
Q_
O
O

CO

ESD-TR-70-274

ESD ACCESSION LIST.
ESTI Call No. ^ C *> ^ 5

Conv No / of
^

CVS

USER'S MANUAL
COBOL COMPILER VALIDATION SYSTEM

July 1970 ESD RECORD COPY
\ RETURN TO
BCIENTiriC & TECHNICAL INFORMATION. DIVISION

—, (ESTI), BUILDING 1211

DIRECTORATE OF SYSTEMS DESIGN & DEVELOPMENT
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

This document has been
approved for public release and
sale; its distribution is
unlimited.

ATM>m\W

LEGAL NOTICL

When U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

ESD-TR-70-274

USER'S MANUAL
COBOL COMPILER VALIDATION SYSTEM

July 1970

DIRECTORATE OF SYSTEMS DESIGN & DEVELOPMENT
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

This document has been
approved for public release and
sale; its distribution is
unlimited.

FOREWORD

The COBOL Compiler Validation System (CCVS) Users Manual is intended as a
reference manual for on-site operations.

The system was developed as a part of Project 6917 under Contract F19628-
67-C-0424 for the Electronic Systems Division (AFSC) by Information Manage-
ment, Inc., San Francisco, California 94111. The project monitor was
Mr. Russell A. Meier, ESMDA. The work was performed during the period
from August 1967 through January 1969.

This technical report has been reviewed and is approved.

WILLIAM F. HEISLER, Colonel, USAF
Director, Systems Design & Development
Deputy for Command & Management Systems

ii

ABSTRACT

This technical report consists of detailed specifications for the use of
the COBOL Compiler Validation System (CCVS). The system is designed to
measure the compliance of a specific COBOL compiler against the American
National Standards Institute standard COBOL (ANSI X3.23-1968). This
report describes the card input formats, deck structures, tape require-
ments, test modules, and operator procedures required to use the system.

111

TABLE OF CONTENTS

Section Page

I. INTRODUCTION 1

11. SYSTEM DESCRIPTION 3

2.1 The USA Standard COBOL 3

2.2 CCVS Design Criteria 6

2.3 CCVS Components 9

2.3.1 The CCVS Data Base 10

2.3.1.1 Environmental Data 10

2.3.1.2 Tests 11

2.3.2 The Population File Maintenance Program 11

2.3.3 The Selector Program 12

2.3.4 The Source Program Maintenance Program 12

2.3.5 The Test Programs 13

2.4 How the CCVS is Used 13

2.4.1 Initial System Preparation 13

2.4.2 Test Program Generation 14

2.4.3 Test Program Execution 15

2.4.4 Test Results Evaluation 17

III. USAGE INSTRUCTIONS 18

3.1 Population File Maintenance Program 18

3.1.1 Preparation of Inputs 18

3.1.1.1 Environmental Data 18

3.1.1.1.1 Environment Header lc)

3.1.1.1.2 Environmental Data Cards 21

Section Page

3.1.1.2 Tests 21

3.1.1.2.1 Test Header 21

3.1.2 Results of Operation 24

3.2 Selector Program 28

3.2.1 Preparation of Inputs 29

3.2.2 Results of Operation 33

3.3 Source Program Maintenance Program 35

3.3.1 Preparation of Inputs 36

3.3.2 Results of Operation 39

3.4 Character Code Conversion Program 40

3.4.1 Preparation of Input 40

3.5 Test Program Output Analysis 42

IV. OPERATING INSTRUCTIONS 46

4.1 Compilation and Execution 46

4.2 Population File Maintenance Program 49

4.2.1 Input-Output Assignments 49

4.3 Selector Program 50

4.3.1 Input-Output Assignments 50

4.3.2 Sort Control Fields 52

4.4 Source Program Maintenance Program 53

4.4.1 Input-Output Assignments 53

4.4.2 Preparation of Test Program Change Deck 54

4.5 Character Code Conversion Program 55

4.6 Test Programs 56

4.6.1 Program 10 57

4.6.2 Program 11 58

vi

Section Page

A. 6.3 Programs 12-14 59

4.6. 4 Programs 15-16 59

4.6.5 Program 19 59

4.6.6 Programs 30-44 59

4.6.7 Program 45 60

4.6.8 Program 46 60

4.6.9 Program 47 60

VII

Section

APPENDIX I

APPENDIX II

APPENDIX III

APPENDIX IV

APPENDIX V

APPENDIX VI

APPENDIX VII

APPENDIX VIII

DROP CODE LIST , 61

DROP CODE USAGE IN TESTS 66

INITIATING ENVIRONMENTAL DATA 77

TEST DIRECTORY 89

PFM DIAGNOSTIC MESSAGES 133

CONSIDERATIONS IN CREATING TESTS 135

SYSTEM GENERATION SPECIFICATION 142

SAMPLE CONTROL CARDS FOR CHARACTER CONVERSION

PROGRAM 144

viii

LIST OF FIGURES

Figure Pagi-

1. Schematic Diagram Showing the Structure of the
USA Standard COBOL 4

2. The Validation Process 16

3. Environmental Data Card Format 78

4. Environmental Data Cards for XYZ-8795 84

5. Output Listing of Environmental Data for XYZ-8795 86

6. Relationship Between User Input and PFM Envrion-
mental Output 87

7. Sequence Numbering for Test Cards 136

LIST OF TABLES

Table Page

1. Drop Code Usage in Tests 60

2. Drop Code Assignments by Test 71

IX

SECTION I

INTRODUCTION

The purpose of this manual is threefold. First, it provides an intro-

duction to the COBOL Compiler Validation System. This introduction

is directed both to prospective users of the system and to those who

are merely interested in its objectives and how they are achieved.

Second, it provides detailed instructions in the use of the CCV5 in

measuring COBOL compilers against USA Standard COBOL. Finally, it pre-

sents guidelines that may be useful to those responsible for system

maintenance or extension.

The manual is divided into four parts. Part 2, which immediately

follows this introduction, is a general description of the COBOL Com-

piler Validation System. As prelude it offers a brief description

of how USA Standard COBOL is structured, then discusses the design

criteria under which the system was developed, the functions performed

by the system's components, and finally, the way in which the system

is used in measuring the degree of compiler standardization.

Part 3 presents the details of how to use the system. It describes

the control information needed for expanding the system in terms of

both its environmental "knowledge" and its repertoire of tests, and for

generating test programs. A concluding section discusses the meaning

of the results obtained from executing a test program and how such

results can be traced through the system to find their purpose and

resolve suspected compiler faults.

One of the primary design objectives of this system is the ability to

run on any computer with a COBOL compiler. This flexibility places a

limit on the detail with which this document can discuss certain facets

of the system. This is particularly true in the area of operating

instructions. Because the programs generated by the

-1-

system mill run on a variety of computer-compilers, this manual can

only enumerate the kinds of information an operator might require and

indicate u/here he might find more specific instructions for operating

within a particular environment.

Part 4, therefore, discusses in very general terms the kind of inform-

•Ttion that operating systems will require in order to correctly

compile and execute the system itself and the test programs it gener-

ates.

-2-

SECTION II

SYSTEItl DESCRIPTION

The COBOL Compiler Validation System (CCVS) is designed to measure.- ,;e

extent of compliance of any COBOL compiler with the set of COBOL lany-

age elements specified in USA Standard COBOL. To obtain a measurement,

the user indicates to the CCVS the composition of the COBOL language

set that forms the basis for a particular evaluation. In response, the

CCVS produces one or more COBOL source programs that contain a represen-

tative sample of statements drawn from the specified set. This program

(or set of programs) is then compiled and executed. During execution,

the results are compared with those that should obtain if the compiler

had been implemented according to the standard.

In order to guarantee a common base of knowledge among the readers of

this document, a brief description of USA Standard COBOL follows. This

description is excerpted from Chapter 1 of X 3.4 COBOL Information

Bulletin #9, pages 1-1 through l-6a.

2.1 USA STANDARD COBOL

In order to represent more effectively the uses for which COBOL has been

designed, the historical organization of COBOL specifications, that is,

Identification Division, Environment Division, Data Division, and

Procedure Division has been revised within the proposed standard. The

new organization is oriented around a functional processing module (FPffl)

concept. A nucleus (for internal processing) and seven functional pro-

cessing modules have been defined. These functional processing modules

are Table Handling, Sequential Access, Random Access, Sort, Report Writer,

Segmentation and Library.

The Nucleus has been divided into two levels. The lower level contains

the elements required for basic internal processing and is a proper

subset of the high level. Each functional processing module contains two

or more levels. In all cases, the lower levels are proper subsets of

the progressively higher levels within the same module. In addition, some

-3-

functional processing modules contain a null set as their lowest

lev/el.

This organization provides the flexibility necessary to tailor

specifications in such a way that they will satisfy the requirements

of a large v/ariety of data processing applications. At the same time

it provides the ability to determine with a greater degree of certainty

than previously possible the standard elements that comprise a given

compiler.

The requirements for an implementation of USA Standard COBOL can be

seen by referring to Figure 1. A COBOL implementation that includes

a specified level of each of the functional processing modules and of

the Nucleus, implemented as defined in the standard, will be considered

to meet the requirements for an implementation of USA Standard COBOL.

FUNCTIONAL PROCESSING MODULES

NUCLEUS
TABLE

HANDLING
SEQUENTIAL

ACCESS
RANDOIYl
ACCESS SORT

REPORT
UJRITER

SEGMEN-
TATION LIBRARY

2NUC

3TBL

2SEQ

2RAC 2SRT 2RPDJ 2SEG 2LIB

2TBL 1RAC 1SRT 1RPUJ 1SEG 1LIH

1NUC 1SEQ

1TBL null null null null null

NOTE: The shorthand notation used in this figure is identical to that used
in the CCVS control cards. It consists of a number indicating the
level's position within the hierarchy and a three-character mnemonic
name.

Figure 1. Schematic Diagram Showing the Structure of USA Standard COBOL

-4-

As an illustration, the following definitions of minimum and full USA

Standard COBOL are given:

The minimum USA Standard COBOL is composed of the minimum level

of each functional processing module and of the Nucleus. Because

of the presence of null sets, the minimum standard consists of the

low levels of the Nucleus, Table Handling, and Sequential Access.

The full USA Standard COBOL is composed of the maximum level of

each functional processing module and of the Nucleus.

Throughout the USA Standard COBOL Specifications there are certain

language elements that depend, for their implementation, on particular

types of hardware components. The implemantor specifies the minimum

hardware configuration required for a given implementation of USA Stan-

dard COBOL and the hardware components that it supports. Any language

elements that depend on hardware components for which support is claimed

must be implemented. Those language elements that are not implemented

because of their dependence on hardware components whose support is not

claimed for an implementation must be so specified and their absence

will not render the implementation non-standard.

UJhen a facility is provided that accomplishes the functions specified

by any particular COBOL element, it may be unnecessary to include that

particular element within the COBOL source program. If such an unneces-

sary element does appear in the source program, it must be accepted

by the compiler. However, if the element does not lead to the produc-

tion of object code, no substitute statements shall be required within

the COBOL source program to accomplish this function.

By the same token, the inclusion of language elements or of functions

that are not a part of the USA Standard COBOL specifications will not

render an implementation of USA Standard COBOL non-standard. This is

true even though it may imply the extension of the list of reserved

words by the implemantor, and prevent proper compilation of some pro-

grams which conform to the Standard.

-5-

2.2 CCUS DESIGN CRITERIA

The CCUS has been designed to fulfill the following functional require-

ments :

1, Thoroughness: The tests developed for each standard module must

explore a compiler and its generated code to an extent sufficient

to give a high probability of accuracy to its evaluation. This

objective has been accomplished by testing a particular function

to:

a. Exercise all its basic structural variants. Structural vari-

ants arise from the format of a particular statement or func-

tion, as modified by the applicable syntactical rules. For

example, the format

UERB operand-1 I — \ operand-2

yields tha basic structural variants

UERB operand-1 XX operand-2

UERB operand-1 YY operand-2

b. Test a sample carefully selected from the set of possible

combinations of operand types available to the statement.

c. Test several variants arising from the operation of the

ellipsis (...).

It is clear that in the majority of cases, a complete test of each

structural variant, with every possible combination of operand type;,

mould result in an inordinately large number of statements. Therefore,

a high degree of judgement uias exercised in choosing a representatiwe

subset of test statements. Several possible types of tests have been

eliminated from consideration.

a. No tests are made of erroneous statements. For example, syntac-

tically incorrect statements are not generated. Such tests would

-6-

result in failure to compile or in run-time errors, either of

which would result in confusion. This is especially true in the

case of run-time errors (e.g., CLOSEing a file that is not in

open status) because of the difficulty of associating an error

with a particular statement in a program with a number of errors.

b. Tests are not designed to indicate how a function is implemented.

Thus, the CCVS does not attempt to distinguish between good

(efficient) and bad (inefficient) implementations.

c. No testing of non-standard extensions to COBOL is made. There

are three classes of extensions that are of concern:

1) Valid COBOL features that are not specifically referred to

by the standard (e.g., COBIPUTATIONAL-n and the APPLY clause

are valid COBOL features but are not included in the

standard because they are hardware-related features).

2) manufacturer extensions that have no relation to the remain-

ing COBOL language. (e.g., IBIYTs TRANSFORIYI verb.)

3) manufacturer extensions that are required in order to utilize

a standard COBOL feature, (e.g., IBM's ORGANIZATION and RECORD

KEY clauses). In the latter case, we will manually include

such statements in test programs in order to exercise functions

that otherwise could not be tested (e.g., Random Access).

The Air Force will have the same facility for future test

program modifications.

d. No test of the ENTER verb is made because of the obvious difficul-

ties involved.

2. Openendedness: The user must be able to alter the population of

test statements to conform to changes in the USA Standard COBOL.

For this reason, the uear is provided the ability to add

tests to the population file, modify the content of existing tests,

delete tests, and change the modules against which a test is selected.

-7-

Ease of use: The CCVS must be relatively easy to use now and

should become easier to use in the future. As the

COBOL Standard becomes widely used, it i9 expected that more and

more compilers will adhere to its specification. Thus, future pasc

of use should not be compromised in order to expedite testing the

system using current non-standard compiltirs.

In order to accomplish this objective, the population of test3 has

been designed without reference to current implementations; the

standard was the only reference material used. Thus, a "standard"

compiler would compile and execute those modules it implemented

with no adjustment whatsoever. This is the condition that (hopefully)

will exist in the future. In order to make it easy for the user to

cope with current implementations that are far from standard, a SOUHT

program maintenance feature is provided. This feature facilitates the

addition, deletion or modification of test program statements in order

to tailor a particular test program to a non-standard implementation.

Additional features that make the CCUS easy to use are:

a. A test case can be specified by a user who does not have a

detailed knowledge of COBOL. However, the activities involved

in obtaining a test program that executes and evaluating the

test results require some degree of expertise. As noted above,

these activities should diminish in time.

b. Test results are clearly marked when they do not correspond to

the result expected. The tests are documented in such a way that

the offending test and the part of the standard to which it appli1'

can be quickly identified.

c. The system is thoroughly documented to facilitate future maintenance

-8-

d. A particular compiler may be measured against any combination

of Functional Processing Modules (FPIYI's), because the

CCUS mill construct test programs containing a single FPIKI

or any combination of FPW's up to and including full USA

Standard COBOL. The selection of FPIYI's to appear in a par-

ticular test program is baaed on a single, user supplied con-

trol card.

4. Machine Independence: Both the validation system and the test

programs it produces must be available to operate on any computer

for which a COBOL compiler is available and to do so with a minimum

of reprogramming or manual intervention. The only hardware re-

quirement imposed by the CCUS is minimal Input-Output configura-

tion. The system requires that environmental data be supplied

for each compiler that will be validated. Once this information

has been supplied to it, the CCUS automatically generates the

Environment Division and other hardware-oriented entries required

by a particular test program. The environmental data is available

to the CCUS until the user chooses to delete it.

5. Extendability: The underlying design of the CCUS must be of

sufficient generality to be applicable to the validation of the

compilers of other languages against their standards.

It is evident that one criterion usually specified for computer systems

- namely, efficiency - is missing from this list. Efficiency, in the

case of the CCUS, is of relatively little importance, because it will

not be run as a regularly scheduled program. Furthermore, its effi-

ciency would have been exceedingly difficult to predict since it de-

pends almost entirely on the design point of the compiler being tested.

2.3 CCUS Components

The validation system consists of three computer programs and a data

base. One program, the Selector, operates on the data base to pro-

duce the test programs called for by the user. A second program,

Source Program maintenance, is available to modify the selected test

programs to: l) remove statements that do not compile or run

-9-

successfully, and 2) add statements that are necessary to test

non-standard features or that support standard functions. The

third program, Population File maintenance, is available to

modify the set of available test statements that comprise the

data base, and to add, delete or change environmental data.

Thus, the CCVS is not a set of COBOL Compiler test programs,

but rather, a system capable of generating a very large number

of "tailored" test programs. A particular test program can be

tailored by the user to fit the environment of a particular COBOL

compiler, to include representative operations from any subset of

FPHII's and to exclude tests of certain functions that are known to

be inoperative or not implemented in the compiler undergoing

evaluation.

The compiler test programs themselves need exist only during the

short period of compiler evaluation. At all other times, the

individual tests that comprise these programs are resident in the

Population File.

2.3.1 The CCVS Data Base

The data base or "Population File" contains two distinct kinds

of information: environmental data and tests. Both types of

information are carried as unblocked 80-character COBOL source

card images. The content of the Population File is discussed in

detail in 3.1.2.

Environmental Data

The COBOL Environment Division contains a number of implementor

names and other implementation dependent information. To a lesser

extent, the Data Division contains information of a similar nature.

In order to make the specification of a test program as easy as

possible, this environmental data is maintained in COBOL Source card

form for every compiler of interest. Thus, when a test program

is to be generated for, say, the B-8500, the user merely specifies the

-10-

computer-name to the Selector Program, and it then selects the

Environment Division entries appropriate to modules included in

the test, using the environmental data contained in the B-8500

table on the Population File.

Environmental Data is carried on the Population File in order

by mnemonic computer-name. A set of data for a particular com-

piler-computer consists of an environment header card followed

by a series of COBOL source entries.

2.3.1.2 Tests

A Test consists of one or more COBOL statements that exercise a

particular COBOL function (e.g., a verb). These statements are

surrounded by a set of supporting Data and Procedure Division

entries. The general sequence of statements within a Test is

as follows:

1. Source and Result fields.

2. Initialization procedures.

3. The actual statements that perform the test.

4. Statements that move the test name, actual result and

expected result to a common work area, and perform the

result analysis and output routine that is common to each

test program.

Tests are carried on the Population File in test serial numbur

sequence. Each test begins with a test header, followed by the

source cards comprising the test.

The various system utility programs comprise a special category of tests.

While functionally different, they reside on the population file

in order to utilize environmental data in the same way as tests.

2.3.2 The Population File maintenance Program

This program operates on the Population File, and enables the

user to add, modify or delete both environmental data and tests.

-11-

The most frequent use of this program will be the addition of

environmental data for new compilers and the deletion of data for

compilers that are no longer undergoing tests. The modification of

tests should occur only when the USA Standard COBOL changes. Such

a change may require the addition of new tests, the deletion of

existing tests, the shifting of tests from one lev/el of a module

to another or between modules, or some combination of these.

These operations are available to users through this program.

2.3.3 The Selector Program

The Selector program performs three functions:

1. Using the compiler-computer name supplied by the user,

locates the applicable environment data and saves it.

2. Using the user supplied specification, selects those tests

appropriate to the standard modules to be tested, deletes those

tests designated by the user, and obtains the Environment

Division statemente required by the selected tests from the

data saved in Step 1. For convenience, the Population File

maintenance, Selector and Source Program Maintenance

Programs are handled like tests in order to supply them with

Environmental Data.

3. Places the resulting series of tests and supporting statements

in the order required for compilation, after removing certain

data items with identical descriptions. Operating system con-

trol cards can optionally be placed before and after the source

deck.

2.3.4 The Source Program Maintenance Program

This program is used to modify the source tape of a test program

either before its initial compilation or between compilations,

modification may be necessary because:

1. The uasr wishes to test one or more non-etandard features

known to be implemented on the compiler, or

2. One or more test statements did not compile correctly or,

having compiled, caused the object program to end abnormally.

-12-

2.3.5 The Test Program

Each te9t program produced by the Selector program is a complete

COBOL source program, ready for comoilation. The exact composition

of a particular program depends on the contents of the information

that the user supplied to the Selector program.

Each individual test within a program audits a particular feature

or element of the COBOL language by executing one or more procedural

statements. The result of that execution is then compared to a

pre-determined "standard" result by a support routine. A parameter

supplied to the Selector determines whether all tests results, or

only those that differ from standard, are displayed.

2.4 HOUJ THE CCUS IS USED

This section describes the general activities required on the part

of the user to validate COBOL compilers using the CCUS. The

activities are divided into four phases: (1) Initial system pre-

paration, (2) Test program generation, (3) Test program execution,

and (4) Test result evaluation.

2.4.1 Initial System Preparation

The CCUS is delivered on an IBM 360 loadable tape. Appendix G

contains a description of how to generate the Character Code Con-

version Program, the Selector Program, and the Population File.

The initial step in using the CCUS is the compilation of the Selector

program on the user's computer. This program, as well as Population

File Maintenance and Source Program Maintenance, is written in a

subset of minimum USA Standard COBOL, to insure, as nearly as

possible, that it will compile into a useable program when processed

by any COBOL compiler. The COBOL subset is described in Appendix 4

of the CEI Detail Specification, Part I (reference 3).

The Selector program is carried on the Population File and can be

selected with all its Environment Division entries completed,

providing another computer is available on which to make the selec-

tion. Alternatively, the user can manually complete the necessary

entries. Once the three phases of the Selector have been compiled,

-13-

the object programs must be interfaced with this implemantor's

Sort Program (the Selector does not utilize the COBOL SORT verb)

and Operating System.

The Selector program in its object form may now be used to generate

the Population File maintenance program and the Source Program

maintenance program.

The Population File will be delivered with the user's computer

reflected in the environmental data section. Thus, no

Environment Division entries are required prior to this

compilation. After compilation, this program must also be

interfaced with the Operating System.

Under normal circumstances, the Selector program will be com-

piled and run on a single 'base' computer, ae will the

Population File Maintenance program. These programs in their object

form will be used to generate test program(s) and a Source

Program maintenance program for each compiler to be validated.

It is unlikely that the Selector program itself need ever be

compiled on any other computer. Furthermore, it seems prudent

to limit access to the Population File maintenance program and,

hence, it too need seldom, if ever, be recompiled.

2.4.2 Test Program Generation

The first step the user takes when he desires to generate a test

program is to determine whether the Population File contains

environmental data for the implementation in question. This can

be ascertained from the latest print-out from the Population File

maintenance program. If the data is not there, it is created in

the manner explained in appendix C and placed on the file by a

Population File maintenance run, as explained in Section 3.1.

Next, the user must decide which functions and which level of each

function he wishes to measure the implementation against. There are

at least two ways of arriving at this decision:

1. The reason for evaluation may provide the criteria. For

example, if the compiler has been named as part of the answer

-14-

to a Request for Proposal, the RFP may contain a list of the

modules that must be implemented, or the issuing agency may

have a standard requirement that provides this information.

2. The implementor may claim in his advertising the level at

which his compiler is rated. The user may simply wish to

verify this claim.

If neither of these ways is open, the user can resort to the

"relaxation" method. That, is, he may measure the compiler

against full USA Standard COBOL, then successively reduce the

requirements until he achieves a clean compilation. This,

obviously, is a time consuming approach.

Finally, the user can review the implementor's COBOL manual

and determine which elements in the modules to be tested are

not available in this compiler. These elements can be

identified to the Selector program for elimination.

The next step in preparing the Test Program is to run the Selec-

tor program to generate the Source Program maintenance program

and the specified test program(s) for the implementation being

evaluated. This run is discussed in Section 3.2.

Finally, a set of Operating System control cards must be pre-

pared according to the implementor's manual. These cards will be

used for both the compilation and the execution of the program(s),

2.4.3 Test Program Execution

The validation process is diagrammed in Figure 2. The first

step is the compilation of the source deck of the test program(s)

as it emerges from the Selector Program. If the compilation is

free of serious error messages, the object deck of the test

program is executed. If compile-time errors have occurred, the

user must trace each message back to the source statement that

-15-

FOR
VALIDATION
COMP.

SELtCTO*

PROGRAM
P6RFORMED OH USERS

COMPUTER

1

tCO0OLN

I 'copy'
\IJBRAKV

COMPILCR
OUTPUTS

CO60L

COMPILE

EXECUTE

TEST

PROGRAM
I

ERFORMED ON COMPUTER

BEING

EVALUATED

J

COBOL

COMPILE

/
/ • • .PEiHT • •

—
. r

CORRECT IOM

ORP5

EXECUTE
SOURCE"

PROGnr\N\
MfttNTCNANCe

Figure 2. The Validation Process

-16-

caused it and, using the Source Program Maintenance program,

modify the source deck of the test program to eliminate the errors,

Output from the Source Program Maintenance program should be

kept to document the changes. The test program is compiled (and

modified as required) until all serious error messages are

eliminated.

The final step of the validation process is to run the object

version of the test Drogram. If an error occurs during the

run, the error must be traced to the source program, the program

must be modified using Source Program Maintenance, then compiled

again.

2.4.4 Test Results Evaluation

The result of a validation run - the answer to the question of

compiler compliance with a particular set of Standard modules -

must be determined from:

1. The list of language elements initially eliminated by the

Selector program.

2. Any messages from the Selector program concerning missing

environmental data.

3. The modifications made to the source deck of the test

program as indicated in the output of Source Program

Maintenance.

4. The actual test results that are flagged in the output of the

test program. The test codes that identify each result can

be used to locate in the Test Directory the test that pro-

duced the questionable result. This Directory indicates

the module to which the test applies and the particular

feature being examined.

-17-

SECTION III

USAGE INSTRUCTIONS

3.1 POPULATION FILE (Y1AINTENANCE PROGRAM (PFffl)

The PFPfl program maintains the CCVS data base - the Population File.

This file contains two distinct kinds of data: Environmental Data and

Tests. Both types are composed of groups of related COBOL source entries,

with the groups sequenced by an identifying code. The PFIY1 treats each

type of data separately. It has the facility to add, delete, change the

content of, or merely print groups of each type. Input to PFID consists

of entry information arranged in the same sequence as the Population File,

and the Population File itself. Output is a revised Population File,

error messages, and listings of the groups added, deleted, changed or

requested for printing.

3.1.1 Preparation of Inputs

3.1.1.1 Environmental Data

Each unique configuration for which a test program is to be generated is

identified to the CCWS by an indicative name and is represented on the

Population File by a set of COBOL source entries. These source entries are

constructed by the PFIYI from user supplied input and can be referred to by

any test in such a way that the Selector Program will replace the reference

by the entry referred to. In this way, the tests and the system utility

programs are tailored to run on an individual configuration.

Environmental input consists of a header card that contains the indicative

computer name and an indication of the action to be performed, followed

by one or more data cards (unless a "delete" action is specified).

-18-

3.1.1.1.1 Environment Header: The format of the Environment Header card

is shown below.

f
0 0

1 3
1
3

B
D
P

E indicative-computer-name

The Environment header card is identified by the 'E' in column 1,

followed by a blank in column 2,

Columns 3 through 12 contain the indicative-computer-name by

which the PFffl, the Selector, and the user refer to the entries.

Because environmental data groups are sequenced by indicative

name and because collating sequence differs among computers, a

consistent format for this name must be adopted by each user.

Indicative name is assigned by the user and has the basic fixed format

AAANNNNNNN

where:

AAA contains the alphabetic abbreviation for the configura-

tion's manufacturer. No spaces are permitted. For

example, Control Data Corporation could be abbreviated

as CDC, General Electric aa GEC and Burroughs as BUR.

Any abbreviation can be used as long as it is three

letters long with no imbedded blanks.

NNNNNNN is all numeric and contains the conf igurat.ion's model

number and any other information such as system number,

compiler level, etc. While the only requirement is that

this field be numeric, it is suggested that the last two

-19-

digits be used to guarantee uniqueness among different

configurations of the same series computer.

Column 13 contains the Action Code. Four options are available:

A Add a new set of entries identified by the indicative name, to

the Population File. When this option is used, all twelve

environmental data cards must follow the header.

D Delete the set of entries identified by indicative name, when

this option is used, no environmental data cards follow the

header.

C Change the set of entries to reflect the information contained in

whichever data cards follow. The header is followed by from one

to twelve environmental data cards. Replacement is done on a

card by card basis. Therefore, all entries in a given card must,

be filled out correctly, even though only one entry represents

a change. For example, if entry 31 on card 9 is to be changed,

entries 26 through 30 and 32 through 34 must be filled out exactly

as they were for the initial entry, even though they themselves

are not being changed. (see Figure 3, Appendix C fur card format).

P Print the entire set of environmental entries for indicative namf;.

Because an A, D or C option will cause automatic printing of the?

entire set of entries, the indicative name appearing with a P option

must not appear anywhere else in the environment input stream foi

a given PFIYI run.

-20-

3.1.1.1.2 Environmental Data Cards. There are twelve environmental data

cards that can follow the environment header when the operation

specified is "add" or "change". These cards are filled out

according to a set of questions using information from the imple-

mentor's COBOL manual.

Appendix C contains the questionnaire, a blank environmental

data sheet shaming the card formats, and a sample environmental

data sheet for a fully implemented USASI compiler together with

the corresponding output of a PFW run.

3,1,1,2 Tests

Each Test begins with a test header that contains the Test's

serial number, the program number in which the test appears, the

module membership indicators, and one or more drop codes that, when

specified to the Selector program> cause the Test to be deleted from

a particular test program. The header is followed by the source

cards that comprise the Test. Each card of a Test is coded with

a unique sequence number that is used by the Selector program to

place the card in the correct sequence for compilation.

3.1.1.2.1 Test Header. The format of the test header is shown below.

1 3 8 9 11 55

fT. I est-serial-number ^C /program-number modules drop-codes
D

If1,

Columns 1 and 2 of the Test Header contain T followed by a space.

Columns 3-7 contain the test serial number. Tests are carried

on the Population file in test serial number sequence. This

serial number uniquely identifies each test to the PFIY1, Selector

and the user, and has the format:

Nmmm
n I XXmm >

I YYmmJ

-21-

where n is the level (1, 2 or 3) within the module; N identifies

the Nucleus and mmm the sequence of the test within the Nucleus;

XX identifies one of the functional modules and mm is the sequence

number of the test within that module; or YY identifies a non-test

resident (e.g., a system utility program) and mm is the phase number

or 01 if the resident has only one phase.

The functional module identifiers are:

TH Table Handling

SQ Sequential Access

RA Random Access

ST Sort

RUJ Report Writer

SG Segmentation

LB Library

The current non-test resident identifiers are:

PF Population File Maintenance

SL Selector

SP Source Program Maintenance

SU Support Routine

Column 8 contains the following action identifiers:

A Add the test header and the series of cards between it and the

next header to the Population File.

D Delete the test whose serial number begins in Column 3 of this

card. When this option is used, no source test cards follow

the header.

C Change the test identified in columns 3 - 7 to reflect the data

in the cards that follow. This header replaces the existing

header. If source cards follow the header, they are merged

into the existing test in order by sequence number (a new

card replaces an old card with the samo sequence number).

P Print the teet. Since options A, D and C cause the test to be

printed, this option is used to print tests not otherwise men-

tioned in the input stream for this PFM run.

-22-

Columns 9-10 contain the program number in which the tost

appears. Program numbers have been assigned as follows:

01 Support Routine (never appears alone)

02 PFM

03 SPIYl

04 Selector I

05 Selector II

06 Selector III

07-09 Reserved for system programs

10 NUC (except 1N304, 1N305, 1N314, 1N315, 2N050, 2IM051 and 2N052)

TBL

SEQ (except RERUN, 1SQ27-31, and 2SQ15)

RAC (except 2RA18)

2SRT

1RPUJ (except 1RUJ01)

11 1SEQ (RERUN, 1SQ27-31)

2RPUJ

12 1SEG

13 2SG01

14 2SG02

15-10 LIB (except 1LB04, 1LB0G)

19 1NUC (CURRENCY SIGN, 1N314; DEICimAL POINT, 1N315)

20 1N304, 1N305, 2N050, 2N051, and 2N052

21 2RA1B

22 2SQ15

23-29 Unassigned

30-44 1SRT (1 test per program)

45 1LB04

46 1LB06

47 1RW01

48-49 Unassigned

50 Library Entries for 1LIB, 2LIR

99 9ZZ99 (header only — for artificial end-of-filn)

Columns 11 through 54 contain from 1 to 9 designations of the

module and level to which the test applies. All tests in the low

level of a module designate both the low and high levels. The

•23-

designation is coded in standard form separated by commas with

no intervening spaces (e.g., 1TBL,2TDL,3TBL).

Columns 55 - 00 contain up to 9 two-digit "drop codes". Those

codes refer to COBOL language features that are commonly not

implemented in currently available compilers. The present list

of codes is found in Appendix A. This list can bo expanded by

the user by merely adding features and corresponding unique codes to

the list. During a Selector run, when a drop code appears in a test hooder

and a Selector program DROP card, the test is dropped. The codes

are separated by commas with no intervening spaces (e.g., 1D,2L",5C).

3.1.2 RESULTS OF OPERATION

The Population Tile that is produced by this run is unlabeled and

consists of unblocked 80-character card images. The sequence of

information on the file is as follows:

1. Environmental Entries, in sequence by the indicative-computer-

name in columns 3 through 12 of the Header card of each set.

An environmental set consists of:

a. The header

b. Fifty-two environmental data cards, in sequence by columns

1 through 6.

2. Tests and other residents, in sequence by the test serial

number in columns 3 through 7 of the Header card of each test.

A test consists of:

a. The header

b. Any number of source cards in sequence by columns 1 through 6.

The Population File contains the following items:

1. Environment sets:

BUR0350001

CDC0640001

GEC0062501

IBM0036001

UNV0110801

•24-

2.' Tests and other residents:

0LB00

0SL01 through 0SL03

05U01

1LB01 through 1LB10

1N001 through 1IM318

1RA01 through 1RA08

1RW01 through 1RUJ03

1SG01 through 1SG14

1SQ01 through 1SQ31

1ST01 through 1ST15

1TH01 through 1TH04

2LB01 through 2LB10

2ND01 through 2N061

2RA01 through 2RA18

2RUU01 through 2RUJ05

2SG01 through 2SG02

2SQ05 through 2SQ15

2ST01 through 2ST06

2TH01 through 2TH04

3TH01 through 3TH06

9PF01

9SP01

9ZZ99

Test 97.7.99 consists of a header only and is used by the

Selector program as a machine-independent end-oF-file indicator.

The result of a PFffl run depends on the action specified:

1. Add Action. The add action in the case of the Environmental

data creates a header and 52 card images. The add action for

a Test places the card images complete with header on the

population file exactly as they aro recoivod from the input

dovice. The new entries ere printed out.

-25-

2. Delete Action. The delete action in either the case of the

environmental data or the tests deletes all card images

on the population file until the next header is found. In

both cases the deleted information will be printed out.

3. Print Action. The print action simply prints and copies

the card images up until the next header.

4. Change Action. The change action in the case of the

Environmental data changes only that information on a

particular input card. The sample below will illustrate

this:

The input cards:

E XYZ0879501C

06 READ-UNIT

will change ET0230 and ET0240 under the header E XYZ0il7cJ501C

from (See Appendix C for an explanation of Environmental cards) I

ET023CJ DISK2

ET0240 READER

to

ET0230

ET0240 READ-UNIT

Note that the blank field on the input card was transmitted

to ET0230 which means that all information generated by

an environmental data card must be present if it is not to

be blanked out.

The change action for a test operates on the basis of the

serial numbers in columns 1 through 6 on the test card

images. Equal serials cause replacement by input, unequal

serials cause collation in sequence. The following example

wi]1 clarify:

-26-

The input cards;

T 2ST01C102SRT 4G ,4U

854400 ADD 1

854405 TO SUP-NUIYl-WK.

mill change

854400

854410

to

ADD 1 TO SUP-NUIYl-WK.

IY10VE '»' TO SUP-CTL (SUP-NUIYl-WK)

854400 ADD 1

854405 TO SUP-NUIYl-WK •

854410 MOVE '*• TO SUP-CTL (SUP-NUIYl-WK)

and the old header

T 2ST01A102SRT

will change to

T 2ST01C102SRT

4G ,4T

4G ,4U

In both the test and the environment case the entire set of

card images betu/een headers of the changed file will print out,

Appendix E contains the list of diagnostic messages produced

by PFIYI.

-27-

3.2 SELECTOR PROGRAM

The Selector generates test programs from Population File

entries, based on user supplied control information.

The Selector is capable of supplying any resident on the Population

File with environmental data. The only provisions are that: 1) tne

resident must be entered through a PFIYI run in the manner specified

for tests, and 2) the resident must be named on the TEST card.

The PFIYI, SPIYI, the Selector it9elf and 'COPY' Library entries (for

tests of LIB) are currently supplied with environmental data in

this fashion.

The inputs to the Selector are the Population File and a set of

control statements that define the test programs that are

to be generated.

Principle considerations in the preparation of these control

cards are the machine-compiler configuration subject to test,

the modules of USA Standard COBOL against which the compiler is

to be measured, which (if any) standard features are known not

to be implemented, and the operating system's requirements for

the subject machine and the compiler environment. Each consi-

deration is expressed in a separate control card.

The Selector produces one or more test programs plus a set of

diagnostic and infTrmative messages.

-28-

3.2.1 Preparation of Inputs

The Selector accepts five control cards, the first two of which

are required. They are as follows:

HDUIR - Hardware description: This card is required and

indicates the indicative-name assigned to the environmental

data to be used by the Selector in tailoring the test programs,

The format of the HDWR card is:

1 6

HDUJR indicative-name ,ALL

Indicative-name must be identical to the name that appears

on the header card of an environmental data set (see 3.1.1.1.1),

This environmental data will be used to tailor whatever

Population File residents are named on the TEST card.

The optional parameter ALL specifies that all test results are

to be printed by the test programs when they are executed.

The omission of this parameter causes only those results that

differ from the expected results to be printed.

TEST - test specification card: This card is required

and indicates: 1) the content of the test program in

terms of Standard modules, and 2) which CCVS utility programs

(or data) are to be selected from the Population File and

tailored. More than one TEST card can be used if a single

card is overflowed. The format of the TEST card is:

1 6

TEST nXXX ,nXXX

-29-

The indicator nXXX may be:

1. The name of a USA Standard COBOL module (e.g., 1NUC,

2RPUJ). Appendix D discusses the tests that comprise each

module.

2. The special indicators:

a. 1MIN which stands for the 'minimum standard requirement -

1NUC, 1TBL, 1SEQ. When 1IY1IN is specified, modules other

than the three for which it stands may also be specified.

b. 1IY1AX which stands for the maximum standard requirement -

2NUC, 3TBL, 2SEQ, 2RAC, 2SRT, 2RPUJ, 2SEG, 2LIB. When 1IY1AX

appears, no other modules may be specified.

3. The resident designators:*

0SL1 Selector, phase 1

0SL2 Selector, phase 2

0SL3 Selector, phase 3

OLIB "COPY" Library entries for both 1LIB and 2LIB

1 PFIYl Population File maintenance program

1SPM Source Program Maintenance program

*0 equals zero

-30-

In the table below, an X indicates which combinations may

appear together on a TEST card:

1BIIN 1IT1AX nNUC nTBL nSEQ
other

modules
residents

(not tests)

1BIIN X X

1BIAX X

nNUC X X X X

nTBL X X X X

nSEQ X X X X

other
modules

X X X X X X

residents X X X X X X X

If the computer on which the test program is to run has a small

main storage capacity, it is advisable to limit the number of

modules that appear on a TEST card, multiple Selector runs

(not multiple TEST cards in a single run) mill then be necessary

to generate all the test programs needed to satisfy the particular

validation requirements. If a further reduction in test program

size is required, the DROP card can be used to specify by serial

number certain tests to be eliminated during selection.

DROP - Drop indicators: The Drop Card is optional and specifies one

or more items to be eliminated during the selection process.

This enables the user to eliminate features that he knows are

not implemented in the compiler being validated before the test

program is selected. For example, in validating most currently

available COBOL compilers for 1TBL, the Indexing feature would be

DROPed. ITIore than one DROP card can appear in the input stream.

-31-

/~T
DROP identifier ,identifier

Identifier may be either:

1. A two digit "drop code". The relationship of Drop codes to

standard COBOL features is shown in Appendix A. A single

drop code may cause one or a number of tests to be dropped

from one or more of the modules specified on the TEST card.

Up to 75 codes may be specified for a Selector run.

2. A five character test serial number. Each test has been

assigned a unique serial number (see 3.1.1.2.1) that associates

the various statements comprising the test. This serial

number is found in the Test Directory (see Appendix D) and

uihen used in the DROP card, causes all the statements related

to the particular test to be dropped. Up to 50 serial numbers

can be specified for a Selector run.

It should be noted that if a particular test contains both imple-

mented and non-implemented statements, the SPIYl program should

be used to modify it rather than using a drop code to eliminate it,

unless the entire test is rendered meaningless by the absence of the

non-implemented statements.

HEAD and TAIL Cards: These optional cards enable the user to

place Operating System Control cards before (HEAD) and after

(TAIL) the source deck of each test program. This feature may

enable a smoother run sequence to be obtained under certain

Operating Systems. The format of these cards is:

FHEAD~I nn
UAILJ

where n is the number of control cards. This number of cards

must follow the HEAD or TAIL card in question. For example:

-32-

/

| cc3

/ TEST /
r- -y—"

f ccJ

r
(cc2

TAIL cd /

f cc2 mill
 1

f cc3

fed result in / 'TEST program 1 /
f HEAD 2 r~

(cc2
f cd

_

Only one HEAD and one TAIL card may appear in the input stream;

each may contain a different number, but the sum of the two

numbers must not exceed 50.

The control cards must be recognizable as such to the Selec-

tor program; that is, they must not contain end-of-file indi-

cations, nor can they contain all numeric data in columns 1-6.

A9 shown in the example above, when the composite of modules

selected on the TEST card results in the generation of more than

one test program (see 3.1.1.2.1), the control cards are repeated

and placed before and after each individual source program.

3.2.2 Results of Operation

The Selector generates one or more test programs depending on

the parameters of the particular TEST card. The assignment of

modules to programs is described in 3.1.1.2.1. The selected pro-

grams appear in program number order on the output file.

In addition, the Selector produces an information and diagnostic

listing. This list contains two kinds of information in the

same format:

1. A list of the serial numbers of all tests dropped together

with the cause of their removal and the modules in which the

tests normally appear.

-33-

2. A list of non-standard situations reflected in the environ-

mental data for the particular implementation. For example,

the lack of a RESERVE clause would be reported at this point,

This listing contains three columns: (1) Test serial number,

(2) message, which contains a short message or a drop code, and

(3) the module and level to which the test belongs, taken from

the test header card (see 3.1.1.2.1). For example:

SERIAL IKIESSAGE IflODULE

1N004 4N 1NUC.2NUC

1N316 4B

4T

1NUC,2NUC

1TH02 1m 1TBL,2TBL,3TBL

2SQ11 ENV ERR FATAL 2SEQ

2THQ2 1BI 2T8L,3TBL

3TH01 NAfllED ON DROP 3TBL

The firet three tests were eliminated because their test

headers contained a drop code identical to one contained on

the DROP card. Notice that the second test, 1N316, was dropped

by two drop codes. The fourth test was dropped because the en-

vironmental data it requested was missing, and the card in the

test that requested this data indicated that the entire test

must be dropped in this event (see Appendix F for further

details). The fifth test was dropped by the same drop code,

1IY1, that dropped the third test. The last test was dropped because

its serial number appeared on the DROP card.

The lack of environmental data requested by a particular test

results in one of 2 additional massages:

ENVIRONMENT HAS NO ENTRY...CARD DROPPED

ENVIRONMENTAL ERROR CAUSES FOLLOWING TEST TO DROP...

These messages are interspersed with those described above.

-34-

3.3 SOURCE PROGRAIYI MAINTENANCE PROGRAM (SPM)

The primary purpose of SPM is to permit source level modifications

to test program contents. Modifications may be required if

language elements are not implemented in the compiler under-

going tests, or if that compiler observes conventions different

from or in addition to those observed in USA Standard COBOL.*

Many of these differences can be handled more easily through

the Drop Code facility or by entries on the Environmental Data

portion of the Population File. Character punch code differences

are handled by the Character Code Conversion Program described

in 3.4.

Any differences that cannot be handled by those means, but u/hich

mill have an effect on the execution of the tests, must be

handled by means of an SPM run. For example, a compiler might

require certain non-standard information in FD entries. The; e

entriee cannot be provided through the environmental data faci-

lity and, thus, must be added by means of SPM.

Since the complete universe of changes u/hich may become necessary

cannot be predicted, no set working procedure can be established.

Some factors to consider during test preparation for a specific

compiler include these:

1. Does the implementor note any non-standard features, or

extensions to USA Standard COBOL that are necessary for

the correct operation of standard features?

2. Does the manufacturer note any restrictions, un-implemented

or partially-implemented features?

-35-

3. Is the implementation on a par with the lev/el of each

module to be validated in the teats?

4. Are there known problem areas or "bugs" in the current version

of the compiler?

5. Does the compilation of the test program produce error

messages, or is the execution incorrect?

6. Do system considerations have an effect on the test design

(e.g., file passing techniques)?

If the answers to any of these questions indicate that changes

to the test programs are required, the following points must be

considered in making these changes.

1. How many tests are affected by the change?

2. Does the change invalidate the purpose of any individual test?

3. Can the change be made more easily by use of either the

environment table (see PFIfl, 3.1) or Selector control cards

(Selector, 3.2)?

4. Does the change require reprogramming or redesign of any test?

3.3.1 Preparation of Inputs

Input to an SPIT) run consists of the file of test programs produced

by the Selector, and a set of change cards. Change cards must be

in sequence by program number (columns 73-74), then sequence number

(columns 1-6).

-36-

SPffl considers any card that is not in sequence by program number/

sequence number to be a system control card. Because system

control cards do not usually contain fields for sequence number

or program number, changes to these cards cannot be made by

SPIKI. Rather, the source program must be punched out and such

changes made manually. The system end-of-file (whatever is

recognized as an AT END condition by the COBOL READ statement)

cannot appear in the source or maintenance inputs except to desig-

nate the end of such inputs.

All modifications are made on a card-by-card basis. To make

changes to individual words within a statement - for instance,

to delete an optional word from the middle of a statement - the

entire card on which that statement appears must be replaced

by one containing the desired wording. The individual tests

have been designed in such a way as to facilitate card-by-card

modification.

The SPffl input card formats and corresponding functions are as

follows:

OPTION: This card controls the content of the SPIYl output

listing. An OPTION card applies to all programs following

it until overridden by another OPTION card.

r 7 13 14 73 74

OPTION L program-number

1-6: must be blank.

7-12: OPTION.

13: L or blank. L causes the listing of the output source

program with the changes annotated (this option is

assumed if no OPTION card is found by SPIKl). Blank

causes the listing of correction cards only.

14: must be blank.

73-74: program number or blank.

-37-

DELETE; Single source entries or a series of source entries

may be deleted by means of this card.

r 1 7 13 18 73 74

sequence-no-1DELETEsequence-no-2 program-number

where sequence-no-1 identifies the first or only source pro-

gram card to be deleted and sequence-no-2 identifies the last

card to be deleted. Uihen only one card is to be deleted,

sequence-no-2 must be equal to sequence-no-1. Columns 73-74

must contain the program numbers.

No DELETE card may indicate a range which overlaps the range

of another DELETE card.

Insertions: These require no control card. The cards to

be inserted must be assigned serial numbers in columns 1-6

which fall between a pair of existing serial numbers.

When a group of cards is to be inserted at a single point,

only the first card need be punched with a serial number;

the remaining cards may be blank in columns 1-6. However,

all must contain the program number in columns 73-74.

Insertions may be made within the range of a DELETE.

Replacements: Replacements are similar to insertions except

that the serial number field of the replacing card equals

the serial number on the source program card to be replaced.

When a series of cards contains more cards than are being

replaced, the extra cards may either be assigned serial

numbers between the last replaced one and the following one;

or, as with inserts, contain a blank sequence field.

-38-

When a series of replacement cards contains less cards than

are being replaced, the excess must be deleted by a DELETE con-

trol card. In this case, it may be more convenient to DELETE

the entire group to be replaced, following it by an insertion.

Note that blank serial numbered cards following from a DELETE

card are permitted.

END:

r 1 7

END

1-6: blank

7-9: END

10-72: blank

73 74

program-number

73-74: program-number or blank

SPIYl input cards are arranged in the following order:

1. OPTION card (optional),

2. Program groups; arranged in sequence by program number

(columns 73-74).

a. OPTION card (optional).

b. Deletions, insertions and replacements in order by

sequence number (columns 1-6). Card with blank sequences

numbers are treated as if they were consecutively

numbered from the first card of their group.

3. END card.

3,3.2. Results of Operation

An SPM run results in: (1) an updated source tape of test

programs, (2) a listing for each program modified by the run,

as specified by the option card in force when the program was

processed.

-39-

3.4 CHARACTER CODE CONVERSION PROGRAM

Because of the differing representation of character codes in

different computers, a character code conversion program has

been furnished. This program, unlike the other CCVS utility

programs, is not written in COBOL. Rather, it is a System/360

BAL program that operates as a free-standing program.

The program accepte any COBOL source program or the Population

File as input, together with two control cards specifying the

source and target character codes. Output of the program is the

converted program or Population File.

3.4.1 Preparation of Input

Control cards required by the program are:

1. SOURCE card:

a. Columns 1 - 6 = SOURCE.

b. Columns 7 - 9 = the address of the input device;

i.e., 180, 00C, etc.

c. Columns 10 - 11 = If 2540 is used, 01 = Data mode 1,

02 = Data mode 2. If tape is used, the mode setting

ehown in the chart below should be used.

d. Columns 12 - 80 = Characters to be translated.

2. OBJECT card?

a. Columns 1 - 6 = 0B3ECT.

b. Columns 7 - 9 = the address of the output device;

i.e., 180, 00D, etc.

c. Columne 10 - 11 = If 2540 is used, 01 = Data fflode 1,

02 = Data mode 2. If tape is used, the mode setting

shown in the chart below should be used. For all other

situations, leave these columns blank.

-40-

d. Columns 12-80 = Characters to which SOURCE character are

to be translated. Each 0B3ECT character should appear in

the same column as that SOURCE character from which the

translation is to be made.

Col
10-11

Bytes
per Inch Parity

Translate
Feature

Convert
Feature

10 200 odd off on

20 200 even off off

28 200 even on off

30 200 odd off off

38 200 odd on off

50 556 odd off on

60 556 even off off

68 556 even on off

70 556 odd off off

78 556 odd on off

90 800 odd off on

A0 800 even off off

A8 800 even on off

B0 800 odd off off

B8 800 odd on off

CO

C8

800
1600

800

single-density 9-track tapes only
dual-density 9-track tapes only

dual-density 9-track tapes only

A set of sample control cards is found in Appendix H.

The following rules must be observed when determining device

assignments.

1. If either the input or output device is a card reader that

will be reading or punching other than EBCDIC punches, that

device must be a 2540 with the data mode 2 option.

2. liihen either input or output is assigned to tape, only

EBCDIC punches may be used in either control card.

3. Remember that, on tape, the objective is a particular bit

configuration; the punches in the control cards should be

selected with this in mind.

-41-

3.5 TEST PROGRAITl OUTPUT ANALYSIS

The ALL parameter of the HDUIR card conditions a test program

to display the actual and pre-determined result of every test

in a test program. If an actual and a pre-determined result

differ (as determined by a character-by-character comparison)

the actual result is underlined. The absence of the ALL

parameter results in the display of the actual and pre-determined

results of only those tests where a differance is found.

Test results are displayed across the output page. Four lines

appear:

1. The top line contains the test serial number (e.g., 1N026,

1TH02).

2. The second line contains the pre-determined result.

3. The third line contains the actual result.

4. The fourth line contains dashes that underline those cases

wherein the pre-determined and actual reeults do not

agree.

If a failure is noted in the output, it is necessary to trace the

error to its cause in order to determine whether or not the

failure represents a violation of the USA Standard COBOL. The

procedure to follow in gathering information about a particular

test is as follows:

1. Note the test serial number which appears in the first line

of the test result printout.

2. Look up that test in the test directory found in Appendix D.

This will indicate what the purpose of the test is and how the

test results are related to that purpose.

-42-

3. If more detailed information is desired, look up the test

in the test descriptions found in Part II of the Detailed

Program Specification (Reference 4).

4. Look up the test on the listing produced by the PFIY1. This

is the ultimate source of information on the procedures and

design of the test.

Once the source of the difference is isolated, it must be con-

sidered in light of the purpose of the test. As an example,

suppose a sort test indicates a single error, as follows:

.1 S T 0 9 *

111111111*

111011111*

________ - *

The presence of dashes in the last row indicates an error some-

where in the results. Comparing the middle two rows shows the

error to be in the fourth position. The first row identifies

the test as 1ST09.

Looking at the test directory under 1ST09, we see that each

position represents the most recently changed sort key field

on consecutive sorted records and that the fourth record in

the ascending sequence expected has, as its most recently

changed field, the eighth key with a generated value of -14.

Going to the test listing for 1ST09, we note that the eighth

key is computational, unsigned. Thus, the expected result

that was checked for was +14.

This indicates that an unsigned computational item which

originally had been assigned to a value of -14 had failed

when used as a sort key.

-43-

The error must now be correlated to a feature. Check over other

results to see if any other failures are related to this one. If

so, try to determine the trouble by isolating the most common

cause. Check all diagnostics produced at compilation and at exe-

cution, and the manufacturer's literature for restrictions, special

implementations or known problems.

If the error can be correlated to a feature other than those

being tested in the failing test, the test should be modified to

eliminate it:

1. Determine the change required in order to bypass the problem

without invalidating the purpose of the test.

2. Prepare the change using SPIY1 change techniques. The program

number in which the test appears can be found in the test

header on the PFIY1 list. The sequence numbers found there for

the test source cards are the same as those found on the test

program listing.

3. Using the SPIY1 make the changes to the test program (not to

the teets themselves) and re-execute. In the case of data

items, the item to be changed may appear under a different

test serial number because of the elimination feature of the

Selector Program (see 2.3.3 and reference 4).

As a continuation of the earlier example, all test results are

checked for failure related to sort keys, computational or

unsigned fields. Several failures of unsigned computational

fields might be found in tests of another module indicating a pro-

blem with such fields. If a diagnostic message or a manufacturer's

manual warns of computational items being considered as always

signed, it could be assumed that this is the cause of the failure.

Since the purpose of test 1ST09 is to test certain RETURN state-

ment situations, the use of this particular key is incidental

and thus the test would still be valid without it.

-44-

Several changes might be made to eliminate the error

from the test but perhaps causing the expected

value check to be changed from +14 to -14 would be

the easiest.

In the test program listing for 1ST09, card 851180

(Columns 1 - 6) is found to contain the 14 used in the

existing check. A replacement card 851180 with -14 is

prepared and used in an SPM run to update test program 38.

The SPIYI output provides a record of the change.

-45-

SECTION IV

OPERATING INSTRUCTIONS

4.1 COMPILATION AND EXECUTION

Because the CCVS is intended to be usable with any COBOL

compiler, it is readily apparent that it must operate in

any of a large number of environments. For this reason,

the compilation and execution of the test programs are

discussed here in general tarms, rather than in relation

to any particular implementation.

Several items will be useful to the operator in preparing

to run the CCVS:

1. The implementor's COBOL manual,

2. The appropriate operating system manual, (a COBOL

related abstract may be contained in the COBOL

manual),

3. A Printout of test program(s) from Selector run

(or Source Program Maintenance).

The paragraphs that follow outline a series of steps that

must be taken to prepare for compilation and execution.

Determine if the implementation being tested will allow stacked

input, i.e., multiple programs not separated by end-of-fi.le marks.

If not, the user must take one of the following approaches:

1. Choose tests such that only one program will be

produced by the Selector program.

2. Punch out the Selector output file and manually

separate the programs, using columns 73-74.

3. Write a program to copy the Selector output file

and insert the appropriate end-of-file marks between

programs.

Determine the method of assigning "implementor-name" (in the

ASSIGN clause of the SELECT sentence) to a physical device.

This is often done at execution time with & type-in or control

card, although in some systems it may be specified either

-46-

explicitly or implicitly in the ASSIGN clause itself. If

neither Sequential nor Random Access is being tested, the user

need only determine the assignment for the devices to be used

for printing (often a printer, although sometimes a file that

is printed in a separate operation), and for ACCEPT and DISPLAY

statements (these may not require explicit assignment).

If Sequential without mass storage is being tested, the tape and

printed "implementor-names" must be assigned to their appropriate

devices. If either Sequential mass storage operations or the

Random Access module is being tested, the mass storage "implementor-

names" must also be appropriately assigned.

Determine any unusual control cards that may be necessary. For

example, a machine that has no hardware switches may simulate

them via control information.

If Segmentation is being tested, determine whether any control

cards are needed or affected thereby.

If Sort tests are being tested, extra control information may be

needed by the sort program invoked by the Sort statement.

Some determination must also be made about what is necessary

to invoke execution of both the compiler and the resulting object

program. Implementations differ considerably in this area, ranging

from simple to very complex.

Although the preferred procedure is to set up the job as a "compile

and go" operation, as nearly self-contained as possible, an

occasional implementation may not allow this approach.

There are a number of areas in which machine dependent problems

may manifest themselves. For example, the bit configuration

generated by arithmetic on signed fields is sometimes not repre-

sented by a printer graphic. Uhen this occurs, extra care is

necessary to insure that proper interpretation is made.

-47-

Some machines have rather specialized input media such as paper

tape or magnetic tape only. When this occurs, some means of

translation from punched card format must be devised. It should

be remembered, however, that a machine of a particular make and

model can usually be found somewhere with provision for punched

card format input.

A situation sometimes arises in which input-output software

limitations cause problems. For example, compilers occasionally

limit references to any given FD to only one mode (i.e., INPUT,

OUTPUT, etc.). This is a severe limitation that renders the

compiler non-standard. To run Sequential and/or Random Access

module tests with this restriction, the user must run on an

individual test basis using the "DROP" facility in the Selector

Program and possibly the Source Program maintenance Program

to construct the runs.

Another non-standard restriction is more easily circumvented

in the test runs but could be quite cumbersome in a production

environment. This is the case where the "implementor-name"

in the ASSIGN clause of the SELECT sentence is restricted to

representing a unique physical device. (e.g., tape unit 1).

To run the tests in this environment, a separate physical

device is required for every FD in a given run and the "implementor-

names" inserted by the Selector have to be changed using the

Source Program Maintenance Program.

In the sections that follow, some specified considerations such

as input-output assignments and file-passing requirements, are

discussed for each program in the CCVS.

-48-

4.2 POPULATION FILE MAINTENANCE PROGRAM

4.2.1 Input-Output Assignments

The following table defines I/O requirements for this program:

Printer
Input

File Name Output Usage

P0P-FILE i Old Population File master

TAPE-0UT 0 New Population File master

C0NTR0L-CARD i Update cards.

PRINTER-0UT 0 Listing.

NOTE: 0 indicates alpha 0 in file-names,

-49-

4.3 SELECTOR PROGRAM

A.3.1 Input-Output Assignments

The Selector consists of three COBOL programs which must be inter-

faced with two sorts. The sorts, either system sorts or simple

COBOL sort statements of the USING, GIVING type, must be provided

as separate jobs or job steps. File passing must also be provided

for between the execution of these phases.

A typical job flow using a system control-sard type of sort facility

is shown below.

SELECTOR

CONTROL CARDS

SELECTOR

PHASE 1

SORT

I

SELECTOR

PHASE II

SORT

II

SELECTOR

PHASE III

-50-

Files used by the ! Belectc >r are: printer
input
output file record

PHASE Name on chi art FD Name scratch passinq size

Sel I Population File P/)P-FIIE i not passed 80

Sel I Selector Control C/jNTfluL-CARD- i not passed 80
File FILE

Sel I TlflPOUT TElTlP-juUT-FILE 3 not passed 80

Sel I SEL10UT SEL-tfUT 0 passed 117

Sel I PRlNTER-JuUT D

Sort I SEL10UT i not passed 117

Sort I SRT10UT 0 passed 117

Sel II SRT10UT SEL-INS-FILE i not passed 117

Sel II SEL20UT SEL-jeiUT-FILE 0 passed 88

Sel II PRINTER-£JUT D

Sort II SEL20UT i not passed 08

Sort II SRT20UT 0 passed 88

Sel III SRT20UT SEL-INS-FILE i not passed 88

Sel III TESTFIL SEL-0UT-FILE 0 passed en
Sel III TIYIPOUT SEL-TTYIP-FILE s not passed 88

Sel PRINTER-0UT P

All messages are placed on PRINTER-OUT. messages include certain error

checking plus sequence checking. In the event of an error in the sequence

of records coming from a sorting step, the selector requests on the

printer that the sort be performed again and then terminates the phase.

-51-

4.3.2 Sort Control Fields

The Selector appends keys to the front of the records to bp sorted,

and arranges the key fields such that the entire key may be used

as a single key for simplicity. The relative sequence of records

with like keys is unimportant and no assumptions are made by the

Selector based upon such sequences. Since records are not modified

during sorts, input record counts should equal output record count:

Sort I

Major key 1-2 Alphanumeric Ascending

Inter key 3-32 M ii

minor key 33-37 11 it

(body) 38-117

Sort II

Major key 1-2 Alphanumeric Ascending

Minor key 3-8 ti it

(body) 9-88

-52-

4.4 SOURCE PROGRAM MAINTENANCE PROGRAIY1

4.4.1 Input-Output Assignments

SPIT1 is a single phase program whose purpose is to permit updating

a test program file by mean9 of a maintenance file in order to form

a new test program file.

The operator must verify the control card set up for the maintenance

file and for the compile and execution (or just execution if pre-

viously compiled) of SPIY1 itself. The source program for SPM is

obtained by use of the Selector Program.

A typical job flow is:

c Test Program
Changes

The table that follows defines the I/O reguirements:
printer
input Record

Name on chart FD Name output Size Notes

Test-Program Source SOURCE-FILE i 80

Test-Program Changes HflAINT-FILE i BO May be card
reader, tapi
or disk.

Revised Test Program £JUT-FILE 0 80
Source

PRINT-FILE P

-53-

4.4.2 Preparation of Test Program Change Deck

System control cards may be included to provide an end-of-file

for this deck. The deck may be pre-placed on a tape or disk file

or it may be read from a card reader.

If the END (column 7-9) card is used as the last card in the change deck,

no attempt will be made to read beyond that card.

The order of the deck is sequence number (column 1-6) ujithin

program-number (column 73-74), with these exceptions:

1. OPTION (column 7-12) cards may appear at the front of the deck.

2. END (column 7-12) card may appear at the end of the deck and serves

the same function as an end-of-file.

3. Change cards may be blank in columns 1-6 if they follow a

change or a DELETE card which has a value in column 1-6.

•54-

4.5 CHARACTER CODE CONVERSION PROGRADfl (Sec. 3.4)

The CCUS Character Code Conversion program is an IBIYI System

360 BAL program and may be run on any System/360 with a

console typewriter with unit address OIF, a card reader with

unit address 00C, and the additional I/O devices needed by the

user.

1. Plice object deck followed by the "SOURCE" and "OBJECT"

control cards, followed by the input deck (if any) in the

card reader hopper.

2. Ready any other devices to be used.

3. Press LOAD. An END OF JOB message will be typed out when

the run is completed.

4. I/O errors and control card errors will be typed out in the

following format:

I/O ERROR ddd STATUS aaaa SENSE bbbb

WHERE: ddd = device address

aaaa = status bytes

bbbb = ssnee bytes

INTERVENTION REQUIRED ddd

JOB CANCELED - PERMANENT I/O ERROR ddd

JOB CANCELED - CONTROL CARD ERROR cc

WHERE: cc = error code

CODE ERROR

10 CC1-6 do not contain "SOURCE"

or "OBJECT"

20 CC7-11 do not contain valid hex

characters (0-9,A-F)

30 CC10-11 do not contain a legal data

mode

-55-

4.6 TEST PROGRAITIS

The Selector program is capable of generating a number of

test programs. The exact number generated for any particular

run depends on the content of the TEST card. A specific test

program, in turn, may or may not contain the tests for a

particular module. Thus, each test program presents its

own set of operational problems, but the number of these to

be resolved during a given test session is variable.

All test programs utilize the output device identified as the

PRINTER in the environmental data. Other devices used depend

on the exact content of the program. In most cases, the

control information required by a particular implementation

can be obtained from the source listing of the test program.

Some unusual problems are discussed below, by program

number.

-56-

Am 6.1 Program 10

Program1 TO contains, at most, tests of: |\|UC, TBL, SEQ, RAC,

2SRI, and 1RPW (except 1RU01).

SEQ and RAC present no particular problems. 2SRT interfaces

through the SORT verb luith the implementor 's generalized

sort program. This interface may cause additional control

information requirements:

1. Some control systems require special information on

files utilized by the USING and GIVING options of the

SORT. The following file-names describe files asso-

ciated tuith one of these two options:

FILE-NAIYIE-USING-2SRT-1

FILE-NArflE-USING-2SRT-3

FILE-NAIY1E-GIVING-2SRT-4

2. Sort work files may not necessarily be ASSIGNed in the

Environment Division, but rather, may have implicit

assignments that require that control information be

submitted for prescribed device-names. This will

usually be mentioned in the implementor's COBOL manual.

RPUJ produces output that may have to be printed off-line. The

exact format of tapes written under control of a particular

implementation's Report Writer feature must be determined from

the COBOL manual. Of particular interest are: (l) record

length, (2) block length, (3) relative position and meaning of

the printer carriage control symbols used by Report Writer, and

(4) recording mode of the report tapes.

LIB presents a special problem because the input format of

entries to the implementor's "COPY" library and the methods for

creating and maintaining such a library are not specified in

the USA Standard COBOL.

-57-

Library entries are carried in the Population Tile in program 50

and can be acquired for a particular implementation by specifying

TEST OLIB. Each entry is preceeded by a header that contains the

name by which the entry is referred to by the COPY statement in the

test program. This header is merely for information and is not for

entry in the library.

The library entries must be placed in the "COPY" library in the

format and using the method of the implementation in question.

Both items of information can usually be found in the COBOL manual.

4.6.2. Program 11

Program 11 contains, at most, tests of 1SEQ (1SQ22),

and 2RPUJ. Tho general considerations discussed in program

10 apply to program 11 as well.

2RUJ03 tests the CODE clause of the RD by interspersing three reports

on a single file (FILE-NAME-REP0RT-2RPUJ-3). The COBOL Report Writer

assigns a unique code to records of each of the three reports. Pre-

sumably, the implementor supplies a utility program that is able to

separate the file at print time. If such a program is not available,

the tape can be dumped for visual inspection.

4.6.3 Programs 12-14

Programs 12-14 contain tests for 5EG. These tests have no explicit

Input-Output requirements. Some implementations may require

additional control information because one or more object program

segments reside on an external device. Because it is impossible

to predict how many segments will be forced onto external storage,

(if any), this information will have to be found in the source

program listing, in a procedure map or similar display.

4.6.4 Programs 15-10

Programs 15-18 contain the library tests (except 1LB04 and 1LB06).

The OLIB library entries must have been placed in the "COPY" library

prior to compiling programs 15-16.

-58-

4.6.5 Program 19

Program 19 contains the tests 1N314, CURRENCY SIGN and 1N315,

DECIMAL POINT. Neither test requires any control information.

Program 20

Program 20 tests DISPLAY without the UPON option, then ACCEPT

without the FROM option, followed by ACCEPT...FROM, then DISPLAY

...UPON. The devices addressed by these statements may have to

appear in an entry on an operating system control card.

The DISPLAY statement of 1N304 outputs the string

AD YZ + - > < = S , 5 . () / tf 01 9

on the DISPLAY device. If this device is visible to the operator,

this display will indicate that ACCEPT will immediately follow.

The ACCEPT statement of 1N305 requires as input the character

string:

ABCDE XYZ012 9 + - *

with no intervening spaces. If the ACCEPT device is the operator's

console, the operator must key in this string at the appropriate

time. Otherwise, the string must be entered on the media used

by the ACCEPT device (card-reader, paper-tape reader, etc.).

The ACCEPT statement of 2N050 (which immediately follows the ACCEPT

of 1N305) requires as input the character string.

123456709*

The DISPLAY from 2N051 produces the character string:

2N051 ABCDEFGHIJ"0123456789

The final DISPLAY from 2N052 produces the character string:

2N052 -AB...YZ + - ><=S.;.()/tf01 9

2N052 -A8...YZ + - =$,;.()/ jrf 0 9A...I +

= % ,;.()/ $ 0...9

Programs 21 and 22

Programs 21 and 22 test Declarative LABEL PROCEDURES but present

no problems.

-59-

4.6.6 Pi-or] rams ZU-44

Programs 30-44 each contain one test of a 1SRT feature. The

individual programs generally alternate in function between

creating a file to be sorted, and performing the sort itself

and verifying the output. As a result, files must be passed from

the creating programs to the program that sorts and verifies.

The irnplemcntor's techniques for identifying files passed between

programs must be used.

The table below indicates the files passed by the various programs:

FD file name created in Used in Rec Size Note:.

FILE-NAME-US1NG-3 31 32 (USING) 13

FILE-NAIYIE-USIIMG-4 32 33 (USING) 18

FILE-NAIKIE-GIVING-4 33 (GIVING) 34 18

FILE-NAME-GIVING-6 35 (GIVING) 36 27 Alt. device possible

FILE-NAIY1E-USINC-11 39 40 (USING) 50-100 differing lengths

FILE-NAME-USING-11 40 (GIVING) 41 50-100 differing length:.

FILE-NAIYIE-USING-14 42 42 (USING) 33 multi-reel

FILE-NAfflE-GIVING-14 43 44 33 multi-reel

4.6.7 Program 45

Program 45 is identical to 1ST01 except that the SD entry is

copied from the "COPY" library.

4.6.0 Program 46

Program 46 is identical to 1RUJ02 except that the RD entry is

copied from the "COPY" library.

4.6.9 Program 47

Program 47 contains 1RW01 as it is not compatible with other

programs. The report writer considerations mentioned under

program 10 apply to program 47 also.

-60-

11-C/J

APPENDIX I

DROP CODE LIST

The COBOL language features that may be dropped during Selection are

listed under DESCRIPTION. The column headed FPIYl shows the Func-

tional Processing Module to which each feature belongs.

DESCRIPTION FPIti CODE

LANGUAGE CONCEPTS

Punctuation Character , 2 NUC 1A

; 2 NUC IB

Relation Characters > < 2 NUC 1C

s 2 NUC ID

Condition-names, level-88, Condition-name test 2 NUC IE

Procedure-names, all numeric 2 NUC IF

Figurative Constants: plural forms 2 NUC 1G

ALL, except for 'character' 2 NUC 1H

Logical connectives AND OR, Compound conditions 2 NUC 13

Qualification: Data Division 2 NUC IK

Procedure Division 2 NUC 1L

Indexing feature 1 TBL 1IYI

Reference Format: continuation of words

and numeric literals 2 NUC IN

IDENTIFICATION DIVISION

DATE-C0IT1PILED 2 NUC 2A

-61-

DESCRIPTION FPU) CODE

ENVIRONBIENT DIVISION

CONFIGURATION SECTION

SPECIAL-NABIES CURRENCY SIGN 1 NUC 3A

DECIMAL-POINT 1 NUC 3B

1-0 SECTION

OPTIONAL Files 2 SEQ 3C

RESERVE clause 2 SEQ 33

SAIYIE AREA 1 SEQ/RAC 3N

RECORD option 2 SEQ/RAC 3P

SORT option 2 SRT 3R

series option 2 SEQ/RAC/ 3S
SRT

-62-

DESCRIPTION FPIYI CODE

DATA DIVISION

Level numbers: 66 2 NUC 45

88 2 NUC 1E

single digit 2 NUC 4A

Abbreviations SYNC, OUST, PIC, COITIP 1 NUC 4B

BLOCK integer-1 TO option 2 SEQ 4D

CODE 2 RPW 4E

GROUP INDICATE 2 RPUJ 4F

JUSTIFIED RIGHT 1 NUC 4G

LABEL RECORDS data-name 2 SEQ/RAC 4H

OCCURS

ASCENDING/DESCENDING 3 TBL 40

INDEXED BY 1 TBL 1IYI

DEPENDING option 3 TBL 4L

PICTURE mixed A, X, 9 in AN Picture 1 NUC 4IY1

AN edited items 1 NUC 4N

Currency Sign 1 NUC 3A

Decimal Point 1 NUC 3B

RECORD CONTAINS 1 SEQ/RAC 4P

RENAMES and level 66 2 NUC 4S

SYNCHRONIZED 1 NUC 4T

USAGE COMPUTATIONAL 1 NUC 4U

INDEX 1 TBL 1lfl

VALUE literal series 2 NUC 4V

literal THRU literal 2 NUC 4W

VALUE OF data-name IS data-name 2 SEQ/RAC 4X

-63-

DESCRIPTION FPM CODE

PROCEDURE DIVISION

Arithmetic formulas 2 NUC 5A

Conditions : Relational operators ^ ^ 2 NUC 1C

S3 2 NUC ID

Condition-name condition 2 NUC IE

Compound, logical ops. AND, OR 2 NUC 13

Abbreviation 1 2 NUC 5B

2 2 NUC 5C

Options: ROUNDED 1 NUC 5E

SIZE ERROR 1 NUC 5F

multiple result fields-Arith. verbs 2 NUC 5G

CORRESPONDING, ADD and SUBTRACT 2 NUC 5H

NO REWIND, OPEN and CLOSE 2 SEQ 5K

Verbs and options

ACCEPT FROM 2 NUC faF

CLOSE UNIT 2 5EQ/RAC 5L

LOCK 2 SEQ/RAC 5M

COMPUTE 2 NUC 5P

DISPLAY UPON 2 NUC 6H

DIVIDE BY option 1 NUC 5R

REMAINDER option 2 NUC 5D

IF nesting on true path 2 NUC bS

nesting on false path 2 NUC 5T

IYI0VE CORRESPONDING 2 NUC 5U

OPEN REVERSED 2 SEQ 5V

PERFORM VARYING 2 and 3 levels 2 NUC 5UI

-64-

DESCRIPTION FPIYl CODE

READ INTO 2 SEQ/RAC 63

RELEASE 2 SRT 5X

RETURN INTO 2 SRT 5Y

SEARCH (format 1) 3 TBL 5*

ALL (format 2) 3 TBL 4J

SEEK 1 RAC 6A

SET 1 TBL 1IY1

USE

Error procedure 2 SEQ/RAC 6B

Label procedure 2 SEQ/RAC AH

BEFORE REPORTING 2 RPUJ 6C

WRITE ADVANCING

BEFORE 1 SEQ 6D

AFTER 1 SEQ 6E

FROM 2 SEQ/RAC 6K

-65-

APPENDIX II

TEST - DROP CODE CROSS REFERENCE

TABLE 1. DROP CODE USAGE IN TESTS
...

CODE FPm
1

USED IN TESTS

1A
i

2NUC 2N061

i

18 2NUC 2N061

1C 2NUC 2N043

ID 2NUC 2N024-2N032,2N034,2N035,2N043,2N045,2N046

IE 2NUC 2N059

IF 2NUC 2N061

1G 2NUC 2N058

1H 2NUC 2N058

13 2NUC 2N039-2N042

IK 2NUC 2N05B

1L 2NUC 2N053.2N054

1BI 1TBL 1TH02-1TH04,2TH02-2TH34,3TH01-3TH04 ,2N022

IN 2NUC 2N008

2A 2NUC 2N060

3A 1NUC 1N314

3B 1NUC 1N315

3C 2SEQ 2SQ05

33 2SEQ 2SQ06-2SQ08,2ST04

-66-

3N 1SEQ/RAC 1SQ11,1SQ12

3P 2SEQ/RAC 2ST02

3R 2SRT 2ST03

3S 2SRT 2ST03

413 1NUC 1N316

4D 2SEQ/RAC 2RA01-2RA08,2SQ06-2SQ08

4E 2RPUJ 2RW03

4F 2RPUJ 2RUI01,2RUI02

4G 1NUC 1M313,2RUJ03,2ST01,2ST03,.2ST06,1N316

4H 2SEQ/RAC 2Sq06.2SQ07,2SQ12,2SQ15,2RA13,2RA17,2RA18

43 3TBL 3TH02,3TH04

4L 3TBL 3TH03-3TH06

4IKI 1NUC 1N313

4N 1NUC
1N004,1N013,1N016,1N017,1l\l02a,1Na25,1N020
1I\I034,1N037,1I\I040,1I\I043,1N047,1N052

4P 15EQ/RAC 1SQ09,1SQ10,1SQ21,1ST06,1ST07,1ST10-1ST12,2SQ11

4S 2NUC 2N056,2I\I057

4T 1NUC 1N313.1N316

-67-

4U 1NUC 1N077-1MD8Q, 1N105-1IM1 08,1NJi13,1l\l316,1IM132-1l\l134
1N169-1N171,2ST01,2ST02,2ST06

4V 2NUC 2M059

4W 2NUC 2N059

4X 2SLQ/RAC 2RA13-2l'iAlG,2S()06,2GC.D7

5A 2NUC 2N026-2i\IQ32,2l\IQ34-2l\l036

5B 2NUC 2N045

5C 2NUC 2NQ46

5D 2NUC 2N033

5E 1NUC

irjn66,lWn67,lN070-lN073,.ir\in94,lN0D5,lN0D8-lN101,lN121,
lN124,lN125,lN127,lN130,lN131,lN151,lN154,lN15Li,lf\ll57,
1N160,1N161,1I\I163,1I\]166,1I\I167,2N001,2I\I003,2I\I005,2I\I007,
2l\)009,2|\j011,2l\l031,2N034,2N035

5F 1NUC If\l068-1N073,1N080,1N096-1|\I101,1N108,1N122~1N125,1N128~
1N131,1N152-1(\I155,1N158-1N161,1N164-1I\]167,2I\I002,2I\!003,
2|\l006,2r\l008,2l\l009,2N015,2l\)032,2l\l034,2l\l037,2STOr>

bG 2NUC 2|\!001,2N003,2I\)007~2|\I009

5H 2NUC 2N004-2N006,2I\I010,2I\IU11,2N013,2N015

IK 2SEQ 2r.006,2SQ09

SL 1SEQ/RAC 1BQ23,1SQ28

5ffl 2SEQ/RAC 2RA16,2SQ08

-68-

5P 2NUC 2N024-2N032,2N034,2N035

5R 1NUC 1N162-1N167,1N171

5S 2NUC 2N038

5T 2NUC 2N038

5U 2NUC 2N013,2N016

5U 2SEQ 2SQ10

5UJ 2NUC 2N020,2N022

5X 2SRT 2ST04,2ST06

5Y 2SRT 2ST05,2ST06

5Z 3TBL 3TH01,3TH03

6A 1RAC 1RA02,1RA03,1RA06,1RA07,2RA02,2RA03,2RA06,2RA07,2RA10
2RA11,2RA14,2RA15

6B 2SEQ/RAC 2SQ12,2RA17

6C 2RPUJ 2RUJ04,2Rll)05

60 1SEQ 1SQ21,2SQ11

6E 1SEQ 1SQ21,2SQ11

6F 2NUC 2N050

-69-

6H 2NUC 2N051,2N052

63 2SEQ/RAC 2SQ14,2RA10-2RA12,2RA14-2RA16

6K 2SEQ/RAC 2SQ13,2RA09,2RA11,2RA13,2RA15

-70-

TABLE 2. DROP CODE ASSIGNMENT BY TEST

TEST ID DROP CODES TEST ID DROP CODES

1N004 4N 1N069 5F

1N013 4N 1N070 5E,5F

1N016 4N 1N071 5E,5F

1N017 4N 1N072 5E.5F

1N020 4N 1N073 5E,5F

1N025 4N 1N077 4U

1N028 4N 1N078 4U

1N034 4N 1N079 4U

1N037 4N 1N080 4U,5F

1N040 4N 1N094 5E

1N043 4N 1N095 5E

1N047 4N 1N096 5F

1N052 4N 1N097 5F

1N066 5E 1N098 5E,5F

1N067 5E 1N099 5E.5F

1N068 5F 1N10Q 5E,5F

-71-

TEST ID DROP CODES TEST ID DROP CODES

1N101 5E,5F 1N133 4U

1N105 4U 1N134 4U

1N106 4U 1N151 5E

1N107 4U 1N152 5F

1N108 4U.5F 1N153 5F

1N121 5E 1N154 5E,5F

1N122 5F 1N155 5E,5F

1N123 5F 1N157 5E

1N124 5E,5F 1N158 5F

1N125 5E,5F 1N159 5F

1N127 5E 1N160 5E.5F

1N128 5F 1N161 5E,5F

1N129 5F 1N162 5R

1N130 5E,5F 1N163 5E,5R

1N131 5E.5F 1N164 5F.5R

1N132 4U 1N165 5F,5R

-72-

TEST ID DROP CODES TEST ID DROP CODES

1N166 5E , 5F , 5R 1SQ12 3N

1N167 5E,5F,5R 1SQ21 4P,6D,6E

1N169 4U 1SQ23 5L

1N170 4U 1SQ28 5L

1N171 4U,5R 1ST06 4P

1N313 4G,4(fl,4T,4U 1ST07 4P

1N314 3A 1ST09 4U

1N315 3B 1ST10 4P

1N316 4B,4G,4T,4U 1ST11 4P

1RA02 6A 1ST12 4P

1RA03 6A 1TH02 1IY1

1RA06 6A 1 TH 03 1IY1

1RA07 6A 1TH04 1IY1

1SQ09 4P 2N001 5E.5G

1SQ10 4P 2N002 5F

1SQ11 3N 2N003 5E,5F,5G

-73-

TEST ID DROP CODES TEST ID DROP CODES

2N004 5H 2N026 1D,5A,5P

2N005 5E, 5H 2N027 1D,5A,5P

2N006 5F,5H 2IM028 1D,5A,5P

2N007 5E, 50 2N029 1D,5A,5P

2N008 5F,5G,1N 2M030 1D,5A,5P

2N009 5E,5F,5G 2N031 1D,5A,5E,5P

2N01Q 5H 2N032 1D,5A,5F,5P

2N011 5E, 5H 2N033 5D

2N013 5U 2N034 1D,5A,5E,5F,5P

2N015 5F,5H 2N035 1D,5A,5E,5P

2N016 5U 2IM036 5A

2N02G 5UJ 2NCJ37 5F

2N022 im,5uj 2N033 5S.5T

2N024 1D,5P 2IM039 10

2N02S 1D,5P 2N040 10

2N041 10

•74-

TEST ID DROP CODES TEST ID DROP CODES

2IM042 13 2RA02 4D,6A

2N043 1C.1D 2RA03 4D.6A

2N045 1D,5B 2RA04 4D

2IM046 1D,5C 2RA05 4D

2N050 6F 2RA06 4D.6A

2N051 6H 2RA07 4D.6A

2N052 6H 2RA08 4D

2N053 1L 2RA09 6K

2N054 1L 2RA10 6A,63,6K

2N056 4S 2RA11 6A,60,6K

2N057 4S 2RA12 6A,6I),6K

2N058 1G,1H,1K 2RA13 4H,4X,6K

2N059 1E,4V,4UJ 2RA14 4H,4X,6A,63

2N060 2A 2RA15 4H,4X,6A,63,6K

2N061 1A,1B,1F 2RA16 4H,4X,5(Yl,63

2RA01 4D 2RA17 4H,6B

-75-

TEST ID DROP CODES TEST ID DROP CODES

2RA18 4H 2SQ15 4H

2RUI01 4F 2ST01 4G,4U

2RUI02 4F 2STC2 3P,4U

2RUJCKJ 4F..4G 2ST03 3R,3S,4G

2RW04 6C 2ST04 33,5X

2RUJ05 6C 2ST05 5F,5Y

2SQ05 3C 2STG6 4G,4U,5X,5Y

2SQ06 33,4D,5K,4H,4X 2TH02 im

2SQ07 33,4D,4H,4X 2TH03 1BI

2SQ0B 3D,4D,5fYl 2TH04 im

2SQ09 5K 3THG1 im,5Z

2SCI10 5U 3TH02 im,43

2SQ11 4P,6D,6E 3TH03 1ITI,4L,5Z

2SQ12 4H,6B 3TH04 1ffl,43,4L

25Q13 6K 37HG5 4L

2SQ14 63 3TH06 4L

-76-

APPENDIX m

INITIATING ENVIRONMENTAL DATA

Environmental Data is entered on the form shown in Figure 3.

The number of each entry is related to a statement found in

the Environmental Data questionnaire that follou/s Figure 3.

The information required is found in the implementor's COBOL

manual.

The method for assigning the indicative computer-name is dis-

cussed in 3.1.1.1.2.

Figures 4, 5 and 6 are presented as an aid to understanding the

various environmental input entries and how they are treated by

the PFIY1 run. Figure 4 shows a form similar to that appearing

in Figure 3, filled out with entries for a fictional implemen-

tation - the XYZ 8795, model 1. Figure 5 shows the corresponding

result of processing this information through PFIYI. The relationship

between the user's entries on Figure 4 and the PFIYI output of

Figure 5 is expressed on Figure 6. This indicates for each

output card (ETOnnn), the user's entry from which it came and

any transformations applied by PFIYI. In the absence of an entry

in the "Comments" column, the PFdfl output is taken directly from

the user input. When the user input is blank, PFdfl places an

'N' in column 7 of the corresponding output card.

-77-

I

;:

,«ac«liti*?

ill

(C: *j£t$u) I 5 2 VA

0

•^

ID!

/?»r

l/^cY^-

o I 3

I
It

4

I-

-;

nAOV.1 1

41 «•

©

i ,i

r •

fi - i

3k:'

I?

,CN

T.
v:
h

3
I'5

0'' _ *
j.

h

i

|

I4.IM
Id

•j • vi

Sdw -H

© >

MI i

c

- ,

•' V.»i • ,4»«Mk**i

I.

I

r r

-

k.

^.

R
o.

.';

I
i^-i
o-

A

v
.- 1

! t

*V>/

I ei v.

a

^

in

3

Ol

-t->

CO
f.
(-1

u

XT
u
n

03
4)
M
Q

(0

c
Q)
E
C
O
(-1

r

Q)
u
:i
01

I- 'j
.. 2

fcf

c4

R.i

i i

IQ

@

t

y

b
o

ot

jfc ;••

,. y i U)

©r>:

o

* t

J

e
3

;ty;i&~-&$\\

!j^

9 2>

/?'

[
ir:

o

b
$

IJ

J -

•'i 2 -i

;' i

'•0.

' r

PL
a
*

\

a- o

I
L

.

S)

I I
Q>
ft

4'
§1- -
it

V.l

°'

5!
L'oi .::ci.

IU

-7Q-

ENVIRONMENT DIVISION.

FIELD NUMBER VS INFORMATION
ON

ENVIRONMENTAL DATA CARDS

MAXIMUM
NO. OF
CHARACTERS

CONFIGURATION SECTION. IN ENTRY

FIELD W. '. OBJECT COMPUTER

1. Tha implemented's name for OBJECT-COMPUTER. 30

2. The memory size and unit of measure as specified for 30
the MEMORY SIZE clause.

3. The memory size of the object computer in characters/bytes, 6
written as a six digit integer.

4. The print line size of the on-line printer written as a 3
three digit integer less than or equal to 120. 120 assumed
if omitted.

5. Name specified by implemantor for a switch testable by the 30
switch-status test.

6. Name specified by implementor for the switch whose setting 30
indicates a RERUN is to be taken (use only if 48=Y)

7. If the "mnemonic-name" option is available for switch- 12
names enter FIRST-SWITCH.

8. If both the ON STATUS and OFF STATUS options are available 1
enter a '1'. If only ON STATUS is available, enter '2'.

OTHER-NAMES

9. Name specified for the device available using the FROM option 30
of ACCEPT.

10. Name specified for the device available using the UPON option 30
of DISPLAY.

11. If the mnemonic-name option of the ADVANCING feature of WRITE 3
has been implemented, write the character designated by the
implementor to denote single space, enclosed in quotes if
necessary.

12. Write the character denoting doubl« space. 3

13. Write the character denoting page eject. 3

14. If the "C0DC mnemonic-name" option of tho RD clau90 is 1
Implemented enter a "Y".

INPUT-OUTPUT SECTION
FILE-CONTROL

15. If the 'integer*' option of the ASSIGN clause is available,
enter a 'Y1.

-80-

16. Entries 16 through 22 are concerned with the implomentor-
namcs for input-output devices. Of these, the entries for
the 3 tape units, the card reader and tho printer are mandatory
(the card reader and/or printer may be system-units or any
sequential device not previously named). Enter the implementor-
name for the first tape-unit.

17. Enter the implementor-name for the second tape unit.

18. Enter the implementor-name for the third tape unit.

19. Enter the implementor-name for the first of two mass-
storage devices (may be omitted if no device available).

20. Enter the implementor-name of the second mass-storage device.
(May be omitted if no device available.)

21. Enter the implementor-name of the card reader.

22. Enter the implementor-name of the printer.

23,24. Enter the implementor-name of the Sort units 1 through 4 if the
25 & 26. SORT feature has been implemented.

27. For the data-name option of the FILE—LIIY1IT clause, enter
the description (picture and usage) necessary to describe
data-name in entries 27 and 28. Enter the PICTURE (e.g., 9(5)).

28. Enter the USAGE of data-name: C for COMPUTATIONAL or D for
DISPLAY.

29. Enter the literal designated by the irnplementor as meaning
the lowest available mass-storage address for the FILE-LIMIT
clause.

30. Enter the literal that indicates a mass storage address twenty
records of 100 characters each higher than the address specified
in 29.

31. If a second set of FILE-LIMITS can be specified in the implementation
enter a number that when added to the literals specified in 29 and
30 specifies a second available area of this mass-storage file.

32,33 If a second mass-storage device has been specified (see entry 20),
& 34 specify the lower and upper limits, and increment for it in the

same way as specified under 29, 30 and 31.

35. Enter the PICTURE required in the description of the data-name
used in the ACTUAL KEY clause (e.g., 9(5)).

36. Enter the USAGE required in the description of the data-name
used in the ACTUAL KEY clause: C for COMPUTATIONAL or D
for DISPLAY.

37. Entor the literal value that when placed in the data-name of
ACTUAL KEY will indicate the lowest mass-storage address
associated with the first area allocated for the first
mass-storage device (see 29 and 30).

-81-

30. Enter the literal value that when placed in the data-
name of ACTUAL KEY will indicate the lowest mass-storaye
address associated with the second area allocated
for the first mass-storage device (sec 31).

39. Enter the literal value that when placed in the data-
name of ACTUAL KEY will indicate the lowest mass-
storage address associated with the first area allocated
for the second mass-storage device.

40. Enter the literal value that when placed in the data-
name of ACTUAL KEY will indicate the lowest mass-
storage address associated with the second area
allocated for the second mass-storage device (see 34).

41. Enter the literal value that corresponds to an increment
of one 100 character logical record to the ACTUAL KEY
of the first mass-storage device.

42. Enter the literal value that corresponds to an
increment of one 100 character logical record to the
ACTUAL KEY of the second mass-storage device.

I-0-C0NTR0L

43. If an implementor-name is available to the RERUN clause,
enter it here. 30

Items 44-48 deal with the versions of the RERUN clause
available. Enter a 'Y' for each option available: each
option so marked will be tested.

44. END 0E REEL

45. END 0E UNIT

46. integer RECORDS (item 43 above must be filled in)

47. integer CLOCK-UNITS (item 43 above must be filled in)

48. condition-name (switch-name must be entered in 6)

DATA DIVISION
FILE SECTION

49.

b(l.

E)1

Enter the impJumnntor's fixed-name for the file
identification to be used in the VALUE OF clause.

Enter any literal value that corresponds to the
implormritor' rs rules for the content of the filn identi-
fication. Inn luclo quotes if ruquirori.

Lntor the irnplumentor's fixed name for an item in the
standard label record (other than fiIf) identification)
that is inserted into output labels (e.g., Retention-
period) .

3D

30

-B2-

52. Enter the literal corresponding to the implementor-
name entered in 51.

53. If the data-name option of the VALUE OF clause is
available, enter the PICTURE required by the
implementor's file identification.

15

-83-

i I

X. I
Si

? i
j •

IV,

&

I
o |

,rdL.l

a r-

f

i
<U

>c

O":

e

v3

fj -.-..(

0

a;

3
Ml.
Oi

11.

^ *ri 1 .1.

©

!
L :<
v..

;;]
1

1

- r
.

"r.:

o

z

Jaen-j**.A"*»»»»*.sf

01

•. 1

..-•3

2 1
1-'

-
-

s •
_

<0
.

'•%'

Y

*4

.'-

VU o- '-••

<£ ,

'13 ,„P
-*.-!.

—.— I SL.

v&

t.'f,1

i.i'

>/
^

•0.

.£_
JO!
-OI

"fl

m I
N
i

I

@

£»"

•a

to

i
I in"

10

6

vai

•rl

'*:*

'..-1

w

ir

:.-»

Li gj CL

•

via
A

Sfe
»U!.
OJ

i
2

1 *r

•^ , -

^
^ u

. iti

 z
_

(§1 '<3 ^

t£
<r
\n JG
o

_ £_.

r:

_r-

/g , _
: *& • M

„
I.'.

>

1

45 •]
M«M.« 53 H

1 1

I,

!

•O

3LJ

;.-.

fsj

8

i f

........................ FNV Ann
f XV70A7O«50IY
rromn XY7-«7Q5
FT0090 XY?-*795
FTOOIO MFMORY ST/F *?7*« WOROS,
rTnnao 019**0
FTOSn PTCTItRF Y(1 ?1 1 .
F T n * n 1 ? n
FTOO?o SWTTCfM
TTOAfln TS FIRST-SWTTCH
FT0090 SWITCH?
FTOIOO MN STATES TS
FT011O OFF STATUS TS
FT017O rflMSOlF
nonn rnNsoi F
nnwio ! i:
f T n so i?:
FTOI60 :r t
FT0170 lAl
rjn)«o 1

FT MOO TAPF1
nn?on T A P F ?
FT0?10 TAPF1
FT'1990 0TSK1
FTOP 30 OTSK?
FT0?<10 RFAOFR
FTO?S0 PRTNTFJR
FTO?<SO S0RT1
TTO?70 SORT?
FT07A0 SHRT1
f T0?90 SDRT4
fToioo PIOTHRF sorM COMPHTATTONAI.
FTOHO 000001
FT0390 000091
FTo^io ooooio
\ T0340 000001
FTo^sn oooo'l
FT01AO 000030
TT0370 PICTIIMF. SR(«^ CPMPIIT AT TONAl .
FT03«0 000001

FT0300 000091
FT0400 000001
FTO/MO 000091
FT0490 000001
FT0A30 OOOOOt
FT0410 RFRllN ON RFRIIN-MAMF
TTOASO FVFRY FMO OF PFFI
FTOAAON FVFRY FNO OF HMfT
FT0A7ON FVFRY 10 RF00&0S
FTOiiRON FVFRY 1 CLOCK-UNITS
FTO'iQON FVTRY
FTOSOO VALUF OF 10 TS mSASlJ
FTOMO VAlliF OF RFTFWTTON-RFRI 00 TS Oo?
FT0S90 PTCTMRf R(4)

Figure 5. Output Listing of Environmental Data - XYZ-8795

-86-

OUTPUT

CARD NO,

FROIYI

ENTRY COMMENT

ET0010 1

ET0020 1

ET0030 2

ET0040 3 Entry 3 is divided by 10 and zero-filled to 6 digits.

ET0050 4 Entry 4 plus 1.

ET0060 4

ET0070 5

ET0080 7

ET0090 6

ET0100 8 If entry 8 = 1 or 2, column 7 is blank, otherwise N.

ET0110 8 If entry 8=1, column 7 is blank, otherwise N.

ET0120 9

ET0130 10

ET0140 11

ET0150 12

ET0160 13

ET0170 14 If 14 = Y, column 7 is blank, otherwise N.

ET0180 15 If 14 = Y, column 7 is blank, otherwise N.

ET0190 16

ETU2UO 17

ETU210 18

ET0220 19

ET0230 20

ETU240 21

ET0250 22

ET0260 23

ET0270 24

ET0280 25

ET0290 26

Figure 6. (1)

Relationship Between User Input

and PFM Environmental Output

-87-

OUTPUT

CARD NO,

FROM

ENTRY COMMENT

ET0300

ET0310

ET0320

ET0330

ET0340

ET0350

ET0360

ET0370

ET0380

ET0390

ET0400

ETO^IO

ET0420

ET0430

ET0440

ET0450

ET0460

ET0470

ET0480

ET0490

ET0500

ET0510

ET0520

27, 28

29

30

31

32

33

34

35, 36

37

38

39

40

41

42

43

44

45

46

47

48

49, 50

51, 52

53

Entry 28 is first letter of Usage,

Entry 36 is first letter of Usage,

If entry is a Y, column 7 is blank, otherwise N.

If entry is a Y, column 7 is blank, otherwise N.

If entry is a Y, column 7 is blank, otherwise N.

If entry is a Y, column 7 is blank, otherwise N.

If entry is a Y, column 7 is blank, otherwise N.

Figure 6. (2)

Relationship Between User Input

and PFM Environmental Output

-88-

APPENDIX IV

TEST DIRECTORY

MUC 1 90

2 108

TBL 1 114

2 115

3 116

SEQ 1 117

2 119

RAC 1 120

2 121

SRT 1 123

2 125

RPW 1 126

2 127

SEG 1 128

2 130

LIB 1 131

2 132

-89-

lest ID

INOOT"

Sumtnary of Test

~MGVL GRP-GROup-rflo\/E-FRom" TO TRP-GROUP-"
-

MOVE-TO.

Breakdown of Printed Results

Receiving fie.lcJ is printed.

1NQ02 rilDUE GRP-ALPHABETIC TO WRK-AN-U002G. Receiving field is printed.

1N003 MOVE GRP-ALPHANUMERIC TO UJRK-XN-00049. Receiving field is printed;

1MDU4 MOVE GRP-ALPHANUMERIC 10 AE-0001. Receiving field is printed.

1N005 MOVE GRP-NUMERIC TO WRK-DU-10VOO. Receiving field is printed.

1N006 MOVE GRP-NUMERIC TO NE-0001. Receiving field is printed.

1N007 MOVE ALPHABET-AF\l-00026 TO GRP-lilRK-
AN-00026. Receiving field is printer).

1NUU8 MOVE ALPHAOET-AN-00026 TO UJRK-AN-
00026. Receiving field is printed.

1N009 MOVE ALPHABET-AN-00026 TO UJRK-XN-00049. Receiving field is printed.

1N010 MOVE ALPHANUMERIC-XN-00049 TO
GRP-tlJRK-XN-00049. Receiving field is printed.

1N011 MOVE- ALPHANUMERIC-XN-00049 TO WRK-AN-00026. Receiving field i r> printed.

1N012 MOVE ALPHANUMERIC-XN-00049 TO UJRK-XN-00049. Receiving field is printed.

1N013 MOVE ALPHANUMERIC-XN-00049 TO AE-0001. Receiving field in printed.

1NG14 MOVE ALPHANUMERIC-XN-00049 TO UIRK-DU-10V00. Receiving field is printed.

1N01L MOVE ALPHANUMERIC-XN-00049 TO NE-0002. Receiving field is printed.

1N016 MOVE AE-0001 TO SUP-IDK-A. Receiving fielri is printed.

1N017 MOVE AE-0001 TO AE-0002. Receiving field is printed.

1N018 MOVE DIGITS-DU-10VG0 TO GRP-UJRK-DU-10V0U. Receiving field is printed.

1IM019 MOVE DIGITS-DU-10V00 TO UIRK-XN-00049. Receiving field is printed.

1NC20 MOVE DIGITE;-DU-IOVDO TO AE-0002. Receiving field is printed.

1N021 MOVE DIGITS-DU-101/GO TO UJRK-DU-101/00. Receiving field it, printed.

1N022 MOVE DIGITS-DU-06V04-S TO NE-0001. Receiving field is printed.

-90-

Test ID Summary of Test Breakdown of Printed Results

1N023 MOVE NE-0001 TO GRP-UJRK-XN-00049. Receiving field is printed.

1N024 MOVE NE-0001 TO UJRK-XN-00049. Receiving field is printed.

1N025 MOVE NE-0001 TO AE-0002. Receiving field is print ed.

1N026 MOVE ZERO TO GRP-UJRK-DU-10VOO. Receiving field is print ed.

1N027 MOVE ZERO TO UJRK-XN-00049. Receiving field is printed.

1N02B MOVE ZERO TO AE-0002. Receiving field is printed.

1N029 MOVE ZERO TO UJRK-DU-10VOO. Receiving field is printed.

1N030 MOVE ZERO TO NE-0001. Receiving field is printed.

1N031 MOVE SPACE TO GRP-UIRK-DU-10VOO. Receiving field is printed.

1N032 MOVE SPACE TO UJRK-AN-00026. Receiving field is print ed.

1N033 MOVE SPACE TO UJRK-XN-00049. Receiving field is print ed.

1N034 MOVE SPACE TO AE-0002. Receiving field is printed.

1N035 MOVE HIGH-VALUE TO GRP-UJRK-DU-10VOO. Receiving field is print.ed.

1N036 MOVE HIGH-VALUE TO UJRK-XN-00049. Receiving field is printed.

1NU37 MOVE HIGH-VALUE TO AE-0002. Receiving field is printed.

1N038 mov/E LOUJ-VALUE TO GRP-UJRK-DU-10VOO. Receiving field is printed.

1N039 MOVE LOUJ-VALUE TO UJRK-XN-00049. Receiving field is printed.

1N040 MOVE LOUJ-VALUE TO AE-0002. Receiving field is printed.

1N041 MOVE QUOTE TO GRP-UJRK-DU-10VOO. Receiving field is printed.

1N04i! MOVE QUOTE TO UJRK-XN-00049. Receiving field is printed.

1N043 MOVE QUOTE TO AE-0002. Receiving field is printed.

1N044 MOVE "A1B2C3D4E5" TO GRP-UJRK-DU-10VOO. Receiving field is printed.

1N045 MOUE "ABCDEFGHIJK" TO UJRK-AN-00026. Receiving field is printed.

1N046 MOVE "1A2D3C4D5E6F" TO UJRK-XN-00049. Receiving field is printed.

-91-

Test ID Summary of Test Break down of Printed Results

1ND47 iriOUE "1Z2Y3X4UJ5V" TO AE-0002. Receiving field is printed.

1N048 movE "9876543210" TO WRK-DU-10V00. Receiving field is printed.

1N049 movE "9876543210" TO NE-0002. Receiving field is printed.

1N050 MOVE 0123456789 TO GRP-WRK-DU-10V00. Receiving field is printed.

1N051 MOVE 0918273645 TO UJRK-XN-00049. Receiving field is printed.

1N052 IYI0VE 019823 TO AE-0002. Receiving field is printed.

1N053 mouE 9876543210 TO IDRK-DU-10U00. Receiving field is printed.

1N054 MOVE 00012345 TO NE-0002. Receiving field is printed.

1ND55 MOVE 000011.1223 TO NE-0001. Receiving field is printed.

-92-

Test ID Summary of Test Breakdown of Printed Results

1N061 ADD A180NES-DS-18V00 TO UJRK-DS-18V00. Arithmetic result is printed.

1N062 ADD A100NES-DS-10V00 A050NES-DS-05VOO
TO UJRK-DS-10V00.

Arithmetic result is printed.

1N063 ADD A020NES-DS-02\/00 A100NES-DS-10V00
A050NES-DS-05V00 TO WRK-DS-1OVOO.

Arithmetic result is printed.

1N064 ADD A06THREES-DS-03V03 A12THREES-DS-06V06
GIVING UJRK-DS-09\/09.

Arithmetic result is printed.

1N065 ADD A050NES-DS-05V00 A050NES-DS-00V05
A12THREES-DS-06V06 A06THREES-DS-03V03
GIVING WRK-DS-06V06.

Arithmetic result is printed.

1N066 ADD 55554.5 TO WRK-DS-05V00 ROUNDED. Arithmetic result is printed.

1N067 ADD A050NES-DS-00V05 A12THREES-DS-06V06
A050NES-DS-00V05 GIVING UIRK-DS-05V00
ROUNDED •

Arithmetic result is printed.

1N068 ADD -99 TO WRK-DS-02V00 ON SIZE ERROR
ITIOUE "1" TO WRK-XN-00001. Arithmetic result is printed;

the last digit indicates
rohether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

1IM069 ADD A120NES-DS-12UOO ZERO GIVING
U/RK-DS-10VOO ON SIZE ERROR IYIOVE "1"
TO UJRK-XN-0001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

1N070 ADD 33333 A06THREES-DS-03V03 A12THREES-
DS-06V/06 TO WRK-DS-05V00 ROUNDED ON SIZE
ERROR.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 - incorrect).

1N071 ADD A12THREES-DS-06V06 333333 A06THREES-
DS-03U03 TO UJRK-DS-06U06 ROUNDED ON SIZE
ERROR HOOVE "0" TO UJRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

-93-

Test ID Summary of Test Breakdown of Printed Results

1N072 ADD 33333 A06THREES-DS-03V03 A12THREES-
DS-06V06 GIVING UJRK-DS-05V00 ROUNDED
ON SIZE ERROR MOVE "1" TO UJRK-XN-00001 .

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

1N073 ADD A12THREES-DS-06V06 333333 A06THREES-
-DS-03V03 GIVING UJRK-DS-06V06 ROUNDED ON
SIZE ERROR.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

1IM074 ADD A99-DS-02V00 AQ30NES-DS-02V01
A060NES-DS-03V03 A08TUJ0S-DS-02V06
-1.1111111 +.11111111 A010NE-DS-P0801
GIVING UJRK-DS-03V10.

Arithmetic result is prin'ed.

1N075 ADD A010NE-DS-P0801 +.11111111
-1.1111111 A08TUJ0S-DS-02V06 A060NES-DS
03V03 A030NES-DS-02V01 A99-DS-02V00
GIVING WRK-DS-03V10.

Arithmetic result is printed.

1N076 ADD A08TUJ0S-DS-02V06 A99-DS-02V00
-1.1111111 A030NES-DS-02V01 A010NE-DS
P0801 +.11111111 A060NES-DS-03V03
LIVING UJRK-DS-03V1Q.

Arithmetic result is printed.

1N077 ADD A180NES-DS-18V00 TO IDRK-CS-18V00. Arithmetic result is printed.

1N078 ADD A18CNES-CS-18V00 TO WRK-DS-18V00. Arithmetic result is printed.

1N079 ADD A99-CS-02V00 TO WRK-CS-02V02. Arithmetic result is printed.

1N080 ADD A99-CS-02V00 TO WRK-CS-G2V02 ON
SIZE ERROR ITIOVE "1" TO UJRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

-94-

Test ID Summary of Test Breakdown of Printed Results

1N090 SUBTRACT A180NES-DS-18VOO FROIYl WRK-DS-
18V00.

Arithmetic result is printed.

1N091 SUBTRACT A050NES-DS-05V00 A050NES-DS-
00V05 A060NES-DS-03V03 FROIYl UJRK-DS-06\y06.

Arithmetic result is printed.

1N092 SUBTRACT A06THREES-DS-03V03 FROfYl
A12THREES-DS-06V06 GIVING WRK-DS-06V06.

Arithmetic result is printed.

1N093 SUBTRACT A050NES-DS-05V00 A050NES-DS-00V05
A12THREES-DS-06V06 A06THREES-DS-03W03
FROITl ZERO GIVING UJRK-DS-06V06.

Arithmetic result is printed.

1N094 SUBTRACT A99-DS-02V00 FROIYl UJRK-DS-0201P
ROUNDED.

Arithmetic result is printed.

1N095 SUBTRACT A050NES-DS-05VOO -11111 AZERO-
DS-05V05 FROIYl WRK-DS-06V06 GIVING
WRK-DS-06V00 ROUNDED.

Arithmetic result is printed.

1N096 SUBTRACT A99-DS-02V00 FROITl WRK-DS-02V00
ON SIZE ERROR WOVE "1" TO WRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 - correct,
0 = incorrect).

1N097 SUBTRACT A120NES-DS-12V00 FROIYl ZERO
GIVING UJRK-DS-10V00 ON SIZE ERROR WOVE
"1" TO UIRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 - incorrect).

1N098 SUBTRACT 33333 A06THREES-DS-03V03
A12THREES-DS-06V06 FROIYl WRK-DS-05V00
ROUNDED ON SIZE ERROR IJIOVE "1" TO WRK-
XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

1N099 SUBTRACT A12THREES-DS-06V06 333333
A06THREES-DS-03V03 FROIYl WRK-DS-06V06
ROUNDED ON SIZE ERROR IY10VE "0" TO
WRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

-95-

 1

Test ID Summary of Test

...

Breakdown of Printed Results

IN'lOO SUBTRACT 33333 A06THREES-DS-03V03
A12THREES-DS-06V06 FROIYl -1000000 WRK-DS-
C5V00 ROUNDED ON SIZE ERROR MOVE "1" TO
UJRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 - correct;
0 = incorrect).

1N101 SUBTRACT A12THREES-DS-06V06 333333
A06THREES-DS-03V03 -.0000009 FROIYl
-.1000000 GIVING WRK-DS-06V06 ROUNDED
ON SIZE ERROR MOVE "0" TO UJRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

1N102 SUBTRACT A99-DS-02V00 A03NES-DS-02V01
A060NES-DS-03V03 A08TUJ0S-DS-02V06
-1.1111111 +.11111111 A010NE-DS-P0801
FROM -1000.000000 GIVING UJRK-DS-03V10.

Arithmetic result is printed.

1N103 SUBTRACT A010NE-DS-P0801 +.11111111
-1.1111111 A0BTUJ0S-DS-02V06 A060NES-DS
03V03 A030NES-DS-02V01 A99-DS-02V00 FROIYl
-1000.000000 GIVING UJRK-DS-03V10.

Arithmetic result is printed.

1N104 SUBTRACT A08TUJ0S-DS-02V06 A99-DS-02V00
-1.1111111 A030NES-DS-02V01 A010NE-DS-
P2801 +.11111111 A060NES-DS-03V03 FROIYl
-1000.000000 GIVING WRK-DS-03V10.

Arithmetic result is printed.

1N105 SUBTRACT A180NES-DS-18V00 FROIYl WRK-CS-
1BV00.

Arithmetic result is printed.

1N1D6 SUBTRACT A180NES-CS-18V00 FROIYl UJRK-DS-
18V00.

Arithmetic result is printed.

1N107 SUBTRACT A99-CS-02V00 FROIYl UJRK-CS-02V02. Arithmetic result is printed. [

1N108 SUBTRACT -99 FROIYl UJRK-CS-02V02 ON SIZE
ERROR IYIOVE "1" TO UJRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

I
 _J

-96-

Test ID

1N120

Summary of Test

IY1ULTIPLY A06THREES-DS-03V03 BY WRK-DS-
18V00.

Breakdown of Printed Results

Arithmetic result is printed.

1N121 MULTIPLY 0.4 BY WRK-DS-06V06 ROUNDED. Arithmetic result is printed.

1N122 MULTIPLY A12THREES-DS-06V06 BY WRK-DS-
10V00 ON SIZE ERROR MOVE "1" TO WRK-
XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 - incorrect).

1N123 MULTIPLY AZER0-DS-05V05 ON SIZE ERROR
MOVE "0" TO WRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

1N124 MULTIPLY 99.5 BY WRK-DS-02V00 ROUNDED
ON SIZE ERROR MOVE "1" TO WRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

1N125 MULTIPLY 99.4 BY WRK-DS-02V00 ROUNDED
ON SIZE ERROR MOVE "0" TO WRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

1N126 MULTIPLY A06THREES-DS-03V03 BY
A12THREES-DS-06V06 GIVING WRK-DS-09V09.

Arithmetic result is printed.

1N127 MULTIPLY A06THREES-DS-03V03 BY
A06THREES-DS-03V03 GIVING WRK-DS-10V00
ROUNDED.

Arithmetic result is printed.

(
 j

1N128 MULTIPLY A050NES-DS-10V00 ON SIZE ERROR
MOVE "1" TO WRK-XN-00001.

i

Arithmetic result is printed;)
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect). .

1N129 MULTIPLY A010NES-DS-P0801 BY A120NES-
DS-12V00 GIVING WRK-DS-10V00 CN SIZE
ERROR MOVE "0" TO WRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

-97-

Test ID ! Summary of Test

1N130

1N131

1N132

IY1ULTIPLY 1.5 BY A100NES-DS-10V00 GIVING
UJRK-DS-10V00 ROUNDED ON SIZE ERROR
IY10UE "1" TO UIRK-XN-00001.

MULTIPLY A010NE-DS-P0801 BY A180NES-
DS-18V00 GIVING WRK-DS-09V08 ROUNDED
ON SIZE ERROR MOVE "0" TO UIRK-XN-
00001.

ITIULTIPLY A010NE-CS-00V01 BY WRK-DS-
0201P.

i Breakdown of Printed Results

|
; Arithmetic result is printed;
i the last digit indicates
: whether SIZE ERROR worked
l correctly (1 = correct;
1 0 = incorrect).

Arithmetic result is printed;
| the last digit indicates
whether SIZE ERROR worked

j correctly (1 = correct;
: 0 = incorrect).
j

. Arithmetic results are printed,

1N133

1N134

MULTIPLY A010NE-DS-P0801 BY UJRK-CS-
18V00.

IflULTIPLY A99-CS-02V00 BY A010NE-CS-
00V01 GIVING WRK-CS-02V02.

Arithmetic results are printed,

Arithmetic results are printed,

-98-

Test ID Summary of Test

1N151

1N151

DIVIDE A99-DS-02V00 INTO UJRK-DS-18V00.

DIVIDE 4 INTO UJRK-DS-12V00 ROUNDED.

1N152 DIVIDE 0.1 INTO WRK-DS-01V00 ON SIZE
ERROR MOVE "1" TO UJRK-XN-00001.

Breakdown of Printed Result s

Arithmetic result is printed,

Arithmetic result is printed.

1N153 DIVIDE A010NE-DS-P0801 INTO UJRK-DS-09V00
ON SIZE ERROR IYIOUE "0" TO U)RK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 - incorrect).

1N154 DIVIDE AZER0-DS-05V05 INTO WRK-DS01V00
ROUNDED ON SIZE ERROR WOVE "1" TO UJRK-
XN-00001.

1N155 DIVIDE A0NES-DS-09V09 INTO UIRK-DS-09V09
ROUNDED ON SIZE ERROR MOVE "0" TO UJRK-XN
00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

H

1N156

1N157

1N158

DIVIDE -10.9 INTO A02TUJ0S-DS-02V00
GIVING UJRK-DS-01V00.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

Arithmetic result is printed.

DIVIDE UJRK-DS-03V10 INTO A010NE-DS-P0801
GIVING UJRK-DS-18V00 ROUNDED.

Arithmetic result is printed.

1N159

DIVIDE AZER0-DS-05V05 INTO A99-DS-02V00
GIVING DJRK-DS-18V00 ON SIZE ERROR MOVE
"1" TO UJRK-XN-00001.

DIVIDE A0NES-DS-09V09 INTO UJRK-DS-09V09
GIVING UJRK-DS-09V09 ON SIZE ERROR IY10VE
"0" TO UJRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

i Arithmetic result is printed,
| the last digit indicates
whether SIZE ERROR worked
correctly (1 - correct;
0 - incorrect).

-99-

Tusl ID Summary of Test Breakdown of Printed Results

1 l\l 1 (i.J DIVIDE WRK-DS-(19V0y INTO A050NES-DS-00V05
GIVING UJRK-DS-02U1P ROUNDED ON SIZE ERROR
MOVE "1" 10 UJRK-XN-00001.

Arithmetic result, is printed;
thu last, digit indicate;;
whether SIZE EKRUH worked
correctly (1 = correct;
0 - incorrect).

1N161 DIVIDE A02TUJ0S-DS-Q2V00 INTO A02TUJ0S-DS-
03V02 GIVING UJRK-DS-01V00 ROUNDED ON SIZE
ERROR MOVE "0" TO UJRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

1N162 DIVIDE A02TUJ0S-DS-02V00 BY -10.9
GIVING UJRK-DS-01V00.

Arithmetic result is printed.

1N163 DIVIDE A010NE-DS-P0801 BY UJRK-DS- 03V10
GIVING UJRK-DS-18V00 ROUNDED.

Arithmetic result is printed.

1N164 DIVIDE A99-DS-02V00 BY AZER0-DS-05V05
GIVING UJRK-DS-18V00 ON SIZE ERROR
MOVE "1" TO UJRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 - correct;
0 = incorrect).

1N165 DIVIDE UJRK-DS-09V09 BY A0NES-DS-09V09
GIVING UJRK-DS-09V09 ON SIZE ERROR
MOVE "0" TO UJRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 - correct;
0 = incorrect).

1N166 DIVIDE A050NES-DS-00V05 BY UJRK-DS-09V09
GIVING UJRK-DS-0201P ROUNDED ON SIZE ERROR
MOVE "1" TO UJRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 - correct;
0 = incorrect).

1N167 DIVIDE A02TUJ0S-DS-Q3V02 BY A02TUJ0S-DS
02V00 GIVING UJRK-DS-01V00 ROUNDED
ON SIZE ERROR MOVE "0" TO UJRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 - correct;
0 - incorrect).

1N168 DIVIDE A99-DS-02V00 INTO UJRK-DS-02V00. Arithmetic result is printed.

1N169 DIVIDE A99U-DS-02ulP INTO UJRK-CS-02V02. Arithmetic result is printed.

IN17 0 DIVIDE A010NE-CS-nnV01 INTO A99-CS-02V00
GIVING UJRK-DS-05V00 .

Arithmetic result is printed.

1N171 DIVIDE A99-CS-02V00 BY A010NE-CS-00V01
GIVING UJRK-DS-05V00.

Arithmetic result is printed.

-mo-

Test ID Summary of Test Breakdown of Printed Results

1N2GJ PERFORIYI paragraph-name.
PERFORIYI section-name.

Execution sequence indicators
are printed.

1N201 PERFORIYI paragraph-name inteqer TIIYIES.
PERFORIYI section-name data-name TIIYIES.

Execution sequence indicators
are printed.

1N2D2 PERFORIYI paragraph-name THRU paragraph-
name .
PERFORIYI section-name THRU section-name.
PERFORIYI paragraph-name THRU section-
name.

Execution sequence indicators
are printed.

1N203 PERFORIYI paragraph-name THRU paragraph-
name integer TIIYIES.
PERFORIYI section-name THRU section-name
integer TIIYIES.
PERFORIYI section-name THRU paragraph-
name integer TIITIES.
PERFORIYI paragraph-name THRU section-
name integer TIIYIES.

Execution sequence indicators
are printed.

1N210 Tests nested PERFORIYI statements. Execution sequence indicators
are printed.

1N215 Tests the use of EXIT. Execution sequence indicators
are printed.

-101-

Test ID Summary of Test Breakdown of Printed Results

1N230 EXAMINE NDATA-DS-09V09 TALLYING
UNTIL FIRST 9.

The value of TALLY is printed.

1N231 EXAMINE XDATA-XN-G0018 TALLYING ALL "0M. The value of TALLY is printed.

1N2Z2 EXAIYIINE XDATA-XN-C0018 TALLYING
LEADING SPACE.

The value of TALLY is printed.

1N237 EXAMINE UJRK-DS-09V09 TALLYING UNTIL
FIRST ZERO REPLACING BY 9.

The value of TALLY and the
examined item are printed.

1N238 EXAMINE WRK-XN-OOG1B TALLYING ALL ZERO
REPLACING BY SPACE.

The value of TALLY and the
examined item are printed.

1N239 EXAMINE UJRK-XN-00G18 TALLYING LEADING
"0" REPLACING BY "9".

The value of TALLY and the
examined item are printed.

1N242 EXAMINE UJRK-DS-G9V09 REPLACING ALL 0
BY 9.

The value of the examined
item is printed.

1N?43 EXAMINE WRK-XN-00018 REPLACING LEADING
"0" BY "Z".

The value of the examined
item is printed.

1N2A4 EXAMINE UJRK-XN-00G1B REPLACING UNTIL
SPACE BY ZERO.

The value of the examined
item is printed.

1N245 EXAMINE UJRK-DS-091/Q9 REPLACING FIRST
8 BY ZERO.

The value of the examined
item is printed.

-102-

Test ID Summary of Test Breakdown of Printed Results

1N250 IF AZER0-DS-O5V05 IS EQUAL TO ZERO
MOVE "1" TO SUP-UJK-B (l).

The result of the comparison
is printed.

1N251 IF SPACE IS EQUAL TO SUP-UJK-A
MOVE "0" TO SUP-UJK-B (1).

The result of the comparison
is printed.

1N252 IF A180NES-DS-18V00 IS EQUAL TO ONES-XN-
00018 MOVE "1" TO SUP-UJK-B (l).

The result of the comparison
is printed.

1N253 IF TUJOS-XN-00002 IS EQUAL TO A99-DS-
02V00 MOVE "0" TO SUP-UJK-B (l).

The result of the comparison
is printed.

1N254 IF A99-DS-02V00 IS LESS THAN A180NES-
DS-09V09 MOVE "1" TO SUP-UJK-B (l) ELSE
MOVE "0" TO SUP-LUK-B (2).

The result of the comparison
is printed.

1N255 IF "11" IS LESS THAN ONES-XN-00002
MOVE "0" TP SUP-UJK-B (l)
ELSE MOVE "1" TO SUP-UJK-B (2).

The result of the comparison
is printed.

1N256 IF A02TUJ0S-DU-02V00 IS LESS THAN ONES-
XN-00002 MOVE "1" TO SUP-UJK-B (l)
ELSE MOVE "0" TO SUP-UJK-B (2).

The result of the comparison
is printed.

1N257 IF TUJOS-XN-00002 IS LESS THAN A02TUI0S-
DU-02V00 MOVE "0" TO SUP-UJK-B (l)
ELSE MOVE "1" TO SUP-UJK-B (2).

The result of the comparison
is printed.

1N258 IF A99-DS-02V00 IS GREATER THAN SB.9
NEXT SENTENCE ELSE MOVE "0" TO SUP-UJK-B

(1).

The result of the comparison
is printed.

1N259 IF ONES-XN-00002 IS GREATER THAN TUJOS-
XN-00002 NEXT SENTENCE ELSE MOVE "1" TO
SUP-UJK-B (1) GO TO TEST-1NUC-259-A.

The result of the comparison
is printed.

1N260 IF A02TUJ0S-DU-02V00 IS GREATER THAN ONES-
XN-00002 NEXT SENTENCE ELSE MOVE "0" TO
SUP-UJK-B (1).

The result of the comparison
is printed.

1N261 IF TUJOS-XN-00002 IS GREATER THAN A02TUJ0S-!
DU-02V00 NEXT SENTENCE ELSE MOVE "1" TO
SUP-UJK-B (1) GO TO TEST-INUC-261-A.

The result of the comparison
is printed.

1N262 IF ZERO IS NOT EQUAL TO SUP-UJK-A
MOVE "1" TO SUP-UJK-B (l) GO TO TEST-
1NUC-262-A ELSE NEXT SENTENCE.

The result of the comparison
is printed.

-103-

Test ID Summary of Test Breakdown of Printed Results

1N263 IF A02TUJOS-DU-02VOO IS NOT EQUAL TO A02TUJ0S- The result of the comparison
DS-03V02 MOVE "0" TO SUP-UJK-8 (l) GO TO is printed.
TEST-1NUC-263-A ELSE NEXT SENTENCE.

1N264 IF TUJOS-XN-00002 IS NOT LESS THAN ONES-
XN-00002 MOVE "1" TO SUP-UJK-B (l) GO TO
TEST-1NUC-264-A ELSE NEXT SENTENCE.

The result of the comparison
is printed.

1N265 IF 0.0000000001 IS NOT LESS THAN A010NES-
DS-P0801 MOVE "0" TO SUP-UJK-B (l) GO TO TE
1NUC-265-A ELSE NEXT SENTENCE.

The result of the comparison
5T- is printed.

iN266 IF 0NES-XN-000U2 IS NOT GREATER THAN TUJOS-
XN-00002 MOVE "1" TO SUP-UJK-B (l) GO TO
TEST-1NUC-266-A ELSE NEXT SENTENCE.

The result of the comparison
is printed.

1N267 IF A990-DS-0201P IS NOT GREATER THAN
A99-DS-02V00M0VE "0" TO SUP-UJK-B (l)
GO TO TEST-1NUC-267-A ELSE NEXT SENTENCE.

The result of the comparison
is printed.

1N270 IF ONES-XN-00018 IS NUMERIC MOVE "1" TO
SUP-UJK-B (1).

The result of the test is
printed.

1N271 IF A02TU10S-DS-03V02 IS NUMERIC MOVE "1"
TO SUP-UJK-B (1).

The result of the test is
printed.

1N272 IF XDATA-XN-00018 IS NUMERIC MOVE "0"
TO SUP-UJK-B [(1) GO TO TEST-1NUC-272-A.

The result of the test is
printed.

1N273 IF XDATA-DS-18V00-S IS NUMERIC MOVE "0"
TO SUP-UJK-B (1) GO TO TEST-1NUC-273-A.

The result of the test is
printed.

1N274 IF SUP-UJK-A IS NOT NUMERIC MOVE "1" TO
SUP-UJK-B (1) GO TO TEST-1NUC-274-A.

The result of the test is
printed.

1N275 IF XDATA-DS-18V00-S IS NOT NUMERIC MOVE
"1" TO SUP-UJK-B (1).

The result of the test is
printed.

1N276 IF SUP-UJK-A IS NOT NUMERIC MOVE "0" TO
SUP-UJK-B (1) GO TO TEST-1NUC-277-A.

The result of the test is
printed.

-104-

Test ID Summary of Test Breakdown of Printed Results

1N277 IF A990-DS-0201P IS NOT NUMERIC HOOVE
"0" TO SUP-UJK-B (1) GO TO TEST-lNUC-277-
A.

The result of the test is
printed.

1N278 IF YADATA-XN-00010 IS ALPHABETIC MOVE
"1" TO SUP-UJK-B (1).

The result of the test is
printed.

1N279 IF SUP-UJK-A IS ALPHABETIC MOVE "X" TO
SUP-UJK-B (1) GO TO TEST-1NUC-279-A.

The result of the test is
printed.

1N280 IF XDATA-XN-00018 IS NOT ALPHABETIC MOVE
"1" TO SUP-UJK-B (1).

The result of the test is
printed.

1N281 IF YADATA-XN-00010 IS NOT ALPHABETIC
MOVE "0" TO SUP-UJK-B (l) GO TO TEST-
1NUC-281-A.

The result of the test is
printed.

1N282 IF IFNUM-DU-01V00 IS NUMERIC MOVE "0"
TO SUP-UJK-B (1) GO TO TEST-1NUC-282-A.

The result of the test is
printed.

-105-

Test ID Summary of Test Breakdown of Printed Results

1IM300 Tests format 1 of the GO TO
statement.

Execution sequence indicators
are printed.

1N302 Tests format 2 of the GO TO statement. Execution sequence indicators
are printed.

1N3C3 Tests ALTER/GO TO combination. Execution sequence indicators
are printed.

1N304 Tests the DISPLAY statement. No printed results except
the ooitput of the statement
itself.

1N305 Tests the ACCEPT statement. The data that was read is
printed.

1N307 Tests the NOTE statement and NOTE
paragraph.

Execution sequence indicators
are printed.

1N310 Tests the use of switch-status-names
in IF statements.

Execution sequence indicators
are printed.

1N311 Tests non-floating insertion characters. Receiving fields are printed.

1N312 Tests the use of floating insertion and
replacement characters.

Receiving fields are printed.

1N313 A
BJ

Tests the use of level numbers 01-10
REDEFINES, SYNCHRONIZED, JUSTIFIED,
BLANK, USAGE, and mixed PICTURE of
A, X, 9.

Receiving fields are printed.
Because the operation of the
SYNC clause makes the size of
the result indeterminate no
expected result is printed.

1N314 Tests the CURRENCY SIGN clause. Receiving fields are printed.

1N315 Tests the DECIMAL POINT IS COMMA clause. Receiving fields are printed.

1N316A) Tests the Data Division abbreviations:
SYNC, PIC, COMP, JUST.

Receiving fields are printed.

-106-

Test ID Summary of Test Breakdown of Printed Results

1N317 Tests 30 character data-name and
procedure-name.

Correctness indicator is
printed.

1N318 Tests 120 character literal. Correctness indicator is
printed.

-107-

Test ID Summary of Teat. Breakdown of Printed Results

2N001 ADD AZER0-DS-05V05 0.5 TO UJRK-DS-01V00
UJRK-DS-05U00 ROUNDED UJRK-DS-06V06.

Arithmetic result is printed.

2N002 ADD A050NES-DS-05VOO A99-DS-02V00 A180NES-
DS-09V09 GIVING WRK-DS-09V09 ON SIZE
ERROR IYIOVE "0" TO UJRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

2IM003 ADD AZER0-DS-05V05 999 TO UJRK-DS-03U10
WRK-DS-0201P ROUNDED UJRK-DS-03V00 ON SIZE
ERROR IYIOUE "l" TO UJRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

2N004 ADD CORRESPONDING GRP-FOR-ADD-CORR-1
TO GRP-FOR-ADD-CORR-R.

Arithmetic result is printed.

2N005 ADD CORRESPONDING GRP-ADD-SUB-CORR
TO GRP-FOR-ADD-CORR-R ROUNDED.

Arithmetic result is printed.

2N006 ADD CORRESPONDING GRP-SUBTRACT-CORR-3
TO GRP-FOR-ADD-CORR-R ON SIZE ERROR
IY10VE "1" TO UIRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

2N007 SUBTRACT AZERO-DS-05 -99.9 FR0IY1 WRK-DS-
02V00 UIRK-DS-18V00 ROUNDED UJRK-DS-09U09.

Arithmetic result is printed.

2N008 SUBTRACT AZER0-DS-05V05 -99.9 FR0IY1 UJRK-
DS-02U00 UJRK-DS-18V00 UJRK-DS-09V09 ON
SIZE ERROR mOUE "0" TO UJRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

2N009 SUBTRACT AZER0-DS-05V05 -999 FROM UJRK-
DS-03V10 UJRK-DS-0201P ROUNDED UJRK-DS-
03U00 ON SIZE ERROR ll(10UE"l" TO UJRK-XN-
00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked •
correctly (1 = correct;
0 = incorrect).

-108-

Test ID Summary of Test Breakdown of Printed Results

2N010 SUBTRACT CORRESPONDING GRP-FOR-ADD-
CORR-1 FROM GRP-FOR-ADD-CORR-R.

Arithmetic result is printed.

2N011 SUBTRACT CORRESPONDING GRP-ADD-SUB-CORR
FROM GRP-FOR-ADD-CORR-R ROUNDED.

Arithmetic result is printed.

2N013 MOVE CORRESPONDING GRP-MOVE-CORR-1 TO
GRP-MOVE-CORR-R.

Arithmetic result is printuH.

2NG15 SUBTRACT CORRESPONDING GRP-SUBTRACT-
CORR-3 FROM GRP-FOR-ADD-CORR-R ON SIZE
ERROR MOVE "1" TO UJRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 = correct;
0 = incorrect).

-109-

Test ID Summary of Test Breakdown of Printed Results
"^ *"

2N016 MOVE CORRESPONDING GRP-T0-M0VE-C0RR-1
TO GRP-TO-MOVE-CORR-R.

Receiving fields are printed.

2N017 PERFORM TEST-2NUC-017-A UNTIL TEST-
2NUC-C0ND-y9.

i

Execution sequence indicators
are printed.

2N018 PERFORM TEST-2NUC-018-A VARYING WRK-DS-
02V00 FROM 1 BY 1 UNTIL TEST-2NUC-C0ND-99.

Execution sequence indicators
are printed.

2ND19 PERFORM TEST2NUC-018-A VARYING UJRK-DS-
02V00 FROM A02TUJ0S-DS-02V00 BY A0271D0S-
DS-02U00 UNTIL (UJRK-DS-02V00 + 12)
= 100.

Execution sequence indicators
are printed.

i

2ND20 Tests PERFORM ... VARYING to thre.- lev/els. Execution sequence indicators
and final values of identifiers
are printed.

2N022 Tests PERFORM ... VARYING to three
lev/els; uses index-names.

Execution sequence indicators
and final values of
identifiers are printed.

2NU23

1
Tests ALTER with the 9eries option. Execution sequence indicators

are printed.
. , *

-110-

Test ID Summary of Test Breakdown of Printed Results

2N024 COMPUTE UJRK-DS-02V00 = -9. Arithmetic result is printed.

2N025 COMPUTE WRK-DS-02V00 = A99-DS-02V00. Arithmetic result is printed.

2N026 COMPUTE WRK-DS-18V00 = A180NES-DS-
18V00 + A180NES-DS-18V00.

Arithmetic result is printed.

2N027 COMPUTE UIRK-DS-18V00 = A18TUJ0S-DS-
18W00 - A180NES-DS-1BV00.

Arithmetic result is printed.

2N028 COMPUTE TALLY = 3 * A02TUI0S-DU-02V00. Arithmetic result is printed.

2N029 COMPUTE UJRK-DS-05V00 = A02TUJ0S-DU-
02V00 / A02TUJ0S-DS-03V02. Arithmetic result is printed.

2N030 COMPUTE UJRK-DS-05V00 = 3 ** ATWO-DS-
01VOO.

Arithmetic result is printed.

2N031 COMPUTE U1RK-DS-02V00 ROUNDED = A99-
DS-02V00 + AZERO-DS-05V05 - 2.5.

Arithmetic result is printed.

2NG32

> i. .

COMPUTE WRK-DS-02V00 = A99-DS-
02V00 + AZER0-DS-05V05 ON SIZE ERROR
MOVE "0" TO UJRK-XN-00001.

Arithmetic result is printed;
the last digit indicates
whether SIZE ERROR worked
correctly (1 - correct;
0 = incorrect).

2N033 Test REMAINDER option of DIVIDE. Arithmetic result, is printed.

2M034 COMPUTE WRK-DS-02Q1P ROUNDED = AQ50NES
DS-05V00 / 5 ON SIZE ERROR MOVE "1"
TO UJRK-XN-0001.

Arithmetic result is printml.
The last digit indicates
whether SIZE ERROR worked
correctly (1=correct;
O=incorrect).

-111-

Test ID Summary of Test Breakdown of Printed Results

2N035 A^

B/

Using COMPUTE, tosts a particular
arithmetic expression both with
and without parentheses.

Both results are printed.

2N036 Tests a particular arithmetic
expression both uiith and without
parentheses in IF statements.

Results of comparison
are printed.

2N037 Tests ADD with ON SIZE ERROR
option in the true and false of
an IF statement.

Results of arithmetic and
comparisons are printed.

2NQ38 Tests IF statements nested on
true and false paths of an IF
statement.

Results of comparisons are
printed.

2N039 Tests an IF statement containing
a compound condition with one OR.

Results of the comparisons
are printed.

2N040 Tests an IF statement containing
a compound condition with one AND.

Results of the comparisons
are printed.

2N041 Tests an IF statement containing a
compound condition with mixed ANDs
and ORs.

Results of the comparisons
are printed.

Results of the comparisons are
printed.

1

2N042 Tests an IF statement containing a
1 compound condition with mixed ANDs,

ORs, and NOTs.
 -- • . -f

2N043 Tests IF statements using = ,^,^
as relational operators.

Results of the comparisons
are printed.

2N045 Teats an IF statement using ab-
breviation 1 in the condition.

Results of the comparisons
are printed.

Results of the comparisons
are printed.

2N046 Teats an IF statement using
abbreviation 2 in the condition.

 1 -

-112-

 '

Test ID Summary of Test Breakdown of Printed Results

2N04B Tests unequal size operands fields Results of the comparisons are
in a conditional expression printed. I
where equality should exist.

_. . _._.. . 'j
2N049 Tests unequal size operand fields Results of the comparisons are

| in a conditional expression printed.
where inequality should exist.

f - • -----

2N050

i
Tests ACCEPT...FROM... Data that was read is printed.

2N051 Tests DISPLAY literal UPON No printed results except the
j mnemonic-name. actual output on the device

specified by mnemonic-name.
 .. i

2N052 Test DISPLAY mixed-literal- No printed results except the
and-identifier-series UPON actual output on the device
mnemonic-name. specified by mnemonic-name.

2N053 Tests the operation of quali-
1

The fields to which reference
fications where it is required. is made are printed.

i

2N054 Tests the operation of qualifi-

i

The fields to which reference is 1
cation where it is not required. made are printed. j

.
• — —

1

2N056 A\ Tests the operation of RENAMES The fields to which reference is :
B/ without the THRU option. made are printed.

2N057 A\ Tests the operation of RENAMES
!

The fields to which reference is j
B/ with the THRU option. made are printed.

1

2NU58 Tests Data Division qualification The fields to which reference LL; '
and the plural form of the figura- made are printed.
tive constants.

2N059 Tests level 88 entries with the Results of comparisons are
series option of the VALUE clause. printed.

2NQ6D Tests the DATE-COIYIPILED paragraph. No printed results at execution
time.

2N061 Tests punctuation characters (; Correctness indicators are
and ,) and all numeric procedure- printed.
names.

-113-

Test ID Summary of Test Breakdown of Printed Results

1TH01 Tests single level subscripting and
the use of TALLY as a subscript.

Correctness indicators and
table elements are printed.

1TH02 Tests single level indexing. Correctness indicators and
table elements are printed.

1TH0 3 Tests all combinations of operands
in the SET...TO... statement.

Occurence numbers are
printed.

1TH04 Tests the use of relation con-
ditions containing indexes and
index-data-items.

Results of the comparison are
printed.

-114-

Test ID Summary of Test Breakdown of Printed Results

2TH01 Tests 2 and 3 level subscripting. Correctness indicators and
table elements are printed.

2TH02 Tests 2 and 3 level indexing. Correctness indicators and
table elements are printed.

2TH03 Tests the structural variations of
format 1 of the SET statement that
are unique to 2TBL.

Occurence numbers are printed.

2TH04 Tests the structural variations of
format 2 of the SET statement.

Occurence numbers are printed.

-115-

Test ID Summary of Test Breakdown of Printed Results

3TH01 Tests the structural variations
of format 1 of the SEARCH state-
ment.

Correctness indicators and table
elements found are printed.

3TH02 Te9ts the structural variations
of format 2 of the SEARCH state-
ment.

Correctness indicators and tablr
elements found are printed.

3THD3 Same as 3TH01 but uses variable
length tables.

Correctness indicators and table
elements found are printed.

3TH04 Same as 3TH02 but use9 variable
length tables.

Correctness indicators and table
elements found are printed.

3TH05 Creates a sequential file con-
taining logical records whose
description contains OCCURS
with the DEPENDING option.

none

3TH06 Reads and verifies the file
created in 3TH05.

Correctness indicators for e;very
record and one for AT END are
printed.

-116-

Test ID

1
. ••— — — -. .. • —... T

Summary of Test Breakdown of Printed Results

1SQ01 Writes an unblocked sequential tape file
containing fixed length records.

no printed results.

1SU02 Reads the file created in 1SR01. Tests
operation of the elements necessary for
an input file; also validates 1SQCJ1.

One character for each record
read: 1 = input record is
equal to Working Storage item
used to WRITE it. 0 = input
record not equal. H -. ir LuT
fntinil nrnmaturaly, answer
is filled with 9's at that
point. One character for Al
END: 1 = executed at correct
time. 0 = not executed.

15(103 Writes a blocked sequential tape file
containing fixed length records. no printed results.

15QD4 Reads the file created in 1SQ03. Tests
operation of the elements necessary for
an input file; also validates 1SQ03.

Same as 1SQU2.

1SQ0S Writes a blocked, -rulti-reel, sequential
tape file containing fixed length
records.

no printed results.

1SQ06 Reads the file created in 1SQ05. Tests
the operation of these elements necessa-
ry for an input file; also validates
1SQ05.

Same as 1SQ02.

15QD7 Writes an unblocked sequential tape file
containing differing length records.

no printed results.

1SQ06 Reads file created in 15Q07. Tests the
operation of the elements necessary for
an input file; also validates 1SQ07.

Same as 1SQ02.

isnoy Writes a blocked sequential tape file
containing differing length records.

no printed results.

1SQ10 Reads the file created in 1SQ09. Tests
the operation of the elements neces-
sary for an input file; also validates
1E>(J(JrJ.

Same as 1SQ02.

1SU11 Writes a blocked, multi-reel, sequent-
ial tape file containing differing
length records.

no printed results.

1SCJ12 Reads the file created in 15011. Tests
the operation of the elements necessary
for an input file; also validates 1SQ11.

Same as 1SQ02.

-117-

Test ID ! Summary or Tost Breakdown of Printed Kosul.tc

1SCJ13 Write3 an unblocked sequential mass
storage file containing fixed length
records.

no printed results.

1SQ14 Reads the file created in 1SQ13. Tests
the operation of the elements necessary
for an input file; also validates 1SQ13.

Same as 15Q02.

1SQ15 Reads and updates the file created in
1SQ13. Tests the operation of the
elements necessary for an input-output
file.

no printed results.

1SQ16 Reads the file created in 1SQ13 and
updated in 1SQ15. Validates 1SQ15.

Same as 1SQ02.

1SQ17 Writes blocked sequential mass storage
file containing fixod length records.

no printed results.

1SQ18 Reads the file created in 1SQ17. Tests
the operation of the elements necessary
for an input file; also validates 1SQ17.

Same as 1SQ02.

1SQ19 Reads and updates the file created in
1SQ17. Tests the operation of the
elements necessary for an input-output
file.

no printed results.

1SQ2D Reads the file created in 1SQ17 and
updated in 1SQ19. Validates 1SQ19.

Same as 1SQ02.

1SQ21 Writes a print file using BEFORE and
AFTER ADVANCING.

Each line contains the
statement used to write it.

1SQ2'5 Writes a blocked, multi-unit,
sequential mass storage file
containing fixed length records.

No printed results.

1SQ24 Reads the file created in 1SQ23.
Tests the operation of the elements
necessary for an input file; also
validates 1SQ23.

Same as 1SQ02.

1SQ25 Reads and updates the file created
1SQ23. Tests the operation of the
elements necessary for an input-
output file in a multi-unit file
environment.

No printed results.

1SQ26 Reads the file created in 1SQ23 and
updated in 1SQ25. Validates 1SQ25.

Same as 1SQ02.

1SCJ27-
1SQ31

Tests the five options of RERUN in the
order shown on page 82, items 44-48.

Execution sequence indicators
are printed.

-118-

Test ID

25Q05

•

Summary of Test
j

Breakdown of Printed Result:!

Tests the use of an OPTIONAL file. One character for each record
read: 1 = input record is
equal to working ^torncjc itnm
used to UJRITE it. 0 = input
record not equal. 9 = if EOF
found prematurely, answer is
filled with 9's at that point.
One character for AT END; 1 -
executed at correct time. 0 =
not executed.

2SQ06 Creates a IY1ULTIPLE FILE TAPE. none

2SQ07 Reads and verifies the tape
created in 2SQ06.

Same as 2SQ0J).

2SQ08 Reads and verifies the last file
on the tape created in 2SQ06.

Same as 25Q0B.

2SQ09 Creates a file for use in 2SQ10. none

| 2SQ10 Tests the use of OPEN with the
REVERSED option.

Same as 2SQ05.

2SQ11 Tests the ADVANCING option of WRITE
using dgta-name and mnemonic name.

Each line contains the state-
ment used to write it.

2SQ12 Tests the acceptability and
operation of the USE
statement.

Execution sequence indi-
cators are printed.

2SQ13 Creates a file for use in 2SQ14 arc>sl
tests "UJRITE.. .FROM.. .*' .

None

2SQ14 Read and verifies the file created
in 2SQ13; and tests "READ... INTO.. .",

Same as 2SQ05.

i
2SQ15 Tests LABEL RECORDS data-name

together with LABEL PROCEDURE
declaratives.

One character for each condi-
tion as follows: (l) 1 indi-
cates BEGINNING LABEL on OUT-
PUT written.(2) 1 indicates
ENDING LABEL on OUTPUT written.
(3) 1 indicates BEGINNING LABEL
on INPUT verified.(4) 1 indi-
cates ENDING LABEL on OUTPUT

verified.

-119-

Test ID Summary of Test Breakdown of Printed Results

1RA01 Writes an unblocked mass storage
file in random access mode.

no printed results

1RA02 Reads and verifies the file created
in 1RA01.

One character per record read:
1 - input record is equal to
Working Storage item used to
WRITE it. 0 = input record
not equal. 9 = INVALID KEY
exit taken on record.

1RA03 Reads and updates inpplace the
file created in 1RA01.

no printed results.

1RA04 Reads and verifies the file created
in 1RA01 and updated in 1RA03.

Same as 1RA02.

1RA05 Logically equivalent to 1RA01 but
for blocked records.

no printed results.

1RA06 Logically equivalent to 1RA01 but
for blocked records.

Same as 1RA02.

1RA07 Logically equivalent to 1RA03 but
for blocked records.

no printed results.

1RA08 Logically equivalent to 1RA04 but
for blocked records.

Same as 1RA02.

-120-

Test ID Summary of Test Breakdown of Printed Results

2RA01 Creates a random access file whose
records are unblocked and of differ-
ing lengths. Uses data-name option
of FII.E-LIIYIITS clause, and "TO inte-
ger" option of BLOCK CONTAINS.

No printed results.

2RA02 Reads and verifies the file created
in 2RA01 .

One character per record road:
1 = input record is equal to
Working Storage item used to
WRITE it. 0 - input recuj tl nul
equal. 9 = INVALID Kl Y exi t
taken on record.

2RA03 Reads and updates in place the file
created in 2RA01 .

No printed results.

2RA04 Reads and verifies the file created
in 2RA01 and updated in 2RA03.

Same as 2RA02.

2RA05 Logically equivalent to 2RA02 but
for blocked records.

No printed results.

2RAG6 Logically equivalent to 2RA02 but
for blocked records.

Same as 2RA02.

2RA07 Logically equivalent to 2RA03 but
for blocked records.

No printed result:,.

2RA08 Logically equivalent to 2RA04 but
for blocked records.

Same as 2RA02.

2RA09

thru

2RA12

Logically equivalent to 2RA0 1 thru
2RA04 except that WRITE... FRulYl,
READ... INTO, literal series option
of FILE-LIMITS clause, STANDARD
option of LABEL RECORDS clause and
literal-series option of UALUE OF
clauses are used.

Same as 2RA01 thru 2RAU4 .

*

-121-

Test ID Summary of Test Breakdown of Printed Results

2RA13
thru

2RA16

Logically equivalent to 2RA05
thru 2RA08 except that WRITE...
FROM, READ...INTO, data-name
series option of FILE-LIMITS
clauso, data-name series option
of LABEL RECORDS clause, data-
name series of UALUE OF clause,
and in 2RA16 CLOSE.. .IDITH LOCK,
are used.

Same as 2RA05 thru 2RA0B.

2RA17 Tests the acceptability and
operation of the USE state-
ment.

Execution sequence indicators
are printed.

2RA18 Tests LABEL RECORDS data-name
in conjunction with USE...LABEL
PROCEDURE ON OUTPUT, INPUT,
1-0.

Rooults indicate a '1' for
1. OUTPUT HEADER written
2. OUTPUT TRAILER written
3. INPUT HEADER verified
4. INPUT TRAILER verified
5. 1-0 HEADER verified
6. 1-0 TRAILER verified.

-122-

Test ID Summary of Test Breakdown of Printed Results

1ST01 Sorts 6 records created in and
checks the sequence of the returned
records in the OUTPUT PROCEDURE.

aaabbbcccdddeeefffg*
Each returned record, represented
by a through f, has three tests
made upon it: for content of
first non-key field; the sort key;
for the content of the second non-
key field. The final g is 0 if an
incorrect number of records are
returned.

1ST02 Services 1ST03 by creating an
input for it. No sort. No printed results.

1ST03 The file created by 1ST02 is sorted,
descending, uiith the OUTPUT PROCED-
URE checking sequence on keys and
contents of non-key areas. Sorted
records are written onto a FILE-
NAiriE-USING-4 for passing to 1ST04.

aabbcc xxyyz*
Each of the records, represen-
ted by a through y, has two
tests made upon it: for the non-
key area; for the key area. z
represents 1 for good count, 0 for
bad count.

1ST0A The USING file is the descendingly
sorted file of 1ST03 which is
sorted into ascending order and
passed to 1ST05.

No printed results.

1ST05 Checks sequence of file passed from
1ST04.

Same as 1ST03.

1ST06* Sorts with THRU option of INPUT
PROCEDURE and with the OR option
of the ASSIGN clauee. Depends upon
blank and zero relative collating
sequences for SORT and IF being the
same. GIVING used.

No printed results.

1ST07 Checks sequence of file passed from
1ST06.

aaabbbccc...xxxyyyz*
Each of the keys is separately
checked in each of the records.
Correct count is reflected in z.

1ST08 Sort with multiple RELEASE state-
ments in the INPUT PROCEDURE and
multiple descending keys. OUTPUT
PROCEDURE used.

aaabbbccc...xxxyyyz*
Each of the keys is separately
checked in each of the records.
Correct amount is reflected in z.

1ST09 Sorts with multiple RETURN state-
ments in the OUTPUT PROCEDURE, on
eight types of ascending Keys.
Uses INPUT PROCEDURE.

abc...xyz*
Records are checked only for the
most recently changed Key. The
record count is reflected in z.

-123-

Test ID Summary of Test Breakdown of Printed Results

1ST10 Creates a file of differing
length records to be passed to
1ST11.

No printed results.

1ST11 Sorts file from 1ST10 records,
descending, on two series Keys.
Uses USING, GIVING and the TO
option of RECORD CONTAINS.

No printed results.

1ST12 Checks sequence of file passed
from 1ST11.

aaabbbccc...xxxyyyz*
Each record is checked on three
fields: a body field unique to each
record length; Key-1; and Key-2.
The record count is reflected in z.

1ST13 Prepares a 3 reel tape file
(using CLOSE REEL) each contain-
ing 26 records of 33 characters
each to be passed to 1ST14.

No printed results.

1ST14 Sorts the multi-reel file creat-
ed in 1ST13 into descending
sequence. Uses USING, GIVING.
The sort Key is an 01 elemen-
tary item and is also named in
the DATA RECORDS clauses of the
SD.

No printed results.

1ST15 Checks sequence of the file
passed from 1ST14.

abc...xyz*
The 78 records are each checked for
total contents once. The record
count is reflected in z.

-124-

Test ID Summary of Test Breakdown of Printed Results

2ST01 A double sort in which one
sort (I/P, GIVING) is by
another (USING 0/P) in which
the USING file is the same
FD-name as is the previous
GIVING file.

aabbcc...xxyyz*
Each of the records returned is
checked first on an indicative non-
key field and then upon the Key
field. The total record count is
reflected in z.

2ST02

-

SAIYIE RECORD clause for both
an SD and two FD files, all
defined within this test.

aaabbbccc...xxxyyyz*
The records (here represented by
a,b,c,...x,y) are checked: upon a set
non-key field; on another non-key
field; and on the sort KBy. The
record count is reflected in z.

2ST03 The USE of SAITIE SORT and
SAIYIE RECORD clauses and of

; multiple SAIYIE clauses.
IVIethod is generally the
same as for the 2ST02
except for the value of Keys
generated and expected after
sorting.

1

aaa bbb ccc ... xxx yyy z*
The records are checked: on an alpha-
betic justified non-key field; on
another, similar, non-key field; and
on the unsigned numeric display Key

field. The record count is reflected
in z.

2ST04 The FROIYI option of the
RELEASE statement and the
RESERVE clause of the SELECT
statements. Uses INPUT PRO-
CEDURE and GIVING. After the
sort, it reads back and
checks the sorted records.

aaa bbb ... xxx yyy z*
The records are checked: on the sort-
key; onafixed numeric field; and on a
fixed alphanumeric field. The record
count is reflected in z.

2ST05 Tests the INTO option of
RETURN along with dual re-
ference capability of the
returned item. Uses both
INPUT and OUTPUT PROCEDURE'S.

aaabbbccc...xxxyyyz*
The records are checKed: to verify
that the UJ-S item referenced by the
INTO clause is identical to the sort
record returned; and the key is checked
for expected contents. The record
count if reflected in z.

2ST06 Checks conformity of the
RELEASE and RETURN state-
ments to the rules of group
IYI0VES.

aaaabbbbcccc...xxxxyyyyz*
The records returned (here represented
as a,b,c,..x,y, where a represents two
consecutive records, b two consecutive
records, etc.) are compared thusly:

the Sort-record returned versus the UJ-S
item named in the INTO clause;

the next Sort-record to be returned
versus a separate UJ-S item into which
the first Sort-record has been (YIOVCD.

a sequence check on the record in the
UJ-S item named in the INTO clauses; and

a sequence checks on the Sort-record
itself.

-125-

Test ID Summary of Test Breakdown of Printed Results

_, l

1RUJ01 Tests a minimal Report Writer
environment.

1 1
The results are reports. These reports!
are validated by comparing them to the |
"standard" set of reports which are
printed conventionally from the tests. 1

I
1RW02 Tests the following:

1) HEADING, FOOTING clauses,
with minimal environment, 2)
Page Counter with size deter-
mined by the PICTURE of SOURCE
item, 3) How Line Counter
effects PAGE-LIIYIIT and NEXT
GROUP, 4) Report Group, LINE
NUITIBER with PLUS option,
NEXT GROUP clause, PLUS option,
and 5) Report Elementary, JUS-
TIFIED RIGHT: qualification by
RD, SOURCE IS UJorking-Storage-
item.

j •

The results are reports. These reports]
are validated by comparing them to the I
"standard" set of reports which are
printed conventionally from the tests.

1RW03 1 Tests the following: 1) Report
Elementary; LINE with absolute
values, PLUS, and NEXT PAGE, 2)
NEXT GROUP with absolute values
and NEXT PAGE, 3) LINE, 4) TYPE,
5) NEXT GROUP with special cases

i in other than groups, 6) ability
to have non-contradicting LINE

i clauses at different levels, 7)
abbreviations RH and RP and 8)
JUSTIFIED RIGHT clause.

The results are reports. These reports
are validated by comparing them to the
"standard" set of reports which are
printed conventionally from the tests.

-126-

Test ID Summary of Test Breakdown of printed results

2RUJD1

2RUJ02

2RW03

2RID04

Tests Controls mould have a min-
imal environment consisting of the
clauses; 1) RD; CONTROL IS iden-
tifier, PAGE LIMITs Clauses,
FOOTING option of PAGE LIMIT, 2)
Report Group clauses; CF option of
TYPE, 3) Report Elementary clauses;
GROUP INDICATE AND SUM. GROUP
INDICATE is tested for page break
without a control break.

The results are reports. These reports!
are validated by comparing them to the •
"standard" set of reports which are
printed conventionally from the tests.

i—
Tests the following:
1) suppression of items by omit-
ting their COLUMN clause, 2) Mul-
tiple DETAIL lines, 3) SUM data-
name series, 4) SUM using sum-
counter-name, 5) SUM UPON
6) SUM RESET 7) SUM UPON RESET
8) TERMINATE followed by INITIATE,
9) summary reporting.

The results are reports. These reports^
are validated by comparing them to the i
"standard" set of reports which are
printed conventionally from the tests.

Writes multiple reports on one
file (series option of REPORTS ARE
clause), WITH CODE clause, series
option of TERMINATE, single and
multiple character CODE, referenc-
ing SUM counter from Procedure
Division, multiple GENERATES for
a given elementary item. A high
level SUM with no low level SUM is
included in this test.

Tests the USE BEFORE REPORTING
declarative, to see that a change
just before GENERATE is reflected
by the USE declarative.

The results are reports. These rrapo
are validated by comparing them to t
"standard" set of reports which are
printed conventionally from the test

... J
rtsl
he |

The results are reports. These reports
are validated by comparing them to the
"standard" set of reports which are
printed conventionally from the tests.

2RW05 Tests the referencing of an out-
of-Une USE BEFORE REPORTING
declarative by an in-line PERFORM
All line references are absolute.

The results are reports. These reports'
are validated by comparing them to the ,
"standard" set of reports which are
printed conventionally from the tests. |

-127-

Test ID Summary of Test Breakdown of Printed Results

15G01 ALTER in 11 section Execution sequence indicators
GO TO in 00 section are printed.
PERFORffling 00 from 11

1SG02 ALTER in 00 section Execution sequence indicators
GO TO in 00 section are printed.
PERFORITling 00 from 00

15G03 ALTER in 50 section Execution sequence indicators
GO TO in 50 section are printed.
PERFORIYling 50 from 49

15G04 ALTER in 50 Execution sequence indicators
GO TO in 50 are printed.
PERFORITling 50 from 50

1SG05 ALTER in 66 Execution sequence indicators
GO TO in 33 are printed.
PERFORIYling 33 from 66

-128-

Test ID Summary of Test Breakdown of Printed Results

1SG11 ALTERS in 12
GO TOs in 01, 02
PERFORIYling 01 thru 02 from 12

Execution sequence indicators
are printed.

1SG12 ALTERs in 55
GO TOs in 55, 55
PERFORIYling 55 thru 55 from 14

Execution sequence indicators
are printed.

1SG13 ALTERs in 70
GO TOs in 07, OB
PERFORIYling U7 thru OB from 70

Execution sequence indicators
are printed.

1SG14 ALTERs in 60
GO TOs in 60
PERFORIYling 60 thru 60 from 60

Execution sequence indicator:
are printed.

-129-

Test ID Summary of Test Breakdown of Printed Results

2SG01 A
B
C

Uses tests 1SG02,1SG03, and 1SGQ5
with SEGMENT LIMIT 30.

Printout of results from
1SEG.

2SG02 A
B
C

Uses tests 1SG11,1SG12.1SG13 with
SEGMENT LIMIT 9.

Printout of results from
1SEG.

-130-

Test ID' Summary of Test
-- —i

Breakdown of Printed Results

1LB01 Compares copied versus a non-
copied data item.

One character for each comparison. 1 if
found to be as expected, 0 if not found
to be as expected.

1LB02

1LB03

Copied paragraphs move data
items and check for expected
contents.

One character for each comparison, 1 if
found to be as expected, 0 if not found
to be as expected.

FILE-CONTROL section is
copied.

One character for each comparison, 1 if
found to be as expected, 0 if not found
to be as expected.

1LB04 A minimal report writer
environment contains copied
RD entry.

The results are reports. These reports
are validated by comparing them to the
"standard" set of reports which are
printed conventionally from the tests.

1LB05 A sequential file is written,
read, and compared, using
copied FD and 01 entries.

One character for each comparison. 1 if
found to be as expected, 0 if not found
to be as expected.

1LB06 A minimal sort with INPUT
and OUTPUT procedures is
executed using a copied SD
entry.

aabbcc.. .xvyy ?.*
Each of the reoords returned is checked
first on an indicative non-key field and
then upon the Key field. The total
record count is reflected in z.

1LB08 SOURCE COMPUTER and 0B3ECT
COIYIPUTER are copied.

The test program listing must be
checked to validate results.

1LB09 Switch status's in SPECIAL-
NAIYIEs are copied.

One character for each comparison. 1 if
found to be as expected, 0 if not found
to be as expected.

1LB1D Copies I-0-C0NTR0L SAIYIE AREA
clause. Writes and reads
back two sequential files.

One character for each comparison. 1 if
found to be as expected, o if not found j
to be as expected.

-131-

Test ID Summary of Test Breakdown of Printed Results

2LB01 Compares copied versus a non-
copied data item with REPLAC-
ING option used.

One character for each comparison. 1 if
found to be as expected, 0 if not found
to be as expected.

2LB02 Copied paragraphs move replaced
data items and check for expec-
ted contents.

One character for each comparison, 1 if
found to be as expected, 0 if not found
to be as expected.

2LB03 FILE-CONTROL section is copied
uiith the file name replaced.

One character for each comparison, 1 if
found to be as expected, 0 if not found
to be as expected.

2LB05 A sequential file is written,
read, and compared, using FD
and 01 entries copied with the
REPLACING option.

One character for each comparison. 1 if
found to be as expected, 0 if not found
to be as expected.

2LB08 SOURCE-COimPUTER and 0BXCT-
COIKIPUTER names are copied with
the REPLACING option.

The test program listing must be
checked to validate results.

2LB09 SPECIAL-NANIES is copied with
the switch status's replaced.

One character for each comparison. 1 if
found to be as expected, 0 if not found
to be as expected.

2LB10 Copies 1-0 CONTROL SAITIE AREA
clause REPLACING the file
names, writes and reads back
two sequential files.

One character for each comparison. 1 if
found to be as expected, 0 if not found
to be as expected.

-132-

APPENDIX V

PFffl DIAGNOSTIC MESSAGES.

The following is a list of diagnostic messages with their

respective interpretation:

Diagnostic Message

SCARD-RDR MANDATORY

CARD 24 INFO MANDATORY

'COMPUTER-NAME MANDATORY

CARD 1 INFO MANDATORY

.CARD 2 INFO mAMDATORY

ERROR IN FIRST 2 COLUMNS

FIEIH 28 BLANK, ASSUMED D

FIELD 36 BLANK, ASSUMED D

INVALID ACTION

MATCH-OLD ENTRIES DELETED

NO MATCH

Explanation

Environment table has missing

specification for CARD-RDR.

Environment table hps missing

COMPUTER-NAME. Card numbers

refer to card images generated

for the Population File.

A control card was expected.

Chances are that this is a data

card for a previous aborted

action.

Environment Table input card

number 9 has a blank in field

28. D is assumed.

Environment Table input card

number 10 has a blank in field

36. D is assumed.

Header card encountered mith an

invalid action code. The valid

action codes are A, D, C & P.

On an add action if a header match

occurs the old entries will be

deleted and the new entries will

replace them.

Means old Population File Master

is at EOF and no matching header

was found. In the case of an

add this may not be an error.

-133-

Diagnostic Message (cont'd.)

NO WATCH—SO WILL IGNORE

\

PRINTER-NAIYIE IYIANDATORY

CARD 25 INFO MANDATORY

SEQ ERROR IN ENV ON POP FILE

ADVISE DELETING, THEN ADDING

iTAPE-UNIT-1 IYIANDATORY

CARD 19 INFO IYIANDATORY

(TAPE-UNIT-2 IYIANDATORY

CARD 20 INFO IYIANDATORY

ITAPE-UNIT-3 IYIANDATORY

CARD 21 INFO IYIANDATORY

S USABLE-SIZE IYIANDATORY

CARD 4 INFO IYIANDATORY

Explanation (cont'd.)

On a change action if no matching

header is found the action and

subsequent change cards will

be ignored.

Environment table has missing

specification for PRINTER-NAIYIE.

Found sequence error on Pop-

NEUJ ulation File lYIaster within

an Environment Table. This

should never occur but may

occur as the result of a

tape read error.

Environment table has missing

specification for TAPE-UNIT-1.

Environment table has missing

specification for TAPE-UNIT-2.

Environment table has missing

specification for TAPE-UNIT-3.

Environment table has missing

USABLE-SIZE.

-134-

APPENDIX VI

CONSIDERATIONS IN CREATING TESTS

SEQUENCE NUMBERING

Sequence numbers (column 1-6) must be assigned to statements

within each test in accordance with the algorithm shown in

Figure 6.

Three points must be noted:

1. Phase 3 of the Selector inserts Division Headers and cer-

tain section and paragraph-names on the basis of these

sequence numbers, and therefore, misnumbering will cause

disorganization in the Selector output.

2. Phase 3 of the Selector program checks for matching sequence

numbers in adjacent cards, when this condition is detected,

one of the matching pair will be deleted. A diagnostic

will be issued if the deleted card did not match the

other in columns 7-72. Therefore, care must be taken in

sequence numbering tests that appear in the same program

(see the assignments in 3.1.1.2.1). Duplicate numbers

should be assigned to only those items that are, in feet,

duplicates.

3. lYIost of the available serial numbers have been exhausted

by existing tests. The numbers remaining in each series

can be ascertained by checking the listing of the highest

numbered test in each module.

-135-

DIVISI DN SECTION

CARD COLUMN

1 2 3 4 5 6

PROG-ID 0 0 0 1

AUTHOR 0 0 0 2 00-99

IDENT. INSTAL 0 0 0 3 SEQUENTIAL

DATE-UJR 0 0 0 4 NO.

DATE-COMP 0 0 0 5

SECUR 0 0 0 6

REMARKS 0 0 0 7

CONFIG 0 0 0 8

FUNCTION 0000-9999

ENVIR. FILE-CONTROL 0

SEQUENTIAL NUMBER

0 RERUN

0 NUC 1 SAME
000-999

I-O-CONTROL 1 1 TBL

2 SEQ

2 MULTIPLE
SEQUENTIAL NUMBER

FILE SECTION 2,3 3 RAC

DATA WORKING-
STORAGE (77) 4

5 SRT

6 RPUi
0000-9999

(OTHERS) 5 7 SEG
SEQUENTIAL NUMBER

REPORT SECTION 6 8 LIB

9 SUPPORT DECLARATIVES 7

PROC.

NON-DECLAR. 8,9

NOTE: Sequential number field may restart at zero whenever
a digit to its left changes

Figure 6. Sequance Numbering for Test Cards

-136-

TEST REFERENCE TO ENVIRONMENTAL DATA

Test routine cards that are to be replaced by environmental data en-

tries have a special format. Column 7 contains an 'E'.

Columns 8-25 may contain the drop range indicator:

FROIKImmmmmmTOnnnnnn

This indicates that cards from this test with sequence numbers

mmmmmm, nnnnnn and all intervening cards will be eliminated

by the Selector if the environmental entry whose sequence num-

ber appears in columns 75 - 80 of this card has an N in its

column 7 (indicating that the information required is not

available for this configuration). Column 74 contains a D if

the entire test is to be eliminated by the Selector if the

environmental data is absent. (Thie indicator overrides columns

8 - 25). In the absence of either of these indicators, only

the requesting card itself will be dropped if the environmental

data is missing. Column 75 - 80 contains the sequence number

of the entry in the environmental data set that is to replace

col 7 - 80 of this entry.

For example, consider the following cards from test 1N022, each of which

requests replacement by an environmental entry:

1 7 74 80
TA1N022...

•

400124E ET0040

400136EFROM400134T0400145 ET0300

400181E DET0050

Card 400124 requests that the environment data card with sequence number

ET0040 replace it from col 7 through 80. If card ET0040 contains an N

in its column 7, card 400124 will be omitted from the test by the

Selector program. Card 400136 requeets replacement by environment

entry ET0300. If ET0300 has an N in its column 7, the Selector will

omit cards 400134-400145 from test 1N022. Card 400181 requests replace-

mqnt by card ET0050. If ET0050 has an N in its column 7, test 1N022

-137-

mill be omitted in its entirety by the Selector program. In

any case, when the requested environmental data card has an

N in its column 7, a diagnostic message is issued.

DATA NAIMNG CONVENTION

Data items that are used as source and receiving items for test state-

ments are assigned names under the following naming convention:

rum ^ r
l_yaluej |^

cu
cs
DU
DS
IX
xu
XN
AJ
AN

> f||> M IM H
-nnnn

GRP-name

The uppermost format is used for all elementary items except those with

editing symbols within their PICTURE. Fields subject to change begin with

the designation 'UJRK' while constant source items begin with a mnemonic or

literal indication of their VALUE. Because 1NUC requires that data-names

begin with an alphabetical character, the names assigned to source items

containing numeric literals as value will begin with the character 'A'.

The next letters indicate:

CU

CS

DU

DS

IX

xu

XN

A3

AN

unsigned COMPUTATIONAL

signed COMPUTATIONAL

unsigned DISPLAY

signed DISPLAY

index items

alphanumeric JUSTIFIED

alphanumeric unjustified

alphabetic JUSTIFIED

alphabetic unjustified

-138-

The next five characters indicate the size and point location. P

indicates the scaling P, either left or right, and when it appears, the

two digits nearest it indicate the number of P's while the other two

digits indicate the number of 9's in the item's PICTURE. \l indicates

an implied decimal point. The digits indicated by n give the number

of X's, 9's, or A's in the PICTURE. The optional tfnnn indicates an

OCCURS clause with nnn occurrences. The trailing D indicates a

DEPENDING clause while F indicates the lack of same. S indicates

an item containing a REDEFINES clause, L or R indicate SYNCHRONIZED

LEFT and RIGHT respectively and the final nnnn provides for a unique

serial number.

The lower two formats, one for edited items (both alphanumeric and

numeric) and one for group items are self explanatory. This convention

serves two purposes. First, it yields a self-documenting data-name.

Second, and more important, it enables the Selector Program to identify

elementary non-report level 77 items with identical data descriptions

through a simple comparison of data-names. When the result of this

comparison is equal, the Selector eliminates from each test program

all but one of each set of identically defined level 77 data items.

Elimination may be suppressed by adding to the data-name of a given

item a unique serial number, shown as the final nnnn in the preceding

format.

The Selector program also eliminates all but one from each set

of FD's and Ql's with identical names and descriptions. When an

FD is eliminated, the FD clause itself, its defining clauses

(RECORDING H10DE, BLOCK etc.). and the definitions of all its re-

cords are dropped. When a level 01 item is eliminated all items

subordinate to it are also eliminated. The names of items with

level numbers 02-49 are not examined on an individual basis, and

these items are only eliminated when the level 01 to which they

are subordinate is eliminated.

-139-

Because each Test includes all the file and data definitions

it requires, this process of elimination is essential in gene-

rating a test program of reasonable size.

USE OF THE SUPPORT ROUTINE

The Support Routine compares the result achieved by each test

with the expected result. If the character by character compa-

rison indicates a difference, the results are printed with an

underline. If 'ALL' is stated on the HDUJR card (see 3.2.1) all

results are printed.

In order to utilize the routine, the following procedure steps

are required:

1. MOVE results TO SUP-UJK-A.

SUP-UJK-A is a 120 character area used to hold results. If

more than one result is to be moved, each can be moved

character by character to SUP-UJK-B under control of a sub-

script.

2. IYI0VE 'expected-result*' TO SUP-UJK-C.

Expected results can be most easily stated in a literal.

Note that the result is terminated by the additional charac-

ter '*'. Tltris character limits the comparison between

SUP-UJK-A and SUP-UJK-C.

3. ITIOUE 'test-name' TO SUP-ID-UIK-A.

Test-names are five characters in length and are discussed

in 3.1.1.2.1

4. PERFORIT! SUPPORT-RTN THRU SUP-RTN-C.

Return is made to the next statement.

-140-

Variations of this standard linkage may be required by results

that exceed 120 characters, or by other unusual circumstances.

Perusal of the test listings will indicate various alterations

that can be used.

-141-

APPENDIX VII

SYSTEM GENERATION SPECIFICATIONS

Required Configuration

Any IBM System 360 with the following minimum configuration may

be used:

1. a console typewriter with unit address 01F

2. a card punch with unit address 00D

3. two 9-track 800 bpi tape units with unit addresses 182 and 183.

Procedure

Mount input tape on tape unit 182. Ready a scratch tape (for the

population file) on tape unit 183. Ready the card punch (00D). Set

the machine load address to unit 182 and press LOAD. The program will

punch an object deck of the CCVS Character Code Conversion program

and source decks for the three phases of the CCVS Selector Program.

It will then copy the Population File onto the tape readied on unit

183. The user may now separate the punched output into four docks:

1. the character code conversion program loadable deck

2. the Selector phase 1 source deck

3. the Selector phase 2 source deck

4. the Selector phase 3 source deck-

Each of these decks is preceded by a special header card to make it

easy to find. Each header contains an identification in columns

1-12 for the deck following it (TRANSLATOR, SEL PHASE 1, SEL PHASE

2, SEL PHASE 3). Columns 13-80 contain 12-9 punches making the

headers easy to locate in the uninterpreted deck.

-142-

The Character Code Conversion Program may now be used to translate

the new population file to the desired character set. The Selector

programs may be compiled and used to select the other CCVS utility

programs and tests.

NORMAL End of Job message

END OF DOB - Normal end of job has been reached.

ABNORMAL End of Job messages

1. I/O ERROR TAPE1 - An error occurred reading the input tape on 102.

2. I/O ERROR TAPE2 - An error occurred writing the output tape on 103,

3. I/O ERROR PUNCH - An error occurred punching the output.

In all cases, rerun job.

-143-

APPENDIX VIII

SAMPLE CONTROL CARDS FOR CHARACTER CONVERSION PROGRAM

The following unusual characters appear in the control cards:

character card code

t 12-7-8

-. 11-7-8

t 12-2-8

t 12-°
0-5-8

: 2-8

For illustrative purposes, all of the cards shown below contain

the complete range of characters that differ among the four

implementations. In actual use, a pair of SOURCE/OBJECT cards

need only contain those characters that differ between the two

implementations in question. For example, the cards for the

IBfYl/360 to B-3500 conversion need only contain the quote (' to "),

The sample control cards are as follows:

IBm/360

S0URCE181CB();+=><'&

CDC-6400

0B3ECT18OA8^ni & # ~i £ ® 4

GE-635

0B3ECT18OA8();$_=+>&

B-3500

0B3ECT182CB();+ = ><" 4

U-1108

0BZ)ECT18OA8?Sn;&# = +@:

-144-

Security Classification

DOCUMENT CONTROL DATA -R&D
(Security classification of title, body of abstract and indexing .mnolation must be entered when the overall report la clasellled)

i ORIGINATING A C T i v l T v (Corporate author)

Directorate of Systems Design & Development
Hq Electronic Systems Division
L. G. Hanscom Field, Bedford, Mass. 01730

2a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
Zb. GROUP

N/A
3 REPORT TITLE

USER'S MANUAL COBOL COMPILER VALIDATION SYSTEM

4 DESCRIPTIVE NOTES (Type ol report and Indue I ve date a)

None
8 AUTHORIS) (Ftrer name, middle Initial, laat name)

None

8 REPOR T DA TE

July 1970
la. TOTAL NO. OF PAGES

144

7b. NO OF REFS

ta. CONTRACT OR GRANT NO.

IN-HOUSE
b. PROJECT NO. 6917

»a. ORIGINATOR'S REPORT NUMBERI'I

ESD-TR-70-274

96. OTHER REPORT NO(S) (Any other numbera that may be aaalgned
thla report)

10 DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

II. SUPPLEMENTARY NOTES t2. SPONSORING MILITARY ACTIVITY

Hq Electronic Systems Division (AFSC)
L. G. Hanscom Field, Bedford, Mass. 01730

I 3. ABSTRAC T

This technical report consists of detailed specifications for the use of the
COBOL Compiler Validation System (CCVS). The system is designed to measure the
compliance of a specific COBOL compiler against the American National Standards
Institute standard COBOL (ANSI X3.23-1968). This report describes the card in-
put formats, deck structures, tape requirements, test modules, and operator
procedures required to use the system.

DD FORM
I NOV 88 1473

Security Classification

Security Classification

K EV WORDS
BOLE WT ROLE

COBOL
compiler
validation

Security Classification

