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ABSTRACT 

ECL is a programming language system designed to provide an environ- 
ment conducive to effective programming.    It consists of a programming 
language and a system built around that language to serve as a tool and 
vehicle for program manufacture.     The language contains comprehensive 
data types,   operators,   control structures and storage management.     The 
system is oriented to interactive program composition and debugging 
with smooth transition to efficient compiled code.    Most important,   the 
system allows the programmer to tailor the environment to suit his needs. 
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SECTION   I 

INTRODUCTION1 

ECL is a programming language system currently being imple- 
mented as a research project at Harvard University^.    Its goal is an 
environment which will significantly facilitate the production of programs. 
In this paper,  we describe the motivation for this project,   present the 
approach taken in its design,   and sketch the resulting ECL system. 
Detailed treatment of specific aspects of the system   is   found else- 
where [1],   [2]. 

Programmers,   whether professionals or casual users,   manufacture 
a unique product,  programs:    objects,   often large,  which must be coded, 
modified,   debugged,  verified,   made efficient,   and run on data.    In pro- 
viding an environment for this manufacturing,   four goals   are    considered 
primary: 

1. To allow problem-oriented description of algorithm,   data and 
control over a wide range of application areas. 

2. To facilitate program construction and debugging. 

3. To allow and assist in the development of highly efficient 
programs. 

4. To facilitate smooth progression between initial program 
construction and the final realization of an efficient product. 

ECL consists of a programming language and a system built around this 
language to meet these goals. 

The language component,   called ELI,   includes most of the concepts 
of ALGOL 60,   LISP 1. 5,   and COBOL.    It provides standard arithmetic 
capability on scalars and multidimensional arrays,   dynamic storage 

^his paper has also been included in the publication series of the Harvard 
Center for Research in Computing Technology as Technical Report 3-71. 

2The current implementation is on a PDP-10 running under the 10/50 
monitor.     Versions for the IC9000 and other machines are contemplated. 



allocation with automatic storage reclamation,   record handling,   and 
algorithm-independent data description.     Further,   it provides facilities 
•which allow the programmer to define extensions to the language to 
tailor it to each particular problem area.    New data types,   new operators, 
new syntax and new control structures can be added to the language 
enabling the program to model directly the objects,   unit operations, 
relations,   and control behavior of each problem domain.     For example, 
list processing,   matrix arithmetic,   string manipulation by pattern 
matching and replacement,   and discrete simulation can all be carried 
out in ELI by appropriate extensions. 

To aid program construction and debugging,   the ECL system has 
been designed for use in an interactive,   on-line fashionl.     Programs can 
be composed at the console using a text editor and run interpretively 
with appropriate levels of error checking,   tracing,   and conditional 
suspension.     With execution suspended,   the programmer can examine 
data or program,  modify either,   and resume.    Any variable may be 
declared "sensitive";   changes to its value are monitored and an inter- 
rupt generated whenever a programmer-specified predicate associated 
with the variable becomes true. 

Several system facilities contribute to the construction of efficient 
programs.     One is the compiler.     Variables can be data typed so that 
the compiler can perform type checking,   compile in type conversion, 
and choose among alternative procedure bodies on the basis of argument 
data types.     The compiler can be called at any time,   so it is possible to 
write procedures which compile themselves or other procedures.     To 
allow economical use of storage,   the language allows packed data (e. g. , 
bits,   bit strings,   bytes,   and byte strings) and operations on such data 
objects.     This is carried out in a machine-independent notation and 
representation so that programs using this are not tied to a particular 
machine.     To allow the construction of efficient programs which include 
asynchronous components,   ECL includes multiprogramming and a 
programmer-controllable interrupt system. 

Efficiency,   in any metric,   is seldom gained at one fell blow; 
programs are only relatively stable.     Even after code is checked out 
with the interpreter and compiled,   it is usually changed and frequently 
requires debugging.     Further,   it is sometimes necessary to compile 
part of a program in order to get sufficient speed to test an algorithm 
against a large data base.    Since the road is filled -with relapses,   it is 
important to allow smooth progression and regression between initial 

This is not to the neglect of batch processing.    Any interactive language 
can be used in batch mode if the job control commands that would 
normally come from the console are taken from a file and results which 
would normally appear on the console are written to a second file.     ECL 
allows such switching of command streams,   so that batch processing 
falls out as a subcase of its normal mode of operation. 



construction and final product.     It should scarcely need saying that the 
languages acceptable to the interpreter and compiler are identical and 
that compiled and interpreted code may be freely intermixed with no 
restrictions.     For example,   the result of compiled code may be used as 
an argument to interpreted code,"   a goto in interpreted code may lead 
back into compiled code;   variables local to compiled code may be 
accessed by interpreted code,   etc.    A less familiar concept,   but equally 
fundamental,   is the notion that compilation is not all or nothing.    In ECL, 
compilation can be carried out to any level depending on the amount of 
information supplied to the compiler:    specifically,   the number of 
program components that the programmer is willing to accept as being 
invariant.     The more invariants,   the better the compiled code.    As with 
interpreted code,   the execution of compiled code may be broken (either 
by an internal condition or an external interrupt) to allow intervention by 
the programmer,   e. g. ,   for debugging purposes. 

The primary motivation for,   and the intended use of,  the ECL 
programming system is  "difficult" programming efforts.     That is, 
projects which could otherwise be carried out only with considerable 
waste of human or machine resources.    It is our intention that ECL be 
usable for production programming,   hence   the emphasis on machine 
efficiency.     This is not to say that the requirements of interactive usage 
have been slighted in system design.    Quite the contrary,   we view good 
interaction capability and a well-engineered debugging facility as signifi- 
cant tools in tackling a difficult programming project.     The utility of 
on-line debugging should be clear.     Equally important is the use of an 
interactive capability in developing and refining algorithms.    Still more 
important is the use of interaction in allowing measurement of program 
behavior and the attendant optimization based on knowledge of this 
behavior. 



SECTION   II 

SYSTEM   ORGANIZATION   AND   DESIGN   PHILOSOPHY 

Before discussing ECL in detail,   it will be useful to outline its 
internal organization and discuss the philosophy which underlies its 
design. 

Normally,   one uses ECL on-line,   communicating with the system 
via a console.    As seen by the programmer,   ECL is an executor of input 
commands.    Syntactically,   commands correspond roughly to statements 
of an algebraic language;   semantically,   commands embrace all actions 
expressible in the system.     Hence,   commands include:    conventional 
algebraic statements,   definitions used to construct new procedures and 
operators,   and the ''job control1'  statements of a batch processing 
system such as instructions to compile procedures,   transact with data 
sets,   create and destroy processes,   etc. 

As seen by ECL,   the programmer is a source of input commands. 
We will take the system's point of view.    It reads and parses each 
command,   interprets it,   and turns to the next command.    Since commands 
include calls on procedures which may be programmer-defined,   the 
interpretation portion of the cycle may set off the running of a compiled 
program. 

At the heart of ECL is the command handler — the routine which 
controls the above command loop.     It has two main components:    the 
parser and the interpreter (c. f.   Figure 1).     The parser calls on a 
lexical analyzer to decompose the input stream into lexemes.     The 
parser then analyzes the lexeme stream as directed by parse tables 
previously derived from a syntactic specification of the language.     Both 
the input source and the parse tables may be changed by commands,   so 
that the source of commands and the language in which commands are 
expressed are subject to change by the programmer.     The output of the 
parser is a representation of the command as a linked list.     Constituent 
syntactic units are represented by sublists,   recursively.     The command 
handler calls on the interpreter to execute the command.    When this is 
completed,   control returns to the command handler which outputs the 
result and then calls on the parser for the next command. 

The list structured representation has two uses.     On the one hand, 
it can be executed directly by the interpreter;   on the other,   it is a 
convenient form of input to the compiler.     This achieves several economies, 
A program need be parsed only once,   on input.    Hence the interpreter 
does not reparse a line each time it is encountered during execution,   e. g. , 
in a loop.    Also,   the compiler is considerably simplified since it is not 
at all concerned with parsing. 
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Most commands will be function calls,   i. e. ,   the application of a 
routine (procedure or operator) to a set of arguments.    Routines 
initially available in ECL include: 

1. The conventional arithmetic,   relational,   and trigonometric 
routines. 

2. A set of I/O routines. 

3. A routine for defining new procedures and operators. 

4. The compiler. 

5. Routines to define new data types. 

6. Routines to change the parse tables,   thereby changing the 
syntax of the language. 

7. Routines to allocate storage,   and a garbage collector to 
reclaim storage no longer in use. 

8. Routines to create,   run and destroy processes. 

The first three sets require no explanation;   the others will be discussed 
individually in subsequent sections. 

It should be clear that ECL is an unusually eclectic system.     This 
is unavoidable;   a complete programming environment necessarily in- 
cludes many components,   each fairly complex.     There is a certain 
danger in this.    Such a system can easily become very large,   hence 
prohibitively expensive to implement and maintain.     No less dangerous 
is the possibility that a system may be unwieldy for the casual users. 
Finally,   there is the danger that the system may impose too much or 
the wrong kind of structure on the programmer.    With each decision 
made incorrectly,   a language system inconveniences some class of users. 
With many decisions to make,   a system is certain to inconvenience all 
programmers some of the time. 

In ECL,   these very real dangers of an eclectic system have been 
avoided by judicious application of four concepts:    (1) extension 
mechanisms,   (2) sustained variability,   (3) bootstrapping,   and (4) system 
uniformity. 

The first of these has been mentioned earlier.     The idea is to 
construct a small initial system consisting mostly of powerful definition 
facilities for self-extension.     Only the initial system — the nucleus — 
need be implemented and maintained by the system's creators.     The rest 
is built on this by the programmer or programming group to suit its 
needs and taste.     The ECL provides definition mechanisms for extension 
along three axes:    syntax,   data types,   and control structures. 
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A second key concept,   distinct from language extension,   is 
systematic variability.     That is,   the deliberate provision for access by 
the programmer to key points at which he can control system behavior. 
All well-designed systems have key points of control;   usually,  however, 
these points are deeply embedded in the system either on grounds of 
supposed efficiency or because actions to be taken were believed to be 
incapable of sustaining intelligent variation.    Seldom is the burial 
justified.     Allowing programmer control over such issues provides a 
surprising amount of power.    In ECL,   three points have been singled out 
for attention:    error and interrupt handling,   input/output stream direction, 
and data type conversion on binding formal parameters of routines to 
their arguments. 

Bootstrapping,  i. e. ,   using the system to define parts of itself, 
provides system variability at another level.    In ECL,   bootstrapping has 
been a fundamental implementation technique.     The data type extension 
facility was used to create the system data types needed by the inter- 
preter itself.     Further,   large parts of the system are coded in the 
language,   most notably the compiler.    Such system modules can be run 
either interpreted or compiled;   the compiler,   of course,   is compiled 
by itself using the interpreter.     For the system implementor,   this 
technique avoids a large amount of machine language coding with the 
attendant benefits of rapid production,  better system organization,   and 
ease of change.     For sophisticated system users,   this bootstrapping 
provides an additional point of variability:    those portions of the system 
coded in the language are accessible to change. 

The fourth concept in the ECL system is uniformity.    Insofar as 
possible,   the entire environment of the programmer is treated as a 
single homogeneous space without special times,   cases,   or preferred 
objects.     Correspondingly,   the implementor has to deal with a system 
notable for its lack of special cases and "funny"  situations. 

All data types (called modes in ECL) are treated equally.    Each 
class of objects in the system has a mode;  for each mode there are 
values of that mode;   declarations are used to create variables which 
can be assigned values of that mode.    A procedure is like any other 
object in this respect.    It is a value,   it has a mode,   and may be assigned 
to be the value of a procedure-valued variable.    Programs can be 
treated as data and data as programs.     Programs which generate other 
programs are straightforward.     Files (somewhat generalized) are 
another mode in the system,   so that programs can compute the source 
of or sink for input/output and can arrange for arbitrary transformation 
of the data during transmission.     Finally,   there is no preferred status 
for the data type mode.    A mode (e. g. ,   integer) is just as legitimate a 
value as,   say,   3. 1.    Hence,   mode values may be computed,   assigned to 
variables of data type mode,   passed as arguments to routines,   etc. 
There are a number of system-defined routines which take modes as 
arguments and produce new modes.    Additional routines for computing 
modes may be defined by the programmer from these.    Hence,   a 
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programming project might include all of the following (c. f.   Figure 2): 

1. Defining a set of routines which compute modes. 

2. Writing a program which uses variables whose modes are of 
the class generated by 1. 

3. Running the program defined in step 2 interpretively,  halting, 
modifying and debugging it. 

4. Running the routines of step 1 on input data to compute a set of 
modes. 

5. Compiling the program of step 2 to get object code tailored to 
the data types computed in step 4. 

6. Running the object program of step 4 on a data set. 

Conceivably,   this could be done in a single console session.    Alternatively, 
these steps might be carried out over the course of several months as a 
large programming effort goes through the process of defining its data 
formats,   coding and checking out its routines,   metering the input 
profile,   compiling and tuning code,  and finally running.     The key point 
is that all these steps can be carried out in a single system using a 
common language to describe their actions. 



SECTION   III 

SYSTEM   FACILITIES 

In this section we discuss the key facilities seen by the programmer 
using ECL.    In the interest of brevity,  we concentrate on innovative 
features and treat lightly those which are straightforward.    In discussing 
the language component,   we will ignore all but its extension mechanisms; 
in particular,   we do not give its  syntax or programming example in this 
paper.    Suffice it to say that the language is ALGOL-like in syntax, 
ALGOL/LISP-like in semantics and that a formal description of both 
syntax and semantics exists [3].  Built-in data types of the language include 
characters,   integers,   reals,   and Booleans;built-in operations include 
the usual operations on these types.    A system-provided extension 
package adds to this the data types symbol,   list and arrays of reals, 
integers,   and Booleans along with appropriate operations. 

3. 1      Syntax Extension 

A number of proposals for syntax extension have appeared during 
the past few years,   proposals ranging from simple macro extension 
schemes requiring prefix macro name triggers,   to recognition of 
arbitrary context-free languages with complex parse-tree manipulation 
facilities.     The technique used in ECL has two key properties:    (1) it is 
very efficient in both parse speed and storage required,   (2) it includes 
specific provision for simple common additions as well as complex 
comprehensive changes. 

The parser is a deterministic pushdown store analyzer.    It scans 
the input stream from left to right,   recording the progress of the parse 
in state information.    At each step,   the parser either reads the next 
lexeme and adds it to the pushdown store or it reduces the top elements 
of the pushdown store.    In either case,   it goes into a new state.    In the 
case of a reduction,   employed whenever a complete syntactic phrase has 
been found,   a semantic action associated with the phrase class is 
executed.     The choice of read or reduce,   the reduction to be made,   and 
the next state to be entered are recorded in a syntax table as a function 
of the current state,   next lexeme,   and top elements of the pushdown 
store.     This table is computed by a parse table generator using a 
technique developed by F.   DeRemer [4],   from a syntax specification in 
BNF.    Semantic actions augmented to each syntax rule specify the 
desired mapping from the parse tree into the intermediary list structure 
representation—IL.    Each syntactic form of the source text is therefore 
represented by some IL list. 

The interpreter and compiler treat certain IL lists (e. g. ,   those 
representing a <block>) specially;    all others are taken as procedure or 
operator calls where the head of the list is the function name and the 
rest of the list is the set of arguments.     Therefore,   most augments 
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simply map the syntactic construction into prefix form.     The final 
element of the language specification is the definition of the function 
names used as prefix operators in IL. 

The language may be extended by (1) adding to the syntax 
specification new syntax rules with augments     (2) defining the function 
names used as prefix operators in the new IL forms,  thereby defining the 
semantic specification,   (3) calling the parse table generator on the new 
syntax specification,  and (4) switching the parser to be driven by the 
resulting new parse tables.    In subsequent input any command,   in 
particular any program,   containing the new constructs will be analyzed 
employing the new syntax rules,   mapped by the augments into prefix 
form,   and executed by the associated function in the semantic specification. 
Compiling the program and the  semantic specification functions will yield 
acceptable although not specially optimized code for the new construct. 

The most common additions to the language -will surely be new 
operators.     For example,   much of APL [5] can be obtained simply by 
defining the appropriate array operators.    While new operators could be 
added by using the above technique,  this is needlessly complex for such a 
simple addition.    Hence,   ECL provides a special facility to handle this, 
making the definition of a new operator no more difficult than the 
definition of a new procedure.    An identifier in the language can be 
written either like a PL/l identifier (e. g. ,   X,   TEMP,   FOO, 
COEFFICIENT) or as a sequence of special symbols (e. g. ,   +, -, **,+*-, 
= w>).    Any identifier can be declared to be a prefix operator,   an infix 
operator,   or both (e.g.,   the minus sign denotes negation as a prefix 
operator and subtraction as an infix operator. ).    An infix operator can 
be given an integer index from 1 to 7 specifying its binding strength. 

The mechanism used to implement this facility is a simple 
extension of the basic analyzer;  hence,   operator and other extensions 
mesh together smoothly.     The initial syntax specification includes the 
syntactic categories <prefix operator> and <infix operator.>   for 
i =  1, . . . , 7.    All operators are recognized as <identifiers> by the lexical 
analyzer and are handed to the parser with syntactic category ^identifier;*. 
The parser changes the syntactic category to ^prefix operator> or ^infix 
operator.> under "appropriate conditions"  (e. g. ,   for the second 
identifier in X**I).     The parser recognizes the possibility of such an 
appropriate condition by means of a second set of parse tables (actually 
part of the symbol table) which specifies which identifiers may be used 
as operators and in what roles (i. e. ,   prefix,   infix.,   or prefix and infix.). 
The tricky point here is distinguishing between different uses of an 
identifier symbol;   e. g. ,   if # (5) has been declared to be both a prefix and 
infix operator then it may appear in: 

#@B        as a prefix operator acting on B, 

A #(g> B        as an infix operator acting on A and B, 

#<fD «-. . . as an identifier being assigned a new (operator) value. 
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The parser distinguishes between these three uses in the same way 
as the human reader—by local context.     The read routine of the parser 
examines each <identifier> that can be used as an operator,   checks its 
local context and decides how it is being used in the context,   and possibly 
changes its syntactic type to <"prefix-operator> or <infix-operator.>.     The 
rest of the parser,   in particular the part that performs reductions,   is 
oblivious to this local transformation;   it sees either an <identifier>,   a 
<prefix-operator>,   or an <infix-operator.> and regards these as disjoint 
terminal categories. 

3. 2      Storage Management 

There are two classes of storage provided by the ECL system: 
(1) storage automatically allocated and freed at block entry and exit (on 
the stack) and (2) storage dynamically allocated by the program (in the 
heap, using ALGOL 68 [6] terminology).   The former is handled by well- 
known stack implementation techniques and requires little discussion.    In 
providing dynamic storage allocation,  however,   there is a critical design 
decision—whether to provide automatic storage reclamation or whether 
to require explicit return of unused storage,   e. g. ,   by a free command. 

A common characteristic of allocated storage is that the 
programmer does not,   in general,   know when it is becoming unused. 
Typically,   a block is pointed to from many places,   most of which are in 
other allocated blocks.    Deciding when the last reachable pointer ceases 
to reference a block is therefore no simple matter.     Keeping track of 
this at all times places a burden upon the programmer,   one that may 
significantly complicate a program.    Hence,   ECL provides automatic 
reclamation  .    Garbage collection was chosen as the implementation 
technique since this requires the least housekeeping storage and is 
guaranteed to find all unused storage.    The programmer sees only a 
system-provided allocation function — ALLOC.    Specifically,   ALLOC(M) 
allocates an object of mode M and returns a pointer to this object.    When 
available storage is exhausted,   the allocator invokes a garbage collection. 

The garbage collector is basically straightforward.    A few subtle 
points are,  however,  worth mentioning.     The trace phase traces all 
storage blocks referenced and marks all machine words in use using a 
bit map.     By marking machine words,   not objects,   it is possible to mark 
only part of a block in a compound object.    Garbage collection leaves 
untouched these parts actually referenced and reclaims the rest.     The 
difficult point in the trace phase is the possibility,   indeed almost certainty, 

Dynamic storage management in ECL therefore differs from that of 
PL/l [7],     The latter provides dynamic storage allocation but no 
automatic reclamation. 
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of tracing through objects having programmer-defined mode.     Given an 
object,   the trace routine must be able to determine how big it is (so as 
to mark all of its words),   whether or not it has pointers within it and,   if 
so,   where they are (so they can be traced).     This information is calculated 
by internal system routines whenever a new mode is defined and is 
entered into tables associated with the mode.     Once marking is complete, 
the garbage collector sweeps linearly through storage,   collects all 
unmarked work into maximal contiguous blocks,   and sorts these blocks 
by size into a set of linked lists forming the free storage pool.     Keeping 
different lists for various sized blocks (currently,   one list for each 
power of 2) speeds up subsequent allocations. 

Clearly,   it is best to avoid garbage collection entirely if possible. 
We therefore stress that ECL also provides automatic,   block-structured 
storage.     This behaves like a normal ALGOL 60 stack,   holding variables 
declared to reside on the stack as well as arguments to routines,   and 
temporary results.    Hence,   all computation concerned with ALGOL-like 
objects  (e. g. ,   scalars and arrays of fixed-point and floating-point 
numbers) can be carried out on the stack and requires no use of the free 
storage mechanism. 

3. 3      Data Type Extensions 

Perhaps the chief requirement of a programming language intended 
to serve a wide range of application areas is an equally wide range of 
data types or modes.     Clearly,   a language must include integers and 
reals for numerical computation,   Booleans as the result of relational 
operations,   and characters for headings and labels.     List processing 
implies data objects which reference other objects,   i. e. ,   pointers. 
However,   compiled code can be made considerably more efficient if a 
pointer variable may be declared as restricted in what types of objects 
it can point to;   this introduces integer pointers,   real pointers, 
character pointers,   Boolean pointers,   etc.     Packed objects such as bit 
vectors are sometimes essential in saving core storage.    A list of 
interesting data types could go on indefinitely. 

In the face of so many diverse claimants for inclusion in a language, 
the only sensible solution is an extension facility:    here,   a mechanism for 
defining new modes.     The language provides a few basic modes and five 
primitive routines for defining new modes in terms of these.     The 
primitive mode constructors are ARRAY,   PTR,   STRUCT,   PROC,   and 
ONEOF;  these create arrays,   pointers,  heterogeneous structures, 
procedures,   and mode unions,   respectively.     These mode constructors 
are callable routines.     They evaluate their arguments,   perform some 
computation,   and deliver a result having data type mode.     The resulting 
modes are just as legitimate as the built-in modes.   Objects of these 
types may be assigned values,   passed as arguments to routines,   returned 
as the value of routines,   etc. 
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The key point of this facility is that the mode constructors compile 
modes in the same sense that a traditional compiler compiles procedures. 
That is,   they calculate once,   at the time a mode is created,   all inform- 
ation about the mode that the system will subsequently need.     One such 
computation is the storage layout for compound objects — how to 
represent objects of the constructed mode in the fewest possible machine 
words.     The current algorithm produces optimal packing on almost all 
cases;   e. g. ,   a structure consisting of one 18-bit pointer,   four 7-bit 
characters,   three 5-bit fields,   one 3-bit field and four 1-bit fields will 
be packed into two 36-bit words1.     The result of the calculation is a 
structure table giving the location and mode of each component in a 
compound object,  to be used by subsequent phases of mode compilation 
and by the runtime routines.    Another computation is preparing the tables 
for the garbage collector,   in particular,   deciding whether an object of this 
mode contains a pointer to be traced.     The most important computation, 
however,   is the generation of three blocks of machine code:    (1) to con- 
struct objects of this mode,   (2) to perform assignments to objects of this 
mode and (3) (for compound objects only) to select the individual com- 
ponents of objects of this mode.     To effect construction,   assignment,   and 
selection,   the interpreter executes these code bodies so that these 
operations are partly compiled,   even from interpreted code.     The compiler 
may either use these bodies or compile corresponding code in-line 
depending on whether it is optimizing space or time. 

The programmer can use these mode compilation routines to de- 
fine the types he needs.    For example,   bit vectors are defined as ARRAYs 
of Booleans,   multidimensional arrays of any sort are defined by com- 
posing the function ARRAY,   data processing records are STRUCTs of 
characters and integers,   and a list of reals is constructed from blocks of 
identical STRUCTs each containing an integer and a pointer to the next 
block.    Further,  the programmer can define new mode-valued procedures 
(i. e. ,   mode generators) in terms of the primitive routines.    We anticipate 
a library of modes and mode-valued procedures analogous to a library 
of numerical algorithms. 

One additional facet of the mode extension facility requires 
discussion.    When a mode is defined using the system primitives, 
certain behaviors are automatically assumed.    For example,   if BYTE 
names the mode ARRAY of 8 Booleans (represented as an 8-bit object), 
it will be assumed that an object X of mode BYTE has 8 components which 

This is,   of course,   entirely machine-dependent.    However,   the pro- 
grammer never sees this packing.     He deals only with objects of the 
language which have the right properties — e. g. ,   access to the second 
1-bit field gets the desired value.    This differs from the approach taken 
in LISP 2 [8] where the programmer deals explicitly with the bit packing 
himself. 
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may be accessed as Boolean values by X[I] for I =  1, . . . , 8,  that assign- 
ment of one BYTE to another copies all 8 bits,   and that if X is to be 
passed as an argument to a routine then that routine must have a 
corresponding formal parameter of mode BYTE.    If the programmer 
wishes,  he can override these assumptions and specify the behavior he 
wants.    He can,   for example,   declare that an object X of mode BYTE is 
to have the following behavior: 

1. X can be assigned an integer value (e. g. ,   X *- 73).    If the value 
can be represented in 8 bits 2's complement notation,   an 8-bit assign- 
ment is made;   otherwise,   an error procedure P is to be called with the 
integer value as an argument. 

2. X can be used as an argument to a routine taking an integer 
formal parameter, in which case sign extension is used to get a full- 
word value to be treated as signed integer. 

3. X is to be treated as if it had an additional 9th component 
recording the number of leading O's in its bit configuration.     X[9] is 
always interpreted as an integer count of the number of leading O's in 
X[l]. . . X[8] at that point in the computation. 

Using this facility,   the programmer can specify exactly the 
properties of his data objects.    Encoded representation for values, 
variables which monitor their values,   objects with "protected" fields, 
and the ability to represent sparse compound objects fall out as simple 
applications. 

3. 4      Compilation 

A compiler can be viewed in two distinct ways.    It can be taken as 
a device for translating programs from source representation to one 
which can be executed directly by some computing machine.    Alter- 
natively,   it can be seen as a means for factoring a computation into two 
parts:    that which is invariant with respect to input data and can be 
performed once at compile time,   and that which depends on the data and 
is therefore postponed until run time.     The second view subsumes the 
first and is surely the more fundamental.     Translation is only one of 
many computations that can be factored out.    Others include:    evaluation 
of expressions at compile time,   data type checking,   and generic 
selection.     The interesting problems in compilation can be best 
addressed by pushing the notion of factoring to take advantage of 
additional invariants.    It  is this line of approach that characterizes the 
ECL compiler. 

A program consists essentially of a large number of variables,   a 
few constants,   and some punctuation to paste this all together.    ECL 
carries the notion of variable somewhat farther than most languages. 
For example,   a program may declare X to be an object of mode 
TRIPLE when TRIPLE is a mode-valued variable or may apply FOO to 

15- 



a set of arguments where FOO is a procedure-valued variable.     This 
allows the programmer great flexibility,   but presents the compiler with 
the problem of dealing with an unknown value of the variable.     There are 
three possible routes it might take: 

1. Attempt to deduce the value by examining the structure of the 
program,   e. g. ,   look for an initialization of or assignment to TRIPLE 
and verify that the value will not change. 

2. Obtain explicit assistance from the programmer. 

3. Wait until run time when the value will surely be known. 

From a theoretical point of view,  the first route has certain appeal. 
However,   the inevitable undecidability results are assurance that in 
general one can deduce nothing;   discovering subcases in which 
interesting deductions can be made is a significant research problem. 
Further,   making such deductions is often a pointless task:    the 
programmer usually knows far more about a program than could ever 
be deduced from examining it;  he alone knows its intended function and 
the environment in which it is to run. 

Hence,   the second route is the mainstay of the compiler.    In 
compiling a procedure P,   the compiler is called with two arguments: 
P and a list L of all variables in P -whose value is to be "frozen. "  P is 
then compiled with each variable on L replaced by the value of that 
variable at the point -where the compiler is called.     (It will be recalled 
that this point might be -while executing another procedure or P itself. ) 
For example,   if X is declared in P to be a TRIPLE and TRIPLE is on 
the frozen list L,   then the value of TRIPLE must be a mode and this 
mode is taken as the data type of X.    Similarly,   if FOO appears on L, 
then an appearance of FOO(arg., . . . , arg   ) can generate code specific to 
the value of FOO,   e. g. ,   by in-line expansion.     To treat a related case, 
it may be that FOO does not appear on L but FOO is declared in P to 
have mode FOOMODE and FOOMODE is a variable on L.     The compiler 
then does not have access to the value of FOO,   but it does know its data 
type,   i. e. ,   the modes of its arguments and the mode of its result. 
Hence,   the compiler can perform type-checking of arguments in calls 
on FOO and type-check the usage of its result in a larger context (e. g. , 
A+ FOCXargj,... ,argfl)). 

Any set of variables may appear on the freeze  list L.     If an 
operator and all its arguments are frozen (e. g. ,   by appearance on L), 
then the entire function application is frozen  .     By recursive application 
of this rule,   it is possible for arbitrary complex expressions to be 

Assuming that the operator definition contains no free variables. 
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frozen.     These can and will be evaluated during compilation.     For 
example,   if X,   Y,   FOO,   and FUM are all on L,   then 

FUM(Y, FOO(Y), FOO(FOO(X))) 

will be evaluated,  the result replacing that expression in the code 
generated. 

For those variables not in L,   the third route remains open:    wait 
until run time to obtain its value.     This includes "ordinary'1 variables 
as 'well as mode identifiers and procedure names.    For example,   if 
TRIPLE is not on L,   then in a procedure with formal parameter 
declared to be a TRIPLE the data type is left open until the procedure 
is called.     The compiler is governed by a consistent rule:    it will 
compile the best code it can with the amount of information (i. e. ,   set of 
invariants) given to it.     This code can be anything from a single call on 
the interpreter (in those cases where nothing useful is frozen) to the 
value of the program (in those cases where everything is frozen).     The 
interesting cases fall somewhere in between. 

It is possible to compile a procedure dynamically during the 
course of some computation as values are calculated and frozen.    Hence, 
a computation may involve reading part of the input data,   compiling a 
program specific to that data,   and running the compiled routine on the 
remainder of the data.     Programs 'which periodically recompile them- 
selves based on statistics gathered during the course of a run are an 
obvious application. 

3. 5      Errors and Interrupt Handling 

It should go without saying that a modern programming language 
needs a facility for handling errors and interrupts.     That is,   a means 
for accepting asynchronous external interrupts and dealing with internal 
error conditions.    ECL takes care of both by means of the procedure 
call mechanism.    Every error or interrupt may be treated as if the 
program had explicitly called an error handling routine of its choice 
from the point -where the error or interrupt occurred.    Associated with 
each1 error or interrupt is a procedure name (e. g. ,   ENDOFILE, 
FLOATOVF,   FIXOVF,   etc. ).    When an error occurs or an interrupt 
comes in,  the normal computation sequence is suspended at that point 
and a system routine ERR is entered.     ERR finds the symbolic name 
associated -with that error/interrupt condition and then checks whether 
there is a variable of type procedure valid at that point in the suspended 
computation.    If no such variable exists,   ERR types out an error 
message and goes into a break routine which preserves the state of the 

These include:    end of file,   fixed point overflow,   floating point overflow, 
taking the value of a null pointer,  the completion of certain I/O trans- 
actions,   subscript index out of range,   and timer interrupt. 
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computation and accepts further commands from the console.    If,  how- 
ever,  there is an appropriate variable,   then the associated procedure is 
called;   so far as ECL is concerned,   that is the end of the matter—any- 
further action is the responsibility of the called routine. 

In the case of an external interrupt,   it may be possible to handle 
the interrupt without regard to the suspended environment.    Such an 
interrupt processor may perform some computation on the interrupt 
message,   change global flags,   variables,   and queues,   then continue with 
the suspended computation.     However,   to handle most errors and 
internal interrupts,  it is necessary to access the environment in which 
the condition occurred.     For example,   it will frequently be useful to 
examine the call structure (the sequence of function calls that lead to this 
point) and to examine and change the values of variables in the suspended 
environment.     ECL allows access to this information,   not as a special 
feature offered to the error handling routine,   but rather as a system 
facility available at all times.     A stack of return points is used by ECL 
so as to allow recursive procedures;   it is a simple matter to also stack 
the symbolic name of the called routine.     Hence,   any procedure, 
whether called to process an interrupt or otherwise,   can obtain the 
symbolic name of the Ith dynamically preceding routine (CALLER(I)) and 
can access the value of any variable in that environment   (DYB(<variable 
name>,I)). 

An error or interrupt routine can exit in a number of ways, 
depending on the cause of the interruption.     GOTO L transfers control 
to the nearest enclosing label L;  this,  however,   may be arbitrary far 
back in the chain of calls.    Since the argument to GOTO is evaluated,  it 
is possible to use DYB to get to an arbitrary level,   even one "masked" 
by another label of the same name;   e. g. ,   GOTO DYB(L, I) transfers 
control to the label L defined in the Ith enclosing environment.     Two 
other routines allow returning a computed value.     For errors, 
CONTWITH(<expression>) continues computation with the value of 
<expression> used in place of the expression which caused the error. 
RETURN(<expression>, I) acts as if the Ith routine back on the call 
chain had suddenly returned to its caller with the value of <expression>. 

In summary,   this scheme provides a powerful,  inexpensive 
mechanism giving the programmer fine control over errors and inter- 
rupts.     The program is armed for a specific error or interrupt in any 
scope where a procedure-valued variable of the appropriate name is 
defined.    Errors or interrupts for which the program is so armed are 
handled by the specified routine.     Control and environmental inquiry 
facilities of the system provide the linguistic power needed by the 
routine to handle such conditions intelligently. 
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3. 6      Control Structures:    Paths and Multiprogramming 

The error/interrupt facility allows the mainline of computation to 
be suspended so that a subsidiary computation can be performed to 
process the cause of interruption.    However,   this is strictly a priority 
situation:   the interrupt routine must complete and exit before the main 
computation can continue.    It is frequently useful to deal with subsidiary 
computations going on whenever there is any work to be performed,   in 
parallel with the main computation. 

ECL provides such parallel computation.    In general,   a job 
consists of some dynamically varying number of independent processes 
(called paths in ECL).    What has been described thus far is the behavior 
of one such path.     Indeed,   -when ECL is started,   there is but one path. 
However,   that path may create new paths and start computations on these 
paths,   computations which in general proceed asynchronously with 
respect to computation on the starting path.     Each path is an independent 
computational entity consisting of an environment (the call structure and 
variables created during this call sequence) and an activation record 
which,   among other things,   records the state of the path.    States include 
suspended,   waiting for some resource (e. g. ,   i/O),   and runnable.    All 
runnable      paths are parallel processes.     The state of a path may be 
changed by a number of commands;   these include SUSPEND some path, 
WAIT some period of time,   and the Dijkstra P and V semaphores [9] 
for synchronization among paths.    All paths have a certain portion of 
their environment in common — potentially,   any allocated storage.     Hence, 
it is possible for two or more paths to reference common data,   e. g. ,   a 
buffer,   a set of flags,   or a message queue.     This,   coupled with the P and 
V semaphores,   allows the conventional sort of cooperating sequential 
processes to be established. 

The really interesting aspects of the ECL path facility lie,   however, 
in its ability to host nonconventional multiprogramming,   in particular, 
control regimes not explicitly anticipated by its designers.       That is, 
like many other facilities in ECL,   the multiprogramming mechanism is 
extensible.    As with other extension facilities,   that for multiprogramming 
consists of a set of primitives and a framework for combining them. 
Primitive operations include creating a path,   setting up a function to be 
executed in a created path,   running a path,   deleting a path    accessing 
and changing the value of a variable in some other path,   and making a 
copy of a path.     The basic framework is provided by a distinguished 
path—the control interpreter.     This is unique in two respects: 
(1) timer interrupts pass directly to it;   (2) there is a control primitive — 
CIA—by which other paths can call for the execution of an arbitrary 
procedure in the environment of the control interpreter and wait for the 
result. 

There is a program which runs in the control interpreter path and 
acts as the central control of ECL.     Basically,   its functions are to 
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handle i/O requests,   arrange for running the other paths,   and handle 
coordination between paths.     This program is written in the language 
using the primitives mentioned above.    For example,   to perform path 
scheduling,   a queue of runnable paths is maintained;  when the timer 
interrupt comes into the control interpreter,   the path that was running 
is put at the end of the queue,   a new path is chosen from the runnable 
queue by the scheduler,   and the start-path primitive is executed to run 
the new path.     The scheduler is also  a routine written in the language. 
Currently,   it simply chooses paths in FIFO order.     However,   the 
programmer may redefine the scheduler by substituting his own routine 
for the system-provided one.     Hence,   such refinements as a priority 
system,   either simple or with dynamically changing priorities,   can be 
readily added. 

Other control activities are equally easy to program.     For 
example,   a Dijkstra semaphore is a language-defined data structure 
consisting of an integer count and a queue of paths (also a defined data 
type) waiting on this semaphore.     The P and V operations are implemented 
by using CIA primitive to transfer into the environment of the control 
interpreter where the necessary queues can be safely modified. 

With the framework provided,   it is straightforward to implement 
most of the known control structures,   e. g. ,co-routines,   multiple 
parallel returns,   cooperating sequential processes and fork/join 
structures.    Further,   since ECL leaves its control structures open to 
change,   it will be possible to develop,   as needed,   a variety of other 
control regimes. 
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SECTION   IV 

SUMMARY 

The ECL programming system has been designed to provide an 
environment conducive to effective programming.     To this end,  it 
contains a language with comprehensive data types,   operators,   control 
structures,   and storage management facilities.    It allows interactive 
program composition and debugging with smooth transition to efficient 
compiled code.     Most important,   it allows the programmer to tailor 
this environment to suit his needs. 
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