}\right) \\
B 1 B(m) & =\frac{P}{p+P}+\frac{p}{p+P}(Q-p)^{m}-\frac{1}{J-L}\left[\{J-Q k\} J^{m}+\{Q k-L\} L^{m}\right] \\
B 1 G(m) & =\frac{p}{p+P}\left[1-(Q-p)^{m}\right]-\frac{p k}{J-L}\left(J^{m}-L^{m}\right)
\end{aligned}
$$

SECTION III

RECURSIONS - PART 2

Again letting T and U represent either of the states G and B, we define

$$
\begin{aligned}
& \operatorname{TOUI}(s)= P\left(x_{(s-1) m+1}=x_{(s-1) m+2}=\cdots=x_{s m}=0, s_{s m}=U \mid S_{0}=T\right) \\
&= P(m \text {-bit symbol after } s \text { symbol times is correct and } \\
&\text { ends in state } U \mid s t a t e T)
\end{aligned}
$$

$\operatorname{TlUI}(s)=P\left(\right.$ for some $\left.1 \leq i \leq m, x_{(s-1) m+i}=1, S_{s m}=U \mid S_{0}=T\right)$
$=P(m$-bit symbol after s symbol times has at least one bit error and ends in state $U \mid$ state T)

Let $G X G=G O G(m)+G 1 G(m), G X B=G O B(m)+G 1 B(m), B X G=B O G(m)+B 1 G(m)$,
and $B X B=B 0 B(m)+B 1 B(m)$.
Then $\operatorname{GOGI}(s)=G X G \cdot \operatorname{GOGI}(s-1)+G X B \cdot \operatorname{BOGI}(s-1)$ and $B 0 G I(s)=$
BXG $\operatorname{GOGI}(s-1)+B X B \cdot \operatorname{BOGI}(s-1)$.
(There will be similar equations in G1BI, B1BI and GOBI, BOBI, and G1BI, B1BI, but they have the same eigenvalues and will be omitted.)

$$
\text { TOGI }(s)-[G X G+B X B] \operatorname{TOGI}(s-1)+[G X G \cdot B X B-G X B \cdot B X G] \operatorname{TOGI}(s-2)=0
$$

This yields the eigenvalues:

$$
\begin{aligned}
& 2 \sigma=G X G+B X B+\sqrt{[G X G+B X B]^{2}-4[G X G \cdot B X B-G X B \cdot B X G]} \\
& 2 \tau=G X G+B X B-\sqrt{[G X G+B X B]^{2}-4[G X G \cdot B X B-G X B \cdot B X G]}
\end{aligned}
$$

```
Since GXG + GXB = BXB + BXG = 1,
```

 \(\sigma \tau=G X G \cdot B X B-G X B \cdot B X G=(1-G X B)(1-B X G)-G X B \cdot B X G=1-G X B-B X G\)
 \(\sigma+\tau=\mathrm{GXG}+\mathrm{BXB}=2-\mathrm{GXB}-\mathrm{BXG}=1+\sigma \tau\).
 Hence $\sigma=1$, and $\tau=1-$ GAB - BKG $=$ GOG $+B X B-1$.

Thus we have

$$
\begin{aligned}
& \operatorname{GOGI}(\mathrm{s})=\lambda_{1} \cdot 1^{\mathrm{s}}+\lambda_{2} \tau^{\mathrm{s}} \\
& \operatorname{BOGI}(\mathrm{~s})=\mu_{1} \cdot 1^{\mathrm{s}}+\mu_{2} \tau^{\mathrm{s}}
\end{aligned}
$$

and
and we get $\quad \lambda_{1}, \lambda_{2}, \mu_{1}$ and μ_{2} from the initial conditions.

$$
\begin{aligned}
& \operatorname{GOGI}(1)=G O G(m), G O G I(2)=G X G \cdot G O G(m)+G X B \cdot B O G(m) \\
& \operatorname{BOGI}(1)=\operatorname{BOG}(m), \operatorname{BOGI}(2)=\operatorname{BXG} \cdot G O G(m)+B X B \cdot B O G(m) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} \cdot 1+\lambda_{2} & \cdot \tau=G O G(m), \lambda_{1} \cdot 1^{2}+\lambda_{2} \cdot \tau^{2}=G X G \cdot G O G(m)+G X B \cdot B O G(m) . \\
\text { Solving, } \lambda_{1} & =[G O G(m)(1-B X B)+B O G(m) \cdot G X B] /(1-\tau) \\
\lambda_{2} & =[G O G(m) B X B-B O G(m) G X G] /(1-\tau)=\left[G O G(m)-\lambda_{1}\right] / \tau .
\end{aligned}
$$

Also,
$\mu_{1} \cdot 1+\mu_{2} \cdot \tau=\operatorname{BOG}(\mathrm{m}), \mu_{1} \cdot 1^{2}+\mu_{2} \cdot \tau^{2}=\mathrm{BXG} \cdot \mathrm{GOG}(\mathrm{m})+\mathrm{BXB} \cdot \mathrm{BOG}(\mathrm{m})$.

Solving, $\mu_{1}=[B O G(m)(1-G X G)+B X G \cdot G O G(m)] /(1-\tau)$

$$
\mu_{2}=\left[B 0 G(m)-\mu_{1}\right] / \tau
$$

Therefore, $\operatorname{GOGI}(s)=\lambda_{1} \cdot 1^{s}+\lambda_{2} \cdot \tau^{s}$, and $\operatorname{BOGI}(s)=\mu_{1} \cdot 1^{s}+\mu_{2} \cdot \tau^{s}$, where $\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2}$ are given above. Since s is fixed for any given application, we will refer to GOGI(s) as GOGI, and to BOGI(s) as BOGI.

Consider the first i m-bit symbols of a random interleaved block.
Let $G B(i, j)=P\left(j\right.$ symbol errors in i symbols and $\left.S_{i s m}=B \mid S_{0}=G\right)$.
Similarly, we define $G G(i, j), B B(i, j)$ and $B G(i, j)$.
Then

$$
\begin{array}{rll}
\mathrm{GG}(1,0) & =\mathrm{GOGI} & \mathrm{~GB}(1,0)=\mathrm{G} 0 \mathrm{BI} \\
\mathrm{GG}(1,1) & =\operatorname{G1GI} & \mathrm{GB}(1,1)=\mathrm{G} 1 \mathrm{BI} \\
\mathrm{BG}(1,0) & =\mathrm{BOGI} & \mathrm{BB}(1,0)=\mathrm{B} 0 \mathrm{BI} \\
\mathrm{BG}(1,1) & =\operatorname{B1GI} & \mathrm{BB}(1,1)=\mathrm{B} 1 \mathrm{BI}
\end{array}
$$

Finally, for $\mathrm{i}=2, \cdots, \mathrm{n}$ and $\mathrm{j}=0, \cdots$, i

$$
G G(i, j)=G G(i-1, j) G G(1,0)+G B(i-1, j) \quad B G(1,0)
$$

$$
+G G(i-1, j-1) G G(1,1)+G B(i-1, j-1) \quad B G(1,1)
$$

$$
G B(i, j)=G G(i-1, j) G B(1,0)+G B(i-1, j) B B(1,0)
$$

$$
+G G(i-1, j-1) \quad G B(1,1)+G B(i-1, j-1) \quad B B(1,1)
$$

$$
B G(i, j)=B G(i-1, j) G G(1,0)+B B(i-1, j) \quad B G(1,0)
$$

$$
+B G(i-1, j-1) G G(1,1)+B B(i-1, j-1) B G(1,1)
$$

$$
B B(i, j)=B G(i-1, j) G B(1,0)+B B(i-1, j) \quad B B(1,0)
$$

$$
+B G(i-1, j-1) G B(1,1)+B B(i-1, j) B B(1,1) .
$$

```
Finally,
P(random bit is in G) =\alpha=\frac{p}{p+P}}\mathrm{ and hence
P(K symbol errors in n symbols with s blocks interleaved)
= \alpha[GG(n,K)+GB(n,K)]+(1-\alpha)[BG(n,K)+BB(n,K)]
```


SECTION IV

INPUT FOR THE PROGRAM

```
    XM = No. of bits/symbol
    XN = No, of symbols/block
XNEST = Largest number of symbol errors to be considered
    (if this field is blank, XNEST = XN)
XIPER = Number of interleaved symbols (0 or 1 means 1)
IK = O or not equal to O (0 means continue with CP,SP, H,SK;
        not equal to 0 means read new parameters)
CP = P
SP = p
    H = h
SK = k
```


SECTION V

OUTPUT OF THE PROGRAM

```
TIMEX = A8 representation of the time read from IBM 7030 Time Clock
    by a STRAP coded routine (one can call his routine or omit
    it altogether)
    CP, SP, H, SK as above
    ALPHA = P (random bit is in G)
    M (or XM) as above
    N (or XN) as above
    NS = No. of recursion terms to be attempted
    WPI = P (symbol error)
    WY155 = P (no errors when s = 1)
    WPMU2 = mean number of errors in a block
FCMEAN = mean number of errors given an error occurred (when s = 1)
    For J, L, A, B see [2,3,4]
    IS = number of errors
    P = P (IS symbol errors in a block)
    R = P (IS symbol errors in a block|error occurred)
    Q = P (\leq IS symbol errors in a block)
    QH = P (> IS symbol errors in a block)
    S = mean number of bits between blocks with > IS symbol errors
PBAR = contribution to mean number of errors per block made by
        probabilities actually calculated (if one wants the whole
        mean, then NEST = 0 or N; the same applies to VAR, SVAR,
        and CMEAN)
```

```
VAR = contribution to variance about PBAR made by probabilities
        actually calculated by the recursion
SVAR = approximate standard deviation
CMEAN = contribution to mean number of errors given an error
        occurred in the block made by probabilities actually
        calculated by recursion
```


06030	$W N=$	SP-CO	
00037	WT =		=
00038	$W R=$	WT**2 + **H*SK*W	
00039	WSQRI	$=$ SWRI(WR)	
00040	WJ =	\{NT + WSURT\}/2.	
00041	WL =	(WT - wSQRI)/2.	
00042	WA =	WJ + HN * $\mathrm{HCP*SK}+\mathrm{HCOMP}$	+ SP* ${ }^{\text {P*SKCDMP }}$)/
	1 1		
10043	$W A=$	WA / WSQRT	
001344	$W 8=$	$W A-1$.	
00045	$\pm \times 2=$	$(W A+(1 .-W J+\overline{+}) /(1 .-W J))-$	$(W B *(1 .-W L * * M) /(1 .-W L))$
00046	WPI =	P1 W×2	
00047	WPMU2	$=$ FLOATIN) WPl	-
00048	KJ=	FLOAT(MUU) * ALUG1OIHJ)	=

1. E.N. Gilbert, Capacity of a Burst-Noise Channel, Bell System Tech. J. 2 39, Sept. 1960.
*2. S. Berkovits, E. L. Cohen, and N. Zierler, A Model Eor Digital Error Distributions, The MITRE Corp., Bedford, Mass., ESD-TR-65-146, 1965.
*3. S. Berkovits, E.L. Cohen, and N. Zierler, A Model for Digital Error Distributions, The MITRE Corp., Bedford, Mass., TM-4189, March 15, 1965.
*4. S. Berkovits, E. L. Cohen, and N. Zierler, A Model for Digital Error Distributions, First IEEE Ann. Commun. Conv., Boulder, Colo., June 7-9, 1965.
2. E. O. Elliott, Estimates of Error Rates for Codes on Burst-Noise Channels, Bell System Tech. J., 42, Sept. 1963.

* References $2,3,4$ are essentially the same, 2 is more accurate than 3 , and 3 is more accurate than 4.

