

TurbolX)S 1.3 Z80 NOTICES
Implementor's Guide

Copyright Notice Copyright 1983 by Software 2000, Inc. All
tights reserved. No part of this publication
may be reproduced, transmitted, transcribed,
stored in a retrieval systeII}, or translated
into any language or coínputer language, in
any form or by any means, electronic, ir.echa-
nical, magnetic, optical, chenaical, manual or
otherwise, without the prior written permis-
sion of Software 2000, Inc., 1127 Hetrick
Avenue, Arroyo Grande, California 93420,
U.S.A.

Trademark Notice TurboDOS is a trademark of Software 2000,
Inc., and has been registered in the United
States and in nnost níajor countries of the
Eree world. CP/M, CP/K Plus, and E-iP/M are
trademarks of Digital Research.

Disclaimer Software 2000, Inc,, makes no representations
or warranties with respect to the contents of
this publication, and specifically disclaims
any implied w7rranties of Rerchantability or
fitness for any particular purpose. Software
2000, Inc., shall under no circumstances be

liable for consequential damages or related
expenses, even if it has been notified of the
possibility of such dair.ages.

Software 2000, Inc., reserves the right to
revise this publication from time to time
without obligation to notify any person of
such revision.

TurboDOS 1.3 Z80 ABOUT THIS GUIDE
Implementor's Guide

ABOUT THIS GUIDE

Purpose We've designed thimzÁQ Xmplemerltor's guide
to provide the information you need to know
in order to generate various TurboDOS config-
urations for Z8Q-based microcomputers, and to
write the driver modules for various periph-
eral devices. This document describes the
modular architecture and internal programming
conventions of TurboDOS, and explains the
procedures for system generation, serializa-
tion, and distribution. It also provides
detailed interface specifications for hard-
ware-áependent driver modules, and includes
assembler source listings of sample drivers.

Assuinptions In writing this guide, we've assumed that you
are an OEM, dealer, or sophisticated TurboDOS

user, knowleágable in Z80-based microcomputer
hardware and assembly-language programming.
We've also assumed you have read both the
Ijser's guide and the M9 proqran1wer's Gai9m
and are therefore familiar with the commands,
external features, and internal functions of
Z80 TurboDOS.

Organization This guide starts with a section that de-
scribes the architecture of TurboDOS. Itexplains the function of each internal module
of the operating system, and how these
modules may be combined to create the various
configurations of TurboDOs.

The next section explains the system genera-
tion procedure in detail, and describes each
TurboDOS parameter which can be modified
during system generation.

The third section of this guide explains the
TurboDOS distribution procedure, including
licensing, serialization, and support.

TurboDOS 1.3 Z80 ABOUT THIS GUIDE
Implementor's Guide (Continued)

Organization The fourth section is devoted to an in-depth(Continued) discussion of internal programming convert—
tions, aimed at the programner writingdrivers or resident processes for TurboDOS.

The fifth section presents formal interface
specifications for implementing hardware—
dependent driver modules.

This guide concludes with a large appendix
containing assembler source listings OE

actual driver modules. The sample drivers
cover a wide range of peripheral devices, and
provide an excellent starting point for
programmers involved in driver development.

TurboDOS 1.3 Z80 TABLE OF CONTENTS

Implementor's Guide

ARCHITECTURE Module Hierarchy l-1
Process Level . , 1-I
Kernel Level l-2
Driver Level l-2
TurboDOS Loader l-2
Module Flow Diagram l-3

Process Modules l-4
Kernel Moduíes l-5

.Drjver Modules . . '-8
Standard packages l-8

Package Contents Table l-9
Supplementary Modules l-10

Memory Required l-11
Other Languages l-12

SYSTEM GENERATION Introduction 2-I
GEN Comnand 2-2
Patch Points 2-7
Network Operation 2-19

Network Model 2-19
Network Tables 2-19
Message Forwarding 2-21

A Complex Example 2-23
Sysgen Procedure 2-25

DISTRIBUTION T'urboDQS Licensing 3-1
Legal Protection 3-1
User Obligations 3-2
Dealer Obligations 3-2
Distributor Obligations 3-3
Serialization 3-4
Technical Support 3-5

SERIAL Command 3-6
PACKAGE Command 3-8
Distribution Procedure 3-10

TurboDOS 1.3 Z80 TABLE OF CONTENTS

Implementor's Guide (Continued)

CODING CONVENTIONS Assembíer Notes 4-l
Undefined External References 4-2
Memory Allocation 4-3

List Processing 4-4
Task Dispatching 4-5

Interrupt Service 4-7
Poll Routines 4-8
Mutual Exclusion 4-9
Sample Driver Using Interrupts 4-lC

saIuíle Driver Using Polling 4-ll
Special Segments 4-12

?INIT? Segment 4-12
?PAGE? Segment 4-12
?BANK? Segment 4-12

Inter—Process Messages 4-13
Console Routines 4-14
Sign-On Message 4-14

Resident Process 4-15
User-Defined Function 4-16

DRIVER INTERFACE General Notes 5-l
Initialization 5-2
Console Driver 5-3

Printer Driver 5-5
Disk Driver 5-6

Bank-Select Driver 5-9
Network Driver 5-lG
Coma Driver 5-13
Clock Driver 5-14

Bootstrap 5-16

APPENDIX North Star Driver Patch Points A-l

TurboDOS 1.3 Z80 ARCHITECTURE

Implementor's Guide

ARCHITECTURE This section introduces you to the internal
architecture of the TurboDOS operating sys-
tem. TurboDOS is highly modular, consisting
of rnore than forty separate functior.al
modules distributed in relocatable form.
These modules are "building blocks" that you
can combine in various ways to produce a

family of compatible operating systems. This
section describes the modules in detail, and

describes how to combine them in various
configurations.

Possible TurboDOS configurations include:

. single-user without spooling

. single-user with spooling

. network server

. simple network user (no local disks)

.
complex network user (with local disks)

Numerous subtle variations are possible ín
each of these categories.

Module Hierarchy The diagram on page l-3 illustrates how the
functional modules of TurboDOS interact. As
the diagram shows, the architecture of Turbo-
DOS can be viewed as a three-level hierarchy.

Process Level The highest level of the hierarchy is the
process jey'ej. TurboDOS can support many

concurrent processes at this level. There is
one active process that supports the local
user who is executing commands and programs

in the local TPA. There are also processes
to support users running on other computers
and making requests of the local computer
over the network. There are processes to
handle background printing (tie-spooling) on
local printers. Finally, there is a process

that periodically causes disk buffers to be

written out to disk.

l-l

TurboOOS 1.3 Z80 ARCHITECTURE
Implementor's Guide

Module Hierarchy
(Continued)

Kernel Level The intermediate level of the hierarchy is
the kernel levej. The kernel supports the 93

C-functions and T-functions, and controls the
sharing of computer resources such as proces-
sor time, memory, peripheral devices, and
disk files. Processes make requests of the
kernel through the entrypoint module OSNTRY,

which decodes each C-function and T-function
by number and invokes the appropriate kernel
module.

Driver Level The lowest level of the hierarchy is the
driver level, and contains all the device-
dependent drivers necessary to interface
TurboDOS to the particular hardware being
used. Drivers must be provided for ali peri-
pherals, including console, printers, disks,
communications channels, and network inter-
face. Drivers are also required for the
real-time clock (or other periodic interrupt
source), and for bank-switched memory (if
applicable).

TurboDOS is designed to interface with almost
any kind of peripheral hardware. It operates
most efficiently with interrupt-driven, DMA-
type interfaces, but can also work fine using
polled and prograinmed-I/O devices.

TurboDOS Loader The TurboDOS loader OSLOAD.COM is a program
containing an abbreviated version of the
kernel and drivers. Its purpose is to load
the full TurboDOS operating system from a
disk file (OSSERVER.SYS) into memory at each
system cold-start.

l-2

TurbolxjS 1.3 Z80 ARCHITECTURE
Implementor 's Guide

Module Hierarchy
(Continued)

i

___=EhQj2QS_Mod!K] e Hi, ernrchY i

I l

l Pe3poo1 {ác]- [jsr Net µjc Bllffers I

I DSPOOL LCLUSR NETSVC FLUSHR I

l l LCLMSG NETTBL I l

I process Level I LCLTBL i I l

I l CMDINT ! l I

i I AUTLOD i l I

l TfcjÁder I SGLUSR l l I

I OSLOAD l AUTLOG I

{ LDRMSG l SUBMIT ! l l

i I
———-——

—J—-_ —L— —-——.—
—J—

—
I I

l l l

l I

l pcccAe I

I Kernel Level OSNTRY !

l JL l

l I l I i I l l

l Ban}c NoM lle Fi.) e j'let jR.eq Clock Support l

l BNKMGR NONFIL FILMGR NETPIGR RTCMGR DSPCHR l

l] CPMSUP FILSUP NETREQ l DSPSGL I

! I I FILCOM MSGFMT i MEMMGR I

I i I FILLOK NETTBL I COMSUB l

! I l FFOMGR NETLOD i

I l l DRVLOK I I I

i l I FASLOD ! I [

I l l NORLOD i I I

l I I I "I i I I I

l I CQInIíl ch PriRter ConsQle =co[á l i Tni tial I

l I COMMGR LST14GR CONMGR BU FMGR I l SYSNIT !

I l i LSTTBL CONTBL DSKMGR ! l l !

I ! I SPOOLR DOMGR DSKTBL l I i l

l I l SPLMSG INPLN l l l I I

l I l I l I i I I l

I Driver Level] I l I l l i

I I I l i I I l I I

l I conlm ch printer Copso]e Pi sk Network Cl ock Tni ti.aj I

l) COMDRV LSTDRA CONDRA DSKDRA CKTDRA RTCDRV HDWNIT I

l BálÜ LSTDRB or DSKDRB CKTDRB or I

l SELBNK etc. CONREM etc. etc. RTCNUL I

l l

l-3

C

TurboDOS 1.3 Z80 ARCHITECTURE
Implementor's Guide

Process Modules

Process Modules l Module_.j Fun.C.tion
_ _ ___ _

_,)

I LCLUSR Responsible for supporting local I

l uset's TPA activities. I

l

I LCLMSG Contains all O/S error messages. I

l l

l LCLTBL Local user option table. i

] i

i CMDINT Command interpreter, processes !

I commands from local user. l

i I

i AUTLOD Autoload routine which processes l

COLDSTRT.AUT and WARMSTRT.AUT if I

! present. l

I I

l SGLUSR Routine to flush/free disk buf- i

i fers at each console input. Use l

for single-user configurations I

l instead of FLUSHR. !

l

l AUTLOG Automatic log-on routine. Used l

l when full log-on security is not l

l desired. See AUTUSR patch point. l

! I

l SUBMIT Routine to emulate CP/M proces- l

l sing of $$$.SUB files. Use is l

l not recommended due to signifi- l

l cant performance penalty. l

l NETSVC Services network requests from !

other processors on the network. I

I i

l NETTBL Tables to define local network l

I topology, used by NETSVC+NETREQ. I

l DSPOOL processes background printing. I

I

I FLUSHR Periodically flushes disk buf- I

l fers. Use for network server I

configuration instead of SGLUSR. [

I I

l-4

TurboDOs 1.3 Z80 ARCHITECTURE

Implementor's Guide
Kernel Modules

Kernel Modules iAIQdju&_j_ ____
Ft]nction -l

l l

I OSNTRY Kernel entrypoint module which l

I decodes each C-function and i

l T-function by number and invokes l

l the appropriate kernel niodule. l

I l

I FILMGR File manager responsible for i

I requests involving local files. I

l I

l FILSUP File support routines used by !

i FILMGR. I

l I

i FILCOM Processes common file-oriented I

l requests that are never sent I

i over the network. I

I l

I FILLOK File- and record-level interlock !

I routines called by FILMGR. l

I l

i FFOMGR FIFO management routines called l

l by FILLOK. l

l l

I DRVLOK Drive interlock routines. i

i]

l FASLOD Program loader incorporating an I

l optimizer for fastest loading. l

I i

I NORLOD Unoptimized program loader, an I

I alternative to FASLOD. I

! l

l BUFbíGR Buffer manager called by FILMGR. l

l Maintains pool of disk buffers I

l used to speed local file access. l

I

! DSKMGR Disk manager responsible for i

l physical access to local disks, {

l called by BUFMGR and FASLOD. [

l I

i DSKTBL Table defining drives A-P as i

l local or remote disk drives. !

l

l-5

TurboDOS 1.3 Z80 ARCHITECTURE
Implementor's Guide

Kernel Modules
(Continued)

Kernel Kodules I Moduí£A E_ln.ction I

(Continued) I l

i NONFIL Responsible Eor functions that l

are not file-oriented. l

I i

I CPMSUP Processes C-functions 7, 8, 24, i

I 28, 29, 31, 37 and 107 which are l

l rarely used. May be omitted. l

I I

l CONMGR Responsible for console I/O.
I CONTBL Links CONMGR to console driver. I

I i

i DOMGR Responsible for do-files.
l I

I INPLN Console input line editor used l

by CMDINT and C-function 10.]

l I

l LSTMGR Responsible for printer outp'.it. I

i l

; LSTTBL Table defining printers A-P and l

queues A-P as local or remote. I

I I

I SPOOLR Print spooler which diverts l

i print output to a spool file }

! when spooling is activated.
l Also handles direct printing to l

I remote printers. l

l

i COMMGR Responsible for communications i

l channel functions. l

l i

I NETREQ Responsible for issuing network i

! request messages for all Eunc- !

I tions not processed locally. I

I

l MSGFMT Network message format table
I used by NETREQ. l

I l

I NETMGR Network message routing routine l

I used by NETSVC and NETREQ.
I

l-6

TurboDOS 1.3 Z80 ARCHITECTURE
Impíeinentor's Guide

Kernel Modules
(Continued)

Kernel Modules l Fiodule_j_- ___---.__EjjlLcmuL__ -_.-_.__l
(Continued) ! l

l NETLOD Loads programs over the network. i

l I

i RTCMGR Real-time clock manager respon- l

i sible for maintaining systern l

! date and time. I

! l

i BNKMGR Responsible for bank-switching i

i and cross-bank linkage in banked l

l memory systems. I

i i

l DSPCHR Multi-task dispatcher which con- i

l trols sharing of the local pro- l

i cessor among multiple processes. l

l l

I DSPSGL Null dispatcher used as alterna- l

l tive to DSPCHR when only one l

l process is required {OSLOAD.COM !

and single-user W/O spooling). I

! l

I MEMMGR Memory manager responsible for i

l áynarr,ic allocation of memory. i

l l

j COMSUB Conmon subroutines used in all I

l con£igurations. l

I

i SYSNIT Svstein initialization routine I

I executed at system cold-start. l

l i

! RTCNUL Null real-time clock driver, l

I used in configurations where l

I there is no periodic interrupt)

l source.
I

I l

l CONREM Remote console driver for net- I

I work server to support SERVER I

i command. l

l l

l PATCH 128 bytes of zeroes, may be in- I

l cluded to provide patch area. l

i I

l-7

TurboljOS 1.3 Z80 ARCHITECTURE
Implementor's guide

Driver Modules

Driver Modules l ModulmL Function _ _____l
I !

I CONDR@ Console I/O driver. l

l

I LSTDR@ Printer output driver(s). I

l i

l DSKDRQ Disk driver(s). I

! I

l CKTDR@ Network circuit driver(s). l

i I

I COMDRV Communications channel driver. l

I l

l RTCDRV Real-time clock driver,
l l

I SELBNK Bank-select driver for banked- I

l memory systems. !

I

l HDWNIT Cold-start initialization for l

l all hardware-dependent drivers. i

l
.-

l

Standard Packages To simplify the system generation process,
the most commonly-used combinations of Turbo—
DOS modules are pre-packaged into the follow—
ing standard configurations:

LE@ckagm-j_--._-_—__R=mp[iQn I

l i

i STDLOADR cold-start loader I

l STDSINGL single-user without spooling l

I STDSPOOL single-user with spooling !

I STDSERVER network server i

l STDSLAVE simple user w/O local disks l

l STDSLAVX complex user with local disks !

The contents of each standard package is
detailed in the table on the facing page.
Most TurboDOS requirements can be satisfied
by linking the appropriate standard package
together with a few additional kernel modules

plus the requisite driver modules.

l-8

TurbooOS 1.3 Z80 ARCHITECTIJRE
Implementor's Guide

Standard packages
(Continued)

_-
i L9MRA-=NGL_J_,SPOOT, l SERVER l IJ,SFR l ,s1il\VX l

l LCLUSR 1.0 - LCLUSR LCLUSR LCLUSR LCLUSR LCLUSR l

l LCLMSG .3 - LCLMSG LCLKSG LCLMSG LCLMSG LCLMSG i

l LCLTBL .O
- LCLTBL LCLTBL LCLTBL LCLTBL LCLTBL i

I CFIDINT l.0 - CMDINT CMDINT CMDINT CMDINT c!áDINT l

i AUTLOD .l - AUTLOD AUTLOD AUTLQD AUTLOD AÜTLOD l

I SGLUSR .l - SGLUSR SGLUSR

- -
SGLUSR l

I AUTLOG .O

-
AUTLOG AUTLOG AUTLOG AUTLOG AUTLOG i

l NETSVC 1.4 - - -
NETSVC - -

!

i DSPOOL .9 - -
DSPOOL DSPOOL -

DSPOOL !

I FLUSHR .2 - - -
FLUSHR - -

l

l OSLOAD 1.4 OSLOAI) - - - - _
l

l LDRMSG .2 LDRMSG - - - - -
l

l OSNTRY .5 OSNTRY OSNTRY OSNTRY OSNTRY OSNTRY OSNTRY l

l FILMGR 1.9 FILMGR FILMGR FILMGR FILMGR - FILMGR :

I FILSUP 2.4 FILSUP FILSUP FILSUP FILSUP - FILSUP l

I FILCOM .3 FILCOM FILCOM FILCOM FILCOM FILCOM FILCCN l

I FILLOK 1.5 - - - FILLOK - -
l

I FFOMGR .9 - - -
FFOMGR - -

i

I DRVLOK .2 - - -
DRVLCK - -

l

l BUFMGR l.l 13UFMGR BUFMGR BUFMGR BUFPIGR -
BUFMGR i

! DSKMGR .6 DSKMGR DSKMGR DSKMGR DSKMGR -
DSKMGR 1

I DSKTBL .O DSKTBL DSKTBL DSKTBL DSKTBL DSKTBL DSKTF3L I

l NONFIL .2 NONFIL NONFIL NONFIL NONFIL NONFIL NONFIL i

l CONMGR .3 CONMGR CONMGR CONMGR CONMGR CONMGR CONMGR l

! CONTBL. .O CONTBL CONTBL CONTBL CONTBL CONTBL CONTBL l

l DOMGR .3 - DOMGR DOMGR DOMGR DOMGR DCNGR l

I INPLN .l - INPLN INPLN INPLN INPLN INPLN I

I LSTMGR .2 - LSTMGR LSTMGR LSTMGR LSTMGR LSTMGR i

I LSTTBL .l - LSTTBL LSTTBL LSTTBL LSTT!3L LSTTBL l

l SPOOLR .5 - -
SPOOLR SPOOLR SPOOLR SPOOLR I

I SPLMSG .1 - - SPLMSG SPLMSG SPLMSG SPLMSG (

I COMMGR .l -
COMMGR COMMGR COMMGR CO!4NGR COMMGR I

I NETREQ 1.5 - - - -
NETREQ NETREQ {

l MSGFMT .l - - - - MSGFMT MSGFMT I

l NETMGR .6 - - -
NETMGR NETMGR NETMGR l

l NETTBL .O

- - - NETTBL NETTBL NETTBL l

I RTCMGR .I -
RTCMGR RTCMGR RTCMGR

-
RTCMGR l

l DSPCHR .7 - -
DSPCHR DSPCHR DSPCHR DSPCHR I

I DSPSGL .2 DSPSGL DSPSGL - - - -
l

l MEMMGR .3 -
MEMMGR MEMMGR MEMMGR MEMMGR MEMMGR I

I COMSUB .3 COMSUB COMSUB COMSUB COMSU13 COMSUB COMSUB i

l YNIT_-.__-J)__ :____SY,SNTT SYSÑTT ,SY8NTT SYBNTT ,SY8NTT l

l-9

TurboDOS 1.3 Z80 ARCHITECTURE
Implementor's Guide

Standard Packages
(Continued)

Standard Packages To supplement the modules contained in these
(Continued) standard packages, the following kernel mod-

ules may have to be added:

l^Qml£_j_-.__- -Where Req!lired I

I I

l FASLOD In non-banked systems with local I

I disks (SINGL/SPOOL/SERVER/USER). l

I

I NETLOD In non-banked systems which must i

I load programs over the network I

l from remote disk drives l

I (USER/USERX/sornetimes SERVER). I

l l

I BNKMGR In all banked-memory systems
I (SINGL/SPOOL/SERVER/USER/USERX). l

I I

l NETREQ+ In network masters (SERVER) whichj
I MSGFMT must make requests of other pro- (

l cessors. I

l I

I NETSVC In network users (USER/USERX) l

l which must service requests from j

I other processors. i

l l

l CPMSUP In all systems which require l

C-functions 7, 8, 24, 28, 29, l

l 31, 37 and 107 to be supported l

! (SINGL/SPOOL/SERVER/USER/USERX). l

l l

i CONREM In network servers (SERVER) that I

I have no console device attached, l

l to allow use of SERVER command l

(in lieu of console driver). l

I l

l RTCNUL In all configurations which have i

l no RTC driver (including LOADR). !

l I

l PATCH In all configurations which re- l

I quire an additional patch area. I

l-lO

TurboDOS 1.3 Z80 ARCHITECTURE
Implementor' s Guide

Memory Required

Mewory Required To estimate the I¡lemory required by a particu-
lar TurboDOS configuration, you need to take
into account the combiríeá size of all func-
tional modules, driver rnodules, disk buffers,
and other dynamic storaCe.

Drivers typically require IK to 4K, and can
be even larger if the hardware jq especially
complex . Disk buffer space shoul.d be as
large as possible for optimum performance,
especially in a network server. About 4K of
di"k buffer "pace .is rea"onable for a single-
user system, although less can be usecl in a

pinch. Other dynamic storage doesn't usually
exceed IE in single-user systems, 2K in net-
work servers.
The following table gives typical memory
requirements foí standard TurboDOS configura-
tions orí non-banked hardware:

! b9mlL sjNCij_ seqql- sERyEE- ysee_-jjseex_!
l l

i CÍ/S 9K] 2K 14K 18K 9K 16K l

l Drivers 2K 2K 2K 3K 2K 2K l

i Buffers 4K 4K 4K' 16K -
4K I

l Dynamic_jg ALL LLK _3Lt _2K -ZK !

! Total 16K 19K 2IK 40K 13K 24K l

l TPA
- 45K 43K 24K 5IK 40K !

!

Iri banked-memory syRtems, a full 63K TPA is
always available.

I _ll

TurboOOS 1.3 Z80 ARCHITECTURE
Implementor's Guide

Other Languages

Other Languages To facilitate translation into languages
other than English, TurboDOS has been
implemented with all textual messages
segregated into separate modules. All such
message modules are available in source form

to TurboDOS licensees upon request.

The following modules contain all TurboDOS
operating system messages:

I t%áñ1e l Contains !

I l

! LCLMSG Most operating system messages. i

i SPLMSG Spooler error messages. i

l LDRMSG Loader messages for OSLOAD.COM. l

l l

In addition, a separate message inodule is
available for each TurboDOS command.

l-12

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

SYSTEM GENERATION This section explains the TurboDOS system
generation procedure in detail. It describes
how to use the GEN command to link a desired
set of TurboDOS modules together, and details
the numerous systeni patch points which ínay be
modified during system generation. Step-by-
step procedures and examples are provided.

Introduction The functional modules of TurboDOS are
distributed in relocatable forní (.REL files).
Hardware-deperAent driver modules are fur-
nished in the same fashion. The TurboDOS GEN

command is a specialized linker used to bind
the desired combination of modules together
into an executable ver'Uon of TurboDOS. The
GEN command also includes a symbolic patch
facility used to modify a variety of opera-
ting system parameters.

To generate a complete TurboDOS system, you
typically must use the GEN command several
times. At minimum, you have to generate both
a loader OSLOAD.COM and a server operating
system OSSERVER.SYS. For a networking system
you also have to generate a user operating
system OSUSER.SYS. Complex networks way
require generation of several different user
or server configurations. Finally, you inay
have to use GEN to generate a cold-start
bootstrap routine for the start-up PROM or
boot track.

At cold-start, the bootstrap routine loads
the loader program OSLOAD.COM into the TPA of
the server computer and executes it. OSLOAD

loads the server operating system from the
file OSSERVER.SYS into the upper portion of
memory. The server operating system then
down-loads the user operating system from
the file OSUSER.SYS over the network into
each user computer.

2~1

l

TurbolX)S 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

GEN Command

GEN Comuand The GEN command is a specialized linker for
software modules in Microsoft relocatable
format, and is designed primarily for use in
TurboDOS system generation.

Syntax l !

l GEN srcefile {destfile} {;options} i

I I

Explanation The GEN command links a specified collection
of relocatable modules together into a single
executable program The "srcefiíe" argument
specifies the nantes of two input files: a

configuration file "srcefile.GEN" and a para-
meter Elie "srcefile.PAR". The "destfile"
argument specifies the name of the executable
output file to be created (normally type .COM

or .SYS). If "destfile" is omitted, then the
"srcefile" argument is also used as the name
of the executable output file, and should
include an explicit file type (.COM or .SYS).

If the configuration file "srcefile.GEN" is
found, it must contain the list of reloca-
table modules (.REL files) to be linked
together. If the configuration file is not
found, then the GEN command operates in an
interactive mode. You are prompted by an
asterisk * to enter a series of directives
Erotn the console. The syntax of each direc-
tive is:
l I

l relfile {,relfile}... {;comment} I

I l

A null directive terminates the prompting
sequence and causes processing to proceed.

After obtaining the list of modules from the

file or console, GEN links all of! the modules
together, a two-pass process that displays
the name of each module as it is encountered.

2-2

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

GEN Command
(Continued)

Explanation When the linking phase is complete, GEN looks
(Continued) for a parameter file '"ucefile.PAR" and pro-

cesses it if found. The parameter file (ifpresent) must be a text file containimg sym-
bolic patches. The syntax of each .PAR fileentry is:
I I

! location = value {,value}.0. {¡comment} i

l i

where the "value" arguments are to be stored
in consecutive inerítory locations starting with
the address specified by "location".

The "location" argument may be the name of a

public symbol, a hexadecimal number, or an
expression composed of names and hex numbers
connected by + or - operators. Hex numbers
must begin with a digit (for example, OF'FFF)

to distinguish them frorn names. The "loca-
tion" expression must be followed by an
equal-sign = character.

The "value" arguments way be expressions (as
defined above) or quoted ASCII strings, and
must be separated bv commas. A "value"
expression is stored as a l6-bit word if its
value exceeds 255 or if it is enclosed in
parentheses; otherwise, it is stored as an 8-
bit byte. A quoted ASCII string may be
enclosed by either quotes ",.." or apostro-
phes '..,', and is stored as a sequence of 8-
bit bytes. Within a quoted string, ASCII
control characters may be specified by using
circumflex (example: ""X" denotes CTRL-X).

After the .PAR file (if any) is processed and
the necessary patches made, GEN writes the
executable file out to disk.

2-3

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

GEN Command
(Continued)

Explanation Each relocatable TurboDOS module is magnetic-
(Continued) ally serialized with a unique serial number.

The serial number consists of two components:
an "origin number" which identifies the
issuing TurboDOS licensee, and a "unit
nuniber" which uniquely identifies each copy
of TurboDOS issued by that licensee. The GEN

command verifies that all modules to be

linked are serialized consistently, and
serializes the executable file accordingly.

Options l Qption _L_.__ ExplanatiQn !

l l

I ;Kxxxx Indicates that a system for a l

! banked-memory environment is to I

l be generated, and defines the :

! hexadecimal base address "xxxx" I

I of the common (non-switched) I

l memory segment. l

! l

I ;Lxxxx Defines the hexadecimal address l

I "xxxx" as the lower boundary of i

I the executable program Default l

l for .COM files is ;LOl0O. l

l I

I ;M Prints a load map. i

I i

l ;S Prints a sorted symbol table. l

l I

l ;Uxxxx Defines the hexadecimal address I

j "xxxx" as the upper boundary of l

the executable program. Default i

! for .SYS files is ;UFFFF. i

Í

I ;X Diagnoses any references to un- l

{ defined symbols. Default is not i

l to diagnose such references, l

I since they are quite normal in i

i TurboDOS system generation. I

I l

2-4

TurboDOS 1.3 Z80 SYSTEM GENERATION

Implementor's Guiáe
GEN Comríand
(Continued)

Example In the following exaInele, GEN is usedto link
a single-user TurboDOS system for a banked-
memory system, using the modules listed in
OSSERVER.GEN and the patches in OSSERVER,PAR,
creating the executable file OSSERVER.SYS.

l I

i 0A}GEN OS,SERVER,,,SY,S ;bIKC0QQ i

l Copyright 1983, Software 2000, Inc. l

I * ; Single-user without spooling tor i

! * ; Advanced Digital Super-Six w/128K i

i * STDSINGL ;stanáará single-user pkg. l

i * BNKMGR ;banked-memory system i

I * CPMSUP ;se1doin-used CP/M functions !

l * CONl92 ;console driver 19.2 Kb I

i * LSTCTS ;printer driver CTS protocol i

i * NITAS6 ;AS6 driver initialization i

l * INTAS6 ;AS6 interrupt handler l

l * SPDAS6 ;AS6 serial/parallel driver l

i * RTCAS6 ;AS6 real-time clock driver I

l * DSKAS6 ;AS6 floppy disk driver I

i * DST58F ;disk spec table 5/8 floppy i

l * BNKAS6 ;AS6 bank-select driver l

I I

l Pass l I

l LCLUSR LCLTBL CMDINT AUTLOD SGLUSR etc. I

l I

l Pass 2

! LCLUSR LCLTBL CMDINT AUTLOD SGLUSE etc. l

i l

l processing parameter file: l

l ; Patches for single-user w/'o spooling I

! AUTUSR = 80 ;logon to user O privileged I

l NMBUFS = 8 ;nuinber of disk buffers l

i PTRAST = 2 ;printer CAl channel 2 l

I EOPCHR = ""Z" ;end-of-print character
l SRHDRV = l ;search drive A }

] PRTMOD = O ;direct printing raode l

I I

I Writing output tile A: OSSERVER.SYS I

I QA} l

2-5

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

GEN Comnaná
(Continued)

Error Messages l l

i File name missing Erom command l

l Invalid input file name l

l Serial number violation i

l Not enough memory i

! Vacuous input file(s) l

l Unexpected EOE in input Elle l

! Disk is full !

! Can't make output file I

l No input tiles i

I Can't open input file] Load address out-of-bounds
I Multiple defined starting address l

i Duplicate symbol: <naine> i

I Undefined symbol: <narne> l

l i

2-6

TurboDOS 1.3 Z80 SYSTEK GENERATION
Implementor's Guide

patch Points

Patch Points The following table describes 45 public sym-
bols in TurboDOS which you níay wish to rnodify
using the symbolic patch facility of the GEN

command. Patch points for the Ncrth Star
drivers are ojiven iri the Appendix.

|-swkQl-!------Def-aglt_vaB8_-____-j^cgLlLm!
l I

i ABTCHR = "^C" COHTBL i

! l

: Abort character (after attention). l

] l

I i

{ ATNBEL = ""G" CONTBL !

l i

l Attention-received warning character. !

l

l l

! ATNCHR = ""S" CONTBL }

!

l Attention character. Play be patched to i

: another character if the default value of !

! CTRL-S is needed by appliCation proqrans. l

l A common choice is zero {NUL), which al- l

l lows the console BREAK key to be used as l

l an attention key. l

I

l l

! AUTUSR = OFF AUTLOG i

i l

l Automatic log-on user number. Default i

l value of! OFF requires that user log-on. l

l If you do not want to have to log on, l

I patch AUTUSR to the desired user !

i number (DO-IF), and set the sign-bit l

l if a privileged log-on is desired. i

I Generally patched to 8¢ in Uncjle-user !

I systems to cause automatic privileged !

l log-on to user zero. !

l l

2-J

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

patch Points
(Continued)

Fatch points i SYlTlbol i ___.R_eíauít \/ajue l Nodule i

(Continued) I i

! BFLDLY = (0l2C) FLUSHR l

I l

I Buffer flush delay determines how often l

I disk buffers are written to disk, stated I

l in system "ticks". Default value (300 i

i decimal) causes buffers to be flushed l

! about every five seconds (assuming 60 l

! ticks per second). I

l i

!

! BUFSIZ = 3 BUFMGR !

l I

l Default disk buffer size (0=128, 1=256, l

! 2=512, 3=lk,..., 7=16K). Default value i

I specifies IK disk buffers. !

j I

!

l CKTAST = (OOO0),CKTDRA, NETTBL i

i (O1OO),CKTDRB, i

I (0200),CKTDRC,
l (0300),CKTDRD l

I l

l Circuit assignment table defines network i

I topology. Contains NMBCKT two-word en- !

I tries, one for each network circuit to l

l which this processor is attached. The l

I first word of each entry specifies the l

! network address by which this processor !

l is known on a particular circuit, and the l

l second word specifies the entrypoint ad- l

l dress of the circuit driver responsible i

l for that circuit. (possibly several cir- I

I c.uits níay be handled by the sanie driver.) l

l l

l I

l CLBLEN = 9D CMDINT l

l l

I Command line buffer length defines long- l

I est permissible command line. The de- l

l fault value permits two BO-char lines. l

l l

2_8

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

patch Points
(continued)

Patch Points I SYW>o1 ! pefmilt _
! Nod|ll.e !

(Continued) l !

I CLPCHR = "}" CMDINT I

I (

l Command line prompt character. l

l

I I

l CLSCHR = "\" CMDINT l

I l

l Cormand line separator character. l

i l

I COLDFN = 0,"COLDSTRT","AUT" AUTLOD I

l i

! File name and drive for cold-start auto- I

i load processing (in FCB format). !

I I

l COMPAT = O FILLOK l

I l

l Default compatibility flags which define i

l rules to be used for file-sharing. patch l

I to OF'8 to relax most MP/M restrictions. l

l l

l I

l CONAST = 0,CONDRA CONTBL I

l l

l Console assignment table defines how con- l

I sole I/O is handled. First byte passed I

l to console driver, and comntonly defines I

l the channel number (e.g., serial port) to i

i be used for the console. Following word I

l specifies the entrypoint address of the I

l console áriver to be used. l

l l

l CPMVER = 31 NONFIL I

l !

i CP/M BDOS version number returned by l

! C-function 12 in L-register. i

I l

2"9

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

Patch Points
(Continued)

Patch points i SYTÍAbol. i ___-_Reíaui_t_yaÁy_e___-__i H9dul-e_i
(Continued) I i

j CURBNK = l BNKMGR i

I I

I Initial memory bank selected for TPA at l

l cold-start. Applicable to banked-memory i

l systems only. patch to O to select non- i

i banked mode at cold-start.
l }

I !

i DEFDID = {0000) NETTBL i

i l

i Default network destination ID, used For i

I routing all network requests that are not i

l related to a µarticular disk drive, queue i

I or printer. In a user, DEFDID should be l

l set to the network address of the server. i

l

! DSKAST = 0O,DSKDRA,OI,DSKDRB, DSKTBL l

0FF,(0OO0),OFF,(0000),... l

i

I Disk assignment table, an array of 16 l

i three-byte entries (one for each drive I

i letter A-P) that defines which drives are I

i local, remote, and invalid.
i

i For a local drive, the first byte must l

l not have the sign-bit set. That byte is !

l passed to the disk driver, and is common- j

l ly used to differentiate between multiple I

l drives connected to a single controller. I

! The following word specifies the entry- l

I point address of the disk driver to be I

l used. l

l i

I For a remote drive, the first byte must I

! have the sign-bit set. The low-order I

i bits of that byte specify the drive let- !

l ter to be accessed on the remote proces- I

l sor. The following word specifies the l

l network address of the remote processor. l

2-lO

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

patch Points
(Continued)

Patch points I SYrnPoi. i -.ÁpéEmtLt vajjlm_-__j_MQm£--|
(Continued) i i

I DSKAST (Continued) DSKTBL]

l I

l For an invalid drive, the first byte must l

! be OFF, and the following word should be I

I (0000). I

l I

I NOTE: In user configurations STDSLAVE l

l and STDSLAVX, the default values are: i

l I

i DSKAST = 80,(0000),81,(0000), i

l 82,(0000),83,(0000), I

l ...,8E,(0000),8F,(0OOO) i

l

l DSPPAT = Cl,Ol,0l,...,Ol LSTTBL l

I I

} De-spool printer assignment table, an ar- I

l ray of 16 bytes (one for each printer I

l letter A-P) that defines the initial !

l queue to which each printer is assigned. l

l Hex values 01 through LO correspond to l

I queues A-P, and O means that the printer l

I is off-line. The default value assigns I

I all printers to queue A. i

l !

l l

l ECOCHR = ""P" CONTBL !

l l

j Echo-print character (after attention). I

l l

I !

l EOPCUR = O LSTTBL i

I I

I End-of-print character. May be patched l

I to any non-null character, in which case l

I the presence of that character in the
I print output stream will automatically l

l signal an end-of-print-job condition. I

l The value zero disables this feature. I

l I

2-ll

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

patch Points
(Continued)

Patch Points l SYñiPol -j__ Pe£aul±_-Vaíue ,_,__| P4odule l

(Continued) ! " !
! FWDTBL = (QFFFF),(0FFFF),(OFFFF), NETTBL !

l (OFFFF),0FF I

l

l Network forwarding table, an array of l

l two-byte entries that define any explicit l

l message forwarding routes to be used by l

I this processor. The first byte of each l

l entry specifies a "foreign" circuit num- l

I ber N, and the second byte a "domestic" l

I circuit number C. Any messages destined l

l for circuit N will be routed via circuit l

I C. This table is variable-length, teriui- l

l nated by OFF, and defaults to empty. l

l l

l l

I LDCOLD = OFF AUTLOD l

I I

l Cold-start autoload enable flag. Patch !

l to zero if you want to disable the cold- l

l start autoload feature {COLDSTRT.AUT). i

{ !

l l

l LDWARM = OFF AUTLOD I

l I

l warm-start autoload enable flag. Patch l

I to zero if you want to disable the warm- I

l start autoload feature (WARMSTRT.AUT). I

I I

l I

i LOADFN = 0,"OSSERVER","SYS" OSLOAD l

l l

) Default file name and drive (in FCB for- I

] mat) loaded by OSLOAD.COM. Drive field !

l (FCB byte O) may be patched to an expli- l

I cit drive value to inhibit scanning. l

2-12

TurboDOS 1.3 280 SYSTEM GENERATIDN

Implementor's Guide
Patch PoinLs

(Continued)

patch Points l Svmkol j____n)gíaYjtA/ALum___ l MMtüe l

(Continued) i l

l LOGUSR = IF FILCOM !

l

l User number for logged-off state. De- I

! fault value is 31 decimal. i

l

I MEMBLL = (1103) MEMMGR l

I i

i Heínory base lower limit, prevents alloca- l

I tion of dynauíic memory space below this l

! address under any circumstances. Default l

I value guarantees minimum of 4K TPA (which I

l is enough for BUFFERS command).
l-.
l l

I MEMRES = (0100) LCLUSR I

i l

! Memory reserve, used when loading a pro- l

l gram into TPA to provide a safety margin l

l between the base of dynamic memory space l

i and the top of TPA. This allows dynamic I

I space to grow by the amount of MEMRES i

l before it encroaches on the TPA (and pos- l

l sibly causes a crash). The MEPSRES value I

i may have to be increased above the 256- l

l byte default value for reliable operation l

I particularly in network servers.
l

I i

l MEMTOP = (QFFFF) OSLOAD I

I I

l Top of memory address for purposes of the !

! RAM diagnostic test performed by OSLOAD. l

i Patch to (0000) to omit test altogether. l

i

----'
l

l NMBCKT = l NETTBL l

I l

I Number of network circuits to which this l

l processor is connected. I

l -i

2-13

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

Patch Points
(Continued)

Patch Points i SYmboLj____P_efa_uI_t-y_aLue-_____j_.Mod_uÁe_!
(Continued) l l

l NMBMBS = O NETHGR l

l l

I Number of message buffers pre-allocated l

I at cold-start. Message buffers are allo- l

l cated dynarr.ically as needed, but this rr,ay I

I cause fragmentation which prevents you I

l from obtaining more TPA by reducing the l

I size of the disk buffer pool. If this is l

i important, patching NMBF'IBS to a suitable l

I positive value will eliminate the problem l

I (twice the number of network nodes is a l

l good starting value to try). l

I l

i l

I NMBRPS = U NETMGR I

l l

l Number of reply packets pre-allocated at I

l cold-start. Reply packets are allocated !

! dynamically as needed, but this tr,ay cause l

j fragmentation which prevents you front ob- I

l taining more TPA by reducing the size of I

l the disk buffer pool. If this is impor- I

l tant, patching NMBRPS to a suitable posi- !

l tive value will eliminate the problem. i

l (The number of network nodes is a good I

I starting value to try.) l

!

l l

I NMBSVC = 2 NETSVC l

I I

l Number of network server processes to be !

I activated. (The number of network nodes I

l is a good starting value to try.) l

l

2-14

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

Patch Poínts
(Continued)

Patch Points l ,qYmho} i

-____
l M¢hi1e I

(Continued) l

I NMBUFS = 4 EIUFMGR :

l I

l Default number of disk buffers allocated !

! at cold-start. Must be at least 2. For l

l optirnurá performance, allocate as níany l

l buffers as possible (consistent with tpa l

I and other memory requirements). !

I I

I l

! PRTCHR = "^L" CONTBL l

I l

l End-print character (after attention). l

! This is a console attention-response, not l

l to be confused with EOPCHR. I

I l

I PRTMOD = l LCLTBL i

l I

: Initial print mode for local user. The l

I default value of l specifies spooling. l
i

Patch to O for direct, or 2 for console. i

I l

I

l PTRAST = 00,LSTDRA,OFF,(O0OO), LSTTBL I

i OFF,(O000),0FF,(00O0),... I

I

! Printer assignment table, an array of 16 i

i three-byte entries (one for each printer l

i letter A-P) that defines which printer" :

: are local, remote, and invalid. l

I I

] For a local printer, the first byte must l

! not have the sign-bit set. That byte is l

I passed to the disk printer and com- I

l monly defines the channel number (e.?.t I

l serial port) to be used for the printer. I

I The following word specifies the entry- I

l point address of the printer driver to be I

! used.
I I

2-15

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

patch Points
(Continued)

patch Points l SY1nbol l Pefgwít Vdkue I MMule l

(Continued)
l PTRAST (Continued) LSTTBL l

i l

l For a remote printer, the first byte must l

I have the sign-bit set. The low-order
l bits of that byte specify the printer l

i letter to be accessed on the remote pro- l

i cessor. The following word specifies the l

l network address of the remote processor. !

] l

I For an invalid printer, the first byte I

l must be OFF, and the following word I

l should be (0000). l

l

I NOTE: In user configurations STDSLAVE I

l and STDSLAVX, the default values are: l

I

l PTRAST = 80,(0000),81,(0000), I

I 82,(0000),83,(0000), I

l ...,8E,(0000),8F,(0OOO) l

l I

l l

{ QUEAST = Q0,(0000),OFF,(0O00), LSTTBL l

l 0FF,(0000),0FF,(0OOO),... I

l

I Queue assignment table, an array of 16 I

l three-byte entries (one for each queue 1

l letter A-P) that defines which queues are i

l local, remote, and invalid. I

I i

I For a local queue, all three bytes must I

l be set to zero. l

l l

I For a remote queue, the first byte must I

I have the sign-bit set. The low-order I

I bits of that byte specify the queue let- I

l ter to be accessed on the remote proces- I

l sor. The following word specifies the l

l network address of the remote processor. j

l l

2-16

TurboDOS 1.3 Z80 SYSTEM GENERATION
Impl@entor's Guide

Patch Poínts
(Continued)

patch points l sYmho1 l__, Mfa.nlt VÁiíw l HMñle i

(Continued) I I

! QUEAST (Continued) LSTTBL i

l l

l For an invalid queue, the first byte must I

I be OFF, and the following word should be l

I (0000). !

l I

i NOTE: In user configurations STDSLAVE I

! and STDSLAVX, the default values are: I

{ l

l QUEAST = 80,(0000),81,(0000), i

I 82,(0000),83,(0000), l

I ...,8E,(0000),8F,(0OOO) I

l i

I

I QUEPTR = l LCLTBL I

l l

l Initial queue or printer assignment. If l

l PRTMOD = l (spooling), QUEPTR specifies a l

i queue assignment. If PRTMOD = O (direct) l

I QUEPTR specifies a printer assignment. !

l In both cases, hex values 01 through lO l

l correspond to letters A-P, and zero means I

! do not queue or print off-line. l

l l

l !

l RESCHR = ""Q" CONTBL l

! l

l Resume character (after attention). l

I I

I l

I SCANDN = O OSLOAD l

l I

I Scan direction flag for OSLOAD. Patch to l

! OFFH to scan P-tO-A (instead of A-tO-P). l

l -l
l I

I SLVFN = "OSUSER ","SYS" NETSVC l

!

l Name and type of file (in FCB format) to i

l be down-loaded into user processors. l

!

2-17

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

patch Points
(Continued)

Patch Points l sY3poí.j____p.efaAmya»e—___ l Mc)Áuje_l
(Continued) l !

l SPLDRV = OFFH LCLTBL I

l l

l Initial spool drive. Default value OFF l

l indicates spool to system disk {disk froin I

l which TurboDOS was loaded at cold-start). l

I Patch to O through F to specify a partí- i

l cular drive A-P. l

! l

i SRHDRV = O CMDINT l

I I

l Search drive for command files. Patch to I

l hex value Dl through 10 to search drive l

) A-P if command is not found on current l

l (default) drive. Patch to OFF to search I

i sYstem disk (disk from which TurboDOS was l

l loaded at cold-start). Default value O I

I disables this feature altogether. l

l l

l

I SUBEN = 0,"$$$ ","SUB" SUBMIT l

! I

l Submit file name searched for by optional l

i CP/M submit-file emulator. I

I i

l WARMFN = 0,"WARMSTRT","AUT" AUTLOD I

l l

! File name and drive for warm-start auto- l

l load processing (in FCB format). l

2-18

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

Network Operation

Network Operation TurboDOS accomodates a wide variety of net-
work topologies, ranging from the simplest
point-to-point server/user networks to the
most complex star, ring, and hierarchical
structures. The physical implementation of
network topologies involves adding communi-
cations hardware and software and writing
new network drivers.

Network Model A TurboDOS network is defined to consist of
up to 255 circílir.¶,, with up to 255
(processors) on each circuit. Each node has

a unique 16-bit ner.work Adaressí consisting of
an B-bit circuit number plus an B-bit node
number (on that circuit).
Any processor may be connected to several
circuits, if desired. A processor connected
to multiple circuits has multiple network
addresses, one for each circuit. Such a
processor even may be set up to perform mes-
sage forwarding from one circuit to another,
permitting dialogue between network nodes
that do not share a common circuit between
them (more on this later).

Network Tables The actual network topology is defined by a

series of tables in each processor. The
tables are set up during system generation,
and define the network as "seen" from the
viewpoint of each processor. The tables are:
l svmm i

__
pescrjptiQn l

l l
i NMBCKT A byte value that defines the I
I number of network circuits to !
l which this processor is connec— I
l ted. l
I l

2-19

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

Network Operation
(Continued)

Network Tables l 8vmk'ol l pescriptjQn I

(Continued) (l

I CKTAST The circuit assignment table I

containing NMBCKT entries defin- l

l ing the network address by which [

l this processor is known on each !

l circuit, and specifying the net- l

l work circuit driver responsible I

for each handling each circuit. i

! I

l DSKAST The disk assignment table that I

l specifies for all drive letters I

l A-P which are local, remote, and l

l invalid. This table specifies l

I a network address for each re- l

l mote drive, and a disk driver l

l for each local drive. I

l

i PTRAST The printer assignment table l

I that specifies for all printer I

I letters A-P which are local, re- l

l mote, and invalid. This table l

I specifies a network address for l

l each remote printer, and a prin- l

ter driver for each local prin- l

I ter. I

l !

I QUEAST The queue assignment table that i

l specifies for all queue letters l

l A-P which are local, remote, and I

I invalid. This table specifies a l

I network address for each remote l

l queue. I

I

I DEFDID The default network destination l

id, used for routing all network l

I requests that are not related to l

t a specific disk drive, printer, I

l or queue.
I

2-20

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

Network Operation
(Continued)

Network Tables I 8YmPo1. pescript.jon "I

(Continued) l i

l FWDTBL The message forwarding table l

that specifies any additional l

l circuits (not directly connected I

! to this processor) which may be l

I accessed via explicit message l

1 forwarding, and how messages l

l destined for such circuits are I

I to be routed. l

i l

These tables are pre-defined with default
values to make set-up of simple server/user
networks very easy. For complex multi-
circuit networks, the set-up is somewhat more
complicated (as might be expected).

Refer to the preceding Eakch poi.nt¶l sub-
section for details of the organization and
defaults for these network tables,

2-21

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

Network Operation
(Continued)

Message Forwarding The network architecture of TurboDOS supports
two kinds of message forwarding: "implicit"
and "explicit". To understand the distinc-
tion, consider the case of a network with
three processors (PI, P2, and P3) connected
by two circuits (Cl and C2) as follows:
] l l I l l

l pi l"""""~cl"""""~l p2 |"""""~c2"""""l p3 l

A program running in PI makes an access to
drive d. Suppose the disk assignment tables
in the three processors are set up in the
following fashion:

. Pl's DSKAST defines its drive d as a
remote reference to P2'S drive B.

. P2's DSKAST defines its drive B as a
remote reference to P3'S drive A.

. P3's DSKAST defines its drive A as a
local device attached directly to P3.

In this case, pl's access to its drive D

actually winds up implicitly accessing P3's

drive A. This is i,Inpíi.cit íbrwdLüir¡y.

Alternatively, suppose Pl's DSKAST defines
its drive D as a remote reference to P3'S
drive A, and that Pl's FWDTBL provides that
messages destined for circuit C2 may be
routed via Cl. In this case, PI sends a
request to P3 on circuit Cl. P2 receives the
request, recognizes that it should be forwar-
ded, and retransmits the request to P3 via
circuit C2. Thus, PI accesses P3'S drive A
with the assistance of P2, but this time PI
is not aware of P2'S role in the transaction.
This is e¥p1.icir. forwarding.

2-22

TurboDOS 1.3 Z80 SYSTEM GENERATION

ImpI@entor's Guide
A Complex Ex=p1e

A Complex Example Let's take a reasonably complex network situ-
ation and see how to construct the required
.GEN and .PAR files.
Our hardware is an S-lOO microcomputer system
consisting of a Z80 CPU board, a 64K memory
board, hará disk and floppy disk controller
boards (all these make up the server proces-
sor), and several single-board user proces-
sors on the same bus. The server processor
is interfaced to two printers, one daisywheel
and the other matrix, via RS232 serial ports.
The daisywheel printer is on serial port O

and uses XON/XOFF protocol, while the matrix
printer is on port l and uses clear-to-send
handshaking. In addition, the server has a

high-speed RS422 interface connecting it to
another S-lOO system of similar configuration
some distance away.

We want to configure a TurboDOS system for
this hardware that permits all of the users
of each S-lOO system to access the hard disk,
floppy disks, and printers attached to both
the local and remote S-lOO system. we might
create the following OSSERVER.GEN file:
I !

l ; OSSERVER.GEN for complex example j

l STDSERVER ; standard server package l

l FASLOD ; non-banked program load l

l NETREQ ; to niake requests of other sys l

l MSGFMT ; needed by NETREQ l

l CONREW ; no console on the server l

l LSTXON ; XON/XOFF for daisy (LSTDRA) i

i LSTCTS ; CTS for matrix (LSTDRB) l

I DSKHDC ; hard disk controller (DSKDRA) I

i DSKFDC ; floppy disk control. (DSKDRB) l

l CKTSLV ; circuit driver for users (CO) I

I CKT422 ; circuit driver for RS422 (Cl) l

! RTCDRV ; real-time clock driver l

l NITDRV ; hardware initialization driver l

-!

2-23

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

A Complex Ex=ple
(Continued)

A Complex Example Our system generation task is completed by
(Continued) creating the companion OSSERVER.PAR file:

l I

l ; OSSERVER.PAR for complex example l

l NMBCKT = 2 ; 2 net circuits l

I CKTAST = (0OOO),CKTDRA ; ckt O for users l

I (O1OO),CKTDRB ; ckt l via RS422 l

I DSKAST = 0O,DSKDRA ; drv A is local HD l

I 0O,DSKDRB ; drv B is local FDO i

l O1,DSKDRB ; drv C is local FDI t

l 80,(0101) ; drv D is remote HD I

I 81,(0101) ; drv e is remote EDD l

i 82,(0101) ; drv F is remote FIJI !

I PTRAST = Q0,LSTDRA ; ptr A is lcl daisy l

l 0I,LSTDRB ; ptr B is lcl matrix l

i 80,(0101) ; ptr C is rmt daisy t

l 81,(0101) ; ptr D is rmt matrix l

I QUEAST = 00,(0000) ; queue A is local l

l 00,(0000) ; queue B is local l

I 80,(0101) ; queue C is remote A l

I 81,(0101) ; queue d is remote B l

l DEFDID = (0101) ; default other server I

I DSPPAT = 1,2,3,4 ; assgn ptrs to queues l

i MEMRES = (0400) ; IK safety margin I

{ NMBMBS = QA ; lO message buffers l

I NMBRPS = 5 ; 5 reply packets l

I NMBSVC = 5 ; 5 server processes !

l NMBUFS = 14 ; 20 IK disk buffers l

I l

The generation of the second server operating
system could be identical, except that all
occurrences of network addresses (0100) and
(0101) in the OSSERVER.PAR file would be
reversed. Generation of the user operating
system would be very straightforward, and
identical for both systems.

If you study this example thoroughly until
you understand the reason for every.GEN and
.PAR file entry, you should have littletrouble setting up your own "sysgens".

2-24

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor's Guide

Sysgen Procedure

Sysgen Procedure To conclude this section, here is a suggested
step-by-step procedure for generating a new
version of TurboDOS, if you are not using
the North Star CONFIG program.

l. Bring up a previous version of TurboDOS.

If this is your first attempt to generate
a TurboDOS system, you may bring up CP/M

instead. However, if you are using CP/M,

all disks will have to be in a format
compatible with both CP/M and TurboDOS.

2. Make a working copy of your Turbooos dis-
tribution disk. Do not use the original
disk (in case something goes wrong).
Insert the working diskette in a conven—
lent disk drive.

3. Using your favorite text editor, create or
revise the file OSSERVER.GEN containing
the names of the relocatable modules to be
linked together. Generally, this willconsist of the appropriate STDXxXXx stan—
dard package plus selected additional
modules and all required device drivers.

4. Using your editor once again, create or
revise the file OSSERVER.PAR containing
any required patches. This may be omitted
if no patches are desired.

5. For HORIZON servers use the command
GEN oqs.FR\/FB SYS; UE7FF to generate an
executable system in accordance with the
.GEN and .PAR files just constructed. If
your hardware has banked memory, don't
forget to use the ;Kxxxx option.

2-25

TurboDOS 1.3 Z80 SYSTEM GENERATION
Implementor' s Guide

Sysgen Procedure
(Continued)

sysgen Procedure 6
. Construct a user operating systeni in the

(Continued) same manner. Create or revise the files
OSUSER-A. GEN and OSUSER- PAR, then use
the conimand

gEN_gsgsEB: ks to qenerate
the down-loadable user operating system.

7. To test the newly-generated system, eject
all diqks other than your working disk
(again, in case something goes wrong) .
Reset the HORIZON. The new system should
cold-start. If it £aila tO come up or tO
function properly, you will have to start
over a t step l an cl check your work
carefully -- there i" íííost likely ari error
in cne of your .GEN or .PAR files, or a
"bug" in one of your drivers.

t' S
. -~" '. t n

¥ , \
i

i : ,t;

jjja1 i ,

J',ÜNÁ"
Eji

"j"-j 1
y

,\
" "

,,K ,, Cj
'j"-'"' .jj')"C>
" 1j"j'

+

2-26

TurbooOS 1.3 Z80 DISTRIBUTION
Implementor's Guide

DISTRIBUTION This section explains the TurboDOS distribu-
tion procedure in detail. It covers TurboDOS
licensing requirements, and the obligations
of licensed distributors, dealers, and end-
users. It describes how to make up and
serialize TurboDOS distribution disks.

Although this section is of concern primarily
to licensed TurboDOS distributors, we've
included it here so that dealers and end-
users can gain a better perspective on the
overall distribution process.

TurboDOS Licensing TurboDOS is a proprietary software product of
Software 2000, Inc. As such, it is protected
by law against unauthorized use and reproduc-
tion. Authorization to use and/or reproduce
TurboDOS is granted only by written license
agreement.

Legal Protection TurboDOS programs and documentation are copy-
righted, whichmeans it isagainst thelaw to
make copies without express written authori-
zation from Software 2000 to do so.

The word "TurboDOS" is a trademark owned by
Software 2000 and registered in Class 9 (com-

puter software) and Class i6 (documentation)
with the trademark offices of the United
States and most of the developed countries of
the free world. This means it is against the
law to make use of the TurboDOS trademark
without express written authorization from
Software 2000.

Software 2000 has licensed certain companies

to distribute TurboDQS. Such distributors
are authorized to use the TurboDOS trademark,
and to reproduce, distribute, and sub-license
TurboDOS programs and documentation to deal-
ers and end-users.

3-l

TurboDOS 1.3 Z80 DISTRIBUTION
Implementor's Guide

TurboDOs Licensing
(Continued)

User Obligations TurboDOS may be used only after the user has
paid the required license fee, signed a copy
of the TurboDOS end-user license agreement,
and returned the signed agreement to the
issuing TurboDOS distributor. Then, TurboDOS
may be used only in strict conformance with
the terms of the license.
Each end-user license allows TurboDOS to be
used on one specific computer system identi-
fied by make, model, and serial number. The
end-user license may not be transferred from
one computer system to another, and expressly
forbids copying programs and documentation
except as required for backup purposes only.
A separate license fee must be paid and a

separate license signed for each computer
system on which TurboDOS is used. Network
user computers that cannot operate stand-
alone (because, for example, they have no
local disk) do not have to be licensed sepa-
rately from the network server. However,
networked computers that are also capable of
stand-alone operation under TurboDOS must
each be licensed separately (whether or not
they are actually used stand-alone).

Dealer Obligations A dealer must sign a TurboDOS dealer agree-
ment and return the signed agreement to the
issuing distributor. Then, the dealer ispermitted to purchase pre-serialized copies
of TurboDOS programs and documentation from
the distributor, and to resell them to end-
users. Dealers may not make copies of
TurboDOS programs or documentation for any
purpose whatever.

Before delivering each copy of TurboDOS, the
dealerinust seetoitthat the end-user signs
the TurboDOS end-user license agreement and
returns it to the issuing distributor.

3-2

TurboDOS 1.3 Z80 DISTRIBUTION
Implementor's Guide

TurboDOS Licensing
(Continued)

Distributor Each licensed TurboDOS distributor is provi-
Obligations ded a server copy of TurboDOS relocatable

modules and command programs on diskette. A

distributor is allowed to reproduce and
distribute copies of TurboDOS to dealers and
end-users, but only in connection with
certain specifically authorized hardware
(usually manufactured or sold by the distri-
butor). The distributor is required to
serialize each copy of TurboDOS with a unique

sequential magnetic serial number, and to
register each serial number promptly with
Software 2000. (Serialization is described
in more detail below.)

Each distributor is also provided with a
master copy of TurboDOS documentation, either
in camera-ready hardcopy or in ASCII files on
disk. The distributor is responsible for
reproducing the documentation and furnishing
it with each copy of TurboDOS it issues.
A distributor must require each dealer to
sign and return a TurboDOS dealer agreement
before issuing copies of TurboDOS to the
dealer for resale. A distributor must
require each end-user to sign and return a
TurboDOS end-user license agreement before
issuing a copy of TurboDOS directly to the
end~user.

3-3

TurboljOS 1.3 Z80 DISTRIBUTION

Implementor's Guide
TurboljOS Licensing

(Continued)

Serialization Each copy of TurboDOS is magnetically serial—
ized with a unique serial number. Such

serialization helps ensure that reproduction
and distribution of TurboDOS is done in
strict accordance with the required licensing
and registration procedures, and facilitates
tracing of unlicensed copies of the software.

Each relocatable module of TurboDOS distribu-
ted to a dealer or end-user has a magnetic
serial number composed of two parts:

. an o.riqi.n numMr that identifies the
issuing distributor, and

. a sequential iuú& n|lTnker that uniquely
identifies each copy of TurboDOS issued
by that distributor.

During system generation, the GEN command

verifies that all modules making up a Turbo—
DOS configuration are serialized consistent—

ly, and magnetically serializes the resulting
executable version of TurboDOS accordingly.

The relocatable modules on the master disk
furnished to each licensed TurboDOS distribu-
tor are partially serialized with aíi oíigin
number only. Each distributor is provided a
serialization program (SERIAL.COM) that must
be used to add a unique sequential unit num—

ber to each copy oil TurboDOS issued by the
distributor. The GEN command will not accept
partially-serialized modules that have not
been serialized with a unit number. Con—

versely, the SERIAL command will not re-
serialize modules that have already been

fully serialized.

3-4

TurboDOS 1.3 Z80 DISTRIBUTION
Implementor's Guide

TurboDOS Licensing
(Continued)

Technical support Software 2000 maintains telephone and telex
"hot-lines" to provide TurboDOS technical
assistance to its distributors. These are
unlistednumbers providing directaccess to
the authors of the TurboDOS operating system,
and are furnished only to licensed TurboDOS

distributors, We encourage distributors to
take advantage of this service whenever tech-
nical questions or problems arise in using or
configuring TurboDOS.

It is the responsibility of each licensed
distributor to provide technical support to
its dealers and end-user customers. Software
2000 cÁnn: Qt assist dealers or end-users
directly. Where exceptional circumstances
seem to require direct contact between Soft-
ware 2000 technical personnel and a dealer or
end-user, this must be handled strictly by
prior arrangement between Software 2000 and
the distributor.

3~5

TurboDOS 1.3 Z80 DISTRIBUTION
Implementor's Guide

SERIAL

SERIAL Co~and The SERIAL command enables TurboDOS distribu—
tors to magnetically serialize relocatable
modules of TurboDOS for distribution.

Syntax I I

I SERIAL srcefile destfile ;Unnn {options}]

I SERIAL ;Unnn {options} I

l l

Explanation The SERIAL command works exactly like the
COPY command, and accepts exactly the same
arguments and options. However, SERIAL has
the additional function of magnetically
serializing relocatable modules as they are
copied. SERIAL serializes files of type .REL
(Z80 modules) and type .O (8086 modules).
Other files are copied without any change.

The unit number must be specified on the
command line as ;Unnn, where "nnn" represents
a decimal unit number in the range 0-65535.
Unit numbers must be assigned sequentially,
starting with l. Unit number O is reserved
by convention for in-house use by the distri—
butor.

SERIAL produces fully-serialized modules that
are encoded with the distributor's origin
number and the specified unit number. GEN

does not accept TurboDOS modules unless they
have been fully serialized in this fashion.

Options l nptimi F1¢p1Á.niation l

i I

I SERIAL accepts all COPY options, plus: l

l

I ;Unnn Relocatable modules (type .REL I

or .O) are magnetically serial- I

ized with unit number nnn, which I

must be a decimal integer in the l

I range O to 65535. This "option" I

l is mandatory for SERIAL. i

I

3-6

TurbooOS 1.3 Z80 DISTRIBUTION
Implementor's Guide

SERIAL Command
(Continued)

Example l l

l 0A}5FPTRT|! * RFTi EK :n?89N I

l OA:AUTLOD .REL copied to OB:AUTLOD. REL I

l OA:AUTLOG .REL copied to OB:AUTLOG. rel I

l :
l

I OA:SYSNIT. REL copied to OB:SYSNIT. REL l

l QA}
I

Error Messages ! l

l SERIAL incorporates all COPY error rites- I

l sages, plus: I

I I

! Unit number not specified I

l Origin number violation l

I File is already serialized I

I Unexpected EOF in .O or .REL file i

l l

3—7

TurboDOS 1.3 Z80 DISTRIBUTION
Implementor's Guide

PACKAGE Command

PACKAGE Comand The PACKAGE command lets you combine any
collection of relocatable modules into a
single concatenated .REL file.

Syntax I I
l PACKAGE srcefile {destfile} I
I l

Explanation PACKAGE may be used to construct custom
packages of TurboDOS modules, make additions
or changes to the supplied STDxxXxX packages,
pre-package collections of driver modules,
and so forth.

The "srcefile" argument specifies the name of
an input file "srcefile.pkg" that lists the
modules to be packaged. The "destfile" argu—
merit specifies the name of the concatenated
.REL file to be created. If "destfile" is
omitted, then the "srcefile" argument is also
used as the name of the output .REL file.
If the .PKG file is found, it must contain
the list of relocatable modules (.REL files)
to be linked together. If the configuration
file is not found, then the PACKAGE command
operates in an interactive mode. You are
prompted by an asterisk * to enter a series
of directives from the console. The syntax
of each directive is:
l l

i relfile {,relfile}... {;coinment} I

A null directive terminates the prompting
sequence and causes processing to proceed.

After obtaining the list of modules from the
file or console, PACKAGE concatenates all of
the modules together (displaying the name of
each module as it is encountered) and writes
the result to the output file.

3-8

TurboDOS 1.3 Z80 DISTRIBUTION
Implementor's Guide

PACKAGE Comand
(Continued)

Example l i

! 0A}PRCF.AG.E STPI,ORPR. I

l * ; STDLOADR.PKG standard loader package l

l * OSLOAD,LDRMSG,OSNTRY,FILMGR,FILSUP I

l * FILCOM,BUFMGR,DSKMGR,DSKTBL,NONFIL (

l * CONMGR,CONTBL,DSPSGL,CQMSUB l

I OSLOAD LDRMSG OSNTRY FILMGR FILSUP etc. {

l QA} l

ll

Error Messages } I

j File name missing from command I

! Invalid input file name I

l Unexpected EOF in input file I

I Disk is full l

l Can't make output file {

l Can't open input file l

I No input files l

l l

3-9

TurboDOS 1.3 Z80 DISTRIBUTION
Implementor's Guide

Distrib. Procedure

Distribution Here is the procedure to be followed by dis-
procedure tributors when creating each copy of TurboDOS

to be issued to a dealer or end-user:

l. Assign a unique sequential unit number for
this copy of TurboDOS, and register itimmediately by filling out a serial number

registration card (or agreed-to substi—
tute) and mailing to Software 2000, Inc.

2. Format a new disk, and label it with the
following information clearly legible:

. trademark TurboDOSTM

. version number (1.3X)

. origin and unit numbers (oo/uuuu)

. statutory copyright notice:
Copyright 198x by software 2000, Inc.
All rights reserved.

3. Use the SERIAL command to copy and serial-
ize the appropriate files front your dis-
tribution master disk to the new disk.
Use the tables on the following page to
guide you in determining what files to put
on the new disk.

IMPORTANT NOTE: Be absolutely certain
that the new disk does Á,Qt contain any
unserialized modules or SERIAL.COM!

4. Using the new serialized disk, use the GEN

command to generate an executable loader
and operating system. Follow the system
generation procedure described in the
previous section.

5. In addition to the serialized disk, you
should issue copies of TurboDOS documenta—
tion and a start-up PROM (if applicable).

3-lO

TurboDOS 1.3 F80 DISTRIBUTION
Implementor's Guide

Distrib. Procedure
(Continued)

Distribution The following table rnay be used for guidance
Procedure in preparing TurboDOS disks for distribution.
(Continued) In addition to the files shown, you need to

include hardware-dependent driver modules and

utility programs as appropriate.
l single-user i single-user I multi-user l

l Wo ,spoo1er l with }poo1er l netl8tork.inq I

i I

! STDLOADR.REL STDLOADR.REL STDLOADR.REL l

I STDSINGL.REL STDSINGL.REL STDSINGL.REL I

l

- STDSPOOL.REL STDSPOOL.REL)

l

- - STDMASTR.REL I

l

- - STDSLAVE.REL]

l
- - STDSLAVX.REL l

l i

l FASLOD .REL FASLOD .REL FASLOD .REL l

l BNKMGR .REL BNKMGR .REL BNKMGR .REL l

l CPMSUP .REL CPMSUP .REL CPMSUP .REL l

l RTCNUL .REL RTCNUL .REL RTCNUL .REL l

l PATCH .REL PATCH .REL PATCH .REL i

I SUBMIT .REL SUBMIT .REL SUBMIT .REL l

I OSBOOT .REL OSBOOT .REL OSBOOT .REL l

I
- -

NETLOD .REL I

l
- -

NETREQ .REL i

i

- -
MSGFMT .REL I

l

- -
NETSVC .REL l

!
- -

CONREM .REL l

I I

I AUTOLOAD.COM AUTOLOAD.COM AUTOLOAD.COM I

l BACKUP .COM BACKUP .COM BACKUP .COM I

I BANK .COM BANK .COM BANK .COM i

l

- - BATCH .COM]

l BOOT .COM BOOT .COM BOOT .COM l

i BUFFERS .COM BUFFERS .COM BUFFERS .COM I

l

- -
CHANGE .COM 1

I COPY .COM COPY .COM COPY .COM I

I DATE .COM DATE .COM DATE .COM }

! DELETE .COM DELETE .COM DELETE .COM I

{ DIR .COM DIR .COM DIR .COM !

l DO .COM DO .COM DO .COM l

l DRIVE .COM DRIVE .COM DRIVE .COM l

l l

3-ll

TurboDOS 1.3 Z80 DISTRIBUTION
Implementor's Guide

Mstrib. Procedure
(Continued)

Distribution l single-user I single-user I multi-user l

Procedure I WK ,spoM< l with ,spoo1er l netY[orkinq l

(Continued) l

i DUMP .COM DUMP .COM DUMP .COM i

! ERASEDIR.COM ERASEDIR.COM ERASEDIR.COM I

I
- - FIFO .COM l

l FIXDIR .COM FIXDIR .COM FIXDIR .COM I

I FIXPQAP .COM FIXMAP .COM FIXMAP .COM I

l FORMAT .COM FORMAT .COM FORMAT .COM i

i GEN .COM GEN .COM GEN .COM l

i LABEL .COM LABEL .COM LABEL .COM I

l
- -

LOGOFF .COM l

l

- - LOGON .COM I

l
- -

MASTER .COM l

l PRINT .COM PRINT .COM PRINT .COM l

l

- PRINTER .COM PRINTER .COM I

l

-
QUEUE .COM QUEUE .COM I

I
- - RECEIVE .COM l

I RELCVT .COM RELCVT .COM RELCVT .COM I

I RENAME .COM RENAME .COM RENAME .COM l

I

- -
SEND .COM i

I SET .COM SET .COM SET .COM l

l SHOW .COM SHOW .COM SHOW .COM j

l TYPE .COM TYPE .COM TYPE .COM I

l USER .COM USER .COM USER .COM l

I VERIFY .COM VERIFY .COM VERIFY .COM I

l l

3-12

TurboDOS 1.3 Z80 CODING CONVENTIONS
Implementor's Guide

CODING CONVENTIONS This section is devoted to in-depth discus-
sion of TurboDOS internal coding conventions,
aimed at the systems programmer writing hard-
ware-dependent drivers or resident processes.

Assehb1er Notes Drivers and resident processes for Z80 Turbo-
DOS must be written using a Z80 assembler
capable of producing relocatable modules with
symbolic linkage information in the industry-
standard Microsoft relocatable module format.
Both Microsoft's M80 and Digital Research's
RMAC assemblers produce object code in thís
format, and are fine choices for use with
TurboDOS.

Another excellent relocatable 280 assembler

is PASM from Phoenix Software Associates.
However, PASM produces object modules in a
non-standard format.

To make it possible for PASM to be used with
TurboDOS, a conversion utility (RELVCT.COM)
for converting PASM object modules to stan-
dard Microsoft format is furnished with
TurboDOS. The command:

I I

I RELCVT filename I

l

converts the specified PASM-format .REL fileinto Microsoft .REL format. During conver—
sion, the character , is converted to ?, and
the character % is converted to @ wherever
these characters appear in symbol names.

4-l

TurboDOS 1.3 280 CODING CONVENTIONS
Implementor's Guide

Assembler Note8
(Continued)

Assembler Notes Programming examples and driver listings in
(Continued) this document are coded for PASM. If you are

used to another assembler, please take note
of certain syntax features of PASM which may
be different in other assemblers.

Names followed by # are external references
to public names defined in other modules.
Labels followed :: are public names available
for reference in other modules. Sorne assem—
biers require such names to be declared using
an EXTERN or PUBLIC directive.

Program, data, and common segments are intro—
duced with a .LOC directive. Other assem—
biers use different directives such as CSEG,
DSEG, COMMON, etc. to accomplish the same
thing.

Finally, the symbol . represents the current
location counter value. Sorne assemblers use
S or * instead.

Undefined External To allow various TurboDOS modules to be in—
References cluded or omitted at will, the GEN command

automatically resolves all undefined external
references to the default symbol public ?UND?

(.UNÍ). using PASM). The common subroutine
module COMSUB contains the following subrou-
tine:
I I

i .UNO'.: : NOP ;two bytes of zero l

I NOP " " " " " l
f

! XRA A ;clear A to zero I

l RET ;done l

I I

Thus, it is always safe to load or call an
external name, whether or not it is present
at GEN time. It is bad form to store into an
undefined external name, however!

4-2

TurboDOS 1.3 Z80 CODING CONVENTIONS
Implementor's Guide

Memory Allocatíon

M@ory Allocation The TurboDOS resident occupies the topmost
portion of memory in a Z80 system. A common
memory management module MEMMGR provides
dynamic allocation and deallocation of memory
space required for disk and message buffers,
print queues, file and record locks, do-file
nesting, and so forth. Memory segments are
allocated downward from the base of the
TurboDOS resident, reducing the space
available for TPA. Deallocated segments are
concatenated with any neighbors and threaded
on a free-memory list. a best-fit algorithm
is used to reduce memory fragmentation.

Allocation and deallocation requests are
coded in this manner:

I I

I ;code to allocate a memory segment I

l LXI H,36 ;HL=segment size t

I CALL ALLOC# ;allocate segment I

[ORA A ;alloc successful? l

l JNZ ERROR ;nz -> not enuf mem l

! PUSH H ;HL=segment address [

I : i

l ;code to deallocate a memory segment l

l POP H ;HL=segment address l

l CALL DEALOC# ;deallocate segment I

i I

ALLOC# prefixes each allocated segment with a
word containing the segment length, so that
DEALOC# can tell how much memory is to be
deallocated. ÁLLOC# does not zero the newiY-
allocated segment.

4~3

TurboDOS 1.3 Z80 CODING CONVENTIONS
Implementor's Guide

List processing

List processing TurboDOs maintains its dynamic structures as
threaded lists with bidirectional linkages.
This technique permits a node to be added or
deleted anywhere in a list without searching.
The list head and each list node have a two—
word linkage (forward and backward pointers) .

List manipulation is coded in this manner:

I

I .LOC .DATA.# ;data segment I

I ;list head (linkage initialized empty) I

l LSTHED: .WORD LSTHED ;forward pointer i

l .WORD LSTHED ;backward pointer l

l l

l ;list node (linkage not initialized) l

l LSTNOD: .WORD O ;forward pointer l

.WORD O ;backward pointer l

! .BYTE [128]0 ;contents of node I

l I

! .LOC .PROG.# ;program segment l

I ;code to add node to end of list I

l LXI H,LSTHED ;HL=head address i

l LXI D,LSTNOD ;DE=node address l

l CALL LNKEND# ;link to list end i

! l

I ;code to unlink node from list l

l LXI H,LSTNOD ;HL=node address l

l CALL UN1ÁNK# ;unlink node
l l

I ;code to add node to beginning of list l

l LXI H,LSTHED ;HL=head address I

l LXI D,LSTNOD ;DE=node address l

l CALL LNKBEG# ;link to list beg. l

4-4

TurboDOS 1.3 Z80 CODING CONVENTIONS
Implementor's guide

Ta8k Dispatchíng

.

Task Dispatching TurboDOS incorporates a flexible, efficient
mechanism for dispatching the Z80 processor
among various competing processes. In coding
drivers for TurboDOS, you must take extreme
care to use the dispatcher correctly in order
to attain maximum system performance.

The dispatcher allows one process to wait for
some event (for example, data-available or
seek-complete) while allowing other processes
to use the processor. For each such event,
you must define a three-word structure called
a "semaphore".

A semaphore consists of a count-word followed
by a two-word list head. The count-word is
used by the dispatcher to keep track of the
status of the event, while the list head
anchors a threaded list of processes waiting
for the event to occur.
Two primitive operations operate on a sema-
phore: waiting for the event to occur
(WAIT#), and signalling that the event has
occurred (SIGNAIÁ). They are coded in this
following manner:

l I

I ;this semaphore represents some event I

! EVENT: .WORD O ;semaphore count l

I .WORD EVENT+2 ;semaphore f-ptr I

l .WORD EVENT+2 ;seinaphore b-ptr I

I I

l ;wait for the event to occur {

l LXI H,EVENT ;HL=semaphore addr l

l CALL WAIT# ;wait for event !

I I

I ;signal that event has occurred i

! LXI H,EVENT ;HL=semaphore addr I

i CALL SIGNAL# ;signa1 event i

[!

-

4~5

TurboDOS 1.3 280 CODING CONVENTIONS
Implementor's Guide

Task Dispatching
(Continued)

Task Dispatching Whenever a process waits on a semaphore,
(Continued) WAIT# decrements the semaphore's count-word.

Thus, a negative count -N signifies that
there are N processes waiting for the event
to occur. Whenever an event is signalled,
SIGNAL# increments the semaphore count-word
and awakens the process that has been waiting
longest.

If an event is signalled but no process is
waiting for it, then SIGNAL# increments the
count-word to a positive value. Thus, a
positive count N signifies that there have
been N occurrences of the event for which no
process was waiting. In this case, the next
N calls to WAIT# on that semaphore willreturn immediately without waiting.

Sometimes it is necessary for a process to
wait for a specific time interval (for exam—

ple, a niotor-start delay or carriage-return
delay) rather than for a specific event.
TurboOOS provides a delay facility (DELAY#)
that permits other processes to use the Z80
while one process is waiting for such a timed
delay. Delay intervals are specified as some
number of "ticks". a tick is an implementa—
tion-defined interval, usually 1/50 or 1/60
of a second. Delays are coded thus:
I l

I ;delay for one-tenth of a second l

I LXI H,6 ;HL=delay in ticks I

l CALL DELAY# ;de1ay process l

! l

Accuracy of delays is usually plus-or-minus
one tick. a delay of zero ticks may be

" specified to relinquish the processor to
other processes on a "courtesy" basis.

All driver delays should be accomplished via
WAIT# or DELAY#, =jLeK by spinning in a loop.

4~6

TurboDOS 1.3 Z80 CODING CONVENTIONS

Implementor's Guide
Interrupt Service

Interrupt Service Dispatching is especially efficient when used

with interrupt-driven devices. Usually, the
interrupt service routine just calls SIGNAL#

to signal the interrupt-associated event.

Most interrupt service routines should exit
via the usual EI/RETI sequence. However,
some periodic interrupt (usually a 50 or 60

hertz clock interrupt) should have an inter-
rupt service routine that exits by jumping to
the dispatcher entrypoint ISRXITíÉ (without
enabling interrupts) to provide periodic
time-slicing of processes. To avoid exces-
sive dispatcher overhead, don't use ISRXIT#
more than about 60 times per second.

It is good programming practice for interrupt
service routines to set up an auxilliary
stack, in order to avoid the possibility of
overflowing the stack area of some transient
program. TurboDOS provides a standard inter-
rupt stack area INTSTK# and stack pointer
save location INTSP#. A simple interrupt
service routine might be coded like this:
I l

l DEVISR: SSPD INTSP# ;save user SP I

I LXI SP,INTSTK# ;SP=aux stack {

l PUSH PSW ;save registers !

l PUSH B ; " " I

l PUSH D ; " " {

I PUSH H ' " " I
V

I IN PORT ;reset interrupt l

l LXI H,EVENT ;HL=semaphore addr I

l CALL SIGNAL# ;signal event !

l POP H ;restore registers I

l POP D ; " " I

I POP B ; " " I

! POP PSW " " " l
T

l LSPD INTSP# ;restore user SP l

l ei ;enable interrupts I

I RETI ;return from int. l

l l

4-7

TurboDOS 1.3 Z80 CODING CONVENTIONS
Implementor's Guide

Poll Routines

poll Routines Devices incapable of interrupting the Z80
have to be polled by the driver. The dis—
patcher maintains a threaded list of poll
routines, and executes them every dispatch.
The function of each poll routine is to check
the status of its device, and to signal the
occurrence of some event (for example, data—

available) when it occurs. The routine
LNKPOL# links a poll routine onto the poll
list, and UNLINK# removes it.
A poll routine must be coded so that it willnot signal the occurrence of a particular
event more than once. The best way to assure
this is for the poll routine to unlink itself
from the poll list as soon as it has signal—
led the event. An example:
l

l EVENT: WORD O ;semaphore [

l WORD EVENT+2 I

! WORD EVENT+2 l

I I

I ;driver waits for event !

LXI D,POLNOD ;DE=poll node addr l

CALL LNKPOL# ;activate poll rtn I

l CALL POLRTN ;optional pretest I

I LXI H,EVENT ;HL=semaphore addr I

CALL WAIT# ;wait for event I

l : l

I I

i ;poll routine signals event when detected l

l POLNOD: .WORD O ;po1l rtn linkage I

I .WORD O " " " " I
t

i POLRTN: IN PORT ;get device status I

l ANI MASK ;did event occur? I

RZ ;if not, exit
l LXI H,EVENT ;HL=semaphore addr l

l CALL SIGNAL# ;signal event l

I LXI H,POLNOD ;HL=linkage addr l

l CALL UNLINK# ;unlink poll rtn I

RET ;all done I

4-8

TurboDOS 1.3 Z80 CODING CONVENTIONS
Implementor's Guide

Mutual Exclusíon

Mutual Exclusion TurboDOS is fully re-entrant at the process
and kernel levels. However, most driver
modules are not coded re-entrantly (since
most peripheral devices can only do one thing
at a time). Consequently, most drivers must
make use of a mutual-exclusion interlock to
prevent TurboDOS front invoking them re-ent-
rantly.

This is very easy to accomplish using the
basic semaphore mechanism of the dispatcher.
It is only necessary to define a semaphore
with its count-word initialized to l (instead
of 0)0 Mutual exclusion may then be accom-
plished by calling WAIT# upon entry and
SIGNAL# upon exit. An example:

l I

I ;mutual-exclusion semaphore l

l MXSPH: .WORD 1 ;count-word=ll l

l .WORD MXSPH+2 I

l .WORD MXSPH+2 i

I l

I DRIVER: LXI H,!4XSPH ;HL=semaphore addr I

I CALL WAIT# ;wait if in-use l

l '0
I l

I : l

l LXI H,MXSPH ;HL=semaphore addr I

i CALL SIGNAL# ;unlock inut-excl I

I RET ;done I

I l

4~9

TurboDOS 1.3 Z80 CODING CONVENTIONS
Implementor's Guide

Sample Driver
Using Interrupts

Sample Driver Here is a simple device driver for an inter—
Using Interrupts rupt-driven serial input device. It illus—

trates coding techniques discussed so far:
!

i MXSPH: .WORD l ;MX semaphore i

.WORD MXSPH+2 I

i .WORD MXSPH+2 !

! RDASPH: .WORD O ;RDA semaphore l

l .WORD RDASPH+2 l

I .WORD RDASPH+2 l

l CHRSAV: .BYTE O ;saved input char i

l ;device driver main code I

l INPDRV: :LXI H,MXSPH ;HL=MX semaph addr l

CALL WAIT# ;lock MX [

EI ;need ints enabled l

i LXI H,RDASPH ;HL=semaphore addr I

I CALL WAIT# ;wait data avail I

l LDA CHRSAV ;get input char l

i PUSH PSW ;save on stack l

l LXI H,P1XSPH ;HL=MX semaph addr l

l CALL SIGNAL# ;unlock MX i

l POP PSW ;return char in A l

I RET ;done 1

I ;interrupt service routine I

I INPISR: :SSPD INTSP# ;save user's SP l

I LXI SP,INTSTKiÉ ;sp=aux stack l

l PUSH PSW ;save registers l

I PUSH B " " " I

I PUSH D
; " " i

PUSH H " " "f
l IN PORT ;get input char l

I STA CHRSAV ;save for driver l

! LXI H,RDASPH ;HL=semaphore addr I

CALL SIGNAL# ;signal data avail l

POP H ;restore registers l

I POP D " " " l
B

POP B ; " " I

POP PSW · " " l
Q

LSPD INTSP# ;restore user SP I

l EI ;enable interrupts I

I RETI ;return from int. I

l !

4-lO

TurboDOS 1.3 Z80 CODING CONVENTIONS
Iwp1ementor's Guide

Sample Driver
Using polling

S=ple Driver Here is a simple device driver for non-inter-
Using polling rupting serial input device. It illustrates

how polling is used:

l MXSPH: .WORD l ;MX semaphore I

I .WORD MXSPH+2 [

I .WORD MXSPH+2

{ RDASPH: .WORD O ;RDA semaphore l

} .WORD RDASPH+2 l

I .WORD RDASPH+2 I

l CHRSAV: .BYTE O ;saved input char l

l ;device driver main code l

) INPDRV: :LXI H,MXSPH ;HL=MX seinaph addr I

l CALL WAIT# ;1ock mx

lxi D,POLNOD ;de=po11 rtn node i

CALL LNKPOL# ;activate poll rtn l

I CALL POLRTN ;optional pretest i

i LXI H,RDASPH ;HL=seinaphore addr I

CALL WAIT# ;wait data avail I

! LDA CHRSAV ;get input char l

PUSH PSW ;save on stack l

LXI H,MXSPH ;HL=MX semaph addr I

l CALL SIGNAL# ;unlock mx l

l POP PSW ;return char in A l

RET ;done l

l ;device poll routine with linkage [

l POLNOD: .WORD O ;poll rtn linkage l

i .WORD O l

I POLRTN: IN STATUS ;get device status l

i ANNI MASK ;data available? l

RZ ;if not, exit
I IN DATA ;get input char l

l STA CHRSAV ;save for driver l

I LXI H,RDASPH ;HL=semaphore addr I

I CALL SIGNAL# ;signal data avail l

I LXI H,POLNOD ;IlL=linkage addr i

1 CALL UNLINK# ;unlink poll rtn I

I RET ;done I

I

4-ll

TurboDOS 1.3 Z80 CODING CONVENTIONS
Implementor's Guide

Special Segments

Special Segments In addition to the usual code and data seg-
ments, GEN command supports three special
location counters (common blocks):

i-mLBMAc l pasm l pf,script.ion i

I

i ?INIT? .INIT.# Initialization code I

! ?PAGE? .PAGE.# Page-boundary aligned i

l ?BANK? .BANK.# Banked-memory common I

I l

?INIT? Segment In coding driver modules, you will often find
a considerable amount of initialization code
that is executed only once at cold-start and
never needed again. By assembling such code
under ?INIT? (.INIT.# using PASM), it will be
loaded and executed in lower memory (TPA),
and will not occupy space in the resident
operating system.

?PAGE? Segment Sometimes you may need to force a segment of
code or data to begin on a 256-byte page
boundary. Examples are the simulated CP/M
BIOS branch table, and interrupt vectors for
Z80 interrupt mode 2. By assembling under
?PAGE? (.PAGE.# using PASM), the segment is
guaranteed to be page-aligned.

?BANK? Segment In banked-memory implementations, you need to
be able to place certain code and data in the
topmost part of memory which is common to
both banks (not switched). Anything assent—
bled under ?BANK? (.BANK.# using PASM) willbe assigned to this common region (as speci—

fled by the ;Kxxxx option on the GEN com—
inand).

4-12

TurboDOS 1.3 Z80 CODING CONVENTIONS
Implementor's Guide

Inter-process
Messages

Inter—process To pass messages from one process to another,
Messages a five-word structure called a "message node"

is used. a message node consists of a three-
word semaphore followed by a two-word message

list head. Routines are provided for sending
messages to a message node (SNDMSG#), and

receiving messages from a message node
(RCVMSG#). TYpically, the sending process
allocates a memory segment in which to build
the message, and the receiving process deal-
locates the segment after reading the mes-
sage. The first two words of each message
must be reserved for a list-processing link-
age. Coding is done in this manner:

l

l ;message node I

I MSGNOD: .WORD O ;semaphore part l

l .WORD MSGNOD+2 ; " " l

.WORD MSGNOD+2 ; " " I

I .WORD MSGNOD+6 ;message list head I

) .WORD MSGNOD+6 ; " " " l

l I

l ;one process allocates/builds/sends msg l

i LXI H,12+4 ;HL=message size+4 l

I CALL ALLOC# ;allocate segment l

I PUSH H ;save segment addr I

I : ;build msg in seg l

} POP D ;DE=message addr l

LXI H,MSGNOD ;HL=msg node addr I

l CALL SNDMSG# ;send message t

l i

I ;other process reads/deallocates message i

I LXI H,MSGNOD ;HL=msg node addr l

l CALL RCVMSG# ;receive message I

l PUSH H ;save message addr l

l : ;process message I

l POP H ;HL=segment addr l

CALL DEALOC# ;deallocate seg l

l

4-13

TurboDOS 1.3 Z80 CODING CONVENTIONS
Implementor's Guide

Console Routines

Console Routines TurboDOS includes several handy console I/O
subroutines which may be called from within
driver modules as illustrated:
l I

I ;raw console I/O routines
l CALL CONST# ;get status in A i

l ORA A ;input char avail? l

RZ ;if not, exit I

i CALL CONIN# ;get input in A l

l CALL UPRCAS# ;make upper-case l

I MOV C,A ;C=character l

CALL CONOUT# ;output chr from C l

I

I ;message output routines l

l ;last char of message has sign-bit set I

i CALL DMS# ;output following i

l .ASCIS "This is a message" l

I LXI H,MSGADR ;HL=message addr l

CALL DMSHL# ;output msg @ HL l

l

I ;binary-to-decimal output routine I

! LXI H,31416 ;HL=word value l

l CALL DECOUT# ;displays decimal l

l

Sign—On Message You may addyour own custom sign-on message
to TurboDOS. Your message will be displayed
at cold-start immediately following the nor—
mal TurboDOS sign-on and copyright notice.

Your sign-on message must be coded as an
ASCII character string terminated with a the
usual $ delimiter, and labelled with the
public entry symbol USRSOM. An example:

I

I USRSOM: :.ASCII [ODH] [OAH]
! .ASCII "Implementation by "
l .ASCII "Trigon Computer Corp." I

l .ASCII "$"
[

4-14

TurboDOS 1.3 Z80 CODING CONVENTIONS

Implementor's Guide
Resident process

Resident Process You can code a resident process that runs in
the background concurrent with other system

activities, and link it into TurboDOS. The

create-process subroutine CRPROC# may be

called to create such a process at cold-start
as shown:

I

.LOC .INIT.# ;init code I

l HDWNIT: :LXI H,64 ;HL=workspace size l

l CALL ALLOC# ;alloc workspace l

I ;HL=workspace addr l

LXI D,MYPROC ;DE=entrypoint add l

{ CALL CRPROC# ;create process t

I :
l

I

l .LOC .PROG.# ;code segment l

I MYPROC: INR COUNT(Y) ;increment counter l

l LXI D,60*60 ;1 minute in ticks l

l MVI C,2 ;T-function 2 I

CALL OTNTRY# ;delay 1 minute l

l JMP MYPROC ;loop forever I

!

CRPROC# automatically allocates a TurboDOS
process area (address appears in register X)
and a stack area (address appears in SP). If
the process requires a re-entrant workspace,

it should be allocated with AtÁOC# and passed

to CRPROC# in HL (as shown above), and will
appear to the new process in register Y.

The resident process must make all operating
system requests by calling OCNTRY# or OTNTRY#

with a C-function or T-function number
register C. It mU AQE call location 0005H

or 0050H in the base page, nor make direct
calls on kernel routines such as WAIT#,
SIGNAL#, DELAY#, SNDMSG#, RCVMSG#, ALLOC#,
and DEALOC#.

4-15

TurboDOS 1.3 Z80 CODING CONVENTIONS
Implementor's Guide

Resident process
(Continued)

Resident process A resident process is not attached to a con-
(Continued) sole, so any console I/O requests will be

ignored.

You can do file processing within a resident
process, using the normal C-functions open,
close, read, write, and so forth, called via
OCNTRYñ First, however, you must remember
to warm-start with C-function O (OCNTRH),
and then log-on with T-function 14 (OTNTRIÚÉ).

A resident process must always be coded to
preserve the contents of index register X,
which Turbodos relies upon as a pointer to
its process area. The process may use allother registers as desired.

User-Defined The User-Defined Function (T-function 41)
Function provides a means of adding your own special

functions to the normal TurboDOS repertoire
of C-functions and T-functions. To do this,
you simply create a function processor sub-
routine with the public entrypoint symbol
USRFCN.

Whenever a program invokes T-function 41,
TurboDOS transfers control to your USRFCN
routine. On entry, register BC contains the
address of the l28-byte record area passed
from the caller's current DMA address, and
registers DE and HL contain whatever values
the caller loaded into them Your USRFCN
routine rnay return data to the caller in the
l28-byte record area (address in BC at entry)
and in any of the registers A-B-C-D-E-H-L.

Architecturally, your USRFCN routine is in-
side the TurboDOS kernel. Consequently, itrnay call kernel subroutines directly. Ai1j{

calls to C-functions and T-functions must
therefore be made by means of two special
recursive entrypoints: XCNTRY# and XTNTRY#.

4-16

TurboDOS 1.3 Z80 driver INTERFACE
Implementor's Guide

DRIVER INTERFACE This section explains how to code hardware-
dependent device driver modules, and presents
formal interface specificationq for each
category of driver required by TurboDOS.

General Notes Drivers modules are coded with standard pub—
lic entrypoint names, and linked to TurboDCS
using the GEN command. You may package yourdrivers into as niany or few separate modules
as you like. In general, it is easier to
reconfigure TurboDOS for a variety of devices
if the driver for each device is packaged as
a separate module.

TurboDOS is designed to accomodate ruultiple
disk, console, printer, and ríetwork Cirivers.
For disk drivers, for instance, the DSKAST
is normally set up to refer to disk driver
entrypoints DSKDRA#, DSKDRB#, DSKDRC#, and so
forth. Each disk driver should be coded with
the public entrypoint DSKDR© (DSKDR% using
PASM). The GEN command automatically maps
successive definitions of such names by
replacing the trailing @ by A, B, C, etc.
The same techni.que may be used for console,
printer, and network driver entrypoints.
You must code driver routines to preserve the
stack and index registers X and Y, but you
may use other registers as desired.

5-l

TurboDOS 1.3 Z80 DRIVER INTERFACE
Implementor's Guide

Initialization

Initialization Hardware initialization and interrupt vector
set-up should be performed in an initializa-
tion routine labelled with the public entry
symbol HDWNIT: :. TurboDOS calls this routine
during cold-start with interrupts disabled.

Your HDWNIT: : routine ÁQt enable inter-
rupts or make calls to WAIT# or DELAY#. In
most cases, hdwnit: : will contain a series of
calls to individual driver initialization
subroutines contained in other modules.

One-time initialization code that is not
needed again should be assembled under the
special location counter ?INIT?, so that itdoesn't take up space in the resident opera—
ting system.

5-2

TurboOOS 1.3 Z80 DRIVER INTERFACE
Implementor's Guide

Console Driver

Console Driver A console driver should be labelled with the
public entry symbol CONDR@ (CONDR%:: using
PASM). A console number (from CONAST) is
passed in register B. The driver must per-
form a console I/O operation according to the
operation code passed in register E:

l E-req I Fl1nct-iorjt

l O Return status in A, char in C

! 1 Return input character in A I

I 2 Output character passed in C

l 8 Enter error-message mode l

I 9 Exit error-message mode
I 10 Conditional output char in C

l

If E=O, the driver determines if a console
input character is available. If no charac-
ter is available, the driver returns A=O. If
an input character is available, the driver
returns A=-l and the input character in C,
kuk ÉÚQúát llQÉ "con¿s1llne" the chArÁcter. Turbo-
DOS depends upon this look-ahead capability
to detect attention requests. The driver
must not dispatch (via WAIT# or DELAY#) when
processing an E=O call.
If E=l, the driver obtains an input character
(waiting if necessary) and returns it in A.

If E=2, the driver displays the output char-
acter passed in C (waiting if necessary).

If E=8, the driver prepares to display a
TurboDOS error message; if E=9, it reverts to
normal. TurboDOS always precedes each error
message with an E=8 call and follows it with
an E=9 call. This gives the driver an oppor-
tunity to take special action (25th line,
reverse video, etc.) for error messages. For
simple consoles, the driver should output a
CR-LF in response to E=8 and E=9 calls.

5-3

TurboDOS 1.3 Z80 DRIVER INTERFACE
Implementor's Guide

Console Driver
(Continued)

Console Driver If E=l0, the driver determines whether or not(Continued) it can accept a console output character
without dispatching (via WAIT# or DELAY#).

If so, it outputs the character passed in C,
and returns A=-l to indicate that the charac—
ter was accepted. However, if the driver
cannot accept a console output character
without dispatching, it returns A=O to indi—
cate that the character was not accepted;
TurboDOSwill thenmakeanE=2 call tooutputthe saíne character. This special conditional
output call is used by TurboDOS to optimize
console output speed by avoiding certaindispatch-related overhead whenever possible.
You should make a special effort to code the
console driver to execute the minimum number
of instructions possible, especially func—
tions O, 2, and 10. Excessive use of subrou—
tine calls, stack operations, and other time—
consuming coding techniques can make the
difference between running the console device
at full rated speed or something less. Study
the sample driver listings in the appendix
with this in mind.

5-4

TurboDOS 1.3 Z80 DRIVER INTERFACE
Implementor's Guide

Printer Driver

Printer Driver A printer driver should be labelled with the
public entry symbol LSTDR@ (LSTDR%: : using
PASM). A printer number (from PTRAST) ispassed in register B. The driver must per-form a printer output operation according to
the operation code passed in register E:

l E_req : F1}nctjo,n
_

._!
! i
l 2 Print character passed in C l

i 7 Perform end-of-print-job action l

If E=2, the driver prints the output charac-
ter passed in C (waiting if necessary).

If E=7, the driver takes any appropriate end-
of-print-job action. This is quite hardware-
dependent, and may include slewing to top-of—
form, horning the print head, dropping the
ribbon, and so forth.

5-5

TurboljOS 1.3 Z80 DRIVER INTERFACE

Implementor's Guide
Disk Driver

Disk Driver A disk driver should be labelled with the
public entry symbol DSKDR© (DSKDR%: : using
PASM). The driver performs the physical disk
operation specified by the Physical Disk
Request (PDR) packet whose address is passed
by TurboDOS in index register X. The struc—
ture of the PDR packet is:
I Qffset l CQñtéñtS i

l

l ;physical disk request (PDR) packet I

I O(X) .BYTE OPCODE ;operation code I

l l(x) .BYTE drive ;drive (base O) t

i 2(X) .WORD TRACK ;track (base O) t

I 4(X) .WORD SECTOR ;sector (base O) I

l 6(X) .WORD SECCNT ;#sectors to rd/wr l

I 8(X) .WORD BYTCNT ;#bytes to rd/wr I

l l0(X) .WORD DMAADR ;DMA addr to rd/wr I

I l2(X) .WORD DSTADR ;DST address l

l ;copy of disk specification table (DST) i

l 14(X) .BYTE BLKSIZ ;block size (3-7) I

i l5(X) .WORD NMBLKS ;#blocks on disk I

l l7(X) .BYTE NMBDIR ;#directory blocks [

I l8(X) .BYTE SECSIZ ;sector size (0-7) l

l 19(X) .WORD SECTRK ;sectors per track l

l 2l(X) .WORD TRKDSK ;tracks on disk !

l 23(X) .WORD RESTRK ;reserved tracks I

!

The operation to be performed by the driver
is specified in the first byte of the POR
packet (OPCODE) as follows:
i clpcnpF Fllnctjon l

l I

I O Read sectors from disk l

i l write sectors to disk I

l 2 Determine disk type, return DST l

l 3 Determine if drive is ready i

I 4 Format track on disk i

5-6

TurboDOS 1.3 Z80 DRIVER INTERFACE
Implementor's Guide

Disk Driver
(Continued)

Disk Driver If OPCODE=0, the driver reads SECCNT physical(Continued) sectors (or equivalently, BYTCNT bytes) into
DMAADR, starting at TRACK and SECTOR on
DRIVE. The driver returns A=O if the opera-tion is successful, or A=-l if an unrecover-able error occurs. TurboDOS may request
multiple consecutive sectors to be read, but
will never request an operation that extends
past the end of the track.

If OPCODE=1, the driver writes SECCNT physi-
cal sectors (or BYTCNT bytes) from DMAADR,
starting at TRACK and SECTOR on DRIVE. The
driver returns A=O if the operation is suc-cessful, or A=-l if an unrecoverable error
occurs. TurboDOS may request multiple con—
secutive sectors to be written, but willnever request an operation that extends past
the end of the track.

If OPCODE=2, the driver must determine the
type of disk mounted in DRIVE, and must
return, in the DSTADR field of the pdr
packet, the address of an ll-byte disk speci-
fication table (DST) structured as follows:
l Qffset Pe¶cri.ption I

l !
i O block size (3=IK,4=2K,...,7=16K) I
l l-2 total number OE blocks on disk I
I 3 number of directory blocks I
I 4 sector size (0=128,...,7=16K) i
l 5-6 number of sectors per track I
l 7-8 number of tracks on the disk I
I 9-lO number of reserved (boot) tracks !
i I

The first byte of the DST (BLKSIZ) specifies
the allocation block size in bits 2-O. In
addition, bit 7 is set if the disk is fixed(non-removable), and bit 6 is set if fileextents are limited to 16K (EXM=0).

5-7

TurboDOS 1.3 Z80 DRIVER INTERFACE
Implementor's Guide

Disk Driver
(Continued)

Disk Driver The driver returns A=-l if the operation is(Continued) successful, or A=O if the drive is not ready
or the disk type is unrecognizable. On
successful return, TurboDOS moves a copy of
the DST into l4(X) through 24(X), where it is
available for subsequent operations.

If OPCODE=3, the driver determines whether
DRIVE is ready, and returns A=-l if it is
ready or A=O if not.

If OPCODE=4, the driver formats (initializes)
TRACK on DRIVE, using hardware-dependent
formatting information at DMAADR (put there
by the FORMAT command). The driver returns
A=O if successful, or A=-l if an unrecover—
able error occurs.

5-8

TurboDOS 1.3 Z80 DRIVER INTERFACE
Implementor's Guide

Bank-Select Driver

Bank-Select Driver Banked-memory systems must include a bank—
select driver labelled with the public entry
symbol SELBNK: :. The function of this rou—
tine is simply to select the memory bank (O

or l) passed in register A. The routine
should be coded under the special location
counter ?BANK? to ensure it is situated in
unswitched common memory. In addition, the
SELBNK: : routine must preserve all registers
other than A.

All interrupt-driven drivers in a banked—
memory system must be designed to service
interrupts properly regardless of which bank
is active when an interrupt occurs. Drivers
for DMA disk controllers rüust ensure that DMA

operations transfer into or out of bank O

only. Study the sample drivers in the appen-
dix for suggested techniques.

5-9

TurboljOS 1.3 Z80 DRIVER INTERFACE
Implementor's Guide

Network Driver

Network Driver A network circuit driver should be labelled
with the public entry symbol CKTDR@ (CKTDR%: :using PASM). A message buffer address is
passed in register DE. The driver must
either send or receive a network message,
according to the operation code passed in
register C:

i C-req I F!Íncti.orl [

l i

l O Receive message into buffer at DE l

l l Send message from buffer at DE I

l

If C=O, the driver receives a network message
into the message buffer whose address is
passed in DE (waiting if necessary). If a
message is received successfully, the driver
returns A=O. If an unrecoverable malfunction
of any remote processor is detected, the
driver returns A=-l with the network address

of the crashed processor in DE.

If C=l, the driver sends a network message
from the message buffer whose address is
passed in DE. If the message is sent suc—

cessfully, the driver returns A=O. If the
message couldnotbe sentbecauseof an unre—
coverable malfunction of the destination
processor, the driver returns A=-l with the
network address of the crashedprocessor in
DE.

The structure of a network message buffer is
shown on the facing page. The first four
bytes of the buffer are reserved for a
linkage used by TurboDOS, and should be

ignored by the driver. The ll-byte message
header and variable-length message body
should be sent or received over the circuit.
The driver should only need to look at the
first two header fields (MSGLEN and MSGDID).

5-lO

TurboDOS 1.3 Z80 DRIVER INTERFACE
Implementor's Guide

Network DriveK
(Continued)

Network Driver I I

(Continued) l ; message buffer format l

I .WORD ? ;linkage (ignored) l

I .WORD ? ' " "V
I ; ll-byte message header l

l .BYTE MSGLEN ;msg length l

.WORD MSGDID ;destination addr I

I .BYTE MSGPID ;process id l

l .WORD MSGSID ;source addr l

l .WORD MSGOID ;originator addr I

.BYTE MSGOPR ;orig'r process id l

l .BYTE MSGLVL ;forwarding level l

.BYTE MSGFCD ;msg format code l

l ; variable-length body [

l .BLKB 7 ;registers ACBEDLH l

I .BLKB 38 ;optional FCB data I

.BLKB 128 ;optional record I

I l

The length field MSGLEN represents the number

of bytes in the message, including the header
and body (but excluding the linkage). On a
receive request (C=0), TurboDOS presets
MSGLEN to the maximum allowable message
length, and expects MSGLEN to contain the
actual message length on return. On a send

request (C=l), TurboDOS presets MSGLEN to the
actual length of the message to be sent.

In a server/user network, it is often desir—

able for the circuit driver in the server to
periodically "poll" the user processors on
the circuit to detect any user malfunctions
quickly and to effect recovery. If the
driver reports that a user has crashed (by

returning A=-l and DE=network-address), then
the circuit driver must not accept any fur—
ther messages from that user until TurboDOS
has completed its recovery process.

5-ll

TurboDOS 1.3 Z80 DRIVER INTERFACE
Implementor's Guide

Network Driver
(Continued)

Network Driver TurboDOS signals the driver that such recov—
(Continued) ery is complete by sending a dummy message

destined for the user in question with a
length of zero. The driver should not actu—

ally send such a message to the user, but
could initiate whatever action is appropriate
to reset the user and download a new copy of
the user operating system.

A user must request an operating system
download by sending a special download re—
quest message to the server (usually done by
a bootstrap routine). The download request
message consists of a standard ll-byte header
(with MSGPID, MSGOID and MSGFCD zeroed) fol-
lowed by a l-byte body containing a "download

suffix" character. The server processor
addressed by MSGDID will return a reply mes-
sage whose 128-byte body is the first record
of the download file OSUSERX.SYS (where "x"
is the specified download suffix).
The user continues to send download request
messages and to receive successive download
records until it receives a short reply mes—

sage (l-byte body) signifying end-of-file.
The first word of the downloaded file speci—
fies the base address to which the downloaded
system should be moved, and the second word

specifies the total byte-length of the sys—
tern. The single byte passed as the body of
the final short message identifies the system
disk, and should be passed to the system in
register a.

The entire failure detection, failure recov—
ery, and user downloading procedure is very
hardware-dependent.

S-12

TurboDOS 1.3 Z80 DRIVER INTERFACE
Implementor's Guide

Com Driver

Com Driver The comm driver supports the TurboDOS commu-
nications extensions (T-functions 34-40), and
may be omitted if these functions are not
used. The driver should be labelled with the
public entry symbol COMDRV: :. A comm channel
number is passed in register B. The driver
must perform an I/O operation according to
the operation code passed in register E:

I E-[eq F\jnct,jQrjl
l l

I O Return input status in A I

l l Return input character in A I

I 2 Output character passed in C l

i 3 Set channel baud rate from C l

i 4 Return channel baud rate in A l

l 5 Set modem controls from C

I 6 Return modem status in A

If E=O, the driver determines if an input
character is available. If one is availab1et
the driver returns A=-l, otherwise A=O.

If E=l, the driver obtains an input character
(waiting if necessary) and returns it in A.

If E=2, the driver outputs the character
passed in C

If E=3, the driver sets the channel baud rate
according to the baud-rate code passed in C.

If E=4, the driver returns the channel baud-

rate code in A. See T-functions 37 and 38

in the UQ proqrÁmmpr'¶ gtaÁ9e for baud-rate
code definitions.

If E=5{ the driver sets the modem controls
according to the bit-vector passed in C. IfE=6, the driver returns the modem status
vector in A. See T-functions 39 and 40 in
the Z£Q proqr1Á.mmer'") GjjÁÁq for bit-vector
definitions.

5-13

TurboDOS 1.3 Z80 DRIVER INTERFACE
Implementor's Guide

Clock Driver

Clock Driver The real-time clock driver does not take the
form of a subroutine called by TurboDOS, as
do the other drivers described in this sec—
tion. Rather, the clock driver generally
consists of an interrupt service routine
which responds to interrupts from a periodic
interrupt source (preferably 50 to 60 times a
second). The interrupt service routine
should call DLYTIC# once per system tick (to
synchronize DELAY# requests). It should also
call RTCSEC# once per second (that is, every
50 to 60 ticks) to update the system timeand
date. Finally, it should exit by jumping to
ISRXIT# to provide a periodic dispatcher
time-slice. Excluding initialization code, a
typical clock driver might be coded thus:
l I

I RTCCNT: .BYTE 60 ;divide-by-60 cntr I

l RTCISR: SSPD INTSP# ;save user's SP [

I LXI SP,INTSTK# ;SP=aux stack l

l PUSH PSW ;save registers i

l PUSH B " " " l
t

I PUSH D ; " " I

PUSH H " " " i
Q

IN PORT ;reset interrupt [

CALL DLYTIC# ;signal one tick l

l LXI H,RTCCNT ;get div-by-60 cnt I

DCR M ;decrement counter l

l JRNZ ..X ;not 60 ticks yet l

l MVI M,60 ;reset counter l

I CALL RTCSEC'É ;signal one second l

I ..X: POP H ;restore registers I

POP D ° " " i
V

l POP B ' " " i

I POP PSW : " " I
t

l LSPD INTSP# ;restore user's SP i

JMP ISRXIT# ;go to dispatcher I

l

5-14

TurboDOS 1.3 Z80 DRIVER INTERFACE

Implementor's Guide
Clock Driver

(Continued)

Clock Driver If the hardware is capable of determining the
(Continued) date and time-of-day at cold-start (by means

of a battery-powered clock, for example), the
clock driver may initialize the following
public symbols in the RTCMGR module:

I

I SECS:: .BYTE O ;seconds O-59 l

i MINS: : .BYTE O ;minutes O-59
l HOURS: : .BYTE O ;hours O-24
! jDATE: : .WORD 8001H ;julian date

;base 31-Dec-47
!

S-15

TurbooOS 1.3 Z80 DRIVER INTERFACE
Implementor's Guide

Bootstrap

Bootstrap The bootstrap is usually contained in a ROM

or on a boot track. Its function is tosearch all disk drives for the TurboDOS
loader program OSLOAD.COM, and to load and
execute it if found. To generate a boot—
strap, use the GEN command to combine the
standard bootstrap module OSBOOT with your
own hardware-dependent driver. Your driver
must define the following public entry sym—
bols: INIT, SELECT, READ, XFER, and RAM.

init: : is called once to perform any required
hardware initialization. It returns with the
load base address (where OSLOAD.COM will be
loaded) in HL. This address should normally
be OIOOH, but may have to be higher for a
bootstrap ROM in low-memory.

SELECT: : is called to select the disk drive
passed in A (0-15). If the selected drive is
not ready or non-existent, it returns A=O.
Otherwise, it returns A=-l and the address of
an ll-byte disk specification table (DST) in
HL. The DST format is described on page 5-J.

READ: : is called to read one physical sector
from the last-selected drive. The track is
passed in BC, the sector in DE, and the DMA
address in HL. It must return A=O if suc—
cessful, or A=-l if an unrecoverable error
occurred.

XFER: : is transferred to at the end of the
bootstrap process. In most cases, it needs
only to set location 0080H to zero (to
simulate a null command tail) and jump to
O1OOH. However, if INIT returned a loader
base other than OIOOH, then XFER must move
the loader down to OIOOH before executing it.
RAM:: defines a 64-byte area that OSBOOT can
use for working storage. It should not be
located where OSLOAD.COM will be loaded!

5-16

TurboljOS 1.3 Z80 APPENDIX
Implementor's Guide

patch Points

User OS The following User OS patch Points are
Patch points supported.

Patch
Poijjt pescripEj,Qrl

CONBR Baud rate patch point in module
CON96. Default = 9600-OCE.

Baud Rate Code:

bit 7 = l if attention detection
is enabled

bit 6 = l if clear-to-send hand—
shaking enabled

bit 5 = l if output-only (input
disabled)

bits 3-O = baud-rate value 0..15
(see table below)

Notes: The least significant nibble of the
E-register contains a baud rate value as
follows:
O = 50 8 = 1,800
1 = 75 9 = 2,000
2 = 110 10 = 2,400
3 = 134.5 li = 3,600
4 = 150 12 = 4,800
5 = 300 13 = 7,200
6 = 600 14 = 9,600
7 = 1,200 15 = 19,200

CTSBR Baud rate patch point, in LSTCTS
module (see list above). Default
= 9600 = 04E.

ETXEJR Baud rate patch point, in LSTETX
module (see list above). 'Default
= 1200 = 047.

ETXLEN Block length prior to ETX signal.
, Default = 6E.

A-l

TurboDOS 1.3 Z80 APPBNIXX
Implementer's Guide

Patch poinú
(Continued)

patch
Points Description

XONBR Baud rate patch point in LSTXON

module (see list above).

Server OS The following Server OS Patch Points are
Patch Points supported.

Patch
points Description

NSMTOP Top of physical memory, in
MPEHRM module. Default = OFFFF.

NSFTOP top of memory above floppy con-

troller, in MPEHRM module.
Default = OFOOO.

NMBHD5 HD5/15/30 disk partition flag.
O = one logical drive
non-zero = two logical drives
Default: 1 (two drives)

NMBHD18 HD18 disk partition flag.
settings same as NMBHD5.

Note: MPEHRM releases RAM from NSFTOP to
NSMTOP to the TurboDOS memory pool.

The following are all in the MCDUP8 module:

CKTUP8 HRZ-UP8 board circuit number.
Default = O.

NMBUP8 Number of HRZ-UP8's supported.
Default = 8.

SSTUP8 Suffix table for User OS.

Default = "AAAAAAAA"

A-2

TurboDOS 1.3 Z80 APPENDIX
Implementer's Guide

patch Points
(Continued)

PATUP8 I/O port addresses for
HRZ-UP8S. Defaults =

20, 22, 24, 26, 28, 2A, 2C, 2E.

A-3

