Report R=225

Summary of

TREATMENT OF DIGITAL CONTROL SYSTEMS AND NUMERICAL PROCESSES
IN THE FREQUENCY DOMAIN

(Sc.D. Thesis in Electrical Engineering, M.I.T., 1951, by
J.M. Salzer)

Edited by
John W. Craig, Jr.

DIGITAL COMPUTER LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Canbridge 39, Massachusetts

July 1, 1953

Report R-225

7 “FOREWORD

This report is a condensation of the doctoral thesis of
John M, Salzer. The condensation was made so that the work could receive
wider circulation than was possible with the original document which is
quite long. For those needing greater detail than the condensation provides,
the complete report is available on loan from the Digital Computer Laboratory

or can be obtained on Microfilm from the M.I.T. Library.

Signed: .
John W. Craig, Jr.

Approved=w¢/

W.K. Linvill

May 25, 1953 M
Approved: q[}/f L&

. rrester

id

Report R=-225

ABSTRACT

This thesis develops methods of frequency analysis and synthesis
of digital computer programs describable in the form of a linear difference
equation with constaht coefficients.

The mainspring of this ihvestigation was the need for dealing
with control systems consisting of both anaiog and digitel filters.,

Most conventional control systems consisﬁ of analog units and operate
on continuous data, but digital computers use sampled data. A uniform
treatment of the two types of data is essential in the analysis of control
systems incorporatiﬁg a digital computer. The conventional method of
treating systems operaﬁing on only continuous data uses Fourier or Laplace
transformation} that is, transformation to the frequency domain. The
conventional method of treating digital programs is numerical analysis, which
deals almost exclusively in the domain of the independent variable; that
is, the time domain. By exploiting and further developing those areas of
numerical analysis to which frequency-transformation techniques were
applied, the thesis points the way to a common language of dealing with a
mixed~-data system.

| If data-are sampled. at equal intervals of time (a practical
feature), description of a linear computer program always reduces to a
difference equation. It is possible to describe such a program by a transfer
function in the frequency domain in a manner analogous to the conventional
description of analog filters. Whereas components using continuous data

have transfer functions which are rational functions of the complex frequency

iii

Report R-225
variable s, those of a digital program are rational functions of % = e-ST,
- where e is the Naperian base and T is the constant interval of samplinge.
Having described the digital computer with its program by a
transfer function, one may apply all the techniques of complex~variable
and transform theory to deal with digital filters. Theorems on realizability,
stability and other properties of programs are developed, and the amplitude,
phase and locus of a program are defined. The adaptation of the methods
of analog filters to digital ones is direct, although the necessary
modifications are often significant.
The synthesis of computer programs can be conducted along lines
employed in the synthesis of networksé First, the desired frequency charac-
teristics of the program are stated; hext, a rational function of

-sT |
z = e > is found which approximates the desired characteristics for real

frequencies, s = jw; finally, the program is realized on basis of the
approximat@ng transfer function. For facilitating the approximation
basic entities or blocks of programs are analysed and methods are shown
by which such programming units»can be combined to obtain the frequency
characteristics of the complete program. Various methods of program
realization, that is, programming, are developed and compared on the
basis of time and storage requirements, and criteria are developed to
permit the choice of the optimum pfogramming procedure by.considering
the mere form of the program transfer function.

JNumerous examples of program analysis -and synthesis are shown,
and one example of synthesizing a program for the compensation of a control
system is worked out. The latter eiample shows that the frequency analysis
of a complete hybrid system can be undertaken along the conventional lines

and that digital compensation of a control system is possible.

ry

iv

Report R=225

The application of the methods of the ;r,hesis to various problems
in numerical analysis is also shown. The problems of convergence (stability)
and of truncation errors (approximation) can be analyzed in the frequency
domain effectively. The study of convergence py conformal mapping is related
to the usual methods, and a novel way of eStimating truncation error is
shown provided only that the function to which the numerical process is

applied can be described by its frequency spectrum.

Report R=-225

TABLE OF CONTENTS

FOREWORD

ABSTRACT

INTRODUCTION

CHAPTER I. DESCRIPTION OF THE SAMPLING PROCESS

1.1 Sampling a Continuous Function

1.2 Equivalent Mathematical Model of .Ideal Sampling -- Impulse
Modul ation

1.3 Use of %ggulse Modulated Functions in the Analysis of
inear Digital Computer Programs

1.4 Laplace Transforms of Impulse Modulated Functions

Page
ii
iii

CHAPTER II. TRANSFER FUNCTION OF COMPUTER PROGRAMS -~ REALIZABILITY

AND STABILITY

2,1 Transfer Function of Linear, Real-Time D;gital Computer
Programs

2.2 Stability of Programs .

2.3 lLoci of Q(s)

CHAPTER III. ANALYSIS AND SYNTHESIS OF LINEAR, DIGITAL COMPUTER
- PROGRAMS IN THE FBEQUENCY DOMAIN

3.1 Rééponses'of Prqgggms.ax Real Frequencies
3.2 Analysis of Buildiggwﬁiocks~ofmTransfqé Functions

3.3 BRealization of Programs from their Transfer Functions

3.4 Synthesis of Programs in the Frequency Domain

18

18
21
26

1
31
1
39
h

Report R-225

TABLE OF CONTENTS
(Continued)

CHAPTER IV. FREQUENCY ANALYSIS OF SOME NUMERICAL INTEGRATION
FORMULAS '

L.l Numerical Integration

.2 Comparison of Numerical Integration Formulas

APPENDICES

A Proof that the Locus of Q(jw) Crosses the Real Axis Either
~ Normally or Tangentially at @ = O and # 5

B. Coding of Direct Regression Programs.

C. Coding of Cascaded Programs

D. Coding of Parallel Programs

vii

70
70
75

78
81
89
93

Report R-225

INTRODUC TION

The use of digital computers in control systems is now coming
into the fore. Unlike most conventional control systems involving analog
units which operate on continuous data, a control system employing a
digital computer of the present-day type must use sémpled data in the
part of the system involving the digital computer. Hence, some parts
of this system use continuous data and others, sampled data. The Fourier
and Laplace transform methods off analyging continuous-data control systems
is well-known and developed, but the conventional treatment of digital
computer programs is by numerical analysis or in the time domain, There-
fore, in order to apply the methods of frequency analysis to control
systems involving digital computers (mixed-data systems), the sampled
data part of the system must be described in the frequency domain., Some
. work along these lines has been done but it must be further developed,

An analog system is a physicai model of a set of differential

equations; whereas, a digital system is a physical model of a set of
difference equations. Operational and transform methods have been applied
to difference equations for some time, In 19)2 Gardner and Barnest
presented a comprehensive and systematic treatment of the solution of
linear difference equations with constant coefficients by the Laplace

transform method. However, they do not deal with stability and errors

+ Gardner and Barnes, Transients in Linear Systems, John Wiley and Sons

New York, 1942, Chapter 1X.

Report R-225 *Den

which are important in control applications, The control point of view

is stressed in Tustin'sl work on time sequences, In 1949 and 1950 Tustin's
method was further developed by Madwed?, who shows the relations of his
aspects of stability, but they do not analyze the errors associated with
their approximations,

3

In the meantime, Hurewicz” pioneered the analysis of pulsed
filters in the frequency domain, developed stability criteria, and
showad several examples of choosing parameters, It should be noted,
however, that Hurewicz'!s filters are only simple units such as differ-
entiators and lead networks, which are incapable of performing involved
computations as a computer can., Also, Hurewicz evaluates the output of a
pulsed filter at the sampling instants only. The behavior of the filter
between pulses remains a separate problem, and no ready methad is pre-
sented to investigate the whole question in the frequency domain,

W. K. Linvillh

shows that sampling a continuous function is
equivalent to the modulation of a series of unit impulses by the function,
The result is a new time function which can be thought of as being applied
to the sampled data part of the system, Furthermore, this new time

function has a Laplace transform; thus a frequency-domain analysis is

possible, Linvill shows that reconversion from discontinuous to continuous

Tustin, A Method of Analysing the Behavior of Linear Systems in
Terms of Time Series, J.l.EB. Vol, 94, Part 2A,#1, pp. 130 - 1L2,

Madwed, Number Series Method of Solving Linear and Non-Linear
Differential Equations, SC.D. thesis in Mechanical Engineering, MIT.

3 Hurewicz, Filters and Servo Systems with Pulsed Data, Chapter 5 of
James, Nlchols and Phillips, Theory of Servomechanisms,

Linvill, W.K., Analysis and Design of SampledeData Control Systems,
Digital Computer Laboratory, MIT, Report R-l170.

Report R-225 =3

data is a filtering process and also shows what happens when the loop
is closed on a mixed data system. He is concerned only with the effect
of sampling on the system and des not consider the influence of digital
computer operations on the system,

This report is a summary of the work done by Salzerl. His
results permit the analysis of linear digital computer programs in the
frequency domainy i.e,, the operation of a digital computer program is
described by a transfer function. Thus the field is opened for the
complete analysis and synthesis, wholly in the frequency domain, of control
systems employing digital computers.

From the frequency-domain point of view, corditions governing
the realizability of program transfer functions are developed, the problem
of stability is studied, and conditions to insure stability are given.
Three methods of realization of programs from their transfef functions are
presented, and the time and storage requirements of each are studied, An
elementary example of transfer function synthesis is given, As in the case
of network.theory; the analysis of a computer program in the frequency domain
is straightforward with a unique result, but the synthesis of a transfer
function has many alternate realizations., Also as in network theory, the
characteristics of the transfer function to be realized may not be given
directly in a fomm leading to immediate realization but an intermediate
approximation problem may need to be solved., The background for solving

the approximation problem has been set up in that conditions of physical

lSalzer, J.M., Treatment of Digital Control Systems and Numerical Processes

in the Frequency Domain, SC.D. thesis in Electrical Engineering

Report R-225 <l

realizability have been derived and methods of realization of all
realizable transfer functions have beem obtained. While sohe work has
been done directly on the approximation problem, much remains to be done
in this respect.

The function of this report is to provide a concise picture
of the frequency analysis of digital control systems and numerical pro-
cesses, The first chapter describes the processes of sampling and de-
sampling continuous functions and indicates that sampling is anaﬂagous
to impulse modulation'while desampling is analagous to ripple filtering
in demodulation. Thinking of sampling as impulse modulation allows one
to relate the sampled to the éontinuous function in either the frequency
domain or the time domain, Furthermore, thinking of sampled functions
as impulse modulated functions allows one to characterize linear computer
operations on the sampled functions by transfer functions.'

Chapter II derives the conditions of physical realizability
for computer-program transfer functions, discusses stability conditions
on these transfer functions, and presents procedures for plotting transfer
loci,

Chapter III deals with techniques for realization of transfer
functions with some attention to the approximation problem, while Chapter

IV deals with frequency analysis of some numerical integration formulas,

Report R-225

CHAPTER I

DESCRIPTION OF THE SAMPLING PROCESS

1.1 Sampling a Continuous Function

A digital computer operates on numbers that represent samples of
continuous signals taken at discrete instants of time. The time interval,
T, between samples is a constant as shown in Figure 1,1, page 7 . In this
case, the input to the computer is the sampled function, i (t). The com-
puter senses the amplitude of each of these pulses (as a number) and
operates on the number,

The purpose of this chapter is to describe the sampling process,
to characterize it mathemétically, to evaluate how well a continuous signal
may be represented by its samples, and to show how and under what conditions
a continuous signal may be recovered from its samples,

The mathematical model of the sampling process which will be de-
rived later is very similar to actual physical processes. For example,
assume that i (t) is the voltage across a pair of terminals of some net-
work, How might it be sampled? The voltage may be sampled by connecting
a condenser across the terminals, allowing a current flow to build up a
chargé on the condenser until the condenser voitage is equal to the terminal
voltage, and then disconnecting the condenser. 1In order that the condenser
voltage‘be equal to the terminal voltage at somevinstant of time, the
sampling time should be as small as possible. It may be made very small, but

not zero, The total charge on the condenser is the integral of the current -

Report R-225 b

flowing over the time required to take the sample. Thus; as the

sampling time decreases, the current intensity must increase.

Physically this is how sampling might be done, Ideally, however,

we wish to take the sample instantaneously or in zero time., Therefore,
for ideal sampling in the above example the current flow must bé infinite
for zero time at each sampling instant., Thus, in the ideal case the -
charging current is an impulse whose area equals the amount of charge
required to build up the condenser to the sampled value. Physically,
ideal sampling is not possible, but the idea permits us to set up a

model of sampling that can be treated mathematically,

1;2 Equivalent Mathematical Model of Ideal Sampling - Impulse Modulation

- The ideal situation in the above example ig to transfer to the
plates of the condenser a portion of charge in zero time, or to "™hit" the
condenser with\an impulse of current., The same end can be obtained if we
modulate the voltage waveform with an infinite series of unit impulses
separated by equal intervals, T, as shown in Figure 2, The area of any
one of the modulated impulses equals the value of the input function at the
corresponding instant of time; Thus, impulse modulation is analpgous to
the process of sampling, The samples of Figure 1.11have finite height, zero

width, and gzero areay therefore, the sampled function does not have a Laplace

transform. The impulses of Figure 1,21 have infinite height, zero width,

1 The bar (-) over i{t) indicates the sampled functions.

2 The circumflex) over i(t) indicates the impulse - modulated function.

Beport R—2é5 wTem
1(t)
S
.

> ¢

4T =37 .27 T 0 T or 3T LT

() ‘k{////—hgight = i(2T)

a. Continuous input function.

3T 3T LT >t

] o

4T -3T ~2T -7 0

Figure 1.1 BRelation between continuous and sampled functions

1(t)
_ﬁ__,,ﬂw__\\\\au*j e
. — — > t
4T =37 -2T -T 0 T 2T’ 3T;v uT
/ ‘s
o E(t) y(//,—+area = i(2T)
/ N\ N '
i A AN 1“
|
1 Q n > t
4T -3T =27 =T 0 T 2T 3T LT

a. Contimuous input function

Figure 1.2 Relation between continuous and impulse modulatgd functionse

Report R-225 -8~

but non-zero areaj therefore, the impulse-modulated function does have a

Laplace transform, which is why this mathematical model has been set up.

1.3 Use of Impulse Modulated Functions in the Analysis of Linear Digital
Computer Programs

A digital computer operates on numbers that occur at discrefe
instants of time, i.e. it operates on samples of a continuous function.
In the previous section it was shown that for the ideal case, sampling is
equivalent to impulse modulation. If we think of the computer as "sensing!
the amplitude of samples, we may just as easily think of it as "sensing"®
the area of impulses. With this extension or mathematical model, we may
analyze computer programs by describing the input to the computer as
impulses instead of samples. Since a sample does not have a Laplace trans-
form, while an impulse does, the advantage of this extension is immediately
obvious, In this mathematical model, both input and output are treated
as impulses, and both have Laplace transforms., In conventional (continuous-
data) systems, the transfer function is the ratio of the transform of the
output to that of the input. Since both input and output of computer
programs (when treated as impulse-modulated functions) have transforms,
we ﬁay define the transfer function of a linear computer program as the
ratio of the transform of its output to the transform of its input. In order
to carry out this analysis, we must have a knowledge of some of the properties
of impulse-modulated functions, or impulsed functions. The remainder
of this chapter is devoted to a discussion of some of these more useful

properties.

Report R=-225) «Qe

1.i Laplace Transforms of Impulse-Modulated Functionsl

Odr analysis of computer programs is restricted to the cases in
which the time interval between samples is a constant, T. Thus, the
impulsed function can be expressed as the product of a continuous input
function and an infinite string of unit impulses, the interval between
impulses being T,

As the following derivation will show, the process of impulse
modulation may be readily described in the frequency domain, Essentially,
since the string of unit impulses (which is the carrier) has all harmonics
of equal amplitude, the impulse modulated wave has an infinite number of
side-bands rather than just the two which are present for a sinusoidal
garrier, The method of the derivation is tolmake’ aiFourier: analysds of
the carrier and to associate each side-band of the impulse modulated wave
with a Fourier component of the carrier, ILet i(t) be the continuous input
function and £—= —oo U{t = kT) be the infinite string of unit impulses,
[p. (x) = unit impulse occurring at x = O.] Then the jimpulse-modulated input

function is, .
‘ 2o
Tt = i(t) T (b - kD). (1-1)

To find the Laplace transform of (1-1) let us first find the

complex Fourier series of the string of unit impulses,

g‘i—_gft Sk =3 oy AL (1-2)

m= -c»

A more comple te derivation and discussion of the transforms of impulse
modulated functions is given in Reference 2, page 3.

Report R-225 =10~

In (1-2),-0— = %ﬂ— . The c'm s are the complex Fourier coefficients,

Solving for Ch in the usual manner we have,

T/2
1 oo . -jn 0\t
¢ == wlt - kT)] eV dt. (1-3)
-T/2

By writing out a few terms of the series, (1-3) becomes,

T/2
cm=%- j [.........+u(t-‘1‘)+p.('t)+p.(_’o-i- T) x...]e.jmmdt
-T/2

(1-k)
Within the range of the integral, the only term inside the bracket of the

integrand that is non-zero is the term, w(t). Thus (1-L) becomes,
T/2
e-jm-h-t

c = % r(t)

m s o a-s)
~T/2

Because of the unit impulse in the integrand, the value of the integral is

jmd et

Just e evaluated at t = O, which is unity. Therefore,

e = %‘ | (1-6)

and the Fourier series of a string of unit impulses is,

o

S wmm=i = (1-7)

k = @ m= =0

Report R-225 =]l

Then the impulsed function becomes,

Ty = HY P nil (1-8)

%

Now take the Laplace transform of the above equation,
ﬁi(s) =1 F{t) \S.—_- L (:iét) ? eJm.ﬂ-t ;} (1_9)

m= - o0
The indicated summation can be done after the transformation is made.

e =3 D L {i(t) ejm-‘“’] (1-10)
m= -0

A fundamental theorem in Laplace transform theory leads directly to the
following result:
M =3 S I+ miY @A)
1= - o _
Thus we see that the Laplace transform of an‘impulsed function is periodic
having a rei)etition interfal of j,.fL.

An importént fact about}’(s) should be observed from (1-11), It
is that there is a unique correspondence between I (s) and’T (s) if and
only if the frequency spec’c.m of i(t), the continuous time function, lies
in the rénge; -%(a)(‘-g‘: If the spectrum of i(t) lies outside this
range, ,?[’(s) will spec?ify the spectrum (in the range -'%‘(co(‘sa-\') of a

continuous time function, but this time function will differ from the

Report R=225 =12~

-L)
2

A. Specturm of i(t)

1TC30)

D
5
b
ol -
D

B. Spectrum of i(t)

Figure 1.3 Unique Correspondence Between I(s) and 'f(’s)

oW

bé(

Report R-225 -13-

original time function, Thus, there is a limitation of bandwidth
caused by sampling, Figure 1.3 illustrates the case of unique corres-

pondence, and Figure 1l.L, the case in which the spectrum of i{t) is too
Wide.

As given by (l-ll),’i’(s) consists of an infinite number of terms;
however, an infinite series is difficult to handle s and it is desirable

,\J
to have a closed form expression for I(s). This can be obtained from

K

the partial fraction expansion of I(s). Consider a typical term, -3
. : i

of the partial fraction expansion of I(s). Referring to (1-11) we see

that corresponding to this typical term,”I(s) will have a typical series of

terms of the form,

K) 1
- E s - s, + jk o °
k= - 1

Thus we see that the pole at s = s: is repeated ah infinite number of times

at intervals of j<)-, the line through these poles being parallel to the

imaginary axis in the s - plane,

A closed form equivalent of the above typical series can be

obtained by a change of variable in the following equah‘.on.l

ng cotng=1+ 2 z"2 E 5 1 5 (1-12)

T
Knopp, "Theory and Application of Infinite Series", New York, 19L8, p. L19

Report R-225

-114'_‘

(1, o)

>
<2

2

A. Spectrum of il(t) whose spectrum is too wide for the sampling

rate.

| (NEERT
WM
4 i } 4 $ 2
T oY 0 0 Q e W
2 2 2 2
B. Spectrum of?.'l(t).
A
£,(50)]
’W/_\/‘
4 — —
_a 0] Ye? @
2 2

C. Spectrum of iz(t) that would produce the same sampled function
as (B).

Figure 1. TIllustration of Bandwidth Limitation Caused by Sampling.

Report R-225 «15=

Divide each side of (1-12) by 7, and make the change of variable, & = }-(:_—

1
1e_ O 4, O So -
TR B ¥ A S ey 2 (1)
n= “E

.o . T _ow _1l | <
Ja cotIIT Tapeth I T5 Y

The infinite series of poles of’f(s) corresponding to a pole of
I(s) at s; can be put into a form that is identical to the right-hand member
of (1-1l) as follows: separaté the term for k = O,
Qo '
1 _ 1 . 1 1
Z——s-si-!-ijL T s +%[

s . e .
k = -co =S S=5; + jkoo s=s, = k.

(1-15)
Combine the two terms in the summation.
1 1 2(s = s3) @-16))
s-si+jk_0.. s -8 :(5-81)24-1{2-“—2
= woo k=1 :
A comparison of (1-14) and (1-16) shows that,
M .
1 — i w {8 = 85) o
=TTe -5 FERLT T Y% T (1-17)

Thus we have the following closed form equivalent of the typical series of

I(s),

coth -g (s = si_), (1-18)

3 =
o
!
R
+
ol
-
wol

Réport R-225 -16=

for a pole of I(s) at s = s;» Therefore, corresponding to the partial

fraction expansions of I(s), we have the following series for/\I/(s).

n
/]‘i’(s) =-3§' 2 Ki coth

i=1

N3

(s -s,)

where "n" is the total number of poles of I(s), taking into account multiple

poles,

Let us now investigate the limitations on the positions of the
poles of I(s) due to sampling., Consider an infinite strip of width . in
the 8-plane and parallel to the reé.l axis as shown in Figure 1.5. Assume
that d 1 the poles of I(s) lie within this strip and in the left half plane
(1HP). Thus,'f(s) has

JW

N '
N s-plane

YT | e oo

X s;
N
20

X 5%
T o

b

Figure 1.5 Infinite Strip Containing Poles of I(s)

Report R-225 | -17-

poles at these points plus poles at points shifted from the s; 's and

¥, 's (3 means conjwgate) by the distance £ Je ., Sinee I(s) has

poles only in the strips being considered, there is a one-to-one correspondence
between the poles of I{s) and T(s) that lie in the same strip. However,

if I(s) had poles outside this strip, there no longer would be this one-to-one

correspondence,

Report R-225
CHAPTER II

TRANSFER FUNCTION OF COMPUTER PROGRAMS - REALIZABILITY AND STABILITY

Using the properties of impulse-modulated functions given in
Chapter I, we are now ready to investigate transfer functions of computer
programs. Our interest in program transfer functions is much more than
academic. The transfer function describes the program completely and
with it we can analyze and synthesize control systems employing digital
computers by conventional frequency domain methods.

In this chapter a linear digital computer program is defined in
terms of the mathematical model of sampling set up in Chapter I, its transfer
function is derived, and methods for detemrmining the realizability and
stability of transfer functions are given. Several examples of stability
determination are also presented.

2.1 Transfer Function of Linear, Real-Time, Digital Computer Program

As pointed out in Chapter I, the input to a digital computér
may be assumed to be an impulsed function, for purposes of mathematical
analysis. A linear program of a digital computer operating in real time
is one in which the present output is a linear function of the present
and past inputs and the past outputs. The general form of this relation

Y

is,

olt) =i ak?(t - kT) - E:n b, ot = kT), (2-1)
k=0 k=1

in which all ak's and b, 's are real, and T is the time between samples.

k
The time required for the computation must be less than T if each

calculation is to be completed before the next input arrives.

Report R-225 | -19-

Taking the Laplace transform of (2-1) yields,

~ ~ n -ksT v, n -ksT ,
0(s) = I(s) E a e - 0(s) E bk e . (2-2)

k=0 k=1

As in continuous data systems, we will define the transfer function
of a computer program as the ratio of the transform of the output

to that of the input. Let W({s) be the transfer function of a computer

programj then,

~ 0fs) :
w T emm— ,2-
() = 22 (2-3)

Solving for 0(s)/ Ts) from (2-2) we obtain,

i 8 o-ksT

W(s) » Xe) . k=0 (2-4)

I(s) z _
1 :E b e ksT
k=1 K

as the transfer function of a linear, real-time, digital computer program.

With the understanding that b =1, (2-l) becomes,

m
=ksT
a e

Ws) = k=0 X . (2-5)
n

k=20

The inverse steps from (2-5) to (2-1) are unique; therefore,
{2-5) is the general form of the transfer function of a realizable, 1iﬁear,
digital computer program,. Thus, to be realizable, the transfer function
of a linear, digital computer progran must be expressible as the ratio of
two polynomials in e°ST. The criteria for stability will be discussed in

a later section.

Report R=225 =20=

It has already been shown that the Laplace transform, T(s) s of
the impulsed input function is periodic of period /-, as seen in (1=11).
By showing that W(s) is also periodic with the same period, we can prove
that '5'(s) is also periodic of period L. A typical term of either numerator

or denominator of W(s) contains oksT

o For s—>s + jmdL (m is a positive or
negative integer), the typical temm becomes,

ok(s # mQ)T _ -ksT _-jkm QLT

As TL) = 27 and k and m are integers, the second factor is,
e-»,]km.ﬂ.‘l‘ - e=32ﬂkm -1,

Hence, e«=1«:(s + mLL)T _ e«-ksTo

Therefore, the terms of the numerator and denominator of W(s) are pericdie
of period (), and so is W(s)., In equation form this means, W(s) =

W(s ¢+ jm_()), for m a positive or negative integer. The product of two
periodic functions is also periodic. Since O(s) = W(s) I(s), O(s) is also
periodic of period ()., as indeed it should because the computer output is
also sampled.

Since all the coefficients of (2-5) are real, it is readily
seen that H(s) = W(s*)*,' in which the asterisk means conjugate. For real
frequencies this becomes W(jw) = W(-ajco)*., This fact together with the
periodicity of W(s) tells us that W(s) is completely specified for all s

if it is defined over the range, O écoé'gg

Summary: In order to be realizable, the transfer function of
a linear digital computer program must be expressible as the ratio of
polynomials in %7, W(s) is periodic of period (L ; i.e., W(s) =
W(s + jm_rL). Specification of Wls) over the range, Oé.-m_é_-'g; completely

determines W(s).

Report R=225 =] =

2.2 Stability of Programs

We have expressed the transfer function of computer programs as
a function of the complex frequency "s"3 therefore, the same methods of
investigating stability as used in network analysis and servomechanisms
are applicébleo The general necessary and sufficient criterion for stability
of a unit is that its transfer function have no poles in the right half
s=plane (RHP) or multiple poles on the jw-axis. In network analysis the
frequency-domain method used to study stability is to map a contour
enclosing the right half of the s=plane (the contour is usually the jw-axis
and an infinite semicircle) into the W-plane. Because of the transcendental
nature of the transfer functibn of a realizable computer program, the
mapping contour in the s=plane must be modified.

As we have shown before, the transfer function of the computer

program is,
m

eaksT
Wis) =P(s) = k=0 (2-6)
n
Q(S) Z: bk e‘=ksT
k=0

in which P(s) is the numerator and Q(s), the denominator of W(s); and it is
assumed that P(s) and Q(s) have no common factor. Both P(s) and Q(s) are
entire transcendental functions having as their only singularity an essential
singularity at infinityof Hence, we see that the only singularities of

W(s) in the finite s=plane are poles, and these poles occur at the zeros

of Q(s). Our stability criterion is that there be no poles of W(s) in the

RHP and only simple poles on the imaginary axis. Therefore, in order for

t For a further discussion of entire tfanscendental functions, consult Knopp,

"Theory of Functions," or Guillemin, "The Mathematics of Circuit Analysise"

Report R=225 =22-

the program to be stable, Qfs) must have no zeros in the RHP and only simple

zeros on the jw-axis. To investigate the possibility of Q(s) having zeros

in the RHP or on the imaginary axis, we may take advantage of the periodicity
of Q{s). In proving that W(s) is periodic, it was shown that e7k5T 55
periodic property. Therefore, if Q(s) has a zero in the RHP, it must have

ooooo

A\ @ s=plane

j9:577//7?“’ -
NSV e

Figure 2.1 Semi-inifinite strip of s-plane that must have a zero

of Q(s) if Q(s) has any zeros in the RHP,

Consider the map of the contour of Fig. 2.1 into the eaST plane.
Let us begin the path at the origin in the s-plane and encircle the strip
in a clockwise direction, corresponding to increasing frequency. It is
readily understood that correspondingwpath and enclosed region in the egsT
plane is shown in Fig. 2.2. The origin of the s=plane maps into the
point {1,0) in the eGST plane. The corresponding sections of the path are
marked by small letters on both contours. In Fig. 2.2 we see that the
paths (b) and (d) cancel leaving the annular ring as the region conformal
to the strip of the s=plane that is under consideration. As G; {of
Fig. 2.1) approaches oo, the radius of the circular path {c) in Pig. 2.2

approaches zero. Thus, the conformal map of the indicated strip consists

of two separate contours: one, a unit circle centered at the origin

Report R-225

e =plane

unit circle

Figure 2.2 Conformal map of the semi-inifinite strip of Fig. 2.1

st

into‘the e ’planeo

and the other an infinitesimally small circle that excludes the origin

in this particular case. Only a slight extension of the foregoing procedure

sT ksT

is required to determine the map of powers of e =~ . The map of e
will appear like that of e'ST except that each of the two separate paths
will be traversed "k" times; the region excluded by the infinitesimally
small circle will be that at the origin. Thus we see that the map of
this semi-infinite strip of the s-plane is effective in handling the
essential singularity of Q(s) at oo, |

Now, consider the conformal map of the semi-infinite strip of

sT -2sT .

Fig. 2.1 into the Q-plane. Remembering that Q(s) = 14¢b, e™ # b

28

-nsT
...-l-bens‘
n

, we see that the map of ;his strip into the Q-plane will
exclude the point (1,0), (the map of eéch term except the first excludes
the origin). Thié eliminates the need for mapping path (c). Moreover,
sincé the paths (b) and (d) cancel, we need to plot only the paths {a)
and (e). In other words the only part of the s-plane contour that we
need to plot in order to determmine the lotus of Q(s) is the part of the

contour that lies on the imaginary axise. This contour in the Q-plane

will encircle the origin z-N'times in the counterclockwise direction; where

Report R-225 24

z is the number of zeros and N is the number of poles of Q(s) (taking into
account their multiplicity) in this strip of the s-plane., It has already

been pointed out that Q(s) is an entire transcendental function and, therefore,
has no poles in this strip. So, N = O, and the contour in the Q-plane will
encircle the origin Z times {clockwise is to be understood)., The condition
for stability of W(s) states that Q(s) must not have any zeros in the RHP

or any multiple order zeros on the imaginary exis. Therefore, the map in

the Q-plane must not enclose the origing 2 must be zero. If Q(s) has zeros

on the imaginary axis, the Q-plane locus will pass thfough the origin. In
this case, we must determine the order of ﬁhe zero., The following method
can be used: Assume that the locus in the Q-plane passes through the origin
for s = Jooy o Then Q(s) must contain the factor (e-ST - e-JmiT)n where

n is the order of the zero. Divide Q(s) by (e=ST . e-jmiT)z. If there is
no remainder, the zero is of higher order than the first and the program
will be unstable.

In addition to determining the stability of programs, conformal
maps give an indication of the degree of stability or instability and an
approximate value of the frequency at which the program is or may become
pnstableo The amount by which the locus in the Q-plane misses encircling
the origin gives a measure of the stability of the program. The farther the
locus is from the origin, the more stable or convergent the program. The
frequency corresponding to the point\on the Q<plane locus nearest the origin
is approximately the frequency at which the program is or may become unstable,

or at which it will oscillate in a damped fashion.

Report R=225 ~25=

In addition to expressing the program transfer function as a function
of "s" we may also write it as a function of e“STo Make the change of variable,

z = e, Then we may define a new function,

S as

N(z) k=0
V ; 2 E = -
(Z) m’)- . o (2 7)
..bkz
k=0
B 4 8.7 4 825 ¥ seseceees ¥ 220
VW(z) =% " & 2" m (2-8)
2 n
1 * blz 4 b2z * E I N BB BN N I) * bnz

It is readily seen that the right half of the s=plane maps into the inside
of a unit circle centered at the origin in the z-plane. The imaginary axis

of the s-plane becomes the unit circle in the z-plane (see Fig. 2.3).

z-plane

‘ J
/"
’

Fignré 2.3 Map of right half of s-plane into z-plane

Therefore, if the program is to be stable, all the zeros of D{z) must lie
outside the unit circle except that single order zeros may occur on the
unit circle. In other words, the magnitude of the roots of D{z) must be
greater than or equal to unity, and the roots of unity magnitude must be

simple.

Report R-225 =26

Summary: To test for the stability of a program, map the semi-infinite
strip of Fig. 2.1 into the Q-planev[b(s) is the denominator of the program
transfer function:l If the locus in the Q-plane does not enclose the origin,
the program is stable or convergent. If the locus passes through the origin,
Q(s) has a zero and the order of this zero must be determined. If the zero
is of first order, the program is st#ﬁle; otherwise, unstable. An aslternate
method is:¢ Make the change of varisble, z = e-ST, and find the magnitude
of the z=-roots. If each root has either a magnitude greater than unity or
equal to unity and is simple, the program is stable or convergent; otherwise
unstable or divergent.

2.3 Loci of Q(s)

In the previous section it was demonstrated that the stability
of a program can be determined by mapping the contour enclosing the
semi-infinite strip of Fig. 2.1 into the Q-plane. It was also shown that'
the only part of this contour that we need to plot is that on the imaginafy
axis. The paths (b) and (d) cancel and the path {c) excludes the poinf
(1,0) in the Q-plane. Hence, we are interested in the properties of Q(jw)
and its locus in the range, -‘%"ém éé}r

Q(Jjo) has several properties that are helpful in determining its
locus.

) Q(jo) is periodic of period-Y. This was proved in the
previous section.

(2) Qjw) = Q(-jco)*° This pfoperty follows directly from
the fact that Q(jw) is a polynomial in e“j&T, and as a

consequence, the locus of Q(jw) must be symmetrical about

the real axis.

Report R-225 =27

(3) At ® = 0 and) Q(jo) is real and its locus at these two
points crosses the real axis either normally or tangentially.
This statement is proved and elaborated upon in Appendix A.
As a consequence of the first two properties, the locus of Q(jw)
for 04 ® Q"?‘ completely determines the locus in the Q-plane. The locus
for -‘%’ £ o £.0 is just the mirror of that for the positive values of w.
Thus the first two properties result in a substantial reduction in the amount
of work required to plot the locus of’Q(j@). The third property enables
one to determine accurately the shape of the locus in the neighborhood
of ® = o and 143'. |
Several methods may be used to determine the locus of Q(jo) .
Three of these are: (1) add the loci of the individual terms of the
polynomial (each locus is a circle) to obtain that of Qljo); (2) factor
Q(jo) and multiply the loci of the factors; and (3) express Q(jo) in the
form R(w)/@(w) and make a point by point plot. The method that is best
to use depends on the particular Q(jw). However, it is to be expected that
the extra analytic work required in methods (2) and (3) will result in
less graphical work and more accurate 1oci.,{None_of‘t§g methods w?ll be
discussed, but ﬁpey wili be illustfated; |

Let us now consider several examples of loci of Q(jw) «
T 2sT

1. Let Q(S) =] - 008 e-’s * 003 eﬂ’ (2°’9)
Take the derivative with respect to s.
8 - 0.87e™" - 0.6767%" (a)
(2-10)

8 - 0.2me™T (i - 3e™7) (b)

Report R-225 =28

For neither s = O nor :jipis the derivative zero, so the locus is normal

to the real axis at both points. Fig. 2.L4 (a) shows the locus of Q(jw) and
how it was obtained (for the point wt = %E) from the loci of the individual
terms. The locus for negative values of @ is shown by the dashed curve,

since it may be obtained from the other half of the locus. After this, only
the locus for positive w will be drawn. The locus does not enclose the origin;
therefore, a program whose transfer function has the denominator,

1 - 0.8¢7%T ¢ 0.3¢725T, 4i11 be stable.

~25T

2, Let Q(s) = 1 - 0.8¢~5T « 0.he (2-11)
Take the derivative with respect to s.
-§ - 0.81e™" - 0.87e2" (a)
(2-12)
= 0..8'I‘emsT (1 - e"ST) . (b)

For s = 0, the derivative is zero, Q(s) has a saddle point here. Q(s) can
be rewritten as,

| 2 |
Qls) = 0.6 + 0.4 (1 = &™°T) (2-13)

which brings the saddle point into-evidence. In this case p = 2, so at
o = 0. the locus is tangent to the real axis. At s = ij%}'%% # 0, so the
locus is normal to the real axis at this point. Fig. 2,h'(b) shows the
resulting locus. It does not enclose or pass through the originj therefore,
this Q(s) will lead to a s%able program.

3. Let Q(s) = 1 - 0.8¢”5T 4 0.5e725T - (2-1k)

Take the derivative with respect to s.

%g- = OoBTe-SVT - Teust (a)

(2-15)
= 0.2Te”5T () - 5¢75T) (b)

Report R=-225 =29

For neither s = 0 nor tjélis the derivative zero, so the locus of Q(jw) is
perpendicular to the real axis at both points. The locus (as shown in
Fig. 2.4 (c)) does not enclose the origins therefore, this Q(s) is the

denominator of a stable program transfer function,

ol =

(2) Q(s) = 1-0.8¢7 + Q‘3e'25T,

‘
A 3
f | o
, ') y .8 -sT
| . /) 0 (®) A(s) = 1-0.8¢™" + O.he
|)
}sr=o__,,/ / A
. /
{ /
\\s .
88 rd
¢ 1 \';tntéig

'
MU,

~2sT

Figure 2. Loci of some typical Q(s)

Q-plane

Sgg-y 1odey

-Og-

Report R-225
CHAPTER III
ANALYSIS AND SYNTHESIS QOF LINEAR, DIGITAL COMPUTER PROGRAMS IN THE
FREQUENCY DOMAIN
In the first part of this chapter the analysis of transfer functions

is dealt with by expanding the transfer function into partial fractions.
Next, programs are realized from transfer functions by three methods: direct
programming, cascade programming, and parallel programming; and the storage
and time requirementsﬂcf each are presented. In the last part of the chapter
a short, general discussion of synthesis is given, and one possible synthesis
procedure is illustrated by the synthesis of a program for differentiation.

3.1 Response of Programs at Real Frequencies

The input to a computer has a certain frequency spectrum, and
in order to analyze the action of a computer program on this input function,
we need to have a knowledge of the frequency response of the program. Thus,
we are interested in the locus of W(jw), the map of the jw-axis of the s-plane
into the W-plane. A familiarity with the frequency characteristics of the
simple transfer functions is essential for the understanding of the possibilities
and limitations of more complicated ones.

In many cases the desired locus of the transfer function of a
digital computer program is given, and the problem is to approximate this
locus by that of a realizable program; i.e., by a ratio of polynomials in
e-ST. A study of the loci of typical terms of W(jw) is helpful in making
this approximation.

3+2 Analysis of Building Blocks of Transfer Functions

As we have seen, the transfer function of a linear, digital

computer program is most generally expressed as the ratio of polynomials in

-sT
e .

Report R=225 | =32=
=gT =2sT =msT
a. + e + a.€ 4 s0000 + 8 €
W(S) = O(S) = 0 a]_ 2 m

I(s) 1+ ble-sT

(3-1)

=287 -nsT
e

+b2 4 o20000 ¥ 8 €
n

A partial fraction expansion of W(s) can be made, and we may call the individual
terms of the expansion the basic building blocks of a program transfer fuﬁctiono
In general W(s) may be broken up into a polynomial plus first and second degree
partial fractions (ffom the real and conjugate complex roots of the denominator,
respectively).

In analyzing cdmputer programs in the frequency domain [}inding
the locus of W(jm{] several methods can be used. Two of these ares (1)
Find the loci of the numeratpf:and denominator polynomials and then divides
(2) expand W(s) into partial fractions, find the locus of each term of the
expansion, and add the resulﬁant loci. In most cases the first method
is egsier to use, but the second is included here because of its connection
to the synthesis of program transfer functions (approximation of a desired
locus by a sum of the basic building blocks); A familiarity with some of
the possible loci of polynomials and first and second degree partial fractions
is an aid in the synthesis procedure.

The loci of second degree polynomialshave already been discussed,
and the locus of a fourth degree polynomial will be illustrated in connection
with polynomial building blocks. Since there is only a short step from
the qui.of polynomials to the locus of a transfer function, the first
method of finding the locus of W(jw) will not be discussed.

For use of the second method, we will investigate the loci of typical

terms of the partial fraction expansion of W(jw).

Report Re225 =33~

3.21. Polynomials
A typical polynomial transfer function is of the form,

W(s) = er:o‘ cke‘kST " (5-2)

For s = jo, the locus of each term of the polynomial is a circle. For
Q(s), the consfant term is unity, but for polynomial building,blocks, the
cﬁnstant‘term.may have any real value. In the previous chapter, three
examples of the locus of second order polynomials in e'ST are given, so now

let us find the locus of a fourth order polynomial. Let,

We) = Iz (13 + he™T - 36727 4 2T L BTy (5
First examine the function for saddle points.

CL % (-ure™T « 6167257 & 61e~25T 4 yreiST) (3-4)

LR % 5T (2 - 37T 4 367287 | 27357y, (3-5)

The derivative is zero for s = O, therefore W(s) has a saddle point there.
W(s) can be written in the form

: 2
Wis) =1 - %B (2 + e~25T) a- e™5T)

’ (3-6)

which brings the saddle point at s = O into evidence. The saddle point
is of first order; therefore, the locus is tangent to the real axis at

= 0. W(jw) is
. L2
W(ge) =1 - g (2 + &7%T) (1 - &™) | (3-7)

In this case it is easier to determine the locus of W(jw) by
plotting the second term of (3-7) and shifting the origin one unit to the

left. A convenient way to find the locus of the second term is to let

ORI N ne3¢ , (3-8)

Report R-225 =3)=

where both R and @ are functions of «wT. Some trigonometric manipulation

yields,
R = 2(1 - cos &F) /S + L cos 2T (3-9)
and
-1|tan oT(5 + tansz)
@ = tan 5 (3-10)
. tan" @l = 3

The resulting locus of W(jo) is shown in Fig. 3.l.

A 2
W) =1- L2e o) o

4 ‘ '1 ﬂ

Figure 3.1 Locus of a Fourth-Degree Polymomial Transfer Function

3.22 PFirst-Degree Partial Fractions {(real roots)

In the partial fraction expansion of a rational function e"ST,

a typical term has the form,

W, (s) = —X | | (3-11)
1 1 *.ﬁ-eQST

Report R-225 -35-

If the constants o and B are real, then (3=11) can be considered
a basic building block. In this section we will consider the case in which
o and B are real. The case of complex constants is considered in the next
section.

First, we may set o< = 1 because it is merely a scale factor.
Second, the magnitude of P must not be greater than unity for Wi(s) is
then unstable. If [B| & 1, the typical term is stable.

To.determine the loci of typical terms of the form (3-11), we need
only apply some of the rules of the loci of complex functions. First, note
that the locus of 1 + B e-jmT is a circle of radius |B| centered at the
point (1.0). To find the locus of Wi(jm), the inverse of a circle must be
found. If |B| =1, the circle (1 + e'jmm) passes through the origin,
and its inverse is a straight line parallel to the imaginary axis. If
IBIALl, the circle does not pass through the origin, and its inverée is
another circle. The loci of two stable first-degree partial fractions are
shoun in Fig. 3.2.

/\

/\ 1 /\ 1 .
— = juT
1+ 0.5 g~ JoT ol te
w2 | semi- 0\ n/2
é;clrcle g
ol = 0
g 2
n/2
R
1 + "05 e-jmT

a. W(s) = T

1 + 0.5 e °

b. W(s) =

Figure 3.2 Loci of First-Degree Partial Fractions

Report R=-225 -36=

3.23 Second-Degree Partial Fractions (complex roots)

If a typical term,

Wy (s) = — pci“BT , (3-12)

in the partial fraction expansion of a rational function of e-ST has complex

constants, there will be another term,

3*

WQCS) = ’ (3-13)

1+ B*e'ST

in the expansion whose constaptsvare the conjugates of those of Wi(s).

(The asterisk means conjugate.) Both Wi(s) and Wé(s) will be stable if and
only if lﬂlé;-l. If the rational function has real ceefficients (as in
practical problems) the terms such as Wi(s) and Wé(s) must come in pairs.
Add the two and obtain a typical second degree partial fraction with real
coefficients.

(od +o®) 4 (oL ¢ SB)eT
PP S (3-14)

Wé(s) = Wi(s) - Wé(s) =

In this section the discussion is restricted to second-degree partial fractions

whose denominators have complex roots of‘e°ST° To simplify the analysis,

Wé(s) can be written as, .
1 + ale‘”ST

wy(s) - 71 > (3-15)

1+ b‘ltrs"“‘T + b,

which differs from (3-1L) by only a constant multiplying factor.

To insure that the roots of the denominator of (3-15) are complex,
b12 < hbz. With this condition imposed on the constants of the denominator
of (3-15), it can be considered a basic building block of a program transfer

function.

Report R=225 «37=

Now let us consider the stability of such a building blocke.
Wé(s) will be stable if and only if both Wi(s) and Wé(s) are stable. A

comparison of (3-14) and {3-15) shows that,
b, =+ 8", andb, = 88" = [p[% (3-16)

Therefore, the necessary and sufficient condition for the stability of
HB(B) is that, 0(b2 &£ 1. We may combine this with the condition for

complex roots in the defominator of Wb(s) and obtain,

2
5
(,2—) 4xe! (3-17)

as the necessary and sufficient condition that insures stability of Wé(s)
and complex roots of its denominator,

In Fig. 3.3 there are plotted three loci of building blocks
of the form (3-15). All three are stable. It should be observed that by
changing only the numerator of the transfer function, three completely
different loei have been obtained.

By adding building blocks of the form discussed in thesevseqfiog§,
a desired frequency characteristic can be synthesized. The synthesis of

a differentiating program is discussed in a subsequent sectiom.

Report R-225 =38-

N .
S
ol =0
L] 088-8T
(a) i-0
1 - 0.8e~5T 4 0.he~25T
A
- >
(b) 1l - OQQQ-ST e
) 1 - 0.8¢75T & 0.4e™25T
N

>

(c) 0.4(1 + O‘Se-STj

1 - O.BS:éT + O.he- 8

Figure 3.3 Loci of Second-Degree Partial Fractions

Report R=225 «39=

3.3 Realization of Programs~From Their Transfer Functions

The purpose of this section is to develop and compare methods by

sT which is

which a program can be derived from a rational function z = e~
the transfer function of the program. How this rational function is arrived
at in the first place is the concern of the last section of this chapter.

3.31 General Considerations in Prog;am Realization

In choosing a particular method of programming, one may consider
the following Pactors: storage requirements and time requirements. To a
certain extent one of these requirements can be reduced at the expense
of increasing the other and the optimum.method will depend on the particular
application. It is necessary, therefore, to make available various possible
methods of programming and to form some idea about the requirements of eachj;
intelligent program realization can then be adapted to each application.

In the consideration of storage requirements of linear programs,
it is convenient to distinguish three types of storage: data storage, constant
storage, and instruction storagelg The data are the successive sampled
values of input and output. The complexity of a program is closely related
to the number of constants and to the age of the data to which the program
refers. The program can be divided into arithmetic and manipulative parts.
The number of arithmetic operations involved is roughly proportional to
the number of constants, each implying a multiplcation (of a piece of data
by the constant) and an addition {of the product to the other terms).

The number of manipulative operations is related to the Mage" of the oldest

It is understood that in a general-purpose computer there is no physical
difference between the storage registers containing numbers or instructions,
and any register may hold either kind of information. The distinction

made here is only for the purpose of discussion.

Report R-225 =}40=

data used, where age is expressed in terms of sampling intervals. All
"younger" data must also be stored even if not used at each calculation
(the corresponding constants being zero), for eventually they will become
the oldest data. After each calculation of a new output value, the manipulative
instructions shift each piece of data to a storage location at which an older
piece of data has been, the oldest data being lost. The manipulative program
is seen to rearrange the data storage in such a manner that at the new sampling
poiht the same arithmetic program will calculate a new output value.

The time requirement of a program is the product of the number of
instructions to be carried out and the average duration of an instruction.
The latter factor depends on the physical characteristics of a particular
computer and is more or less fixed; the number of instructions performed
in sequence, however, depends in part on the manner of program realization.
In each particular realization a significant trading of time for storage
is possible by so-called cyclic procedures. One notes that often the calculation
of each term in a program involves the same sequence of arithmetic operations.
The simplest and fastest procedure is to store as many of these sequences
as there are terms to be calculated. Considerable storage may be saved,
however, by storing these instructions only once and cycling through them as
many times as there are terms to calculate. Unfortunately, the time requirement
increases considerably, for in each cycle the addresses of the instructions
must be adjusted to make them refer to different storage locations for different
terms and the number of cycles must be counted to permit termination of
the eyeling process.

The following sections and related appendices will serve as specific

illustrations of these considerations in programming.

Report R=225 =h1=

3.32 Direct Regression or Direct Programming

The starting point of our realization procedure is the general
expression for the transfer function of a linear program,

a + ale-ST + a'e“23T+.o., + amgumsT
Wwls) = T
1+be™®

2 (3-18)
1 2

2sT -nsT °

+b.e * o0 + bne

In order to interpret a program in the time domain it is necessary to eliminate
fractional expressions. The most straightforward way of doing this follows
directly from (3-18). From it we can obtain

B(s) = (3 ¢ oo + ame“mST)‘its) - (ble-ST + oo fhpng-nST)‘azs).

(3-19)
The inverse transform of this expression is
3(t) = ai(t) + aflt = 1) + .00 + 2 T(t - uT) - bF(t - T)
“ eo0e = br;if(‘b - nT), (3"20)

where S(t) and i(t) are impulse-modulated (sampled) time functions having
the value zero everywhere except at the sampling points. In terms of some
continuous functions o{t) and i(t), which agree with the area-values of
B3(t) and T(t) at the sampling points, (3;20) is often written as

oy =ai st ais g+ oo tai, oo, - e - LI (3-21)
where j signifies particular sampling point and j-k the k-th preceding sampling
point. Eq. (3-21) is more familiar to the numerical énaiyst than (3-20),
but the two are entirely equivalent and are called regression formulas.
These equations state that the present result (output) is computed by a
finite linear cqm?ination of the present and past input values and of
past results (ougpg? values).

Several.éharacteristics of regression formulas should be observed.

If the right side of (4-20) or (4=21) has at least one non-zero b,, then

Report R-225 =42-

the present output depends on at least one previous output, which in turn
depends on an output further back and so on. It follows that the present
output value is affected by output values as far back as the start of the
problem and therefore, also by input values that far back. Thus regressing
to a finite number of output values corresponds to regressing to an unlimited
number of input values. This aspect of the regression equations is important
and will be further emphasized in the following sections,

Interesting conclusions can be drawn concerning memory requirements
on the digital computer by considering the actual programming of the regression
formila, (3-21). Assuming that none of the coefficients a, and b_ are zero,
one can easily see that in order to calculate a new output value oj, when
a new input value ij is received, m previous input values and n previous
output values will have to have been remembered, requiring m + n memory
positions for data where m and n are the subscripts of the last non-zero
coefficients, and furthermore, it is necessary to store all these data even
if some other coefficients are zero because at the next sampling poiniA
the same pieces of data will be associated with different coefficients.

It can be stated that, at least when programming is done by the
illustrated direct regression meth~?, the data memory consists of m + n
registers (memory positions) where m and n are the degrees of the numerator

ST of the program transfer function W(s).

and denominator polynomials in z = e
Actually this data storage requirement may be reduced, as will be shown in
Sections 3.33 and 3.3k.

To be able to make comparisons between the various synthesis
procedures it is necessary to do the actual programming.. This exercise

is left to the appendices, and the results will be compared after the

other synthesis procedures will have been discussed. In Appendix B the

Report R-225 <}y 3=

arithmetic and manipulative parts of the direct regression program are first

constructed separately; then a new more compact program is shown which inter-
leaves the arithmetic and manipulative instructions. Although the Whirlwind

code is used, the results and conclusions can be considered quite general

in view of the fact that the instriction complements of most general-purpose

digital computers are conspicuously similar.

3.33 Cascade Programming

If the numerator and denominator polynomials in 2z = e-ST are

factored, (4-18) takes the form

1+ cle-ST) (1 + cee-ST) ees (1 ¢+ ¢ e-ST) ‘
W(s) = a e —7 2 T o (3-22)
° (L« de Y (@ + dye el WA ¢ d i)

where -(1/ck) and -(l/dk) are the roots of numerator and denominator
respectively, when considered as polynomials in z. Because the coefficients
ay and bk of these polynomials are real, the Cy and dk will also be real

or will come in conjugate pairs. At any rate, it is possible to group the
monic factors of (3-22) in some manner

W(s) = W (s) Wy(s) ... Wp(s), (3-23)

where each Wk(s) is of a rational form in z having a numerator and a
denominator of not higher: degree in z than W(s) itself has.

The form of (3-23) reminds one of the transfer function of cascaded
linear units in a servo system. Cascading means that the output of one
unit becomes the input to the next one. There is no difficulty in using
the same interpretation to define cascaded programs. At every sampling
point the output of each regression equation is used in calculating the

output of the next one.

Report R-225 =lily=

To be more specific, let us assume that: (1) W(s) is a proper
rational fraction in z, that is, m.<_n1; (2) al1l roots ~1/ck and -l/dk
are real and distinct, since generalization to the case of conjugate complex
roots turns out to be direct; (3) a, = 1 in order to avoid its nuisance
value in the discussion2° With these assumptions it is possible to have
p = n in (3-23) with the denominator of each Wk(s) being a single moniec

factor in z; that is,

W (s) = —E— (3-2L)

where ¢, may or may not be zero, but d, # 0. There are n factors of the
type (3-2L) each representing a simple regression equation. In m of

the factors) # O, in the other n-m factors e = 0. The data storage
associated with each Wk(s) equals 2 when ¢, # 0, and 1 when ¢, = 0.3
However, the input data that must be stored when Ck # 0, is also the output
data that had to be stored for the preceding cascade program'Wk_l(s)j
consequently, there is only one data to be stored for each Wk(s) regardless

of the value of c,, except for the first one Wi(s). But when m < n (proper

rational fraction), one e, = 0y say c, = 0, making the total required data

1 If m>n, W(s) can be written as the sum of a polynomial and a proper
rational fraction in z = e=ST, The program corresponding to the polynomial
part is a simple linear combination of input values. Discussion of this

~ case is omitted without any serious loss of generality.
2 If a, # 1, only a simple multiplication has to be added to the program.
3

Each Wk(s) is the transfer function of just a regression equation and

its data storage is the sum of degree of numerator and denominator, as
discussed in the previous article.

Report R-225 <)i5e

storage nj; a material reduction over the m + n data needed in direct regression
programming.
In order to translate the cascade scheme into an actual program,
we may proceed as follows. First, we write (3-23) (with p = n) in terms
of input and output transforms, as

!\0-(8) ‘fb’l(S) ° ’6’2(’8) o LN] ° 3;(8)

= = = = (3-25)
I(s) X(s) I,(s) I (s)
One way of making (3-25) an identity is by letting
‘?1(_3) = ?(s)
T,(s) = 0, (s)
T,(s) = Tyls)
) (3-26)
;n(S) = 0._4(s)
which mske
O(s) = T (s)e
Using the relations (3-25) and (3-<26) we obtain
~, & 4 ~— ~
,,055) = oj:(s) ° iz(s)o ooe .0 i(‘S) (3-27)
I(s) I(s) Ol(s) On_l(s)

The various factors equal the respective program transfer functions; namely,

Report R=-225 b=

'3'1(8) W (s)
"f(s) 1 s =y

0.(s) 14 c,e 2T

S W) s ——

0, (s) 1+dye (3-28)
0(s) l+c e~sT

= =W (s) = —-———2—-—T—

On_l(s) n 1+ @ne-s ’“’/

where m of the C) are not zero., Multiplying by the denominators changes

the set (3-28) into

\

(1 + 0™ T (e) =T(s)

(1 + 4,2 Ts) = (1 + ¢ ™) T (o)
(1 + 4,e™) Gy(s) = (1 + 036™") Tyls)

(3-29)

°
®
L]

"‘ST) ’6—‘

n-l(s)

=8T,
1+ de) O(s) = (1 + c e

The inverse transform of the foregoing set, with one term of each equation

transposed to the right side, is the desired set of regression equations.
ol(t) =3(t) - dlol€t-T)
02(1',) = ol(t) + ozol(te-T) - d202(t-=’r)
~— ‘t - — ~ - - ~ -
G5(t) * 55(t) + ¢;8; (4-T) - dj0,(t-T)

(3-30)

) =73 ,(t) +c o (1-T) - d 5(¢t-T)

Report R=-225 .

The detailed coded program corresponding to (3-30) is shown in Appendix C.
Cascade programming, although not referred to by that name, is

a familiar technique in numerical procedures. However, the clear-cut and

general equivalence of the direct regression and cascade programming is not

always well understood. Cascade programming arises naturally from the kind

of thinking prevelant in numerical work. Consider the simple example of

solving the second-order differential equation,

2

[= 1)

+ By = O. (3-31)

Q.

t
The derivatives may be considered as the separate variables, y'(t) and
y"(t); then we obtain the following three sampled functions:
L) = -BF(t- 1)
THt) = (L) + T (6 - T) (3-32)
F(t) = 5 (e) + ¥t - T)
where the first equation of the set is derived from (3-31) while the second
and third are elementary first-difference extrapolations. The set (3-32)
indicates cascade programming because the output of the first equation is
in the input of the second, and the output of the second equation is the
input to the third. The peculiar thing in this case is that the input
to the first equation is not an independent function but directly related
to the output of the last equation. !This feature establishes the constraint
imposed by the differential equatioﬁ;

The Laplace transform of the set (3-32) is.

In - - -sTfr
Tro= T o+ ~STF | | (3-33)

Y =TY +e *Y

Report R-225 -8~

from which the explicit relations between inputs and outputs are obtained

as follows:

1 - e-ST (3"3)4)

For realization by three cascaded factors, we have

W (s) = -ge~ST
iy(e) = —L

1-e° (3-35)
Wyls) - I‘:E‘-E‘T

It is clear that a single transfer function can be made to replace the

cascaded system of three; thus

W(s) = Wi(s)Wé(s)Wé(s)

-prle”sT (3-36)
T, e-zs’T*

W(s) =
1 - 2"

The corresponding regression equation is simply obtained as

s) = (2 - p19)e™TH(s) = 7 H(s). (3-37)
The inverse transform of this equation is

Fe) = (2 - BrOF(t - T) F(t - 21), (3-38)
which could have been otained from (3-32) by the elimination of y'(t) and
y"(t), but even in this simple case the process of elimination in the time

domain is not direct.

 Report R=225 =Li9=

The fact is that in numerical work a cascade method such as (3-42) is
much more generally used than the direct regression of (3-38). Often there
is good justification for this preference; for instance the values of the
first and second derivatives may also be needed. However, when such or
similar justifications do not exist, the direct regression may turn out to
be simpler than cascading. In the present example, (3-32) calls for one
more constant, two more multiplications and one more addition than (3-38).
If the first two equations of the set (3-32) are combined, one multiplication
is saved; furthermore, the manipulations in the direct method happen to be
more awkward. Because in this case the input and output are the same quantity
the formulas of Appendices B and C are not directly applicable, the requirements

of the tw methods must be determined by actual trials.

3.34 Parallel Programming
If the transfer function of a program is expanded by partial

fractions in terms of z, (3-18) takes the form

f £ f
n

1 2
w(S) = ————-———-—T— +* '——-——T * 000 ¥ - (3"39)
1+ clle"s 14 dye™® 14dest
n
as long as m < n. Thus, the transfer function W(s) is replaced by the

sum of a number of simpler transfer functionsj namely,

W(s) =W (s) + W,(s) + o0 # Wp(s), (3+40)

where some. of the Wk{s) may be the combination of several partial fractions,
but all are of lower degree than W(s) itself.

The form of (3-40) may remind one of parallel combinations of
network admittances. Paralleling means that the same input (driving voltage)
is applied to all component admittances and the output {driving-point current)

is obtained as the sum of individual outputs (current through each admittance).

Report R-225 -50=

The same interpretation can be applied to parallel programming. The programming
will involve p regression equations all using the same input values, and all
their outputs adding to produce the desired over-all outpute.

To arrive at a more specific interpretation, we first make a few
restrictions again: (1) W(s) is a proper fraction, i.e., m < n, and (2)
the roots of the denominator polynomial are real and distinét. Then all
constants f, and d_ of (3-39) are real and in (3=40) p can equal nj moreover,
each term of (3-39) is a simple regression equation involving two constants
and one data storage. Thus, the total number of data to be stored is only n.
Just like in the case of cascade programming, the lower requirement for data
storage of parallel programming may be a great advantage over the direct
programming method. However, this feature does not mean that parallel or
cascade programming should always be employed in preference to direct
programming. For instance, there is the case when m = 03 i.e., the numerator
of W(s) is 1 (or ao), 0f the input values the program uses only the present
one and the total data storage is n regardless of the programming scheme
usedj on the other hand, the number of constants will be n for the direct
and cascade method, but 2n for the parallel method, putting the latter at
a disadvantage. Similarly, if the denominator of the over-all transfer

25Ty ' then

function lacks several terms (say, the denominator is 1 - b e
factorization of the denominator intréduces all terms, making the cascade
and parallel program much longer than the direct program. Another factor
which may militate against the use of parallel programming is the presence
of multiple roots in the denominator. If a root is of multiplicity r,
it may produce up to r terms of degrees r, (r-1), ...2,1 (the r-degree

term never being absent) in the parﬁial fraction exapnsion, but the same

root will require only one r-degree, or r first-degree, cascaded factors.

Report R-225 =51~

In order to interpret the parallel method of programming, we

proceed in the usual manner. For the various terms of (3-40) with p = n,

we write
A £
W, (s) = —1(s) = 1
1\8 ¥ (o) e dle-sT- \\
.(s) f
W(= i - 2 ORI
LR R 4,0’
. ,? (3-41)
P GO
S} = -
n " T(s) 1+ dhe'gT- ~,/
and
W(s) = OCs) | (3-42)
I(s)

Cross-multiplication by the denominators in (3-l41) yields the set

1+ dle-ST)ai(s) = fif(s)
(1+ dze-éT)ﬁé(s) =*féizs)
. | | | (3-L3)

o

(1+ dne°sT)a;(s) = £ T(s)

while in view of (3-41) and (3-42), (3-40) can be written as

Ols) =0,(s) + 0,(s) + ... +0 (s) . (3-Lk)

Report R-225 -52-

The inverse transforms of (3-L3) and (3-hl) yield the desired set of

regression equations, which follows.

% (t) = fl‘i"(t) - 4,8 (t-T)

’6'2(1:) - fz'f(t) - dz'o‘e(t-‘r)
° (3')45)
B'n(t) - fn’i“(t) - dn’é'n(t-T)

3(t) ='6’1(t) + 'azkt) oee * ’é‘n(t)

The detailed coded program corresponding to (3-45) is shown in Appendix D.
Parallel programming has not been generally used in numerical

work. To the knowledge of the writer, the usual methods of nuﬁerical

analysis do not naturally lead from é direct regression equation, which

has reference to several previous input and output values, to a set of

simpler regression equations, each of which refers only to the last

input value and to a preceding1 output value., By the method of frequency

transformation the parallel method is found quite directly.

In case of complex dk’s in (3=39), a combination of two conjugaie complex

'partial fractions in 2z will result in a slightly more complicated regression
equation, involving one additional input and output.

Report, R-225 -53-

3.35 Comparison of Programming Methods

The purpose of this section is to compare the effectiveness of
the various methods of program realizations based on the transfer
functions of the programs. A complete general treatment appears too
far-fetched and, therefore, this study is limited to a certain class of
programs. Despite these limitations, which are discussed below, the
investigation is sufficiently general to show how the results can be
used to improve the instruction code of a general-purpose computer or
to design a special-purpose computer, when these are used in control
applications.

The three methods which will be compared are listed belows

(a) direct programming,
(b) cascade programming,

(c) parallel programming.

Other programmihg schemes may be derived from the rational transfer
fﬁnction*W(s). One may carry out the long division in z of the numerator
by the denominator until he arrives at a certain number of terms of the
quotient, The transfer function can then be expressed as the sum of the
quotient terms and of the remainder divided by the divisor (the original
denominator). Any number of variations can be obtained by stopping the
long division after different number of steps, but only in the most unusual
cases can this approach be expected to yield a more efficient scheme of

programming than the three major methods discussed in the preceding sections.

Report R=225 =5ly=

Other schemes that are even more artificial than the long=-division scheme may
be derived, but no other general programming method has been found that gives
promise of effectiveness comparable to the three which are considered. It

is noted that in certain cases a combination of two of the three listed
methods may turn out to be more efficient than any one. An example of

such a case is described below.

As the basis of comparison of programming methods, the requirements
in storage and time are used. The particular application or purpose decides
which of these two factors should deserve mofe%attention. It is assumed |
that the complete sequence of instructions, as used at each sampling point,
is stored; the possibility of cycling programs, which re-uses a short
sequence of instructions for the calculation of each term, is not discussed.
Essentially the Whirlwind I code is used throughout, but variations are
considered.

As a starting point we recall that the transfer function of a

linear program is,

- =gT =2sT -msT
W(s)) O(S)) ao + ale] + 328 * o060 * ame (3"&6)
= =2sT =nsT

T(s) 14be #be™ + .cotbe

In general, m and n may be any positive integepsl and indeed, their relative
sizes will hardly influence the comparisons to follow. Nevertheless, it is
helpful to distinguish three cases:
(1) n = 0. (3-&6) reduces to a polynomial in z = eNST; i..,
the new output value dependé only on present and

past input values, not on past outputs also.

Present-day numerical analysis abounds in numerical

This is in contrast with networks where certain restrictions on the
degrees of numerator and denominator polynomials often exist.

Report R-225

(2) m < Ne .

(3) m ;no

~55-

processes corresponding to this special c':ase.l

(3-L46) has the form of a proper rational function

of z in this case. In Sections 3.32, 3.33, and 3.3L
dealing with the various programming schemes, this
case was assumed for the sake of simplicity.

The rational function in z of (3-46) may be called
improper, but it can be converted to the sum of a
polynomial (EBase 1) and of a proper rational fraction

(Case 2) in z = 72T,

In order that the storage and time estimates to be arrived at should apply

to all cases, it is necessary to define the following quantities with

reference to (3-56):
m

g
"k

Me

= degree of numerator,
= degree of denominator,

= one less than the number of non-zero constants in
the numerator (mksg'n).

= one less than the number of non—zéro constants in
the denominator (nkx n)e.

= one more than the excess of m over nj i.e.,
m, = m=-n+l when m > n, and m, = 0 otherwise. For

proper rational fractions m < n and.m.e = 06

On basis of the coded programs shown in the appendices, the table of

Fig. 3.4 summarizes the storage and time requirements in terms of the

quantities just defined. This tabulation is more general than the results

given in the appendices, for in the appendices it was also assumed that

none of the constants were zero, that is, = m and = n3 furthermore
" e 7Tes

1

equidistant spacing

Examples are numerical methods based on polynomial approximations with

of the independent variable. Indeed, such examples

form not an insignificant portion of the available numerical techniques.

Report R-225 =56=

only case {2) was treated making m_ = 0. On the other hand, in the tabulation
of Fig. 3.L4 these restrictions of the appendices are absent, but the following
assumptions are still made: the roots of the numerator and denominator
are real and distinet, and the straightforward programming techniques of
the appendices is used., Thus, the costants stored are those that appear
explicitly in the various regression equations. Actually some saving in
instructions would result from the use of certain ratios of these constants.
For instance, the regression equation [éf. (B»hﬁi]

5 (t) = £73(¢) = a;& (¢-T) (3-47)
takes six instructions, as shown in the coded program of Appendix D.

If, howevér, (3-47) is written as

67(t) = £, [?ft) - :1 ai(t-Ti] , (3-18)

its coding would cost five instructions only, but certain questions on the
relative sizes of the constants would arise. It seemed best to avoid such
questions, because the considerations here are rather general and the value
of a too-specialized treatment is questionable.

The comparison of the three methods of programming can be undertaken
by considering each item of Fig. 3.h4. Because of the straight seqﬁential
programming,the time requirements are the same as the storage for instiuctions
and, therefore, consideration of storage will give a complete picture.

As far as the number of constants stored are concerned, the direct
method is not worse than the cascade, which in turn is not worse than the
parallel method. This is so because in the direct method only the non-zero
constants of (3-L6) have to be stored, while factorization in the cascade
case will produce as many constants as there are roots in z. In the parallel

method two constants {root and residue) are produced for each denominator

Report R-225 =57 =

root and if the numerator is not of lesser degree than the denominator,

further terms and constants result. As an example, consider

g -)]i o~sT
W(s) = |
1- ﬁ. g=28T ']8" ohsT (3-49)

for which

.m=1’ Inkﬂl’ me=o

n=U, n =2

According to the table of Fig. 3.k the various constant storage requirements

are

directs mkfnk'l-1=h

cascade: m +4n +1=26

parallel:s 2n = 8
These figures can be simply checked. In the direct case the four constants
are apparent in (3«9). For the cascade case, the transfer function is

written as

g _ % e-sT
1 1 1 :
W(S) = e oo moo° (3"50)
1+42e3T 3 _ 28T " 28T «-l.emsT ’
vz vz .2 2

and the six constants in question are: 4142, =142, +1/2, -1/2, +5/8,
and =1/h. The manner of programming illustrated in Appendix C actually
necessitates the separate storing of positive and negative constants,
even though 6f the samé magnitude. _)

For parallel programming W(s) of (3-49) is expanded in partial

fractions in terms of z and takes the form

Report R=225 58~

W(s) = * +
=-gT 1l «sT
1+=a"® 1-=e"5"
. /2 2
(3-51)
_ 9 1
16 . 16
1 T T T _ =sT
1+ 5e sT 1l - 5e 8

The eight constants to be stored are evident in the foregoing eguation.
The next item of comparison is the data storage, for which the

above example reads, on basis of Fig. 3.hL

directs me+#n=25
cascades n=}
parallels n=\4

These figures can be verified in the three foregoing equations. The numerator

sT term)

of (3=49) indicates that one past input value (corresponding to the e~
must be storeds the present input is used as it arrives and then stored

as the past input for the next calculation, as shown in Appendix B. Thus
the numerator implies one data register only. Similarly the denominator

implies the storage of four past output values, even though the e.ST and

e°35T terms are absent3 for the corresponding past outputs must be remembered
for the next calculation,.
For the cascade method, {3-50) seems to indicate five past data
to be remembered; however, the e™5T term of the last numerator reférs to-
a past input that is also the past output of the preceding factor, since
in cascade programming the input of a component program is the output of
the previous one. |
In case of parallel programs the four past data are quickly

sT

jdentified with the e -~ terms of (3=51).

Report R=225 =59

The expressions for instruction storage and for time requirements

are identical, and produce the following tally in the present example:
directs 2(m + m +n+ nk) + 7 =23
cascade: 3m+ hn+ 6 =25
parallels Tn+ L4 = 32
No verification of these figures is carried out by detailed coding of the
programs because the appendices cover the general case. The advantage
seems to be on the side of direct programming as far as time is concerned,

but this advantage is slight and arises from the fact that in the present

example two denominator constants are zero. An advantage of direct programming

appears also in the total storage requirements for the same reason:

directs L +54+23 = 32

cascade? 6+ L +2541 =36

parallel: 8 + 4 + 32 +1 =45

This example, as well as the tabulation of Fig. B.h,'indicates

the disadvantagé of parallel programming. It seems that this kind of
programming may have an advantage over either of the other two in certain
cases, but hardly ever over both at the same time. Thus, the choice narrows
down to direct and cascade programs, or possible combinations thefeof.
To show how a combination of methods may be used, we write (3-L49) as
sT
28T

1 g"%ie“
W()ﬂ . °
i 1 - % e”EET 1 - % e

which indicates a cascade combination of two direct programs, for which

(3-52)

respectively

Report R=225 w60

m =20 m =1
m = 0 me =1
n =2 n =2
nkal ' nklll
m, = 0 m, = 0

The direct program of each cascaded component is somewhat simpler than it
would be for two separate direct programé because the input and output devices

are manipulated only once for the composite program, rather than once for

each component program. This saving amountsto six instructions, thus the

instruction storage or time requirement is:
first components: 2(m + m +n+ nk)ﬂ* 6 =12

second components: 2{(m + m #+n +'nk) +6 =16

saving as indicated above . -6
total instructions 22

Four constants appear in (3-52), two of which are accidentally identical,

and one of which is made 1j thus, the constant storégg‘is:

first components mk‘* n, +1 = 2
saving = =] 1
second components m, * m +1 = 3

saving = -] 2

total comstants 3
A saving arises in data memory also, because the past input of the second
component is also the past output of the first one. This gives the following

need of data storages

Report R=225 =6

first components m+n=3
second component? m+*n-=3
saving =1

The results of this example are summarized in Fig. 3.5, which shows a small
advantage of the mixed method over the direct one.

To pursue further the detailed comparison of these various methods
of programming would lead to undue specializations in the Whirlwind code and
to results of doubtful general value. The illustrated attack on the
realization pfoblem, however, shows how a useful estimate of the complexity
of coded programs can be gained from the evident properties of their transfer
functions. Three further problems will be touched on brieflys (1) computing
delays, (2) means of uging the results to select computer codes; and (3)
means of using the results to design special=purpose computers.

A consideration that has been omitted in our discussion is the
delay incurred through.the computation itself. If a digital computer is
used as part of a number of control systems -- say, 50 systems --, then
in each sampling interval it performs 50 computatioﬁs, one for each system.
The time of a computation is then at most 1/50 of the sampling time, T,
and this delay is presumably negligible. If, however, one digital computer
were used with each syétem, the computation may and, for the sake of efficiency,
should take an appreciable part of the sampling time. Such a delay would
be very serious and the computer would have to perform a prediction in
addition to the required compensation. In turn, this would lengthen
the program, make it less effective, and may even force a longer sampling
times indeed, in a marginal case, in which the original compensating pfogram

had a delay nearly as large as the sampling time, the effect may become

Report R-225 -62=

cumulative, since a longer sampling time would in turn require a better
and longer program, and so on. In such marginal cases and in any case in
which the computing time is not negligible with respect to the sampling
time, the direct programming has a tremendous advantage over all other

, methods. A glance at the direct regression equation (3-20) shows clearly
that all terms but the first one on the right side of the equation can

be computed before the new input value is obtained.l The computing delay
will thus be the time of merely calculating the term, aéz(t), and adding
it to the already prepared partial result. This delay may conceivably

be negligible.

A1l realizations of real-time linear progrems involve accumulation
of products as their arithmetic action and the transfer of data from one
regis%er to another as their manipulative action. IA éase of a single-addre882
instruction code, such as that of Whirlwind, the ex (exchange) operation3

was shown in Appendix B to be very helpful in improving the efficiency

of the code. Other improvements are possible by incorporating special
aperatibns which facilitate the particularitype of prbgrams on hand.
Computers using multiple-address codes could be particularly efficient in
such applications. For instance, in a three-address code an instruction
could locate a conétant, a piece of data, and tranéfer that data to a

third address, after which it would multiply the constant and data

1 The second composite program in Appendix B is written in this manner.

2 Each instruction specifies an operation and the storage address of a
single operand.

3 This operation exchanges the contents of the accumlator register with

the specified storage register. Thus, one instruction performs a double

duty by obtaining new data from storage and dlso transferring to storage

a partial result,

Report R-225 =63~

accumulating this product with the partial result always left in the arithmetic
element of the computer. This single order would complete both the arithmetic
action (accumulation of products) and the manipulative action (transfer of
data to an "older-data" register) associated with one term of a regression
equation.

Similar considerations allow one to adapt special-purpose or
fixed=-program digital computers to control specifications. To be somewhat
specific we assume that the computer is used as part of a single control
system and will have to perform only one computation in each sampling period.
The computer would not operate appreciably faster than one computation per
sampling period and in order to minimlze the computational delay it would
follow a direct regression program. In order to keep such a single-system
computing equipment from becoming excessive, a serial1 computer would
probably be used. The program of the computer would be fixed to correspond
to a direct regression program of certain complexity as defined by the
degrees of m of the numerator and n of the denominator of the program
transfer function. The constants could be set manually on toggle switches
or relays, or they could be stored on the same high-speed storage deviceg
on which the data are stored. A serial adding unit with proper switching
equipment would allow the multiplication of constant and data (by repeated
additions) and the addition of such product to the accumulated partial
result. The physical size of such a digital control unit may be quite
feasible in certain applications and the design of such a simple special=-purpose
digital computer would be particularly justified if the incoming data were

sampled and digital to start with.

1 A serial computer operates on each digit of a number in sequence; thus,
the equipment is not duplicated for each digit,

2 Magnetic~drum memory, for instance.

Report R-225 =6l

3.4 Synthesis of Programs in the Frequency Domain

3.41 General Synthesis Procedure

The synthesis of computer programs in the frequency domain may
be broken down into the three following stages_(l) specification of the
desired frequency characteristic or lous of W(jw), (2) approximation of
the desired locus by a realizable program transfer function, and (3)
realization of the program. One way to determine the desired locus is
from the Laplace transform of the operation the computer is to perform.
The second step is the difficult part of the problem. The desired frequency
characteristic must be approximated by a rational function of e-ST. No
general rules are availéble for making this approximation, but before
making the approximation, one should gain some experience in analyZing
program building blocks in the complex plane., Possibly the most systematic
approach, at present,’to the approximation problem is to make successive
approximations to the desired characteristie, using the basic program
building blocks of Section 3.2. The third step involves only a straight-
forward inverse Laplace transform. As an example of program syhthesis
in the frequency domain, a program for differentiation will now be synthesized.

3.42 Synthesis of a Differentiation Program

An ideal differentiator establishes the followihg relation between

input and outputs:

o(t) = &), (3-52)
Disregarding initial conditions, the Laplace transform of (3-52) is
H(s) = A8, (3-53)
I(s)

and this is the desired transfer function. For s = jw, H(s) becomes

H(jo) = jw. ‘ (3-54)

Repoft R-225 -65=

So the locus of the desired transfer function is the imaginary axis. This
completes the first étep of the synthesis procedure.

+The second step is to find a rational function of e that
approximates this locus. This approximation is to be made by geometric
considerations based on the desired locus. In this particular example it
is also possible to employ analytic considerations based on the desired
transfer function of {3-54). It so happens that in the present case the
analytic approach is simpler; nevertheless, the geometric approach is shown
first.

The crudest numerical approximation to a first derivative

is the first divided difference.

3t - L) =01 (3-55)
The Laplace transform of {3-55) is
~ _ o-sT
Ns) = 1(39‘.1—-—5——- . (3-56)

Thus the transfer function of the differencing process is

My -sT
W) = o) al=e™ (3-57)
° I(s)

Fig. 3.6 shows the locus of W (jo) and compares it with the desired one.

At low values of oT (izel, when the frequency of the input fﬁnctipn is low

r&i(t) -i(s-T)

g s-locus : N i(t) i T
2 &
i(t)
- - t

Figure 3.6 Comparison of first derivative and first difference operators

with respect to the sampling frequency) the two loci agree reasonably well.
If we could straighten out the circular locus, we would have a better
approximation of the desired locus. Figure 3.7 illustrates a geometric

construction that straightens out the locus and giies us ideal phase

characteristics. di(t-T)

2 1-e5T A at i(t) - i(t-T)
—F . T
1+e8

di(t)
1 - e"ST . dat
T i
.
4 i(t)
1+ o 5T ‘
2
_ ot
L=l . ret
(a) Frequency domain (b) Time domain

Figure 3.7 Derivation of an ideal phase, realizable differentiation

operator

The vectors (1/T)(1 - e‘jmT) and {1/2)(1 + eaj@T) are drawn for
a particular frequency. Using the geometric rule that a triangle inscribed
in a semicircle is a right triangle, one can readily show that L:ll + IBI
add up to 90°, However, since o< is a positive phase angle, it must be
subtracted from P (which is negative) to give a resulting angle of =90°,
which is the phase of an ideal integrator. It follows that division of
the P-locus by the o(~locus will yiéld an ideal-phase formula. The
resulting transfer function is

=sT
W(s) =5 =2, (3-58)

1l +e

Report R=225 -

which has the desired phase in the 'range, 0 <&l £<w. The interpretation
in the time domain is both plausible and illuminating. The inverse transform

of (3-58) shows that,

B(t) +23'(t -1 i) -TT(t-T) | (3-59)

(3-59) states that the average of the derivatives at two neighboring

points is approximately equal to the divided difference for those points,
It is interesting to note that the same approximate transfer

function, (3=58), can be obtained analytically based on a rather good

. . =sT
approximation for e 5.

=z (3-60)

Solving (3-60) for s yields

=sT
swg l-e (3-61)
l+e

Although in this particular case the above analytic approach is
simple and fairly accurate, its general use has certain drawbacks. The
most obvious one is that the rational function of "s" to be approximated,
which in the present case is "s" itself, is in many cases not explicitly
knowng rather it may be obtained as an approximation to a desired locus
or amplitude and phase response. Then to approximate the rational
function of fg¥ which itself is but an approximation, by a rational

function of e ST

puts the designer on shaky grounds, and it might lead to
far more involved programs than necessary. There is no substitute to
going back to the original specifications and designing directly on their
basis, Another disadvantage of the above analytic approach is that it

is not general. One could replace all "s" by the approximation (3-61),

but how one would get a better solution is not obvious.

Report R=225 -68-

We have an approximation of the differentiation operator, so the
next thing to do is see how good it is. Since the desired locus and its
approximation lie along the same path, a locus study does not give a good
comparison. In such a case separate amplitude and phase plots can be studied.

For s = jw, ngs) becomes

Walie) = 2 1= It 2 e*‘ﬁ% - e-j%_ = 32 tan 9T (3-62)
2t Tl 4o T —af _of T 2’
© e’ 2 e 2

which verifies the previous statement that W2(jw) has ideal phase characteristics.

Hence, it is sufficent to study the amplitude characteristic only.

H(jw) = jw; (3-63)
therefore,
W2 (jw) tan—%ir-
W = 2?_ ° (3"‘6}4)
2

Thus we see from (3-6lL) that the ratio of the approximate function to the ideal
one is always greater than unity. Figure 3.8, a plot of the amplitude

characteristics, shows us that for low values of T, say for T < L s the.
12

|

o

ﬁ\ ' |) H(jw) =wl
| () Wyliw) =2 tan &
() W) = 160 ten 3T
|
!
N,

L wl”

Figure 3.8 Comparison of amplitude characteristics of Differentiating Operators

Report R=225 =69-

differentiation program will give quite good accruacy. For certain control

applications, values of «T up to g or even g might give acceptable accuracies.
An examination of the amplitude characteristic of Wé(s) in Fig. 3.8

reveals that if Wé(s) is multiplied by a constant, which is siightly less than

unit, we will obtain a better derivative on the average. The new transfer

function is

-sT
2 1 -5

WBCS) =C WZ(S) = C -,r- ;—;—-;:ET ° (3-65)
Let us arbitrarily choose C so that Ws(s) = H(s) for sT = j g. Then,

2 C tan g = g H | (3-66)
s0

C = —0>N — = "?— = 0,907 (3-67)

6 tan ;
%
The improved transfer function is
1.8 1-e"5"
WE(S) = =5 =7 ° (3-68)

l+e
and its amplitude characteristic is also shown in Fig. 3.8.

Both curves 2 and 3 of Fig. 3.8 accentuate high frequencies which
may be present at the input because of noise. In this case, a transfer function
whose amplitude characterisfic is like that of curve L would be a more desirable
approximation for differentiation.

The inverse transform of (3-68) completes the synthesis of a
differentiation program. The result is

st) = 28 [T0) - Tem | - stem), (3-69)

The accuracy of this differentiation program may be determined from Fig. 3.8,

Curve 3,

Report R-225
CHAPTER IV

FREQUENCY ANALYSIS OF SOME NUMERICAL YNTEGRATION FORMULAS

In this chapter we apply the methods of freqﬁency analysis to
several numerical integration formulas: the trapezoidal, Simpson's 1/3
rule, Simpson's 3/8 rule, and Weddle's rule, Frequency analysis is
applied to determine the stability of these formulas, compare their ac-
curacy, and compare their transfer functions with that of the ideal

integrator.

h.l Numerical Integration

In the numerical integration of definite integrals, the range
of integration is divided into a convenient‘ number of equal interwvals,
and the values of the integrand are defined only at the ends of these inter-
vals, Essentially this is the same as sampling (or imbulse modulating)
the integrand, Let the distance between samples be T, To obtain an

approximate value of the integral we may determine an nth

order polynomial
that passes through n + 1 of the sampled points and integrate the poly-
nomial over the corresponding range, repeating the process until the com-
plete range of the original integral has been covered. If the sampled
points are joined by straighf:. lines, (approximation by a first order of
polynomial) the resulting integration formula is known as the trapezoidal
rule (each interval of the integrand is approximated by a trapezoid),
Joining the points in each group of three sampled points by a parabola
leads to an integration formula known as Simpson's 1/3 rule, If the

points in each group of four sampled points are joined by a cubic curve, we

Report B-225 Tl

get Simpsonts 3/8 rule, The trapezoidal rule and Simpson's 1/3 rule
are quite widely known and used, but there is another one, called Weddle's
rule, that is used to obtain great accuracy, Joining the pointé in each group
of seven sampled points by a sixth order polynomial 1leads to Weddle's rule. |
In each case the range of integration should be divided into an integral
multiple of ™" intervals, For example, to use Weddle's rule, the range
of integration should be divided into 6, 12, 18......equal intervals,

In what follows we shall designate the transfer functidn of an

ideal integrator as H(s): Thﬁs,

H(s) = (L-1)

il

with which the approximate integration formulas will be compared.

L,11 Trapezoidal Rule

Using the trapezoidal rule the definite integral,

t .
o(t) = £ i(x) ax (L=2)

Y oo

may be approximated by,

ol(t) = %[[i(t) + i(t = T)] + [i(t -T) + i(t - 2'1‘)]4-....,..
(L=3)

The Laplace transform of (L=3) is
0,(s) = 7 [(1 sy @ e r eTh L)] I(s),

(b=b)

Report R-225 ~72-

So the transfer function is
0,(s) ‘ -sT
- 1 - T l+e -
Wl(S) = 5y < 3 I—:—;:ﬁ (L=5)
A little algebra shows that for s = J®,

W, (3 ,
‘rlT(?Z';' = oot & (L=5)

4,12 Simpson's 1/3 Rule
Using Simpson's 1/3 rule the definite integral (L4-2) may be

approximated by

oz(t) =§ { [i(t) + i(t - 1) + i(t - 2‘1‘)]4-

The Laplace transform of {L4-8) is

0,(s) =-3'1: I(s) (14- Le™st + e '2ST) (1+ e~25T . o <bsT, |

(4-B8)
or,

-sT , = _=2sT
o) =F Lrhe _toe (), (u-9)

l-e

* Report B-225 =73=

Therefore, the transfer function for Simpson's 1/3 rule is

02(3) T 14 4e8T 4 o 28T

Wz(s) = “Irs) = 3 1 - . 38T ° (L-10)

Dividing (4=10) by (L-1), letting s = jo and using some algebraic and

trigonometric manipulations leads to the ratio

Wy(joo)
—(——73 o) %2 T :ir(;o:TmT ° (4-11)

Lo13 Simpson's 3/8 Rule
The approximation tothe definite integral (L-2) that is obtained

using Simpsonts 3/8 rule is

05(t) = 2§{ [1(1.-,) #3410t =) + 34(t - 27) + i(t - 37)]4-

[i(t -31) + 3i(t -LT) + 3i(t - 5T) + i(t - 6T) +]
(L-12)

The Laplace transform of 03(1',)‘ is

=38T .° =6sT
03(8) = %Z I(s) (l+ 3e ST 4 3¢728T 3‘389(14- e + e)

(L-13)

I(s) (L=1k)

Report R=225 | =The

Hence for Simpson's 3/8 rule, the transfer function is

: 0.(s) -sT =2sT -3sT
3 = 3T l+3e +3e + e
M) =Sy = § T et ‘ (h-25)

- For s = jw, the ratio of WB(:jm) to H(jw) is

WB(jm) 3 T 1+ cos oT

= . . L=16
TH(Ie) b (1+2cosm‘1‘)tan9§- ()

A considerable amount of manipulation is required to obtain the above form.

®

L.l Weddle's Rule

By Weddle's rule the approximation of the definite integral
(L=2) is

eh(ﬁ) = % {[i(t) + 5i(t = T) + i(t = 27) + 61(1;‘- 3T) +

i(t = 4T) + 5i(t - 57) + i(t - 6T)] + l_;(t - 6T) +
5i(t = 7T) + it = 8T) + 6i(t = 97) + i(t - 10T) +
Si(t - 117) + i(t - 127T)]+.“...,..°...

(L=17)

In the same manner as before, the transform of oh(t) is

‘ _ 3P 1+5 e ST 4 o727, 6 35T 4 e"hST + Se"gs‘r + ecéST
Oh(s) B I¢]] - e=-6§T I(s)}

(L-18)

Report R-225 =75=

so the transfer function for Weddle!s rule is

Oh(s) 30 14 5e5T, e=25T 4 6e~38T 4 e'hs'r + Se'SST+ e=6sT

w’-l(s) = I(S; = 0 1 - a-bs‘f -

(L-19)
By using a considerable amount of algebraic and trigonometric manipulation,

we get for s = jo:

Wh(jw)‘ . 3o l+ 3 cos oTl+ coszﬂ (L4-20)
HGe) T 5 T+ Zcosel) simal |

4.2 Comparison of Numerical Integration Formlas

With the above equations, we can get a complete picture of the
four approximation formulas in both the time and frequency domains,
Equations (4-5), (L4-10), (L-15), and (4-19) are the transfer functions
of each of the numerical integration processes and from these the stability
of each one can be determined. Let us now examine the denominator of each

transfer function, If the change of variable, z = e'ST

s is made, it is
easily seen that the magnitude of the roots of all the denominator poly-
nomials is unity; however, there are no multiple roots. Therefore, each
of the numerical processes is stable,

Now we must consider the accuracy of each of the integration
formulas, Equations (4-6), (h-11), (L-16), and (h;ZO) give the ratio of
the particular transfer function to that of the ideal integrator. In Figure
L.1 these ratios are plotted as functions of T, and we see clearly tha t,

of the four, Simpson's 1/3 rule and Weddle's rule are the best for T

Report R=225 76~

Trapezoidai Rule
seo060see Sim.pson's 1/3 Rule

--------- Simpson's 3/8 Rule
_____ - Weddle's Rule q
A \
|
| ’
\ o '
s .
2.0
i
v | E '
1| '
| R
‘ R
i :
'/ 4
il ,
i '
V]
/‘/ 2
‘/ L
/7
f,’ «*” :
1.0 : el

E===E555=“ﬁF%--_-‘;.ny 2n’ 5n

0.9 s \Z\\\z i °
0.8 :
\

0.6

\
i
|
{
|
|
.'
'A

Figure ho.1 Comparison of Errors in Various Numerical Integration

Formulas

__;i oT

Report R-225 -77-

below % radians, For example, suppose that we wish to integrate a sine

2
wave of radian frequency @ and want the error to be less than 2,5%.
For each of the approximation formulas, how many samples must be taken
in a cycle of the sine wave? The answer can be obtained rapidly from
Figure 4,1 by noting the frequencies at which the amplitude ratios become

0,975 or 1,025, as listed below,

Trapezoidai o T = 30° ; 12 samples/cycle
Simpsonts 1/3 Rule 0, T = 7° 5 5.8 » "
Simpson's 3/8 Rule o T = 60° 3 6.0 n
Weddle's Rule o, T = 80° 5 L5 ¢ "

The number of samples per cycle is indicated for each rule, and this is
obtained by dividing 360° by the indicated angle,

Report R=225

APPENDIX A

Proof that the Locus of. Q(Jm) Crosses the Real Axis either Normally
or Tangentially at @ = 0 and — 2

Recall that Q{s) is given by the polynomial in e-s!,

Qfs) = § be ,° b, =1.

k=0
‘ + .. .
For s = 0 and ~ j 3 Q(s) is real because each term of the polynomial is
real, Since the locus is symmetrical about the real axis, it must cross the
real axis at these points.
In order to examine the behavior of the locus of Q(jw)_ at these

points, take the derivative of Q(s) with respect to s.

Q \ T

ae .’ - -8

& "2 kTbee
k=1

Observer that g—g‘ is also a polynomial in e-ST; therefore, it will also be

real for s = o and-t j%.

Now consider the derivative in the neighborhood of s = o0 and
* j‘%-o If ;4 0 at these points, we will prove that the Q-locus crosses
the real axis perpendicularly. In the region of interest let ds = j 5 ’
daQ

where oC is a small increment of w. Since e must be real (and unequal
to zero as we have assumed), dQ = ij ldQ | in order to 3ati§fy this condition.

(QAGE Do)

We must now discuss the case in which %g = (0 for s = 0 or i;]-‘é-".

Pirst observe that if %g- = 0, Q must have a saddle pointl in the region

near the point where %% = 0, Let us now make the change of variable,

For an excellent discussion of the behaviout of functions near saddle
points, see Guillemin, "The Mathematics of Circuit Analysis;". John Wiley
and Sons, New York, 1949, pp. 298-302.

Report R=-225 «79=

7 = eﬂST, so that Q(s) becomes D(z) which is

D(z) = %m _ b, 2.

In the immediate viecinity of a saddle point, the function behaves as
~ - p

D(z) ¥ C_ + qp(z z,)
in which the C's are constants, z, is the value of 2z at which the saddle
point occurs, and "p = 1" is the order of the saddle point. In this case,
z, = #l. In plotting the locus of D(z), we map the unit circle of the z-plane
into the D-plane (see Fig. A=l).
Consider the map in the vicinity
jy AN z-plane
of a possible saddle point (z = #1).

Observe that for z near 2,

z -2z = dz 1j/dz[. There=

dz | fore, in the vicinity of a saddle
z
point D(z) is
Zy X p
X D(z) = C, + C, (+]laz)",
unit
circle

Fig. A-1 Unit circle in the z-plane that
maps into the D=plane

This readily shows that if "p" is even, the locus in the D-plane (or Q-plane)
is tangent to the real axis., -If "p" is odd, the locus is normal to the real
axis.
We will now summarize the results obtained.
. d9) LN
a) Ifag#()fors 0 or #J75,

the locus of Q(jm) is normal to
the real axis for s = 0 for '_f_j‘%)' respectively. |

Report R=225 =80

b) If %9 =0 for s = 0 or + j4g; Q(s) has a saddle point at the

s
point where the derivative is zero. The change of variable, z = euST,
h permits us to write, D(z) = Co + Cp (z - zo)p for z in the immediate vicinity
of the saddle point., If "p" is even, the Q-plane locus is tangent to the

real axis at the saddle point. If "p" is odd, the locus is normal to the

real axise.

Report R=225

APPENDIX B

Coding of Direct Regression Programs

The regression formula
3(t) = aol(t) + all(t-T) ¥ o0 * ami€t-mT) - blo(t-T) - eee = bno(t -nt)
(B-1)
is to be programmed. Assume that the data and the constants are stored.

as followss

Register Content Registér Content
Noo (Constants) Noe. (Data)
2.0 a, 1.0t (t)
A ay I.1l Tt -T)
o * \ L 3 °
A.m a | T.m T(t - mT)
B.1l -by ‘ 0.1 3t - T)
B.2 -b, 0.2 3{t - 2T)
B.n -bn : O«n B(t - nT)
R.OT Partial and
‘ final results

These registers are not used in the second composite program.

Report R=225 «82-

The program will first be coded in two distinct parts: arithmetic and
manipulative. The arithmetic part performs, at each sampling point, the
arithmetic operations called for by the above regression formula and thus

calculates a new output values

First Program, Arithmetic Port.ionl
Register Content
Noo (Instruction) Result
P.1 ca O.n
P.2 mr B.n
P.3 ~ ts R.0 —p 8t - nT)
P.5 mr B.n-1
P.6 ad R.O
Po7 ts RO 1y b St - DT b 3(t - al)
° . []
P, (ln-b) ca 0.1
etc. mr B.1l
ad R.O
ts R.0 — z b 8(t - kT)
' k=1

ca L.m

nr Aom

ad R.O

o - n

P.(Lin+3) ts R.O — ami(t - mT) - %-1 bk’b‘(t - kT)

1
The code is explained in Sc.D. Thesis "Treatment of Digital Control Systems
and Numerical Processes in the Frequency Domain," J.M. Salzer, Append:l.x 1.C,
Vol. 2, August 1, 1951, M.I.T.

Report R=22% . =83-

Continued:
Register ' Content
No. (Instruction) Result
P.i(n+m) ca 1.0
etco mr A.0O
ad R.O
ts R.O —1s oft)
si _ selects the relevant output device
(as specified by the address section)
P, (hn+hms5) re R.0 records output, o{t), into output
device

It is clear that in this illustration each term of‘the regression equation
costs L instructions.

After the calculation of 6{t) at a particular sampling point
the data storége has to be rearranged for the next calculation: the present
9(t - nT) can be lost, all other ¥(t - kT) are to be stepped down one storage
register, and the new output value, o{t), just computed is put into 0.lj
the rearrangement of the i{t - kT) is analogous, and the rew input value to
be-received goes into I.0. The coded program performing these manipulations

follows,

Report R=225

=8lj=

FIRST PROGRAM;, MANIPULATIVE PORTION

Register

Content

No. (Instruction) Description
Po{Lim#hn+6) ca O.n=1 moves ‘b’E; = {(n=1)T| into location

ts O.n) of 5{t -"nT) and Toses 3(t - nT)

ca 0.n=2 moves o [t (n-=2)'1j into

ts O.n=1 3t - (nel)—lj location

ca 0.1 moves (t - T) into B(t - 2T)

ts 0.2 location

ca R.0 moves &(t) into &{t - T)

ts 0.1 location

ca IT.m-1 moves 1 E - (m=1)ﬁ» into I(t-mT)

ts I.m location and loses I(t-mT)

ca I.0 moves i(t) into i(t = T) location

ts L.l

si selects the relevant input device
(as specified by the address section)
and makes computer wait until device
receives a new input value

rd I.0 reads content of input device into
i{t) location

P.(6m+bn+6) sp P.1 returns control to beginning of

whole program.

Report R=225 -85~

The manipulations are seen to cost 2 instructions per term of the regression
equation,

There are various ways in which this program can be streamlined.
The ﬁain considerations are storage and time. It is possible to save
substantial storage (with a sufficiently long regression equation) by
programming the 6 inétructions (L4 arithmetic and 2 manipulative) required
for each term only once and using them over and over for the various terms,
each time. In order to do so, a short program must be added to change the
appropriate address sections in the 6 instructions, which can thus be
made to compute a different term each time. This address~changing routine
materially lengthens the time of calculation, unless some very specialized
instructions or equipment is designed.

It appears more desirablekto concentrate on reducing the time
requirements in most control applications, for storage is easier to increase
than speed, which seems to be the ultimate 1iTitation in the applicability
of digital computers to controlling. In our éresent example a notable
reduction in time, and also in storage, results from mixing the arithmetic
and manipulative steps and using a new instruction,; ex, which exchanges
the content of the storage register specified by its address with the
content of the accumulator. The corresponding coded program, which still

uses the same constant and data storage, follows.

This instruction is actually used in Whirlwind applications on a temporary
basis. The code used for this instruction is ge to indicate its temporary
naturej final adoption of this instruction, however, is likelye.

Report R-225

-86=

SECOND PROGRAM, COMPOSITE

Register Content ‘
No, (Instructions) Results
P.1 ca Oen
P.2 mr Ben :
P.3 ex Ovn=1 1% into Storage: -b_B(t - nT),
partial result "
&4— into AC: Tt - (n-1)7)
P.ly ts O.n 1y puts Bt - (n-1)T| into o(t - nT)
location for next sampling,
AC still holds B[t - (n-1)T]
P.S ‘mr Bon-1 '
P.6 ad O.n-1
P.7 ex O.n=2 15 into Storage: partial result
<}— into AC: B[t - (n-2)T]
P.8 ts 0n-l s Bt - (0-2)T] to st - (n-1)])
location
Pohﬂ“? mr B2
etc. ad 0.2
ex O.1 —+s. into Storage: partial result
<«}— into AC: B(t - T)
ts 0.2 —> ot - T) todlt - 2T) location
mr B.l ‘
ad 0.1
ex I.m —> into Storage; partial result
S bk'a;(t - kT)
k=1 '
44— into AC: T(t - mT)
mr A.m
ad T.m
ex I.m-1 —3 into Storage: partial result
" &+ into AC: Tt - (m-1)T]
P.un+3 ts Tem —45 T - (m-1)T to T(t-nT) location

Report R-225 -87-
Register Content
" Noe _(Instructions) Result
° ° ”
Po(hn*hm"a) nr A.Z
| ad XI.2
ex I.1 —is into Storage: partial result
<~ into AC: i(t - T)
ts I.2 _}y T(t - T) into T(t - 2T) location
mr A.l -
. ad I.l
ts 0.1 — into Storage: partial result
(note content of 0.1 has already
been used so that this register
is available)
si selects the relevant input device
(as specified by the address section)
and makes computer wait until device
receives a new input value
rd 1.1 reads content of input device,
i(t) into I{t - T) location
mr A.O
ad 0.1
ts O.l —> into Storage: final result
(1) into B(t - T) location
si selects the relevant output device
(as specified by the address section)
rc 0.1 records output, o{t), into output
device
P.(ln+him+6) sp P.1 returns control to beginning of

program

Report R-225 -88-

The above composite program is seen to result in considerable
saving of storage and time over the first program, which was given mainly
for illustrative purposes. It uses four instructions per term calculated
rather than 6, and even saves two data registers, I.0 and R.0. Register I.0
is not needed because the incoming data is immediately used in the calculation
while register R.0 is superfluous because the partial results can be stored
in the register from which the data has just been removed for calculation.

One should note another important advantage of the second program:
to all practical extent, it eliminates computational delays entirely.

This is so, because all the computation is performed in advance of receiving
the input, and when the input value 1(t) is received, there are only a few
instructions to be carried out in order to obtain the output, ¥(t). Only

direct regresSion programming has this advantage.

The tally of direct regression composite programming in terms of
m and n, the degree of numerator and denominator polynomials of the program
transfer function, is as followss:

Time requirement (in number of

instructions to be carried out
in sequence at each sampling) bm + kn + 6

Storage Requirements:

Constants men+l

Data m+n

Instruction

Total bm + bn + 6
bm + 6n + 7

The above tally is made under the assumption that none of the constants

are zero. If some constants are zéro, the constant and program storage,

as well as the time, requirements will be reduced, but not the data storage
requirement. These more specific requirements are taken into account in

the summary of Art. 3.35.

Report R=225

APPENDIX C

Coding of Cascaded Programs

The set of regression equations
ol(t) = i(t) -dlol(t-T)
oz(t) = ol(t) * czol(t-?) -dzoz(t-T)
* (Cc-1)

ott) = a [5, (6) « ¢ By (b-1)=d B(1-1)]

is to be programmed. Assume the following arrangements of number storage:

Register Content Register Content
No. (Constants) No. (Data)
D.1 -4 | 0.1 ﬁi(t-T)
D.2 | -d, 0.2 Bé(t-T)

o * [3 L
Dcn “dn O.n 3€t - T)
C.2 ¢y R.O Partial Result
L) .
Con c
n
A.0 a
o

Report R=225

 =90=

In the coded program to follow it is assumed that none of the indicated

k

program instructions follow.

c, is zero; i.es, m = n = 1, Variations are easily accounted for. The

Register Cantent .
No. - (Instruction) Descr1ption
P.l si selects input device and waits until
device has new input value, i{t)
P.2 rd R.0 —> reads 1(t) into temporary location
PQB ca 0.1
P.y mr D.1 -dlol(t - T) obtained
P.5 ad R.0 zrl(t) obtained
P.6 ex 0.1 -5 to Storage: ¥,(t) into T, (t-T)
1 1
location ,
< to AC: & (t - T)
P.7 mr C.2
P.8 ad 0.1 a'l(t) + czb'i(t - T) obtained
P9 ts R.0 . ‘to Storage: partial result
P,10 ca 0.2
Poll mr D.2
P,12 ad R.O 5,(t) obtained

Report R=225 ~9
Continued:
Register ~ Content :
No. (Instruction) Description
P.(7n-S) ex Oun=1 {3 to Storage: ¥ _,(t) into
cte. 3;_1(t-T) location
“— to AC: on_l(t-T)
‘mr O.n
~ ad O.n-l 3n_1(t) + cnﬁh-l(t'r) obtained

ts R.0 ——> to Storage: partial result

ca O.n

mr Den

ad R.O

mr A.0 9(t) obtained

ts O.n 4 to Storage: T(t) into B(t-T)
location

si __ select output device

rc Oen records output, S(t), into output
device ‘

P.(7n+3) sp P.l returns control to beginning of

program

Thus, if m = n - 1, the program is Tn + 2 instructions long. Suppose

m=n -2 and let ¢, = O3 then the sequence P.6 through P.12 above would

2
be replaced by the following shorter seéuence_PJ.9 through P'.12.
P'.9 ts 0.1 - puts '5’1(t) into 31(':,-1') location
P'.10 ca 0.2 |
Pf.ll ‘mr D.2
P'.12 ad 0.1 T,(t) obtained

Report R-225 ~-92-

Thus, each ¢ = O saves 3 instructions.

The tally for cascade programming can now be written:

Time Requirements: 3m+ Ln+ 5

Storage Requirement:

Constants me+n+1l
Data n
Temporary 1
Instruction ’ 3m + bn + 6
Total | m + én + 8

Comparison of these requirements with those of other methods -of programming

is done in Art. 3.35.

Report R=225

APPENDIX D

Coding of Parallel Programa

The set of regression equations

7 (1)

5,(t)

(1)

3(t)

is to be programmed.

= fiI(t} - diBl(t - T)
- féI(t) - déa%(t -T)

L

- r;i(t) - d£3;(t -T)

=‘6’1(t) .#’6'2('0) ¢ .. +’3n(t)

(D-1)

Assume the following arrangement of number storage:

Register Content Register Content
No, {(Constants) No. Data
Dol -dl dol 3‘1(t - T)
D.2 -d,, 0.2 CACKRY)
D.n -a_ 0.n ACEE)
F.l £ I.0 i(t); also oft)
F.2 f2
F.n 'fn

None of the constants can be zero. The program instructions follow.

Report R=225

Register Content
No. (Instructions) Description
P,1 si ___ selects input device and waits
until device has new input value;
1(t)
P rd I.0 —43 reads I(t) into its assigned
storage register
P.3 ca 1.0 . |
P.l mr F.l
P.5 ex 0.1 —> to Storage: £,1(t)
<«4— to AC: 61(t -T)
P.6 mr D.1
P.7 ad 0.1
P,8 ts 0.1 4y to Storage: o (t)
P.9 ca I.0
P.10 mr F.2
P.11 ex 0.2 —-3 to Storage: i‘_z?.'(t)
| ¢— toAC: T(t - 1)
P,12 mr D.2
P.13 ad 0.2
P.14 ts 0.2 —> to Storage: 0,(t)
P.(6n=3) ca I.0
etc, mr F.n
ex O.n —4> to Storage: fn?i.'(t)
4---‘ to AC: T (¢t - T)

Report R-225 -95-

Register ' Content
No. (Instructions) Description
mr D.n
ad O.n
ts O.n —+> to Storage: ’o‘r'l('t)
P.(6n+3) ad O.n=l o,(t) +73__,(t) obtained
ete. ad O.ne2 etce.
e .
ad 0.2
ad 0.1 B(t) obtained
P.(Tn+2) ts I.0 — to Storage: B(t)
etc, si __ selects output device
rc I.0 records output, 3(t) into
output device
P.{7n+5) sp P.1 returns control to beginning of
program

In parallel programming none of the indicated constants can be
zero, and the only possible saving is when several constants have the same
value. Even then the program itself is not affected materially.

The tally for parallel programming follows:

Time Requirement m+ 5

Storage Requirements:

Constants 2n

Data e n+l
Instructions . ™ ¢ 5
Total , 10n + 6

Further discussion of these requirements is left to Art. 3.35.

