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FOREWORD

Because it presents information of interest to those studying

the application of digital computers to the real-time control of
physical systems, this revised thesis investigation is now being issued

as an R-series report by the Digital Computer Laboratory at M.I.T.

In such servomechanisms applications, it may frequently be
desirable, when computer capacity is available, that the computer be pro-
granmed to abstract or otherwise modify the intelligence from a noisy input
signal, 'In this mode of operation, the computer simulates the conventional
filter or compensating network. This report concerns itself with methods
for optimizing, in a mean square error sense, computer programs which can

effect such a filtering process.

The author is indebted to Professor W.K. Linvill for his super-
vision of this research, and to the Digital Computer Laboratory for the
free use of its facilities and for the interest and advice of many of its

personnel,



ABSTRACT

Since the use of the large-scale calculating machine as an element in a
servomechanism is being actively studied, procedures mast be devised for the
specification of computer programs which will enable the computer to abstract
intelligence from an incoming signal sequence. Here we treat the synthesis
of programs (i.e., discrete filters) which process the input sequence in such
a manner as to obtain the best possible approximation, in a least square error
sense, to a speciﬁed function of that sequence. The synthesis procedures are
based on equations analogous to the Wiener-Hopf equation. By means of these
equations 1t is possible to specify the optimum least-squares filter whether
it be linear or not, time-varying or not. "In any case, the optimm filter is

obtained by solving a set of simltaneous linear algebraic equations.

ifi
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CHAPTER I

INTRODUCTION

1.01 Historical Note

In recent years large-scale digital computers have been brought to
that stage of development where their acpplication to the control of dynamic
systems 1s practically realizable. Computer applications; in general, may
be divided roughly into the following categories:

a) real-time - that in which the computer mst cope

with a dynamically changing problem, and in which
the computed results directly affect the evolution
‘of the problem (e.g. - chemical process control,
similation), and

b) non-real time - that in which the computer copes with

a static or quasi-static problem, and in which the

computed results have little or né effect on the

ewntion of the problem (e.g. - scientific computa-

tions, economic analysis).
A real time application to a complex control problem frequently implies
a computer having a very high opei'ating speed as well as rather exten-
sive storage facilities. One such computer, Whirlwind I, is being cur-
rently developed by the M.I.T, Digital Computer Laboratory. It should be
noted that the use of the digital computer in control systems is but a

logical extension of servomechanisms applications.
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Assuming that the computer and its associated conversioh apparatus
are properly designed with respect to the particular control system at hand,
the question which then arises is the formulation of computer programs which
will accomplish the desired results. Viewed in proper perspective, the
digital computer can be viéualized as a docile slave with a very strong back
but a rather feeble mind. Although plagued by a small "memory" and by a
limited repertoire of arithmetic and logical "thought processes®, this slave
is nevertheless capable of consulting this "memory® and executing these pro-
cesses at truly fantastic speeds. It remains for the applications engineer
to instruct the slave in the manner in which "he® is to perform *his" dnties.

Generally these computer programs are formulated in terms of dif-
ference equations (i.e. - time domain synthesis) with the computer solving
the equations by means of arithmetic operations and modifying its course
of actions by means of logical operations. In a recent doctoral thesis,
Salzerls presents a method for the coding of programs which depends on
frequency domain synthesis. Since the computer program is essentially #
data~processing filter, one would logically expect that many of the methods
of analog filter theory are extensible to program synthesis. This thesis
constitutes an attempt at program synthesis based on the concepts of Wiener-
Lee theery.1’6’7 In a sense, it is an effort at endowing the digital com-
puter with a higher order of intelligence -~ one capable of interpreting
a message in terms of its statistical distributions in time.

In his classic monograph, "Extrapolation, Interpolation, and
Smoothing of Stationary Time Series", N. W&enerl demonstrated the basic
unity of the previously unrelated ﬁhilosophies underlying the investigation

of time series in statistics and of messagesiransmission in communication
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engineering. This study parallels to a great extent the somewhat earlier
work of A. Kolmogoroff2 and thms represents another instance of “mmltiple
discovery", that curious historical phenomenon which has recurred so fre-
quently in the development of science. Although each of these men was
concerned with a slightly different problem, both sought, through an ex~
tension of the theory of stochastic processes, to establish the bases for
the optimum prediction of time series.

Time series may be defined as sequences, discrete or continuous,
of quantitative data assigned to specific moments of time. Since the
majority of types of time~variations encountered, both in statistics and
in communications, are not of the regular functional type in which the
function f(t) can be represented exactly by a mathematical function of
t, they can be studied only with respect to the statistics of their dis-
tributions in time. From this it follows that the separation of the true
data from the noise in any set of sequences mast logically be preceded by
a study of the stat;stical éharacyeristics of the set. Since the con-~
cepts of statistics are based on large collections or ensembles of events,
we remark that the performances of the filters conside;ed herein are to
be optimized over an ensemble of possible signals.

By making certain restrictive assumptions as to the properties
of the ensemble, Wiener was able to simplify the specification of the
optinmum filter. The basic concept of his theory was that commnication
signals were to be regarded as stationary, ergodic time series. A sta-
tionary ensemble is one whose: statistical properties do not vary with
time -- that ig, the statistical régularities of the past will hold in

the future. An ergodic ensemble is a special case of a stationary



ensemble for which any member function is statistically representative

of any other member function. For the ergodic ensemble one can, in
computing statistical parameters, replace ensemble averages by time aver-
ages. This replacement permites a considerable saving in time and effort
siﬁce,the former averaging process is much more difficult than the latter.
Purthermore, the assumption of stationarity permits the design of the
optimum filter in the form of a constant-coefficient system.

If the concept of treating messages as stationary time series
is accepted, the problem which then arises is -- what statistical param-
eters are of importance in the design of optimum filters? In this, as
in most physical problems, the solution is more readily obtained if the
limitation of linearity is imposed on the types of operations to be used
in the filtering. With this limitation on the characteristics of the
filters, it is immediately apparent that the only statistical parameters
which need be considered are the signal power spectra -- or their time
domain equivalents, the linear correlation functions. It should be noted
that if the limitation of linearity is not imposed, then the statistical
éarameters of importance are both the linear and the higher order non-
linear correlation functions. This point will be treated in somewhat
greater detail later (c.f. Chap. II).

Prior to the publication of Wiener's monograph, the problem
of filter design was generally handled by the classical methods of
(a) prescribing either the desired frequency response or the desired
ﬁransient response,'and (v) synthesizi ng a netwofk which approximates
th{skresponse. Not only did Wiener suggest an entirely different ap-

proach to the synthesis of linear filters, but he also provided the basis
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for the development of a theory of information.3 55 Moch work has since

n9,10,11 of the Wiener

been done in the im;erprei;at.ionG’7’s and extensio
theory and in the mechanization' of the rather laborious procedure of
computing correlation functions.

It should be emphasized that this optimization theory need not
be restricted to stationary ensembles nor the filtering system to linear
operations. Booton23 has generalized the theory to include time-vary-
ing linear systems with nonstationary statistical inputs. We shall show
that, for the “discrete filter", one can specify the optimum systqm with

the same ease regardless of whether the restrictions of linearity and

stationarity are imposed or not.

1.02 Definition of Problem

Having sketched the origin of the statistical communication
theory, we now consider the extension of its techniques to the synthesis
of programs capable of dealing with a specific kind of noise. The noise
in question is that arising from the comwersion of a contimqus time
series to one which is discrete.

Information that is to be processed by a digital computer must
generally be made available to it in the form of signals which are dis-
crehized both in time of occurrence and in magnitude. Thus, in a control
application, a contimmously varying signal which is related to the con-
trolled variable of the system may be sampled and quantized by means of
encoding devices to give one of a finite set of discrete magnitudes for
each distinct time interval. Note that the term “sampling® is used for

the process of discretizing in time, "quantizing® is used for that in
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amplitude, and "encoding" is used for the process (involving sampling
and quantizing) whereby a contimous time series is converted to one
which is discretized in time and amplitude.

7

.‘ Whether the original input signal is noise-free or not, it
f:‘Ls distorted in the process of be'ing encoded. This distorﬁon is caused
primarily by the fact that the quantizer can reproduce only approximately
an instantaneous sample by assigning to it the value of the nearest
du;-a.ntizing level. To attain an accuracy greater than one part in a
thousand requires a rather complex electronic system, .The result is that
this analog-to-digital conversion by the encoder prodaces data which are
good to, say, three decimal figures. When these sampled quantizﬁd data
are subsequently used in the!camyu.tation of a correction to the controlled
variable of the system, the inevitable accumulation of round-off errors
soon destroys the usefulness of the computation. Round-off error stems
from the necessity of operating on data which approximate all real

nambers by rationsl numbers with a finite mumber of digits.

The problem at hand is to synthesize discrete filters (i.e., com-
puter programs) which, when supplied with a noisy da:ta. input, yill yield
the best possible approximation, in a least mean-square error sense, to
the message or some function thereof. As a.n exsmple -~ if we assume that
quantization noise is the predominant noise component, then, for the
register length of the Whirlwind I computer, one might be called upon to
specify that system which will process incoming 8-digit data in such a
way as to obtain the b.est possible approximation (in the specified sense)

to a 15-digit value of some given mhction of the input data.
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1.03 Discussion of Proposed Method of Solution

Having formlated our problem and indicated the technique that will
be used to obtain a solution, we now consider the limitations implicit in the
assumption that the criterion of performance shall be the minimization of the
mean square error over the ensemble. Whether this is indeed the sense in
which a system should be optimized is by no means certain. In establishing
suitable performance criteria, engineers are concerned with questions of
values rather than questions of fact. The absence of valid criteria which
lead to solvable problems requires that the engineer make some arbitrary
decision as to the “criterion of goodness" of a system.

In formulating his theory of statistical prgdietion, Wiener was
confronted by this problem and arbitrarily decided to use the c:}iterion of
least square error. Of all quantities which lend themselveg to an easy
minimization, the most natural are those which are inherently positive be-
caﬁse they are squares of some simple real expression or sums of such squares.
Wiener was well aware that this criterion had serious famlts. Firstly, it
puts an over-emphasis on those points where the predicted and actual values
differ by a large amount; and secondly, it gives a considerable weight to
small errors occurring with great frequency over a long interval of time.
Tms we find that this criterion is overly sensitive at both ends of the scale
of magnitude of error, and slights intermediate values of error.

If one examines this criterion objectively, onevfinds that, in ad-
dition to having the considerable virtue of leading to a mathematically
manageable problem, it frequently leads to rather good results. A well;known
fact is that the application of the Wiener-Lee theory to the filtering of a

Gaussian signal leads to a design which is absolutely optimal. Za.dehlh has
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suggested that a more appropriate eriterion of desigh would be the maximiza.
tion of the prodability that the error at a prespecified time, t o? be less

- than some prescribed tolerance. The maximization procedure leads to a set

of equations whose solution in practice must be carried out by trial and
error. If the nature of the system is such that certain conditions are satis-
fied, then the probability criterion yields the same values for the design
constants as does the least square error criterion. These conditions re-
quire that either (a) the systematic error as well as the geometric mean of
the tolerance and the systematic error at time t = to be small in comparison
with the r.m.s. value of the random error, or (b) the systematic error be
large in comparison with the random error, and the tolebrance be approximately
equal to the systematic error. Floyd > has shown that the criterion of maxi-
mizatibh of a probability density is the equivalent of the criterion of least
squares when the bias errors for an ensemble of signals have a normal dis-

tribution about zero. Stutt,n

after making an experimental study of "op-
timum" filters, concluded that least square error network specifications are
generally sensible and lead to designs which are relatively non-critical.
The crux of the problem of defining suitable performance criteria
lies in the fact that there ig little understanding as to what properties
of a message are actually utilized by the ultimate receptors and therefore
should be retained in the output of the filter. It is obvious that the
stationary time series which the filter should handle is a function of the
destination. In the absence of information concerning the message-utilizing

properties of the ultimate receptors we must content ourselves with an over-

all system which is not optimal, even in the least square error sense.
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The extreme simplicity of the least squares procedure can be
illustrated by the followiﬁg example:

Let it be required that we construct a linear, constant-coefficlent
filter for which |

ik = input at time tk

dk = desired output at ¢+ = tk

oL = actual output at t = tl:
M
= ;‘nik-n
where A = coefficients by which input data are to be
welghted
and €k=dk-ok;=.erroratt=tk

The mean square error taken over all time is then éi and can be minimized
by a proper choice of the weighting coefficients, ‘A'n' The conditions for a

minimum are

"ST =0 for n=0’ 1‘, ceey N.
n

But
aei _aeg =€ aek
aAn“aAn" k’B"I;"'O

o Ek ; k n =0 for n = 0’ 1’ sos Me

This is the discrete form of the Wiener-Hopf equation for the linear constant-
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coefficient filter. BExpanding this equation, we find that the optimum set

of coefficients is determined by the equations

Z A"n 1k-n1k-m = 1k d:k-n

=0

form=0,1, ese M

The reader will find that the above described procedure or varia-
tions thereof appear throughout this report. Understanding of this simple
example enables one to specify rigorously an optimmum design for computer

programs which are to abstract information from a noisy input data sequence.
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CHAPTER II

THEORETICAL ARALYSIS

2.0 General Remarks

Before considering the derivation of procednres for specifying
classes of optimum filters, we first define the terms "discrete filter"
and "contimuous filter", and then discuss certain analogies between these
types of filters. A "discrete filter" is a transmission device which,
when supplied with data from an externai source at specified equally spaséd
moments , furnishes at the same moments output data which depend on past
input data and possibly on past output data and time. The input and output
signals are discrete time series, and the filter itself is characterized by
a sequence (or sequences) of numerical weights. In contrast to this is
the convenfidnal ¥contimous filter" which is characterized by physical ele-
ments such as resistance, inductance, and capacitance, and whose imput and
output are usually contimous time series.

A linear filter, be it discrete or contimous, is one for which
there is a linear relation between input and output. This relation may be
expressed by recourse to the superposition principle. Confining our atten-
tion for the moment to linear systems, we remark that many of the concepts
of conventional filter theory have their analogies in the discrete domain,
For the constant-coefficient contimuous system (Fig. 2.00-1a), the input-

‘ output relation is defined by the superposition integrals

fe(t)

t
f h(t - V)1, (D) (2.,00-1)'

f ® (), (8 -T)aT (2.00-1a)
0
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where fi(t) = input signal
fo(t) = actual output signal

h(t) = response of system to a unit impulse applied
at t = 0. For a physically realizable systenm,
h(t) = 0 for t<O0.

To facilitate the understanding of linear systems, one frequently studies the
equivalent frequency domain representation obtained by Laplace transforming

equation 2.00-1la. Starting from the definition
b -gt
l"o(s) =f £(t)e ~° at
°

we obtain
1'0(9) = H(S)Fi(s) (2.00-2)
where H(s) = System transfer function

Analogéus equations defining the corresponding discrete system are
eagily derived. Before proceeding with the derivation we note that filters
in which both input and past output data are weighted are equivalent to those
in which an infinite mumber of input data are weighted. In this report we
shall consider only those filters in which a finite mmber of input data
only are weighted. ,

For the discrete system (Fig. 2.00-1b) in which the coefficients
(or elements) of the weighting sequence are invariant with time, the input-

output relation is defined by the superposition summation:

¢ =) A b (2.00-3)
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'here k= 0, l, 2’ cese

T

= discrete time variable identifying sample

datumatt:to-l-ldr

r= sampling interval

b = b(k‘l’r) = 'b(to + kmr)

= input sequence

ckf‘-"-‘ actual oufput sequence

‘A'n = sequence of weighting coefficients

analogous to the impulse response of the

contimous system.

Since the "memory" of this class of filters has been limited to M+l samples,

we might denote this as a "f‘inite-amemory"‘ filter to distinguish it from the

class in which bo

th input and past output data are weighted.

A frequency domain representation of this system is readily obtained

in the following manner. We define

c(g«sTr) = g ck eﬂkBTr

then, inserting this in equation 2.00-3,

where

c(e”®'r) = A ) r
S e,

=i A e-nsTr i b e—(k:—n) 8Ty
n k-n
=0 - k=0

c(a-sTr) = o((e-sﬂ!r) B(e-sTr)

~gT M -ngT
A(e™°°T) = E Ae r
n=o

(2.00-4)
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is the system transfer function defined by Salzer.

13

The analogies between the contimous and the discrete systems,

which are now apparent, are set forth explicitly below.

Contimnous System

Discrete System

l. Defined by
a) Differential equation
b) Superposition integral
2. Transfe: function of constant-
coefficient system depends on s.
3. Impulse response or weighting
function defined by h(t) for

the time-invariant case.,

1. Defined by
a) Difference equation
b) Superposition summation
2. Transfer function of constant-
coefficient system depends on o 5T,

3. Weighting sequence defined by An

for the time-invariant case,

For the case of the linear time-varying system, the input-output

relation of the continuous filter (Fig.. 2.00-2a) is defined by the more

general form of the superposition integral

t
fo(t) = [ o h(’C’,t)fi(Z')d’Z:‘ (2.00=5)
{++}
=f h(t =-a",<r)fi((r)da" , (2.00-5a)
[+]

The corresponding discrete system (Fig. 2.00-2b) is analogously defined by

the superposition summation

M
& =; fn,k L. (2.00-6)

k =0’ 1’ 23 s.00
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fo ()

CONTINUOUS FILTER
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b. DISCRETE FILTER

BLOCK DIAGRAMS OF LINEAR
TIME—VARYING SYSTEMS



Report R-210 -17=-

From the foregoing discussion it is evident that many of the tech-
niques of continmous filter theory may be logically extended to discrete
systems. Huch work has been done by Salzer in utilizing frequ_endy domain
methods in describing and in establishing criteria for stability of linear
computer programs (linear discrete filters). We shall here concern ourselves
with the discrete version of the stati st;cal approach developed by Viener,]'

16

Levinson, Kolmogoroff? and others.

Turning our attention now to non-linear systems, we note that im
such systems, there is a non-linear relation between input and output. In
other words the characteristics of a non-linear filter depend on the signal,
and possibly on time. If we restrict our investigation to "finite-memory"
systems, we see that a fairly genefa.l non-linear program may be described

by the equation
> 2 .
e, = A + 3B
k n,k % n m,k % m

P
+p§=:° Co e hi_p + oo (2.00-7)

k: 0, 1, 2, eo0

If the performance of the program is time-invariant, then

“n,k = ‘n
B = B

m;k m
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In 1".he following sections we shall develop procednres for specify-
ing the optimum (mean-square error) discrete finite-memory filter whether it
be linear or not, and whether its input be stationary or not. It should be
noted that the specification of the corresponding infinite-memory filters
can be derived by methods entirely analogous to those to be set forth below.
However, an approximation is needed to make the problem manageable, so that

the resulting design is not strictly an optimum.

2.01 Synthesis Procedure for Linear Time-Invariant Programs
The linear time~invariant program is characterized by the input-

output relation
EK ( )
e, = A D - 2.01-1
k n k-n

k=0, 1, 2, cesn

Since the actual filter output C, may differ from the ideal, or desired, out-
put &, an error €, will be pr:;ent (see Pig. 2.01-1).

— Le_vinson16 has developed a simple computatioﬁal procedure for dis-
crete filter design which is applicable to the problem at hand. This pro-
cedure is, essentially, classical least squares with the additional specifica-
tions of linearity of the filter and stationarity of the input sequence. Re-
capitulating (witl; some changes in notation) part of Levinson's procedure,
we now determine the nature of the linear program which, with input bk’ will
have an output as close as possible to the desired output &, . An. error

quantity
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=8 - G
" :
=8 -Z An.bk---n (2.01-2)

may therefore be defined. Our problem is to derive a sequence of weights
‘n such that we minimize

2
)

M
I,,= lim 2n+1 Z (ak- A b (2.01-3)

N->o0

= Mean square error for linear constant-coefficient filter

or
_um 1 z z lim
e N 9w T "2 Aise mlz"k -
+ E E AA  lim s b, b (2.01-4)
i T nm Fow® 2. 251 k-=n k-m

Thns far the derivation differs in no respect from classical least squares.
If the structure of the series is such that stationarity (or at least quasi-

stationarity) is assured, we may now define the auto- and cross-—correlation

functions:
( . ZN
R (k) = 1lim
aa ¥ 2 oo 2N+l e %p *n-k
(x) .
k) = 1lim . b
Boe N T 4y % bk

Equation (2.01-1t) assumes a simpler form when we introduce the correlation

functions.
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M M M
I, =%,,0 - 2;‘:; o (0) +;;Anﬁmnbb(m-n)

(2.01-5)

Using the techniques of the calculus of variations, we determine those

values of A n which minimize Il c by setting

—Fék.z 0 fork:o, 1, caooyg M.

This yields the Wiener-Hopf equation for the linear finite-memory filter:

M

3o AR =20
where k = 0; 1, ¢.o; Mo

For a predicting filter, the Wiener-Hopf equation is of the forms

g A By (k-n) = Ry (ioks)

where 8 = integral number greater than
zero denoting the number of
sampling periods in the future
by which the prediction is made,

k'g 09 19 LN Ho

The minimm value of Il e for prediction is then

. , |
Elc] . =R_,(0) -gan o (mts)

(2.01-6)

(2.01-7)

(2.01-8)
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Levinson has shown that increasing M always improves the quality
of the filtering.

In order to synthesize a linear finite-memory program as a se-
quence of Mtl weights, An, one need merely solve the Wiener-Hopf equations
(2.01=6) or (2.01-7). In treating the concept of staﬁility for this class
of filters, we follow Bu.rewiczl7 by defining a filter as stable if to a
bounded input there always corresponds a bounded output. A necessary and
sufficient condition for stability is absolute convergence of the weighting

sequence (A.n) , that is

M

Z|*n| < ®
=0

Since we treat only those filters with finite "memories", the only condition
required for stability is that all An be finite.

Just as the stability of continuous linear syétems can be studied
in the frequency domain, so can one make a similar study for discrete linear
systems. It will be found, in general, that the class of filters under dis-
Ty

]

cission always have a transfer function in the form of a polynomial in e‘"’s

Example of Derivation Procedure

It is instructive to follow through the derivation for the simple
case of prediction when M = 2 in order to observe the effects of imposing

the specification of stationarity
€k = Bpg = (B0 + 4D ) + 4D )

N
1 2
I = lim o — 6
ic K=o 2541 g; k
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IL,= lin {Za]m+a Zb +ﬁZbk1+Aaz 2,

Flem

"z‘ozakrsbk - %Z%sbk-l - e‘az_%sbk-e

"'z‘o‘iz_bkbk 1t 2 ‘22"1:"1:.-2 + ?ﬁ‘zzbk-»l k-2 }

If the sequence b, is stationary, then

2 L1 X2 1 >
(0) = 1im z= > b2 = lim - B2 = 1im =i b
By oD g K g e P g k-l o P k-2
- ,
1 1
B ¥y Zx,n kkl N@,mzm-lzk k-1"k-2 .

Introducing the correlation functions, we have
I, =R _(0) + (A2 +a2+a% R _(0) + (24 A +204) R (1)
1c aa o ".1 2 P\)‘b <) ?‘L;L 2 B'bb

+ 2A Aznbb(z) - (s) - a.lllba(l-rs) - aznba(z-a-s)

Imposing the conditions for the minimization of Ilc we obtain ﬂthe',system

of equations

0 Ilc
35, - °
a:lce
5a 0
axlc
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ARy (0) + 4B (1) + AR (2) = By (s)
AR, (1) + AR, (0) + AR, (1) =R (1+s) '

ARy (2) + 4R, (1) + ARy, (0) = By, (24s)

If stationarity of the input can not be assumed, then one can
not define meaningful correlation functions on a time-averaging basis. We

now consider the approach to be followed when the input is nonstationary.

2,02 Synthesis Procedure for Linear Time-Varying Program

An optimum filter for the case of the non-stationary ensemble
can be specified in a manner quite similar to that of the stationary, er-
godic ensemble. If the statistical characteristics of an ensemble are
time-varying, then a filter whose performance is optimized on the basis
of these characteristics will, in general, be time-varying. Thus the ele-
ments of the optimum filter will be a function of the sampling instant, B
~at whiqh the processing of the input data is to occur,

Let a, , = desired output datum for the rth member of the

k
9
ensemble at the kth sampling interval.

'br g = raw input datum for the ‘same member at the kth
9
sampling interval.

A = coefficient by which 'br
?

n,k n is to be weighted at

k-
the kth sampling interval. Note that the same

An.,k

ensemble., The linear combination of the weighted

applies to each of the r members of the

input data then forms the actual output of the

filter for the rth member at the kth instant.
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Gr K= actual output for rth member at kth instant.
?

M

A . D
2;;; n,k r,k-n (2.02-1)

I

We now define an error quantity

€"r',k 8r,k ~ ®r,k

(2.02-2)
M

a - A b
I’,k ; n’k rsk“n

and seek to minimize the mean square of this error, Ilv(k) , over the en-
semble of signals.
N

(k) = 11 p(r) €2 (2.02-3)
v N-)mco rga; T,k

I

where p(r) = probability of the rth member.

Substituting the expression for the error quantity into equation 2.02-3

and expanding, we obtain

N M
I (k)= lim > p(r) [% - A b ]
1v N r=N r,k =5 n,k r,k-n

= lim Z p(r)a

N=2>0 r===N

¥
-2 E;. "n,k Nlimoo r; (r)ar k r k=n

\u | .
+2Lm_ An,k A'm;,k 1= Zp(r)br k-n r,k-m

N2 r=N

(2.02-4)
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Since the signal ensemble is not ergodic, we can no longer Jjustify the equating
of time-averages with ensemble-averages. We therefore introduce the concept of
the ensemble-averaged linear correlation functions. The autocorrelation is

defined as

N
R (k,k-n) = 1lim p(r)a_ .a
aa ¥ re r,k r,k-n
and the cross—correlation as
N
(k,k-n) = 1lim E p(r)a_ . b
Rba‘ ¥ 300 1= r,k r;k-n

- In the absence of specific information as to the distribution of the members
of the ensemble, one might assume that the occurrence of all members is equally
likely. Physical consideration may frequently justify this assumption. On

this basis the mean square error for the linear time-varying filter becomes

X
1 2
I, (k) = 1lim > €
iv ¥ Ml Ly Urk (2.02-3a)

into which we insert, after expanding, the corresponding correlation functions
1 i

Raa(kskﬂn) = lim SR rz:E ar,kar,k=-n

N-2>m

and

(k,k-n) = 1im =ie }J a_.b

The resulting equation, irrespective of the probability distribution p(r), is
L&) =R (k) -2 ; An,knba(k,kan)

(2.02-5)

+ ; ; An,kAm’kR.bb(k=n,k-m)
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Now minimizing with respect to the An k coefficients
]

o1, )

TAJ—k' o for J=0,1, c.. M
’

wve obtain the synthesis equations for the linear time-varying filter

M
;An’k R, (k-n,k-3) = B, _(k,k-5)

(2.02-6)
for 3 =0, 1, ..o Mo '
For a predicting filter, the synthesis equations are
M
; Ay x Ry, (k-n,k-3) = B.ba(k-l-s, k-J) (2.02-7)

for J = 0’ 1’ e 0.0 no'

and 8 is as previously defined

It should be noted that the above~described procedures yieldk a
specification for an optimum filter at a particular instant -~ the kth
sampling instant. The approach which one takes in specifying a time-vary-
ing discrete filter depends on how rapidly the statistical characteris-
tics of the signal ensemble are varying compared to the time constants of‘
the controlle_d systen.

If the variation is slow compared to these time constants, then
one can solve the filtering problem on a gquasgi-static basis. The solu-
tion involves a filtering system consisting of a set of optimum filters
(each operating over a certain time interval) and a device for switching

from one filter to another. The switching device might be an electro-
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mechanical relay network, or a conditional subprogram instruction to the
computer (such as the cp(-)x instruction in the Whirlwind I code). The
switch might be actuated by information as to elapsed time and/or as to
the quality of performance of the output of the filtering system. Such a
system, involving P separate discrete filters, is shown in Figure 2.02-1.
There it is assumed that each filter operates well over a range of + H
sampling intervals aﬁout some sampling instant (at which it is optimum).
The mmber of filters, P, would obviously depend on what tolerance in
quality of performance were permitted, and on the price one were willing
to pay in storage facilities, program complexity, and computation time.
For the ensemble whose statistical structure varies too rapidly
for effective filtering on a quasi-static basis, we need merely extend
this approach to the limit and provide a different filter at each sampling
instant. Rather than evaluate and store the large mamber of sets of
weights directly, we might, as before, synthesize P separate discrete fil-
ters. After plotting each of the An,k weights as a function of the time
variable k, we approximate mamerically by a smooth curve (see Figure
2.02-2) each of the M+l discrete sequences. The desired set of weights
at any sampling instant is then obtained by interpolation. The storage
requirements are reduced since we now store only the coefficients speci-
fying the functional approximation of any Ai K as a function of k. Thus,
if Lagrangian interpolation were used, the set of M+l polynomial ap-
proximations would yield the optimum filter at each of the original P
sampling instants, and an approximation to the optimum filter at any other

instant. 1In this case,



A-51954

[#n¢),

ac k< g
7
[#ne], :
BLk<y
|
|
I
|
|
| Cre
[ ey ]
l |
' |
l |
| |
! |
|
| |
\ | |
| |
' |
| |
| |
| |
| |
& SwITcH ‘ [4n4]
- > "1,
CONTROL o

6. 2.02-/

FILTERING SYSTEM FOR A SIGNAL ENSEMBLE
WHOSE STATISTICS VARY SLOWLY COMPARED TO
THE TIME CONSTANTS OF THE CONTROLLED SYSTEM



A-51946

LT

10 15 20

0 5
SAMPLING INTERVAL (k)
ALk
r \\\[\ |5 2]?
0 5 10 >o L——""""
J"" K —>
Az k
S 5 10 15 AT~ —~—-
0o \\l J_ L 7 20
| \\\ —— k—""
I
|
|
|
Am k
5 10 5. 20
0 l_ 1. 1 __ I -—"—
\\- /” k
F16. 2.02-2

APPROXIMATION OF THE WEIGHTING GCOEFFICIENTS
AS FUNCTIONS OF THE TIME VARIABLE k



Report R-210 =31=-

2

2

A = Ogo + Xy B+ 040 B+ eel 0K,

oo oo
¢t 00® 00

2

Au’k=O(MO+O(mk+O(n2k * e Ky, K

4

k5

h

where the degrees of the polynomial (f, g, ... h) need not necessarily

be the same. Since the device controlling the position of the switch

would under these circumstances be time-actuated, we must necessarily

have insight into the manner in which the statistical structure of the

ensemble is varying in time.

2.03 Synthesis Procedure for Non-Linear Time-Invariant Prggrams

We consider now that class of discrete filters for which there

is a non-linear, time-invariant relationship between the output data and

a finite number of input data. In particular, we treat the simple case

defined by
! i 2
C, = A Db + B b
k k-n k=
n = D P

Accordingly, we define an error quantity

M
€. =a -3 Ab -iB'ba
k- % g n k-n = P k~p

(2.03-1)

(2.03-2)
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and proceed to derive sequences An and B b such that

1 E >
I = lim E €
ne ¥ 5o 2N+) k=X k

= mean square error for a non-linear
constant-coefficient filter

is a minimam.

X 3 oo

o
Ipe = 10 555 Adn n” T 4 b nPiem

*ii’”’ 21v+1 %: k-p k-q_

=0 ¢ qu-)

(2.03-3)

1 -
‘22‘ lin 9 ga‘kbk-n

N =00

-22%3 lim e ak'bz
P=0 pli-}ao'enﬂg k-p

M :
1 2
+2 zq'_' AB 1lim ; b, _ Db

; Py S 2N+1 » k=n k=p
If stationarity can be assumed, the concept of time-averaged correlation
fanctions may be introduced again and extended further. In addition to
the previously defined linear functions, we shall have occasion to utilize
the higher order non-linear functions.

1 N

Ryl ikp) = lim o EK by bh—kl bh-ke

L ]
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.|

1
Rbba(ﬁzka) = nlf)mm ST h;n ay bh—kl bh-jka

N
Bypn Ky ikpiks) = le,“m?mi-_l h; "h"h--kl."h-_-l;c;’h..k3
Becanse we shall always be dealing with powers of the input
sequence, some of the shifts, ki’ will be equal, and hence the complete
generality of the above defined functions is unnecessary. These higher
order functions may under such circumstances be redefined in terms of
linear correlations between the powers of the input. For the case treated

here, considerable simplification is obtained if we let

— n2
Een — blc-n

Then

I.=%(0) + 2 Z AL B (n-n)

+ ; Z Bqu Rgg(q-p)
. q
(2.03-4)

-2 Zn AR (o) -2 z B Rga(p)
+ 2 Z Z ‘an R‘bg(n"'P)

Minimization of I ne requires that

Olne

3,

=0 h=0,1, ... M
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a Inc

TB_—=O J=0,1, oooQ
J

From these relations we obtain the Wiener-Hopf equations for the non-linear

constant-coefficient filter:

M
Z 'A'an'b (b-n) + i Bprg(h-p) = B‘ba(h)
=0 7=0

M
; ARy (2-3) +pi:_'_° BPR geP-d) =R ga(9) (2.03-5)

h=0,1, ... M.

J=0, l, eee Q.

For a predicting filter, the Wiener-Hopf equations are of the form

M
Z B.bb(h-n) +i Bpkbg(h-p) = Rba(h"")

Z (n-,j) +f’_‘ Bpngg(p-;]) =R lga_(,5+s) (2.03-6)
=0 =0

h= O, 1, ees M,

.‘1 = 0, 1, XX} 'Q,.

The minimum value for Inc for prediction is then

M

(2.03-7)
Because of the non-linearity of the filters, conventional fre-

quency domain analysis is not applicable. Note that the extension of the
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above derivation procedure to any order of non-linearity is rather easily

mades

Illustrative Example 2.03-1

As an illustration of a case in which a non-linear weight-
ing sequence is superior to one which is linear, we consider the problem
involved in predicting flux linkages, ‘A(t, i), in an electrical circuit
composed of an ideal capacitance C and an iron core inductance L. The
prediction of future values of flux linkages is predicated upon a knowledge
of past values of "X(t, i) and of the physical mechanism governing the
variation of A(t, i). Because of the fact that the core is subject to
magnetic saturé.tion, the flux linkages depend on the amplitude of the
current 1 as well as on time t. The condition of equilibrium of electro-

motive forces in the circuit (Kirchoff's voltage law) gives

. %
aA L1 _
27 *c{ idt = 0

For the linearized version (an approximation of zero order) of the prob-

lem, we have the familiar relation

dt at

As a first approximation however, we can assume that the condition of

saturation can be expressed by the equation

1=AA+BA7
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Substituting this expression in the original equation and differentiating,

we have

AL AN+ BAD —o
o G

We now approximate this equation describing a non-linear conservative

system by means of a difference equation.

qoa =2+
n+l An An-l , A B .3 _
or
‘ =0 A -3
Aoty = CoAn + O A1 T DoAn (2.03-9)
vhere
Aha
0, = (2 -5 .
Gl=-l
2
__m
%% =-"C

Information as to the values of A and B, and hence as to Co and Do, is
contained in the normal magnetizat;on curve for the inductor.
Let us assume that our problem is the following:

A sequence of data relating to the time-variation
of flux linkages in the inductor is to actuate a control
system. These data, having been experimentally observed
by instruments capable of measuring only to within +0.01
flux linkages, are thereby contaminated by quantization
noise. Not only shall our programs operate so as to

reduce the effects of noise, but, in addition, we shall
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require that they are to improve the over-all system response
by acting as lead or predicting networks. We shall further
agsume that, because of limited storage facilities, we can
allocate only two registers to retain the weighting coef-
ficients of a program.

Our problem, in essence, is to devise an optirmm two-
element predicting filter for the processing of quantized

;\k data.

Physical insight into the inductor-capacitor network has provided

us with a mechanism for generating future values of the A sequence from

k
past data —=- equation 2.03=9. By utilizing the knowledge of the mechanism
for the formation of the }«k sequence, the designer should be able to pre-
dict more intelligently future values of this sequence. In the absence
of quantization noise, one would logically use the recursion equation
2.03=9 in his prediction. The introduction of noise, however, produces
a sequence of perturbed data, bk” for which the recursion equation is no
longer valid. To predict future values of A‘k from present and past values
of the perturbed sequence, one must intro&ée a smoothing mechanism (e.g.,
the least squares procedurs). If» in specifying the characteristics of
the filter'» the designer were to constrain the system so that it per-
forms only linear operations, he would not use all of the available know-
ledge, and the performance of the filter wbu,ld consequently be poorer.

To test the validity of this reasoning, we shall determine, by
means of classical least squares, a two-element predictor of each type —-

linear and non-linear.
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Suppose, for a given test signal, we use two different fluxmeters
as measuring devices. One, capable of indicating +0.0001 flux linkages
is primarily suited for laboratory work: the other, capable of indicating
+0.01 flux linkages is rugged enough for control purposes. The former

supplies a ﬂk sequencs; the latter, a bk sequence. For this test signal,

these sequences happen to be the following:

k Ak by
) "~ 0.0000 | 0.00
1 0.8000 | 0.80
2 0.8512 0.85
3 1.0729 1.07
l 1.3666 1.37
5 1.8364 1.84
6 2.7290 2.73
7 5.1288 5.13
g 19.1660 19.17

Linear Predictor

We define
Ex = Ays = UMby + oAby )

and seek to minimigze
8

_ : 2
5 = ; (Aprs = 4P = &0y 3)

The minimization precedure leads to the system of equations
2 = 3 N
4 Z# b Ay E;-bkbkal = 2 Aicks"x
2  _ A
A ZI; Pyley * A z by = ; Alders k-1
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For s =1, we have
(409.0286) A+ (122.9464) A = 122.9156
(122.9464) A + (409.0286) A, = 69.4838

Prom which

0 = 0.27422
A= 0.08745

Non-Linear Predictor

We define -

ek = Ak-l-s - (A'obk + Bob?:)

and seek to minimize
8
- ~ 3.2
snl - ; ( Ak-l-s - Aobk = Bobk)

The minimization procedure leads to the system of equations
2 b |
4 Zk b * B, Zk by _; Ak-i-sbk

Aozk bZ+B°Zk 'blf:Zk 2\k+sbl::

~

For s = 1, we have

(409.0286) A+ (135 813.4437) B, = 122.9156

(135 813.4437) A + (49 647 362.50) B, = 2716.3631
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From which
A, = 3.07939
Bo =-0.00837

We now test these filters by attempting to predict As1

when given bk and ’bkc for the linear filter or b,_ for the non-linear

1 k
filter.
We define
)‘k‘p = predicted value for kk based
on quantized data
€= Ak~ Aip

The results are summarized below:

Table 2.03-1 - Comparison of Performance of
a Linear and a Non-Linear Predictor

Linear Predictor Non-Linear Predictor
A Akp €x Xkp €x
P 0.219%4 0.6318 2.4592 ~1.6080
A3 0.3030 0.7699 2.6123 -1.539%
Ay 0.3677 0.9989 3.2847 -1.9181
,\5 0.4693 1.3671 4,1972 -2.3608
Az 0.624l 2.1046 5.6139 -2.8849
9\7 0.9095 4.2193 8.2364 ~3.1076
Ag 1.6455 17.5205 14,6673 4. hogy
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It is not surprising to find the performance of the non-linear
predictor to be sﬁperior to that of the other since the data sequence is
derived from a non-linear generating mechanism. This superiority is made
evident by a comparison of the sums of the squares of the errors in pre-

diction for the two filters. Thus, for the linear predictor
5, = 333.0584

and for the non-linear predictor
§,, = 52.4260

In spite of the fact that the non-linear predictor used a smal-
ler "memory" (one datum), its performance was definitely superior.
Clearly, the availability of a priori information as fo the nature of
the system enabled us to design a better predictor.

In order to visualize more clearly the mechanism of predicting
a perturbed sequence, one might resolve it into the mechanism of pre-
dicting in the absence of noise and that of smoothing a perturbed sequence.
It is not our purpose to imply that these are not interrelated processes,
but rather to suggest this artificial separation as an aid to the imagina-
tion, It is then seen that the former mechanism should approximate that
of the recursion equation as closely as possible, while the latter should
be as effective as possible in removing the undesirable perturbations.
This reasoning provides us with an insight into the manner in which the
particular type of non-1inearity should be chosen. We may conclude that,
when the mechanism for generating the true data sequence is known or sus-
Pected to be of a particular type of non-linearity, one should design the

appropriate non-linear filter,
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2.04 Synthesis Procedqure for Non-linear Time-Varying Programs

The last procedure to be discussed is that in which the filters
process the non-stationarity input data in such manner as to establish
a non-linear, time-varying relationship between the output and a finite
nunber of input data. Since the extension to higher orders of non-

linearity is obvious, we agéin treat the simple case defined by

2
c = A .Db + E B .b

The error quantity is then
M 2
€ .=a . = A .Db - B_.b 2.04
r,k r,k ; n,k r,k-n o= P,k r,k-p (2.04-2)

and if we substitute

S .b2
€r s k=P r;k-p

we obtain as the ensemble-averaged mean square error, Inv(k)’ for the

non-linear filter

: r=N o
I = 1in > PME,

N -

If the assumption of equal likelihood of occurrence of the member signals

is justified, then we may write

(2.04=3)
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M M
1
+ A A lim o b b
Z Z n,k m,k ¥ _)wam-l ; ryk-n r,k-m

Q .
% 1
+ B .B 1lim —— g g

1
n,kn_)m 2n+12 r,k r,k-n (2.04=3)

=
X

1 Z
- 2 B 1im  —— a

| 1
+ gi it AP, M0 FEg ; &r k-p°r,k-n

n=06 P=0 Fow

Substituting the ensemble-averaged correlations

Imr(k) =R, (k,k) +Zn Y by by R (k=nk-m)
+y> > B B K-p k=~
; Dk q_,kngg( Psk-q)

"EZ An,k Rba(k,kan) (2.04-k)
o)

+2 ;; An?kBp’kag(kap,kan)

Minimizing Inv(k) with respect to Ah,k and B j.k we obtain the synthesis

equations
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M
E An’knbb.(kwn,k«nh) +§ B, kR.bg(k-p,k-h) = B.ba(k,k-h)
=0 P=o -’

0

M
S Bagliedin) 4 B, B () = Ry
%An’k&bg(k Jsk-n) + - Bp’kngg(k J,k-p) Rga.(k’k D)

h=0,1, «0. M

J =O, 1’ L ] Q

For a predicting filter, the equations are

K .
"n,kab(k"n»kh) "'i BP’kB-bg(k—Psk=h) = R, (kc+s,k-h)

“ >
;An’knbg(k«aj,m) i B, kRgg(k-d,k-p) = R, (icts,k-3)

h=0,1, «.. M

Jg=0,1, ¢o0 Q
The minimum value for Iny(k) for prediction is then

M
[Inv(k] o =R (k,Xx) - nz_;o A.n,kaa(k-i-s,k-nn)

Q
- B_ .R_ (icts,k-p)
;;;; Pk ga

(2.04-5)

(2.04-6)

(2.04-7)
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2.1 QUANTIZATION FOISE AND NUMERICAL COMPUTATIONS

Although variables encountered in control systems are frequently
contimuous, a computer such as Whirlwind I requires incoming data in the ‘
form of discrete quantities. The digital control of a continuous variable
consequently involves a conversion from continuous data to discrete (i.e.,
encoding) when raw information is supplied to the computer, and from dis-
crete to contimious (i.e., decoding) when the processed information is used
to actuate the control mechanisms. It should be noted that the conversion
problem is not peculiar to real-time computer applications, tat rather that
it is rendered more difficult by the necessity for obtaining, within a very
limited time, results which are usable in controlling a dynamic system.

Not only does the original imput signal to the encoder contain
noise from sources both external and internal to the control system, but the
very process of encoding further corrupts the signal so that filtering of
the output sequence is necessary if we are to extract the true message or some
function thereof. As has been previously indicated, this distortion results
primarily from the quantizing process and manifests itself, in the time do-
main, as a limiting of the the mumber of digits by which the variable may be
represented. When these sharpiy limited data are used in mumerical compu-
tations, we frequently find that a previously stable program will yield either
a divergent or an oscillating solution.

In the following sections we shall discuss the characteristics of
quantization noise and how they affect the ever-present round-off error in

mmerical procedures,
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2.11 Analysis of Noise Caused by the Encoding Process

Since later sections of this report deal with the design of linear
programs capable of smoothing and predict;ng future values of an encoded
sequence, it is appropriate that we now examine the encoding process in some
detail. Encoding may be defined as the process whereby a contimious time
series is converted to a discrete time series, the elements of which can
assume only a finite set of discrete amplitudes. This conversion in-
volves the separate, but commutative, operations of sampling and gquantizing.

Since the signal distortion caused by sampling can frequently
be made negligibly small by proper design of the encoder, we shall make
only a few brief remarks about this operation. Referring to Figure 2.11-1,
we see that the sampling device can be represented by a switch rotating at
a constant angular frequency'wr, followed by a holding circuit and an
amplifier. For a continuous signal input f(t), the sampler provides at
its output a sequence of pulses,.fk. All pulses are of equal duration T,

and successive pulses Tr seconds apart. Insofar as information content
is concerned, there is no distortion provided only that the sampling fre-

quency is at least twice the highest signal frequency.

Linvillzlhas shown that the sampling operation may be visualized
as the process of modulating a contimious signal by an infinite train of
unit impulses. The resulting sampled signal has a spectrum which contains
the 6rigina1 frequency components as well as all harmonics of these cdmf
ponents. So long as the condition on the sampling rate is met, there will
be no overlap of the spectra and hence no distortion.

Within a finite range of amplitude variation, a continuous sig-

nal, as well as its samples, can assume an infinite number of amplitude
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levels. However, it may be neither possible nor necessary to transmit
the exact amplitudes of these samples because of various limitations im-
posed by the transmission device or by the ultimate receptor. In such
cages it is permissible to represent and to transmit all levels within a
certain amplitude range by one discrete amplitude level. This means that
the original signal is to be replaced by a wave constructed of quantized
values selected on a minimum error basis from the discrete set avallable.
Clearly if one assigns the quantum values with sufficiently close spacing
one can make the quantized wave indistinguishable from the original signal.

The quantizing prbcess may be visualized as being the result
of operating on the signal with a "staircase transducer", a device having
the instantaneous output-input characteristic shown in Figure 2.11-2.
When a smoothly varying signal is the input, the output remains constant
while the input varies within the boundaries of a tread, and changes
abruptly by one full step when the signal crosses the boundary. A quan-
tized signal wave and the corresponding error wave are shown in Figure
2.11-3,

The Quantization error is, thenythe inherent amount of distor-
tion resulting from the fact that the output of the encoder is limited
to a finite set of amplitude levels while its input occupies the same
amplitude range in a continuous manner. The maximum instantaneous value
of the error is half of one step and the total range of variation is from
minus half a step to plus half & step. Only if the input is known as an
exact function of time can one find an explicit relationship between it
and the corresponding error., Otherwise, one must resort to a statistical

description of the error q(t) since all that is known, in general, is that
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it is a function of amplitude of the quanta, cKi, and the signal function

itself.
a(e) =¥ for, 2(v)] .

One can be somewhat more explicit when the quanta are equal and write

a(t) = £(t) - Ak(t)

where k(t) is a discrete variable taking on a range of integral values in

such a manner as to render lq(t)l a minimum.

(=n p(-n)
-ntl p(-nt+1)
-1 p(-1)
k(t) = { 0 p(0)
+1 p(+1)
n-1 ' p(n-1)
Ln p(n)

and p(h) = probability that £(t) lies in {o((h - 1/2), K (n + 1/2)J . In
the above formulation it is assumed that the‘signal is bounded in amplitude
by (-nk , n X ) so that there are 2n+l quantizing levels. Unless the
probability density distributions of £(t) aﬁ k(%) are known or certain
simplifying assumptions are made, one can deduce little of value from the

foregoing analysis,
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If one assumes, as did Mayer,ao that all errors are equally likely
in the range (-1/2, +1/2), then considerable simplification results., Let
the quantizer have g8 discrete amplitude levels and accordingly s steps.

(X 4» which need not be equal, and p(1) be the probability of the ith level.

Then one can show that the total quantization noise power will be
_ 1 | 2
Nq =35 ; p(i) O(i

With equal steps (X, one obtains
¥ - &
q 12
There is, of course, no reason why the quantization need be
done on the basis of uniform spacing of the levels. Panter and Dit922 have
shown that by taking the statistical properties of the signal into con-
sideration, the distortion introduced in a PCM system due to quantization
can be minimized by a proper level distribution which is a function of
the amplitude density distribution of the signal. Non-uniform quantiza-
tion may be accomplished by first compressing the signal, then uniformly
quantizing the modified signal. One of the more common forms of compression
is the logarithmic one, where the levels are crowded near the origin and
spaced farther apart near the peaks. Panter and Dite have also shown that,
with logari'o_hmic compression, the distortion is largely independent of the
statistical properties of the signal.
Besides studying quantization error from the statistical point
of view, one can also investigate the power spectra of quantized signals.

Such an investigation for both uniform and non-uniform quantization was

made by Bennett.lg The signal used was one having its energy uniformly
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distrituted throughout a definite frequency band and with the phases of
the components randomly distributed. Anticipating binary coding, Bennett
determined the power spectra for this signal quantized to several dif-
ferent mumbers of binary digits. As might be expected, not all of the
distortion fell within the signal band. The spectra of distortion re-
sulting from the uniform quantization of a random noise signal showed that

(a) the fewer the number of binary digits to which the

signal was quantized, the greater was the noise power
(a corroboration of Mayer's and of Bennett's anal yses),

(b) the fewer the mumber of digits, the richer was the

spectrum in low-frequency components,

(c) the greater the mmber of digits, the flatter was the

spectrum over a wider range, but with a smaller

maximm density.
By increasing the number of digits (or quantizing levels) indefinitely,
one obtains the flat spectrum of "white" noise -- a spectrum which is
that of the continuous input signal.

For the case of non-uniform quantization Bennett found that the
error spectrum out of the linear quantizer is virtually the same whether
or not the signal input is compressed. The advantage of non-uniform
quantization appears to lie in the fact that finer divisions are available
for weak signals. For a given number of total steps this means that
coarser quantization applies near the peaks of large signals, but the larger
absolute errors are tolerable here because thay are small relative to the

larger signal values.
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Having discussed some of the characteristics of quantization
noise, we now consider its effect on control systems. It becomes immediate-
ly apparent that the presence of such noise may seriously affect the steady-
state performance of those systems having large time constants (i.e.,
systems characterized either by a good response over a narrow range about
zero frequency or by a slowly decaying impulse response), This stems from
the fact that a major portion of the noise power is concentrated at those
low frequencies for which slow systems have a good response, Since many
of the systems in which the digital computer will exercise a control func-
tion are eharadterized by large time constants, we must devise techniques
for coping with the problem.of‘quantization noise when it is an important
noise component, One such technique, dealt with herein, involves the use
of filters (which obviously need not be statistical) which are designed

with specifie reference to the characteristics of this type of noise,

2.12 Effect of Computational Errors in Discrete Filters

In Section 2.0 it was indicated that weighting sequences can

be derived from ordinary differential equatibns by approximating the de=
rivatives by their corresponding divided differences. When this is done,
one obtains recursion formulae by means of which one can approximate the
solutions of specific differential equat{ons by successive extrapolations,
It is apparent, however, that in neglecting the higher divided differences
in equations so derived one has committed an error. Each extrapolation will.
therefore entail this truncation error which, if uncorrected, will tend to
accumulate with successvie extrapolations until eventually the results of

the computations are rendered useless,
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The truncation error is not the only source of uncertainty to which
mmerical procedures are subject. The necessity of rounding off each extra-
polant evaluated with the aid of machines of lim:lted register length will pro-
vide another source of accidental error which tends to impair the accuracy
of the solution. In any mmerical work using approximate formulae and mmbers
subject to round-off, both errors will co-exist independently. Since their
Presence cannot be avoided, one generally chooses his formulas and interval h
in such a way that, together with data to a sufficient number of digits, the
ultimate solution is obtained to the preassigned degree of accuracy.

If one makes certain assumptions as to the manner in which each of
these errors propagate one finds that, for N successive extrapolations, the
total round-off error will grow more slowly with increasing N than does the
truncation error. By decreasing h gsampling more frequently), one reduces the
truncation error. However, this necessitates more extrapolations and hence
a greater round-off error. One therefore programs his work in such a way that
the two errors are equal at the end of the computations.

Although the least-squares sequences obtainable through VWiener-Lee
synthesis are not related to any specific differential equations, there is,
nevertheless, a truncation error whenever we let M assume a finite value.
Levinson has shown that a sequence based on M+l weights always does a better
job of filtering (in the specified sense) than does a sequence based on M
weights. However, one rapidly reaches a point of diminishing returns in that
the improvement in filtering resulting from the additional weights does not
warrant the labor of computing the weights. Furthermore, the round-off error

increases with increasing M so that, in general, & short weighting sequence

is desirable.
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CHAPTER III

EXPERIMENTAL ANALYSIS

3.01 Prediction in the Presence of Quantization Foise of Functions
Related to Straight-Line Flight

To lend substance to this investigation, we propose to use as -
an input signal that generated by an aircraft as it flies on a prescribed
path across a polar grid. The resulting encoded sequences of the polar
variables, r(tk) and G(tk), are to be processed by the computer to give
the future position of the aircraft. Each of the variables will be treated
as a simple time series, although it is possible to treat them together
as multiple time series.

Such sequences might well arise in an air traffic control system
where the incoming aircraft follow a definite time and space pattern in
their approach to the airstrip. Since the use of digital computers in such
systems is being actively contemplated, it is pertinent that a study be
made of programs which will permit optimum processing of the information
by the computer.

It may be argued that, if the path of flight has‘been completely
specified by some geometrical curve, why undertake the labor of determin-

ing a sequence of weights for statistical prediction. Wienerl himself had
the following to say about this aspect:

"Statistical prediction is essentially a method of re-
fining a prediction which would be perfect by itself in an
idealized case but which is corrupted by statistical errors,
either in the observed quantity itself or in the observation.
Geometrical facts must be predicted geometrically and analytical
facts analytically, leaving only statistical facts to be pre-
dicted statistically."
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Our problem deals with the statistical prediction of a time series derivable
from a geometrical fact but corrupted or altered by other time series in-
troduced by the encoding mechanism. We desire to know what the uncontaminated
time series will do at some future instanﬁ. The problem has been idealized
to the extent of assuming that (a) the pilot is capable of flying a geo-
metrical course in spite of air currents and other disturbances, and (b)
the errors inherent in radar tracking of aircraft are negligible compared
to the quantization error. The validity of these assumptions will be ex-
amined later.

In tackling the over-all problem of air traffic control, one
might logically hypothesize a control system such as that shown in Figure
3.01-1. The equipment lying within the broken-line boundary may be con-
sidered as part of the digital computer.

The operation of this hypothetical system may be described as
follows:

~a) the detection system monitors the position of the air-
craft and supplies information as to the path variables
of range and bearing with respect to the airstrip,

b) the continuous, time-varying signal related to either
of the variables is fed to the encoder which samples
and quantizes it, thus furnishing mumerical data for
the computer,

¢) the prediction program processes this data in such
manner as to yield the best possible predicted value

for an epoch 15 seconds in the future,
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d) the actual and desired future values of the path
variable are compared to yield an error quantity,
Ekt). This error is evaluated and appropriate ac-
tion is initiated to signal the pilot of any dis-

crepancy in his flight path.

It is assumed that the continuous output signal, fo(t), will
be sampled regularly at intervals of fifteen seconds and that a corrective
signal,'xb(t), will be supplied to the aircraft control system at the
same instants. The various quantities indicated on the diagram may be

defined as follows:

H
—~
<t
~

1

present value of path variable
£ (t) = sampled quantized present value of path variable

~n
f (t) = predicted value of path variable at an epoch

fifteen seconds in the future

?A(t) = desired value of path variable at an epoch fif-

teen seconds in the future
BE(t) =f£,(t) - fp(t)
'Kc(t) = corrective action signal

Note that all these time series are discrete with the éxception of fo(t).
As a particular fo(t) we shall use that generated by an aircraft

flying a constant-velocity, constant-altitude straight line course which

does not pass over the origin of the polar grid. This hypothetical mathe-

matical model is shown in Figure 3.01-2 as well as the equations which
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specify the kinematics of the system. Clearly these equations define
geometrical sequences which are definitely non-stationary. Faurthermore,
the nature of the quantization noise is completely specified when fo(t)
is known explicitly as a function of time. The logical basis for the
application of statistical techniques, however, lies in the fact that the
quantities Vh, Rm, and (X are random variables.

f;; r;;aer might logically question the necessity of going
so far afield in search of an input signal to which to apply statistical
prediction. It is a well known fact that, even if it were mandatory
that he do so, the pilot is incapable of flying a precise geometrical
course because of air perturbations and becanse of his inherent short-
comings as an element in a control loop. However, we again appeal to
the physical context of the problem and point out that, in a two-dimen-
sional control system such as ours, the only motion permissible for the
aircraft is a coordinated turn (i.e., no slip, constant altitude). For
such.tupns the aircraft dynamics are characterized by a first order lag
in which the time constant is relatively long (about 0.5 seconds). In
view of this fact, we may apprdximate the actual course of the aircraft
by a series of straight lines. Thus, if we are able to predict a con-
stant-velocity straight line course, we may be able to predict one in
which the aircraft executes slow maneuvers.

The experimental work discussed herein is devoted. entirely
to the synthesis and evaluation of predicting filters based on equation
3.01-1. 1In this case it is evident that the ensemble of signals to be pro-
cessed is a collection of arctangents. Examination of this equation shows

that the random variable E& establishes the d-c level of the signal and,
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by reason of the circular symmetry of the system, may be ignored in our
analysis. It should be noted that ignoring ¢ implies that we concern
ourselves primarily with the time-varying part of any member of the sig—
nal ensemble.

In the absence of specific information regarding any existing
air traffic control systems, we are forced to make certain assumptions
concerning the control system and the statistical nature of the signals.
These assumptions are:

a) the angle encoder is capable of distinguishing

256 levels (eight binary digits) in the signal,

b) quantization noise is the major component of

corruption present in the signal,

c) all velocities in the interval V , < V€ Voax

are equally likely,
d) all minimum ranges in the interval Rs R <R

are equally likely,

e) the maximum range of interest is R

£ and it

is at this range that the aircraft are first
detected,
f) the contimous signal, ©(t), is to be sampled
regqularly at intervals of 15 seconds.
Since the angular jitter in radar noise may at times be of the
same order of magnitude as the angular quantum (about 1.4 degrees), it
is questionable whether one is justified in assuming that quantizing noise
is the major noise component. To simplify the analysis, however, we shall

assume that the control system is relatively free of noise.
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3.02 Experimental Results

The experimental results presented here are concerned with the
design and evaluation of several linear time-varying filters whose in-
pats are the ensemble‘ of arctangents derivable f:om equation 3.01-1 and
whose outputs are to be future values of the signals. If, in that equa-
tion, the quantity (X is ignored and assumptions e and g'(from Section 3.01)

are made, then equation 3.0l-1 can be manipulated to obtain

' m
6(n,J) = tan™ {( —;‘%5 ) ( 51 ), - \l( Em—a-*- )2 -1 (3.02-1)
2 12,m n R.m n

where n denotes the particular member of the ensemble and j denotes the
particular sampling instant. By means of this defining equation, we can
determine the value of any member of the ensemble at any sampling instant
for any cholce of horizontal velocity,,Vh, and minimum range, Rm. The in-
p@t sequences to the filters are thus angular data derived from quantizing
equation (3.02-1), and the desired output sequences are angular data cor-
responding to ungquantized predicted values at an instént one sampling in-
terval in the future.

The synthesis equations for the optirum least-squares predictor

are given by equation (2.02-7)

n=o0

> Ao Fpp(-nske=d) = Ry, (ks k=)

fOI' j = 0’ 1, ¢ o8 M

and 8= 1:
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As has been previously indicated, this system of equations yields the

optimum weighting sequence for the kth sampling instant. Since the statistical
structure of this ensemble varies rather slowly, it was decided to synthesize
a set of three filters, each of which operates over a certain range of the
discrete time variable, k. In order to verify experimentally the fact that
increasing the number of elements in the filter improves the performance, we
have designed three such sets of filters —— for M =1, 2, and 3.

The task of designing a filter is seen to be two-fold. ¥First, one
mst calculate the correlation functions; and second, solve the system of
simul taneous equations (2.02-7). The latter is relatively simple and can,
for small H,ibe done by hand computation if necessary. The computation of
the ensemble-averaged correlations, however, is a formidable task, even by
antomatic methods. It is rendered manageable, in our case, by the specifica-
tion of the explicit form of the signals by equation (3.02-1) and of the
probability density distributions by assumptions ¢ and d. Under these cir-
cumstances the task can be mechanized by coding a computer program for the
computation of the autocorrelation, Bbb(k—n,k-j), and the crosscorrelation,
Rba(k+1,k-3), for appropriate values of the arguments.

Having computed the correlations and inverted the matrix equation,
we can then evaluate the performance of each of these three sets of filters
by observing its performance on various sample signals. The filter is sup-

plied with quantized data

8,50 By ger one 63:3‘!4 .
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It will then weight and combine these data to yield an output

ei,j>+1= Aoaj em’vj * ‘1’3 en’J'l Foeee ¥ AM:J ’511:3"!

which is the best possible approximation, in the least square error sense,

to the true predicted value, Qn’ H°

The foregoing synthesis and evaluation was made, and the results
are presented below. The accompanying graphs show the distritution of
frequency of error in prediction as a function of error in pfediction for
each of the three sets of filters. Some additional figures which give a

measure of the quality of performance are:given in the following table.

Type of Average | Standard Mean Square | Percent of Samples | Maximum
Predictor Error Deviation Error Having less than 1°| Error
Error -
2-element 0.326° . 0.804° 0.750 deg” - 15% 2.46
3-olement | 0.238° | 0.735° |0.598 deg® 79% 2.57°
Y.element 0.229° 0.660° 0.h434 deg2 89% 2.50

These results are based, for each set of predictors, on 210
sample signals drawn from an ensemble which included signals in addition to
those in the original ensemble. Note that no special significance is to
be attached to the tolerance value of one degree. This is merely an arbi-
trary basis for comparing thes:e filters with each other and with the quantiz-
ing unit in azimuth of 1.4 degrees. It should be noted that there is a
distinct improvement in performance as the mmber of elements in the weight-

ing sequence is increased. Additional experiments made for signals with
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arbitrary non-zero (X show that these filters perform nearly as well for
these as for members of the original ensemble so long as we do not attempt
to predict across the discontimity at 6 = + 1800. This, however, is not
a fault inherent in statistical filters, but results from the fact that the
signal is a multi-valued function. The predicting filter can be rede-
signed to cope with this discontimity.

. The experimental results summarized above indicate that rather
good performance may be expected from relatively simple filters. Although
improved performance can be expected from more complex filters, the
net increment in improvement may not justify the additional computational
labor and storage facilities. |

It should be noted that our synthesis procedures are not re-
stricted to predicting filters only, but can be employed to derive any of
the compensating filters which are so frequently used to improve the per-

formance of a servomechanism.
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CEAPTER IV

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

As a result of the theoretical analysis embodied in this in-
vestigation, the statistical communication theory developed by Wiener and
Lee has been extended to the synthesis of real time computer programs,
The accompanying experimental design of certain linear predictors has
established the validity of this synthesis procedure. The extreme flgxi-
bility of the digital computer, however, permits, with equal faci;ity,
the design and application of either linear or non-linear programs (i.e.,
discrete filters).

Although the extension of this theory to the problem of dis-
crete filtering may be considered a step in the reduction of the art of the
computer programming for certain applications to an exact sclence, mch
work remains to be done in the further utilization, 1# the discrete do-
main, of the concepts formulated by Wiener and Lee. Some of the more
promising subjects for investigation involving & union of statistical
communication theory and digital computer practice are the following:

(a) the development of discrete filters capable of dealing
with mltiple time series. Such filters might be espe-
clally useful in industrial or chemical process control.
where it is desired that the digital computer control
the behavior of the several interdependent variables
which determine the quality or quantity of the end pro-
duct, and

(b) the investigation of methods for determining what types

of non-linearities, if any, should be incorporated in
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a filter for a specified ensemble of signals.

The above mentioned union of statistical theory and computer prac-
tice offers certain other advantages which should not be oveﬁglooked.
Whereas the design of an analog network by the Wiener-Lee theory involves
the solution of an integral equation,. the corresponding design of a dis-
crete filter involves only the solution of a set of linear simultaneous
equations. Not only can the digital computer be programmed to evaluate
any order correlation function (subject to limitations of storage facili-
ties), tut it can be programmed to perform the matrix inversion required
for the determination of the weighting sequence. Regardless of whether
the filter is to be linear or not, our problem always involves a set of
linear equations.

Becanse of the comparative virginity of the field of discrete
filter synthesis it was not possible to make any conclusive comparisons
between the performance of this class of statistical filters and those of
other classes of filters. We are, however, justified in concluding that
the synthesis procedures developed in this investigation lead to sensibly
designed filters which are entirely aware of the characteristics of the
noise (which is always present in any real signal) as well as those of the
message. We may further conclude that, when the generating mechanism for
the ensemble of signals is known to be non-linear in nature, the perform-
ance of an appropriately designed non-linear filter is definitely superior
to that of the linear filtergb We note that the specific kind of non-
linearity to be incorporated into the filter is of considerable importance.

The problem of quantization noise is of such importance in real
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time computer applications that a study of its statistical characteristics is
certainly merited. These characteristics are a function of the particular
ensemble of signals and of the encoding mechanism., Although the experimental
designs of this investigation show that our filters are capable of dealing
effectively with the noise resulting from uniform quantization of the signal,
the use of such filters does not necessarily represent the optimum solution.
An alternative and possibly more satisfactory solution involves both a non-
uniform quantizing of the signal and a statistical filtering of the signal.
In conclusion, we may remark that the extension of statistical com-
minication theory to the synthesis of digital computer programs has provided
us with a logical means for endowing the computer with a higher order of in-

telligence..,

Signed.qg'ﬁ'f‘.'@.‘rh‘! .%%
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APPENDIX

Statistical Communication Theory

As a reaﬁy reference for the reader, we propose to include here a
very brief summary of the essential features of the Wiener-Kolmogoroff theory.
For more complete information, he should consult references 1, 2, 6, and 7.

In Section 1.01 it was pointed out that the basic concept of this
theory is that communication signals are to be treated as stationary time
series. The structure of such signals is frequently so complex as to render
it irresolvable in terms of summations of periodic or aperiodic components.
In fact, if the signals are to convey any new information to the receptor,
then they must be characterized by some elements of randomness in that
they are at least partially unpredictable in advance by the receptor. Hence
it is seen that we are frequently concerned with stationary random time
series which may beceither continuous or discrete.

For random, continuous phenomena having statistical properties

which are stationary, one may define the linear correlation functions as

. 1 T
B.a(2) =T1;mw 55 ['.v £, (8) £, (t+)dt

= autocorrelation of fa(t)

and

. 1 T
() = 1 35 [@ £, (D, (pr et

= crosscorrelation of fa(t) with fb(t).
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These functions have the properties that

$o00) = 6., ()
B (T) =8, -

¢a'b(?) = ¢ba("'2’)

The definition of the antocorrelation function indicates a process of

multiplying the function continuously by its value at a later time,?~, and

averaging. The even function, ¢ aa(?)’ is a maximm at 7= 0 and is equal

to the square of the rms value of fa(t). 1f fa(t) is nonperiodic, ﬁaa(z')

approaches the square of the average of fa(t) as 7’ increases; if fa(t) is

%

periodic, ¢aa(’L’) has the same period. Any linearly additive component of -

fa(t) produces its own linearly additive component of ¢aa(2'). A composite

time function can be separated into linearly additive time functions and the

antocorrelation of each added lineafly to give the composite autocorrelation

function. Furthermore, these linear functions, ¢aa(’t’) and ¢a.b(2'), and

their respective power density spectra are determinable one from the other

by a Fourier transformation. Thus,

and

B (2)

/-;:) § a'a(w)cos wT aw

o
%aa(w) = 40 Boa(D)cos wr ay

Z;OO %ab(w) 09T duy

e

¢a.b(2/) =
[00]
{ab(m) = '2%1' f B () o My

=00
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Again, linearly additive components of the linear correlation functions can
be transformed separately and the separate transforms added to give the com~
posite power spectra.

This extension of Fourier theories to the harmonic analysis of
random processes through the medium of the linear correlation functions pro-
vides us with a powerful tool for the synthesis of linear networks which are
optimal in a mean square error sense. For this class of filters, the ex-

pression for the measure of error is

€, &/, [0

where fo(t) = actual output signal

fd(t) = desired output signal

when fi(t) is the input signal. Minimization of the error expression sub-
Jject to the condition of linearity of the filtering mechanism yields the
Wiener-Hopf equation which relates the impulse response of the optimum
linear system to the statistical characteristics of the signal. ZExpressed

in terms of. time domain synthesis; this equation requires that

B2 = [: W) B, (T-)ar  for T O
where

¢ii(?f) = autocorrelation of the input signal

$;4(T) = crosscorrelation between the imput and the

desired output signals.
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From the foregoing we see that the linear correlations are entirely adequate
for the specification of the linear system which minimizes the square of
the error. An entirely equivalent equation in terms of frequency domain

synthesis requires that

§ 1o = 5@ § 4,6

An Y"optimum" filter designed for one member of an ensemble of signals will
be equally effective in the processing of any other member of the ensemble
having the same linear correlations.

By a logical extension of these ideas, one can define an infinite

mmber of higher order correlation functions. Thus, for a stationary ran-

dom signal
1 /T N
PanalT13T2) = Tlgnm 2T ‘[m £a (8 (842705, (4 25)at
1 T N
Poar(T1327) = Mmooy /ﬁ; £,(6)2, (4271, (b+2)a

T

¢aaaa(~1;z'2;2/3)= lim -éTl— / fa(t)fa(t+2-i)fa(t+2‘2)fa(t+2‘3)dt

T <00 -7
and so forth. Since the shifts 2?3 are independent of each other, they may
be visualized as orthogonal axes in the hyperspace in which the correlation
functions are defined. Just as two dimensions are required for the geometri-
cal representation of the linear functions, so are ntl dimensions required for
an nth-order correlation function.

Since it is conceivable that the readér has had l1ittle experience
with the higher order correlations, we include a few simple examples to

serve as illustrations. Accordingly we choose certain of those non-random
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functions of time which permit a direct integration procedure. For the
non-randoﬁ functions, the linear (and the non-linear) correlation functions

are defined somewhat differently. Thus, for periodic functions
1 T
IRCIET WA ACIRACTILY

() = %/41‘ £, (4)£, (t+2-)at

(4]
and for aperiodic functions
0
¢aa(’a') = fa(t)fa(t-t-’l’)dt
-00
00
() = - £ (t)£, (t+2)at

As in the case for correlations related to random sequences, there are unique
Fourier transform pairs which relate the power (or energy) density spectra

with the appropriate correlation functions.

Consider now the following examples of second-order antocorrelations:

(a) Periodic Signal

1 /"
Bona(Ci20) = m‘/ £, (4)f, (b+2))2_ (b+2,)as
0

Let fa(t) = A cos(wt + 0)

3 /T
Pana(27:2%) =§T— /o cos (wt+6) cos (wi+e+w 2, )cos (wi+ohwr, ) dt

3 T
A . ]
= . {co s (wt+e+w 2’1) + cos(wt+6etw T ey )
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+ cos (wt+tugs-wtcos (Jut+30Hn 3’1‘*‘”?’2)} at

¢aaa(2:1:27é) =0

It can be shown, in general that the second-order autocorrelation

for periodic functions is everywhere zero.

(b) Aperiodic Signal

@®
Baga(T1iT2) = / fa('t)fa(t+2"1)fa(t+2'2)dt

-00

g o 8%  0etiow

Let fa(t) =
0 -00 2 &t &0

oy g3 [° et et et o)
¢aaa(2’1$2'2) =E /;Q ea Qa +| ll e 8 +| 2' at
= Es e-a'( I’Z’l I +l'Z’2I) ‘/m 3‘33'5 at
. o .

3
. ¥ a(|Ta| +I1T2)D)
¢aaa(7ri’?ré) T 3a °
In general, the autocorrelation of any order of an exponential

signal of the form given is also exponential in form.

Parallel to this theory of statistical analysis for continuous
phenomena there runs a theory of discrete phenomena. These discrete phenomena
may occur naturally or whenever a continnoﬁs time sequence 1s.discretized.

In the discrete case the function f(t) of the continuous parameter t is

replaced by the function fk of the parameter k, which varies by discrete
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steps. Similarly the functions ¢aa(?,’) will be replaced by the discrete

set of autocorrelation coefficients,

¥
R (k) = lim =oe
an n_;‘wmlh:g"h"h-k

The analog of our previous function ﬁ aa@n) will be

o
5, (W) = -2% ; Raa(k)e-Jm

of period 21, Likewlise one can derive by a procedure entirely analogous
to the contimous case the Wiener-Hopf equation for the linear discrete
filter.

M

n;} CpRyp (k-n) = Ry (k)

Where k= O, 1, seey Mo
The corresponding equation in terms of frequency domain synthesis is

S,a@) = g(@) 8, (w)

where o
= - Jkw
gw) =) @a.¢
-0

is the transfer function of the discrete filter.

The foregoing equations describing the linear discrete filter
which is optimal in a least square error sense have served as the bases
for the extension of the Wiener-lLee theory to the synthesis of digital

computer programs.
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