
Report R-225

Summary of

TREATMENT OF DIGITAL CONTROL SYSTEMS AND NUMERICAL PROCESSES

IN THE FREQUENCY DOMAIN

{Sc.D. Thesis in Electrical Engineering, M.I.T., 1951, by

J .M. Salzer} .

.Edited by

John W. Craig, Jr.

DIGITAL COMPUTER LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Cambridge 39, Massachusetts

July 1, 1953

Report R-225

'.<FOREWORD

This report is a condensation of the doctoral thesis of

John M. Salzer. The condensation was made so that the work could receive

wider circulation than was possible with the original document which is

quite long. For those needing greater detail than the condensation provides,

the complete report is available on loan from the Digital Computer Laboratory

or can be obtained on Microfilm from the M.I.T. Library.

Signed:~W. ~r
John W. Craig, Jr.

Approved: ~~
W .K. Linvill

May 25, 1953
Approved:

--~~~~--~------

Report R-22S

ABSTRACT

This thesis develops methods of frequency analysis and synthesis

of digital computer programs describable in the form of a linear difference

equation with constant coefficients.

The mainspring of this investigation was the need for dealing

with control systems consisting of both analog and digital filters.

Most conventional control ·systems consist of analog units and operate

on continuous data, but digital computers use sampled data. A uniform

treatment of the two types of data is essential in the analysis of control

systems incorporating a digital computer. The conventional method of

treating systems operating on only continuous data uses Fourier or Laplace

transformation} that is, transformation to the frequency domain. The

conventional method of treating digital programs is numerical analysis, which

deals almost exclusively in the domain of the independent variablel that

is, the time domain. By exploiting and further developing those areas of

numerical analysis to which frequency-transformation techniques were

applied, the thesis points the way to a common language of dealing with a

mixed-data system.

If data/are sampled. at equal intervals of time (a practical

feature), description of a linear computer program always reduces to a

difference equation. It is possible to describe such a program by a transfer

function in the frequency domain in a manner ana+0gous to the conventional

description ot analog filters. Whereas components using continuous data

have transfer functions which are rational functions of the complex frequency

iii

Report R-225

variable !, those of a digital program are rational functions of ~ = e-sT,

where ~ is the Naperian base and T is the constant interval of sampling.

Having described the dig! tal computer with its program by a

transfer function, one may apply all the techniques of complex-variable

and transform theory to deal with digital filters. Theorems on realizability,

stability and other properties of programs are developed, and the amplitude,

phase and locus of a program are defined. The adaptation of the methods

of analog filters to digital ones is direct, although the necessary

modifications are often significant.

The synthesis of computer programs can be conducted along lines

employed in the synthesis of networks. First, the desired frequency charac-

teristics of the program are stated; next, a rational function of

z = e-
sT ~s found which approximates the desired characteristics for real

frequencies, s = jw; finally, the program is realized on bas~s of the

approximat~ng transfer function. For facilitating the approximation

basic entities or blocks of programs are analysed and methods are shown

by which such programming units can be combined to obtain the frequency

characteristics of the complete program. Various methods of program

realization, that is, programming, are developed and compared on the

basis of time and storage requirements, and criteria are developed to

permit the choice of the optimum programming procedure by considering

the mere form of the program transfer function.

Numerous examples of program analysis -and synthesis are shown,

and one example of synthesizing a program for the compensation of a control

system is worked out. The latter example shows that the frequency analysis

of a complete hybrid system can be undertaken along the conventional lines

and that digital compensation of a control system is possible.

iv

Report 1-225

The application of the methods of the thesis to various problems

in numerical analysis is also shown. The problems of convergence (stability)

and of truncation errors (approximation) can be analyzed in the frequency

domain effectively_ The study of convergence ~y conformal mapping is related

to the usual methods, and a novel way of estimating truncation error is

shown provided only that the function to which the numerical process is

applied can be described by its frequency spectrum.

v

Report R-22,

FOREWORD

ABSTRACT

INTRODUCTION

TABLE OF CONTENTS

CHAPTER I. DESCRIPTION OF THE SAMPLING PROCESS

1.1 Sampling a Continuo'Us Function

i.2 E ui valent Mathematical Model. of .. I.deal_ ..
odulation

1.4 Laplace Transforms. of Impulse Modulated Functions

Page

11

iii

1

5

S

6

8

9

CHAPTER II. TRANSFER FUNCTION OF COMPUTER PROGRAMS -- REALIZABILITY
AND STABILITY . 18

2.1 Transfer Function of Linear, Real-Time Digital Computer
Programs 18

2.2 Stability of Programs 21

2.3 Loci of Q(s) 26

CHAPTER III. ANALYSIS AND SYNTHESIS OF LINEAR, DIGITAL COMPUTER
. PROGRAMS IN THE FREQUENCY DOMAIN 31

. .

3.1 Reasons.es. of Programs .. at Real Frequencies 31
1

3.2 Analysis of Building Bl.ocks-of'd.Tr1msfer Functions 31

3.3 Realization of Programs.from their Transfer Functions

3.4 Synthesis of Programs in the Frequency Domain

vi

39

64

Report R-225

TABLE OF CONTENTS

(Continued)

CHAPTER IV. FREQUENCY ANALYSIS OF SOME NUMERICAL INTEGRATION

Page

ro~ 70

4.1 Numerical Integration

4.2 Comparis_on of Numerical. Integration Formulas

APPENDICES

.A. Proof that the Lo_cUB of Q(jeo) Cross.es the Re_a1 Axis Either

70

75

Normally or Tangfmt•i a1 'y .at .. (1) = _0 .arid ! 2 78

B. Coding of Direct. Regression Programs.. 81

c. Coding of Cascaded Programs _ 89

D. Coding of Parallel Pro~rams 93

vii

Report R-225

INTRODUC nON

The use· of digital computers in control sys tems is now coming

into the fore. Unlike most conventional control sye terns involving analog

units which operate on continuous data, a control system employing a

digi tal computer of the present-day type must use sampled data in the

part of the system involving the digital computer. Hence, some parts

of this system use continuous data and others, sampled data. The Fourier

and Laplace transform methods of} analyzing continuous-data control systems

is well-mown and developed, but the conventional treatment of digital

computer progrBms is by numerical analYSis or in the time domain. There-

fore, in order to apply the methods of frequency analysis to control

systems involving dig! tal computers (mixed-data systems), the sampled

data part of the system must be described in the frequency domain. Some

work along these line s has been done but it must be further developed.

An .analog system is a physical model of a set of differential

equationSI whereas, a digital system is a physical model of a set of

difference equations. Operational and transform methods have been applied

to difference equations for some time. In 194.2 Gardner and Barnesl

presented a comprehensive and s.rstematic treatment of the solution of

linear difference equations with constant coefficients by the Laplace

transform method. However J they do not deal with stability and errors

1 Gardner and Barnes, Transients in Linear Systems, John Wiley and Sons
New York, 1942, Chapter IX.

Report R-2?5

which are important in control applications. The control point of view

is stressed in Tustin' sl work on time sequences. In 1949 and 1950 Tustlnl s

method was further developed by Madwed2, who shows the relations of his

aspects of stabilit,r, but they do not analyze the errors associated with

their approximations.

In the meantime I Hurewicz3 pioneered the analysis of pulsed

filters in the frequency domain, developed stability cri teria, and

showEld several examples of choosing parame ters. I t should be noted,

however, tha,t Hurewicz' s til ters are only simple units such as differ-

entiators and lead networks, which are incapable of performing involved

computations as a computer can. Also, Hurewicz evaluates the output of a

pulsed filter at the sampling instants only. The behavior of the filter

between pulses remains a separate problem, and no ready methai is pre-

sented to investigate the whole question in the frequency domain.

W. K. Linvil14 shows that sampling a continuous function is.

equivalent to the modulation of a series of unit impulses by the function.

The result is a new time function which can be thought of as being applied

to the sampled data part 0 r the sys tem. Furthermore, this new time

function has a Laplace transform; thus a frequency-domain analysis is

possible. Linvill shows that reconversion from discontinuous to continuous

1 Tustin, A Method of Anal sing the Behavior of ~near stems in
lerms of Time Series, J.I.EEo Vol. 9 , Part 2A, 1, pp. 130 - 1 2.

2 Madwed, Number Series Method of Solving Linear and Non-Linear
Differential Equations, SC.D .. thesis in Mechanical Engineering, MIT.

3 Hurewicz , Filters and Servo Systems with Pulsed Data, Chapter 5 of
James, Nichols and Phillips, Theory of Servomechanisms.

4 Linvill, W.K., Analysis and Design of Sampled-Data Control Systems,
Digi tal Computer Laboratory, MIT, Report R ... 170. '

Report R-225 ... 3-

data is -a filtering process and also shows what happens when the loop

is closed on a mixed data system. He is concerned only wi th the effect

of sampling on the system and d:>es not consider the influence of digital

computer operations on the system.

1 This report is a su.mmary of the work done by Salzer. His

results permit the analysis of linear digital computer programs in the

frequena,y domain; i.e., the operation of a digital computer program is

described by a transfer functiono Thus the field is opened for the

complete analysis and s,ynthesis, wholly in the frequency domain, of control

systems employing digital computers 0

From the frequencr,r-doma.in point of view, conditions governing

the realizabilit,y of program transfer functions are developed, the problem

of stabiIi ty is studied, and conditions to insure stability are given.

Three methods of realization of programs from their transfer functions are

presented, and the time and storage requirements of each are studied. An

elementary example of transfer function synthesis is gi veno As in the case

of network_ theory, the analysis of a computer program in the frequency domain

is straightforward with a unique result, but the synthesis of a transfer

function has many alternate realizations. Also as in network theory, the

characteristics of the transfer function to be realized may not be given

directly in a form leading to immediate realization but an internediate

approximation problem may need to be solved. The background for solving

the approximation problem has been set up in that conditions of physical

1 Salzer, J oM., Treatment of Digital Control Systems and Numerical Processes
in the Frequency Domain, SC.Do thesis in Electrical Engineering

Report R-225 -4-

realizabili ty have been derived and methods of realization of all

realizable transfer functions have be-en} obtained. While s>me work has

been done directly on the approximation problem, much remains to be done

in this respe ct.

The function of this report is to provide a concise picture

of the frequency analysis of digital control systems and numerical pro­

cesses. The first chapter describes the processes of sampling and de­

sampling continuous functions and indicates that sampling is anal~gous

to impulse modulation while desampling is analagous to ripple filtering

in demodulation. Thinking of sarr:pling as impulse modulation allows one

tD rela te the sampled to the continuous function in ei ther the frequency

domain or the time domain. Furthermore, thinking of sampled functions

as impulse modulated functions allows one to characterize linear computer

operations on the sampled functionS b.Y transfer functions.

Chapter II deti vas the conditions of physical realizability

for computer-program transfer functions, discusses stability conditions

on these transfer functions, and presents procedures for plotting transfer

loci.

Chapter' III deals with techniques for realization of transfer

functions with some attention to the approximation problem, while Chapter

IV deals with frequency analysis of sone numerical integration formulas.

Report R-225

CHAPTER I

DESCRIPTION OF THE SAMPLING PROCESS

1.1 S~pling a Continuous Function

A digital computer operates on numbers that represent samples of

continuous signals taken at discrete instants of time. The time interval,

T, between samples is a constant as shovm in Figure 1.1, page 7. In this

case, the input to the computer is the sampled function, i (t). The com­

puter senses the amplitude of each of these pulses (as a number) and

operates on the number.

The purpose of this chapter is to describe the sampling process,

to characterize it ma thema tically, to evaluate how well a continuous signal

may be represented by its sanples, and to show how and under what conditions

a ,continuous signal may be recovered from its samples.

The mathematical model of the sampling process which will be de­

rived later is very similar to actual physical processes. For example,

assume that i (t) is the voltage across a pair of terminals of some net­

work. How might it be sampled? The voltage may be sampled by connecting

a condenser across the terminals, allowing a current flow to build up a

charge on the condenser un til the condenser voltage is equal to the terminal

voltage, and then disconnecting the condenser. In order that the condenser

voltage be equal to the terminal voltage at some instant of time, the

sampling time should be a s small as possible. I t may be made very small, but

not ~ero. The total charge on the condenser is the ;integralof. the c~t

Report R-225 -6-

flowing over the time required to take the sample. Thus, as the

sampling time decreases, the current intensit.y must increase.

Physically this is how sampling might be done. Ideally, however,

we wi sh to take the sample ins tan taneously or in zero time. Therefore,

for ideal sampling in the above example the current ·flow must be infinite

for zero time at each sampling instant. Thus, in the ideal case the

charging current is an impulse whose area equals the amount of charge

required to build up the condenser to the sampled value. Physically,

ideal samp~ng is not possible, but the idea permits us to set up a

me del of sampling that can be treated rna thema tically •

1.2 Equivalent Mathematical Model of.I4eal SaS'ling - Impulse Modulation

The ideal 8i tuation in, the above example is to transfer to the

pIa tes of the condenser a portion of charge in zero time, or to "hit" the

condenser with an impulse of current. The same end can be obtained if we

modula te the voltage waveform with an inf'ini te series ,of unit impulses

separated by equal intervals, T, as shown in Figure 2. 1.be area of any

one of the modulated impulses equals the value of the input function at the

corresponding ins tant of time. Thus, impulse modulation is ana]Q.gous to
1

the process of sampling. The samples of Figure 1.1 have finite height, zero

width, and zero area; therefore, the sampled function does not have a Laplace

transform. '!he is'ulses of Figure 1.21 have infinite height, zero width,

1 The bar (-) over i{t) indicates the sampled functions.

2 The circumflex ~ over i(t) indicates the impulse - modulated function.

Report R-225 .;.71-

I i(t)
I

t
-4'1' -3'1' -2T -T o l' 21' 3T 4T

a. Continuous input functiono ~h~ight • i(2T)
III' I{tf) 40

• • 0 0 .. 0

...... , -4T -31' -2T -1' o T 21' 31' t

Figure i .• l Re1 ationbetween continuous and sampled functions

:i.(t)

t
-41' -31' -21' -1' 0 l' 21' 31'· 41'

i(t) ~ea • i(2T)
I~ 1-\ 1\ /' J\ 1\

1\

I
~, I~

, t
-4T -3'1' -21' -'1' '0 '1' 2'1' 3'1' 4'1'

a. Continuous input function

Figure 1.2 Relation between continuous and impulse modplat,d functions.

Report R-22, -8""

but non-zero area; therefore, the impulse-modulated function does have a

Laplace transfor.m, which is why this mathematical model has been set up.

1.3 Use of Impulse Modulated Functions in the Analysis of Linear Digital
Computer Programs

A digital computer operates on numbers that occur at discrete

instants of time, i.e. it operates on samples of a continuous function.

In the previous section it was shown that for the ideal case, sampling is

equivalent to impulse modulation. If we think of the computer as ttsensing"

the amplitude of samples, we may just as easily think of it as "sensing"

the area of impulses .Wi th this extension or rna. thema tical model, we may

analyze computer programs by describing the input to the computer as

impulses instead of samples. Since a sample does not have a Laplace trans-

form, while an impulse does, the advantage of this extension is immediately

obvious. In this mathematical model, both input and output are treated

as impulses, and both have Laplace transforms. In conventional (continuous-

data) systems, the transfer function is the ratio of the transform of the

output to that of the input. Since both input and output of computer

programs (when treated as impulse-modula ted functions) have transforms,

we may define the transfer function of a linear computer program as the

ratio of the transform of its output to the transfonn of its input. In order

to carry out this analysis, we must have a knowledge of some of the properties

of impulse-modulated functions, or impulsed functions. The remainder

of this chapter is devoted to a discussion of sone of these more useful

properties.

Report R-225 -9-

1.4 Laplace Transforms of Impulse-Modulated Functionsl

O~~ analysis of computer programs is restricted to the cases in

which the time interval between samples is a constant, T. Thus, the

impulsed function can be expressed as the product of a continuous input

function and an infinite string of unit impulses, the interval between

impulses being T.

As the following derivation will show, the process of impulse

modula tion may be readily described in the frequency domain. EssentialJ.;v ,

since the string of unit impulses (which is the carrier) has all harmonics

of equal amplitude, the impulse modulated wave has an infinite number of

side-bands rather than just the two which are present for a sinusoidal

9.arrier. The method of the derivation is to;<make:: a"l"Fcilurier.,:'artal$siis· of

the carrier and to associate each side-band of the impulse modulated wave

with a Fourier component of the carrier. Let i(t) be the conti~uous input

!unction and b __ IL(t - kT) be the infinite string of unit impulses.

(p. (x) = un! t ~pu1se oc curring at x = 0 J Then the :Lmpulse -modula te d input

function is,.~

N
i(t) = i(t) (1-1)

To find the Laplace transform of (1-1) let us first find the

complex Fourier series of the string of unit impulses.

.&.> __ ~ ~(t - kT)= ~~_~ c
k = _Q::::> m = _0- m

ejm.1lt (1-2)

1 A more comp]e te derivation and discussion of the transforms of impulse
modula ted runc tions is given in Reference 2, page 3.

,Report R-22, ... 10-

In (1-2), JL = 2 1'1' ' ~. The c m s are the complex Fourier coefficients.

Solving for cm in the usual manner we have l

1 c =­m T

T/2

J (J.(t - kT) J e -jm..!\.t dt.

-T/2

(1-3)

1\1 writing out a few terms of the series, (1-3) becomes,_

T/2

em = ~ 5 [......... + (J.{t - T) + (J.{t) + (J.Ct + T) x ••• J e -jm.!\t dt

-T/2

Within the range of the integral, the only term inside the bracket of the

integrand that is non-zero is the term, tJ.(t). Thus (1-4) becomes,

T/2

5 (1-5)

-T/2

Because of the, unit impulse in the integrand, the value of the integral is
_·m1\-t

just e J evaluated at t = 0, which is unity. Therefore,

1 c = m T (1-6)

and the Fourier series of a string of unit impulses is,

,) 1 > p.(t-kT = T (1-7)

k= -~ m=

Report R-22, -11...,

Then the impulsed function becomes,

i(t) = -T-
~b

>
jmSLt e (1-8)

m=--<1

Now take the Laplace transform. of the above equation.

'1(6) = L ~(t) 1 = L ~~t) (1-9)

The indicated summation can be done after the transformation is made.

/'J 1
I(s) = T

m - - C!\c::)

L [i(t) (1-10)

A fundamental theorem in Laplace transform theor,y leads directly to the

following result:

rr (s) = ~ I (s + jmJ\..) (1-11)

m = - CIIII:::l

Thus we see that the Laplace transform of an impulsed function is periodic

having a repetition interval of j..JL ..
, rv

An important fact about I (s) should be observed from (1-11). It
r-

is that there is a unique correspondence between I (s) and I (s) if and

only if the frequency spectrum of i(t), the continuous time function" lies

in the range, -~< c»(--t- If the spectrum of 1(t) lies outside this

range, 1'(s) will s~cify the spectr~ (in the range -~<oo<~) of a

continuous time function, but this time function will differ from the

Report R-225 -12-

-~ 2

A. Specturm of i(t)

B. Spectrum of let)

o

Figure 1.3 Unique Correspondence Between ICa) and I{s)

Report R-22.5 -13-

original time function. Thus, there is a limitation of bandwidth

caused by sampling. Figure 1.3 illustrates the case of unique corres-

pondence, and Figure 1.4, the case in which the spectrum of i(t) is too

wide.

. ,-.
As given by (1-11), I (s) consi s ts 0 £' an infinite number of terms;

however, an infini te series is difficult to handle, and it is desirable

~
to have a closed form expression for I(s). This can be obtained from

the partial fraction expansion of I(s). Consider a t.ypical term,
Ki

s - s.'
l.

of the partial fraction expansion of 1(s). Referring to (1-11) we see

that corresponding to this typical term, /f(s) will have a typical series of

terms of the form,

K.
].

T
00 1 -> s - s. + .jk""O-

k = _ CIt:t l.
•

Thus we see tha t the pole at s = si is repeated .ap infinite number of times

at intel"vals of j...n., the line through these poles being parallel to the

imaginary axis in the s - plane.

A closed form equivalent of the above typical series can be

obtained b.1 a change of variable in the following equation.l

1

2
'IT z' cot rr 'z = 1 + 2 z· L

n=l

1

- n
2 (1-12)

Knopp, "Theory and Application of Infini te Series lt , New York, 1948, p. 419

Report R-225

111 (joo)1

1.iJ.
, 2

A. Spectrum of i1(t) whose spectrum is too wide for the sampling

rate.

o

B. Spectrum of 11 (t).

o

..Q.
2

c. Spectrum of i 2(t) that would produce the same sampled function

as (B).

Figure 1.4 'Illustration of ,1~andwidth Limitation Caused sy Sampling.

Report R-225 -15-

Divide each side of (1-12) by Z'" and make the change of variable, ~ = j ~. , ..n...

tr co -'L m
TI' cot j ::n:- = jo) - j2 :rc 0.0

>
n=l

Multiply both sides or (1-13) by jilL.. and obtain,

1
co2-- 2

.1'L~ + n

J. _It • It co It It co 1 .. ~; . 2co ..n. cot J:rc = ..rr coth ::n:- = 00 + ... _ .. _ 002 + n2 ...n... 2
n=

(1-13)

(1-14)

The infinite series of poles ofT(s) corresponding to a pole of

I(s) at s. can be put into a form that is identical to the right-hand member
l-

of (1-14) as follows: separate the term for k = O.

'd: _"'" S - si /jkK. = S _lSi· + >: = l~-S~ + jk~ S-S~ - jIt~

Combine the two terms in the- summation.

~ 1 _ 1 + ~ » _ s - si + -jkIt - s - s1 .. > __ _
k--~ k=l

A comparison of (1-14) and (1-16) shows that,

1
s- s. + jkSL

J.
= ooth

2(s - s)

TJ' (s - Sj) .

-fl-

(1-15)

'hi L"1V) \.:,L-lo:i /

(1-17)

Thus we haye the following closed form equivalent of the typical series of

I{s), .

> (1-18)

k = - 00

ReportR-22S -16-

for a· pole of I(s) at s = s.. Therefore, corresponding to the partial
1.

fraction expansions of I(s), we have the following series for~s).

n

L. Ki ooth ~
i=l

(8 - s.) ,
1.

where "nit is the total number of poles of Ie s), ta1d.ng into account multiple

poles.

Let us now investigate the limitat:lons on the positions of the

poles of r'(s) due to sampling. Co~sider an infinite strip of width.J")... in

the s.-plane and parallel to the real axis as show in Figure 1.5. Assume

tha t all the poles of I(s) lie wi thin tnis strip and in the left half plane

(LHP).
~

Thus, ICs) has

x

I

'---------

s.
1.

s-:!-.
1.

jw

s-plane

----- - --------*-

Figure 1.5 Infinite Strip Containing Poles of I(s)

Report R-225 -17-

t
poles at these points plus poles at points shifted from the s. sand

. 1

s*. 's (* means conj'w.gate) by the distance t.jk ...n. • Since ~(s) has
~

poles only in the strips being considered, there is a one-to-one correspondence

between the poles or I{s) andI(s) that lie in the same strip. However,

if I(s) had poles outside this strip, there no longer would be this one-to-one

correspondence.

Report R-225

CHAPTER II

TRANSFER FUNCTION OF COMPUTER PROGRAMS - REALIZABILITY AND STABILITY

Using the properties of impulse-modulated functions given in

Chapter I, we are now ready to investigate transfer functions of computer

programs. Our interest in program transfer functions is much more than

academic. The transfer function describes the program completely and

with it we can analyze and synthesize control systems employing digital

computers by conventional frequency domain methods.

In this chapter a linear digital computer program is defined in

terms of the mathematical model of sampling set up in Chapter 1., its transfer

function is derived, and methods for determining the realizability and

stability of transfer functions are given. Several examples of stability

determination are also presented.

2.1 Transfer Function of Linear, Real-Time, Digital Computer Program

As pointed out in Chapter I, the. input to a digital computer

may be assumed to be an impulsed function, for purposes of mathematical

analysis. A linear program of a'digital computer operating in real time

is one in which the present output is a linear function of the present

and past inputs and the past outputs.. The general form of this rela.tion

is,
m -.. n

oCt) = L ak iet CD kT) - > bk o{t - kT),

k-O k=l

in which all ~'s and bk's are real, and T is the time between samples_

The time required for the computation must be less than T if each

calculation is to be completed before the next input arrives.

Report R-22, -19-

Taking the Laplace transform of (2-1) yields,

--) -().~ -ksT rJ) m -ksT
O(a == I s ~ ~ e - O{s.> bk e •

-k == 0 k = 1

As in continuous data systems, we will define the transfer function

of a computer program as the ratio of the transform of the output

to that of the input 0 Let W(a) be the transfer function of a computer

program; then,

W(s) :Ii '0(5) 0

ICs)

Solving for n{s)/ Its) from (2-2) we ob~~n,

L ~ e-
ksT

wee) • 0'(5) I: _k_-_O ___ _

I(s) n
1 + L. b. e -kaT

k == 1 k

(2-2)

(2-3)

(2-4)

as the transfer function of a linear, real-time, digital computer program.

With the understanding that b = 1, (~-h) becomes,
o

wes) == (2-5)

The inverse steps from (2-5) to (2-l) are unique; therefore,

(2-,) is the general form of the transfer function of a realizable, linear,

digital computer program~. Thus, to be realizable, the transfer function

of a linear, digital computer progran. must be expressible as the ratio of

two polynomials in e -sT. The criteria for stability will be di scussed in

a late,r section.

Report R-225

It has already been shown that the Laplace transform,I(s), of

the impulsed input function is periodic of period...!"L, as seen in (I-II).

By showing that W(s) is also periodic with the same period, we can prove

that a(s) is also periodic of period ..n... e A typical term of either numerator

() ksT (or denominator of W s contains e 0 For s ~ s + jmfl m is a posi ti ve or

negative integer), the typical term becomes 9

-k(s ... jmn)T -kaT -j1on fiT
e ,:,=e e 0

As T~ = 2w and k and m are integers, the second factor is,

-jlon £L.T j2trkm 1 e = e = 0

Hence,
=k(s • jm~)T . -ksT

e = e •

Therefore, the terms of th~ numerator and denominator pt:W(s) are periodic

of period.(l, and so is W(s)o In equation form this means, W(s) lit

W(s .. jm£L), for m a positive or negative integero The pr()duet of two

periodic functions is also periodico Since O(s) = W(s) I(s), O(s) ie also

periodic of period~, as indeed it should because the computer output is

also sampledo

Since all the coefficients of (2-5) are real, it is readily

** seen that w{s) = W{s),. in which the asterisk means conjugateo For real

* frequencies this becomes W(jco) = W(=jco). This fact together with the

. periodicity of Wes) tells us that W(s) is completely specified for all s

if it is defined over the range, 0 ~(O~~

Summary~ In order to be realizable, the transfer function of

a linear digital computer program must be expressible as the ratio of

polynomials in e sT 0 W(s) is periodic of period..n...9 ioeo, W(s) •

W{s + jm..f1.). Specification ofW(s) over the range, 0 ~ co 61; completely

determines W(s).

Report R-225

202 Stability of Programs

We have expressed the transfer function of computer programs as

a function of the complex frequency "s"g therefore, the same methods of

investigating stability as used in network analysis and servomechanisms

are applicableo The general necessary and sufficient criterion for stability

of a unit is that its transfer function have no poles in the right half

s-plane (RHP) or multiple poles on the joo-axiso In network analysis the

frequency-domain method used to study stability is to map a contour

enclosing the right half of the s=plane (the contour is usually the joo-axis

and an infinite semicircle) into the W=planeo Because of the transcendental

nature of the transfer function of a realizable computer program, the

mapping contour in the s-plane must be modifiedo
I

As we have shown before, the transfer function of the computer

program iss

W(s) = pes) :=

Q(s)

m

>
k = 0

k =: 0

-ksT
~e

-ksT e

(2-6)

in which pes) is the numerator and Q(S)9 the denominator of W{s); and it is

assumed that p(s) and Q(s) have no common factoro Both pes) and Q(s) are

entire transcendental functions having as their only singularity an essential

singularity at infinityof Hence, we see that the only singularities of

Wes) in the finite s=plane are poles, and these poles occur at the zeros

of Q{s) 0 Our stability criterion is. that there be no polesofW(s) in the

RHP and only si~ple poles on the imagipary axiso Therefore, in order for

t For a further discussion of entire transcendental functions, consult Knopp,

"Theory of FU1lctions,9" or Guillemin,9 "The Mathematics of Cireuit Analysiso·

Report R=225

the program to be stable, Q(s) must have no zeros in the RHP and only simPle

zeros on the j~axiso To investigate the possibility of Q(s) having zeros

in the RHP or on the imaginary axis, we may take advantage of the pe riodi ci ty

of Q(s) 0 In p roving that w(s) is periodic, it was shown that e -ksT is

periodic p rope rt yo Thererore~ if Q(s) has a zero in the RHP, it must have

one in the semi-inifinite strip shown in Figo 2010

jQ)
s-plane

(0)

Figure 201 Semi=inifinite strip of s-plane that must have a zero

orQ(s} if Q(s) has any zeros in the RHPo

Consider the map of the contour of Figo 201 into the e-sT planeo

Let us begin the path at the origin in the s=plane and encircle the strip

in a clockwise direction, corresponding to increasing frequencyo It is

readily understood that corresponding .. path and enclosed region in the e sT

plane is shown in Figo 2020 The origin of the s-plane maps into the

point (1,0) in the e sT planeo The corresponding sections of the path are

marked by small letters on both contoursc In Figo 202 we see that the

paths (b) and (d) cancel leaving the annular ring as the region.conformal

to the strip of the s=plane that is under consideration 0 As cr
o

(of

Figo 201) approaches QO, the radius of the circular path (c) in Figo 202

approaches zeroo Thus, the conformal map of the indicated strip consists

of two separate contours! one,S) a unit circle centered at the origin

Report R-225 ... 23-

-aT e -plane

unit circle

Figure 2.2 Conformal map of the semi-inifinite strip of Fig. 2.1

"'st into the e plane.

and the other an infinitesimally small circle that excludes the origin

in this particular case. Only a slight extension of the foregoing prooedure

-sT -ksT is required to determine the map of powers of e 0 The map of e

-sT will appear like that of e except that each of the two separate paths

will be traversed "k" times,; the region excluded by the infinitesimally

small circle will be that at the origin. Thus we see that the map of

this semi -infinite strip of the s-plane is effecti!Ve in handling the
I

eS$ential singularity of Q(s) at 00 0

Now, oonsider the conformal map''''' of the semi-infinite strip of

.• . (') -sT.. -2sT Fig 0 2.1 l.nto theQ-p1ane. Remembering. that. Qs - l+b" e .. b2e +

-nsT
o ..+ be, we see that the map of this strip into the Q-plane will n

exclude the point (1,O), (the map of each term except the first excludes

the origin). This eliminates the need for mapping path (c). Moreover,

since the paths (b) and (d) cancel, we ll$ed to plot only the Piths (a)

and (e) 0 In other words the only part of the s-plane contour that we

need to plot in order to determine the lO'eus of Q(sJ is the part of the

contour that lies on the imaginar,r axis. This contour in the Q-plane

Win encircle the origin Z-N'i times~i:tL the coUnterclockwise direc.ti9n,. where

Report R-225 -24-

z is the number of zeros and N is the number of poles of Q{s) (taking into

account their multiplicity) in this strip of the s-plane. It has already

been pointed out that Q{s} is an entire transcendental function and, therefore,

has no poles in this strip. So, N = 0, and the contour in the Q-plane will

encircle the origin Z times (clockwise is to be understood). The condition

for stability of W(s) states that Q{s) must not have any zeros in the RHP

or any multiple order zeros on the imaginar,r axis. Therefore, the map in

the Q-plane must not enclose the origin; Z must be zero. If Q(s) has zeros

on the imaginary axis, the Q-plane locus will pass through the origin. In

this case, we must determine the order of the zero. The folloWing method

can be used: Assume that the locus in the Q-plane passes through the origin

() (-sT -joo T)n for s = joo .• Then Qs must contain the factor e - e i where
~

n is the order of the zero. Divide Q(s) by (e-sT - e- jOOi T)2. If there is

no remainder, the zero is of higher order than the first and the program

will be unstable.

In addition to determining the stability of programs, conformal

maps give an indication of the degree of stability or instability and an

approximate value of the frequency at which the program is or may become

unstable 0 The amount by which the locus in the Q ... plane misses encircling

the origin gives a measure of the stability of the program. The farther the

locus is from the origin, the more stable or convergent the program. The

frequency corresponding to the point on the Q;';"planelocus neare.stthe origin

is approximately the frequency at which the program is or may become unstable,

or at which it will oscillate in a damped fashion.

Report R=225 -2,-

In addition to expressing the program transfer function as a function

r " Yf a1. t . t f to f -s T o s we may so wr1 e 1 as a unc 10n 0 e 0 Make the change .of variable,

=sT
z = e 0 Then we may define a new function,

V(z) iii! Nez) =
D(z)

(2-8)

It is readily seen that the right half of the s-plane maps into the inside

of a unit circle centered at the origin in the z-plane. The imaginar.y axis

of the s=plane becomes the unit circle in the z-plane (see Fig. 2.3).

,/11/

z-plane

-aT
z - e

Figure 203 Map of right half of s-plane into z-plane

Therefore~ if the program is to be stable, all the zeros ~f D{z) must lie

outside the unit circle except that single order zeros may occur on the

unit circleo In otherwords~ the magnitude of the roots of D{z) must be

greater than or equal to unity, and the roots of unity magnitude must be

simple 0

0" x

Report R-22, -26-

Summary: To test for the stability of a program, map the semi-infinite

strip ot Fig. 2.1 into the Q-plane[Q(s) is the depQminator of the program

transfer function.J If the locus in the Q-plane does not enclose the origin"

the program is stable or convergent. If the locus passes through the origin,

Q{s) has a zero and the order of this zero must be determined. It the zero

is of first order, the program is stable; otherwise, unstable. An alternate

-sT method is I Make the change of variable, z - e , and find the magnitude

of the z-roots. If each root has either a-magnitude greater than unity or

equal to unity and is simple, the program is stable or convergent; ot.herwise

unstable or divergent.

2.3 Loci of Q(s)

In the previous section it was demonstrated that the stability

of a program can be determined by mapping the contour enclosing the

semi-infinite strip of Fig. 2.1 into the Q-plane. It was also shown that

the only part of this contour that we need to plot is that on the imaginary

axis. The paths (b) and (d) cancel and the path (c) excludes the point

(l,O) in the Q-plane.,. Hence, we are interested in the properties of Q(jc.o)

and its locus in the range, - ~~CJ.) ~~

locus.

Q(joo) has several properties that are helpful in determining its

(1) Q(jc.o) is periodic of period~. This was proved in the

previous section.

*' (2) Q(jGO) = Q(-jc.o) 0 This property follows directly from

the fact that Q(jro) is a polynomial in e-jc.oT, and as a

consequence, the locus of Q(jro) must be symmetrical about

the real axis.

Report R-22, 0#27-

(3) At 00 - 0 and !2 Q(joo) is real and its locus at these two

points crosses the real axis either normally or tangentially.

This statement is proved and elaborated upon in Appendix A.

As a consequence of the first two properties, the locus ot Q(j~)

for Ok co ~-9completely determines the locus in the Q-plane. The locus

for -f Loo ~O is just the mirror of that for the positive values of co.'

Thus the first two properties result in a substantial reduction in the amount

of work required to plot the locus of Q(j~). The third property enables

one to determine accurately the shape of the locus in the neighborhood

..a
of co • 0 and ! 2' •

Several methods may be used to determine the locus of Q(jc.o).

Three of these are: (1) add the loci of the individual terms of the

polynomial (each locus is a circle) to obtain that of Q(jc.o)j (2) factor

Q(jc.o) and multiply the loci of the factors; and (3) express Q(jc.o) in the

form R{c.o)!¢(c.o) and make a point by point plot. The method that is best

to use depends on the particular Q(jc.o). However, it is to be expected that

the extra analytic work required in methods (2) and (3) will result in

less graphical work and more accurate loci 0 .• None oftl}~ methods ~ll be
,

discussed, but tgey will be illustrated.

Let us now consider several examples of loci of Q(joo).

1. Let Q{s) = 1 - 0.8 e-aT + 0.3 e-281'

Take the derivative with respect to s.

dQ -sT 6 -sT -- = 0.8Te - o. Te ds
(a)

dQ . -s1' (-s'1')
ds • O.?Te 4 - 3e (b)

Report R-225 -28-

For neither s • 0 nor !j~iS the derivative zero, so the locus is normal

to the real axis at both points. Fig. 2.4 (a) shows the locus of Q(jo.l) and

how it was obtained (for the point cot = ~) from the loci of the individual

terms. The locus for negative values of o.l is shown by the dashed curve,

since it may be obtained from the other half of the .loeus. Atter this, only

the locus for positive Q) will be drawn. The locus does not enclose the origin;

therefore,. a program whose transfer function has the denominator,

1 - O.Be-sT + 0.3e-2sT, will be stable.

() 8 -sT 4 -2sT 2. Let Qs • 1 - 00 e + Ooe

Take the derivative with respect.to s •

. - dQ :.. 0 8T· .-sT 0 81ft -
2sT

.......... - o· e - • .1.e as (a)
(2-12)

For s • 0, the derivative is zero~ Q(sl has a saddle point here. Q(s) can

be rewritten as,
.. ~sT 2

Q(s) • 006+ 0.4 (1 - e) (2-13)

which brings the saddle point into-evidence. In this case p • 2, so at
, .Jl- dQ

co • O. the locus is tangent to the real axis 0 At s • !:J2"' dB 1 0, so the

locus is normal to the real axis at this-point. Fig. 2.4 (b) shows the

resulting locus. It does not enclose or pass through the origin; therefore,

this Q(s) will lead to a stable progr-amo
<

3. Let Q(s) • 1 - 0.8e-sT ... 005e-2sT

Take the derivative with respect to so

dQ. 0 aT· -sT T··· -2sT as·. e ... e

-sT (1. -sT) • 0.2Teq. - 5e

(a)

(b)
(2-IS)

Report R-225

For neither s == 0 nor !,jfiS the derivative zero, so the locus of Q(jCA» is

perpendicular to the real axis at both points. The locus (as shown in

Fig. 2.4 (c» does not enclose the orig~nj therefore, this Q(s) is the

denominator of a stable program trans£er funetio,no

;.

(e) Q{s)-a 1-0.&-81' ~O.Se-2sT

Figure 2.4 Loci or some typical. Q(s)

Q-plane

I

"'" o
I

Report R-225

CHAPTER III

ANALYSIS AND SYNTHESIS OF LINEAR, DIGITAL COMPUTER PROGRAMS IN THE
FREQUENCY DOMAIN

In the first part of this chapter the analysis of transfer functions

is dealt with by expanding the transfer function into partial fractions.

Next~ programs are realized from transfer functions by three methods: direct

programming, cascade programming, and parallel. programming; and the storage

and time requirements.o.feach are,presented.e. In the last part of the chapter

a short, general discussion of synthesis is given, and one possible synthesis

procedure is illustrated by the synthesis of a program for differentiation.

3.1 Response of Programs at Real. Frequencies

The input to a computer has a certain frequency spectrum, and

in order to analY'Ze the Action of a computer program on this input function,

we need to have a knowledge of the frequency response of the program. Thus,

we are interested in the locus of W(joo), the map of the jco-axis of the s-plane

into the V-plane. A familiarity with the frequency characteristics of the

simple transfer fun~tions is es.s.ential.for the understanding of the possibilj~ties

and limitations of more complicated ones.

In many cases the desired locus of the transfer function of a

digital computer program is given, and the problem is to approximate this

locus by that of a realizable program; i oe ., by a ratio of polynomials in

-sT e • A study of the loci of typical terms of W(joo) is helpful in making

this approximation.

3.2 Analysis of Building Blocks of Transfer Functions

As we have seen, the transfer function of a linear, digital

computer program is most generally expressed as the ratio of polynomials in

-sT e •

Report R-22.5

W(s)

=32 ...

.L -sT + a2.e 2ST ... -msT O(s) aO ~ ~e 00000 + ame
= ---- = ------~----------------------------

I(s) -sT -28T 1 ... ble + b2e ... o /) 0 /) 0

-nsT ... a e
n

()-l)

A partial fraction expansion of W(s) can be made, and we may call the individual

terms of the expansion the basic building blocks of a program transfer functioDo

In general W(s.) may be broken up into a polynomial plus first and second degree

partial fractions (£~om the real and conjugate complex roots of the denominator,

respectively)~

In analyzing computer programs in the frequency domain [!inding

the locus of W(jOO)~ se~eral methods can be usedo Two of these are: (1)

Find the loci of the numerator and denominator polynomials and then divide;

-(2) exPand W(s) into partial fractions, find the locus of each term of the

expan~ion, and add the resultant locio In most cases the first method

is easier to use, but the second is included here because of its connection

to the synthesis of program transfer functions (approximation of a desired

locus by a sum of the basic building blocks) 0 A familiarity with some of

the possible loci of polynomials and first and second degree partial fractions

is an aid in the synthesis procedureo

The loci of second degree polynomials have already been discussed,

and the locus of a fourth degree polynomial will be illustrated in connection

with polynomial building blockso Since there is only a short step from

the l~c.iof polynomials. to the locus of a transfer function, the first '.

method of finding the locus of W(joo) will not be discussedo

For use of the second method, we will investigate the loci of typical

terms of the partial fraction expansion of W(joo) 0

ReportR-225 "'33-

3.2J., Paqru>mials

A typicalpol1,nomial transfer function is of the form,
r

W(s) - ~cke-kST
k • o·

:' (,3-2)

For s • j~, the locus of each term of the polynomial is a ci+.ole. For

Q(s),the constant term is unitY', but :for polynomial bulldingblocks, the

constant term may have any real value. In the previous -chapter, three

examp~es of the locus of se.cond order polynomials ide-aT are given, so now

let us find the l.oousof a fourth order polynomial. Let,

First examine the function for saddle points.

(3-4)

~ 2T -aT (2 3 -sT + 3 -2.T 2 -3sT) ds' = ·'-15 e '- e e - ' e •

The derivative is zero far s = 0, therefore W(s) has a saddle point there.

W(s) can be written in the form

() 1 (' -2sT) (" _ST)2 W's .. I - 1;' ,2 + e ',1 - e , (3-6)

which brings the saddle point at s = 0 into evidence. The saddle point

is of first order; therefore, the locus is tangent to the real axis at

s = O. W(jco) is

W(jm) • 1 - i> (2 + e-j2roT) (l _ e-jroT}2 (3-7)

In this oase it is easier to determine the locus of W(j~) by

plotting the second term of (3-7) and shifting the origin one unit to the

left. A convenient way to find the locus of the second term is to let

_ (2 + e- j2CAlT) (1 .. e-3Q)T)2 • Rej9J , C3-8)

Report R-225 =34=

where both R and ~ are functions of ooTo Some trigonometric manipulation

yields,

R = 2(1 - cos ooT) V, + 4 cos 200T (3-9)

and

(3-10)

The resulting locus ofW(joo) is shown in Fig. 3.1.

~--------------~----1
ooT • 0

Figure 3.1 LgSy.s of a Fourth-Degree Po;tynomial Transfer Function

3.22 ~irst-Degree Partial Fractions (real roots)

In the partial fraction expansion of a rational function e -ST,

a typical term has the form,

• (3-11)

Report R-22, -35-

If the constants ~ and J3 are real, then (3.-11) Cal be considered

a basie building blook. In this section we will consider the case in which

~ and p are real. The case of complex constants is considered in the next

section.

First, we may set ~ = 1 because it is merely a scale factor.

Second, the m~gnitude of J3 must not be greater than unity for Wl(s) is

then unstable. If I~t ~ 1, the typical term is stable.

To.determine the loci of typical terms .oftheform (3-11), we need

only apply SOMe of the rules of the loci of complex functions. First, note

that the locus of I + ~ e-j~T is a circle of radius 1131 centered at the

point (1.0). To find the locus of W1(jro), the inverse of a circle must be

found. If Ipl -= 1, the circle (I + e-jcoT) passes through the origin,

and its inverse is a straight line parallel to the imaginary axis. If

1f3/Ll, the circle does not pass through the origin, and its inverse is

another circle. The loci of two stable first-degree partial fractions are

shown in Fig. 3.2.

1
1

1
a. W(s) = I • 0.5 e -aT

I b.

Figure 3.2 Loci of First-Degree Partial Fractions

Report R-225 =36""

3.23 Second-Degree Partial Fractions (complex roots)

If a typical term,

= 0<
1 + ~ e-sT , (3-12)

-sT in the partial fraction expansion of a rational function of e has complex

constants, there will be another ter.m~

(3-13)

in the expansion whose constants are the conjugates of those of Wlfs).

(The ast.erisk means conjugate.) Both WI (s)' and W2(s.) will be stable if and

only if I ~ I L 1. If the rational function has real coefficients (as in

practical problems) the ~erms such as Wl(s)and W2(s) must come in pairs.

Add the two and obtain a typical s~cond degree partial fraction with real

coefficients.

(*) * *\ -sT w
3

(s) -= W. (s) + W (s) = 0(+0<. + (all! .. oL PJe
1 2 1 + (~ + ~*) a-sT + ~~* e-2sT ()-14)

In this section the discussion is restricted to second-degree partial fractions

-sT whose denominators have complex rOQtsof, e 0 To simplify the analysis,

w3(s) can be written ,as,

(3-15)

which differs from (3-14) by only a constant multiplying factor.

To insure that the roots of the denominator of (3-15) are complex,

b1
2 ~ 4b2o With this condition imposed on the constants of the ~enominator

of ()-lS), it can be considered a basic building block of a program transfer

function.

Report R-22, -37-

Now let us consider the stability of such a building block.

w3(s) will be stable if and only if both Wl{s) and W2(s) are stable. A

comparison of (3-14) and (3-1,) shows that,

(3-16)

Therefore, the necessar.y and sufficient condition for the stability of

W
3

(s) is that, 0 < b2 ,,1. We may combine this with the condition for

complex roots in the de~ominator of W
3

(s) and obtain,

(tr <.. b2 < 1 (3-17)

as the necessary and sufficient condition that insures stability of W
3

(s)

and complex roots of its denominator.

In Fig. 3.3 there are plotted three loci of building blocks

of the form (3-1,). All three are stableo It should be observed that by

changing only the numerator of the transfer function, three completely

different loci have been obtainedo

By adding building blocks of the form discussed in these section~,
, ", ,",,'.;;'

a desired frequency characteristic can be synthesized 0 The synthes~B of

a differentiating program is discussed in a subsequent section.

Report R-22, 38-

-sT
(a) 1 - 0.8e

1 - 0.8e-sT + 0.4e-2$T

11

4

1 - 0.4e-aT
(b)--------~----~~--

1 - 0.8e-sT + 0.4e-2sT

Figure 3.3 Loci of Second-Degree Partial Fractions

Report R-225 -39-

.3.3 Realization of Programs From Their Transfer Func,tions

The purpose of this section is to develop and compare methods by

hi h b d f f t o -sT h h· w c a program can e erived rom a rational unc ~on z ., e ~ ic ~s

the transfer function of the program. How this rational function is arrived

at in the first place is the concern of the last section of this chapter.

3.31 General Considerations in ProsramRealization

In choosing a particular method of programming, one may consider

the following factors: storage requirements and time requirements., To a

certain extent ODe of these requirements can be reduced at the 'expense

of increasing the other and the optimum method will depend on the particular

application. It is necessary, therefore, to make available various possible

methods of programming and to form some idea about the requirements of each;

intelligent program realization can then be adapted to each application.

In the consideration of storage requirements of linear programs,

it is convenient to distinguish three types of ' storage: data storage, oonstant

1 storage, and instruction storage. The data are the successive sampled

values of input and output. The complexity of a program is closely related

to the number of constants and to the age of the data to which the program

refers. The progran can be divided into arithmetic and manipulative parts.

The number of arithmetic opera,tions involved is roughly proportional to

the number of constants, each implying a multiplcation (of apiece of data

by the constant) and an a.ddition (of the product to the other terms).

The number of manipulative operations is related to the "age" of the oldest

1
It is understood that in a general-purpose computer there is no physical
difference between the stora.ge registers containing numbers or instructions,
and any register may hold either kind of informationo The distinction
made here is only for the purpose of discussion.

Report R-22, -40=

data used, where age is expressed in terms of sampling interval,s 0 All

"younger" data must also be stored even if not used at each calculation

(the corresponding constants being zero), for eventually they will become

the oldest data. After each calculation of a new output value, the manipulative

instructions shift each piece of data to a storage location at which an older

piece of data has been, the oldest data being lost. The manipulative program

is seen to rearranga the data storage in such a manner that at the new sampling

point the!!!! arithmetic program will calculate aE!! output value.

The time requirement of a program is the product of the number of

instructionsHto be carried out and the average duration of an instruction.

The latter factor depends on the physical characteristics of a particular

computer and is more or less fixed; the number of instructions performed

in sequence, however, depends in part on the manner of program realization.

In each particular realization a significant trading of time for storage

is possible by so-called cyclic procedureso One notes that often the calculation

of each term in a program involves the same sequence of arithmetic operations.

The simplest and fastest procedure is to store as many of these sequences

as. there are terms to be calculatedo Considerable storage may be saved,

however, by storing these instructions only once and cycling through them as

many times as there are terms to calculateo Unfortunately, the time requirement

increases considerably, for in each cycle the addresses of the instructions

must be adjusted to make them refer to different storage locations for different

terms and the number of cycles must be counted to permit t$rmination of

the cycling process.

The following sections and related appendices will serve as specific

illustrations of these considerations in programmingo

Report R-22, =41-

3.32 Direct Regression or Direct Programming

The starting point of our realization procedure is the general

expression for the transfer function of a linear program,
-sT . -2sT -msT

ao + ~e + a2e + 00. + Qme .

W{s) • T 2 T -nsT • 1 + b e-s + b a-' s + + b e 1 2 ••• n

(3-18)

In order to interpret a program in the time domain it is necessary to eliminate

fractional expressionso The most straightforward way of doing this follows

directly from (3-18). From it we can obtain

..J) . -msT) "'() (- -sT O(s = (aO .. 0 o. + am e I s - bl e + 0.0
-ns T) "'"'I } +':.b e 0\8 • . ,n

The inverse transform of this expression is

'5(t) = vet) + ~i(t T) + 0 •• + am~(t -' mT) - b{O(t - T)

- 00. CD b -cf(t - nT),
n

(3-19)

()-20)

where oCt) and1[(t) are impulse-modulated (sampled) time functions having

~he value zero everywhere except at the sampling points. In terms of some

continuous functions o~t) and f(t), which agree with the area-values of

oCt) and:1(t) at the sampling points, (3-20) is often written as

oJ" = a i. + a. i. 1 + 0 0 0+ a i 0 - b10. 1 - '. ~ 0 - b 0 , o J 1. J- m J-m .. :1 J- n j-n (3-21)

where j signifies particular sampling point and j-k thek-th preceding sampling
} .

point. Eq. (3-21) is more familiar to the numerical analyst than (3-20),

but the two are entirely equivalent and are called regression formulas.

These equations state that the present result (output) is computed by a

finite linear c~mbination of the present and past input values and of

past results (output v~lues)o
: .~,}:i .

Several characteristics of regression formulas should be observed.

If the right side of (4-20) or (4=2l) has at least one non-zero bk, then

Report R-225 -42-

the present output depends on at least one previous output, which in turn

depends on an output further back and so on. It follows that the present

output value is affected by output values as far back as the start of the

problem and therefore, also by input values that far back. Thus regressing

to a finite number of output values corresponds to regressing to an unlimited

number of input values. This aspect of the regression equations is important

and will be further emphasized in the following sections.

Interesting conclusions can be drawn concerning memory requirements

on the digital computer by considering the actual programming of the regression

formula, (,3-21). Assuming that none of the coefficients ~ and bk are zero,

one can easily see that in order to calculate a new output value OJ' when

a new input value i. is received, m previous input values and n previous
J

output values will have to have been remembered, requiring m + n memory

positions for data where m and n are the subscripts of the last non-zero

coefficients, and furthermore, it is necessary to store all these data even

if some other coefficients are zero because at the next sampling point
./

the same pieces of data will be associated with different coefficients.

It can be stated that, B.t least when programining is done by the

illustrated direct regression meth,,4~ the data memory consists of m + n

registers (memory positions) where m and n are the degrees of the numerator

and denominator polynomials in z ~ e-sT of the program transfer function W(s).

Actually this data storage requirement may be reduced, as will be shown in

Sections 3.33 and 3.34.

To be able to make comparisons between the various synthesis

procedures it is necessary to do the actual programming. This exercise

is left to the appendices, and the results will be compared after the

other synthesis procedures will have been discussed. In Appendix B the

Report R-225 =43-

arithmetic and manipulative parts of the direct regression program are first

constructed separately; then a new more compact program is shown which inter-

leaves the arithmetic and manipulative instructions. Although the Whirlwind

code is used, the results and conclusions can be considered quite general

in view of the fact that the instrUction complements of most general-purpose

digital computers are conspicuously similar.

3.33 Cascade Programming

-sT lfthe numerator and denominator polynomials in Z • e are

factored, C4-l8) takes the form

(3-22)

where -(lick) and -(l/~) are the roots of numerator and denominator

respectively, when considered as polynomials in Zo Because the coefficients

~ and bk of these polynomials are real, the ck and ~ will also be real

or will come in conjugate pairs. At any rate, it is possible to group the

monic factors of ()-22) in some manner

where each Wk{s) is of a rational form in z having a numerator and a

denominator of not higher, degree in z than W(s) itself has.

(3-23)

The form of (3-23) reminds one of the transfer function of cascaded

linear units in a servo sy-stemo Cascading means that the output of one

unit becomes the input to the next oneo There is no difficulty in using

the same interpretation to define cascaded programso At every sampling

point the output of each regression equation is used in calculating the

o~tput of the next one.

Report R-22.5 -44..,

To be more specific, let us assume that: (1) W(s) is a proper

rational fraction in z, that is, m < nl; (2) all roots -lick and -l/~
are real and distinct, since generalization to the case of conjugate complex

roots turns out to be direct; (3) a = 1 in order to avoid its nuisance
o

value in the discussion2 o With these assumptions it is possible to have

p = n in (3-23) with the denominator of each Wk(s) being a single monic

factor in Zj that is,

-sT
1 + oke

~sT 9
1 + ~e

(3-24)

where ck mayor may not be zero, but ~ I 0. There are n factors of the

type (3-24) each representing a simple regression equation. In m of

the factors ck 1 0, in the other n-m factors ck = O. The data storage

associated with each Wk(s) equals 2 when ok f 0, and 1 when ck • 0.3

However, the input data that must be stored when ck I 0, is also the output

data that had to be stored for the preceding cascade program Wk_l(s)j

consequently, there is only one data to be stored for each Wk(s) regardless

of the. value of ck' except for the first one WI (s) 0 But when m < n (proper

rational fraction), one ek - 0, say cl = 09 making the total required data

1 If m.,) n, W{s) can be written as the sum of a polynomial and a proper
rational fraction in z = e-sT. The prograun corresponding to the polynomial
part is a simple linear combination of input values. Discussion of this
case is omitted without any serious loss of generality.

2 If aO F 1, only a simple mult~plication has to be added to the programo

3 Each Wk(s) is the transfer function of just a regression equation and

its data storage is the sum of degree of numerator and denominator, as
discussed in the previous article.

Report R-225 -45-

storage nj a material reduction over the m + n data needed in direct regression

programming.

In order to translate the cascade scheme into an actual program,

we may proceed as follows. First, we write (3-23) (with p == n) in terms

of input and output transforms, as

(5(s) _ 01 (s)

-
I(s) ~(s)

• o;(s) •

~(s)
•••

oCs)
• _n_:_

T ('s)
n

One way of making (3-25) an identity is by letting

which make

Ii (6) == l(s)

I;(s) :I 0;. (s)

"-

I
3

(s) == 0;(,)'
•

•

•

a(s-) == 7f (s).
n

Using the relations (3-25) and (,3-26) we obtain

Goe o ---
0. l(s) n-

•

(,3-26)

(,3-27)

The various factors equal the respective progr.am transfer functionsj namely,

Report R-225 -46-

0;. (s)
Wl(s) = 1 =

1 + ~e-ST T(s)

°2(s) 1 + c2e -aT
W

2
(s) = - =

1 + d e-sT o;.(s) 2 (3-28)

•
•
•

o(s) 1 + c e-sT
__ '. = W Ce) n = -sT
0n_l(s) n 1 + d e

n

where m of the ok are not zero. Multiplying by the denominators changes

the set (3-28) into

(1 + ~e-ST)()l(S) ~][(e)

(1 + d
2
e-eT) '02(s) = (1 + c

2
e-ST) 0;, (s)

(1 + d
3

e -sT) o;<s) = (1 + c
3
e-ST) (1'2(s)

o
(3-29)

The inverse transform of the foregoing set, with one term of each equation

transposed to the right side, is the desired set of regression equations •

.. ~OJ. (t-T)

02(t) = 01 (t) + 0 20;. (t-T) - d2O'2(t-T)

o;<t) * o;(t) + 0302 (t-T) - d3Oj(t-T)

•
e

•
ott) = 0 l(t) + e 0- l(l...,T) - d o{t-T)

n~ n n- n

(3-30)

Report R-225 -47-

The detailed coded program corresponding to (3-30) is shown in Appendix C.

Cascade programming, although not referred to by that name, is

a familiar technique in numerical procedureso However, the clear-cut and

general equivalence of the direct regression and cascade programming is not

always well understood. Cascade programming arises naturally from the kind

of thinking prevelant in numeric.al work. Consider the simple example of

solving the second-order differential equation,

(3-31)

The derivatives may be considered as the separate variables, y'{t) and

y"(t); then we obtain the following three sampled functions:

y"(t) = -~y(t·· - '1')

yf (t) - 'l'y."(t) + yf (t - '1')

y(t) = Tit (t) + yet - '1')

(3-32)

where the first equation of the set is derived from (3-31) while the second

and third are elementary first-difference extrapolations. The set (3-32)

indicates cascade programming because the output of the first equation is

in the input of the second, and the output of the second equation is the

input to the third. The peculiar thing in this case is that the input

to the first equation is not an independent function but directly related

to the output of the last equation& ,This feature establishes the constraint

imposed by the differential equation:

The Laplace transform of the set (3-32) is.

-sT yn = _ e Y

Y' = TY" + e-sTy­

Y = IT + e-sTy-

(3-33)

Report R-225 ... 48-

from which the explicit relations between inputs and outputs are obtained

as follows:

yn -sTy
• - e

I' 1:1

I •

T ytt
1 -sT - e

T Y' -aT
1 - e

For realization by three cascaded factors, we have

W
2
(s) = T

1 _ e-sT

W
3
(s) = T

-sT
1 - e

(3-35)

It is clear that a single transfer function can be made to replace the

cascaded system of three; thus

W(s) 1:1 W1(s)W2(s)W3(s)

_~T2e-sT

W(s) == ---~-~-
1 _ 2e-sT + e-2sT

The corresponding regression equation is simply obtained as

yes) == (2 - ~T2)e -sTyes) == e -2sTy(s).

The inverse transform of this equation is

Ytt) - (2 - ~'1'2)y(t - '1') -:r(t - 2T)o

(3-36)

(3-37)

(3-38)

which could have been otained from (3-32) by the elimination of y' (t) and

yn(t), but even in this simple case the process of elimination in the time

domain is pot direct.

Report R-225

The fact is that in numerical work a cascade method such as (3-42) is

much more generally used than the direct regression of (3-38). Often there

is good justification for this preference; for instance the values of the

first and second derivatives may also be neededo However, when such or

similar justifications do not exist, the direct regression may turn out to

be simpler than cascading. In the present example, (3-32) calls for one

more constant, two more multiplications and one more addition than (3-38).

If the first two equations of the set (3-32) are combined, one multiplication

is saved; furthermore, the manipulations in the direct method happen to be

more awkward. Because in this case the input and output are the same quanti ty

the formulas of Appendices B and C are not directly applicable, the requirements

of the t-.o methods must be determined by actual trials.

3034 Parallel Programming

l·r the tr ansrer function of a program. is expanded by partial

fractions in terms of z, (3-18) take.s the form

+
f2

-----=Tr"- + 000 + -s
1 + ~e

f
n

i + d e~sT
n

(3-39)

as long as m ~ no Thus, the transfer function W(s) is replaced by the

sum of a nuniber of simpler transfer functions; namely,

where some of the Wk(s) may be the combination of several partial fractions,

but all are of lower degree than W(s) itself.

The torm of (3-40) may remind one of parallel combinations of

network admittances. Paralleling means that the same input (driving voltage)

is applied to all component admittances and the output (driving-point current)

is obtained as the sum of individual outputs (current through each admittance).

Report R-225

The same interpretation can be applied to parallel programmingo The programming

will involve p regression equations all using the same input values, and all

their outputs adding to produce the desired over-all output.

To arrive at a more specific interpretation, we first make a few

restrictions again: (1) W(s) is a proper fraction, ioeo, m <: n, and (2)

the roots of the denominator polynomial are real and distinct. Then all

constants fk and ~ of (3-39) are real and in (3-40) p can equal nj more'over,

each term of (3-39) is a simple regression equation involving two eonstants

and one data storage. Thus, the total number of data to be stored is only n.

Just like in the case of cascade programming, the lower requirement for data

storage of parallel programming. may be a great advantage over the direct

programming methodo However, this feature does not mean that parallel or

cascade programming should always be employed in preference to direct

programming. For instance, there is the case when m = OJ ioeo, the numerator

of W(s) is 1 (or ao). Of the input values the program uses only the present

one and the total data storage is n regardless of the programming scheme

used; on the other hand, the number or constants will be n for the direct

and cascade method, but 2n for the parallel method, putting the latter at

a disadvantag~ 0 Similarly, if the denominator of the over-all transfer

function lacks several terms (say, the denominator is 1 - b e-nsT), then
n

factorization of the denominator introduces all terms, making the cascade

and par~lel program much longer than the direct program. Another factor

which may militate against the use of parallel programming is the presence

of multiple roots in the denominator. If a root is of multiplicity r, •

it may produce up to r terms of degrees r, (r ... l), 00.2,1 (the r degree

term never being absent) in the partial fraction exapnsion, but the same

root will require only one r=degree, or r first=degree, cascaded factors.

Report R-225 -51-

In order to interpret the parallel method of programming, we

proceed in the usual manner~ For the various terms of (3-40) with p • n,

we write

and

0: r w. (s). 1(s). 1
1 I{a} 1 + ~e-ST

•
•

1 + de-aT
2 '

• 0' (a) :r w (s) • _n_· _ • n
n "I (a) 1 + d e -sT

n

O(s) W(s). - 0

T(s)

Cross-multiplication by the denominators in (3-41) yields the set

-sT ,.., i..-

(1 + d2e)02(s) = £21(s)
!

o

o

o

-sT --- -(1 + d e)0 (6) • r I(s) n n n

while in view of (3-41) and (3-42), (3-40) can be written as

(3-41)

(3-42)

(3-43)

(3-44)

Report R-225 -,2-

The inverse transforms of {3-43} and (3-44) yield the desired set of

regression equations, which follows.

<tl (t) = f1 ret) ~ a;. (t-:-T)

1)2(t) • £2~{t) - d2112(t-T)

•
•
•

7) (t) • f ret) - d 0' (t-T) n n n n .

(3-4,)

The detailed coded program corresponding to (3-45) is shown in Appendix D.

Parallel programming has not been generally used in numerical

work. To the knowledge of the writer, the usual methods of numerical

analysis do not naturally lead from a direct regression equation, which

has reference to several previous input and output values, to a set of

simpler regression equations, each of which refers only to the last

input value and to a preceding1 output value 0 By the method of frequency

transformation the parallel method is found quite directly.

1 In case of complex <\ts in (3-39), a combination of two conjugate complex

partial fractions in z will result in a slightly more complicated regression
equation, involving one additional input and output.

Report R-225 -53=

3.35 Comparison of Programming Methods

The purpose of this section is to compare the effectiveness of

the various methods of program realizations based on the transfer

functions of the programs. A complete general treatment appears too

far-fetched and, therefore, this study is limited to a certain class of

programs. Despite these limitations, which are discussed below, the

investigation is surficiently general to show how the results can be

used to improve the instruction code of a general-purpose compute.r or

to design a special-purpose computer, when these are used in control

applications.

The three methods which will be compared are listed below:

(a) direct programming,

(b) cascade programming,

(c) parallel programming.

Other programming schemes may be derived from the rational transfer

function W(s). One may carr.y out the long division in z of the numerator

by the denominator until he arrives at a certain number of terms of the

quotient. The transfer function can then be expressed as the sum of the

quotient terms and of the remainder divided by the divisor (the original

denominator). Any number of variations can be obtained by stopping the

long division after different number of steps~ but only in the most unusual

cases can this approach be expected to yield a more efficient scheme of

programming than the three major methods discussed in the preceding sections.

Report R=225 ao54-

Other schemes that are even more artificial than the long-division scheme may

be derived, but no other general programming method has been found that gives

promise of effectiveness comparable to the three which are considered. It

is noted that in certain cases a combination of two of the three listed

methods may turn out to be more efficient than anyone. An example of

such a case is described belowo

As the basis of comparison of programming methods, the requirements

in storage and time are used. The particular application or purpose 4eeides

which of these two factors should deserve moreiattentiono It is assumed

that the complete sequence of instructions, as used at each sampling point,

is stored; the possibility of cycling programs, which re-uses a short

sequence of instructions for the calculation of each term, is not discussed.

Essentially the Whirlwind I code is used throughout, but variations are

considered.

As a starting point we recall that the transfer function of a

linear program is,

W(s) ()-46)

In general, m and n may be any positive intege~l and indeed, their relative

sizes will hardly influence the comparisons to follow. Nevertheless, it is

helpful to distinguish three cases~

1

(1) n = O. ()-46) reduces to a polynomial in z = e sT; i.e.,

the new output value dependa oaly on present and

past input values, not on past outputs also.

Present day nume rical analysis abounds in numerical

This is in contrast with networks where certain restrictions on the
degrees of nurrerator and denominator polynomials often exist.

Report R-225

1 processes corresponding to this special case.

(2) m < n •. (3-46) has the torm of a proper rational function

of z in this case. In Sections 3.32, 3.33, and 3.34

dealing with the various programming schemes, this

case was assumed for the sake of simplicity.

(3) m ~ n. The rational function in z of (3-46) may be called

improper, but it can be converted to the sum of a

polynomial (ease 1) and of a proper rational fraction

(Case 2) in . -sT
z =e 0

In order that the storage and time estimates to be arrived at should apply

to all cases, it is necessary to define the folldwitlg quantities with

reference to (3-46):

m = degree of numerator,

n = degree of denominator,

~ = one less than, the number of non-zero constants in
the numerator (~~ n).

~ = one less than the number of non-zero constants in
the denominator (~~ n) •

= one more than the excess of mover nj i.e.,
me = m-n+l when m ~ n, and me = 0 otherwise. For

proper rational f.ractions m <: n andm = 0' e
On basis of the coded programs shown in the appendices, the table of

Fig. 304 summarizes the storage and time requirements in terms of the

quantities just definedo This tabulation is more general than the results

given in the appendices, for in the appendices it was al?o aS$umed that

none of the constants were zero, that is, ~ = m and ~ = nj furtherm~re,

1 Examples are numerical methods based on polynomial approximations with
equidistant spaCing of the independent variable 0 Indeed, such example,s
form not an insignificant portion of the available numerical techniques.

Report R-2~ -56-

only ease (2) was treated making m = 00 On the other hand, in the tabulation
e

of Fig. 3.4 these restrictions of the appendices are absent, but the fol1o~ng

assumptions are still made: the roots of the numerator and denominator

are real and distinct, and the straightforward programming techniques of

the appendices is used. Thus, the c(Xlstants stored are thos e that appear

explicit1t in the various regression equations. Actually some saving in

instructions would result from the use of certain ratios of these constants.

For instance, the regression equation [2f. (6-4,17

~(t) = f 1jl(t) - ~ol(t-T)

take s six instructions, as shown in the coded program of Appendix D.

If, however, (3-47) is written as

-(t) f ril." (t) - ~
01 .= 1 L f1 ~(t-T~ ,

(3-47)

(3-48)

its coding would cost five instructions only, but certain questions on the

relative sizes of the constants would arise 0 It seemed best to avoid such

questions, because the considerations here are rather general and the value

of a too-specialized treatment is questionable.

The comparison of the three methods of programming can be undertaken

bY' considering each item of Fig 0 3040 . Because of the straight sequential

programming the time requirements are the same as the storage for instructions

and, therefore, consideration of storage will give a complete picture.

As far as the number of constants stored are concerned, the direct

method is not worse than the cascade, which in turn is not worse than the

parallel methodo This is so because in the direct method only the non-zero

constants of (3-46) have to be stored, while factorization in the cascade

case will produce as many constants as there are roots in Zo In the parallel

method two constants (root and residue) are produced for each denominator

Report R-225 ",,57-

root and if the numerator is not of lesser degree than the denominator,

further terms and constants result. As an example, consider

W(a) =

for which

m = 1,

n :II 4,

1 3 -2sT + 1 -4eT
-4"e 'B'e

~ I: 1,

~ = 2,

m = 0
e

(3-49)

According to the table of Fig. 3.4 the various constant storage requirements

are

direct:

cascade: m + n + 1 = 6

parallel~ 2n = B

These figures can be simply checked. In the direct case the four constants

are apparent in (3~) 0 For the cascade case, the transfer function is

wri tten as

5 1 -sT
W(s) = 1 1 1 '8"-[e

(3-,0) 1 -sT • 1 -aT 0 1 -sT 0 1 -aT ,
1 ... ~e 1 ., - e l+-e 1 - - .. e

ff V2 ,2 .2

and the six constants in question are~ +1/(2, -1/(2, +1/2, -1/2, +5/8,

and -1/40 The manner of programming illustrated in Appendix C actually

necessitates the separate storing of positive and negative constants,

even though bfthesame magnitude.

For parallel programming W(s) of (3-49) is expanded in partial

fractions in terms of z and takes the form

Report R ... 225

W(s) =

, + 21/2
a

1 -aT l+r:
9

- 10
1 -eT

1 + '2 e
,+

, - 2V2
+

B + 1 -aT 1 --e
V2

The eight constants to be stored are evident in the foregoing ,quation.

The next item of comparison is the data storage, for which the

above example reads, on basia of Fig. 3.4

direct g m + n = ,

cascade: n = 4

parallel: n • 4

These figures can be verified in the three foregoing equations. The numerator

of (3-49) indieates that one past input value (corresponding to the e-aT term)

must be stored; the present input i8 used as it arrives and then stored

as the past input for the next calculation, as shown in Appendix B. Thus

the numerator implies one data register onlyo Similarly the denominator

-sT implies the storage of four past output values, even though the eand

e=3sT terms are absent; for the corresponding past outputs must be remembered

for the next calculationo

For the cascade method, (3=50) seems to indicate five past data

-sT /. - . to be remenberedj however, the e term of the last numerator re~i.f~:tO··

a past input that is also the past output of the preceding factor, since

in cascade programming the input of a component program. is the output of

the previous one.

In case of parallel programs the four past data are quickly

identified with the e""8T terms of (3 ... ,1)0

Report R=225 59-

The expressions for instruction storage and for time requirements

are identical, and produce the following tally in the present example:

direct 8

cascade~

parallel~

2(m + ~ + n + ~) + 7 - 23

3m + 4n + 6 - 2,
7n + 4· 32

No verification of these figures is carried out by detailed coding of the

programs because the appendiges cover the general case. The advantage

seems to be on the side of direct programming as far as time is concerned,

but this advantage is slight and arises from the fact that in the present

example two denominator constants are zero'. An advantage of direct programming

appears also in the total storage requirements for the same reason:

direct·~

cascade:

parallel:

4 + 5 .. 23 • 32

6 + 4 + 25·+ 1 = 36

8 + 4 + 32 + 1 • 45

This example, as well as the tabulation of Fig. 3.4,~indicates

the disadvantage of parallel programmingo It seems that this kind of

programming may have an advantage over either of the other two in certain

cases, but hardly ever over both at the same timeo Thus, the choice narrows

down to direct and cascade programs, or possible combinations thereof.

To show how a combination of methods may be used, we write (3-49) as

W(s) = 1 (3-52)

which indicates a cascade combination of two direct programs, for which

respectively

Report R=225 -60-

m =0 m -= 1

~= 0 ~ • 1

n = 2 n • 2

~
.. 1 nk .. 1

Me • 0 m \III 0 e

The direct program of each cascaded component is somewhat simpler than it

would be for two separate direct programs because the input and output devices

are manipulated only once for the composite program, rather than once for

each component programo ~is saving amountsto six instructions, thus the

instruction storage or ti~ requirement is:

first compQnents: 2(m + ~ + n :+ ~),'+ 6 = 12

second components: 2(m + ~ ~ n + '~) + 6 = 16

saving as indicated above -6

total instructions '22

Four constants appear in (3-.5.2), two of which are accidentally identical,

and one of which is made 1; thus, the constant ,stor!!ieis:

first component~ ~+ ~ + 1- 2

saving • -1 - 1

second component:

saving =-1 2

total constants

A saving arises in data memory also, because the past input of the second

component is also the past output of the first oneo This gives the following

need of ~ storageg

Report R=225

first componentg

second component:

saving

m + n • 3

m + n = 3

-1

4

The results of this example are summarized in Figc 305, which shows a small

advantage of the mixed method over the direct one.

To pursue further the detailed comparison of these various methods

of programming would lead to undue specializations in the Whirlwind code and

to results of doubtful general valueo The illustrated attack on the

realization problem, however, shows how a useful estimate of the complexity

of coded programs can be gained from the evident properties of their transfer

functions 0 Three further problems will be touched on briefiyg (1) computing

delays,9 (2) means of using the results to select -computer codes; and (3)

means of using the results to design special-purpose computers.

A consideration that has been omitted in our discussion is the

delay incurred through-the computation itselfo If a digital computer is

used as part of a number of control systems =- say, 50 systems --, then

in each sampling interval it performs 50 computations, one for each system.

The time of a computation is then at most 1/50 of the sampling time, T,

and this delay is presumably negligibleo If, however, one digital computer

were used with each system, the computation may and, for the sake of efficiency,

should take an appreciable part of the sampling time 0 Such' a delay would

be very serious and the computer would have to perform a prediction in

addition to the required compensationc In turn, this would lengthen

the program, make it less effeGtive~ and may even force a longer sampling

timel indeed~ in a marginal case~ in which the original compensating p~ogram

had a delay nearly as large as the sampling time, the effect may become

Report R=22.5 -62-

cumulative, since a longer sampling time would in turn require a better

and longer program j and so ono In such marginal cases and in any case in

which the computing time is not negligible with respect to t he sampling

time j the direct programming has a tremendous advantage over all other

,methodso A glance at the direct regression equation (3-20) shows clearly

that all terms but the first one on the right side of the equation can

be computed before the new input value is obta1nedol The computing delay

will thus be the time of merely calculating the term, a 1'(t), and adding
o

it to the already prepared partial resulto This delay may conceivably

be negligibleo

All realizations of real-time linear programs involve accumulation

of products as their arithmetic :action and the transfer of data from one

register to another as their manipUlative actiono In case of a single-address2

instruction code, such as that of Whirlwind, the ~ (exchange) operation3

was shown in Appendix B to be very helpful in improving the efficiency

of the codeo other improvements are possible by incorporating special

Operations which facilitate the particular type of programs on hando

Computers using multiple-address codes could be particularly efficient in

such applicationso For instance, in a three-address code an instruction

could locate a constant, a piece of data, and transfer .that data to a

third address j after which it would multiply the con,stant and data

1 The second composite program fn Appendix B is written in this mannero

2 Each instruction specifies an operation and the storage address of a
single operand 0

3 This operation exchanges the contents of the accumulator register with
the ~pecifiedstorage registero Thus, one instruction performs a double
duty by obtaining new data from storage and also transferring to storage
a partial result~

Report R=22,5

accumulating this product with the partial result always left in the arithmetic

element of the computero This single order would complete both the arithmetic

action (accumulation of products) and the manipulative action (transfer of

data to an "older-data" register) associated with one term of a regression

equation 0

Similar considerations allow one to adapt special-purpose or

fixed-program digital computers to control specificationso To be somewhat

specific we assume that the computer is used as part of a single control

system and will have to perform only one computation in each sampling periodo

The computer would not operate appreciably faster than one computation per

sampling period and in order to minimize the computational delay it would

follow a direct regression programo In order to keep such a single-system

computing equipment from becoming excessive, a seriall computer would

probably be usedo The program or the computer would be fixed to correspond

to a direct regression program of certain complexity as defined by the

de~rees of m of the numerator and n of the denominator of the program

transfer functiono The constants. could be set manually on toggle switches

or relays, or they could be stored on the same high-speed storage device2

on which the data are storedo A serial adding unit with proper switching

equipment would allow the multiplication of constant and data (by repeated

additions) and the addition of such product to the accumulated partial

result 0 The physical size of such a digital control unit may be quite

feasible in certain applications and the design of such a simple special-purpose

digital computer would be particularly justified if the incoming data were

sampled and digital to start witho

1 A serial computer operates on each digit of a number 1n sequence; thus,
the equipment i·s not duplicated for each digit.

2 Magnetic-drmn memory, for instance.

Report R=22, -64-

304 Synthesis of Programs in the Frequency Domain

3041 General Synthesis Procedure

The synthesis of computer pro.grams in the frequency domain may

be b:roken down into the three following stages. (1.) specification of the

desired frequency characteristic or lous of W(jeo), (2) approximation of

the desired locus by a realizable program transfer function, and (3)

realization of the program. One way to determine the desired locus is

from the Laplace transform of the operation the computer is to perform.

The second step is the difficult part of the problem. The desired frequency

-aT characteristic must be approximated by a rational function of e • No

gene ral rules are available i"or making this approximation, but before

making the approximation, one should gain some experience in analyzing

program building blocks in the complex: plane 0 Possibly the most systematic

approach, at present,' to the approximation problem is to make successive

approxima. tions to the desired charac.teristic, using the basic program

building blocks of Section 3.2. The third step involves only a straight-

forward inverse Laplace. transform. As an example of program syhthesis

in the frequency domain, a program i"or differentiation will now be synthesizedo

3042 Synthesis of a Differentiation Program

An ideal differentiator establishes the following relation between

input and output:

OCt) d
=: Cit

i(t)
o

Disregarding initial conditions, the Laplace transform of (3-52) is

HCs) = O(s) = s,
I(s)

and this is the desired transfer function. For s = jc.o, Hfa) becomes

C3-54)

Report R-225 -6,-

So the locus of the desired transfer function is the imaginar,y axis. This

completes the first step of the synthesis procedure.

I,:The second step is to find a rational function of e -sT that

approximates this locus. This approximation is to be made by geometric

considerations based on the desired locus. In this particular eXSJIIPle it

is also possible to employ analytic considerations based on the desired

transfer function of (3-,4). It so happens that in the present case the

analytic approach is simpler; nevertheless, the geometric approach is shown

first.

The crudest numerical approximation to a first derivative

is the first divided difference.

'O(t) = l(t) -1'(t-T)
T

The Laplace transform of (3-55) is

~ 1 -sT
ata) = I(s~. - e 0

T

Thus the transfer function of the dif~erencing process is

w (s)ots) 1 - e-
sT

o = I(~), = , T •

(3-55)

(3-56)

(3-57)

Fig!) 3.6 shows the locus of W' ,(jco) and compares it .with the desired one • .0 . ,

At low values of roT (1".e1, when' the frequency of the input function is :Low
. ~i(t) -i(t-T)

• s locus i(t) dl T
2' 1, a-aT em -"""="'-- -locus

T i(t)

Ji

4'

t

Figure >e6 Comparison of first derivative and first difference operators

-66-

with respect to the sampling frequency) the two loci agree reasonably well.

If we could straighten out the circular locus, we would have a better

approximation of the desired locus. Figure 3.7 illustrates a geometric

construction that straightens out the locus and gives us ideal phase

characteristicso

2 I _ e-s'!'

~ i .. e-sT

di(t-T)
dt let) - i(t-T)

T

diet)
dt -sT

- e
T

~----~~~----.---------------~t
(a) Frequency domain (b) Time domain

Figure 307 Derivation of an ideal phase; realizable differentiation

operator

The vectors (l/'!'){l - e-j~,!,) and (1/2)(1 + eCDj~,!,) are drawn for

a particular frequencyo Using the geometric rule that a triangle inscribed

in a semicircle is a right triangle, one can readily show that /ell + 'pi
o add up to 90 0 However, since 0(is a positive phase angle, it must be

subtracted from p (which is negative) to give a resulting angle of _90°,

which is the phase of an ideal integrator. It follows that division of

the ~-locus by the 0(-locus tdll y:i:eld an ideal-phase formula. The

resulting transfer function is

I
-sT

- e

I
... sT' .. e

(3-58)

Report R=22.5 -67-

which has the desired phase in the'range, 0 LooT ~ffo The interpretation

in the time domain is both plausible and illuminating. The inverse transform

of (3-58) shows that,

-wet) + a'(t - T) I(t) - i(t-T)
2 • T (3-59)

(3-59) states that the average of the derivatives at two neighboring

points is approximately equal to the divided difference for those points.

It is interesting to note that the s~e approximate transfer

function~ (3-58), can be obtained analytically based on a rather good

o t" f -sT approXl.ma 10n or e •

T
~l - 1

2
. sT

.oS =
e ----

1
1 + 2' sT

Solving (3-=-60)- for s yields

-sT , 2l-e
s = - •

T 1 + e-sT

(3-60)

(3-61)

Although in this particular case the above analytic approach is

simple and fairly accurate, its general use has certain drawbacks. The

most obvious one is that the rational function of Us" to be approximated,

which in the present case is "s" itself, is in many cases not explicitly

knoW'n,9 rather it may be obtained as an approximation to a desi.red locus

or amplitude and phase response. Then to approximate the ra.tional

function of "s", which itself is but an approximation, by a rational

=sT function of e puts the designer on shak,r grounds, and it might lead to

far more involved programs than necessar,y. There is no substitute to

going back to the original specifications and designing directly on their

basiso Another disadvantage of the above analytic approach is that it

is not general. One could replace all usn by the approximation (3-61),

but how one would get a better solution is not obvious.

Report R=225 -68-

We have an approximation of the differentiation operator, so the

next thing to do is see how good it iso Since the desired locus and its

approximation lie along the same path, a locus study does not give a good

comparison 0 In such a case separate amplitude and phase plots can be studied.

For s = joo, W2{s) becomes

(3-62)

which verifies the previous statement that W2(joo) has ideal phase characteristics.

Hence, it is sufficent to study the amplitude characteristic only.

therefore,

H(jco) = jOOj

W
2

(jOO)

H(jro) =

roT
tanT

roT
2

(3-63)

o (3-64)

Thus we see from (3-64) that the ratio of the approximate function to the ideal

one is always greater than unit yo Figure 308, a plot of the amplitude

characteristics, shows us that for low values of coT, say for roT ~ ~2 ' the

(1) H(jro) = mT

(2) W2(joo) roT = 2 tan -2

(3) W3 ('jco) I: 1.814 t coT an 2

ft

Figure,308 Comparison of amplitude characteristics of Differentiating Operators

Report R=225 -69-

differentiation program will give quite good accruacy. For certain control

applications, values of ~T up to ~ or even ¥ might give acceptable accuracies.

An examination of the amplitude characteristic of W2(s) in Fig. 3.8

reveals that if W2(s) is multiplied by a constant, which is slightly less than

unit, we will obtain a better derivative on the average. The new transfer

function is
-sT

W
3
(s) = C W2(s) = C; 1 - e_ST •

1+ e

Let us arbitrarily choose C so that W
3
(s) = H(s) for sT • j~. Then,

(3-6,)

2 C tan ~ = j ; (3-66)

so

If
C = ----11'

6 tan b

The implUved transfer function is

w (s) = 1.814
3 T

-sT
1 - e

= 0.907.

1 + e -s'f '

and its amplitude characteristic is also shown in Fig. 3.8.

(3-67)

(3-68)

Both curves 2 and 3 of Fig. 3.8 accentuate high frequencies which

may be present at the input because of noise 4t. . In this case, a transfer function

whose amplitude characteristic is like that of curve 4 would be a more desirable

approximation for differentiation.

The inverse transform of {J-68} completes the synthesis of a

differentiation program. The result is

O(t) = ~ [t(t) - 1(t-T>] - o(t-T). (3-69)

The accuracy of this differentiation program may be determined from ;Fig. 3.8,

Curve 3.

Report R=225

CHAPTER IV

FREQUENCY ANALYSIS OF SOME NUMERICAL INTEGRA. TION FORMULAS

In this chapter we apply the methods of frequency analysis to

several numerical integration formulas: the trapezoidal, Simpson's 1/3

rule, Simpson's 3/8 rule, and Weddle's rule. Frequency analysis is

applied to determine the stability of these formulas, compare 1:heir ac­

curacy, and compare their transfer functions with that of the ideal

integrator.

401 Numerical Integration

In the numerical integration of definite integrals, the range

of integration is divided into a convenient number of equal intervals,

and the values of the integrand are defined only at the ends of these inter­

vals o Essentially this is the same as sampling (or impulse modulating)

the integrand. Let the distance between samples be T. To obtain an

approximate value of the integral 'We may determine an nth order polynomial

that passes through n + 1 of the sampled pOints and integrate the poly­

nomial over the corresponding range, repeating the process until the com­

plete range of the original integral has been covered. If the sampled

points are joined by straight lines, (approximation by a first order of

polynomial) the resulting integration formula is Imown as the trapezoidal

rule (each interval of the integrand is approximated by a trapezoid).

Joining the points in each group of three sampled points by a parabola

lea.ds to an integration formula mown as Simpson's 1/3 rule. If the

points in each group of four sampled points are joined by a cubic curve, we

Report R=225 -71-

get Simpsoni s 3/8 rule. The trapezoidal rule and Simpson's 1/3 rule

are quite widely !mown and used, but therEfis another one, called Weddle's

rule, that is used to obtain great accuracy. Joining the points in each group

of seven sampled points by a sixth order polynomial leads to Weddle's rule.

In each case the range of integration should be divided into an integral

multiple of nnW intervals. For example, to use Weddle's rule, the range

of integration should be diVided into 6, 12, 18 •••••• equal·intervals.

In what follows we shall designate the transfer f'unctidn of an

ideal integrator as HCs): Thus,

H(s) = ~ (4-1)

with which the approximate integration formulas will be compared.

4.11 Trapezoidal Rule

Using the trapezoidal rule the definite integral,

o(t) =
(t. i- i(x) dx

may be approximated by,

0l(t) '" ~[[i(t) + i(t - T)] +

The Laplace transform of (4-3) is

(4-2)

(i(t - T) + i(t - 2T) J + ••••••]

(4-3)

0l(s) = ~ [(1 + e-ST) (1 + e-ST) + e-2sT + ••••••••)] I(s).

(4-4)

Report R=225

So the transfer function is

-72-

1 -aT + e

1 -sT
- e

A 11 ttle algebra shows that for s = 3-.

4.12 Simpson' s 1/3 Rule,

(4-5)

(4-6)

Using Simpson's 1/3 rule the definite integral (4-2) maY' be

approxima. ted by

02(t} :: j ([1(t) + 4i(t - T} + i(t - 2T})+

[i(t - 2T} +4i(t - 3T) + i(t - 4T} J + ••••••• J' (4"'1)

1be Laplace transform or (4-B) is

or,

02(S} :: ~ I{s) (1 + 4 a-sT + a -2ST) (1 + a-2sT + a -4sT + •••)

(4~)

1 + 4 e -sT + . e -2sT
-28T

1 - e
l(s).

Report &-225 -73-

Thererore~ the transfer function for Simpson's 1/3 rule is

1 4 -sT -2sT + e + e

1 -281'
- e

• (4-10)

Dividing (4 10) by (4-1), letting s = jm and using some algebraic and

trigonometric manipula tiona leads to the ratio

2 + cos (41'
sin coT

4013 Si!psonts 3/8 Rule

o (4-11)

The approximation to1he detini te integral (4-2) that is obtained

using Simpson's 3/8 rule is

0l t) :: ~ (L 1(t) + 31{t - T) + 31(t - 21') + 1(t - 3T) J +

l1(t - 3T) + 31(t - 4T) + 3i(t - 5T) + 1(t - 6T) + •••••••]

(4-12)

ihe Laplace transform or 03(t) is

0ls) = ~ r{s) (1 + 3 e -sT + 3 e-2sT + e-3S~(1 + e-
3sT

+' e-6ST+)

(4-13)

or~

1 3 -sT 3 -2sT -3sT + e + e +e
1 - e -3sT

I(8) (4-14)

Report R=225 -74-

Hence for Simpson's 3/8 rule, the transfer function is

For s = je&, the ratio of W
3
(jm) to H(jOl) 1s

1 + cos (J)T
caT • (1 + 2 cos (J)T) tan 2'

(4-15)

(4-16)

A considerable amount of manipu1.a tion is required to obtain the above form.

By Weddle's rule the approxima tion of the definite integral

(4=2) is

04(t) = ~ [[iCt) + 5i(t - T) + i(t - 2T) + 6i(t \- 3T) +

i(t - 4T) + 5i{ t - 5T) + i{ t - 6T)] + ~(t - 6T) +

,i(t - 7T) + i(t - 8T) + 6i(t - 9T) + i(t - lOT) +

51 (t ... lIT) + i(t - l2T)] + 00 •• 0000000 oj
(4 17)

In the SaJrS manner as before, the transform of 04(t) is

. 3T .1+ 5 e-sT + e-2sT + 6 e-3sT + e-4sT + 5e-5sT -6sT
04(8) ~ ~IIQ + e l(s) ..

.LV 1 CD e -osT J

(4-18)

.... 75-

so the transfer tunc tion f or Weddle 1 s rule is

1 + 5 e -sT + e -2sT + 6. -3aT + e -4sT + 5e -SsT+ e -6sT
1 _ e=6sT --0

(4-19)

By using a considerable amunt of algebraic and trigonometric manipulation,

we get for s :: jco:

1 + 3 cos mT + C08
2 coT

(1 + 2 cos CDT) sin O)T •

4~2 Comparison of Numerical Integration Formulas

(4-20)

With the above equationa, we can get a complete picture ot the

four approximation formulas in both the time and frequency domains.

Equations (4-.5), (4 .. 10), (4-15), and (4-19) are the transfer functions

of each ot the numerical integration processes and from these the stability

of each one can be determined. Let us now examine the denominator of each

transfer function. rf the change of variable, z :: e-sT, is made, it is

easily seen that the magni tude of the roots of all the de nomina tor poly-

nomials is unit.y; however, there are no multiple roots. Therefore, each

of the numerical processes is stable.

Now we must consider the accuracy of each of the integra tion

formulas 0 Equations (4-6), (4-11), (4-16), and (4-20) give the ratio of

the particular transfer function to tha t of the ideal integrator. -In Figure

401 these ratios are plotted as functions of coT, and we see clearly tha t,

of the four" Simpson t a 1/3 rule and Weddle's rule are the best for coT

Report R-225 -76-

2.0

0.9

Trapezoidal Rule

.. 0...... Simpson's 1/3 Rule

--------- Simpson's 3/8 Rule
----- Weddle's Rule

, ,
I
~

4 ,
t

:1

r

'"
,
f
i

•

•

, ,
,

Figure 4.1 Comparison of Errors in Various Numerical Integration

Formulas

Report R 225 -77-

below i radians. For example, suppose tha t we wish to integrate a sine

wave of radian frequency (J)o and want the error to be less than 2.5%.

For each of the approximation formulas, how many samples must be taken

in a cycle of the sine. wave? '!he answer can be obtained rapidly trom

Figure 4.1 by noting the frequencies at which the amplitude ratios become

0.975 or 1.025, as listed below.

Trapezoidal

Simpson's 1/3 Rule

Simpson's 3/8 Rule

Weddle I S Rule

0
co T = 30 ;

0

moT = 7~ • ,
(0 l' = 600

;
0

cooT = 80
0

;

12 samples/cycle

5.8 • •
6.0 .. II

4.5 " II

The number of samples per cycle is indicated for each rule, and this is

obtained by dividing 3600
by' the indicated angle.

Report R-225

APPENDIX A

Proof that the Locus of Q(~) Crosses the Real Axis either Normall

or Tangentially at ~ := 0 and - 2

Recall that Q(s) is given by the polynomial in e-sf,

~ sT
Q{s) = ~ bke- ;

k 1: 0
b 1: 1 •

o

For s = 0 and:!: j..!f, Q(s) is real because each term of the polynomial is

real. Since the locus is symmetrical about the real axis, it must cross the

real axis at these points.

In order to examine the behavior of t·he locus of Q{ jco) at these

points, take the derivative of Q(s) with respect to s •

. .JIl
dQ 1: ~ _ k T b e -sT
dsL-- k 0

k = I

Observer that ~~ is also a polynomial in e -sT; therefore, it will also be

al f ·", d + .il. re or s = 0 an - J 2 •

Now consider the derivative in the neighborhood of s =t 0 and

! j -9- 0 If'! ~ 0 at these points, we will prove that the Q-Iocus cr~sses
i

the real axis perpendicularly. In the region of interest let ds := j S ,
where J is a small increment of 00. Since ~ must be real (and unequal

to zero as we have assumed), dQ = !j IdQ J in order to .s.ti~.ty this condition.

(Q\.E.Do)

We must now discuss the case in which ~:~ = 0 for s • 0 or !~.

First::'observe that if! = 0, Q must have a saddle pointl in the region

dQ near the point where ds = o. .Let us now make the change of variable,

I For an excellent discussion of t~e behavio~ of functions near saddle
points, see Guillemn, "The Mathematics of Circuit Analysis~,~.~Jbli:ri'l1il.y
and Sons, New York, 1949, pp. 298-302. .

Report R ... 225 =79=

~sT () () z =: e :p so that Q s becomes D z which is

m k
D(z) = ~ bk z •

In the immediate vicinity of a saddle point, the function behaves as

D(z) ~ C + C (z - z)p
o p 0

in which the C'a are constants, z is the value of z at which the saddle
o

point occurs, and tIp 1" is the order of the saddle point. In this case,

z e +le ,In plotting the locus of D(z), we map the unit circle of the z-plane
o """':

into the D-plane (see Figo A-I).

j y z-plane

unit
circle

Figo A=l Unit circle in the z-plane that
maps into the D-plane

Consider the map in the vicinity

of a possible saddle point (z • !l).

Observe that for z near Zo~

z - z • dz +j/dZ/. There-o -
fore, in the vicinity of a saddle

point nez) is

n(z) = c • C (!j fdzl)P. o p

This readily shows that if "ptt is even, the locus jn the D-plane (or Q-plane)

is tangent to the real axis 0 If "p" is odd, the locus is normal to the real

axis.

We will now summarize the results obtained.

a) If ~~ 1 0 for s = 0 or !j~, the locus of Q{joo) is normal to

the real axis for s = 0 for!j.1.j respectively.

Report R=?25

b) If ~~ = 0 for s = 0 or !. j 1; Q(s) has a saddle point at the

point where the derivative is zeroo -sT The change of variable, z - e ,

permits us to write, D{z) = C + C (z - z)p for z in the immediate vicinity o p 0

of the saddle pointo If "pH is even, the ~plane locus is tangent to the

real axis at the saddle pointo If "p" is odd, the locus is normal to the

real axis.

Report R-225

APPENDIX B

Coding of Direct Regression Programs

The regression formula

- ••• - b o(t -nt)
n

(B-1)

is to be programmed. Assume that the data and the constants are stored.

as follows8

Register Content Register Content

No o (Constants) No. (Data)

A.O a r.o1 'i(t)
0

Ao1 ~ 1.1 i(t - T)

• 0 • •
• •

')
• •

I

• • • •

ADm a
m

T.m 'r(t - m'1')

B.l -bl 0.1 ~(t - '1')

B.2 -b2 0.2 'a'(t -2'1')

0 · · •

• • -. •

• • • •

B.n -b D.n 'O{t - nT) n
R.Ol Partial and

final results

1 These registers are not used in the second composite program.

Report R 225 -82-

The program will first be coded in two distinct parts: arithmetic and

man~pulativeo The arithmetic part performs, at each sampling point, the

arithmetic operations called for by the above regression formula and thus

calculates a new output value:

1

First Pro gram, Arithmetic 1 Portion

Register Content Result Noo (Instruction)

Pol ca O.n

P.2 mr B.n

P.3 ts R.O - ~ -b cr(t - nT} n .
~

Po4 ca Oen-I- t

P.5 mrB .• n-I

Po6 ad R.O

Po7 tsR.O .\,. -b «5 ~ .. (n-~)~ -b oCt - nT)
" n-l n

0 • •
0 • •
0 • •

Po (hn-h) ca 0.1

etc. mr B.l

ad RoO n

tsRoO ~ -L. bkS'(t - kT) r
k=l

caI.m

mrAom

ad RoO
n

Po (4n+3J ts R.O \ a i(t - mT) -~ bk~{t - kT) , m -I

The code is explaiDedin Sc.D. Thesis "Treatment of Digital Control Systems
and Numerical Processes in the Frequency Domain, "J.K. Salzer, Appendix 1.C,
VOl. 2, August 1, 1951, M.I.T.

Continuedg

Register Content Result Noo (Instruction)

0 0

0 0

0 0

P.4(n+m) ca 100

etc. mr AoO

ad RoO

ts :a., 0 - ~ oCt)

si selects the r~levant Qutput device - (as specified by the address section)

Po (4n+4m+5) rc RoO records output, oCt), into output
device

It is clear that in this illustration each term of the regression equation

costs 4 instructions.

After the c-alculation of oCt) at a particular sampling point

the data storage has to be rearranged for the next calculation: the present

O{t CD nT) ean be lost, all other C5'(t - kT) are to be stepped down one storage

register, and the new output value, oCt), just computed is put into O.li

the rearrangement of the 3r(t - kT) is analogous, and the new input value to

be-'r~ceived goes into 1000 The ooded program performing these manipulations

folloWs.

;.

Report R=225

Register
No o

o

•
o

0

0

0

Po(6m+6n+6)

!

=84=

FIRST PROGRAM~ MANIPULATIVE PORTION

Content
(Instruction)

ca Oon=2
ts D.n=l

cs 001

ts 002

ca RoO

ts 0.1

ca rom-I

ts rom

0

0

0

ca 100

ts 101

si -

rd 100

sp Pol

]
]

}

J
]

}

Description

moves 0' ~ =. (n=l) Tl into location
of oCt = nT) and roses oCt - nT)

moves/ref!, ~ (n ... 2)T] into
(5 ~ .. (n=l)~ location

moves oCt ~ T) intoo(t - 2T)

location

moves oCt) into oCt = T)

location

moves I ~ "'" (m=l)!] into Yet-mT)

location and loses i(t=mT)

moves f(t) into i(t <= T) location

selects the relevant input device
(as specified by the address section)
and makes computer wait until device
receives a new input value

reads content of input device into
ret) location

returns control to beginning of
whole program.

Report R=22, -85-

The manipulations are seen to cost 2 instructions per term of the regression

equation.

There are various ways in which this program can be streamlined.

The main considerations are storage and time. It is possible to save

substantial storage (with a sufficiently long regression equation) by

programming the 6 instructions (4 arithmetic and 2 manipulative) required

for each term only once and using them over and over for the various terms,

each timeo In order to do so, a short program must be added to change the

appropriate address sections in the 6 instructions, whicn can thus be

made to compute a different term each time. This address-changing routine

materially lengthens the time of calculation, unless some very specialized

instructions or equipment is designed.

It appears more desirable to concentrate_ on reducing the time

requirements in most control applications_,_ for storage is easier to increase

than speed, which seems to be the ultimate limitation in _the applicability
\

of digital computers to controlling. In our present example a notable

reduction in time, and also in storage, results from mixing the arithmetic

and manipulative steps and using a new instruction,l ex, which exchanges

the content of the storage register _specified by its address with the

content of the accumulator. The corresponding coded program, which still

uses the same constant and data storage, follows.

1 This instruction is actually used in Whirlwind applications on a temporary
basis 0 The code used for this instruction is .9!. to indicate its temporary
nature; final adoption of this instruction, however, is likely.

Report R-22, ':86-

SECOND PROGRAM, COMPOSITE
Register Content 'Results No o (Instructions)

Pol ca O.n

P.2 mr B.n

Pe3 j9X o..n-I - ~ into Storage: -b ~(t - nT),
partial' result n

J into AC: a- ~ - (n-l)f]
~

p~4 ts O.n ~ puts '0 ~ - (n-l~ into o'{t - nT) ,
location for ne . samplin, ..
AC still holds '0 (!, - (n-l '!1

Po, mr B.n-I
P.6 ad O.n-l
Po7 ex O~n-,2 .-~ into Storage: partial result

+- f-- into AC: o[t - {n-2)f]
P.B ts O.n-l - ~ Cf f!, - (n-2)T] to 1S ~ - (n-l)'!]

location

• •
f) •
• •

P.4n-7 mr B.2

etc. ad 0.2

ex 0.1 - r+ into Storage: partial result
~ f-- into AC: OCt - T)

ts 0.2 - ~ O(t - T) to~{t - 2T) location

mr B.l

ad o~l

ex T.m ~ into Storage; partial result

'1:.. bk~(t - kT)
k=l

~ ~ into AC: ?(t - mT)

mr A.m

ad T.m

ex I.m-I - r? into Stor~e: partial re suI t
~ I-- intoAC: 1. ~ - (m-l)t]

P.4n+3 ts r.m - ~ i~ - (m-I)!] to 1"(t-mT) location

Report R-22$ -87-

Register Content Result No. . (Instructions)

• •
• •
• •

P.(4n·4m-8) mr A.2

ad 1.2

ex 1.1 - ~ into Storaie: partial result
-t-~ into AC: ift - T)

ts 1.2 lot. ret - T) into r(t - 2T} location r

mr A.1

.. ad r·.1

ts 0.1 \. into Storage: partial result ,
(note content of 0.1 has already
been used so that this register
is available)

si selects the relevant input device - (as specified by the address section)
and makes computer wait until device
receives a new input value

rd 1.1 £eads content of input device,
i(t) into itt - T) location

mr A.O

ad 0.1

ts 0.1 ... into Storage: final result
r <ret) into oCt - T) location

si selects the relevant output device - (as specified by the address section)

rc 0.1 records output, ~t), into output
device

P.(4n+4m.6) sp P.1 returns control to beginning· of
program f

Report R-225 -88-

The abov~ composite program is seen to result in considerable

saving of storage and time over the first program, which was given mainly

for illustrative purposes. It uses four instructions per term ealcula ted

rather than 6, and even saves two data registers, 1.0 and R.O. Register 1.0

is not needed because the incoming data is immediately used in the ealcula tion

while register R.O is superfluous because the partial results can be stored

in the register from which the data has just be.en removed for calculation.

One should note another important advantage of the second program:

to all practical extent, it eliminates computational delays entirely.

This is so, because all the computation is performed in advance of receiving

the input, and when the input value 1r(t) is received, there are only a few

instructions to be carried out in order to obtain the output,~{ t) • Only

direct regression programming has this advantage.

The tally of direct regression composite programming in terms of

m and n, the degree of numerator and denominator polynomials of the program

transfer function, is as follows:

Time requirement (in number of
instructions to be carried out
in sequence at each sampling)

Storage Requirements:

Constants
Data
Instruction
Total

4m+4n+6

m+n:ftl
m+n

4m+4n+6

6m+ 6n + 7

The above tally is made under the assumption that none of the constants

are zero. If some constants are zero, the constant and program storage,

as well as the time, requirements will be reduced, but not the data storage

requirement. These more specific requirements are taken into account in

the summary of Art. 3.35'.

Report R-225

APPENDIX C

Coding of Cascaded Programs

The set of regression equations

0i(t) = i(t)

02(t) = ()l(t) + c2ol (t-T) -d202(t-T)
I

• (C-l)
•
•

is to be programmed. Assume the following arrangements of number storage:

Register Content Register Content
No. (Constants) No. (Data)

D.l -~ 0.1 '01 (t-T)

D.2 -ci2 0.2 a'2{t-T)

• • • •
0 • • •
0 • • •

Don -d O.n oCt - T) n

Co2 c2 R.O Partial Result

0 •
• •
• •

C.n c
n

A.O a
0

Report. R-22S -90-

In the coded program to follow it is assumed that none of the indicated

Ck is zero; i.e., m • n - 1. Variations are easily accounted for. The

program instructions follow~
--

Register Ccmtent Description No. "<::rllS truction) ." .,.

P.1 si selects input device and waits until
device has new input valu~ ret) -

P.2 rd R.O - ~ reads i(t) into temporary locati·on

P.3 ca 0.1

P.4 mr D.l -~ '8J. (t - T) obtained

P., ad R.O ~l (t) obtaine4

P.6 ex 0.1 - r+- to Storage: ~l (t) into '01 (t-T)
location

~ - to AC: 0i(t - T)

fi .1 mr C.2

P.B ad 0.1 0i (t) + c26i (t - T) obtained

P.9 ts R.O - r+- to Storage: partial result

P.lO ca 0.2

P.ll mr D.2

P.l2 ad R.O "02(t) obtained

• •
• · ,..

• •
-r

Report R-225

Continued:

Register Content
No. (Instruction) Description

P.(7n-S) ex O.n-l - ~ to Storage: ern_let) into

etc~ o l(t-T) location
n-

+--- to AC: '0 l(t-T) n-
mr O.n

ad O.n-l ~ let) + c W l(t-~) obtained n- n n-

ts R.O - -+ to Storage: partial result

ca O.n

mr D.n

ad R.O

mr A.O o(t) obtained

ts O.n - r+ to etorage: 'O{t) into o(t-T)

location

si - select output device

rc O.n records output, -0'(t), into output

device

P.(7n~3) sp P.l returns control to beginning of

program

Thus, if m = n - 1, the program is 7n + 2 instructions long. Suppose

m = n - 2 and let c2 = OJ then the sequence P.6 through P.12 above would

be replaced by the following shorter sequence, p\'.9 through P' .12.

P' .9 ts 0.1 - + puts 'O],{t) into ~l (t-T) location

Pl.10 ca 0.2

PI.ll mr D.2

P' .12 ad 0.1 °2(t) obtained

Report R-225 -92-

Thus, each ck = 0 saves 3 instructions.

The tally for cascade programming can now be written:

Time Requirements:

Storage Requirement:

Constants

Data

Temporary

Instruction

Total

3m + 4n + ,

m+n+l

n

1

3m .:tr 4n+ 6
4m+6n+8

Comparison of these requirements with those of other methods ·of programming

is done in Art. 3.35.

Report R-225

APPENDIX D

.Coding.of . Parallel Progr.ama

The set of regression equations

()l(t) • f1-r(t) - ~ol(t -T)

'02(t) • f 21(t) - d21Y'2(t - T)

•
•
•

~ (t) • f1(t) - do{t - T)
n n n n

(D-l)

is to be programmed. Assume the following arrangement of number storage:

Register Content Register Content
No. (Constants) No. Data

D.l -'i. 0.1 0i(t - T)

D.2 -d2 0.2 o;(t - T)

• • • •
• • • •

D.n -d O.n o (t - T)
n n

F.1 f1 1.0 i(t)j also oCt)

F.2 £2
e •
• •
• •

F.n f n

None of the constants can be zero. The program instructions follow.

Report R-22, -94-

Register Content
No. (Instructions) .. Des c riDti on

P.l a1 selects input device and waits - until device has new input value;
1(t)

P.2 . rd 1.0 - • reads let) into its assigned
storage register

P.3 ca 1.0 .

P.4 mr F.l

P.S ex 0.1 -~ to Storage: r{i(t)

~ ~ to AC: 15'l(t - T)

P.6 mr D.l

P.7 ad 0.1

P.8 ts 0.1 ,
~ to Storage: 1:>1 (t) -

P.9 ca 1.0
I

PolO mr F.2

P.ll ex 0.2 --~ to Storage: f
2
i:(t)

-+-- to AC: a-2(t - 1')

P.12 mr D.2

Po13 ad 0.2

Po14 ts 0.2 - ~ to Storage: °2(t)

• • .
0 •
0 •

P.{6n-) ca 1.0

etc. mr F.n

ex O.n - r+ to Storage: £ "ret) n

"f-I-- to AC: 0' (t - 1')
n

Report R-225 -95-

Register Content
No. (Instructions) Description

mr D.n

ad O.n

ts O.n "- to Storage: art) , n
P.(6n+3) ad 0.n-1 0n(t) + 'On_l (t) obtained

etc. ad 0.nt!'2 etc.

• •
• •
0 •

ad 0.2

ad 0.1 'O(t) obtained

P.(7n+2) ts 1.0 - ~ to Storage: oCt)

etc. si selects output device -
rc T.O records output, oCt) into

output device

P.(7n+5) sp P.l returns control to beginning of
oro gram.

In parallel programming none of the indicated constants can be

zero, and the only possible saving is when several constants have the same

value. Even then the program itself is not affected materiallyo

The tally for pa.rallel programming follows t

Time Requirement

Storage Requirements:

Constants

Data

Instructions

Total

1..n + 5

2n

n+1

7n ... 5

IOn ... 6

Further discussion of these requirements is left to Art. 3.35.

