
PDP-1 COMPUTER
ELECTRICAL ENGINEERING DEPARTMENT

M.l.T.
CAMBRIDGE, MASSACHUSETTS 02139

PDP-23-3

ID

September 5, 1967

ID, - Invisible Debugger

Invisible Debugger, commonly referred to as ID, is
,

,a ,utility program in the PDP-1 time sharing system written

to aid in the debugging of other programs. An advanced

ID has been written (April, 1966) to allow all operations

to be carried out eithe'r directly on drum fields or on

running cores. It uses the drum to allow the user full

use of core (s) and drum field (s) for his program and

to provide extra. features. ID and the program being

debugged each have a drum field to themselves.

For clarity when typing examples are given herein,

the typing done by the user of ID is underlined. Also,

when needed the following symbols a,re assigned to the

invisible flexo characters:

carriage return ~

tabula,tion -+1

space ~

backspace i::-

upper ca.se ~
lower case ~

-2···

A. Q!U!£~~ ~~~!u~~~l ~£~2~t~~~£U

1. When a time-sharing user requests ID he is automatically
assigned one drum field to be used for his ID program.
The user's running field, which was assigned when the
console was turned on, and the console.' s pseudo drum
fields will be used as the conSble's drum and core
fields whose contents may be examined and modified
by the use of ID. The drum field assigned upon'
requesting ID is the console's ID field and may not
be examined or modified by instructions to ID or by
execution of a program.

2. When entering ID, the user has either a binary tape
containing the program and its symbols or a binary
version of his program existing on his pseudo field 1
with its symbols still in the POSSIBLE SYMBOL TABLE
located in the console's running field (1. e., in core 0.)

a • !:£2~£~l! £U ~~!~Q. ± !U£ §'~Q.£1~ ~U !:Q§.SI;§1~ §.XM;§OL !~;§~:
To inform ID of the meaning of the symbols used in
the program type:

gj~~~
ID will then take a copy of POSSIBLE SYM:BOL TABLE
and put it into its own ID SYMBOL TABLE. To get
a copy of the binary prog~am from pseudo field 1
and place it into the consoie's current field so
that it can be executed, type'

1JtJJ.~~
(NOTE;, If changed, the limits M+1 and M+2 should
be initialized befot'e the above command by typing
uM-".)

-3-

~rogr.~ill ~Ug §.l1.!!Q.Q.1.§. Q.!! ~ru2~: To clear all a.vailable
registers of the current field memory, type:

1E.~~
Th.is command will ~ero all the registers of the
current field. Then to kill the previous symbol
table, leaving only the ,initial PDP-l instruction
mnemonics, type:

\ ~K_~~
To read in the bina.ry tape containing the prog~am
or data, place the tape irlctbe ~eaCler a.nd type.·

1~ y .JJ,
-----~

Th.is causes ID to yank a standard binary black
format tape into the curre~t field menrQry. To
inform I!> of the meaning of the symbols used

in theprogt'am, place the symbol ta.pe, which was
prepared by 'P(!)SSIBLE orJlIIDAS SnmQ1 PUNCH, in
the rea.der. . If the tape is a binary tape from
MIDAS type;

!1n.~.iY~
If it is an alphanumeric tape from POSSIBLE type:

Jt~ip
ID will then read in the symbol tape and will
merge the contents of this tape with. ID't.s own
symbo 1 table. After this, ID is ready for use
and will be able to interpret constants and
instructions typed either symboliCally or numerically
or both.

-4-

3. Typing

jM~
preceded by the addres,s where the user wants his:program
to begin'\'lill cause tb.eprogram to start· running.
For example, typing:

!2!1.d
or

~p
will cause control to be transferred to absolute
, ..

location 100 or symbolic location tla" respectively.

4. To return control to ID after using a nG~~ command,
press the console's CALL BUTTON.

-5-

B. ~~r.r.~ E1:,e.ld
This new version of ID (April, 1966) allows operations

to be carried out directly on drum fields or on the user's
running cores by making the field involved the "current field."
Initially ID is set up so that the user's running core 0 is the
"current field ll • The "current field" is normally specIt'ied
by the underbar command. Typing

x
causes field x to become the flcori;tent field tf • If x~177,
x itself is used; otherwise, bits 2+5 of x are used.
Fields 0 to 7 refer to the user's normal running core.
For time-sharing users, only 0 and 1 are legal, and 1 is
lega,l only If core 1 is assigned to the user. Fields
.1l.0-100 are illegal. Fields greater than (» 100 refer to
drum fields. For example, typing

103_
~.DI.l\kes the user's pseudo fie ld 3 the current fie ld.
Absolute field are indicated by bit 12. For example,

161

causes absolute field 21 to become II current fI • Typing
underbar (_) alone will ca.,use the current field to be
printed out.

-6-

c. Ex§.l!.!U§. t iQ.n !1illg M.Q.g;!,~!~t!.Q.n Q.£ §i2.r.ed ~nfQ.£l.!!§.llQ!l

1. Q~ning~-!~g!~~~!n th~ £~r.t~~ £!~!g - In using
ID" a fundamental idea is that of open.:hng a. register.
so tha.t its contents may be examined and/or cha.nged.
This may be accomplished by typing the twelve-bit
address of the register in the current field to be
opened, either symbolically or as an a.bso1ute constant,
followed by a slash. For example;

!:~±gL
or

g~§.u_

When the above is typed ID will inunediately print a
tabulation, then the contents of· that register in
the current field, followed by another' tabulation.
Continuing the example above:

!:~±gL ~I add 10c+3 ~I
(NOTE: Current drum fields not assigned to the user
cannot be examined.)

I

2, Examination of a register not in the current field - It
is frequently deSirable to open a. register not in the
current field so that is contents may be examined
and/or changed. This is accomplished by typing a. 16
bit extended address of the register to be opened,

,
either symbolically or as an absolute constant, followed
by a vertical bar. The corresponding core module will
become the "current !ield tt • For example:

123451
will 9ause core 1 to bec(a:mte current, and open"" re~ister
2345. Typing

i reg'
will open regi~ter reg in core 1 and make core 1 current.
(Note: i==10000 in POSSIBLE and ID symbol tab;Les.)
Like slash, when the above is typed, ID will immediately
print a lower case, tabulation, then the contents of
the register, fol10weCl by another tabulation.

I

-7-

(NOTE: For time-sharing users, reference to core 1 is
legal only if core 1 is assigned ,to that user.)

3. IQd1fx!ns ang clQ!!n& ~~!g~!i!t - Once a register
. . .

has 'been opened in either of the above manners its
contents may be modified" if desired, by typing .
the change either symbolically or as a constant.
For example:

t!~ -+1 add 10c+3 -+1 §:.gg_!2.£±5.

(NOTE: System fields or drum fields not assigned
to the user cannot be modified.)

A command character which may be hel~rul in modifying
reg~sters is Q. This ha:s the value of the last quantity
typed 'by ID or you. For example, to chan.ge the
contents of register 50 from 155 to 157 type:

ill -+1 155 -+1 S±g

H~wever, the modification is not placed in memory
until the user types one of the three terminating
characters - up arrow, backspace, or carriage return.
The effect of each of these characters is given ~n
the following table:

-8-

Action --""""!"'---
Returns carriage and modifies
the contents of the open
register if a modification
has been typed. The register
becomes closed. If a. vertical
bar w'as used to open the
register, bits 2 through 5
indicate the core module that
becomes "current".

Same action as carriage return
except in a.ddi tion the next
sequential register in the
current field is opened
a,utomatioally (i.e., current
field plus the address ~s typed
followed by a slash tab, and the
oontents of the register,).
If no reiister,ls open when
the backspace is typed, the
_~ext· sequential register in the
current field, is still opened.
NOTE: If the current location
is 7777, regi.ster 0 of the
current field will be opened
next. .

Same act1one,s Daelt',space except
this oharacter opens. the
preceding register of the
current field instead of the
following one~
NOTE·: If the current location
is OJ register 7777 of the
current field will .be opened
next.

Once a particular register has been closed by use of either
tbe carriage return, ba.ckspace,or up arrow" further
moclificatio~s of that register is impossible until it is opened
again.

-9-

4. Additional Interpretation of Register Contents -If,
while a register is open, anyone of the following
characters is typed, the contents of that register
will be reprinted in the indicated manner.

Qh9.£~g!!r !nt!!:~etat~<2.rl;

- typ~out quantity as a constant
+ types out quantity as an instruction
- types out as if quantity is a

concise code.

To illustrate the use of these interpretation characters,
consider the follow'ing examples:

!:U+10QL +1 lac abc +1 .~ +1 202147
£~g±601L +1 dac 6251 : +1 ubr

where abc':has the value 2147.

+ +1 lac abc - ,

5. Examination and modification of a deferred register - Once
an in tructionhas been typed out by ID, it is frequently
desired to know the contents of the register adelressed
by the instruction. The control characters tab (+1),
greated than (», and special uses of slahs (I) and
vertica1 bar (I) provide this facility.
a. After opening a register, the character ta,b (+1)

may be typed to close that register and open the
register in the current field addressed by its
instruction. 'I'h.i.s causes the lo~,tion counter,
a register internal to ID which contains the
address of the last register opened, to be changed.
An example ,follOWS:

200, +1 lac abc +1 ~1
abcl +1 30 +1 t
abc+1/+1 0 +.1

Modiftcations may be'made to a register while it is
opened during this procedure. For example:

20QL +1 lac abc +1 l§.L!!bctl ~1
abo+1/+1 ,t}o +1 5.

-10-

b. Like tab, the character> can be used to find out
the contents of the register in the current field
addressed by its in,$truction. Unlike~tab, it just
prints a tab and the contents (not the address
followed by a slash.) It opens, modifies, and
closes registers in the' same ~anner as tab.
The current loca.tion counter is not changed. For
example;

gQQL ~I lac abc ~I ~ 30 ~I ~
201/ ~I dac bt:>p

c. The character / when used while a register is
open closes the register without making any
modifications to it and types out the contents
of the register in the current field which was
last typed by you or ID. The location counter
is changed to the new register opened. For
example:

or

, gooL -:+1 -ac abc ~I L ~I 30 ~I ~
abc+1/ ~I O~I

20QL ~I lac abc ~I !QQL tl dac 1 tl

d. Like /, the character I when used while a register
is open closes the register without making any
modifications to it and types out the contents
of the 16-bit addresses register whttIlh was last
typed by you or ID. The location counter and
the current field are both changed according to
this new register opened. For example:

1200/ +1 i+d~f ~I 1 ~I 2150 ~I ~
i def+1/ ~I 1567 ~I (i=10000)

Notice that Core 1 was made the current field and the
location counter was changed to core 1 locatio~ def.

D. ~ QY.tr.~ !&.£ati2.n :.g,Qun~!£
The current location counter is a register internal to
ID which 'contains the address of the last register
opeI:led in the current field. To re-open a register that
has aCCidently been closed' or to refer to reg4sters
near the one presently opened, the current location
character,' point C.), is used. Typing an address
followed by a register opening characters such as slash
or vertical bar sets ~he current location counter to
that address. Backspace, up arrow (t), and tab
automatically set this register to the appropriate
address; carriage return does not affect it. Since
point (.) has the value of the curnent location,
expressions such as dliP .+1 may be typed in:to ID
(although they will not be typed out in this forma,t).

-12-

E. §.D!?2.1§. ru!9. ~h~ §.~IJ.fQ.o 1 Ta !?!~

1. A symbol isa str~ng of not more than six letters and
numerals, oontaining at least one letter, and having
a value assooiated with it. ID maintains a table
of symbols and their values, and uses it to interpret
symbolio words.

2. Initially, ID's symbol table oontains 110 symbols, oor
responding to PDP-1 instruotionmnemonics, such as the
operation mnemonios like 1~£, :k~2., ~~£.,'the indirect
bit i, the shift mnemonios 1s, 2s, eto.

'. - '------
3. There are five different ways of adding six oharacter symbols ..

to IDls symbol table.
a. A binary symbol tape may be prepared by an assembler

and entered into ID by typing ~~. This oauses the
tape to be read and merges the symbols with ID's
symbol tab'~fi.

b. An alphanumeric or numerio tape may be prepared by
an assembler and entered intoID by typing ~.
This oauses the tape to be read and merges the symbols
with ID's symbol table.

o. Symbols may be left in core by an assembler and
entered into ID by typing 2T.

d. Symbols ma.y be defined direotly by means of a olose
parenthesis as in the following example:

g~I2.J~.ml + I
The value 2475 is then associa,ted with sym. Symbols
may be redefined in this manner. (Even the initial
PDP-1 mnemonios may be redefined, but there is rarely
any reason to do so.) The ~edefinitions oan be in
terms of their old value:
If

the oomma,nd
. ~!?£±u££l

-13-

will make

§"Q£=.55

a, symbol may be defined while a register is open by
also using the close parenthesis. This would define
tlte"symbol to be the contents of the open register.
for example,

!L ~I 720307 +1 gBll
defines dpy to be 720307.

e. Symbols may be defined to be equal to the current
location by typing the symbol followed by a, comma,.
This does not affect the contents of.the current
10 ation. For example, if the register la'st opened
was 50:

~QL +1 lac 774 ~I
by typing

§.~.L

sym is defined as 50 but the register still contains

1~~_1.7.~·
~L +1 lac 774 ~I

f. Symbols may also be defined to be equal to the 12-bit
address part of the ,last expression typed by the User
or ID by typing the symbol followed by an imply sign
(:::» • Thus:

~QL ~ I add~?56 ~ 1 £Q02

!..L+ I add con~"
Thus, con was defined to be 256,

, ..-,' ~

4. Symbols may be destroyed by using the commands ~ or_~
where symis a symbol. The command K kills all'the symbols
.in ID's table except the '110 PDP-1 instruction mnemonics.
(If any of these were redefined, however, the original
value is lli?~ restored.)

5. If a symbol "hich has ,hot been defined is typed, ID types.
a capital U (undefined) and idnores the entire line.

-14-

F. ~~L:t.n-!t.r.uctiQ.Bs.~ons tant~ cand_w£~i1Ql!

1. Instructions, constants, and locations, which collectively
may be referred to as words, maybe typed by the user
at any time using any combination of numbers an/or
defined symbols separated by appropriate connectives
such as pd.us and.m.inus signs. In ID, a symbol is any
combination of letters and numbers not longer than
six characters, which contain at leasot one letter.
(In most other versions of DDT, symbols can nqt be
longer than three characters.)

2. The connectives used in forming words are listed in
the following table along with their meanings.

QQBO-!~iv!! ~~~n!ng~

+

A

v

Thus,
~ng

adds value of next symbol
or number to word.

adds value of next symbol or
number to word.

subtracts value of next symbol
or number to word.

a~as value of next symbol or
number onto word.

ors value of next symbol or
number into word.

add 10
lac 2147
lac i adr (where adr has previ

ously been defined as
200)

X;!&1ds

400010
202147

dpy-i
claVcliVclf7

law 144

720007
764207
700144

-15-

G. Evaluai!2B_of_WoEg~

1. Often it is desirable to be able to evalua.te a word
that is to be used in a program without actually
affecting memory. This may be done at any time without
opening a register by simply typing the ~rd to be
evaluated followed by the appropriate interpretation
characters (see section c-4). When this is done, ID
will automatically type out the appropriate interpretation
of the word followed by a carriage return.

H. NQ.~...Q.!Lm!iQ.lic Tl:e~=0ui
A given register, containing only an octal number, can
be interpreted symbolically in more than one way. f Thus,
ID may sometimes type out instructions you ma.y not expect.
1. If several symbols are defined. as having the same

value, ID chooses to print out the last one defined.

2. ID will not print a symbol which has been suppressed
by putting it into calm mode, although sul1b a symbol
may be typed in. The command syme changes a symbol
to cs.lm mod.e. The command symL changes it to the
normal (loud) mode.

3. Expressions with negative terms will not type out as
'btjey were typed inj for example, if ret=adr+5, then
ret-1 typed in will be typed out as adr+4. Similarly,
ID recognizes the current location symbol (.) but
never prints it out.

-16-

4. The symbols is,, 2s" 3s" •••• 9s a're defined" but ha,ve ;
been placed in a special part of the symbol table so
as to be printed out only on shift and rotate instructions.

5. Operate group instructions and skip group instructions
type o~t with ~~!1! Qr signs when necessary; for
e~ample" 762407 types out as £lJ!y'cI!y'£!!_7.. Thus" if
a register contains data which happens to be in this
range" the resulting type-out may be in terms of
these instructions.

6. Numbers beginning in 77~ ,. type out as negative.

I. Q2!!~rol 2:t .MQ,g!§.
1. Although it has beena.ssUl1l~d so far that ID normally

prints out the contents ot registers as instructions
w'ith symbolic addresses and normally interprets
constants as unsigned octal numbers" a prov14ion
has been made to alter this state of affairs'
with a considerable degree of flexibility.

2. There are several different register opening characters
:rrom which to choose a,ccording to the type-out mode
ciesired.

Register Opening
Chu'limr! . '.

I

[

M!!!!Y!s·
Types out the contents of the
pr~ceding 12 bit address number
as symbols or constants.. '
according to the mode.

Types out the contents of the
preceding 16 bit address number
as symbols or constants" according
to the mode. '

Types out the contents of the
preceding 12 bit address number
as constants" but does not
change the mode.

-17-

Register Opening

]

(

.~~~
Types out the contents of the
preceding 12 bit address
number a,s symbols, but does
not change the mode

,
Does not type out the contents
of the preceding 12 bit address
but puts ID into the type-ini

mode starting at that address.

3. Type-Out Mode For Instructions - By typing one of
two commands to ID, the normal mode of printout of

register contents may be controlled.
a. ~p'bol!£~Ee-2Y.~ mOd!_is the most often used

and the· one iri'<which ID is initially. This mode
is obtained by typing a capttal a.-'The

: . .~:'! .

contents of registers will be printed out as symbols.
b.C2D:stan~§._tD!.-0~ .~ is obtained by typing

a, captialQ,.Xnthis mode, the cont'ents of
the registers are typed out, a s numbers.

4. ~~ ~4! is obtained by opening a register wi~~
an open parenthes~s ((). In this mode, II) does not
:print out the contents of the register at all;
it is a conv.enient'mode for typing sher'tprograms or parts
o:fprogr8Jlls. This mode is left by typ:1rig a cari?:tage·· .
return; ho,ev.er'.. ba,bkspace, \lP' arrow, and ta" ke~p .ID
in~ype-inmode and open t~e:'appropriate register.

":,.;.,r

-18-

5. ~!::2.B.~ 'Mod!for _l\~!§.§. of ~gis~ - By typing
o'ne of two commands to 'ID" the· mode of printout of
register addresses (as a result of tab" backspace,
up arrow'" etc.) may be set.

6.

a. Relative mode is the one in which ID is initially.
By typing capita,l R the mode can be' obtained again
so that addresses will be typed out, symbolically.

ex. adr+10/ +1 lac'abc +I~
adr+11/ +/ dac xg,2 +/

b. Oct~ mode causes the
typed out as numbers.
a capital ~.

2.2!l§.l!.5lUt RJ;;int Q,ontrol -

register addresses to be:
It is obtained by typing

By typing one of the following
for the printout and input two commands" the normal mode

constants'ma,y be controlled.
Commaug

H

u

all constants will be printed
out as octal numbers'- l!,Qctal mode.

all constants will be printed out
as decimal numbers- y,nhoctal mode.

J. Input Radix Control ------ --- - ... ---
The current radiX, used for both input and output, may be
set by xR" where x is a decimal number. H is equivalent
to 8R" and U is equivaient to10R. The character period
(.) is used to force interpretation of input constant as
decimal regardless of the current rad:i.X. If the input
constant. is not immediately followed by a period" it ,is
i,nt~rpreted according to the current radiX.. The character
single quote (,) causes the last three characters typed in
to be taken as their squoze code va.lue. This applies only
to the letters or numerals. The character double·quote (")
causes the first three characters typed in to, be taken as
their concise code value. Thisapplles onlYl/1;o letters or
numerals.

-19-

K. ~Eeci~:l: R~ist!!:!

The capital letters in the following table indicate special
consecutive registers, which are internal to ID. These
registers control some of the main functions of bn;
they may be referred from any fie ld and a.re opened and
modified in the same manner as a register in the current
field.

Capital Letter
in the~r Locati£n Ord~

A

I

x

G

w

F

~e5iste~Content~

the stored accumulator of
the program

the stored IO register of
the program

the location of ID's execute
register .

the stored program counter
of the program; the overflow
flip-flop is stored in
bit 0, the extend mode in
bit 1.

dia word - the word which
is stored from the IO
when a dia, is executed,
and supplIes for the
following dcc. Hence, if
a breakpoint is placed
between a dia and a, dcc,
the result-or the diS-may be
examined and modified. Also
if an illegal instruction
trap occurs on a dcc, the
write field may be-deter.mined.

the stored flags of the
program and its sequence
break information. The format
for this information is:

2 6

-20-

Capital Letter
!n~heir LoQ,atiol1 ~!:

M

M+1

M+2

B
B+1
B+2
B+3

-1i!g;h§.!!.!~Btent s,

the mask for word searches

the lower limit for word
sea.rches, save and unsave
fields, and special uses of
yank, tape, verify tape,
punch data blocks, and zero
memory.

the upper limit for word
searches" save and unsa.ve
fields, and special uses
of yank tape, verify ta.pe,
punch data blocks, and
zero mempry.

breakpoint .locations

The characters A, I, M, and B when preceded by a single
1 argument deposit the argument in the corresponding register.

For example, typing
17777A

depOSits 17777 into ID's internal register A, containing
the stored accumulator for the program ..

The usage of the above control characters will be
more fully explained in the sections to follow.

,
-21-

L. Assig!:y!!~ §.us! De~!gnm!!l!1~ of iQ ~~§. rul9. ~. E~lli
ID can assign or deassign +0 devices and drum fields
inde~endent of the user's program. The capital letter
F when preceded by one or two arguments ca.uses ID to
execute an arq instruction. The mnenonic or concise code
indicating the accumulator contents is the argument immediately
preceding the F command. If it is a symbol its concise
code will be used. =< F is equivalent to executing the
following three instructions

law flexoO(or la"l =<
cli
arq

(Note: The arq is executed without reference to the
specia.l interna 1 registers A a.nd I of ID.)
In certain cases the IO must conta.in additional information
about the devicej thus the F command must have two arguments.
Typing

_~"1L
will put x into the IO and the concise code for the

mnemonic of the device requested into the AC and then
execute an arq. If the arq skips, then two carriage returns
will occur. If the arq returns information in the AC,
If) prints out the information in the right 6 bits.
The operation of the arq instruction is explained in meno
PDP 31.

M. One of the most powerful features of ID is the ability
to insert breakpoints in programs. In testing a large
program, it is frequently convenient to use breakpoints

* The capital letter F when not preceded by an argument
refers to ID's special internal register, F, conta.ining
the stored flags of the user's program.

-22-

to interrupt the computation so that parti~l results
may be examined or the state of the program determined.
Breakpoints may be set up at a location in the user's
program by two methods:
1. Typing

~dr42

causes ID to set up a breakpoint in the current field
at location adr. Only one breakpoint can be inserted
at a time by this method; the address preceding the
B will be depOSited into the special register B.

2. Four special registers, B, B+1, B+2, and B+3, canl
be used to contain the addresses of breakpoints. No,
break location is indicated by an overbar(T);
initially a.ll four registers contain overba.rs. For
exa.mple:

B+U -+-1 - -+-, ~!:
This puts a breakpoint a.t loca.tion adr in the user's
program. If the user transfers control to his program,

'and the instruction in register a.dr isrea.ched,
computation will cease and control w·ill be returned
to ID, which w·ill type out the register location"
a close parenthesis, ta.b, and the original contents
of the register. At this point, the user may·examine
the accumulato~, IO, and/or any other register and
make modifications as he pleases. A breakpoint
remains in the location specified until it is removed
by clea.ring the breakpoint register conta.ining the address.
All breakpOints may be cleared by typing B-. If the
user wants to clear only one breakpOint, he puts a.h
overbar or a minus zero in the breakpoint register
containing the break address to be cleared.

QA,UnON: The location selected as breakpOints must
not be registers whose contents are modified by the
program under test, since ID transplants their contents
and substitutes specific transfer commands.

-23-

N. guQl~r2.~.Jlh~nd~£y.te_~l
1. The instruction adrG, where adr is a,n a,ddress in

the user's program, is used to start the user's
prggram running at location adr.

2. If a breakpoint trap occurs, control is transferred
to ID. To continue operation of the user's program
from the point at which the break occurred, the
conunand f is used. Even if the last breakpoint
encountered has been deleted or moved, f still
proceeds from the point where the break actually
occurred.

3. af, where n is a positive numeir'al, w'ill cause ID to
proceed from' a br.,akpoint trap, and go past the
breakpoint n times before breaking again. This
multiple proceed commands applJs to the last brea,k
point that broke •.

4. Single instructions may be executed directly by ID;
control need not be returned to the user' s program:'

L

There are two possible ways to execute single
instructions in ID:
a. Typing

bX

causes the instruction b to be placed in the
a,ddresstl specified by the contents of the execute
interna,l register X and then to be executed.

b. Typing
§.S:bX

causes the instruction b to placed in address
a and then to be executed. The internal register X
does not change.

Normally there a,re two carriage returns after ~; if the
PC is incremented by two (that is, the instruction skips),
~ will return the carriage a third time. If the return
PC is not the same as the original PC incremented by one ..

-25-

Q. Yl2!:s..§.e~;:£h!§.

A valuable feature of ID is its search facility. Three
kinds of searches can be made; these types a.re controlled
by tbe commands N, W, and E, and they all use the special
internal registers M, M+1, and M+2.
1. The three types of searches and their respective

commands are:
a. wordW - The word search causes ID to search ---

tbe current field for _nd print out all the
registers, between the limits in M+1 and M+2
inclusively, containing the given word.

b. !,orsm - The gon-word search causes ID to
search the current field for and print out
all the re$isters, between-the limits in
M+1 and M+2 inclusively, not containing the
given word. This is most frequently used. in
Qif., the se~.rch for non-zero memory. ,

c. ~rE -r The!ffective word search causes ID to
search .the current field for and. print out
all pij.e registers, between the limits in M+1
and M+2 inclusively, effectively addressing ~g!:.
If the user is in extend mode, (bit 1 of the PC
on), indirect addressing chains for effective
address searches will be carried to a depth of
1j otherwise they will be carried to a depth
of 10, at which point ID will give u'p.* An
E search will'never print out skp, 'sft, law,
iot,74, or opr instructions. This type of
word search is valuable for locating incorrect?
instructions which are· modifying the program.
If a J.Q.~ instruction is suspected, tryJ.9A_s.9.tli

* An E-search with greater depth than 10 octal might
take a ,long time and an E-search with no restriction
on depth might get cau:iht in an infinite chain like:

adr,
abc,

lac i abc
jmp i adr

-26-

2. The special interoal registers for word "searches are
m" M+1" and M+2j the use of these registers is expla,ined
in the follow'ing table.

M+1

M+2

Content.§.
The mask register conta,ins the
value of the mask used in
word sea,rches. During w'prd
searches" onlyth~J)its m,a,sked
1 in register M are comp~~ed.
InitiallyM contains. -OJ ·thus
all bits are compared unless
t~e register is modified.

The lower limit for the· ,word
search is stored in the M+1

, register... Initially" M+! contains
OJ thus the search will begin
at 0 unless modified.

The upper limit for the word
searcbis stored in the M+2
register. Init4a.lly" .:M+2
contains 7777i thus the search
will end at 7711 unle s s Jnodified.

3. Special comma,nds may. be used to modify the contents
o~ the special internal registers M" M+1,,' and M+2.
Typing

lJC
initializes the contents to~O in M" 0 in M+1" and
7777 in 14+2.

!:a~lar:t

puts fa and la in 14+1 and M+2 respectively. M remains
unchanged. To change M" type

!11
where a is the mask desired for M.

4. There are two ways to print a block of registers:
a. Set the mask to zero and set up M+1 and M+2 to enclose

the area, to be printed. Then search for any word.
b. If irrelevant parts of memory happen to contain zero"

merely do a N-search for zero.

-27-

P. ~!:Q.

Often it is valuable to zero all or parts of a field so
that irrelevant parts of the field will contain zero.
The following commands may be used:

Qgmmand ~ini~E

Z zero all of the current field

xZ

where fa. and la are 12-bit
addresses l1mi ~'~ . for . the zero
command. The Xtegisters of
the current field between fa
andla inc lus,i ve,ly are zeroed
by this command.

. '

where x is the field number
for the zero command. The

• fieldspeci:pied is zeroed by
between location in M+1 and
M+2-1tlclusively. The current
field isnCl>t. changed.

-28-

Q. ~

In the Preparation Section of this memo (part A),
the user was instructed to use the command nytt to read
into the current field a binary tape. For convenience~
other variation of this comma.nd may be used. They are:

Qgmmand Meaaing
r

y

xY

fa<laY

Read a tape in binary block
format into the current field
between the locations specified
by M+1 and M+2 inclusively.
Words outside of these limits
are ignored. The core modules
specified in the datallock or
origins will be ignored~.
x is the field number into
which a Aape in binary block
format is read. Otherwise,
the command is the same as Y
alone. The limits of the
yank are in M+1 and M+2 as
above. The core modules
specified in the data block
origins will be ignored.
where fa and la are 16-biV
address J:~its for the yank
command. The data block will
be checked against core field
specit:4!ed in the block origin.
Only words with extended addresses
from fa to la inclusively will
be stored.

-29-

R. !~Lf'l.
Another feature of ID is the ability to verify the program
curreI)tly in core or on a drum field with the original
binary tape. The capital letter V is used as the conunand
1h the f-o.ilowttng w'ays:

location/
XV

location/
fa<laV

!'1~£illins

Read a, binary tape in binary
block formatj the core modules
specified in the data block
origins will be ignored. The
words read in are compared
against the current fields
words between locations
specified by M+1 and M+2
inclusively. No change is made
to memory, any discrepancies
are typed out as:

memp~ tape
x is the field number whose
contents is to be compared
ag~inst the tape. The field
rna,y be a core field or drum
, fie ld :; Otherwise, the command
is exactly the same as V
alone. The limits of the
verify are in M+1 and M+2
as above. No change is m~de
to memory and any discrepancies
are typed out as:

memory tape
where fa and la are 16-bit
address limitsfo!' the verify
conunand. The da,ta blocks will
be checked a,gainst core field
specified in the block origin.
Only words with extended
addresses from fa to la

-30-

inclusively will be chec~ed.
No change is made Co memory
and any discrepancies are
typed out as:

extended location memory tape

S. ~!~ :a~q Un§AY.~ Jk!J.I!! E!!1g!
Another valuable feature of ID is the ability to save an
image of a program on another drum dield, so that it may
be stored at some future time. The capital letters S
and U, when preceded by additional information a,re
command to sa,ve and unsave drum fields. }IE The special
internal registers M+1 and M+2 indicateflthe limits of the
transfer for the current field. The two basic commands
and their meaning are:

COD!:IDiU9.
fS

ru

Meanil'lS
Save on field"f" - an image
of the current field between
the limits ~tt M+1and M+2
is written onto drum field f ,
between the limits also M+1
and M~: This operation does
not affect the contents df
the current field. Field rtf"
must be assigned to your
consolej it must be a number
from 1 to 20 when-referencing a
pseudo field, or from 418 to 668
when referencing an absolute field~
Unsave field rtf" - the contents
of the current field between the
limits in M+1 and M+2 are replaced
by the contents of drum}"f" between
the limits in M+1 and M+2. The

-31-

contents of drum field fare
not affected by this operation.
Field "f" must either be an
absolute system field or a field
assigned to your console; thus
it must either be a number from
1'to 208 when referencing a pseudo
field assigned to your console, a
number from 418 to 668 when
referencing an absolute field.

)IE The capital letters Sand U when not preceded by a character
mean !!YDlbolic and l:!nhoctal. (See section 1-3 and 6.)

Q21!mang
x(fS

x<fU

OOeS1~ing

Add "x" to the origin of the area.
on field f - an image of the c"urrent
field between the limits in 00+1
and 00+2 is written onto drum
field f between the limits Uxlt

plus the contents of 00+2. Thus
the limits' in 00+1 and 00+2 apply only
to the current f.ie ld, not fie ld
"f". Field uft! must be aSSigned
to your console, it must be a
number from 1 to 208 when re
ferencing a pseudo field or from
418 to 668 when referencing an
absolute field.

Add "XII to the origin of the area
unsaved from field Itf" the contents

-32-

of the current field between the
limits in M+1 and M+2 are replaced
by the contents of drum field f

between the limits "x" plus the
contents of M+1 and "XU plus
the contents of M+2.
Thus, the limits in M+1 and M+2
a,pply only to the current field"
not field Iff". Field "f" must
either be a number from 1 to 208
when referencing a pseudo field
assigned to your console, a
number from 418 to 668 when
referencing an absolute field.

An example of using the latter commands appears below:
±QO<200H
gO~5s

move locat1ons 100 - 200 inclusive from the current field
to' locations '-.120 - 220 of field 5. To restore this program
material at a'later time" the user would type:

'100~gQ~

20S:211
and thus move locations 120 ~G220 of field 5 to 100 - 200

of the current-field.

-33-

T. I.i9.t!;rding and nta.ding. me.C!.!f?.
Another feature of IDisthe ab1lity to hoard and obtain
symbols.. so that the symbols .. may be stored and restored
with the assoc1ated program. The capital letters Hand 0 ..
when preceded by add1tional informa.t10n .. are commands
to hoard and read symbols, * The two ba.sic commands
a.nd the ir meanings a.re:

fO

l1ea.l'!ing
Hoard ID's symbol table on f1eld
f - saves all of the user's
symbols (except initllal symbols ..
even if rede fined) on the pa.rt
between !l and 7777 inclusive.
The number n is printed out
and becomes the new memory bound
for field y. (N is also in
location 7777.) This feature
is 1ntended to be used in
association w~th "S" to save
a program on lower port10n of
the same field. The symbols
are not changed or k1lled in
a.ny way by "R n • Any argument
acceptable to "S" as a field
number is acceptable to "R".

Obtain the symbol table stored
on field f by the command uH"
a.nd bobily appettds it to ID's
in1tial symbol table. Previous
symbols in ID's symbol table
are killed (except initial
symbol). If what it finds on
that field is not a symbol
table .. it responds with n?u ..

-34-

and ID's symbol table is killed.
This feature is intended to be
used with "u" to unsave a
program and its associated symbols
for ftt'tther reference. Note
that the "0" processiiis different
from "T" in that in case of "0",
current symbols are fiest killed,
where as in the case of "T" new
symbols read a.re merged w'ith current
ones. Any argument previously
used by "Rn as a field number
can be used for "0".

Two other commands to hoard and read symbols are availa.ble
for swapping the symbols to and from a specified location.
These are:

Commang
x<fH

x<fO

M~a,n:i:qg

Hoard symbols on field l' below
location x. The number n is
printed out; the table of user's
symbols is between nand x-1
inclusive. (N is also in
location s-1.) x may be any
symbolic or numeric location
and any argument acceptable to
ItS" a,s a field number may be
used for l' in this command.
The symbols a,re not changed
or killed any way be this command.

Obtain symbols from field f
below location x previously
stored by x<fH and appends
then to ID's initial symbol

--35-

table. Previously symbols in
I

rD's symbol table a.re killed
(except initial symbols). If
what it finds on that field
is not a symbol table, it
responds with a "?", and ID's
symbol table is killed. Any
arguments previously used in
the "x<fH l1 command can be used
for "x<fO".

* The capital letters Hand 0 when not preceded by a character
mean hoctal and octal. (See section I:5 and 6.)

~~h!us P~ogram!

When final corrections have been made in the user's program,
the user may punch it out in its modified form. Ttre four
punching commands are L, D, center dot, a.nd J.

1. It. ,causes ID to listen for title. Letter typed after
th-is command will be punched in readable from on tape.
The title punch is terminated by carriage return, tab,
or backspace. The <result of these terminating characters
is given in the following table:

-+1

li~lt

Punches the standard input
routine and sets ID to
punch the,l;1sual checksummed
data ~(bo~s.

Sets ID to punch the usual
checksummed data blocks, but
no input routine. A
fljmp 7751" is punched inste:cl.d.

-36-

Sets ID to punch read-in mode
ta,pes.

2. The capital letter ~ is used to punch data blocks from
the current field. A variety of forma,ts are available
to the user f~r h~e convenience.
a. fa~lSl~" where fa and la are any symbolic or numeric

expressions, punches the current field fram fa to la
inclusive. If the current fi,ld is a drum field" the
origins of the data, blocks will be in core O. If the
current !ield is ~ core field, the origins will be in
the current field.

b. ' ~ alone is equivalent to Q{II!LQ. It punches the
entire current field. If the current field is 'a drum
field, the origins of the data blocks will be in core
o. If the current field is a core field" the origins
will be in the current core.

c. ~, where x is a core number 0 to 17" ~unches the current
field between the limits in M+1 and M+2. Th,e data block
origins will be in core x.

3. aJ, where a is any symbolic or numeric expression" causes
ID to punch a start (jump) ~lock to the a,ddress specified
to denote end of binary tape. The address is typed
immediately prececU~ng the J.

4. If a register is open, center dot (.) will close the
register and punch its contents as a one-word data
block. This is convenient if the tape needs only a
few modifications, known in advance.

-37-

v. Err'2~ InQ..l£s~lQ!!§' SllQ.. QQ£~ctiQQ~:
1. ID has severa 1 error alarms associa.ted with its use.

these are typed out by ID and have the following
general meanings:

cksm

de

ljusy

u

?

<sym)

A sum check error occurred in
reading a binary program or symbol
tape. By moving the tape back
one block and typing "c", ID
will read the block again. If
the reader is left on and ltd"
is typed, the block will be
accepted as read.
Drum swap was not successful.
Error may be ca.used by trying to
write on locked field, or a
timing error in drum.
This indica.ted that the reader
or punch is busy and the user
must wa.i t untilavaila.ble.
This indicated that the immediately:,
preceding w·ord contains an undefined
symbol. ID will act as if nothing
had been typed. Thus, for example,
typing an undefined symbol in a
word into an open register will
result in "U", but typing a
carriage return will close the
'pegister with its previous contents
rather than zero.
Error has been made in the command
to ID. ID can't do or doesn't
understand the request typed in.
The symbol table has overflowed.
Sym is the last symbol successfully

-38-

entered. If this occurs during a
T, iT, or ~T, ID will continue
reading symbols, but will only
redefine symbols already in the
table. No new symbols will be
entdred.

2. When a, user's program executes an illegal instruction,
ID is brought, ,~ack into control and the a,ddress of
the illegal instruction is typed and followed by»
and a tab. Then, the ':contents of that register
are typed out. Below ~s a list of various types
of illegal instructions:

a. hIt instruction
b. instruction with an illegal operation code.
c. instruction which indirectly addresses a

location ai;)ove the memory bounq..
d. a reader or punch inst'ructioQ. when no

assignment has been obtained for the program.
e. arq instruction with invalid code
f. a dcc drum ins·truction addressingqan unassigned

field or' locations in core above the memP1I7Y
bound.

g. a bpt instruction at a location to which a
breakpoint wa,s not assigned by the user
throughID.

3. When the user of ID realizes that he has made a typing
er~or, he may delete all that he has typed Since the
last carriage return or tabulation by typing a
multiplication sygn (~). For example:

loci +1 add a +1 ~ +1 !gg_~
.:..L I add a,bc.

A.
B, B+1j.B+2, B+3
C

D

E
G,

F

H

I

J

K

L

M

M+1
M+2
N

o

-39-

APPENDIX I
SUMMARY OF CONTROL CHARACTERS

accumulator storage (19)*
registers containing breakpoint 10cation(22)
without argument: set word print mode to
constants (17)
without argument: set symbol to calm mode

(15)
punch data blocks (36)
effective address
without argument:
counter (19)
with one argument:
go to (24)
without argument"
flags (19)

search (25)
storage for program

start prog~am running,

storage for program

with one of two arguments: execute an arq
(21) , .
without argument: set consta,nt printout
mode to (18)
hoctal (octal)
with one or two arguments: hoard symbols
onto field (34)
i-o storage (19)
punch start' (jump) block (37)
kill defined symbols (3)
without argument: listen for title punch
(36) .
with argument: set symbol to loud mode
(15)
mask register (26)
Idwer limit for word search (26)
upper limit for word search (26)
not-word search (25)
without argument: set location print mode
to octal (18)
with'argument: obtain symbol table from
:Nield (34)

p

Q
R

s

T

U

v
W
X
y

,z
0-7

8,9I a-z
It

-
:::::>

V

A

t
-+

(
)

[
]

+

• (space

-40-

proceed (24)
last quantity (7)
without argument:
to (18)

relative
with one argument:
without ar~ument:
symbolic (17)

set location print mode

set radix (18)

set word print mode to

with one or two arguments: save memory on
field (31)
rea.d symbol table (T 1 iT, 2T) (12)
without argument: set cons'tant printout
mode to unhoctal (decimal) ,(18)

with one or two arguments: unsave field
into current field (31)
verify tape (29)
word search (25)
execute as instruction (24)
read binary tape (28)
zero memory (27)
octal numerals and/or symbol constituents

(14) ,
symbol constituents (12)
take as concise code (18)

print as concise code (9)
define symbol as ad.dress typed (it!)

inclusive or (14)
and (14)
modify and open previous register (8)
print as instruction (9)
open register in type-in mode (17)
define'symbol (12)
examine register as octal constant (;1.6)
examine register as instruction (17)
minus (14)
plus (14)
plus .. (14)

,
=

•

x
/
tab

bk sp
car ret
uc, lc

:>
1

• (center dot)

-41-

define as (13)
print as octal (9)
current locat.lhon; if preceded by number
take constant as decimal integer (18)
delete type input (39)
examine 12-bitaddress register (10)
modify and open addressed register;
also alters sequence of location (9)
modify and open next register (8)
modify and close regl~t.er (8)
set case
examine 16-bit address register (10)
modify and open add~essed registe.r (10)
use squoze code of preceding symbol (18)
punehopened register .as one word block (37)

* The numbers in parentheses indicate the page number where
the character can be found.

-42-

APPENDIX II
ID SYMBOL TABLE

BASIC INSTRUCTIONS SKIP GROUP MISCELLANEOUS
add 40'0'0'0'0' -+clo 65160'0' -+clo 65160'0'
adm 360'0'0'0' skp 640'0'0'0' 1 10'0'0'0'
and 0'20'0'0'0' sma 640'40'0' 1s 1
eal 160'0'0'0' sni 6440'0'0' 2s 3
dae 240'0'0'0' spa 640'20'0' 3s 7

'dap 2600'0'0' spi 6420'0'0' 4s 17
dio 320'0'0'0' ~pq 650'50'0' 5s 37
dip 30'0'0'0'0" .sza 640'100' 6s 77

-+<iiv 560'0'0'0' szf 640'0'0'0' ~: 177
dzm 340'0'0'0' -+azm 64050'0' 377
idx 440'0'0'0' szo 6410'0'0' 9s 777
ior 0'40'0'0'0' SZ8 640'0'0'0'
iot 720'0'0'0'
isp '460'0'0'0', IN-OUT TRANSFER GROUP
jda 1.40'0'0'0'
'jdp 1 '0'0'0'0' ebs 720'0'56
jrnp 60'0'0'0'0' eks 72aa3J
jsp 620'0'0'0' fdba 720'0'6-1, TIME SHARING INSTRUCTIONS

..u-e,·, 20'0'0'0'0' '-+dee 720'0'62
, law 70'0'0'0'0' -+<iia 720'0'60' sdl 723477
lio 220'0'0'0' dpy 730'0'0'7 lsb 720'0'52
~ul 540'0'0'0' -+<ira 72aa6g wat 722477

opr 760'0'0'0' eern 7240'7 arq 722277
sad 5_0'0'00'0' esrn 720'0'55 bpt 722177
sa,s p20aaa ioh 730'0'0'0' dsm 722377
~ft 660'0'0'0' iot 720'0'0'0' ekn 720'0'27
#kp 640'0'0'0' lem- 7200'74 rbt 720237
'sub 420'0'0'0 Ism 720'0'54 eae 720'0'53
xet 10'0'0'0'0' ppa 730'0'0'5 ase 720'051
xor 0'60'0'0'0 ppb 730'0'0'6 dse 720'0'50'

rpa 730'0'0'1 lea, 724677
OPERATE GROUP ~:;;B 730'0'0'2 lei 724577

rrb 720'0'30' rer 724777
ela 76020'0' tyi 720'0'0'4
ele 76120'0' tyo 730'0'0'3
elf 760'0'0'0'
eli 7640'0'0' SHIFT/ROTATE GROUP
ema 7610'0'0
hit 76040'0' ral 6610'0'0'
~lai 7600'40' rar 6710'00'

emi 760'10'0' rcU 6630'00
lat 762200 re\p 6730'0'0

~lia 7600'00' ril '662000
.nop 760'0'00' rir 6720'0'0
opr 760'0'00' sal 665000'
stf 7690'10' sar 675000'
~wp 7600'60 sel 6670'00'
xx 760'40'0' ser 6770'0'0

-+aft 660000'
sil 66600'0'
Sir 676000

