Division 6 －Lincoln Laboratory Massachusetts Institute of Technology Cambridge 39，Massachusetts

SUBJECT：	$\frac{\text { BLOCKING OSCITLATOR CORE DRIVERS FOR USE IN DISPLIAY }}{\text { GENERATOR BUFFER STORAGE }}$
To：	NoH．Taylor
From：	Eli Anfenger
Date：	Il May 1954

Abstract：A cheap core driver has been built which is a blocking ose cillator triggered from a standard pulse．The output pulse lengths are determined by lumped constant delay lines，the amplitude by the BH to bottoming of the tube excursions． For high current sources the pulse is amplified by a power pentode whose plate is driven from $\mathrm{B}+$ to bottoming and transformed to the desired level．

Introduction

It was desired to develop a cheap drive for use in a display generator buffer storage as illustrated in Figo $l_{\text {。 }}$ In this figure each winding represents the output transformer of a driver．The drivers are returned to voltages such that each core winding is held from conduction because of the switch action of the diode in series with it．The bit and word drivers are 40 volt pulse sources；the bit driver pulsing new gatively and the word driver pulsing positively．Either driver alone will reduce the bias on the diode to zero，whereas the coincident opera－ tion of both drivers will give a 40 volt source to drive current through the core winding．．Read is accomplished by a 150 volt pulse on a second core winding．The read windings are connected in series as dictated by the logical use of the information．A third winding on the core is the output terminals for read．

The requirements for the above circuits are as follows：o
1）Bit Driver
a）Isolated 40 volt pulse max． $35 \times \mathrm{volt}$ minimum at 28 ma 。
b） $3 \mu \mathrm{sec}$ pulse。
c）Driver must trigger from positive standard pulses $+20 \nabla$ o to＋40 V 。
d）Driver must be capable of operating in a burst of 8 pulses spaced $10 \mu \mathrm{sec}$ apart，with a burst repeti－ tion rate of 1000 cycles．

2）Word Driver
a）Isolated 40－volt pulse max．a， 35 ovolt minimum zero to 800 ma．
b）Good regulation from no load（no cores）to full load（32 cores）
c） $4 \mu \mathrm{sec}$ pulse。
d）Driver must trigger from positive standard pulses of 10 to 40 volts．
e）Repetition rate 1000 cycles．

3）Read Driver

a）Isolated 150 molt pulse at 1 amp．
b） $1 \mu \mathrm{sec}$ pulse．
c）Driver must trigger from positive standard pulse 20 to 40 volts．
d）Repetition rate 1000 cycles．

Circuits

1）Bit Driver

The bit driver circuit is shown in Fig。2。 It cono sists of $1 / 25965$ connected as a blocking oscillator．The pulse length is determined by a delay line in the grid circuit．The tube bottoms during the pulse．The 33 K resistor in the plate circuit reduces the overshoot and adds damping for stability．Delay of the Output pulse compared with the input pulse is about 0.2 ．The characteristic waveforms are shown in Fig．3．

The input impedance to a pulse which will trigger the blocking oscillator is 400 ohms．The maximum cathode current is on the order of $80 \mathrm{ma}_{\text {．}}$ All possible voltage measurements were made directly on the plates of the scope．When the levels were too low to be read this way they were read through the amplifiers and calibration of the scope。 In every case when direct and amplifier measurements were compared the amplifier measurements were about 30% higher than the direct measurements． Since all current measurements were made by measuring the drop in a small series resistor，it is assumed these readings are slightly high．Because
of this observation those diagrams that have photographs show approximate voltages when the measurement could not be made directly on the scope plates．The maximum grid voltage during conduction of the tube is +7 volts．

2）Word Driver

Two word driver circuits are shown in Figs． $4 a$ and 4b．Each consists of a blocking oscillator（1／2 5965）driving a power amplifier（6293）．The blocking oscillator bottoms．The output is stepped up to drive the power amplifier from cutwoff to bottoming．The plate voltage of the power amplifier is transformed to the desired out－ put level．Pulse length（ $4 \mu \mathrm{sec}$ ）is determined by the delay line in the grid of the blocking oscillator．Characteristic waveforms of Fig． 4b are shown in Fig．5．The blocking oscillator peak grid voltage is +7 voltsg the peak cathode current is about 60 ma．The peak current of the power amplifier cathode loaded（ 47 ohms ）is 300 ma and the screen is 100 ma．Unloaded the peak current is 200 ma on the cathode and 100 ma on the screen．

3）Read Driver

Two read driver circuits are shown in Figs．6a and 6b．These are essentially the same as the word drivers with the exo ception of the delay line of the blocking oscillator．Here the pulse length is $1 \mu \mathrm{sec}$ ．Characteristic waveforms of Fig．6b are shown in Fig．7．The peak cathode current of the blocking oscillator is about 60 mas the peak grid voltage is +7 ．The peak cathode current of the power amplifiers is about 1 amp ．and peak screen is about 0.5 amp 。

The reason for two types is that at first the maxio mum $B+$ was 250 volts but later it was learned that 600 volts would be available。

Circuit Margins
Curves of the input triggering voltage versus bias for the three types of drivers are shown in Figs．899。 and 10．These are shown for a bogie 5965 and a down 5965．The characteristic of the bogie and down 5965 are shown in Fig。11。

It was found that the blocking oscillator worked well when the plate voltage was changed between $\$ 50$ volts，however，the output is a function of the plate voltage．The blocking oscillator also works well when either a 12AY7 or 12AU7 are substituted for the 5965.

A table of screen margins of the 6293 for the various circuits is shown in the table below．

Circuit	Min。Screen Voltage for satisfactory Opra	Max。Screen Voltage tried	Nominal Voltage
Fig。4a	90	440	240
Fig。4b	60	440	150
Fig。6a	320	590	400
Fig。6b	210	440	250

Shunting the diodes of the blocking oscillator grid circuits with 10K resistors had no effect on the output of the circuits．Raising the screen voltages on the power amplifiers lengthened the pulse on the order of 0.2 to $0.5 \mu \mathrm{sec}$ ．at the extremes．The delay of the output pulses relative to the input pulses is a function of the triggering pulses．Over the required operating range of triggers the delay is 0.5 $\mu s e c$ at most．

Suggested Improvements

It appears that the only handle for marginal checking the blocking oscillator is the triggering level。 If a pentode is used such as a 7AK7 the screen could serve as a convenient handle．

While the maximum tube rating of the 5965 is not exceeded in the present application，an increase in the grid to plate winding ratio of the blocking oscillator transformer would reduce the maximum cathode current and the maximum positive grid voltage．A five to one ratio was tried and found to be marginal for triggering and bottoming．Perhaps a four to one ratio would be a good compromise．

To improve the screen margins of the read driver a circuit configuration as shown in Fig．6b with the cathode of the 6293 returned to -150 v and the blocking oscillator output winding returned to 0300 v is worth trying．The output transformer will have to be changed．

1）Blocking Oscillator Transformers
Wound on Ferramic H Core F109＠3 die size
Grid winding 50T \＃36 Formex
Plate winding 150T \＃36 Formex
Output winding 57T \＃36 Formex
2) Word Driver and Read Driver Blocking Oscillator Transformer
Wound on Ferramic H Core Fl09-3 die size
Grid Winding 50 T \#36 Formex
Plate Winding 150 T \#36 Formex
Output Winding 225 T \#36 Formex
3) Word Driver Power Amplifier Transformer (Fig. La)
Wound on 2 mil Westinghouse L_{4} Hypersil
Primary 250 T \#36 Formex
Secondary 25 T \#36 Formex
4) Word Driver Power Amplifier Transformer (Fig. Lb)
Wound on 2 mil Westinghouse LL Hypersil
Primary $375 \mathrm{~T} \# 36$ Formex
Secondary 25 T \#36 Formex
5) Read Driver Power Amplifier Transformer (Fig. 6a)
Wound on 2 mil Westinghouse LI Hypersil
Primary 70 T \#36 Forme
Secondary 35 T \#36 Formex
(Could just as well be 50 turns and 25 turns.)
6) Read Driver Power Amplifier Transformer (Fig。 bb)
Wound on 2 mil Westinghouse Ll Hypersil
Primary 100 T \#36 Formex
Secondary 25 I \#36 Formex
Figure Number Drawing Number

1	$A=58979$
2	$A=58980$
3	$A-58981$
$4 A$	$B=58982$
$4 B$	$B=58983$
5	$A=58984$
$6 A$	$B=58985$
$6 B$	$B=58986$
7	$A=58987$
8	$A=58988$
9	$A=58989$
10	$A=58990$
11	$A=58991$

FIG. I
display generator buffer storage

FIG. 2
BIT DRIVER

FIG. 3

1μ SEC./DIV. OUTPUT PULSE (UNLOADED)

FIG. 5

FIG. 7

FIG. 8
BLOCK OSCILLATOR,BIT DRIVER

FIG. 9
BLOCK OSCILLATOR,WORD DRIVER

FIG. 10
BLOCK OSCILLATOR, READ DRIVER

FIG. II
5965 CHARACTERISTICS

Division 6 - Lincoln Laboratory
Massachusetts Institute of Technology Cambridge 39, Massachusetts

SUBJECT:	BLOCKING OSCILLATOR CORE DRIVERS FOR USE IN DISPLAY GENERATOR BUFFER STORAGE.
To:	No. Taylor
From:	E. Anfenger
Date:	June 7, 1954
Abstract:	This paper lists the corrections on M-2820

Corrections

1. Page 2 under "word driver" item d, should read 20 to 40 volts instead of 10 to 40 volts.
2. Top of Fig. 1 should read 32 bit drivers instead of 16.
3. Fig. 4 a return to -300^{V} should be from lower winding of 225 T and condenser should go to ground as in Fig. Lb.
4. Fig. Ga cathode return 6293 should read -150 V instead of $+150 \mathrm{~V}$.

SIGNED

appouna R L Bes to
EA: job

Distribution List for N. Taylor (When M-Notes are addressed to him)

Internal Distribution

External Distribution
D. Arden

The author
R. Best
D. Brown
C. Corderman
R. Callahan
W. Thomas
A. Heineck
J. Jacobs
W. Linvill
R. Mayer-
P. Bagley
R. Nelson
K. Olsen
W. Papien
N. Taylor
R. von Buelow
H. Wainwright
C. W. Watt
J. W. Forrester
R. R. Everett
S. H. Dodd
A. F. Falcione

Division 6-Library (15 to 20 Copies)
M's by B. Paine--1 copy to V. Savio
A's--1 copy to R. Nelson
A. P. Kromer (10 Copies of $M-$ Notes for $I_{.} \mathrm{B}_{\mathrm{o}} \mathrm{M}_{0}$)

Bldg. 32 - Library
Air Force Cambridge Resedrch Center
Attention: Dooument, Room-CRQ-SL-1. 230 Albany Street

