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FOREWORD 

Because it presents information of interest to those stuqying 

the application of digital computers to the real-time control of 

physical s.ystems, this revised thesis investigation is now being issued 

as an R-series report by the Digital Computer Laborator,y at M.I.T. 

In such servomechanisms applications, it may frequently be 

desirable, when computer capacity is available, that the computer be pro­

grammed to abstract or otherwise modit,y the intelligence from a nois,y input 

signal. In this mode of operation, the computer simulates the conventional 

filter or compensating network. This report concerns itself with methods 

for optimizing, in a mean square error sense, computer programs which can 

effect such a filtering process. 

The author is indebted to Professor W.K. LinvUl for his super­

vision of this research, and to the Digital Computer Laborator.y for the 

free use of its facilities and for the interest and advice of many of its 

personnel. 
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Since the use of the large-scale calca.lating machine as an element in a 

servomechanism is being actively studied, procednres JIII1st be devised for the 

specification of compu.ter programs which will enable the computer to abstract 

intelligence from an incoming signal se~ence. Here we treat the synthesis 

of programs (i.e., discrete filters) which process the input sequence in such 

a manner as to obtain the best possible approximation, in a lea8t square error 

sense, to a specified fttnction of that. se~ence. The synthesis procedures are 

based on equations analogous to the Wiener-Hopf equation. !y means of these 

e~tion8 it is possible to ~ecit7 the opt1~ least-squares filter whether 

it be linear or not, time-varying or not. In 83f3 case, the optiJDWD filter is 

obtained by solving a set of sim1 taneous linear algebraic equations. 
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1.01 Historical Bote 

CHAPTBR I 

I!P.l'RODJC!IOB 

In recent years large-scale digital computers have been brought to 

that stage of deYelopmeil.t where thei.r application to the control of dynamic 

87stems 1s practically realizable. Computer applications, in general, '1118.7 

be divided roughly into the following categoriesl 

a) real-time - that in which the computer JIl1st cope 

with a dynamically changing problem, and in which 

the computed results directly affect the evolution 

of the problem (e.g. - chemical process control, 

simnlation), and 

b) non-real time - that in which the computer copes with 

a static or quasi-static problem, and in which the 

compu.ted results have little or 11.6 effect on the 

evolution of the problem (e.g. "'" scientific computa­

tions, economic analysis). 

A real time application to a complex control problem fre~ent1y implies 

a computer having a very high operating speed as well as rather exten­

sive storage facilities. One sach computer, Whirlwind I, is being cur­

rently developed by the M. loT. Digital Computer Laborator'1'o It should be 

noted that the use of the digital computer in control systems is but a 

logical extension of servomechanisms applications. 
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~ssa.m1ng that the computer and its associated conversion apparatus 

are properly designed with respect to the particular control system at hand, 

the question which then arises is the formulation of cOmp1ter programs which 

will accomplish the desired results. Viewed in proper perspective, the 

digi tal compu.ter can be visualized as a docile slave with a very strong back: 

but a rather feeble mindo Although plaga.ed by a small "memor'7" and by a 

limited repertoire of arithmetic and logical "thought processes', this slaTe 

is nevertheless capable of consul. ting this 'memory" and executing these pro-

cesses at truly fantastic speeds. It remains for the applications engineer 

to instruct the slave in the JD8lUler in which "he" is to perform 'his' cbltieso 

Generally these computer programs are formulated in terms of dif­

ference equations (i.e. - time domain synthesis) with the computer solving 

the equations by means of arithmetic operations and modifying 1 ts course 

of actions by means of logical operations. In a recent doctoral thesis, 

Salzerl3 presents a method for the coding of programs which d~ends on 

frequency domain synthesis. Since the computer ~rogram is essentially a 

data-processing filter, one would lOgically expect that m8ll1' of the methods 

of analog filter theory are extensible' to program synthesiso This thesis 

constitutes an attempt at program synthesis based on the conc~t8 of Wiener­

Lee theOry.l,6,7 In a sense, it is an effort at endowing the digital com-

puter with a higher order of fnteillgence - one capable of interpreting 

a message in terms of its statistical distributions in time. 

In his classic monograph, "Extrapolation, Interpolation, and 

Smooth~ng of Stationary Time Series', Bo Wienerl demonstrated the basic 

_nity of the previously unrelated philosophies underlying the investi~tion 

of time series in statistics and of messag~transmission in communication 
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engineering. !his study parallels to a great extent the somewhat earlier 

work of A. !:Olmogoroff2 and thlls represents another instance of 'mal. tiple 

discovery", that curious historical phenomenon which has recurred 80 fre-

quently in the development of science. Al though each of these men ¥as 

con.cerned with a slight17 different problem, both sought, through an e. 

tension of the theory of stochastic processes, to establish the bases for 

the optimum prediction of time seri es. 

!.ime series may be defined as sequences, discrete or continuous, 

of quantitative data assigned to specific moments of time. Since the 

majority of types of time-variations encountered, both in statistics and 

in communications, are not of the regular functional type in which the 

function f(t) can be represented exactly by a mathematical fUnction of 

!J they can be studied only with respect to the statistics of their dis­

tributions in time. From this it fol~ows that the separation of the true 

data from the noise in any set of sequences must logically be preceded by 

a study of the statistical characteristics of the set. Since the con-

capts of statistics are based on large collections or ensembles of events, 

we remark that the performances of the filters considered herein are to 

be optimized over an ensemble of possible signalso 

~y making certain restrictive as~tions as to the properties 

of the ensemble, Wiener was able to simplify the specification of the 

optimum filtero The basic concept of his theory was that communication 

signals were to be regarded as stationary, ergodic time series. A sta-

tionary ensemble is onewbo-ae-: statistical properties do not vary with 

time -- that is, the statistical regularities of the past will hold in 

the future. An ergodic ensemble is a special case of a statioMry 



ensemble for which any member fUnction is statistically representative 

of any other member function. For the ergodic ensemble one can, in 

computing statistical parameters, replace ensemble averages by time aver­

ages. This replacement permits a considerable saving in time and effort 

since the former averaging process is much m.ore ditficu1 t than the latter. 

Furthermore, the as~tion of stationarity permits the design of the 

optimwn filter in the fora of a constant-coefficient system. 

If the concept of treating messages as stationar'7 time series 

is accepted, the problem which then arises is - what statistical param­

eters are of importance in the design of optimum filters! In this, as 

in most physical problems, the solution is more readily obtained if the 

limitation of linearity is imposed on the types of operations to be used 

in the filtering. With this limitation on the Characteristics of the 

filters, it is immediately apparent that the only statistical parameters 

which need be considered are the signal power spectra -- or their time 

domain equivalents, the linear correlation fUnctions. It should be noted 

that if the limitation of linearity is not imposed, then the statistical 

parameters of importance are both the linear and the higher order non­

linear correlation fUnctions. This point will be treated in somewhat 

greater detail later (cof. Chap. II). 

~rior to the publication of Wiener's monograph, the problem 

of filter design was generally handled by the classical methods of 

(a) prescribing either the desired fre~ency response or the desired 

tran.sient response,· and (b) synthesizl. ng a network which approximates 

this 'response. Not only did Wiener suggest an entirely different ap­

proach to the synthesis of linear filters, but he also provided the basis 
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for t1:;te developmeat of a theor'7 of information.3,4,5 Much work has since 

been done in the interpretatio~6, 7,8 and extension9,lO,ll of the Wiener 

theory and in the mechanizationl2 of the rather laborious procednre of 

computing correlation tunctions. 

It should be emphasized tbat this optimization theo17 need not 

be restricted to stationa!7 ensembles nor the filtering system to linear 

operations. ~00ton23 bas generalized the theo17 to include time-v&r7-

ing linear systems with nonstationary statistical. inputs. We shall show 

that, for the -discrete fllterW, one·can specify' the optilllUJll system. with 

the same ease re~dle.s of whether the restrictions of linearity and 

stationarity are imposed or not. 

1.02 Definition of Probl_ 

Baving Sketched. the origin of the statistical communication 

theory, we now consider the extension of its techniques to the synthesis 

of programs capable ef dealing with a specific kind of noise. The noise 

in question is that arising from the C05' ersion of a contill1ous time 

s~ries to one which is discrete. 

Info~tion that is to be processed by a digital computer JIIllst 

generall;r be made available to it in the form of signals which are dis-

criAized both in time of occurrence and in magnitude. !lms, in a control 

application, a continn.ously varying signal which is related to the con-

trolled variable of the system ma;r be sampled and quantized by means of 

encoding devices to give one of a finite set of discrete magnitudes for 

each distinct time interval. Bote that the term -sampling' is used for 

the process of di$cretizing in time, 'quantizing' is used for that in 
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amplitude, and "encoding' is used for the process (involving sampling 

and quantizing) whereby a contill11ous time series is converted to one 

which is discretized in time and amplitade. 

Whether the original input signal is noise-free or not, it 
r 
lis distorted in the process of being encoded. i'h1s distortion is caused 

primarily 'by the fact that the quantizer can reprodll.ce oIlly approximately 

an. instantaneous sample by assigning to it the value of the nearest 

qu.antizing level. To attain an accu.rac,- greater than one part in a 

thOt1sand requires a rather complex electronic s7Stemo .!he result is that 

this analo~to-digital conversion by the encoder prodnces data which are 

good to, say, three decimal fignreso When these sampled quantized data 

are subsequentl,- used in the computation of a correction to the controlled 

variable of the system, the inevitable ac~mnlation of round-off errors 

soon destroys the usefUlness of the computation. Round-off error stems 

from the necessity of operating on data which approximate all real 

numbers b,- rational numbers with a finite nnmber of digits. 

The problem at had is to synthesize discrete f1lters (1.eo, com­

puter programs) which, when supplied with a noisy data 1nput, will yield 

the best possible approximation, in a least mean-square error sense, to 

the message or some £Unction thereof. As ~ example - it we assu.me that 

quantization noise is the predominant noise component, then, for the 

register length of the Whirlwind I computer, one might be called upon to 

specit,r that system which will process incoming 8-digit data in each a 

Waf as to obtain the best possible approximation (in the specified sense) 

to a 15-digit value of some given function of the input data. 
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1.03 Discussion of Proposed Method of Solution 

Having formulated our problem and indicated the tecbnique that will 

be used to obtain a solution, we nov consider the limitations implicit in the 

8ssamption that the criterion of perfor.mance shall be the minimization of the 

mean square error over the ensemble. Whether this is indeed the sense in 

which a system should be optimized is by no means certain. In establishing 

snitable performance Criteria, engineers are concerned with questions of 

values rather than questions of fact. The absence of valid criteria which 

lead to solvable problems requires that the engineer make some arbi tra17 

decision as to the "criterion of goodness" of 8 system. 

In formnlating his theory of statistical prediction, Wiener was 

confronted by this problem and arbitrarily decided to use the criterion of 

least square error. Of all quanti ties which lend themselves to an eas7 

minimization, the most natural are those which are inherently positive be-

cause they are squares of some simple real expression or sums of such squares. 

Wiener was well aware that this criterion had serious faults. Firstly, it 

puts an over-emphasis on those points where the predicted and actual. values 

differ by a large amount; and secondly, it gives a considerable weight to 

small errors occu.rring wi th great frequency over a long interval of time. 

ThIls we find that this criterion is overly sensitive at both ends of the scale 

of magnitude of error, and slights intermediate values of error. 

·If one examines this criterion objectively, one finds that, in ad-

dition to having the considerable virtue of leading to a mathematically 

manageable problem, it frequently leads to rather good resu.lts. A well-known 

fact is that the application of the Wiener-Lee theory to the filtering of a 

Gaussian signal leads to a design which i s absolutely optimal. Zadeh14 has 
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suggested that a more appropriate cr! terion of design would be the maximiza­

tion of the probability that the error at a pre~ecified time, to' be les8 

. than some prescribed tolerance. The maximization procedure leads to a set 

of e~ations whose solution in practice must be carried out by trial and 

error. If the nature of the system is Bach that certain conditions are satis-

fied, then the probability criterion yields the same values for the design 

constants as does the least square error criterion. These conditions re­

quire that either (a) the systematic error as well as the geometric mean of 

the tolerance and the systematic error at time t = to be small in comparison 

with the r.m.s. value of the random error, or (b) the systematic error be 

large in comparison wi th the random error, and the tolerance be approximately 

equal to the systematic error. J'loyd15 has shown that the criterion of maxi-

misation of a probability density is the e~ivalent of the criterion of least 

squares when the bias errors for an ensemble of signals have a normal dis-

11 tribution about zero. Stutt, after making an experimental study of nop-

timuml filters, concluded that least sqaare error network specifications are 

generally sensible and lead to designs which are relatively non-critical. 

The crux of the problem of defining suitable performance criteria 

lies in the fact that there is little understanding as to what properties 

of a message are actually utilized by the ultimate receptors and tperefore 

should be retained in the output of the filter. It is obvious that the 

stationary time series which the filter should handle is a fUnction of the 

destination. In the absence of information concerning the message-utilizing 

properties of the ~ timate receptors we must contE!nt ourselves with an over-

all system which is not optimal, even in the least squ.are error sense. 
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The extreme B~licit7 of the least squares proc~ can be 

illustrated b7 the followin& example: 

Let it be required that ve construct a linear, constant-coefficient 

filter for which 

where 

~ = input at time tk: 

~ = desired output at t = ~ 

Ok = actual. output at t = it 

11 
= ~.A. i L- n k-n n=o 

An = coefficients by which inpu.t data are to be 

weighted 

and € k = ~ - Ok = error at t = tk 

The mean square error taken over all time is then E ~ and can be minimized 

by a proper choice of the weighting coefficients, A. The conditions for a 
n 

minimm are 

=0 for n = 0,. 1, ••• , Jr. 

l3u.t 

or 

.. € ~1 __ ·~· = 0 

.k Ai_ 
for n = 0, 1, ••• M. 

This is the discrete form o~. the Wiener-Hopf equation for the linear constant-
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coefficient filter. lIxpanding this equation, we find that the optiJllU1ll set 

of coefficients is determined b7 the e~atiDns 

i i = ~ d... k-n k-m B:: x-m 

for m = 0,1, ••• , K 

The reader ,,111 find that the aboTe deecri bed procedure or Taria-

tions thereof appear throughout this report. Understanding of this siJII.Ple 

example enables one to specif)' rigorousl7 an optimum design for computer 

programs which are to abstract information from a noisy input data sequence. 
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CHAPDR II 

THlO:B.'ITI CAL ANALYSIS 

2.0 General Remarks 

Before considering the derivation of proce~res for ~eclf)ing 

classes of optimum filters, we first define the terms "discrete filter" 

and "continuous filter", and then disea.ss certain analogies between these 

types of filters. A "discrete filter" is a transmission device which, 
. 

when ~pplied with data from an external source at ~ecified eqaal1y ~aced 

moments, fUrnishes at the same moments output data which depend on pas' 

input data and possibly on past output data aDd time. The input and output 

signals are discrete time series, and. the filter itself is characterised by 

a sequence (or sequences) of numerical weights. In contrast to this is 

the conventional 'continuous filter" which is characterized by ph7sical e1e-

ments such as resistance, inductance, and capacitance, and whose input and 

output are u~ally continnous time series • 

.A. linear filter, be it discrete or continuous, is one for which 

there is a linear relation between input and output. This relation may be 

expressed by recourse to the superposition principle. Confining our atten-

tion for the moment to linear systems, we remark that many of the concepts 

of conventional. filter theory bave their analogies in the discrete domain. 

For the constant-coefficient continuous system. (Fig. 2.00-1a), the inpu.t-

output relation is defined by the supe~ositiQn integral' 

fo (t) '" It h(t - ?-)fi ('t)d~ 
-CD 

'" 1· h(~)fi(t -£::)d~ 
(2.00-1) 

(2.00-1a) 



CD 
N 
If) 

.... 
If) 

I 
Cl 

.. h(t) --

o. CONTINUOUS FILTER 

c~ -- .. - -

b. DISCRETE FILTER 

FIG. ~.OO-/ 

'BLOCK DIAGRAMS OF LINEAR 
CONSTANT--COEFFICIENT SYSTEMS 
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where f
1

(t) = inpat signal 

fo(t) = actual outpa.t sigaal 

h(t) = response of s7st_ to a unit impulse applied 

at t = O. )'or a physical17 realizable s7stem, 

h(t) = 0 for t< o. 

'0 facilitate the understanding of linear sy-stems, one frequent17 studies the 

equivalent frecp1eDC7 domain representation obtained b7 Laplace transforming 

equation 2.00-1a. Starting from the defim tion 

we obtain 

~o(s) = B(s)li(s) (2.00-2) 

where B(s) = System transfer function 

Analogous equations defining the corresponding discrete system are 

easi17 derived. Eefore proceeding with the derivation we note that filters 

in which both input and past output data are weighted are equivalent to those 

in which an infinite number of input data. are weighted. In this report we 

shall consider only those filters in which a finite DUmber of input data 

only are weighted. 

For the discrete system (Fig. 2.00-1b) in which the coefficient. 

(or elements) of the weighting sequence are illVariant with time, the ir;m.t-

output relation is defined by the superposition summation: 
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where k = 0, 1, 2, ••• 

= discrete time variable identifY'iDg sample 

datum at t = to + k!r 

'r = sampling interval 

bk = b(lt! ) = b( t + k!r ) 
r 0 r 

= input se~ence 

Ck~ ac~' ou~t sequence 

An = sequence of. weighting coefficients 

analogous to the impu.lse response of the 

conti~ous system. 

Since the "memory" of thi s class of fil t~rs has been 1 imi ted to 11+1 samples, 

we might denote this as a "finite-memo17" filter to distin.gu.ish it from the 

class in which both input and past outpu.t data are weightedo 

A frequencY' domain representation of this system is readily obtained 

in the following manner. We define 

then, inserting this in equation 2.00-3, 

O(e-sTr) = o«e-s!r) B(e-s!r) 

II 
where o(.-s!r) = L .A. e-ns'lr 

1t=O n 
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is the system transfer fUnction defined by Salzer.13 

The analogies between the continuous and the discrete systems, 

which are now apparent, are set forth explicitly belovo 

Oontinnous Slstem Discrete Szstel1 

1. Defined by 1. Defined by 

a) Differential equation a) Difference e~ation 

b) Saperposition integral b) Superpositionswmmation 

2. Transfer function of constant-

coe~ficient system de,pends on ~. 

2. !ransfer function of constant­

coefficient system depends on e-S!r. 

3. Impulse response or weighting 

function defined by h(t) for 

3. Weighting sequence defined by An 

for the time-invariant case. 

the time-invariant case. 

For the case of the linear time-varyillg system, the input-outpllt 

relation of the continuous £,il ter (Fig. 2.oo-2a) is defined by the more 

general form of the superposition integral 

(2.00-5&) 

!he corresponding discrete system (Fig. 2_o00-2b) is analogously defined by 

the superposition summation 

M 
Co -~ A b 
It - L- n,k k-n 

n.=o ' 

k = 0, 1, 2, ~ •• 



f1 (t) -- -

o. CONTINUOUS FILTER 

- A",k --

b. DISCRETE FILTER 

F/G.2.00 -2-

BLOCK DIAGR'AMS OF LINEAR 
TIME-VARYING SYSTEMS 
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]'rom the foregoing discussion it is evident that lD8ll7 o~ the tech-

niques of continuous filter theory may be 10gica1.11' erlended to discrete 

87"t_s. Much work bas been done b7 Salzer in utilizing frequenc1' domain 

methods in describing and in establishing criteria for 8tability of linear 

computer programs (linear discrete filters). Ve shall here concern ourselves 

with the discrete version of the statistical approach developed b1' Wi ener, 1 

16 2 Levinson, 1[01mogoroff, and others. 

hriling our attention now to l1on-1iuar s7stems, we note that i. 

IUch systems, there 'is a non-linear relation between inpu.t and output. In 

other worda the characteristics of a non-linear filter depend on the signal, 

and po.sib11' on time •. If we restrict our investigation to 'finite-memo~ 

systems, we see that a fair11' general non-linear program ~ be described 

by the equation 

M N 2 
c= ~ .A. h + ~ ::e h-
k L- n,k x-n L- m,k -k-m 

n=o m=o 

k = 0, 1, 2, .00' 

p 
+~ C k ~ + ••• L- p, -k-p 

p=o 

If the performance of the program is time-invariant, then 

A. = .A. n,k 11 

:B k=:B m, m 

• 
• 

(2.00-7) 
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In the following sections we shall develop proce~res for specify­

ing the optiJllllll (mean-square error) discrete finite-memor'7 filter whether it 

be linear or not, and whether its input be stationar;y or not. It sbould be 

noted that the specification of the corresponding infini te-memor'7 filters 

can be derived by methods entirel;y analogous to those to be Bet forth below. 

However, an approximation is needed to make the problem manageable, so that 

the resnlting ~esign is not strict17 an optimum. 

2.01 Synthesis Procedure for Linear !rime-Invariant Programs 

The linear time-invariant program is characterized by the input-

output relation 

(2.01-1) 

k = 0, 1, 2, ••• 

Since the actna! filter output Ok may differ from the ideal, or desired, out­

put ~, an error 6 k will be present (see Fig. 2.01 .... 1). 
16 : 

Levinson has developed a simple computational procedure for dis-

crete til ter design which is applicable to the problem at hand. This pro .... 

cedure is, essentially, classical least squares with the additional ~ecitica= 

tiona of linearity of the filter and stationarity of the input seqaence. Re~ 

.. 
capitulating (with some changes in notation) part of Levinson's procedure, 

we now determine the nature of the linear program which, with input bk , will 

bave an outpat as close as possible to the desired output~. An~error 

quantity 
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Ek=~-'it 

(2.01-2) 

may therefore be defined. Our problem is to derive a sequence of weights 

"'n such that we minimize 

(2.01-3) 

= Mean square error for linear constant-coefficient filter 

or 

I 11m 1 ~ 2 _ 2 ~ J. lim 1 \ b 
1c = Ii -+ CD 2i+l 4-- ~ 4;:- n Ii -+. 2&+1·~ ~ k-n 

+ L. ~ AI. 11m 1 L b b 
n 4r- n m ]I ~ CD 2ii=l k: k-n k-m 

Tbns far the derivation differs in no respect from classical least s~ares. 

If the stracture of the series is snch that stationarity (or at least ~si-

stationari t7) is assured, we may now define the auto- and cross-correlation 

ta.nctionSI 

1 B' 
Raa(k) = lim - ~ a. a. 2B'+1 2-- .n .n-k !J .... (I) . h=-I 

Equation (2.01-4) assumes a simpler form when we introduce the correlation 

fUnctions. 
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M II M 
1_ == B. (0) - 2 ~ A It (n) + ~ ~ .A. .A. ltb(m-n) 
~c sa ~ nD8 ~'=o n ml) 

(2.01-5) 

Using the techniques of the calculus of variations, we determine those 

values of An which minimize lIe by setting 

for k = 0» 1, ooo~ M. 

This yields the Wiener-Hopf equation for the linear fini te-memo%7 filter: 

where k = 0, l~ .e 0, II. 

For a predicting filter, the Wiener-Hopf equation is of the form: 

.M 
L An~b (k-n) = 1\& (k.+s) 
n=o 

where 8 = integral number greater th$a 

zero denoting the number of 

sampling periods in the future 

by which the prediction is made. 

!rhe minimu.m value of I le for prediction is then 

(2.01-6) 
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Levinson has shown that'increasing ! al.V81's improves the 'Palit7 

of the filter~o 

In order to synthesize a linear finite-memo17 program &S a se-

qa.ence of 11+1 wei,.ghts, An' o~ need merely solve the Wiene:f\-Bopf equations 

(2.01-6) or (2.01-7) 0 In treating the concept of stability for this clas8 

of filters, we follov Bnrevicz17 by defining a filter as stable if to a 

bounded inpo.t there always corresponds a bounded outpa.t. A neeessar,y and 

sufficient condition for stability is absolute convergence of the weighting 

sequence (An)' that i8 

Sbce we treat only those filters with finite "memories"» the only condition 

reqa.ired for stability is that all A be finite. 
n 

Just as the stability of continuous linear systems can be studied 

in the fre~enc7 domain~ so can one make a similar stndy for discrete linear 

systems 0 It will be found~ in general ~ that the class of filters under d1s~ 

elisBioll always have a transfer function in the form of a polYDDmial in. e -s'lr. 

Example of Derivation Procedure 

It is instructive to follow through the derivation for the simple 

case of prediction when M = 2 in order to observe the effects of imposing 

the specification of stationarity 

I = lim ....l:.-
1e 'N"'(I) ~l 
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If the sequence ~ is 8tatioDar7~ then 

Introducing the correlation functions', we have 

Imposing the conditions for the minimization of lIe we obt~n the system 

of equations 
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If stationarity of the inpu.t can not be asswned, then one can 

not define meaning:f'u.l correlation functions on a tim&:>averaging basis. We 

DOW consider the approach to be followed when the inpu.t is nonstationar.ro 

2.-02 Synthesis Procedure for Linear Time=Varying Program 

An optimum filter for the case of the non-stationar,r ensemble 

can be specified in a manner quite similar to that of the stationar,y, er-

godie ensemble. If the statistical characteristics of an ensemble are 

time=var,ying, then a filter whose performance is optimized on the basis 

of these characteristics will~ in general, be time~varyingo Thus the el&= 

ments of the opttmw. filter will be a function of the sampling instant, 1, 

at which the processing of the input data 1s to occuro 

Let a k = desired outpu.t datum for the rth member of the ra 
ensemble at the kth sampling intervalo 

br,k = raw input datum for the same member at the kth 

sampl ing in terva! 0 

A k = coefficient by which b k is to be weighted at n, r, -n 

the !sth sampling intervalo Note that the same 

An,k appli~s to each of the ~members of the 

ensemble 0 The linear combination of the weighted 

input data then forms the actual ou~t of the 

filter for the ~th member at the ~h instant. 



Report R-210 -25-

C k = actual outpu.t for rth member at kth instant. r, -

M 

=L 
n=o 

A. b n,k r,k-n 

We now define an error quantity 

E = a - c r,k r,k r,k 

M 
=a -~A b r,k ~ n,k r,k=n n=o 

(2002 .... 2) 

and seek to minimize the mean square of this error, I 1v(k), over the en­

semble of signals. 

where per) = probability of the rth membero 

Substituting the expression for the error quantity into equation 2.02 .... 3 

and expanding, we obtain 

If 2 
= lim L p(r)ar k 

N ~ 00 r==-N ' 

- 2 \.A. k lim 
.Ly- n, N.., CD 

I 

~ p(r)a k b k r, r,-n r=-

L~ N 
+ . I A k A k 11m.. L p(r)b k nbr k m n ~ n, II, N"; Q) r=alf r,...., -
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Since the signal ensemble is not ergodic, we can no longer justify the equating 

of time-aver.a,ges with ensemble-averages. We therefore introduce the concept of 

the ensemble-averaged linear correlation functions. The autocorrelation is 

defined as 

R (k,k-n) = lim aa 
.li~oo 

'and the cross-correlation as 

p(r)a ka k r, r,-n 

In the absence of specific information as to the distribution of the members 

of the ensemble, one might assame that the occurrence of all members is e~ally 

likely. Physical consideration may frequently justify this assumption. On 

this basis the mean square error for the linear time-varying filter becomes 

(2.02-3a) 

into which we insert, after expanding, the corresponding correlation functions 

and 

1 N 
Raa (k,k-n) = lim 2N+l z: 

N ~ Q) r=="" 
a a r,k r,k=n 

o 

The resulting equation, irrespective of the probability distribution per), is 

(2.02-5) 
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Now minimizing with re~ect to the A k coefficients n, 

for j = 0, 1, ••• M 

we obtain the synthesis equations for the linear time-varying filter 

for j = 0, 1, • 0.. K. 

For a predicting filter, the synthesis e~ations are 

for j = 0, 1, ••.• M. 

and ! is as previously defined 

It should be noted that the above-desoribed procedures yield a 

specification for an opt~ filter at a particular instant -- the ~th 

sampling instant. !he approach which one takes in specifying a time-v&ry'-

ing discrete filter depends on how rapidly the statistioal characteris-

tics of the signal ensemble are var,ying compared to the time constants of 

the controlled system. 

If the variation is slow compared to these. time constants, then 

one can solve the filtering problem on a quasi-static basis. !he solu~ 

tion involves a filtering system consisting of a set of optimum filters 

(eaeh operating over a certain time interval) and a device for switching 

from one filter to another. The switching device might be an eleetro-
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mechanical rela)" network, or a conditional subprogram instru.ctiOD to the 

computer (such as the cp(-)x inst:ru.ction in the Whirlwind I code). The 

switch might be actuated b7 information as to elapsed time and/or &8 to 

the quali t7 of performance of the output of the filtering 87stem. Such a 

B,1stea, involving ~ separate discrete filters, is shown in Yi~re 2.02-1. 

!.here it is aSSQmed· that each filter operates well over a ~ of ~ B 

sampling intervals about some sampling instant (at which it is optimum). 

!he number of filters, P, WOuld 0 bvious17 depend. on what tolerance in -
quality of performance were permitted, and on the price one were willing 

to ~ in storage facilities, program complexit7, and computation tiae. 

For the ensemble whose statistical st:ru.cture varies too rapidl7 

for effective filtering on a quasi-static baSis, we need mere17 extend 

this approach to the limit and provide a different filter at each sampling 

instant. Bather than evaluate and store the large number of sets of 

weights directly, we might, as before, synthesize P separate discrete fil-

terse After plotting each of the A k weights as a fUnction of the time n, 

variable !" we approximate numerically by a smooth curve (see Figure 

2.02-2) each of the M+l discrete sequences. !he desired set of weights 

at any sampling instant is then obtained by interpolationo The storage 

re~irements are reduced since we now store only the coefficients ~eci-

fyinr; the fUnctional approximation of any Ai ,k as a function of k. Thus, 

if Lagrangian interpolation were used, the set of !!:!:!. polynomial ap.­

proximations would yield the optimum filter at each of the original ~ 

sampling instants, and an approximation to the optimum filter at &n7 other 

instant. In this case, 
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~_ <X 2 "k = .... 00 + 01 k + 0<02 k + ••• 
f 

<XOf k 

~ ,k = 0(10 + 0<11 k + ()(12 k
2 

+ e. e (Xig ~ 

e. · • • • I · .. · · • • 
2 h 

"M,k = Q('XO + 0(10. k + 0< M2 lC + ••• 0< MIl k 

where the degrees of the polynomial (f, g, •• e h) need not necessarily­

be the same. Since the device controlling the position of the sri tch 

would under these circumstances be time-8.ctuated, we JIIIlst necessarily 

have insight into the manner in which the statistical strncture of the 

ensembl e is varying in ti me. 

2.03 Synthesis Proce~re for Bon-Linear Time-Invariant Programs 

We consider now that class of discrete filters for which there 

is a non-linear, time-invariant relationship between the output data and 

a finl te number of input data. In particular, we treat the simple case 

defined by 

Accordingly, we define an error quantity 

11 Q, 2 
Ck :::: a. - ~ A bk - ~ lJ b'l-

.It L- n -n L- P A-P n=o p=o 
(2.03-2) 



Report R-2l0 -32-

and proceed to derive sequences A and 13 such that n p 

I 
1 ~ L:k2 Inc = 11m ~ L-- v 

N '7 Q) Cl.TT.L k =-1' 

= mean square error for a non-l inear 

constant-coefficient filter 

is a min1mwn. 

I = lim 2,., L &.2 + "f:... ~ A A lim ..l., L. b b 
nc :r ~ 00 CJ.1"1'".L k 1C n=o m=o n m N' ..... co Q.1T.L k k-n k-m 

If' stationarity can be assumed, the concept of time-averaged correlation 

functions may be introduced again and extended fUrther. In addition to 

the previously defined linear fUnctions, we shall bave occasion to utilize 

the higher order non-linear functions. 
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:Because we shall al 1fqs be deal ing vi th powers of the inpa. t 

seqa.ence, some of the shifts, k
i

, will be equal, and hence the complete 

generality of the above defined functions is unnecessary. !hese higher 

order functions ma7 under such circumstances be redefined in terms of 

1 hear correlations between the powers of the il%pl1t. For the case treated 

here, considerable simplification is obtained if we let 

!hen 

+ L L :B:B It (q-p) 
. p q Pq gg 

- 2 ~ A.11- (n) - 2 ~ :B R (p) L- n-oa p ga 
n 

Minimization of Inc requires that 

h = 0, 1, ••• M 
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3 Inc 
3:B = 0 J = 0, 1, ••• Q 

J 

From these relations we obtain the Wiener-BOpf equations for the DO~linear 

constant-coefficient filter: 

~ .A. R. (n-J) + ~ :B R (P-J) = R (j) ~ n~g ~ p.gg ga 

h ~ 0, 1, .~. M. 

j = 0, 1, ••• Q,. 

~or a predicting filter, the Wiener-BOpf eqaations are of the form 

La Anl\b(h-n) + ~ Bpl\g(h-p) = B"a (h+s) 

t Anl\g(n- j ) + t. Bl"gg(p..J) = lI.ga(j+s) 
n=o p:=o 

h = 0, 1, ••• ·M. 

j = 0, 1, ••• 'Q,. 

The minimum value for I for prediction is then nc 

fi:n~ = 11. (0) - -t.. A Roo. (11+8) -~ BpR (p+s) L ~ min aa n=o n p=o ga 

(2.03-7) 

:Because of the non-linearity of the filters, conventional fre-

quency domain analysi s is not applicable. Note that the extension of the 
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above derivation procedure to any order of non-linearit;y is rather easi17 

Illustrative hample 2.0,3-1 

~s an illustration of a case in.hich a non-linear veight-

ing sequence is superior to one which 1s linear, we consider the problem 

involved in predicting flux linkages, ".x ( t, i), in an electrical circu.i t 

composed of an ideal capacitance ~ and an iron core inductance~. The 

prediction of future values of flux linkages is predicated upon a knowledge 

of past values of ·~(t, i) and of the physical mechanism governing the 

variation of A(t, i).. :Because of the fact that the core is Stlbject to 

magnetic satura tioa, the flux linkages depend on the ampii tude of the 

current!. as well as on time i. The condition of equilibrium of electro­

motive forces in the circait (Kirchoff's voltage law) gives 

~ 1 jt 
dt + C idt = 0 

o 

For the linearized version (an approximation of zero order) of the prob-

lam, we have the familiar relation 

~_ di 
dt - L dt 

As a first approximation however, we can assume that the condi ti on of 

sataration can be expressed by the equation 
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Substitnting this expression in the original eqwation and differentiating, 

we have 

We now approximate this equation describing a non-linear conservative 

system by means of a difference equation. 

or 

where 

I\il+l -2 An +~n-l +!1 +!,.3 = 0 
h2 C J"..~ C /\.. n 

"J.- = C -1\. + C ." - + D 'j 3 
'/'n+l o/'n 1 "'n-1 o~n 

C =-1 
1 

13h
2 

D =--o 0 

Information as to the values of ! and !" and. hence as to Co and Do' is 

contained in the normal magnetization curve for the indnctor. 

Let us assume that our problem is the following: 

A sequence of data relating to the time-variation 

of flux linkages in the inductor is to actuate a control 

system. !hese data, having been experimentally observed 

by instruments capable of meaS11ring only to wi thin !,.O.Ol 

flux linkages, are thereby contaminated by qu.antization 

noise. Not only shall our programs operate so as to 

re~ce the effects of noise, but, in addition, we shall 
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require that they are to improve the over=all system response 

by acting as lead or predicting networks. We shall further 

aS~6 tbat~ because of limited storage facilities, we can 

allocate only two reg! sters to retain the weighting coef-

ficients of a programo 

Our problem~ in essence~ is to devise an optimwn two-

element predicting filter for the processing of ~tized 

Physical insight into the inductor=capacitor network has provided 

us with a mechanism for generating :future values of the Ale sequence from 

past data =-equation 2003-90 :By utilizing the knowledge of the mechanism 

for the formation of the ilk sequence~ the designer should be able to pre­

dict more intelligently :future values of this sequence. In the absence 

of quantization noise~ one would logically use the re~rsion equation 

2.03-9 in his prediction. The introduction of noise» however» produces 

a sequence of perturbed data$ bk » for which the recursion equation is no 

longer valid. To predict future values of ~ from present and past values 

of the per~rbed se~ence» one must 1ntro~ce a smoothing mechanism (eog.~ 

the least s~ares procedure) 0 If» in specifying the characteristics of 

the fil tel" $ the designer were to constra.in the syst.em so that it per-

forms only linear operations~ he would not use all of the a.vaila.ble knOWca 

ledge~ and the performance of the filter would consequently be poorera 

To test the validity of this reasoning~ we shall determine» by 

means of classical least squares~ a two=element predictor of each type -= 

linear and non=linearo 



Suppose» for a given test signal, 'We use two different fiUDleters 

as measuring devices. One» capable of indicating !9 00001 nux 1 inkages 

is primarily suited for laboratory work; the other, capable of indicating 

iO.01 flux linkages is rugged enough for control pu.rposes. !he former 

supplies a,Ak sequence; the 1atter~ a bk sequenceo For this test sigDal, 

these sequences happen to be the followingg 

k I\k b
k 

0 I 000000 0.00 

1 00&>00 0 •. 80 

2 0.8512 0.85 

3 100729 1.07 

4 103666 1037 

5 1.83614- 10811-

6 207290 2073 

7 501288 5013 
g 1901660 19011 

Linear Predictor 

We define 

The minimization procedure leads to the system of equations 

.6.0 4- b~ + ~ ~ bkbk _1 == L; Ait+s\: 

.6.0 ~ bkbk_1 + ":t Z; b~_l = L; p..it+sbk-l 
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For s = 1, we have 

From which 

Non-Linear Predictor 

We define· 

and seek to minimiz e 

-39-

A = 0027422 o 

The minimization procedure leads to the system of equations 

AoL 
k 

b;+ 13 L 
o k b~ =2; I\. b \ k+s k 

AoL b~+:e L b
6 =L A b

3 
k o k k k .. k+s k 

., 

For s = 1, we have 

(409.0286) A. + (135 81.3.4437) 13 = 122.9156 o 0 
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From which 

-40-

:B =-0.00837 o 

We now test these filters by attempting to predict ilk+l 

when given bk and bk .... 1 for the 1 inear fi1 ter or b
k 

for the non-l inear 

filter. 

We define 

Akp = predicted value for Ak based 

on ~antized data 

The results are swmmarized below: 

A:k 

:A2 

A3 

A4 

A5 
)\.1-

0 

'A 7 

'As 

Table 2.03-1 - Comparison of Performance of 
a Linear and a Non-Linear Predictor 

Linear Predictor lion-Linear Predictor 
-

Akp €ok Akp €k 

0.2194 0.6318 2.4592 -106080 

0·3030 0.7699 2 •. 6123 -1.5394 

0.3677 0.9989 3.2847 -109181 

0 .. 4693 103671 401972 -2.3608 

0.6244- 2.1046 5.6139 -2.8849 

0.9095 4.2193 8.2364- -3.1076 

1.6455 17.5205 14.6673 4.4987 
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It is not surprising to find the performance of the non=linear 

predictor to be ~perior to that of the other since the data sequence is 

derived from a non~linear generating mechanismo This ~periority is made 

evident by a comparison of the sums of the s~ares of the errors in pre­

diction for the two filterso ~hus, for the linear predictor 

and for the non-linear predictor 

In spite of the fact that the non=linear predictor used a sma!= 

ler "memory" (one datum)~ its performance was definitely superioro 

Clearly, the availability of a priori information as to the nature of 

the system enabled us to design a better predictoro 

In order to vi sual ize more clearly the mechanism of predicting 

a perturbed sequenee~ one might resolve it into the mechanism of pre­

dicting in the absence of noi se and that of smoothing a perturbed sequenceo· 

It is not our purpose to imply that these are not interrelated processes, 

but rather to suggest this artificial separation as an aid to the imagina­

tiono It is then seen that the former mechanism should approximate that 

of the recnrsion equation as closely as possible~ while the latter should 

be as effective as possible in removing the undesirable perturbationso 

Thi s reasoning provi des us with an ins ight into the manner in which the 

particular type of non=linearity should be choseno We may conclude that~ 

when the mechanism fo r generating the true data sequence is known or sus""" 

pected to be of a particular type of non-linearity, one should design the 

appropriate non-linear filtero 
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2004 Synthesis Procedure for Non~linear Tim~VaryingProgr.am8 

The last procedure to be discussed is that in which the filters 

process the non-stationarity input data in such manner as to establish 

a non-linear, tim~varying relationship between the output and a finite 

number of input data. Since the extension to higher orders of non­

linearity is obvious, we again t~eat the simple case defined by 

c = tAb + ~ 13 b
2 

r,k n,k r,k-n ~ p,k r,k-p n p=o 

The error quantity is then 

M ~ 2 € =a .... A b . .,.. 13 b 
r,k r,k ~ n,k r,k-n p=o p,k r,k-p 

and if we substitute 

we obtain as the ensemble~averaged mean square error, Inv(k), for the 

non-linear filter 

If the assumption of equal likelihood of occurrence of the member signals 

is justified, then we may write 

(2.04-3) 
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M M 
+ ~ ~ .A. A. lim....L. , b b 
~ ~ n,K m,k N ~ 2&+1 L-- r,k-n r,k-m n=o m=o "-7 CD r 

t Q, . 
+ E B l1m....L. g ~ p,k q,k _ ~ 21+1 ~ r,k-p~,k-q 

p=o q=o .I.' -reD r 

-- 2 ~ A.
n 

k lim ....L. ~ a b k ' B --+ Q) 2N+l L.r r,k r,k-n 

Substituting the ensemble-averaged correlations 

+2 ~} A 1J~ ,)t (k-p,k-n) 4r T n))A. p ,~-Dg 

Minimizing Inv(k) with re~eet to ~,k and BJ,k we obtain the synthesis 

equations 
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o 

~ ~ / An k~ (k-j ,k-n) + L:S kR (k-j ,k-p) = R (k,k-j) 1i=o ' g p=o p, gg ga. 

h ::: 0, 1, ••• M 

j = 0, 1, 00. Q, 

!Or a predicting filter, the e~tions are 

~: An,kl\b(k-n,k-h) + t :Sp,kl\g(k-P,k-h) = ~(k+II,k-h) 

~ A kl\ (k-j,~n) + ~:s kR (k-j,k-p) = R (k+s,k-j) i==o n, g p:=o p, gg ga 

j =0,1, OCIO Q, 

The minimum value for I (k) for prediction is then nv 

(2.04....6) 
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2.1 QUANTIZATION troISE AND NUMERICAL CO)!P'(J'TA!IOBS 

Although variables encountered in control systems are frequently 

contimous, a computer such as Whirlwind I requires ineoming"",data in the 

form of discrete quantities. The digital control of a continuous variable 

consequently involves a conversion from continuous data to discrete (ioeo, 

encoding) when raw information is ~pplied to the compnter, and from dis­

crete to continuous (i .eo, decoding) when the processed information is used 

to actuate the control mecbanismsoIt should be noted that the conversion 

problem is not peculiar to real-time computer applications, 1:ut rather that 

it is rendered more difficult by the necessity for obtaining, within a very 

limited time, results which are usable in controlling a dynamic system. 

Not only does the original input signal to the encoder contain 

noise from sources both external and internal to the control system, but the 

very process of encoding further corrupts the signal so that filtering of 

the output sequence is necessary if we are to extract the true message or some 

fUnction thereofo As has been previously indicated, this distortion resalts 

primarily from the quantizing process and manifests itself, in the time do­

main, as a limiting of the the number of digits by which the variable may be 

represented. When these sharply limited data are used in nnmerical compu~ 

tations, we frequently find that a previously stable program will yield either 

a divergent or an oscillating solutiono 

In the following sections we shall dis~ss the characteristics of 

quantization noise and how they affect the ever-present round .... off error in 

numerical procedures. 
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2.11 Analysis of Noise Caased by the Encoding Process 

Since later sections of this report deal with the design of linear 

programs capable of smoothing and predicting :f'u.tu.re values of an encoded 

sequence, it is appropriate that we now examine the encoding process in some 

detail. Encoding may be defined as the process whereby a continuous time 

series is converted to a discrete time series, the elements of which .~~ 

assume only a finite set of discrete ampli tudes 0 This conversion in-

volves the separate, but commutative, operations of sampling and quantizing. 

,Since the signal distortion caused by sampling can frequently 

be made negligibly small by proper design of the encoder, we shall make 

only a few brief remarks about this operationo Referring to Figure 2.11-1, 

we see that the sampling device can be represented by a switch rotating at 

a constant angular frequency wr ' followed by a holding circuit and an 

amplifier. For a continuous signal input f(t), the sampler provides at 

its output a sequence of pu.lses, fk • All palsee are of equal duration T, 

and ~ccessive pulses Tr seconds apart. Insofar as information content 

is concerned,there is no distortion provided only that the sampling 'Ire-

quency is at least twice the highest signal frequency. 

Linvil12lhas shown that the sampling operation may be visualized 

as the process of modulating a ~ontinnous signal by an infinite train of 

unit impulses. The resulting sampled signal has a spectrum which contains 

the original frequency components as well as all harmonics of these com-

ponents. So long as the condition on the sampling rate is met, there will 

be no overlap of the spectra and henoe no distortion. 

Within a fini te range of ampli tude variation, a oontinuous sig-

nal, as well as its samples, can assume an infinite number of amplitude 
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levels. HOwever, it may be neither possible nor necessary to transmit 

the exact ampli~des of these samples becanse of various limitations im­

posed by the transmission device or by the ultimate receptor. In such 

cases it is permi ssi bl e to represent and to transmit all level s wi thin a 

certain amplitude range by one discrete amplitude level. This means that 

the original signal. is to be replaced by a wave constxucted of quantized 

values selected on a minimum error basis from the discrete set available • 

. Clearly if one assigns the quantum values with sufficiently close spacing 

one can make the quantized wave indistin~ishable from the original signal. 

The quantizing process may be visualized as being the result 

of operating on the signal with a "staircase transducer", a device having 

the instantaneous output-input characteristic shown in Fi~re 2.11-2. 

When a smoothly varying signal is the input, the output remains constant 

while the inpu.t varies wi thin the boundaries of a tread, and changes 

abru.pt1y by one full step when the signal crosses the boundary. A qtlan­

tized signal wave and the corresponding error wave are shown in Figure 

2.11-3. 

The quantization error is, then,the inherent amount of distor­

tion resulting from the fact that the output of the encoder is limited 

to a finite set of amplitude levels while its input oc~pies the same 

ampli tude range in a continuous manner. The maximu.m instantaneous value 

of the error is half of one step and the total range of variation is from 

minus half a step to plus half a step. Only if the input is known as an 

exact fUnction of time can one find an explicit relationship between it 

and the corresponding error. Otherwise, one must resort to a statistical 

description of the error q(t) since all that is known, in general, is that 



CD 
It) 

N 
o 
It) 
t 

C[ 

OUTPUT 
3 I 

2 

I· 

. 
0 

. . . 
4 -3 -2 -I 1 2 3 4 

-I 
INPUT 

-2 

I -3-

FIGURE 2.11- 2- QUANTIZING CHARACTERISTIC 

) f(t 
4 

3 

2 

I 

0 

) €(t 
o. 5 

o 
-0. 5 

,/' 

I~ 

~ 
I 

., V 

I ~ / 
/ I / 

,., 
/ \ 

~/ ' .. 
" 

\ 

,,' --.- 1-" 

~ /'" 

f\,-/ 

V ....-..... \. 
" 
~ 

V ~ " i'-/ / 

", 
/ 

t 

/ t 

FIGURE 2.11-3-A QUANTIZED SIGNAL AND THE CORRESPONDING ERROR 



Report R-210 -50 .... 

it is a function of amplitude of the quanta, o(i' and the signal function 

itself. 

One can be somewhat more explicit when the quanta are equal and write 

q(t) = f(t) - ~k(t) 

where k{t) is a discrete variable taking on a range of integral values in 

such a manner as to render 1 q (t) l a minimumo 

k(t) = 

-n 

-n+l 

• 
0 

• 
=1 

0 

+1 

• 

• 

p(-n) 

p(-n+l) 

• 

p(-l) 

p(o) 

p(+l) 

p(n-l) 

n pen) 

and p(h) = probability that ret) lies in L o(h .... 1/2), ex (h + 1/2) J. In 

the above formulation it is as~ed that the signal is bounded in amplitude 

by ( .... no( , no<.) so that there are 2n+l quantizing levelso Unless the 

probability density distri~tions of f(t) and k(t) are known or certain 

simplifying assumptions are made, one can deduce little of value from the 

foregoing analysis. 
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20 If one assumes, as did M~er, that all errors are equally likely 

in the range (~1/2, +1/2), then considerable simplification results. Let 

the quantizer have ~ discrete amplitude levels and accordingiy ~ st~s 

0< i' which need not be equal, and p(1) be the probability of the i~level. 

Then one can show that the total quantization noise power will be 

With equal steps ()(, one obtains' 

~2 
If = --q 12 

There is, of course, no reason why the quantization need be 

22 done on the basis of uniform spacing of the levels. Panter and Dite have 

shown that by taking the statistical properties of the signal into con-

sideration, the distortion introduced in a peM system due to quantization 

can be minimized by a proper level distribution which is a function of 

the amplitude density distribution of the signal. Non-unifor.m quantiza-

tion may be accomplished by first compressing the signal~ then uniformly 

quantizing the modified signal. One of the more common forms of compression 

is the logarithmic one, where the levels are crowded near the origin and 

spaced farther apart near the pea.kso Panter and Dite have also shown that, 

with logarithmic compression, the distortion is largely independent of the 

statistical properties of the signalo 

Besides studying quantization error from the statistical pOint 

of view, one can also investigate the power spectra of quantized signals. 

Such an investigation for both uniform and non-unifor-m quantization was 

made by Bennett.19 The signal used was one having its energy uniformly 
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distribu.ted throughout a definite frequency band and with the phases of 

the components randomly distribu.ted. Anticipating binary coding, Bennett 

determined the power spectra for this signal qaantized to several dif­

ferent numbers of binary digits. As might be expected, not all of the 

distortion fell within the signal band. The spectra of distortion re­

sulting from the uniform quantization of a ~ndom noise signal showed that 

(a) the fewer the number of binary digits to which the 

signal was quantized~ the greater was the noise power 

(a corroboration of Mayer's and of Eennett's analyses), 

(b) the fewer the ~ber of digits, the richer was the 

spect~ in low-fre~ency components, 

(c) the greater the number of digits, the flatter was the 

~ectrum over a wider range, but with a smaller 

maximum density. 

~ increasing the number of digits (or quantizing levels) indefinitely, 

one obtains the flat spectrum of "white" noise -- a spectrum which is 

that of the continuous inpu.t signal. 

For the case of non-uniform quantization :Bennett found that the 

error spect~ out of the linear quantizer is virtually the same whether 

or not the signal input is compressed. The advantage of non-uniform 

quantization appears to lie in the fact that finer divisions are available 

for weak signalso For a given number of total steps this means that 

coarser quantization applies near the peaks of large signals, but the larger 

absolute errors are tolerable here because thay are small relative to the 

larger signal values. 
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Having discussed some of the characteristics of quantization 

noise, we now consider its effect on control s,yst~so It becomes immediate­

ly apparent that the presence of such noise may seriouslY affect the steaqy­

state performance of those systems having large time constants (i.e., 

systems characterized either by a good response over a narrow range about 

zero frequency or by a slowly decaying impulse response) 0 This stems from 

the fact that a major portion of the noise power is concentrated at those 

low frequencies for which slow systems have a good response o Since m~ 

of the systems in which the digital computer will exercise a control func­

tion are characterized by large time constants, we must devise techniques 

for coping with the problem of quantization noise when it is an important 

noise component. One such technique, dealt with herein, involves the use 

of fil~ers (which obviously need not be statistical) which are designed 

with specific reference to the characteristics of this type of noise o 

2.12 Effect of Computational Errors in Discrete Filters 

In Section 2.0 it was indicated that weighting sequences can 

be derived from ordinar,y differential equations by approximating the de­

rivatives by their corresponding divided differences 0 When this is done, 

one obtains recursion formulae by means of which one can approximate the 

solutions of specific differential equations by successive extrapolationse 

It is apparent, however, that in neglecting the higher divided differences 

in equations so derived one has committed an errore Each extrapolation will, 

therefbre entail this truncation error which, if uncorrected, will tend to 

accumulate with successvie extrapolations until eventually the results of 

the computations are rendered useless o 
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!he truncation error is not the only source of uncertaint7 to which 

DWmerical proce~res are ~bject. ~he necessity of r~ding off each extra­

polant evaluated with the aid of mach~nes of limited register length will pro­

vide another source of accidental error which tends to impair the ac~rac7 

of the solution. In any numerical work using approximate formu.lae and llllJIlbers 

~bject to round-off, both errors will co-exist independently. Since their 

presence cannot be avoided, one generally chooses hi s formulae and interval ~ 

in each a way that, together with data to a sufficient number of digits, the 

ultimate solution is obtained to the preassigned degree of accuracy. 

If one makes certain assumptions as to the manner in which each of 

these errors propagate one finds that, for! successive extr.apolations, the 

total round-off error will grow more slowly with increasing !.tban does the 

truncation error. Ey decreasing h ~sampling more frequently), one reduces the 

truncation error. HOwever, this necessitates more extrapolations and hence 

a greater round-off error. One therefore programs his work in such a way that 

the two errors are equal at the end of the computations. 

Although the least-squares se~ences obtainable through Wiene~Lee 

synthesis are not related to Bn7 ~ecific differentl,al equations, there is, 

nevertheless, a truncation error whenever we let M assume a finite value. 

Levinson has shown that a sequence based o~!th weights always does a better 

job of filtering (in the specified sense) than does a sequence based on M 

weights. However, one rapidly reaches a point of diminishing returns in that 

the improvement in filtering resulting from the additional weights does not 

warrant the labor of computing the weights. Ftlrthermore, the round-off error 

increases with increasing! so that, in general, a short weighting sequence 

is desirable. 
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ClJAPDR III 

EXPERIMIllTAL ANALYSIS 

3.01 Prediction in the Presence of ~antization Noise of Functions 
Related to Straight-Line Flight 

To lend substance to this investigation, we propose to use as 

an input signal that generated b,y an aircraft as it flies on a prescribed 

path across a polar grid. The re~lting encoded sequences of the polar 

variables, r(tk) and 9 (tk) , are to be processed by the computer to give 

the future position of the aircraft. Each of the variables will be treated 

as a simple time series, alth~gh it is possible to treat them together 

as multiple time series. 

Such sequences might well arise in an air tr.affic control system 

where the incoming aircraft follow a definite time and space pattern in 

their approach to the airstrip. Since the use of digital computers in such 

systems is being actively contemplated, it is pertinent that a study be 

made of programs which will permit optimum prooessing of the information 

by the computer. 

It may be argu.ed that, if the path of flight has been oompletely 

speoified by some geometrical ourve, why undertake the labor of determin­

ing a sequence of weights for statistical prediotion. Wienerl himself bad 

the following to say about this aspect: 

"Statistical prediction is essentially a method of re­
fining a prediction which would be perfect by itself in an 
idealized case but whioh is corrupted by statistical errors, 
either in the observed quantity itself or in the observation. 
Geometrioal faots must be predicted geometrioally and analytical 
faots analytioally, leaving only statistical faots to be pre­
dicted statistically." 
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Our problem deals with the statistical prediction of a time series derivable 

from a geometrical fact but corrupted or altered by other time series in­

troduced by the encoding mechanism. We desire to know what the uncontaminated 

time series will do at some fUture instant. The problem has been idealized 

to the extent of assuming that (a) the pilot is capable of flying a geo­

metrical course in spite of air currents and other disturbances, and (b) 

the errors inherent in radar tracking of aircraft are negligible compared 

to the quantization error. The validity of these assumptions will be ex­

amined later. 

In tackling the over-all problem of air traffic control, one 

might logically hypothesize a control system such as that shown in Fignre 

3.01-1. The equipment lying within the brOken-line boundary may be con­

sidered as part of the digital computer. 

follows: 

The operation of this hypothetical system may be described as 

a) the detection system monitors the position of the air­

craft and SQpplies information as to the path variables 

of range and bearing with respect to the airstrip, 

b) the continuous, time-var,ying signal related to either 

of the variables is fed to the encoder which samples 

and quantizes it, thus furnishing numerical data for 

the computer, 

e) the prediction program processes this data in such 

manner as to yield the best possible predicted value 

for an epoch 15 seconds in the future, 
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d) the actual and desired future values of the path 

variable are compared to yield an error quantity, 
~ 

E(t). This error is evaluated and appropriate ac-

tion is initiated to signal the pilot of any dis-

crepancy in his flight path. 

It is assumed that the continuous output signal, fo(t) , will 

be sampled regalarly at intervals of fifteen seconds and that a corrective 

signal, A (t), will be supplied to the aircraft control system at the c . 

same instants. The various ~antities indicated on the diagram may be 

defined as follows: 

fo(t) = present value of path variable 

~ 

fo(t) = sampled ~antized present value of path variable 

~ 

fp(t) = predicted value of path variable at an epoch 

fifteen seconds in the futnre 

fd(t) = desired value of path variable at an epoch fif­

teen seconds in the future 

E(t) = fd(t) - fp(t) 

Ac(t) = corrective action signal 

Note that all these time series are discrete with the exception of f (t). 
o 

As a particular f (t) we shall use that generated by an aircraft 
o 

flying a constant-velocity, constant-altitude straight line course which 

does not pass over the origin of the polar grid. This hypothetical mathe-

matical model is shown in Figure 3.01-2 as well as the equations which 
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~ecify the kinematics of the system. Qlearly these equations define 

geometrical sequences which are definitely non-stationary. PUrthermore, 

the nature of the quantization noise is completely specified when fo(t) 

is known explicitly as a function of time. The logical basis for the 

application of statistical teChniques, however, lies in the fact that the 

quantities Vh , Rm' and ~ are random variables. 

The reader might logically question the necessity of going 

so far afield in search of an input signal to which to apply statistical 

prediction. It is a well known fact that, even if it were mandatory 

that he do so, the pilot is incapable of flying a precise geometrical 

course because of air perturbations and becaase of his inherent short-

comings as an element in a control loop. However, we again appeal to 

the physical context of the problem and point out that, in a two-dimen-

sional control system such as ours, the only motion permissible for the 

aircraft is a coordinated turn (i.eo, no slip, constant altitude)o Fbr 

sach tQrns the aircraft dynamics are characterized by a first order lag 

in which the time constant is relatively long (about 0.5 seconds). In 

view of this fact, we may approximate the actual course of the aircraft 

by a series of straight lines. Thus, if we are able to predict a con-

stant-velocity straight line course, we may be able to predict one in 

which the aircraft executes slow maneuverso 

The experimental work discussed herein is devoted, entirely 

to the synthesis and evaluation of predicting filters based on equation 

3.01-1. In this case it is evident that the ensemble of signals to be pro-

cessed is a collection of arctangents. Examination of this equation shows 

that the random variable 0( establishes the d-c level of the signal and, 
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by reason of the cirCQlar symmetry of the system, may be ignored in our 

analysis. It should be noted that ignoring 0( implies that we concern 

ou.rsel ves primarily with the time-varying part of any member of the sig-

nal ensemble. 

In the absence of specific information regarding any existing 

air traffic control systems, we are forced to make certain asswmptions 

concerning the control system and the statistical nature of the signals. 

These assumptions are: 

a) the angle encoder is capable of distinguishing 

256 levels (eight binary digits) in the signal, 

b) quantization noise is the major component of 

c) 

d) 

e) 

corruption present in the signal, 

all velocities in the interval V i ~ Vh~ V m n max 

are equally likely, 

all minimum ranges in the interval R ~ R ~ R. a m -0 

are equally 1 ikely, 

the maximum range of interest is R ,and it max 

is at this range that the aircraft are first 

detected. 

f) the conti~ous si~al, 9(t), is to be sampled 

re~larly at intervals of 15 seconds. 

Since the angular jitter in radar noise may at times be of the 

same order of magnitude as the angular quantum (about 1.4 degrees), it 

is questionable whether one is justified in assuming that quantizing noise 

is the major noise component. To simplify the analysis, however, we shall 

assume that the control system is relatively free of noise. 
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3.02 Experimental Results 

The experimental results presented here are concerned with the 

design and evaluation of several linear time-varying filters who.e in-

puts are the ensemble of arctangents derivable from equation 3.01-1 and 

whose outputs are to be future values of the signals. If, in that ecpa-

tion, the quantity 0( is ignored and as~ptions ~ and ! (from Section 3.01) 

are made, then equation 3 .. -01-1 can be manipUlated to obtain 

( .2!l.!!.) - 1 R 2 J 
R n 
m 

where ~ denotes the particular member of the ensemble and j denotes the 

partiCtllar sampling instant. ::By means of this defining equation, we can 

determine the value of any member of the ensemble at any sampling instant 

for any choice of horizontal velocity,Vh, and minimum range, Rm..!he in­

put seqUences to the filters are thus angular data derived from quantizill8 

equation (3 .. 02-1), and the desired output sequences are angular data cor-

responding to unquantized predicted values at an instant one sampling in-

terval in the future. 

The synthesis equations for the optimum 1eas" ... ~qua:res predictor 

are given by equation (2.02-7) 

for j = 0, 1, ..... -M 

and 8:= 1. 
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As has been previously indicated, this system of equations yields the 

optimum weighting sequence for the kth sampling instant. Since the statistical 

struc~re of this ensemble varies rather slowly, it was decided to synthesize 

a set of three filters, each of which operates over a certain range of the 

discrete time variable, k. In order to verify experimentally the fact that 

increasing the number of elements in the filter improves the performance, we 

have designed three such sets of filters -- for M = 1, 2, and 3. 

The task of designing a filter is seen to be two-fold. First, one 

must calculate the correlation fnnctions; and second, solve the system of 

simul taneous equations (2.02-7). The latter is relatively simple and can, 

for small M, be done by hand computation if necessary. The computation of 

the ensemble-averaged correlations, however, is a formidable task, even by 

automatic methods. It is rendered manageable, in our case, by the specifica-

tion of the explicit form of the signals by e~ation (3.02-1) and of the 

probability density distributions by assumptions ~ and!. Under these cir-

cu.mstances the task can be mechanized by coding a computer program for the 

computation of the autocorrelation, ~b(k-n,k-j), and the crosscorrelation, 

~(k+1,k-j), for appropriate values of the arguments. 

Raving computed the correlations and inverted the matri~ equation, 

we can then evaluate the performance of each of these three sets of filters 

by observing its performance on various sample signals. The filter is ~p-

plied with quantized data 

9 j' Q j l' 0 o .• ,?i j M • n, n, - n, -
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It will then weight and combine these data to yield an output 

- ~ ~ e . -. =..L • 9 + .L j 9 j +. •• + A.._ j ~ j M JL,J,+l \) ,J m,j ~, n, -1 1(, n,-

which is the best possible approximation, in the least square error sense, 

to the true predicted value, 9n ,j+lo 

The for~ing synthesis and eValuation was made, and the results 

are presented below. The accompanying graphs show the distribl.tion of 

fre~ency of error in prediction as a fUnction of error in prediction for 

each of the three sets of filters. Some additional fi~res which give a 

measure of the qu.a1i ty of performance are~given in the following table. 

Type of Average Standard Mean Square Percent of Samples Maximtlm 
Predictor Error Deviation Error Having less than 10 Error 

'III. 

2-element 0.32rJl . 0.&>40 .2 0.750 deg 75'" 2.46'1 

3-element O.23{J 0.7350 2 0.598 deg 79'" 2.570 

4-element 0.229° 0.660° 0.434 2 deg 89~ 2·50 

These results are based, for each set of predictors, on 210 

sample signals drawn from an ensemble which included signals in addition to 

those in the original ensemble. Note that no special significance is to 

be attached to the tolerance v~lue of one degree. This is merely an arbi-

trar.y basis for comparing these filters with each other and with the quantiz­

ing unit in azimuth of 1.4 degrees. It should be noted that there is a 

distinct improvement in performance as the mmber of elements in the weight-

ing se~ence is increased. Additional experiments made for signals with 

I 
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arbi trary non-zero ~ show that these filters perform nearly as well for 

these as for members of the original. ensemble so long as we do not attempt 

to predict across the discontimity at 9 = ! 180
0

• This, however, is not 

a fault inherent in statistical filters, but results from the fact that the 

signal is a multi-valued ~nction. The predicting filter can be rede­

signed to cope with this discontinuity. 

,The experimental results swmmarized above indicate that rather 

good performance JIBy be expected from relatively simple filters. Al though 

improved performance can be expected from more complex filters, the 

net increment in ~rovement may not justify the additional computational 

labor and storage facilities. 

It should be noted that our synthesis proceaares are not re­

stricted to predicting filters only, but can be employed to derive,any of 

the compensating filters which are so frequently used to i~rove the per­

formance of a servomechanism. 
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CBAPTIR IV 

CONCLUSIOJTS AltD SUGGESTIONS FOR FUllTBEll STUDY 

As a rewl t of the theoretical analysis embodied in this in­

vestigation, the statistical communication theory developed by Wiener and 

Lee has been extended to the synthesis of real time computer programs. 

The accompanying experimental design of certain linear predictors has 

established the validity of this synthesis procednre. The extreme flexi­

bility of the digital computer, however, permits, with equal facility, 

the design and application of either linear or non-linear programs (i.e., 

discrete filters). 

Although the extension of this theory to. the problem of dis­

crete filtering may be considered a step in the reduction of the art of the 

oomputer programming for certain applications to an e:xact science, mtlch 

work remains to be done in the ~rther utilization, in the discrete do­

main, of the concepts formulated by Wiener and Lee. Some of the more 

promising subjects for investigation involving a union of statistical. 

communication theory and digital computer praotice are the following: 

(a) the development of disorete filters ca18ble of dealing 

with multiple time series. Such filters might be espe­

oially usefUl in industrial or chemical process control~ 

where it is desired that the digital oomputer control 

the behavior of the several interdependent variables 

whioh determine the qual ity or quantity of the end pro­

duct, and 

(b) the investigation of methods for determining what types 

of non-linearities, if any, should be inco~orated in 
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a filter for a ~ecified ensemble of signals. 

The above mentioned union of statistical theory and computer pr,ac-

tice offers certain other advantages which should not be over-looked. 
~ 

Whereas the design of an analog network by the Wiener-Lee theory involves 

the solution of an integral equation',: the corre~onding design of a dis-

crete filter involves only the solution of a set of linear simultaneous 

equations. Not only can the digital computer be programmed to evaluate 

any order correlation function (sabject to limitations of storage facili-

ties), but it can be progr.ammed to perform the matrix inversion re~ired 

for the determination of the weighting se~ence. Regardless of whether 

the filter is to be linear or not, our problem always involves a set of 

linear equations. 

Because of the comparative virginity of the field of discrete 

filter synthesis it was not possible to make any conclusive comparisons 

between the performance of this class of statistical filters and those of 

other classes of filters. We are, however, justified in concluding that 

the synthesis proce~res developed in this investigation lead to sensibly 

designed filters which are entirely aware of the characteristics of the 

noise (which is always present in any real signal) as well as t~ose of the 

message. We may fttrther conclude that, when the generating mechanism for 

the ensemble of signals is known to be non-linear in nature, the perform-

ance of an appropriately designed non-linear filter is definitely superior 

to that of the linear filtero We note that the specific kind of non-

linearity to be inco~orated into the filter is of considerable importance. 

The problem of quantization noise is of such importance in real 
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time computer applications that a study of its statistical characteristics is 

certainly merited. These characteristics are a fUnction of the particular 

ensemble of signals and of the encoding mechanism. Although the experimental. 

designs of thi s investigation show that our filters are capable of dealing 

effectively with the noise resulting from uniform quantization of the signal, 

the use of such filters does not necessarily represent the optimum solution. 

An alternative and possibly more satisfactory solution involves both a non-

uniform quantizing of the signal and a statistical. filtering of the signal. 

In conclusion, we may remark that the extension of statistical CO~ 

munication theory to the synthesis of digital. computer programs has provided 

us with a logical means for endowing the computer with a higher order of in-

telligence.~ 

Signed.~.~ 
A. braham Kat z" ...... ~ 

~~ Approved. • • •• • • • ••••• 
Robert R. Everett 
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APPENDIX 

Statistical Communication Theory 

As a ready reference for the reader, we propose to include here a 

ver.y brief ~ary of the essential features of the Wiener-Kolmogoroff theory. 

For more complete information, he should consnlt references 1, 2, 6, and 7. 

In Section 1.01 it was pointed out that the basic concept of this 

theory is that communication signals are to be treated as stationary time 

series. The strQcture of such signals is frequently so complex as to render 

it irresolvable in terms of summations of periodic or aperiodic components. 

In fact, if the signals are to convey any new information to the receptor, 

then they must be characterized by some elements of randomness in that 

they are at least partially unpredictable in advance by the receptor. Hence 

it is seen that we are frequently concerned with stationary random,time 

series which may bee'ei ther continuous or discrete. 

For random, continuous phenomena having statistical properties 

which are stationary, one may define the linear correlation functions as 

and 

= autocorrelation of f (t) 
a 

= crosscorrelation of fa(t) with fb(t). 
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These functions have the properties that 

~aa (0) ~ ~aa (C') 

~aa ('t') = ~aa (- C) 

The definition of the autocorrelation function indicates a process of 

multiplying the function continuously by its value at a later time,~, and 

averaging. The even function, ~aa (7:), is a maximum at (= 0 and is equal; 

to the square of the rms value of faCt). If faCt) is nonperiodic, '~aa(~) 

approaches the square of the average of f (t) as ~ increases; if f (t) is a L a ~ 

periodic, ~aa(~) has the same periodo Any linearly additive component of 

faCt) produces its own linearly additive component of ~aa(~). A composite 

time function can be separated into linearly additive time functions and the 

autocorrelation of each added linearly to give the composite autocorrelation 

fUnction. Furthermore, these linear functions, ~aJiJ, (1'"') and ~ab«()' a~ 

their respective power density spectra are determinable one from the other 

by a Fourier transformationo Thus, 

and 

I (w) = 1:... !Q) 
aa 211' -Q) 

I (w) ejw~ dw I ab 
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Again, linearly additive components of the linear correlation ~nctions can 

be transformed separately and the separate transforms added to give the com-

posite power spectra. 

This extension of Fourier theories to the harmonic analysis of 

random processes through the medium of the linear correlation functions pro-

vides us with a pow~rful tool for the synthesis of linear networks which are 

optimal in a mean square error sense. For this class of filters, the ex-

pression for the measure of error is 

where f (t) = actual output signal o 

fd(t) = desired output signal 

when fi(t) is the input signal. Minimization of the error expression ~b­

ject to the condition of linearity of the filtering mechanism yields the 

Wiener-Hopf equation which relates the impulse response of the optimum 

linear system to the statistical characteristics of the signal. Expressed 

in terms of. time domain synthesis, this equation requires that 

where 

for t~ 0 

~ii(~) = autocorrelation of the input signal 

~id(~) = crosscorrelation between the input and the 

desired output signals~ 
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From the foregoing we see that the linear correlations are entirely adequate 

for the specification of the linear system which minimizes the square of 

the error. An entirely equivalent equation in terms of frequency domain 

synthesis requires that 

I id (w) = H(w) I 11 (w) 

An "optimum" filter designed for one member of an ensemble of signals will 

be e~ally effective in the processing of any other member of the ensemble 

having the same linear correlations. 

E,y a logical extension of these ideas, one can define an infinite 

number of higher order correlation functions. Thus, for a stationar,y ran-

dom signal 

T' 

1 f (t)f (t+C'l)f (t+~2)dt a a a -T 

fa (t)fa (t+?:'l )fb (t+{;2) dt 

and so forth. Since the shifts ~ are independent of each other, they may 

be visualized as orthogonal axes in the hyperspace in which the correlation 

functions are defined. Just as two dimensions are required for the geometri-

cal representati on of the linear functions, so are n+l dimensions required for 

an ~th-order correlation function. 

Since it is conceivable that the reader bas had little experience 

with the higher order correlations, we include a few simple examples to 

serve as illustrations. Accordingly we choose certain of those non-randQm 

.-/ . 
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fUnctions of time which permit a direct integration proce~re. FOr the 

non-random functions, the linear (and the non-linear) correlation fUnctions 

are defined somewhat differently. !hus, for periodic fUnctions 

and for aperiodic fUnctions 

-aa (?::) =/m f (t)f (t+l:')dt a a -co 

~ab(~) =lfXJ fa (t)fb (t+7:') dt 
-00 

As in the case for correlations related to r,andcm se~ences, there are unique 

Fourier transform pairs which relate the power (or energy) density spectra 

with the appropriate correlation fUnctions. 

Consider nov the following examples of second-order antocorrelations: 

(a) Periodic Signal 

A3 JT [ . = }l! 0 eos (wt+eiw ?'l) .... cos (wt+&iw 1: 2 -tw ~ 1) 
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It can be shown, in general that the second-order antocorrelation 

for periodic fUnctions is ever,rwhere zero. 

(b) Aperiodic Signal 

{

-at E e 
Let fa (t) = 

o -oo,tLO 

tI. ( 3 r» e-at e -a (t+lC'l-1 ) e -a (t+l2' 21) dt "aaa 2'1;2""2) =1 J
o 

= 13 e-aCj-n I +1?:2P ;: e-3at dt 

_ E3 e-a( 1(11 +1'2:'21) 
~aaa(?:'l; (2) - 3a 

In general, the autocorrelation of any order of an exponential 

signal of the form given is also exponential in form. 

Parallel to this theory of statistical analysis for continuous 

pbenomena there rans a theory of discrete phenomena. These discrete phenomena 

may occur naturally or whenever a continuous time se~ence is discretized. 

I.n the discrete case the fUnction f(t) of the continuous parameter 1 is 

replaced by the fUnction fk of the parameter~, which varies by discrete 



Report R-2l0 -78-

st~s. Similarly the functions ~aa(~ will be replaced by the discrete 

set of autocorrelation coefficients, 

I !l 
R (k) = lim - L a.a. k sa II -t 00 2ll+ 1 b::-B' . .n.n-

The analog of our previous function t sa (w) will be 

1
m jmw S (w) = 2iT ~ R (k)e-

aa 4- as 

of period 2". Likewise one can derive by a procedure entirely analogous 

to the continuous case the Wiener-HOpf equation for the linear discrete 

filter. 

where k = 0, 1, ••• , M. 

The- corresponding equation in terms of frequency domain synthesis is 

where 
CD 

g(w) = L 
-0) 

G -jkw 
k e 

is the transfer function of the discrete filter. 

The foregoing e~ations describing the linear discrete filter 

which is optimal in a least square error sense have served as the bases 

for the extension of the Wiener-Lee theory to the synthesis of digital 

computer programs. 
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