
TO:

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOL.N LABORATORY

TX-2 Users DATE: 6 May 1969

FROM: Henry Ancona

SUBJECT: The BCPL Reference Manual

DS-l1080

This is the revised (hopefully correct) version of the TX-2 BCPL

Manual. Please see me if you have any comments on the language or

if the manual is unclear.

The next memo will describe the usage of BCPL on TX-2. The

BCPL team consists of Tom Barkalow, Carl Ellison and myself.

HA:cn

The BCPL Reference Manual *
-----,;;..~..;..-.~~

by

M. Richards
M. I. T. Project MAC

Cambridge, Massachusetts 02139

E. I. Ancona
M • I. T. Lincoln Laboratory

Lexington, Massachusetts 02173

ABSTRACT

BCPL is a simple recursive programming language designed for

compHer writing and system programming; it was derived from true CPL

(Combined Programming Language) by removing those features of the full

language which make compilation difficult I namely I the type and mode

matching rules and the variety of definition structures with their associated

scope rules. BePL on TX-2 differs from BCPL on CTSS (developed by

M. Richards) by the addition of the external storage class I subword

expres sions, and the generalization of static storage. Global declarations

have been removed.

*Work reported herein was supported (in part) by Project MAC I and MIT research
program sponsored by the Advanced Research Projects Agency I Department of
Defense I under Office of Naval Research Contract No. Nonr-4102 (01).

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

i

0.0 Index

*

1 . a Introduction

2 . a BCPL Syntax

2.1
2 .1 . 1
2.1.2
2.2

Hardware Syntax
BCPL Canonical Symbols
Hardware Conventions and Preprocessor Rules
Canonical Syntax

3 . a Data Items

3 . 1 Rvalues I Lvalues and Data Items
3.2 Types and Representations

4. a Primary Expressions

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12*
4.13*

Names
String Constants
Character Constants
Numerical Constants
True and False
Bracketted Expres sions
Result Blocks
Function Applications
Ve ctor Applications
Lv Expressions
Rv Expressions
Half-word Expres sions
Quarter-word Expres sions

5. a Compound Expressions

5.1 Arithmetic Expres sions
5 .2 Relational Expres sions
5 .3 Shift Expres sions
5 .4 Logical Expres sions
5 .5* Subword Expres sions
5 .6 Conditional Expressions
5.7 Tables

not implemented yet

ii

6 . 0 Commands

6. 1 Simple Assignment Commands
6.2 Assignment Commands
6.3 Routine Commands
6.4 Labelled Commands
6. 5 Goto Commands
6.6 If Commands
6.7 Unless Commands
6.8 While Commands
6. 9 Until Commands
6.10 Test Commands
6.11 Repeated Commands
6. 12 For Commands
6.13 Break Commands
6.14 Finish Commands
6.15 Return Commands
6.16 Resultis Commands
6.17 Switchon Commands
6.18 Blocks

7 . 0 Definitions

7 . 1 Scope Rules
7 . 2 Space Allocation and Extent of Data Items
7 . 3 External Declarations
7 . 4 Static Declarations
7 . 5 Manifest Declarations
7 .6 Simple Definitions
7 . 7 Vector Definitions
7 . 8 Function Definitions
7 . 9 Routine Definitions
7 . 10 Simultaneous Definitions

iii

1 .0 Introduction

BCPL is a general purpose recursive programming language which is

particularly suitable for large non-numerical problems in which machine

independence is an important factor. It was originally designed as a vehicle

for compiler construction and has, so far, been used in three compilers.

BCPL is currently implemented and running on eTSS at Project MAC, the

GE 635 under GE COS and on a KDF 9 at Oxford. Other implementations

are under construction for MULTICS, the ICT 1900 series I Atlas I the System

360, and the TX-2. The language was orginally developed and implemented

by M. Richards at Project MAC.

2. 0 BCPL Syntax

The syntactic notation used in this manual is basically BNF with the

following extenSions:

(1) The symbols E, D, and e are used as shorthand for

<expres sion> <definition> and <command>.

(2) The metalinguistic brackets '<' and I>' may be nested
and thus used to group together more than one constituent
sequence (which may contain alternatives). An integer
subscript may be attached to the metalinguistic bracket
'<' and used to specify repetition· if it is the integer n I

then the sequence within the brackets must be repeated
at least n times; if the integer is followed by a minus
sign, then the sequence may be repeated at most n
times or it may be absent.

2 . 1 Hardware Syntax

The hardware syntax is the syntax of an actual implementation of

the language and is, therefore, implementation dependent since it depends

on the character set that is available. To simplify the transfer of BePL

from one machine to another, a set of canonical symbols has been developed.

All compilers have a preprocessor which translates the symbols dictated by

the hardware into the canonical symbols.

On TX-2, the character set which is used is the set of all capital

letters and digits, in both black and red I together with the operators as

1

described in the next section, in black only. In this manual 1 the syntax

is described in terms of large and small letters. Note that large letters

correspond to black letters on TX-2, and small letters correspond to red

letters on TX-2.

Non-printing characters, such as space 1 may be either black or red.

The canonical representation of a BCPL program consists of a

sequence of symbols from the following set:

2.1.1 BCPL Canonical Symbols

Throughout the rest of this section words composed entirely of capital

letters will be used as the names of canonical symbols. The names of all these

symbols are given below together with corresponding examples of how they

may be represented using the hardware representation adopted by this manual for

TX-2. The list of black (large) words under 'hardware example' is the list of

reserved words.

Canonical
Symbol

NUMBER
NAME
STRINGCONST
CHARCONST
TRUE
FALSE
VALOF
LV
RV
MULT
DIV
REM
PLUS
MINUS
EQ
NE
LS
GR
LE
GE
NOT
LSHIFT
RSHIFT
LOGAND
LOGOR
EQV
NEQV
COND
COMMA

'TABLE
AND
ASS

2

Hardware
Example

103 #777
abc i h2
'xyz*n' 'pi
:r a r 3

TRUE
FALSE
VAL OF
LV
RV
* or x
/
REM
+

EQ
NE
LS
GR
LE
GE
"-J or NOT
LSHIFT
RSHIFT
1\ or LOGAND
v or LOGOR
EQV
NEQV

1

TABLE
AND
=

Described
in Section

4.4
4.1
4.2
4.3
4.5
4.5
4.7
3.1/4.10
3.1/4.11
5.1
5.1
5.1
5.1
5.1
5.2
5.2
5.2
5.2
5.2
5.2
5.4
5.3
5.3
5.4
5.4
5.4
5.4
5.6
5.6
5.7
7 .10
6.1

Canonical Hardware Described
Symbol Example in Section

GOTO GOTO 6.S
RESULTIS RESULTIS 6.16
COLON IF 6.4
TEST TEST 6.10
FOR FOR 6.12
IF IF 6.6
UNLESS UNLESS 6.7
WHILE·! WHILE 6.8
UNTIL UNTIL 6.9
REPEAT REPEAT 6.11
REPEATWHILE REPEATWHILE 6.11
REPEATUNTIL REPEATUNTIL 6.11
BREAK BREAK 6.13
RETURN RETURN 6.15
FINISH FINISH 6.14
SWITCHON SWITCHON 6.17
CASE CASE 6.17
DEFAULT DEFAULT 6.17
LET LET 7.2
MANIFEST MANIFEST 7.5
BE BE 7.2
SECTBRA [6 2. 1 .2
SECTKET } 1 2. 1.2
RBRA (4.6
RKET) 4.6
SEMICOLON Ii 2.1.2
INTO INTO 6.17
TO TO 6.12
DO DO or THEN 2. 1 .2,
OR OR 6.10
VEe VEe 7.7
VEGAP I 4.10

Note that the symbols NUMBER, NAME, STRINGGONST, SEGTBRA

and SECTKET denote composite symbols which have associated strings of

characters.

3

6.12

(a)

2.1 .2 Hardware Conventions and Preprocessor Rules

The Preprocessor is the name of the part of the BCPL compiler

which transforms the raw source text of a program into canonical symbols.

The hardware conventions in the TX-2 version are as follows:

A name is any sequence of red or black letters and digits I start

ing with a letter, which is not a reserved word. The character

immediately following a name may not be a letter or a digit.

All reserved words are string s of black letters and digits.

(b) User's comment may be included in a program between a double slash

'/ /' and the end of the line. Example:

LET RO BE / / This routine refills the vector symb
f FOR i = 1 TO 200 DO readch (input, LV symbf i)}

(c) Section brackets may be tagged with a sequence of letters and digits

and two section brackets are said to match if their tags are identical.

More than Ohe section may be closed by a single cloSing section bracket

since, on encountering a cloSing section bracket, if the current opening

section bracket is found not to match then the current section is auto

matically closed by the insertion of an extra cloSing bracket. The proces s

is repeated until the matching open section bracket is found. For example:

f 1 UNTIL i EO 0 DO

{2 R(i)

i=i-1 }1

The final section bracket 11 does not match } 2 and is I therefore I equivalent

to } 2 11.

(d) The canonical symbol SEMICOLON is inserted by the Preprocessor

between pairs of items if they appear on different line s and if the first

4

is from the set of items which may end a command or definition I namely:

BREAK RETURN FINISH REPEAT RKET

SECTKET NAME STRINGCONST NUMBER TRUE FALSE CHARCONST

and the second is from the set of items which may start a command I namely:

TEST FOR I F UNLESS UNTIL WHILE GOTO RESULTIS

CASE DEFAULT BREAK RETURN FINI SH SECTBRA SWITCHON

RBRA VALOF RV NAME RH LH Q1 Q2 Q3 Q4

(e) The canonical symbol DO is ,inserted by the Preprocessor between pairs

of items if they appear on the same line and if the first is from the set of

items which may end an expression, namely:

RKET SECTKET NAME NUMBER

STRINGCONST TRUE FALSE CHARCONST

and the second is from the set of items which must start a command, namely:

TEST FOR IF UNLESS UNTIL WHILE GOTO RESULTIS

CASE DEFAULT BREAK RETURN FINISH SWITCHON

(f) A directive of the form:

GET < specifier>

may be used anywhere in a BCPL program; it directs the compiler to replace

the directive with the file or input stream of text referred to by the specifier.

The exact syntactic form of the specifier is a string constant.

Example:

The following is a complete program segment for separate compilation:

it is written in the TX-2 hardware representat.ion (smalls = red, capitals :c black)

and exhibits some of the preprocessor rules. Note that .it was not necessary

to wr.ite a single double vertical bar (canonical semicolon) since they will all

be inserted automatically.

GET 'h~ad2' //ThiS 'gets' the f.ile called head2 which presumably
II declares checkdist.inct I report and dvec

LET checkdistinct (E, S) BE
[1 UNTIL E EQ S DO / / The symbol f represents a SECTBRA

{ LET p = E + 4

AND N = dveclE
WHILE P L8 S DO

5

[IF dvec f p EQ N DO report (142, N)
p=p+4}

E = E + 4}1 / / Note that this closes
/ / two sections.

6

3 .0 Data Items

3.1 Rvalues, Lvalues and Conceptual Memory

The conceptual machine on which BePL assumes it is implemented

has a memory which is a vector of fixed length memory words (36 bits on

TX-2) .

Each memory word has a name, which is commonly known as its

addres s, and in BCPLis known as an Lvalue. The contents of a memory

word is known as an Rvalue .

3.2 Types

There is only one actual data type in BePL. This is a bit pattern

of a certain fixed length (36 bits in TX-2) .

Of course, a programmer will use the b.it patterns in different ways.

These correspond to the conceptual data types. These include:

integer, logical, Boolean I function, routine I label, string,
vector and Lvalue.

However, BCPL will never check, either at compile or run-time I whether

the variable used has the correct conceptual type. To BCPL, .it iss imp ly

a bit pattern and its context determines how .it is to be interpreted.

(1) The Rvalue of a variable of conceptual type vector is a 3 6-bi t pattern
which is interpreted as the Lvalue of its zeroth element

i. e., v and LV v I 0 have the same Rvalue and also

RV v and v 10 have the same Rvalue.

(2) The Lvalue of the nth element of a vector v may be obtained by adding
the integer n to v; thus LV vln is equal to v + n

(3) If x, y and t are the first, second and nth parameters of a function
or routine and if v = LV x, then

vfo = x
vl1 = y

and v I (n - 1) = t

This property may be used to define functions and routines with a variable

number of actual parameters. In the definition of such a function or routi ne

7

it is necessary to give a formal parameter list which is at least as long as

the longest actual parameter list of any call for it.

Example:

The following definition

LET R(a, b , c, d, e, n BE
{ LET v = LV a

}

defines the routine R which may be called with 6 or less actual parameters.

During the execution of the routine, the variable v may be used as a vector

whose first n elements are the first n actual parameters of the call~ thus

during the following call

R(126, 36,18,99)

the initial Rvalues of

v I 0, v 11, v I 2, v /3 are 12 6, 3 6, 18 I 99

(4) The Rvalue of a label is a bit pattern repre senting the program po
sition of the labelled command. Note that it does not contain informa
tion about the activation level of the function or routine in which the
label occurred.

(5) The Rvalue of a function or routine is a representation of the entry
pOint of the function or routine.

3 .3 Modes of Evaluation

In the assignment statement El = E2, where El and E2 are expressions I

we assign E2 to El .

E2 is evaluated in right hand mode I and El is evaluated in left hand

mode. Both El and E2 have associated Lvalues and Rvalues. The result

of an evaluation in right hand mode ,is used as an Rvalue I while an evaluation

in left hand mode is used as an Lvalue.

Example:

x=y Lvalues: Xaddr Yaddr
Rvalues: Xcontent Ycontent

Y is evaluated in right hand mode, and yields Yconte:lt.

X is evaluated in left hand mode I and yields Xaddr.

8

Both Ycontent and Xaddr are 36-bit patterns and the effect is to assign

ycontent to the contents of the memory location Xaddr.

There exist two operators which change the mode of evaluation.

These are LV and RV.

Example:

RV X = LV Y

Normally we would evaluate the right hand side to yield Ycontent. However,

LV changes the mode to left hand evaluation to yield Yaddr.

Similarly I the left hand side is evaluated in right hand mode to yield

Xcontent.

We still use Yaddr and Xcontent in their "normal" modes.

Thus I the bit pattern Yaddr is aSSigned to the contents of the memory

location Xcontent.

9

4.0 Primary Expressions

A primary expression is any expression described in this section.

4.1 Names

Syntactic form:

Semantics:

4.2 String Constants

Syntact.ic form:

A name is a sequence of one or more
characters from a re stricted alphabet called the
name character alphabet. The hardware repre
sentation of characters in this alphabet and the
rules for recognizing the starts and ends of
names are implementation dependent.

The TX-2 hardware representation is as
follows:

The name character alphabet contains
the letters A. . .. Z (red) and a. . . . z (black)
and the digits O. • . . 9 (red or black) and these
are all represented directly by the corresponding
hardware characters. A name must start with a
letter.

Two names are equal if they have the
same sequence of name alphabet characters.
A name may always be evaluated to yield an
Rvalue. If the name was declared to be a mani
fest constant (see section 7 .5) then the Rvalue
will be the same on every evaluation' if the name
was declared in any other way then it is a
variable and its Rvalue may be changed dynami
cally by an assignment command. If N is a
variable then its Lvalue is the Rvalue of the
expres sion:

LV N

'< string alphabet character >0 I

The hardware representation of characters in
the string alphabet is implementation dependent.

The TX-2 hardware representation is as
follows:

The string character alphabet contains

Semantics:

all the hardware characters with the two
exceptions of I and * which are represented
by * I and ** respectively.

In addition

*n represents newline
*s II space
*b II backspace
*t II tab

A string constant is renresented as a
BCPL vector: the length and the string characters
are packed in successive words of the vector.

Example:

Characters are packed 4 per word so
the string:

'AbclO*n '

is represented as follows:

Rvalue H 6 IA' Ib l IC I

111 10 1 Ixnl 0

4 .3 Character Constants

Syntactic form:

Semantics:

E < character>

A character constant is a single character
whose Rvalue is the bit pattern representation
of the character; this is right justified and the
word is filled with zeros.

Example:

The RV of Ea is

r;--I-o -, -0 -[a-l
N ate that the RV of the string constant I a' is a
pointer to the word:

1 la l o I 0 I

11

4.4 Numerical Constants

Syntact.ic form:

Semantics:

4.5 TRUE and FALSE

Syntactic form:

Semantics:

<digit> 1 or * <digit>l

The sequence of digits is interpreted
as a decimal integer in the former case, and
as a right justified octal number in the latter.

TRUE or FALSE

The Rvalue of TRUE is a bit pattern
ent.irely composed of ones~ the Rvalue of FALSE
is zero.
Note that TRUE = '"'-J FALSE

4.6 Bracketted Expres sions

Syntactic form:

Semantics:

4 • 7 Re suIt Blocks

Syntactic form:

Semantics:

(E)

Parentheses may enclose any expression;
their sole purpose is to specify grouping.

VALOF <block>

A result block is a form of BCPL ex
pression; it is evaluated by executing the
block unt.il a RESULTIS statement is encount
ered, which causes execution of the block to
cease and returns the Rvalue of the expression
in the RESULTIS command.

4 . 8 Function Applications

Syntactic form:

Semant.ics:

El (E2, E3, ... En)

E1 is a primary expression.

The function application is evaluated by
evaluating the expressions El, E2, ... En
and assigning the Rvalues of E2 . . . En to the
first n - 1 formal parameters of the function
whose Rvalue is the value of E1' this function
is then entered. The result of the application
is the Rvalue of the expression in the function

12

definition, see section 7.8. The precedence
of a function application is higher than that
of a vector application, i. e., y ! f (x) is y I (f (x)) .

4 . 9 Vector Applications

Syntactic form:

Semantics:

4 .10 LV Expressions

Syntactic form:

Semantics:

Ell E2

where both E1 and E2 are primary expressions.

A vector is represented by a pointer to
a consecutive group of words which are the
elements of the vector. The pointer points to
the zeroth element. To obtain the Rvalue of a
vector apcplication, the El and E2 are evaluated
to yield two Rvalues, the first is interpreted as

a vector pOinter and the second as the subscript:
the element is then acce s sed to yield the result.

The Lvalue of an element may be obtained
by evaluating the expression

LV El r E2

The representations of Vectors, Lvalues
and integers is such that the following relations
are true:

El I E2 = RV (El + E2)

LV E1 I E2 = El + E2

Note that El I E2 I E3 I E4 is calculated as

((El I E2) I E3) I E4)

LV E

E is a primary expression.

The Lvalue of some expressions may be
obtained by applying the operator LV; it is only
meaningful to apply LV to a vector application,
an RV expression or an identifier which is not
a manifest constant. The precedence of LV
expressions is lower than that of vector applica
tions, e.g., LV F(Y) I X is LV((F(Y): 1 (X)

The result of the application depends on
the leading operator of the operand as follows:

13

4.11 RV expressions

Syntactic form:

Semantics:

(a) A vector application.

The result is the Lva1ue of the element
referenced I see section 4.9 .

(b) An RV expres sion.

The result is the value of the ooerand
of RV. The following relation is always true:

LV RV E = E

(c) A name.

The result is the Lva1ue of the data
item with the given name (which mus t not be
a manifest constant). If the name was declared
explicitly as a function I routine I static I
external or label then its Lvalue is a manifest
constant (but its Rvalue is not). See section 7 . 2 .

RV E

E is a primary expression.

The value of an RV expression is obtained by
evaluating its operand to yield an Rvalue which is
then interpreted as the Lvalue of a data item. When
evaluated in right hand mode I the result is the Rvalue
of this data item. For left hand mode I see section 6 .1.
The precedence of RV expres sions is lower than that
of vector applications

4.12 Half word Expressions

Syntactic form:

Semantics:

RH E or LH E

where E is a primary exnression.

When evaluated in right hand mode I the
value of an RH or LH expression is the ~-bit
pattern consisting of the right half or left half
of E I respectively, with sign extension into the
other half. (Configs 11 and 12) For left hand
mode, see section 6. 1. The precedence of
half word expres sions is lower than that of
vector applications.

4.13 Quarter word Expressions

SyntactiC form: 01 E or Q2 E or Q3 E or Q4 E

14

Semantics:

where E is a nrimary exuression.

When evaluated in right hand mode,
the value of a quarter eXQression is the 1§.-bit
pattern consisting of the aonropriate quarter
of E in quarter I, with sign extension. (Configs
13-16 .) For .left-hand mode, see section 6 . 1 .
The precedence of quarter word expres sions is
lower than that of vector applications.

15

5 .0 Comeound Expresstons

5.1 Arithmetic Expressions

Syntactic form:

Semantics:

E 1 * E 2 or E 1 / E 2 or EIRE M E 2 or E 1 x E 2

E 1 + E 2 or + E 1 or E 1 - E 2 or - E 1

The operators * / and REM are more
binding than + and - and as sociate to the right.
The operators + and - as sociate to the left.

All these operators interpret the Rvalues
of their operands as signed integers I and all
yield integer results.

The operator * denotes integer multioli-
cation.

The division operator / yields the correct
result if El is divisible by E2: it is otherwise
implementation dependent but the rounding error
is never greater than 1.

The operator REM yields the rema inder of
E1 divided by E2: its exact specification is im
plementation deoendent.

The operators + and - are self-exnlana-
tory.

5.2 Relational Expressions

Syntactic form:

Semantics:

E1 <relon> E2 <reloo> En

where <relop>
and n~ 2

:: = EO' NE I LS I G RILE 'G E

The relational OlJerators are less binding
than the arithmetic ooerators.

The result of evaluating an extended
relation is true if and only if all the individ
ual relations are true. The order of evalua-
tion is undefined. The Rvalues of the exnressions
El ... En are interpreted as signed integers
and the relational operators have their usual
mathematical meanings. Note, therefore that the
value of an expression such as x EO TRUE is
implementation dependent.

16

5.3 Shift Expressions

Syntactic form:

Semantics:

El LSHIFT E2 or El RSHIFT E2

E2 is any primary or arithmetic expres sion
and E 1 is any shift, relational, arithmetic or
primary expression. Thus the shift operators
are less binding than the relations on the
left and more binding on the right.

The Rvalue of El is interpreted as a
logical bit pattern and that of E2 as an integer.
The result of El LSHIFT E2 is the bit pattern
El shifted to the left by E2 places. El RSHIFT
E2 is as for LSHIFT but shifts to the right. Vacated
positions are filled with zeros and the result is
undefined .if E2 is negative or greater than the data
item size.

5 .4 Logical Expres sions

Syntactic form:

Semantics:

""' El or El /\ E2 or El V E2 or

El EQV E2 or El NEQV E2

The operator""' is most binding; then,
in decreasing order of binding power are:

/\ ,V, EQV, NEQV.

All the logical operators are less binding than
the shift operators.

The operands of all the logical operators
are interpreted as binary bit patterns of ones
and zeros.

The application of the operator ~ yields
the logical negation of its operand. The result
of the application of any other logical operator
is a bi pattern whose nth bit depends only on
the nth bits of the operands and can be determined
by the following table.

The values of the
nth bits

both ones

both zeros

otherwise

17

/\

1

o
o

Operator
V EQV NEQV

1

o
1

1

1

o

o

o

1

5 .5 Subword Expres sions

Syntactic form:

i. e . ,

El" E2

El and E2 may be any logical
expression or exps of greater binding povver

E 1 ~ E2, E3 II E4/\ E5

parses as El ~ E2, (E3" (E4/\ E5))

Semantics: E 1" E2 produces a 36-bit pattern whose
left half is the Same as the right half of El, and
whose right half is the same as the right half of

E2.
El E2

E3

5.6 Conditional Expressions

Syntactic form:

Semantics:

5.7 Tables

Syntactic form:

E 1 ~ E2, E3

El, E2, and E3 may be any $ubword
expressions or expressions of greater binding
power. E 2 and E3 may, in addition be conditional
expres sions .

The value of tre conditional expres sion
El ~ E2, E3 is the Rvalue of E2 or E3 depend-
ing on whether the value of E 1 represents true
or false respectively. In either case only one
alternative is evaluated. If the value of El does
not represent either true or false then the result
of the conditional expression is undefined.

TABLE EO, E 1 I • • • • lEn

where all the expressions are more binding
than comma; however, only expres sions composed
of constants and the operators

+ - * / r. I TAB LE VE C

are semantically allowable.

18

Semantics: A table is a static vector whose elements
are initialized prior to execution to the values of
the expressions EO to En; all these expressions
must have values which can be computed at com
pile time. The Rvalue of a table is a pOinter to
its zeroth element. When used in this context,
VEe denotes a static vector.

19

6 . 0 Commands

6.1 Simple Assignment Commands

Syntactic form:

Semantics:

E1 = E2

E1 may either be an identifier I a vector
application I an RV expression I a half word
expression I or a quarter word expression, and
its effect is as follows:

(a) If E 1 is an identifier:

The identifier must refer to a data
item which has an Lvalue (.i. e., it must not
be declared as a manifest named constant).
The assignment replaces the Rvalue of this
data item by the Rvalue of E2.

(b) If E 1 is a vector application:

The element referenced by E 1 is
updated with the Rvalue of E2.

(c) If E1 is an RV expression:

The operand of RV is evaluated to
yield a value which is then interpreted as an
Lvalue; the Rvalue of E2 then replaces the
Rvalue of the data item referred to by the Lvalue.

(d) If E1 is a half word expression (RH or LH):

RH E3 = E4 is syntactic sugar for
E3 = LH E3 , I E4

LH E3 = E4 is syntactic sugar for
E3 = E4 " E3

See section 5 .5.

(e) IF E 1 is a quarter word expression:

Q3 E3 = E4 is semantically equivalent
to

E3 = (E31\#777000777777) v ((E4A#777)LSHIFT 18)

i. e. , put Q1 of E4 in Q3 of E3 without changing
the rest of E3.

6.2 As signment Commands

Syntactic form: L 1 I L 2 I • • • Ln = R 1, R 2 I • • • Rn

20

Semantics: The semantics of the as signment command
is defined in terms of the simple as signment
command; the command given above is semantically
equivalent to the following sequence:

L1 = R1
L2 = R2

Ln = Rn

Note that the individual assignments are ex
ecuted from left to right and not simultaneously.

6.3 Routine Commands

Syntactic form:

Semantics:

E1 (E2, E3, ... En)

where E1 is a primary expression.

The above command is executed by as sign
ing the Rvalues of E2 I E3, . . . I En to the first
n - 1 formal parameters of the routine whose
Rvalue is the value of E 1; this routine is then
entered. The execution of this command is com
plete when the execution of the routine body is
complete.

6 .4 Labelled Commands

Syntactic form:

Semantics:

6.5 Goto Commands

Syntactic form:

Semantics:

N C where N is a name.

This declares a data item with name N:
its scope is the smallest textually enclosing
routine body or result block and its initial
Rvalue is a bit pattern representing the program
position of the command C. Its Lvalue is a
manifest constant, and may be' referenced from a
separately compiled program if and only
if the labelled command occurs within the
scope of an external with the same name as the
label. The Rvalue of a label is initialized
prior to execution of the program.

GOTO E

E is evaluated to yield an Rvalue, then
execution is resumed at the statement whose

21

6 . 6 If Commands

SyntactiC fonn:

Semantics:

label had the same initial Rvalue.

IF E DO C

E is evaluated to yield an Rvalue which
is then interpreted as a truth value. See sect.ion
4.5 for the representation of Boolean values.
If the value of E represent neither TRUE nor FALSE
then the effect is implementation dependent.

6.7 Unless Commands

Syntactic fonn:

Semantics:

6.8 While Commands

Syntactic fonn:

Semantics:

6.9 Until Commands

Syntactic form:

6.10 Test Commands

Syntactic fonn:

UNLESS E DO C

This statement is exactly equivalent to
the following:

IF '" (E) DO C

WHILE E DO C

This is equivalent to the following se-
quence:

GOTO L

MJFC

L IF IF E GOTO M

where Land M are identifiers which do not occur
elsewhere in the program.

UNTIL E DO C

This statement is equivalent to

WHILE "-' (E) DOC

TEST E THEN C 1 OR C2

This statement is equivalent to the

22

following sequence:

IF "-' (E) GOTO L

Cl

GOTO M

L C2

M

where Land M are identifiers which do not
occur els ewhere in the program.

6 .11 Repeated Commands

Syntactic form:

Semantics:

6.12 For Commands

Syntactic form:

Semantics:

C REPEAT or

C REPEATWHILE E or C REPEATUNTIL E

\Nhere C is any command other than an IF I UNLESS
UNTIL I WHILE, TEST or FOR command.

C REPEAT is equivalent to:

L C

GOTO L

C REPEATWHILE E is equivalent to:

L C

IF E GOTO L

C REPEATUNTIL E is equivalent to:

L C

IF ~ (E) GOTO L

where L is an identifier which does not occur
elsewhere in the program.

FOR N = E1 TO E2 DO C

where N is a name.

The above statement is equivalent to:

f LET N = E1

23

UNTIL N GR E2 DO
fC

N=N+111

6.13 Break Commands

Syntactic form:

Semantics:

6.14 Finish Commands

Syntactic form:

Semantics:

6 .15 Return Commands

Syntactic form:

Semantics:

BREAK

When this statement is executed .it
causes execution to be resumed at the point
just after the smallest textually enclosing
loop command. The loop commands are those
with the following key words:

UNTIL I WHILE I REPEAT I REPEATWHILE,
REPEAT UNTIL I and FOR.

FINISH

This causes the execution of the pro
gram to ceas e .

RETURN

This causes a return from a routine
body to the po.int just after the routine command
which made the routine call.

6.16 Resultis Commands

Syntactic form:

Semantics:

RESULTIS E

This causes execution of the smallest
enclosing result block to cease and return the
Rvalue of E.

6.17 SwitchonCommands

Syntactic form:

Semantics:

SWITCHON E INTO <block>

where the block contains labels of th e form:

CASE <constant> ..- or

DEFAULT"-

The expression is first evaluated and
if a case exists which has a constant with the

24

6.18 Blocks

Syntactic form:

Semantics:

same arithmetic value then execution is resumed at
that label; otherwise, if there is a default
label then execution is continued from there,
and if there is not, execution is resumed just
after the end of the switch on command.

The switch is implemented as direct
switch, a sequential search or a tree search
depending on the number and range of the case
constants.

[<declaration>l < I I C>o 1 or

[c < I' C>o }

A block is executed by executing the
declarations (if any) and then executing the
commands of the block in sequence.

The scope of the definee of a declara
tion is the region of program consisting of the
declaration itself, the succeeding declarations
and the command sequence.

25

7 . 0 Definitions

7 . 1 Scope Rule s

The SCOPE of a name N is the textual region of program throughout

which N refers to the same data item. Every occurrence of a name must be

in the scope of a declaration of the same name.

There are three kinds of declaration:

(1) A formal parameter list of a function or routine: its scope is the

function or routine body.

(2) The set of labels set by colon in a routine or result block: its

scope is the routine or result block body.

(3) Each declaration in the declaration sequence of a block: its scope

is the region of program consisting of the declaration itself, the

succeed.ing declarations and the command sequence of the block.

Two data items are said to be declared at the same level of definition

if they yvere declared in the same formal parameter list, as labels of the

same routine or result block, or in the same definitions.

There are three semantic restrictions concerning scope rules, namely:

(a) Two data items with the same name may not be declared
in the same level of definition.

(b) If a name N is used but not declared within the body of a
function or routine, then it must either be a manifest named
constant or a data item with a manifest constant Lvalue I
that is it must have been declared as an external, an explicit
function or routine, or as a label. Thus the following pro
gram is illegal:

LET x = 1
LET f(y) = x + y

since x is a dynamic data item, see sections 7.6 and 7.2.

(c) A label set by colon may not occur within the scope of a data
item with the same name if that data item was declared within
the scope of the label and was not an external.

7 .2 Space Allocation and Extent of Data Items

The EXTENT of a data item is the time through which it exists and

has an Lvalue. Throughout the extent of a data item I its Lvalue remains

constant and its Rvalue is changed only by assignment.

In BePL data items can be divided into two classes

(1) Static data items:

Those data items whose extent lasts as long as the program execution

time~ such data items have manifest constant Lvalues, Every static

data item must have been declared either in a function or routine defini-

tion, in an external or static declaration, in a TABLE expression, or as cl
label set by colon.

(2) Dynamic data items:

Those data items whose extent is limited~ the extent of a dynamic

data item starts when its declaration is executed and continues until

execution leaves the scope of the declaration. Every dynamic data

item must be declared either by a simple definition I a vector definition

or as a formal parameter. The Lvalue of such a data item is not a

manifest constant.

7 . 3 External Declarations

Syntactic form:

Semantics:

EXTERNAL [<name > <II <name> > 0 }

The external declaration declares a set
of names to be used in common by seDarately
compiled segments of a orogram. This storage
must be initialized Ii. e. ,one segment must
declare the storage for the variables. Within
the program segment where the name is declared I

it must still appear in the external declaration.
This declaration should be used by all function I

routine I label or static definitions which are
used by separately compiled program segments.

27

7 .4 Static Declarations

Syntactic form:

Semantics:

STATIC [<name> = <constant> 1
[,U<name> = <constants> >01

This declaration declares each name
to have a value equal to the value of its
associated expression. Only expressions
composed of constants and the operators

+ - * / .r I TABLE VEC

are allowable. When used in this context,
VEC denotes a static vector.

7 .5 Manifest Declarations

Syntact.ic form:

Semantics:

MANIFEST [<name> = <constant>

< ,I/<name> = <constant> >0 1

This declaration declares each name
to be a manifest constant with a value equal
to the value of its associated constant expression.
The meaning of a program would remain unchanged
if all occurrences of manifest named constants
were textually replaced by their corresponding
values.

This facility has been provided to improve
the readability of programs and to give the pro
grammer greater flexibility in the choice of
internal representations of data.

7 • '6 Simple Definitions

Syntactic form:

Semantics:

LET Nl,N2, ... Nn=El,E2,. En

Data items with names Nl ... Nn are
first declared, but not initialized, and then the
following aSSignment command is executed

Nl,N2, ... Nn=El,E2, ... En

A simple definition declares dynamic
data items.

Note that all definitions must occur at the
beginning of blocks.

28

7 . Q Vector Definitions

Syntactic form:

Semantics:

N = VEe <constant>

where N is a name.

The value of the constant expression
must bea manifest constant and it defines the
maximum allowable subscript value of the
vector N. The minimum subscript value is
always zero. The initial Rvalue of N is the
Lvalue of the zeroth element of the vector;
both N and the elements of the vector are
dynamic data items.

The use of a vector is described in

section 4.9.

7 .8 Function Definitions

Syntactic form:

Semantics:

N«namelist>l_) = E

where N is a name.

This defines a function with name N;
the data item defined is static and has its
Rvalue initialized prior to execution of the
program. The Lvalue of N is a manifest
constant, and refers to an external if
rit is· in the scoI'e of an extern-al -d~fini
tion.

The names in the name list are called
formal parameters and their scope is the body
of the function E. The extent of a formal
parameter lasts from the moment of its initializa
tion in a call until the time when the evaluation
of the body is complete.

All functions and routines may be defined
and used recursively.

Function applications are described in
section 4.8 .

7 .9 Routine Denni tions

Syntactic form: N «namelist>l_) BE <block>

where N is a name.

~9

Semantics: This defines a routine with name N.
The semantics of a routine definition is exactly
as for a function definition except that the
body of a routine is a block and therefore its
application yields no result. A routine should
therefore only be called in the context of a
command.

Routine commands are described in
section 6.3.

7 . 10 Simultaneous Definitions

Syntactic form:

Semantics:

D <AND D>O

All the definitions are' effectively
executed simultaneously and all the defined
data items have the same scope which, by
the scope rules given in 7 . 1, includes the
simultaneous definition itself; a set of
mutually recursive functions and routines
may thus be declared.

30

REFERENCES

[1] Strachey, C. (Editor) "CPL Working Papers" a technical report,

London Institute of Computer Science and the University

Mathematical Laboratory, Cambridge (1966).

[2J Richards 1M. "The BCPL Reference Manual" I Project MAC Memo -

M-3S2-1, M. r. T. Cambridge I Mass. (Feb. 1968).

[3J Richards 1M. "BCPL: A Tool for Compiler Writing and System

Programming" I 1969 Spr.ing Joint Computer Conference.

