
OS-65U
REFERENCE MANUAL

•

Ohio Scientific
OS-65U
Ref"erence Manual

i
\.

TABLE OF CONTENTS

SECTION TITLE

Introduction

Overview of OS-65U

Utility Programs

Transient Utilities

The Line Editor

Extended Input Mode

Common Variable Mode

Flag Commands

Summary of BASIC Commands

Programmer's Reference Guide

System Error Codes

System Passwords .

PAGE

1

3

4

10

13

17

21

23

26

37

64

67

(

(

Introduction To The OS-65U Reference Manual

First, we would like to begin by telling the reader what
this manual is and what it is not. The purpose of this manual is
not to provide a tutorial text or a workbook for OS-65U, nor is
it to provide an introduction to computer programming. Rather,
this text is a reference manual, intended to be informative to
both the new user and the experienced user.

In this manual you will find a summary of enhancements made
in this release of OS-65U, overview descriptions of the utility
programs and their menu-driven environment, descriptions of the
transient utilities available for user-selected system options
and extensions, detailed discussions of the line editing and CRT
cursor control features of OS-65U, and explanations of commands
available for user-modified operating-state configurations.

Much effort has been expended in the system development,
user-friendliness, and documentation standards of OS-65U Vl.3.
We sincerely hope the user community of our Challenger computer
systems becomes as excited as we are about this system, and will
gain as much'by the implementation of OS-65U Vl.3 as we have.

At this point, we would like to explain the diskette
labeling convention used on OS-65U Vl.3 floppy diskettes. The
top line of your floppy diskette label reads "OS-65U Vl.3"
followed by one of the following:

CD-74 / CD-36

CD-23
CD-7

for 74 or 36 megabyte hard disc systems
or floppy only systems
for 23 megabyte hard disc systems
for 7 megabyte hard disc systems

The next line of the diskette label will be one of the
following:

Floppy Diskette Based

Hard Disc Based

This means that the OS-65U
system resident on this
diskette is to remain
on the diskette,
and your computer should
be booted from floppy
by entering a "D"
for the boot command.

This means that the system
resident on the floppy
disc should be loaded
on to the systems

1

portion of the
proper model hard
disc unit
(CD-74, CD-36, etc.),
and your computer
should be booted
from hard disc. by
entering a "H" for
the boot command.

If the second line of the diskette contains the phrase
"Files Only", then the diskette does not contain an operating
system. Therefore one starts up one's system as normal, and
access only the file portion of the "Files Only" diskette. (see
COPYFI)

The date on the diskette label is the physical duplication
date of the given floppy diskette, not the release date of the
operat~ng system. The release date and version number for the
operating system will be displayed on the system console after
system boot-up.

2

<.

: Special notice :

CD-74 / CD-36 Floppy Diskette Based and Hard Disc Based

The program called "DSKSET" allows one to configure a floppy
based diskette to work with the CD-74 hard disc, the CD-36 hard
disc or as a floppy only diskette. DSKSET also permits one to
configure a hard disc based floppy to work with the CD-74 hard
disc or the CD-36 hard disc.

In order to configure a diskette one must RUN DSKSET. DSKSET will
then provide a warning message and ask if you wish to continue.
To continue type "yo <cr>, to abort type "ABORT" <cr>. DSKSET
will then ask for a password. Answer this question with "DISC"
<cr> (or "ABORT" <cr> to abort). DSKSET will then ask for the
DEVice containing the diskette to be modified (answering "ABORT"
<cr> will abort). Note that ONLY diskettes may be modified by
DSKSET. DSKSET will then insure that the diskette to be modified
is a CD-74, CD-36 or floppy only diskette. The next question
posed by DSKSET is as follows :

1) Set Diskette to CD-74 Type
2) Set Diskette to CD-36 Type
3) Set Diskette to Floppy Only Type ?

The third choice will only be presented for floppy based
diskettes. One may now enter the number of the desired
configuration. DSKSET will then proceed to configure the
specified diskette. Upon completion, DSKSET will respond with

Enter a <cr> to continue ?

Entering a <cr> will cr one to the system's utilities menu.
Entering "STOP" <cr> will force a exit to BASIC's immediate mode.

: WARNING :

It is imperative that one make a copy of the diskettes provided
before attempting to use DSKSET. DSKSET modifies the operating
system portion on the diskette specified. If a read or write
error o~curs, the state of the system portion on the diskette is
unknown and must be viewed as defective.

2-A

: WARNING :

If one instructs DSKSET to configure the diskette as a floppy
only diskette, the diskette will not "boot" on a system
containing a "powered up" hard disc. Further more, if one
attempts to access a hard disc via the DEV command, the system
will report a FC error.

: WARNING :

The changes made by DSKSET are not effective until the diskette
is "rebooted" or (in the case of hard disc based diskettes) is
copied to the system's portion of the hard disc and the hard disc
is "rebooted".

2-B

<-

1'
'''''1 IS' .JI'II·-IU..J 0 o-IO~

Overview of the OS-65U Operating System

You
choice.
VI.3, is
software

have made an excellent computer hardware and software
Your Challenger computer system, equipped with OS-65U
a system which is easy and cost-effective to use in
development, maintenance, modification, and execution.

(

The programming language of OS-65U is a high speed
interpretive BASIC language using the 6502 microprocessor. The
BASIC syntax is easy to understand, and the interpretive
programming approach makes program writing and de-bugging a
simple~ and faster task than compiler-oriented langu~ges. Disc
input/output procedures in OS-65U are powerful, yet easy to use.
Moreover, they are of the same simple syntax whether one is using
a sequential or complex random access file structure, or whether
one is working with files of a few hundred bytes or a megabyte.

In a similar fashion, OS-65U interpretive BASIC has a strong
advantage in solving the problem of software maintenance. One
simply uses the on-line program editor to perform a change to
source code, and then can directly execute this code to test.

The migration path from a single user system to more complex
environments is a straight forward task. OS-65U time-sharing
systems will support up to eight users, and networks can support
multiple intelligent terminal workstations clustered around up to
two hard-disc nodes.

Best of all, the degree of software compatibility between a
simple single user system and a complex network time-sharing
system is extremely high. If today you develop your software for
a one-user floppy-disk based Challenger computer system, you can
be sure that, with very minimal changes, tomorrow you will be
able to use your software on your Challenger hard-disc based
network time-sharing system, or on any configuration midway.
Your investment will grow with you.

In summary, we feel that OS-65U VI.3 will save you time and
money in software development, maintenance, and utilization.
Likewise, as your system needs grow, your initial investment in
OS-65U VI.3 will be enough to support your expanded needs.

3

(

System Enhancements in
Version 1. 3

I

OS-65U Enhancements In Version 1.3

One of the major differences between this version and
earlier versions of OS-65U is the magnitude of enhancements, new
features, and system extensions found in Verision 1.3. The
following is not a discussion of bugs found in earlier releases
that were fixed in this release. Rather, we are concerned here
with the new, not the old, though often times the two concerns
overlap. In regard to the cleanup work done on existing bugs,
much has been done, and it is documented elsewhere.

Following will be brief overviews of the new features in OS
65U Vl.3.

An extended INPUT mode is introduced in this release. Some
of its features are BASIC INPUT commands with data types, field
length limits, pre-loaded INPUT strings, and escape sequence and
extended control character facilities. In this mode, the BASIC
PRINT statement has left/right field justification and field
width definition. Also, inherent in this mode is a versatile set
of CRT cursor addressing and manipulation controls, and they may
be configured for virtually any common CRT terminal currently
manufactured.

One is now able to RUN a BASIC program from within another
BASIC program with the option to save the current values of the
variables defined in the BASIC workspace, thus giving the ability
to chain programs together, the result being a virtual program of
a very large size. One no longer need worry about available
memory as a program size or function limit, and one can document
a program with REM statements freely without undue regard to
memory loss.

All files are created on integer multiple sector boundaries
with integer multiple sector lengths (sector length=3584 bytes).
This insures time sharing compatability.

Error trapping and recovery has been significantly enhanced
in OS-65U Vl.3. One may now, by the use of FLAG commands, route
all errors (BASIC ana disc errors), or just disc errors, to
program line 50000 for custom error-processing. In line 50000
processing, the microprocessor stack is now saved. This
facilitates error recovery, as one may now safely return to
execution within a subroutine or a FOR-NEXT loop.

With line 50000 error processing enabled, both out-of-memory
(OM) and full-stack (FS) error behavior has been improved. These
conditions will first CLEAR the variable table and rewind the
stack pointer, then jump'to line 50000 for error reporting and
processing.

If a FLAG has been set to direct error conditions to program
line 50000, and if the program has no line 50000, then upon an
error condition a jump to the immediate mode is performed.

A new FLAG command will disable or enable the line 50000
error trapping of an overflow (OV) error for numbers greater than
4,294,967,295. This facilitates greater user control over
mathematical processing or numeric data entry.

A new error condition, the sempahore stack overflow (SS)
error, is being handled. Simply, if a time sharing user tries to
set greater than sixteen semaphores at the same time, an SS error
will result.

OS-65U VI.3 has as an extension a line editor for use in
data and program entry/edit work. This editor gives the operator
line recall and various cursor manipulation functions.

The FLAG commands have been greatly extended. Our goal is
to make an application program as POKE/PEEK-free as possible,
thus the introduction of many new FLAGS. Please note that FLAGs
3, 4, 19, and 20 are no longer functional. Also, executing FLAG
n, where n is not a defined FLAG number, will result in a
no-operation condition.

On all output devices, the auto carriage return/line feed
sequence has been suppressed for a PRINT of a number of
characters greater than the terminal width. Also, after a PRINT
of 255 characters without the occurance of a carriage return, the
BASIC P~S (print position) command int~rnal counter will wrap to
zero.

In earlier releases the PRINTi5! command was used in time
sharing systems to free the printer ownership from a given user.
This is still true, but the PRINTt5! command has been expanded as
follows:

In a single user environment, PRINTt5t will eject the
printer to top-of-form if not at top-of-form.
This is true if and only if OS-65U paging
is enabled.

In a network environment, the PRINTi5t command
behaves the same as in a single user environment.

In a time sharing environment, the above is true, but
additionally this command will free the user's
exclusive ownership of the printer.

*** One should not use the PRINTt5t as a means of
enforcing a page eject to top of form because
of the implicit printer-freeing function

(

performed by this command in a time sharing
environment.

Two new FLAGS are now available to control printer
top-of-form. FLAG 100 is a conditional printer top-of-form
control. If the page is not at top-of-form, the printer page
will be advanced to top-of-form. FLAG 101 is an unconditional
printer page eject. Both FLAGS lock the printer in time sharing,
and a PRINT#5! command must eventually be used to free the
printer.

Also, in a time sharing environment, if one enters into the
immediate mode, the printer page is advanced to top-of-form if
not already at top-of-form. This is true assuming one has
previously directed some output to the printer.

Please note that if the user disables the OS-65U resident
printer paging scheme (in favor of using a printer-controlled
paging scheme such as "PRINT CHR$(12)i"), then if one is running
in time sharing, it is the programmer's responsiblity to make
sure that the printer is at top-of-form before freeing it with
the the PRINT#5! command.

Upon entry to the immediate mode, the operating system will
first dump all dirty buffers to disc. This provides a greater
insurance against accidental loss of data or non-desired buffer
dumps upon physically switching floppy diskettes.

With a FLAG2 enabled, line 50000 error processing will
attempt to write any disc buffers pending to disc. If this
cannot be done because of a fatal disc error, the buffer contents
will be lost, thus preventing system lockup.on an unresolvable
disk error loop. Similarly, the same holds true for entry to
immediate mode.

A system identification byte has been implemeted whereby a
user may PEEK it's value to determine if one is running in a
single user, intelligent terminal, time sharing, or network
environment.

(

Utility Programs

OS-65U Vl.3 Utility Programs

After boot-up of your computer, the program BEXEC* will
perform necessary system initialization functions, and then
display a menu of available options as follows:

(

1) DIRECtory

2) Print DIRECtory

3) Systems Utilities

4) Transient Utilities

5) Unlock System

This choice will produce a report
on your console of disc space usage
for a given DEVice.

The report produced is the same
as above, but the output is
routed to the printer.

This set of utility programs
is made up of the tasks most
used by the end user for file
system maintenance, such as
creating, deleting, or dumping
a file.

These are system configuration
routines, typically for enabling
or disabling operating system
options, or for CRT terminal
configuration.

By choosing this selection,
and by responding with the password
"UNLOCK" when prompted, the
operator will be put in the
immediate mode of OS-65U for
programming or command entry.
Please note that this should
only be done when one is confident
with one's working knowledge
of OS-65U.

4

Before beginning to discuss each utility program
individually, some common features should be noted.

Each utility can be run by selection from a menu, or by
running from the immediate mode. The program names for each
utility are given in parenthesis in the sections that follow.

At the end of each utility program's execution, the operator
will be given the prompt

"E.n ter a <Return> to continue ? "
If one enters the string "STOP" followed by a carriage return,
the program will exit and the user will be placed in the
immediate mode. Entering just a carriage return will return one
to the appropriate menu.

The phrase "DEVice" appearing in the prompts means disc
storage DEVice. Below is a table of DEVice values for all
possible system configurations:

DEVice Values

System Configuration Floppy Disks Hard Disc(s)

Single User
Intelligent Terminal
Time Sharing
Network

A thru
A thru
A thru
A thru

D E
D E, K thru Z
D E
D E, K thru Z
- - - - - - - - - - - -

From time to time one might misguide a given program to an
error condition, for example, answering "C" to a DEVice prompt
when one has no DEVice "C" on one's system. This could result in
an appropriate error message and the entrance to the immediate
mode. To get going again, type:

DEV "A"

RUN"BEXEC*"

This should be the DEVice that the OS65U
master is being run from.

This will display the main menu.

The above technique should only be used by an experienced user.

For a file created with read/write (R/W) access rights, use
the "." character in responding to any prompts for file password.
This essentially is the default for no password.

In the majority of system utilities, by answering any
prompted input with the response "ABORT", one has an opportunity
to abort the utility task and return to the utilities menu.

5

L

Systems Utilities

1) DIRECtory (DIR)

2) Print DIRECtory (DIR)

3) Create File (CREATE)

This program produces a report
of disc space usage for a given,
disc DEVice. The information
reported is file name, file type,
access rights, starting address,
length, and address sector
boundary condition checks.
At the end of the report is
summary of disc space used,
available, and recoverable.
This report is directed to
your console.

The report produced by this
procedure is identical to that
above, except that the output
is routed to the system printer.

This utility allows the operator
to create a new file on a given
disc DEVice. The operator
is prompted for disc DEVice
and file name, type, and size
information, then the disc
DIRECtory is updated for the
newly created file.

4) Delete File (DELETE) In this program the operator
is prompted as to what file
on what DEVice to delete.
Please note that this procedure
only flags the file space as
being deleted (and recoverable),
and it cannot be reused till
the PACKER procedure is executed.

5) Rename File (RENAME) In this program, one can rename
both the name and password of
a given file.

6) Dump File Contents (FDUMP) Using this program, one can
list the unformatted contents
of a given file to the console
or printer in either ASCII

6

7) Copy From File to File
(COPYFI)

8) Disc Copier (COPIER)

or hexadecimal output mode.

One can use this program for
file backup or duplication.
The file that is being copied
to must have been previously
created. When specifying the
destination file information,
by typing an "=" for the "To"
file name, COPYFI will use
the "From" file name and password
information for the "To" file,
thereby allowing an easy means
to copy a file to a file
of the same name on a different
disc DEVice.

This program copies the operating
system portion, files portion,
or both from a. given disc DEVice
to another disc DEVice. If
the destination disc is new
and unused, it must be initialized
first. Please note that if
one accidentally chooses Initial
ization, by typing "ABORT"
for DEVice, one can exit the
initialization step without
doing any harm.

7

I

(

Other Utility Programs

In addition to those utility programs available as menu
selections as mentioned above, there are other utility programs
supplied with OS-65U VI.3 as follows:

Recovering Deleted File Space (PACKER)

This program searches for DIRECtory entries marked as
deleted, and makes this file space usable by "packing" the disc,
i.e., closing in the gaps of deleted file space. A report is
produced showing the newly packed disc DIRECtory.

Modifying Disc Contents (CHANGE)

Using this program, one can modify the disc contents on a
byte-by-byte basis, for example in applying program patches.
This should ONLY be used by experienced programmers.

Print the Contents of a File (FPRINT)

One can print the contents of a given sequential or random
access file with this program.

Systems Directory for Hard Disc Systems (SYSDIR)

This program is used to define multiple systems on a single
hard disc. It is also used to set disc access limits i.e., to
'enter' into a given defined system.

Configure System for a Serial Printer (PR5T08)

This program maps logical print device 5 to physical print
device 8, thus allowing a serial printer to use the inherent
print and paging control built in OS-65U Vl.3's parallel printer
controller.

Maintain Hard Disc Defective Sectors File (DEFLIS)

One can maintain a file of defective sectors on a hard disc,
thus allowing the file creation process to skip over bad spots on
the disc.

8

Load Machine Subroutines into an OS-65U BASIC Program (LOAD32, .
LOAD48)

These two utilities provide a means to load an OS-65D
assembler-produced machine language routine into the workspace of
OS-65U. LOAD32 is for a 32K machine, LOAD48 for a 48K machine.

Hard Disk Test (OKTEST) (CD-36 and CD-74 only)

This program is used to test the read/write validity of a
hard disc. Please note - This is-a DESTRUCTIVE TEST, thus the
contents of your hard disc are destroyed by running this program.

Disabling the BASIC Extended Input Feature (INPOUT)

This program removes the extended input and editing features
installed in a system by INP$, and re-installs the BASIC
functions that were overlaid by INP$. In addition, if common
variables are enabled, it will first disable that feature before
disabling extended input.

CRT Parameter Fetching (GETCRT)

With the assumptions that the user has extended input
enabled, this program provides a means for the user to obtain the
resident CRT terminal control codes for use in BASIC application
programs. Also provided in this program is a sample subroutine
for CRT cursor addressing.

9

Transient Utilities

Transient Utilities

The transient utility programs configure the environment in
which your system is running, i.e., the enabling or disabling of
operating system options, and the selection of CRT terminal
characteristics for a specific terminal.

It is strongly suggested that these programs be run from
menu selection only, and not from the immediate mode. The
transient menu program (named "In) has internal logic to handle
the disabling of a given option that may be needed before
enabling another mutually-exclusive option, i.e., disabling the
editor before enabling the resequencer. When the transient menu
is displayed, included is a summary of what options are currently
enabled.

The available transient utilities are as follows:

(..

1) Editor (EDITOR)

2) Resequencer (RSEQ)

3) Extended Input (INP$)

4) Common Variables (COMKIL)

Enabling the editor gives the
operator line editing features
and cursor control for data
or program entry/edit.

With this command resident,
one has the ability to renumber
a BASIC program, optionally
specifying line number range
and incremental values.

INP$ enables the extensions
to the BASIC INPUT and PRINT
commands. Also included
is the line editor and CRT
controller.

With this option enabled, one
has the ability to RUN programs
saving the variable workspace
memory contents, thus giving
the ability to "chain" programs
together. Additionally, a
KILL verb is added to BASIC
which removes variables from
the variable table, ~hus allowing
array redefinition and variable
space reclamation during program
execution.

10

5) Terminal Setup (BEXEC 2)

6) Standard System

Using this program, one can,
by simple menu selection,
configure the system for a
specific CRT terminal to be
recognized by the line editor
and cursor control functions.
One may additionally define
a given terminal choice as
the system default, to eliminate
the need for continual terminal
setups. With this feature
it is possible for each
user in a time-sharing
environment to be using a
different model CRT and all
make use of the editor/CRT
functions. The parameters
for each defined terminal
are stored in the file
"CRT 0".

This option disables any of
the above conditions that might
be currently enabled, and re
configures the system to standard
OS-6SU Vl.3.

In various places where the transient utilities are
discussed in this manual, there is mention made to the mutual
exclusiveness of some of the transient utilities. The table
below is a specific summary of the exclusive and inclusive
conditions:

Program

RSEQ

EDITOR

INP$

COMKIL

Exclusive

EDITOR
INP$
COMKIL

RSEQ
INP$
COMKIL

RSEQ
EDITOR

RSEQ
EDITOR

11

Inclusive

RSEQ

EDITOR

INP$

COMKIL
INP$

Hopefully, after reading the above, one has a feel why it is
strongly urged that the user disables/enables all transient
utilities by menu selection only, where the management of
implicitly required enablement/disablement is maintained for the
user.

u

(

The Line Editor

I

The OS-65UV1.3 Line Editor

The operating system extension for enhanced program or data
entry/edit capabilities is enabled by running the program
EDITOR, and is also included in the extended input program INP$.

The following is a discussion of the functions of the
EDITOR. INP$, and its additional functions beyond line-editing,
is discussed in its own section.

The EDITOR is terminal independent, in that a given user may
configure his running environment for a particular CRT terminal
by a menu selection. To give a specific example, in a time
sharing environment, one user may be using a Hazeltine 1420
terminal, and another using a DEC VT100, and both users may have
the EDITOR features at their disposal, configured to their
specific terminal.

The following is a summary of the operator-keyed control
sequences for editing and cursor manipulation:

{

Innnn Recalls program line number nnnn for
editing, for example 11055 or 112.
An attempt to recall a non-existent
line number returns the next highest
numbered line if any.

Recalls the next sequentially available
line for editing, after defining
a starting position with the above technique.

11 Recall the same line again for re-editing.

@ Commercial "at" sign or shift-Po
Delete the line being currently edited.
This is a CRT function only, not a program
function. In other words, this command
erases the current line from the CRT
screen, but leaves the line in memory
untouched.

Contr~l F Non-destructive cursor move to-the front of the line.

Control R Non-destructive cursor move to the rear of the line.

Control I Tab eight character positions to the right.
One may not tab beyond the current end position
of a given line.

Control T Toggle between character insert/overstrike
mode. In the insert mode, each character

13

entered from the keyboard is inserted into
the line, where as in the overstrike mode,
the character entered replaces the character
previously appearing in the current cursor
position.

The insert/overstrike mode may also be toggled
as follows:

POKE 2372l,~ :REM insert mode
POKE 23721,255 :REM overstrike mode

Rubout
or
Delete

This is the delete character code, or destructive
backspace.

Non destructive cursor forward and back space codes are also
available. As a convention we have chosen to use the control H
(ASCII 8) for back space, and the Control L (ASCII .12) for
forward space. On the Hazeltine 142~ these are the left and
right arrow keys respectively.

The control codes for the CRT screen manipulation functions
are stored in the OMS-PLUS master file "CRT ~". The codes used
by the EDITOR are as follows:

code recognized as incoming forwa~d space
code recognized as incoming back space
code(s) to be echoed to cause a forward space
code(s) to be echoed to cause a back space

Extended Control Characters For The Editor

One may define a table of extended control characters to be
recognized as INPUT terminators. After an INPUT command, one can
check to see if a given control character was entered, then
respond accordingly.

Values
Address Off On

Extended Control 23722 ~ 255
Enable

Control Character 23724 255 ASCII value
Table (6 positions) 23725 255 n n

23726 255 n "
23727 255 " n

23728 255 n "
23729 255 n "

14

Report Table Position 23723 The value returned is
either a zero for a
normal carriage return
INPUT termination, or
the control character
table position (1-6)
if INPUT was terminated
by an extended control
character.

(

By POKEing the desired character ASCII values into the above
defined table, and by enabling extended INPUT control by a POKE
23722,255, one may interrogate the result of an INPUT as follows:

POKE 23722,255 REM enable extended control
INPUT QA$
EC=PEEK(23723) REM get table position if any, else 0
ON EC GOTO Cl,C2,C3,C4,C5,C6
PRINT"input terminated by a carriage return"
END

Cl

C2

C6

The POKE 23722,255 should be done immediately before each
INPUT statement for which extended control is to be recognized.
The operating system zero's the contents of location 23722
following an execution of an INPUT command.

Escape Control Character Definition For The Editor

One may make use of the two character escape key-in for
customized applications as follows:

POKE 23730,255
INPUT A$
ES=PEEK(23731)

REM enable escape check

REM get returned escape character

,

IF ES=ASC("l") THEN PRINT "Escape 1 was entered"
IF ES=ASC("2") THEN PRINT "Escape 2 was entered"

ES is the ACSII value of the character entered immediately
following the escape character. If the escape was not entered,
ES will have a value of zero.

The system resets the value of location 23721 to a zero
after each INPUT. Therefore, one must POKE 23730,255 immediately
before each INPUT command where one wishes to check for an escape

key-in.

If two escape keys are entered in a row, the net result is a
cancellation of the escape sequence.

NOTE - If both the extended control and escape character
. features are enabled together, the escape key-in check is
performed first, followed by the check for any control
characters.

The EDITOR may be disabled by running EDITOR from the
immediate mode and choosing the disable option, or by choosing an
appropriate option from the transient' utilities menu.

16

(

Extended Input Mode

OS-65U Vl.3 Extended Input Mode

The exte~ded input mode is enabled by running the utility
program INP$, either from the transient utilities menu or from
the immediate mode. INP$ has many entry points, mostly to manage
the disablement of any enabled system extensions which might be
mutually exclusive with INP$. Because of this, it is advisable
to run this program from the transient utilities menu, where the
entry point management is automatically handled.

Enabling this system extension gives the user the benefits
of extended INPUT and PRINT facilities, and of the line editor
and CRT controller which may be configured for anyone of a
number of CRT terminals currently available.

With INP$ enabled, the syntax for the BASIC INPUT command is
as follows:

INPUT%n,[A,A$] QA$

INPUT#n,[A,A$] QA$

n=channel number

n=device number

(

INPUT "prompt string", [A,A$] QA$

where .

A = maximum length of string to be input.

A$ = data type of the string. Types currently defined are
A - ASCII. This form allows INPUT of any legal

ASCII character, with leading spaces maintained,
i.e., not thrown away as in normal BASIC INPUT.

I - Integer. This form accepts characters "0"
through "9, "+", and "-" only.
Leading spaces are stripped off the
preloaded string value.

C - Cash. This form accepts a real number in
the form nnn.nn, that is, a real number
with two digits to the right of the decimal
point if a decimal point is in fact entered.
Leading spaces as above.

F - Floating point. As above, but there may be
any number of digits to the right of the
decimal point.

QA$ = pre-loaded string to be input. The original
contents of this string, if any, will be
displayed on the CRT at INPUT time.

17

Using this type of INPUT command, strings may be INPUT of a
length up to 254 characters maximum.

Consider the following example of extended INPUT:

CA$="1.23" :REM preloaded value
PRINT"Enter cash value ";
INPUT [6,"C"]CA$:REM cash field, 6 characters max.

The operator will see "Enter cash value 1.23" on the
console, with the cursor positioned on the "1" character. If the
operator enters an illegal character, sayan upper case "A" for
example, the ASCII(7) bell character will be printed to the
console, and the "A" will not be accepted or echoed.

Let us assume in this example that we are in insert mode.
The operator now presses the "8" key, and "81.23" can be seen on
the console. If a return is then entered, then the value of CAS
after INPUT is "81.23".

Let us consider another example using this same case. The
operator enters shift-P (@) to delete the current pre-loaded
value of CAS. The operator now sees "Enter cash value "with
the cursor to the right of the prompt word "value". The operator
enters "5.23.4" then a return. This is an illegal INPUT sequence
for cash, and the operator will be alerted to this with the
console bell sounded, and the cursor positioned on the rightmost
decimal point in the string "5.23.4". The operator now deletes
this decimal point with the delete or rubout key, and with
"5.234" displayed on the screen, now presses return. This is
still illegal in that there are now three digits to the right of
the decimal point. The bell will be sounded, and the cursor will
be over the "4" character. Finally, the operator deletes this
character, and presses return, and INPUT is terminated with CAS
having the value of "5.23".

One is encouraged to experiment with the INPUT[] command,
as the familarity with system behavior can be comprehended much
better with experimentation than with written examples as above.

Thus the INPUT command can now be more conditionally
controlled by the programmer, with data types and field length
specifications.

WARNING - The INPUT[] statement does not direct a carriage
return/line feed sequence to the console upon execution
termination. Rather, the cursor is positioned to the leftmost
position of character INPUT, i.e., to the right of any prompting
messages.

18

The syntax for the BASIC PRINT command is as follows:

PRINT [A,A$] QA$

PRINT*n~[A,A$] QA$

PRINT%n,[A,A$] QA$

where

n=device number

n=channel number

A = print field length
A$ = "L" for left justified

"R" for right justified

Please note that PRINT statement parameters may be any
combination of variables or literals, thus the following are all
valid PRINT statements with INP$ enabled.

PRINT [3,TY$] QA$
PRINT [3,"L"] QA$
PRINTiDV,[FL,"L"] QA$
PRINTiS,[FL,"L"] QA$

PRINT [FL,"R"] QA$
PRINT [3,"R"] "1000-101"
PRINT%CH,[FL,"R"] QA$
PRINT%1,[10,"R"] "HELLO"

(.

PRINT iDV,[10,"R"]"10202";X;TAB(45);[20,"R"]H$

The statement

PRINTiS,[S,"R"]"XX",[4,"L"]"YY"

will direct the following string to the line printer:

" XXYY

This print feature should be used instead of the more common
BASIC statement of the form PRINT RIGHT$(" "+QA$,FL)
because the concatenation of strings generates "garbage" in the
workspace which eventually the system will have to stop and clean
up resulting in a "garbage collection" delay.

The contents of memory location 12098 is the ASCII value of
the justified PRINT pad character, normally a space (ASCII 32).
One may modify this as follows:

POKE 12098,ASC("*")

The above example changes the pad character to an asterisk.

Please remember that this pad character feature is ONLY available
when INP$ is enabled.

WARNING - If the length of the string to be printed is

19

greater than the specified field width, a long string (LS) error
will occur.

INP$, upon execution, configures itself for the CRT terminal
currently defined as the system default. (This default may be
changed by the transient utilities CRT configuration routine).
The paramaters for the CRT terminals are stored in the OMS-PLUS
master file named ftCRT 0ft • The parameters maintained are:

code recognized as incoming forward space command.
code recognized as incoming back space command.
code(s) to be echoed to cause a forward space.
code(s) to be echoed to cause a back space.
code(s) to be echoed to address the cursor.
code(s) to be echoed to clear the screen.
code(s) to be echoed to clear to the end of screen.
code(s) to be echoed to clear to the end of line.
code(s) to be echoed to set foreground.
code(s) to "be echoed to set background.

These codes are used by the line editor where applicable,
and can be used in application programs for CRT screen
manipulation. A sample use of the codes can be found in the
program GETCRT.

It should be noted that INP$ inherently enables the line
editing extension of OS-6SU. A complete discussion of the line
editing facilities can be found in the EDITOR detail section of
this manual.

INP$ may be disabled by running the program INPOUT, or by
choosing to enable a mutually exclusive system option from the
transient utilities menu, such as the editor or resequencer.

WARNING - If other than a string variable is used as the
object of an INP$ INPUT or PRINT error a type mismatch (TM) error
will occur.

WARNING - It should be noted that INP$ is an overlay to
standard OS-65U VI.3 BASIC, and therefore modifies some features
of BASIC. Specificly, with INP$ enabled, the following BASIC
commands are no longer available:

LOG
SQR
EXP

SIN
RND
COS

TAN
ATN
~ (exponential operator)

Attempting to use these functions with INP$ enabled will
produce a syntax (SN) error.

20

(

Common Variables Mode

OS-65U Vl.3 Common Variables Mode

The common variables mode is enabled by running the utility
program COMKIL, either from the transient utilities menu or from
the immediate mode. As always, unless one is absolutely certain
of procedure, run this utility by menu selection only.

Enabling this system extension gives the user the ability to
save variable values (that is, the entire variable workspace)
upon RUNning a program from another program, thus giving the
ability to chain programs together for a virtual effect of much
larger programs than can actually fit in the memory workspace.
Also, with COMKIL enabled, the BASIC NULL command is replaced
with the verb KILL, which allows one to free up memory taken by
given variables, thus deleting their definition.

With COMKIL enabled, the syntax of the RUN command is:

RUN[PR$,PW$,LN] where

PR$=program name
PWS=program password
LN =line number

or

RUN PR$,PW$,LN
RUN PR$,LN
RUN PR$

this form will
retain the variable
workspace values.

these forms are those
which do not retain
variables.

Consider the following program examples:

10 REM PROGA
20 X=100
30 RUN ["PROGB","PASS",10]
40 END

10 REM PROGB
20 PRINT X
30 END

First, the operator RUN's PROGA with the command
RUN "PROGA". Line 30 will RUN PROGB, retaining the values of
variables in PROGA, in this case, the value of X of 100. In
PROGB, the printed value of X will be 100, still retained from
PROGA.

21

The syntax of the KILL command i~:

KILL A,B,I, ••• P$, ...
KILL A(),B(),P$()
KILL *
KILL (*)

Kill specific simple variables.
Kill specific array variables.
Kill all simple variables.
Kill all array variables.

After KILLing an array variable, it is possible to
reDIMension that variable again. For example:

DIM A(2eJ,2eJ)

KILL A()

DIM A(leJeJ,leJeJ)

At this point the array A
no longer has any DIMension
or value.

WARNING - One should NEVER use the KILL command from within a
FOR-NEXT loop, or disastrous results will occur.

When one is in the immediate mode of BASIC, it is easy to
detect the presence of COMKIL. If the screen prompt characters
are upper case "OK", then COMKIL is not on-line. If the prompt
characters are lower case "ok", then COMKIL is on-line.

To disable the common variables extention, one may run
COMKIL from line SeJeJeJ, (i.e., RUN"COMKIL",SeJeJeJ) or from the
transient utilities menu by choosing any choice other than common
variables.

COMKIL is an overlay to BASIC, and the following functions
are not available when COMKIL is enabled:

FNA DEF

Attempting to use the above functions with COMKIL enabled
will produce a syntax (SN) error.

WARNING - BASIC disc program files must start on sector
boundaries in order to be used with COMKIL.

22

(

Flag Commands

..

" FLAG Commands

The FLAG commands are used to enable or disable certain
system features. They may be used either in the immediate mode
or within a BASIC program. The form of the FLAG command is:

FLAG n

Where n is one of the following:

1 Disables the close-files-on-error and the close-files
on-immediate-mode feature.

2 Enables the close-files-on-error and the close-files-on
immediate-mode feature. With this feature enabled, if
one encounters an error condition, or one exits to'the
immediate mode, any channels currently opened will auto
matically be closed. Before closure, any buffers pending
to be written to disc will be written providing that the
given error condition does not prevent this from occurring.

6 Enables program abort and system error message upon
disc end-of-file condition.

t,

5 Enables user programmable disc EOF action, that is,
set the channel INDEX to a value greater than or equal
to lE9 upon encountering a disc file end-of-file
condition.

7 Enables BASIC statement trace. With this feature enabled,
each program line executed will be displayed on the console.

8 Disables BASIC statement trace.

9 Enables user programmable disc error action. With this
option enabled, program execution will jump to line 50000
upon encountering a disc error condition. This can be
exclusively overridden by a FLAG 23, which enables both
disc and BASIC errors to be processed at line 50000.

10 Enables pr9gram abort and system error message upon
encountering a disc error condition. This may be
overridden by a FLAG 24, which directs both disc
and BASIC errors to the immediate mode.

11 Enables space suppression in numeric output to files.

12 Disables space suppression in numeric output to files.

13 Enables "INPUT%n," command file operation. Using this
option allows one to LIST a program or parts of a program

23

to a data file, then later INPUT this data file to another
program, thus providing a convenient way for program merge.

14 Disables "INPUT%n,n command file operation.

15 Allows the characters comma (","), and colon (":")
to be treated as valid in an INPUT or statement.
WARNING - READ statements will generally not work
with this FLAG enabled, given that most READ statements
have delimiting commas within them.

16 Allows the comma, and colon to be treated as INPUT
or READ delimiters or terminators.

17 Disable carriage return/line feed upon terminating an
INPUT or PRINT. This option is a convenient way of
producing an INPUT without carriage return/line feed,
however, it should be noted that this disabling is
effective on ALL I/O DEVices. The most advisable way
to use this option i,n conjunction wi th FLAG 18 is as
follows:

FLAG 17
INPUT A$
FLAG 18

Turn off CR/LF

Turn on CR/LF immediately after
INPUT

* * * *WARNING* * * * *
* ALL DEVICES ARE *
* AFFECTED BY THIS *
* FLAG, I.E., ALL *
* CR/LF SEQUENCES *
* SUPPRESSED. *
* * * * * * * * * * * *

18 Enable carriage return/line feed upon terminating an
INPUT or PRINT.

21 Disable input escape on carriage return. With FLAG 21
enabled, if an operator enters just a carriage return
for an INPUT statement, the system response will be
a "REDO FROM START" message followed by a"?"
prompt for re-entering the expected INPUT value.
This may be overridden by a FLAG 27.

22 Enable input escape on carriage return. With FLAG
22 enabled, a response of just a carriage return
to an INPUT statement will cause a jump to the
immediate mode. This may be overridden by a FLAG
28.

23 Enable a jump to program line 50000 upon the occurrance

24

/ of any or all error conditions (this includes both BASIC
and disc errors). FS and OM errors first CLEAR the variables
and rewind the stack then jump to line 50000. If FLAG 23 is
enabled and the program has no line 50000, the result will
be a jump to the immediate mode. This FLAG may be overridden
by FLAG 9.

24 Enable a jump to the immediate mode upon the occurrance
of any or all error conditions (BASIC and disc errors).

25 Disable control "C" termination of BASIC program execution.

26 Enable control "C" termination of BASIC program execution.
With this FLAG on, pressing the console control and "C"
characters will cause termination of an executing BASIC
program, and a jump to the immediate mode.

27 Enable a null input (carriage return only) as valid
INPUT sequence.

28 Disable null input sequence on INPUT. With this FLAG
on, a null input will produce a jump to the BASIC immediate
mode, unless overridden by a FLAG 21.

29 Disablement of trap-overflow condition.

(30 Enablement of trap-overflow condition, specifically,
generate an OV error for numbers greater than
4,294,967,295.

100 Perform a conditional top-of-form eject on print
device #5. If page is at top-of-form, no eject
will be done. Locks device #5 in a time sharing
environment. This is available only if the system
paging feature is enabled.

101 Unconditional top-of-form page eject. Availability
and time sharing behavior as above.

Please note that FLAGs 3, 4, 19,
functional in this release of OS-65U.
where n is not a defined FLAG number,
no-operation action.

25

and 20 are no longer
Also, executing FLAG n,

will result in a

The following is a list of FLAGs set by BEXEC*.

The conditions set by these FLAGs duplicate the start-up of
the operating system.

FLAG 1
FLAG 6
FLAG 8
FLAG 10
FLAG 12
FLAG 14
FLAG 16
FLAG 18
FLAG 22
FLAG 24
FLAG 25
FLAG 27
FLAG 29

disable close-files on error or imm mode
enable abort & err msg on disc EOF
disable BASIC statement trace
enable abort & msg on disc error
disable space suppression on numeric output to file
disable 'INPUT%n, " command file operation
ITO ':' ',' '&' on INPUT
enable crllf on INPUT or PRINT
disable input escape on carriage return
jump to imm. mode on al error conditions
disable controllC stopping
enable null on input
disable trap of overflow error

25-A

(

Summary of BASIC Commands

OS-65U Vl.3 BASIC Commands and Reserved Words

Command Syntax

ABS ABS(X)

AND X AND Y

ASC ASC (X$)

ATN ATN(X)

Description

Returns the absolute value
of the function argument.

Logical AND operator.

Returns the decimal ASCII
value of the first
character in the string
~rgument.

Trigonometric arctangent
function with the argument
in radians. Not available
when INP$ transient utility
is enabled. The range of
values for the ATN function
argument is -1 to 1.

(

CHR$

CLEAR

CLOSE

CONT

COS

CHR$ (I)

CLEAR

CLOSE
CLOSE n

CONT

COS (X)

26

Returns a one character
string, whose decimal ASCII
value is that of the
argument.

Clears the variable table
and RESTOREs the DATA
pointer.

Closes an open disc file
by dumping the disc buffer
and freeing the channel
n (1-8). CLOSE with no
channel number specified
closes all open channels.
A CLOSE n command, where n
is a channel that has not
previously been opened,
will produce an error.

Continue execution of a
program that has been halted
either by a control C key-in
or a STOP statement.

Trigonometric cosine function
with the argument in radians.
Not available when INP$
transient function is enabled.

DATA

DEF

DEV

DIM

END

EXP

FIND

DATA 4, 72, "HI"

DEF FNA(X)=X+SIN(X)

DEV "A"
DEV D$

DIM A(20), 8$(10,5)

END

EXP(X)

FIND "LOAN",2
FIND A$, CH

27

Provides data elements for
READ statements. Strings
may appear quoted or unquoted.
If unquoted, leading blanks
are ignored and trailing
blanks are included.

Define function statement,
where A and X are simple
variable names. Not
available when COMKIL transient
utility is enabled.

Specifies which disc DEVice
is to be currently on-line.
The argument must be a single
character string literal or
variable. The possible values
for DEV are:
Single User: A-D,E.
Intelligent Terminal: A-D,E,K-Z
Time Sharing: A-D,E.
Network: A-D,E,K-Z.

Dimension statement for
subscripted variables.

Terminates program execution.
This statement need not appear
in a program at all, nor
necessarily as the last
statement in a program.

Exponential function of e
(2.71828 •••) raised to
the power of the argument.
Not available when INP$
transient utility is on
line.

High speed search for the
string expression (first
argument) in the disc file
opened on channel number
(second argument). Search
starts at current INDEX of
that channel. If found,
returns INDEX of the found
location in the file, else
returns INDEX value of

FLAG

FN

FLAG 3

DEF FNA(X)=2+X
Y = FNA(X)

greater than or equal to
lE9.

Enable the system option defined
by the flag argument number.

Function name, of the form FN
followed by a variable name.
Not available when COMKIL
transient utility is enabled.

FOR FOR I = 1 TO 5 FOR-NEXT loop range definition
FOR J = A TO B STEP C verb.

(

FRE

GOSUB

GOTO

IF

INDEX

INPUT

INT

FRE(X)

GOSUB 150
ON X GOSUB 10,70
GOSUB A

GOTO 150
ON X GOTO 100, 200

IF X = 1 THEN GOTO 50
IF I>l THEN I=l

INDEX<CH>=0
N=INDEX(CH)

INPUT A
INPUT "NAMEn;N$
INPUT*l, B
INPUT%3, F$
INPUT [3,nA n] QA$

I = INT(X)
I = INT(3.14l5)

28

Returns the number of bytes
of memory workspace available
that are unused. X is
a dummy variable.

Execute a BASIC subroutine
beginning at the line
number equal to the numeric
argument.

Unconditional transfer of
program execution to the line
number equal to the argument.

Conditional statement
execution verb.

Set or equate an open
disc channel's file index
position. INDEX<n> is
an index assignment, INDEX(n)
is an index equate.
In an INDEX<n>=x, the
value x must be a non
negative integer.

Obtain data fiom console
keyboard, or from specified
input device or disc file.
The INPUT[] form of this
command is available only
with INP$ transient utility
enabled.

Returns the greatest integer
less than or equal to the
numeric argument.

KILL

LEFT$

LEN

LET

LIST

LOAD

LOG

MID$

NEW

KILL A A$
KILL CO, B$()
KILL *
KILL (*)

B$ = LEFT$ (A$,5-)

L = LEN (A$)

LET X = Y+l

LIST
LIST 1-50
LIST -50
LIST 100
LIST#DV,10-20
LIST%CH

LOAD "PROGl"
LOAD "Pl","PASS"

LOG (X)

A$ = MID$(B$,2,4)
A$ = MID$(B$,7)

NEW
NEW 3584

29

Eliminate variables from
the program variable table.
Arguments may be specific
simple variable names such as
A, specific array variables
such as C(), * to KILL all
simple variables, or (*)
to KILL all array variables.
Available only when COMKIL

transient utility is enabled.

Returns the leftmost
substring of a given string.
First argument is a string
expression, second argument
is a positive arithmetic
expression.

Returns the length of the
string expression argument.

Assignment statement preface
operator. Optional in
assignment statments.

Program listing verb. Examples
to the left illustrate syntax
for complete listing, listing of
line number ranges, and listing
to a specific output device
or disc channel.

Command to load a program
from disc to memory. Arguments
are program name, and password
if required.

Returns the natural
logarithm (log to the base
e) of the numeric argument.
Not available with INP$
transient utility enabled.

Returns a middle substring
of a string argument, with
a specific starting character,
and either a specified length
or implicitly to the end of
the string.

Reset all program workspace
pointers, i.e., start with

(

NEXT

NOT

NULL

ON

OPEN

OR

PEEK

POKE

NEXT
NEXT I
NEXT I,J

NOT X
NOT (A AND B)

NULL 8

ON X GOSUB 50, 100
ON E GOTO Ll, L2, L3

OPEN nFNAME",npASS n ,3
OPEN nNAEn,l
OPEN FN$,PW$,CH

A OR B

C = PEEK(23468)
I = PEEK (J+l)

POKE 2048,199
POKE J,I+64

30

a clean workspace for entry
of a new program. The form
NEW n, where n is a positive
number, reserves an area of n
bytes at the beginning of
program workspace for custom
programming use, such as machine
language subroutines or disc
transfer buffer space.

Terminating statement range
verb for FOR-NEXT iterative
loops. Jumping in and out
of FOR-NEXT loop statement
ranges should be avoided.

Logical negation
operator.

Inserts 0 to 255 zeros (null
characters) at the beginning
of each string.output by a LIST
or PRINT command. Not
available when COMKIL OR RSEQ
transient utility is enabled.

Conditional transfer
statement verb. In the second
example, control is transferred
to program line Ll if value
of E is 1, and line L2 if
value of E is 2, and so on.

Open a data file on a
given channel for program
disc access. Arguments are
file name, password (if required)
and channel number (1-8).

Logical OR operator.

Returns the contents of a
memory location. Argument
is the memory address in
decimal.

Stores a value into a
memory location. The first
argument is the memory address,
and the second location is
the value to be stored, between
o and 255 inclusive.

POS

PRINT

READ

REM

RESTORE

RETURN

RIGHT$

~D

RSEQ

POS(X)

PRINT
PRINT A
PRINT A,CiB$
PRINT#5iPRINTER PORT"
PRINT%CH,"DISC OUTPUT"
PRINT [10,"R"] A$

READ R, A$

REM HERE IS A COMMENT

RESTORE

RETURN

A$ = RIGHT$(B$,3)

I = RND(X)

RSEQ OL,NL,IN
RSEQ OL,NL

31

Returns the print position of
the last character printed before
the call to POSe X is a dummy
variable. Returns a value
between 0 and 255 inclusive.

Output command for screen,
printer, any other output
device, or disc file channel.
The PRINT~] form is only
available when INP$ transient
utility is enabled.

Read, from DATA statements,
the value of the variables
appearing as arguments.

Remark or comment initiator.
All text after a REM is
ignored on a given program
line, i.e., it is not executed
as BASIC code.

Reset the pointer in a DATA
list to the first DATA item.

Exit verb from a BASIC GOSUB
subroutine. Control is
transferred to the program
location immediately following
the GOSUB command that initiated
the subroutine execution.

Returns the rightmost substring
of of a string argument.

Returns a random number between
o and 1. If the argument is
negative, it will be interpreted
as a seed value. If it is
zero, the function will return
the last generated random number
again. If the argument is
positive, a random number will
be returned based on the
previously defined seed. Not
available when INP$ transient
utility is enabled.

Renumbers a BASIC program
Syntax reads as follows:

(

RUN

SAVE

SGN

SIN

SPC ()

SQR

RSEQ ,NL,IN
RSEQ "IN
RSEQ ,NL
RSEQ OL"IN
RSEQ OL
RSEQ

RUN
RUN 200
RUN "PGM"
RUN "PGM",200
RUN "PGM","PASS"
RUN P$,W$,LN
RUN[PN$,PW$,LN]

SAVE
SAVE "PGM"
SAVE "NAME","PASS"

S = SGN(X+l)

S = SGN(AN)

SPC (3)

R=SQR(W)

32

starting at old line numbr
OL, resequence with new line
number NL, in increments
of IN. Any permutation of
of parameters being present
is permitted, noting to keep
commas as delimiters where
needed. Only available when
the RSEQ transient utility is
enabled.

Initiate execution of a
BASIC program, either resident
in memory or loaded from
disc. The RUN[] example
is the syntax for RUNning
a program with saved variable
values. It must have
program name, password, and
line number. The RUN[]
command is only available
when the COMKIL transient
utility is on-line.

Stores the current program in
memory onto a disc file
whose name and password are
the command arguments. If
no arguments are given, then
the disc file SAVEd to is the
same as the file name used in
the last LOAD command executed.

Returns the sign of a numeric
argument, i.e., +1 for
a positive valued argument,
-1 for a negative valued
argument, 0 for a zero valued
argument.

Trigonometric sine function
with the argument expressed
in units of radians. Not
available when INP$ transient
utility is on-line.

Used to print spaces inserted
in output. PRINT SPC(n)
will print n spaces.

Square root function. Not
available when INP$ transient

STEP

STOP

STR$

TAB

TAN

THEN

TO

USR

VAL

FOR I = 1 TO 5 STEP 3
FOR I = 5 TO 2 STEP 1

STOP

A$ = STR$ (N)

TAB(7)

T = TAN (A)

IF A=B THEN 200
IF C<2 THEN C=2

FOR I = 1 TO 3

Y = USR(X)

N = VAL(A$)

33

utility is on-line.

FOR-NEXT incremental value
definition verb. Care should
be taken not to explicitly
assign a value to the FOR
NEXT increment variable
(I is the given examples),
as this may des tory the
expected implicit looping.

Interrupt program execution
and jump to immediate mode.
The program execution may be
continued by a CONT command
issued from the immediate
mode.

Converts a numeric. argument
to it's string equivalent.
For example, STR$(1.2) =
n 1.2", the first character
being the sign (blank for
positive, - for negative).

Tabular spacing function used
in printed output. Character
positions are relative to zero.

Trigonometric tangent function,
argument in radians. Not
available when INP$ transient
utility is on-line.

Conditional statement execution
directive verb.

FOR-NEXT range definiton
verb.

Call to user-defined machine
language subroutine resident
in memory. The argument
is a single parameter that
can be passed to the user
routine.

Returns numeric value of a
string argument, or zero
if the argument is non
numeric.

WAIT WAIT I,J
WAIT I,J,K

Halts program execution, i.e.,
causes a program to "wait",
until a particular bit or
bits in memory is set. In
the first example, the WAIT
function reads the status
of memory location I,
then ANDs the result with
value J until a non-zero
result is obtained. The
second example reads the
status of memory location I,
exclusive ORs that value with
K, then ANDs that result with
J until a non-zero result is
obtained.

(

WAIT CLEAR

WAIT FOR

WAIT CLEAR 2

WAIT FOR 21

34

Clears, or unsets, a
semaphore in a time
sharing environment. No
operation in a single
user environment.

Sets a semaphore in time
sharing, no-operation
in single user.

BASIC Commands and Reserved Words - By Function

Program Execution Control

The following commands control BASIC program execution flow
such as braching, looping, and subroutine calls.

CONT
END
FLAG
FOR
GOSUB

GOTO
IF
NEXT
ON
RETURN

RUN
STEP
STOP
THEN
TO

USR
WAIT
WAIT CLEAR
WAIT FOR

Disc Input/Output Commands

Please note that the disc I/O commands respect the access
rights and file type assigned to a given file at CREATE time.
The possible access rights.are:

Read/Write
Read
Write
None

without password.
without password.
without password.
no access without password.

The possible file types are:

BASIC - BASIC program file.
Data - General data storage.
Other - DIREC*, special function system files.

Consider the following example:

OPEN "DATFIL",l
PRINT%I,"HELLO"

If file DATFIL has read-without-password access rights,
then the above code will produce an access error because the
file was not opened with the password specified, i.e.,
OPEN "DAFIL","PASS",I.

CLOSE
DEV
FIND
INDEX
INPUT

LOAD
OPEN
PRINT
SAVE

35

General Input/Output Commands

Included are commands for console, printer, memory, and disc
I/O.

DATA
INPUT

*NULL
PEEK
POKE
POS

Logic Functions

AND
NOT
OR

PRINT
READ
RESTORE
SPC
TAB

Mathematical Operations

Please note that some of these functions are not available
with the INP$ and COMKIL transient utilities enabled.

ABS
*ATN
*COS
*DEF
*EXP

*FN
INT

*LOG
*RND

SGN

*SIN
*SQR
*TAN

VAL

* avail. only when
trans. utile
disabled.

Program Execution and Manipulation

FLAG
FRE
LIST
LOAD
NEW

REM
**RSEQ

RUN
SAVE
USR

** avail. only when
trans. util.
enabled.

String Variable Manipulation

ASC
CHR$
LEFT$
LEN

MID$
RIGHT$
STR$

Variable Definition and Manipulation

CLEAR
DIM

**KILL
LET

PEEK
POKE
REM

36

f

Programmer~s Reference Guide

OS-65U System Information

Function: CONSOLE CONTROL CHARACTERS

Keywords: CONTROL C,S,Q,W,D, CONSOLE

No. TI1022 - 10.01.81

Control - C

(

The serial console device provides a number of control
character commands for controlling output to the console and
BASIC execution. These commands are listed below.

Stops a BASIC program listing or execution
at the end of the current statement if this
option has been enabled with FLAG 26.

Control - S -- Stops all output pending input of a
Control 'Q'.

Control - Q -- Restarts output that was stopped with a
Control'S' or Control '0'.

Control - a -- tauses output to be 'thrown away' pending
input of another Control 'a' or entry
into the immediate mode.

Control - 0 -- Limits output to one screen at a time, then
stops pending input of a Control 'Q' (Console
paging.) This is only looked for during
output to the console.

Control - W -- Terminates the paging of output that was
initiated by a Control '0'

37

OS-65U System Information

Function: INPUT/OUTPUT DISTRIBUTION

Keywords: I/O DISTRIBUTOR

No. TI1013 - 10.01.81

11686 - Output Distributor
Defines which output devices are used when
a default print 'PRINT A' is used.

11668 - Input Distributor
Defines which input device is used when
a default input 'INPUT A$' is used.

Both distributor bytes are bit mapped according to the table
shown below. Although more than one output device may be selected
by setting multiple bits in the output distributor, the input
distributor will only accept input from and device regardless of the
number of bits set. Device scanning is from bit 0 to bit 7.

Bit
-0-

1
2
3
4
5
6
7

Dev
-1-

2
3
4
5
6
7
8

Physical Unit
Serial Console Port ($FC00)
Video Based Input & Display (440/540)
Serial Port(s) at $FB00
Memory I/O
Centronics Parallel (Output Only)
<Not Used-Word Processor Printer - Output Only>
<Not Used>
Serial Port(s) at $CF00

For example, to route normal output to the serial console and
the line printer the commmand 'POKE 11686,17' should be used. This
sets bit 0 and bit 4 which is a 1+16=17.

Memory I/O simply prints or inputs ASCII characters to RAM
based on two 16 bit auto-incrememting memory pointers.

11657,11658 - Memory Input Pointer (Low/High)

11661,11662 - Memory Output Pointer (Low/High)

As characters are printed the memory output pointer will increment.
The same applies for the memory input pointer on execution of an
input. Before using memory I/O the program must poke these address
pointers (L~w/High) to point to the appropriate memory address.

Input or output may be directed to a specific device at any
time through the use of the 'iDV' addition to the 'INPUT' and
'PRINT' commmands. A 'PRINTi5' will print to the line printer and
an 'INPUTi3' will input from device 3. In a time share environment
the 'iDV' approach is peferred to poking the I/O distributor because
output device contention is automatically handled only if 'iDV'
output is used.

38

bS-65U System Information

Function: USER PROGRAMMABLE CONTROL 'C'

Keywords: CONTROL C,INTERRUPT

No. TI1003 - 10.13.81

(

The normal function of control 'c' is to stop the
execution of the current program as if there had been a 'STOP'
command executed. While the program is being run the operating
system is constantly looking at the keyboard for a control 'c'.
If control 'ct' is turned off the system will not acknowledge a
control 'c' but it still polls for it. This provides a means
for interrupting the program under program control. The
procedure is as follows:

1) Disable Control 'c' Acknowledgment

FLAG 25

2) Clear the Control 'C' Flag

POKE 15006,0

3) If Control 'C' is pressed then the contents
of location 15006 will be non-zero.

4) To Restore Normal Control 'C' Operation

POKE 15006,0:REM Clear Flag
FLAG 26 :REM Enable Acknowledgement

There are several warnings that must be followed. First,
control 'c' will not be polled when except on output to the
console device. In order to interrupt one must occasionally
output a non-printable character to the console, such as a
'CHR$(0);'. Second, remember to clear the flag BEFORE enabling
control 'c'. If there is a control 'c' pending it will be
acknowledged when control 'c' is enabled.

39

OS-65U System Information No. TI1001 - 10.14.81

Function: SINGLE CHARACTER INPUT FROM THE CONSOLE

Keywords: INPUT, DETECT KEY

The 'INPUT' command in BASIC provides a line input
capability. This means that the input will continue until a
carriage return is entered. The routine below provides for a
character input.

POKE 8778,135:POKE 8779,5
Z=USR(Z)
Z$=CHR$(PEEK(14518)AND127)

Where: Z$ = Character entered

Note: This routine will only work if the program 'EDITOR'
Ver. 3.0 or higher has been run or the DMS Plus Extension
program 'INP$' has been run. The major advantage of this
method is that it will work in all levels of 65U from single
user through time-sharing and networking.

40

OS-65U System Information No. TI1005 - 10.14.81

Function: PROGRAMMABLE PAGING ON OUTPUT DEVICES

Keywords: PAGING, PRINTER PAGING, CONSOLE, PARALLEL PORT

OS-65U provides for automatic paging on output devices one
and five (#1 and #5). The program defines the paging based on
the 'POKES' below.

Dev #5

14387

14457

15908

Dev #1

15141

15100

14358

Function

Total number of possible lines/page
(Length * LPI)

Number of printable lines/page
(Total - top and bottom margins)

Number of printable lines left
on the current page

(

If no margins are required then the number of printable
lines per page should be 'POKEd' with the 'PEEK' of the total
number of possible lines per page. Right after bootup the
paging for device one is set for no ~argins (i.e., paging off)
while device five is set for eleven inch paper with three line
margins at the top and bottom of the page. To disable paging
on device five (#5) location 14457 should be 'poked' with the
value in location 14387. .

No other devices have paging registers; however, technical
note 'TI1018' covers the procedure for moving these registers
to whatever port you wish.

41

OS-65U System Information

Function: SERIAL PRINTER PAGING

No: TI1018 - 10.01.81

Keywords: PAGING, SERIAL PRINTER, DEVICE 3, DEVICE 8

The POKE'S below will add paging to device number 3 or
device number 8. Print statements should be directed to device
number 5. Note that the parallel printer driver is disabled
when using these pokes. Two sets of POKEs are listed. The
first set is for device number 8 ($CF00) and the second is for
device number 3 ($FB00). Since multiple ports may reside on
that device remember to poke the port index before output.

Device Number 8

POKE 15147,234:POKE 15148,234:POKE 15149,234
POKE 15879,076:POKE 15880,091:POKE 15881,077
POKE 15902,234:POKE 15903,234;POKE 15904,234
POKE 19827,076:POKE 19828,025:POKE 19829,062

Port Index - POKE 19798,((Port #)-1)*2

Device Number 3

POKE 15147,234:POKE l5l48,234:POKE 15149,134
POKE 15704,076:POKE 15705,025:POKE 15706,062
POKE 15879,076:POKE 15880,085:POKE 15881,061
POKE 15902,234:POKE 15903,234:POKE .15904,234

Port Index - POKE 15610,((Port #)-1)*2

42

OS-65U System Information No. TI1020 - 10.14.81
Function: CRT CONTROL CODES SUBROUTINE

Keywords: CRT INDEPENDENCE, CRT CODES

<.

'.

Application programs should be as peripheral independent as
possible. Terminal control codes must be easy to change. One
approach is to place them in a file which is read every time a
program is run, but this forces addltional disk transfers during the
startup of the program. In a multi-user system this also forces all
terminals to be of the same type with respect to control codes.
Another approach is to inbed the codes in the operating system. If
the Extended Input mode of 65U is active then a minimum subset of
CRT codes are present in the operating system. They can be
reterived with the following routine.

63900 Z=6345:AD=100:AD$="":DL$=""DE$="":AR=1:XF=0:YF=0
63904 Zl=PEEK(Z) :REM - Address Cursor -
63905 IF Zl>127 THEN AR=2:Z1=Zl-128:REM Determine (x,y) Order
63906 AD$=AD$+CHR$(Zl) ::REM Adr Cur Leadin
63907 Z=Z+l:Zl=PEEK(Z)
63908 IF Zl<128 AND Zl<>0 GOTO 63906
63909 IF Zl=0 GOTO 63915
63910 Zl=Zl-128
63911 DL$=DL$+CHR$(Zl) :REM Adr Cur Delimiter
63912 Z=Z+l:Zl=PEEK(Z)
63913 IF Z<128 AND Z<>0 GOTO 63911
63914 IF Zl=0 GOTO 63915
63915 DE$="":GOTO 639l7:REM Adr Cur Ending De1imter
63916 Z=Z+l:Zl=PEEK(Z)
63917 IF Zl<>0 THEN DE$=DE$+CHR$(Zl) :GOTO 63916
63918 XF=PEEK(Z+l) :YF=PEEK(Z+2) :REM Adr Cur Offsets
63919 IF XF>127 THEN XF=XF-128:AR=AR+2:REM Binary/Ascii Flag
63920 Z=Z+3:CS$="":REM - CLr Scr -
63921 Zl=PEEK(Z) :Z=Z+l:IF Zl<>0 THEN CS$=CS$+CHR$(Zl) :GOTO 63921
63922 CS$=CS$+CHR$(13)
63923 CE$="":REM - Clr to End of Scr -
63924 Zl=PEEK(Z) :Z=Z+l:IF Zl<>0 THEN CE$=CE$+CHR$(Zl) :GOTO 63924
63925 CL$="":REM - C1r to End of Line -
63926 Zl=PEEK(Z) :Z=Z+l:IF Zl<>0 THEN CL$=CL$+CHR$(Zl) :GOTO 63926
63927 FG$="":REM - Foreground -
63928 Zl=PEEK(Z) :Z=Z+l:IF Zl<>0 THEN FG$=FG$+CHR$(Zl) :GOTO 63928
63929 BG$="":REM - Backgound -
63930 Zl=PEEK(2) :Z=Z+l:IF 21<>0 THEN BG$=BG$+CHR$(21) :GOTO 63930
63931 BL$=CHR$(7) :RETURN

Once this subroutine is run the CRT functions listed below will
work if the subroutine shown below is included in your program. The
address the cursor subroutine will work on nearly all terminals
including a DEC VT100.

43

Address Cursor - Set (x,y) and 'GOSUB AD'
x - Horizontal Coord
y - Vertical Coord
(0,0) - Upper Left Corner of Screen

Clear Screen - 'PRINT CS$;'

Clear to End of Screen - 'PRINT CE$;'

Clear to End of Line - 'PRINT CL$; ,

Foreground - 'PRINT FG$; ,

Background - 'PRINT BG$; ,

Ring Bell - 'PRINT BL$;'

100 POKE 22,X:ON AR GOTO 101,102,103,103:REM Address Cursor
101 PRINT AD$;CHR$(X+XF);DL$;CHR$(Y+YF);DE$;:RETURN
102 PRINT AD$;CHR$(X+XF);DL$;CHR$(X+XF);DE$;:RETURN
103 X$=MID$(STR$(X+100+XF) :Y$=MID$(STR$(Y+100+YF)
104 IF AR=3 THEN PRINT AD$;X$;DL$;Y$;DE$;:RETURN
105 PRINT AD$;Y$;DL$;X$;DE$;:RETURN

The utility 'INP$' inserts the control codes into the operating
system.

44

OS-65U System Information

Function: USER PROGRAMMABLE ERROR RECOVERY

No. TI1012 - 10.14.81

(

Keywords: ERROR TRAPPING, DISK ERRORS, BASIC ERRORS

As of version 1.3 of 65U the capability exists to send both
disk errors and BASIC errors to line 50000. The following routine
is an example of how to decode them.

50000 EL=PEEK(11774)+256*PEEK(11775) :REM Get Error Line
50010 EN=PEEK(18176) :IF EN=23 GOTO 50100:REM BASIC or Disk?
50018
50019 REM Decode BASIC Error
50020 Z$=CHR$(PEEK(EN+867))+CHR$(PEEK(868+EN)) :REM Error Code
50030 ER$="BASIC "+Z$+" Error in line"+STR$(EL)
50040 GOTO 50200
50098
50099 REM Decode Disk Error
50100 EN=PEEK(10226)
50110 Z=PEEK(9832) :IF Z>127 THEN Z=Z-124:IF Z>63 THEN Z=Z-58
50120 ER$="Device "+CHR$(65+Z)" Disk Error"+STR$(EN)
50130 ER$=ER$+" in line"+STR$(EL)
50199
50200 PRINT:PRINT ER$:PRINT
50210 END

To enable line 50000 error trapping a 'FLAG 23' must be
executed. That will route both Disk and BASIC errors to line 50000.
If 'FLAG 9' is used then only Disk errors will go to line 50000.
BASIC errors will force the immediate mode.

45

OS-65U System Information

Function: DISK FORMAT

Keywords: DISK FORMAT

No. TI1010 - 10.14.81

A 65U floppy disk holds approximatly 275000 characters of
information. The floppy is divided into a system portion and a
files portion. The system portion uses the first 25087 bytes
of the diskette. In this area a copy of the operating system
is kept. When you 'boot' a diskette this is copied into the
computer's memory and executed. Therefore if a diskette has
not had a system copied to it, it will not boot. Since a
program cannot use that area, it is recommended that a system
always be copied to that area. (The program 'COPIER' does
this.)

The files portion of the diskette starts at address 25088
and extends to the end of the diskette. The first file is

. always the directory file (DIREC*). The operating system will
not work if this file is not there. The directory can be as
small as 3584 bytes or as large as 32768. 16 bytes per
directory entry allows a maximum of 2047 files per device. The
second file on a floppy should be the program file 'BEXEC*'.
This program is essential because it is always the first
program to run when the operating system boots up.

To summarize; a floppy must have a system copied to it and
also contain the file 'DIREC*' and the program 'BEXEC*' before
it can be successfully booted.

46

OS-65U System Information

Function: DIRECTORY ENTRY FORMAT

Keywords: DIRECTORY ENTRY, FILE HEADER

No. TI1009 - 10.12.81

Each disk device under OS-65U has a directory. The
directory has a file name 'DIREC*' and it always resides
starting at 25088 bytes into the disk. The length is specified
by the user at create time and can range between 3584 and 32768
bytes. Each file entry will use sixteen bytes of the directory
so the length should be sixteen times the maximum number of
files to be created on that device. The actual entry in the
directory is an exact copy of the sixteen byte file header that
resides at the beginning of each file. The format of this
header is shown below:

<-

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15 -

Filename

Password

Attribute

Disk Address (Pages)

File Length (Pages)

Special *

I _- J I I / '-.

',i (

r...
.)

I '

I'

When a file is deleted a binary '1' is put in the first
character position of the filename. The next open slot at the
end of the directory is detected by the first character of the
filename being a binary '0'. The file address and the file
length are stored in binary from low byte to high in multiples
of pages.

The last byte in each entry is a multi-purpose byte. DMS
Plus Nucleus uses it to store the semaphore number of the file.

47

OS-65U System Information No. TI1006 - 09.29.81

Function: CURRENT DISK DEVICE DETERMINATION

Keywords: CURRENT DEVICE

The current disk device letter can be determined by the
following routine. It will work in all levels of OS-65U from
single user to network configurations.

Z=PEEK(9832) :IF Z>127 THEN Z=Z-124:IF Z>63 THEN Z=Z-58
DV$=CHR$(Z+65)

DV$ = Current Device Letter
A,B,C,D - Floppy
E - Local Hard Disk
K-Z - Network Nodes

48

OS-65U System Information No. TI1002 - 10.14.81

(

Function: DETERMINE THE DISK ADDRESS AND LENGTH OF A FILE

Keywords: DISK ADDRESS, FILE LENGTH

The absolute disk address and length of a file can be
easily obtained by the following routine.

OPEN F$,P$,CH
Z=9898+CH*8 _
ADR=256*(PEEK(Z+1))+256*(PEEK(Z+2))+256*(PEEK(Z+3))
LN=256*(PEEK(Z+4))+256*(PEEK(Z+5))+256*(PEEK(Z+6))

Where: F$ = Filename of the file you wish to locate
P$ = Password
CH = Channel

ADR = Absolute Disk Starting Disk Address of
the file 'F$'

LN = Absolute Length of the file 'F$,

All files in 65U have a.16 byte file header so an index of
zero is actually the sixteenth byte in the file. The variable
'LN' therefore is sixteen greater than the number of usable
bytes and the beginning of the data is at a disk address of
'DA+16'.

Note: These PEEKs are only accurate immediately after
opening the file.

49

OS-65U System Information

Function: BLOCK DISK TRANSFERS FROM BASIC

Keywords: BASIC/DOS INTERFACE, RECORD R/W

No. TI1017 - 10.14.81

Break up
Address

& Poke it

POKE 8778,192:POKE 8779,36:REM Set USR Vector to Interface
POKE 9432,243:POKE 9433,40:REM Interface PUT Vector
POKE 9435,232:POKE 9436,40:REM Interface GET Vector

Disk I/O under 65U is line oriented. There is a provision from
the transfer to/from disk of larger contiguous blocks of memory. To
do this only requires that four parameters be set up. They are the
absolute disk address, the absolute RAM address, the number of bytes
to transfer and whetner to read or write to disk. The routine below
does this.

1000
1010
1020
1029
1030 CB=9889:REM Address of Disk Control Block
1039:
1040 DH=INT(DA/16777216) :RM=DA-DH*16777216:REM
1050 DM=INT(RM/65536) :RM=RM-DM*65536 :REM
1060 DL=INT(RM/256) :RM=RM-DL*256 :REM
1069:
1070 POKE CB+l,RM:POKE CB+2,DL:POKE CB+3,DM:POKE CB+4,DH
1079
1080 POKE CB+5,NB-INT(NB/256)*256:REM Break up Bytes to
1090 POKE CB+6,INT(NB/256) :REM Transfer & Poke it
1099
1100 POKE CB+7,RA-INT(RA/256)*256:REM Break up RAM
1110 POKE CB+8,INT(RA/Q) :REM Address & Poke
1119
1120 DEV DV$:ER=USR(RW) :REM Do Transfer
1129
1130 IF ER=0 GOTO 1150:REM Check for Error
1139
1140 PRINT "Error"iERi"at Address"iDA
1149
1150 POKE 8778,208:POKE 8779,16:REM Set USR to FC Error
1160 END

DA = Disk Address
RA = RAM Address
NB = Number of Bytes to Transfer
RW = Read/Write Flag (0 or 1)

DV$ = Device to do the Transfer on
ER = Error Code (0 if no error)

Although this method raises the throughput to the disk there is
additional overhead that the program must bear. It is assumed that
there is a buffer space defined somewhere in RAM. The disk address
has to be determined. And finally and most importantly, this
technique bypasses ALL filename logic. You must be very careful
when calculating the disk address 'DA' to avoid destroying existing
files.

50

OS-65U System Information

Function: DATE & TIME DETERMINATION

Keywords: CURRENT DATE, CURRENT TIME

No. TI1014 - 10.01.81

65U has provlslons for maintaining a system date in the
operating system. Under Time Share this is expanded to include
the current time. For these locations to be accurate a set up
program must poke them.

51

OS-65U System Information No. TI1007 - 09.29.81

Function: CURRENT OPERATING SYSTEM LEVEL DETERMINATION

Keywords: SYSTEM LEVEL,SYSTEM DETERMINATION

Version 1.3 of 65U provides an easy way of determining the
system level. One byte has been reserved in the operating
system for this purpose.

LV = PEEK(16317)

LV = System Level

o - A release of 65U prior to version 1.3
1 - Single User
2 - Network Intelligent Terminal
3 - Time Sharing
4 - Time Sharing with Network Extension

WARNING: This location is set by the operating system and
system programs. Applications programs should never poke into
itt-

52

OS-65U System Information

Function: LEVEL III & NETWORK PEEKS

No. TI10l9 - 10.14.81

c.

Keywords: LEVEL III, NETWORK, SEMAPHORE PEEK

The following memory locations can be used to determine
level III and network system parameters. Any time an absolute
memory location is referenced it should be done in a standard
subroutine or a standard area of the program in order to
minimize the changes needed if that location changes due to a
new version of the operating system.

55381 - Time Share User Number (0-15)

57199 - Network Node Number (0=K,1=L, ••• ,15=Z)

In a time share machine or on a network node the status of
a semaphore can be obtained by the following routine.

Z=l:FOR Zl=l TO SM-INT(SM/8)*8) :Z=Z*2:NEXT Zl
A~l:IF (PEEK(55333+(SM/8)) AND. Z) THEN A=0
RETURN

If semaphore ISM' is set then a 'I' is returned in 'A' else 'A'
is equal to a '0'

53

OS-65U System Information

Function: SEMAPHORE TIMEOUT OPTION

No. TI1008 - 07.21.81

Keywords: SEMAPHORE LOCKING, FILE CONTENTION

File contention in time sharing and network versions of
65U are handled through the use of semaphore flags. Normally
if a program attempts to lock a semaphore that is already
locked the system will suspend that program until the semaphore
is available. In an interactive environment this may introduce
unacceptable delays. The routine below permits the program to
continue even if the semaphore was locked.

POKE 19632,TS
WAIT FOR SM
LC=2:IF PEEK(l9633)<>0 THEN LC=l

TS = t of seconds to wait for semaphore
to unlock before returning.
A delay value of '60' will force a
wait forever while a value from '0'
to '59' will force a wait for that
number of seconds.

SM = Semapho~e number to lock

LC = Status Indicator

1 - Program successfully locked semaphore
2 - Semaphore already locked by another user

54

OS-65U System Infor~ation

Function: TIME SHARE OUTPUT DEVICE LOCKING

No. TI1011 - 10.01.81

Keywords: TIME SHARE, OUTPUT DEVICE LOCKING

Level III provides for automatic output device locking on
all output devices. If a user outputs to device 8 then no
other user is allowed to print to that device until the user
which set that device releases it by a 'PRINT#8t' or falls into
the immediate mode. If multiple output units reside on a given
device (e.g., CA-10X on device 8) then you may wish to disable
this feature. The following table can be poked to set up the
device locking mode. The values shown are the normal system
defaults.

Hex Dec Contents
$DC66 - 56422 - Dev 13 - 255

67 23 1 - 255
68 24 2 - 255
69 25 3 - 127
6A 26 4 - 255
68 27 5 - 127

(6C 28 6 - 127
6D 29 7 - 127
6E 313 8 - 127
6F 31 9 - 127
70 32 10 - 127
71 33 11 - 127
72 34 12 - 127

255 - Device is non-lockable
127 - Device is lockable and not in use

N - Device is in use by user 'N' and locked

WARNING: If a device is made non-lockable then it is up to
the program to handle device contention.

55

OS-65U System Information

Function: MERGING OF BASIC' PROGRAMS

Keywords: MERGING, SUBROUTINE

No. TI102l - l0.~2.8l

The procedure outlined below allows BASIC programs to be merged
together without the hassle of indirect files.

LOAD"filename" - Load the program that contains the
code you wish to transfer.

OPEN"data file",l - Open a scratch file. This file will
hold the lines being transferred in
an ASCII format so make sure that the
file is bigger then the original
BASIC file.

LIST%l,N-M

PRINT%l,"OK"

CLOSE 1

- List the lines you wish to transfer.
If you generate an error then CLOSE
and restart the procedure. You may
use any form of the list statement.
In the above example lines 'N' to 'M'
have been listed to the data file.

This is a end of data marker which is
needed during the actual merge.

- Close the data file. Note: At this time
the data file contains the lines listed
in ASCII form as opposed to the normal
tokenized form.

The above sequence has taken the lines of program code desired
to be transferred and stored them in a transfer file. Now, to get
the cod~ into the program desired, the following procedure is
necessary.

LOAD"filename" Load the file which is to receive the
new lines.

OPEN"data file",l - Open the file that contains the listed
lines.

FLAG 13

INPUT%l,

CLOSE

- This flag permits a special form of
the INPUT commmand to execute.

- This will input the lines from the
data file until the end of data
delimiter 'OK' is hit. This will
cause a 'SN' error which will
return control back to the operator.

- Close the data file.

56

;
FLAG 14

CLEAR

SAVEnfilename"

- Restore the INPUT flag.

- This CLEAR must be done.

- Save the file which no has the new
lines merged in.

57

OS-65U System Information

Function: LIMITED FIND

Keywords: FIND, LIMITED FILE SEARCH

No. TI1015 - 10.14.81

In normal operation the 'FIND' command searches from the
current index to the end of file. The routine below will
search for 'A$' from the current index to the index value equal
to 'EI'. If no match was found the value of the index will be
set to 'lE9' just as in the unlimited find command.

1000 Z=9902+8*CH:Zl=PEEK(Z) :Z2=PEEK(Z+1) :Z3=PEEK(Z+2)
1010 Z4=256:Z5=INT((EI+Z4)/Z4)*Z4
1020 IF Z5 < EI+16 THEN Z5=Z5+Z4
1030 IF Z5 => (Zl*Z4+Z2*Z4*Z4+Z3*Z4*Z4*Z4) GOTO 1090
1040 POKE Z+2,INT(Z5/(Z4*Z4*Z4))
1050 Z5=Z5-INT(Z5/(Z4*Z4*Z4))*(Z4*Z4*Z4)·
1060 POKE Z+1,INT(Z5/(Z4*Z4))
1070 Z5=Z5-INT(Z5/(Z4*Z4))*(Z4*Z4)
1080 POKE Z,INT(Z5/Z4)
1090 FIND A$,CH
1100 POKE Z,Zl:POKE Z+1,Z2:POKE Z+2,Z3:RETURN

CH = Channel Number
A$ = String to Search for (0-255 Characters)
EI = Index for find to stop at if no find

This subroutine modifies the channel control block so if a
disk error occurs during the find close and reopen the file
before continuing_

58

OS-65U System Information

Function: QUICK DISK BUFFER DUMP

Keywords: DISK BUFFER, FILE CONTENTION

No. TI1000 - 10.14.81

Normally the single disk buffer is written back to the
disk only when the buffer is needed for another sector and the
contents of the buffer has changed since it was read from the
disk. An example would be writing 100 byte records
sequentially to a disk file. The actual disk file would only
be updated approximately every 35 records. (Note: The buffer
size is 3584 bytes.) In many cases the programmer would like to
force the operating system to write to the disk on a per record
basis.

Zl=9898+CH*8
Z=PEEK(Zl) :CLOSE CH:POKE Zl,Z

Where: CH = Channel Number (1-8)

This routine in effect 'closes' the channel specified,
then 'opens' it again without the time-consuming disk read of
the directory., Note: This routine will force the current
buffer to disk. It will not force the buffer to be reloaded
the next time it is accessed, therefore this routine alone
cannot be used to implement record locking.

59

OS-65U System Information

Function: DATA ONLY FLOPPY DISK CREATION

Keywords:' DATA DISK FORMAT

No. TI1004 - 10.02.81

Initialize a blank floppy diskette using the utility
program 'COPIER'.

Copy a system from the utility diskette to the diskette
that was initialized above.

Using the 'CREATE' utility to create a directory file on
the data diskette with the characteristics of:

Name
Length

- Type
Access Rights

Password

- DIREC*
3500
Other

- None
- PASS

Using the 'CREATE' utility, create a file on the data
diskette with the characteristics:

Name
Length

Type
Access Rights -

BEXEC*
3500
BASIC
RW

From the immediate mode clear the workspace with a 'NEW'
command and type in the following program.

10 POKE 11686,1:POKE 11668,1
19
20 FOR X=l TO 32:PRINT:NEXT
29
30 PRINT"Warning: This is a Data Diskette -- It should ";
32 PRINT"not be booted!"
39
40 GOTO 40

Save the program just typed in the newly created file
'BEXEC*' on the data diskette.

The data diskette is now ready to have data files created
on it. If someone tries to boot up the diskette it will print a
warning message since normally you should not be doing that in
an application package.

60

'OS-65U System Information

Function: SETTING MEMORY SIZE

No. TI1016 - 10.14.81

Keywords: MEMORY SIZE, ALLOCATION OF MEMORY

BASIC maintains a two byte address pointer (Low/High)
which points to the current end of memory. These bytes were
set by the system on boot up. To modify the size of the
workspace one must poke the ending address into the locations:

POKE 132,AL:POKE l33,AH:CLEAR

Where AL and AH are the low and high parts of the address of
the new end of the workspace. A 'CLEAR' must be executed for
the change to take affect. After that the change will stay in
effect until the system is rebooted.

61

Generating Machine Code

To assemble the machine code routines one should use
the assembler under OS-65D V3.1 or the WPl-B word processor.
The better choice is the WPl-B as it incorporates a full
line EDITor, macro CHANGE and FIND commands, plus move and
transfer commands. The machine code should be assembled to
RUN at $6000 and up. The assembled machine code must be
Saved to the WPI-B or OS-65D V3.l diskette. Since there
exists no assembler under OS-65U and OS-65U can not read
WPlB or Os-65D type diskettes, two utility programs have
been provided. "LOAD32" and "LOAD48" (for 32K and 48K
machines respectively) provide a means of calling machine
code into Os-65U. When "RUN", the utilities "come up" in
the Os-65D kernel mode i.e., the familai "A*" is output. At
this point the machine code may be "called" into Os-65U.
The steps below give the exact sequence.

1) Type:
RUN "LOAD32", "PASS" <CR> for a 32K machine or for
a 48K machine RUN "LOAD48", "PASS" <CR>

2) Home the floppy head by entering:
A*Z

3) Call the machine code into place by entering:
A*CXXXX=YY,Z
A*Z

Where XXXX is the address the machine code is to
be called into (normaly $6000), YY is the track
number and Z is the sector number.

4) Warm start OS-65U by entering:
A*GXXXX

Where XXXX=7E12 for a 32K machine and BEl2 for
a 48K machine.

5) Now enter:
New XXXX <CR>

Where XXXX stands for the number of bytes to be
allocated for the machine code routines plus one.

E.G. machine code runs from $6000 to $60FF.
The statement then would be
"NEW 256",«$60FF+l)-$6000)= $6100 - $6000= $0100= 256
(See diagrams on next page.)

6) Now enter the BASIC program to be used in
conjunction with the machine code.

7) SAVE the BASIC program to disc.

62

End of BASIC
Work Space

Start of BASIC
Work Space I 256

I "Dead
I

I
I
I
I
I
1$6100

Byte I
Space II I

1$6000

t.

Diagram 1

$6000
I
I
I

$ 5E00__-;....:1$~B;.;:E;.;:0..::..0

I
I
1
I

0:....;$_6_0....;.0~0

Diagram 2

BASIC Interface
and 05-650 Drivers

User Space
24064 Bytes

$8000 BASIC
I Interface and
I 05-650 Drivers

$lE00 1$7E00
1
I User Space
I 7680 Bytes
I

o 1 $6000

Relative
ADDRESS

LOAD48

RAM
ADDRESS

Relative RAM
ADDRESS ADDRESS

LOAD32

The diagrams above show how memory is allocated using
"LOAD32" and "LOAD48".

63

(

System Error Codes

(

OS65U Floppy Disk Error Numbers

1 - Drive not ready
2 - Seek error
3 - Invalid unit number
4 - Can't find track zero
5 - Can't find index hole
6 - Di~kette write protected
7 - Track unsafe (can't verify write)
8 - Incomplete header
9 - Header - Framing Error (FE)

10 - Header - Overrun (OR)
11 - Header - OV,FE
12 - Header - Parity Error (PE)
13 - Header - PE,FE
14 - Header - PE,OV
15 - Header - PE,OV,FE
16 - Data Field - Incomplete
17 - Data Field - Framing Error
18 - Data Field - Overrun
19 - Data Field - OV,FE
20 - Data Field - Parity Error
21 - Data Field - PE,FE
22 - Data Field - PE,OV
23 - Data Field - PE,OV,FE
24 - Checksum error
25 - Unit out of service
26 - Old 65-D header found
27 - Track 0 verification error
76 - Track out of range

OS-65U CD-36 and CD-74 Hard Disk Error Numbers

1 - Drive not ready
2 - Seek timeout
3 - Invaltd unit number
4 - Restore timeout
5 - DMA failed to terminate
6 - Write protect error
7 - Sector unsafe (can't verify write)
8 - Sector header checksum error
9 - Cylinder mismatch

10 - Track mismatch
11 - Sector mismatch
16 - Data field checksum error
24 - Status error
25 - Unit out of service
82 - Cylinder number out of range

64

OS-65U CD-8(23) Hard Disk Error Numbers

1 - Drive not ready
2 - Seek timeout
3 - Invalid unit number
4 - Can't find cylinder zero
5 - DMA failed to terminate
6 - No data read
7 - Sector unsafe
8 - Header checksum
9 - Cylinder mismatch

10 - Track mismatch
11 - Sector mismatch
12 - Data field checksum
13 - Status error
14 - Unit out of service
15 - Cylinder number out of range

+16 - In position Head subroutine
+32 - In Seek Subroutine
+64 - In Select Unit Subroutine
+128- In Write Subroutine

EXAMPLE: Error number 63
-32
3T
-16
15

Seek Subroutine

Position Head
Subroutine

Error is 15 - Cylinder Number Out of Range

OS-65U Network Error Numbers

238 - Output overrun
239 - Semaphore locked/not locked
240 - Relay response timeout
241 - Data Transmission Error FE
242 - Data Transmission Error OV
243 - Data Transmission Error OV FE
244 - Data Transmission Error PE
245 - Data Transmission Error PE FE
246 - Data Transmission Error PE OV
247 - Data Transmission Error PE OV FE

(Parity, Overrun, Framing)
248 - Control Block echo comparison
249 - Invalid initial poll command
250 - Data Block input timeout
251 - Control Block input timeout
252 - Incorrect poll code
253 - Incorrect poll responses
254 - Poll timeout
255 - Poll response timeout

65

\

Basic Language Error Messages

Error
Code Meaning

/0 - Division by Zero.
BS - Bad Subscript: Index outside DIM statement range.
CN - Continue Error: Attempt to inappropriately continue.

Can continue from BREAK or STOP if no lines changed
or entered. Can't continue after any error.

DD - Double Dimension: Variable dimensioned twice.
Remember subscripted variables default to dimension
10.

FC - Function Call error: Parameter passed to function
is out of range.

FS - Full Stack: Too many nested FORs or GOSUBs,
ID - Illegal Direct: INPUT and DEF statements cannot

be used in direct mode.
LS - Long String: String too long.
NF - NEXT without FOR.
aD - Out of Data: More READs than DATA.
OM - Out of Memory: Program too big or too many variables.
OV - Overflow: Result of calculation too large.
RG - RETURN without GOSUB.
SN - Syntax error: Typo, etc.
SS - Semaphore stack overflow.
ST - String Temporaries: String expression too complex.
TM - Type Mismatch: String mismatched to numeric.
UF - Undefined Function: DEF must be executed before

function is called.
US - Undefined Statement: Attempt to jump to non

existent line number.

OS-65U File System Error Codes

128 - File not found
129 - Channel not open
130 - Access Right violation
131 - Executability violation
132 - End of file
133 - Channel already open

66

(

System Passwords

r

·.
\

OS-65U System Passwords

Below are the passwords applicable to OS-65U VI.3. If
desired, this page may be removed from the manual and stored
separately for system security.

Utility Program Passwords

All utility programs with limited access (other than R/W)
are assigned the password PASS, and must be RUN using this
password.
Additional passwords are listed below.

The PACKER requires a password prior to initiating the disk
packing operation. This password is PACK.

The COPIER requires a password prior to initializing a hard
disk DEVice.

The passwords are as follows:

c:

Hard Disc type

CD-74
CD-36
CD-23
CD-7

Password

33~~

33~~

4~~~

l~~~

In BEXEC*, the password "UNLOCK" is needed to open the
system for end user modifications.

Systems Program Passwords

The SYSDIR program password for selection of system 1, the
Master system, is SECRET. The sample user systems USERI, 2, and
3 have passwords PW.

CRT Terminal Parameter Password

The password for the OS-DMS-PLUS data file "CRT 0" is
"PASS".

67

