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FOREWORD

The SPACE-A program described in this report is a modified version
of the trajectory and observation generation portion of the Sequential Position
and Covariance Estimation (SPACE) program originally acquired from NASA.
This document contains a detailed analysis of the equations and models used
by the program, a brief description of the routines used in the program, as
well as instructions for its operation. The principal applications of SPACE-A
are the prediction of space~vehicle trajectories and the generation of observa-
tional data plus other trajectory related information.

There have been numerous changes made in the original program in
addition to its adaptation to the IBM 7030 and its subsequent debugging. The
modified SPACE-A program is the result of the efforts of the authors and
L. E. Wilkie. S. Schwartz aided in the debugging and rewriting of certain
routines. Special thanks and appreciation are due to R. K. Squires, D.S.
Woolston, and other members of the Special Projects Branch, Theoretical
Division of the Goddard Space Flight Center from whom the SPACE program
was obtained.

The work reported in this document was performed by The MITRE
Corporation, Bedford, Massachusetts, for the Directorate of Planning and

Technology, Electronic Systems Division, of the Air Force Systems Command
under Contract AF 19(628)-5165.

REVIEW AND APPROVAL

Publication of this technical report does not constitute Air Force approval of
the report's findings or conclusions. It is published only for the exchange and
stimulation of ideas.

ANTHONY P. TRUNFIO

Technical Advisor, Development Engineering Div.
Directorate of Planning and Technology
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ABSTRACT

This report describes the SPACE~-A program presently available for
operational use. SPACE-A is the trajectory and observation generation
portion of the Sequential Position and Covariance Estimation Program (SPACE)
which is currently under development. The document contains a detailed
analysis of the equations and models used by the program, a brief description
of routines used in the program, as well as instructions for its operations.
The principal applications of SPACE-A are the prediction of the space-
vehicle trajectories and the generation of observational data plus other
trajectory related information.
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SECTION I
OBJECTIVES

INTRODUCTION

The SPACE trajectory determination program was originally devel-
oped for the Special Projects Branch, Theoretical Division, Goddard
Space Flight Center by the Sperry Rand Systems Group. It was designed
as a comprehensive trajectory determination and tracking program for
both orbital and deep space flights, The original program consisted
of three major modes of operation:

(1) SPACE-A, designed for trajectory and observation generation
without statistical processing,

(2)  SPACE-Bl, designed for statistical estimation of the six
state variables describing the position and velocity at
prescribed points of the trajectory.

(3) SPACE-B2, designed for statistical estimation of the six
state variables describing position and velocity plus up
to 20 additional states selected from a group of vari-
ables which permit estimation of dynamic biases (para-
meters affecting orbital motion) or observational biases
(affecting measurements),

The version of the SPACE program received by MITRE contained
numerous errors in programming. SPACE-Bl and SPACE-B2 had never been
debugged and many of the routines of SPACE-A were unworkable, In ad-
dition, the programming had to be made compatible with the IBM 7030,
Therefore, a large effort was put into checking the theory, debugging
the program, and revising or rewriting certain routines, Many check-
out runs were necessary during and after the debugging of the program.

Since the SPACE=B2 mode includes the capabilities of the SPACE-Bl
mode, the SPACE-Bl mode was not debugged., The original SPACE-B2
(which was not operational when received by MITRE) employed two dif=-
ferent statistical estimation techniques:

(1) a minimum variance sequential filtering technique, the so-
called "Kalman filter", and



(2) a non-recursive batch processing technique.

Because a number of trajectory estimation programs at MITRE
already employ the batch processing technique, the second option of the
SPACE-B2 mode was left in a non-operatioral status., The first ontion
of SPACE-B2, which incorporates the Kalman filter in the traiectory
estimation procedure, is presently being debugged and checked out.

The theory, programming, and results of {ts operation will be pub-
lished in a succeeding document, The theoretical development and
much of the programming of the trajectory generaticn portion of
SPACE-B2 is identical with that used in SPACE-A,

This document deals with the modified SPACE-A trajectory genera-
tion program written in Fortran IV and is presently operational on
the IBM 7030 at MITRE. This report is based on the original dncuncnts[l’2’3]
publisﬂed by Sperry Rand for NASA.

Section I contains a brief discussion of the objectives and capa-
bilities of SPACE-A, Section II discusses the theoretical bhackground,
as well as the equations and methods emploved by the program Section
III consists of a user's guide for operating the program, Jection IV
gives the program structure and a brief description of the functionr
of each subroutine,

The larger part of the report is contained in Section II since
understanding or following the programming is really a matter of fol-
lowing the appropriate equations. Although parts of Section II are

original, the contents of pertinent sections of the SPACE Analytic

ManualLl] have been freely used or modified to fit the description
of the present program, Sections III and IV closely follow the format

of the original User's ManualEz] and Programmer's ManualEB]; however,

since a number of changes in programming have been made, only Section
III and Section IV of this report should be used in operating the modi-
fied SPACE-A trajectory generation program,



CAPABILITIES

The modified SPACE-A trajectory generation may be run in any of
the following modes:

(D Trajectory generation - the computation of position and
velocity of the vehicle at regular time points along a
trajectory.

(2) Observation generation - the computation of certain
ground-based observations of the vehicle at regular
time points,

(3 Simulated data - the computation and writing onto
tape of the observations in a format suitable for
processing data by SPACE-B2,

(4) Visibility computation = the time of initial view
of the vehicle by a given station, the total time
in sight by the station, and the observations
while the vehicle i1s in sight,

The required input consists of the initial date and initial time
of a particular run and the initial position and velocity of the vehi-
cle, When the effect of drag is to be included which is usually the
case, the effective area and mass of the vehicle and the magnitude of
solar flux must be specified., When the effect of direct solar radia-
tion is included, an effective area pertaining to solar radiation must
be specified., For observation calculations, the specification of the
station location on the surface of the Earth is necessary. The de-
talls of the units and format of these required inputs along with
other optional input features are discussed in Section III, The types
of output data, which consist primarily of trajectory and/or observa-
tion information, is also given in Section III,

The philosophy behind the modified SPACE=-A trajectory generation
program is that its primary use would be for Earth orbital trajec-
tories, Toward this objective, its dynamic model includes the effects
of the primary term and oblateness perturbations of the Earth's grav-
ity, the solar, lunar, and planetary gravitational perturbations, the
effect of direct solar radiation and drag, as well as such dynamic ef-

fects as precession, nutation, and the daily rotation of the Earth,
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The model used for drag is a combination of the U.S. Standard
Atmosphere 1962 and the Harris-Priester model for the upper atmosphere,
which depends on the magnitude of solar flux., The model for Earth
gravitational oblateness may include up to nine zonal harmonics, four
sectorial harmonics, and twelve additional tesseral harmonics, The
types of ground station observations that may be specified are given
in Section II (see OBSERVATIONS),

Although the modified SPACE~-A program is intended primarily for
Earth orbital trajectories, it may be used for other types of missions,
However, a number of options that were included in the original SPACE-A
trajectory generation program are not presently operational, These op-
tions were a capability for modeling the perturbations due to thrust,

a model for lunar libration, simple models for lunar gravitational ob-
lateness perturbations, as well as models for the drag of Mars and
Venus, and a capability for computing on-board observations from a
vehicle, Although these options are not presently available in the
modified SPACE-A program, with some effort they could also be included.



SECTION II
THEORY

GENERAL DESCRIPTION OF TRAJECTORY COMPUTATION

Orbit prediction or trajectory computation is the process of cal-
culating the position and velocity of a vehicle at any time subsequent
to some initial time, provided the initial position and velocity of
the spacecraft are given.,

To accomplish this prediction, one uses the laws of celestial
mechanics embodied in the differential equations of motion. The
forcing functions for the equations of motion are obtained from a dy-
namic model which accounts for the accelerations on the vehicle., A
reference frame is erected to express the components of the various
vector quantities, and the equations of motion are numerically inte-
grated subject to the given initial conditions, Once the vehicle tra-
jectory is determined, the program can then generate observations.

The coordinate system used in this program is based upon the
position of the mean Earth's equator and equinox at oh 1 January of
the year subsequent to the initial input time of the program, Coordi-
nate directions of this frame are inertial with respect to the fixed
stars; the center of origin of the system, however, may be transferred
from one central body to another so that the spacecraft motion is
specified relative to a point mass which itself has a proper motion.
This reference frame is called the Base Date System or simply the in-
ertial system,

Observations made from the Earth are necessarily in a system
different from the Base Date System, To accomplish transfer between
various coordinate systems, transformations are provided (see COORDI-
NATE SYSTEMS AND TRANSFORMATIONS), These transformations include the
dynamical effects of precession, nutation, and daily rotation of the

Earth .



All accelerations acting on the vehicle are specified in the Base
Date System, The gravitational attractions of bodies in the solar sys-
tem are functions only of position with respect to the vehicle; conse-
quently, the program employs an ephemeris giving planetary coordinates
relative to the Sun, and lunar coordinates relative to the Earth, all
in a Base Date System, A Base Date System 1s specified for overlapping
two-year blocks of data, the date corresponding to the middle of the
two-year file, Specifying an initial time causes the program to choose
an ephemeris file having as its Base Date the beginning of the year
following the initial input time of the program. In this way, at least
one full year of ephemeris information is available before a change of
reference system is necessary.,

Another acceleration specified in the Base Date System without
transformation is that arising from solar radiation pressure. Since
this acceleration is a function of relative position between the Sun
and the vehicle, its direction is given in the proper frame by using
information from the ephemeris,

Other accelerations, such as perturbations due to Earth oblate-
ness effects must be transformed through nutation and precession to the
proper frame, All positions, velocities and accelerations are computed
in canonical units (i.e., Earth radii (ER), Earth radii per hour
(ER/hr), Earth radii per hour per hour (ER/hr?), respectively) and ap-
propriate constants are used to transform to other units of measure.

Vehicle motion 1s always computed relative to some reference body;
a planet; the Moon; the Sun, Consequently, the equations of motion
contain a term which accounts for the acceleration of the reference
body on the vehicle., The remaining accelerations are usually, but not
always, much smaller than this primary acceleration and are therefore
called perturbations, In most cases, they can be regarded as giving
rise to small disturbances in the orbit determined by the reference

body and the initial conditions,




Reference bodies are changed during a trajectory calculation when
the vehicle leaves the 'region of influence' associated with a partic-
ular body. Regions of influence are computed for a body with respect
to the object of which it is a satellite, Hence, each planet has a
region of influence defined relative to the Sun, and the Moon has a
similar region defined relative to the Earth, In transferring into or
out of such a region, velocity as well as position with respect to the
new reference body must be calculated.

Since no analytic solution exists for the equations of motion,
numerical methods are employed to compute the components of position
and velocity, In the program, a cholce may be made hetween using
straightforward integration and using Encke's method. The former
technique, called Cowell's method, 1s conceptually simple, but suffers
from precision and machine running time problems., Encke's method,
although somewhat more complicated, gives dividends in both precision
and machine efficiency. In this procedure, the Keplerian orbit
arising tfrom the reference body central force field is taken as a
nominal trajectory., The perturbation accelerations are integrated
and the resulting position and velocity increments are added to the
Keplerian solutions, Naturally, Encke's method is most effective when
the perturbations are small,

The present program has the capability to compute a number of
ground-based observations. Corrections are provided for the refraction
of an electromagnetic signal by the troposphere and by the ionosphere.
Adjustments are computed for errors in elevation angle, range, and
radial velocity; other angular corrections are calculated from the
adjustment in elevation angle,

Description of the basic equations used by the program for the
dynamic model now follows. It includes derivations of the accelera-
tions due to the planets, Earth oblateness, drag, and direct solar
radiation pressure., It also discusses the coordinate systems, numeri-

cal integration methods, and observation calculations including the
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refraction model used by the program.

DYNAMIC MODEL

The equations of motion for a space vehicle are second-order
differential equations which describe the accelerations arising from
the forces acting on the vehicle., These forces can be classified as
follows:

(1) Gravitational acceleration of the reference body - primary.

(2) Gravitational perturbations due to other bodies (e.g.,
planets).

(3) Gravitational perturbations due to reference body
oblateness.,

(4) Perturbations due to drag.

(5) Perturbations due to direct solar radiation pressure
on the space vehicle,

For orbit determination the reference body primary gravitational
force almost always predominates the perturbation forces given above.
The only exception occurs during reentry of a vehicle into the atmos-
phere, when drag forces may be larger than the primary force of gra-
vity. Another force which may exceed the primary force of gravity is
that of vehicle thrust. Since this program is designed primarily for
orbital computations, this force 1s not discussed here although it
can be readily included 1if desired.

The simplest gravitational force field is that due to a single
point mass or equivalently that due to a homogeneous ponderable body
which is perfectly spherical. In this case the equations of motion

of a vehicle with respect to the ponderable reference body are:

ol 1

R=- (1)
where

W= G(Mm) = GM, since m << M

G is the universal gravitational constant,

M is the mass of the reference body,

m is the mass of vehicle,



R is the vector position of the vehicle with respect to
the reference body center,

With initial conditions ﬁo and ﬁo Equation (1) defines a '"two-
body" or Keplerian orbit, which arises from the primary reference
body central force field and which may be expressed in closed form in
terms of its true or eccentric anomaly.

The above "two=-body' dynamic model may be extended to include
perturbational accelerations acting on the vehicle, in which case

Equation (1) becomes:

-
R = =

o N
+
=17

-+ > -+
il i ) v W e ST (2)
where

P; 1s the summation of all the accelerations arising from
planetary,lunar and solar attraction,

P, 1s an acceleration arising from the oblateness of the
reference body,

P3 1is an acceleration arising from drag as derived from
an appropriate model to be described later, and

Py, 1s an acceleration due to direct solar radiation upon
the vehicle neglecting reflected sunlight from the
reference bodies or planets,

- > -
The perturbational accelerations 31, P,, P3, and P, are obtained

from specific dynamical models whose detalls are described below,

PERTURBATIONS DUE TO PLANETARY ATTRACTIONS
The general expression for the perturbational acceleration, 51,
of a space vehicle due to the gravitational influence of the Sun, Moon,

and other planets (excluding the reference body) is given by:

<> ﬁvj irj ﬁ.
Pl - z - u [ _ cmomtaa (3)
] ’ Ryj Rej3 |
where
Hy = G

G is the gravitational constant,

Mj 1s the mass of the jth body,



Ryy 1s the position of the vehicle with respect to the
jth  body, (Figure 1)

Rry 1s the position of the reference body with respect
to the jth body, (Figure 1)

AR 1is the position of the vehicle with respect to the
reference body (Figure 1),

ivj vehicle

jth body .
Y
Rrj

reference body

Figure 1. Vectors for Planetary Attractions

If the two terms of the bracketed expression in Equation (3) are
very nearly equal, a loss of accuracy due to round-off errors by
machine computations will occur. Equation (3) can be written in a
more convenient form due to Battin[aj thereby eliminating this pro-
blem. Using Equation (3), and Equation (4) below and rearranging terms

one obtains Equation (5).

Aﬁ = _ﬁvj = irj (l‘)
P, = g oy [Rrj (E;;; - 1) - &R] (5)

This latter form is used to achieve more computational accuracy. The

actual programmed equations, which can readily be shown equivalent by
substitution are:

P, = § E%ig (Bey (£0)) - oK) (6)
where
U3 + U (3+U)]

f(U) =
1+ (1+U)%& 7

> A-» . Aﬁ
U_Z(Rq"‘ R)

. (8)
Rrj
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The forces introduced by solar, lunar and planetary attractions
in orbit prediction about the Earth are usually smaller by a factor
of 1077 than that of the primary attraction of the Earth's gravita-
tional pull, Planetary perturbations (including solar and lunar per-
turbations) do have a significant effect on a vehicle trajectory over

long time periods or for deep space probes,

PERTURBATIONS DUE TO EARTH OBLATENESS

The fact that the Earth is not a perfect sphere of uniform den-
sity gives rise to perturbational accelerations due to Earth oblate-
ness, Formulas are derived below which the program uses to include
these perturbations in the prediction of near-Earth trajéctories. In
a coordinate system attached rigidly to the ﬁarth, the Earth oblate=-
ness perturbation may be treated as the acceleration of a conservative

force derivable from a potential, Thus:
3
P, = - VU

The potential function is given by Equation (12) and the final form of
the acceleration 32 is given by Equations (26)-(29) and Equation
(32) below.

The Geopotential Function

The geopotential function can be derived from the basic property

that the potential, U, satisfies Laplace's Equation[s’ PP g, (LI,

VZU = 0,

In spherical coordinates, Equation (10) becomes

EY) ) 13U
VZU-—Z——]"——[-R' (rz cos¢-g%)+-a§;(cos ¢3-¢-)+37(m-a—)}- 0

Although the solution of Equation (11) is not elementary, the equa-

tion may be solved by applying the method of separatlon of variables

[6ys p.40].

and using Legendre polynomials The solution of Equation

11

(9)

(10)

(11)



(11) is given by

o R n
U = - %. f (15)“ ) {P: (s8in ¢) [Cp,m cos mA + Sy p sin mi]}
n=Q m=0

where
u 1s the Earth's gravitational parameter,
Re 1s the Earth's mean equatorial radius,
r,A,¢ are spherical coordinates (see Figure 2),

P, 1s the associated Legendre function (spherical harmonics)
of the first kind of degree n and order m, and

Cn,m and
Sn,m are numerical coefficients,

The Legendre polynomials, P,(x), are defined by

Pr(o) = =2—d ((x2 - 17,
2 n! dx

and the associated Legendre function P:(x) by

m
PR(x) = (1 - x2)7 4% p_(x).
dx™

The spherical coordinates r, A, ¢ are defined with respect to
the fundamental planes determined by the true equator, and the Green-

wich meridian (see Figure 2),.

vehicle

Greenwich meridian y
true equator

X

Figure 2. Spherical Coordinates
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The fundamental term in the expression for U 1is given by
m=mn=20, The terms in which m = 0 are called zonal harmonics.
Inspection of Equation (12) shows that these terms vary only with
latitude, and hence reflect deviations of the Earth's potential from
a sphere of uniform density that are symmetric around the spin axis
(e.g., a pear shaped Earth potential can be modeled with zonal harmon-

ics). Evaluating the 2,0 term for U we have
Ra+2
- ‘5‘ (‘;‘) Py, (8in ¢) Cz’o
and since
Py0) = 2 (3x2 - 1)

Equation (13) becomes

Re 2 1
- 'E- (-;_-) -5 (3 sin? ¢ - 1) C2,00

The zeros of Equation (13) are at % 35725,

+ 35325
equator

- 35225

Figure 3. Zonal Harmonic for n=2, m=0

The sectorial harmonics arise when m = n, The zeros of the
sectorial terms lie along lines of longitude, The remaining combi-
nations are tesseral or square in that these terms vanish both along
a number (m - n) of parallels of latitude and a number (2m) of meri-

dians of longitude, Figure 4 provides an illustration of zonal,

13
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7

sectorial, and tesseral harmonic variations for a sample set,

Zonal Sectorial Tesseral
Harmonics Harmonics Harmonics
n=4 ne=3 n =8

m= 0 m=3 me=3
Figure 4. Variations

In summary, Equation (12) describes the Earth's gravitational
potential at any point in space; the negative gradient of this poten-
tial gives the corresponding acceleration, Note should be made, how-
ever, that the acceleration obtained is in the Creenwich coordinate
system, and hence must be transformed into the inertial system (the

Base Date System) to be employed in trajectory computation.

Computation of Accelera;ipndDus~eo-£arth Oblateness

The components of gravitational acceleration are now expressed
as the sum of terms which have the same general form for any m, n
combination, First, it is necessary to develop expansions for cos mi

and sin mA in terms of cos A and sin A. From DeMoivre's theorem,
cos mA + 1 sin mA = (cos A + i sin A)M

Now, expanding by the binomial theorem

m
cos mi + 1 sin m)A = 2 (E)(cos A)m-k(i sin A)k.

k=g

For m an even number

14



a

2
cos mh + 1 sin mA = Z (;L)(-l)k(cos A)m-Zk(sin A)Zk
kwg
3-1 \
4 Z ( m )(-l)k(cos A)m-Zk-l(sin A)2k+1 .
2k+1 J
k=g
and for m an odd number
m=1
e k 2k 27
cos mi + 1 sin mA = ) (;L)(-l) (cos M) “F(sin 1)
k=g
JuiPY \
2
+14 1 (21?+1)(-1)k(cos M2 (s1n A)Zkﬂ}-
k=g
Equating real and imaginary parts above, we have
u k [ m m-2k 2k
cOS mA = Z (=1) (Zk) (cos 1)) (sin A) (14)
k=g
L3 K 2k=1 2+1
m me=2k= Ba :
sinm\ = z (=1) (2k+1)(cos ) (sin X)) s
k=g
m m!
where (] = 2! (m=2)!

if m 1is even

gu}
2
mgl if m 1is odd,

M-
5-1 if m 1is even
and M = -1
2‘3— if m is odd.

From the definition of spherical coordinates:
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sin ¢ = f

cos ¢ cos A -‘f (16)

cos ¢ sin A = =
r

where x, y, and 2z are the coordinates of the vehicle in the Green-

wich coordinate system,

Using Equation (16) in Equations (14) and (15), we have:

] -2k 2k ’
cos m\ = = 2 (-1) ( )( e 2 (y) (17
(r cos ¢) kmg .
1 M 2k=1, \2k+1
-2k- +
g i (i e (-1) (2k+1)(")m (y) (18)
(r cos ¢) k=g
Substitution of Equations (17) and (18) into Equation (12) yields:

o [R n PY (sin ¢)
ve-k ] [T G(xs ¥) (12)
m
n=0 meg (r cos ¢)
where M
k -2k 2k
G(xs ¥) = Caym L D ()T
k=0
¥ 2k=1, . 2k+l
+Sam L DN )"
k=0
From the definition of the associated Legendre function, we have
m
) Z N
PR = 2t S (2 - 7, (19)
2% af dt

Setting T = sin ¢ and dividing Equation (19) by cos" ¢,

m
Py (sin &) 1 @7 2 pyn (20)
cos™ ¢ 2" nt drm+n

Setting U = Z Z Un,n» and using Equation (20) we have
n=0 ms(
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The gravitational acceleration

gradient of the potential function,

(2 - D" alx, )

dt
(12 = D" 6(x, v)

is computed by taking the negative

The general derivative in the

gradient will be taken with respect to £, where £ takes on the
values of x, y, and z,
Defining
£ We o
- - A
Am.n aE
and carrying out the indicated operations using
& _& L.z J 13z _ 2L
BT E T ETEE r] E [35 r2]
yields: R
Eae e (mn+1) £ gEe. 5 ah
An,m = —y [ 2 G(x,y) e (1 1)
2" nlr dt
S SGo ) (22 zf] LT 2 - 17
r 9k r Tm+n+1
+n
s N E.G_M] (21)
P 13
where
M
k -2k=1 2k 9
& ¥ wcam I (DS () {@e2k) T i
9§
k=0
+ 2k xm—Zk y2k--1 21}]
13
2 k k=2 2k+l 3
m LepPlioe X
+ Sp,m L [(~1) (2k+1){(m-2k-1) x y :

k=0

# ey sk 2 -2%}].
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It can be shown by applying the binomial theoram and induction

that i [n - 4]
L o2-nta J (nF () —Lacic : (ry2n-2k-1
dt k=0

where [n - %ﬂ indicates the integral part of n -'%. Hence,

=ity ‘
goin n 2 k oy (2p=2K)1 n-2k-m
— (12 = 1) kzo 13" () (e (1) (23)
and [m-n-ll
mn+l  , oo : k (ny _(2n-2101 n=2k-m-1 ,
:%;:;:I (¢ =1) kEO (-1) (k) CES T (1) (24

where 1t = gin ¢ = f'. Therefore, Equation (21) may be rewritten as

[==)
2 =i Rg k (ny (2n=2k)! (z\n=2k-m
Aym = wel [{ kgo 0" () zemT ) [
. () ¢ ox, v - 392%—’-} -
S =201 (zyn-2k-m-1
{ kzo 0" () ety () }
" G(x ) .3
(Sl (2 - ﬁ] }] (25)

e
By separately considering the case for n-m odd and for n-m even,

it may be shown that Equation (25) reduces to the following expres-

sion: - [25&]
E - —-u_—e—- k (ML! .E_ n-2k'ﬂl-1 -
SR Pl kzo E G o v ey g = } x 26)
{((2n-2k+1) %5 y .(r%:ﬂl_g%) 6xy 9 - & acs,(agm}
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where

1 {if £ = x 9y (1 £ E=y 29z (1 1f E= 2
ag "o tredx 700 tregy 0 trcge Y
and M
k m! -
G(x. Y) . Cn.m Z (-l) 2k! (m-Zk)' (x)m Zk(y)Zk
k=0 )
k 1 =2k= k+
Sam L D" Gy emenT @ ot e
k=0
2.1 4f 1
- _{m/Z 1if m 1is even M' - 2 (e R RS
2L if n 1s odd BL  4f n 1s odd
3G(x, y) c % [(-l)k {( 2k) ()™ =2k=1 )2k 3x
N S 2K 1 (m —2k)1 T & 3
+ 2™ 2K gy 21 :Z}]
M' :
m
# Sn,m kzol( -1)" DT (m2k-D) 1
< {@261) TP P ZE oy o) 0™ o 2 (29)

It is important to note that when =z = 0, a special procedure
must be used since the term (-1-2__-)'1 arises in Equation (26) for n-m
even; and (-:-)0’ when n-m 1is odd,

When n-m is even, Equation (26) reduces to one term, when 2z = O.

n m
£ - U Re 1n+m1} (p+m+l)£ G 3G
An,m = o0 g m+n+1 {( -1 (n-m }{ - 35} * (30

== ) n-_

2 2

Similarly, when n-m is odd, Equation (26) may be reduced
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ASm=0 for £ =x,y

z “ [nZ ] (Ehn+ )2 el
An,m = et {(-1) e e (31)
of rm+n+l (nZE) (n_[nzm])l r

In summary, the program computes the acceleration of a vehicle

due to the Earth in the Greenwich coordinate system by the formula:

«© n >
Po= ] I Uapi+Ani+ainn (
n=0 m=0

Lo
[S%]
~

-

where I, 3, k are unit vectors in the Greenwich coordinate system.
In Equation (32) the range of indices (n,m) are restricted by

SPACE-A to the following limits:

a o

2 O X, 2

3 @, 1, 2, 3

4 @l Ly Ty, Oy &
5 B Lo 2y &

6 5

7 g, 1

8 0

9 0

10 0

The fundamental term is given by the (0, 0) combination and
would be the only term present if the Earth were of uniform density
and a perfect sphere. Since the center of the coordinate system is
taken to be at the center of mass, it can be shown that the (1, 0)
and (1, 1) combinations vanishtb’p'SOJ.

In Equation (32), Ag
n,m

2

z = 0, by Equation (30) or Equation (31) depending on whether n-m

is given by (26) when z # 0, and when

is even or odd.
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PERTURBATION DUE TO DRAG

Accurate simulation of an artificial satellite or other space
vehicle trajectories requires consideration of vehicle deceleration
resulting from atmospheric drag. A number of planets (e.g., Earth,
Venus, Mars and Jupiter) have sufficiently dense atmospheres to re-
tard the motion of a vehicle within their atmospheres; however, this
discussion confines itself to the atmospheric model of the Earth,

An analysis of drag must take into account the particular mis-
sion of the vehicle, e.g., low eccentricity, orbit, reentry, or fly-
by, since vehicle mission determines what portion of the atmosphere
it is necessary to include in the model,

The following discussion describes the general equations used
for drag computation, some of the problems involved in simulating the

Earth's atmosphere, and the effects of certain simplifying assumptions,

Drag Equations

The program uses two different formulas for computing the vehi-
cle deceleration, 53, due to drag. For a relatively dense atmos-
phere where the assumption of continuum flow is valid the following
well known equation is used:

CpS. .
By=-C (30 =) Va Va (33)

where
p 1is the atmospheric density at the vehicle,
Cp is the drag coefficient of the vehicle (dimensionless),
S 1is the effective surface area of the vehicle,
m 1is the mass of the vehicle,

Va 1s the vector of the velocity of the vehicle with
respect to the local atmosphere,

Va 1is the magnitude of Va, and

C, 1is a constant used to convert the above expression
into the units used by the program,

Equation (33) is used to compute the acceleration of drag in the
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lower atmosphere from O kilometers up to 120 kilometers, although the
model for the lower atmosphere from which the values of p and (p
are obtained may be extended up to 210 kilometers with some loss of
accuracy. The basic model used in the lower atmosphere is the U, S.
Standard Atmosphere 1962[7] " and its details are discussed below.

As the atmosphere becomes more diffuse, the mean free path length
(average distance between impacts of air molecules) increases, At
110 kilometers, mean free path length is roughly one meter and at 130
kilometers may become as large as ten meters[7]. When the mean free
path length exceeds the dimensions of the vehicle, the assumption of
continuum air flow is no longer applicable. In such a diffuse atmos-
phere where all collisions are essentially two~body collisions, the
alr flow is referred to as free molecular flow.

Ketchum[8] has derived the following formula for the magnitude

of drag deceleration in free molecular flow:

-

B3] = % (2 +%&)[o Cav %l Va , (34)
where

R the radius of the vehicle,

A the mean free path,

Cav the average velocity of particles in the medium,

Ketchum is uncertain as to the validity of the (1 + 2R/)) term
in Equation (34). In the high atmospheric region the assumption that
A >> R 1is usually justified, except perhaps below 140 kilometers.
Therefore, the program actually uses Equation (35) in computation of

the drag in the high atmosphere,

By =~ Cy (Fo Cav) Va (35)
where,
S 1is the effective surface area of the vehicle,
m 1is the mass of the vehicle,
p 1is the atmospheric density at the vehicle,

Cav 1s the average velocity of particles in the medium,
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a 1s the vector of the velocity of the vehicle with
respect to the surrounding atmosphere, and

C, 1s a constant used to convert the expression into
the units used by the program,

Equation (35) 1s used to compute the deceleration of drag in the
upper atmosphere from 100 kilometers up to 1,050 kilometers, although
the model for the upper atmosphere may be extended up to 2,000 kilo-
meters. The basic model used for the upper atmosphere 1s that due to
Harris & PriesterEg]. The values of o and Cav wused in Equation
(35) are derived from this model, the details of which are alseo dis-
cussed below,

Notice in both Equations (33) and (35) that the direction of the
drag force is in a direction opposite to the velocity with respect to
air, In addition, both formulations assume zero 1lift and assume that
the angle of attack of the vehicle 1s zero, i.e,, that the vehicle
velocity relative to the air mass is in line with the vehicle longi-
tudinal axis,

It is readily seen that the formula for drag in the upper atmos-
phere, Equation (35),differs from the equation of drag in the lower
atmosphere, Equation (33)., Furthermore, in the region between 100
kilometers and 120 kilometers there are disagreements between the two
models. For example, the value of density predicted by the low atmos-

pheric model (U, S, Standard Atmosphere 1962) at 120 kilereters is

347% hipher than that predicted by the high atmesnheric redel (Farris-
Priester) at the same height,

The present program achieves a compromise between thcse twe
models by treating the region from 100 to 120 kiloreters as a tre-si-
tion region in which a weighted average is taken between the drae
values computed by the two rethods and gradually slides the weight
from unity for free molecular flow and zerec for continuum flow at 120
kilometers to unity for continuum flow and zero for free molecular

flow at 100 kilometers.
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Because of the uncertainties in the atmospheric models and be~
cause of the approximations made in the analysis the computation of
drag deceleration is probably accurate to + 5% in the lower atmospicre

and is less accurate in the upper atmosphere.

Variables Used in Drag Computation

Vehicle Mass

In the most general case, the vehicle mass in the drag equations
should be considered as variable with time. In the orbiting case or
the fly-by case, a step change in mass representing the separation of
a landing craft is conceivable. A long~term steady-state mass flow
rate, however, would probably be small.

For the reentry case, if the reentry vehicle is of the heat-sinr
type, the mass would be constant. For an ablative nose cone (i.,e.,
one which loses mass when moving at high speeds due to friction) the
mass flow rate is a function of the drag. For ballistic missile ap-
plications, this mass change is usually ignored. In any event, such
changes in mass represent a small error in the location of the impact

point. Therefore, the program treats the mass as an input constant.

Surface Area

The effective surface area term S in the drag equation is not
simply the cross-sectional area of the vehicle. The vehicle, in
passing through the air, produces a shock wave which skirts the mis-
sile thereby placing the effective cross-sectional area at a point
somewhat close to the nose. Since the shock wave changes with air
speed, so does the effective cross-sectional area. In practice, S
is made constant and any variation with speed is included in the co-

efficient of drag.

Velocity with Respect to Ailr

The velocity of the vehicle is available in an inertial coordi-
nate system (Base Date System).

-

The vehicle velocity with respect to the moving air mass, Va,
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in the same coordinate system, is obtained by subtracting the velocity
of the air mass from the vehicle velocity. A good first approximation
to the velocity of the air mass is obtained by assuming the air mass
to be rigidly attached to the rotating planet.

From these considerations we have:

Va=R-0' xR (36)
where

-
Vo 1is the velocity with respect to surrounding atmosphere,

R 1s the position vector of the vehicle in the inertial

, frame,

R is the velocity vector of the vehicle in the inertial

frame, and

-

Q' 1is the vector of angular rotation of Earth expressed
in the inertial frame,

A better approximation could be obtained by including the effects
of wind velocity. The purely local effects have to be neglected, but
the long~term horizontal effects are known as a function both of posi~
tion on the Earth's surface and of altitude. The effects of the wind
velocity's direction (independent of altitude but dependent on lati~-
tude and longitude) and magnitude (strongly dependent on altitude,
less strongly on latitude, and least on longitude) would have to be
included. The error made by neglecting Earth winds is about 1,500
feet at impact for a typical ICBM mission., It should be noted that
winds are of importance only in the Earth's lower atmosphere, mainly
for the reentry case. In the present program the effect of winds is

neglected,

Drag Coefficient

The drag coefficient, Cp, 18 sometimes considered to be a con-
stant, Very often the ballistic coefficient, B = E%i » 18 used in
analysis in place of the drag coefficient, mass, and effective sur-
face area., A much more accurate representation for Cp is obtained

by considering it to be a function of Mach number. Mach number is
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defined to be:

-

Va
M- -;‘ (37

where,
M 1s the Mach number,
|Va] 1s the speed with respect to the surrounding air, and

c 1s the speed of sound in the surrounding air,

The speed of sound 18 a function of altitude obtained from the
low atmospheric model (see below)., It should be noted that as altitude
increases, the atmosphere becomes rarified to the point that the speed
of sound loses its physical significance.

In the program Cp 1s tabulated for about 40 different Mach
numbers. These numbers are denser for speeds below Mach 2 than those
above and are very dense in the region around Mach 1, For intermedi-
ate values of Mach number, linear interpolation is used.

Inadequate knowledge of the drag coefficient is one of the major
sources of inaccuracy in the simulation of drag. Since drag coeffi-
cient is a function of Mach number, drag coefficient data has been

obtained by wind tunnel measurements made at a range of Mach numbers.

Alr Density

In the region below 120 kilometers the air density, p, 1is a
function of altitude obtained from the low atmospheric model and is
computed from a stored table (see below).

In the high atmosphere p 1is obtained from the upper atmospheric
model of Harris-Priester and is considered to be a function of alti-
tude, local solar time, solar flux, and latitude, Tables are provided

in the program for its computation (see below).

Mean Particle Velocity

The mean particle velocity, Cgzy, 18 of importance only when
the vehicle is in the upper atmosphere where the assumption of free
molecular flow is valid. From Equations l.3.4-1 and 1.2,6-=1 of
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Reference (7], C,, is given by

T km
Cav = &/ 2 (oon)

T 1s the absolute temperature of particles (°K),

where

m 1s the mean molecular weight of medium (gm),
k 18 a constant of proportionality (.145),
The values of T and m are given in the Harris-Priester model of

the upper atmospheres. Cgy can, therefore, be obtained directly from

stored tables,

Lower Atmospheric Model

Drag in the lower atmosphere (below 120 kilometers) can be large
and a vehicle entering this region will usually be slowed down suffi-
ciently to be juickly captured by the Earth, Thus, the lower atmos-
phere is primarily of concern in the reentry case,

Data for an average model have been well established for the
lower atmosphere, There are five sources for these data: U. S,
Stancard Atmosphere 1962; COSPAR International Reference Atmosphere
{(CIRA), 1961; COESA Table for Tropical Latitudes, 1962; ARDC Model
Atmosphere 1956, 1959, Table I shows the density deviation (in

percent), as a function of altitude, of each of the others from the

U. S. Standard Atmosphere values, From the table, it is evident that,
except for the COESA tables, there is good agreement between the vari-
ous tables at low altitudes. Note that the U, S, étandard Atmosphere
and CIRA tables are in excellent agreement all the way to 120 km,
(400,000 feet).

The lower atmosphere is characterized by seasonal, diurnal, and
latitude variations; however, none of these is sufficiently well
documented., The only effect of omitting them is that the impact point
of a re-entering body would be slightly different, It was estimated
in 1958 that the standard deviation for a heat-sink type nose cone
used in the ICBM application 1is only about 0,5 nm.
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Table 1

Comparison of Sources of Density Data

U, S, Standard
Atmosphere Pcrecent Deviatior fror Iir Sirc-«
Altitude Density
Values 3
(Reference) ARDC ARDC CIRA COF SA
ke, Ex; slugs/ft3 1956 1959 1961 1962
0 0 2,38"3 0 0 0.55 -4,77
3.0 | 10,000 1.76-3 0 0 -0,91 -5,32
5,5 | 18,000 1.3673 0.04 0 1.85 -1.67
1Ww.1 | 33,000 7,97 ¢ 0.05 0 1.68 1.9
la.6 § 48,000 4,007" 0.09 0 2.36 15.5
20,4 } 67,000 l.617" 3.28 0.16 0.48 6.80
29.0 { 95,000 4,205 0.59 -2.36 0.10 0,46
32,5 }110,000 2,077 -3,13 -3,13 0.68 2,53
48,6 {160,000 G 4,77 4,77 O 8.9
67,1 | 220,000 2507 15.0 15.5 1.30 8.10
$1.4 | 300,000 4,62-° 31,2 -10.8 0.11 - -
121,9 V400,000 3.62711 81.5 -35,0 1.57 - -

Three tables with 32 values each are stored in the program for
the lower atmospheric model. The first contains 32 values of alti-
tudes in kilometers, the second contains 32 values of the logarithm
(base 10) of the density, p, in gm/km3, and the third contains 32

values of the speed of sound, c, in km/sec. The nth entry in the
altitude table corresponds to the nth entry in the table for log;oP
and ¢, Intermediate values are obtained by linear interpolation.

These three tables are obtained from the U, S. Standard Atmos-

phere 1962, in which densities and speed of sound at altitudes below
90 km are listed, Above 90 km the speed of sound was calculated from
temperature and mean molecular weight data which are directly avail-
able,
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The value of altitude (in Earth radii) above an ellipsoidal
Earth is obtained using a formula found in BakerElOJ.

2
s o 44 E sl 4 4 e (e 2 el 123 (39)
2 N 4
where
h is the height of the vehicle (ER),

r 1is the distance of the vehicle from the geocenter (ER),

is the geocentric latitude of the vehicle,
1
298,3 °*

For programming purposes Equation (39) is put into the more convenient

form:

is the flattening constant of the Earth =

2 1y x2 + y2
1+ (-9 g

- - 2
R Al Lok 298.3 R2 (40)

where,
h 1is the altitude of the vehicle (ER),

X,¥,2 are the position coordinates of the vehicle in the
Greenwich coordinate system (ER),

- 2 2 2 is the distance of the vehicle from
R //¥ tyo e the geocenter (ER).

The position coordinates of the vehicle are available from the pro-
gram and h 1s multiplied by 6378.165 to convert its units into
kilometers.

After h is obtained, p (p = 10108109) and c¢ are obtained
from the low atmosphere tables., Then the air velocity, Va and the
drag coefficient, Cp, are computed as described above. Finally,

53 is computed according to Equation (33).

Upper Atmospheric Model

Models of the Earth's upper atmosphere (above 100 kilometers)
must take into account solar activity, There is evidence that solar
activity occurs cyclically at periods of 27 days, 6 months, 1 year

and 11 years,
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Theoretical models do not exist for the 27-day, 6-month, and 1-
year cycles. Diurnal variations, if any, of the models for these
cycles are not known, Investigation of the ll-year cycle (corres-
ponding to the sunspot period) in solar flux led to the Harris-
Priester model of the upper atmosphere. This model"g’ll:| has
diurnal and solar flux variations.

The Harris-Priester mode1[9] lists the density, absolute tem=-
perature, and mean molecular weight of the atmosphere as a function
of altitude, solar flux and local solar time, The mean particle
velocity can be found by use of Equation (38). Note that at the
North and South Poles local solar time is undefined,

The upper atmosphere has a delaying effect on solar radiation,

It takes several hours for the Sun's heat to pass through the atmos-
phere and reach the Earth's surface. The Harris-Priester model is
based on densities computed at the Earth's equator., Intuitively, it

is expected that it will take longer for the solar flux to reach the
poles as opposed to the equator, Therefore, it is considered that
there is an effective variation of solar flux with latitude. This
variation is implemented in the program by applying the Harris-Priester
model at the equator and a stored table of "twilight' densities at

the poles. The cosine of the latitude of the vehicle is used as a
weighting factor to interpolate between the two sets of data.

The Harris-Priester upper atmospheric model has been incorporated
in the program by means of a table look-up procedure, Two tables are
used in the program,

The first table lists the logarithm to the base 10 of the density
in gm/km3 times the mean particle velocity in km/sec (log;gp Cav) at
the equator as functions of altitude (km), solar flux (vatts/m?2 - Hz
at a wavelength of 10,7 cm) and local solar time (hrs). These values
have been tabulated for 16 values of altitude, 4 values of solar flux

and 13 values of local solar time, Hence, this table has 832 entries,
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The second table lists 1log;g PCay 1in the same units at "twi-
light” for the modeling of the polar region as a function of altitude
and solar flux, This table has 16 entries for altitude, 4 entries
for solar flux, or 64 entries,

For intermediate values of the input variables (altitude, solar
flux, local solar time) a linear interpolation is used to obtain the
output, log;p pCav. This method gives fairly accurate results since
0Cav 1s nearly exponential, The value of solar flux is determined by
input data. The value of altitude is computed according to Equation
(40)., The value of local solar time is computed from the x and vy
coordinates of the vehicle and the Sun in the inertial (Base Date)

coordinate system (see Figure 5),

SUN

VEHICLE
- 6

] > y-AXIS
—/// 67

GEOCENTER _/

Y x-AXIS

Figure 5. View of x-y Plane from Above
Thus we have:

(-]
local solar time '{(92 -8 + 1 !ﬁ%l— + 720°}(mod 360°)

where
= Ys
- 1 = < 0 < = 7
6, tan [xs) where w < 8] <
- -1 (L T < 0y <=1
6, = tan [xv) where <82 %
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Xys Yv are the vehicle coordinates in the inertial system,

Xg, Yg are the Sun's coordinates in the inertial system,
Local solar time given above is then divided by 15 to convert its units
to hours,

After a value of log;y pCay has been obtained from both the
equatorial table and the "twilight" polar table an interpolation is
done to obtain the final value of pCay using the cosine of latitude

as a weighting function, Hence:

L =Lp + cos ¢ (LE -~ Lp) '

2 2
4_xc + o
cos ¢ = \/ml_‘_—:z (43)

pCav = 10L (44)
where
L 41is the final value of 1log;( eCav,

Lp 1is the value of 1log;o pCav obtained
from the twilight table,

LE 1s the value of 1log)g pCav obtained
from the equatorial table,

X,Y,2 are the coordinates of the vehicle in the inertial
(Base Date) system and ¢ 1is the latitude of the
vehicle,

Once pCgv has been found, the vehicle area and mass (S and m,
standard program inputs) as well as air velocity Va (see Equation
(36)), are obtained and the value of drag deceleration is finally

computed according to Equation (35).

PERTURBATION DUE TO DIRECT SOLAR RADIATION

Solar radiation exerts a pressure on the intercepting surface of
a vehicle, Orbiting planetary vehicles, having a large area to mass
ratio are subject to noticeable perturbations due to solar radiation

pressure, In fact, for orbits above 500 miles the solar radiation
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perturbation is usually more significant than that due to dragtlz].
The vehicle acceleration due to solar radiation pressure depends on
the area to mass ratio of the vehicle as well as the intensity of the
Sun's incident power at the vehicle and the fraction of solar illu-
mination on the vehicle, The illumination factor is considered in
three distinct regions in the following analysis: full sunlight,
penumbral illumination, and no illumination (i.e., umbral region).

In computing the solar radiation perturbation, ?u, this analy-
sis neglects the dispursive effects of planetary atmospheres which
complicate the geometry of the umbra and penumbra., The analysis also
neglects the effects of reflected sunlight from the reference body

or any other planet,

Acceleration Due to Solar Radigtion Pregsure

An expression for the acceleration due to solar radiation pres-

sure given in Wolvertontlz] is: N

3, = Ay Loy Rsy
By P4 (m)(bnc) Rgy3
where,
p 1s the illumination factor,
q 1is the reflectivity coefficient,

A 1s the area of vehicle pertaining to solar
radiation pressure,

m 1is the mass of vehicle,

Log=3.86 x 1026 watts, the total power output
of the Sun (+ 3%),

c 1is the speed of light,
ﬁsv is the vector from the Sun to the vehicle,
The SPACE program assumes a reflectivity coefficient equal to
unity. This assumption may be altered by changing the area, A, by
an appropriate factor., Simplifying Equation (45) and putting the

above variables into units used by the program, one obtains:
->

A R
3u-p(;n') CP@%
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where,
p 1s the 1llumination factor, O spLl,
A 1is the area pertaining to radiation pressure (ft?),
n  1is the mass pertaining to radiation pressure (lb-masses),
ﬁsv is the vector from the Sun to the vehicle (ER),

3 (ER3-1b
Cp =1.04819 x 10 (HR s ) and 1s a constant used to convert

the expression into units used by the program and to ac~
count for the 55% factor of Equation (45),
Equation (46) 1is the basic equation used by the program for com-
puting the solar radiation perturbation acceleration,
The illumination factor, p, 1s obtained from the relative geo=
metry of the vehicle with respect to the Sun, the Mocn and the plarets:
P 1 1in full sunlight,

p =0 1in the umbral region,

0 <p <1 in the penumbral region.

It is possible that a vehicle may lie within the penumbral region
of two bodies at the same time, e.g., the Earth and the Moon. In
this case, only the penumbral illumination factor due to the reference
body is computed, Errors introduced by this assumption are extremely
small: first, because for most vehicles of interest the solar radia-
tion perturbation is itself small (usually less than 10 ° times the
acceleration of the reference body except for low density balloons);
second, because only a short time is spent in the penumbral region of
the reference body by an orbiting vehicle; and third, because the
incidence of simultaneous penumbral obscuration is rare,

Since the geometry used in calculating the illumination factor
is the same as that used for eclipse information, the portion of the
program which computes the solar radiation pressure perturbation also
computes the times at which the vehicle enters or leaves the umbra or
penumbra of the celestial bodies., The geometry used in calculating

the vehicle illumination factor, p, 1s described below.
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Vehicle Illumination Factor

Figure 6 illustrates the geometry of vehicle illumination, neg-

lecting the effects of atmospheric refraction,
it is seen that the height of the umbral cone
(hp)

cone

where,

By similar triangles

(hy) and penumbral

are respectively given by:

R

L ]

Rp

is the distance from the center of the Sun to the

center of the
is the radius
1s the radius

reference body,
of the Sun, and

of the reference body.

Next, criteria are developed to see in which region the vehicle

lies, i.,e., full sunlight, umbra, or penumbra,

Figures 7
-5

-
R

and 8 and the

is the vector
to the center

is the vector

First, consider
definitions and relations below,

from the center of the Sun
of the reference body,

from the center of the

reference body to the vehicle,

cos A= /1 - (Eﬁ)z
@ -3 - Kep
cos a ™= - -
IK"PI Rsp
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POSITION OF VEHICLE

APEX OF UMBRA

Figure 7. Umbral Region Geometry

POSITION OF
VEHICLE

SUNLIGHT

Figure 8. Penumbral Region Geometry
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Froa Figure 8 we gety

cos B= /1=~ (-2-)2 (5133
bp
- - -> : i

cos B = (R Qi 3 (54,
1% - Q! Rap

tow, 1f the scalar product E . B lp positive, then the vehicle

lies on the side of the reference body away from the Sun. In this
case, 1f gos o > 0 and 1f a < A, the vehicle or satellite lies

in the uzbra and p 1s set equal to zerc, Another test is:
j2 |cos a| > |cos A! ' (5
then p =0,

i.e., the vehicle lies in the umbra,
1f the vehicle does not lie in the umbral region one can test to
see if it lies in the penumbra, Thus, if gos 8 > 0 and B8 < B the

vehicle lies in the penumbra, or equivalently:
if |cos 8| > |cos B| (5¢)
then 0<p<l1

{i.e,, the vehicle lies in the penumbra}),

I1f the vehicle does not lie in either the umbral or penumbral
region, then the reference body does not obscure the Sun's rays. A
check can then be made to see whether any other celestial body blocks
or partially blocks the solar radiation; and if not, the illumination

factor is set equal to one, p = 1,

Pepumbral Illumination Factor

If the tests of Equations (55) and (56) above indicate that the
vehicle lies in the penumbral regiom, then the illumination factor,

ps 1s computed according to the formula:

Aex (57

P Bg
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where Agx i1s the angular area subtended by the exposed portion of
the solar cap at the vehicle position, and

6g 1s the total angular area of the solar cap at the
vehicle position,

The general approach used by the SPACE program for computing the
penumbral illumination factor is somewhat more detailed than that
given in most references, It consists in projecting the solar disc
(or cap) and the cap of the ohscuring planet (or moon) on to a great
imaginary sphere whose center is at the vehicle position, The rela-
tive angular areas of the caps are computed and the illumination fac-
tor is given according to Equation (57)., While the theoretical de-
velopment is somewhat involved, it leads to simple closed form alge-
braic expressions convenient for use on a computer,

First, consider Figure 9 which shows a sphere of radius R, re-
presenting the Sun or a planet, and a point P at a distance £ + 7"
from the center of the sphere, The apparent angular area of the
sphere as seen from point P 18 equivalent to the angular area of
the sphere's cap projected onto &8 projection sphere of radius a,

Therefore the following is true:

angular area 0 = 27 [1 - cos V]

_Zw[l_m]

%+ R G
-am 2, (59)
where a 1s the radius of the projection sphere, and
H 1s the height of the projected cap.
The total angular area of a planet (6p) or of the Sun (8g) at
the position of a vehicle can be obtained by substituting the appro-
priate values of 2 and R 1into Equations (58) and (59) and simpli-
fying, Thus, we have!
vh(h + 2Rp) H(
6p = 2w 1-——h—+—§P—-2n: (60)
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POSITION OF VEHICLE AT
WHICH THE ANGULAR AREA
OF THE SOLAR OR PLANE-
TARY CAP IS MEASURED

DISC AND CAP OF THE
SUN OR PLANET

SUN OR PLANET

SPHERE OF PROJECTION

PROJECTED CAP OF SPHERE

Figure 9. Geometry Used to Measure the Angular Area
of the Solar or Planetary Cap
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where

6p 1s the angular area of the planet (or moon) at the vehicle
position,

h 1is the height of the vehicle above the planet's surface,

Rp 4is the radius of the planet,

6s 1is the angular area of the Sun at the vehicle position,

Rgy 1s the distance from the center of the Sun to the vehicle,

Rg 1is the radius of the Sun,

H 41is the height of the solar cap,

H' 41is the height of the planetary cap,

a 1is the radius of the imaginary sphere of projection.
Equations (60) and (61) establish the relative size of the solar and
planetary caps as seen from the vehicle,

Next, it is desired to determine the angular area of the exposed
solar cap Agx. To do this, consider Figure 10, In this figure the
vehicle is positioned at the center of a great imaginary projection
sphere of arbitrary radius, a., The relative positions of the Sun
and the obscuring body or planet are shown as well as the projections
of the solar and planetary caps onto the great sphere, The equator
of the great sphere 1s constructed to be coplanar with the vehicle,
the center of the Sun, and the center of the planet. A great circle
is also constructed perpendicular to the equator and passing through
the intersection of the caps; this circle will be used to define one
of the limits of integration in the computation of the angular area
of the two lunes which are formed by the great circle,

For the calculations to follow, three coordinate systems are de-
fined and illustrated in Figures 10 and 11, The coordinate systems

employed are:

41
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POSITION OF VEHICLE

SUN

PLANETARY
CAP OF
TOTAL AREA

op

SOLAR CAP OF

TOTAL AREA 6g GREAT CIRCLE

Figure 10. Geometry of the Intersection of the Solar
and Planetary Caps

Yo ¥ i ¥

Figure 11. Definition of Coordinate System
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(1) A system (x,y,z) for the solar cap.

(2) A system (x',y',z') for the planetary cap.

(3) A system (x",y",z") for the great circle,
All three coordinate systems are orthogonal and have, in common, the
same y axis, The relations between the coordinates are given in
Equations (62) and (63)¢

- =\ -
x' (;os 6c =-s8in 6c O r-x
z'| = |8in 6C cos 6c O |z
! 0 0 1 62

x"-1 ( sin 6 cos 6g 0] xT
z'|= |~co8 8 s8in 6g 0] z

y" 0 0 {J y (63)

where

6c 1is the angle from the center of the solar cap (z-axis) to
the center of the planetary cap (z'-axis),

6c 1is the angle from the center of the solar cap (z-axis) to
the great circle (x"-axis).

By inspection of Figure 10 one finds that:

R.R
R Rgy (64)
where
0 < 8¢ < =
c22

Next find the points of intersection of the planetary and solar
caps X ® Xp, ¥ * Yp, and 2z = zp, Referring to Figures 9 and 10
one sees that the equation of the small circle of the solar caps

(having a cap height of H) isi
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%2 # g2 22 = g2
z=a-1H
o's X2 + y2 = H (2a - H)
Similarly, the equation of the small circle of the planetary cap
having height H' {is:
(x")2 + (3% + (z")2 = a2

'-a_H'

zZ
x'2 +y'2 = ' (2a - H")

Using Equation (62) we can write Equations (67) and (68) in terms of

the (x,y,z) coordinates,
z' = x cos 6c + z sin 6c = a - H'

x'2 + Y'2 = (x cos Oc - z sin ec)2 +y =H'(2a - H")

From Equations (65) and (69) we find:

(a = H') = (a = H) cos 9¢
% *p sin BC

Using this result and Equation (65), Equation (70) gives:

g2 = yp? = H'(2a - H') sin8. - [(a = H') cos 6; = (a - H)]?2

2
sin ec

And, of course, Equation (65) can be rewritten:

Z™=2p™a- H

Equation (72) requires some interpretation, Figure 10 illustrates a
case where the solar and planetary caps intersect, It is possible

that the caps are tangent or that the planetary cap lies within the

4

(65)

(66)

(67)

(0t

(69)

(70)

(71)

(72)

(73)



solar cap. To determine whether an intersection exists, the value
of yp? of Equation (72) may be used as a discriminant,

(1) 1If yp? > 0, two intersections exist,

(2) 1f yp? = 0, the caps are tangent,

(3) 1f ypz < 0, the caps do not intersect and the
exposed solar angular area is given by
AEx = 65 - @p.

For the great circle passing through the intersection of the

caps 2" = 0, z = zp, x = xp, Hence, Equation (63) gives:

2" = -~ x cos 8; + z 8in 65 = 0

P9
2z

Xp
or = —= = tan f;
Zp

thus from Equations (71) and (73)

(a = H') = (a-H) cos 8
(a = H) 8in 6¢

tan BG =

In a similar manner we may also find the equation for 6. ',
the angle between the center of the planetary cap and the great
circle,

x'

tan 65' = 5

everywhere on the great circle,
Using Equation (62) evaluated at x = xp and z = zp we

finally obtain:

, (a=-H") cos 8c - (a - H)
Eamt{Bs" = (a - H") sin 8¢

In computing Agx, there are five cases of interest and these
cases are illustrated in Figure 12, 1If yp2 < 0 one obtains case
V where Apx = 65 - 6p., 1If yp2 > 0, however, the caps intersect;

and before Agx can be determined, one must calculate Ag and
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GREAT CIRCLE GREAT CIRCLE

EQUATOR OF

EQUATOR OF

GREAT SPHERE

PLANETARY
CAP
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Case I. Agy = Ag = Ap Case II, Apx = 05 - Ag - Ap

\GREAT CIRCLE

i}EAT CIRCLE

EQUATOR OF

—

PLANETARY
CAP

SOLAR CAP

SOLAR CAP

PLANETARY
CAP

Case III, Agx = 6g - 6p + Ap - Ag Case IV, AEX = 6g - Ag - Ap

SOLAR CAP

LANETARY CAP

Case V., Agpxy = 6g = 6p

. Figure 12, Possible Penumbral Configurations
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ONE HALF OF THE
SPHERICAL LUNE, Ap

CIRCLE OF PROJECTED
PLANETARY CAP

CIRCLE OF
PROJECTED
SOLAR CAP

ONE HALF OF THE
SPHERICAL LUNE,

Ag

Figure 13. Area of Spherical Lune, As
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Ap, where Ag 1is the angular area of the smaller lune formed by the
solar cap and the great circle, and Ap 1s the angular area of the
smaller lune formed by the planetary cap and the great circle,

Figure 13 illustrates the geometry and the variables used to
compute Ag, The method of computing Ap 1is identical except that
all computations are done in the (x', y', z') coordinate system
instead of the (x, y, z) coordinate system,

The area of the surface ABC of Figure 13 is given by:

%0 0 (%)
area of ABC = Ja dd [ a sin 6 d8, 0 < ¢ < %‘ (79,
C 6,(¢)
To get the angular area, Ag, one must double the area of ABC and
divide the result by a2, Thus,
o, p(®)
Ag = 2 [d¢ [ sin 6 d6 (80)
0 6.(8)
0
or Ag = 2 J {cos [04(¢)] = cos [6p(¢)] d¢ (81)
0

where

¢ 1is the angular displacement in the x-y plane,
positive counterclockwise,

6,(¢) 1is the angular displacement of side BC (an
arc of the great circle) from the z-axis,
positive counterclockwise,

6p(¢) 1is the angular displacement of side AC (an
arc of the small circle of the solar cap)
from the z-axis, positive counterclockwise,

Before Equation (81) can be evaluated, expressions for cos [6,(¢)]

and cos [6;,(¢)] must be found., The equation of the small circle of
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the solar cap is:

x2 + y2 = H (2a - H),. (82)

Using the following transformation:
X = a sin 6 cos ¢
y = a sin 6 sin ¢
2= a cos 6 (83)

Equation (82) becomes:
a? (sinze cos?¢ + sin29 sin2¢) = || (2a - H)
or a2 (1 - cos?8) = H (2a - H) (84)

For the small circle of the solar cap, 6 = 6}, and Equation (84)

becomes

a-H

cos 0y = = (85)
The equation of the great circle is
(x")2 + y? = a? (86)
and using Equation (53) for x" we obtain:
(x sin 0g + 2z cos ec)2 + y2 = a2, (87)
From Equation (75) we note that everywhere on the great circle
z tan 6g = x, (88)
Hence, after substitution of Equation (88) into Equation (87) we have
(z tan 6g sin 6G + z cos 6(;)2 + y2 = a2, (89)

Inserting the polar coordinate relations from Equation (83), yields after

some reduction:

cos26 (1 - coszec sin¢) = coszec cos?¢ (90)

or, since 6 = 64(¢) along the great circle
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I cos 8g cos ¢

cos 0,(¢) = (91)
[A //1 = coszec sin?¢

Now we can evaluate A

g of Equation (61) using the value of cos 8,

and cos eb above,

®0 COS 6.~ cos ¢
G a - H
AS - 2 - a d¢ (92)
0 //1 - coszec sin2¢
Rearranging we have:
%0 0
d H
Ag = 2 [ Lot s -2 J (l - ;ﬂ de
b //seczec - sin2¢ 0
. 2 2
Letting sin 9 = x, c“ = sec“fg
sin ¢,
dx_ 2 (1 - &
Ag = 2 :FFTT::E \ =) ¢o
0
rsin ¢0 H
2 sin”l ommml - 2 i1 =], carg
-1 (3 = & 93
Ag = 2 sin [sin $g cos 6g) = 2 ¢p !1 - a) (93)

From Equation (82) and Figure 13, it 1is evident that

Xp XPp
cos ¢o = " K (2a - B (e
//xpz + ypl (

Yp Yp

i , JP > 0 (95)
XPZ + sz YH (2a - H)

sin ¢p =
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therefore,

yp
-1 n
¢g = 0 < < == 96
0 sin [ s = H)}' 0 £ 2 (96)

Using Equations (93), (95), and (96) the value of Ag 1is obtained.
Notice that the above development was done under the restriction,
0 < 2g 2ﬁ§- in which case the entire lune of intersection, Ag, is in
the first and fourth quadrants, If the intersection of the twe caps
occurs in the second quadrant (as in Case I of Figure 12), then ¢
is in the second quadrant and the entire lune of intersection lies in
the second and third quadrants. Instead of recomputing this case,
note that (see Figure 13) if the lune of intersection, Ag, lies in
the second and third quadrants one could rotate the x-y plane about
the z-axis by 180°, resulting in the problem that has just been ana-
lyzed, Therefore, Equations (93), (94), and (96) give the correct
value of the angular area Ag whether ¢y actually lies in the first
or second quadrant. Notice, however, that if 0 - ¢g ;‘g- then
xp - 0 and cos ¢g > 0; but if g-:_¢o < nm then xp < 0 and
cos 29 < 0. Thus, cos ¢g can be used tc discriminate between the
two cases just mentioned,

A completely parallel development is used in order to compute
Ap. The major difference is that all calculations are done in the

(x'y'z') coordinate system. The resulting equations are:

Hl

Ap = 2 sin”! [sin ¢o' cos 8G'] - 200" (1 - =) (97)
, Xp cos 8p - (a - H) sin ec
cos =
0 JH' (2a - 1I') (98)
sin ¢p' = e (99)

/H' (2a - H')

51



|
) yp 7
o = S l {m' (2a - H')} Vitozy R

where the primed quantities are related to the planet and dg' is
given by Equation (78).

Finally, note that many quantities are expressed in terms of a,
the radius of the great sphere, and H or ' the depth of the solar

or planetary cap. By use of Equations (60) and (61) we have

H_ s g
a 2n

H' Up .
PR S

Thus all quantities may be expressed in terms of ©g and 6p which

are already known., This is most easily accomplished by setting a = 1

8
(since the radius of the sphere is arbitrary) and letting Il = ?%
Op £
(s e
and H K 0

The computation of Apy, the exposed angular area of the solar
cap is shown for each of the five cases of Figure 12 in Table 1I. Note
that the discriminmts used to determine which case is to be evaluated
are yp?, cos ¢p, and cos ¢g'e

Finally the penumbral illumination factor is given by Equation

(S7)a
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NUMERTCAL INTEGRATION

The equations of motion for a space vchicle are second-order
ditferential equations which describe the accelerations arising iror
the forces acting on the vehicle. Accounting for the primary gra.i-
tational field of the reference body and four types of perturbative

aceclerations, the equations of motion (from Equation (2)),

ti--l‘{—};-+51+52+33+ﬁu (2)

If the perturbations are considered to be zero, the right hand
side of Equation (2) reduces to one term and the vehicle will follow
a Keplerian orbit which may be described in closed form in terms of
its true or eccentric anomaly, Usually, however, part or all of the
perturbaticns are included and Equation (2) must be numerically inte-
erated.

There are two basic methods by which the integration of Equation
(2) may be formulated, Encke's method and Cowell's method, If Equa-
cion (2) were to be numerically integrated in a straight-forward
manner, the integration would be known as Cowell's method. The sirm-
plicity of this method is offset by the larre accelerations which must
be integrated, As a consequence of the acceleration magnitudes, smell
time increments have to be used in the integration, and machine round-
off error accumulates rapldly. Independent evaluations at many cor=-
panies and universities have shown that Cowell's method requires more
machine time than other perturbational schemes. See Baker[lo’ Epe. &eBAcHE]
tor a further discussion of Cowell's advantages and disadvantages.
Despite its drawbacks, Cowell's method is still widely used and
is especially suited if the accelerations due to perturbations are
as large or larger than the term due to the central force field (e.y.,
during reentry). The program contains both methods and the option is
left to the user.

Historically, Encke's method is older than Cowell's although

the former is more sophisticated. Cowell's method requires a modern
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high-speed computer to be practical, whercas Fnclke's was developed

for hand computation. In Encke's method, it 1s assumed that the rer-
turbative accelerations, F}, are small compared to the referenue
body acceleration. Consequently, when drag accelerztions are small,
the solution of Equation (1) is a good approximation to the true orbhit,
lnder these conditions, it is only necessary to inte;rate the differ~
cnce between the accelerations on the two-body orbit and the total
accelerations acting on the vehicle. The c¢quations of motion then
become second-order differential equations describin; the acceleration
differences, Let

£ =R - Rpg (103)

where ﬁTB is the position of the vehicle in terms of the two-body

orbit, Then,

: R Rrp S
h oy E?'TR ] + . Py (104)
[ B i=)

Equation (104) is integrated to obtain E and E. These quancitics
are then added to ﬁTB and ETB. resPectively. to obtain the instan-
taneous position (E) and velocity (R) of the vehicle, The quan-

»
tity ¢ 1is commonly referred to as the "Encke" term,

Encke's Method

Rewriting Equation (104) we have,

™

3
-.-: - i > - RTB . -
£ = E%- [RTB * B = - R (1;g)] + k Py
TB i

3

R - -

=.J".-.[{1__T?B.)ﬁ_£]+gpi
Rip R 1

The above equation could be integrated directly; however, the

term (1 = ==) 1is not well suited for the nurerical colculatior.
since R-%B/R3 is very close tc 1, Hence we rewrite this terr bv

setting
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» - > -> - > -+ »
R2 R« R+ (R ¢+ Rpg =R ¢+ Ryg) = Rpp ¢ Ryp

q = —\2—- - _L =
RTp an
- > g e d g - > >
- R » (RTB + ﬁ) - RTB (RTB + R) e (ZRTB + g})
2 = e
RTB Rty

3
then, (1 + q) 2 = R3/R%B and

3
’ : n 3 .
fr- Le [(+q) 2 - 11.““‘4)% 3 P ¢ . DS W ; i
L [(1+q) ™ + 1] 1+ (2472

~xpanding ti.. numerater

of

RS . 3q + 3q° + a°

3
Rip 1 % o) @

In summary, Lucke's metiiod computes the deviations from the nomin.l

orbit by integrating

2 3q + 3q2 + q37 . e
E 1+ (1+0) 2 i
wlere o E)
& & (2R +
5,8 - TB (106)
RTB

letermination of Kemlerian Orbit Vectors

tncke's method requires the calculation of the position and velo-
- >
city vectors, Rrp and RTB, respectively, of the nominal Keplerian
crtit. The position and velocity at time t may be written in terrs

of tne position and velocity at an earlier time tp as follows:

Rrp(t) = f RTB(tg) + g ﬁTB(co) (107)
and \ :
Rrp(t) = £ RTB(tg) + & RTB(to) (108)

where f and g are explicit functions of the differential eccentric
anomaly of the Keplerian orbit, The program uses Herrick's method to

determine f, !, g, and g, and then computes ﬁTB(t) and ﬁTB(t)

56



from Equations (107) and (108), The equations for computing f, f, g

and é are given below; their derivations may be found in Battin[a]
(10]

or Baker 5

e =Bl (109)
->
Iy = IRTB(tO)I (110)
M-U
s
:‘_ - v/-u—s
Ar, (111)
g=1-C/p (112)
where
M= /-IJ- (t-tO) = rg X+ do C + coU (113)
T T O <
w2 [2! iie Bl ~gTan b e < ] (114)
oo ol XL W FE
U= X 3y -Sra*Flaz " 91art e - ol (115)
U
SRl St (116)
Fsatedh s o)
t ] t
dy * TB(to) * Rrp(to )
T
A= rg+ dgS + coC (118)
I'Q VZQ
L il (119)
1 v)
1.2 (120)
2 0o M
where

a 1s the semi-major axis of the Keplerian orbit,
u 1s the universal gravitational constant,

and
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vo = |Rrp(to)|.

Solution of Equations (109) through (112) requiras the determi-
nation of X, Equation (113) is solved for X by writing

F(X) = M = rgX = dgC = cgU = 0
and

F'(X) = = rg - doC' = coU' = O,

Salecting an initial estimate of X to be X,, tha root of
F(X) = 0 may be determined by a Nawton-Raphson itarative procass,
i,e,,

X141 = X1 = P /pexyy

From Equations (114) and (115)

C' =X « U/a
U' = C,

ginca Equations (114) and (115) ara saries expansions ip powvers
of 2(-‘—. a method must be found to limit tha siza of this tewwm, For
an ellipsa,

Xe (E-Ep) 7a

where E, and Ey are the accentric anomslias st times t, amd ¢ty
respectively, Hence, by updating tha epech ¢ty at fraquant intervals,
the differance E - E; 1is kept small, By similar raasoning, fre-
quent updating will keep -é; small for hyperbolic orbits,

Cowgll'a Method
As described before, tha ganeral equations of metion of a space

vehicle are: - o
i.-g+ ] 34 (121)

i=)
In Covall's method, thesa equatisas are intagratad, using numeri-

cal techniques, to obtain ths instaatamesus positien snd valoeity of
tha vehicla.
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The program performs the integration using the same techniques as it
does for the Encke method. The Runge-Kutta starting procedure pro-
vides the initial data, and the Nordseick method is used as the long-

term integration procedure,

Integration Technique

Equation (2) in Cowell's method or Equation (105) in Encke's
method must be numerically integrated by the program. This process
is divided into two stages, a starting procedure and a long-term pro-
cedure, The long~-term numerical integration procedure requires know-
ledge of previous data points. Thus, the starting procedure is needed
to provide the initial data points for the long-term procedure,

The procedure chosen by Sperry-Rand for long-term integration was
based on their experience with methods used in the ITEM and MINIVAR
programs, and the results of comparative testing, The justification
of their choice is presented below as it appears in the original docu~-

(1]

"The long-term numerical integration procedure presently in use in

ment on the SPACE program

the ITEM and MINIVAR programs is an Adams sixth-order predictor method
(without corrector) for second-order differential equations, It was
desired, however, to test a broader class of procedures before deciding
on one for use as the long~term numerical integration procedure to be
used in the program, Accordingly, a program was written to test pre-
dictor, predictor-corrector, and iterated predictor-corrector, i.e.,
repeated application of correctors, techniques of various orders of
approximation and with or without modifiers,

"The following results were obtained:

(a) Modifiers were found to leave the error unchanged. There
is, therefore, no reason to use them,

(b) As time interval increases, there is more tendency for the
solution to become unstable., Error increases with a large
power of the time interval,

(c) As the degree of the approximating polynomial increases, a
decrease in stability is noted, Error decreases about 3:1
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(d)

(e)

for unit increase in degree of the approximating polynomial.

Predictor-only methods (degree and time interval held fixed)
are about 30:1 less accurate than predictor-corrector meth-
ods, i,e.,, one application of the corrector removes 977 of
the error in the predictor, A second iteration of the cor-
rector does not reduce the error, but does improve stabil-
ity at the expense of a 2:1 increase in running time, The
increase in running time is intolerable; therefore, a pre-
dictor-corrector method will be used with no iteration of
the corrector,

Either a fifth or sixth degree approximating polynomial
yields a good compromise between accuracy and stability.

"The final choice of a long-term integrating procedure involves

considerations other than only accuracy and stability:

(a)

(b)

(c)

The ease of transforming the output of the starting proce-
dure to the form of input starting data needed by the longe-
term procedure,

Whether the longeterm procedure can easily accomodate a
change in the time interval,

Whether the long-term procedure can easily interpolate
to find conditions at an intermediate time at which data
are desired,

“"There are at least three forms in which the Adams longe-.erm pre-

dictor-corrector formulas can be written., The only difference is in

mathematical form; therefore, the accuracy and stability are the same

for all three,

"The first form is the conventional one in terms of the successive

backward differences; the second is in terms of the successive values

of the function, The third is due to Nordsieck and uses the succes-

sive higher derivatives of the approximating polynomial, Each of the

three forms has certain advantages and certain disadvantages which

will be discussed now,

"The backward difference form is fairly easy to start but inter-

polation is somewhat difficult, and it is virtually impossible to

change intervals except by use of the starting procedure. The suc-

cessive value form of the method is trivial to start up, but inter-
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polation involves the Lagrangian interpolation formulas, and changing
intervals is, again, almost impossible, The inability to change in-
tervals immediately after starting causes, as in the present ITEM pro=-
gram, a situation where the starting solution is called 28 times, but
used only 7 times,

"The Nordsieck method is fairly difficult to start, but very amen-
able to arbitrary changes of time intervals and to interpolation to
intermediate points, Five points are all that are needed to start
after a change in time interval (of about 4:1)., Due to its versatility,
the Nordsieck method of Qegree 5 (called m = 6 by Nordsieck) without

iteration and without choice of interval is used in the program.'

Starting Procedure (Runge-Kutta-Gill, RKG, Method)

The program uss the G111 modifieatton of Runpe-Kuttar o)
for the starting procedure. Runge-~Kutta methods are widely
used and the differences between Gill's method and others are minor.
Therefore, only the formulas as given by Gill and not the deriva-
tions are presented, The method was chosen because it introduces some
simplicity and error reduction over similar methods.,

Given the differential equation

a2

dx f(x, y)

and the initial values xg and y(xq), y(xp+h) 1is calculated by

1 1 1 1 1 1
y (xp+h) -y(x0)+-gk0+-§-[l- /-5-] k, +-3-[1+ /3] k2+gk3 - (122)

where

ko = h £(xg, Yo) yo = y(xp)
h 1
ky = h £(xg + 75 ¥1) y1 =vyo +73 ko
h 1 1 1
ko = h f(xg + %, ¥2) v2oyo+ =5+ /[F1ke+[1- /5]

h f(xg + h, y3) y3 = yg + [~ /-%1 Kk, + [1+ / %1 ko (123)

P
w
[
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The above procedure could be used directly to compute y(xy + h),
y(xg + 2h), «ss , etc, However, Gill has introduced a "bridging"

technique between one entry and the next., This modification increases

[13]

the accuracy with little increase in complexity. The new procedure

may be summarized as:

Given X0» Yoo ¥'(x1) = £(xg, y(x))
calculate for i =0, 1, 2, 3
Ky = aj(y"(x1) - by qi)
X{+1 ™= X4 + 14 h
Yi+1 = y(Xi41) = yi + h Ky

qi+] = qi + 3 Ki - ci y'(xi)

where
1 1 1
ap =3 bg = 2 co =3 To =3
al-l-/-;'— by =1 Cl'l'/% 7, =0
/1 /1 1
a, = 1+ 'E‘ by = 1 co = 1+ 0 By =g
a3-"]6"‘ by = 2 C3'% T3 =0

For the first entry into the procedure, qg = 0, and the proce-
dure is the same as given in Equations (122) and (123)., For subse-
quent entries, qg 1is set equal to the previous qu.

It should be noted that the program must apply the method to the
three second-order differential equations given by Equation (105}
(Encke's method), or by Equation (121) (Cowell's method). The program
treats the problem as one of six first order differential equations
given by:

Vi ™ £4(t, V1o Y2s eoes ¥6) 1 = 1,2, ceuy 6 (124)

where
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y1(t) = x(t) vy (t) = x(t)
y2(t) = y(t) ys(t) = y(t)

y3(t) = z(t) ye(t) = z(t)

where (x, y, z) and (i, §, z) are the geocentric position and velo-
city vectors (in Cowell's method) or the perturbations from the nomi-
nal orbit (in Encke's method),
The procedure is programmed as follows:$
1 9y 0 1 =1, 2, seep 6 .
20 Y = (y1s y20 sees ¥6) = (R(to), R(to))
3. For g -1, 2, 3, 4 IR
A T = (s Y20 eees 38) &, B
B, For 1 =1, 2, ..., 6
1. K< ag (y1 = bk » q1)
2, yi1+yit+K+h
3. 94 +q4 +3 ¢« K=ck: vi
“ (Y1s Y20 ¥3)
< (Yuy Yss ¥e)
<« t+ 1k ¢ h .
call DERIV, i,e,, cal. R = F(R,

C.

e ™y

4 .

» £)

Hence the program exits with ﬁ(to + h), ﬁ(to + h), and ﬁ(to + h),
Also, steps 1 and 2 are only executed upon the first entry into the
procedure, For second or later entries, the initial value of q4 1is
the value computed during.the last entry for K = 4, Clearly, ;

already contains (ﬁ(t), ﬁ(t)) and need not be reset.

Transition from Starting Procedure to Long~Term Intqgégtion

The starting procedure yields the solutions of the six differen-
tial equations and their rates of change at six successive times. It
is necessary to transform these data into the form required by the

Nordsieck long-term numerical integration procedure,
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For each first order differential equation, the Nordsieck method

requires the following five higher derivatives evaluated at t = tg:
N

b(tg) = hZY(sz) -

. y(zj) (t°)$ (125)
d(tg) = i3 y(:z £

e(tg) = hsy(vzt -

J
The RKG starting method provides data for y(t) and §(t) at

the six time intervals up to and including tg, 1.e., RKG provides:

y(tg) ¥(tg)

y(to = h) y(tg = h)

y(tg - 2h) y(tg = 2h)
y(tg - 3h) y(to = 3h)
y(tg - 4h) y(tg - &4h)
y(to = 5h) y(tg - 5h)

The required values for a(tg), b(tg), c(tg), d(tg), and e(ty)
will be found by using Lagrange's Interpolation formula to fit a
power series of degree five to the y(t) data provided by the RKG
method. The power series will then be successively differentiated to
obtain the required data. Let

x-t-tg
h

and let primes denote derivatives with respect to x. Therefore,
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$°C(E) = h y(e)
;"(t)

;"'(t) - h3 y(IV)(t)

h? ¥ (t)

;""(t) = hh y(V)(t)
;""'(t) i Ho y(VI)(t)

;unn(t) - h6 y(VII)(t)

From Lagrange's Interpolation Formula,

,. 5
¥(x) = § Fi(x) ¥4

where {aig
o
Fo(x) = XL (e¥2) Gek3) Getd) (xt5)
120
- S-£0et2) (et 3) Gt ) Oet5)
Fy (x) —

F200 = 12 >
Fy(x) = = X(x+1)(x+3(x+4)(x+5)
Fy(x) = x (x+1) (x"";l)‘ (x+3) (x+5)

F5(x) = — X (x+1) (x+2) (x+3) (x+4)

and 91 are the values

x (x+1) (x+3) (x+4) (x+5)

120

determined by the RKG method,

out the factors in Equation (128) yields
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From Equations (125) and (126)

Fo (x)
F1 (x)
Fa (x)
F3(x)
Fy (x)

Fg(x)

x> + 15 x" + 85 x3 + 225 x2 + 274 x + lggj

= G5 + 16 x4 + 71 x3 + 154 x2 + 120x)
24

120

x5+ 13 x4 + 59 x% + 107 x2 + 60x
12

= (x5 o+ 12 xY + 49 x3 + 78 x2 + 40x)

12

B llac + 5100 + 6 x2 ¥ 30
24

= (x5 + 10 x* + 35 x3 + 50 x2 + 24x)

a(tg) =
b(tg) =
c(tg) =
d(tg) =

e(to) =

120

¥ (O
21
:':u (0)
31
:‘ln (02
41

'.::ll" (02
51

Seuene 0
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Successively differentiating Equation (127) with respect to

(using Equation (129)),

setting

x =0,

tion (130) yields the following in matrix notation;

P2a(t0)7
3b(t0)
4e(ty)

5 d(to)

o eceo)

or

s S

120

~

-24

=50

=35

=10

150
305
205

55

S

=400
-780
=490
<120

- 10

600
1070
590
130

10

66

-600 274 |
-770 225
-355 85
-70 15
= 5 1

p—

y(tg =
y(tg -
y(tg -
y(to -

y(tg =

y(to)

Xy

and substituting into Equa-

-

5h)
4h)
3h)
2h)

h)

(129)

(130)



a(tq) |
b(tp)
c(typ)
d(tg)
_e(to{J
(<144 900 -2400 3600 -3600 1644 r&(co - 5h;
-200 1220 =3120 4280 =3080 900 y(tg = 4h)
i -105 615 =1470 1770 =1065 255 y(ty = 3h)
1440 °) _ 24 132 - 288 312 - 168 36 y(tg = 2h)
o 2 10 - 20 20 - 10 2 y(tg = h)
_&(to) (131)

-’

Equation (131) is used to compute the sets of coefficients [a(tp),

b(tg), x(tg), d(tg), e(to)]T for the six differential equations given
by Equation (124).

Long~Term Integzgtion (Nordsieck Method)

The Nordsieck method is used to continue the solution of Equation (124)

dyi
-a—t"- fi(t’ Yis ooy ye) 1 = l, 2, ey 6 (132)

once begun by the RKG method.
Considering the single equation
d
== (e, y)
and approximating its solution by a polynomial of degree five
i h .. h2
yF(tg+h) = y(tg) + hiy(tg) + 5 F(to) + J7 y(I1D) (xg)

21
3 4 5
+ By (eg) + B2y (k) + 22 y (VD ()] (133)
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where

h 1s the integration step size,

tg 1s the value of t at the last integration.
Substituting from Equation (125)

yp(to+h) = y(tg) + h{f(tg, y) + a(tg) + b(tg) + c(tg) + d(tg) + e(tg)] (134)

Differentiating Equation (133) with respect to t = t, + h and using

0
Equation (125)

£P = £(tg, y) + 2a(tg) + 3b(tg) + 4c(ty) + Se(ty) (135)

Having obtained a predicted value of f(tyg + h, y(tg + h)) a
value of f(tg + h) = f(ty + h, yP) 1s computed and combined with

fP to give the Nordsieck corrector,

K; h[f(tg + h) - fP]

where
19087
60480

The values of a(tg + h), b(tg + h), c(tg + h), d(tg + h) and

K, = = 0.315591931

e(tg + h) are then computed in terms of their values at t = tg

by
a(tg + h) = a(tgy) + 3b(tgy) + 6c(ty) + 10d(tgy) + 15e(tq)
+ Ky[£(tg + h) -~ £P)]
b(tg + h) = b(ty) + 4c(tg) + 10d(ty) + 20e (tg)
+ K3[f(tg + h) ~ £P]
c(tg + h) = c(tg) + 5d(tg) + 15e(tq) + Ky[f(tg + h) - £P]
d(tg + h) = d(tg) + 6e(tg) + Ks[f(ty + h) - £P]
e(tg + h) = e(tg) + Kg[f(tg + h) = £P] (136)
where
Ky = T35 = 1141666667
Ky = 2 = 0,625
K, = %% = 0,1770833333
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ks
Ks = 7= = 0,025
1
K¢ = 537 = 0.00138888889

The Nordsieck method may now be summarized as follows., For each
: 2]
entry, yP is computed by Equation (134), f by Equation (135), and

f(tg + h) = £(ty + h, yP) by the functional relationship implied by
Equation (132). Then ylty + h) is found by

y(tg + h) = yP + k) h(f(ty + h) = £P),
Finallf the coefficients a(t) through e(t) are updated by Equa-
tion (136) .
The integration interval, h, 1is readily changed; ‘the change

being accomplished by using new values of a(t), b(t), c(t), d(t),

and e(t)., These new values are obtained from the following equations:

an(t) = Bag(t)
bn(t) = BZbgy(t)
cn(t) = B3cy(t)
dn(t) = B%d,(t)
en(t) = Bde,(t)

where the subscripts n and O stand for new and old, respectively.
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COORDINATE SYSTEMS AND TRANSFORMATIONS

The equations of motion of a vehicle are given by Equation (2).
It is necessary to express the vectors used in this equation in an
inertial coordinate frame, i,e., a coordinate system in which inertial
forces due to the system's acceleration are absent or at least negli-
gible. A coordinate system rigidly attached to the Earth is inappro-
priate, since such a system experiences noticeable accelerations due
to the daily rotation of the Earth,

The inertial frame chosen for this program is a so-called ''mean
equinox of base date" system which is determined by the vernal equi-
nox of 0,0 hours 1 January of the year subsequent to the. epoch time
(initial input time) used in a given run, This particular base date
system has been chosen as a basis for calculation because the plane-
tary, lunar, and solar coordinates are written on tapes in that coor-
dinate system, Rather than transform the tape information, the vehi-
cle initial conditions and the oblateness accelerations are transformed
into the base date system.

The definition of the base date system and various auxiliary
Earth referenced systems is given below along with the transformations

between them,

Terminologz
First, consider the celestial sphere (Figure 14) which is a

sphere of infinite radius with the Earth at its center upon which the
positions of stars, planets, the Sun, and the Moon are projected. It
is sometimes convenient to pick the center of the sphere to be at an
observer or the center of the Sun, but for the purpose of our discus-
sion its center will always be taken to be at the geocenter. The
stars may be taken to be fixed on the sphere (their small proper
motions being neglected) while the Sun, planets, and the Moon appear
to move and describe certain paths along its inner surface. The ap-

parent path of the Sun during the course of a year on the celestial
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sphere is a great circle called the ecliptic. The north celestial
pole is the point where the extension of the Earth's north pole inter-
sects the celestial sphere and the gouth celestial pole is defined
similarly. The great circle where the extension of the Earth's equa-
tor intersects the celestial sphere is called the celestial equator.
The point on the celestial equator where the apparent path of the sun
crosses into the northern half of the celestial sphere at the begin-
ning of spring is called the vernal equinox. This is one of two
points where the ecliptic and equator intersect, In the following
discussion the word celestial will usually be dropped and we will
just speak of the north pole or the equator,

The equator and ecliptic are constantly in motion due to the ef-
fects of nutation and precession, It should be pointed out that this
is astronomical precession which is distinct from the force free pre-
cession due to the flattening at the poles, The former is caused by
the net torque on the equatorial "bulges' due to the gravitational
attraction of the sun and moon., The torque is quite small so that the
precession is extremely slow - the period being 26,000 years compared
to the rotational period of one day. The total applied torque is not
constant in time, because the torques of the Sun and Moon have slightly
different directions to the ecliptic and vary as the three bodies move
around each other. As a result, there are irregularities in the pre-
cession, commonly designated as astronomical nutation. The astronomi-
cal nutation is not to be confused with the '"true nutation" which is
present even in the force-free precession of the Earth's rotation
axis. In the subsequent discussion the astronomical precession and
nutation will simply be referred to as precession and nutation,

Precession may be separated into luni-solar precession, and
planetary precession, The luni-solar precession causes the north
pole to move around the ecliptic pole. The ecliptic pole is the
point of intersection of the extemsion of the normal to the ecliptic

plane at the geocenter, and the celestial sphere. Nutation is an
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irregular motion of the pole with a period of about 18.6 years. These
two effects combine to wmodel the motion of the true equator, The ac~-
tual equator at any time is called the true equator of date., The word
date here refers to any arbitrary time. The mean equator of date is
defined by the location of the equator when the effects of nutation
are removed (i.e,, where the true equator of date would be if there
were no nutation),

The gravitational action of the planets on the Earth causes the
plane of the Earth's orbit to slowly precess. This motion appears
from the earth as a slow precession of the ecliptic, and is called
planetary precession, This effect causes the obliquity (the angle
between the equator and the ecliptic) to decrease at the rate of
about 47" a century, Therefore, to be precise we refer to the eclip-
tic of a specified date.

The effect of precession is illustrated in Figure 15, The mean
pole, mean equator, and ecliptic at time ty are labeled base date
and at a later time, t, are labeled date. Luni-solar precession
causes the mean equator to move between base date and date, while
planetary precession moves the ecliptic. Figure 16 illustrates how
nutation causes the true equator of date to differ from the mean
equator of date,

In this discussion we will use several coordinate systems which
will be defined in terms of the gtxue equator and ecliptic and mean
equator and ecliptic at a given time. The true vernal equinox (or
true equinox) is defined by the point of intersection of the true
equator and ecliptic. The mean vernal equinox (or mean equinox) is
defined by the point of intersection of the mean equator and the
ecliptic., The true equinox and the wmean equinox are points on the
celestial sphere that experience a slow motion and hence we must

specify a time to indicate their exact positions.
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Coordinate Systems

The five coordinate systems used by the program for generating

trajectories are:

(1) The mean equinox of base date system, This coordinate
system 1s the Inertial system emplcyed by the program
and employs unit basis vectors X, y, and z defined
as follows:

X 1s a unit vector directed towards the mean vernal
equinox of base date,

z 1s a unit vector normal to the mean equatorial
plane of base date, positive in the northern
hemisphere,

y 1s a unit vector orthogonal to x and z.

(2) The mean equinox of date system. This system employs

unit basis vectors ;M' ;M. and EM defined as
follows:

;M is a unit vector directed toward the mean
vernal equinox of date.

EM is a unit vector normal to the mean equatorial
plane of date.

;M is a unit vector orthogonal to §M and EN.

(3) The true equinox of date system. This system

employs unit basis vectors ;T- ;T. and zT
defined as follows:

;T is a unit vector directed toward the true
vernal equinox of date,

zr 1s a unit vector normal to the true equatorial
plane of date,

§T is a unit vector orthogonal to ;T and ;T-

(4) The Greenwich coordinate system. This system

employs unit basis vectors ;G. §G. and ;G
defined as follows:

EG is a unit vector directed toward the inter-
section of the Greenwich meridian with the
true equator of date,

zg 1s a unit vector normal to the true equator
of date.
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;G is a unit vector orthogonal to xg and zg.

(5) The topocentric coordinate system. This system employs

three orthogonal basis vectors =x y Yo and z 5
directed toward the east, north, and local vertical,
respectively, at a point on the Earth's surface
(considered as an ellipsoid)., It is only used for
observation calculations and its details are dis-
cussed under OBSERVATIONS,

The differences between the above coordinate systems are due to
dynamical effects of the Earth's motion or to the geometry of the
Earth, ” It 1is possible to express a 3 X 1 vector of position or velo-
city written in the basis of one coordinate system in terms of another
coordinate basis by applying 3 X 3 orthogonal matrix transformations,
Table III below lists the transformations used by the program.'i is a
3 x 1 vector whose subscript indicates the basis in which the vector

is expressed,

Table III.
Transformation Matrices.
MATRIX EFFECT FROM T0 EQUATION
[G) Earth Geometry ;S ;S ES ;C ;G EG EG = [G] ﬁS
Right Ascension of
[v] g:iiﬁ:icsz;:':enue XG Y6 26 X1 yT zT Rp = [Y] Rg
(Daily Rotation)
[N] Nutation ;T ;T ET XM YM EM ﬁﬁ = [N] ﬁT
[P] Precession XM YM 2ZM Xy z R = [P] ﬁM

The derivations of [y], [N], and [P] are given below., It

should be recognized that these three matrices are functions of time,

Sidereal Time

When computing the inertial coordinates of a point or station
on the surface of the rotating Earth at a particular time, a relation-
ship must be found between the Greenwich meridian (the great circle

that passes through the true north pole and Greenwich) and the vernal

eduinox at that instant. The angle measured in the equatorial plane
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from the Greenwich meridian to the true vernal equinox is called the

apparent Greenwich sidereal time,

The right ascension of the mean equinox measured from the true
equinox is called the equation of the equinoxes or nutation in right
ascension and is usually denoted by d&a, The relationship between
the apparent sidereal time and the mean sidereal time is:

Mean sldereal time = Apparent sidereal time - da,
da 18 always measured along the true equator from the true equinox
eastward, The apparent and mean Greenwich sidereal times are tabu-~

lated in the American Ephemeris and Nautical Almanac[aj for oh of

each day of the year along with the equation of the equinoxes, 6a,
Each entry is given in hours, minutes and seconds of time to 05,001,

where

1h = 15°, 1™ = 15', and 15 = 15",

Apparent Greenwich sidereal time, 6G, since it is measured
from the true equinox, is affected by nutation and hence changes at
an irregular rate (see Figure 17), Since mean sidereal tirne, §G,
is measured from the mean equinox, which 1is affected only by preces-
sion, it increases at almost a constant rate with only a small accel-

eration and may be calculated at Ob of any day by the formula

8c = 6N 38m 455836 + 8,640,1845542T + 05092972

where T 1s the number of Julian centuries (36,525 days) from noon
0 January, 1900 (Julian day 2,415,020.).

An equivalent formula in degrees is
Bc(d) = 10030755426 + 02985647346 d + 239015 x 10713 42

where d 1s the integer number of days past Oh 1 January, 1950,

Equations (137) and (138) may be reformulated as a function of the

time past any conveniently chosen epoch resulting in an equation of
the same form with different coefficients,

Evaluating the above formula for §G(d + 1) and Ec(d), we
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can find the angle through which the Greenwich meridian rotates in a

day with respect to the moving mean equinox,
8G(d + 1) - Ec(d) + 360% = 3609985647346 + 5% x 10713 4,

in which the additive term 259015 x 10~!3 has been neglected, Di-
viding Equation (139) by the number of seconds in a day (86,400) and
neglecting the final term whose contribution is insignificant over a
period of only a few years ( < 25 yrs,), we have wg, the rotational

rate of the Earth with respect to the moving mean equinox,
wg = 020041780 74622 sec,”!

Therefore, to find the mean Greenwich sidereal time at time

d + 1T we use

gc(d + 1) = ac(d) + wg T

where d represents the integer number of days past Oh 1 January,
1950, and 1 the number of seconds that have elapsed since 0h of
the day.

The apparent Greenwich sidereal time 6g can be found at time
t by

8g(t) = 8g(t) + Sa,

Now, wg will be referred to as the sidereal rotational rate
of the Earth, The word sidereal is used since the rate is with res-
pect to the mean equinox, which is the reference point used for

sidereal time,

Lxansformations

The effects of nutation and precession are fairly small and
over a period of a few days the errors introduced by neglecting these
effects is on the order of ten meters at most, Therefore, for short
trajectory determination runs the program has the option of not in-
cluding them by setting the [P} and [N] matrices equal to the
identity matrix, [I]J. The ([y] matrix which includes the effects

of daily rotation must be included, however.
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Referring to Figure 17 the transformation from the Greenwich co-
ordinate system to the true equinox of date system consists of a ro-
tation along the true equator through the angle 6g(t) where 6G(t)
is given by Equation (142), Thus the [y] matrix is given by:

cos Bg(t) - sin 6g(t) 0
[y] = | sin 8g(t) cos Bg(t) O
0 0 1 (143)

If the effects of nutation and precession are to he neglected then
éc(t) replaces 63(t) in Equation (143), and the reference system
of the computation may be considered as the system defined by the
mean equinox of date (i.e., the effects of nutation and precession
are neglected).

Next, an expression for the nutation matrix [N] 41is found.

In Figure 18, Yy 1is the true equinox of date and ? is the
mean equinox of date, The right ascension of the mean vernal equinox
referred to the true equinox is 6a, the equation of the eyguinoxes,
Notice that da 1is less than zero as it is drawn in Figure 18, since
right ascension is measured positively toward the east, The nutation
in longitude, Ay, 1is the longitude of the mean equinox measured
from the true equinox., Celestial longitudes are measured along the
ecliptic, and since the positive direction is east, Ay 1is also neg-
ative in Figure 18, The mean obliquity, E, is the inclination of
the ecliptic to the mean equator, and €, the true obliquity, is the
inclination of the ecliptic to the true equator, The nutation in
obliquity is &g, where

55-5-20

From inspection of Figure 18, and by using Napier's rules for

right spherical triangles,

6in(90° - €) = tan Sa tan(90° - AY)
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or

tan da = tan Ay cos €
Using the series expansion for the tangent function we have

3 5
B o SRS o ZL80) 0

3 5
3 + 15 s o« o+ = cos € (A + (A9) + 2_(8y)

3 15

Now, |6al, and |6y| are less than 1, x 10™* radians., There-

* G e e e

fore, the approximation

So = Ay cos €

should never produce an error greater than 1 x 10712 radians or
2 x 10”7 seconds of arc, .

The nutation matrix [N], 1s now derived which transforms co-
ordinates referred to the true equinox of date into coordinates re-
ferred to the mean equinox of date, This transformation consists of
three rotation matrices., Using Figure 18, we note that the first,
[A], 1is a rotation about the x~axis through the angle €. The sec-
ond, [B], 1is a rotation about the z'-axis through Ay, and the

third, ([C], 1s a rotation about the x'"-axis through - €,
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1 0 0
[A] = |0 cos ¢ sinc

0 - sin ¢ cos ¢

Ly

&y

-

cCOos l¢ sin Ly 0

(B) = - sin &y cos iy (3

o 0 ]|




[C] =| 0 cos € =~ sin ¢
0 sin € cos €
[N] = [C][B][A] =
r -
cos Ay sin Ay cos ¢ sin Ay sin ¢

- cos € sin Ay cos € cos8 AY cos € cos € cos Ay sin €
) + s8in € sin ¢ - 8in € cos ¢

- sin € sin Ay sin € cos Ay cos € sin E cos Ay sin ¢
- cos € s8in ¢ co8 € COS € (144)

-t

Since |6y] < 10™% and |e - EI < 10=% the nutation matrix is
often approximated by the following matrix:

1 Ay cos € Ay sin ¢
[N'] = |- Ap cos e 1 8¢
- Ay sin ¢ - $¢ 1

The error in the elements in [N'] should be less than one unit
in the eighth significant figure[la’ p.43].

Reference [ 14] gives formulas for Ay and &e which depend on
the mean longitude of the Sun, the mean longitude of the perigee of
the Sun, the mean longitude of the Moon, the mean longitude of the
ascending node of the Moon, and the mean longitude of the lunar peri-
gee, There are 69 terms in the expression for Ay and 40 terms in
6c, Truncated expressions for Ay and &¢ are given in Reference [1].

Finally, an expression for [P}, the precession matrix is de=-
rived below, Figure 19 illustrates the effect of precession over the
period of time t - tg. In this figure, 90° - gy is the right ascen=-
sion of the ascending node of the mean equator at time t on the
mean equator at t; measured from the mean equinox of tg; 90° + z
is the right ascension of the node measured from the mean equinox of

t; and 6 1is the inclination of the mean equator at time t to the
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Figure 19. Formation of Precession Matrix

86

1A-755 D-84



mean equator of tg.

The precession matrix, [P}, is now derived which transforms
coordinates referred to y(t) to coordinates referred to Y(tg).

[P] 1is a result of three rotation matrices. From Figure 19 we
see that the first, [A'], is a rotation of (90° + z) about the z-
axis, The second, [B'], is a rotation about x through -6 and
the third, ([C'], 1s a rotation about 2z through (ggo - 90°).

(P] = [A'] [B'] [C'}], where

cos (90° + z) sin (90° + z) 0 - sin 2z cos z 0
[A'] = |- sin (90° + z) cos (90° +2z) O|=|-cosz =-=sinz O],
0 0 1 o 0
1 0 0 1 0 0
[B'] =] O cos (-9) sin (-6)| = |0 cos &8 - sin 6
0 - sin (-8) cos (=8) Lp sin © cos ©
r cos (3o = 90°) sin (ggo = 90°) 0 sin gy =-cos gy O
[C'] = |- sin (gg - 90°) cos (gg - 90°) 0| = {cos zg sin g O
0 0 i 0 0 1
Hence,
= sin z sin gy cos z sin o sin 8 cos g
+ cos z cos 0 cos o + sin z cos 8 cos g
[P] =] = sin z cos gy cos z €O8 [ - sin 6 sin g

- cos z cos O sin gy - sin z cos @ sin gg

- co8 z sin 6 - g8in z sin © cos 6 (145)

Reference [ 14] gives the following numerical expression for g, a,
and 6 for the case when coordinates are precessed to a later epoch,
Initial epoch, tp = 1900.0 + 719
Final epoch, t =1900,0 + 1 + 1
Lo = (2304."250 + 1,396 o) T + 0."302 12 + 0,"018 13
z = Lo+ 0,791 12
8= (2004,"682 - 0,"853 1) T = 0."426 12 - 0."042 13
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where 13 and 1t are in units of tropical centuries,
When the initial epoch is 1900.0 + 1y + 1 and the final epoch is

1900,0 + 1y (i.e., we are precessing a vector to an earlier epoch)

one whould replace

g by -2z
z by - §g
8 by -8

in the above matrices [A'], [B'], [C'], and ({P].
Combining the results of Equations (143), (144), and (145) with

the relations in Table III, all necessary coordinate transformations may

be performed by the program,

OBSERVATIONS
The SPACE-A program has a provision for a total of 25 observation
types of which a number of ground-based observations are specified and
described here. The specified observations include:
azimuth, A

elevation,

=1

round-trip range,
one-way range rate,
hour angle,
declination,
L-direction cosine,
m-direction cosine,

X-angle,

» X B o O m OepN
©

Y-angle,

(=4
(a4

range equivalent time,
range-rate equivalent time, At'
The position and velocity of a vehicle is available at all times
from the trajectory generation portion of the program. The station
position.énd velocity is computed from input data concerning its geo-

detic coordinates, Therefore, one may consider the relative geometry
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of the vehicle and station to obtain the observations,

The program has the option to include the effects of refraction
upon ground-based observations., A simple model of the Earth's atmos-
pheric effects upon observations is employed in which the index of re-
fraction varies only with altitude. Neglecting the effects of refrac-
tion causes the predicted elevation angle to be less than the observed
elevation., Errors are also made in the computation of range and range-
rate related observations,

The method used to include the effects of refraction is to com-
pute range and range rate from the relative geometry of the station
and the actual vehicle position and velocity and then to. apply correc-
tions based on the refraction model in order to obtain the range and
range rate related observations. In the case of angle related mea-
surements a slightly different approach is taken, A vector pointing
from the station to the computed vehicle position is constructed,

Then the refraction model is used to obtain a new vector pointing from
the station to the observed vehicle position. All angle observations

are then computed directly or indirectly using this new vector,

Coordinates Used in Observation Calculations

The input coordinates of the station (the station is assumed to
be on an ellipsoidal Earth) are initially given as geodetic longitude,
(Ag), geodetic latitude (¢g), and height, Given this information
the position and velocity of the station in the true system of date

coordinate system is given by:

fec + h] cos ¢g cos (Ag + y)\

xT-
yr = [e + h] cos ¢g sin (A\g + Y)
zr = [c(1-e2) + h] sin bg

(146)
XT = = We YT

YT = We XT

ET =0 &
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J/i - e? gin? ¢¢ (147)

el = 2f - f2 (148)

where

XTy YTy 2T are the true system of date coordinates of
the station,

AGy $g» h are the geodetic coordinates of the station,

Y 1is the right ascension of the Greenwich
meridian in the true system of date,

Re 1s the equatorial radius of the-Earth,
and f 1is the flattening constant of the Earth~(3§§%36)
Using the precession matrix, [P} and the nutation matrix, [N], we
can express the station coordinates in the inertial (base date) coor-
dinate system. From the position and velocity vectors of the station
and the vehicle one can obtain the vectors of position and velocity of
the vehicle with respect to the station expressed in the inertial sys-

tem, Thus

b= by =R (149)
P R (150)
where 3, 3 are vectors of the vehicle with respect to the
station,
> 3

Pgs Pg are the vectors of the station, and
ﬁ, ﬁ are the vectors of the vehicle,
Note that all of these vectors are expressed in the inertial coordi-
nate system,
For observation calculations it is convenient to define a station
oriented coordinate system which has a basis consisting of three unit
orthogonal vectors pointed toward the east, north and local vertical.

Using station oriented coordinates the unit vectors are:
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s T

xg = [100]", east vector
;S = [01 O]T, north vector
;S = [00 1]T, up vector

Expressed in terms of the inertial base date system these vectors are:

-+ -+

e = [T] Xg east vector

-+ -+

n = [T] yg north vector

-+ -+

u= [T] zg up vector
and [T] = [P]IN][v][G][a]

where all vectors are 3 x 1 vectors.

[a] 1is a 3 x 3 rotation matrix to account for
misalignments between the station oriented
coordinates and the true topocentric east,
north, and vertical coordinates,

[G] 1is a 3 x 3 matrix transforming coordinates
expressed in the topocentric system into
coordinates of the Greenwich system,

(P],[N], and [y] are the 3 x 3 matrices of precession, nuta-
tion, and right ascension of the Greenwich
meridian which transform the coordinates into
the inertial base date system,

- sin A\g = sin ¢g cos A\g cos ¢g cos Ag
[G] = cos A\¢ - sin ¢G sin Ag cos ¢G sin Ag
0 cos ¢g sin ¢¢g

where Ag; and ¢g are, respectively, geodetic longitude and geo-
detic latitude of the station.

The final result of the above transformations is that the station
oriented basis vectors (Z, ;, and ;) are expressed in the inertial

base date coordinate system,

Computation of Observation Types

In the following discussion all computations are made using vec-
tors expressed in the inertial (base date) coordinate system,

Azimuth and elevation measurements are illustrated in Figure 20,
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Azimuth, A, is measured easterly from station north from 0 < A < 2w,

Elevation, E, is measured from the stations horizontal plane upward

with a range - %; E :_%. If -5 is the station to vehicle vector
the azimuth and elevation are given by:

-+ -+
- -l ¢ @
A tan [E——1:
P *n
-+ >
p . u
E = tan"! //(; e )2+ (p*m)2

If refraction is to be included in the computations, the vecter, ;.

is replaced by the vector ;', where ;' is the vector from the

station to the observed vehicle position as described below,

L: Local vertical

7? Vehicle

Sp——

->
Station > n North

|
|
~J

Figure: 20. Azimuth and Elevation

The round-trip range, 2p, is twice the distance from the station
to the vehicle and its value is given by

-
20 = 2|p| + 28

If the effects of refraction are not included in the calculation

2Ab = 0, If the refraction effects are included 4p is a correction
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term the value of which is given by Equation (202).

The one-way range-rate, 6, ‘is equal to the magnitude of the

time derivative of the vector from the station to the vehicle and its

value 1s given by: .
o = 9-1—;-|-2-+ Ap (159)
P

If the effects of refraction are not included AS = 0, If the effects
of refraction are included Ap is a correction term the value of
which is given by Equation (206).

The hggz_gsgli, .ﬂ, is the angle between the station meridian
and the projection on the true equator of the station to vehicle vec-
tor measured in the true equatorial plane, It is measured westward
from - m < H < n, The declination, D, is the angle made with the
true equatorial plane by the station to vehicle vector. Declination
is measured positive in the northern hemisphere and has a range
= %':.D :.%u Hour angle and declination are illustrated in Figure 21
which shows the station at the center of a celestial sphere and the
projected true equator on the celestial sphere., The hour angle and
declination may be derived using spherical trigonometric relations in
terms of geodetic latitude, azimuth and elevation (¢, A, E). The

values are given by:

= -] s}rn A
e lan [cos A sin ¢g - cos ¢g tan E] (R0

D = sin~! [sin ¢g sin E + cos ¢g cos E cos Al (161)

The values of A and E used above are given by Equations (156) and
(157).

The f-direction cosine, &, and m~direction cosine, m, are
shown in Figure 22, The f&-direction cosine is the cosine of the angle
between tne station to vehicle vector ;. and the station east vector,
2. The m~direction cosine is the cosine of the angle between the sta-

-+ -
tion to vehicle vector p, and the station's north vector, n, The
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values of & and m are given by:
- =

g = P—I-ﬂ-e- (162)
. P.T‘ir& (163)

If refraction effects are included 3' replaces 3 in the above

equations,

The X-angle and Y-angle measurements are illustrated in Figure 23,

The Y-angle is the angle between the station to vehicle vector, ;,
and the perpendicular projection of this vector on the station's east-
vertical plane, It is positively measured toward the north, negatively
toward the south with limits - 127-: Y _<_-;-. The X-angle is measured

-
between the vertical vector, u, and the perpendicular projection of
the station to vehicle vector onto the station's east-vertical plane.
It is measured from the positive vertical eastward with limit

-7 <X <wm, The value of X and Y are given by:

-+ -+
- =1 S
X = tan [-ﬂ—-—:] (164)
P *nmn
=+ -+
s o
Y = tan~
/('5 0 BN A )R (165)
If refraction effects are included 3' replaces z in the above

equations,

The range time equivalent, At, and the range-rate time equiv-

alents At', are included since the raw data from typical tracking
systems are the time between a transmitted and received signal for
range, and the time to count a given number of Doppler cycles for
range-rate. In most systems, these quantities are first converted to
range and range-rate units. However, it may be found useful in some

cases to use the raw data equivalents., The values of 4t and A4t'

-+
ae - 2l (166)

[

are given by:
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M
At' = e (167)
where

¢ 1is the velocity of 1light,
-

->
|01| and |p2| are the ranges at the beginning and end
of the measurements, respectively,

Specific provision is made in the program for computing doppler
shift frequency measurements, The equations for these observations
are not . included, since the method of computation can change depending

on the specific hardware in use for a particular mission,

Effects of Refraction

Because of variations in the refractive index of the atmosphere
the propagation path of a tracking beam is subject to refractive
bending.,

Two models for the variations of refractive index are included
in the program: one is a model for the troposphere, the other is a
model foE iﬁnosphere. A numerical method due to Weisbrod and

13

Anderson is employed in which the effects of refractive bending

are determined by numerically integrating over the total propagation
path, the index of refraction at each point being determined by the
assumed model, The vector from the station to the current calculated
position of the vehicle, 3, is available from the program, Using
numerical methods a correction to the elevation angle is found and a
new vector, 3’, from the station toward the observed position of
the vehicle is determined.

In addition to angle corrections due to refractive bending, the
effects on range measurements due to signal retardation, and the ef-
fects on range-rate measurements due to refractive bending are also

found.

Index of Refraction Models

In order to simplify computational problems, atmospheric models
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representative of average conditions are employed in which the fol-

lowing assumptions are made:

(1) The gradient of the index of refraction varies only
with altitude.

(2) The index of refraction profile is approximated by a
number of linear segments in which the length of each
segment is very small compared to the Earth's radius.

(3) The troposphere extends to 40 kilometers.

(4) The region between the end of the troposphere and the
beginning of the ionosphere 1s assumed to have zero
refractivity (and therefore no bending or signal re-
tardation occurs),

(5) The ionosphere lies between a height hg (input data)
and 2,000 kilometers.

(6) The index of refraction is zero beyond 2,000 kilometers.
In the tropospheric model, refractivity (N) is assumed to decay
exponentially, with the ground index of refraction and the scale
height as parameters, The equation for the tropospheric model is as
follows:
N e N @ 0w G = 19106 (168)

where

Ng 1is the refractivity at sea level, an input quantity
for each station (usually 313),

is the height above the Earth,

is the scale height, an input quantity for each
station (usually 7 kilometers),

n 1is the index of refraction,

For the tropospheric model, the refractive errors are considered
to be independent of signal frequency since the index of refraction
is virtually independent of frequency up to 30,000 MHz,

In the ionospheric model, the index of refraction is dependent
upon more parameters than those considered for the tropospheric model.
The ionosphere consists of several belts of charged particles, The
F layer is very much larger than any other layer, and contains a

greater number of charged particles than the other layers, The F
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layer is the one closest to the Earth's surface., It is subdivided
into the Fl and F2 layers. In the ionospheric model, the index
¢f refraction is primarily dependent uporn the height, hg, of the
base of the ionosphere's F2 layer, the maximum electron density of
the F2 layer, and the height of the maximum electron density of the
F2 layer,

Both index of refraction and the height, hg, are dependent upon
diurnal, solar activity, seasonal, and geographical variations as well
as other miscellaneous sporadic variations. Unlike the tropospheric
molel, the refractive errors in the ionospheric model are frequency
depeudent,

In constructing the model, the range of the signal frequency has
been limited to frequencies above 100 MHz, since this rarge of spec-
trum both represents the situation of greatest interest and enables
equation simplification,

The relationship between the index of refraction (n) the angular
frequency of the incident signal (w), &nd the electron density in the

15]

ionosphere is given by

1
pe €’ -
N - [1 _ (169)

Eommz

Pe is the electron density per cubic meter,
e 1is the electron charge (1.6 x 10-!% Couloumbs),
m 1is the electron mass (9,08 x 1073! kilograms)

€g 1is the permittivity of free space (8,854 x 10-12
farads/meter).

Using the first two terms of the binomial expansion as an approx-

imation, the equation for the index of refraction reduces to:

p
n=1-40,3 fqe- o gl (170)
(3
where f = ux;f . Note that f has the dimensions of MHz, This

equation is true for frequencies above the critical frequency, f.,
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which 18 defined as:
f. = 8,97 oo ® 1076 (MHz)
where pg 1s the maximum electron density per cubic meter,
From the definition of N in Equation (168), Equation (170) can
be written as

(<]
. &5
N = - 4,03 2% x 10

The model selected for electron density versus height consists
of a parabolic veriation below the height of maximum electron density

matched to a hyperbolic secant profile above the maximum, The rela-

tionships are as followst

pe = pg [1 = (1 -0)2) for 0<ox1

Pe = sech [% (o - 1)] for o0 >1

=
h - hg

o . ]
hg = hy

h 1is the height adove the Earth,

hg is the height of the base of the F2 layer (input
quentity),

hp 1s the height of the maximum electron demsity in
the F2 1layer (input quantity),

Figure 24 is a plot of the ionosphere model normalized with res-
pect to o and 1/2 (pe/Pg)s The h, hy, pp perameters refer to
the ionosphere's F layer., Using this model, the refractive effects
of the D and E 1layers are not singled out, because they are quite
small in comparison with those due to the F 1layer and are approxi-
mately accounted for by allowing the electron density at the bottom
edge of the F 1layer to be zero,
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Computation of Ray Bending

The major effect of ray bending due to refraction 1is that the
observed elevation angle, E, of a vehicle in view of a station is
greater that the actual or computed value of elevation, E.. This
effect 1s clearly seen in Figure 25, The difference between the com-
puted and observed elevation is the angle 3§,

In Figure 25 three vectors of importance are shown:

-
p, the vector from the station to the vehicle,

o
o', a vector from the station toward the observed

vehicle position (i.,e,, tangent to the ray
path at the station), and

AB, a vector constructed perpendicular to 3.

The value of azimuth, A, and computed elevation, E,, are ob=-
tained from Equations (156) and (157) using the value of 3, since
these values do not incorporate refraction effects., From the geome=-
try of Figure 25, one can find the components of Eb in the east,

north, and vertical station~oriented coordinate system. Thus:

sin E¢; sin AT
ap = |?]tan §[T] sin E. cos A
- cos E¢ (174)

where |p| is the magnitude of the vector ;, and [T] 4is the 3 x 3
matrix of Equation (154) used to transform the coordinates of 2o
from the station oriented coordinate system into the inertial system.

From the figure it is also obvious that

o' +68p =0 (175)
or
sin E¢c sin A
o' = 3 - r?| tan 6[T] sin E, cos A
- cos E. (176)

p—

In the program the vector 3' is actually normalized to a unit vec-

tor. The length of 3' is not important, however, since it is used
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only to calculate observed angle-related measurements such as azimuth,

elevation, %-cosine, m=cosine, X-angle, Y-angle, and indirectly, hour
angle and declination as described above,
In Equation (176) all quantities are easily computed with the

exception of &, the "error" in the elevation angle, The method of

computing ¢ used by the program is that due to Weisbrod and Anderson

Only an outline of their analysis is presented here.
First, consider the ray of Figure 26 entering an infinitesimal
layer of thickness dr at an angle 8, At a boundary between two

infinitesimal layers Snell's law holds. Thus:
n cos B = constant

where n is the index of refraction., Differentiating Equation (177)
with respect to path length, 8, yields Equation (178) below. Since
n varies only with altitude or distance along an earth radius, r,
one obtains:

dn cos B -n 48 gin 8 = 0

ds ds
dn dr df
Ur da cos B =n T sin 8 0
dr
but dS Sin 6.

and from the definition of curvature one gets:

a8 . 1
ds K

where «x 1is the radius of curvature of the ray. Thus, after substi-

tution, Equation (179) becones:

}--}--QP-COSB.
3 n ar

From Figure 26, an infinitesimal length ds of the ray path is

given by:
dr

ds =k dy = 355
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thus,

dy = i;ﬁh— . (184)

Combining Equations (184) and (182) results in an expression for dv!

1
ay = & ﬁ- cot 8 dr (185)

Also, from Figure 26, it is seen that the dy's of all elementary
layers are directly additive, Thqrofore, the angle Yik due to the
total bending between layers bounded by the heights ty and 1y is
simply.the integral of Equation (185):

rk :
Yik = J %% cot B dr . (i8¢,
L
1f a ray departs from & given layer (where r = ry and n = ng) at an

angle of B, from Snell's law for spherical stratification, one has:
nk ry cos By = constant (187)

If the angle Yik due to refractive bending is computed for only
a very small layer of atmosphere between the heights r = Ty and
r = r,, the following assumptions are justified:

dn
(L 3¢ © conmstant,

(2) the index of refraction n is close to unity, and

(3) bh e ry =1y <<ry (4h is an infinitesimal layer
of height),

Using these assumptions along with Equations (186) and (187), Weisbrod
and Anderson[lsj derive an expression for Yik in terms of the angle
8 and the refractivity N (see equation (168) for its definition);

for the details the reader is referred to their psper. Their expres-

sion for yjx through a small layer of atmosphere is:

Ni- N
Y3k © 500 (tan 8y + tan By)

(mnilliradians) (188)

The total bending thfough the atmosphere is the sum of the
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individual contributions. Thus,

N,

N &
i-1 i
Y = I: (milliradians) (189)
f=l 500 (tan Bi-l + tan Bi)

From Equation (187), the value of cos B, 1is given as:
i

n, £ cos B, n, cos B,
o 1= el okt I 1 | i-1 _ __bh (190)
cos By n, T, - n, P’ R + h.] 2
i 7i i
and it follows:

J 1 - cos2 B.

tan B, = e
i cos Bi (191)

Equations (189), (190), and (191) determine the value of ¥y
where Bi is the value of the angle of incidence of the ray at a
height hi Ni = N(hi) is the refractivity at height hi obtained
trom the atmospheric model, and Ah is the increment of height used
in Equations (189) and (190). Note that hi = hi-l + Ah and that
hn is the computed height of the vehicle obtainable from the program.
At the station h = ho, which is the height of the station, and BO
is set equal to the computed elevation, Ec.

Once Y has been found, consideration of the geometry in Figure
27 leads to the evaluation of ¢, the "error" in the elevation angle.

Thus, we note from Figure 27:

e=y- (@-§) (192)

Using Snell's law for spherical stratification and the application of

the law of sines to triangle SO0Q results in:

Yo *o

cos B = cos BO

nr (193)
g = Bp = T cos @ (194)
Combining Equations (193) and (194) yields:
%o
cos B =, cosa =cos (@ - (@ - B)) (195)
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0

Figure 27. Geometry of Ray Path Used to Obtain ¢
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Since ¢ - B is a small angle, a small angle approximation and an
b {35]
approximation for — 1is used in Equation (195) to obtain
an expression for o - B in terms of refractivity at the station
(NO) and at the vehicle (N):
a - 8=% (Ng=-N) 107% cot 2

Using Equations (192) and (196), the value of ¢ 1is determined,
Applying the law of sines to triangle SOP results in:
rg vos (By = 5) = r cou ((x + ) = *)

Combining Equations (194) and (197) gives an expression for £:

ain € tan a + (1 - cos &)
sin € + cos € tan a - tan By

tan 6 =

Finally, using small angle approximations for 4 and ¢:

a2 |
€ tan Q + = :
i = 2 i

€ + tan a - tan [

This value of 5 can now be used in Equation (176) to find the

vector 3 » which determines all angle related obscrvations includin:

the effects of refraction, Due to the approximations used in the

analysis, below elevations of about 5° the errors in the propagation
corrections amount to a few percent, Because ol this fact, propaga-
tion corrections due to refraction should be computed only when the

elevation of the vehicle exceeds 5°,.

Refraction Effects on Raq&e and Range Rate

Because of signal retardation caused by the refractive gradient
of the atmosphere, the round-trip range computation of Equation (1Z8)
includes a correction term, d4p. The signal retardation caused by nn

infinitesimal layer of thickness dr is given by:
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1 1
dt = (v = c) csc B dr
- (% = 1) C_SC__ﬁ dr
c
= N x 1076 55%-5 dr (200

The effect on range between layers bounded by heights r = Iy and

r = r, 1is given by:

Tk Tk
Apjk = [ cdt = J N x 107% csc B dr (2¢:1)
:y r;
Using methods similar to the computation of retractive bending,
Weisbrod and AndersonL15J arrive at the expression for the refractive

round=trip range correction, 24p, due to the passage of the ray

through the entire atmosphere:

M Ng_y + Ngj(hy = hy_y)
2Ac-2x10"6§|“ AWl

i=]

| £2| 1=n  |N,_, = N/|(h, = b, _.)

" 10-6 [1 +__§_ i=1 i i i-1
£1] fmm+)

sin B4i-) + sin By
l

sin 84— + sin B4 S

Ly

where
N; is the refractivity in the 1th 1ayer,
iy is the height of the ith  1ayer,
B; 1is obtained from equation (190),
f, is the transmitted (or up) frequency,

f, 1is the received (or down) frequency.

The indices in the first summation refer to layers in the troposphere,
and those in the second refer to layers in the ionosphere., The values
of N;j = N(hj) are obtained from the models of refractive index.

Due to refractive bending, the range-rate measurement of Equa-
tion (159) also includes a correction term, 0p. This correction

term arises because the program initially computes the component of
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vehicle velocity along the vector 3, i,e., along the straight line
SP of Figure 27, The measured range-rate is the component of vehi=-
cle velocity along the tangent to the ray path at the vehicle, i.e.,
along the straight line TP of Figure 27,

The velocity of the vehicle and the station is available from the
program. If one denotes the component of vehicle velocity along the
line SP by vx, and the component of vehicle velocity perpendicular
to SP by vy, then the range rate computation without the correc-

tion for refraction (i.e., Aé = () is:

L]
> >

pc-ﬁ-_wa-vx
p
The measured component of velocity along the tangent to the ray path

at the vehicle as seen from Figure 27 is

Pm = Vx cos (y - &) + vy sin (y = 8)

The correction to range-rate, Aﬁ, is given by:
Aé-pm"éc

A factor should also be included to account for the round-trip fre-

quency dependent effects in the ionosphere. After making a small angle

approximation the final equation used for Ap, the one-way correc-

tion to range-rate, is:

f2

v, i 2
Ap-?l+z§- vy (y = 8)
1

where

vy 1is the component of vehicle-station velocity perpendicular
to the vector 3, and lying in the plane which includes
the center of the Earth,

f, 1is the transmitted frequency,

fo, - is the received frequency.
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SECTION III,

USER'S GUIDE

INTRODUCTION

The information in this section 1is intended as a guide for those
desiring to use SPACE~A, SPACE-A generates a vehicle ephemeris and
assoclated observations from ground stations and has four modes of
operation, They are:

(1) Computation of vehicle ephemeris only;

(2) Generation of observations from ground stations;

(3) Same as (2) with the writing of the observations onto
tape in a format suitable for processing by SPACE-B;

(4) Same as (2) with the following included as standard
outputs:

(a) the acquisition time,
(b) total time in sight, and

(c) the option of the printing time of polar and
meridian crossings.

DESCRIPTION OF INPUT DATA

All input data is read at the beginning of each run., The format
and arrangement of the data is designed to make the data prepara-
tion as convenient as possible, It is seldom necessary to read all
the data; in fact, most runs require a minimum of cards., Many vari-
ables have standard values which are preset by the program and should
be satisfactory for most cases,

The input data is divided into three parts, The first consists
of a single card, called the basic input card, which must be included
in each run, The second and third parts are designated group I and
group II inputs, respectively. Each group is divided into several
sections, each of which must be preceded by a card containing the

section number, in integer format, in columns four and five. Any

”

111,



section may be omitted from the input deck, Parts of sections, how=-
ever, must not be omitted, See Figure 28 for the setup of a sample
input deck,

The basic input card, which precedes each case, contains four
variables. The first pertains to the standard values which may be
set in place of the group II data and will be explained later. The
second, MDE, indicates the function to be performed (i.e., trajectory
computation, observables, etc.)., The third indicates the desired pre-
cision and determines the set of standard values used for integrationm.
The last specified Encke or Cowell integration,

The group I inputs consists of several sections. Any of these
sections may be omitted from the input deck if the variables contained
in the section are not needed for the run or in the case of stacked
cases, the values from the last case are to be used again, The des-
cription of each variable given in the data summary (see Table IV) is
sufficient to understand most of the inputs. Therefore, only a brief
discussion of the variables given in Table IV is presented here.

In the group I input data, if the variable KLM2 of Section 2 is
0 or 1, the initial conditions are assumed to be referred to the base
date system or true system of date, respectively,

Sections 7 and 9 deal with observations from observing systems
on vehicles and with powered flight and have been omitted since they
are not presently used. The variables in Section 8 control the out-
put and are discussed in DESCRIPTION OF OUTPUT INFORMATION,

The end of”the group I input data is indicated by a card con-
taining a 10 in columns four and five, This card must always be in-
cluded in the data deck., After reading this card the program advances
to the group II inputs,

Before the program reads the group II input data, the valwe of
the first variable contained on the basic input card, KSTDRD, is

tested. If this variable is negative, standard values of the vari-
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ables in the group II input data are computed from stored information
and the program then begins to read the group II inputs to augment or
replace any of the standard values, Table V gives a 1liet of the stan-
dard values used by the program, If KSTDRD is not negative, none of
the standard values is set and all values should be read in unless
values from a preceding stacked case are used, The end of group Il

inputs is indicated by reading a card with a 20 in integer format in

columns four and five.
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COLUMN

2-5

6-10

11-15

16-20

Table

Iv.

Summary of Input Data

Basic Input Card

NAME FORMAT
KSTDRD I5
MDE I5
PRECIS F5.0
CEPID F5.0
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--1

DESCRIPTION

Will want at least some
standard inputs from
group II

No standard. All values
will be read in,

Trajectory computation,

Observable computations
without simulated data,

Observable computations
with simulated data,

Prediction mode
Low precision level,

Intermediate precision
level,

High precision level
Encke integration

Cowell integration



SECTION CARD COLUMNS
1 1 2=72
2 2-5
6-10
11-15
16-20
21=40
3 1-24
2 Ak 2=5
6-10

Group I Inputs

NAME  FORMAT
ITITLE(1-12) 12A6
NYEARP 15
DAYS F5.0
HRS F5.,0
HMIN F5.0
SEC E20.16
TMAX E24,16
KLM I5
KLM1 15
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DESCRIPTION
Title

Year of initial
conditions

Day of initial
conditions,

Hour of initial
day.

Minute of initial
hour.

Seconds of initial
minute,

Time of run in
hours,

Indicator for units
of position and
velocity vector,

KM,KM/SEC
ER,ER/HR
FT,FT/SEC
MI ,MI/HR
NM,NM/HR
NM, FT/SEC
AU, AU/HR

T 1T 1800
NonESWwWN e

Indicator for coor-
dinate system of
input vectors.

= 1 Cartesian coord.
WE = 0
Cartesian coord,
Compute WE
Geodetic long,
lat, alt,
VesVnyVh; WE = 0
Geodetic long,
lat, alt,
VesVniVhi
Compute WE



Group I Inputs

(continued)
SECTION CARD COLUMNS NAME FORMAT DESCRIPTION
= 5 Geodetic long,
lat, alt,
IVII Yy az;
WE = 0
= 6 Geodetic long,
lat, alt,
VI, vs az;
compute WE
= 7 Geocentric ra,
decl, alt,
VrasVdsVh;
WE = 0
= 8 Geocentric ra,
decl, alt,
Vra,Vd,Vhi
compute WE
= 9 Geocentric ra,
decl, alt,
v, 8, az;
WE = 0
= 10 geocentric ra,
decl, alt,
lvlo By az;
compute WE
11-15  KLM2 15 Indicator for nuta-
tion and precession
of input vector,
= 0 no
= 1 vyes
16-20  KSNAP I5 Indicator for nuta-
tion and precession
of vectors during
run,
=0 no
= 1 vyes
21-25  KLM3 15 Indicator for libra-
tion of input vectors,
= 0 no
= 1 yes
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Group I Inputs

(continued)
SECTION CARD COLUMNS NAME EORMAT DESCRIPTION

26=30 KLIBR I5 Indicator for libra-
tion of vectors
during run

= 0 no
= 1 vyes

31-35 MRREF I5 Indicator for ini-
tial reference body

Earth
Sun
Moon
Mars
Venus
Jupiter
Saturn

2 1-24 RCIN(1) E24,16 Initial position
vector

25-48 (2) E24,16 See KLM and KLM1
for units and type,

LI O B BN B A |
SNowvew =

49-72 (3) E24.16

3 1-24 RCIN(1) E24,16 Initial velocity
vector,

25-48 (2) E24,16 See KLM and KLM1
for units and type,

49-72 (3) E24,16

3 1 2=5 PASFX F5.0 Total number of
) passes.,

4 1 2=5 KS2BY IS5 Indicator for two-
body integration

=0 no
= 1 vyes

6-10 KSPLT I5 Indicator for in-
clusion of planetary
perturbations

= 0 no
= 1 vyes
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SECTION

CARD

co
11-15

16-20

21-25

26-30

31-35

36-40

41-45

)

Group I Inputs

(continued)
NAME
KSOBL

KSDRG

KSRAP

KSDRGM

KSDRGV

KSMNOB

KRF

119

FORMAT
I5

I5

15

15

15

I5

15

DESCRIPTION

Indicator for inclu-
sion of oblateness

perturbaticn.
= 0 no
= ] yes

Indicator for inclu-
sion of Earth drag

perturbation,
= 0 no
= 1 yes

Indicator for inclu-
sion of radiation
pressure perturba-
tion,

= 0 no
= ] vyes

Indicator for inclu-
sion of Mars drag

perturbation,
= 0 no
= ] yes

Indicator for inclu-
sion of Venus drag

perturbation,
= 0 no
=1 vyes

Indicator for inclu-
sion of Moon oblate=-
ness perturbation,

= 0 no
= 1 vyes

Indicator for inclu-
sion of refraction
effects,

= 0 no
= 1 vyes



SECTION CARD COLUMNS

Group I Inputs

46=50

5 1 2=5

2 2-5
10-15
20-30

3 1-24
25-48
49-72
4, 1-36

37-72
5 1-36
37-72

6 1-18
19-36
37-54
55-72

(continued)

NAME
KECLPS

MAXSTA

K
STANM(L)
TYPE (L)

STALT (K)
STALN (K)
STAHT (K)
RRATE (1,L)

RRATE (2,L)
RRATE (3,L)
RRATE (4,L)

TDELAY (1,L)
TDELAY (2,L)
TDELAY(3,L)
TDELAY (4,L)
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FORMAT DESCRIPTION
15 Indicator for inclu-

sion of eclipse in-
formation print,

= 0 no
= 1 yes

I5 Total number of
stations used in
run,

I5 Station number,
A6 Station name,

4XI11 A(1)+1,E2*A(2)

+1,E4*A(3)+1,E6%A(4)

+1,E8*%K where

A = observation
types used by
station K in
ascending order,

L = packed station

number

E24,16 Latitude of station
K.

E24,16 Longitude of station
K.

E24,16 Altitude of station
K,

E36.16 Repetition rates
(hrs).

E36,16 For each observation

E36.16 Type

E36.16

E18.8 Times in hrs before

E18.8 which each observa-

E18.8 tion is not to be

E18,8 computed,



Group I Inputs

(continued)
SECTION CARD  COLUMNS NAME FORMAT DESCRIPTION
7 1-18 FUP (K) E18,.8 Station transmit
freq. (WZ)Q
19-36 FDOWN (K) E18.8 Station receive
freq. (Miz),
8 1-24 STAOR(NCDST+1) E24,16 AEE station
rotation angle,
25-48 STAOR(NCDST+2) E24.16 AEV station
rotation angle,
49-72 STAOR(NCDST+3) E24,16 AEN station
rotation angle,
9 1-24 STAOR(NCDST+4) E24.,16 AU (station lo-
cation
25-48 STAOR (NCDST+5) E24.16 AV /errors
< caused by
49-72 STAOR(NCDST+6) E24,16 AW | geodetic
_net error,
10 1-24 STAOR (NCDST+7) E24,16 NO; refractiv-
vity at sea
level.
25=48 STAOR (NCDST+8) E24,16 H; troposphere
scale fact,
49=72 STAOR(NCDST+9) E24,16 PO; max. elec-
‘ tron density,
11 1-24 STAOR (NCDST+10) E24,16 HO; loser limit
of ionosphere,
25-48 STAOR(NCDST+11) E24,16 HM; Ht of PO
(KM)
49-72 STAOR(NCDST+12) E24,16 - open =
12 1-24 STAOR(NCDST+13) E24,16 AT for timing,
25=48 STAOR(NCDST+14) E24,16 Bias added for
obser,A(1)
49-72  STAOR(NCDST+15) E24.16 Bias added for
obser.A(2).
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Group I Inputs

(continued)
SECTION CARD COLUMNS NAME FORMAT DESCRIPTION
13 1-24 STAOR(NCDST+16) E24,16 Bias added for
obser,A(3)
25-48 STAOR (NCDST+17) E24,16 Bias added for
obser.A(4)

REPEAT CARDS 2-13 FOR EACH STATION

6 1 1-18 DAREAS E18.8 Effective sur-
' face area of
vehicle per-
taining to
drag (ft?),

19-36 PAREAS E18.8 Effective sur-
face area per-
taining to
radiation pres-
sure (ft?),

37=-54 SPADD(6) E18,8 Mass of vehicle
(1b-masses)

7 OPEN

8 1 2=5 IUNIT I5 Indicator for
output units
(see KLM)

6-55 IPSEC(I),I=1.10 1015 Indicator for
suppression of
each of 10 print
sections.

2 1-18 DTPI E18.8  Print portion

(hrs) and sup-

19-36 DTSUP E18.8 Sress Borticy
(hrs), ot total
print period.

37-54 PRATE E18.8 Interval with-
in DTPI at which
to print.

9 OPEN

10 ' END OF GROUP I INPUTS
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Group II Inguss

SECTION CARD COLUMNS NAME
1 1-7 1-72 (DT3(1,J),

I=1,3) J=1,7

2 1 1-72 R1(1-3)
2 1=-72 R1(4-6)
3 1-72 R1(7),R2(1-2)
4 1-72 R2(3-5)
5 1-48 R2(6=7)
3 1 1-24 RT1
25=48 RT2
4 1 1-18 DH1
19-36 DH2
37-54 H2
55=72 H4
5 1 2=5 KOBLAT
2 2=5 N
6~-10 M
3 1-24 SORC1
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FORMAT

3E24,12

3E24,12
3E24,.12
3E24,12
3E24,12
3E24,12

E24,12
E24,12

E18.8

E18.8
E18.8

E18.,8
I5
I5

15
E24,12

DESCRIPTION

Integration in-
tervals for each
of 7 working
bodies for near,
medium and far
reference.

Rl and R2 are
distances in
E.R. for each of
7 working bodies
for switching
from near to
medium and me-
dium to far in-
tegration inter-
vals,

Values used as
tolerances in
rectification
criteria.

Troposphere
integration
step size (KM),
Ionosphere in-
tegration step
size (KM).

Upper limit
troposphere
(KM).

Upper limit
ionosphere (KM).

Number of ob=
lateness coeffi=-
clent terms,

N index.
M index.,

Value of C
coefficient,



Group II Inputs

(comtinued)
SECTION CARD COLUMNS NAME FORMAT DESCRIPTION
25-48 SORC2 E24,12 Value of §
coefficient.
REPEAT CARDS 2-3 UNTIL KOBLAT VALUES HAVE BEEN READ IN,
6 1 2=5 MBMAX I5 Number of working
bodies.
6-10 KWBMU (1) 15 Indices of
I=]1 MBNAX working bodies,
2 1-72 TPMAT8(1) 3E24,12 Gravitational
I=1 ,MBMAX constants of

working bodies,
REPEAT CARD 2 FOR EACH VALUE OVER 3N NEEDED.

7 1 1-24 DYN (48) E24,12 Solar flux in
1022 w/m2-Hz
at 10,7 cm,

25=-48 DYN(49) E24.12 Open

8 1 1-72 DYN(51-53) 3E24.12 Coeff.clents
for iunar ob-
lateness

‘ (kg * km?).

9 1 1-24 COMB (1) E24,12 Velocity of
light.

10 1 1-72 PRNT3(1-3) 3E24,12 Print intervals

(hrs) for near
medium and far
reference.

11 1 1-24 EMIN E24.12 Minimum value
of elevation
angle (radians),

12 1 1-18 RTO E18.8 Ratio of
Nordsieck inte-
gration interval
to that in Runge-
Kutta.,
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SECTION

13

14

15

16
17
18
19
20

CARD  COLUMNS

3 1-24

1 1-72

2 1-72

1-10  1-72

11-20  1-72
OPEN
OPEN
OPEN
OPEN

Group II Inputs

(continued)
NAME
DSPL

RATEC(1-3,2)

XMACH(I)
I=1,40

CDT(I)
I=1,40

END OF GROUP II INPUTS
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FORMAT
E24,12

3E24,12

3E24,12

4E18,8

4E18,8

DESCRIPTION

Special inte-
gration inter-
val in A4 mode
to obtain ac-
quisition time
(hrs).

Rotation vector
used in Mars
drag computa-
tions,

Rotation vector
used in Venus
drag computa-
tions,

Mach number
table,

Drag coefficient
table



Table V.

Standard Values for Group II Inputs

Section 1.
DT3 ARRAY (3 x 7 array of integration intervals)
DT3(1,I); I=1,3,4,5,6,7 +1953125 x 10~2
DT3(2,1); I=1,3,4,5,6,7 .15625 x 107!
DT3(3,1); I=1,3,4,5,6,7 .125

DT3(1.2) = 4,
DT3(2,2) = 6.,
DT3(3,2) = 10,

Note: The above values are always used for Encke integration and for
Cowell when low precision 1s specified, When Cowell and inter-
mediate precision is specified, each value in the DT3 array is
divided by 2; when Cowell and high precision is specified each
value 1is divided by 4, The precision desired is controlled by
the variable CEPID on the Basic Input Card.

Section 2,

R1 ARRAY (1 x 7 array of reference body change
criteria)

R1(I) = 4 « RADII(I)
R2(I) = 10 « RADII(I)
where RADII(I) is the radius of the Ith working body (Earth, Sun,

Moon, Venus, Mars, Jupiter, Saturn),

Section 3,
RT1 = 1, x 107®
RT2 = 1, x 1076
If low precision is specified
RT1 = 1 x 107"
RT2 = 1 x 10~
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Table V.

(continued)
Section 4.
DH1 = 1,
DH2 = 10,
H2 = 40,
H4 = 2,000,
Section 5,
KOBLAT = 3
Co0 = - 1082,3 x 10™® S50 = 0
Cig = 2,3 x 107  s39 = 0
Cyo ™ 1.8 x 1076 54,0 = 0
Section 6,
KBMAX = 7
KWBMU(I) = I; L w352, 805541617
TPMAT8(1) = 19.909416
(2) = 6629965.8
(3) = . 24478289
(4) = 16,1983009
(5) = 2.14364682
(6) = 6338,16258
(7) = 1897.36734
Section 7.
DYN(48) = 200,
Section 8, ,
DYN(51) = ,88746 % 1029 kg « km?
DYN(52) = .88764 ¥ 1023 kg « km?
DYN(53) = ,88807 % 1029 kg * km?
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Table V.
(continued)

Section 9,
COMB(1) = 169210,58004

Section 10,
PRNT3(1) = ,25
PRNT3(2) = .5
PRNT3(3) = 1,

Section 11,

EMIN = (5. degrees; expressed in radians)

Section 12,
RTO = 3

Section 13,
DSPL = 1, x 1073

Section 14,

RATEV(1,1) = 0.0
RATEV(2,1) = 0,0
RATEV(3,1) = 0,255175469
RATEV(1,2) = 0,0
RATEV(2,2) = 0.0
RATEV(3,2) = 0.0
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Table V.
{concluded)

Section 15,
MACH TABLE ARRAY (XMACH(I), I = 1,40)

- W5 1.5 25, 96.
0.0 1.85 30, 97.
o5 2.0 50. 98,
75 2.7 70, 99.
85 3.4 90. 100,
o9 4,2 91, 101,
1.0 5,6 92. 102,
11 6.75 93. 103.
1,2 8.5 94, 104,
1.3 15, 95. 105,
DRAG COEFFICIENT TABLE (CDT(I) I = 1,40)
.8 1.4 1.14 1.14
.8 1,38 1.14 1.14
82 1,36 1.14 1.14
92 1,285 1,14 1.14
99 1,23 1.14 1.14
1,06 1.19 1.14 1.14
1.18 1,16 1.14 1,14
1.21  1.155- 1,14 1.14
1,26 1,15 1.14 1,14
1.3 1.45 1.14 1,14
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DESCRIPTION OF OUTPUT INFORMATION

The input quantities which determine the form of the output of
the program are given in Section 8 of the Group I inputs in Table IV.
The choice of output units are determined by IUNIT. The choices of

units with corresponding values of IUNIT are given below,

Value of IUNIT OUTPUT UNITS
1 KM,KM/SEC
2 ER,ER/HR
3 FT,FT/SEC
4 MI ,MI/HR
5 NM,NM/HR
6 MM, FT/SEC
7 AU,AU/HR

Time may be divided into periods of print and suppression of
print by setting the input variables DTPI and DTSUP, A period of
printing (DTPI) is executed followed by a period of suppression (DTSUP)
and the cycle is then repeated.

The variable PRATE, 1is used to determine the print interval with-
in DTPI, Since conditions occur where the print routine is entered
more than once with the same time, printing is normally only executed
upon the first entry, However, by using a negative PRATE, printing
will occur each time the print subroutine is entered during the print
interval determined by DTPI,

The user has the option of choosing the information he would like
printed by setting IPSEC(I) = 1, where I 1is the output section number
given in Table VI, that contains certain information. By reading
a zero for IPSEC(I), the printing of the Ith gection is surpressed.
There are ten sections of output information as shown in Table VI. See

Figure 29 for a sample listing with various sections labeled.
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Table VI.

Ten Sections of Output Information

Section 1,
Program time in hours since launch;

Current program date in hours, minutes, seconds,
day and year;

Planetary body which is the current reference.

Section 2,
Station number;

Observation types which station handles.

Section 3.

Components and magnitudes of position and velocity
vectors in units specified by the user,

Section 4,

Components and magnitudes of perturbations in
position, velocity and acceleration in units
specified by the user.

Section 5,

Components and magnitudes of vectors between
vehicle and each planetary body in specified
units,

Section 6,

Components and magnitudes of vectors between
the Earth and each of the other planetary bodies
in specified units.

Section 7.

Components and magnitudes of vectors between
the Sun and each of the planetary bodies
in specified units.,
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Table VI.
(concluded)

Section 8,
Right ascension;
Declination;
Greenwich hour angle;
Longitude and latitude of Earth subsatellite point;
Geocentric altitude, azimuth and elevation;

Geodetic azimuth and elevation,

Section 9,
True, eccentric and mean anomalies;
Semi-major axis;
Eccentricity;
Inclination;
Argument of perigee;
Perigee passage time;
Right ascension of ascending node;
Period;
Mean motion;
Perigee and apogee heights;
Unit vector to perigee;

Unit angular momentum vector,

Section 10,
Station name;
Program time in hours;
Station locationj

Observation values.
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PROGRAM DECK SETUP

This section describes the deck setup for running the A-mode of
SPACE on the 7030 computer, The program is executed under the control
of MCP (Master Control Program), The binary cards containing the com-
plled routines are kept on a magnetic tape at the MITRE 7030 computer
facility and only a few control cards and the data deck are needed by
the user,

Those cards shown in Figure 30 that have a B or T punched in
column 1 are control cards for the MCP, They are described in greater

detail in the MITRE 7030 Facility Manual,

JOB Card

The job card 1s always the first card of an input deck., This
card contains necessary information for accounting and no job can be
run without it, The fields on the JOB card are variable in length

and separated by commas,

Format
1 10 z
B JOB, 'JOBID', 'NAME', 'PROJECT', 'DEPT', 'MAXTIME','DEST’
Field Name Description
B Punched in column 1
JOB, Punched in columns 10-13
'JOBID' 1 to 7 character job identi-
fication
'NAME' ’ Name of programmer (up to 13
characters)
'PROJECT' Project number (3 to 9
characters)
'DEPT’ Department number (3
characters)
'"MAXTIME' Maximum running time in
minutes (up to 3 characters)
'DEST' Destination of output

(up to 6 characters)
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Example:

ll 10
B JOB,SPACE,BOND J, 007, D84, 13, Al4l
TYPE Card

This card defines the type of job (GO), and the proper manitor
system (FORTRAN) to the MCP to execute thisg program,

Format:

1 10

B TYPE, GO, FORTRAN
ADDIO Card

This card contains the library number of the prograﬁ tape that
contains the binary decks of the SPACE program, Since modifications
to the program may be made in the future, the user should periodically

check the current tape number with Department D=-84,

Format:
|1 10
BLIB1 ADDIO,PLBXXXX
Field Name Description
BLIB1 Punched in columns 1-5
ADDIO,PLBXXXX Beginning in column 10,

the XXXX indicate the
field where the tape
number is to be punched.

SUBTYPE,BIN Card

This card tells the MCP that the cards that follow are binary.

Format:

1 10

T SUBTYPE,BIN
TMAIN Card

This card results in the construction of a dummy main program

which calls the executive routine of SPACE (EXECA). EXECA is compiled
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as a subroutine and the binary cards are contained on the library tape.

This card is the equivalent to the Fortran routine,

CALL EXECA
RETURN
END
Format:
|1 10
T . |MAIN,EXECA

Processed FIOD Deck

Since the programmer cannot choose the input-output channels to
be used (they are assigned by MCP at execution time), the FIOD deck
specifies the I/0 channel requirements of the program., The processed

FIOD deck is the result of compiling the following subprogram:

|1 llo
T SUBTYPE,FIOD
B2 10D ,$READER
B3 I0D, SPRINTER
B9 IOD,TAPE, , 4, SAVE
B8 I0D,TAPE, ,,,,»SAVE
B REEL,PLBDL680
END

Logical units 2 and 3 are the system input and output units res-
‘pectively. Logical unit 9 is used for the output of the observation
tape generated when that option is exercised. Logical unit 8 is used
for the input of the ephemeris tape containing the positions of thg
Moon and planets, The reel card specifies that the ephemeris tape,
wvhose label is PLBL680, is to be mounted.

SUBTYPE,DATA Card
This card tells the MCP that the following cards contain the

data for the program.

138



Format:
1 10
T SUBTYPE,BIN

Input Data Deck
This is the data deck described in the Description of Input Data,

(INPUT DATA DECK)

T SUBTYPE, DATA N\ l |

—_——

(PROCESSED FIOD DECK)
i MAIN, EXECA

T SUBTYPE, BIN
1 ADDIO, PLBXXXX
B TYPE, GO, FORTRAN ‘\W _
N

B JOB, JOBID, NAME, etc.

Figure 30. Deck Setup
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SECTION 1V,
PROGRAMMING

GENERAL FLOW OF PROGRAM

The general flow of the program is shown in Figure 31, The user
does not need to specify the number of cases to be run, as the program
returns to read the data for the next case until all data cards are
exhausted.

The program structure and linkage of the program between basic
routines is shown in Figure 32, It is to be noted, however, that the
figure does not indicate every linkage but only the major ones. For
instance, in some cases it is necessary for OBSERA (which usually only
computes observations) to call the integration package.

The routines listed under the heading of General Routines, in
Figure 32 are used by many of the major routines. The linkage of
these routines is not included as this would defeat the purpose of
the figure, which is to indicate the position of the major routines

in the overall structure of the program,

DESCRIPTION OF SUBROUTINES

The following part of the document gives a brief description of
the subroutines used by SPACE-A., Each subroutine description gives
the purpose and a brief description of the subroutine, as well as the
other subroutines which call and are called by the given subroutine,
For understanding the details of each subroutine one ought to refer
to the pertinent portions of Section II and Section III dealing with
the function of that subroutine as well as referring to the computer
listing.

It should be noted that, as of the writing of this document,
certain subroutines have not been tested. These non-operational sub-
routines are: LUNOBL, MVDRAG, OBD, PFINIT, PFLGHT, STACUL., These

subroutines deal with lunar oblateness gravitational perturbations,
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RETURN TO
FIND NEXT
ACTIVITY
TIME

INITIALIZE AND READ
INPUT DATA

4

PICK NEXT
ACTIVITY TIME

PERFORM INTEGRATION
(ENCKE or COWELL)

\

COMPUTE OBSERVATIONS
(IF REQUIRED)

PRINT DESIRED
INFORMATION

NO

LAST

Figure 31. General Flow of Program

YES

\TIHE/
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1A-872 D-84

(EXEC

EXECA
UTIVE ROUTINE )

PFINIT
i (INITIALIZE
POWERED FLIGHT)
INPUT A MAIN A - STACUL
(READS DATA) (CONTROLS MAIN [——= L coF
l FLOW OF PROGRAM) B%%%%T l%?l )
XFORM l L — PRINT A
(READS & CONVERTS|| TIMNG A OBSER A (PRINT SELECTED
INITIAL CONDITIONS) | | (F\ND NEXT (COMPUTES INFORMATION)
ACTIVITY TIME]||OBSERVATIONS)
0BD (ON-BOARD OBSERVATIONS)
INTEGRATION ATIM (MODE 4 COMPUTATION)
ROUTINES
o STAPOS (STATION VECTOR)
COWELL MODELA (INDEX OF REFRACTION)

CITGRA (CONTROLS INTEGRATION)
CCHREF ( CHANGE REFERENCE BODY)
CRSTRE ( SAVE/RESTORE VECTORS)
CINT (INTEGRATION)

GENERAL ROUTINES
DDOT (COMPUTE A-B)

omTML (compuTe [4]-[8]/]4]-[g] '
DOMUD (CHECK FOR ERROR) |
!

EITGRA (CONTROLS INTEGRATION)
ECHREF ( CHANGE REFERENCE BODY)
ERSTRE (SAVE/RESTORE VECTORS)
EINT (INTEGRATION)

'KEPLER (NOMINAL/2-BODY ORBIT)
RECT (RECTIFICATION OF ORBIT)

!

|
T)|

( COMPUTES ACCELERATIONS)

DERIV
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EPHEM (READ EPHEMERIS TAPE)_ l L l
(OBLATENESS LUNAR (MARS/VENUS)
N PR e = "WTAT/ 1 | anD DRAG) oniiee 1|
) e v
|
SERVCE (COMPUTE A8, ! l ECLIPSE PELGHT
—— e o (CHECK & PRINT (POWERED
(COMPUTES
DENSITY
OF AIR)

Figure 32. Program Structure




Mars and Venus drag model, on-board observations, perturbations due

to vehicle thrust, and observations dealing with occultation.
EXECA
PurEose:

This is the executive routine for SPACE-A,
Description:

The program alternates between calling INPUTA and MAINA until
all cases have been exhausted,

Subroutines Called: INPUTA, MAINA

ATIM

Purpose:

This subroutine is used in the visibility computation mode (mode
4), It determines the time a vehicle comes within sight of a given
ground station or the time of polar baseline crossing (the time that
the vehicle crosses the east-west vertical plane through the zenith)

and meridian crossing,

Description:

When the vehicle is in sight, the & and m direction cosines
are tested and used to interpolate for the times of polar and meri-
dian crossings, When the acquisition time ié to be determined, the
integration routines CINT and EINT or the two-body routine KEPLER'is
employed to predict ahead until the vehicle comes into view.

Called By: OBSERA

Sybroutines Called: CINT, CRSTRE, EINT, ERSTRE, KEPLER

CCHREF

Purpose:

This subroutine tests criteria for changing the reference body
when the Cowell integrator is used. Even though a change of reference
body in the Cowell method is not necesssry, it is utilized in the
program in the same manner as in the Encke integrator.
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Descriztion:

Criteria for changing the reference body based on regions of

influence are tested,

Called By: CITGRA
Subroutines Called: DDOT, EPHEM, SERVCE

CINT (EINT)
Purgose:

This subroutine performs the integration when the Cowell formu-

lation is employed,

Description:

The Gill modification of Runge-Kutta is used for short-term inte-
gration and as a starting procedure for the Nordsieck long-term inte-

gration,

Called By: ATIM, CITGRA, MAINA, OBSERA

Subroutines Called: CCHREF, CINT, CRSTRE
CITGRA

Purgoue:

This subroutine serves as the: sub-main program governing calls

to the integration routines in the Cowell method.

Descrigtion:

If not in powered flight, the prbgram checks for a change of re-
ference bodies, The delta of inteération is determined by the dis-
‘tance of the vehicle from the reference body and integration 1s per-

formed up to the next activity time by calling the integration routine,

Called Bzx MAINA

Subroutin ed: CCHREF, CINT, CRSTRE
CRSTRE (ICR)
PuEBose:

This subroutine saves or restbres time, position, and velocity
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and acceleration of the vehicle at any designated time for the Cowell

integrator,

Description:

Depending on the value of the argument (IRC) the information is
saved (IRC < 1) or restored (IRC > 1),

Called By: ATIM, CITGRA, MAINA, OBSERA
DDOT (A, B)
Purpose:

This function computes the dot product of two vectors,

Description:

The program uses the formula
DDOT = A(1)* B(l) + A(2)* B(2) + A(3)* B(3)

Called By: CCHREF, DERIV, ECHREF, LUNOBL, MVDRAG, OED,
OBLDRG, OBSERA, PRINTA, RECT, STACUL

DENSTY (X1, X2, X3, DENP, DENEQ)

Purpose:

This subroutine evaluates the density of air in the upper
atmosphere,

Description:

Tables of the logarithm of p * C4y obtained from the Harris-
Priester data are stored in this routine, Interpolation is performed
to calculate log(p * Cay) (DENEQ) at the equator as a function of the
altitude of the vehicle (X1), solar flux (X2), and solar time (X3).
Interpolation is also performed to calculate log(p ° Cav) (DENP) at
the poles, as a function of the altitude and solar flux,

Called By: OBLDRG

DERLIV

Purpose:

This subroutine evaluates the acceleration terms for the Encke
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and Cowell integrators,

Description:

This subroutine computes the planetary perturbations and the solar
radiation pressure perturbations as presented in the theory section of
this manual., Earth oblateness perturbations and drag are computed by
calling OBLDRG. Provisions are included for computing powered flight

accelerations,

Called By: CINT, EINT

Subroutines Called: DDOT, DOMUD, ECLIPS, EPHEM, KEPLER,
LUNOBL, MVDRAG, OBLDRG, PFLGHT, SERVCE

DMIML (A, B, C, I, J, K, L, M, N, IAC, JAB, KBC, IFLAG)

Purpose:

This subroutine multiplies two matrices of any size (up to 26 x
26), or two matrices in which the second 1s transposed.

Description:

The matrices A, B, and C are dimensioned I x J, K x L, and
L x M respectively, .

When IFLAG = 0, 1, multiplication is done by rows of A so
that A can be overwritten if desired (i.e., the argument C in the
calling sequence may actually be the same as ),

When IFLAG = 2, 3, multiplication is déne by columns of B and
the result is stored in B,

The following table summarizes the results of the program for
various valués of IFLAG.

IFLAG COMPUTE STORE RESULT IN
0 & o8 c
1 A+ B c
2 A B B
3 A°*B B

IAC 1is the number of rows of A and C to be used,

JAB 1is the number of columns of A and rows of B
(or BT) to be used, .
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IBC 4is the number of columns of B (or BT) and
C to be UBEd.

Called By: LUNOBL, NUTPRE, OBLDRG, OBSERA,
T STACUL, STAPOS, XFORM

DOMUD (TEST)

Purpose:

This subroutine checks for errors.

Description:

The Overflow and Divide Check indicators are checked. If either
is on, and the argument TEST is not equal to zero, TEST is assumed to
be a BCD word and the message "ERROR IN 'TEST'" is printed.

Called By: DERIV, KEPLER, NUTPRE, OBLDRG, OBSERA,

PRINTA, RECT, STAPOS, XFORM

ECHREF

Purpose:

This subroutine tests criteria for changing the reference body
when the Encke integrator 1is used.

Description:

Criteria for changing the reference body based on regions of

influence are tested,

Called By: EITGRA
Subroutines Called: DDOT, EPHEM, KEPLER, SERVCE

ECLIPS (J, K)

Purpose:
This subroutine checks for a change in the illumination of the

vehicle and prints out an appropriate message when the vehicle
changes between the three states: umbra, penumbra, or sunlight,
Description:
This first argument in the calling sequence indicates whether

the reference body is the Earth (Jel), the Moon (J=2), or some other
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body (J>2). The second argument indicates whether the vehicle is in
the umbra (K=1), penumbra (K=2), or sunlight (K=3), Values of the
second argument are saved from one entry to the next and hence a
simple comparison is made for determining a change in vehicle status,
If a change has occurred, a message is printed containing the refer-
ence body, the time of change and the entered state (umbra, penumbra,
sunlight).

Called By: DERIV

EINT (IENT)

Purpose:

This subroutine performs the integration when the Eﬁcke method
is employed.

Description:

The Gill modification of Runge-Kutta is used for short-term in-
tegration and as a starting procedure for the Nordsieck long-term
integration,

Called By: DERIV

Subroutines Called: ATIM, EITGRA, OBSERA

EITGRA

Purpose:

This subroutine serves as the sub-main program governing calls
to the integration routines in the Encke method.

Description:

If not in powered flight, the program checks for a change of re-
ference bodies. The delta of integration is determined by the distance
of the vehicle from the reference body and integration is performed up
to the next activity time by calling the integration routine, Fre-
quent checks are also made on the magnitude of the deviations from the
nominal orbit, If the magnitudes increase beyond specified limits, a
rectification of the orbit is accomplished by calling RECT,
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Called By: MAINA
Subroutines Called: ECHREF, EINT, ERSTRE, KEPLER, RECT

EPHEM

Purpose:

This subroutine evaluates the position and velocity vectors of
each of the seven bodies with respect to the reference body,

Description:

Tabular planetary positions are read from an ephemeris tape and
Everett's interpolation formula is fitted to six points, It is eval-

uated to find the position vector and its derivative is evaluated to
find the velocity. '

Called By: CCHREF, DERIV, ECHREF, STACUL
Subroutines Called: SERVCE

ERSTRE (IRC)

Purpose:
This subroutine saves or restores time, position, velocity, and

acceleration of the vehicle at any désignntcd time for the fincke in-
tegrator,

Description:

Depending on the value of the argument (IRC) the information is
saved (IRC < 1) or restored (IRC > 1).
Called By: ATIM, EITGRA, MAINA, OBSERA

FIX (KTEMP, ITEMP, KNAME)

Purpose:

This subroutine unpacks a word into five separate words.

Description:

The argument KTEMP is assumed to contain a number of the form
VVWWXXYYZZ, The word is unpacked and stored as follows:

KNAME = VV

ITEMP(l) = 22
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ITEMP(2) = YY
ITEMP(3) = XX
ITEMP(4) = WW

Called Bz: OBSERA
INPUTA
Purgose:

This subroutine reeds all data necessary for one run,

Description:

The subroutine initializes necessary data and reads in sections
desired.

Called By: EXECA

Subro eg Called: XFORM

KEPLER

Purgone:

This subroutine computes the two~body position and velocity
vectors,

Description:

A Newton Raphson scheme 18 used to determine the differential ec-
centric anomaly., After convergence, the two=body position end velo=-
city vectors are evalueted., The subroutine uses Herrick's method.

Called By: ATIM, DERIV, ECHREF, EITGRA, OBSERA, STACUL

Subroutines Called: SERVCE, DOMUD

LUNOB

Purpose:

This subroutine computes the acceleration due to lunar oblateness,
Optionally, it can compute the libration and effect of the eerth's
J2p term,

Delcrigtion:

When K = 1, the libration matrix is computed and then precessed

and nutated.
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When K = 2, the Earth's J;p obleteness term is calculated,
When K = 3, both lunar and Xarth oblateness (J;p term) ere
computed,

Called By: DER1V, OBD
Subroutingg Cglled: DDOT, DMIML, NUTPRE, SERVCE

MAINA

Purposet

This subroutine handles the main flow of the program.

Deacrigtion:

The routine calls subroutines which determine the next activity
time, govern the integration, compute the observations, and print the
chosen information,

Called By: EXECA

Subroutineg Called: CITGRA, CRSTRE, EITGRA, ERSTRE, OBSERA,
PFINIT, PRINTA, RECT, SERVCE, STACUL,
TIMNGA

MODELA (K)

Purpose: :
This subroutine computes the index of refraction for the tropo-

sphere or ionosphere,

Descrigtion:

The index of refraction is computed with the tropospheric model
when K = 1 and the ionospheric model when K = 2,

Called B.z OBSERA

MVDRAG

Purposet

This subroutine computes the perturbations due to drag in the

atmospheres of Mars or Venus,

Descrigtion!
The coefficient of dreg is determined by interpolation from given
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tables as a function of altitude and the velocity of the vehicle,

Called st DERI1V
Subroytines Called: DDOT, SERVCE

NUTPRE (K)

Purpose!

This subroutine computes the expressions for determining the

Greenwich hour angle, as well as the rotational matrices between co-

ordinate systems,

Descrigtion:

When K = 1, the expressions used in the nutation matrix and the
libration matrix are computed,

When K = 2, the rotation matrix through the Greenwich hour
angle is computed.

When K = 3, the precession-nutation matrix is computed,

Called By: LUNOBL, OBLDRG, PRINTA, STAPOS, XFORM

Subroutines Called: DMTML, DOMUD

OBD

Purpose:

This subroutine computes observations f;om on-board instrumen=-
tation,

Descrigtion:

The subroutine uses present position of vehicle with respect to
reference bodics, landmarks, or ground stations to determine obser-
vations.

Called th OBSERA
Subroutines Calleds DDOT, LUNOBL, SERVCE, STAPOS

OBLDRG

Purposet
This subroutine computes the oblateness and air drag perturbations

due to the Earth and its atmosphere,
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Description:

Oblateness is computed in a flexible algorithm which can be used
for zonal, tesseral, or sectorial harmonics of any order, The drag
perturbation is computed from the Harris-Priester tables (at high alti-
tudes) and the U, S, Standard Atmosphere (at low altitudes).

Called By: DERIV

Subroutines Called: DDOT, DENSTY, DMIML, DOMUD, NUTPRE, SERVCE

OBSERA

Purpose:

This subroutine computes the observables as seen from a given
ground station.

Description:

Given present vehicle location and ground station location, both
referenced to inertial space, the observed values are computed. When
specified, refraction corrections are included., When in mode 4, the
total time in sight at the station is also computed.

Called By: MAINA '

Subroutines Called: ATIM, CINT, CRSTRE, DDOT, DMTML, DOMUD,
EINT, ERSTRE, FIX, KEPLER, MODELA, OBD,
SERVCE, STAPOS

PFINIT

Purpose:

This subroutine performs initialization procedures at the entry
of a burn period,

Description:

The subroutine determines coefficients of six Chebyshev polymo-
mials which are valid for the first burn period,
Called By: MAINA
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PFLGHT

Purpose:

This routine computes the effect of a thrust perturbation in the
Encke method.

Descrigtion:

The thrust acceleration vector at the initial burn time, the vehi-
cle mass and mass rate are converted to a set of coefficients for 6
Chebyshev polynomials, These coefficients are determined in PFINIT,
The subfoutine, PFLGHT, uses these coefficients to describe the powered
flight trajectory as a function of time. Effectively, the subroutine
replaces KEPLER in Encke's method. Integration of the equations of

motion continues exactly as if powered flight was not involved,

Called By: DERIV

Subroutinee Called; SERVCE
PRINTA
Purgoae:

This subroutine prints out current trajectory information aand

observations,

Delcrigtion:

Depending on whether the time entered cérresponds to a print ‘time,
the program checks each of the ten elements in the IPSEC array, If the
value is > 0, the corresponding section is printed,

To determine whether it is a print time, the subroutine first
checks to see whether the present time is within the print portion
(DTPI) of a total print period (TAU). If not, no printing is done,
1f so, it next checks the value of the print interval within DTPI
(PRATE), If it is negative, it always prints, If it is positive,
and it is the first time into the present print period, it prints,
otherwise no printing is done, When MDE = 1 or 4, printing occurs

at each entry to the routine,
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Called By: MAINA
Subroytineg Called: DDOT, DOMUD, NUTPRE, SERVCE

RECT

Purpose:

This subroutine computes the parameters pertinent to a rectifi-

cation in Encke's method.

Description:

The two-body position and velocity vectors are equated to the
true position and veolcity vectors, In addition, these components are
saved. Perturbations in position and velocity are set equal to zero,
and elements used by the KEPLER subroutine are computed.

Called By: EITGRA, MAINA
Subroutines Called: DDOT, DOMUD

SERVCE (A, B, C, I)

Purpose:

This subroutine computes the cross product of two vectcrs as well
as the magnitude, magnitude squared and magnitude cubed of a vector,

Description: .

When I = 1, the cross product of A and B is computed and
the result stored in C(l), C(2), and C(3), and then continues as
when I = 2, '

Whean I = 2, the magnitude cubed, magnitude, and magnitude
squared is stored in C(4), C(5), and C(6), respectively.

Called By: CCHREF, DERIV, ECHREF, EPHEM, KEPLER, LUNOBL,
MAINA, MVDRAG, OBD, OBLDRG, OBSERA, PFLGHT,
PRINTA, STACUL

STACUL

Purpose:

This subroutine determines the time of occultation (YCOM(23)).

One of two types of occultation may be considered, vehicle or star
occultation,
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Descrigtion:

A Newton-Raphson iteration is used on the two-body solution to
determine the time of occultation, When considering star occultation,
the occulting body is the reference body, except in the Earth=Moon
system, in which either the Moon or the Earth can do the occulting.
Vehicle occultation occurs only in Moon reference. Up to three dif-
ferent ground stations may be considered for occultation,

Called By: MAINA

Subroutines Called: DDOT, DMTML, EPHEM, KEPLER, SERVCE, STAPOS

STAPOS

Purpose:

This subroutine computes the station position and velocity vectors,

Description:

Given the geodetic latitude, longitude, and altitude of the
station, the coordinates of the station in the Greenwich coordinate
system are computed, A rotation through the Greenwich hour angle then
brings the coordinates into the inertial system, The velocity of the
station is computed from the rotational speed of the earth,

Called By: OBD, OBSERA, STACUL

Subroutines Called: DMTML, DOMUD, NUTPRE

TIMNGA
Purgosc:

This subroutine determines the next activity time (i.e., the next
time at which an observation is to be computed or a printout of the
trajectory is to occur).,

Descrizcion:

Logic is set up for establishing an array of times of interest
from which the earliest time is selected., Flags are set when the

time selected is the final time or when e time is repeated,
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Called By: MAINA

XEORM

Purpose:

This routine accepts the input information concerning the vehi-
cle's initial conditions, and transforms them into the proper units
and coordinate system,

Description:

After the initial conditions and associated flags are read in
(Section 2 of the group I inputs), the program converts them into
the position and velocity vectors in the units of the Earth radii,
and Earth radii/hour. Then, if desired, the vectors are.tranlformed
into the base date system.

Called By: INPUTA

Subroutines Called: DMIML, DOMUD, NUTPRE
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