PERFORMANCE SPECIFICATION 605 MEMORY SAVE CIRCUIT

1.0 INTRODUCTION

1.1 This circuit monitors the pre-regulator output voltages regulated power supply voltages at any pecified range) and provides the proper the system when the power is on and off.
1.2 This circuit has been designed for the 605 processor and memory.
1.3 This circuit is mounted on the regulator card in the power supply.
1.4 One circuit per card
2.0 APPLICABLE DOCUMENTS
2.1 Circuit schematic, layout, and part list PIB No. 315-0525118.
3.0 INPUT REQUIREMENTS
3.1 Voltage Level

For description of voltages, refer to Table 1. The subindices correspond to the pin numbers.

	Inputs	Level
Regulated Power Supply Voltages	+12 V Out +5 V Out -12 V Out	$\begin{aligned} & 5.5 \text { to } 12 \text { Volts } \\ & 2 \text { to } 5 \text { Volts } \\ & -1 \text { to }-12 \text { Volts } \end{aligned}$
Nominal Value of Threshold Voltage V_{TH} (Preregulated) Vôltages	$\begin{aligned} & +12 \mathrm{~V} \text { Raw } \\ & +5 \mathrm{~V} \text {. Raw } \\ & -12 \mathrm{~V} \text { Raw } \end{aligned}$	$\begin{aligned} & 14.7 \mathrm{~V} \pm 3 \% \\ & 8.35 \mathrm{~V} \pm 3 \% \\ & 2.40 \mathrm{~V} \pm 3 \% \end{aligned}$
	$\overline{\text { KRSTH }}$	Logic "1" Open Logic "0" 0 to 0.45 V

Power On: Each of 12 V Raw, +5 Raw, -12 V Raw $>\mathrm{V}_{\text {TH }}$ Power Off: Either of 12 V Raw, +5 V Raw, -12 V Raw $\left\langle\mathrm{V}_{\mathrm{TH}}\right.$
. 2 Output Requirements
For description of voltages refer to Table 1. Output voltages as per Table 3. The subindices correspond to the pin numbers.

	Upper Leve1	Lower Leve1
$\mathrm{V}_{12}, 16$	Open	0 to 0.45 V
$\mathrm{~V}_{13}, 14$	Open	0 to 0.45 V

3.2.2 Current Leve1

Pin No.
12
12
13
14
16
Sinking Current
< 110ma
< 40 ma
< 40ma
< 25ma

TABLE I

TERMINAL

V12
V13
V14
v15
v16
v20
v21
v22

DESCRIPTION
$\overline{\mathrm{MR}}$
$\overline{\overline{C O M}}$
$\overline{\text { KRSTH }}$
COR RTM
+12 RAW
+5 RAW

- 12 RAW

The subindex indicates the pin number.
3.2.3 TIMING REQUIREMENTS

See Table 2 and Figure 1.

Table 2		
		Unit in SECS
	Timing	Note
T_{1}	. 3 to 1.2	At $5 \mathrm{~V}_{\text {out }}$ supply $=5$ volts measured from the point where the slowest increasing voltage among V_{20}, $\mathrm{V} 21 \& \mathrm{~V}_{22}$ pass the threshold level.
T_{2}	$>100 \times 10^{-9}$	Measured from 50% point on leading edge of PWF and 50% point on leading edge of $\overline{M R}$ signals.
T_{3}	$>20 \times 10^{-9}$	Measured from 0.8 V point on positive going leading edge of MR and 50% point on negative going leading edge of Com.
T_{4}	480 ns to 4000×10^{-9}	Measured between 50% points on leading and trailing edge of Com.
T_{5}	0 to $600 \mu \mathrm{~s}$	Measured from the point where the fastest decreasing voltage among V_{20}, V_{21}, and V_{22} falls below threshold leve1. To 50% point on negative going PWF.
T_{6}	300 to 1000×10^{-6}	Measured from 50% points on trailing edge of PWF and 50% point on trailing edge of $\overline{M R}$.
T_{7}	$<1000 \times 10^{-6}$	Measured between 50% points on the negative going transitions of $\overline{\text { KRSTH }}$ and MR.
T_{8}	20×10^{-9} to 1000×10^{-6}	Measured from 0.8 v point on the positive going leading edge of CORRT and 50% point on the negative going leading edge of Com.
T9	$\begin{aligned} & 300 \text { to } 1000 \times 10^{-6} \\ & \text { (Reference) } \end{aligned}$	Measured from 50% point on the trailing edge of $\overline{\text { PWF to }} 50 \%$ point on the trailing edge of CORRT.

FIG. 1

4. DESCRIPTION OF OPERATION

BLOCK DIAGRAM OPERATION

The functional diagram is shown in Figure 2. When the power
s on and the preregulator output voltages increase above the predetermined values, the comparator outputs change from "Low" to "High". The "And" circuit "And's" them. Then the timing circuit starts the delay operation. At the end of the delay period, the slow triggering signal is amplified. The signal is delivered to the output driver (1) through the inverter. Then, PWF is released from "Low". Similarly, $\overline{M R}$ and COR RT are released from "Low" through Nand (2) - output driver (2) and Nand (2) - output driver (3). The negative-going short pulse is shown at $\overline{C O M P}$ through one shot (3) - Nand (3).

When the power is OFF, the comparator output goes "Low". In this case, this signal is transferred to the output stages through And - timing - Amp without any delay operation. This signal is delivered to the output driver (1) through the inverter But the state change of this gate is disabled for 100 . sec by one-shot. And also with the Low-going comparator output, the triggering circuit triggers the one-shot (2) and delays grounding $\overline{\mathrm{MR}}$ and COR RT. COMP does not change the state at this stage.

The input $\overline{\mathrm{KRSTH}}$ with logic "O" state grounds $\overline{\mathrm{MR}}$ and $\overline{\mathrm{CORRT}}$ any time.

4.0 DESCRIPTION OF OPERATION

Reference Schematic Diagram 315-0519393
Operation
12 V supply biases all the inverting inputs of $\mathrm{M}_{1}, \mathrm{M}_{2}$ OP. amps at 2.4 V by way of 2.4 V zener diode CR 306 . As fong as voltages at non inverting inputs of op amps M_{1} and M_{2} are below 2.4 V , outputs of M_{1} and M_{2} will be at level of negative supply voitage. Anode of the diodes CR 307, 308 and 309 will be negative with respect to ground. Voltage levels at non-inverting inputs of
op amps are estabiished through resistor divider networks $R 329$ op amps are estabished through resistor divider networks R . 329 , open, $Q 306$ is closed, $Q 307$ is open, $Q 308$ is closed, $Q 309$ is open and $Q 310$ is closed. Output of $G_{1} A$ which is tied to input of G2A is high. Single shot M3A is connected for triggering from low going signal at input 11 , so $M_{3} A$ is not:actuated and pin 9 of M_{3} (pin 2 of G2A) is at high logic and $\frac{1}{P W F}=0$.
Q 312 is saturated on account of the base drive from 5 V out supply via R 345. Collector of $Q 312$ is at low level and output of $\mathrm{G}_{1} \mathrm{C}$ gate is at high level. Also output of G2B is at high level. Q 313 is at high level.

Power On
When 12 V row voltage reaches a value 14.70 V , 5 V row voltage reaches value $=8.35$ and -12 V row achieves value equal to 2.47 volts, outputs of all the op amps switches towards 12 V positive supply. All diodes CR 307, CR 308 and CR 309 will be back biased and voltage at the common point anode will be 8 V as decided by the resistor divider network of R 332, R333. Q 305 gets the base drive via above resistor and gets saturated. Collector of $Q 306$ starts rising as decided by R 336 and C 306. The time capacitor C 306 takes to charge up to voltage $=1.4 \mathrm{~V}$ in the basic delay in the circuit. At this level of voltage, CR 310,311 and base emitter diode of Q 307 comes out of the cut in region and Q 307 tends to drive from $Q 310$, thus pulling collector of $Q 310$ to high level. At the instant when voltage at the input pin 5 of $G 1 A$ reaches towards $V_{\text {TH }}-.9$, output of $G 1 A$ will switch towards $10 w$ level and output of G2A i.e. PWF will switch to high level. Also when the voltage at pin 13 of $G_{2} B$ reaches at the threshold level $-9 V_{\text {. }}$ out put of $\mathrm{G}_{2} \mathrm{~B}$ switches to low level, thus initiating $\overline{\mathbb{M}}$ and $\widehat{C O R R T}$ signals.
4.0 CONT'd.

At the falling edge of the output of gate $\mathrm{G}_{1} \mathrm{C}$ or $\mathrm{G}_{2} \mathrm{~B}$, and rising edge of $\mathrm{MR}, \mathrm{M}_{3} \mathrm{~B}$ will initiate 1 to 0 transition at pin 7, trans lating the output of $\mathrm{G}_{2} \mathrm{C}$ from zero to transition for a time duration decided by R 354 and C $314=3 \mu \mathrm{sec}$. COM signal getting initiated from high to low logic level for $2 \mu \mathrm{sec}$ duration at the rising edge of $\frac{\mathrm{MR}}{}$.
Power Off
At the instant any of the voltage i.e. 12 V raw 5 V raw or -12 V raw falls below the threshold voltage, junction of CR 309, CR 307, and CR 308 will return towards the negative supply voltage. Resistor R 334 clamps the negative voltage at the base to emitter of $Q 305$ to a value less than 1.3 V . $Q 305$ opens and $Q 306$ saturate and capacitor C 306 discharges through $Q 306$. Discharge time constant is low as compared to the charging time constant. So The delay which was active in the power turn on case is not active The delay which was active in the power turn on case is not active at collector of Q 310, M ${ }_{3} A$ is initiated and pin 9 M ${ }^{2} A$ gives a $1-0-1$ pulse of $100 \mu \mathrm{~s}$ duration decided by R 343 and C 310 . So the input pin 2 of G2A is clamped to low logic for $100 \mu \mathrm{sec}$, thus inhibiting the output of $\mathrm{G}_{2} \mathrm{~A}$ from coming to low level for the duration of pulse width of M3A.
At the negative going collector voltage of $Q 310$, Q 311 will close Sending positive pulse to input pin 12 of $G 1 B$, thus making output of $\mathrm{G}_{1} \mathrm{~B}$ go to low level, C 312 will send negative pulse to base emiter junction of $Q 312$, thus opening $Q 312$ and pulling coliecto the time C 312 recharges through R 345 , bringing
Q 312 back to conduction after this delay. During the above delay period, MR \& CORRT stay at high level. MR and CORRT signals go low after the above delay period. COM signal is not generated
because single shot M3B is not activated.

External Input KRSTH
Input $\overline{\mathrm{KRSTH}}$ with logic 0 state grounds $\overline{\mathrm{MR}}$ and $\overline{\operatorname{CORRT}}$.

