UNIX™ SUPPORT FROM BERKELEY

4.3 BSD with NFS

Programmer’s
Supplementary
Documents

Volume 1

PS1

UNIX is a trademark of Bell Laboratories

'PSt Contents

UNIX Programmer’s Supplementary Documests, Volgme 1{PST) -
4.3 Berkeley Software Distribution, Virtusf vAX-11 Versias

April, 1986.

These two volumes contain documents which supplement the manusl pages in The UNIXY
Programmer’s Reference Manual for the Virtual VAX-11 version of the system as distribiuted h'y LLC .
Berkeley.

Languages in common use (other languages in Progranmuit’s Supplmemm%} '} N
The C Programming Language — Reference Manual PS1:1
Official statement of the syntax of C. Should be supplemented by “The C Pmm

Language,” B.W. Kernighan and D.M. Ritchie, Prentice-Hall, 1978, that contains a tutm‘{g&
introduction and many examples.

A Portable Fortran 77 Compiler ’ I’SLZ

A revised version of the document which ongmally appeamgm %k!me 25 ﬁ?Jthe Bell ,
Labs documentation; this version reflects the ongoing work at B -

Introduction to the f77 I/O Library ' o | FS! .3

A description of the revised input/output library for Foretan 77, feflectitig work. m out
at Berkeley.
Berkeley Pascal User's Manual P14

An implementation of this language popular for learning to program.

Berkeley Vax/UNIX Assembler Reference Manual ' - PS#3
The usage and syntax of the assembler; useful mostly by compilerw‘iiw&

General Reference
Berkeley Software Architecture Manual (4.3 Edition) PSLo

A concise and terse description of the system call interface provxwﬁ"mley Unix, &4
revised for 4.3BSD. This will never be a best seller.

An Introductory 4.3BSD Interprocess Communication Tutorial . ﬁ?:?
How to write programs that use the Interprocess Communication Facilities of 4. 38k0,

1 UNIX is a trademark of AT&T Bell Laboratories.

PS1 Contents

An Advanced 4.3BSD Interprocess Communication Tutorial PSi:8
The reference document (with some examples) for the Interprocess Communication Facili-
ties of 4.3BSD.

Programming Tools

Lint, A C Program Checker PS1:9
Checks C programs for syntax errors, type violations, portability problems, and a variety
of probable errors.

A Tutorial Introd on to ADB " PSI1:10

Hovﬁ déé*l b"oiﬁ"ms ‘usxng the adb debugger. For hints on the use of ADB for debug-
ging the UNIX kernel, see “Using ADB to Debug the Kernel”, SMM:3

Debugging with dbx PSI:11
How to debug programs without having to know much about machine language.

Make - A Program for Mainﬁiﬁhg Computer Programs : PS1:12
Indispensable tool for making sure large programs are properly compiled with minimal
effort.

An Introduction to the Revision Control System ' PS1:13

RCS is a user-contributed tool for working together vnth other people without stepping on
each other’s toes. An alternative to sccs for controlling software changes.

An Introduction to the Source Code Control System PS1:14
A useful introductory article for those users with installations licensed for SCCS.

YACC: Yet Another Compiler-Compiler PS1:15
Converts a BNF specification of a language and semantic actions written in C into a com-
piler for that language.

LEX - A Lexical Analyzer Generator PS1:16

Creates a recognizer for a set of regular expressions: each regular expression can be fol-
lowed by arbitrary C code to be executed upon finding the regular expression.

The M4 Macro Processor PS1:17
M4 is a macro processor useful in its own right and as a front-end for C, Ratfor, and
Cobol. e

P 'ngilﬂ"lf'& S .

Screen Updating and Cursor Movement Optimization PS1:18

Describes the curses package, an aid for writing screen-oriented, terminal-independent pro-
- grams.

e O oo 3 aosmeoob 5209y bay i
Ve ® 0 Em

ol s s AR R SRS 11 15 5

"W(
4 T

VYolume 1 e e
(PS1)

UNIX Programmer’s Supplementary Dot uineén t§
s

u‘a

- I < I3 il
T Jial ZTIEt 0T BeRD Ol Flialgt

4.3 Berkeley Software Distribution . . . _.
Virtual VAX-11 Version o

NI 2
s

<oy pabstes s At 01 pGLehotrT

" PR, b AR
3 et b oooomir mes &0y TUEW
sty ™Y § W)

: : GoLar ean ot goitort T
Apnl, 1986 YL I Ty YUt s S i B

e,
taLy 1R SRS L ETYSY £ -
PO TETIAZ0U91 6 Py
S SDOD T e s ¥ LW

goere o ogrngT T

' ey j0228001G 0Tu o o 2l &M
Computer Systems Research Group A o3
Computer Science Division
Department of Electrical Engineering and Computer Smencemm*
University of California sentsLogl o
Berkeley, California 94720 sndress

BIMETE

vy nivw geepgds(

Lb
ALY

s

a8

UNIX Programmer’s Supplementary Documents
Volume 1
(PS1)

4.3 Berkeley Software Distribution
Virtual VAX-11 Version

April, 1986

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California
Berkeley, California 94720

Copyright 1979, 1980, 1983, 1986 Regents of the University of
California. Permission to copy these documents or any portion
thereof as necessary for licensed use of the software is granted
to licensees of this software, provided this copyright notice and
statement of permission are included.

Documents PS1:1, 9, 10, 12, 15, 16, and 17 are copyright 1979,
AT&T Bell Laboratories, Incorporated. Documents PS1:2, and
5 are modifications of earlier documents that are copyrighted
1979 by AT&T Bell Laboratories, Incorporated. Holders of
UNIX™/32V, System III, or System V software licenses are
permitted to copy these documents, or any portion of them, as
necessary for licensed use of the software, provided this
copyright notice and statement of permission are included.

Document PS1:13 is part of the user contributed software and
is copyright 1983 by Walter F. Tichy. Permission to copy the
RCS documentation or any portion thereof as necessary for
licensed use of the software is granted to licensees of this
software, piovided this copyright notice is included.

This manual reflects system enhancements made at Berkeley
and sponsored in part by the Defense Advanced Research
Projects Agency (DoD), Arpa Order No. 4871 monitored by
the Naval Electronics Systems Command under contract No.
N00039-84-C-0089. The views and conclusions contained in
these documents are those of the authors and should not be
interpreted as representing official policies, either expressed or
implied, of the Defense Research Projects Agency or of the US
Government.

The C Programming Language - Reference Manual

Dennis M. Ritchie

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

This manual is a reprint, with updates to the current C standard, from The C Programming
Language, by Brian W. Kernighan and Dennis M. Richie, Prentice-Hall, Inc., 1978.

1. Introduction

This manual describes the C language on the DEC PDP-111, the DEC VAX-11, and the AT&T
3B 20%. Where differences exist, it concentrates on the VAX, but tries to point out implementation-
dependent details. With few execptions, these dependencies follow directly from the underlying pro-
perties of the hardware; the various compilers are generally quite compatible.

2. Lexical Conventions

There are six classes of tokens - identifiers, keywords, constants, strings, operators, and other
separators. Blanks, tabs, new-lines, and comments (collectively, “white space”) as described below
are ignored except as they serve to separate tokens. Some white space is required to separate other-
wise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken
to include the longest string of characters which could possibly constitute a token.

2.1. Comments

The characters /* introduce a comment which terminates with the characters /. Comments do
not nest.

2.2. Identifiers (Names)

An identifier is a sequence of letters and digits. The first character must be a letter. The under-
score (_) counts as a letter. Uppercase and lowercase letters are different. Although there is no limit
on the length of a name, only initial characters are significant: at least eight characters of a non-
external name, and perhaps fewer for external names. Moreover, some implementations may collapse
case distinctions for external names. The external name sizes include:

PDP-11 7 characters, 2 cases
VAX-11 >100 characters, 2 cases
A’I'&.T 3B 20 >100 characters, 2 cases

2.3. Keywords
The following identifiers are reserved for use as keywords and may not be used otherwise:

t DEC PDP-11, and DEC VAX-11 are trademarks of Digital Equipment Corporation.
t 3B 20 is a trademark of AT&T.

PS1:1-2 The C Programming Language - Reference Manual

auto do for return typedef
break double goto short union
case else if sizeof unsigned
char enum int static void
continue external long ~ struct while
default float register switch

Some implementations also reserve the words fortran, asm, gfloat, hfloat and quad

2.4. Constants

There are several kinds of constants. Each has a type; an introduction to types is given in
“NAMES.” Hardware characteristics that affect sizes are summarized in “Hardware Characteristics”
under “LEXICAL CONVENTIONS.”

2.4.1. Integer Constants

An integer constant consisting of a sequence of digits is taken to be octal if it begins with 0
(digit zero). An octal constant consists of the digits 0 through 7 only. A sequence of digits preceded
by 0x or 0X (digit zero) is taken to be a hexadecimal integer. The hexadecimal digits include a or A
through f or F with values 10 through 15. Otherwise, the integer constant is taken to be decimal. A
decimal constant whose value exceeds the largest signed machine integer is taken to be long; an octal
or hex constant which exceeds the largest unsigned machine integer is likewise taken to be long. Oth-
erwise, integer constants are int.

2.4.2. Explicit Long Constants

A decimal, octal, or hexadecimal integer constant immediately followed by 1 (letter ell) or L is a
long constant. As discussed below, on some machines integer and long values may be considered
identical. ‘

2.4.3. Character Constants

A character constant is a character enclosed in single quotes, as in ’x’. The value of a character
constant is the numerical value of the character in the machine’s character set.

Certain nongraphic characters, the single quote (°) and the backslash (\), may be represented
according to the following table of escape sequences:

new-line NL(LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote ’ \
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits which are taken to
specify the value of the desired character. A special case of this construction is \0 (not followed by a
digit), which indicates the character NUL. If the character following a backslash is not one of those
specified, the behavior is undefined. A new-line character is illegal in a character constant. The type
of a character constant is int. '

The C Programming Language - Reference Manual PS1:1-3

2.4.4. Floating Constants

A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, and an
optionally signed integer exponent. The integer and fraction parts both consist of a sequence of
digits. Either the integer part or the fraction part (not both) may be missing. Either the decimal
point or the e and the exponent (not both) may be missing. Every floating constant has type double.

2.4.5. Enumeration Constants

Names declared as enumerators (see “Structure, Union, and Enumeration Declarations” under
“DECLARATIONS”) have type int.

2.5. Strings

A string is a sequence of characters surrounded by double quotes, as in "...". A string has type
“array of char” and storage class static (see “NAMES”) and is initialized with the given characters.
The compiler places a null byte (\0) at the end of each string so that programs which scan the string
can find its end. In a string, the double quote character (") must be preceded by a \; in addition, the
same escapes as described for character constants may be used.

A \ and the immediately following new-line are ignored. All strings, even when written identi-
cally, are distinct.

2.6. Hardware Characteristics
The following figure summarize certain hardware properties that vary from machine to machine:

DEC PDP-11. DEC VAX-11 AT&T 3B
(ASCII) (ASCII) (ASCII)
char 8 bits 8 bits 8bits
int 16 32 32
short 16 16 ‘ 16
long 32 32 32
float 32 32 . 32
double 64 64 64
float range +10 *38 +10 =8 +10 *38
double range +10 *38 *10 38 +10 308

3. Syntax Notation

Syntactic categories are indicated by italic type and literal words and characters in bold type.
Alternative categories are listed on separate lines. An optional terminal or nonterminal symbol is
indicated by the subscript “opt,” so that

expression
(expression)

indicates an optional expression enclosed in braces. The syntax is summarized in “SYNTAX SUM-
MARY™.

4. Names

The C language bases the interpretation of an identifier upon two attributes of the identifier -
its storage class and its type. The storage class determines the location and lifetime of the storage
associated with an identifier; the type determines the meaning of the values found in the identifier’s
storage.

PS1:1-4 The C Programming Language - Reference Manual

4.1. Storage Class
There are four declarable storage classes: Automatic Static External Register.

Automatic variables are local to each invocation of a block (see “Compound Statement or
Block™ in “STATEMENTS”) and are discarded upon exit from the block. Static variables are local to
a block but retain their values upon reentry to a block even after control has left the block. External
variables exist and retain their values throughout the execution of the entire program and may be
used for communication between functions, even separately compiled functions. Register variables
are (if possible) stored in the fast registers of the machine; like automatic variables, they are local to
each block and disappear on exit from the block.

4.2. Type

The C language supports several fundamental types of objects. Objects declared as characters
(char) are large enough to store any member of the implementation’s character set. If a genuine char-
acter from that character set is stored in a char variable, its value is equivalent to the integer code for
that character. Other quantities may be stored into character variables, but the implementation is
machine dependent. In particular, char may be signed or unsigned by default.

Up to three sizes of integer, declared short int, int, and long int, are available. Longer integers
provide no less storage than shorter ones, but the implementation may make either short integers or
long integers, or both, equivalent to plain integers. ““Plain” integers have the natural size suggested
by the host machine architecture. The other sizes are provided to meet special needs.

The properties of enum types (see “Structure, Union, and Enumeration Declarations” under
“DECLARATIONS”) are identical to those of some integer types. The implementation may use the
range of values to determine how to allocate storage.

Unsigned integers, declared ‘unsignede obey the laws of arithmetic modulo 2" where 7 is the
number of bits in the representation. (On the PDP-11, unsigned long quantities are not supported.)

Single-precision floating point (float) and double precision floating point (double) may be
synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers, they will be
referred to as arithmetic types. Char, int of all sizes whether unsigned or not, and enum will collec-
tively be called integral types. The float and double types will collectively be called floating types.

The void type specifies an empty set of values. It is used as the type returned by functions that
generate no value.

Besides the fundamental arithmetic types, there is a conceptually infinite class of derived types
constructed from the fundamental types in the following ways: Arrays of objects of most types Func-
tions which return objects of a given type Pointers to objects of a given type Structures containing a
sequence of objects of various types Unions capable of containing any one of several objects of vari-
ous types.

In general these methods of constructing objects can be applied recursively.

5. Objects and Lvalues

An object is a manipulatable region of storage. An /value is an expression referring to an object.
An obvious example of an lvalue expression is an identifier. There are operators which yield lvalues:
for example, if E is an expression of pointer type, then sE is an Ivalue expression referring to the
object to which E points. The name “lvalue” comes from the assignment expression E1 = E2 in
which the left operand E1 must be an Ivalue expression. The discussion of each operator below indi-
cates whether it expects lvalue operands and whether it yields an Ivalue.

6. Conversions

A number of operators may, depending on their operands, cause conversion of the value of an
operand from one type to another. This part explains the result to be expected from such conver-
sions. The conversions demanded by most ordinary operators are summarized under “Arithmetic

The C Programming Language - Reference Manual . PSI1:1-5

Conversions.” The summary will be supplemented as required by the discussion of each operator.

6.1. Characters and Integers

A character or a short integer may be used wherever an integer may be used. In all cases the
value is converted to an integer. Conversion of a shorter integer to a longer preserves sign. Whether
or not sign-extension occurs for characters is machine dependent, but it is guaranteed that a member
of the standard character set is non-negative. Of the machines treated here, only the PDP-11 and
VAX-11 sign-extend. On these machines, char variables range in value from -128 to 127. The more
explicit type unsigned char forces the values to range from 0 to 255.

On machines that treat characters as signed, the characters of the ASCII set are all non-negative.
However, a character constant specified with an octal escape suffers sign extension and may appear
negative; for example, \377" has the value -1.

When a longer integer is converted to a shorter integer or to a char, it is truncated on the left.
Excess bits are simply discarded.

6.2. Float and Double

All floating arithmetic in C is carried out in double precision. Whenever a float appears in an
expression it is lengthened to double by zero padding its fraction. When a double must be converted
to float, for example by an assignment, the double is rounded before truncation to float length. This
result is undefined if it cannot be represented as a float. On the VAX, the compiler can be directed to
use single percision for expressions containing only float and interger operands.

6.3. Floating and Integral

Conversions of floating values to integral type are rather machine dependent. In particular the
direction of truncation of negative numbers varies. The result is undefined if it will not fit in the
space provided.

Conversions of mtegral values to floating type are well behaved Some loss of accuracy occurs if
the destination lacks sufficient bits.

6.4. Pointers and Integers

An expression of integral type may be added to or subtracted from a pointer; in such a case, the
first is converted as specified in the discussion of the addition operator. Two pointers to objects of.
the same type may be subtracted; in this case, the result is converted to an integer as specified in the
discussion of the subtraction operator.

6.5. Unsigned

Whenever an unsigned integer and a plain integer are combined, the plain integer is converted
to unsigned and the result is unsigned. The value is the least unsigned integer congruent to the signed
mteger (modulo 2w°"ds‘z°) In a 2’s complement representation, this conversion is conceptual; and
there is no actual change in the bit pattern.

When an unsigned short integer is converted to long, the value of the result is the same numeri-
cally as that of the unsigned integer. Thus the conversion amounts to padding with zeros on the left.

6.6. Arithmetic Conversions

A great many operators cause conversions and yield result types in a similar way. This pattern
will be called the “usual arithmetic conversions.” First, any operands of type char or short are con-
verted to int, and any operands of type unsigned char or unsigned short are converted to unsigned int.
Then, if either operand is double, the other is converted to double and that is the type of the result.
Otherwise, if either operand is unsigned long, the other is converted to unsigned long and that is the
type of the result. Otherwise, if either operand is long, the other is converted to long and that is the
type of the result. Otherwise, if one operand is long, and the other is unsigned int, they are both

PS1:1-6 The C Programming Language - Reference Manual

converted to unsigned long and that is the type of the result. Otherwise, if either operand is unsigned,
the other is converted to unsigned and that is the type of the result. Otherwise, both operands must
be int, and that is the type of the resulit.

6.7. Void

The (nonexistent) value of a void object may not be used in any way, and neither explicit nor
implicit conversion may be applied. Because a void expression denotes a nonexistent value, such an
expression may be used only as an expression statement (see “Expression Statement” under “STATE-
MENTS”) or as the left operand of a comma expression (see “Comma Operator” under “EXPRES-
SIONS™).

An expression may be converted to type void by use of a cast. For example, this makes explicit
the discarding of the value of a function call used as an expression statement.

7. Expressions , .

The precedence of expression operators is the same as the order of the major subsections of this
section, highest precedence first. Thus, for example, the expressions referred to as the operands of +
(see “Additive Operators”) are those expressions defined under “Primary Expressions”, “Unary
Operators”, and “Multiplicative Operators”. Within each subpart, the operators have the same pre-
cedence. Left- or right-associativity is specified in each subsection for the operators discussed therein.
The precedence and associativity of all the expression operators are summarized in the grammar of
“SYNTAX SUMMARY™.

Otherwise, the order of evaluation of expressions is undefined. In particular, the compiler con-
siders itself free to compute subexpressions in the order it believes most efficient even if the subex-
pressions involve side effects. The order in which subexpression evaluation takes place is unspecified.
Expressions involving a commutative and associative operator (s, +, &, |, *) may be rearranged arbi-
trarily even in the presence of parentheses; to force a particular order of evaluation, an explicit tem-
porary must be used.

The handling of overflow and divide check in expression evaluation is undefined. Most existing
implementations of C ignore integer overflows; treatment of division by 0 and all floating-point
exceptions varies between machines and is usually adjustable by a library function.

7.1. Primary Expressions
Primary expressions involving ., —>, subscripting, and function calls group left to right.

primary-expression:
identifier
constant
string
(expression)
primary-expression [expression]
primary-expression (expression-list)
primary-expression . identifier o
primary-expression —-> identifier

expression-lisi:
expression
expression-list , expression

An identifier is a primary expression provided it has been suitably declared as discussed below.
Its type is specified by its declaration. If the type of the identifier is “array of ...”, then the value of
the identifier expression is a pointer to the first object in the array; and the type of the expression is
“pointer to ...”. Moreover, an array identifier is not an lvalue expression. Likewise, an identifier

which is declared “function returning ...”, when used except in the function-name position of a call,

The C Programming Language - Reference Manual PS1:1-7

is converted to “pointer to function returning ...”.

A constant is a primary expression. Its type may be int, long, or double depending on its form.
Character constants have type int and floating constants have type double.

A string is a primary expression. Its type is originally “array of char”, but following the same
rule given above for identifiers, this is modified to “pointer to char” and the result is a pointer to the
first character in the string. (There is an exception in certain initializers; see “Initialization” under
“DECLARATIONS.”)

A parenthesized expression is a primary expression whose type and value are identical to those
of the unadorned expression. The presence of parentheses does not affect whether the expression is
an lvalue.

A primary expression followed by an expression in square brackets is a primary expression. The
intuitive meaning is that of a subscript. Usually, the primary expression has type “pointer to ...”, the
subscript expression is int, and the type of the result is “...”. The expression E1[{E2] is identical (by
definition) to =((E1)+E2)). All the clues needed to understand this notation are contained in this sub-
part together with the discussions in “Unary Operators” and “Additive Operators” on identifiers, *
and + respectively. The implications are summarized under “Arrays, Pointers, and Subscripting”
under “TYPES REVISITED.”

A function call is a primary expression followed by parentheses containing a possibly empty,
comma-separated list of expressions which constitute the actual arguments to the function. The pri-
mary expression must be of type “function returning ...,” and the result of the function call is of type
“...”. As indicated below, a hitherto unseen identifier followed immediately by a left parenthesis is
contextually declared to represent a function returning an integer; thus in the most common case,
integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before the call. Any of type char or
short are converted to int. Array names are converted to pointers. No other conversions are per-
formed automatically; in particular, the compiler does not compare the types of actual arguments
with those of formal arguments. If conversion is needed, use a cast; see “Unary Operators” and
“Type Names” under “DECLARATIONS.”

In preparing for the call to a function, a copy is made of each actual parameter. Thus, all argu-
ment passing in C is strictly by value. A function may change the values of its formal parameters,
but these changes cannot affect the values of the actual parameters. It is possible to pass a pointer on
the understanding that the function may change the value of the object to which the pointer points.
An array name is a pointer expression. The order of evaluation of arguments is undefined by the
language; take note that the various compilers differ. Recursive calls to any function are permitted.

A primary expression followed by a dot followed by an identifier is an expression. The first
expression must be a structure or a union, and the identifier must name a member of the structure or
union. The value is the named member of the structure or union, and it is an lvalue if the first
expression is an lvalue.

A primary expression followed by an arrow (built from - and >) followed by an identifier is an
expression. The first expression must be a pointer to a structure or a union and the identifier must
name a member of that structure or union. The result is an lvalue referring to the named member of
the structure or union to which the pointer expression points. Thus the expression E1->MOS is the
same as («E1).MOS. Structures and unions are discussed in “Structure, Union, and Enumeration
Declarations” under “DECLARATIONS.”

7.2. Unary Operators
Expressions with unary operators group right to left.

PS1:1-8 The C Programming Language - Reference Manual

unary-expression:
s expression
& Ivalue
- expression
! expresszon
~ expression
++ lvalue
--Ivalue
Ivalue ++
Ival
{ type-name) expression
sizeof expression
sizeof (type-name)

The unary » operator means indirection ; the expression must be a pointer, and the result is an
lvalue referring to the object to which the expression pomts If the type of the expression is “pointer
,” the type of the result is “...”.

The result of the unary & operator is a pointer to the object referred to by the lvalue. If the
type of the lvalue is “...”, the type of the result is “pointer to ...”.

The result of the unary — operator is the negative of its operand. The usual arithmetic conver-
sions are performed The negatxve of an unsigned quantity is computed by subtracting its value from
2" where n is the number of bits in the corresponding signed type.

There is no unary + operator.

The result of the logical negation operator ! is one if the value of its operand is zero, zero if the
value of its operand is nonzero. The type of the result is int. It is applicable to any arithmetic type
or to pointers.

The ~ operator yields the one’s complement of its operand. The usual arithmetic conversions
are performed. The type of the operand must be integral.

The object referred to by the lvalue operand of prefix ++ is incremented. The value is the new
value of the operand but is not an lvalue. The expression ++x is equivalent to x=x+1. See the dis-
cussions “Additive Operators’”” and “Assignment Operators” for information on conversions.

The lvalue operand of prefix -~ - is decremented analogously to the prefix ++ operator.

When postfix ++ is applied to an lvalue, the result is the value of the object referred to by the
lvalue. After the result is noted, the object is incremented in the same manner as for the prefix ++
operator. The type of the result is the same as the type of the lvalue expression.

When postfix —— is applied to an lvalue, the result is the value of the object referred to by the
Ivalue. After the result is noted, the object is decremented in the manner as for the prefix - - opera-
tor. The type of the result is the same as the type of the lvalue expression.

An expression preceded by the parenthesized name of a data type causes conversion of the value
of the expression to the named type. This construction is called a cast. Type names are described in
“Type Names” under “Declarations.”

The sizeof operator yields the size in bytes of its operand. (A byte is undefined by the language
except in terms of the value of sizeof. However, in all existing implementations, a byte is the space
required to hold a char.) When applied to an array, the result is the total number of bytes in the
array. The size is determined from the declarations of the objects in the expression. This expression
is semantically an unsigned constant and may be used anywhere a constant is required. Its major use
is in communication with routines like storage allocators and /O systems.

The sizeof operator may also be applied to a parenthesized type name. In that case it yields the
size in bytes of an object of the indicated type.

The C Programming Language - Reference Manual PS1:1-9

The construction sizeof(type) is taken to be a unit, so the expression sizeof(¢ype)-2 is the same
as (sizeof(type))-2.

7.3. Multiplicative Operators

The multiplicative operators #, /, and % group left to right. The usual arithmetic conversions
are performed.

multiplicative expression:
expression = expression
expression / expression
expression % expression

The binary » operator indicates multiplication. The = operator is associative, and expressions
with several multiplications at the same level may be rearranged by the compiler. The binary / opera-
tor indicates division.

The binary % operator yields the remainder from the division of the first expression by the
second. The operands must be integral.

When positive integers are divided, truncation is toward 0; but the form of truncation is
machine-dependent if either operand is negative. On all machines covered by this manual, the
remainder has the same sign as the dividend. It is always true that (a/b)sb + a%b is equal to a (if b is
not 0).

7.4. Additive Operators

The additive operators + and - group left to right. The usual arithmetic conversions are per-
formed. There are some additional type possibilities for each operator.

additive-expression:
expression + expression
expression — expression

The result of the + operator is the sum of the operands. A pointer to an object in an array and
a value of any integral type may be added. The latter is in all cases converted to an address offset by
multiplying it by the length of the object to which the pointer points. The result is a pointer of the
same type as the original pointer which points to another object in the same array, appropriately
offset from the original object. Thus if P is a pointer to an object in an array, the expression P+1 is a
pointer to the next object in the array. No further type combinations are allowed for pointers.

The + operator is associative, and expressions with several additions at the same level may be
rearranged by the compiler.

The result of the — operator is the difference of the operands. The usual arithmetic conversions
are performed. Additionally, a value of any integral type may be subtracted from a pointer, and then
"the same conversions for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by division by
the length of the object) to an int representing the number of objects separating the pointed-to
objects. This conversion will in general give unexpected results unless the pointers point to objects in
the same array, since pointers, even to objects of the same type, do not necessarily differ by a multi-
ple of the object length.

7.5. Shift Operators

The shift operators << and >> group left to right. Both perform the usual arithmetic conver-
sions on their operands, each of which must be integral. Then the right operand is converted to int;
the type of the result is that of the left operand. The result is undefined if the right operand is nega-
tive or greater than or equal to the length of the object in bits. On the VAX a negative right operand
is interpreted as reversing the direction of the shift.

PS1:1-10 ‘ The C Programming Language - Reference Manual

shift-expression:
expression << expression
expression >> expression

The value of E1<<E2. is El (interpreted as a bit pattern) left-shifted E2 bits. Vacated bits are 0
filled. The value of E1>>E2 is E1 right-shifted E2 bit positions. The right shift is guaranteed to be
logical (0 fill) if E1 is unsigned; otherwise, it may be arithmetic.

7.6. Relational Operators
The relational operators group left to right.

relational-expression:
expression < expression
* expression > expression
expression <= expression
expression >= expression

The operators < (less than), > (greater than), <= (less than or equal to), and >= (greater than or
equal to) all yield O if the specified relation is false and 1 if it is true. The type of the result is int.
The usual arithmetic conversions are performed. Two pointers may be compared; the result depends
on the relative locations in the address space of the pointed-to objects. Pointer comparison is port-
able only when the pointers point to objects in the same array.

7.7. Equality Operators

equality-expression:
expression == expression
expression != expression

The == (equal to) and the != (not equal to) operators are exactly analogous to the relational
operators except for their lower precedence. (Thus a<b == c<d is 1 whenever a<b and c<d have the
same truth value). '

A pointer may be compared to an integer only if the integer is the constant 0. A pointer to
which 0 has been assigned is guaranteed not to point to any object and will appear to be equal to 0.
In conventional usage, such a pointer is considered to be null.

7.8. Bitwise AND Operator

and-expression:
expression & expression

The & operator is associative, and expressions involving & may be rearranged. The usual arith-
metic conversions are performed. The result is the bitwise AND function of the operands. The
operator applies only to integral operands. '

7.9. Bitwise Exclusive OR Operator

exclusive-or-expression:
expression ~ expression

The ~ operator is associative, and expressions involving ~ may be rearranged. The usual arith-
metic conversions are performed; the result is the bitwise exclusive OR function of the operands.
The operator applies only to integral operands.

The C Programming Language - Reference Manual PS1:1-11

7.10. Bitwise Inclusive OR Operator

inclusive-or-expression:
expression | expression

The | operator is associative, and expressions involving | may be rearranged. The usual arith-
metic conversions are performed; the result is the bitwise inclusive OR function of its operands. The
operator applies only to integral operands.

7.11. Logical AND Operator

logical-and-expression:
expression && expression

The && operator groups left to right. It returns 1 if both its operands evaluate to nonzero, 0
otherwise. Unlike &, && guarantees left to right evaluation; moreover, the second operand is not
evaluated if the first operand is 0.

The operands need not have the same type, but each must have one of the fundamental types or
be a pointer. The result is always int.

7.12. Logical OR Operator

logical-or-expression:
expression || expression

The || operator groups left to right. It returns 1 if either of its operands evaluates to nonzero, 0
otherwise. Unlike |, || guarantees left to right evaluation; moreover, the second operand is not
evaluated if the value of the first operand is nonzero.

The operands need not have the same type, but each must have one of the fundamental types or
be a pointer. The result is always int.

7.13. Conditional Operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right to left. The first expression is evaluated; and if it is
nonzero, the result is the value of the second expression, otherwise that of third expression. If possi-
ble, the usual arithmetic conversions are performed to bring the second and third expressions to a
common type. If both are structures or unions of the same type, the result has the type of the struc-
ture or union. If both pointers are of the same type, the resuit has the common type. Otherwise, one
must be a pointer and the other the constant 0, and the result has the type of the pointer. Only one
of the second and third expressions is evaluated.

7.14. Assignment Operators

There are a number of assignment operators, all of which group right to left. All require an
lvalue as their left operand, and the type of an assignment expression is that of its left operand. The
value is the value stored in the left operand after the assignment has taken place. The two parts of a
compound assignment operator are separate tokens.

PS1:1-12 The C Programming Language - Reference Manual

assignment-expression:
Ivalue = expression
lvalue += expression
Ivalue -= expression
Ivalue s= expression
Ivalue /= expression
Ivalue %= expression
Ivalue >>= expression
lvalue <<= expression
Ivalue &= expression
Ivalue "= expression
lvalue | = expression

In the simple assignment with =, the value of the expression replaces that of the object referred
to by the lvalue. If both operands have arithmetic type, the right operand is converted to the type of
the left preparatory to the assignment. Second, both operands may be structures or unions of the
same type. Finally, if the left operand is a pointer, the right operand must in general be a pointer of
the same type. However, the constant 0 may be assigned to a pointer; it is guaranteed that this value
will produce a null pointer distinguishable from a pointer to any object.

The behavior of an expression of the form E1 op = E2 may be inferred by taking it as
equivalent to E1 = E1 op (E2); however, E1 is evaluated only once. In += and -=, the left operand
may be a pointer; in which case, the (integral) right operand is converted as explained in “Additive
Operators.” All right operands and all nonpointer left operands must have arithmetic type.

7.15. Comma Operator

comma-expression:
expression , expression

A pair of expressions separated by a comma is evaluated left to right, and the value of the left
expression is discarded. The type and value of the result are the type and value of the right operand.
This operator groups left to right. In contexts where comma is given a special meaning, e.g., in lists
of actual arguments to functions (see “Primary Expressions”) and lists of initializers (see “Initializa-
tion” under “DECLARATIONS”), the comma operator as described in this subpart can only appear
in parentheses. For example,

f(a, (t=3, t+2), ¢

has three arguments, the second of which has the value 5.

8. Declarations

Declarations are used to specify the interpretation which C gives to each identifier; they do not
necessarily reserve storage associated with the identifier. Declarations have the form

declaration:
decl-specifiers declarator-listom ;

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers
consist of a sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiers
N . 0,
sc-specifier decl-speczﬁersom

The list must be self-consistent in a way described below.

The C Programming Language - Reference Manual ' PS1:1-13

8.1. Storage Class Specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a “storage class specifier” only for
syntactic convenience. See “Typedef” for more information. The meanings of the various storage
classes were discussed in ‘“Names.”

The auto, static, and register declarations also serve as definitions in that they cause an
appropriate amount of storage to be reserved. In the extern case, there must be an external definition
(see “External Definitions’) for the given identifiers somewhere outside the function in which they are
declared.

A register declaration is best thought of as an auto declaration, together with a hint to the com-
piler that the variables declared will be heavily used. Only the first few such declarations in each
function are effective. Moreover, only variables of certain types will be stored in registers; on the
PDP-11, they are int or pointer. One other restriction applies to register variables: the address-of
operator & cannot be applied to them. Smaller, faster programs can be expected if register declara-
tions are used appropriately, but future improvements in code generation may render them unneces-

sary.

. At most, one sc-specifier may be given in a declaration. If the sc-specifier is missing from a
declaration, it is taken to be auto inside a function, extern outside. Exception: functions are never
automatic. :

8.2. Type Specifiers
The type-specifiers are

type-specifier:

struct-or-union-specifier

typedef-name

enum-specifier
basic-type-specifier:

basic-type

basic-type basic-type-specifiers
basic-type:

char

short

int

long

unsigned

float

double

void

At most one of the words long or short may be specified in conjunction with int; the meaning is
the same as if int were not mentioned. The word long may be specified in conjunction with float; the
meaning is the same as double. The word unsigned may be specified alone, or in conjunction with int
or any of its short or long varieties, or with char.

Otherwise, at most on type-specifier may be given in a declaration. In particular, adjectival use
of long, short, or unsigned is not permitted with typedef names. If the type-specifier is missing from a

PS1:1-14 ' The C Programming Language - Reference Manual

declaration, it is taken to be int.

Specifiers for structures, unions, and enumerations are discussed in “Structure, Union, and
Enumeration Declarations.” Declarations with typedef names are discussed in “Typedef.”

8.3. Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of declarators,
each of which may have an initializer.

declarator-list:
init-declarator
init-declarator , declarator-list

init-declarator:

declarator initializeropt

Initializers are discussed in “Initialization”. The specifiers in the declaration indicate the type
and storage class of the objects to which the declarators refer. Declarators have the syntax:

declarator:
identifier
(declarator)
= declarator
declarator ()
declarator [constant-expressionopt]

The grouping is the same as in expressions.

8.4. Meaning of Declarators

Each declarator is taken to be an assertion that when a construction of the same form as the
declarator appears in an expression, it yields an object of the indicated type and storage class.

Each declarator contains exactly one identifier; it is this identifier that is declared. If an una-
dorned identifier appears as a declarator, then it has the type indicated by the specifier heading the
declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding of complex
declarators may be altered by parentheses. See the examples below.

Now imagine a declaration
T D1

where T is a type-specifier (like int, etc.) and D1 is a declarator. Suppose this declaration makes the
identifier have type *“... T ,” where the *“...” is empty if D1 is just a plain identifier (so that the type
of x in ‘int x” is just int). Then if D1 has the form

+«D
the type of the contained identifier is “... pointerto T .”
If D1 has the form
D()

then the contained identifier has the type ... function returning T.”
If D1 has the form

D [constant-expression]

The C Programming Language - Reference Manual - PS1:1-15

or
D[]

then the contained identifier has type “... array of T.” In the first case, the constant expression is an
expression whose value is determinable at compile time , whose type is int, and whose value is posi-
tive. (Constant expressions are defined precisely in “Constant Expressions.”) When several ‘“array
of” specifications are adjacent, a multidimensional array is created; the constant expressions which
specify the bounds of the arrays may be missing only for the first member of the sequence. This eli-
sion is useful when the array is external and the actual definition, which allocates storage, is given
elsewhere. The first constant expression may also be omitted when the declarator is followed by ini-
tialization. In this case the size is calculated from the number of initial elements supplied.

An array may be constructed from one of the basic types, from a pointer, from a structure or
union, or from another array (to generate a multidimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are
as follows: functions may not return arrays or functions although they may return pointers; there are
no arrays of functions although there may be arrays of pointers to functions. Likewise, a structure or
union may not contain a function; but it may contain a pointer to a function.

As an example, the declaration
int i, tip, f(), *ﬁl)(), (*Pﬁ)()?

declares an integer i, a pointer ip to an integer, a function f returning an integer, a function fip return-
ing a pointer to an integer, and a pointer pfi to a function which returns an integer. It is especially
useful to compare the last two. The binding of +fip() is »(fip()). The declaration suggests, and the
same construction in an expression requires, the calling of a function fip. Using indirection through
the (pointer) result to yield an integer. In the declarator (»pfi)(), the extra parentheses are necessary,
as they are also in an expression, to indicate that indirection through a pointer to a function yields a
function, which is then called; it returns an integer.

As another example,
float fa[17], »afp[17];

declares an array of float numbers and an array of pointers to float numbers. Finally,
static int x3d[3][5}[7];

declares a static 3-dimensional array of integers, with rank 3x5x7. In complete detail, x3d is an
array of three items; each item is an array of five arrays; each of the latter arrays is an array of seven
integers. Any of the expressions x3d, x3d[i], x3d{[i}{j], x3d[i]{jl[k] may reasonably appear in an expres-
sion. The first three have type “array” and the last has type int.

8.5. Structure and Union Declarations

A structure is an object consisting of a sequence of named members. Each member may have
any type. A union is an object which may, at a given time, contain any one of several members.
Structure and union specifiers have the same form.

struct-or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union identifier

struct-or-union:
struct
union

PS1:1-16 The C Programming Language - Reference Manual

The struct-decl-list is a sequence of declarations for the members of the structure or union:

. struct-decl-list:
struct-declaration
struct-declaration struct-deci-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a structure or union. A
structure member may also consist of a specified number of bits. Such a member is also called a field
; its length, a non-negative constant expression, is set off from the field name by a colon.

struct-declarator:
. declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as the declarations are
read left to right. Each nonfield member of a structure begins on an addressing boundary appropriate
to its type; therefore, there may be unnamed holes in a structure. Field members are packed into
machine integers; they do not straddle words. A field which does not fit into the space remaining in a
word is put into the next word. No ﬁeld may be wider than a word.

Fields are assigned right to left on the PDP-11 and VAX-11, left to nght on the 3B 20

A struct-declarator with no declarator, only a colon and a width, indicates an unnamed field use-
ful for padding to conform to externally-imposed layouts. As a special case, a field with a width of 0
specifies alignment of the next field at an implementation dependant boundary.

The language does not restrict the types of things that are declared as fields, but implementa-
tions are not required to support any but integer fields. Moreover, even int fields may be considered
to be unsigned. On the PDP-11, fields are not signed and have only integer values; on the VAX-11,
fields declared with int are treated as containing a sign. For these reasons, it is strongly recom-
mended that fields be declared as unsigned. In all implementations, there are no arrays of fields, and
the address-of operator & may not be applied to them, so that there are no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset 0 and whose size
is sufficient to contain any of its members. At most, one of the members can be stored in a union at
any time.

A structure or union specifier of the second form, that is, one of

struct identifier { struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the structure specified by the list. A
subsequent declaration may then use the third form of specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures. Structure tags also permit the long
part of the declaration to be given once and used several times. It is illegal to declare a structure or
union which contains an instance of itself, but a structure or union may contain a pointer to an
instance of itself.

The C Programming Language - Reference Manual PS1:1-17

The third form of a structure or union specifier may be used prior to a declaration which gives
the complete specification of the structure or union in situations in which the size of the structure or
union is unnecessary. The size is unnecessary in two situations: when a pointer to a structure or
union is being declared and when a typedef name is declared to be a synonym for a structure or
union. This, for example, allows the declaration of a pair of structures which contain pointers to each
other.

The names of members and tags do not conflict with each other or with ordinary variables. A
particular name may not be used twice in the same structure, but the same name may be used in
several different structures in the same scope.

A simple but important example of a structure declaration is the following binary tree structure:

struct tnode

(
char tword{20];
int count;

struct tnode sleft;
struct tnode »right;

JH °

which contains an array of 20 characters, an integer, and two pointers to similar structures. Once this
declaration has beep given, the declaration

struct tnode s, *sp;
declares s to be a structure of the given sort and sp to be a pointer to a structure of the given sort.
With these declarations, the expression

sp->count

refers to the count field of the structure to which sp points;
s.]eft

refers to the left subtree pointer of the structure s; and
s.right->tword[0]

refers to the first character of the tword member of the right subtree of s.

8.6. Enumeration Declarations
Enumeration variables and constants have integral type.

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

The identifiers in an enum-list are declared as constants and may appear wherever constants are
required. If no enumerators with = appear, then the values of the corresponding constants begin at 0

PS1:1-18 The C Programming Language - Reference Manual

and increase by 1 as the declaration is read from left to right. An enumerator with = gives the associ-
ated identifier the value indicated; subsequent identifiers continue the progression from the assigned
value.

The names of enumerators in the same scope must all be distinct from each other and from
those of ordinary variables.

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag
in a struct-specifier; it names a particular enumeration. For example,

enum color { chartreuse, burgundy, claret=20, winedark };
enum color s=cp, col;

;::)l = claret;

cp = &col;

if (»»cp == burgundy) ...

makes color the enumeration-tag of a type describing various colors, and then declares cp as a pointer
to an object of that type, and col as an object of that type. The possible values are drawn from the
set {0,1,20,21}. :

*
8.7. Initialization
A declarator may specify an initial value for the identifier being declared. The initializer is pre-
ceded by = and consists of an expression or a list of values nested in braces.
initializer:
= expression
= { initializer-list }
= (initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

All the expressions in an initializer for a static or external variable must be constant expressions,
which are described in “CONSTANT EXPRESSIONS”, or expressions which reduce to the address of
a previously declared variable, possibly offset by a constant expression. Automatic or register vari-
ables may be initialized by arbitrary expressions involving constants and previously declared variables
and functions.

Static and external variables that are not initialized are guaranteed to start off as zero.
Automatic and register variables that are not initialized are guaranteed to start off as garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic type), it consists of a
single expression, perhaps in braces. The initial value of the object is taken from the expression; the
same conversions as for assignment are performed.

When the declared variable is an aggregate (a structure or array), the initializer consists of a
brace-enclosed, comma-separated list of initializers for the members of the aggregate written in
increasing subscript or member order. If the aggregate contains subaggregates, this rule applies recur-
sively to the members of the aggregate. If there are fewer initializers in the list than there are
members of the aggregate, then the aggregate is padded with zeros. It is not permitted to initialize
unions or automatic aggregates.

Braces may in some cases be omitted. If the initializer begins with a left brace, then the
succeeding comma-separated list of initializers initializes the members of the aggregate; it is erroneous

The C Programming Language - Reference Manual PS1:1-19

for there to be more initializers than members. If, however, the initializer does not begin with a left
brace, then only enough elements from the list are taken to account for the members of the aggregate;
any remaining members are left to initialize the next member of the aggregate of which the current

aggregate is a part.
A final abbreviation allows a char array to be initialized by a string. In this case successive
characters of the string initialize the members of the array.

For example,
intx[] =(1,35)

declares and initializes x as a one-dimensional array which has three members, since no size was
specified and there are three initializers.

float y[4][3] =

{
{1,35)
{2,4,6)},
(3,57}

I

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the array y[0], namely
y[0]{0], y[0][1], and y[0}{2]. Likewise, the next two lines initialize y{1] and y[2]. The initializer ends
early and therefore y{3] is initialized with 0. Precisely, the same effect could have been achieved by

float y[4][3] =
{

1,35,2,4,6,3,5 7
% ‘

The initializer for y begins with a left brace but that for y[0] does not; therefore, three elements
from the list are used. Likewise, the next three are taken successively for y[1] and y[2]. Also,

float y[4][3] =
{
{(1){2%{(3)%{4)
%
initializes the first column of y (regarded as a two-dimensional array) and leaves the rest 0.
Finally,

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string.

8.8. Type Names

In two contexts (to specify type conversions explicitly by means of a cast and as an argument of
sizeof), it is desired to supply the name of a data type. This is accomplished using a “type name”,
which in essence is a declaration for an object of that type which omits the name of the object.

type-name:
type-specifier abstract-declarator

PS1:1-20 The C Programming Language - Reference Manual

abstract-declarator:
empty
(abstract-declarator)
s abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expressionapt]

To avoid ambiguity, in the construction
(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it is possible to identify
uniquely the location in the abstract-declarator where the identifier would appear if the construction
were a declarator in a declaration. The named type is then the same as the type of the hypothetical
identifier. For exampie,

int

int =

int *[3]

int (»){3]

int ()

int (=)0

int (={3])O

name respectively the types “integer,” “pointer to integer,” “array of three pointers to integers,”
“pointer to an array of three integers,” “function returning pointer to integer,” “pointer to function
returning an integer,” and “array of three pointers to functions returning an integer.”

9 66, % 66

8.9. Typedef

Declarations whose “storage class” is typedef do not define storage but instead define identifiers
which can be used later as if they were type keywords naming fundamental or derived types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each identifier appearing as part of any
declarator therein becomes syntactically equivalent to the type keyword naming the type associated
with the identifier in the way described in “Meaning of Declarators.” For example, after

typedef int MILES, sKLICKSP;
typedef struct { double re, im; } complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the type of distance is int, that of metricp is “pointer to int, ” and that of z is
the specified structure. The zp is a pointer to such a structure.

The typedef does not introduce brand-new types, only synonyms for types which could be
specified in another way. Thus in the example above distance is considered to have exactly the same
type as any other int object.

The C Programming Language - Reference Manual PS1:1-21

9, Statements
Except as indicated, statements are executed in sequence.

9.1. Expression Statement
Most statements are expression statements, which have the form

expression ;

Usually expression statements are assignments or function calls.

9.2. Compound Statement or Block
So that several statements can be used where one is expected, the compound statement (also,
and equivalently, called “block™) is provided:

compound-statement:
{ declaration-list _ statement-list)}
opt opt

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the outer declaration is

pushed down for the duration of the block, after which it resumes its force.

Any initializations of auto or register variables are performed each time the block is entered at
the top. It is currently possible (but a bad practice) to transfer into a block; in that case the initializa-
tions are not performed. Initializations of static variables are performed only once when the program
begins execution. Inside a block, extern declarations do not reserve storage so initialization is not
permitted.

9.3. Conditional Statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases, the expression is evaluated; and if it is nonzero, the first substatement is executed.
In the second case, the second substatement is executed if the expressign is 0. The “else” ambiguity
is resolved by connecting an else with the last encountered else-less if.

9.4. While Statement
The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains nonzero.
The test takes place before each execution of the statement. :

9.5. Do Statement
The do statement has the form

do statement while (expression) ;

PS1:1-22 The C Programming Language - Reference Manual

The substatement is executed repeatedly until the value of the expression becomes 0. The test
takes place after each execution of the statement.

9.6. For Statement
The for statement has the form:

for (exp-Iapt N exp-zopt N exp-3opt) statement

Except for the behavior of continue, this statement is equivalent to
exp-1;

while (exp-2)
{

statement
exp-3 ;
}

Thus the first expression specifies initialization for the loop; the second specifies a test, made
before each iteration, such that the loop is exited when the expression becomes 0. The third expres-
sion often specifies an incrementing that is performed after each itération.

Any or all of the expressions may be dropped. A missing exp-2 makes the implied while clause
equivalent to while(1); other missing expressions are simply dropped from the expansion above.

9.7. Switch Statement

The switch statement causes control to be transferred to one of several statements depending on
the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result must be int. The
statement is typically compound. Any statement within the statement may be labeled with one or
more case prefixes as follows:

case constant-expression .

where the constant expression must be int. No two of the case constants in the same switch may have
the same value. Constant expressions are precisely defined in “CONSTANT EXPRESSIONS.”

There may also be at most one statement prefix of the form
default :

When the switch statement is executed, its expression is evaluated and compared with each case
constant. If one of the case constants is equal to the value of the expression, control is passed to the
statement following the matched case prefix. If no case constant matches the expression and if there
is a default, prefix, control passes to the prefixed statement. If no case matches and if there is no
default, then none of the statements in the switch is executed.

The prefixes case and default do not alter the flow of control, which continues unimpeded across
such prefixes. To exit from a switch, see “Break Statement.”

Usually, the statement that is the subject of a switch is compound. Declarations may appear at
the head of this statement, but initializations of automatic or register variables are ineffective.

9.8. Break Statement
The statement

The C Programming Language - Reference Manual . PS1:1-23

break ;

causes termination of the smallest enclosing while, do, for, or switch statement; control passes to the
statement following the terminated statement.

9.9. Continue Statement
The statement

continue ;

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or for state-
ment; that is to the end of the loop. More precisely, in each of the statements

while (...) { do { for (...) {
statement ; statement ;) statement ;
contin: ; contin: ; contin: ;

} } while (...); }

a continue is equivalent to goto contin. (Following the contin: is a null statement, see “Null State-
ment”.) '

9.10. Return Statement
A function returns to its caller by means of the return statement which has one of the forms
return ;
return expression |

In the first case, the returned value is undefined. In the second case, the value of the expression
is returned to the caller of the function. If required, the expression is converted, as if by assignment,
to the type of function in which it appears. Flowing off the end of a function is equivalent to a return
with no returned value. The expression may be parenthesized.

9.11. Goto Statement
Control may be transferred unconditionally by means of the statement

goto identifier ;

The identifier must be a label (see “Labeled Statement™) located in the current function.

9.12. Labeled Statement
Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. The only use of a label is as a target of a goto. The
scope of a label is the current function, excluding any subblocks in which the same identifier has been
redeclared. See “SCOPE RULES.”

9.13. Null Statement
The null statement has the form

A null statement is useful to carry a label just before the } of a compound statement or to sup-
ply a null body to a looping statement such as while.

PS1:1-24 The C Programming Language - Reference Manual

10. External Definitions

A C program consists of a sequence of external definitions. An external definition declares an
identifier to have storage class extern (by default) or perhaps static, and a specified type. The type-
specifier (see “Type Specifiers” in “DECLARATIONS”) may also be empty, in which case the type is
taken to be int. The scope of external definitions persists to the end of the file in which they are
declared just as the effect of declarations persists to the end of a block. The syntax of external
definitions is the same as that of all declarations except that only at this level may the code for func-
tions be given.

10.1. External Function Definitions
Function definitions have the form

Junction-definition:
decl—speciﬁersopt Junction-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static; see “Scope of Exter-
nals” in “SCOPE RULES” for the distinction between them. A function declarator is similar to a
declarator for a “function returning ...”” except that it lists the formal parameters of the function
being defined.

function-declarator:
declarator (parameter-listopt)

parameter-list:
identifier
identifier , parameter-list

* The function-body has the form

Sfunction-body:
declaration—listopt compound-statement

The identifiers in the parameter list, and only those identifiers, may be declared in the declara-
tion list. Any identifiers whose type is not given are taken to be int. The only storage class which
may be specified is register; if it is specified, the corresponding actual parameter, will be copied, if
possible, into a register at the outset of the function.

A simple example of a complete function definition is
int max(a, b, ¢)

inta, b, ¢
{
int m;
m=(@>b)?a:b;
return{(m > ¢) ? m : ¢);
}

Here int is the type-specifier; max(a, b, c) is the function-declarator; inta, b, c; is the
declaration-list for the formal parameters; { ... } is the block giving the code for the statement.

The C program converts all float actual parameters to double, so formal parameters declared
float have their declaration adjusted to read double. All char and short formal parameter declarations
are similarly adjusted to read int. Also, since a reference to an array in any context (in particular as
an actual parameter) is taken to mean a pointer to the first element of the array, declarations of for-
mal parameters declared ““array of ...” are adjusted to read “pointer to”

The C Programming Language - Reference Manual PS1:1-25

10.2. External Data Definitions
An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default) or static but not auto or
register.

11. Scope Rules

A C program need not all be compiled at the same time. The source text of the program may be
kept in several files, and precompiled routines may be loaded from libraries. Communication among
the functions of a program may be carried out both through explicit calls and through manipulation
of external data.

Therefore, there are two kinds of scopes to consider: first, what may be called the lexical scope
of an identifier, which is essentially the region of a program during which it may be used without
drawing “undefined identifier” diagnostics; and second, the scope associated with external identifiers,
which is characterized by the rule that references to the same external identifier are references to the
same object.

11.1. Lexical Scope

The lexical scope of identifiers declared in external definitions persists from the definition
through the end of the source file in which they appear. The lexical scope of identifiers which are for-
mal parameters persists through the function with which they are associated. The lexical scope of
identifiers declared at the head of a block persists until the end of the block. The lexical scope of
labels is the whole of the function in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a block, including the
block constituting a function, any declaration of that identifier outside the block is suspended until
the end of the block.

Remember also (see “Structure, Union, and Enumeration Declarations” in “DECLARA-
TIONS”) that tags, identifiers associated with ordinary variables, and identities associated with struc-
ture and union members form three disjoint classes which do not conflict. Members and tags follow
the same scope rules as other identifiers. The enum constants are in the same class as ordinary vari-
ables and follow the same scope rules. The typedef names are in the same class as ordinary
identifiers. They may be redeclared in inner blocks, but an explicit type must be given in the inner
declaration:

typedef float distance;

auto int distance;

ese

)

The int must be present in the second declaration, or it would be taken to be a declaration with
no declarators and type distance.

11.2. Scope of Externals

If a function refers to an identifier declared to be extern, then somewhere among the files or
libraries constituting the complete program there must be at least one external definition for the
identifier. All functions in a given program which refer to the same external identifier refer to the
same object, so care must be taken that the type and size specified in the definition are compatible
with those specified by each function which references the data.

PS1:1-26 The C Programming Language - Reference Manual

It is illegal to explicitly initialize any external identifier more than once in the set of files and
libraries comprising a multi-file program. It is legal to have more than one data definition for any
external non-function identifier; explicit use of extern does not change the meaning of an external
declaration.

In restricted environments, the use of the extern storage class takes on an additional meaning.
In these environments, the explicit appearance of the extern keyword in external data declarations of
identities without initialization indicates that the storage for the identifiers is allocated elsewhere,
either in this file or another file. It is required that there be exactly one definition of each external
identifier (without extern) in the set of files and libraries comprising a mult-file program.

Identifiers declared static at the top level in external definitions are not visible in other files.
Functions may be declared static. :

12. Compiler Control Lines

The C compiler contains a preprocessor capable of macro substitution, conditional compilation,
and inclusion of named files. Lines beginning with # communicate with this preprocessor. There
may be any number of blanks and horizontal tabs between the # and the directive. These lines have
syntax independent of the rest of the language; they may appear anywhere and have effect which lasts
(independent of scope) until the end of the source program file.

12.1. Token Replacement .
A compiler-control line of the form

#define identifier token-strmg

causes the preprocessor to replace subsequent instances of the identifier with the given string of
tokens. Semicolons in or at the end of the token-string are part of that string. A line of the form

#define identifier(identifier, ...)token-'stringom

where there is no space between the first identifier and the (, is a macro definition with arguments.
There may be zero or more formal parameters. Subsequent instances of the first identifier followed
by a (, a sequence of tokens delimited by commas, and a) are replaced by the token string in the
definition. Each occurrence of an identifier mentioned in the formal parameter list of the definition is
replaced by the corresponding token string from the call. The actual arguments in the call are token
strings separated by commas; however, commas in quoted strings or protected by parentheses do not
separate arguments. The number of formal and actual parameters must be the same. Strings and
character constants in the token-string are scanned for formal parameters, but strings and character
constants in the rest of the program are not scanned for defined identifiers to replacement.

In both forms the replacement string is rescanned for more defined identifiers. In both forms a
long definition may be continued on another line by writing \ at the end of the line to be continued.

This facility is most valuable for definition of “manifest constants,” as in
#define TABSIZE 100

int table[TABSIZE |;

A control line of the form
#undef identifier

causes the identifier’s preprocessor definition (if any) to be forgotten.

If a #defined identifier is the subject of a subsequent #define with no intervening #undef, then
the two token-strings are compared textually. If the two token-strings are not identical (all white
space is considered as equivalent), then the identifier is considered to be redefined.

The C Programming Language - Reference Manual PS1:1-27

12.2. File Inclusion
A compiler control line of the form

#include "filename”

causes the replacement of that line by the entire contents of the file filename. The named file is
searched for first in the directory of the file containing the #include, and then in a sequence of
specified or standard places. Alternatively, a control line of the form

#include <filename>

searches only the specified or standard places and not the directory of the #include. (How the places
are specified is not part of the language.)

#includes may be nested.

12.3. Conditional Compilation
A compiler control line of the form

#if restricted-constant-expression

checks whether the restricted-constant expression evaluates to nonzero. (Constant expressions are dis-
cussed in “CONSTANT EXPRESSIONS”; the following additional restrictions apply here: the con-
stant expression may not contain sizeof casts, or an enumeration constant.)

A restricted constant expression may also contain the additional unary expression

defined identifier '
or

defined(identifier) .
which evaluates to one if the identifier is currently defined in the preprocessor and zero if it is not.

All currently defined identifiers in restricted-constant-expressions are replaced by their token-
strings (except those identifiers modified by defined) just as in normal text. The restricted constant
expression will be evaluated only after all expressions have finished. During this evaluation, all
undefined (to the procedure) identifiers evaluate to zero.

A control line of the form
#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; i.e., whether it has been the sub-
ject of a #define control line. It is equivalent to #ifdef(identifier). A control line of the form

#ifndef identifier
checks whether the identifier is currently undefined in the preprocessor. It is equivalent to
#if !defined(identifier).
All three forms are followed by an arbitrary number of lines, possibly containing a control line

#else

and then by a control line
#endif
If the checked condition is true, then any lines between #else and #endif are ignored. If the

checked condition is false, then any lines between the test and a #else or, lacking a #else, the #endif
are ignored.

PS1:1-28° The C Programming Language - Reference Manual

These constructions may be nested.

12.4. Line Control
For the benefit of other preprocessors which generate C programs, a line of the form

#line consiant "filename®

causes the compiler to believe, for purposes of error diagnostics, that the line number of the next
source line is given by the constant and the current input ﬁle is named by "filename”. If "filename" is
absent, the remembered file name does not change.

13. Implicit Declarations

It is not always necessary to specify both the storage class and the type of identifiers in a
declaration. The storage class is supplied by the context in external definitions and in declarations of
formal parameters and structure members. In a declaration inside a function, if a storage class but no
type is given, the identifier is assumed to be int; if a type but no storage class is indicated, the
identifier is assumed to be auto. An exception to the latter rule is made for functions because auto
functions do not exist. If the type of an identifier is “function returning ...,” it is implicitly declared
to be extern.

In an expression, an identifier followed by (and not already declared is contextually declared to
be “function returning int.”

14. Types Revisited
This part summarizes the operations which can be performed on objects of certain types.

14.1. Structures and Unions

Structures and unions may be assigned, passed as arguments to functions, and returned by func-
tions. Other plausible operators, such as equality comparison and structure casts, are not imple-
mented.

In a reference to a structure or union member, the name on the right of the -> or the . must
specify a member of the aggregate named or pointed to by the expression on the left. In general, a
member of a union may not be inspected unless the value of the union has been assigned using that
same member. However, one special guarantee is made by the language in order to simplify the use
of unions: if a union contains several structures that share a common initial sequence and if the
union currently contains one of these structures, it is permitted to inspect the common initial part of
any of the contained structures. For example, the following is a legal fragment:

The C Programming Language - Reference Manual PS1:1-29

union
(
struct ,
(
int type;
} o5
struct
{
int type;
int intnode;
} mi3
struct
{
int type;
float floatnode;
} nf
}w

ooe

u.nf.type = FLOAT;
u.nf.floatnode. = 3.14;

|f (u.n.type == FLOAT)
... sin(u.nf.floatnode) ...

14.2. Functions
There are only two things that can be done with a function m, call it or take its address. If the

name of a function appears in an expression not in the function-name position of a call, a pointer to
the function is generated. Thus, to pass one function to another, one might say

int f();

g(0;
Then the definition of g might read

g(funcp)
int (sfuncp)();
(

i:funcp)O;

}

Notice that f must be declared explicitly in the calling routine since its appearance in g(f) was
not followed by (.

14.3. Arrays, Pointers, and Subscripting

Every time an identifier of array type appears in an expression, it is converted into a pointer to
the first member of the array. Because of this conversion, arrays are not lvalues. By definition, the
subscript operator [] is interpreted in such a way that E1[E2] is identical to «((E1)+E2)). Because of
the conversion rules which apply to +, if E1 is an array and E2 an integer, then E1{E2] refers to the
E2-th member of E1. Therefore, despite its asymmetric appearance, subscripting is a commutative
operation.

PS1:1-30 The C Programming Language - Reference Manual

A consistent rule is followed in the case of multidimensional arrays. If E is an n-dimensional
array of rank ixjx...xk, then E appearing in an expression is converted to a pointer to an (n-1)-
dimensional array with rank jx...xk. If the s operator, either explicitly or implicitly as a result of
subscripting, is applied to this pointer,; the result is the pointed-to (n-1)-dimensional array, which
itself is immediately converted into a pointer.

For example, consider
int x[3][5};

Here x is a 3x§ array of integers. When x appears in an expression, it is converted to a pointer
to (the first of three) 5-membered arrays of integers. In the expression x[i}, which is equivalent to
#(x+i), x is first converted to a pointer as described; then i is converted to the type of x, which
involves multiplying i by the length the object to which the pointer points, namely S-integer objects.
The results are added and indirection applied to yield an array (of five integers) which in turn is con-
verted to a pointer to the first of the integers. If there is another subscript, the same argument applies
again; this time the result is an integer.

Arrays in C are stored row-wise (last subscript varies fastest) and the first subscript in the
declaration helps determine the amount of storage consumed by an array. Arrays play no other part
in subscript calculations.

14.4. Explicit Pointer Conversions

Certain conversions involving pointers are permitted but have implementation-dependent
aspects. They are all specified by means of an explicit type-conversion operator, see “Unary Opera- .
tors” under“EXPRESSIONS” and “Type Names under “DECLARATIONS.”

A pointer may be converted to any of the integral types large enough to hold it. Whether an int
. or long is required is machine dependent. The mapping function is also machine dependent but is
intended to be unsurprising to those who know the addressing structure of the machine. Details for
some particular machines are given below.

An object of integral type may be explicitly converted to a pointer. The mapping always carries
an integer converted from a pointer back to the same pointer but is otherwise machine dependent.

- A pointer to one type may be converted to a pointer to another type. The resulting pointer may
cause addressing exceptions upon use if the subject pointer does not refer to an object suitably aligned
in storage. It is guaranteed that a pointer to an object of a given size may be converted to a pointer
to an object of a smaller size and back again without change.

For example, a storage-allocation routine might accept a size (in bytes) of an object to allocate,
and return a char pointer; it might be used in this way.

extern char *malloc();
double +dp;

dp = (double =) malloc(snzeof(donble)),
»dp = 22.0/7.0;

The alloc must ensure (in a machine-dependent way) that its return value is suitable for conver-
sion to a pointer to double; then the use of the function is portable.

The pointer representation on the PDP-11 corresponds to a 16-bit integer and measures bytes.
The char’s have no alignment requirements; everything else must have an even address.

On the VAX-11, pointers are 32 bits long and measure bytes. Elementary objects are aligned on
a boundary equal to their length, except that double quantities need be aligned only on even 4-byte
boundaries. Aggregates are aligned on the strictest boundary required by any of their constituents.

The 3B 20 computer has 24-bit pointers placed into 32-bit quantities. Most objects are aligned
on 4-byte boundaries. Shorts are aligned in all cases on 2-byte boundaries. Arrays of characters, all
structures, ints, longs, floats, and doubles are aligned on 4-byte boundries; but structure members may

The C Programming Language - Reference Manual PS1:1-29

union
{
struct
{
int type;
) m3
struct
{
nt type;
int intnode;
} mis
struct
{
int type;
float floatnode;
} nf;
}w

;:nf.type = FLOAT;
u.nf.floatnode = 3.14;

xf (u.n.type == FLOAT)
. sin(u.nf.floatnode) ...

14.2. Functions

There are only two things that can be done with a function m, call it or take its address. If the
name of a function appears in an expression not in the function-name position of a call, a pointer to
the function is generated. Thus, to pass one function to another, one might say

int 103
g(0;
Then the definition of g might read

g(funcp)
int (»funcp)();
{

i:funcp)();

}

Notice that f must be declared explicitly in the calling routine since its appearance in g(f) was
not followed by (.

14.3. Arrays, Pointers, and Subscripting

Every time an identifier of array type appears in an expression, it is converted into a pointer to
the first member of the array. Because of this conversion, arrays are not lvalues. By definition, the
subscript operator [] is interpreted in such a way that E1[E2] is identical to *((E1)+E2)). Because of
the conversion rules which apply to +, if E1 is an array and E2 an integer, then E1[{E2] refers to the
E2-th member of E1. Therefore, despite its asymmetric appearance, subscripting is a commutative
operation.

PS1:1-30 The C Programming Language - Reference Manual

A consistent rule is followed in the case of multidimensional arrays. If E is an n-dimensional
array of rank ixjx...xk, then E appearing in an expression is converted to a pointer to an (n-1)-
dimensional array with rank jx...xk. If the = operator, either explicitly or implicitly as a result of
subscripting, is applied to this pointer, the resuit is the pointed-to (n-1)-dimensional array, which
itself is immediately converted into a pointer.

For example, consider
int x[3](5};

Here x is a 3x$5 array of integers. When x appears in an expression, it is converted to a pointer
to (the first of three) 5-membered arrays of integers. In the expression x|i], which is equivalent to
*(x+i), x is first converted to a pointer as described; then i is converted to the type of x, which
involves multiplying i by the length the object to which the pointer points, namely S-integer objects.
The results are added and indirection applied to yield an array (of five integers) which in tur is con-
verted to a pointer to the first of the integers. If there is another subscript, the same argument applies
again; this time the result is an integer.

Arrays in C are stored row-wise (last subscript varies fastest) and the first subscript in the
declaration helps determine the amount of storage consumed by an array. Arrays play no other part
in subscript calculations.

14.4. Explfcit Pointer Conversions ’

Certain conversions involving pointers are permitted but have implementation-dependent
aspects. They are all specified by means of an explicit type-conversion operator, see “Unary Opera-
tors” under“EXPRESSIONS” and “Type Names”under “DECLARATIONS.”

A pointer may be converted to any of the integral types large enough to hold it. Whether an int
or long is required is machine dependent. The mapping function is also machine dependent but is
intended to be unsurprising to those who know the addressing structure of the machine. Details for
some particular machines are given below.

An object of integral type may be explicitly converted to a pointer. The mapping always carries
an integer converted from a pointer back to the same pointer but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The resulting pointer may
cause addressing exceptions upon use if the subject pointer does not refer to an object suitably aligned
in storage. It is guaranteed that a pointer to an object of a given size may be converted to a pointer
to an object of a smaller size and back again without change.

For example, a storage-allocation routine might accept a size (in bytes) of an object to allocate,
and return a char pointer; it might be used in this way.

extern char +malloc();
double *dp;

dp = (double) malloc(sizeof(double));
=dp = 22.0/ 7.0;

The alloc must ensure (in a machine-dependent way) that its return value is suitable for conver-
sion to a pointer to double; then the use of the function is portable.

The pointer representation on the PDP-11 corresponds to a 16-bit integer and measures bytes.
The char’s have no alignment requirements; everything else must have an even address.

On the VAX-11, pointers are 32 bits long and measure bytes. Elementary objects are aligned on
a boundary equal to their length, except that double quantities need be aligned only on even 4-byte
boundaries. Aggregates are aligned on the strictest boundary required by any of their constituents.

The 3B 20 computer has 24-bit pointers placed into 32-bit quantities. Most objects are aligned
on 4-byte boundaries. Shorts are aligned in all cases on 2-byte boundaries. Arrays of characters, all
structures, ints, longs, floats, and doubles are aligned on 4-byte boundries; but structure members may

The C Programming Language - Reference Manual PS1:1-31

be packed tighter.

14.5. CONSTANT EXPRESSIONS

In several places C requires expressions that evaluate to a constant: after case, as array bounds,
and in initializers. In the first two cases, the expression can involve only integer constants, character
constants, casts to integral types, enumeration constants, and sizeof expressions, possibly connected
by the binary operators

+-0/%&|"<<>> ==l=<><=>=&& ||

or by the unary operators

~
-

or by the ternary operator
2

Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant expressions as discussed above, one
can also use floating constants and arbitrary casts and can also apply the unary & operator to external
or static objects and to external or static arrays subscripted with a constant expression. The unary &
can also be applied implicitly by appearance of unsubscripted arrays and functions. The basic rule is
that initializers must evaluate either to a constant or to the address of a previously declared external
or static object plus or minus a constant.

15. Pombility Considerations

Certain parts of C are inherently machine dependent. The following list of potential trouble
spots is not meant to be all-inclusive but to point out the main ones.

Purely hardware issues like word size and the properties of floating point arithmetic and integer
division have proven in practice to be not much of a problem. Other facets of the hardware are
reflected in differing implementations. Some of these, particularly sign extension (converting a nega-
tive character into a negative integer) and the order in which bytes are placed in a word, are nui-
sances that must be carefully watched. Most of the others are only minor problems.

The number of register variables that can actually be placed in registers varies from machine to
machine as does the set of valid types. Nonetheless, the compilers all do things properly for their
own machine; excess or invalid register declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It is exceedingly unwise to
write programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the language. The order in
which side effects take place is also unspecified.

Since character constants are really objects of type int, multicharacter character constants may
be permitted. The specific implementation is very machine dependent because the order in which
characters are assigned to a word varies from one machine to another.

Fields are assigned to words and characters to integers right to left on some machines and left to
right on other machines. These differences are invisible to isolated programs that do not indulge in
type punning (e.g., by converting an int pointer to a char pointer and inspecting the pointed-to
storage) but must be accounted for when conforming to externally-imposed storage layouts.

16. Syntax Summary
This summary of C syntax is intended more for aiding comprehension than as an exact state-

PS1:1-32 The C Programming Language - Reference Manual

ment of the language.

16.1. Expressions
The basic expressions are:

expression:
primary
» expression
&ivalue
- expression
! expression
~ expression
++ lvalue
—--Ivalue
Ivalue ++
Ivalue - -
sizeof expression
sizeof (type-name)
{ type-name) expression
expression binop expression
expression ? expression : expression
Ivalue asgnop expression
expression , expression

primary:
identifier
constant
string
(expression)
primary (expression-list)
primary [expression |
primary . identifier
primary - identifier

Ivalue:
identifier
primary [expression |
Ivalue . identifier
primary - identifier
= expression
(Ivalue)

The primary-expression operators
on.-
have highest priority and group left to right. The unary operators
+ & - ! " ++ -~ sizeof (type-name)

have priority below the primary operators but higher than any binary operator and group right to left.
Binary operators group left to right; they have priority decreasing as indicated below.

The C Programming Language - Reference Manual PS1:1-33

binop:
« /%
+ -
>> <<
< > <= >=
= = !’

&

-

l
&&

The conditional operator groups right to left.
Assignment operators all have the same priority and all group right to left.

asgnop:
| = -= R /:: %= >o= L= &= = |=

The comma operator has the lowest priority and groups left to right.

16.2. Declarations

_declaration:
decl-specifiers init-declarator-listom ;

decl-specifiers:
type-specifier decl-specifiers
sc-specifier decl-spchiersomo”

sc-specifier:
auto
static
extern
register

typedef

type-specifier:

struct-or-union-specifier

typedef-name

enum-specifier
basic-type-specifier:

basic-type

basic-type basic-type-specifiers
basic-type:

char

short

int

long

unsigned

float

double

void

PSi:1-34 The C Programming Language - Reference Manual

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

init-declarator:
declarator initializerapt

declarator:
identifier
(declarator).
» declarator
-declarator ()
declarator [constant-expressionop']

struct-or-union-specifier:
struct { struct-decl-list }
struct identifier { struct-decl-list)
struct identifier
union { struct-decl-list }
union identifier { struct-decl-list }
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator -
struct-declarator , struct-declarator-list

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

The C Programming Language - Reference Manual PS1:1-35

initializer:
= expression
= { initializer-list }
= { initializer-list ,)

initializer-list:
expression
initializer-list , initializer-list-
(initializer-list }
(initializer-list , }

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
» abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expressionopt]

typedef-name:
identifier

16.3. Statements

compound-statement: ‘
(declaration-list _ statement-list }
opt apt

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

PS1:1-36 The C Programming Language - Reference Manual

statement:
compound-statement
expression ;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (exp,,sexp,,pexp,,) statement
switch (expression) statement
case constant-expression : statement
default : statement
break ;
continue ;
return ;
return expression ;
goto identifier ;
identifier : statement

’

16.4. External definitions

program:
external-definition
external-definition program

external-definition:
Sfunction-definition
data-definition

function-definition:
decl-speciﬁeropt Junction-declarator function-body

Sunction-declarator:
declarator (parameter—]istopt)

parameter-list:
identifier
identifier , parameter-list

Sfunction-body:
declaration-listom compound-statement

data-definition:

extern declaration ;
static declaration ;

17. Preprocessor

The C Programming Language - Reference Manual PS1:1-37

#define identifier token-stringop,

#define identifier(identifier,...)token-string
#undef identifier opt
#include "filename”

#include <filename>

#if restricted-constant-expression

#ifdef identifier

#ifndef identifier

#else

#endif

#line constant "filename”

A Portable Fortran 77 Compiler

S. I. Feldman
P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

J. Berkman

University of California
Berkeley, CA 94720

ABSTRACT

The Fortran language has been revised. The new language, known as
Fortran 77, became an official American National Standard on April 3, 1978. We
report here on a compiler and run-time system for the new extended language. It is
believed to be the first complete Fortran 77 system to be implemented. This com-
piler is designed to be portable, to be correct and complete, and to generate code
compatible with calling sequences produced by C compilers. In particular, this For-
tran is quite usable on UNIXT systems. In this paper, we describe the language com-
piled, interfaces between procedures, and file formats assumed by the /O system.
Appendix A describes the Fortran 77 language extensions.

This is a standard Bell Laboratories document reproduced with minor
modifications to the text. The Bell Laboratory’s appendix on “Differences Between
Fortran 66 and Fortran 77" has been changed to Appendix A, and a local appendix
has been added. Appendix B contains a list of Fortran 77 references (some from the
original Bell document and some added at Berkeley).

Revised September, 1985

t UNIX is a trademark of AT&T Bell Laboratories.

PS1:2-2 A Portable Fortran 77 Compiler

Table of Contents

1. Introduction
1.1. Usage
1.2. Documentation Conventions
1.3. Implementation Strategy
1.4. Debugging Aids

2. Language Extensions
2.1. Double Complex Data Type
2.2. Internal Files
2.3. Implicit Undefined Statement
2.4. Recursion
2.5. Automatic Storage
2.6. Source Input Format
2.7. Include Statement
2.8. Binary Initialization Constants
2.9. Character Strings .
2.10. Hollerith - '
2.11. Equivalence Statements
2.12. One-Trip DO Loops
2.13. Commas in Formatted Input
2.14. Short Integers
2.15. Additional Intrinsic Functions
2.16. Namelist /O
2.17. Automatic Precision Increase

— O O O 0V 00 00 0 00 W N N 4 N N A AN &

ey

2.18. Characters and Integers 12
3. Violations of the Standard 12
3.1. Double Precision Alignment 12
3.2. Dummy Procedure ATBUMENLSc.ccccceervereenesesaessessssesseseessossssesssssessessessessessssessessessessanses 12
3.3. T and TL Formats 12
3.4. Carriage Control 12
3.5. Assigned Goto 13
4. Inter-Procedure Interface 13
4.1. Procedure NAMESccccccienseecsacsoncscnnsssssssscsssesssssssssssssasssasssnssssssssasssassasasnassnnens 13
4.2. Data Representations reseeesscerescsnaresssnens 13
4.3, ATITAYS ..ceeeeerseecnsceassnesssnssseasssaressasessssassnssassnsesssassessesssassssaesssssssssssssssesssneesssesssnsessasesssscssassnsseses 13
4.4. Return Valuescoviceceeneensecirecsecrsnnenenes 13

4.5. Argument Lists . eaieeessesensnsesentesrersnsessitatesestasessssnrentsannissebhorerstareres 14

A Portable Fortran 77 Compiler

PS1:2-3

4.6. System Interface 14
5. File Formats 15
5.1. Structure of Fortran Files 15
5.2. Portability Considerations 15
5.3. Logical Units and Files 15
Appendix A. Differences Between Fortran 66 and Fortran 77 17
1. Features Deleted from Fortran 66 17
1.1. Hollerith 17
1.2. Extended Range of DO 17
2. Program Form 17
2.1. Blank Lines 17
2.2. Program and Block Data Statements 17
2.3. ENTRY Statement 17
2.4. DO Loops 18
2.5. Alternate Returns 18
3. Declarations 18
3.1. CHARACTER Data Type <18
3.2. IMPLICIT Statement 18
3.3. PARAMETER Statement 18
3.4. Array Declarations 19
3.5. SAVE Statement 19
3.6. INTRINSIC Statement 19
4. Expressions 19
4.1. Character Constants 19
4.2. Concatenation 20
4.3. Character String Assignment 20
4.4, Substrings 20
4.5. Exponentiation 20
4.6. Relaxation of Restrictions . 21
5. Executable Statements 21
5.1. IF-THEN-ELSE 21
5.2. Alternate Returns 21
6. Input/Output 22
6.1. Format Variables 22
6.2. END=, ERR=, and IOSTAT= Clauses 22
6.3. Formatted /O ' 22
6.4. Standard Units 24
6.5. List-Directed /O 24
6.6. DHTECE IO ..u.eeeececeencnnesesssnsnsesesnesssansossasssonssasssssssassesssssasssssassssssasssssnssnsssosassssnsssesasssassessass 24
6.7. Internal Files .. . 25
6.8. OPEN, CLOSE, and INQUIRE Statementscccceevereererennes 25
Appendix B. References and Bibliographyccccceeeerreeecrererecnrecccceresannes . . 28

PS1:2-4 ' A Portable Fortran 77 Compiler

1. INTRODUCTION

The Fortran language has been revised. The new language, known as Fortran 77, became an official
American National Standard [1] on April 3, 1978. Fortran 77 supplants 1966 Standard Fortran [2].
‘We report here on a compiler and run-time system for the new extended language. The compiler and
computation library were written by S.LF., the I/O system by P.J.W. We believe ours to be the first
complete Fortran 77 system to be implemented. This compiler is designed to be portable to a
number of different machines, to be correct and complete, and to generate code compatible with cal-
ling sequences produced by compilers for the C language [3]. In particular, it is in use on UNIX sys-
tems. Two families of C compilers are in use at Bell Laboratories, those based on D. M. Ritchie’s
PDP-11 compiler [4] and those based on S. C. Johnson’s portable C compiler [5]. This Fortran com-
piler can drive the second passes of either family. In this paper, we describe the language compiled,
interfaces between procedures, and file formats assumed by the /O system. We will describe imple-
mentation details in companion papers.

1.1. Usage

At present, versions of the compiler run on and compile for the PDP-i1, the VAX-11/780, and the
Interdata 8/32 UNIX systems. The command to run the compiler is

£77 flags file. ..

f77 is a general-purpose command for compiling and loading Fortran and Fortran-related files.
EFL [6] and Ratfor [7] source files will be preprocessed before being presented to the Fortran
compiler. C and assembler source files will be compiled by the appropriate programs. Object
files will be loaded. (The f77 and cc commands cause slightly different loading sequences to be
generated, since Fortran programs need a few extra libraries and a different startup routine than
do C programs.) The following file name suffixes are understood:

f Fortran source file
JF Fortran source file

. EFL source file

.r Ratfor source file

.c C source file

s Assembler source file
0 Object file

Arguments whose names end with .f are taken to be Fortran 77 source programs; they are com-
piled, and each object program is left on the file in the current directory whose name is that of
the source with .o substituted for .f.

Arguments whose names end with .F are also taken to be Fortran 77 source programs; these are
first processed by the C preprocessor before being compiled by £77.

Arguments whose names end with .r or .e are taken to be Ratfor or EFL source programs,
respectively; these are first transformed by the appropriate preprocessor, then compiled by 77.

In the same way, arguments whose names end with .c or .s are taken to be C or assembly source
programs and are compiled or assembled, producing a .o file.

The following flags are understood:

-¢ Compile but do not load. Output for x.f, x.F, x.e, x.r, x.c, or Xx.s is put on file x.o0.

-d Used in debugging the compiler.

-g Have the compiler produce additional symbol table information for dbx(I). This
flag is incompatible with -O. See section 1.4 for more details.

-i2 On machines which support short integers, make the default integer constants and

variables short (see section 2.14). (-id is the standard value of this option). All log-

A Portable Fortran 77 Compiler PS1:2-5

-0 file

ical quantities will be short.

Apply the M4 macro preprocessor to each EFL or Ratfor source file before using the
appropriate compiler.

Put executable module on file file. (Default is a.out).

—onetrip or -1

-p Generate code to produce usage profiles.

-pg Generate code in the manner of -p, but invoke a run-time recording mechanism
that keeps more extensive statistics. See gprof(1).

-q Suppress printing of file names and program unit names during compilation.

-8 Treat all floating point variables, constants, functions and intrinsics as double preci-
sion and all complex quantities as double complex. See section 2.17.

-u Make the default type of a variable undefined (see section 2.3).

-v Print the version number of the compiler and the name of each pass.

-w Suppress all waming messages.

-w66 Suppress warnings about Fortran 66 features used.

-C Compile code that checks that subscripts are within array bounds. For multi-
dimensional arrays, only the equivalent linear subscript is checked.

-Dname=def

-Dname Define the name to the C preprocessor, as if by ‘#define’. If no definition is given, .
the name is defined as "1". (.F files only).

-Estr Use the string str as an EFL option in processing .e files.

-F. Ratfor, EFL, and .F source files are pre-processed into .f files, and those .f files are
left on the disk without being compiled. '

-Idir ‘#include’ files whose names do not begin with ‘/° are always sought first in the
directory of the file argument, then in directories named in -I options, then in
directories on a standard list. (.F files only).

-N{qxscn]nnn
Make static tables in the compiler bigger. The compiler will complain if it overflows
its tables and suggest you apply one or more of these flags. These flags have the fol-
lowing meanings:

q Maximum number of equivalenced variables. Default is 150.

b 'Y Maximum number of external names (common block names, subroutine and
function names). Default is 200.
Maximum number of statement numbers. Default is 401.

c Maximum depth of nesting for control statements (e.g. DO loops). Default is
20.

n Maximum number of identifiers. Default is 1009.

-0 Invoke the object code optimizer. Incompatible with -g.

-Rstr Use the string s¢r as a Ratfor option in processing .r files.

-U Do not convert upper case letters to lower case. The default is to convert Fortran
programs to lower case except within character string constants.

-S Generate assembler output for each source file, but do not assemble it. Assembler

Compile code that performs every do loop at least once (see section 2.12).

output for a source file x.f, x.F, x.e, x.r, or x.c is put on file x.s.

Other flags, all library names (arguments beginning -1), and any names not ending with one of
the understood suffixes are passed to the loader.

PS126 A Portable Fortran 77 Compiler

1.2. Documentation Conventions

In running text, we write Fortran keywords and other literal strings in boldface lower case.
Examplcs will be presented in lightface lower case. Names representing a class of values will be
printed in italics.

1.3. Implementation Strategy

The compiler and library are written entirely in C. The compiler generates C compiler inter-
mediate code. Since there are C compilers running on a variety of machines, relatively small
changes will make this Fortran compiler generate code for any of them. Furthermore, this
approach guarantees that the resulting programs are compatible with C usage. The runtime
computational library is complete. The runtime I/O library makes use of D. M. Ritchie’s Stan-
dard C /O package [8] for transferring data. With the few exceptions described below, only
documented calls are used, so it should be relatively easy to modify to run on other operating
systems.

1.4. Debugging Aids

A memory image is sometimes written to a file core in the current directory upon abnormal ter-
mination for errors caught by the 77 libraries, user calls to abort, and certain signals (see
sigvec(2) in the UNIX Programmer’s Manual). Core is normally created only if the —g flag was
specified to f77 during loading.t The source-level debugger dbx(1) may be used with the execut-
able and the core file to examine the image and determine what went wrong.

In the event that it is necessary to override this default behavior, the user may set the environ-
ment variable f77_dump_flag. If f77_dump_flag is set to a value beginning with n, a core file is
not produced regardless of whether —g was specified at compile time, and if the value begins
with y, dumps are produced even if —g was not specified.

2. LANGUAGE EXTENSIONS

Fortran 77 includes almost all of Fortran 66 as a subset We describe the differences briefly in
Appendix A. The most important additions are a character string data type, file-oriented
input/output statements, and random access I/O. Also, the language has been cleaned up consider-
ably.

In addition to implementing the language specified in the new Standard, our compiler implements a
few extensions described in this section. Most are useful additions to the language. The remainder
are extensions to make it easier to communicate with C procedures or to permit compilation of old
(1966 Standard) programs.

2.1. Double Complex Data Type

The new type double complex is defined. Each datum is represented by a pair of double preci-
sion real values. The statements

z1 = (0.1d0, 0.2d0)
z2 = demplx(dx, dy)

assign double complex values to z1 and z2. The double precision values which constitute the
double complex value may be isolated by using dreal or dble for the real part and imag or dimag
for the imaginary part. To compute the double complex conjugate of a double complex value,
use conjg or dconjg. The other double complex intrinsic functions may be accessed using their
generic names or specific names. The generic names are: abs, sqrt, exp, log, sin, and cos. The
specific names are the same as the generic names preceded by either c¢d or z, e.g. you may code
sqrt, zsqrt or cdsqrt to compute the square root of a double complex value.

tSpecify —g when loading with cc or f77; specify ~Ig as a library when using Id directly.

A Portable Fortran 77 Compiler PS1:2-7

2.2. Internal Files

The Fortran 77 standard introduces “internal files” (memory arrays), but restricts their use to
formatted sequential I/O statements. Our I/O system also permits internal files to be used in for-
matted direct reads and writes and list directed sequential read and writes.

2.3. Implicit Undefined Statement

Fortran 66 has a fixed rule that the type of a variable that does not appear in a type statement is
integer if its first letter is i, j, k, 1, m or n, and real otherwise. Fortran 77 has an implicit state-
ment for overriding this rule. As an aid to good programming practice, we permit an additional
type, undefined. The statement

implicit undefined(a-z)

turns off the automatic data typing mechanism, and the compiler will issue a diagnostic for each
variable that is used but does not appear in a type statement. Specifying the ~u compiler flag is
equivalent to beginning each procedure with this statement.

2.4. Recursion

Procedures may call themselves, directly or through a chain of other procedures. Since Fortran
variables are by default static, it is often necessary to use the automatic storage extension to
prevent unexpected results from recursxve functions.

2.5. Automatic Storage

Two new keywords are recognized, static and automatic. These keywords may appear as “types”
in type statements and in implicit statements. Local variables are static by default; there is only
one instance of the variable. For variables declared automatic, there is a separate instance of the

" variable for each invocation of the procedure. Automatic variables may not appear in
equivalence, data, or save statements. Neither type of variable is guaranteed to retain its value
between calls to a subprogram (see the save statement in Appendix A).

2.6. Source Input Format

The Standard expects input to the compiler to be in 72-column format: except in comment
lines, the first five characters are the statement number, the next is the continuation character,
and the next 66 are the body of the line. (If there are fewer than 72 characters on a line, the
compiler pads it with blanks; characters after the seventy-second are ignored.)

In order to make it easier to type Fortran programs, our compiler also accepts input in variable
length lines. An ampersand “&” in the first position of a line indicates a continuation line; the
remaining characters form the body of the line. A tab character in one of the first six positions
of a line signals the end of the statement number and continuation part of the line; the remain-
ing characters form the body of the line. A tab elsewhere on the line is treated as another kind
of blank by the compiler.

In the Standard, there are only 26 letters — Fortran is a one-case language. Consistent with
ordinary UNIX system usage, our compiler expects lower case input. By default, the compiler
converts all upper case characters to lower case except those inside character constants. How-
ever, if the -U compiler flag is specified, upper case letters are not transformed. In this mode,
it is possible to specify external names with upper case letters in them, and to have distinct vari-
ables differing only in case. If -U is specified, keywords will only be recognized in lower case.

2.7. Include Statement
The statement

include 'stuff’

is replaced by the contents of the file stuff; include statements may be nested to a reasonable

PS1:2-8 A Portable Fortran 77 Compiler

depth, currently ten.

2.8. Binary Initialization Constants

A variable may be initializéd in a data statement by a binary constant, denoted by a letter fol-
lowed by a quoted string. If the letter is b, the string is binary, and only zeroes and ones are
permitted. If the letter is o, the string is octal, with digits 0-7. If the letter is z or x, the string
is hexadecimal, with digits 0-9, a-f. Thus, the statements

integer a(3)
data a / b'1010’, 0’12, Za’/

initialize all three elements of a to ten.

2.9. Character Strings

2.10.

2.11.

2.12.

For compatibility with C usage, the following backslash escapes are recognized:

\n newline
\t tab

\b backspace
\f form feed
\0 null

\’ apostrophe (does not terminate a string)

\" quotation mark (does not terminate a string)
A\

\x x, where x is any other character

Fortran 77 only has one quoting character, the apostrophe. Our compiler and I/O system recog-
nize both the apostrophe “ ‘' and the double-quote *“ " ™. If a string begins with one variety of
quote mark, the other may be embedded within it without using the repeated quote or backslash
escapes.

Each character string constant appearing outside a data statement is followed by a null character
to ease communication with C routines.

Hollerith

Fortran 77 does not have the old Hollerith “nh” notation, though the new Standard recom-
mends implementing the old Hollerith feature in order to improve compatibility with old pro-
grams. In our compiler, Hollerith data may be used in place of character string constants, and
may also be used to initialize non-character variables in data statements.

Equivalence Statements

As a very special and peculiar case, Fortran 66 permits an element of a multiply-dimensioned
array to be represented by a singly-subscripted reference in equivalence statements. Fortran 77
does not permit this usage, since subscript lower bounds may now be different from 1. Our
compiler permits single subscripts in equivalence statements, under the interpretation that all
missing subscripts are equal to 1. A warning message is printed for each such incomplete sub-
script.

One-Trip DO Loops
The Fortran 77 Standard requires that the range of a do loop not be performed if the initial
value is already past the limit value, as in

do10i=2,1

The 1966 Standard stated that the effect of such a statement was undefined, but it was common
practice that the range of a do loop would be performed at least once. In order to accommodate
old programs, though they were in violation of the 1966 Standard, the —onetrip or -1 compiler

A Portable Fortran 77 Compiler PS1:2-9

2.13.

2.14.

2‘15.

2.16.

flags causes non-standard loops to be generated.

Commas in Formatted Input

The /O system attempts to be more lenient than the Standard when it seems worthwhile. When
doing a formatted read of non-character variables, commas may be used as value separators in
the input record, overriding the field lengths given in the format statement. Thus, the format

(i10, £20.10, i4)
will read the record

~345,.05e-3,12
correctly.

Short Integers

On machines that support halfword integers, the compiler accepts declarations of type integers2.
(Ordinary integers follow the Fortran rules about occupying the same space as a real variable;
they are assumed to be of C type long int; halfword integers are of C type short int.) An expres-
sion involving only objects of type integers2 is of that type. Generic functions return short or
long integers depending on the actual types of their arguments. If a procedure is compiled using
the -i2 flag, all small integer constants will be of type integers2. If the precision of an integer-
valued intrinsic function is not determined by the generic function rules, one will be chosen that
returns the prevailing length (integers2 when the -i2 command flag is in effect). When the ~i2
option is in effect, all quantities of type logical will be short. Note that these short integer and
logical quantities do not obey the standard rules for storage association.

Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the Fortran 77 Standard. In
addition, there are built-in functions for performing bitwise logical and boolean operations on
integer and logical values (or, and, xor, not, Ishift, and rshift), and intrinsic functions for double
complex values (see section 2.1). The 77 library contains many other functions, such as access-
ing the UNIX command arguments (getarg and iargc) and environment (getenv). See intro(3f)
and bit(3f) in the UNIX Programmer’s Manual for more information.

Namelist I/O0

Namelist I/O provides an easy way to input and output information without formats. Although
not part of the standard, namelist /O was part of many Fortran 66 systems and is a common
extension to Fortran 77 systems.

Variables and arrays to be used in namelist /O are declared as part of a namelist in a namelist
statement, e.g.:

character strs12

logical flags(20)

complex ¢(2)

real arri(2,3), arr2(0:3,4)

namelist /basic/ arrl, arr2, key, str, c /flgist/ key, flags

This defines two namelists: list basic consists of variables key and str and arrays arrl, arr2, and
c; list flgist consists of variable key and array flags. A namelist can include variables and arrays
of any type, and a variable or array may be in several different namelists. However dummy
arguments and array elements may not be in a namelist. A namelist name may be used in exter-
nal sequential read, write and print statements wherever a format could be used.

In a namelist read, column one of each data record is ignored. The data begins with an amper-
sand in column 2 followed by the namelist name and a blank. Then there is a sequence of value
assignments separated by commas and finally an “&end”. A simple example of input data

PS1:2-10 ' A Portable Fortran 77 Compiler

corresponding to namelist basic is:
&basic key=35, str="hi there’ &end

For éompatibility with other systems, dollar signs may be used instead of the ampersands:
$basic key=35, str="hi there’ $end

A value assignment in the data record must be one of three forms. The simplest is a variable
name followed by an equal sign followed by a data value which is assigned to that variable, e.g.
“key=5". The second form consists of an array name followed by “="" followed by one or more
values to be assigned to the array, e.g.:

c=(1.1,-2.9),(~1.8e+10,14.0e-3)

assigns values to c(1) and c(2) in the complex array c.

As in other read statements, values are assigned in the order of the array in memory, i.e.
column-major order for two dimensional arrays. Multiple copies of a value may be represented
by a repetition count followed by an asterisk followed by the value; e.g. “3*55.4” is the same as
“55.4, 55.4, 55.4”. It is an error to specify more values than the array can hold; if less are
specified, only that number of elements of the array are changed. The third form of a value
assignment is a subscripted variable name followed by “=" followed by a value or values, e.g.:
“arr2(0,4)=15.2". Only integer constant subscripts may be used. The correct number of sub-
scripts must be used and the subscripts must be legal. This form is the same as the form with
an array name except the array is filled starting at the named element.

In all three forms, the variable or array name must be declared in the namelist. The form of the
data values is the same as in list directed input except that in namelist /O, character strings in
the data must be enclosed in apostrophes or double quotes, and repetition counts must be fol-
lowed by data values.

One use of namelist input is to read in a list of options or flags. For example:

logical flags(14)
namelist /pars/ flags, iters, xlow, xhigh, xinc
data flags/14*.false./

10 read(5,pars,end=900)
print pars
call calc(xlow, xhigh, xinc, flags, iters)
goto 10
900 continue
end

could be run with the following data (each record begins with a space):

&pars iters=10, xlow=0.0, xhigh=1.0, xinc=0.1 &end
&pars xinc=0.2,

flags(2)=2*.true., flags(8)=.true. &end
&pars xlow=2.0, xhigh=8.0 &end

The program reads parameters for the run from the first data set and computes using them.
Then it loops and each successive set of namelist input data :}:cciﬁes only those data items
which need to be changed. Note the second data set sets the 2, 3", and 8" elements in the
array flags to .true..

When a namelist name is used in a write or print statement, all the values in the namelist are
output together with their names. For example the print in the program above prints the follow-
ing: ;

A Portable Fortran 77 Compiler PS1:2-11

&pars flags= f, f, f, f, £, f, f, £, f, f, f, f, f, f iters=
10, xlow= 0., xhigh=1.00000, xinc= 0.100000

&end

&pars flags= f, t, t, £, f, f, f, t, £, f, £ f f f iters=
10, xlow= 0., xhigh= 1.00000, xinc= 0.200000

&end _

&pars flags= f, t, t, f, £, f, f, t, £ £ f f f f iters=
10, xlow=2.00000, xhigh= 8.00000, xinc= 0.200000
&end

Each line begins with a space so that namelist output can be used as input to a namelist read.
The default is to use ampersands in namelist print and write. However, dollar signs will be used
if the last preceding namelist read data set used dollar signs. The character to be used is stored
as the first character of the common block namelistkey.

2.17. Automatic Precision Increase

The -r8 flag allows a user to run a program with increased precision without changing any of
the program source, i.c. it allows a user to take a program coded in single precision and compile
and execute it as if it had been coded in double precision. The option extends the precision of
all single precision real and complex constants, variables, external functions, and intrinsic func-
tions. For example, the source:

implicit complex(c)
real last

intrinsic sin, csin
data last/0.3/

x = 0.1

y = sqrt(x)+sqrt(last)
cl = (0.1,0.2)

c2 = sqrt(cl)

x = real(i)

y = aimag(cl)

call fun(sin,csin)

is compiled under this flag as if it had been written as:

implicit double precision (a-b,d-h,0-z), double complex(c)
double precision last

intrinsic dsin, cdsin

data last/0.3d0/

x = 0.1d0

y = sqrt(x)+sqrt(last)
cl = (0.1d0,0.2d0)
c2 = sqrt(cl)

X = dreal(i)

y = dimag(cl)

call fun(dsin,cdsin)

When the -r8 flag is invoked, the calls using the generic name sqrt will refer to a different
specific function since the types of the arguments have changed. This option extends the preci-
sion of all single precision real and complex variables and functions, including those declared
reals4 and complexs8.

In order to successfully use this flag to increase precision, the entire program including all the
subroutines and functions it calls must be recompiled. Programs which use dynamic memory

PS1:2-12 A Portable Fortran 77 Compiler

allocation or use equivalence or common statements to associate variables of different types may
have to be changed by hand. Similar caveats apply to the sizes of records in unformatted I/O.

2.18. Characters and Integers

A character constant of integer length or less may be assigned to an integer variable. Individual
bytes are packed into the integer in the native byte order. The character constant is padded
with blanks to the width of the integer during the assignment. Use of this feature is deprecated;
it is intended only as a porting aid for extended Fortran 66 programs. Note that the intrinsic
ichar function behaves as the standard requires, converting only single bytes to integers.

3. VIOLATIONS OF THE STANDARD
We know only a few ways in which our Fortran system violates the new standard:

3.1. Double Precision Alignment

The Fortran Standards (both 1966 and 1977) permit common or equivalence statements to force
a double precision quantity onto an odd word boundary, as in the following example:

real a(4)
double precision b,c

equivalence (a(1),b), (a(4),c)

Some machines (e.g., Honeywell 6000, IBM 360) require that double precision quantities be on
double word boundaries; other machines (e.g., IBM 370), run inefficiently if this alignment rule is
not observed. It is possible to tell which equivalenced and common variables suffer from a
forced odd alignment, but every double precision argument would have to be assumed on a bad
boundary. To load such a quantity on some machines, it would be necessary to use separate
operations to move the upper and lower halves into the halves of an aligned temporary, then to
load that double precision temporary; the reverse would be needed to store a result. We have
chosen to require that all double precision real and complex quantities fall on even word boun-
daries on machines with corresponding hardware requirements, and to issue a diagnostic if the
source code demands a violation of the rule.

3.2. Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure arguments of that pro-
cedure must be declared in an external statement. This requirement arises as a subtle corollary
of the way we represent character string arguments and of the one-pass nature of the compiler.
A warning is printed if a dummy procedure is not declared external. Code is correct if there are
no character arguments.

3.3. T and TL Formats

The implementation of the t (absolute tab) and ¢l (leftward tab) format codes is defective. These
codes allow rereading or rewriting part of the record which has already been processed (section
6.3.2 in Appendix A). The implementation uses seeks, so if the unit is not one which allows
seeks, such as a terminal, the program is in error. A benefit of the implementation chosen is
that there is no upper limit on the length of a record, nor is it necessary to predeclare any record
lengths except where specifically required by Fortran or the operating system.

3.4. Carriage Control

The Standard leaves as implementation dependent which logical unit(s) are treated as “printer”
files. In this implementation there is no printer file and thus by default, no carriage control is
recognized on formatted output. This can be changed using form=print’ in the open statement
for a unit, or by using the fpr(1) filter for output; see [9].

A Portable Fortran 77 Compiler PS1:2-13

3.5. Assigned Goto

The optional /ist associated with an assigned goto statement is not checked against the actual
assigned value during execution.

4. INTER-PROCEDURE INTERFACE

To be able to write C procedures that call or are called by Fortran procedures, it is necessary to know
the conventions for procedure names, data representation, return values, and argument lists that the
compiled code obeys.

4.1. Procedure Names

On UNIX systems, the name of a common block or a Fortran procedure has an underscore
appended to it by the compiler to distinguish it from a C procedure or external variable with the
same user-assigned name. Fortran built-in procedure names have embedded underscores to
avoid clashes with user-assigned subroutine names.

4.2. Data Representations
The following is a table of corresponding Fortran and C declarations:

Fortran C

integers2 x short int x;

integer x long int x;

logical x long int x;

real x float x;

double precision x double x;

complex x struct { float r, i; } x;
double complex x struct { double dr, di; } x;
characters6 x char x[6];

(By the rules of Fortran, integer, logical, and real data occupy the same amount of memory.)

4.3. Arrays

The first element of a C array always has subscript zero, while Fortran arrays begin at | by
default. Fortran arrays are stored in column-major order in contiguous storage, C arrays are
stored in row-major order. Many mathematical libraries have subroutines which transpose a
two dimensional matrix, e.g. f0lcrf in the NAG library and vtran in the IMSL library. These
may be used to transpose a two-dimensional array stored in C in row-major order to Fortran
column-major order or vice-versa.

4.4. Return Values

A function of type integer, logical, real, or double precision declared as a C function returns the
corresponding type. A complex or double complex function is equivalent to a C routine with an
additional initial argument that points to the place where the return value is to be stored. Thus,

complex function f{ ...)
is equivalent to

f_(temp, ...)
struct { float r, i; } stemp;

A character-valued function is equivalent to a C routine with two extra initial arguments: a
data address and a length. Thus, ;

characters15 function g(...)

PS1:2-14 A Portable Fortran 77 Compiler

is equivalent to

g_(result, length, .. .)
char result| J;

long int length;

and could be invoked in C by
char chars[15];

g (chars, 15L, ...);

Subroutines are invoked as if they were integer-valued functions whose value specifies which
alternate return to use. Alternate return arguments (statement labels) are not passed to the func-
tion, but are used to do an indexed branch in the calling procedure. (If the subroutine has no
entry points with aiternate return arguments, the returned value is undefined.) The statement

call nret(s1, 22, »3)
is treated exactly as if it were the computed goto
goto (1, 2, 3), aret()

4.5. Argument Lists . ‘
All Fortran arguments are passed by address. In addition, for every argument that is of type

character or that is a dummy procedure, an argument giving the length of the value is passed.
(The string lengths are long int quantities passed by value.) The order of arguments is then:

 Extra arguments for complex and character functions

Address for each datum or function
A long int for each character or procedure argument

Thus, the call in

external f
characters7 s

integer b(3)

call sam(f, b(2), 5)
is equivalent to that in

int f{);

char s[7};

long int b[3];

sam_(f, &b[1], s, OL, 7L);

4.6. System Interface

To run a Fortran program, the system invokes a small C program which first initializes signal
handling, then calls f_init to initialize the Fortran I/O library, then calls your Fortran main pro-
gram, and then calls f_exit to close any Fortran files opened.

f_init initializes Fortran units 0, 5, and 6 to standard error, standard input, and standard output
respectively. It also calls setlinebuf to initiate line buffering of standard error. If you are using
Fortran subroutines which may do /O and you have a C main program, call f_init before calling
the Fortran subroutines. Otherwise, Fortran units 0, 5, and 6 will be connected to files fort.0,
fort.5, and fort.6, and error messages from the f77 libraries will be written to fort.0 instead of to
standard error. If your C program terminates by calling the C function exit, all files are

A Portable Fortran 77 Compiler PS1:2-15

automatically closed. If there are Fortran scratch files to be deleted, first call f_exit. F_init and
f_exit do not have any arguments.

The -d flag will show what libraries are used in loading Fortran programs.
5. FILE FORMATS

5.1. Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and unformatted, and direct
formatted and unformatted. On UNIX systems, these are all implemented as ordinary files
which are assumed to have the proper internal structure.

Fortran I/O is based on records. When a direct file is opened in a Fortran program, the record
length of the records must be given, and this is used by the Fortran I/O system to make the file
look as if it is made up of records of the given length. In the special case that the record length
is given as 1, the files are not considered to be divided into records, but are treated as byte-
addressable byte strings; that is, as ordinary UNIX file system files. (A read or write request on
such a file keeps consuming bytes until satisfied, rather than being restricted to a single record.)

The peculiar requirements on sequential unformatted files make it unlikely that they will ever be
read or written by any means except Fortran I/O statements. Each record is preceded and fol-
lowed by an integer containing the record’s length in bytes.

The Fortran /O system breaks sequential formatted files into records while reading by using
each newline as a record separator. The result of reading off the end of a record is undefined
according to the Standard. The I/O system is permissive and treats the record as being extended
by blanks. On output, the I/O system will write a newline at the end of each record. It is also
possible for programs to write newlines for themselves. This is an error, but the only effect will
be that the single record the user thought he wrote w111 be treated as more than one record when
being read or backspaced over.

5.2. Portability Considerations

The Fortran /O system uses only the facilities of the standard C I/O library, a widely available
and fairly portable package, with the following two noustandard features: the /O system needs
to know whether a file can be used for direct /O, and whether or not it is possible to backspace.
Both of these facilities are implemented using the fseek routine, so there is a routine canseek
which determines if fseek will have the desired effect. Also, the inquire statement provides the
user with the ability to find out if two files are the same, and to get the name of an already
opened file in a form which would enable the program to reopen it. Therefore there are two
routines which depend on facilities of the operating system to provide these two services. In
any case, the I/O system runs on the PDP-11, VAX-11/780, and Interdata 8/32 UNIX systems.

5.3. Logical Units and Files

Fortran logical unit numbers may be any integer between 0 and 99. The number of simultane-
ously open files is currently limited to 48.

Units 5, 6, and 0 are connected before the program begins to standard input, standard output,
and standard error respectively.

If an unit is opened explicitly by an open statement with a file= keyword, then the file name is
the name from the open statement. Otherwise, the default file name corresponding to unit 2 is
fort.n. If there is an environment variable whose name is the same as the tail of the file name
after periods are deleted, then the contents of that environment variable are used as the name of
the file. See [9] for details.

The default connection for all units is for sequential formatted /O. The Standard does not
specify where a file which has been explicitly opened for sequential I/O is initially positioned.
The /O system will position the file at the beginning. Therefore a write will destroy any data

PS1:2-16 A Portable Fortran 77 Compiler

already in the file, but a read will work reasonably. To position a file to its end, use a read loop,
or the system dependent function fseek. The preconnected units 0, 5, and 6 are positioned as
they come from the program’s parent process.

A Portable Fortran 77 Compiler PS1:2-17

APPENDIX A: Differences Between Fortran 66 and Fortran 77 ‘

The following is a very brief description of the differences between the 1966 [2] and the 1977 [1]
Standard languages. We assume that the reader is familiar with Fortran 66. We do not pretend to be
complete, precise, or unbiased, but plan to describe what we feel are the most important aspects of
the new language. The best current information on the 1977 Standard is in publications of the X3J3
Subcommittee of the American National Standards Institute, and the ANSI X3.9-1978 document, the
official description of the language. The Standard is written in English rather than a meta-language,
but it is forbidding and legalistic. A number of tutorials and textbooks are available (see Appendix
B).

1. Features Deleted from Fortran 66

1.1. Hollerith

All notions of “Hollerith” (nh) as data have been officially removed, although our compiler, like
almost all in the foreseeable future, will continue to support this archaism.

1.2. Extended Range of DO

In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is permissible
to jump out of the range of a do loop, then jump back into it. Extended range has been
removed in the Fortran 77 language. The restrictions are so special, and the implementation of
extended range is so unreliable in many compilers, that this change really counts as no loss.

2. Program Form

2.1. Blank Lines
Completely blank lines are now legal comment lines.

2.2. Program and Block Data Statements
A main program may now begin with a statement that gives that program an external name:

program work
Block data procedures may also have names.
block data stuff

There is now a rule that only one unnamed block data procedure may appear in a program.
(This rule is not enforced by our system.) The Standard does not specify the effect of the pro-
gram and block data names, but they are clearly intended to aid conventional loaders.

2.3. ENTRY Statement

Multiple entry points are now legal. Subroutine and function subprograms may have additional
entry points, declared by an entry statement with an optional argument list.

entry extra(a, b, ¢)

Execution begins at the first statement following the entry line. All variable declarations must
precede all executable statements in the procedure. If the procedure begins with a subroutine
statement, all entry points are subroutine names. If it begins with a function statement, each
entry is a function entry point, with type determined by the type declared for the entry name. If
any entry is a character-valued function, then all entries must be. In a function, an entry name
~ of the same type as that where control entered must be assigned a value. Arguments do not
retain their values between calls. (The ancient trick of calling one entry point with a large
number of arguments to cause the procedure to “remember” the locations of those arguments,
then invoking an entry with just a few arguments for later calculation, is still illegal.

PS1:2-18 : A Portable Fortran 77 Compiler

Furthermore, the trick doesn’t work in our implementation, since arguments are not kept in
static storage.)

2.4. DO Loops

do variables and range parameters may now be of integer, real, or double precision types. (The
use of floating point do variables is very dangerous because of the possibility of unexpected
roundoff, and we strongly recommend against their use.) The action of the do statement is now
defined for all values of the do parameters. The statement

do10i=Lud

performs max(0, l(u -1 +d)/d]) iterations. The do variable has a predictable value when exit-
ing a loop: the value at the time a goto or return terminates the loop; otherwxse the value that
failed the limit test.

2.5. Alternate Returns
In a subroutine or subroutine entry statement, some of the arguments may be noted by an aster-
"isk, as in .
subroutine s(a, », b, *)
The meaning of the “alternate returns” is described in section 5.2 of Appendix A.

3. Declarations

3.1. CHARACTER Data Type

One of the biggest improvements to the language is the addition of a character-stnng data type.
Local and common character variables must have a length denoted by a constant expression:
characters17 a, b(3,4)
characters(6+3) ¢
If the length is omitted entirely, it is assumed equal to 1. A character string argument may have

a constant length, or the length may be declared to be the same as that of the corresponding
actual argument at run time by a statement like

characters(s) a

(There is an intrinsic function len that returns the actual length of a character string.) Character
arrays and common blocks containing character variables must be packed: in an array of charac-
ter variables, the first character of one element must follow the last character of the preceding
element, without holes.

3.2. IMPLICIT Statement

The traditional implied declaration rules still hold: a variable whose name begins with i, j, k, 1,
m, or n is of type integer; other variables are of type real, unless otherwise declared. This gen-
eral rule may be overridden with an implicit statement:

implicit real(a-c,g), complex(w-z), characters(17) (s)

declares that variables whose name begins with an a ,b, ¢, or g are real, those beginning with w,
X, ¥, Or z are assumed complex, and so on. It is still poor practice to depend on 1mph<:1t typing,
but this statement is an industry standard.

3.3. PARAMETER Statement
It is now possible to give a constant a symbolic name, as in

A Portable Fortran 77 Compiler PS1:2-19

character strs(s)
parameter (x=17, y=x/3, pi=3.14159d0, str="hello")

The type of each parameter name is governed by the same implicit and explicit rules as for a
variable. Symbolic names for character constants may be declared with an implied length “(s)”.
The right side of each equal sign must be a constant expression (an expression made up of con-
stants, operators, and already defined parameters).

3.4. Array Declarations

Arrays may now have as many as seven dimensions. (Only three were permitted in 1966.) The
lower bound of each dimension may be declared to be other than 1 by using a colon. Further-
more, an adjustable array bound may be an integer expression involving constants, arguments,
and variables in common.

real a(-5:3, 7, m:n), b(n+1:2+n)

The upper bound on the last dimension of an array argument may be denoted by an asterisk to
indicate that the upper bound is not specified:

integer a(5, »), b(s), c(0:1, —2:s)

3.5. SAVE Statement

A little known rule of Fortran 66 is that variables in a procedure do not necessarily retain their
values between invocations of that procedure. This rule permits overlay and stack implementa-
tions for the affected variables. In Fortran 77, three types of variables automatically keep there
values: variables in blank common, variables defined in data statements and never changed, and
variables in named common blocks which have not become undefined. At any instant in the
execution of a program, if a named common block is declared neither in the currently executing
procedure nor in any of the procedures in the chain of callers, all of the variables in that com-
mon block become undefined. Fortran 77 permits one to specify that certain variables and com-
mon blocks are to retain their values between invocations. The declaration

save a, /b/, ¢

leaves the values of the variables a and ¢ and all of the contents of common block b unaffected
by an exit from the procedure. The simple declaration

save

has this effect on all variables and common blocks in the procedure. A common block must be
saved in every procedure in which it is declared if the desired effect is to occur.

3.6. INTRINSIC Statement

All of the functions specified in the Standard are in a single category, “intrinsic functions”,
rather than being divided into “intrinsic” and “basic external” functions. If an intrinsic func-
tion is to be passed to another procedure, it must be declared intrinsic. Declaring it external (as
in Fortran 66) causes a function other than the built-in one to be passed.

4. Expressions

4.1. Character Constants
Character string constants are marked by strings surrounded by apostrophes. If an apostrophe is
to be included in a constant, it is repeated:
‘abc
‘ain"t’

PS1:2-20 A Portable Fortran 77 Compiler

Although null (zero-length) character strings are not allowed in the standard Fortran, they may
be used with f77. Our compiler has two different quotation marks, “ ' ” and * " . (See section
2.9 in the main text.)

4.2. Concatenation

One new operator has been added, character string concatenation, marked by a double slash
“//”. The result of a concatenation is the string containing the characters of the left operand fol-
lowed by the characters of the right operand. The character expressions

‘ab’ // 'cd’
‘abed’
are equal.
Dummy arguments of type character may be declared with implied lengths:
subroutines(a, b) :
character as(s), bs(s)
Such dummy arguments may be used in concatenations in assign statements:
s=al/lb
but not in other contexts. For example:

ifl a// b .eq.'abc’) key = 1
callsub(a//b)

are legal statements if “a” and “b” are dummy arguments declared with explicit lengths, or if
they are not arguments. These are illegal if they are declared with implied lengths. ‘
~ 4.3. Character String Assignment -

The left and right sides of a character. assignment may not share storage. (The assumed impie-
mentation of character assignment is to copy characters from the right to the left side.) If the
left side is longer than the right, it is padded with blanks. If the left side is shorter than the

right, trailing characters are discarded. Since the two sides of a character assignment must be
disjoint, the following are illegal:

str ="'/l str
str = str(2:)

These are not flagged as errors during compilation or execution, however the result is undefined.

4.4. Substrings

It is possible to extract a substring of a character variable or character array element, using the
colon notation:

a(i,j) (m:n)

is the string of (n—m +1) characters beginning at the m* character of the character array ele-
ment a;;. Results are undefined unless m<n. Substrings may be used on the left sides of
assignments and as procedure actual arguments.

4.5. Exponentiation

It is now permissible to raise real quantities to complex powers, or complex quantities to real or

complex powers. (The principal part of the logarithm is used.) Also, multiple exponentiation is
now defined:

assb#ac is equivalent to a »s (bsxc)

A Portable Fortran 77 Compiler PS1:2-21

4.6.

Relaxation of Restrictions

Mixed mode expressions are now permitted. (For instance, it is permissible to combine integer
and complex quantities in an expression.)

Constant expressions are permitted where a constant is allowed, except in data statements and
format statements. (A constant expression is made up of explicit constants and parameters and
the Fortran operators, except for exponentiation to a floating-point power.) An adjustable
dimension may now be an integer expression involving constants, arguments, and variables in
common.

Subscripts may now be general integer expressions; the old cv:c rules have been removed. do
loop bounds may be general integer, real, or double precision expressions. Computed goto

. expressions and /O unit numbers may be general integer expressions.

5. Executable Statements

S.1.

5.2

IF-THEN-ELSE
At last, the if-then-else branching structure has been added to Fortran. It is called a “Block If™.
A Block If begins with a statement of the form

if (...) then
and ends with an

end if
statement. Two other new statements may appear in a Block If. There may be several

else if (. . .) then
statements, followed by at most one

else
statement. If the logical expression in the Block If statement is true, the statements following it
up to the next else if, else, or end if are executed. Otherwise, the next else if statement in the
group is executed. If none of the else if conditions are true, control passes to the statements fol-
lowing the else statement, if any. (The else block must follow all else if blocks in a Block If. Of
course, there may be Block Ifs embedded inside of other Block If structures.) A case construct
may be rendered:

if (s .eq. ‘ab’) then

else if (s .eq. ‘cd’) then

else

end if
Alternate Returns

Some of the arguments of a subroutine call may be statement labels preceded by an asterisk, as
in: :

call joe(j, »10, m, *2)
A return statement may have an integer expression, such as:
return k

If the entry point has n alternate return (asterisk) arguments and if 1<k<n, the return is fol-
lowed by a branch to the corresponding statement label; otherwise the usual return to the

PS1:2-22 A Portable Fortran 77 Compiler

statement following the call is executed.
6. Input/Output

6.1. Format Variables

A format may be the value of a character expression (constant or otherwise), or be stored in a
character array, as in:

write(6, '(i5)) x

6.2. END=, ERR=, and IOSTAT= Clauses
A read or write statement may contain end=, err=, and iostat= clauses, as in:
write(6, 101, err=20, iostat=a(4))
read(5, 101, err=20, end=130, iostat=x)

Here 5 and 6 are the units on which the I/O is done, 101 is the statement number of the associ-
ated format, 20 and 30 are statement numbers, and a and x are integer variables. If an error
occurs during I/O, control returns to the program at statement 20. If the end of the file is
reached, control returns to the program at statement 30. In any case, the variable referred to in
the iostat= clause is given a value when the /O statement finishes. (Yes, the value is assigned to
the name on the right side of the equal sign.) This value is zero if all went well, negative for end
of file, and some positive value for errors.

6.3. Formatted I/0

6.3.1. Character Constants
Character constants in formats are copied literally to the output.
A format may be specified as a character constant within the read or write statement.
write(6, (12, isn"’"'t "",i1)) 7, 4
produces
7isn’t 4
In the example above, the format is the character constant
(i2,’isn"'t ',il)
and the embedded character constant
isn't
is copied into the output.

The example could have been written more legibly by taking advantage of the two types of
quote marks.

write(6,'(12,” isn’ 't ",i1)") 7, 4
However, the double quote is not standard Fortran 77.

" The standard does not allow reading into character constants or Hollerith fields. In order to
facilitate running older programs, the Fortran I/O library allows reading into Hollerith fields;
however this is a practice to be avoided. ‘

A Portable Fortran 77 Compiler PS1:2-23

6.3.2. Positional Editing Codes
t, tl, tr, and x codes control where the next character is in the record. trn or nx specifies that the
next character is n to the right of the current position. tln specifies that the next character is n
to the left of the current position, allowing parts of the record to be reconsidered. tn says that
the next character is to be character number » in the record. (See section 3.3 in the main text.)

6.3.3. Colon
A colon in the format terminates the I/O operation if there are no more data items in the /'O
list, otherwise it has no effect. In the fragment
x='"hello”, :, " there", i4)
write(6, x) 12
write(6, x)

the first write statement prints
hello there 12

while the second only prints
hello

6.3.4. Optional Plus Signs

According to the Standard, each implementation has the option of putting plus signs in front of

non-negative numeric output. The sp format code may be used to make the optional plus signs

actually appear for all subsequent items while the format is active. The ss format code guaran-

tees that the I/O system will not insert the optional plus signs, and the s format code restores the

default behavior of the I/O system. (Since we never put out optional plus signs, ss and s codes
- have the same effect in our implementation.) '

6.3.5. Blanks on Input

Blanks in numeric input fields, other than leading blanks, will be ignored following 2 bn code in
a format statement, and will be treated as zeros following a bz code in a format statement. The
default for a unit may be changed by using the open statement. (Blanks are ignored by default.)

6.3.6. Unrepresentable Values

The Standard requires that if a numeric item cannot be represented in the form required by a
format code, the output field must be filled with asterisks. (We think this should have been an
option.)

6.3.7. Tw.m

There is a new integer output code, iw.m. It is the same as iw, except that there will be at least
m digits in the output field, including, if necessary, leading zeros. The case iw.0 is special, in
that if the value being printed is 0, the output field is entirely blank. iw.1 is the same as iw.

6.3.8. Floating Point

On input, exponents may start with the letter E, D, e, or d. All have the same meaning. On
output we always use e or d. The e and d format codes also have identical meanings. A leading
zero before the decimal point in e output without a scale factor is optional with the implementa-
tion. There is a gw.d format code which is the same as ew.d and fw.d on input, but which
chooses f or e formats for output depending on the size of the number and of d.

PS1:2-24 A Portable Fortran 77 Compiler

6.3.9.

6.4.

6.5.

6.6.

“A” Format Code

The a code is used for character data. aw uses a ﬁeld width of w, while a plain a uses the length
of the internal character item.

Standard Units
There are default formatted input and output units. The statement
read 10,a, b
reads from the standard unit using format statement 10. The default unit may be explicitly
specified by an asterisk, as in
read(s, 10) a, b
Similarly, the standard output unit is specified by a print statement or an asterisk unit:

print 10
write(s, 10)

List-Directed /O
List-directed /O is a kind of free form input for sequential /O. It is invoked by using an aster-
isk as the format identifier, as in

read(6, ») a,b,c

On input, values are separated by strings of blanks and possibly a comma. On UNIX, tabs may
be used interchangeably with blanks as separators. Values, except for character strings, cannot
contain blanks. End of record counts as a blank, except in character strings, where it is ignored.
Complex constants are given as two real constants separated by a comma and enclosed in
parentheses. A null input field, such as between two consecutive commas, means the
correspondmg variable in the I/O list is not changed. Values may be preceded by repetition
counts, as in

4%(3.,2.) 2+, 4¢’hello’
which stands for 4 complex constants, 2 null values, and 4 string constants.

The Fortran standard requires data being read into character variables by a list-directed read to
be enclosed in quotes. In our system, the quotes are optional for strings which do not start with
a digit or quote and do not contain separators.

For output, suitable formats are chosen for each item. The values of character strings are
printed; they are not enclosed in quotes. According to the standard, they could not be read back
using list-directed input. However much of this data could be read back in with list-directed /'O
on our system.

Direct /O
A file connected for direct access consists of a set of equal-sized records each of which is

uniquely identified by a positive integer. The records may be written or read in any order, using
direct access /O statements.

Direct access read and write statements have an extra argument, rec=, which gives the record
number to be read or written.

read(2, rec=13, err=20) (a(i), i=1, 203)
reads the thirteenth record into the array a.

The size of the records must be given by an open statement (see below). Direct access files may
be connected for either formatted or unformatted I/O.

A Portable Fortran 77 Compiler : PS1:2-25

6.7. Internal Files

Internal files are character string objects, such as variables or substrings, or arrays of type char-
acter. In the former cases there is only a single record in the file; in the latter case each array
element is a record. The Standard includes only sequential formatted /O on internal files. (/O
is not a very precise term to use here, but internal files are dealt with using read and write.)
Internal files are used by giving the name of the character object in place of the unit number, as
in

characters80 x
read(5,/(a)) x
read(x,'(i3,i4)) n1,n2

which reads a character string into x and then reads two integers from the front of it. A sequen-
tial read or write always starts at the beginning of an internal file.

We also support two extensions of the standard. The first is direct /O on internal files. This is
like direct I/O on external files, except that the number of records in the file cannot be changed.
In this case a record is a single element of an array of character strings. The second extension is
list-directed I/O on internal files.

6.8. OPEN, CLOSE, and INQUIRE Statements

These statements are used to connect and disconnect units and files, and to gather information
about units and files.

6.8.1. OPEN
The open statement is used to connect a file with a unit, or to alter some properties of the con-
nection. - The following is a minimal example.
open(1, file="fort.junk’)
open takes a variety of arguments with meanings described below.

unit= an integer between 0 and 99 inclusive which is the unit to which the file is to be con-
nected (see section 5.3 in the text). If this parameter is the first one in the open statement,
the unit= can be omitted.

jostat= is the same as in read or write.
err= 1S the same as in read or write.

file= a character expression, which when stripped of trailing blanks, is the name of the file to be
connected to the unit. The file name should not be given if the status="scratch’.

status= one of ‘old’, ‘mew, ‘scratch’, or ‘unkmow=z’. If this parameter is not given,
‘unknown’ is assumed. The meaning of ‘unknown’ is processor dependent; our system will
create the file if it doesn’t exist. If ‘scratch’ is given, a temporary file will be created. Tem-
porary files are destroyed at the end of execution. If ‘new’ is given, the file must not exist.
It will be created for both reading and writing. If ‘old’ is given, it is an error for the file not

to exist.
access= ‘sequential’ or 'direct, depending on whether the file is to be opened for sequential or
direct I/O.

form= ‘formatted’ or ‘unformatted’. On UNIX systems, form="print’ implies 'formatted’ with verti-
cal format control. (See section 3.4 of the text).

recl= a positive integer specifying the record length of the direct access file being opened. We
measure all record lengths in bytes. On UNIX systems a record length of 1 has the special
meaning explained in section 5.1 of the text.

PS1:2-26 A Portable Fortran 77 Compiler

blank= 'null’ or ‘zero’. This parameter has meaning only for formatted I/O. The default value is
‘null’. ‘zero’ means that blanks, other than leading blanks, in numeric input fields are to be
treated as zeros.

Opening a new file on a unit which is already connected has the effect of first closing the old file.

6.8.2. CLOSE

close severs the connection between a unit and a file. The unit number must be given. The
optional parameters are iostat= and err= with their usual meanings, and status= either keep’ or
‘delete’. For scratch files the default is ‘delete’; otherwise 'keep’ is the default. ‘delete’ means the
file will be removed. A simple example is

close(3, err=17)

6.8.3. INQUIRE

The inquire statement gives information about a unit (“inquire by unit”) or a file (“inquire by
file). Simple examples are:

inquire(unit=3, name=xx)
inquire(file=' junk’, number=n, exist=1)

file= a character variable specifies the file the inquire is about. Trailing blanks in the file name
are ignored.

unit= an integer variable specifies the unit the inquire is about. Exactly one of file= or unit=
must be used.

iostat=, err= are as before.

exist= a logical variable. The logical variable is set to .true. if the file or unit exists and is set to
false. otherwise.

opened= a logical variable. The logical variable is set to .true. if the file is connected to a unit
or if the unit is connected to a file, and it is set to .false. otherwise.

number= an integer variable to which is assigned the number of the unit connected to the file, if
any.

named= a logical variable to which is assigned .true. if the file has a name, or .false. otherwise.

name= a character variable to which is assigned the name of the file (inquire by file) or the
name of the file connected to the unit (inquire by unit).

access= a character variable to which will be assigned the value ‘sequential’ if the connection is
for sequential /O, “direct’ if the connection is for direct /O, ‘unknown’ if not connected.

sequential= a character variable to which is assigned the value ‘yes’ if the file could be connected
for sequential I/O, ‘no’ if the file could not be connected for sequential I/O, and “unknown’ if
we can’t tell.

direct= a character variable to which is assigned the value ‘yes’ if the file could be connected for
direct VO, ‘no’ if the file could not be connected for direct /O, and ‘unknown’ if we can’t
tell.

form= a character variable to which is assigned the value ‘unformatted’ if the file is connected for
unformatted /O, ‘formatted’ if the file is connected for formatted I/O, ‘print’ for formatted
I/O with vertical format control, or ‘unknown’ if not connected.

formatted= a character variable to which is assigned the value ‘yes’ if the file could be connected
for formatted I/O, 'no’ if the file could not be connected for formatted I/O, and ‘unknown’ if
we can’t tell.

A Portable Fortran 77 Compiler PS1:2-27

unformatted= a character variable to which is assigned the value ‘yes’ if the file could be con-
nected for unformatted I/O, ‘no’ if the file could not be connected for unformatted /O, and
'annown’ if we can’t tell.

recl= an integer variable to which is assigned the record length of the records in the file if the
file is connected for direct access.

nextrec= an integer variable to which is assigned one more than the number of the the last
record read from a file connected for direct access.

blank= a character variable to which is assigned the value ‘null’ if null blank control is in effect
for the file connected for formatted /O, ‘zero’ if blanks are being converted to zeros and
the file is connected for formatted I/O.

For information on file permissions, ownership, etc., use the Fortran library routines stat and

access.

For further discussion of the UNIX Fortran /O system see “Introduction to the f77 I/O Library”

[9].

PS1:228 A Portable Fortran 77 Compiler

APPENDIX B: References and Bibliography

References

1.

2.

8.
9.

American National Standard Programming Language FORTRAN, ANSI X3.9-1978. New York:
American National Standards Institute, 1978.

USA Standard FORTRAN, USAS X3.9-1966. New York: United States of America Standards Insti-
tute, 1966. Clarified in Comm. ACM 12:289 (1969) and Comm. ACM 14:628 (1971).

Kernighan, B. W., and D. M. Ritchie. The C Programming Language. Englewood Cliffs:
Prentice-Hall, 1978.

Ritchie, D. M. Private communication.

Johnson, S. C. “A Portable Compiler: Theory and Practice,” Proceedings of Fifth ACM Sympo-
sium on Principles of Programming Languages. 1978.

Feldman, S. I. “An Informal Description of EFL,” internal memorandum.

Kernighan, B. W. “RATFOR—A Preprocessor for Rational Fortran,” Bell Laboratories Computing
Science Technical Report #55. 1977.

Ritchie, D. M. Private communication.
Wasley, D. L. “Introduction to the 77 1/O Library”, UNIX Programmer’s Manual, Volume 2c.

Bibliography
The following books or documents describe aspects of Fortran 77. This list cannot pretend to be
complete. Certainly no particular endorsement is implied.

1.

bl

6.
7.

8.

9.

Brainerd, Walter S., et al. Fortran 77 Programming. Harper Row, 1978.

2. Day, A. C. Compatible Fortran. Cambridge University Press, 1979.
3.
4. Feldman, S. I. “The Programming Language EFL,” Bell Laboratories Technical Report. June

Dock, V. Thomas. Structured Fortran IV Programming. West, 1979.

1979.
Hume, J. N, and R. C. Holt. Programming Fortran 77. Reston, 1979.
Katzan, Harry, Jr. Fortran 77. Van Nostrand-Reinhold, 1978.

Meissner, Loren P., and Organick, Elliott I. Fortran 77 Featuring Structured Programming,
Addison-Wesley, 1979.

Merchant, Michael J. ABC's of Fortran Programming. Wadsworth, 1979.
Page, Rex, and Richard Didday. Fortran 77 for Humans. West, 1980.

10.Wagener, Jerrold L. Principles of Fortran 77 Programming. Wiley, 1980.

Introduction to the f77 I/O Library PS1:3-1

Introduction to the f77 1/0 Library

David L. Wasley
J. Berkman

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

The £77 I/O library, libI77.a, includes routines to perform all of the standard
types of Fortran input and output specified in the ANSI 1978 Fortran standard. The
I/O Library was written originally by Peter J. Weinberger at Bell Labs. Where the
original implementation was incomplete, it has been rewritten to more closely imple-
ment the standard. Where the standard is vague, we have tried to provide flexibility
within the constraints of the UNIX} operating system. A number of logical exten-
sions and enhancements have been provided such as the use of the C stdio library
routines to provide efficient buffering for file I/0.

Revised September, 1985

+ UNIX is a trademark of AT&T Bell Laboratories.

PS1:3-2

Table of Contents

1. Fortran I/0

Introduction to the f77 I/O Library

1.1. Types of I/0 and logical records

1.1.1. Direct access external I/0

1.1.2. Sequential access external I/0

1.1.3. List directed and namelist sequential external I/O
1.1.4. Internal I/0

1.2. I/O execution

2. Implementation details

2.1. Number of logical units

2.2. Standard logical units
2.3. Vertical format control

2.4. File names and the open statement
2.5. Format interpretation

2.6. List directed output
2.7. /O errors

ooooo

3. Non-“ANSI Standard” extensions
3.1. Format speciﬁers '

3.2. Print files

3.3. Scratch files

3.4. List directed I/O

3.5. Namelist I/O

4. Running older programs
4.1. Traditional unit control parameters

4.2. Ioinit()
5. Magnetic tape I/0

6. Caveat Programmer
Appendix A: I/O Library Error Messages

Appendix B: Exceptions to the ANSI Standard

—

Introduction to the f77 I/O Library PS1:3-3

1. Fortran I/O

The requirements of the ANSI standard impose significant overhead on programs that do large
amounts of I/0. Formatted I/O can be very “expensive” while direct access binary I/O is usually very
efficient. Because of the complexity of Fortran I/O, some general concepts deserve clarification.

1.1. Types of I/O and logical records

There are four forms of 1/0O: formatted, unformatted, list directed, and namelist. The last two are
related to formatted but do not obey all the rules for formatted 1/0. There are two types of “files™:
external and internal and two modes of access to files: direct and sequential. The definition of a logi-
cal record depends upon the combination of I/O form, file type, and access mode specified by the For-
tran [/O statement.

1.1.1. Direct access external I/O

A logical record in a direct access external file is a string of bytes of a length specified when the
file is opened. Read and write statements must not specify logical records longer than the original
record size definition. Shorter logical records are allowed. Unformatted direct writes leave the unfilled
part of the record undefined. Formatted direct writes cause the unfilled record to be padded with
blanks.

1.1.2. Sequential access external I/O

Logical records in sequentially accessed external files may be of arbitrary and variable length.
Logical record length for unformatted sequential files is determined by the size of items in the iolist.
The requirements of this form of I/O cause the external physical record size to be somewhat larger
than the logical record size. For formatted write statements, logical record length is determined by the
‘format statement interacting with the iolist at execution time. The “newline” character is the logical
record delimiter. Formatted sequential access causes one or more logical records ending with ‘“new-
line” characters to be read or written. '

1.1.3. List directed and namelist sequential external I/O

Logical record length for list directed and namelist I/O is relatively meaningless. On output, the
record length is dependent on the magnitude of the data items. On input, the record length is deter-
mined by the data types and the file contents. By ANSI definition, a slash, “/”, terminates execution
of a list directed input operation. Namelist input is terminated by “&end” or “$end” (depending on
whether the character before the namelist name was “&” or “$”).

1.1.4. Internal I/O

The logical record length for an internal read or write is the length of the character variable or
array element. Thus a simple character variable is a single logical record. A character variable array is
similar to a fixed length direct access file, and obeys the same rules. Unformatted and namelist /O
are not allowed on “internal” files.

1.2. I/O execution

Note that each execution of a Fortran unformatted I/O statement causes a single logical record to
be read or written. Each execution of a Fortran formatted I/O statement causes one or more logical
records to be read or written.

A slash, “/”, will terminate assignment of values to the input list during list directed input and
the remainder of the current input line is skipped. The standard is rather vague on this point but
seems to require that a new external logical record be found at the start of any formatted input.
Therefore data following the slash is ignored and may be used to comment the data file.

Direct access list directed I/0 is not allowed. Unformatted internal I/O is not allowed. Namelist
I/0 is allowed only with external sequential files. All other flavors of I/O are allowed, although some
are not part of the ANSI standard.

PS1:3-4 Introduction to the f77 I/O Library

Any /O statement may include an err= clause to specify an alternative branch to be taken on
errors and/or an iostat= clause to return the specific error code. Any error detected during I/O pro-
cessing will cause the program to abort unless either err= or iostat= has been specificed in the pro-
gram. Read statements may include end= to branch on end-of-file. The end-of-file indication for that
logical unit may be reset with a backspace statement. File position and the value of I/O list items is
undefined following an error.

2. Implementation details

Some details of the current implementation may be useful in understanding constraints on For-
tran I/O.

2.1. Number of logical units

Unit numbers must be in the range 0 - 99. The maximum number of logical units that a pro-
gram may have open at one time is the same as the UNIX system limit, currently 48.

2.2. Standard logical units

By default, logical units 0, 5, and 6 are opened to “stderr”, “stdin”, and “stdout™ respectively.
However they can be re-defined with an open statement. To preserve error reporting, it is an error to
close logical unit 0 although it may be reopened to another file.

If you want to open the default file name for any preconnected logical unit, remember to close
the unit first. Redefining the standard units may impair normal console I/O. An alternative is to use
shell re-direction to externally re-define the above units. To re-define default blank control or format
of the standard input or output files, use the open statement specifying the unit number and no ﬁle
name (see §2.4).

The standard units, 0, 5, and 6, are named internally “stderr”, *“stdin”, and “stdout” respec-
tively. These are not actual file names and can not be used for opening these units. Inquire will not
return these names and will indicate that the above units are not named unless they have been
opened to real files. The names are meant to make error reporting more meaningful.

2.3. Vertical format control

Simple vertical format control is implemented. The logical unit must be opened for sequential
access with form = ‘print’ (see §3.2). Control codes “0” and *“1” are replaced in the output file with
‘“An” and “\f” respectively. The control character “+” is not implemented and, like any other char-
acter in the first position of a record written to a “print” file, is dropped. The form = ‘print mode
does not recognize vertical format control for direct formatted, list directed, or namelist output.

An alternative is to use the filter fpr(1) for vertical format control. It replaces “0”” and “1” by
‘“An” and “\f” respectively, and implements the “+” control code. Unlike form = ‘print’ which drops
unrecognized form control characters, fpr copies those characters to the output file.

2.4. File names and the open statement

A file name may be specified in an open statement for the logical unit. If a logical unit is
opened by an open statement which does not specify a file name, or it is opened implicitly by the exe-
cution of a read, write, or endfile statement, then the default file name is fort. N where N is the logical
unit number. Before opening the file, the library checks for an environment variable with a name
identical to the tail of the file name with periods removed.f If it finds such an environment variable,
it uses its value as the actual name of the file. For example, a program containing:

tPeriods are deleted because they can not be part of environment variable names in the Bourne shell.

Introduction to the f77 I/O Library PS1:3-5

open(32,file="/usr/guest/census/data.d")
read(32,100) vec
write(44) vec

normally will read from /usr/guest/census/data.d and write to fort.44 in the current directory. If the
environment variables datad and fort44 are set, e.g.:

% setenv datad mydata
% setenv fort44 myout

in the C shell or:

$ datad=mydata
$ fort44=myout
$ export datad fort44

in the Bourne shell, then the program will read from mydata and write to myout.

An open statement need not specify a file name. If it refers to a logical unit that is already open,
the blank= and form= specifiers may be redefined without affecting the current file position. Other-
wise, if status = ‘scratch’ is specified, a temporary file with a name of the form tmp. FXXXXXX will be
opened, and, by default, will be deleted when closed or during termination of program execution.

It is an error to try to open an existing file with status = ‘new’ . It is an error to try to open a
nonexistent file with status = ‘old’ . By default, status = ‘'unknown’ will be assumed, and a file will be
created if necessary. .

By default, files are positioned at their beginning upon opening, but see fseek(3f) and ioinit(3f)
for alternatives. Existing files are never truncated on opening. Sequentially accessed external files are
truncated to the current file position on close, backspace, or rewind only if the last access to the file
was a write. An endfile always causes such files to be truncated to the current file position.

2.5. Format interpretation

Formats which are in format statements are parsed by the compiler; formats in read, write, and
orint statements are parsed during execution by the I/O library. Upper as well as lower case charac-
ters are recognized in format statements and all the alphabetic arguments to the I/O library routines.

If the external representation of a datum is too lai'ge for the field width specified, the specified
field is filled with asterisks (s). On Ew.dEe output, the exponent field will be filled with asterisks if
the exponent representation is too large. This will only happen if “e” is zero (see appendix B).

On output, a real value that is truly zero will display as “0.” to distinguish it from a very small
non-zero value. If this causes problems for other input systems, the BZ edit descriptor may be used
to cause the field following the decimal point to be filled with zero’s.

Non-destructive tabbing is implemented for both internal and external formatted I/0. Tabbing
left or right on output does not affect previously written portions of a record. Tabbing right on out-
put causes unwritten portions of a record to be filled with blanks. Tabbing right off the end of an
input logical record is an error. Tabbing left beyond the beginning of an input logical record leaves
the input pointer at the beginning of the record. The format specifier T must be followed by a posi-
tive non-zero number. If it is not, it will have a different meaning (see § 3.1).

Tabbing left requires seek ability on the logical unit. Therefore it is not allowed in I/O to a ter-
minal or pipe. Likewise, nondestructive tabbing in either direction is possible only on a unit that can
seek. Otherwise tabbing right or spacing with X will write blanks on the output.

2.6. List directed output

In formatting list directed output, the I/O system tries to prevent output lines longer than 80
characters. Each external datum will be separated by two spaces. List directed output of complex
values includes an appropriate comma. List directed output distinguishes between real and double
precision values and formats them differently. Output of a character string that includes “\n” is

PS1:3-6 Introduction to the f77 I/O Library

interpreted reasonably by the output system.

2.7. VO errors

If 1/O errors are not trapped by the user’s program an appropriate error message will be written
to “stderr’ before aborting. An error number will be printed in “[] along with a brief error message
showing the logical unit and I/O state. Error numbers < 100 refer to UNIX errors, and are described
in the introduction to chapter 2 of the UNIX Programmer’s Manual. Error numbers = 100 come
from the I/O library, and are described further in the appendix to this writeupt. For internal I/O,
part of the string will be printed with *“|” at the current position in the string. For external I/O, part
of the current record will be displayed if the error was caused during reading from a file that can
backspace.

3. Non-“ANSI Standard” extensions

Several extensions have been added to the I/O system to provide for functions omitted or poorly
defined in the standard. Programmers should be aware that these are non-portable.

3.1. Format specifiers

B is an acceptable edit control specifier. It causes return to the logical unit’s default mode of
blank interpretation. This is consistent with S which returns to default sign control.

P by itself is equivalent to OP . It resets the scale factor to the default value, 0.

The form of the Ew.dEe format specifier has been extended to D also. The form Ew.d.e is
allowed but is not standard. The “e” field specifies the minimum number of digits or spaces in the
exponent field on output. If the value of the exponent is too large, the exponent notation e or d will
be dropped from the output to allow one more character posmon If this is still not adequate, the “e”
field will be filled with asterisks (+). The default value for “e” is 2.

An additional form of tab control specification has been added. The ANSI standard forms TRn,
TLn, and Tn are supported where n is a positive non-zero number. If T or nT is specified, tabbing
will be to the next (or n-th) 8-column tab stop. Thus columns of alphanumerics can be lined up
without counting.

A format control specifier has been added to suppress the newline at the end of the last record
of a formatted sequential write. The specifier is a dollar sign ($). It is constrained by the same rules as
the colon (:). It is used typically for console prompts. For example:

write (», "(‘enter value for x: ',$)")
read (s,*) x

Radices other than 10 can be specified for formatted integer I/O conversion. The specifier is pat-
terned after P, the scale factor for floating point conversion. It remains in effect until another radix is
specified or format interpretation is complete. The specifier is defined as [n]R where 2 < n < 36. If n
is omitted, the default decimal radix is restored.

The format specifier Om.n may be used for an octal conversion,; it is equivalent to 8R,Im.n,I10R.
Similarly, Zm.n is equivalent to 16R,Im.n,10R and may be used for an hexadecimal conversion;

In conjunction with the above, a sign control specifier has been added to cause integer values to
be interpreted as unsigned during output conversion. The specifier is SU and remains in effect until
another sign control specifier is encountered, or format interpretation is complete.tf Radix and

$ On many systems, these are also available in help /77 io_err_msgs.

fNote: Unsigned integer values greater than (2¢s31 - 1), can be read and written using SU. However they
can not be used in computations because Fortran uses signed arithmetic and such values appear to the ar-
ithmetic unit as negative numbers.

Introduction to the f77 /O Library | PS1:3-7

“unsigned” specifiers could be used to format a hexadecimal dump, as follows:

2000 format (SU, 8210.8)

3.2. Print files

The ANSI standard is ambiguous regarding the definition of a “print” file. Since UNIX has no
default “print” file, an additional form= specifier is now recognized in the open statement. Specifying
form = ‘print implies formatted and enables vertical format control for that logical unit (see §2.3).
Vertical format control is interpreted only on sequential formatted writes to a “print” file.

The inquire statement will return print in the form= string variable for logical units opened as
“print” files. It will return -1 for the unit number of an unconnected file.

If a logical unit is already open, an open statement including the form= option or the blank=
option will do nothing but re-define those options. This instance of the open statement need not
include the file name, and must not include a file name if umt- refers to a standard mput or output.
Therefore, to re-define the standard output as a “print” file, use

_ open (unit=6, form="print)

3.3. Scratch files

A close statement with status = 'keep’ may be specified for temporary files. This is the defauilt
for all other files. Remember to get the scratch file’s real name, using inquire , if you want to re-open
it later.

3.4. List directed 1/0-

List directed read has been modified to allow tab characters wherever blanks are allowed. It
also allows input of a string not enclosed in quotes. The string must not start with a digit or quote,
and can not contain any separators (“,”, “/”, hlank or tab). A newline will terminate the string
unless escaped with \. Any string not meetxng the above restrictions must be enclosed in quotes (* "
”»” or 66 7 !’).

Internal list directed /O has been implemented. During internal list reads, bytes are consumed
until the iolist is satisfied, or the “end-of-file” is reached. During internal list writes, records are filled
until the iolist is satisfied. The length of an internal array element should be at least 20 bytes to
avoid logical record overflow when writing double precision values. Internal list read was imple-
mented to make command line decoding easier. Internal list write should be avoided.

3.5. Namelist 1/0

Namelist I/0 is a common extension in Fortran systems. The f77 version was designed to be
compatible with other vendors versions; it is described in “A Portable Fortran 77 Compiler”, by
Feldman and Weinberger, August, 1985.

4. Running older programs

Traditional Fortran environments usually assume carriage control on all logical units, usually
interpret blank spaces on input as “0”’s, and often provide attachment of global file names to logical
units at run time. There are several routines in the I/0O library to provide these functions.

PS1:3-8 Introduction to the f77 I/O Library

4.1. Traditional unit control parameters

If a program reads and writes only units 5 and 6, then including -1166 in the f77 command will
cause carriage control to be interpreted on output and cause blanks to be zeros on input without
further modification of the program. If this is not adequate, the routine ioinit(3f) can be called to
specify control parameters separately, including whether files should be positioned at their beginning
or end upon opening.

4.2. Ioinit()

Toinit(3f) can be used to attach logical units to specific files at run time, and to set global param-
eters for the /O system. It will look for names of a user specified form in the environment and open
the corresponding logical unit for sequential formatted I/O. Names must be of the form PREFIXnn
where PREFIX is specified in the call to ioinit and nn is the logical unit to be opened. Unit numbers
< 10 must include the leading “0”.

Ioinit should prove adequate for most programs as written. However, it is written in For-
tran-77 specifically so that it may serve as an example for similar user-supplied routines. A copy
may be retrieved by “ar x /usr/lib/libU77.a ioinit.f’. See §2.4 for another way to override program
- file names through environment variables. S

§. Magnetic tape 1/0

Because the I/O library uses stdio buffering, reading or writing magnetic tapes should be done
with great caution, or avoided if possible. A set of routines has been provided to read and write arbi-
trary sized buffers to or from tape directly. The buffer must be a character object. Internal I/O can be
used to fill or interpret the buffer. - These routines do not use normal Fortran I/O processing and do
not obey Fortran I/O rules. See fopen(3f).

6. Caveat Programmer

The I/0 library is extremely complex yet we believe there are few bugs left. We’ve tried to
make the system a< correct as possible according to the ANSI X3.9-1978 document and keep it com-
patible with the UNIX file system. Exceptions to the standard are noted in appendix B.

Introduction to the f77 I/0O Library PS1:3-9

Appendix A

I/O Library Error Messages

The following error messages are generated by the I/0O library. The error numbers are returned
in the iostat= variable. Error numbers < 100 are generated by the UNIX kernel. See the introduction
to chapter 2 of the UNIX Programmers Manual for their description.

100

101

error in format
See error message output for the location of the error in the format. Can be caused by
more than 10 levels of nested parentheses, or an extremely long format statement.

illegal unit number
It is illegal to close logical unit 0. Unit numbers must be between 0 and 99 inclusive.

102 formatted i/o not allowed

103

104

105

106

107

108

109

110

111

112

The logical unit was opened for unformatted I/O.

unformatted i/o not allowed
The logical unit was opened for formatted I/O.

direct i/o not allowed
The logical unit was opened for sequential access, or the logical record length was specified
as 0.

sequential i/o not allowed :
The logical unit was opened for direct access I/O.

can’t backspace file
The file associated with the logical unit can’t seek. May be a device or a pipe.

off beginning of record
The format specified a left tab beyond the beginning of an internal input record.

can’t stat file
The system can’t return status information about the file. Perhaps the directory is unread-
able.

no = after repeat count
Repeat counts in list directed I/O must be followed by an » with no blank spaces.

off end of record
A formatted write tried to go beyond the logical end-of-record. An unformatted read or
write will also cause this.

truncation failed
The truncation of an external sequential file on close, backspace, rewind, or endfile failed.

incomprehensible list input
List input has to be just right.

PS1:3-10

113

114

115

116

117

118

119

120

121

122

123

124

125

Introduction to the f77 I/O Library

out of free space
The library dynamically creates buffers for internal use. You ran out of memory for this.

Your program is too big!

unit not connected
The logical unit was not open.

invalid data for integer format term
Only spaces, a leading sign and digits are allowed.

invalid data for logical format term
Legal input consists of spaces (optional), a period (optional), and then a “t”, “T”, “f”, or
66F99°

‘new’ file exists
You tried to open an existing file with “status='new .

can'’t find ‘old’ file
You tried to open a non-existent file with “status="old .

opening too many files or unknown system error
Either you are trying to open too many files simultaneously or there has been an
undetected system error.

requires seek ability
Direct access requires seek ability. Sequential unformatted I/O requires seek ability on the
file due to the special data structure required. Tabbing left also requires seek ability.

illegal argument
Certain arguments to open, etc. will be checked for legitimacy. Often only non-default
forms are looked for.

negative repeat count
The repeat count for list directed input must be a positive integer.

illegal operation for unit

An operation was requested for a device associated with the logical unit which was not
possible. This error is returned by the tape I/O routines if attempting to read past end-of-
tape, etc.

invalid data for d, e, f or g format term
Input data must be legal.

illegal input for namelist
Column one of input is ignored, the namelist name must match, the variables must be in
the namelist, and the data must be of the right type.

Introduction to the f77 I/O Library PS1:3-11

Appendix B

Exceptions to the ANSI Standard

A few exceptions to the ANSI standard remain.

Vertical format control

The “+™ carriage control specifier is not fully implemented (see §2.3). It would be difficult to
implement it correctly and still provide UNIX-like file I/0.

Furthermore, the carriage control implementation is asymmetrical. A file written with carriage
control interpretation can not be read again with the same characters in column 1.

An alternative to interpreting carriage control internally is to run the output file through a “For-
tran output filter” before printing. This filter could recognize a much broader range of carriage control
and include terminal dependent processing. One such filter is fpr(1).

Default files

Files created by default use of endfile statements are opened for sequential formatted access.
There is no way to redefine such a file to allow direct or unformatted access.

Lower case strings

It is not clear if the ANSI standard requires internally generated strings to be upper case or not.
As currently written, the inquire statement will return lower case strings for any alphanumeric data.

Exponent representation on Ew.dEe output

If the field width for the exponent is too small, the standard allows dropping the exponent char-
acter but only if the exponent is > 99. This system does not enforce that restriction. Further, the
standard implies that the entire field, “w”, should be filled with asterisks if the exponent can not be
displayed. This system fills only the exponent field in the above case since that is more diagnostic.

Pre-connection of files

, The standard says units must be pre-connected to files before the program starts or must be
explicitly opened. Instead, the I/O library connects the unit to a file on its first use in a read, write,
print, or endfile statement. Thus inquire by unit can not tell prior to a unit number use the charac-
teristics or name of the file corresponding to a unit.

Berkeley Pascal User’s Manual
Version 3.1 - April 1986

William N. Joyt, Susan L. Graham, Charles B. Haleyf,
Marshall Kirk McKusick, and Peter B. Kessler}

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

ABSTRACT"

Berkeley Pascal is designed for interactive instructional use and runs on
the PDP/11 and VAX/11 computers. Interpretive code is produced, providing
fast translation at the expense of slower execution speed. There is also a fully
compatible compiler for the vaX/11. An execution profiler and Wirth’s cross
reference program are also available with the system.

The system supports full Pascal. The language accepted is ‘standard’
Pascal, and a small number of extensions. There is an option to. suppress the
extensions. The extensions include a separate compilation facility and the
ability to link to object modules produced from other source languages.

The User’s Manual gives a list of sources relating to the UNIXt system,
the Pascal language, and the Berkeley Pascal system. Basic usage examples
are provided for the Pascal components pi, px, pix, pc, and pxp. Errors
commonly encountered in these programs are discussed. Details are given of
special considerations due to the imicractive implementation. A number of
examples are provided including many dealing with input/output. An appen-
dix supplements Wirth’s Pascal Report to form the full definition of the
Berkeley implementation of the language.

Introduction

The Berkeley Pascal User’s Manual consists of five major sections and an appendix. In
section 1 we give sources of information about UNIX, about the programming language Pas-
cal, and about the Berkeley implementation of the language. Section 2 introduces the Berke-
ley implementation and provides a number of tutorial examples. Section 3 discusses the error
diagnostics produced by the translators pc and pi, and the runtime interpreter px. Section 4
describes input/output with special attention given to features of the interactive implementa-
tion and to features unique to UNIX. Section 5 gives details on the components of the system
and explanation of all relevant options. The User’s Manual concludes with an appendix to
Wirth’s Pascal Report with which it forms a precise definition of the implementation.

Copyright 1977, 1979, 1980, 1983 W. N. Joy, S. L. Graham, C. B. Haley, M. K. McKusick, P. B. Kessler
tAuthor’s current addresses: William Joy: Sun Microsystems, 2550 Garcia Ave., Mountain View, CA
94043; Charles Haley: S & B Associates, 1110 Centennial Ave., Piscataway, NJ 08854; Peter Kessler:
Xerox Research Park, Palo Alto, CA

t UNIX is a trademark of AT&T Bell Laboratories.

PS1:4-2 Berkeley Pascal User’s Manual

History of the implementation
The first Berkeley system was written by Ken Thompson in early 1976. The main
features of the present system were implemented by Charles Haley and William Joy during
the latter half of 1976. Earlier versions of this system have been in use since January, 1977.
The system was moved to the vaAX-11 by Peter Kessler and Kirk McKusick with the
porting of the interpreter in the spring of 1979, and the implementation of the compiler in the
summer of 1980.

1. Sources of information

This section lists the resources available for information about general features of UNIX,
text editing, the Pascal language, and the Berkeley Pascal implementation, concluding with a
list of references. The available documents include both so-called standard documents -
those distributed with all UNIX system - and documents (such as this one) written at Berke-

ley.

1.1. Where to get documentation

Current documentation for most of the UNIX system is available “on line” at your ter-
minal. Details on getting such documentation interactively are given in section 1.3.

1.2. Documentation describing UNIX

The following documents are those recommended as tutorial and reference material
about the UNIX system. We give the documents with the introductory and tutorial materials
first, the reference materials last.

UNIX For Beginners - Second Edition
This document is the basic tutorial for UNIX available with the standard system.

Communicating with UNIX

This is also a basic tutorial on the system and assumes no previous familiarity with
computers; it was written at Berkeley.

An introduction to the C shell

This document introduces csh, the shell in common use‘at Berkeley, and provides a
good deal of general description about the way in which the system functions. It provides a
useful glossary of terms used in discussing the system.

UNIX Programmer’s Manual

This manual is the major source of details on the components of the UNIX system. It
consists of an Introduction, a permuted index, and eight command sections. Section | con-
sists of descriptions of most of the “commands” of UNIX. Most of the other sections have
limited relevance to the user of Berkeley Pascal, being of interest mainly to system program-
mers.

UNIX documentation often refers the reader to sections of the manual. Such a reference
consists of a command name and a section number or name. An example of such a reference
would be: ed (1). Here ed is a command name - the standard UNIX text editor, and ‘(1)
indicates that its documentation is in section 1 of the manual.

The pieces of the Berkeley Pascal system are pi (1), px (1), the combined Pascal transla-
tor and interpretive executor pix (1), the Pascal compiler pc (1), the Pascal execution profiler
pxp (1), and the Pascal cross-reference generator pxref (1).

It is possible to obtain a copy of a manual section by using the man (1) command. To
get the Pascal documentation just described one could issue the command:

Berkeley Pascal User's Manual PS1:4-3

% man pi

to the shell. The user input here is shown in bold face; the ‘% °, which was printed by the
shell as a prompt, is not. Similarly the command:

% man man
asks the man command to describe itself.

1.3. Text editing documents

The following documents introduce the various UNIX text editors. Most Berkeley users
use a version of the text editor ex; either edit, which is a version of ex for new and casual
users, ex itself, or vi (visual) which focuses on the display editing portion of ex.

A Tutorial Introduction to the UNIX Text Editor

This document, written by Brian Kernighan of Bell Laboratories, is a tutorial for the
standard UNIX text editor ed. It introduces you to the basics of text editing, and provides
enough information to meet day-to-day editing needs, for ed users.

Edit: A tutorial

This introduces the use of edit, an editor similar to ed which provides a more hospit-
able environment for beginning users.

Ex/edit Command Summary

This summarizes the features of the editors ex and edit in a concise form. If you have
used a line oriented editor before this summary alone may be enough to get you started.

Ex Reference Manual - Version 3.7
A complete reference on the features of ex and edit.

An Introduction to Display Editing with Vi

Vi is a display oriented text editor. It can be used on most any CRT terminal, and uses
the screen as a window into the file you are editing. Changes you make to the file are
reflected in what you see. This manual serves both as an introduction to editing with vi and
a reference manual.

Vi Quick Reference

This reference card is a handy quick guide to vi; you should get one when you get the
introduction to vi.

1.4. Pascal documents - The language

This section describes the documents on the Pascal language which are likely to be most
useful to the Berkeley Pascal user. Complete references for these documents are given in sec-
tion 1.7.

Pascal User Manual

By Kathleen Jensen and Niklaus Wirth, the User Manual provides a tutorial introduc-
tion to the features of the language Pascal, and serves as an excellent quick-reference to the
language. The reader with no familiarity with Algol-like languages may prefer one of the Pas-
cal text books listed below, as they provide more examples and explanation. Particularly
important here are pages 116-118 which define the syntax of the language. Sections 13 and
14 and Appendix F pertain only to the 6000-3.4 implementation of Pascal.

PS1:4-4 Berkeley Pascal User's Manual

Pascal Report

By Niklaus Wirth, this document is bound with the User Manual. It is the guiding refer- |
ence for implementors and the fundamental definition of the language. Some programmers
find this report too concise t0 be of practical use, preferring the User Manual as a reference.

Books on Pascal

Several good books which teach Pascal or use it as a medium are available. The books
by Wirth Systematic Programming and Algorithms + Data Structures = Programs use Pascal
as a vehicle for teaching programming and data structure concepts respectively. They are
both recommended. Other books on Pascal are listed in the references below.

1.5. Pascal documents - The Berkeley Implementation

This section describes the documentation which is available descnbmg the Berkeley
implementation of Pascal.

User’s Manual

The document you are reading is the User’s Manual for Berkeley Pascal. We often refer
the reader to the Jensen-Wirth User Manual mentioned above, a different document with a
similar name.

Manual sections

The sections relating to Pascal in the UNIX Programmer’s Manual are pix (1), pi (1), pc
(1), px (1), pxp (1), and pxref (1). These sections give a description of each program, sum-
marize the available options, indicate files used by the program, give basic information on the
diagnostics produced and include a list of known bugs.

Implementation notes

For those interested in the internal organization of the Berkeley Pascal system there are
a series of Implementation Notes describing these details. The Berkeley Pascal PXP Imple-
mentation Note, describe the Pascal interpreter px ; and the Berkeley Pascal PX Implementa-
tion Notes describe the structure of the execution profiler pxp.

1.6. References

UNIX Documents

Communicating With UNIX
Computer Center

University of California, Berkeley
January, 1978.

Ricki Blau and James Joyce

Edit: a tutorial

UNIX User’s Supplementary Documents (USD), 14
University of California, Berkeley, CA. 94720
April, 1986.

Ex/edit Command Summary
Computer Center

University of California, Berkeley
August, 1978.

Berkeley Pascal User's Manual PS1:4-5

William Joy

Ex Reference Manual - Version 3.7

UNIX User’s Supplementary Documents (USD), 16
University of California, Berkeley, CA. 94720
April, 1986.

William Joy

An Introduction to Display Editing with Vi

UNIX User’s Supplementary Documents (USD), 15
University of California, Berkeley, CA. 94720
April, 1986.

William Joy

An Introduction to the C shell (Revised)

UNIX User’s Supplementary Documents (USD), 4
University of California, Berkeley, CA. 94720
April, 1986.

Brian W. Kernighan

UNIX for Beginners - Second Edition

UNIX User’s Supplementary Documents (USD), 1
University of California, Berkeley, CA. 94720
April, 1986.

Brian W. Kernighan

A Tutorial Introduction to the UNIX Text Editor
UNIX User’s Supplementary Documents (USD), 12
University of California, Berkeley, CA. 94720
April, 1986.

Dennis M. Ritchie and Ken Thompson

The UNIX Time Sharing System

Reprinted from Communications of the ACM July 1974 in

UNIX Programmer’s Supplementary Documents, Volume 2 (PS2), 1
University of California, Berkeley, CA. 94720

April, 1986.

Pascal Language Documents

Cooper and Clancy

Oh! Pascal!, 2nd Edition

W. W. Norton & Company, Inc.
500 Fifth Ave., NY, NY. 10110
1985, 475 pp.

Cooper

Standard Pascal User Reference Manual
W. W. Norton & Company, Inc.

500 Fifth Ave., NY, NY. 10110

1983, 176 pp.

PS1:4-6 Berkeley Pascal User’s Manual

Kathleen Jensen and Niklaus Wirth
Pascal - User Manual and Report
Springer-Verlag, New York.

1975, 167 pp.

Niklaus Wirth

Algorithms + Data structures = Programs
Prentice-Hall, New York.

1976, 366 pp.

Berkeley Pascal documents

The following documents are available from the Computer Center Library at the
University of California, Berkeley.

William N. Joy

Berkeley Pascal PX Implementation Notes

Version 1.1, April 1979.

(Vax-11 Version 2.0 By Kirk McKusick, December, 1979)

William N. Joy »
Berkeley Pascal PXP Implementation Notes ’
Version 1.1, April 1979.

2. Basic UNIX Pascal

The following sections explain the basics of using Berkeley Pascal. In examples here we
use the text editor ex (1). Users of the text editor ed should have little trouble following
these examples, as ex is similar to ed. We use ex because it allows us to make clearer exam-
ples.t The new UNIX user will find it helpful to read one of the text editor documents
described in section 1.4 before continuing with this section.

2.1. A first program

To prepare a program for Berkeley Pascal we first need to have an account on UNIX and
to ‘login’ to the system on this account. These procedures are described in the documents
Communicating with UNIX and UNIX for Beginners.

Once we are logged in we need to choose a name for our program; let us call it ‘first’ as
this is the first example. We must also choose a name for the file in which the program will
be stored. The Berkeley Pascal system requires that programs reside in files which have
names ending with the sequence ‘.p’ so we will call our file ‘first.p’.

A sample editing session to create this file would begin:

% ex first.p
"first.p” [New file]

We didn’t expect the file to exist, so the error diagnostic doesn’t bother us. The editor now
knows the name of the file we are creating. The ‘" prompt indicates that it is ready for com-
mand input. We can add the text for our program using the ‘append’ command as follows.

:append

t Users with CRT terminals should find the editor vi more pleasant to use; we do not show its use here be-
cause its display oriented nature makes it difficult to illustrate.

Berkeley Pascal User’s Manual PS1:4-7

program first(output)
begin

writeln(Hello, world?)
end.

The line containing the single ‘.’ character here indicated the end of the appended text. The
‘ prompt indicates that ex is ready for another command. As the editor operates in a tem-
porary work space we must now store the contents of this work space in the file ‘first.p’ so we
can use the Pascal translator and executor pix on it.

:write)

"first.p” [New file] 4 lines, 59 characters

quit

%
We wrote out the file from the edit buffer here with the ‘write’ command, and ex indicated
the number of lines and characters written. We then quit the editor, and now have a prompt
from the shell.

We are ready to try to translate and execute our program.

% pix first.p

Wed May 7 14:56 1986 first.p:
2 begin

¢ —4}— Inserted

Execution begins...

Hello, world!

Execution terminated.

1 statements executed in 0.00 seconds cpu time.
%

The translator first printed a syntax error diagnostic. The number 2 here indicates that
the rest of the line is an image of the second line of our program. The translator is saying
that it expected to find a ‘;’ before the keyword begin on this line. If we look at the Pascal
syntax charts in the Jensen-Wirth User Manual, or at some of the sample programs therein,
we will see that we have omitted the terminating ‘;” of the program statement on the first line
of our program.

One other thing to notice about the error diagnostic is the letter ‘e’ at the beginning. It
stands for ‘error’, indicating that our input was not legal Pascal. The fact that it is an ‘e’
rather than an ‘E’ indicates that the translator managed to recover from this error well enough
that generation of code and execution could take place. Execution is possible whenever no
fatal ‘E’ errors occur during translation. The other classes of diagnostics are ‘w’ warnings,
which do not necessarily indicate errors in the program, but point out inconsistencies which
are likely to be due to program bugs, and ‘s’ standard-Pascal violations.t

After completing the translation of the program to interpretive code, the Pascal system
indicates that execution of the translated program began. The output from the execution of
the program then appeared. At program termination, the Pascal runtime system indicated the
number of statements executed, and the amount of cpu time used, with the resolution of the

1 Our examples here assume you are using csh.
1The standard Pascal warnings occur only when the associated s translator option is enabled. The s option
is discussed in sections 5.1 and A.6 below. Warning diagnostics are discussed at the end of section 3.2, the
associated w option is described in section 5.2.

PS1:4-8 Berkeley Pascal User’s Manual

latter being 1/60’th of a second.

Let us now fix the error in the program and translate it to a permanent object code file
obj using pi. The program pi translates Pascal programs but stores the object code instead of
executing it. .

% ex first.p

“first.p” 4 lines, 59 characters
:1 print

program first(output)

:s/8/;

program first(output);

:write .
"first.p” 4 lines, 60 characters
:quit

% pi first.p

%

If we now use the UNIX /s list files command we can see what files we have:

% lIs
first.p
obj

%

The file ‘obj’ here contains the Pascal interpreter code. We can execute this by typing:

% px obj
Hello, world!

1 statements executed in 0.00 seconds cpu time.
%

Alternatively, the command:

% obj
will have the same effect. Some examples of different ways to execute the program follow.

% px
Hello, world!

1 statements executed in 0.00 seconds cpu time.
% pi —p first.p

% px obj

Hello, world!

% pix -p first.p

Hello, world!

%

Note that px will assume that ‘obj’ is the file we wish to execute if we don’t tell it other-
wise. The last two translations use the -p no-post-mortem option to eliminate execution

$This script indicates some other useful approaches to debugging Pascal programs. As in ed we can shorten
commands in ex to an initial prefix of the command name as we did with the substitute command here.
We have also used the ‘I’ shell escape command here to execute other commands with a shell without leav-
ing the editor.

Berkeley Pascal User’s Manual PS1:4-9

statistics and ‘Execution begins’ and ‘Execution terminated’ messages. See section 5.2 for
more details. If we now look at the files in our directory we will see:

%ls
first.p
obj

%

We can give our object program a name other than ‘obj’ by using the move command mv (1).
Thus to name our program ‘hello’:

% mv obj hello
% hello

Hello, world!
% ls

first.p

hello

%

Finally we can get rid of the Pascal object code by using the rm (1) remove file command,
e.g.

% rm hello 4
% lIs

first.p
%

For small programs which are being developed pix tends to be more convenient to use
than pi and px. Except for absence of the obj file after a pix rum, a pix command is
equivalent to a pi command followed by a px command. For larger programs, where a
number of runs testing different parts of the program are to be made, pi is useful as this obj
file can be executed any desired number of times.

2.2. A larger program

Suppose that we have used the editor to put a larger program in the file ‘bigger.p’. We
can list this program with line numbers by using the program cat-n i.e.:

% cat —n bigger.p
1 (=

2 = Graphic representation of a function
3 s f(x) = exp(—x) = sin(2 » pi s x)
4 9) 4
5 program graphl(output);
6 const
7 d = 0.0625; (s 1/16, 16 lines for interval [x, x+1] *)
8 s = 32; (» 32 character width for interval [x, x+1]
9 h = 34; (s Character position of x—axis =)
10 c=6.28138; (+2spis)
11 lim = 32;
12 var
13 X, y: real;
14 i, n: integer;
15 begin
16 fori:= 0 to lim begin

17 x:=d/i

PS1:4-10 Berkeley Pascal User’s Manual

18 y := exp(-x9 = sin(i » x);
19 n := Round(s = y) + h;
20 repeat

21 write(");

22 n:=n-1

23 writeln(s)

24 end

%

This program is similar to program 4.9 on page 30 of the Jensen-Wirth User Manual. A
number of problems have been introduced into this example for pedagogical reasons.

If we attempt to translate and execute the program using pix we get the following
response:

% pix bigger.p
Wed May 7 14:56 1986 bigger.p:
9 h = 34; (» Character position of x-axis =)
w 4 (» in a (s ... +) comment
16 for i := 0 to lim begin
e 4 Inserted keyword do
18 y := exp(-x9 = sin(i » x); .
E —t Undefined variable
e 4 Inserted)’
19 n := Round(s * y) + h;
E 4 —— Undefined function
E 4 Undefined variable
.23 writeln(’s) :
e 4 < Inserted %’
24 end.
E ——% —— Expected keyword until
E 4 —— Malformed declaration
E 4 —— Unexpccted end-of-file - QUIT

Execution suppressed due to compilation errors
%

Since there were fatal ‘E’ errors in our program, no code was generated and execution
was necessarily suppressed. One thing which would be useful at this point is a listing of the
program with the error messages. We can get this by using the command:

% pi -1 bigger.p

There is no point in using pix here, since we know there are fatal errors in the program. This
command will produce the output at our terminal. If we are at a terminal which does not
produce a hard copy we may wish to print this listing off-line on a line printer. We can do
this with the command:

% pi —1 bigger.p | Ipr
In the next few sections we will illustrate various aspects of the Berkeley Pascal system
by correcting this program.

2.3. Correcting the first errors

Most of the errors which occurred in this program were syntactic errors, those in the
format and structure of the program rather than its content. Syntax errors are flagged by
printing the offending line, and then a line which flags the location at which an error was

Berkeley Pascal User's Manual PS1:4-11

detected. The flag line also gives an explanation stating either a possible cause of the error, a
simple action which can be taken to recover from the error so as to be able to continue the
analysis, a symbol which was expected at the point of error, or an indication that the input
was ‘malformed’. In the last case, the recovery may skip ahead in the input to a point where
analysis of the program can continue.

In this example, the first error diagnostic indicates that the translator detected a com-
ment within a comment. While this is not considered an error in ‘standard’ Pascal, it usually
corresponds to an error in the program which is being translated. In this case, we have
accidentally omitted the trailing ‘s)’ of the comment on line 8. We can begin an editor ses-
sion to correct this problem by doipg:

% ex bigger.p
"bigger.p" 24 lines, 512 characters
:8s/$/ o)
s = 32; (» 32 character width for interval [x, x+1] %)

The second diagnostic, given after line 16, indicates that the keyword do was expected
before the keyword begin in the for statement. If we examine the statement syntax chart on
page 118 of the Jensen-Wirth User Manual we will discover that do is a necessary part of the
for statement. Similarly, we could have referred to section C.3 of the Jensen-Wirth User
Manual to learn about the for statement and gotten the same information there. It is often
useful to refer to these syntax charts and to the relevant sections of this book.

We can correct this problem by first scanning for the keyword for in the file and then
substitutipg the keyword do to appear in front of the keyword begin there. Thus:

:/for

fori:= 0 to lim begin
:s/begin/do &

fori:= 0 to lim do begin

The next error in the program is easy to pinpoint. On line 18, we didn’t hit the shift key and
got a ‘9’ instead of a ¢)’. The translator diagnosed that ‘x9° was an undefined variable and,
later, that a ‘)’ was missing in the statement. It should be stressed that pi is not suggesting
that you should insert a ‘)’ before the ;. It is only indicating that making this change will
help it to be able to continue analyzing the program so as to be able to diagnose further
errors. You must then determine the true cause of the error and make the appropriate correc-
tion to the source text.

This error also illustrates the fact that one error in the input may lead to multiple error
diagnostics. Pi attempts to give only one diagnostic for each error, but single errors in the
input sometimes appear to be more than one error. It is also the case that pi may not detect
an error when it occurs, but may detect it later in the input. This would have happened in
this example if we had typed ‘x’ instead of ‘x9°.

The translator next detected, on line 19, that the function Round and the variable h
were undefined. It does not know about Round because Berkeley Pascal normally distin-
guishes between upper and lower case.tf On UNIX lower-case is preferredt, and all keywords
and built-in procedure and function names are composed of lower-case letters, just as they are
in the Jensen-Wirth Pascal Report. Thus we need to use the function round here. As far as
h is concerned, we can see why it is undefined if we look back to line 9 and note that its

+In *“standard” Pascal no distinction is made based on case.
$One good reason for using lower-case is that it is easier to type.

PS1:4-12 Berkeley Pascal User’s Manual

definition was lost in the non-terminated comment. This diagnostic need not, therefore, con-
cern us. ‘

The next error which occurred in the program caused the translator to insert a ‘;’ before
the statement calling writeln on line 23. If we examine the program around the point of error
we will see that the actual error is that the keyword until and an associated expression have
been omitted here. Note that the diagnostic from the translator does not indicate the actual
error, and is somewhat misleading. The translator made the correction which seemed to be
most plausible. As the omission of a °; character is a common mistake, the translator chose
to indicate this as a possible fix here. It later detected that the keyword until was missing, but
not until it saw the keyword end on line 24. The combination of these diagnostics indicate to
us the true problem. °

The final syntactic error message indicates that the translator needed an end keyword to
match the begin at line 15. Since the end at line 24 is supposed to match this begin, we can
infer that another begin must have been mismatched, and have matched this end. Thus we
see that we need an end to match the begin at line 16, and to appear before the final end. We
can make these corrections:

:/x9/s//x)

y := exp(-x) » sin(i » x);
:+s/Round/round

n := round(s = y) + h;

:/write
write(");
:/
writeln(’s")
.insert .
until n = 0;
$
end.
:insert
end

At the end of each procedure or function and the end of the program the translator sum-
marizes references to undefined variables and improper usages of variables. It also gives
warnings about potential errors. In our program, the summary errors do not indicate any
further problems but the warning that ¢ is unused is somewhat suspicious. Examining the
program we see that the constant was intended to be used in the expression which is an argu-
ment to sin, SO we can correct this expression, and translate the program. We have now
made a correction for each diagnosed error in our program.

2 ?%//c/

y := exp(-X) #* sin(c » x);
:write
"bigger.p” 26 lines, 538 characters
:quit
% pi bigger.p
%

It should be noted that the translator suppresses warning diagnostics for a particular pro-
cedure, function or the main program when it finds severe syntax errors in that part of the
source text. This is to prevent possibly confusing and incorrect warning diagnostics from
being produced. Thus these warning diagnostics may not appear in a program with bad

Berkeley Pascal User’s Manual PS1:4-13

syntax errors until these errors are corrected.

We are now ready to execute our program for the first time. We will do so in the next
section after giving a listing of the corrected program for reference purposes.

% cat —n bigger.p

I (e
2 + Graphic representation of a function
3 s f{x) = exp(-x) »sin(2 pi = x)
4 9)
5 program graphl(output);
6 const
7 d = 0.0625; (= 1/16, 16 lines for interval [x, x+1])
8 s = 32; (s 32 character width for interval [x, x+1] *)
9 h = 34; (s Character position of x—axis »)
10 c=06.28138; (s2spis)
11 lim = 32;
12 var
13 X, y: real;
14 i, n: integer;
15 begin
16 fori:= 0 to lim do begin
17 x:=d/1i
18 y := exp(-x) = sin(c * x);
19 n := round(s » y) + h;
20 repeat
21 write(’);
22 n:=n-1
23 untiln = 0;
24 writeln(’s)
25 end
26 end.

%

2.4. Executing the second example

We are now ready to execute the second example. The following output was produced
by our first run.

% px
Execution begins...

Real division by zero

Error in "graphl1”+2 near line 17.
Execution terminated abnormally.

2 statements executed in 0.00 seconds cpu time.
%

Here the interpreter is presenting us with a runtime error diagnostic. It detected a ‘division
by zero’ at line 17. Examining line 17, we see that we have written the statement ‘x :=d / i’
instead of ‘x := d » i’. We can correct this and rerun the program:

% ex bigger.p
"bigger.p” 26 lines, 538 characters

Berkeley Pascal User's Manual

PS1:4-14
17
x:=d/1i
:s’/"
X:=ds=i

write
"bigger.p” 26 lines, 538 characters

q
% pix bigger.p
Execution begins...

Execution terminated.

2550 statements executed in 0.16 seconds cpu time.
%
This appears to be the output we wanted. We could now save the output in a file if we
wished by using the shell to redirect the output:

% px > graph
We can use cat (1) to see the contents of the file graph. We can also make a listing of the

graph on the line printer without putting it into a file, e.g.

Berkeley Pascal User’s Manual PS1:4-15

% px | Ipr
Execution begins...
Execution terminated.

2550 statements executed in 0.15 seconds cpu time.
%

Note here that the statistics lines came out on our terminal. The statistics line comes out on
the diagnostic output (unit 2.) There are two ways to get rid of the statistics line. We can
redirect the statistics message to the printer using the syntax ‘| &’ to the shell rather than ‘|,
ie.

% px | & lpr
%

or we can translate the program with the p option disabled on the command line as we did
above. This will disable all post-mortem dumping including the statistics line, thus:

% pi —p bigger.p
% px | Ipr
%

This option also disables the statement limit which normally guards against infinite looping.
You should not use it until your program is debugged. Also if p is specified and an error
occurs, you will not get run time diagnostic information to help you determine what the prob-
lem is.

2.5. Formatting the program listing

It is possible to use special lines within the source. text of a program to format the pro-
gram listing. An empty line (one with no characters on it) corresponds to a ‘space’ macro in
an assembler, leaving a completely blank line without a line number. A line containing only a
control-l (form-feed) character will cause a page eject in the listing with the corresponding line
number suppressed. This corresponds to an ‘eject’ pseudo-instruction. See also section 5.2
for details on the n and i options of pi.

2.6. Execution profiling

An execution profile consists of a structured listing of (all or part of) a program with
information about the number of times each statement in the program was executed for a par-
ticular run of the program. These profiles can be used for several purposes. In a program
which was abnormally terminated due to excessive looping or recursion or by a program fault,
the counts can facilitate location of the error. Zero counts mark portions of the program
which were not executed; during the early debugging stages they should prompt new test data
or a re-examination of the program logic. The profile is perhaps most valuable, however, in
drawing attention to the (typically small) portions of the program that dominate execution
time. This information can be used for source level optimization.

An example

A prime number is a number which is divisible only by itself and the number one. The
program primes, written by Niklaus Wirth, determines the first few prime numbers. In
translating the program we have specified the z option to pix. This option causes the transla-
tor to generate counters and count instructions sufficient in number to determine the number
of times each statement in the program was executed.t When execution of the program

$The counts are completely accurate only in the absence of runtime errors and nonlocal goto statements.
This is not generally a problem, however, as in structured programs nonlocal gote statements occur infre-

. quently, and counts are incorrect after abnormal termination only when the upward look described below to

PS1:4-16 Berkeley Pascal User’s Manual

completes, either normally or abnormally, this count data is written to the file pmon.out in
the current directory.t It is then possible to prepare an execution profile by giving pxp the
name of the file associated with this data, as was done in the following example.

% pix ~1 -~z primes.p
Berkeley Pascal PI -~ Version 3.1 (9/7/85)

Wed May 7 14:56 1986 primes.p

program primes(output);
const n = 50; nl = 7; (snl = sqrt(n)s)
var i,k x,inc,lim,square,l: integer;
prim: boolean;
p,v: array[1..n1] of integer;
begin

write(2:6, 3:6); 1 := 2;
X := ljinc := 4; lim := |; square := 9;
fori:=3tondo
begin (sfind next primes)
repeat X := X + inc; inc := 6-inc;
if square <= x then
begin lim := lim+1;
v[lim] := square; square := sqr(p{lim+1])
end ;
k := 2; prim := true;
while prim and (k<lim) do
begin k := k+1;
if v[k] < x then v[k] := v[k] + 2+p[k];
prim := x <> v[k]

DD et pemt pots et Gt et et bt et s
COVRNIAUNMPLUWN=OOVROIRNAULEWN—~

21 end

22 until prim;

23 if i <= nl then pfi] := x;
24 write(x:6); 1 := 1+1;

25 if 1 = 10 then

26 begin writeln; 1 := 0
27 end

28 end ;

29 writeln;

30 end.

Execution begins...
2 3 5 7 11 13 17 19 23 29
31 37 4] 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

Execution terminated.

1404 statements executed in 0.08 seconds cpu time.
%

get a count passes a suspended call point.
$Pmon.out has a name similar to mon.out the monitor file produced by the profiling facility of the C com-
piler cc (1). See prof (1) for a discussion of the C compiler profiling facilities.

Berkeley Pascal User's Manual PS1:4-17

Discussion

The header lines of the outputs of pix and pxp in this example indicate the version of
the translator and execution profiler in use at the time this example was prepared. The time
given with the file name (also on the header line) indicates the time of last modification of the
program source file. This time serves to version stamp the input program. Pxp also indicates
the time at which the profile data was gathered.

% pxp -z primes.p
Berkeley Pascal PXP -- Version 2.13 (4/2/84)

Wed May 7 14:56 1986 primes.p
Profiled Wed May 7 18:18 1986

1 1. —|program primes(output);
2 |const
2 | n=350;
2 | nl=7;(snl = sqrt(n)s)
3 |var
3 | 1,k x, inc, lim, square, I: integer;
4 | prim: boolean;
5 | p, v: array [1..n1] of integer;
6 | begin
7 | write(2: 6, 3: 6);
7 | 1:=2
8 | x:=1
8 | inc:=4;
8 | lim:=1;
8 | square:=9;
9 | fori:= 3 ton do begin (sfind next primes)
9 48. —| repeat
11 76. ——| x:=X + inc;
11 | inc:=6 - inc;
12 | if square <= x then begin
13 S.—| lim:=lim + I;
14 | v{lim] := square;
14 | square := sqr(p[lim + 1])
14 | end;
16 | k:=2;
16 | prim := true;
17 | while prim and (k < lim) do begin
18 157. —| k:=k+1;
19 | if v[k] < x then
19 42, —| v[k] := v[k] + 2 = p[k];
20 | prim:=x <> v[k]
20 | end .
20 |until prim;
23 | ifi<=nl then
23 5. —| pli] :=x;
24 | write(x: 6);
24 | li=1+1;
25 | ifl = 10 then begin
26 5. | writeln;

26 | 1:=0

PS1:4-18 : Berkeley Pascal User’s Manual

26 | end
26 | end;

29 | writeln
29 |end.

%

To determine the number of times a statement was executed, one looks to the left of the
statement and finds the corresponding vertical bar ¢|’. If this vertical bar is labelled with a
count then that count gives the number of times the statement was executed. If the bar is not
labelled, we look up in the listing to find the first ¢|” which directly above the original one
which has a count and that is the answer. Thus, in our example, £ was incremented 157
times on line 18, while the write procedure call on line 24 was executed 48 times as given by
the count on the repeat.

More information on pxp can be found in its manual section pxp (1) and in sections
5.4, 5.5 and 5.10.

3. Error diagnostics

This section of the User’s Manual discusses the error diagnostics of the programs pi, pc
and px. Pix is a simple but useful program which invokes pi and px to do all the real pro-
cessing. See its manual section pix (1) and section 5.2 below for more details. All the diag-
nostics given by pi will also be given by pc.

3.1. Translator syntax errors

A few comments on the general nature of the syntax errors usually made by Pascal pro-
grammers and the recovery mechanisms of the current translator may help in using the sys-
tem.

Illegal characters

Characters such as ‘$’, ‘", and ‘@’ are not part of the language Pascal. If they are found
in the source program, and are not part of a constant string, a constant character, or a com-
ment, they are considered to be ‘illegal characters’. This can happen if you leave off an open-
ing string quote °. Note that the character ‘”, although used in English to quote strings, is
not used to quote strings in Pascal. Most non-printing characters in your input are also illegal
except in character constants and character strings. Except for the tab and form feed charac-
ters, which are used to ease formatting of the program, non-printing characters in the input
file print as the character ‘?’ so that they will show in your listing.

String errors

There is no character string of length 0 in Pascal. Consequently the input “” is not
acceptable. Similarly, encountering an end-of-line after an opening string quote “* without
encountering the matching closing quote yields the diagnostic “Unmatched ° for string”. It is
permissible to use the character ‘#’ instead of “* to delimit character and constant strings for
portability reasons. For this reason, a spuriously placed ‘#’ sometimes causes the diagnostic
about unbalanced quotes. Similarly, a ‘4’ in column one is used when preparing programs
which are to be kept in multiple files. See section 5.11 for details.

Comments in a comment, non-terminated comments

As we saw above, these errors are usually caused by leaving off a comment delimiter.
You can convert parts of your program to comments without generating this diagnostic since
there are two different kinds of comments - those delimited by ‘(’ and ‘}’, and those delim-
ited by ‘(»’ and °s)’. Thus consider:

{ This is a comment enclosing a piece of program

Berkeley Pascal User’s Manual PS1:4-19

a := functioncall; (» comment within comment »)
procedurecall;
lhs := rhs; (s another comment »)

)

By using one kind of comment exclusively in your program you can use the other delim-
iters when you need to ‘“‘comment out” parts of your programt. In this way you will also
allow the translator to help by detecting statements accidentally placed within comments.

If a comment does not terminate before the end of the input file, the translator will
point to the beginning of the comment, indicating that the comment is not terminated. In
this case processing will terminate immediately. See the discussion of “QUIT” below.

Digits in numbers
This part of the language is a minor nuisance. Pascal requires digits in real numbers

both before and after the decimal point. Thus the following statements, which look quite rea-
sonable to FORTRAN users, generate diagnostics in Pascal:

Wed May 7 14:56 1986 digits.p:

4 r:=0,;

e 4 Digits required after decimal point
5 r:=.0;

e 4 — Digits required before decimal point
6 r:=l.el0;

e 4 Digits required after decimal point
7 r:=.05e-10;

e 4 —— Digits required before decimal point

These same constructs are also illegal as input to the Pascal interpreter px.

Replacements, insertions, and deletions

When a syntax error is encountered in the input text, the parser invokes an error
recovery procedure. This procedure examines the input text immediately after the point of
error and considers a set of simple corrections to see whether they will allow the analysis to
continue. These corrections involve replacing an input token with a different token, inserting
a token, or replacing an input token with a different token. Most of these changes will not
cause fatal syntax errors. The exception is the insertion of or replacement with a symbol such
as an identifier or a number; in this case the recovery makes no attempt to determine which
identifier or what number should be inserted, hence these are considered fatal syntax errors.

Consider the following example.

% pix -1 synerr.p
Berkeley Pascal PI - Version 3.1 (9/7/85)

Wed May 7 14:56 1986 synerr.p

1 program syn(output);
2 var i, j are integer;
¢ ————4%— Replaced identifier with a %’
3 begin
4 for j :» 1 to 20 begin

t1If you wish to transport your program, especially to the 6000-3.4 implementation, you should use the char-
acter sequence ‘(s” to delimit comments. For transportation over the rcslink to Pascal 6000-3.4, the charac-
ter '# should be used to delimit characters and constant strings.

PS1:4-20 Berkeley Pascal User’s Manual

e 4— Replaced »’ with a "=’

e 4— Inserted keyword do
5 write(j);
6 i=29sj;
e $— Inserted %’
E 4— Inserted identifier
7 writeln(i))
E $— Deleted
8 end
9 end.
%

The only surprise here may be that Pascal does not have an exponentiation operator, hence
the complaint about ‘s»’. This error illustrates that, if you assume that the language has a
feature which it does not, the translator diagnostic may not indicate this, as the translator is
unlikely to recognize the construct you supply.

Undefined or improper identifiers

If an identifier is encountered in the input but is undefined, the error recovery will
replace it with an identifier of the appropriate class. Further references to this identifier will
be summarized at the end of the containing procedure or function or at the end of the program
if the reference occurred in the main program. Similarly, if an identifier is used in an inap- .
propriate way, e.g. if a type identifier is used in an assignment statement, or if a simple vari-
able is used where a record variable is required, a diagnostic will be produced and an
identifier of the appropriate type inserted. Further incorrect references to this identifier will
be flagged only if they involve incorrect use in a different way, with all incorrect uses being
summarized in the same way as undefined variable uses are. :

Expected symbois, malformed constructs

If none of the above mentioned corrections appear reasonable, the error recovery will
examine the input to the left of the point of error to see if there is only one symbol which can
follow this input. If this is the case, the recovery will print a diagnostic which indicates that
the given symbol was ‘Expected’.

In cases where none of these corrections resolve the problems in the input, the recovery
may issue a diagnostic that indicates that the input is “malformed’. If necessary, the transla-
tor may then skip forward in the input to a place where analysis can continue. This process
may cause some errors in the text to be missed.

Consider the following example:

% pix -1 synerr2.p
Berkeley Pascal PI —- Version 3.1 (9/7/85)

Wed May 7 14:56 1986 synerr2.p
1 program synerr2(input,outpu);

2 integer a(10)
E —% —— Malformed declaration

3 begin
4 read(b);

E 4 Undefined variable
5 forc:=1to 10 do

E 4 Undefined variable
6 ac):=bsc;

E 4 Undefined procedure

Berkeley Pascal User's Manual PS1:4-21

E 4 Malformed statement
7 end.
E 1 - File outpu listed in program statement but not declared
In program synerr2:
E - a undefined on lines 6 '
E - b undefined on line 4
E - c undefined on line 5 6
Execution suppressed due to compilation errors
%

Here we misspelled output and gave a FORTRAN style variable declaration which the translator
diagnosed as a ‘Malformed declaration’. When, on line 6, we used ‘(’ and)’ for subscripting
(as in FORTRAN) rather than the ‘[’ and ‘]” which are used in Pascal, the translator noted that
a was not defined as a procedure. This occurred because procedure and function argument
lists are delimited by parentheses in Pascal. As it is not permissible to assign to procedure
calls the translator diagnosed a malformed statement at the point of assignment.

Expected and unexpected end-of-file, “QUIT”

If the translator finds a complete program, but there is more non-comment text in the
input file, then it will indicate that an end-of-file was expected. This situation may occur after
a bracketing error, or if too many ends are present in the input. The message may appear
after the recovery says that it “Expected *."” since .’ is the symbol that terminates a program.

If severe errors in the input prohibit further processing the translator may produce a
diagnostic followed by “QUIT”. One example of this was given above - a non-terminated
comment; another example is a line which is longer than 160 characters. Consider also the
following example.

% pix -1 mism.p 4 _
Berkeley Pascal PI —- Version 3.1 (9/7/85)

Wed May 7 14:56 1986 mism.p

1 program mismatch(output)
2 begin
e ——4} —— Inserted
3 writeln(‘ss+");
4 { The next line is the last line in the file }
5 writeln
4 Malformed declaration
4 Unexpected end-of-file - QUIT

E
%

-3.2. Translator semantic errors

The extremely large number of semantic diagnostic messages which the translator pro-
duces make it unreasonable to discuss each message or group of messages in detail. The mes-
sages are, however, very informative. We will here explain the typical formats and the termi-
nology used in the error messages so that you will be able to make sense out of them. In any
case in which a diagnostic is not completely comprehensible you can refer to the User Manual
by Jensen and Wirth for examples.

Format of the error diagnostics

As we saw in the example program above, the error diagnostics from the Pascal transla-
tor include the number of a line in the text of the program as well as the text of the error

PS1:4-22 Berkeley Pascal User’s Manual

message. While this number is most often the line where the error occurred, it is occasionally
the number of a line containing a bracketing keyword like end or until. In this case, the diag-
nostic may refer to the previous statement. This occurs because of the method the translator
uses for sampling line numbers. The absence of a trailing *;’ in the grevious statement causes
the line number corresponding to the end or until. to become associated with the statement.
As Pascal is a free-format language, the line number associations can only be approximate and
may seem arbitrary to some users. This is the only notable exception, however, to reasonable
associations.

Incompatible types

Since Pascal is a strongly typed language, many semantic errors manifest themselves as
type errors. These are called ‘type clashes’ by the translator. The types allowed for various
operators in the language are summarized on page 108 of the Jensen-Wirth User Manual. It
is important to know that the Pascal translator, in its diagnostics, distinguishes between the
following type ‘classes’:

array Boolean char file integer
pointer real record scalar string

These words are plugged into a great number of error messages. Thus, if you tried to assign
an integer value to a char variable you would receive a diagnostic like the following:

Wed May 7 14:56 1986 clash.p:
E 7 - Type clash: integer is incompatible with char
... Type of expression clashed with type of variable in assignment

In this case, one error produced a two line error message. If the same error occurs more than
once, the same explanatory diagnostic will be given each time.

Scalar

The only class whose meaning is not self-explanatory is ‘scalar’. Scalar has a precise
meaning in the Jensen-Wirth User Manual where, in fact, it refers to char, integer, real, and
Boolean types as well as the enumerated types. For the purposes of the Pascal translator,
scalar in an error message refers to a user-defined, enumerated type, such as ops in the exam-
ple above or color in

type color = (red, green, blue)

For integers, the more explicit denotation integer is used. Although it would be correct, in
the context of the User Manual to refer to an integer variable as a scalar variable pi prefers
the more specific identification.

Function and procedure type errors

For built-in procedures and functions, two kinds of errors occur. If the routines are
called with the wrong number of arguments a message similar to:

Wed May 7 14:56 1986 sinl.p:
E 12 - sin takes exactly one argument
is given. If the type of the argument is wrong, a message like
Wed May 7 14:56 1986 sin2.p:
E 12 - sin’s argument must be integer or real, not char

is produced. A few functions and procedures implemented in Pascal 6000-3.4 are diagnosed
as unimplemented in Berkeley Pascal, notably those related to segmented files.

Berkeley Pascal User’s Manual PS1:4-23

Can’t read and write scalars, etc.

The messages which state that scalar (user-defined) types cannot be written to and from
files are often mysterious. It is in fact the case that if you define

type color = (red, green, blue)

“standard” Pascal does not associate these constants with the strings ‘red’, ‘green’, and ‘blue’
in any way. An extension has been added which allows enumerated types to be read and
written, however if the program is to be portable, you will have to write your own routines to
perform these functions. Standard Pascal only allows the reading of characters, integers and
real numbers from text files. You cannot read strings or Booleans. It is possible to make a

file of color
but the representation is binary rather than string.

Expression diagnostics
The diagnostics for semantically ill-formed expressions are very explicit. Consider this
sample translation:

% pi -1 expr.p
Berkeley Pascal PI - - Version 3.1 (9/7/85) .

Wed May 7 14:56 1986 expr.p

1 program x(output);

2 var. :

3 a: set of char;

4 b: Boolean;

5 c: (red, green, blue);

6 p: 4 integer;

7 A: alfa;

8 B: packed array [1..5] of char;

9 begin

10 b := true;

11~ c:=red;

12 new(p);

13 a:=[J;

14 A := Hello, yellow"

15 b:=aandb;

16 a:=as3;

17 if input < 2 then writeln(boo’);
18 if p <= 2 then writeln(sure nuff);
19 if A = B then writeln(same);

20 if ¢ = true then writeln(hue’s and color®s)
21 end.

E 14 - Constant string too long

E 15 - Left operand of and must be Boolean, not set

E 16 - Cannot mix sets with integers and reals as operands of »

E 17 - files may not participate in comparisons

E 18 - pointers and integers cannot be compared - operator was <=
E 19 - Strings not same length in = comparison

E 20 - scalars and Booleans cannot be compared - operator was =
e 21 - Input is used but not defined in the program statement

In program x:

PS1:4-24) Berkeley Pascal User’'s Manual

w — constant green is never used

w - constant blue is never used

w - variable B is used but never set
%

This example is admittedly far-fetched, but illustrates that the error messages are sufficiently
clear to allow easy determination of the problem in the expressions.

Type equivalence

Several diagnostics produced by the Pascal translator complain about ‘non-equivalent
types’. In general, Berkeley Pascal considers variables to have the same type only if they were
declared with the same constructed type or with the same type identifier. Thus, the variables
x and y declared as

var
x: 4 integer;
y: 4 integer;

do not have the same type. The assignment

X:=y
thus produces the diagnostics: : ' ,
Wed May 7 14:56 1986 typequ.p:

E 7 - Type clash: non-identical pointer types
... Type of expression clashed with type of variable in assignment

Thus it is always necessary to declare a type such as

type intptr = 4 integer;
and use it to declare

var X: intptr; y: intptr;
Note that if we had initially declared

var x, y: 4 integer;
then the assignment statement would have worked. The statement

xt =yt
is allowed in either case. Since the parameter to a procedure or function must be declared

with a type identifier rather than a constructed type, it is always necessary, in practice, to
declare any type which will be used in this way.

Unreachable statements

Berkeley Pascal flags unreachable statements. Such statements usually correspond to
errors in the program logic. Note that a statement is considered to be reachable if there is a
potential path of control, even if it can never be taken. Thus, no diagnostic is produced for
the statement:

if false then
writeln(impossible!)

Berkeley Pascal User's Manual PS1:4-25

Goto’s into structured statements

The translator detects and complains about goto statements which transfer control into
structured statements (for, while, etc.) It does not allow such jumps, nor does it allow branch-
ing from the then part of.an if statement into the else part. Such checks are made only within
the body of a single procedure or function.

Unused variables, never set variables

Although pi always clears variables to 0 at procedure and function entry, pc does not
unless runtime checking is enabled using the C option. It is not good programming practice
to rely on this initialization. To discourage this practice, and to help detect errors in program
logic, pi flags as a ‘w’ warning error:

| 1) Use of a variable which is never assigned a value.

2) A variable which is declared but never used, distinguishing between those variables
for which values are computed but which are never used, and those completely
unused.

In fact, these diagnostics are applied to all declared items. Thus a const or a procedure which
is declared but never used is flagged. The w option of pi may be used to suppress these warn-
ings; see sections 5.1 and 5.2.

3.3. Translator panics, i/o errors

Panics

One class of error which rarely occurs, but whxch causes termination of all processing
when it does is a pamc A panic indicatés a translator-detected internal mconsxstency A typ-
ical panic message is: :

snark (rvalue) line=110 yyline=109
Snark in pi

If you receive such a message, the translation will be quickly and perhaps ungracefully ter-
minated. You should contact a teaching assistant or a member of the system staff, after sav-
ing a copy of your program for later inspection. If you were making changes to an existing
program when the problem occurred, you may be able to work around the problem by ascer-
taining which change caused the snark and making a different change or correcting an error
in the program. A small number of panics are possible in px. All panics should be reported
to a teaching assistant or systems staff so that they can be fixed.

Out of memory

The only other error which will abort translation when no errors are detected is running
out of memory. All tables in the translator, with the exception of the parse stack, are dynami-
cally allocated, and can grow to take up the full available process space of 64000 bytes on the
PDP-11. On the VAX-11, table sizes are extremely generous and very large (25000) line pro-
grams have been easily accommodated. For the PDP-11, it is generally true that the size of
the largest translatable program is directly related to procedure and function size. A number
of non-trivial Pascal programs, including some with more than 2000 lines and 2500 state-
ments have been translated and interpreted using Berkeley Pascal on PDP-11’s. Notable
among these are the Pascal-S interpreter, a large set of programs for automated generation of
code generators, and a general context-free parsing program which has been used to parse sen-
tences with a grammar for a superset of English. In general, very large programs should be -
translated using pc and the separate compilation facility.

If you receive an out of space message from the translator during translation of a large
procedure or function or one containing a large number of string constants you may yet be
able to translate your program if you break this one procedure or function into several

PS1:4-26 Berkeley Pascal User’s Manual

routines.

I/0 errors

Other errors which you may encounter when running pi relate to input-output. If pi
cannot open the file you specify, or if the file is empty, you will be so informed.

3.4. Run-time errors

We saw, in our second example, a run-time error. We here give the general description
of run-time errors. The more unusual interpreter error messages are explained briefly in the
manual section for px (1).

Start-up errors

These errors occur when the object file to be executed is not available or appropriate.
Typical errors here are caused by the specified object file not existing, not being a Pascal
object, or being inaccessible to the user.

Program execution errors

These errors occur when the program interacts with the Pascal runtime environment in
an inappropriate way. Typical errors are values or subscripts out of range, bad arguments to
built-in functions, exceeding the statement limit because of an infinite loop, or running out of
memory}. The interpreter will produce a backtrace after the error occurs, showing all the
active routine calls, unless the p option was disabled when the program was translated.
Unfortunately, no variable values are given and no way of extracting them is available.s

As an example of such an error, assume that we have accidentally declared the constant
nl to be 6, instead of 7 on line 2 of the program primes as given in section 2.6 above. If we
run this program we get the following response. '

% pix primes.p
Execution begins...
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167
Subscript value of 7 is out of range

Error in "primes”+8 near line 14.
Execution terminated abnormally.

941 statements executed in 0.07 seconds cpu time.
%

Here the interpreter indicates that the program terminated abnormally due to a sub-
script out of range near line 14, which is eight lines into the body of the program primes.

Interrupts

If the program is interrupted while executing and the p option was not specified, then a
backtrace will be printed.t The file pmon.out of profile information will be written if the

$The checks for running out of memory are not foolproof and there is a chance that the interpreter will
fault, producing a core image when it runs out of memory. This situation occurs very rarely.

s On the vax-11, each variable is restricted to allocate at most 65000 bytes of storage (this is a pDP-11ism
that has survived to the vax.)

tOccasionally, the Pascal system will be in an inconsistent state when this occurs, e.g. when an interrupt
terminates a procedure or function entry or exit. In this case, the backtrace will only contain the current

Berkeley Pascal User’s Manual PS1:4-27

program was translated with the z option enabled to pi or pix.

I/0 interaction errors

The final class of interpreter errors results from inappropriate interactions with files,
including the user’s terminal. Included here are bad formats for integer and real numbers
(such as no digits after the decimal point) when reading.

4. Input/output

This section describes features of the Pascal input/output environment, with special
consideration of the features peculiar to an interactive implementation.

4.1. Introduction

Our first sample programs, in section 2, used the file output. We gave examples there of
redirecting the output to a file and to the line printer using the shell. Similarly, we can read
the input from a file or another program. Consider the following Pascal program which is
similar to the program cat (1).

% pix -1 kat.p <primes
Berkeley Pascal PI —- Version 3.1 (9/7/85)

Wed May 7 14:56 1986 kat.p ,

program kat(input, output);
var
ch: char;
begin .
while not eof do begin
while not eoln do begin
read(ch);
write(ch)
end;
10 readin;
11 writeln
12 end
13 end { kat).
Execution begins...
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

OO AWN—

Execution terminated.

925 statements executed in 0.06 seconds cpu time.
%

Here we have used the shell’s syntax to redirect the program input from a file in primes in
which we had placed the output of our prime number program of section 2.6. It is also possi-
ble to ‘pipe’ input to this program much as we piped input to the line printer daemon Ipr (1)
before. Thus, the same output as above would be produced by

line. A reverse call order list of procedures will not be given.

PS1:4-28 Berkeley Pascal User's Manual

% cat primes | pix -1 kat.p

All of these examples use the shell to control the input and output from files. One very
simple way to associate Pascal files with named UNIX files is to place the file name in the pro-
gram statement. For example, suppose we have previously created the file data. We then use
it as input to another version of a listing program.

% cat data

line one.

line two.

line three is the end.

% pix -1 copydata.p

Berkeley Pascal PI —- Version 3.1 (9/7/85)

Wed May 7 14:56 1986 copydata.p

1 program copydata(data, output);

2 var
3 ch: char;
4 data: text;
5 .
6 reset(data);
7 while not eof(data) do begin
8 while not eoln(data) do begin
9 read(data, ch);
10 write(ch)
11 end;
12 " readln(data);
13 writeln
14 end

15 end { copydata }.
Execution begins...
line one.
line two.
line three is the end.
Execution terminated.

134 statements executed in 0.02 seconds cpu time.
%

By mentioning the file data in the program statement, we have indicated that we wish it to
correspond to the UNIX file data. Then, when we ‘reset(data)’, the Pascal system opens our
file ‘data’ for reading. More sophisticated, but less portable, examples of using UNIX files will
be given in sections 4.5 and 4.6. There is a portability problem even with this simple exam-
ple. Some Pascal systems attach meaning to the ordering of the file in the program statement
file list. Berkeley Pascal does not do so.

4.2. Eof and eoln

An extremely common problem encountered by new users of Pascal, especially in the
interactive environment offered by UNIX, relates to the definitions of eof and eoin. These
functions are supposed to be defined at the beginning of execution of a Pascal program, indi-
cating whether the input device is at the end of a line or the end of a file. Setting eof or eoln
actually corresponds to an implicit read in which the input is inspected, but no input is “used
up”. In fact, there is no way the system can know whether the input is at the end-of-file or
the end-of-line unless it attempts to read a line from it. If the input is from a previously

Berkeley Pascal User’s Manual PS1:4-29

created file, then this reading can take place without run-time action by the user. However, if
the input is from a terminal, then the input is what the user types.t If the system were to do
an initial read automatically at the beginning of program execution, and if the input were a
terminal, the user would have to type some input before execution could begin. This would
make it impossible for the program to begin by prompting for input or printing a herald.

Berkeley Pascal has been designed so that an initial read is not necessary. At any given
time, the Pascal system may or may not know whether the end-of-file or end-of-line condi-
tions are true. Thus, internally, these functions can have three values - true, false, and “I
don’t know yet; if you ask me I'll have to find out”. All files remain in this last, indeter-
minate state until the Pascal program requires a value for eof or eoln either explicitly or
implicitly, e.g. in a call to read. The important point to note here is that if you force the Pas-
cal system to determine whether the input is at the end-of-file or the end-of-line, it will be
necessary for it to attempt to read from the input.

Thus consider the following example code

while not eof do begin
write(number, please? °);
read(i);
writeln(‘that was a , i: 2)
énd
At first glance, this may be appear to be a correct program for requesting, reading and echoing
numbers. Notice, however, that the while loop asks whether eof is true before the request is
printed. This will force the Pascal system to decide whether the input is at the end-of-file.
The Pascal system will give no messages; it will simply wait for the user to type a line. By
producing the desired prompting before testing eof, the following code avoids this problem:

write(number, please ?7);
while not eof do begin
read(i);
writeln(that was a ’, i:2);
write(number, please ?")
end

The user must still type a line before the while test is completed, but the prompt will ask for
it. This example, however, is still not correct. To understand why, it is first necessary to
know, as we will discuss below, that there is a blank character at the end of each line in a Pas-
cal text file. The read procedure, when reading integers or real numbers, is defined so that, if
there are only blanks left in the file, it will return a zero value and set the end-of-file condi-
tion. If, however, there is a number remaining in the file, the end-of-file condition will not be
set even if it is the last number, as read never reads the blanks after the number, and there is
always at least one blank. Thus the modified code will still put out a spurious

that was a 0

at the end of a session with it when the end-of-file is reached. The simplest way to correct the
problem in this example is to use the procedure readin instead of read here. In general,
unless we test the end-of-file condition both before and after calls to read or readin, there will
be inputs for which our program will attempt to read past end-of-file.

11t is not possible to determine whether the input is a terminal, as the input may appear to be a file but ac-
tually be a pipe, the output of a program which is reading from the terminal.

PS1:4-30 Berkeley Pascal User’s Manual

4.3. More about eoln

To have a good understanding of when eo/n will be true it is necessary to know that in
any file there is a special character indicating end-of-line, and that, in effect, the Pascal system
always reads one character ahead of the Pascal read commands.t For instance, in response to
‘read(ch)’, the system sets ch to the current input character and gets the next input character.
If the current input character is the last character of the line, then the next input character
from the file is the new-line character, the normal UNIX line separator. When the read rou-
tine gets the new-line character, it replaces that character by a blank (causing every line to end
with a blank) and sets eoln to true. Eoln will be true as soon as we read the last character of
the line and before we read the blank character corresponding to the end of line. Thus it is
almost always a mistake to write a program which deals with input in the following way:

read(ch);
if eoln then

Done with line
else

Normal processing

as this will almost surely have the effect of ignoring the last character in the line. The
‘read(ch)’ belongs as part of the normal processing.

Given this framework, it is not hard to explain the functidn of a readin call, which is
defined as:

while not eoln do
get(input);
get(input);

This advances the file until the blank corresponding to the end-of-line is the current input
symbol and then discards this blank. The next character available from read will therefore be
the first character of the next line, if one exists.

4.4. Output buffering

A final point about Pascal input-output must be noted here. This concerns the buffering
of the file output. It is extremely inefficient for the Pascal system to send each character to
the user’s terminal as the program generates it for output; even less efficient if the output is
the input of another program such as the line printer daemon /pr (1). To gain efficiency, the
Pascal system “buffers” the output characters (i.e. it saves them in memory until the buffer is
full and then emits the entire buffer in one system interaction.) However, to allow interactive
prompting to work as in the example given above, this prompt must be printed before the
Pascal system waits for a response. For this reason, Pascal normally prints all the output
which has been generated for the file ouzput whenever

1) A writeln occurs, or

2) The program reads from the terminal, or

3) The procedure message or flush is called.
Thus, in the code sequence

fori:= 1to 5 do begin

write(i: 2);

Compute a lot with no output
end; ’
writeln

tIn Pascal terms, ‘read(ch)’ corresponds to ‘ch := input4; get(input)’

Berkeley Pascal User’s Manual PS1:4-31

the output integers will not print until the writeln occurs. The delay can be somewhat discon-
certing, and you should be aware that it will occur. By setting the b option to 0 before the
program statement by inserting a comment of the form

(+3b0s)

we can cause output to be completely unbuffered, with a corresponding horrendous degrada-
tion in program efficiency. Option control in comments is discussed in section 5.

4.5. Files, reset, and rewrite

It is possible to use extended forms of the built-in functions reset and rewrite to get
more general associations of UNIX file names with Pascal file variables. When a file other
than input or output is to be read or written, then the reading or writing must be preceded by
a reset or rewrite call. In general, if the Pascal file variable has never been used before, there
will be no UNIX filename associated with it. As we saw in section 2.9, by mentioning the file
in the program statement, we could cause a UNIX file with the same name as the Pascal vari-
able to be associated with it. If we do not mention a file in the program statement and use it
for the first time with the statement

reset(f)

or

rewrite(f)
then the Pascal system will generate a temporary name of the form ‘tmp.x’ for some character
‘x’, and associate this UNIX file name name with the Pascal file. The first such generated
name will be ‘tmp.1’ and the names continue by incrementing their last character through the
AScI set. The advantage of using such temporary files is that they are automatically removed
by the Pascal system as soon as they become inaccessible. They are not removed, however, if
a runtime error causes termination while they are in scope.

To cause a particular UNIX pathname to be associated with a Pascal file variable we can
give that name in the reset or rewrite call, e.g. we could have associated the Pascal file daza
with the file ‘primes’ in our example in section 3.1 by doing:

reset(data, ‘primes)
instead of a simple

reset(data)

In this case it is not essential to mention ‘data’ in the program statement, but it is still a good
idea because is serves as an aid to program documentation. The second parameter to reset
and rewrite may be any string value, including a variable. Thus the names of UNIX files to be
associated with Pascal file variables can be read in at run time. Full details on file name/file
variable associations are given in section A.3.

4.6. Argc and argv

Each UNIX process receives a variable length sequence of arguments each of which is a
variable length character string. The built-in function argc and the built-in procedure argv
can be used to access and process these arguments. The value of the function argc is the
number of arguments to the process. By convention, the arguments are treated as an array,
and indexed from 0 to argc-1, with the zeroth argument being the name of the program being
executed. The rest of the arguments are those passed to the command on the command line.
Thus, the command

PS1:4-32 Berkeley Pascal User's Manual

% obj /etc/motd /usr/dict/words hello

will invoke the program in the file 0bj with argc having a value of 4. The zeroth element
accessed by argv will be ‘obj’, the first ‘/etc/motd’, etc.

Pascal does not provide variable size arrays, nor does it allow character strings of vary-
ing length. For this reason, argv is a procedure and has the syntax

argv(i, a)

where i is an integer and a is a string variable. This procedure call assigns the (possibly trun-
cated or blank padded) i ’th argument of the current process to the string variable a. The file
manipulation routines reset and rewrite will strip trailing blanks from their optional second
arguments so that this blank padding is not a problem in the usual case where the arguments
are file names.

We are now ready to give a Berkeley Pascal program ‘kat’, based on that given in section
3.1 above, which can be used with the same syntax as the UNIX system program cat (1).

% cat kat.p
program kat(input, output);
var
ch: char;
i: integer;
name: packed array [1..100] of char;
begin
i:=1
repeat
if i < argc then begin
argv(i, name); .
reset(input, name);
i=1+1
end;
while not eof do begin
while not eoln do begin
read(ch);
write(ch)
end;
readln;
writeln
end
until i >= argc
end { kat }.
% -

Note that the reset call to the file input here, which is necessary for a clear program, may be
disallowed on other systems. As this program deals mostly with argc and argv and UNIX sys-
tem dependent considerations, portability is of little concern.

If this program is in the file ‘kat.p’, then we can do

% pi kat.p
% mv obj kat
% kat primes
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173

Berkeley Pascal User’s Manual PS1:4-33

179 181 191 193 197 199 211 223 227 229

930 statements executed in 0.06 seconds cpu time.

% kat

This is a line of text.

This is a line of text.

The next line contains only an end—of—-file (an invisible control-d!)
The next line contains only an end-of-file (an invisible control-d!)

287 statements executed in 0.02 seconds cpu time.
%

Thus we see that, if it is given arguments, ‘kat’ will, like cat, copy each one in turn. If no
arguments are given, it copies from the standard input. Thus it will work as it did before,
with

% kat < primes
now equivalent to

% kat primes

although the mechanisms are quite different in the two cases. Note that if ‘kat’ is given a bad
file name, for example:

% kat xxxxqqq
Could not open xxxxqqq: No such file or directory
Error in "kat"+35 near line 11. '

4 statements executed in 0.00 seconds cpu time.
%

it will give a diagnostic and a post-mortem control flow backtrace for debugging. If we were
going to use ‘kat’, we might want to translate it differently, e.g.:

% pi —pb kat.p
% mv obj kat

Here we have disabled the post-mortem statistics printing, so as not to get the statistics or the
full traceback on error. The b option will cause the system to block buffer the input/output
so that the program will run more efficiently on large files. Weé could have also specified the t
option to turn off runtime tests if that was felt to be a speed hindrance to the program. Thus
we can try the last examples again:

% kat xxxxqqq
Could not open xxxxqqq: No such file or directory -

Error in "kat”
% kat primes '
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173

PS1:4-34 Berkeley Pascal User’s Manual

179 181 191 193 197 199 211 223 227 229
%

The interested reader may wish to try writing a program which accepts command line
arguments like pi does, using argc and argv to process them.

5. Details on the components of the system

5.1. Options

The programs pi, pc, and pxp take a number of options.t There is a standard UNIX
convention for passing options to programs on the command line, and this convention is fol-
lowed by the Berkeley Pascal system programs. As we saw in the examples above, option
related arguments consisted of the character ‘-’ followed by a single character option name.

Except for the b option which takes a single digit value, each option may be set on
(enabled) or off (disabled.) When an on/off valued option appears on the command line of pi
or it inverts the default setting of that option. Thus

% pi -1 foo.p
enables the listing option 1, since it defaults off, while

% pi -t foo.p
disables the run time tests option t, since it defaults on.

In additon to inverting the default settings of pi options on the command line, it is also
possible to control the pi options within the body of the program by using comments of a
special form illustrated by -

{81-)

Here we see that the opening comment delimiter (which could also be a ‘(»’) is immedi-
ately followed by the character ‘$’. After this ‘$’, which signals the start of the option list, we
can place a sequence of letters and option controls, separated by °,” charactersf. The most
basic actions for options are to set them, thus

($1+ Enable listing})
or to clear them

{8t-,p— No run-time tests, no post mortem analysis}

Notice that ‘+’ always enables an option and ‘-’ always disables it, no matter what the default
is. Thus ‘-’ has a different meaning in an option comment than it has on the command line.
As shown in the examples, normal comment text may follow the option list.

tAs pix uses pi to translate Pascal programs, it takes the options of pi also. We refer to them here, howev-
er, as pi options.

$This format was chosen because it is used by Pascal 6000-3.4. In general the options common to both im-
plementations are controlled in the same way so that comment control in options is mostly portable. It is
recommended, however, that only one control be put per comment for maximum portability, as the Pascal
6000-3.4 implementation will ignore controls after the first one which it does not recognize.

Berkeley Pascal User’s Manual PS1:4-35

5.2. Options common to Pi, Pc, and Pix

The following options are common to both the compiler and the interpreter. With each
option we give its default setting, the setting it would have if it appeared on the command
line, and a sample command using the option. Most options are on/off valued, with the b
option taking a single digit value.

Buffering of the file output - b

The b option controls the buffering of the file output. The default is line buffering, with
flushing at each reference to the file input and under certain other circumstances detailed in
section 5§ below. Mentioning b on the command line, e.g.

% pi —b assembler.p

causes standard output to be block buffered, where a block is some system-defined number of
characters. The b option may also be controlled in comments. It, unique among the Berkeley
Pascal options, takes a single digit value rather than an on or off setting. A value of 0, e.g.

{$b0)

causes the file output to be unbuffered. Any value 2 or greater causes block buffering and is
equivalent to the flag on the command line. The option control comment setting b must pre-
cede the program statement.

Include file listing - i

The i option takes the name of an include file, procedure or function name and causes it
to be listed while translatingt. Typical uses would be

% pix —i scanner.i compiler.p
to make a listing of the routines in the file scanner.i, and

% pix —i scanner compiler.p

to make a listing of only the routine scanner. This option is especially useful for
conservation-minded programmers making partial program listings.

Make a listing - |

The 1 option enables a listing of the program. The 1 option defaults off. When specified
on the command line, it causes a header line identifying the version of the translator in use
and a line giving the modification time of the file being translated to appear before the actual
program listing. The 1 option is pushed and popped by the i option at appropriate points in
the program. ‘

Standard Pascal only - s

The s option causes many of the features of the UNIX implementation which are not
found in standard Pascal to be diagnosed as ‘s’ warning errors. This option defaults off and is
enabled when mentioned on the command line. Some of the features which are diagnosed
are: non-standard procedures and functions, extensions to the procedure write, and the padding
of constant strings with blanks. In addition, all letters are mapped to lower case except in
strings and characters so that the case of keywords and identifiers is effectively ignored. The s
option is most useful when a program is to be transported, thus

tInclude files are discussed in section 5.9.

PS1:4-36 - Berkeley Pascal User's Manual

% pi -s isitstd.p
will produce warnings unless the program meets the standard.

Runtime tests - t and C

These options control the generation of tests that subrange variable values are within
bounds at run time. pi defaults to generating tests and uses the option t to disable them. pc
defaults to not generating tests, and uses the option C to enable them. Disabling runtime
tests also causes assert statements to be treated as comments.$

Suppress warning diagnostics — w
The w option, which defaults on, allows the translator to print a number of warnings

about inconsistencies it finds in the input program. Turning this option off with a comment
of the form

{($w-}

or on the command line

% pi —w tryme.p
suppresses these usually useful diagnostics.

Generate counters for a pxp execution profile - z

The z option, which defaults off, enables the production of execution profiles. By speci-
fying z on the command hne, i.e.

% pi ~z foo.p

or by enabling it in a comment before the program statement causes pi and pc to insert
operations in the interpreter code to count the number of times each statement was executed.
- An example of using pxp was given in section 2.6; its options are described in section 5.6.
Note that the z option cannot be used on separately compiled programs.

5.3. Options available in Pi

Post-mortem dump - p

The p option defaults on, and causes the runtime system to initiate a post-mortem back-
trace when an error occurs. It also cause px to count statements in the executing program,
enforcing a statement limit to prevent infinite loops. Specifying p on the command line dis-
ables these checks and the ability to give this post-mortem analysis. It does make smaller and
faster programs, however. It is also possible to control the p option in comments. To prevent
the post-mortem backtrace on error, p must be off at the end of the program statement. Thus,
the Pascal cross-reference program was translated with

% pi —pbt pxref.p

5.4. Options available in Px

The first argument to px is the name of the file containing the program to be inter-
preted. If no arguments are given, then the file 0bj is executed. If more arguments are given,
they are available to the Pascal program by using the built-ins argc and argv as described in

$See section A.1 for a description of assert statements.

Berkeley Pascal User's Manual PS1:4-37

section 4.6.

Px may also be invoked automatically. In this case, whenever a Pascal object file name
is given as a command, the command will be executed with px prepended to it; that is

% obj primes
will be converted to read

% px obj primes

5.5. Options available in Pc

Generate assembly language - S

The program is compiled and the assembly language output is left in file appended .s.
Thus

% pc -S foo.p
creates a file foo.s. No executable file is created.

Symbolic Debugger Information - g

The g option causes the compiler to generate information needed by sdb(1) the symbolic
debugger. For a complete description of sdb see Volume 2c¢ of the UNIX Reference Manual.

Redirect the output file - o

The name argument after the -0 is used as the name of the output file instead of a.out.
Its typical use is to name the compiled program using the root of the file name. Thus:

% pc ~o myprog myprog.p ,
causes the compiled program to be called myprog.

Generate counters for a prof execution profile - p

The compiler produces code which counts the number of times each routine is called.
The profiling is based on a periodic sample taken by the system rather than by inline counters
used by pxp. This results in less degradation in execution, at somewhat of a loss in accuracy.
See prof(1) for a more complete description.

Run the object code optimizer - O

The o{nput of the compiler is run through the object code optimizer. This provides an
increase in compile time in exchange for a decrease in compiled code size and execution time.

5.6. Options available in Pxp

Pxp takes, on its command line, a list of options followed by the program file name,
which must end in ‘.p’ as it must for pi, pc, and pix. Pxp will produce an execution profile if
any of the z, t or c¢ options is specified on the command line. If none of these options is
specified, then pxp functions as a program reformatter.

It is important to note that only the z and w options of pxp, which are common to pi,
pc, and pxp can be controlled in comments. All other options must be specified on the com-
mand line to have any effect.

The following options are relevant to profiling with pxp:

PS1:4-38 Berkeley Pascal User's Manual

Include the bodies of all routines in the profile - a

Pxp normally suppresses printing the bodies of routines which were never executed, to
make the profile more compact. This option forces all routine bodies to be printed.

Suppress declaration parts from a profile - d

Normally a profile includes declaration parts. Specifying d on the command line
suppresses declaration parts.

Eliminate include directives - e

Normally, pxp preserves include directives to the output when reformatting a program,
as though they were comments. Specifying —e causes the contents of the specified files to be
reformatted into the output stream instead. This is an easy way to eliminate include direc-
tives, e.g. before transporting a program.

Fully parenthesize expressions -

Normally pxp prints expressions with the minimal parenthesization necessary to
preserve the structure of the input. This option causes pxp to fully parenthesize expressions.
Thus the statement which prints as

d:=a+bmodc/e
with minimal parenthesization, the default, will print as

d:=a+((bmodc)/e)
with the f option specified on the command line.

Left justify all procedures and functions - j

Normally, each procedure and function body is indented to reflect its static nesting
depth. This option prevents this nesting and can be used if the indented output would be too
wide.

Print a table summarizing procedure and function calls - t

The t option causes pxp to print a table summarizing the number of calls to each pro-
cedure and function in the program. It may be specified in combination with the z option, or
separately.

Enable and control the profile - z

The z profile option is very similar to the i listing control option of pi. If z is specified
on the command line, then all arguments up to the source file argument which ends in ‘.p’ are
taken to be the names of procedures and functions or include files which are to be profiled. If
this list is null, then the whole file is to be profiled. A typical command for extracting a
profile of part of a large program would be

% pxp -z test parser.i compiler.p

This specifies that profiles of the routines in the file parser.i and the routine test are to be
made.

5.7. Formatting programs using pxp
The program pxp can be used to reformat programs, by using a command of the form

% pxp dirty.p > clean.p

Berkeley Pascal User's Manual PS1:4-39

Note that since the ‘shell creates the output file ‘clean.p’ before pxp executes, so ‘clean.p’ and
‘dirty.p’ must not be the same file.

Pxp automatically paragraphs the program, performing housekeeping chores such as
comment alignment, and treating blank lines, lines containing exactly ane blank and lines
containing only a form-feed character as though they were comments, preserving their vertical
spacing effect in the output. Pxp distinguishes between four kinds of comments:

1) Left marginal comments, which begin in the first column of the input line and are
placed in the first column of an output line.

2) Aligned comments, which are preceded by no input tokens on the input line.
These are aligned in the output with the running program text.

3) Trailing comments, which are preceded in the input line by a token with no more
than two spaces separating the token from the comment.

4) Right marginal comments, which are preceded in the input line by a token from
which they are separated by at least three spaces or a tab. These are aligned down
the right margin of the output, currently to the first tab stop after the 40th column
from the current “left margin”.

Consider the following program.

% cat comments.p

{ This is a left marginal comment. } .

program hello(output);

var i : integer; (This is a trailing comment}

j : integer; (This is a right marginal comment)

k : array [1..10] of array [1..10] of integer; {Marginal, but past the margin)
(

An aligned, multi-line comment
which explains what this program is
all about

}

begin

i:= 1; {Trailing i comment}

(A left marginal comment)
{An aligned comment)

ji=1 {Right marginal comment)

k[1]:=1;

writeln(i, j, k[1])

end.

When formatted by pxp the following output is produced.

% pxp comments.p
{ This is a left marginal comment.)

program hello(output);

var
i: integer; {This is a trailing comment}
j: integer; {This is a right marginal comment}
k: array [1..10] of array [1..10] of integer; {Marginal, but past the margin}

{

An aligned, multi-line comment
which explains what this program is
all about

}

PS1:4-40 Berkeley Pascal User’s Manual

begin
i := 1; {Trailing i comment)
(A left marginal comment}
{An aligned comment} s
ji=1; {Right marginal comment)
k[1] := 1;
writeln(i, j, k[1])
end.
%

The following formatting related options are currently available in pxp. The options f and j
described in the previous section may also be of interest.

Strip comments -s
The s option causes pxp to remove all comments from the input text.

Underline keywords - _
A command line argument of the form -_ as in

% pxp —_ dirty.p
can be used to cause pxp to underline all keywords in the 6utput for enhanced readability.

Specify indenting unit - [23456789]

The normal unit which pxp uses to indent a structure statement level is 4 spaces. By
giving an argument of the form -d with d a digit, 2 < d < 9 you can specify that d spaces are
to be used per level instead.

5.8. Pxref

The cross-reference program pxref may be used to make cross-referenced listings of Pas-
cal programs. To produce a cross-reference of the program in the file ‘foo.p’ one can execute
the command:

% pxref foo.p

The cross-reference is, unfortunately, not block structured. Full details on pxref are given in
its manual section pxref (1).

5.9. Multi-file programs

A text inclusion facility is available with Berkeley Pascal. This facility allows the inter-
polation of source text from other files into the source stream of the translator. It can be used
to divide large programs into more manageable pieces for ease in editing, listing, and mainte-
nance.

The include facility is based on that of the UNIX C compiler. To trigger it you can place
the character ‘#’ in the first portion of a line and then, after an arbitrary number of blanks or
tabs, the word ‘include’ followed by a filename enclosed in single “* or double ‘"’ quotation
marks. The file name may be followed by a semicolon ‘; if you wish to treat this as a
pseudo-Pascal statement. The filenames of included files must end in “.i’. An example of the
use of included files in a main program would be:

program compiler(input, output, obj);

#include "globals.i"
#include "scanner.i”

Berkeley Pascal User’'s Manual PS1:4-41

#include “parser.i”
#include "semantics.i”

h i I) *
{ main program }
end.

At the point the include pseudo-statement is encountered in the input, the lines from the
included file are interpolated into the input stream. For the purposes of translation and run-
time diagnostics and statement numbers in the listings and post-mortem backtraces, the lines
in the included file are numbered from 1. Nested includes are possible up to 10 deep.

See the descriptions of the i option of pi in section 5.2 above; this can be used to con-
trol listing when include files are present.

When a non-trivial line is encountered in the source text after an include finishes, the
‘popped’ filename is printed, in the same manner as above.

For the purposes of error diagnostics when not making a listing, the filename will be
printed before each diagnostic if the current filename has changed since the last filename was
printed.

5.10. Separate Compilation with Pe

A separate compilation facility is provided with the Berkeley Pascal compiler, pc. This
facility allows programs to be divided into a number of files and the pieces to be compiled
individually, to be linked together at some later time. This is especially useful for large pro-
grams, where small changes would otherwise require time-consuming re-compilation of the
entire program. _

Normally, pc expects to be given entire Pascal programs. However, if given the —¢
option on the command line, it will accept a sequence of definitions and declarations, and
compile them into a .o file, to be linked with a Pascal program at a later time. In order that
procedures and functions be available across separately compiled files, they must be declared
with the directive external. This directive is similar to the directive forward in that it must
precede the resolution of the function or procedure, and formal parameters and function
result types must be specified at the external declaration and may not be specified at the reso-
lution.

Type checking is performed across separately compiled files. Since Pascal type
defintions define unique types, any types which are shared between separately compiled files
must be the same definition. This seemingly impossible problem is solved using a facility
similar to the include facility discussed above. Definitions may be placed in files with the
extension .h and the files included by separately compiled files. Each definition from a .h file
defines a unique type, and all uses of a definition from the same .h file define the same type.
Similarly, the facility is extended to allow the definition of comsts and the declaration of
labels, vars, and external functions and procedures. Thus procedures and functions which are
used between separately compiled files must be declared external, and must be so declared in
a .h file included by any file which calls or resolves the function or procedure. Conversely,
functions and procedures declared external may only be so declared in .h files. These files may
be included only at the outermost level, and thus define or declare global objects. Note that
since only external function and procedure declarations (and not resolutions) are allowed id .h
files, statically nested functions and procedures can not be declared external.

An example of the use of included .h files in a program would be:
program compiler(input, output, obj);

#include "globals.h”
#include "scanner.h”

PS1:4-42 Berkeley Pascal User's Manual

#include "parser.h”
#include "semantics.h”

begin
{ main program }
end.

This might include in the main program the definitions and declarations of all the global
labels, consts, types vars from the file globals.h, and the external function and procedure
declarations for each of the separately compiled files for the scanner, parser and semantics.
The header file scanner.h would contain declarations of the form:

type
token = record

{ token fields }
end;

function scan(var inputfile: text): token;
external;

Then the scanner might be in a separately compiled file containing:

#include "globals.h”
#include "scanner.h”

function scan;
begin

{ scanner code)
end; '

which includes the same global definitions and declarations and resolves the scanner functions
and procedures declared external in the file scanner.h.

A. Appendix to Wirth’s Pascal Report

This section is an appendix to the definition of the Pascal language in Niklaus Wirth’s
Pascal Report and, with that Report, precisely defines the Berkeley implementation. This
appendix includes a summary of extensions to the language, gives the ways in which the
undefined specifications were resolved, gives limitations and restrictions of the current imple-
mentation, and lists the added functions and procedures available. It concludes with a list of
differences with the commonly available Pascal 6000-3.4 implementation, and some com-
ments on standard and portable Pascal.

A.l1. Extensions to the language Pascal

This section defines non-standard language constructs available in Berkeley Pascal. The
s standard Pascal option of the translators pi and pc can be used to detect these extensions in
programs which are to be transported.

String padding ‘ o
Berkeley Pascal will pad constant strings with blanks in expressions and as value param-
eters to make them as long as is required. The following is a legal Berkeley Pascal program:

program x(output);
var z : packed array [1 .. 13] of char;
begin

z:= Ted}

Berkeley Pascal User’'s Manual PS1:4-45

An important point for an interactive implementation is the definition of ‘inputf’. If
input is a teletype, and the Pascal system reads a character at the beginning of execution to
define ‘input4’, then no prompt could be printed by the program before the user is required to
type some input. For this reason, ‘input$’ is not defined by the system until its definition is
needed, reading from a file occurring only when necessary.

The character set

Seven bit USASCII is the character set used on UNIX. The standard Pascal symbols ‘and’,
‘or’, ‘not’, '<=’, '>=’, '<>’, and the uparrow ‘4’ (for pointer qualification) are recognized.t
Less portable are the synonyms tilde * for not, ‘&’ for and, and *|’ for or.

Upper and lower case are considered to be distinct. Keywords and built-in procedure
and function names are composed of all lower case letters. Thus the identifiers GOTO and
GOto are distinct both from each other and from the keyword goto. The standard type
‘boolean’ is also available as ‘Boolean’.

Character strings and constants may be delimited by the character ** or by the character
‘#’; the latter is sometimes convenient when programs are to be transported. Note that the ‘#’
character has special meaning when it is the first character on a line - see Multi-file programs
below.

The standard types
The standard type integer is conceptually defined as

type integer = minint .. maxint;

Integer is implemented with 32 bit twos complement arithmetic. Predeﬁned constants of
type integer are:

const maxint = 2147483647; minint = -2147483648;
The standard type char is conceptually defined as

type char = minchar .. maxchar;

Built-in character constants are ‘minchar’ and ‘maxchar’, ‘bell’ and ‘tab’; ord(minchar) = 0,
ord(maxchar) = 127.

The type real is implemented using 64 bit floating point arithmetic. The floating point
arithmetic is done in ‘rounded’ mode, and provides approximately 17 digits of precision with
numbers as small as 10 to the negative 38th power and as large as 10 to the 38th power.

Comments

Comments can be delimited by either ‘(’ and ‘)’ or by ‘(+’ and ‘s)’. If the character ‘{’
appears in a comment delimited by ‘{’ and ‘)’, a warning diagnostic is printed. A similar
warning will be printed if the sequence ‘(»’ appears in a comment delimited by ‘(s»’ and ‘s)’.
The restriction implied by this warning is not part of standard Pascal, but detects many other-
wise subtle errors.

+On many terminals and printers, the up arrow is represented as a circumflex “*. These are not distinct
characters, but rather different graphic representations of the same internal codes.
The proposed standard for Pascal considers them to be the same.

PS1:4-46 Berkeley Pascal User’s Manual

Option control

Options of the translators may be controlled in two distinct ways. A number of options
may appear on the command line invoking the translator. These options are given as one or
more strings of letters preceded by the character ‘-’ and cause the default setting of each given
option to be changed. This method of communication of options is expected to predominate
for UNIX. Thus the command

% pi -1 -s foo.p

translates the file foo.p with the listing option enabled (as it normally is off), and with only
standard Pascal features available.

If more control over the portions of the program where options are enabled is required,
then option control in comments can and should be used. The format for option control in
comments is identical to that used in Pascal 6000-3.4. One places the character ‘$’ as the
first character of the comment and follows it by a comma separated list of directives. Thus
an equivalent to the command line example given above would be:

{$1+,s+ listing on, standard Pascal}

as the first line of the program. The ‘I’ option is more appropriately specified on the com-
mand line, since it is extremely unlikely in an interactive environment that one wants a listing
of the program each time it is translated.

Directives consist of a letter designating the option, followed either by a ‘+’ to turn the
option on, or by a ‘-’ to turn the option off. The b option takes a single digit instead of a ‘+’
or ‘-,

Notes on the listings

The first page of a listing includes a banner line mdlcanng the version and date of gen-
eration of pi or pc. It also includes the UNIX path name supplied for the source file and the
date of last modification of that file.

Within the body of the listing, lines are numbered consecutively and correspond to the
line numbers for the editor. Currently, two special kinds of lines may be used to format the
listing: a line consisting of a form-feed character, control-l, which causes a page eject in the
listing, and a line with no characters which causes the line number to be suppressed in the
listing, creating a truly blank line. These lines thus correspond to ‘eject’ and ‘space’ macros
found in many assemblers. Non-printing characters are printed as the character ‘?’ in the list-
ing.t

The standard procedure write

If no minimum field length parameter is specxﬁed for a write, the following default
values are assumed:

integer 10

real 22

Boolean length of ‘true’ or ‘false’
char 1

string length of the string
oct 11

hex 8

The end of each line in a text file should be explicitly indicated by “write'ln(t)’, where

{The character generated by a control-i indents to the next ‘tab stop’. Tab stops are set every 8 columns in
UNIX. Tabs thus provide a quick way of indenting in the program.

Berkeley Pascal User's Manual PS1:4-47

‘writeln(output)’ may be written simply as ‘writeln’. For UNIX, the built-in function ‘page(f)’
puts a single ASCII form-feed character on the output file. For programs which are to be tran-
sported the filter pcc can be used to interpret carriage control, as UNIX does not normally do
s0.

A.3. Restrictions and limitations

Files
Files cannot be members of files or members of dynamically allocated structures.

Arrays, sets and strings

The calculations involving array subscripts and set elements are done with 16 bit arith-
metic. This restricts the types over which arrays and sets may be defined. The lower bound
of such a range must be greater than or equal to -32768, and the upper bound less than
32768. In particular, strings may have any length from 1 to 65535 characters, and sets may
contain no more than 65535 elements.

Line and symbol length

There is no intrinsic limit on the length of identifiers. Identifiers are considered to be
distinct if they differ in any single position over their entire length. There is a limit, however,
on the maximum input line length. This limit is quite generous however, currently exceeding
160 characters.

Procedure and function nesting and program size

At most 20 levels of procedure and function nesting are allowed. There is no fundamen-
tal, translator defined limit on the size of the program which can be translated. The ultimate
limit is supplied by the hardware and thus, on the PDP-11, by the 16 bit address space. If one
runs up against the ‘ran out of memory’ diagnostic the program may yet translate if smaller
procedures are used, as a lot of space is freed by the translator at the completion of each pro-
cedure or function in the current implementation.

On the vaX-11, there is an implementation defined limit of 65536 bytes per variable.
There is no limit on the number of variables.

Overflow

There is currently no checking for overflow on arithmetic operations at run-time on the
PDP-11. Overflow checking is performed on the VAX-11 by the hardware.

A.4. Added types, operators, procedures and functions

Additional predefined types
The type alfa is predefined as:

type alfa = packed array [1..10] of char
The type intset is predefined as:

type intset = set of 0..127

In most cases the context of an expression involving a constant set allows the translator to
determine the type of the set, even though the constant set itself may not uniquely determine
this type. In the cases where it is not possible to determine the type of the set from local con-
text, the expression type defaults to a set over the entire base type unless the base type is
integert. In the latter case the type defaults to the current binding of intset, which must be

+The current translator makes a special case of the construct ‘if ... in [...]’ and enforces only the more lax
restriction on 16 bit arithmetic given above in this case.

PS1:4-48

Berkeley Pascal User's Manual

“type set of (a subrange of) integer” at that point.
Note that if iniset is redefined via:

type intset = set of 0..58;
then the default integer set is the implicit intset of Pascal 6000-3.4

Additional predefined operators
The relationals ‘<’ and ‘>’ of proper set inclusion are available. With g and b sets, note

that

(not (a < b)) <> (a>=b)

As an example consider the sets a = [0,2] and b = [1]. The only relation true between these

sets is ‘<>’.

Non-standard procedures

argv(i,a)

date(a)

flush(f)
halt

linelimit(f,x)}

message(Xx,...)

null

remove(a)
reset(f,a)
rewrite(f,a)
stlimit(i)

time(a)

where i is an integer and a is a string variable assigns the (possi-
bly truncated or blank padded) i/ 'th argument of the invocation of
the current UNIX process to the variable a. The range of valid i
is 0 to argc-1.

ass:gns the current date to the alfa variable g in the format ‘dd
mmm yy ’, where ‘mmm’ is the first three characters of the month,
i.e. ‘Apr’.
writes the output buffered for Pascal file f/ into the associated
UNIX file.

terminates the execution of the program with a control flow back-
trace.

with f a textfile and x an integer expression causes the program to
be abnormally terminated if more than x lines are written on file
f. If x is less than O then no limit is imposed.

causes the parameters, which have the format of those to the
built-in procedure write, to be written unbuffered on the diagnostic
unit 2, almost always the user’s terminal.

a procedure of no arguments which does absolutely nothing. It is
useful as a place holder, and is generated by pxp in place of the
invisible empty statement.

where a is a string causes the UNIX file whose name is @, with
trailing blanks eliminated, to be removed.

where a is a string causes the file whose name is a (with blanks
trimmed) to be associated with f in addition to the normal func-
tion of reset.

is analogous to ‘reset’ above.

where i is an integer sets the statement limit to be / statements.
Specifying the p option to pc disables statement limit counting.

causes the current time in the form ¢ hh:mm:ss ’ to be assigned to
the alfa variable a.

$Currently ignored by pdp-11 px.

Berkeley Pascal User’s Manual PS1:4-49

Non-standard functions

argc returns the count of arguments when the Pascal program was
invoked. Argc is always at least 1.

card(x) returns the cardinality of the set x, i.e. the number of elements
contained in the set.

clock returns an integer which is the number of central processor mil-
liseconds of user time used by this process.

expo(x) yields the integer valued exponent of the floating-point representa-
tion of x; expo(x) = entier(log2(abs(x))).

random(x) where x is a real parameter, evaluated but otherwise ignored,

invokes a linear congruential random number generator. Succes-
sive seeds are generated as (seedsa + c) mod m and the new ran-
dom number is a normalization of the seed to the range 0.0 to 1.0;
a is 62605, c is 113218009, and m is 536870912. The initial seed
is 7774755.

seed(i) where i is an integer sets the random number generator seed to i
and returns the previous seed. Thus seed(seed(i)) has no effect
except to yield value i.

sysclock an integer function of no arguments returns the number of central
processor milliseconds of system time used by this process.

undefined(x) a Boolean function. Its argument is a real number and it always
returns false.

wallclock an integer function of no arguments returns the time in seconds
- since 00:00:00 GMT January 1, 1970.

A.5. Remarks on standard and portable Pascal

It is occasionally desirable to prepare Pascal programs which will be acceptable at other
Pascal installations. While certain system dependencies are bound to creep in, judicious
design and programming practice can usually eliminate most of the non-portable usages.
Wirth’s Pascal Report concludes with a standard for implementation and program exchange.

In particular, the following differences may cause trouble when attempting to transport
programs between this implementation and Pascal 6000-3.4. Using the s translator option
may serve to indicate many problem areas.t

Features not available in Berkeley Pascal
Segmented files and associated functions and procedures.
The function frunc with two arguments.
Arrays whose indices exceed the capacity of 16 bit arithmetic.

Features available in Berkeley Pascal but not in Pascal 6000-3.4
The procedures reset and rewrite with file names.
The functions arge, seed, sysclock, and wallclock.
The procedures argv, flush, and remove.
Message with arguments other than character strings.

+The s option does not, however, check that identifiers differ in the first 8 characters. Pi and pc also do
not check the semantics of packed.

PS1:4-50 Berkeley Pascal User’s Manual

Write with keyword hex.

The assert statement.

Reading and writing of enumerated types.
Allowing functions to return structures.
Separate compilation of programs.
Comparison of records.

Other problem areas

Sets and strings are more general in Berkeley Pascal; see the restrictions given in the
Jensen-Wirth User Manual for details on the 6000-3.4 restrictions.

The character set differences may cause problems, especially the use of the function chr,
characters as arguments to ord, and comparisons of characters, since the character set order-
ing differs between the two machines.

The Pascal 6000-3.4 compiler uses a less strict notion of type equivalence. In Berkeley
Pascal, types are considered identical only if they are represented by the same type identifier.
Thus, in particular, unnamed types are unique to the variables/fields declared with them.

Pascal 6000-3.4 doesn’t recognize our option flags, so it is wise to put the control of
Berkeley Pascal options to the end of option lists or, better yet, restrict the option list length
to one.

For Pascal 6000-3.4 the ordering of files in the program statement has significance. It is
desirable to place input and output as the first two files in the program statement.

Acknowledginents | A

The financial support of William Joy and Susan Graham by the National Science Foun-
dation under grants MCS74-07644-A04, MCS78-07291, and MCS80-05144, and the William
Joy by an IBM Graduate Fellowship are gratefully acknowledged.

Berkeley VAX/UNIX Assembler Reference Manual PS1:5-1
Berkeley VAX/UNIX Assembler Reference Manual

John F. Reiser
Bell Laboratories,
Holmdel, NJ

and

Robert R. Henry'
Electronics Research Laboratory
University of California
Berkeley, CA 94720

November 5, 1979

Revised
February 9, 1983

1. Introduction

This document describes the usage and input syntax of the UNIX vAX-11 assembler as.
As is designed for assembling the code produced by the “C” compiler; certain concessions
have been made to handle code written directly by people, but in general little sympathy has
been extended. This document is intended only for the writer of a compiler or a maintainer
of the assembler.

1.1. Assembler Revisions since November 5,' 1979

There has been one major change to as since the last release. As has been updated to
assemble the new instructions and data formats for “G” and “H” floating point numbers,
as well as the new queue instructions.

1.2. Features Supported, but No Longer Encouraged as of February 9, 1983
These feature(s) in as are supported, but no longer encouraged.
- The colon operator for field initialization is likely to disappear.

2. Usage
As is invoked with these command arguments:
as[-LVWJIR][-dn] [-DTS] [-t directory] [-0 output] [name,] - - - [name,]

The -L flag instructs the assembler to save labels beginning with a “L” in the symbol
table portion of the output file. Labels are not saved by default, as the default action of the
link editor /d is to discard them anyway.

The -V flag tells the assembler to place its interpass temporary file into virtual
memory. In normal circumstances, the system manager will decide where the temporary file
should lie. Our experiments with very large temporary files show that placing the temporary
file into virtual memory will save about 13% of the assembly time, where the size of the tem-
porary file is about 350K bytes. Most assembler sources will not be this long.

!Preparation of this paper supported in part by the National Science Foundation under grant MCS #78-07291.

February 9, 1983 1

PS1:5-2 Berkeley VAX/UNIX Assembler Reference Manual

The -W turns of all warning error reporting.

The -J flag forces UNIX style pseudo-branch instructions with destinations further
away than a byte displacement to be turned into jump instructions with 4 byte offsets. The
-J flag buys you nothing if -d2 is set. (See §8.4, and future work described in §11)

The -R flag effectively turns “.data n” directives into “.text n” directives. This obvi-
ates the need to run editor scripts on assembler source to “read-only” fix initialized data
segments. Uninitialized data (via .Jcomm and .comm directives) is still assembled into the
data or bss segments.

The -d flag specifies the number of bytes which the assembler should allow for a dis-
placement when the value of the displacement expression is undefined in the first pass. The
possible values of n are 1, 2, or 4; the assembler uses 4 bytes if -d is not specified. See §8.2.

Provided the -V flag is not set, the -t flag causes the assembler to place its single tem-
porary file in the directory instead of in /tmp.

The -o flag causes the output to be placed on the file output. By default, the output of
the assembler is placed in the file a.out in the current directory.

The input to the assembler is normally taken from the standard input. If file argu-
ments occur, then the input is taken sequentially from the files name,, name, - - - name,
This is not to say that the files are assembled separately; name, is effectively concatenated to
name,, so multiple definitions cannot occur amongst the input sources.

The -D (debug), -T (token trace), and the -S (symbol table) flags enable assembler
trace information, provided that the assembler has been compiled with the debugging code
enabled. The information printed is long and boring, but useful when debugging the assem-
bler.

3. Lexical conventions

Assembler tokens include identifiers (alternatively, “symbols” or “names”), constants,
and operators.

3.1. Identifiers

An identifier consists of a sequence of alphanumeric characters (including period *“.”,
underscore “_”, and dollar “$”). The first character may not be numeric. Identifiers may
be (practically) arbitrary long; all characters are significant.

3.2. Constants

3.2.1. Scalar constants

_All scalar (non floating point) constants are (potentially) 128 bits wide. Such con-
stants are interpreted as two’s complement numbers. Note that 64 bit (quad words) and
128 bit (octal word) integers are only partially supported by the vaAX hardware. In addi-
tion, 128 bit integers are only supported by the extended VAX architecture. As supports 64
and 128 bit integers only so they can be used as immediate constants or to fill initialized
data space. As can not perform arithmetic on constants larger than 32 bits.

Scalar constants are initially evaluated to a full 128 bits, but are pared down hy dis-
carding high order copies of the sign bit and categorizing the number as a long, quad or
octal integer. Numbers with less precision than 32 bits are treated as 32 bit quantities.

The digits are “0123456789abcdefABCDEF” with the obvious values.
An octal constant consists of a sequence of digits with a leading zero.

2 February 9, 1983

Berkeley VAX/UNIX Assembler Reference Manual PS1:5-3

A decimal constant consists of a sequence of digits without a leading zero.

A hexadecimal constant consists of the characters “0x” (or “0X’’) followed by a
sequence of digits.

A single-character constant consists of a single quote “’” followed by an ASCII char-
acter, including ASCII newline. The constant’s value is the code for the given character.

3.2.2. Floating Point Constants

Floating point constants are internally represented in the vAX floating point format
that is specified by the lexical form of the constant. Using the meta notation that [dec] is
a decimal digit (“0123456789™), [expt] is a type specification character (“fFdDhHgG"),
[expe] is a exponent delimiter and type specification character (“eEfFdDhHgG”), x* means
0 or more occurences of x, x* means 1 or more occurences of x, then the general lexical
form of a floating point number is:

Ofexpe]([+-][dec]*(.)[dec])[expt]([+-])(dec]*))
The standard semantic interpretation is used for the signed integer, fraction and signed
power of 10 exponent. If the exponent delimiter is specified, it must be either an “e” or
“E”, or must agree with the initial type specification character that is used. The type
specification character specifies the type and representation of the constructed number, as
follows:

type character floating representation size (bits)

f,F F format floating 32
d,D D format floating 64
g2 G G format floating 64
h, H H format floating 128

Note that “G” and “H” format floating point numbers are not supported by all implemen-
tations of the VAX architecture. As does not require the augmented architecture in order
to run.

The assembler uses the library routine atoff) to convert “F” and “D” numbers, and
uses its own conversion routine (derived from atof, and believed to be numerically accu-
rate) to convert “G” and “H” floating point numbers.

Collectively, all floating point numbers, together with quad and octal scalars are
~ called Bignums. When as requires a Bignum, a 32 bit scalar quantity may also be used.

3.2.3. String Constants

A string constant is defined using the same syntax and semantics as the “C” language
uses. Strings begin and end with a “*” (double quote). The DEC MACRO-32 assembler con-
ventions for flexible string quoting is not implemented.. All “C” backslash conventions are
observed; the backslash conventions peculiar to the PDP-11 assembler are not observed.
Strings are known by their value and their length; the assembler does not implicitly end
strings with a null byte.

3.3. Operators)
There are several single-character operators; see §6.1.

3.4. Blanks

Blank and tab characters may be interspersed freely between tokens, but may not be
used within tokens (except character constants). A blank or tab is required to separate
adjacent identifiers or constants not otherwise separated.

February 9, 1983 3

PS1:5-4 Berkeley VAX/UNIX Assembler Reference Manual

3.5. Scratch Mark Comments

The character “#” introduces a comment, which extends through the end of the line
on which it appears. Comments starting in column 1, having the format “#
expression string”, are interpreted as an indication that the assembler is now assembling
file string at line expression. Thus, one can use the “C” preprocessor on an assembly
language source file, and use the #include and #define preprocessor directives. (Note that
there may not be an assembler comment starting in column 1 if the assembler source is
given to the “C” preprocessor, as it will be interpreted by the preprocessor in a way not
intended.) Comments are otherwise ignored by the assembier.

3.6. “C” Style Comments

The assembler will recognize “C” style comments, introduced with the prologue /*
and ending with the epilogue */. “C” style comments may extend across multiple lines, and
are the preferred comment style to use if one chooses to use the “C” preprocessor.

4. Segments and Location Counters

Assembled code and data fall into three segments: the text segment, the data segment,
and the bss segment. The UNIX operating system makes some assumptions about the con-
tent of these segments; the assembler does not. Within the text and data segments there are
a number of sub-segments, distinguished by number (“text 07, “text 17, - - - “data 0", “data
1”?, - --). Currently there are four subsegments each in text and data. The subsegments are
for programming convenience only.

Before writing the output file, the assembler zero-pads each text subsegment to a multi-
ple of four bytes and then concatenates the subsegments in order to form the text segment;
an analogous operation is done for the data segment. Requesting that the loader define sym-
bols and storage regions is the only action allowed by the assembler with respect to the bss
segment. Assembly begins in “text 0”.

Associated with each (sub)segment is an implicit location counter which begins at zero
and is increwaented by 1 for each byte assembled into the (sub)segment. There is no way to
explicitly reference a location counter. Note that the location counters of subsegments other
than “text 0 and “data 0" behave peculiarly due to the concatenation used to form the text
and data segments.

5. Statements

A source program is composed of a sequence of statements. Statements are separated
either by new-lines or by semicolons. There are two kinds of statements: null statements and
keyword statements. Either kind of statement may be preceded by one or more labels.

5.1. Named Global Labels

A global label consists of a name followed by a colon. The effect of a name label is to
assign the current value and type of the location counter to the name. An error is indicated
in pass 1 if the name is already defined; an error is indicated in pass 2 if the value assigned
changes the definition of the label.

A global label is referenced by its name.
Global labels beginning with a “ L™ are discarded unless the -L option is in effect.

5.2. Numeric Local Labels

A numeric label consists of a digit 0 to 9 followed by a colon. Such a label serves to
define temporary symbols of the form “nb” and “nf”, where n is the digit of the label. As

4 February 9, 1983

Berkeley VAX/UNIX Assembler Reference Manual PS1:5-5

in the case of name labels, a numeric label assigns the current value and type of the loca-
tion counter to the temporary symbol. However, several numeric labels with the same digit
may be used within the same assembly. References to symbols of the form “nb” refer to
the first numeric label “n:” backwards from the reference; “nf” symbols refer to the first
numeric label “n:” forwards from the reference. Such numeric labels conserve the inven-
tive powers of the human programmer.

For various reasons, as turns local labels into labels of the form Ln.$m. Although
unlikely, these generated labels may conflict with programmer defined labels.

5.3. Null statements

A null statement is an empty statement ignored by the assembler. A null statement
may be labeled, however.

5.4. Keyword statements

A keyword statement begins with one of the many predefined keywords known to as;
the syntax of the remainder of the statement depends on the keyword. All instruction
opcodes are keywords. The remaining keywords are assembler pseudo-operations, also
called directives. The pseudo-operations are listed in §8, together with the syntax they
require.

6. Expressions

An expression is a sequence of symbols representing a value. Its constituents are
identifiers, constants, operators, and parentheses. Each expression has a type.

All operators in expressions are fundamentally binary in nature. Arithmetic is two’s
complement and has 32 bits of precision. As can not do arithmetic on floating point
numbers, quad or octal precision scalar numbers. There are four levels of precedence, listed
here from lowest precedence level to highest:

precedence operators

binary +, -
binary |, &, 7!
binary * /%,
unary -

All operators of the same precedence are evaluated strictly left to right, except for the
evaluation order enforced by parenthesis.

6.1. Expression Operators
The operators are:

February 9, 1983 5

PS1:5-6

Berkeley VAX/UNIX Assembler Reference Manual

operator meaning

+ addition
(binary) subtraction
multiplication
division
modulo
(unary) 2’s complement
bitwise and
bitwise or
bitwise exclusive or
bitwise or not
bitwise 1’s complement
logical right shift
logical right shift
logical left shift
logical left shift

bem — R R~

AAVY YV

Expressions may be grouped by use of parentheses, (" and *“)”.

6.2. Data Types

The assembler manipulates several different types of expressions. The types likely to
be met explicitly are:

undefined Upon first encounter, each symbol is undefined. It may become undefined if it

is assigned an undefined expression. It is an error to attempt to assemble an
undefined expression in pass 2; in pass 1, it is not (except that certain keywords
require operands which are not undefined).

undefined external

absolute

text

data

bss

A symbol which is declared .globl but not defined in the current assembly is an
undefined external. If such a symbol is declared, the link editor /d must be used
to load the assembler’s output with another routine that defines the undefined
reference.

An absolute symbol is defined ultimately from a constant. Its value is
unaffected by any possible future applications of the link-editor to the output
file.

The value of a text symbol is measured with respect to the beginning of the text
segment of the program. If the assembler output is link-edited, its text symbols
may change in value since the program need not be the first in the link editor’s
output. Most text symbols are defined by appearing as labels. At the start of an
assembly, the value of “.” is “text 0”.

" The value of a data symbol is measured with respect to the origin of the data

segment of a program. Like text symbols, the value of a data symbol may
change during a subsequent link-editor run since previously loaded programs
may have data segments. After the first .data statement, the value of “.” is
(13 dam 0”. .
The value of a bss symbol is measured from the beginning of the bss segment of
a program. Like text and data symbols, the value of a bss symbol may change
during a subsequent link-editor run, since previously loaded programs may have
bss segments.

external absolute, text, data, or bss

Symbols declared .globl but defined within an assembly as absolute, text, data,

February 9, 1983

Berkeley VAX/UNIX Assembler Reference Manual PS1:5-7

or bss symbols may be used exactly as if they were not declared .globl; however,
their value and type are available to the link editor so that the program may be
loaded with others that reference these symbols.

register The symbols
0r1r2r3r4rS5r6r7 r8 r9r10 ril1 r12 r13 r1d r15 ap fp sp pc

are predefined as register symbols. In addition, the “%” operator converts the
following absolute expression whose value is between 0 and 15 into a register
reference.

other types .
Each keyword known to the assembler has a type which is used to select the rou-

tine which processes the associated keyword statement. The behavior of such
symbols when not used as keywords is the same as if they were absolute.

6.3. Type Propagation in Expressions

When operands are combined by expression operators, the result has a type which
depends on the types of the operands and on the operator. The rules involved are complex
to state but were intended to be sensible and predictable: For purposes of expression
evaluation the important types are

undefined
absolute

text

data

bss

undefined external
other

The combination rules are then
(1) If one of the operands is undefined, the result is undefined.
(2) If both operands are absolute, the result is absolute.

(3) If an absolute is combined with one of the “other types” mentioned above, the
result has the other type. An “other type” combined with an explicitly discussed
type other than absolute it acts like an absolute.

Further rules applying to particular operators are:

+ If one operand is text-, data-, or bss-segment relocatable, or is an undefined external,
" the result has the postulated type and the other operand must be absolute.

- If the first operand is a relocatable text-, data-, or bss-segment symbol, the second
operand may be absolute (in which case the result has the type of the first operand); or
the second operand may have the same type as the first (in which case the result is
absolute). If the first operand is external undefined, the second must be absolute. All
other combinations are illegal.

others
It is illegal to apply these operators to any but absolute symbols.

7. Pseudo-operations (Directives)

The keywords listed below introduce directives or instructions, and influence the later
behavior of the assembler for this statement. The metanotation
[stuff]

February 9, 1983 7

PS1:5-8 Berkeley VAX/UNIX Assembler Reference Manual

means that 0 or more instances of the given “stuff”” may appear.
Boldface tokens must appear literally; words in izalic words are substitutable.
The pseudo~operations listed below are grouped into functional categories.

7.1. Interface to a Previous Pass
ABORT

As soon as the assembler sees this directive, it ignores all further input (but it does
read to the end of file), and aborts the assembly. No.files are created. It is anticipated that
this would be used in a pipe interconnected version of a compiler, where the first major
syntax error would cause the compiler to issue this directive, saving unnecessary work in
assembling code that would have to be discarded anyway.

file string

This directive causes the assembler to think it is in file string, so error messages reflect
the proper source file.

Jine expression

This directive causes the assembler to think it is on line expression so error messages
reflect the proper source file.

The only effect of assembling multiple files specified in the command string is to insert
the file and line directives, with the appropriate values, at the beginning of the source from
each file. '

expression string
expression

This is the only instance where a comment is meaningful to the assembler. The “#”
must be in the first column. This meta comment causes the assembler to believe it is on
line expression. The second argument, if included, causes the assembler to believe it is in
file string, otherwise the current file name does not change.

7.2. Location Counter Control

data [expression]
Jtext [expression]

- These two pseudo-operations cause the assembler to begin assembling into the indi-
cated text or data subsegment. If specified, the expression must be defined and absolute; an
omitted expression is treated as zero. The effect of a .data directive is treated as a .text
directive if the -R assembly flag is set. Assembly starts in the .text 0 subsegment.

The directives .align and .org also control the placement of the location counter.

7.3. Filled Data
.align align_expr [, fill_expr]

The location counter is adjusted so that the expression lowest bits of the location
counter become zero. This is done by assembling from 0 to 2%8"-€?" bytes, taken from the

8 February 9, 1983

Berkeley VAX/UNIX Assembler Reference Manual , PS1:5-9

low order byte of fill_expr. If present, fill_expr must be absolute; otherwise it defaults to
0. Thus “.align 2” pads by null bytes to make the location counter evenly divisible by 4.
The align_expr must be defined, absolute, nonnegative, and less than 16.

Warning: the subsegment concatenation convention and the current loader conven-
tions may not preserve attempts at aligning to more than 2 low-order zero bits.

org org_expr |, fil _expr]

The location counter is set equal to the value of org_expr, which must be defined and

. absolute. The value of the org_expr must be greater than the current value of the location

counter. Space between the current value of the location counter and the desired value are

filled with bytes taken from the low order byte of fill_expr, which must be absolute and
defaults to 0.

.space space_expr [, fill_expr]

The location counter is advanced by space_expr bytes. Space_expr must be defined
and absolute. The space is filled in with bytes taken from the low order byte of fill _expr,
which must be defined and absolute. Fill_expr defaults to 0. The .fill directive is a more
general way to accomplish the .space directive.

Aill rep_expr, size_expr, fill _expr
All three expressions must be absolute. fill_expr, treated as an expression of size

size_expr bytes, is.assembled and replicated rep_expr times. The effect is to advance the
current location counter rep_expr * size_expr bytes. size_expr must be between 1 and 8.

7.4. Symbol Definitions

7.5. Initialized Data

.byte expr [, expr]
word expr [, expr]
.int expr [, expr]
Jdong expr [, expr]

The expressions in the comma-separated list are truncated to the size indicated by the
key word:

keyword length (bits)

.byte 8
.word 16

.int 32
Jong 32

and assembled in successive locations. The expressions must be absolute.
Each expression may optionally be of the form:

expression : expression

In this case, the value of expression, is truncated to expression, bits, and assembled in the
next expression, bit field which fits in the natural data size being assembled. Bits which are
skipped because a field does not fit are filled with zeros. Thus, “.byte 123” is equivalent to

February 9, 1983 9

PS1:5-10 Berkeley VAX/UNIX Assembler Reference Manual

“byte 8:123”, and “.byte 3:1,2:1,5:1” assembles two bytes, containing the values 9 and 1.

NB: Bit field initialization with the colon operator is likely to disappear in future
releases of the assembler.

.quad number [, number]
octa number [, number]
float number [, number]
.double number [, number]
flloat number [, number)
Jdfloat number [, number]
glloat number [, number]
.hfloat number [, number |

These initialize Bignums (see §3.2.2) in successive locations whose size is a function
on the key word. The type of the Bignums (determined by the exponent field, or lack
thereof) may not agree with type implied by the key word. The following table shows the
key words, their size, and the data types for the Bignums they expect.

keyword format length (bits) valid number(s)
.quad quad scalar 64 scalar
.octa octal scalar 128 scalar
float F float 32 F, D and scalar
fHloat F float 32 F, D and scalar
.double D float 64 F, D and scalar
«dfloat D float 64 F, D and scalar
gileat G float 64 G scalar
hfloat - H float 128 H scalar

As will correctly perform other floating point conversions while initializing, but issues
a warning message. As performs all floating point initializations and conversions using only
the facilities defined in the original (native) architecture.

ascii string [, string]
asciz string [, string]

Each string in the list is assembled into successive locations, with the first letter in the
string being placed into the first location, etc. The .ascii directive will not null pad the
string; the .asciz directive will null pad the string. (Recall that strings are known by their
length, and need not be terminated with a null, and that the “C” conventions for escaping
are understood.) The .ascii directive is identical to:

.byte string, , string, , -

.comm name, expression

Provided the name is not defined elsewhere, its type is made “undefined external”,
and its value is expression. In fact the name behaves in the current assembly just like an
undefined external. However, the link editor /d has been special-cased so that all external
symbols which are not otherwise defined, and which have a non-zero value, are defined to
lie in the bss segment, and enough space is left after the symbol to hold expression bytes.

Jcomm name, expression

10 February 9, 1983

Berkeley VAX/UNIX Assembler Reference Manual PS1:5-11

expression bytes will be allocated in the bss segment and name assigned the location
of the first byte, but the name is not declared as global and hence will be unknown to the
link editor.

.globl name

This statement makes the name external. If it is otherwise defined (by .set or by
appearance as a label) it acts within the assembly exactly as if the .globl statement were not
given; however, the link editor may be used to combine this object module with other
modules referring to this symbol.

Conversely, if the given symbol is not defined within the current assembly, the link
editor can combine the output of this assembly with that of others which define the symbol.
The assembler makes all otherwise undefined symbols external.

set name, expression

The (rame, expression) pair is entered into the symbol table. Multiple .set statements
with the same name are legal; the most recent value replaces all previous values.

Isym name, expression

A unique and otherwise unreferencable instance of the (name, expression) pair is
created in the symbol table. The Fortran 77 compiler uses this mechanism to pass local
symbol definitions to the link editor and debugger.

stabs string, expr,, expr,, exprs, expry
.stabn expr,, expr,, exprs, expr,
.stabd expr,, expr,, expr;

The stab directives place symbols in the symbol table for the symbolic debugger, sdb?.
A “stab” s a symbol table entry. The .stabs is a string stab, the .stabn is a stab not having
a string, and the .stabd is a “‘dot” stab that implicitly references “dot”, the current location
counter.

The string in the .stabs directive is the name of a symbol. If the symbol name is zero,
the .stabn directive may be used instead.

The other expressions are stored in the name list structure of the symbol table and
preserved by the loader for reference by sdb; the value of the expressions are peculiar to for-
mats required by sdb.

expr, is used as a symbol table tag (nlist field n_type).
expr, seems to always be zero (nlist field n_other).
expr; is used for either the source line number, or for a nesting level (nlist field n_desc).

expr, is used as tag specific information (nlist field n_value). In the case of the .stabd
directive, this expression is nonexistent, and is taken to be the value of the location
counter at the following instruction. Since there is no associated name for a .stabd
directive, it can only be used in circumstances where the name is zero. The effect of
a .stabd directive can be achieved by one of the other .stabx directives in the follow-
ing manner:

2Katseff, H.P. Sdb: A Symbol Debugger. Bell Laboratories, Holmdel, NJ. April 12, 1979.
Katseff, H.P. Symbol Table Format for Sdb, File 39394, Bell Laboratories, Holmdel, NJ. March 14, 1979.

February 9, 1983 : 11

PS1:5-12 ~ Berkeley VAX/UNIX Assembler Reference Manual

.stabn expr,, expr,, expr;, LLn
LLn: .

The .stabd directive is preferred, because it does not clog the symbol table with labels
used only for the stab symbol entries.

8. Machine instructions

The syntax of machine instruction statements accepted by as is generally similar to the
syntax of DEC MACRO-32. There are differences, however.

8.1. Character set

As uses the character “$” instead of “#” for immediate constants, and the character
“*” instead of “@” for indirection. Opcodes and register names are spelled with lower-case
rather than upper-case letters.

8.2. Spe&fying Displacement Lengths

Under certain circumstances, the following constructs are (optionally) recognized by as
to indicate the number of bytes to allocate for the displacement used when constructing dis-
placement and displacement deferred addressing modes:

primary alternate length

B B* byte (1 byte)
w w- word (2 bytes)
|) L long word (4 bytes)

One can also use lower case b, w or 1 instead of the upper case letters. There must be
no space between the size specifier letter and the “*” or ““”. The constructs S" and G" are
not recognized by as, as they are by the DEC MACRO-32 assembler. It is preferred to use the
‘*displacement so that the “*” is not misinterpreted as the xor operator.

Literal values (including floating-point literals used where the hardware expects a
floating-point operand) are assembled as short literals if possible, hence not needing the S°
DEC MACRO-32 directive.

If the displacement length modifier is present, then the displacement is always assem-
bled with that displacement, even if it will fit into a smaller field, or if significance is lost.
If the length modifier is not present, and if the value of the displacement is known exactly
in as’s first pass, then as determines the length automatically, assembling it in the shortest
possible way, Otherwise, as will use the value specified by the —d argument, which defaults
to 4 bytes.

8.3. casex Instructions

As considers the instructions caseb, casel, casew to have three operands. The displace-
ments must be explicitly computed by as, using one or more .word statements.

8.4. Extended branch instructions

These opcodes (formed in general by substituting a *“j” for the initial “b” of the stan-
dard opcodes) take as branch destinations the name of a label in the current subsegment. It
is an error if the destination is known to be in a different subsegment, and it is a warning if
the destination is not defined within the object module being assembled.

If the branch destination is close enough, then the corresponding short branch “b”
instruction is assembled. Otherwise the assembler choses a sequence of one or more

12 February 9, 1983

Berkeley VAX/UNIX Assembler Reference Manual PS1:5-13

instructions which together have the same effect as if the “b” instruction had a larger span.
In general, as chooses the inverse branch followed by a brw, but a brw is sometimes pooled
among several “j” instructions with the same destination. ,

As is unable to perform the same long/short branch generation for other instructions
with a fixed byte displacement, such as the sob, aob families, or for the acbx family of
instructions which has a fixed word displacement. This would be desirable, but is prohibi-
tive because of the complexity of these instructions.

If the -J assembler option is given, a jmp instruction is used instead of a brw instruc-
tion for ALL “j” instructions with distant destinations. This makes assembly of large
(>32K bytes) programs (inefficiently) possible. 4s does not try to use clever combinations
of brb, brw and jmp instructions. The jmp instructions use PC relative addressing, with the
length of the offset given by the —d assembler option.

These are the extended branch instructions as recognizes:
éeql j:eqlu Jneq
jgeq jgequ jgtr
jleq jlequ jlss
jbcc jbsc jbes

jibc jibs

jec Jes
jve jvs
jbc jbs
jbr

Note that jbr turns into brb if its target is close enough; otherwise a brw is used.

9. Diagnostics

Diagnostics are intended to be self explanatory and zppear on the standard output.
Diagnostics either report an error or a warning. Error diagnostics complain about lexical,
syntactic and some semantic errors, and abort the assembly.

The majority of the warnings complain about the use of VAX features not supported by
all implementations of the architecture. A4s will warn if new opcodes are used, if “G” or
“H” floating point numbers are used and will complain about mixed floating conversions.

10. Limits
limit what

Arbitrary’ Files to assemble

BUFSIZ Significant characters per name
Arbitrary Characters per input line
Arbitrary Characters per string

Arbitrary Symbols

4 Text segments

4 Data segments

3Although the number of characters available to the argv line is restricted by UNIX to 10240.

February 9, 1983 13

PS1:5-14 Berkeley YAX/UNIX Assembler Reference Manual

11. Annoyances and Future Work
Most of the annoyances deal with restrictions on the extended branch instructions.

As only uses a two level algorithm for resolving extended branch instructions into short
or long displacements. What is really needed is a general mechanism to turn a short condi-
tional jump into a reverse conditional jump over one of two possible unconditional branches,
either a brw or a jmp instruction. Currently, the -J forces the jmp instruction to always be
used, instead of the shorter brw instruction when needed.

The assembler should also recognize extended branch instructions for sob, aob, and
acbx instructions. Sob instructions will be easy, aob will be harder because the synthesized
instruction uses the index operand twice, so one must be careful of side effects, and the acbx
family will be much harder (in the general case) because the comparison depends on the sign
of the addend operand, and two operands are used more than once. Augmenting as with
these extended loop instructions will allow the peephole optimizer to produce much better
loop optimizations, since it currently assumes the worst case about the size of the loop body.

The string temporary file is not put in memory when the -V flag is set. The string table
in the generated a.out contains some strings and names that are never referenced from the
symbol table; the loader removes these unreferenced strings, however.

9

14 February 9, 1983

Berkeley Software Architecture Manual
4.3BSD Edition

William Joy, Robert Fabry,
Samuel Leffler, M. Kirk McKusick,
Michael Karels

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

ABSTRACT

This document summarizes the facilities provided by the 4.3BSD version of
the UNIX* operating system. It does not attempt to act as a tutorial for use of the
system nor does it attempt to explain or justify the design of the system facilities. It
gives neither motivation nor implementation details, in favor of brevity.

The first section describes the basic kernel functions provided to a UNIX pro-
cess: process naming and protection, memory management, software interrupts,
object references (descriptors), time and statistics functions, and resource controls.
These facilities, as well as facilities for bootstrap, shutdown and process accounting,
are provided solely by the kernel.

The second section describes the standard system abstractions for files and file
systems, communication, terminal handling, and process control and debugging.
These facilities are implemented by the operating system or by network server
processes.

* UNIX is a trademark of Bell Laboratories.

PS1:6-2

TABLE OF CONTENTS

Introduction.
0. Notation and types
1. Kernel primitives

1.1. Processes and protection

1.1.1. Host and process identifiers
1.1.2. Process creation and termination
1.1.3. User and group ids

1.1.4. Process groups

1.2. Memory management

1.2.1. Text, data and stack
1.2.2. Mapping pages

1.2.3. Page protection control
1.2.4. Giving and getting advice
1.2.5. Protection primitives

1.3. Signals

1.3.1. Overview

1.3.2. Signal types

1.3.3. Signal handlers

1.3.4. Sending signals

1.3.5. Protecting critical sections
1.3.6. Signal stacks

1.4. Timing and statistics
1.4.1. Real time
1.4.2. Interval time

1.5. Descriptors

1.5.1. The reference table

1.5.2. Descriptor properties

1.5.3. Managing descriptor references
1.5.4. Multiplexing requests

1.5.5. Descriptor wrapping

1.6. Resource controls
1.6.1. Process priorities
1.6.2. Resource utilization
1.6.3. Resource limits

1.7. System operation support
1.7.1. Bootstrap operations
1.7.2. Shutdown operations
1.7.3. Accounting

4.3BSD Architecture Manual

4.3BSD Architecture Manual

2. System facilities

2.1. Generic operations

2.1.1. Read and write

2.1.2. Input/output control

2.1.3. Non-blocking and asynchronous operations

2.2. File system

2.2.1 Overview

2.2.2. Naming

2.2.3. Creation and removal

2.2.3.1. Directory creation and removal
2.2.3.2. File creation

2.2.3.3. Creating references to devices
2.2.3.4. Portal creation

2.2.3.6. File, device, and portal removal .
2.2.4. Reading and modifying file attributes
2.2.5. Links and renaming

2.2.6. Extension and truncation

2.2.7. Checking accessibility

2.2.8. Locking

2.2.9. Disc quotas

2.3. Interprocess communication
2.3.1. Interprocess communication primitives

2.3.1.1. Communication domains

2.3.1.2. Socket types and protocols

2.3.1.3. Socket creation, naming and service establishment
2.3.1.4. Accepting connections

2.3.1.5. Making connections

2.3.1.6. Sending and receiving data

2:3.1.7. Scatter/gather and exchanging access rights
2.3.1.8. Using read and write with sockets

2.3.1.9. Shutting down halves of full-duplex connections

2.3.1.10. Socket and protocol options

2.3.2. UNIX domain

2.3.2.1. Types of sockets

2.3.2.2. Naming

2.3.2.3. Access rights transmission

2.3.3. INTERNET domain)
2.3.3.1. Socket types and protocols

2.3.3.2. Socket naming

2.3.3.3. Access rights transmission

2.3.3.4. Raw access

2.4. Terminals and devices
- 2.4.1. Terminals

2.4.1.1. Terminal input
2.4.1.1.1 Input modes
2.4.1.1.2 Interrupt characters
2.4.1.1.3 Line editing
2.4.1.2. Terminal output

2.4.1.3. Terminal control operations
2.4.1.4. Terminal hardware support
2.4.2. Stguctured devices

PS1:6-3

PS1:6-4

2.4.3. Unstructured devices
2.5. Process control and debugging
L. Summary of facilities

4.3BSD Architecture Manual

4.3BSD Architecture Manual PS1:6-5

0. Notation and types

The notation used to describe system calls is a variant of a C language call, consisting of a pro-
totype call followed by declaration of parameters and results. An additional keyword result, not part
of the normal C language, is used to indicate which of the declared entities receive results. As an
example, consider the read call, as described in section 2.1:

cc = read(fd, buf, nbytes);
result int cc; int fd; result char *buf; int nbytes;

The first line shows how the read routine is called, with three parameters. As shown on the second
line cc is an integer and read also returns information in the parameter buf.

Description of all error conditions arising from each system call is not provided here; they -
appear in the programmer’s manual. In particular, when accessed from the C language, many calls
return a characteristic -1 value when an error occurs, returning the error code in the global variable
errno. Other languages may present errors in different ways.

A number of system standard types are defined in the include file <sys/types.h> and used in the
specifications here and in many C programs. These include caddr_t giving a memory address (typi-
cally as a character pointer), off_t giving a file offset (typically as a long integer), and a set of unsigned
types u_char, u_short, u_int and u_long, shorthand names for unsigned char, unsigned short, etc.

PS1:6-6 ' 4.3BSD Architecture Manual

1. Kernel primitives

The facilities available to a UNIX user process are logically divided into two parts: kernel facili-
ties directly implemented by UNIX code running in the operating system, and system facilities imple-
mented either by the system, or in cooperation with a server process. These kernel facilities are
described in this section 1.

The facilities implemented in the kernel are those which define the UNIX virtual machine in
which each process runs. Like many real machines, this virtual machine has memory management
hardware, an interrupt facility, timers and counters. The UNIX virtual machine also allows access to
files and other objects through a set of descriptors. Each descriptor resembles a device controller, and
supports a set of operations. Like devices on real machines, some of which are internal to the
machine and some of which are external, parts of the descriptor machinery are built-in to the operat-
ing system, while other parts are often implemented in server processes on other machines. The facil-
ities provided through the descriptor machinery are described in section 2.

4.3BSD Architecture Manual PS1:6-7

1.1. Processes and protection

1.1.1. Host and process identifiers

Each UNIX host has associated with it a 32-bit host id, and a host name of up to 64 characters
(as defined by MAXHOSTNAMELEN in <sys/param.h>). These are set (by a privileged user) and
returned by the calls:

sethostid(hostid)
long hostid;

hostid = gethostid();
result long hostid;

sethostname(name, len)
char *name; int len;

len = gethostname(buf, buflen)
result int len; result char *buf; int buflen;

On each host runs a set of processes. Each process is largely independent of other processes, having
its own protection domain, address space, timers, and an independent set of references to system or
user implemented objects.

Each process in a host is named by an integer called the process id. This number is in the range
1-30000 and is returned by the getpid routine:

pid = getpid();
result int pid;

On each UNIX host this identifier is guaranteed to be unique; in a multi-host environment, the (hos-
tid, process id) pairs are guaranteed unique.

1.1.2. Process creation and termination
A new process is created by making a logical duplicate of an existing process:
pid = fork();
result int pid;

The fork call returns twice, once in the parent process, where pid is the process identifier of the child,
and once in the child process where pid is 0. The parent-child relationship mduces a hierarchical
structure on the set of processes in the system.

A process may terminate by executing an exit call:
exit(status)
int status;
returning 8 bits of exit status to its parent.

When a child process exits or terminates abnormally, the parent process receives information
about any event which caused termination of the child process. A second call provides a non-
blocking interface and may also be used to retrieve information about resources consumed by the pro-
cess during its lifetime.

PS1:6-8 4.3BSD Architecture Manual

#include <sys/wait.h>

pid = wait(astatus);
result int pid; result union wait *astatus;

pid = wait3(astatus, options, arusage);
result int pid; result union waitstatus *astatus;
int options; result struct rusage *arusage;

- A process can overlay itself with the memory image of another process, passing the newly
created process a set of parameters, using the call:

execve(name, argv, envp)
char *name, **argv, **envp;

The specified name must be a file which is in a format recognized by the system, either a binary exe-
cutable file or a file which causes the execution of a specified interpreter program to process its con-
tents.

1.1.3. User and group ids

Each process in the system has associated with it two user-id’s: a real user id and a effective user
id, both 16 bit unsigned integers (type uid_t). Each process has an real accounting group id and an
effective accounting group id and a set of access group id’s. The group id’s are 16 bit unsigned integers
(type gid_t). Each process may be in several different access groups, with the maximum concurrent
number of access groups a system compilation parameter, the constant NGROUPS in the file
<sys/param.h>, guaranteed to be at least 8.

The real and effective user ids associated with a process are returned by:
ruid = getuid();
result uid_t ruid;
euid = geteuid();
result uid_t euid;
the real and effective accounting group ids by:

rgid = getgid();
result gid_t rgid;
egid = getegid();
result gid_t egid;
The access group id set is returned by a getgroups call*:
ngroups = getgroups(gidsetsize, gidset);
result int ngroups; int gidsetsize; result int gidset[gidsetsize];

The user and group id’s are assigned at login time using the setreuid, setregid, and setgroups
calls:

* The type of the gidset array in getgroups and setgroups remains integer for compatibility with 4.2BSD. It
may change to gid_t in future releases.

4.3BSD Architecture Manual PS1:6-9

setreuid(ruid, euid);
int ruid, euid;

setregid(rgid, egid);
int rgid, egid;

setgroups(gidsetsize, gidset)

int gidsetsize; int gidset[gidsetsize];
The setreuid call sets both the real and effective user-id’s, while the setregid call sets both the real and
effective accounting group id’s. Unless the caller is the super-user, ruid must be equal to either the

current real or effective user-id, and rgid equal to either the current real or effective accounting group
id. The setgroups call is restricted to the super-user.

1.1.4. Process groups

Each process in the system is also normally associated with a process group. The group of
processes in a process group is sometimes referred to as a job and manipulated by high-level system
software (such as the shell). The current process group of a process is returned by the getpgrp call:

pgrp = getpgrp(pid);

result int pgrp; int pid;
When a process is in a specific process group it may receive software interrupts affecting the group,
causing the group to suspend or resume execution or to be interrupted or terminated. In particular, a
system terminal has a process group and only processes which are in the process group of the terminal
may read from the terminal, allowing arbitration of terminals among several different jobs.

The process group associated with a process may be changed by the setpgrp call:
setpgrp(pid, pgrp);
int pid, pgrp;
Newly created processes are assigned process id’s distinct from all processes and process groups, and

the same process group as their parent. A normal (unprivileged) process may set its process group
equal to its process id. A privileged process may set the process group of any process to any value.

PS1:6-10 4.3BSD Architecture Manual

1.2. Memory management}

1.2.1. Text, data and stack

Each process begins execution with three logical areas of memory called text, data and stack.
The text area is read-only and shared, while the data and stack areas are private to the process. Both
the data and stack areas may be extended and contracted on program request. The call
addr = sbrk(incr); .
result caddr_t addr; int incr;

changes the size of the data area by incr bytes and returns the new end of the data area, while

addr = sstk(incr);
result caddr_t addr; int incr;

changes the size of the stack area. The stack area is also automatically extended as needed. On the
VAX the text and data areas are adjacent in the PO region, while the stack section is in the P1 region,
and grows downward.

1.2.2. Mapping pages

The system supports sharing of data between processes by allowing pages to be mapped into
memory. These mapped pages may be shared with other processes or private to the process. Protec-
tion and sharing options are defined in <sys/mman.h> as:

/* protections are chosen from these bits, or-ed together */

- #define PROT_READ 0x04 /* pages can be read */
#define PROT_WRITE 0x02 /* pages can be written */
#define PROT_EXEC . 0x01 /* pages can be executed */

/* flags contain mapping type, sharing type and options */
/* mapping type; choose one */

#define MAP_FILE 0x0001 /* mapped from a file or device */
#define MAP_ANON 0x0002 /* allocated from memory, swap space */
#define MAP_TYPE 0x000f /* mask for type field */
/* sharing types; choose one */
#define MAP_SHARED 0x0010 /* share changes */
#define MAP_PRIVATE 0x0000 /* changes are private */
/* other flags */
" #define MAP_FIXED 0x0020 /* map addr must be exactly as requested */ ‘

#define MAP_NOEXTEND 0x0040 /* for MAP_FILE, don’t change file size */
#define MAP_HASSEMPHORE 0x0080 /* region may contain semaphores */
#define MAP_INHERIT 0x0100 /* region is retained after exec */

The cpu-dependent size of a page is returned by the getpagesize system call:

pagesize = getpagesize();
result int pagesize;

The call:

t This section represents the interface planned for later releases of the system. Of the calls described in this
section, only sbrk and getpagesize are included in 4.3BSD.

4.3BSD Architecture Manual ‘ PS1:6-11

maddr = mmap(addr, len, prot, flags, fd, pos);
result caddr_t maddr; caddr_t addr; int *len, prot, flags, fd; off_t pos;

causes the pages starting at addr and continuing for at niost /en bytes to be mapped from the object
represented by descriptor fd, starting at byte offset pos. The starting address of the region is returned;
for the convenience of the system, it may be different than that supplied unless the MAP_FIXED flag
is given, in which case the exact address will be used or the call will fail. The actual amount mapped
is returned in /en. The addr, len, and pos parameters must all be multiples of the pagesize. The
parameter prot specifies the accessibility of the mapped pages. The parameter flags specifies the type
of object to be mapped, mapping options, and whether modifications made to this mapped copy of
the page are to be kept private, or are to be shared with other references. Possible types include
MAP_FILE, mapping a regular file or character-special device memory, and MAP_ANON, which
maps memory not associated with any specific file. The file descriptor used for creating MAP_ANON
regions is used only for naming, and may be given as -1 if no name is associated with the regiont.
The MAP_NOEXTEND flag prevents the mapped file from being extended despite rounding due to
the granularity of mapping. The MAP_HASSEMAPHORE flag allows special handling for regions
that may contain semaphores. The MAP_INHERIT flag allows a region to be inherited after an exec.

A facility is provided to synchronize a mapped region with the file it maps; the call
msync(addr, len);
caddr_t addr; int len;

writes any modified pages back to the filesystem and updates the file modification time. If len is 0, all

modified pages within the region containing addr will be flushed; if /en is non-zero, only the pages

containing addr and len succeeding locations will be examined. Any required invalidation of memory -
caches will also take place at this time. Filesystem operations on a file which is mapped for shared

modifications are unpredictable except after an msync.

A mapping can be removed by the call

munmap(addr);
caddr_t addr;

This call deletes the region containing the address given, and causes furtk=r references to addresses
within the region to generate invalid memory references.

1.2.3. Page protection control
A process can control the protection of pages using the call

mprotect(addr, len, prot);
caddr_t addr; int len, prot;

This call changes the specified pages to have protection prot. Not all implementations will guarantee
protection on a page basis; the granularity of protection changes may be as large as an entire region.
1.2.4. Giving and getting advice

A process that has knowledge of its memory behavior may use the madvise call:

madvise(addr, len, behav);
caddr_t addr; int len, behav;

Behav describes expected behavior, as given in <sys/mman.h>:

$ The current design does not allow a process to specify the location of swap space. In the future we may
define an additional mapping type, MAP_SWAP, in which the file descriptor argument specifies a file or
device to which swapping should be done.

PS1:6-12 4.3BSD Architecture Manual

#define MADV_NORMAL 0 /* no further special treatment */
#define MADV_RANDOM 1 /* expect random page references */
#define MADV_SEQUENTIAL 2 /* expect sequential references */
#define MADV_WILLNEED 3 /* will need these pages */

#define MADV_DONTNEED 4 /* don’t need these pages */

#define MADV_SPACEAVAIL 5 /* insure that resources are reserved */

Finally, a process may obtain information about whether pages are core resident by using the call

mincore(addr, len, vec) -
caddr_t addr; int len; result char *vec;

Here the current core residency of the pages is returned in the character array vec, with a value of 1
meaning that the page is in-core.

1.2.5. Synchronization primitives

Primitives are provided for synchronization using semaphores in shared memory. Semaphores
must lie within a MAP_SHARED region with at least modes PROT_READ and PROT_WRITE.
The MAP_HASSEMAPHORE flag must have been specified when the region was created. To acquire
a lock a process calls:

value = mset(sem, wait)

result int value; semaphore *sem; int wait;
Mser indivisibly tests and sets the semaphore sem. If the the previous value is zero, the process has
acquired the lock and mset returns true immediately. Otherwise, if the wait flag is zero, failure is

returned. If wait is true and the previous value is non-zero, the “want” flag is set and the test-and-set
is retried; if the lock is still unavailable mser relinquishes the processor until notified that it should

retry. .
To release a lo_ck' a process calls:

mclear(sem)
semaphore *sem;

Meclear indivisibly tests and clears the semaphore sem. If the “want” flag is zero in the previous
value, mclear returns immediately. If the “want” flag is non-zero in the previous value, mclear
arranges for waiting processes to retry before returning.

Two routines provide services analogous to the kernel sleep and wakeup functions mterpreted in
the domain of shared memory. A process may relinquish the processor by calling msleep:
msleep(sem)
semaphore *sem;
The process will remain in a sleeping state until some other process issues an mwakeup for the same
semaphore within the region using the call:

mwakeup(sem)
semaphore *sem;

An mwakeup may awaken all sleepers on the semaphore, or may awaken only the next sleeper on a
queue.

4.3BSD Architecture Manual PS1:6-13

1.3. Signals

1.3.1. Overview

The system defines a set of signals that may be delivered to a process. Signal delivery resembles
the occurrence of a hardware interrupt: the signal is blocked from further occurrence, the current pro-
cess context is saved, and a new one is built. A process may specify the handler to which a signal is
delivered, or specify that the signal is to be blocked or ignored. A process may also specify that a
default action is to be taken when signals occur.

Some signals will cause a process to exit when they are not caught. This may be accompanied
by creation of a core image file, containing the current memory image of the process for use in post-
mortem debugging. A process may choose to have signals delivered on a special stack, so that sophis-
ticated software stack manipulations are possible.

All signals have the same priority. If multiple signals are pending simultaneously, the order in
which they are delivered to a process is implementation specific. Signal routines execute with the sig-
nal that caused their invocation blocked, but other signals may yet occur. Mechanisms are provided
whereby critical sections of code may protect themselves against the occurrence of specified signals.

1.3.2. Signal types '

The signals defined by the system fall into one of five classes: hardware conditions, software
conditions, input/output notification, process control, or resource control. The set of signals is
. defined in the file <signal.h>. »

Hardware signals are derived from exceptional conditions which may occur during execution.
Such signals include SIGFPE representing floating point and other arithmetic exceptions, SIGILL for
illegal instruction execution, SIGSEGV for addresses outside the currently assigned area of memory,
and SIGBUS for accesses that violate memory protection constraints. Other, more cpu-specific
hardware signals exist, such as those for the various customer-reserved instructions on the VAX
(SIGIOT, SIGEMT, and SIGTRAP).

Software signals reflect interrupts generated by user request: SIGINT for the normal interrupt
signal; SIGQUIT for the more powerful quit signal, that normally causes a core image to be gen-
erated; SIGHUP and SIGTERM that cause graceful process termination, either because a user has
“hung up”, or by user or program request; and SIGKILL, a more powerful termination signal which a
process cannot catch or ignore. Programs may define their own asynchronous events using SIGUSR1
and SIGUSR2. Other software signals (SIGALRM, SIGVTALRM, SIGPROF) indicate the expiration
of interval timers.

A process can request notification via a SIGIO signal when input or output is possible on a
descriptor, or when a non-blocking operation completes. A process may request to receive a SIGURG
signal when an urgent condition arises.

A process may be stopped by a signal sent to it or the members of its process group. The SIG-
STOP signal is a powerful stop signal, because it cannot be caught. Other stop signals SIGTSTP,
SIGTTIN, and SIGTTOU are used when a user request, input request, or output request respectively
is the reason for stopping the process. A SIGCONT signal is sent to a process when it is continued
from a stopped state. Processes may receive notification with a SIGCHLD signal when a child pro-
cess changes state, either by stopping or by terminating.

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs when a process
nears its CPU time limit and SIGXFSZ warns that the limit on file size creation has been reached.

1.3.3. Signal handlers

A process has a handler associated with each signal. The handler controls the way the signal is
delivered. The call

PS1:6-14 4.3BSD Architecture Manual

#include <signal.h>

struct sigvec {
int (*sv_handler)();
int sv_mask;
int sv_flags;

%

sigvec(signo, sv, osv)
int signo; struct sigvec *sv; result struct sigvec *osv;

assigns interrupt handler address sv_handler to signal signo. Each handler address specifies either an
interrupt routine for the signal, that the signal is to be ignored, or that a default action (usually pro-
cess termination) is to occur if the signal occurs. The constants SIG_IGN and SIG_DEF used as
values for sv_handler cause ignoring or defaulting of a condition. The sv_mask value specifies the sig-
nal mask to be used when the handler is invoked; it implicitly includes the signal which invoked the
handler. Signal masks include one bit for each signal; the mask for a signal signo is provided by the
- macro sigmask(signo), from <signal.h>. Sv_flags specifies whether system calls should be restarted if
the signal handler returns and whether the handler should operate on the normal run-time stack or a
special signal stack (see below). If osv is non-zero, the previous signal vector is returned.

When a signal condition arises for a process, the signal is added to a set of signals pending for
the process. If the signal is not currently blocked by the process then it will be delivered. The process
of signal delivery adds the signal to be delivered and those signals specified in the associated signal
handler’s sv_mask to a set of those masked for the process, saves the current process context, and
places the process in the context of the signal handling routine. The call is arranged so that if the sig-
nal handling routine exits normally the signal mask will be restored and the process will resume exe-
cution in the original context. If the process wishes to resume in a different context, then it must
arrange to restore the signal mask itself.

The mask of blocked signals is independent of handlers for signals. It delays signals from being
delivered much as a raised hardware interrupt priority level delays hardware interrupts. Preventing
an interrupt from occurring by changing the handler is analogous to disabling a device from further
interrupts.

The signal handling routine sv_handler is called by a C call of the form
(*sv_handler)(signo, code, scp);
int signo; long code; struct sigcontext *scp;

The signo gives the number of the signal that occurred, and the code, a word of information supplied
by the hardware. The scp parameter is a pointer to a machine-dependent structure containing the
information for restoring the context before the signal.

1.3.4. Sending signals
A process can send a signal to another process or group of processes with the calls:
kill(pid, signo)
int pid, signo;
killpgrp(pgrp, signo)
int pgrp, signo;

Unless the process sending the signal is privileged, it must have the same effective user id as the pro-
cess receiving the signal.

Signals are also sent implicitly from a terminal device to the process group associated with the
terminal when certain input characters are typed.

4.3BSD Architecture Manual PS1:6-15

1.3.5. Protecting critical sections

To block a section of code against one or more signals, a sighlock call may be used to add a set
of signals to the existing mask, returning the old mask:

oldmask = sigblock(mask);
result long oldmask; long mask;

The old mask can then be restored later with sigsetmask,

oldmask = sigsetmask(mask);
result long oldmask; long mask;

The sigblock call can be used to read the current mask by specifying an empty mask.

It is possible to check conditions with some signals blocked, and then to pause waiting for-a sig-
nal and restoring the mask, by using:

sigpause(mask);
long mask;

1.3.6. Signal stacks
Applications that maintain complex or fixed size stacks can use the call

struct sigstack (
caddr_t SS_Sp;
int ss_onstack;

I

sigstack(ss, oss)
struct sigstack *ss; result struct sigstack *oss;

to provide the system with a stack based at ss_sp for delivery of signals. The value ss_onstack indi- '
cates whether the process is currently on the signal stack, a notion maintained in software by the sys-
tem.

when a signal is to be delivered, the system checks whether the process is on a signal stack. If
not, then the process is switched to the signal stack for delivery, with the return from the signal
arranged to restore the previous stack.

If the process wishes to take a non-local exit from the signal routine, or run code from the signal
stack that uses a different stack, a sigstack call should be used to reset the signal stack.

PS1:6-16 4.3BSD Architecture Manual

14. Timers

1.4.1. Real time
The system’s notion of the current Greenwich time and the current time zone is set and
returned by the call by the calls: :

#include <sys/time.h>

settimeofday(tvp, tzp);
struct timeval *tp;
struct timezone *tzp;

gettimeofday(tp, tzp);
result struct timeval *tp;
result struct timezone *tzp;

where the structures are defined in <sys/time.h> as:

struct timeval (
long tv_sec; /* seconds since Jan 1, 1970 */
long tv_usec; /* and microseconds */

%

struct timezone {
int tz_minuteswest; /* of Greenwich */ ‘
int tz_dsttime; /* type of dst correction to apply */
JH .
The precision of the system clock is hardware dependent. Earlier versions of UNIX contained only a
1-second resolution version of this call, which remains as a library routine:

time(tvsec)
result long *tvsec;

returning only the tv_sec field from the gettimeofday call.

1.4.2. Interval time .
The system provides each process with three interval timers, defined in <sys/time.h>:

#define ITIMER_REAL 0 /* real time intervals */
#define ITIMER_VIRTUAL 1 /* virtual time intervals */
#define ITIMER_PROF 2 /* user and system virtual time */

The ITIMER_REAL timer decrements in real time. It could be used by a library routine to maintain
a wakeup service queue. A SIGALRM signal is delivered when this timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when the pro-
cess is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is run-
ning on behalf of the process. It is designed to be used by processes to statistically profile their execu-
tion. A SIGPROF signal is delivered when it expires.

A timer value is defined by the itimerval structure:
struct itimerval (
struct timeval it_interval; /* timer interval */

struct timeval it_value; /* current value */
}

4.3BSD Architecture Manual PS1:6-17

and a timer is set or read by the call:

getitimer(which, value);
int which; result struct itimerval *value;

setitimer(which, value, ovalue);
int which; struct itimerval *value; result struct itimerval *ovalue;

The third argument to setitimer specifies an optional structure to receive the previous contents of the
interval timer. A timer can be disabled by specifying a timer value of 0.

The system rounds argument timer intervals to be not less than the resolution of its clock. This
clock resolution can be determined by loading a very small value into a timer and reading the timer
back to see what value resulted. :

The alarm system call of earlier versions of UNIX is provided as a library routine using the
ITIMER_REAL timer. The process profiling facilities of earlier versions of UNIX remain because it
is not always possible to guarantee the automatic restart of system calls after receipt of a signal. The
profil call arranges for the kernel to begin gathering execution statistics for a process:

profil(buf, bufsize, offset, scale);
result char *buf; int bufsize, offset, scale;

This begins sampling of the program counter, with statistics maintained in the user-provided buffer.

PS1:6-18 4.3BSD Architecture Manual
1.5. Descriptors

1.5.1. The reference table

Each process has access to resources through descriptors. Each descriptor is a handle allowing
the process to reference objects such as files, devices and communications links.

Rather than allowing processes direct access to descriptors, the system introduces a level of
indirection, so that descriptors may be shared between processes. Each process has a descriptor refer-
ence table, containing pointers to the actual descriptors. The descriptors themselves thus have multi-
ple references, and are reference counted by the system.

Each process has a fixed size descriptor reference table, where the size is returned by the gerdia-
blesize call: ' :

nds = getdtablesize();
result int nds;

and guaranteed to be at least 20. The entries in the descriptor reference table are referred to by small
integers; for example if there are 20 slots they are numbered 0 to 19.

1.5.2. Descriptor properties

Each descriptor has a logical set of properties maintained by the system and defined by its type.
Each type supports a set of operations; some operations, such as reading and writing, are common to
several abstractions, while others are unique. The generic operations applying to many of these types
are described in section 2.1. Naming contexts, files and directories are described in section 2.2. Sec-
tion 2.3 describes communications domains and sockets. Terminals and (structured and unstruc-
tured) devices are described in section 2.4.

1.5.3. Managing descriptor references
A duplicate of a descriptor reference may be made by doing

new = dup(old);
result int new; int old;

returning a copy of descriptor reference o/d indistinguishable from the original. The new chosen by
the system will be the smallest unused descriptor reference slot. A copy of a descriptor reference may
be made in a specific slot by doing

dup2(old, new);
int old, new;
The dup2 call causes the system to deallocate the descriptor reference current occupying slot new, if

any, replacing it with a reference to the same descriptor as old. This deallocation is also performed
by:

close(old);
int old;

1.5.4. Multiplexing requests

The system provides a standard way to do synchronous and asynchronous multiplexing of
operations.

Synchronous multiplexing is performed by using the select call to examine the state of multiple
descriptors simultaneously, and to wait for state changes on those descriptors. Sets of descriptors of
interest are specified as bit masks, as follows:

4.3BSD Architecture Manual PS1:6-19

#include <sys/types.h>

nds = select(nd, in, out, except, tvp);
result int nds; int nd; result fd_set *in, *out, *except;
struct timeval *tvp;

FD_ZERO(&fdset);
FD_SET(fd, &fdset);
FD_CLR(fd, &fdset);
FD_ISSET(fd, &fdset);
int fs; fs_set fdset;

The select call examines the descriptors specified by the sets in, out and except, replacing the specified
bit masks by the subsets that select true for input, output, and exceptional conditions respectively (nd
indicates the number of file descriptors specified by the bit masks). If any descriptors meet the fol-
. lowing criteria, then the number of such descriptors is returned in nds and the bit masks are updated.

e A descriptor selects for input if an input oriented operation such as read or receive is possible,
or if a connection request may be accepted (see section 2.3.1.4).

e A descriptor selects for output if an output oriented operation such as write or send is possible,
or if an operation that was “in progress”, such as connection establishment, has completed (see
section 2.1.3). ' »

e A descriptor selects for an exceptional condition if a condition that would cause a SIGURG sig-
nal to be generated exists (see section 1.3.2), or other device-specific events have occurred.

If none of the specified conditions is true, the operation waits for one of the conditions to arise,
blocking at most the amount of time specified by tvp. If tvp is given as 0, the select waits indefinitely.

Options affecting I/0 on a descriptor may be read and set by the call:

dopt = fentl(d, cmd, arg)
result int dopt; int d, cmd, arg;

/* interesting values for cmd */

#define F_SETFL 3 /* set descriptor options */

#define F_GETFL 4 /* get descriptor options */

#define F_SETOWN 5 /* set descriptor owner (pid/pgrp) */
#define F_GETOWN 6 /* get descriptor owner (pid/pgrp) */

The F_SETFL cmd may be used to set a descriptor in non-blocking I/0 mode and/or enable signaling
when I/0 is possible. F_SETOWN may be used to specify a process or process group to be signaled
when using the latter mode of operation or when urgent indications arise.

Operations on non-blocking descriptors will either complete. immediately, note an error
EWOULDBLOCK, partially complete an input or output operation returning a partial count, or
return an error EINPROGRESS noting that the requested operation is in progress. A descriptor
which has signalling enabled will cause the specified process and/or process group be signaled, with a
SIGIO for input, output, or in-progress operation complete, or a SIGURG for exceptional conditions.

For example, when writing to a terminal using non-blocking output, the system will accept only
as much data as there is buffer space for and return; when making a connection on a socket, the
operation may return indicating that the connection establishment is “in progress”. The select facility
can be used to determine when further output is possible on the terminal, or when the connection
establishment attempt is complete.

PS1:6-20 4.3BSD Architecture Manual

1.5.5. Descriptor wrapping.}

A user process may build descriptors of a specified type by wrapping a communications channel
with a system supplied protocol translator:

new = wrap(old, proto)
result int new; int old; struct dprop *proto;

Operations on the descriptor old are then translated by the system provided protocol translator into
requests on the underlying object o/ld in a way defined by the protocol. The protocols supported by
the kernel may vary from system to system and are described in the programmers manual.

Protocols may be based on communications multiplexing or a rights-passing style of handling
multiple requests made on the same object. For instance, a protocol for implementing a file abstrac-
tion may or may not include locally generated “read-ahead” requests. A protocol that provides for
read-ahead may provide higher performance but have a more difficult implementation.

Another example is the terminal driving facilities. Normally a terminal is associated with a
communications line, and the terminal type and standard terminal access protocol are wrapped
around a synchronous communications line and given to the user. If a virtual terminal is required,
the terminal driver can be wrapped around a communications link, the other end of which is held by
a virtual terminal protocol interpreter.

t The facilities described in this section are not included in 4.3BSD.

4.3BSD Architecture Manual PS1:6-21

1.6. Resource controls

1.6.1. Process priorities

The system gives CPU scheduling priority to processes that have not used CPU time recently.
This tends to favor interactive processes and processes that execute only for short periods. It is possi-
ble to determine the priority currently assigned to a process, process group, or the processes of a
specified user, or to alter this priority using the calls:

#define PRIO_PROCESS 0 /* process */
#define PRIO_PGRP 1 /* process group */
#define PRIO_USER 2 /* user id */

prio = getpriority(which, who);
result int prio; int which, who;

setpriority(which, who, prio);

int which, who, prio;
The value prio is in the range -20 to 20. The default priority is 0; lower priorities cause more favor-
able execution. The getpriority call returns the highest priority (lowest numerical value) enjoyed by
any of the specified processes. The setpriority call sets the priorities of all of the specified processes to
the specified value. Only the super-user may lower priorities.

1.6.2. Resource utilization

The resources used by a process are returned by a getrusage call, returning information in a
structure ‘defined in <sys/resource.h>:

#define RUSAGE_SELF 0 /* usage by this process */
#define RUSAGE_CHILDREN -1/* usage by all children */

getrusage(who, rusage)
int who; result struct msage *rusage;

struct rusage (

struct timeval ru_utime; /* user time used */

struct timeval ru_stime; /* system time used */

int ru_maxrss; /* maximum core resident set size: kbytes */
int ru_ixrss; /* integral shared memory size (kbytes*sec) */
int ru_idrss; /* unshared data memory size */

int ru_isrss; /* unshared stack memory size */

int ru_minflt; /* page-reclaims */

int ru_majflt; /* page faults */

int ru_nswap; /* swaps */ .

int ru_inblock; /* block input operations */

int ru_oublock; /* block output operations */

int ru_msgsnd; /* messages sent */

int ru_msgrcv; /* messages received */

int ru_nsignals; /* signals received */

int ru_nvesw; /* voluntary context switches */

int ru_nivcsw; /* involuntary context switches */

Y

The who parameter specifies whose resource usage is to be returned. The resources used by the
current process, or by all the terminated children of the current process may be requested.

PS1:6-22 4.3BSD Architecture Manual

1.6.3. Resource limits

The resources of a process for which limits are controlled by the kernel are defined in
<sys/resource.h>, and controlled by the getrlimit and setrlimit calls:

#define RLIMIT_CPU 0 /* cpu time in milliseconds */
#define RLIMIT_FSIZE | /* maximum file size */

#define RLIMIT_DATA 2 /* maximum data segment size */
#define RLIMIT_STACK 3 /* maximum stack segment size */
#define RLIMIT_CORE 4 /* maximum core file size */
#define RLIMIT_RSS 5 /* maximum resident set size */

6

#define RLIM_NLIMITS
#define RLIM_INFINITY Ox7fiffff

struct rlimit {
int rlim_cur; /* current (soft) limit */
int rlim_max; /* hard limit */

b

getrlimit(resource, rip)
int resource; result struct rlimit *rlp;

setrlimit(resource, rip)
int resource; struct rlimit *rlp;

Only the super-user can raise the maximum limits. Other users may only alter rlim_cur within
the range from 0 to rlim_max or (irreversibly) lower rlim_max.

4.3BSD Architecture Manual PS1:6-23

1.7. System operation support

Unless noted otherwise, the calls in this section are permitted only to a privileged user.

1.7.1. Bootstrap operations
The call

mount(blkdev, dir, ronly);
char *blkdev, *dir; int ronly;

extends the UNIX name space. The mount call specifies a block device bikdev containing a UNIX file
system to be made available starting at dir. If ronly is set then the file system is read-only; writes to
the file system will not be permitted and access times will not be updated when files are referenced.
Dir is normally a name in the root directory.

The call
swapon(blkdev, size);
char *blkdev; int size;
specifies a device to be made available for paging and swapping.

1.7.2. Shutdown operations
The call
unmount(dir);
char *dir;
unmounts the file system mounted on dir. This call will succeed only if the file system is not
currently being used.
The call
sync();
schedules input/output to clean all system buffer caches. (This call does not regnire privileged status.)
The call

reboot(how)
int how;

causes a machine halt or reboot. The call may request a reboot by specifying how as
RB_AUTOBOOT, or that the machine be halted with RB_HALT. These constants are defined in
<sys/reboot.h>.

1.7.3. Accounting

The system optionally keeps an accounting record in a file for each process that exits on the sys-
tem. The format of this record is beyond the scope of this document. The accounting may be
enabled to a file name by doing

acct(path);
char *path;

If path is null, then accounting is disabled. Otherwise, the named file becomes the accounting file.

PS1:6-24 : 4.3BSD Architecture Manual

2. System facilities

This section discusses the system facilities that are not considered part of the kernel.
The system abstractions described are:

Directory contexts :
A directory context is a position in the UNIX file system name space. Operations on files and
other named objects in a file system are always specified relative to such a context.

Files
Files are used to store uninterpreted sequence of bytes on which random access reads and writes
may occur. Pages from files may also be mapped into process address space.t A directory may
be read as a file. :

Communications domains .
A communications domain represents an interprocess communications environment, such as the
communications facilities of the UNIX system, communications in the INTERNET, or the
resource sharing protocols and access rights of a resource sharing system on a local network.

Sockets
A socket is an endpoint of communication and the focal point for IPC in a communications
domain. Sockets may be created in pairs, or given names and used to rendezvous with other
sockets in a communications domain, accepting connections from these sockets or exchanging
messages with them. These operations model a labeled or unlabeled communications graph,
and can be used in a wide variety of communications domains. Sockets can have different types
to provide different semantics of communication, increasing the flexibility of the model.
Terminals and other devices
Devices include terminals, providing input editing and interrupt generation and output flow
control and editing, magnetic tapes, disks and other peripherals. They often support the generic
read and write operations as well as a number of ioct/s.

Processes
Process descriptors provide facilities for control and debugging of other processes.

t Support for mapping files is not included in the 4.3 release.

4.3BSD Architecture Manual PS1:6-25

2.1. Generic operations

Many system abstractions support the operations read, write and ioctl. We describe the basics of
these common primitives here. Similarly, the mechanisms whereby normally synchronous operations
may occur in a non-blocking or asynchronous fashion are common to all system-defined abstractions
and are described here.

2.1.1. Read and write

The read and write system calls can be applied to communications channels, files, terminals and
devices. They have the form:

cc = read(fd, buf, nbytes);
result int cc; int fd; result caddr_t buf; int nbytes;

cc = write(fd, buf, nbytes);
result int cc; int fd; caddr_t buf; int nbytes;

The read call transfers as much data as possible from the object defined by fd to the buffer at address
buf of size nbytes. The number of bytes transferred is returned in cc, which is -1 if a return occurred
before any data was transferred because of an error or use of nor_x-blocking operations.

The write call transfers data from the buffer to the object defined by fd. Depending on the type
of fd, it is possible that the write call will accept some portion of the provided bytes; the user should
resubmit the other bytes in a later request in this case. Error returns because of interrupted or other-
wise incomplete operations are possible.

Scattering of data on input or gathering of data for output is also possible using an array of
input/output vector descriptors. The type for the descriptors is defined in <sys/uio.h> as:

struct iovec { . '
caddr_.t iov_msg; /* base of a component */
int iov_len; /* length of a component */

%
The calls using an array of descriptors are:

cc = readv(fd, iov, iovlen);
result int cc; int fd; struct iovec *iov; int iovlen;

cc = writev(fd, iov, iovlen);
result int cc; int fd; struct iovec *iov; int iovlen;

Here iovlen is the count of elements in the iov array.

2.1.2. Input/output control .
Control operations on an object are performed by the ioct/ operation:

ioctl(fd, request, buffer);
int fd, request; caddr_t buffer;

This operation causes the specified request to be performed on the object fd. The request parameter
specifies whether the argument buffer is to be read, written, read and written, or is not needed, and
also the size of the buffer, as well as the request. Different descriptor types and subtypes within
descriptor types may use distinct ioct/ requests. For example, operations on terminals control flushing
of input and output queues and setting of terminal parameters; operations on disks cause formatting
operations to occur; operations on tapes control tape positioning.

The names for basic control operations are defined in <sys/ioctl.h>.

PS1:6-26 ‘ 4.3BSD Architecture Manual

2.1.3. Non-blocking and asynchronous operations

A process that wishes to do non-blocking operations on one of its descriptors sets the descriptor
in non-blocking mode as described in section 1.5.4. Thereafter the read call will return a specific
EWOULDBLOCK error indication if there is no data to be read. The process may select the associ-
ated descriptor to determine when a read is possible.

Output attempted when a descriptor can accept less than is requested will either accept some of
the provided data, returning a shorter than normal length, or return an error indicating that the
operation would block. More output can be performed as soon as a select call indicates the object is
writeable.

Operations other than data input or output may be performed on a descriptor in a non-blocking
fashion. These operations will return with a characteristic error indicating that they are in progress if
they cannot complete immediately. The descriptor may then be selected for write to find ‘out when
the operation has been completed. When select indicates the descriptor is writeable, the operation
has completed. Depending on the nature of the descriptor and the operation, addmonal activity may
be started or the new state may be tested.

4.3BSD Architecture Manual PS1:6-27

2.2. File system

2.2.1. Overview

The file system abstraction provides access to a hierarchical file system structure. The file sys-
tem contains directories (each of which may contain other sub-directories) as well as files and refer-
ences to other objects such as devices and inter-process communications sockets.

Each file is organized as a linear array of bytes. No record boundaries or system related infor-
mation is present in a file. Files may be read and written in a random-access fashion. The user may
read the data in a directory as though it were an ordinary file to determine the names of the con-
tained files, but only the system may write into the directories. The file system stores only a small
amount of ownership, protection and usage information with a file.

2.2.2. Naming

The file system calls take path name arguments. These consist of a zero or more component file
names separated by *“/” characters, where each file name is up to 255 ASCII characters excluding null
and (1Y / ".

Each process always has two naming contexts: one for the root directory of the file system and
one for the current working directory. These are used by the system in the filename translation pro-
cess. If a path name begins with a “/”, it is called a full path ' name and interpreted relative to the
root directory context. If the path name does not begin with a “/” it is called a relative path name
and interpreted relative to the current directory context.

The system limits the total length of a path name to 1024 characters.

The file name “..” in each directory refers to the parent directory of that directory. The parent .
directory of the root of the file system is always that directory. .

The calls

chdir(path);
char *path;

chioot(path)

char *path;
change the current working directory and root directory context of a process. Only the super-user can
change the root directory context of a process.

2.2.3. Creation and removal

The file system allows directories, files, special devices, and “portals” to be created and removed
from the file system.

2.2.3.1. Directory creation and removal
A directory is created with the mkdir system call:

mkdir(path, mode);
char *path; int mode;

where the mode is defined as for files (see below). Directories are removed with the rmdir system
call:

rmdir(path);
char *path;

A directory must be empty if it is to be deleted.

PS1:6-28 , 4.3BSD Architecture Manual

2.2.3.2. File creation
Files are created with the open system call,

fd = open(path, oflag, mode);
result int fd; char *path; int oflag, mode;

The path parameter specifies the name of the file to be created. The oflag parameter must include
O_CREAT from below to cause the file to be created. Bits for oflag are defined in <sys/file.h>:

#define O_RDONLY 000 /* open for reading */

#define O_WRONLY 001 /* open for writing */

#define O_RDWR 002 /* open for read & write */
#define O_NDELAY 004 /* non-blocking open */

#define O_APPEND 010 /* append on each write */
#define O_CREAT 01000 /* open with file create */
#define O_TRUNC 02000 /* open with truncation */
#define O_EXCL 04000 /* error on create if file exists */

One of O_RDONLY, O_WRONLY and O_RDWR should be specified, indicating what types of
. operations are desired to be performed on the open file. The operations will be checked against the
user’s access rights to the file before allowing the open to succeed. Specifying O_APPEND causes
writes to automatically append to the file. The flag O_CREAT causes the file to be created if it does
not exist, owned by the current user and the group of the containing directory. The protection for the
new file is specified in mode. The file mode is used as a three digit octal number. Each digit encodes
read access as 4, write access as 2 and execute access as 1, or’ed together. The 0700 bits describe
owner access, the 070 bits describe the access rights for processes in the same group as the file, and
the 07 bits describe the access rights for other processes.

If the open specifies to create the file with O_EXCL and the file already exists, then the open
will fail without affecting the file in any way. This provides a simple exclusive access facility. If the
file exists but is a symbolic link, the open will fail regardless of the existence of the file specified by
the link.

2.2.3.3. Creating references to devices

The file system allows entries which reference peripheral devices. Peripherals are distinguished
as block or character devices according by their ability to support block-oriented operations. Devices
are identified by their “major” and “minor” device numbers. The major device number determines
the kind of peripheral it is, while the minor device number indicates one of possibly many peripherals
of that kind. Structured devices have all operations performed internally in “block™ quantities while
unstructured devices often have a number of special ioct/ operations, and may have input and output
performed in varying units. The mknod call creates special entries:

mknod(path, mode, dev);
char *path; int mode, dev;

where mode is formed from the object type and access permissions. The parameter dev is a
configuration dependent parameter used to identify specific character or block I/0O devices.

2.2.3.4. Portal creationt
The call
fd = portal(name, server, param, dtype, protocol, domain, socktype)

result int fd; char *name, *server, *param; int dtype, protocol;
int domain, socktype;

t The portal call is not implemented in 4.3BSD.

4.3BSD Architecture Manual PS1:6-29

places a name in the file system name space that causes connection to a server process when the name
is used. The portal call returns an active portal in fd as though an access had occurred to activate an
inactive portal, as now described.

When an inactive portal is accessed, the system sets up a socket of the specified socktype in the
specified communications domain (see section 2.3), and creates the server process, giving it the
specified param as argument to help it identify the portal, and also giving it the newly created socket
as descriptor number 0. The accessor of the portal will create a socket in the same domain and con-
nect to the server. The user will then wrap the socket in the specified protocol to create an object of
the required descriptor type dtype and proceed with the operation which was in progress before the
portal was encountered.

While the server process holds the socket (which it received as fd from the portal call on descrip-
tor O at activation) further references will result in connections being made to the same socket.

2.2.3.5. File, device, and portal removal
A reference to a file, special device or portal may be removed with the unlink call,
unlink(path); ’
char *path;

The caller must have write access to the directory in which the file is located for this call to be suc-
cessful. :

2.2.4. Reading and modifying file attributes
Detailed information about the attributes of a file may be obtained with the calls:

#include <sys/stat.h>

- stat(path, stb);
char *path; result struct stat *stb;

fstat(fd, stb);
int fd; result struct stat *stb;

The stat structure includes the file type, protection, ownership, access times, size, and a count of hard
links. If the file is a symbolic link, then the status of the link itself (rather than the file the link refer-
ences) may be found using the Iszat call: .

Istat(path, stb);
char *path; result struct stat *stb;

Newly created files are assigned the user id of the process that created it and the group id of the
directory in which it was created. The ownership of a file may be changed by either of the calls

chown(path, owner, group);
char *path; int owner, group;

fchown(fd, owner, group);
int fd, owner, group;

In addition to ownership, each file has three levels of access protection associated with it. These
levels are owner relative, group relative, and global (all users and groups). Each level of access has
separate indicators for read permission, write permission, and execute permission. The protection
bits associated with a file may be set by either of the calls:

PS1:6-30 4.3BSD Architecture Manual

chmod(path, mode);
char *path; int mode;

fchmod(fd, mode);
int fd, mode;
where mode is a value indicating the new protection of the file, as listed in section 2.2.3.2.
Finally, the access and modify times on a file may be set by the call:
utimes(path, tvp)
char *path; struct timeval *tvp[2];

This is particularly useful when moving files between media, to preserve relationships between the
times the file was modified.

2.2.5. Links and renaming
Links allow muiltiple names for a file to exist. Links exist independently of the file linked to.

Two types of links exist, sard links and symbolié links. A hard link is a reference counting
mechanism that allows a file to have multiple names within the same file system. Symbolic links
cause string substitution during the pathname interpretation process.

Hard links and symbolic links have different properties. A hard link insures the target file will
always be accessible, even after its original directory entry is removed; no such guarantee exists for a -
symbolic link. Symbolic links can span file systems boundaries.

The following calls create a new link, named path2, to pathl:

link(path1, path2);
char *pathli, *path2;

symlink(path1, path2);
char *pathl, *path2;

The unlink primitive may be used to remove either type of link.
If a file is a symbolic link, the “value” of the link may be read with the readlink call,
len = readlink(path, buf, bufsize);
result int len; result char *path, *buf; int bufsizp;
This call returns, in buf, the null-terminated string substituted into pathnames passing through path .
Atomic renaming of file system resident objects is possible with the rename call:

rename(oldname, newname);
char *oldname, *newname;

where both oldname and newname must be in the same file system. If newname exists and is a direc-
tory, then it must be empty.

2.2.6. Extension and truncation

Files are created with zero length and may be extended simply by writing or appending to them.
While a file is open the system maintains a pointer into the file indicating the current location in the
file associated with the descriptor. This pointer may be moved about in the file in a random access
fashion. To set the current offset into a file, the /seek call may be used,

oldoffset = Iseek(fd, offset, type);
result off _t oldoffset; int fd; off_t offset; int type;

where type is given in <sys/file.h> as one of:

4.3BSD Architecture Manual PS1:6-31

#define L_SET 0 /* set absolute file offset */
#define L_INCR 1 /* set file offset relative to current position */
#define L_XTND 2 /* set offset relative to end-of-file */

The call “Iseek(fd, 0, L_LINCR)” returns the current offset into the file. .

Files may have “holes” in them. Holes are void areas in the linear extent of the file where data
has never been written. These may be created by seeking to a location in a file past the current end-
of-file and writing. Holes are treated by the system as zero valued bytes.

A file may be truncated with either of the calls:
truncate(path, length);
char *path; int length;
ftruncate(fd, length);
int fd, length;
reducing the size of the specified file to length bytes.

2.2.7. Checking accessibility
A process running with different real and effective user 1ds may interrogate the accessibility of a
file to the real user by using the access call:

accessible = access(path, how); .
result int accessible; char *path; int how;

Here how is constructed by or’ing the following bits, defined in <sys/file.h>:

#define F_OK 0 /*file exists */
#define X_OK 1 /* file is executable */
#define W_OK 2 /* file is writable */
#define R_OK 4 /* file is readable */

The presence or absence of advisory locks does not affect the result of access.

2.2.8. Locking

The file system provides basic facilities that allow cooperating processes to synchronize their
access to shared files. A process may place an advisory read or write lock on a file, so that other
cooperating processes may avoid interfering with the process’ access. This simple mechanism pro-
vides locking with file granularity. More granular locking can be built using the IPC facilities to pro-
vide a lock manager. The system does not force processes to obey the locks; they are of an advisory
nature only.

Locking is performed after an open call by applying the flock primitive,

flock(fd, how);
int fd, how; .

where the Aow parameter is formed from bits defined in <sys/file.h>:

#define LOCK_SH 1 /* shared lock */

#define LOCK_EX 2 /* exclusive lock */

#define LOCK_NB 4 - /* don’t block when locking */
#define LOCK_UN 8 /* unlock */

Successive lock calls may be used to increase or decrease the level of locking. If an object is currently
locked by another process when a flock call is made, the caller will be blocked until the current lock
owner releases the lock; this may be avoided by including LOCK_NB in the how parameter. Specify-
ing LOCK_UN removes all locks associated with the descriptor. Advisory locks held by a process are
automatically deleted when the process terminates.

PSl:6-32 4.3BSD Architecture Manual

2.2.9. Disk quotas

As an optional facility, each file system may be requested to impose limits on a user’s disk
usage. Two quantities are limited: the total amount of disk space which a user may allocate in a file
system and the total number of files a user may create in a file system. Quotas are expressed as hard
limits and soft limits. A hard limit is always imposed; if a user would exceed a hard limit, the opera-
tion which caused the resource request will fail. A soft limit results in the user receiving a warning
message, but with allocation succeeding. Facilities are provided to turn soft limits into hard limits if
a user has exceeded a soft limit for an unreasonable period of time.

To enable disk quotas on a file system the setquota call is used:
setquota(special, file)
char *special, *file;
where special refers to a structured device file where a mounted file system exists, and file refers to a

disk quota file (residing on the file system associated with special) from which user quotas should be
obtained. The format of the disk quota file is implementation dependent.

To manipulate disk quotas the quota call is provided:
#include <sys/quota.h>
quota(cmd, uid, arg, addr)
int cmd, uid, arg; caddr_t addr;

The indicated cmd is applied to the user ID uid. The parameters arg and addr are command specific.
The file <sys/quota.h> contains definitions pertinent to the use of this call.

4.3BSD Architecture Manual PS1:6-33

2.3. Interprocess communications

2.3.1. Interprocess communication primitives

2.3.1.1. Communication domains

The system provides access to an extensible set of communication domains. A communication
domain is identified by a manifest constant defined in the file <sys/socket.h>. Important standard
domains supported by the system are the “unix” domain, AF_UNIX, for communication within the
system, the “Internet” domain for communication in the DARPA Internet, AF_INET, and the “NS”
domain, AF_NS, for communication using the Xerox Network Systems protocols. Other domains
can be added to the system.

2.3.1.2. Socket types and protocols

Within a domain, communication takes place between communication endpoints known as
sockets. Each socket has the potential to exchange information with other sockets of an appropriate
type within the domain.

Each socket has an associated abstract type, which describes the semantics of communication
using that socket. Properties such as reliability, ordering, and prevention of duplication of messages
are determined by the type. The basic set of socket types is defined in <sys/socket.h>:

/* Standard socket types */
#define SOCK_DGRAM
#define SOCK_STREAM
#define SOCK_RAW /* raw socket */

#define SOCK_RDM /* reliably-delivered message */
#define SOCK_SEQPACKET 5 /* sequenced packets */

" The SOCK_DGRAM type models the semantics of datagrams in network communication: messages
may be lost or duplicated and may arrive out-of-order. A datagram socket may send messages to and
receive messages from multiple peers. The SOCK_RDM type models the semantics of reliable
datagrams: messages arrive unduplicated and in-order, the sender is notified if messages are lost. The
send and receive operations (described below) generate reliable/unreliable datagrams. The
SOCK_STREAM type models connection-based virtual circuits: two-way byte streams with no record
boundaries. Connection setup is required before data communication may begin. The
SOCK_SEQPACKET type models a connection-based, full-duplex, reliable, sequenced packet
exchange; the sender is notified if messages are lost, and messages are never duplicated or presented
out-of-order. Users of the last two abstractions may use the facilities for out-of-band transmission to
send out-of-band data.

SOCK_RAVW is used for unprocessed access to internal network layers and interfaces; it has no
specific semantics.

Other socket types can be defined. .

Each socket may have a specific protocol associated with it. This protocol is used within the
domain to provide the semantics required by the socket type. Not all socket types are supported by
each domain; support depends on the existence and the implementation of a suitable protocol within
the domain. For example, within the “Internet” domain, the SOCK_DGRAM type may be imple-
mented by the UDP user datagram protocol, and the SOCK_STREAM type may be implemented by
the TCP transmission control protocol, while no standard protocols to provide SOCK_RDM or
SOCK_SEQPACKET sockets exist.

/* datagram */
/* virtual circuit */

S W -

2.3.1.3. Socket creation, naming and service establishment

Sockets may be connected or unconnected. An unconnected socket descriptor is obtained by the
socket call:

PS1:6-34 4.3BSD Architecture Manual

s = socket(domain, type, protocol);
result int s; int domain, type, protocol;

The socket domain and type are as described above, and are specified using the definitions from
<sys/socket.h>. The protocol may be given as 0, meaning any suitable protocol. One of several pos-
sible protocols may be selected using identifiers obtained from a library routine, getprotobyname.

An unconnected socket descriptor of a connection-oriented type may yield a connected socket
descriptor in one of two ways: either by actively connecting to another socket, or by becoming associ-
ated with a name in the communications domain and accepting a connection from another socket.
Datagram sockets need not establish connections before use.

To accept connections or to receive datagrams, a socket must first have a binding to a name (or
address) within the communications domain. Such a binding may be established by a bind call:

bind(s, name, namelen);
int s; struct sockaddr *name; int namelen;

Datagram sockets may have default bindings established when first sending data if not explicitly
bound earlier. In either case, a socket’s bound name may be retrieved with a getsockname call:

getsockname(s, name, namelen);
int s; result struct sockaddr *name; result int *namelen;

while the peer’s name can be retrieved with getpeername:

getpeername(s, name, namelen);
int s; result struct sockaddr *name; result int *namelen;

Domains may support sockets with several names.

2.3.1.4. Accepting connections _
Once a binding is made to a connection-oriented socket, it is possible to /isten for connections:
listen(s, backlog);
int s, backlog;
The backlog specifies the maximum count of connections that can be simultaneously queued awaiting
acceptance.
An accept call:

t = accept(s, name, anamelen);
result int t; int s; result struct sockaddr *name; result int *anamelen;

returns a descriptor for a new, connected, socket from the queue of pending connections on s. If no
new connections are queued for acceptance, the call will wait for a connection unless non-blocking
I/0 has been enabled.

2.3.1.5. Making connections
An active connection to a named socket is made by the connect call:

connect(s, name, namelen);
int s; struct sockaddr *name; int namelen;

Although datagram sockets do not establish connections, the connect call may be used with such sock-
ets to create an association with the foreign address. The address is recorded for use in future send
calls, which then need not supply destination addresses. Datagrams will be received only from that
peer, and asynchronous error reports may be received.

It is also possible to create connected pairs of sockets without using the domain’s name space to
rendezvous; this is done with the socketpair callt:

t 4.3BSD supports socketpair creation only in the “unix” communication domain.

4.3BSD Architecture Manual PS1:6-35

socketpair(domain, type, protocol, sv);
int domain, type, protocol; result int sv{2];
Here the returned sv descriptors correspond to those obtained with accept and connect.
The call '
pipe(pv)
result int pv[2];

creates a pair of SOCK_STREAM sockets in the UNIX domain, with pv[0] only writable and pv{1]
only readable.

2.3.1.6. Sending and receiving data
Messages may be sent from a socket by:

cc = sendto(s, buf, len, flags, to, tolen);
result int cc; int s; caddr_t buf; int len, flags; caddr_t to; int tolen;

if the socket is not connected or:

cc = send(s, buf, len, flags);
result int cc; int s; caddr_t buf; int len, flags;

if the socket is connected. The corresponding receive primitives are:

msglen = recvfrom(s, buf, len, flags, from, fromlenaddr);
result int msglen; int s; result caddr_t buf; int len, flags;
result caddr_t from; result int *fromlenaddr;

and

msglen = recv(s, buf, len, flags);
result int msglen; int s; result caddr_t buf: int len, flags;

In the unconnected case, the parameters f0 and tolen specify the destination or source of the
message, while the from parameter stores the source of the message, and *7omlenaddr initially gives
the size of the from buffer and is updated to reflect the true length of the from address.

All calls cause the message to be received in or sent from the message buffer of length /en bytes,
starting at address buf. The flags specify peeking at a message without reading it or sending or receiv-
ing high-priority out-of-band messages, as follows:

#define MSG_PEEK Ox1 /* peek at incoming message */
#define MSG_OOB 0x2 /* process out-of-band data */

2.3.1.7. Scatter/gather and exchanging access rights

It is possible scatter and gather data and to exchange access rights with messages. When either
of these operations is involved, the number of parameters to the call becomes large. Thus the system
defines a message header structure, in <sys/socket.h>, which can be used to conveniently contain the
parameters to the calls:

struct msghdr {
caddr_t msg_name; /* optional address */ .
int msg_namelen; /* size of address */
struct iov *msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
caddr_t msg_accrights; /* access rights sent/received */
int msg_accrightslen; /* size of msg_accrights */

e

PS1:6-36 4.3BSD Architecture Manual

. Here msg_name and msg_namelen specify the source or destination address if the socket is uncon-
nected; msg_name may be given as a null pointer if no names are desired or required. The msg_iov
and msg_iovlen describe the scatter/gather locations, as described in section 2.1.3. Access rights to be
sent along with the message are specified in msg_accrights, which has length msg_accrightsien. In the
“unix” domain these are an array of integer descriptors, taken from the sending process and dupli-
cated in the receiver.

This structure is used in the operations sendmsg and recvmsg:

sendmsg(s, msg, flags);
int s; struct msghdr *msg; int flags;

msglen = recvmsg(s, msg, flags);
result int msglen; int s; result struct msghdr *msg; int flags;

2.3.1.8. Using read and write with sockets

The normal UNIX read and write calls may be applied to connected sockets and translated into
send and receive calls from or to a single area of memory and discarding any rights received. A pro-
cess may operate on a virtual circuit socket, a terminal or a file with blocking or non-blocking
input/output operations without distinguishing the descriptor type.

2.3.1.9. Shutting down halves of full-duplex connections

A process that has a full-duplex socket such as a virtual circuit and no longer wishes to read
- from or write to this socket can give the call:

shutdown(s, direction);

int s, direction;
where direction is 0 to not read further, 1 to not write further, or 2 to completely shut the connection
down. If the underlying protocol supports unidirectional or bidirectional shutdown, this indication

will be passed to the peer. For example, a shutdown for writing might produce an end-of-file condi-
tion at the remote end.

2.3.1.10. Socket and protocol options

Sockets, and their underlying communication protocols, may support options. These options
may be used to manipulate implementation- or protocol-specific facilities. The getsockopt and set-
sockopt calls are used to control options:

getsockopt(s, level, optname, optval, optlen)
int s, level, optname; result caddr_t optval; result int *optlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname; caddr_t optval; int optlen;

The option optname is interpreted at the indicated protocol level for socket s. If a value is specified
with optval and optlen, it is interpreted by the software operating at the specified level. The level
SOL_SOCKET is reserved to indicate options maintained by the socket facilities. Other /evel values
indicate a particular protocol which is to act on the option request; these values are normally inter-
preted as a “protocol number”.

-

2.3.2. UNIX domain
This section describes briefly the properties of the UNIX communications domain.

4.3BSD Architecture Manual PS1:6-37

2.3.2.1. Types of sockets

In the UNIX domain, the SOCK_STREAM abstraction provides pipe-like facilities, while
SOCK_DGRAM provides (usually) reliable message-style communications.

2.3.2.2. Naming
Socket names are strings and may appear in the UNIX file system name space through portalst.

2.3.2.3. Access rights transmission

The ability to pass UNIX descriptors with messages in this domain allows migration of service
within the system and allows user processes to be used in building system facilities.

2.3.3. INTERNET domain

This section describes briefly how the Internet domain is mapped to the model described in this
section. More information will be found in the document describing the network implementation in
4.3BSD.

2.3.3.1. Socket types and protocols

SOCK_STREAM is supported by the Internet TCP protocol; SOCK_DGRAM by the UDP pro-
tocol. Each is layered atop the transport-level Internet Protocol (IP). The Internet Control Message
Protocol is implemented atop/beside IP and is accessible via a raw socket. The SOCK_SEQPACKET
has no direct Internet family analogue; a protocol based on one from the XEROX NS family and lay-
ered on top of IP could be implemented to fill this gap.

2.3.3.2. Socket naming

Sockets in the Internet domain have names composed of the 32 bit Internet address, and a 16
bit port number. Options may be used to provide IP source routing or security options. The 32-bit
address is composed of network and host parts; the network part is variable in size and is frequency
encoded. The host part may optionally be interpreted as a subnet field plus the host on subnet; this is
is enabled by setting a network address mask at boot time.

2.3.3.3. Access rights transmission
No access rights transmission facilities are provided in the Internet domain.

2.3.3.4. Raw access

The Internet domain allows the super-user access to the raw facilities of IP. These interfaces are
modeled as SOCK_RAW sockets. Each raw socket is associated with one IP protocol number, and
receives all traffic received for that protocol. This allows administrative and debugging functions to
occur, and enables user-level implementations of special-purpose protocols such as inter-gateway rout-
ing protocols.

+ The 4.3BSD implementation of the UNIX domain embeds bound sockets in the UNIX file system name
space; this may change in future releases.

PS1:6-38 " 4,3BSD Architecture Manual

2.4. Terminals and Devices

2.4.1. Terminals

Terminals support read and write 1/O operations, as well as a collection of terminal specific ioct/
operations, to control input character interpretation and editing, and output format and delays.

2.4.1.1. Terminal input

Terminals are handled according to the underlying communication characteristics such as baud
rate and required delays, and a set of software parameters.

2.4.1.1.1. Input modes

A terminal is in one of three possible modes: raw, cbreak, or cooked. In raw mode all input is
passed through to the reading process immediately and without interpretation. In cbreak mode, the
handler interprets input only by looking for characters that cause interrupts or output flow control; all
other characters are made available as in raw mode. In cooked mode, input is processed to provide
standard line-oriented local editing functions, and input is presented on a line-by-line basis.

2.4.1.1.2. Interrupt characters

Interrupt characters are interpreted by the terminal handler only in cbreak and cooked modes,
and cause a software interrupt to be sent to all processes in the process group associated with the ter-
minal. Interrupt characters exist to send SIGINT and SIGQUIT signals, and to stop a process group
with the SIGTSTP s:gnal either immediately, or when all input up to the stop character has been
read.

- 2.4.1.1.3. Line editing

When the terminal is in cooked mode, editing of an input line is performed. Edmng facilities
allow deletion of the previous character or word, or deletion of the current input line. In addition, a
special character may be used to reprint the current input line after some number of editing opera-
tions have been applied.

Certain other characters are inwrpreted specially when a process is in cooked mode. The end of
line character determines the end of an input record. The end of file character simulates an end of file
occurrence on terminal input. Flow control is provided by stop output and start output control char-
acters. Output may be flushed with the flush output character; and a literal character may be used to
force literal input of the immediately following character in the input line.

Input characters may be echoed to the terminal as they are received. Non-graphic ASCII input
characters may be echoed as a two-character printable representation, ““character.”

2.4.1.2. Terminal output

On output, the terminal handler provides some simple formatting services. These include con-
verting the carriage return character to the two character return-linefeed sequence, inserting delays
after certain standard control characters, expanding tabs, and providing translations for upper-case
only terminals.

2.4.1.3. Terminal control operations

When a terminal is first opened it is initialized to a standard state and configured with a set of
standard control, editing, and interrupt characters. A process may alter this configuration with cer-
tain control operations, specifying parameters in a standard structure:+

t The control interface described here is an internal interface only in 4.3BSD. Future releases will probably
use a modified interface based on currently-proposed standards.

4.3BSD Architecture Manual PS1:6-39

struct ttymode (

short tt_ispeed; /* input speed */
int tt_iflags; /* input flags */
short tt_ospeed; /* output speed */
int tt_oflags; /* output flags */
%
and “special characters” are specified with the tzychars structure,
struct ttychars {
char tc_erasec; /* erase char */
char tc_killc; /* erase line */
char tc_intrc; /* interrupt */
char tc_quitc; /* quit */
char tc_startc; /* start output */
char tc_stopc; /* stop output */
char tc_eofc; /* end-of-file */
char tc_brkc; /* input delimiter (like nl) */
char tc_suspc; /* stop process signal */
char tc_dsuspc; /* delayed stop process signal */
char tc_rpratc; /* reprint line */
char tc_flushc; /* flush output (toggles) */
char tc_werasc; /* word erase */
char tc_lnextc; /* literal next character */
%

2.4.1.4. Terminal hardware support

The terminal handler allows a user to access basic hardware related functions; e.g. line speed,
modem control, parity, and stop bits. A special signal, SIGHUP, is automatically sent to processes in
a terminal’s process group when a carrier transition is detected. This is normally associated with a
user hanging up on a modem controlled terminal line.

2.4.2. Structured devices

Structures devices are typified by disks and magnetic tapes, but may represent any random-
access device. The system performs read-modify-write type buffering actions on block devices to
allow them to be read and written in a totally random access fashion like ordinary files. File systems
are normally created in block devices.

2.4.3. Unstructured devices

Unstructured devices are those devices which do not support block structure. Familiar unstruc-
tured devices are raw communications lines (with no terminal handler), raster plotters, magnetic tape
and disks unfettered by buffering and permitting large block input/output and positioning and format=
ting commands.

PS1:6-40 | 4.3BSD Architecture Manual

2.5. Process and kernel descriptors

The status of the facilities in this section is still under discussion. The prrace facility of earlier
UNIX systems remains in 4.3BSD. Planned enhancements would allow a descriptor-based process
control facility.

4.3BSD Architecture Manual

I. Summary of facilities

1. Kernel primitives
1.1. Process naming and protection

sethostid
gethostid
sethostname
gethostname
getpid

fork

exit

execve
getuid
geteuid
setreuid
getgid
getegid
getgroups
setregid
setgroups
getpgrp
setpgrp

1.2 Memory management

<sys/mman.h>
sbrk

sstkt
getpagesize
mmapt
msynct
munmapt
mprotect}
madviset
mincoret

- msleept
mwakeupt

1.3 Signals

<signal.h>
sigvec

kill
killpgrp
sigblock
sigsetmask
sigpause
sigstack

1.4 Timing and statistics

<sys/time.h>
gettimeofday
settimeofday

t Not supported in 4.3BSD.

PS1:6-41

set UNIX host id

get UNIX host id

set UNIX host name

get UNIX host name

get process id

create new process

terminate a process

execute a different process

get user id

get effective user id

set real and effective user id’s
get accounting group id

get effective accounting group id
get access group set

set real and effective group id’s
set access group set

get process group

set process group

memory management definitions
change data section size

change stack section size

get memory page size

map pages of memory

flush modified mapped pages to filesystem
unmap memory

change protection of pages

give memory management advice
determine core residency of pages
sleep on a lock

wakeup process sleeping on a lock

signal definitions

set handler for signal

send signal to process

send signal to process group
block set of signals

restore set of blocked signals
wait for signals

set software stack for signals

time-related definitions
get current time and timezone
set current time and timezone

+ Not supported in 4.3BSD.

4.3BSD Architecture Manual

getitimer read an interval timer
setitimer get and set an interval timer
profil profile process
1.5 Descriptors
getdtablesize descriptor reference table size
dup duplicate descriptor
dup2 duplicate to specified index
close close descriptor
select multiplex input/output
fentl control descriptor options
wrapt wrap descriptor with protocol
1.6 Resource controls
<sys/resource.h> resource-related definitions
getpr.ionty get process pqority
setpriority set process priority
getrusage get resource usage
getrlimit get resource limitations
setrlimit set resource limitations
1.7 System operation support
mount mount a device file system
swapon add a swap device
umount umount a file system
sync flush system caches
reboot reboot a machine
acct specify accounting file
2. System facilities
2.1 Generic operations
read read data
write write data
<sys/uio.h> scatter-gather related definitions
readv scattered data input
writev gathered data output
<sys/ioctl.h> standard control operations
ioctl device control operation
2.2 File system
Operations marked with a * exist in two forms: as shown, operating on a file name, and operat-
ing on a file descriptor, when the name is preceded with a “f”. .
<sys/file.h> file system definitions
chdir change directory
chroot change root directory
mkdir make a directory
rmdir remove a directory
open open a new or existing file
mknod make a special file
portalt . make a portal entry

4.3BSD Architecture Manual

unlink
stat*
Istat
chown*
chmod*
utimes
link
symlink
readlink
rename
Iseek
truncate*
access
flock

2.3 Communications

<sys/socket.h>
socket

bind
getsockname
listen

accept
connect
socketpair
sendto

send
recvfrom
recv
sendmsg
recvmsg
shutdown
getsockopt
setsockopt

2.5 Processes and kernel hooks

remove a link

return status for a file
returned status of link
change owner

change mode

change access/modify times
make a hard link

make a symbolic link

read contents of symbolic link
change name of file
reposition within file
truncate file

determine accessibility
lock a file

standard definitions

create socket

bind socket to name

get socket name

allow queuing of connections
accept a connection

connect to peer socket

create pair of connected sockets
send data to named socket

send data to connected socket
receive data on unconnected socket
receive data on connected socket
send gathered data and/or rights
receive scattered data and/or rights
partially close full-duplex connection
get socket option

set socket option

2.4 Terminals, block and character devices

PS1:6-43

Introductory 4.3BSD IPC : PS1:7-1

An Introductory 4.3BSD
Interprocess Communication Tutorial

Stuart Sechrest

Computer Science Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley

ABSTRACT

Berkeley UNIXt 4.3BSD offers several choices for interprocess communication. To aid

the programmer in developing programs which are comprised of cooperating processes, the

- different choices are discussed and a series of example programs are presented. These pro-

grams demonstrate in a simple way the use of pipes, socketpairs, sockets and the use of

datagram and stream communication. The intent of this document is to present a few simple
example programs, not to describe the networking system in full.

1. Goals

Facilities for interprocess communication (IPC) and networking were a major addition
to UNIX in the Berkeley UNIX 4.2BSD release. These facilities required major additions
and some changes to the system interface. The basic idea of this interface is to make IPC
similar to file /0. In UNIX a process has a set of I/0 descriptors, from which one reads and
to which one writes. Descriptors may refer to normal files, to devices (including terminals),
or to communication channels. The use of a descriptor has three phases: its creation, its use
for reading and writing, and its destruction. By using descriptors to write files, rather than
simply naming the target file in the write call, one gains a surprising amount of flexibility.
Often, the program that creates a descriptor will be different from the program that uses the
descriptor. For example the shell can create a descriptor for the output of the ‘Is’ command
that will cause the listing to appear in a file rather than on a terminal. Pipes are another form
of descriptor that have been used in UNIX for some time. Pipes allow one-way data
transmission from one process to another; the two processes and the pipe must be set up by a
common ancestor.

The use of descriptors is not the only communication interface provided by UNIX. The
signal mechanism sends a tiny amount of information from one process to another. The sig-
naled process receives only the signal type, not the identity of the sender, and the number of
possible signals is small. The signal semantics limit the flexibility of the signaling mechanism
as a means of interprocess communication.

The identification of IPC with I/O is quite longstanding in UNIX and has proved quite
successful. At first, however, IPC was limited to processes communicating within a single
machine. With Berkeley UNIX 4.2BSD this expanded to include IPC between machines.
This expansion has necessitated some change in the way that descriptors are created.

+ UNIX is a trademark of AT&T Bell Laboratories.

PS1:7-2 ‘ Introductory 4.3BSD IPC

Additionally, new possibilities for the meaning of read and write have been admitted. Origi-
nally the meanings, or semantics, of these terms were fairly simple. When you wrote some-
thing it was delivered. When you read something, you were blocked until the data arrived.
Other possibilities exist, however. One can write without full assurance of delivery if one can
~ check later to catch occasional failures. Messages can be kept as discrete units or merged into
a stream. One can ask to read, but insist on not waiting if nothing is immediately available.
These new possibilities are allowed in the Berkeley UNIX IPC interface.

Thus Berkeley UNIX 4.3BSD offers several choices for IPC. This paper presents simple
examples that illustrate some of the choices. The reader is presumed to be familiar with the
C programming language [Kernighan & Ritchie 1978], but not necessarily with the system
calls of the UNIX system or with processes and interprocess communication. The paper
reviews the notion of a process and the types of communication that are supported by Berke-
ley UNIX 4.3BSD. A series of examples are presented that create processes that communi-
cate with one another. The programs show different ways of establishing channels of com-
munication. Finally, the calls that actually transfer data are reviewed. To clearly present how
communication can take place, the example programs have been cleared of anything that
might be construed as useful work. They can, therefore, serve as models for the programmer
trying to construct programs which are comprised of cooperating processes.

2. Processes

A program is both a sequence of statements and a rough way of referring to the compu-
tation that occurs when the compiled statements are run. A process can be thought of as a
single line of control in a program. Most programs execute some statements, go through a
few loops, branch in various directions and then end. These are single process programs.
Programs can also have a point where control splits into two independent lines, an action
called forking. In UNIX these lines can never join again. A call to the system routine fork(),
causes a process to split in this way. The result of this call is that two independent processes
will be running, executing exactly the same code. Memory values will be the same for all
values set before the fork, but, subsequently, each version will be able to change only the
value of its own copy of each variable. Initially, the only difference between the two will be
the value returned by fork(). The parent will receive a process id for the child, the child will
receive a zero. Calls to fork(), therefore, typically precede, or are included in, an if-statement.

A process views the rest of the system through a private table of descriptors. The
descriptors can represent open files or sockets (sockets are communication objects that will be
discussed below). Descriptors are referred to by their index numbers in the table. The first
three descriptors are often known by special names, stdin, stdout and stderr. These are the
standard input, output and error. When a process forks, its descriptor table is copied to the
child. Thus, if the parent’s standard input is being taken from a terminal (devices are also
treated as files in UNIX), the child’s input will be taken from the same terminal. Whoever
reads first will get the input. If, before forking, the parent changes its standard input so that
it is reading from a new file, the child will take its input from the new file. It is also possible
to take input from a socket, rather than from a file.

3. Pipes

Most users of UNIX know that they can pipe the output of a program “progl” to the
input of another, “prog2,” by typing the command “progl | prog2.” This is called “piping”
the output of one program to another because the mechanism used to transfer the output is
called a pipe. When the user types a command, the command is read by the sheil, which
decides how to execute it. If the command is simple, for example, “progl,” the shell forks a
process, which executes the program, progl, and then dies. The shell waits for this termina-
tion and then prompts for the next command. If the command is a compound command,
“progl | prog2,” the shell creates two processes connected by a pipe. One process runs the

Introductory 4.3BSD IPC PS1:7-3

program, progl, the other runs prog2. The pipe is an I/O mechanism with two ends, or sock-
ets. Data that is written into one socket can be read from the other.

Since a program specifies its input and output only by the descriptor table indices, which
appear as variables or constants, the input source and output destination can be changed
without changing the text of the program. It is in this way that the shell is able to set up
pipes. Before executing progl, the process can close whatever is at stdout and replace it with
one end of a pipe. Similarly, the process that will execute prog2 can substitute the opposite

#include <stdio.h>

#define DATA "Bright star, would I were steadfast as thou art . . ."

/*

* This program creates a pipe, then forks. The child communicates to the
* parent over the pipe. Notice that a pipe is a one-way communications

* device.

I can write to the output socket (sockets[1], the second socket

* of the array returned by pipe()) and read from the input socket
* (sockets[0]), but not vice versa.

int sockets[2], child;

/* Create a pipe */
if (pipe(sockets) < 0) {

perror("opening stream socket pair");
exit(10);

if ((child = fork()) == -1)

perror("fork");

else if (child)

char buf[1024];

/* This is still the parent. It reads the child's message. */
close(sockets[1]);
if (read(sockets[01, buf, 1024) < 0)
perror("reading message");
printf("-=>%s\n", buf);
close(sockets[01);

} else {°

*/
main()
{

>
}
>

/* This is the child. It writes a message to its parent. */

close(sockets[01);

if (write(sockets[1], DATA, sizeof(DATA)) < 0)
perror("writing message");

close(sockets[1]);

Figure 1| Use of a pipe

PS1:74 Introductory 4.3BSD IPC

end of the pipe for stdin.

Let us now examine a program that creates a pipe for communication between its child
and itself (Figure 1). A pipe is created by a parent process, which then forks. When a process
forks, the parent’s descriptor table is copied into the child’s.

In Figure 1, the parent process makes a call to the system routine pipe(). This routine
creates a pipe and places descriptors for the sockets for the two ends of the pipe in the
process’s descriptor table. Pipe() is passed an array into which it places the index numbers of
the sockets it created. The two ends are not equivalent. The socket whose index is returned
in the low word of the array is opened for reading only, while the socket in the high end is
opened only for writing. This corresponds to the fact that the standard input is the first
descriptor of a process’s descriptor table and the standard output is the second. After creating
the pipe, the parent creates the child with which it will share the pipe by calling fork(). Figure
2 illustrates the effect of a fork. The parent process’s descriptor table points to both ends of
the pipe. After the fork, both parent’s and child’s descriptor tables point to the pipe. The
child can then use the pipe to send a message to the parent.

Just what is a pipe? It is a one-way communication mechanism, with one end opened
for reading and the other end for writing. Therefore, parent and child need to agree on which
way to turn the pipe, from parent to child or the other way around. Using the same pipe for
communication both from parent to child and from child to parent, would be possible (since
both processes have references to both ends), but very complicated. If the parent and child
are to have a two-way conversation, the parent creates two pipes, one for use in each direc-
tion. (In accordance with their plans, both parent and child in the example above close the
socket that they will not use. It is not required that unused descriptors be closed, but it is
good practice.) A pipe is also a stream communication mechanism; that is, all messages sent
through the pipe are placed in order and reliably delivered. When the reader asks for a cer-
tain number of bytes from this stream, he is given as many bytes as are available, up to the
amount of the request. Note that these bytes may have come from the same call to write() or
from several calls to write() which were concatenated.

4. Socketpairs

Berkeley UNIX 4.3BSD provides a slight generalization of pipes. A pipe is a pair of
connected sockets for one-way stream communication. One may obtain a pair of connected
sockets for two-way stream communication by calling the routine socketpair(). The program
in Figure 3 calls socketpair() to create such a connection. The program uses the link for com-
munication in both directions. Since socketpairs are an extension of pipes, their use resem-
bles that of pipes. Figure 4 illustrates the resuit of a fork following a call to socketpair().

Socketpair() takes as arguments a specification of a domain, a style of communication,
and a protocol. These are the parameters shown in the example. Domains and protocols will
be discussed in the next section. Briefly, a domain is a space of names that may be bound to
sockets and implies certain other conventions. Currently, socketpairs have only been imple-
mented for one domain, called the UNIX domain. The UNIX domain uses UNIX path
names for naming sockets. It only allows communication between sockets on the same
machine.

Note that the header files <sys/socket h> and <sys/types.h>. are requu'ed in this pro-
gram. The constants AF_UNIX and SOCK_STREAM are defined in <sys/socket.h>, which
in turn requires the file <sys/types.h> for some of its definitions.

S. Domains and Protocols

Pipes and socketpairs are a simple solution for communicating between a parent and
child or between child processes. What if we wanted to have processes that have no common
ancestor with whom to set up communication? Neither standard UNIX pipes nor socketpairs

. Introductory 4.3BSD IPC PS1:7-5

parent

QE=)

parent " child

O -Q
O -0

Q==

Figure 2 Sharing a pipe between parent and child

PS1:7-6 Introductory 4.3BSD IPC

#include <sy§/types.h>

#include <sys/socket.h>

#include <stdio.h>

#define DATA1 "In Xanadu, did Kublai Khan . . ."
#define DATA2 "A stately pleasure dome decree . . ."

/*

* This program creates a pair of connected sockets then forks and

* communicates over them. This is very similar to communication with pipes,
* however, socketpairs are two-way communications objects. Therefore I can
* gsend messages in both directions.

*/

main()

{
int sockets[2], child;
char buf[1024];

if (socketpair(AF_UNIX, SOCK_.STREAM, 0, sockets) < 0) {
perror("opening stream socket pair");
exit(1);

}

if ((child = fork()) == =1)
perror("fork");
else if (child) {/* This is the parent. */
: close(sockets[0]1);
if (read(sockets[1], buf, 1024, 0) < 0)
perror("reading stream message");
printf("-->%s\n", buf);
if (write(sockets[1], DATA2, sizeof(DATA2)) < 0)
perror("writing stream message");
close(sockets[1]);
)} else { /* This is the child. */
close(sockets(1]);
if (write(sockets[0], DATA1, sizeof(DATAT)) < 0)
perror("writing stream message");
if (read(sockets[0], buf, 1024, 0) < 0)
perror("reading stream message");
printf("-->%s\n", buf);
close(sockets[0]1);

Figure 3 Use of a socketpair

Introductory 4.3BSD IPC PS1:7-7

parent

olo

parent child

=%

olo

Figure 4 Sharing a socketpair between parent and child

are the answer here, since both mechanisms require a common ancestor to set up the com-
munication. We would like to have two processes separately create sockets and then have
messages sent between them. This is often the case when providing or using a service in the
system. This is also the case when the communicating processes are on separate machines.
In Berkeley UNIX 4.3BSD one can create individual sockets, give them names and send mes-
sages between them.

Sockets created by different programs use names to refer to one another; names gen-
erally must be translated into addresses for use. The space from which an address is drawn is
referred to as a domain. There are several domains for sockets. Two that will be used in the
examples here are the UNIX domain (or AF_UNIX, for Address Format UNIX) and the
Internet domain (or AF_INET). UNIX domain IPC is an experimental facility in 4.2BSD
and 4.3BSD. In the UNIX domain, a socket is given a path name within the file system name
space. A file system node is created for the socket and other processes may then refer to the

PS1:7-8 ‘ Introductory 4.3BSD IPC

socket by giving the proper pathname. UNIX domain names, therefore, allow communica-
tion between any two processes that work in the same file system. The Internet domain is the
UNIX implementation of the DARPA Internet standard protocols IP/TCP/UDP. Addresses
in the Internet domain consist of a machine network address and an identifying number,
" called a port. Internet domain names allow communication between machines.

- Communication follows some particular “style.” Currently, communication is either
through a stream or by datagram. Stream communication implies several things. Communi-
cation takes place across a connection between two sockets. The communication is reliable,
error-free, and, as in pipes, no message boundaries are kept. Reading from a stream may
result in reading the data sent from one or several calls to write() or only part of the data from
a single call, if there is not enough room for the entire message, or if not all the data from a
large message has been transferred. The protocol implementing such a style will retransmit
messages received with errors. It will also return error messages if one tries to send a message
after the connection has been broken. Datagram communication does not use connections.
Each message is addressed individually. If the address is correct, it will generally be received,
although this is not guaranteed. Often datagrams are used for requests that require a response
from the recipient. If no response arrives in a reasonable amount of time, the request is
repeated. The individual datagrams will be kept separate when they are read, that is, message
boundaries are preserved.

The difference in performance between the two styles of communication is generally less
important than the difference in semantics. The performance gain that one might find in
using datagrams must be weighed against the increased complexity of the program, which
must now concern itself with lost or out of order messages. If lost messages may simply be
ignored, the quantity of traffic may be a consideration. The expense of setting up a connection
is best justified by frequent use of the connection. Since the performance of a protocol
changes as. it is tuned for different situations, it is best to seek the most up-to-date informa-
tion when making choices for a program in which performance is crucial.

A protocol is a set of rules, data formats and conventions that regulate the transfer of
data between participants in the communication. In general, there is one protocol for each
socket type (stream, datagram, etc.) within each domain. The code that implements a proto-
col keeps track of the names that are bound to sockets, sets up connections and transfers
data between sockets, perhaps sending the data across a network. This code also keeps track
of the names that are bound to sockets. It is possible for several protocols, differing only in
low level details, to implement the same style of communication within a particular domain.
Although it is possible to select which protocol should be used, for nearly all uses it is
sufficient to request the default protocol. This has been done in all of the example programs.

One specifies the domain, style and protocol of a socket when it is created. For exam-
ple, in Figure 5a the call to socket() causes the creation of a datagram socket with the default
protocol in the UNIX domain.

6. Datagrams in the UNIX Domain

Let us now look at two programs that create sockets separately. The programs in Fig-
ures 5a and 5b use datagram communication rather than a stream. The structure used to
name UNIX domain sockets is defined in the file <sys/un.h>. The definition has also been
included in the example for clarity.

Each program creates a socket with a call to socker(). These sockets are in the UNIX
domain. Once a name has been decided upon it is attached to a socket by the system call
bind(). The program in Figure 5a uses the name “socket”, which it binds to its socket. This
name will appear in the working directory of the program. The routines in Figure 5b use its
socket only for sending messages. It does not create a name for the socket because no other
process has to refer to it.

Introductory 4.3BSD IPC PS1:7-9

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>

/*
In the included file <sys/un.h> a sockaddr_un is defined as follows
struct sockaddr_un {
short sun_family;
char sun_path[108];
};

* % % % *

*/
#include <stdio.h>
#define NAME "socket"

/*
* This program creates a UNIX domain datagram socket, binds a name to it,
* then reads from the socket. .
*/ R
main()
{
int sock, length;
struct sockaddr.un name;
char buf[1024];

/* Create socket from which to read. */

sock = socket(AF_UNIX, SOCK_DGRAM, 0);

if (sock < 0) €
perror("opening datagram socket");
exit(1);

>

/* Create name. */

name.sun.family = AF_UNIX;

strcpy(name.sun_.path, NAME);

if (bind(sock, &name, sizeof(struct sockaddr_un))) {
perror("binding name to datagram socket");
exit(1);

}

printf("socket -=->%s\n", NAME);

/* Read from the socket */

if (read(sock, buf, 1024) < 0)
perror("receiving datagram packet");

printf("-=>%s\n", buf);

close(sock);

unl ink (NAME) ;

Figure 5a Reading UNIX domain datagrams

PS1:7-10 Introductory 4.3BSD IPC

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>

#define DATA "The sea is calm tonight, the tide is full . . ."

/*

* Here I send a datagram to a receiver whose name I get from the command
* line arguments. The form of the command line is udgramsend pathname
*/

main(argc, argv)
int argc;
char *argv(];

int sock;
struct sockaddr_un name;

/* Create socket on which to send. */
. sock = socket(AF_UNIX, SOCK_DGRAM, 0);
if (sock < 0) ¢
perror("opening datagram socket");
exit(1);
3} .
/* Construct name of socket to send to. */
name.sun.family = AF_.UNIX; '
strcpy(name.sun.path, argv[1]);
/* Send message. */
if (sendto(sock, DATA, sizeof(DATA), O,
&name, sizeof(struct sockaddr_un)) < 0) {
perror("sending datagram message");
)
close(sock);

Figure 5b Sending a UNIX domain datagrams

Names in the UNIX domain are path names. Like file path names they may be either
absolute (e.g. “/dev/imaginary”) or relative (e.g. “socket”). Because these names are used to
allow processes to rendezvous, relative path names can pose difficulties and should be used
with care. When a name is bound into the name space, a file (inode) is allocated in the file
system. If the inode is not deallocated, the name will continue to exist even after the bound
socket is closed. This can cause subsequent runs of a program to find that a name is unavail-
able, and can cause directories to fill up with these objects. The names are removed by cal-
ling unlink() or using the rm(1) command. Names in the UNIX domain are only used for
rendezvous. They are not used for message delivery once a connection is established. There-
fore, in contrast with the Internet domain, unbound sockets need not be (and are not)
automatically given addresses when they are connected.

There is no established means of communicating names to interested parties. In the
example, the program in Figure 5b gets the name of the socket to which it will send its mes-
sage through its command line arguments. Once a line of communication has been created,
one can send the names of additional, perhaps new, sockets over the link. Facilities will have
to be built that will make the distribution of names less of a problem than it now is.

Introductory 4.3BSD IPC PS1:7-11

7. Datagrams in the Internet Domain

The examples in Figure 6a and 6b are very close to the previous example except that the
socket is in the Internet domain. The structure of Internet domain addresses is defined in the
file <netinet/in.h>. Internet addresses specify a host address (a 32-bit number) and a delivery
slot, or port, on that machine. These ports are managed by the system routines that imple-
ment a particular protocol. Unlike UNIX domain names, Internet socket names are not
entered into the file system and, therefore, they do not have to be unlinked after the socket
has been closed. When a message must be sent between machines it is sent to the protocol
routine on the destination machine, which interprets the address to determine to which socket
the message should be delivered. Several different protocols may be active on the same
machine, but, in general, they will not communicate with one another. As a result, different
protocols are allowed to use the same port numbers. Thus, implicitly, an Internet address is a
triple including a protocol as well as the port and machine address. An association is a tem-
porary or permanent specification of a pair of communicating sockets. An association is thus
identified by the tuple <protocol, local machine address, local port, remote machine address,
remote port>. An association may be transient when using datagram sockets; the association
actually exists during a send operation.

The protocol for a socket is chosen when the socket is created. The local machine
address for a socket can be any valid network address of the machine, if it has more than one,
or it can be the wildcard value INADDR_ANY. The wildcard value is used in the program
in Figure 6a. If a machine has several network addresses, it is likely that messages sent to any
of the addresses should be deliverable to a socket. This will be the case if the wildcard value
has been chosen. Note that even if the wildcard value is chosen, a program sending messages
to the named socket must specify a valid network address. One can be willing to receive from
‘“anywhere,” but one cannot send a message “anywhere.” The program in Figure 6b is given
the destination host name as a command line argument. To determine a network address to
which it can send the message, it looks up the host address by the call to gethostbyname().
The returned structure includes the host’s network address, which is copied into the structure
specifying the destination of the message.

The port number can be thought of as the number of a mailbox, into which the protocol
places one’s messages. Certain daemons, offering certain advertised services, have reserved or
“well-known” port numbers. These fall in the range from | to 1023. Higher numbers are
available to general users. Only servers need to ask for a particular number. The system will
assign an unused port number when an address is bound to a socket. This may happen when
an explicit bind call is made with a port number of 0, or when a connect or send is performed
on an unbound socket. Note that port numbers are not automatically reported back to the
user. After calling bind(), asking for port 0, one may call getsockname() to discover what port
was actually assigned. The routine gersockname() will not work for names in the UNIX
domain.

The format of the socket address is specified in part by standards within the Internet
domain. The specification includes the order of the bytes in the address. Because machines
differ in the internal representation they ordinarily use to represent integers, printing out the
port number as returned by getsockname() may result in a misinterpretation. To print out the
number, it is necessary to use the routine ntohs() (for network to host: short) to convert the
number from the network representation to the host’s representation. On some machines,
such as 68000-based machines, this is a null operation. On others, such as VAXes, this
results in a swapping of bytes. Another routine exists to convert a short integer from the host
format to the network format, called Atons(); similar routines exist for long integers. For
further information, refer to the entry for byteorder in section 3 of the manual.

PS1:7-12 Introductory 4.3BSD IPC

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>

/*
* In the included file <netinet/in.h> a sockaddr.in is defined as follows:
* gtruct sockaddr.in {
* short sin_family;
u.short sin_port;
struct in.addr sin.addr;
char sin.zero(8];
};

* * * % ¥

* This program creates a datagram socket, binds a name to it, then reads
* from the socket. .

*/
main()
{
int sock, length;
struct sockaddr_in name;
char buf[1024];
/* Create socket from which to read. */
sock = socket(AF_.INET, SOCK_DGRAM, 0);
if (sock < 0) ¢
perror("opening datagram socket");
exit(1);
>
/* Create name with wildcards. */ -
name.sin.family = AF_.INET;
name.sin.addr.s_addr = INADDR_ANY;
name.sin_-port = 0;
if (bind(sock, &name, sizeof(name))) {
perror("binding datagram socket");
exit(1);
}
/* Find assigned port value and print it out. */
length = sizeof(name);
if (getsockname(sock,'&name, &length)) {
perror("getting socket name");
exit(1);
}
printf("Socket has port #%d\n", ntohs(name.sin_port));
/* Read from the socket */
if (read(sock, buf, 1024) < 0)
perror("receiving datagram packet");
printf("-=>%s\n", buf);
close(sock); ’
}

Figure 6a Reading Internet domain datagrams

Introductory 4.3BSD IPC PS1:7-13

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

##idefine DATA "The sea is calm tonight, the tide is full . . ."

/* .
* Here I send a datagram to a receiver whose name I get from the command
* Line arguments. The form of the command lLine is dgramsend hostname

* portnumber

*/

main(argc, argv)
int argc;
char *argv(l;

int sock;
struct sockaddr.in name;
struct hostent *hp, *gethostbyname();

/* Create socket on which to send. */
sock = socket(AF_INET, SOCK_DGRAM, 0);
if (sock < 0) ¢
perror("opening datagram socket");
exit(1);

Construct name, with no wildcards, of the socket to send to.
Getnostbyname() returns a structure including the network adaress
of the specified host. The port number is taken from the command
line.

* % % ¥

*/

hp = gethostbyname(argv{11);

if (hp == 0) {
fprintf(stderr, "%s: unknown hostQ, argv[1]);
exit(2);

}

bcopy (hp->h_addr, &name.sin_addr, hp->h_length);

name.sin_family = AF_INET;

name.sin_port = htons(atoi(argv(2]));

/* Send message. */

if (sendto(sock, DATA, sizeof(DATA), 0, &name, sizeof(name)) < 0)
perror("sending datagram message");

close(sock);

Figure 6b Sending an Internet domain datagram

8. Connections

To send data between stream sockets (having communication style SOCK_STREAM),
the sockets must be connected. Figures 7a and 7b show two programs that create such a con-
nection. The program in 7a is relatively simple. To initiate a connection, this program

PS1:7-14 Introductory 4.3BSD IPC

simply creates a stream socket, then calls connect(), specifying the address of the socket to
which it wishes its socket connected. Provided that the target socket exists and is prepared to
handle a connection, connection will be complete, and the program can begin to send mes-
sages. Messages will be delivered in order without message boundaries, as with pipes. The
connection is destroyed when either socket is closed (or soon thereafter). If a process persists
in sending messages after the connection is closed, a SIGPIPE signal is sent to the process by
the operating system. Unless explicit action is taken to handle the signal (see the manual
page for signal or sigvec), the process will terminate and the shell will print the message “bro-
ken pipe.” '

Forming a connection is asymmetrical; one process, such as the program in Figure 7a,
requests a connection with a particular socket, the other process accepts connection requests.
Before a connection can be accepted a socket must be created and an address bound to it.
This situation is illustrated in the top half of Figure 8. Process 2 has created a socket and
bound a port number to it. Process 1 has created an unnamed socket. The address bound to
process 2’s socket is then made known to process 1 and, perhaps to several other potential
communicants as well. If there are several possible communicants, this one socket might
receive several requests for connections. As a resuit, a new socket is created for each connec-
tion. This new socket is the endpoint for communication within this process for this connec-
tion. A connection may be destroyed by closing the corresponding socket.

The program in Figure 7b is a rather trivial example of a server. It creates a socket to
which it binds a name, which it then advertises. (In this case it prints out the socket
number.) The program then calls /isten() for this socket. Since several clients may attempt to
connect more or less simultaneously, a queue of pending connections is maintained in the sys-
tem address space. Listen() marks the socket as willing to accept connections and initializes
the queue. When a connection is requested, it is listed in the queue. If the queue is full, an
error status may be returned to the requester. The maximum length of this queue is specified
by the second argument of listen(); the maximum length is limited by the system. Once the
listen call has been completed, the program enters an infinite loop. On each pass through the
loop, a new connection is accepted and removed from the queue, and, hence, a new socket for
the connection is created. The bottom half of Figure 8 shows the result of Process 1 connect-
ing with the named socket of Process 2, and Process 2 accepting the connection. After the
connection is created, the service, in this case printing out the messages, is performed and the
connection socket closed. The accept() call will take a pending connection request from the
queue if one is available, or block waiting for a request. Messages are read from the connec-
tion socket. Reads from an active connection will normally block until data is available. The
number of bytes read is returned. When a connection is destroyed, the read call returns
immediately. The number of bytes returned will be zero.

The program in Figure 7c is a slight variation on the server in Figure 7b. It avoids
blocking when there are no pending connection requests by calling select() to check for pend-
ing requests before calling accept(). This strategy is useful when connections may be received
on more than one socket, or when data may arrive on other connected sockets before another
connection request.

The programs in Figures 9a and 9b show a program using stream communication in the
UNIX domain. Streams in the UNIX domain can be used for this sort of program in exactly
the same way as Internet domain streams, except for the form of the names and the restric-
tion of the connections to a single file system. There are some differences, however, in the
functionality of streams in the two domains, notably in the handling of out-of-band data (dis-
cussed briefly below). These differences are beyond the scope of this paper.

Introductory 4.3BSD IPC

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define DATA "Half a league, half a league . . ."

/*
*
*

*

*

*/

given in the command line.

main(argc, argv)

int argc;
char *argv(]l;

int sock;

struct sockaddr.in server;

struct hostent *hp, *gethostbyname();
char buf[1024];

/* Create socket */

sock = socket(AF_INET, SOCK_STREAM, 0);

if (sock < 0) ¢ :
perror("opening stream socket");
exit(1);

}

/* Connect socket using name specified by command line.

server.sin_family = AF_INET;

hp = gethostbyname(argv(1l);

if (hp == 0) (
fprintf(stderr, "%s: unknown host0, argv([11);
exit(2);

>

bcopy (hp->h_addr, &server.sin_addr, hp->h_length);

server.sin_port = htons(atoi(argv(21));

if (connect(sock, &server, sizeof(server)) < 0) {
perror("connecting stream socket");
exit(1);

}

if (write(sock, DATA, sizeof(DATA)) < 0)
perror("writing on stream socket");

close(sock);

Figure 7a Initiating an Internet domain stream connection

PS1:7-15

This program creates a socket and initiates a connection with the socket
One message is sent over the connection and
then the socket is closed, ending the connection. The form of the command
line is streamwrite hostname portnumber

*/

PS1:7-16 Introductory 4.3BSD IPC

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#define TRUE 1

/*

* This program creates a socket and then begins an infinite loop. Each time
through the loop it accepts a connection and prints out messages from it.
* When the connection breaks, or a termination message comes through, the
* program accepts a new connection.

*/

*

main()
{
int sock, length;
struct sockaddr.in server;
int msgsock;
char buf[1024];
int rval;
int i;

/* Create socket */

sock = socket(AF_INET, SOCK_.STREAM, 0):;

if (sock < 0) {
perror("opening stream socket");
exit(1); ’

}

/* Name socket using wildcards */

server.sin_.family = AF_.INET;

server.sin.addr.s_addr = INADDR_ANY;

server.sin.port = 0;

if (bind(sock, &server, sizeof(server))) {
perror("binding stream socket");
exit(1);

}

/* Find out assigned port number and print it out */

length = sizeof(server);

if (getsockname(sock, &server, &length)) {
perror("getting socket name");
exit(1);

}

printf("Socket has port #%d\n", ntohs(server.sin.port));

/* Start accepting connections */
listen(sock, 5);
do {
msgsock = accept(sock, 0, 0);
if (msgsock == -=1)
perror("accept");
else do {
bzero(buf, sizeof(buf));

Introductory 4.3BSD IPC PS1:7-17

if ((rval = read(msgsock, buf, 1024)) < 0)
perror("reading stream message");
i=0;
if (rval == 0)
printf("Ending connection\n");
else
printf("=-=>%s\n", buf);
)} while (rval != 0);
close(msgsock);
} while (TRUE);
/*
* Since this program has an infinite loop, the socket "sock" is
* never explicitly closed. However, all sockets will be closed
* automatically when a process is killed or terminates normally.

*/

Figure 7b Accepting an Internet domain stream connection

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#define TRUE 1

/* :
* This program uses select() to check that someone is trying to connect
* before calling accept().

*/

main()
{
int sock, length;
struct sockaddr_in server;
int msgsock;
char buf[1024];
int rval;
fd_set ready;
struct timeval to;

/* Create socket */
sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock < 0) ¢
perror("opening stream socket");
exit(1);
}
/* Name socket using wildcards */
server.sin_family = AF_INET;
server.sin_addr.s_addr = INADDR_ANY;
server.sin.port = 0;
if (bind(sock, &server, sizeof(server))) {

PS1:7-18 Introductory 4.3BSD IPC

perror("binding stream socket");
exit(1);
)
/* Find out assigned port number and print it out */
length = sizeof(server); ‘
if (getsockname(sock, &server, &length)) {
perror("getting socket name");
exit(1);
}
printf("Socket has port #Xd\n", ntohs(server.sin.port));

/* Start accepting connections */
Listen(sock, 5);

do {
FD_.ZERO(&ready);
FD.SET(sock, &ready);
to.tv.sec = 5;
if (select(sock + 1, &ready, 0, 0, &to) < 0) (
perror("select");
continue;
>
if (FD.ISSET(sock, &ready)) {
msgsock = accept(sock, (struct sockaddr *)0, (int *)0);
if (msgsock == -1)
perror("accept");
else do {
bzero(buf, sizeof(buf));
if ((rval = read(msgsock, buf, 1024)) < 0)
perror("reading stream message");
else if (rval == 0)
printf("Ending connection\n");
else
printf("=-=>%s\n", buf);
} while (rval > 0);
close(msgsock);
} else

printf("Do something else\n");
} while (TRUE);

Figure 7c Using select() to check for pending connections’

Introductory 4.3BSD IPC

Process 1 Process 2
O
-O
NAME
Process 1 Process 2
O
= B
NAME

Oy

Figure 8 Establlshmg a stream connection

PS1:7-19

PS1:7-20 Introductory 4.3BSD IPC

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>

f#idefine DATA "Half a league, half a league . . ."

/*

* This program connects to the socket named in the command lLine and sends a
* one Line message to that socket. The form of the command line is

* ustreamwrite pathname

*/
mainCargc, argv)
int argc;
char *argv{];
{
int sock;
struct sockaddr_un server;
char buf([1024];
/* Create socket */
sock = socket(AF_UNIX, SOCK_STREAM, 0);
if (sock < 0) {
_perror("opening stream socket");
exit(1); ’ '
} . 4
/* Connect socket using name specified by command line. */
server.sun.family = AF_UNIX;
strcpy(server.sun.path, argv[11);
if (connéct(sock, &server, sizeof(struct sockaddr.un)) < 0) {
close(sock);
perror("connecting stream socket");
exit(1);
}
if (write(sock, DATA, sizeof(DATA)) < 0)
perror("writing on stream socket");
>

Figure 9a Initiating a UNIX domain stream connection

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>

#define NAME "socket" -

/*
* This program creates a socket in the UNIX domain and binds a name to it.
* After printing the socket's name it begins a loop. Each time through the
* loop it accepts a connection and prints out messages from it. When the
* connection breaks, or a termination message comes through, the program

Introductory 4.3BSD IPC

* accepts a new connection.

main()

{

int sock, msgsock, rval;
struct sockaddr.un server;
char buf(1024];

/* Create socket */
sock = socket(AF_UNIX, SOCK_STREAM, 0);
if (sock < 0) ¢
perror("opening stream socket");
exit(1);
>
/* Name socket using file system name */
server.sun_family = AF_UNIX;
strcpy(server.sun_path, NAME);
if (bind(sock, &server, sizeof(struct sockaddr_un))) {
perror("binding stream socket");
exit(1);
}
printf("Socket has name %s\n", server.sun_path);
/* Start accepting connections */
listen(sock, 5);
for (;;) €
msgsock = accept(sock, 0, 0);
if (msgsock == -1)
perror("accept");
else do {
bzero(buf, sizeof(buf));
if ((rval = read(msgsock, buf, 1024)) < 0)
perror("reading stream message");
else if (rval == 0)
printf("Ending connection\n");
else
printf("=-=>%s\n", buf);
} while (rval > 0);
close(msgsock);

* % * ¥ % ¥

* the shell.
*/
close(sock);
unl ink (NAME) ;

Figure 9b Accepting a UNIX domain stream connection

PS1:7-21

The following statements are not executed, because they follow an
infinite Loop. However, most ordinary programs will not run
forever. In the UNIX domain it is necessary to tell the file
system that one is through using NAME. In most programs one uses
the call unlink() as below. Since the user will have to kill this
program, it will be necessary to remove the name by a command from

PS1:7-22 Introductory 4.3BSD IPC

9. Reads, Writes, Recvs, etc.

UNIX 4.3BSD has several system calls for reading and writing information. The sim-
plest calls are read() and write(). Write() takes as arguments the index of a descriptor, a
pointer to a buffer containing the data and the size of the data. The descriptor may indicate
either a file or a connected socket. “Connected” can mean either a connected stream socket
(as described in Section 8) or a datagram socket for which a connect() call has provided a
default destination (see the connect() manual page). Read() also takes a descriptor that indi-
cates either a file or a socket. Write() requires a connected socket since no destination is
specified in the parameters of the system call. Read() can be used for either a connected or an
unconnected socket. These calls are, therefore, quite flexible and may be used to write appli-
cations that require no assumptions about the source of their input or the destination of their
output. There are variations on read() and write() that allow the source and destination of
the input and output to use several separate buffers, while retaining the flexibility to handle
both files and sockets. These are readv() and writev(), for read and write vector.

It is sometimes necessary to send high priority data over a connection that may have
unread low priority data at the other end. For example, a user interface process may be inter-
preting commands and sending them on to another process through a stream connection. The
user interface may have filled the stream with as yet unprocessed requests when the user types
a command to cancel all outstanding requests. Rather than have the high priority dat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>