M-520163
ISSUE 2

# MICROLINE 84 DOT-MATRIX PRINTER (Standard Model) 

## Maintenance Manual

M-520163
ISSUE 2

# MICROLINE 84 DOT-MATRIX PRINTER (Standard Model) 

# Maintenance Manual 

Preface<br>PART I User's Manual<br>PART II Maintenance Manual<br>PART III Appendixes

All rights reserved. No part of this document may be reproduced or issued to third parties in any form whatever without the express permission of Oki Electric Industry Company, Ltd.
The materials in this document are provided for general information and are subject to change without notice. Oki Electric Industry Company, Ltd. assumes no responsibility for any errors that may appear in this document.
We have tried to ensure that the information is accurate, complete, and readily usable. Should any errors or omissions be noted, or should any ideas for improvement occur, however, please notify:

Oki Electric Industry Company, Ltd. International Division
10-3 Shibaura 4-chome
Minato-ku, Tokyo 108
Japan

## Preface

This manual consists of three parts:
Part I User's Manual, containing all information needed for installation, operation, paper and ribbon loading, and programming of the MICROLINE 84 Dot-Matrix Printer

Part II Maintenance Manual, containing all additional information needed for maintenance, troubleshooting, and repair of the MICROLINE 84 (maintenance and repair personnel should review Part I before reading Part II).

Part III Appendixes, containing technical details of printer design and operation.

The MICROLINE 84 is a desk-top, serial dot-impact matrix, receive-only printer. It is particularly suited to personal computer applications.

The printer receives data line-by-line, and prints it out. Data can be received even during printing so that the machine can print in both directions in the shortest distance. The printer employs an extra-small print head, simplified mechanism, and a microcomputer, so it is small in size and light in weight.

The main features of the MICROLINE 84 include:
(1) High-speed printing at up to 200 characters per second
(2) Both upper-case and lower-case characters
(3) High-quality printing using subdividing space motor
(4) High throughput by bidirectional printing and shortest-distance printing
(5) FF, VT, and TOF functions provided
(6) Low noise
(7) Small size, light weight
(8) Low power consumption
(9) Simple design
(10) Graphics, and reduced or enlarged characters

## CONTENTS

PART I User's Manual

1. INTRODUCTION ..... 1. 1
2. CONTENTS ..... 1. 2
2.1 Packing List ..... 1. 2
2.2 Standard Printer Components ..... 1. 2
2.3 Optional Printer Components ..... 1. 2
3. INSTALLATION PROCEDURE ..... - 3
4. OPERATING PROCEDURES ..... 1. 5
4.1 Functions of Operating Controls and LEDs ..... 1. 5
4.2 Operating Procedures ..... 1. 6
4.3 Tractor Unit Mounting ..... 1.7
4.4 Ribbon Loading Procedure ..... 1. 7
4.5 Paper Loading Procedure ..... 1-8
4.6 Upper Cover Removal ..... 1.11
4.7 Operational Precautions ..... 1-12
5. TROUBLES AND REMEDIES ..... 1.13
51 Troubles and Responses ..... $1-13$
5.2 Fuse Replacement ..... 1.13
PART II Maintenance Manual
6. THEORY OF OPERATION ..... II- 1
6.1 Operation of the Mechanical Section ..... II. 1
6.2 Operation of the Control Section ..... $11-10$
7. MAINTENANCE ..... II-18
7.1 Maintenance Precautions ..... 11-18
7.2 Cleaning ..... 11-18
7.3 Maintenance Tools ..... II-19
7.4 Disassembly, Reassembly ..... II-20
7.5 Adjustment Procedures for Various Parts ..... $11-30$
7.6 Oiling ..... 11. 34
7.7 Maintenance Parts List ..... II-40
78 Troubleshooting Flow Charts ..... 11.47
8. CIRCUIT DIAGRAMS ..... 11-61
9. TABLE OF COMPONENT PARTS ..... 11.73
PART III Appendixes
APPENDIX A SPECIFICATIONS ..... III- 1
APPENDIX B INTERFACE SIGNALS ..... III- 5
APPENDIX C INTERFACE TIMING CHART ..... III: 6
APPENDIX D BLOCK DIAGRAM ..... III- 7
APPENDIX E FUNCTIONS OF SWITCHES, BUTTONS, AND OTHERS ..... III- 8
DESCRIPTION OF FUNCTIONS ..... III-10
APPENDIX G FUNCTION CODES ..... III-17
APPENDIX H CHARACTER SETS ..... III-19
APPENDIX I PRINTING FORMAT ..... III-23

## PART I User's Manual

WARNING: This equipment complies with the limits for a Class B computing device in accordance with the specifications in Subpart J of Part 15 of FCC Rules which are designed to minimize radio frequency interference in a residential installation. There is no guarantee that radio or television interference will not occur in any particular installation and can be determined by turning the equipment off and on. The user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient the radio or television receiving antenna
- Relocate the computer with respect to the receiver
- Move the computer away from the receiver
- Plug the computer into a different outlet so that computer and receiver are on different branch circuits.
If necessary, the user should consult the dealer or an experienced radio/television technician for additional suggestions. The user may find the following booklet prepared by the Federal Communications Commission helpful:
"How to Identify and Resolve Radio-TV Interference Problems" This booklet is available from the US Government Printing Office, Washington, DC 20402, Stock No. 004-000-00345-4.


## 1. INTRODUCTION

This manual describes the operation of the MICROLINE 84, designed as a high-performance printer with multiple functions. The MICROLINE 84 can be used with a personal computer.

Before using your MICROLINE 84 printer, read this manual to understand the printer operation.


Figure 1-1 External View of Printer

## 2. CONTENTS

### 2.1 Packing List

Uncrate the printer and check for damage and/or missing accessories. Included in the carton are:
(1) MICROLINE 84 printer.... 1
(2) User's manual . . . . . . . . . . . . 1
(3) Ribbon. . . . . . . . . . . . . . . . . . 1
(4) Empty reel . . . . . . . . . . . . . . . 1
(5) Fuse (2 A) . . . . . . . . . . . . . . 1
(6) Fuse (3 A) . . . . . . . . . . . . . . . 1
(7) Platen knob . . . . . . . . . . . . . . 1
(8) Tractor unit . . . . . . . . . . . . . . 1


Figure 2-1 Packing List

### 2.3 Optional Printer Components

The optional printer components are:
(1) High Speed RS-232-C and current loop serial interface board.
(2) IEEE 488 parallel interface board.
(3) Cut sheet feeder.

### 2.2 Standard Printer Components

The basic printer consists of a print mechanism, control circuit board, operating section, power supply, covers and a tractor unit.


Figure 2-2 Standard Components

## 3. INSTALLATION PROCEDURE

(1) Check the equipment for damage before installing.
(2) Remove the access cover by holding center of cover and pulling upward.
(3) Remove fastener used to secure printhead during transportation.

(4) Connect the interface cable to the back of the printer and to the external data system. (Refer to figures 3-1 and 3-2.) The AC power switch must be in the OFF position. Cover the unused connector with the blank plate.
(5) Install ribbon. Refer to paragraph 4.4 for detailed instructions.
(6) Mount the tractor unit as required. (Refer to paragraph 4.3.)
(7) Insert the paper and set to the first printing position. Refer to paragraph 4.5 for detailed instructions. When using sprocket paper, skip 16.5 mm ( 4 lines at 6 LPI ) on each side of the perforated line.
(8) Set the FORM LENGTH rotary switch located on the front panel to the desired length.
(9) Turn the AC power switch to the OFF position and connect the $A C$ input plug to an $A C$ receptacle.
(10) Turn the $A C$ power switch to the $O N$ position and verify that the POWER SEL LED illuminates.

CAUTION: 1) Set the power source voltage select switch according to the power used for 200 V type only. Refer to figure E-3 in Appendix E.
2) Set the DIP switches for function selections according to Appendix E.

Preparation for data reception from an external source is now complete.


Figure 3-1 Parallel Interface Connection Diagram

## Parallel Interface Connectors and Cable Specifications

(1) Connectors

Printer end: $\quad$ 36-pin receptacle, equivalent to 57-40360-12-D56 (Amphenol)

Cable end: $\quad 36$-pin plug, equivalent to 57-30360 (Amphenol)

Or plug equivalent to 552274-1 (AMP); cover equivalent to 552073-1 (AMP)
(2) Cable

Use a cable less than 5 meters long. A shielded cable using twisted pair conductors is desirable.
(3) Connector locks

After engaging the connectors, fasten them with locks.


Figure 3-2 High Speed Serial Interface Connection Diagram

## Serial Interface Connectors and Cable Specifications

(1) Connectors

Printer end: $\quad$ 25-pin receptacle, equivalent to DB-25S (Cannon)
Cable end: 25-pin plug, equivalent to DB-25P (Cannon)
Shell, equivalent to DB-C2-J9 (Cannon)
(2) Cable

Use a cable less than 15 meters long. A shielded cable using twisted pair conductors is desirable.
(3) Connector locks

After engaging the connectors, fasten them with locks.

## 4. OPERATING PROCEDURES

### 4.1 Functions of Operating Controls and LEDs

The controls, LEDs and knobs necessary for operating the printer are shown below.


Figure 4-1 Operating Controls, LEDs and Others

Table 4-1 Operating Switches and LEDs

| Name | Type | Location | Description |
| :--- | :--- | :--- | :--- |
| AC power | Alternate <br> switch | Right side | Switching AC power ON and <br> OFF. |
| POWER | LED (red) | Front panel | Lights when power is switched <br> ON. |
| PAPER | LED (red) | Front panel | Lights when paper has run out. |
| FORM <br> LENGTH | Rotary <br> switch | Front panel | Used for selecting page length. <br> (Refer to Table 4-2.) |
| TOF SET | Momentary <br> switch | Front panel | Valid in deselect (off-line) con- <br> dition. Paper is set to top-of- <br> form (first printing line) when <br> this switch is depressed. <br> Before depressing switch, <br> paper must be set to desired <br> top-of-form. |
| SEL <br> (Select) | Momentary <br> switch | Front panel | When this switch is depressed <br> the printer changes from de- <br> select (off-line) to select (on- <br> line) condition to be ready for <br> receiving. If the printer had <br> been in select condition, it <br> will change to deselect. <br> When the printer is changed <br> from deselect condition to <br> select condition by depressing <br> this switch, the printer head <br> returns to its home position. |


| Name | Type | Location | Description |
| :--- | :--- | :--- | :--- |
| SEL <br> (Select) | LED (red) | Front panel | When the LED lights it indi- <br> cates select (on-line) condition. <br> When the light is not lit, it <br> indicates deselect condition. <br> The LED lights when the SEL <br> switch is depressed or when a <br> DC1 code is received or when <br> power is switched ON. When <br> the SEL switch is depressed <br> again or when a DC3 is <br> received or when paper has <br> run out, the light goes out. |

Note: When the LINE FEED or FORM FEED switch is depressed during deselect condition, if data still remains in the printer buffer the paper is fed after the data is printed. Data will not be printed, however, if the printer is in paper-end condition.

Table 4-1 (con.)

| Name | Type | Location | Description |
| :--- | :--- | :--- | :--- |
| FORM <br> FEED | Momentary <br> switch | Front panel | Valid in deselect (off-line) con- <br> dition. When this switch is de- <br> pressed, paper is fed to the <br> next top-of-form position. |
| LINE <br> FEED | Momentary <br> switch | Front panel | Valid in deselect (off-line) con- <br> dition. Every depressing of this <br> switch feeds the paper by one <br> line. This switch is also used to <br> initiate the test pattern print- <br> ing. |
| Paper lock <br> release <br> lever |  | Top of <br> printer at <br> right <br> (further side) | Close when single paper is <br> used; open when using <br> sprocket paper. When the <br> lever is pulled towards front, <br> paper is free. |
| Head gap <br> adjusting <br> lever |  | Top of <br> printer at <br> right <br> (front side) | Select printing pressure ac- <br> cording to paper type and <br> thickness. (Refer to Table 4-3) |
| Platen <br> knob | Right side <br> of printer | Turned for manually feeding <br> paper up or down. |  |

### 4.2 Operating Procedures

### 4.2.1 Setting page length

(1) When the AC power switch is OFF;
(a) Turn the FORM LENGTH rotary switch to the desired page length,
(b) Adjust the first printing line,
(c) Push the power switch to the ON position.

The desired page length is now set.
(2) When the AC power switch is ON;
(a) Push the SEL switch to extinguish the LED so the printer will be in deselect (off-line) mode,
(b) Turn the FORM LENGTH rotary switch to the desired page length,
(c) Set the paper to the first printing position.
(d) Push the TOF SET switch to set the desired page length,
(e) Push the SEL switch again to light the LED so the printer will be in select (on-line) mode.

The desired page length is now set.
Note: Do not set the FORM LENGTH rotary switch within the numbered positions.

Table 4-2 FORM LENGTH Rotary Switch

| Rotary switch position | Form length | 6 LPI | 8 LPI |
| :---: | :---: | :---: | :---: |
| 0 | 3 inches | 18 lines | 24 lines |
| 1 | 3.5 inches | 21 lines | 28 lines |
| 2 | 4 inches | 24 lines | 32 lines |
| 3 | 5.5 inches | 33 lines | 44 lines |
| 4 | 6 inches | 36 lines | 48 lines |
| 5 | 7 inches | 42 lines | 56 lines |
| For U.S.A. | 8.5 inches | 51 lines | 68 lines |
| 6 <br> For the area other than U.S.A. | 8 inches | 48 lines | 64 lines |
| 7 | 11 inches | 66 lines | 88 lines |
| 8 | 12 inches | 72 lines | 96 lines |
| 9 | 14 inches | 84 lines | 112 lines |

### 4.2.2 Page length feed

(1) Deselect the printer by pushing the SEL switch.
(2) Push the FORM FEED switch. The paper is then fed by the previously selected FORM LENGTH.
(3) Select the printer by pushing the SEL switch.

### 4.2.3 Line feed

(1) Deselect the printer by pushing the SEL switch.
(2) Push the LINE FEED switch. The paper is then fed line-by-line.
(3) Select the printer by pushing the SEL switch.

Note: When the FORM FEED or LINE FEED switch is depressed, if data still remains in the printer buffer the paper is fed after the data is printed.

### 4.2.4 Test-pattern printing

(1) Depress the AC power switch to OFF.
(2) Depress the $A C$ power switch to ON, holding the LINE FEED switch depressed.
(3) Release the LINE FEED switch about 2 seconds later.

A continuous test pattern will be printed. To terminate the test-pattern printing, depress the FORM FEED switch for about 2 seconds.

### 4.2.5 Selection of test patterns

Two kinds of test pattern can be selected according to the position of the FORM FEED rotary switch:

Any odd-number position: Rolling ASCII pattern
Any even-number position: Rolling ASCII pattern with skipping
The test-pattern printing may be used for diagnosis of printing trouble to see whether the trouble is attributable to the printer itself or to the external system. For this diagnosis, perform test-pattern printing without the interface cable.
4.3 Tractor Unit Mounting (See figure 4-2).
(1) Remove the access cover
(2) Pull the printer's paper lock release lever to the open position.
(3) Hold the left and right tractor side plates and slip the parallel parts behind the gear onto the paper-tear-off bar shaft.
(4) Pull the tractor unit toward you and slip the clamp levers onto the shaft of the platen bearing. Push down and snap in place.
To remove the tractor unit, reverse the above procedure.


Figure 4-2 Tractor Unit Mounting Method

### 4.4 Ribbon Loading Procedure

(1) Remove the access cover.
(2) Remove the used ribbon and discard.
(3) Loosen the end of a new ribbon. Attach the end of the ribbon to the hook on the empty spool boss, and wind a few turns on the spool.

(4) Mount one ribbon spool on the spool shaft. Make sure that the winding direction is as shown in figure 4-3, and that the ribbon drive pin fits into the hole in the ribbon spool.

(5) Thread the ribbon as shown in figure 4-3.
(6) Place the other ribbon spool on the spool shaft, making sure that the ribbon drive pin fits into the hole in the ribbon spool (Do not twist the ribbon.)
(7) After the ribbon has been set in place, check that it isn't loose. If the ribbon is loose, turn one of the ribbon spools by hand until it is no longer loose.
(8) Check all the items from (1) to (7) above, to prevent faulty loading.


Figure 4-3 Ribbon Loading Method
(9) Replace the access cover

Note: 1) Be careful not to disturb the ribbon protector when threading the ribbon.
2) Ensure the ribbon change eyelet is on the spool side of the eyelet detector lever. If not, turn the ribbon spool manually to bring it to the spool side.

### 4.5 Paper Loading Procedure

Components related to paper loading are shown in figure 4-4.


Figure 4-4 Paper Loading Method

### 4.5.1 Cut-sheet loading

(1) Remove the tractor unit. (See figure 4-2.)
(2) Remove the access cover.
(3) Set the head gap adjusting lever to the first position.

(4) Pull the paper lock release lever to the open position.

(5) Lift the column indicator.
(6) Insert paper between the paper chute and the paper separator until it reaches the front of the platen.
(7) Tuck the paper under the column indicator and over the guide bar and lower the column indicator. Align the paper.
(8) Push the paper lock release lever to the closed position.
(9) Replace access cover.


The cut-sheet paper loading procedure is now complete.
Note: Cut-sheet paper cannot be used if the tractor unit is installed.

### 4.5.2 Sprocket paper loading with installed tractor unit

(See figure 4-5 for proper carton positioning.)
Sprocket paper with the width of 3 to 16 inches is loaded as follows when the tractor unit is installed:
(1) Remove the access cover.
(2) Pull the paper lock release lever to the open position and lift the column indicator.
(3) Open the sprocket covers.
(4) For rear paper feed, slide the paper between the paper chute and the paper separator. Turn the platen knob until the paper appears in front of the platen. Fit the paper sprocket holes over the sprocket pins of the platen and of the sprocket of the tractor. Should slack occur, push the tractor gear to the left. Keeping the idle gear disengaged, turn the tractor knob in the feed direction. Slack will disappear.

(5) For bottom paper feed, slide the paper up from the lower cover hole, between the front paper guide and the rear paper guide and fit the paper sprocket holes over the sprocket pins of the platen and of the sprocket on the tractor.

(6) Close the sprocket covers.
(7) Open the sprocket lock lever. Align the edges of the paper.
(8) Close the sprocket lock lever.

(9) Move the pressure roller of the column indicator to the position of the paper sprocket holes.


Column indicator
(10) Lower the column indicator.
(11) Turn the platen knob to adjust the paper to the first line. Lightly pull the paper forward to remove slack.
(12) Leave the paper lock release lever in the open position.
(13) Set the head gap adjusting lever to the recommended position for the type of paper used. (See Table 4-3.)

Table 4-3 Head Gap Adjusting Lever Positions

| Head gap adjusting lever <br> position | Type of paper | No. of <br> sheets |
| :---: | :--- | :---: |
| $\mathbf{1}$Platen side <br> (Gap between the platen <br> and printing head is nar- <br> row.) | One-part paper | Pressure-sensitive <br> or carbon-lined |
|  | Interleaf paper | 2,3 |
| 2Front side <br> (Gap between the platen <br> and printing head is wide.) | Pressure-sensitive <br> or carbon-lined | 2 |
|  | Interleaf paper | 3,4 |

Figure 4-5 details the positioning of the sprocket paper carton for rear paper feed and for bottom paper feed.


Figure 4-5 Sprocket Paper Positioning

Note: 1) When disengaging the sprocket lock lever, put your thumb on the sprocket cover and disengage the lock lever with your index finger.

2) When locking the sprocket lock lever, push the lock lever with your thumb while holding the shaft with the other fingers.
3) When using the tractor unit, keep the paper lock release lever set at the front (open) position.
4) It is possible to install the tractor unit by loading the paper in advance, and pulling it from the platen.
5) When using narrow paper, remove the sheet guide located in the center of the tractor bar by snapping it off the bar.


### 4.6 Upper Cover Removal

Remove the upper cover when operating the DIP switches or changing the fuse.
(1) Turn the AC power switch to OFF and remove the interface connector.
(2) Remove the tractor unit.
(3) Remove the access cover.
(4) Remove the platen knob by pulling.

(5) Remove the screws on each side of the upper cover.

(6) Lift the front upper cover, tilt backward, and lift from the lower cover.


### 4.7 Operational Precautions

(1) Ensure that AC power supply switch is in the OFF position before inserting AC plug into receptacle. Insert AC plug correctly.
(2) Ensure that AC power supply switch is in the OFF position before inserting interface connectors.
(3) Never print without paper.
(4) Never print without ribbon. Replace ribbon as soon as it shows signs of wear.
(5) Remove the ribbon spool when transporting the printer.
(6) If printer is unused or stored for a long period of time, open the paper lock release lever by pulling back.
(7) Align the platen knob with the detent, push it in, and lock it securely.
(8) Never use fuses other than those specified.
(9) The printhead is hot within hours of printing. Do not touch it directly.
(10) Should printing operation stop, check PAPER LED for paperout condition. If the print head gets hot, printing is automatically stopped. It restarts automatically when the print head cools down.
(11) Do not leave the printer on or plugged-in without intentions to use the printer soon.
(12) Do not expose the printer to excessively high or low temperatures, temperature variations, dust, or shock.
(13) When cleaning the printer surfaces, use a small amount of diluted cleaning solution. Do not use organic detergents or abrasive cleansers.
(14) Neither lean on nor place anything in the printer. If something should drop accidentally into the printer, immediately turn the AC power switch to OFF and carefully remove the foreign object from the printer.

## 5. TROUBLES AND REMEDIES

### 5.1 Troubles and Responses

Table 5-1 shows the troubles which might occur with this printer, and the responses. Make contact with our service staff if causes cannot be identified.

Table 5-1

| No. | Trouble | Supposed cause | Response |
| :---: | :--- | :--- | :--- |
| 1 | POWER LED <br> does not <br> light | $\bullet$ Power input cord <br> is not connected. <br> $\bullet$ Breaker switch is <br> OFF. | •Connect the AC <br> input cord to <br> receptacle. <br> -After turning OFF <br> the AC power <br> switch, reset <br> breaker switch. <br> (Refer to Appendix <br> E-2). <br> If breaker trips <br> repeatedly, refer <br> to dealer. |
| 2 | PAPER LED <br> lights | •No paper, or paper <br> has run out. | -Install new paper. |


| No. | Trouble | Supposed cause | Response |
| :---: | :--- | :--- | :--- |
| 3 | $\begin{array}{l}\text { No line spac- } \\ \text { ing (paper } \\ \text { does not } \\ \text { move up) }\end{array}$ | $\begin{array}{l}\text {-When using cut } \\ \text { sheet, paper lock } \\ \text { release lever is at } \\ \text { open position. } \\ \text {-When using } \\ \text { sprocket paper, } \\ \text { the paper feed } \\ \text { holes are not fixed } \\ \text { to sprocket of } \\ \text { platen. }\end{array}$ | $\begin{array}{l}\text {-Shift paper lock } \\ \text { release lever to } \\ \text { closed position }\end{array}$ |
| (figure 4-1) |  |  |  |\(\left.\} \begin{array}{l}-Install paper correct- <br>

ly. (Refer to <br>
paragraph 4.5.2)\end{array}\right\}\)

Tabel 5-1 (con.)

| No. | Trouble | 'Supposed cause | Response |
| :---: | :--- | :--- | :--- |
| 5 | Ribbon does <br> not make <br> any color | •Ribbon has been <br> used longer than <br> service life. <br> -Trouble on ribbon <br> feed mechanism. <br> $\bullet$ Incorrect installation <br> of ribbon. | -Change ribbon. <br> - Install ribbon correct- <br> ly (Refer to <br> paragraph 4.4) |
| 6 | Printer does <br> not operate | -Fuse in circuit <br> board is burnt out. | •Turn off power, <br> and change fuse. <br> (Refer to paragraph |

### 5.2 Fuse Replacement

(1) Turn AC power switch OFF, and retract the AC input plug.
(2) Remove the upper cover. (Refer to paragraph 4.6)
(3) Remove the burnt out fuse from circuit board.

## Capacity indication

Fuse (2A)

(Burnt out)

(4) Insert new fuse to circuit board. Ensure that the replacement fuse is of the same capacity.
(5) Replace the upper cover.
(6) Turn $A C$ power switch to $O N$ and insert $A C$ plug in receptacle.

## PART II Maintenance Manual

## 6. THEORY OF OPERATION

### 6.1 Operation of the Mechanical Section

The mechanical section consists of the following:
(a) Print head
(b) Carriage assembly
(c) Ribbon feed mechanism
(d) Paper feed mechanism
6.l.l Mechanism and Operation of Print Head
(1) Description

The print head is a spring-loaded type, utilizing a permanent magnet, and can be easily removed and installed. It is mounted on the carriage which runs parallel to the platen. The print head is electrically connected to the circuit board at connector CN4.

The print head consists of the following (See figure 6-1):
(a) Wire guide
(b) Yoke
(c) Armature assembly
(d) Spacer
(e) Magnet assembly
(f) Thermistor
(2) Print head operation (See figure 6-1.)

When not operating, the armature is attracted by the permanent magnet, and an armature spring holding the armature is bent by the thickness of a spacer. Therefore, the print wire, which is fastened to the armature, is held retracted within the wire guide. When a character to be printed (Appendix H) is detected by the control circuit, a current flows to the coil that corresponds to the particular print wire. When the coil is energized, the magnetic flux generated by the permanent magnet between the armature and pole is nullified and the attraction disappears. As a result, the print wire is driven toward the platen by the force of the armature spring. The print wire fastened to the armature ejects from the tip of the wire guide and strikes the print paper and platen surface through a ribbon. A dot is thus printed on the paper.

After the character is printed, the magnetic flux of the permanent magnet attracts the armature again so the print wire is retracted into the wire guide.

The print head has a built-in thermistor to prevent the coil from overheating and burning in continuous printing in both directions for a long time. If the coil temperature exceeds a certain limit, the control circuit detects the thermistor signal and stops the printing operation after the current printing line is completed. Printing cannot be resumed until the coil cools down.


Figure 6-1 Printing Mechanism

### 6.1.2 Space Mechanism and Operation

(1) Description

Spacing and carriage return are performed by driving the carriage, which is guided by two carriage shafts mounted parallel to the platen, by a stepper motor.

The space mechanism is composed of:
(a) Stepper motor with synchro belt pulley
(b) Synchro belt
(c) Two carriage shafts
(d) Carriage
(e) Home sensor
(f) Home sensor plate
(2) Spacing operation (See figure 6-2.)

The carriage, with the print head mounted on it, moves parallel to the platen along the upper and lower carriage shafts. One end of the carriage frame is attached to the synchro belt.

As the stepper motor turns clockwise, the carriage assembly is driven from left to right.

The spacing mechanism is so designed that when the stepper motor turns 12 steps (21.60), the carriage moves 2.54 mm (10 CPI).


Figure 6-2 Spacing Mechanism
(3) Carriage return operation

When the carriage return (CR) code is received, the stepper motor is driven counterclockwise by the signal from the control circuit.

The carriage moves from the right to the printing position of the first character.
6.1.3 Ribbon Feed Mechanism and Operation
(1) Description

The stepper motor for driving the carriage provides the power to feed the ribbon.

The ribbon feed mechanism consists of:
(a) Ribbon drive gear
(b) Ribbon gear
(c) Ribbon spool gear
(d) Ribbon change lever
(e) Eyelet detector lever
(f) Ribbon bracket
(2) Ribbon feed operation (See figure 6-3.)

If the stepper motor runs clockwise (carriage moves from left to right) when the ribbon change lever is at the left, the ribbon drive gear runs clockwise via the drive belt. The ribbon gear rotates freely about the ribbon drive gear until it engages the left ribbon spool gear to turn the left ribbon spool clockwise, and feed the ribbon to the left.

When the stepper motor turns counterclockwise (carriage moves from right to left) as the $C R$ signal is received, the ribbon gear rotates freely about the ribbon synchro gear, and is disengaged from the ribbon spool via the elongated slot in the change lever, so the ribbon is no longer fed.

When the ribbon in the right ribbon spool runs short, the ribbon reverse eyelet on the right is caught between the eyelet control cam and eyelet detector lever to shift the eyelet detector lever from left to right.

When the eyelet detector lever shifts, the detent spring causes the ribbon change lever to turn from left to right. When the stepper motor runs clockwise (carriage moves from left to right), the ribbon gear rotates freely about the ribbon drive gear, is disengaged as previously described, and does not feed the ribbon.

When the stepper motor is driven counterclockwise, the carriage moves from right to left upon the CR signal. The ribbon gear engages the right ribbon spool gear to turn the right ribbon spool counterclockwise and thus feed the ribbon to the right.

When the ribbon in the left ribbon spool runs short, the ribbon reverse eyelet on the left is caught between the eyelet control cam and the eyelet detector lever to move the eyelet detector lever from right to left. When the eyelet detector lever shifts, the detent spring causes the ribbon change lever to turn from right to left.

The above process is repeated to feed the ribbon.


Ribbon Feed to Left


Ribbon Feed to Right

Figure 6-3 Ribbon Feed Mechanism

### 6.1.4 Paper Feed Mechanism and Operation

(1) Description

The printed paper is moved up to the next line as the stepper motor runs to mesh the gears and rotate the platen and tractor unit.

The paper feed mechanism consists of:
(a) Stepper motor with gear
(b) Reduction gear
(c) Platen
(d) Tractor unit
(2) Paper feed operation (See figure 6-4.)

The paper feed stepper motor is mounted on the left side frame, and its rotation is transmitted to the platen via the reduction gear. The rotation of the platen is also transferred to the tractor unit via the transmission gear.

The mechanism is so designed that the paper is fed 4.23 mm (l/6 inch) at 6 LPI when the stepper motor advances 24 steps (1800).


Figure 6-4 Paper Feed Mechanism

### 6.1.5 Paper Lock Release Mechanism (See figure 6-5.)

When the paper lock release lever is moved forward (open position), the roller support shaft turns counterclockwise, and a gap is made between the friction rollers and platen, allowing insertion of the paper.

When the paper lock release lever is moved backward (closed position), the roller support shaft turns clockwise, and the friction rollers are pushed against the platen by the feed roller spring, so paper can be fed.


Figure 6-5 Paper Lock Release Mechanism

### 6.1.6 Paper Out Detecting Mechanism (See figure 6-6.)

(1) Rear paper feed

When paper is present in the printer, the paper prevents the microswitch actuator from falling into the groove of the paper separator, so the microswitch is OFF (not depressed). When the printer runs out of paper, the actuator falls into the groove of the paper separator and the microswitch turns ON (depressed).

With paper fed from the rear, "paper out" is detected when the remaining paper length is 50.8 mm (2 inches).
(2) Bottom paper feed

When paper is present in the printer, the paper prevents the microswitch actuator from falling into the hole in the front paper guide, and the microswitch is OFF (not depressed). When the printer runs out of paper, the actuator falls into the hole in the front paper guide and the microswitch turns ON (depressed).

With paper fed from the bottom, "paper out" is detected when the remaining paper length is 25.4 mm (l inch).


Figure 6-6 Paper Out Detecting Mechanism

### 6.1.7 Head Gap Adjusting Mechanism (See figure 6-7.)

The head gap adjusting mechanism changes the gap between the platen and print head by turning the eccentric collars attached to both sides of the upper carriage shaft.

The eccentric collars are fitted into side frame holes and the upper carriage shaft is attached by an eccentric locking bolt. The head gap adjusting lever is attached to the upper carriage shaft and can be locked in two grooves in the head gap adjusting bracket.

When the eccentric collar is turned clockwise, as seen in the direction shown in figure 6-7, the upper carriage shaft moves closer to the platen. When the collar is turned counterclockwise, the shaft moves away from the platen. Turning the eccentric collar with the eccentric locking bolt loosened adjusts the gap between the platen and print head at the locked head gap adjusting lever position. The gap is changed by shifting the head gap adjusting lever with the bolt tightened.

Mechanically, shifting of the head gap adjusting lever changes the gap between the platen and printing head by 0.15 mm .


Figure 6-7 Head Gap Adjusting Mechanism

### 6.2 Operation of the Control Section

### 6.2.1 General

A block diagram of the printer is shown in figure 6-8.
The control section, consisting of a single printed-circuit board, controls the mechanical section. Two microcomputers (micro CPUs) handle all control operations. Other components include a RAM input buffer and buffer for dot-addressable graphics printing, LSI for interface control, ROM to store character patterns, and ROM to store the program.

Input data from the interface is first written into the RAM, where it is stored. When data for one line has been received, the printer starts printing.

When printing starts, the space motor runs to move the carriage. Pulses are applied to the print head to print characters. When one line of characters has been printed, the line feed motor advances to the next line. When data for the next line is received, the space motor is driven backward to move the carriage and apply pulses to the print head to print characters. Printing goes on through repetition of this cycle. When data is no longer present, the carriage is returned to the home position, and the printer waits to receive more data. The printing system is shortest-distance, bidirectional printing, with short-line seeking capability.

### 6.2.2 Outline of Control Circuit

The printer operates microcomputer control. As shown in the circuit diagrams in section $8, Q 10$ is an 8-bit, l-chip microcomputer (micro CPU), and has a 128-byte RAM and an 8-bit timer. Control programs are stored in an 8-kilobyte ROM, Q19 and Q20 (4-kilobyte EPROMs), and are executed after resetting when power is switched on. A l28-byte RAM is used as a register, and the timer is used for internal control. A $9-\mathrm{MHz}$ oscillator (OSCl) is connected to XTALl and XTAL2, generating the basic clock. The CPU cycle time is about $1.6 \mu \mathrm{~s}$.

The control circuit has an 8 -bit bus line, 16 I/O ports, and three terminals for interfaces. The bus line is connected to Q11, Q12, Q13, Q16, Q17, Q18, Q19, Q20, Q21 and Q22, and addresses are designated by Q13 and Q18. Tl and $\overline{I N T}$ signify inputs. Another microcomputer, Qll, has a l-kilobyte ROM, 64-byte RAM, and 8-bit timer. A command is executed at approximately $2.5 \mu \mathrm{~s}$ of cycle time using an oscillator of 6.14 MHz . The space motor and line feed motor connected to the I/O port are driven by a command of the other microcomputer, Q10.

Ql2 is a 256-byte RAM with an internal timer and 22 I/O ports. The I/O ports are used as control lines for interface signal input/output. $Q 21$ and $Q 22$ are the 4 -kilobyte character generator ROMs. Addresses are assigned by AO through All, and signals corresponding to characters are output from 00 to 07. These signals are received by $Q 10$ and output on Pl0 through P17 to P43 of Q14 from which they are fed through the open collector inverters, Q6 and Q7, to drive Darlington transistors TR17 through TR19, and cause the head to print. Q13 and Q18 are 4-bit latches, used for designating addresses to Ql6, Ql7, Q19, Q20, and Q21.


### 6.2.3 Initial Operation (See Timing Chart (l), figure 6-9.)

When the equipment is switched on, the circuitry is cleared, and the carriage is returned to the home position (refer to Appendix $\mathrm{F}-20$ ). When the $A C$ power switch is pushed on, a reset signal generated by Cl2 is connected to Ql0 (micro CPU). As a result, Q10 inputs RESET to clear the the controls. After the clearing, the program moves the carriage back to the home position. If the carriage is already at the home position, the carriage moves away from home position once and then returns to the home position. The interface busy signal remains at 1 during initialization, and no data can be accepted. After initialization, the busy signal changes to 0 to enable the printer to receive data.

Transistor TR20 delays the switching on of bias current to the drive circuit and advances its switching off to prevent erratic operation at power switching times.
6.2.4 Data Input Operation (See Timing Chart (1), figure 6-9.)

A parallel interface is used for input; 8-bit parallel data (data bit 1 to bit 8 ) is input to the $I / O$ ports of Ql2 (PAO to PA7). If a STROBE signal is output from the host equipment when the BUSY signal is 0 , the parallel data is set in the internal latch of Q12 at the positive-going edge of the STROBE signal.

After the data latching, the BUSY signal is switched to $l$ and the micro CPU processes the data. First, it determines the type of input data and writes the data into RAM Ql6, Ql7 if it is print data or starts printing if it is the $C R$ or $L F$ code. When one line of data is received, the printer starts printing.

After the data is processed, the BUSY signal is switched to 0 and a pulse is applied to the ACKNOWLEDGE terminal.

If there is an idle receiving buffer, data for the next line can be received even during printing.

### 6.2.5 Printing Operation (See Timing Chart (2), figure 6-10.)

The space motor drives the carriage at constant speed, and pulses corresponding to character patterns are applied to the print head.

The carriage is held three character positions left of the first character position by a holding voltage of +3 V applied via Rl and Dll.

After completion of data input, a 0 output from Pl3 of Qll (SPPM OVD) energizes transistor TR15, which applies +35 V to the space motor to drive the motor with a powerful torque. At the same time, pulse signals are applied to Pl4 through Pl7 of Qll to drive the motor.

The motor is a four-phase stepper motor, which has a step angle of $1.8^{\circ}$. When the motor advances 12 steps, the carriage moves 2.54 mm (at 10 CPI ) to make space for one character.

A two-phase exciting system is employed. A phase signal drives transistors TR5, TR6, TR7, and TR8 to drive the stepper motor. Zener diodes D3 to D5 suppress the counter voltage generated by the stepper motor.

The printer starts printing when the carriage reaches the first character position.

A head drive trigger pulse from P42 of Ql4 causes comparator Ql to generate an enable pulse. This pulse energizes TR3, TR4, and TRl4 to apply a voltage to the head. At this time, pulses are output to Pl0 to Pl7 of Ql0 and P43 of Ql4 according to character patterns. This drives the print head magnet through the Darlington transistors. The characteristic variations of the print head due to source voltage variations are compensated by changing the magnet $O N$ time according to the variations of the +35 V source voltage. This compensation is provided by Rl5, which is connected to comparator Ql and the +35 V circuit. One of the head coils is connected in common to the collector of TR3 or TR4. Thus a continuation of the ON time beyond the rated length signifies an abnormality. Such a fault is detected by the integrating circuit composed of D29, D30 to energize thyristor TR5, and thus shorts out the +35 V circuit. When the +35 V circuit is shorted, the input breaker opens to prevent damage to the printer.

The print head has a built-in thermistor to protect itself from overheating during excessive printing duty operation. The output of the thermistor is applied to comparator Ql, from which a signal is sent to the CPU to automatically limit the printing duty cycle.

1. Initial operation

2. Data input (parallel interface)


Note: Voltage level $\begin{array}{r}3-5 \mathrm{~V} \\ 0 \mathrm{~V}\end{array}$
3. Printing operation

5. Line feed operation

6.2.6 Carriage Return and Line Feed Operation (See Timing Chart (2), figure 6-10.)

After one line of characters is printed, the paper is moved up one line.

Phase signals for reversing the space motor are sent from Pl4 to Pl7 of Qll, and signals for driving the line-feed motor, from Plo and Pll.

The line-feed motor is a four-phase stepper motor with a step angle of $7.5^{\circ}$, so 24 steps feed the paper 4.23 mm (at 6 LPI ) and 18 steps feed the paper 3.18 mm (at 8 LPI ).

If no line spacing takes place, +3 V is applied through Rll and Dl0 as a holding voltage.

During line spacing, a 0 from the Pl2 output (LF PM OVD) of Qll energizes transistors TR2 and TRl6 so that +35 V is applied to the line feed motor, driving it with a powerful torque.

Return operation is similar to the operation of the space motor in printing operation. (See subsection 6.2.5.)

In returning to the home position, the space motor runs backward to the home position, which is detected by interrupting the light of the homesensor composed of a combination of $a$ light-emitting diode and phototransistor.

### 6.2.7 Paper Out and SEL Operation

"Paper out" is detected by the paper out detection microswitch in the bottom of the printer or behind the platen.

Three lines of data can be received after detecting "paper out". After data input, a paper out signal applied to the interface turns off the SEL LED and switches to deselect (offline) status so that data no longer can be received. After the input data is printed, the PAPER LED lights to indicate that the printer has run out of paper. If the SEL switch is depressed when the SEL LED is lit to indicate that the printer is in select (on-line) status, the SEL LED goes out, returning the printer to deselect (off-line) status.

### 6.2.8 Graphics Printing Operation

Dot-addressable graphics printing starts when the following command and data are received. (The print head consists of nine pins, but the bottom head pins are not used.)
(1) Specifies the line feed pitch.

```
        ESC, %, 9, Xl (Xl = 10 H: 16/144 inch)
```

(2) Specifies the number of graphics data points and pattern data items (when half dot pattern is not used.)

ESC, \%, 2, N1, N2, Pattern data $x \mathrm{~N}$
Refer to paragraph 8, Appendix $F$ for details.
Example: Method of setting N1, N2, and pattern data is as follows:

n1 n2
First line data: ESC, \% 2, 00H, 08H, FFH, $7 \mathrm{FH}, 3 \mathrm{FH}, 1 \mathrm{FH}, 0 \mathrm{FH}$, $07 \mathrm{H}, 03 \mathrm{H}, 01 \mathrm{H}, ~ L \mathrm{~F}$

Second line data: ESC, \%, 2, $00 \mathrm{H}, 09 \mathrm{H}, \mathrm{FFH}, \mathrm{FFH}, \mathrm{FCH}, \mathrm{FOH}, \mathrm{FOH}$, $\mathrm{COH}, \mathrm{COH}, \mathrm{COH}, \mathrm{LF}$

### 6.2.9 Power Supply

The DC voltage required for operation is obtained from an AC input.

The $A C$ input to the printer through the $A C$ plug runs through the AC power switch and circuit breaker to the primary winding of the power transformer.

The secondary winding of the transformer generates outputs of $4 \mathrm{~V}, 9 \mathrm{~V}$, and 28 V . A level of +3 V is generated from the 4 V AC through D10 to D13 and smoothing capacitor C7.

A level of +10 V is generated from the $9 \mathrm{~V} A C$ through D1 to D4 and smoothing capacitor C 5 . The +10 V is regulated to +5 V and supplied to the ICs.

A level of approximately 35 V is generated from the 28 V AC through D6 to D9 and smoothing capacitor C6. This voltage is used to drive the print head, space motor, and line feed motor.

## 7. MAINTENANCE

### 7.1 Maintenance Precautions

Be careful of the following when servicing the printer:
(1) Keep the gears and belts absolutely free of dust and paper lint.
(2) Be sure to disconnect the AC plug before pulling the connectors out or reinserting them.
(3) Do not unnecessarily disassemble, reassemble, or readjust the printer as long as the printer is in good operating condition. Be especially careful not to carelessly loosen the screws that fasten various parts of the printer.
(4) After inspection, be sure to check the printer and confirm that nothing is mechanically wrong with it prior to switching it on. Verify that the power source voltage select switch is at the specified voltage. (See paragraph 3, Appendix E.)
(5) Never print without properly loaded paper and ribbon.
(6) During maintenance or printer operation, do not place anything on the cover and do not lean on the printer.
(7) Do not leave parts or screws used during maintenance inside the printer.
(8) Do not wear gloves that can generate static, when handing the printed-circuit board. ICs for the micro-CPU, RAM, ROM, etc. are easily damaged by static, so exercise care not to touch the leads and ROM windows unnecessarily.
(9) Do not place the printed-circuit board directly on the printer or the floor.
(10) During disassemby or reassembly, carefully check the wires and cords for damage, and make sure that they are not strained. (See figure 9-1.)

### 7.2 Cleaning

Clean the inside of the printer at scheduled times as follows:
Cleaning interval:

| 6 months or 300 hours of operation, |
| :--- | :--- |
| whichever comes first. |

Tool:
Approximately 10 minutes.

Cleaning points: $\quad$| Dry cloth (gauze or other dry |
| :--- |
| cloth). |

Table 7-1 Cleaning Points

| Cleaning points | Description |
| :--- | :--- |
| Ribbon path | Clean the ribbon path of dust, <br> ribbon lint, etc. |
| Paper path | Clean the paper path and the parts <br> around it of paper lint, etc. |
| Home sensor | Remove dust and paper lint. |

Notes:

1) Depress the AC power switch OFF before cleaning.
2) Be careful not to let ribbon and paper fragments remain inside.

### 7.3 Maintenance Tools

The following tools shown in Table 7-2 are necessary for replacing the parts for the printed-circuit board, mechanism, etc. in the field.

Table 7-2 Maintenance Tools

| No. | Tool | Qty | Location | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| 1 | No. l-100 Phillips screwdriver | 1 | Screws 2 to 2.6 mm |  |
| 2 | No. 2-200 Phillips screwdriver | 1 | Screws 3 to 5 mm |  |
| 3 | 6-200 screwdriver | 1 | Screws 4 mm |  |
| 4 | No. 5-H cutters | 1 |  |  |
| 5 | No. 1 round pliers | 1 |  |  |
| 6 | 5.5-mm wrench | 1 |  |  |
| 7 | ll-mm wrench | 1 |  |  |
| 8 | Thickness gauge set | 1 set |  |  |
| 9 | 50-g force gauge | 1 |  |  |
| 10 | 300-g push/pull force gauge | 1 |  |  |
| 11 | Soldering iron (30 W) | 1 |  |  |
| 12 | Volt/Ohmmeter | 1 |  |  |
| 13 | Pliers R-29 | 1 | Code bushing | HEYCOMADE |
| 14 | Oscilloscope | 1 |  |  |

### 7.4 Disassembly, Reassembly

The disassembly and replacement procedures are explained below according to the disassembly flow chart in reference to the table of component parts shown in section 9 .
7.4.1 Disassembly Flow Chart

Disassemble the printer in the following order. (Reassemble in the reverse order.)


### 7.4.2 General Precautions

(1) Before disassembly or reassembly, depress the AC POWER switch off and pull out the power cord from the AC outlet.
(2) Prior to disassembly, turn the power off and wait for a few minutes.
(3) Determine the range of disassembly as suitable to the intended purpose. Do not disassemble more than necessary.
(4) Before proceeding with disassembly, check each unit for deterioration, interconnection, and clearances, and record data.
(5) Use the specified maintenance tools only.
(6) Place the removed units in the correct order.
(7) The screws, nuts, collars, etc. that may be easily lost should be temporarily tightened in their original places.
(8) Be careful not to induce trouble by removing components in the wrong order or cutting the wires.
7.4.3 Non-Disassembly Points

Do not disassemble the print head.

### 7.4.4 Disassembling and Reassembling Parts

(1) Upper cover (See figures. 9-1 and 9-8.)

| I tem | Description | Tool |
| :---: | :---: | :---: |
| Disassembly | (1) Disconnect interface connector. <br> (2) Remove tractor unit. (See section 4.3) <br> (3) Raise and remove access cover (figure 9-8-3). <br> (4) Remove platen knob (figure 9-3-28). <br> (5) Remove two mounting screws (figure 9-8-30) from inside of front part of upper cover. <br> (6) Raise front end of upper cover (figure 9-8-1), then push it rearward to remove it from lower cover. | No. 2-200 <br> Phillips <br> screw- <br> driver |
| Reassembly | Reverse the disassembly procedure. |  |
| Sketch |  |  |
|  |  |  |

(2) HLPA circuit board (See figures. 9-1 and 9-14.)

(3) Printer unit (See figures 9-1 and 9-2.)

| Item | Description | Tool |
| :---: | :---: | :---: |
| Disassembly | (1) Remove upper cover. (See 7.4.4 (1).) <br> (2) Remove HLPA circuit board. (See 7.4.4 (2).) <br> (3) Remove all connecting cords of printer unit (figure 9-1-2) from cord clamp (figure 9-8-8). (See figure 9-1.) <br> (4) Loosen the quite-tight mounting screws (figure 9-8-29) fixing the printer unit until the quite-tight swelling is removed. <br> (5) Lift the printer and remove it from the quite-tight. Move the printer toward you at this time so that it does not touch the power supply assembly (figure 9-8-7). | No. 2-200 Phillips screwdriver |


| Reassembly | Reverse the disassembly procedure. <br> Notes: l) Tighten stud until tip of screw is flush with tip of quite-tight. (Tightening torque: 4 to $5 \mathrm{~kg} . \mathrm{cm}$ ) <br> 2) See figure 9-1 for routes of connecting cords. |  |
| :---: | :---: | :---: |
| Sketch | Quite-tight |  |



> (4) Power supply and transformer assembly (SGe figure 9-8.)

| Item | Description | Tool |
| :---: | :---: | :---: |
| Disassembly | (1) Remove upper cover. (See 7.4.4 (1).) <br> (2) Remove HLPA circuit board. (See 7.4.4 (2).) <br> (3) Remove all connectors from HLPS circuit board (figure 9-l) <br> (4) Remove HLPS circuit board mounting screws (figure 9-8-25), and remove AC cord bushing from the frame (figure 9-8-11). <br> (5) Remove transformer mounting screws (figure 9-8-31) and transformer. | No. 2-200 Phillips screwdriver, Pliers R-29 |
| Reassembly | Reverse the disassembly procedure. <br> Note: See figure 9-1 for routes of connecting cords. |  |

(5) Print head (See figures 9-1 and 9-2.)

| Item | Description | Tool |
| :---: | :---: | :---: |
| Disassembly | (1) Raise and remove the access cover. <br> (2) Disconnect the print head (figure 9-2-1) connector from the flat cable connector, which is attached to the carriage. <br> (3) While holding the print head with the right hand, lift it straight up, with the lock lever released, with the left hand. |  |
| Reassembly | Reverse the disassembly procedure. <br> Note: Twist the print head wire leads one turn, clockwise, before inserting the connector. |  |
| Sketch |  |  |

(6) Carriage frame (See figures 9-2 and 9-7.)

| Item | Description | Tool |
| :---: | :---: | :---: |
| Disassembly | (1) Remove upper cover. (See 7.4.4(1).) <br> (2) Remove print head. (See 7.4.4 (5).) <br> (3) Remove belt clamp screw (figure 9-7-6), and belt clamp (figure 9-7-2). <br> (4) Remove adjusting lever mounting screw (figure 9-2-22) and remove the adjusting lever (figure 9-2-8). <br> (5) Loosen the eccentric locking bolts (figure 9-2-15) on both sides of the upper carriage shaft, and remove the eccentric collar (figure 9-2-7). <br> (6) Pull out the upper carriage shaft (figure 9-2-5) from the right and left side frames. <br> (7) Remove head connecting cord connector screw (figure 9-7-6) from carriage frame, and head connecting cord (figure 9-1-7) from carriage frame. <br> (8) Lift carriage frame, and remove it from lower carriage shaft. | No. 2-200 Phillips screwdriver <br> 5. $5-\mathrm{mm}$ wrench |
| Reassembly | Reverse the disassembly procedure. |  |
| Adjustment | Adjust gap between platen and print head as described in Table 7-3, item 2.l. |  |

(7) Space motor (See figure 9-3 and 9-6.)

| Item | Description | Tool |
| :---: | :---: | :---: |
| Disassembly | (1) Remove upper cover. (See 7.4.4 (1).) <br> (2) Remove HLPA circuit board. (See 7.4.4 (2).) <br> (3) Remove the cable guide (figure 9-3-30) from the space motor. <br> (4) Remove space motor connecting cord from cord clamp (figure 9-8-8). <br> (5) Cut tie-wraps securing the space motor connection cord. <br> (6) Remove the space belt (figure 9-6-10) from the space motor (figure 9-3-9) pulley. <br> (7) Remove the space motor mounting screw (figure 9-3-57) and the space motor. | No. 5 H cutters <br> No. 2-200 Phillips screwdriver |
| Reassembly | Reverse the disassembly procedures. |  |
| Adjustment | Space belt tension. See Table 7-3, item l.l. |  |

(8) Space belt (See figures 9-3 and 9-6.)

| Item | Description | Tool |
| :---: | :---: | :---: |
| Disassembly | (1) Remove the upper cover. (See 7.4.4 (1).) <br> (2) Loosen the idle pulley bracket screw (figure 9-3-55), move the idle pulley bracket (figure 9-3-16) to right to loosen space belt (figure 9-6-10). <br> (3) Remove the belt clamp screw (figure 9-7-6), and belt clamp (figure 9-7-2). <br> (4) Remove the E-snap (figure 9-6-22) from one of the ribbon spool gears, and remove the ribbon spool gear (figure 9-6-7). <br> Note: Be careful not to lose plastic washer (figure 9-6-16). <br> (5) Remove the detent spring (figure 9-6-9). <br> (6) Remove the other E-snap (figure 9-6-22) and then the ribbon change lever (figure 9-6-2) and the ribbon drive gear (figure 9-6-6). <br> (7) Remove the space belt. | No. 2-200 <br> Phillips <br> screw- <br> driver <br> No. 1 <br> round <br> pliers |
| Reassembly | Reverse the disassembly procedure. <br> Note: When reassembling the ribbon drive gear, accurately engage its pulley teeth with space belt teeth beforehand. |  |
| Adjustment | Space belt tension See Table 7-3, item l.l. |  |

(9) Platen (See figures 9-3 and 9-4.)

| I tem | Description | Tool |
| :---: | :---: | :---: |
| Disassembly | (1) Remove the upper cover. (See 7.4.4 (1).) <br> (2) Turn forward (open position) the column indicator (figure 9-3-17). <br> (3) Remove the paper separator screw (figure 9-3-52), and the paper separator (figure 9-3-7). <br> (4) Remove E-shaped snap (figure 9-4-5), and then wave washer (figure 9-4-2) and right platen bearing (figure 9-4-3) by pulling them sidewise. <br> (5) Pull the side plate bearings horizontally (figure 9-4-3) until their projections come off side plates, turn $90^{\circ}$, and remove platen by lifting it. | No. 2-200 Phillips screwdriver |
| Reassembly | Reverse the disassembly procedure. |  |
| Adjustment | Clearance between the paper separator and the platen. <br> See Table 7-3, item 3.2. |  |

### 7.5 Adjustment Procedures for Various Parts

Table 7-3 Adjustment Procedures

| No. | Item | Standard | Description ${ }^{\text {a }}$ Tool |
| :---: | :---: | :---: | :---: |
| 1.1 | Spacing belt tension | $\begin{aligned} & \mathrm{F}=160 \pm 20 \mathrm{~g} \\ & \text { at } \delta=5 \mathrm{~mm} \end{aligned}$ <br> Idle pulley bracket |  |
| 1.2 | Belt <br> clamp <br> position | $1 \pm 0.5 \mathrm{~mm}$ | The belt clamp should be at the position shown below, against the photosensor, when power is on, or the carriage is returned manually. <br> Check point: <br> Verify the belt clamp is within tolerance when contacting to the upper side. If it is out of tolerance, adjust the belt clamp mounting. |

Table 7-3 (con.)

| No. | Item | Standard | Description | Tool |
| :---: | :---: | :---: | :---: | :---: |
| 1.3 | Printing position | Run-out of character center against the column indicator scale should be +0.5 mm or Iess. | Fully print the printing column number to check character center run-out against the full range of the column indicator scale. <br> Check point: <br> When out of tolerance, adjust the photo-sensor and space motor mounting. |  |
| 2.1 | Gap between platen and print head | $\begin{aligned} & 0.45 \mathrm{to} \\ & 0.5 \mathrm{~mm} \end{aligned}$ | Adjust with the right and left eccentric collars mounted on both sides of the carriage shaft on the upper side. <br> Check the standard value at both ends of platen with thickness gauge. <br> Adjustment: <br> Let the adjust lever position be No. 1. <br> When the platen has loosened, adjust the gap with the paper lock release lever turned to close. After adjustment, turn it to open. | Thickness <br> gauges, <br> $5.5-\mathrm{mm}$ <br> wrench, <br> $11-\mathrm{mm}$ <br> wrench |

Table 7-3 (con.)

| No. | Item | Standard | Description | Tool |
| :---: | :---: | :---: | :---: | :---: |
| 2.2 | Gap between platen and ribbon protector | $\begin{aligned} & 0.3 \mathrm{to} \\ & 0.5 \mathrm{~mm} \end{aligned}$ |  | Thickness gauge |
| 3.1 | Gap <br> between <br> platen <br> and <br> paper <br> chute | $\begin{aligned} & 0.5 \mathrm{to} \\ & 0.7 \mathrm{~mm} \end{aligned}$ |  | Thickness gauges <br> No. 2-200 <br> Phillips <br> screwdriver |
| 3.2 | Gap between platen and paper separator position | $\begin{aligned} & 0.5 \\ & 1 \mathrm{~mm} \end{aligned}$ |  |  |

Table 7-3 (con.)


### 7.6 Oiling

The purposes of oiling are rust prevention and lubrication. For rust prevention, do not apply oil in a large quantity, but rub the parts with an oily cloth. For lubrication, apply oil of suitable type in a suitable quantity, according to the operation condition of the parts.

Inadequate oil quantity may cause insufficient lubrication or troubles due to splash. When applying oil, remove contaminated old oil and dust before adding new oil. For rust-prevention, do not use oil containing molybdenum disulfide.

### 7.6.1 Oil Types

(1) Pan Motor Oil low30 (or equivalent) ............. PM
(2) ALBANIA Grease \#2EP (or equivalent) ............. GEP
(3) Molybdenum disulfide oil (or equivalent)....... ML
7.6.2 Application volune

Large quantity ...... (A) ....... Let oil felt or other part be thoroughly soaked with oil.

Medium quantity ..... (B) ...... Three to four drops. A thickness of approximately 0.2 mm in case of grease.
Small quantity ...... (C) ...... One drop
7.6.3 Oil Application Cycle

ML 84 is maintenance-free, and no oil is necessary during normal operation. Apply oil after disassembly, reassembly, or cleaning.
7.6.4 Parts Where Oil Is Prohibited

Table 7-4

| No. | Part | Reason | Remarks |
| :--- | :--- | :--- | :--- |
| 1 | Ribbon | Prevention of ink <br> stain of printed <br> characters |  |
| 2 | Ribbon roller | Prevention of ink <br> stain of printed <br> characters |  |
| 3 | Microswitch | Prevention of faulty <br> contact |  |
| 4 | Home sensor | Prevention of dust |  |
| 5 | Platen (rubber face) | Prevention of stained <br> paper |  |

Table 7-4 (con.)

| No. | Part | Reason | Remarks |
| :--- | :--- | :--- | :--- |
| 6 | Platen pressure <br> roller | Prevention of stained <br> paper |  |
| 7 | Pin tractor | Prevention of stained <br> paper |  |
| 8 | Synchro-belt | Prevention of extended <br> belt |  |
| 9 | Pulley teeth of belt | Prevention of extended <br> belt |  |
| 10 | Ribbon drive <br> assembly friction <br> felt | Prevention of inferior <br> friction |  |

### 7.6.5 Lubrication Points

(1) Carriage shaft (lower)

(2) LF idle gear

(3) Pressure roller

(4) Platen bearing

(5) Ribbon drive assembly

(6) Carriage assembly

(7) Tractor assembly


### 7.7 Maintenance Parts List

Table 7-6 shows the maintenance parts (quantitites for every 1000 units purchased) that are considered convenient for maintenance purposes by the OEM.
7.7.1 Parts Ordering Procedure
(1) Find desired parts (part number) from the table of component parts in section 9 , and confirm the numbers.
(2) Specify the part numbers and names of the parts required.
(3) Each part has its own number for confirmation of interchangeability.
(If the part number is the same, the part is the same.)
7.7.2 How to Use the List
(1) Ref. No.: Reference number in the table of component parts in section 9 .
(2) Rank: A -- Must be kept on hand.

B -- Recommended to be kept on hand.
(3) Recommended quantity: Quantity considered necessary after 1 year of operating 1000 purchased units.

Note: "83A" in the column of compatibility indicates this unit is compatible with ML 83A.

Table 7-6 Maintenance Parts List (1/5)
Mechanical components (1/3)

| Ref. No. | Part No. | Nomenclature | Original quantity | Recommended quantity | Rank | Compatibility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (Printer unit) |  |  |  |  |  |
| Fig. 9-2-1 | 3LR-190990-10 | Print head assembly | 1 | 18 | A |  |
| Fig. 9-2-4 | 4LR-191870-3 | Carriage assembly | 1 | 5 | B |  |
| Fig. 9-7-3 | 5LR-191873-2 | Ribbon protector | 1 | 10 | B | 83A |
| Fig. 9-3-28 | 4LR-132233 | Platen knob | 1 | 10 | B | 83A |
| Fig. 9-2-8 | 5LR-132115 | Head gap adjusting lever (welded) | 1 | 5 | B | 83A |
| Fig. 9-3-25 | 3LR-129900-4 | Platen assembly | 1 | 5 | B | 83A |
| Fig. 9-3-16 | 4LR-132488-2 | Idle pulley bracket (clinched) | 1 | 2 | B | 83A |
| Fig. 9-3-10 | 5LR-132475 | LF idle gear | 1 | 5 | B | 83A |
| Fig. 9-3-9 | 4LR-191854-2 | Space motor (pressurefitted) | 1 | 12 | A |  |
| Fig. 9-3-8 | 5LR-132473-3 | LF motor (pressurefitted) | 1 | 10 | A |  |
| Fig. 9-3-27 | 4LR-129847-3 | Home sensor assembly | 1 | 13 | B |  |
| Fig. 9-3-26 | 4LR-129907 | Paper out assembly | 1 | 5 | B | 83A |
| Fig. 9-3-11 | 5LR-132480 | Paper lock release lever (welded) | 1 | 5 | B | 83A |
| Fig. 9-6-2 | 5LR-192194 | Ribbon change lever (clinched) | 1 | 2 | B |  |
| Fig. 9-6-3 | 4LR-129827 | Ribbon gear | 1 | 19 | B | 83A |
| Fig. 9-6-4 | 5LR-93429-3 | Snap shaft | 1 | 5 | B |  |
| Fig. 9-6-5 | 5LR-129876 | Friction spring | 1 | 19 | B | 83A |
| Fig. 9-6-6 | 4LR-192197 | Ribbon drive gear | 1 | 5 | B |  |
| Fig. 9-6-7 | 4LR-192196 | Ribbon spool gear | 2 | 20 | B |  |
| Fig. 9-6-8 | 5LR-191325 | Compression spring | 2 | 10 | B |  |
| Fig. 9-6-9 | 5LR-129841 | Detent spring | 1 | 5 | B | 83A |
| Fig. 9-6-10 | 4LP-1420-5 | Synchro belt | 1 | 18 | B | 83A |
| Fig. 9-6-11 | 5LR-191859 | Pressure roller | 1 | 5 | B | 83A |
| Fig. 9-6-12 | 5LR-129842-2 | Friction felt | 2 | 18 | B |  |
| Fig. 9-6-13 | 5LR-129843 | Special washer | 2 | 18 | B |  |
| Fig. 9-6-16 | 5LR-132516 | Plastic washer | 2 | 18 | B | 83A |
| Fig. 9-7-2 | 4LR-191857 | Belt clamp | 1 | 10 | B | 83A |
|  | (Cover unit) |  |  |  |  |  |
| Fig. 9-8-1 | 1LM-60106 | Upper cover | 2 | 5 | B | 83A |
| Fig. 9-8-3 | 2LM-60112 | Access cover | 2 | 5 | B | 83A |
| Fig. 9-8-9 | 5LM-61519 | Ground board | 4 | 3 | B | 83A |
| Fig. 9-8-11 | 5LP-6463-C-5 | Cord bushing | 2 | 3 | B | 83A |

Table 7-6 Maintenance Parts List (2/5)
Mechanical components (2/3)

| Ref. No. | Part No. | Nomenclature | Original quantity | Recommended quantity | Rank | Compati- <br> bility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fig. 9-8-12 | 4LP-6726-2 | Quite-tight | 12 | 5 | B | 83A |
| Fig. 9-8-13 | $5 \mathrm{LP}-1416$ <br> (Tractor unit) | Rubber foot | 8 | 5 | B | 83A |
| Fig. 9-15-12 | FMX-35100-2 | Sprocket assembly (R) | 1 | 5 | B | 83A |
| Fig. 9-15-13 | FMX-35150-2 | Sprocket assembly (L) | 1 | 5 | B | 83A |
| Fig. 9-15-5 | 5LR-129887 | Clamp lever | 2 | 18 | B | 83A |
| Fig. 9-15-6 | 4LR-129889 | Tractor gear | 1 | 5 | B | 83A |
| Fig. 9-15-7 | 5LR-129890 | Idle gear | 1 | 5 | B | 83A |
| Fig. 9-15-10 | 5LR-123498 | Bushing | 2 | 9 | B | 83A |
| Fig. 9-15-11 | 5LR-123467 | Sheet guide | 1 | 5 | B | 83A |
| Fig. 9-15-31 | $\begin{gathered} \oplus P(S W+W) \\ 3-6-23 D \end{gathered}$ | Small pan-head screw | 2 | 5 | B | 83A |
| Fig. 9-15-32 | $\begin{gathered} \oplus P(S W+2 W) \\ 3-8-23 D \end{gathered}$ | Small pan-head screw | 2 | 5 | B | 83A |
| Fig. 9-1-9 | LY-39702 | Tractor unit | 2 | 5 | B | 83A |
|  | (Others) |  |  |  |  |  |
| Fig. 9-3-42 | 5KX-9057 | E-snap ring (2) | 8 | 30 | B |  |
| Fig. 9-3-41 | $5 \mathrm{KH}-12050$ | E-snap ring (3) | 6 | 30 | B |  |
| Fig. 9-4-5 | 5KX-9059 | E-snap ring (6) | 1 | 10 | B |  |
| Fig. 9-15-21 | 5KD-50242 | E-snap ring (8) | 4 | 30 | B |  |
| Fig. 9-2-20 | ( ${ }^{\text {P }} 3-12-\mathrm{HH}$ | Small pan-head screw | 1 | 10 | B |  |
| Fig. 9-3-51 | ( + P3-14-HH | Small pan-head screw | 1 | 10 | B |  |
| Fig. 9-3-56 | $\begin{array}{r} \oplus \mathrm{P}(\mathrm{SW}) \\ 3-5-\mathrm{HH} \end{array}$ | Small pan-head screw | 14 | 50 | B |  |
| Fig. 9-2-21 | $\begin{array}{r} \oplus \mathrm{P}(\mathrm{SW}) \\ 3-6-\mathrm{HH} \end{array}$ | Small pan-head screw | 9 | 150 | B |  |
| Fig. 9-3-53 | $\begin{gathered} \oplus P(S W) \\ 4-6-H H \end{gathered}$ | Small pan-head screw | 4 | 50 | B |  |
| Fig. 9-3-54 | $\begin{gathered} \oplus \mathrm{P}(\mathrm{SW}+\mathrm{W}) \\ 3-6-\mathrm{HH} \end{gathered}$ | Small pan-head screw | 17 | 50 | B |  |

Table 7-6 Maintenance Parts List (3/5)
Mechanical components (3/3)

| Ref. No. | Part No. | Nomenclature | Original quantity | Recommended quantity | Rank | Compati- <br> bility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fig. 9-8-27 | $\begin{gathered} \oplus \mathrm{P}(\mathrm{SW}+\mathrm{W}) \\ 3-8-\mathrm{HH} \end{gathered}$ | Small pan-head screw | 12 | 10 | B |  |
| Fig. 9-8-32 | $\oplus \mathrm{P}(\mathrm{W}) 3$ 3-5-HH | Small pan-head screw | 2 | 10 | B |  |
| Fig. 9-8-28 | $\begin{gathered} \oplus \mathrm{P}(\mathrm{SW}+2 \mathrm{~W}) \\ 3-6-\mathrm{HH} \end{gathered}$ | Small pan-head screw | 4 | 10 | B |  |
| Fig. 9-8-30 | $\begin{gathered} \oplus \mathrm{P}(\mathrm{SW}+\mathrm{W}) \\ 4-12-\mathrm{HH} \end{gathered}$ | Small pan-head screw | 4 | 10 | B |  |
| Fig. 9-3-55 | $\begin{gathered} \oplus \mathrm{P}(\mathrm{SW}+2 \mathrm{~W}) \\ 4-8-\mathrm{HH} \end{gathered}$ | Small pan-head screw | 9 | 10 | B |  |
| Fig. 9-3-57 | $\begin{gathered} \oplus \mathrm{P}(\mathrm{SW}+2 \mathrm{~W}) \\ 4-10-\mathrm{HH} \end{gathered}$ | Small pan-head screw | 2 | 10 | B |  |
| Fig. 9-8-29 | $\begin{gathered} \oplus \mathrm{P}(\mathrm{SW}+2 \mathrm{~W}) \\ 4-18-\mathrm{HH} \end{gathered}$ | Small pan-head screw | 12 | 50 | B |  |
| Fig. 9-7-6 | $\underset{10-\mathrm{HH}}{\oplus \mathrm{~T}_{2} \mathrm{P}_{3}-}$ | Tapping screw |  | 21 | B |  |
| Fig. 9-2-15 | $(-) \mathrm{B}_{3}-6-\mathrm{HH}$ | Bolt | 2 | 10 | B |  |
| Fig. 9-8-24 | $(-) \mathrm{B}_{4}-6-\mathrm{HH}$ | Bolt | 2 | 10 | B |  |
| Fig. 9-2-25 | $\mathrm{SW}_{3}-\mathrm{HHC}$ | Spring washer | 8 | 50 | B |  |
| Fig. 9-2-23 | $\mathrm{SW}_{4}-\mathrm{HHC}$ | Spring washer | 6 | 30 | B |  |
| Fig. 9-8-36 | $2 \mathrm{~W}_{4}-\mathrm{HH}$ | Washer | 2 | 10 | B |  |
| Fig. 9-2-26 | $2 \mathrm{~N}_{3}-\mathrm{HH}$ | Nut | 6 | 10 | B |  |
| Fig. 9-2-22 | $3 \mathrm{~N}_{4}-\mathrm{HH}$ | Nut | 2 | 10 | B |  |

Table 7-6 Maintenance Parts List (4/5)(1/2)
(3rd edition)
Electrical Parts (1/2)
For USA

| Ref. No. | Part No. | Nomenclature | Original quantity | Recommended quantity | Rank | Compati- <br> bility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fig. 9-1-3 | LY-43360 | HLPA circuit board | 1 | 20 | A |  |
| Fig. 9-9-3 | LY-43359 | HLSW circuit board | 1 | 5 | B |  |
| Fig. 9-14 | LYH-20099-001 | ROM IC (Q20) | 1 | 20 | B |  |
| Fig. 9-14 | LYH-20099-002 | ROM IC (Q19) | 1 | 20 | B |  |
| Fig. 9-14 | LYH-20099-003 | ROM IC (Q21) | 1 | 20 | B |  |
| Fig. 9-14 | LYH-20099-004 | ROM IC (Q22) | 1 | 20 | B |  |
| Fig. 9-14 | LYH-20099-005 | ROM IC (Q11) | 1 | 20 | B |  |
| Fig. 9-12 | LY-43361-2 | HLPS-2 circuit board | 1 | 5 | B |  |
|  | LY-43361-3 | HLPS-3 circuit board |  | 1 | B |  |
| Fig. 9-1-10 | 4LP-37202-10 | DC power connection cord | 1 | 10 | B |  |
| Fig. 9-1-6 | 3LP-37257-4 | Operation panel connection cord | 1 | 5 | B |  |
| Fig. 9-1-7 | 4LP-37587-2 | Head connection cord | 1 | 5 | B |  |
| Fig. 9-13 | 2LR-192189-2 | Transformer assembly | 1 | 5 | B |  |
|  | 2LR-192189-3 | Transformer assembly |  | 1 | B |  |
|  | (HLPS circuit board) |  |  |  |  |  |
| Fig. 9-12 | D4LP-9409-2 | U05C diode | 12 | 60 | B |  |
| Fig. 9-12 | D4LP-44386-2 | Thyrister CUl2 | 1 | 5 | B |  |
| Fig. 9-12 | 4LP-11830-49 | Regulator FS7805 | 2 | 20 | B |  |
| Fig. 9-12 | 4LP-8475-B-20 | MGC 2A fuse (for 115 V ) | 1 | 20 | A |  |
| Fig. 9-12 | 4LP-8475-B-22 | MGC 3A fuse (for 115 V ) | 1 | 20 | A |  |
| Fig. 9-11-3 | 4LP-3621-2 | Toggle switch (for 115V) | 1 | 5 | B | 83A |
|  | 4LP-3621-1 | Toggle switch (for 240V) |  | 1 | B | 83A |
| Fig. 9-12 | 4LP-6740-200 | Circuit breaker (for 115 V ) | 1 | 5 | B |  |
|  | 4LP-6740-100 | Circuit breaker (for 240 V ) |  | 1 | B |  |
|  | 4LP-3622 | Slide switch |  | 1 | B |  |
|  | 4LP-6735-13 | MF51NM 2A fuse (for 240 |  | 1 | B |  |
|  | 4LP-6735-15 | MF51NM 3A fuse (for 240 |  | 1 | B |  |

Table 7-6 Maintenance Parts List (4/5)(2/2)
(3rd edition)
Electrical Parts (1/2)
For Europe

| Ref. No. | Part No. | Nomenclature | Original <br> quantity | Rended <br> quantity | Rank | Compati- |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| bility |  |  |  |  |  |  |

Table 7-6 Maintenance Parts List (5/5)
Electrical Parts (2/2)

| Ref. No. | Part No. | Nomenclature | Original quantity | Recommended quantity | Rank | Compatibility |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (HLPA Circuit board) |  |  |  |  |  |
| Fig. 9-14 | D4LP-9409-2 | U05C diode | 2 | 10 | B |  |
| Fig. 9-14 | D4LP-44156-12 | AU01-13 zener diode | 1 | 5 | B |  |
| Fig. 9-14 | 4LP-44385 | Transistor 2SD986 | 4 | 20 | B | 83A |
| Fig. 9-14 | 4LP-44251 | Transistor 2SB-727 | 3 | 15 | B | 83A |
| Fig. 9-14 | 4LP-44252 | Transistor 2SD-768 | 4 | 20 | B |  |
| Fig. 9-14 | 4LP-44401 | Transistor 2SB-791 | 1 | 5 | B |  |
| Fig. 9-14 | 4LP-44419 | Transistor array STA301 | 3 | 15 | B |  |
| Fig. 9-14 | I4LP-1149 9-06 | CPU 8039 | 1 | 10 | B | 83A |
| Fig. 9-14 | I4LP-11368-06 | $\mu \mathrm{PD}$ 8155C | 1 | 10 | B | 83A |
| Fig. 9-14 | I4LP-11714-04 | M5L 8243 | 1 | 5 | B |  |
| Fig. 9-14 | I4LP-11699-09 | 2-kilobyte $S$ RAM MB MB8128-15 | 2 | 20 | B |  |
| Fig. 9-14 | D4LP-9471-1 | SM1A-02 diode | 22 | 100 | B |  |
| Fig. 9-14 | D4LP-44117-1 | VO9C diode | 4 | 20 | B |  |
| Fig 9-14 | D4LP-44156-16 | AV01-20 Zener diode | 2 | 10 | B |  |
|  | (HLSW Circuit | board) |  |  |  |  |
| Fig. 9-10 | 4LP-44373 | SEL 103R light-emitting diode | 3 | 15 | B | 83A |
| Fig. 9-10 | 3LK-50700-2 | Key switch | 4 | 20 | B | 83A |
| Fig. 9-10 | 4L-1370-49-A2 | Nameplate "TOF SET" | 1 | 5 | B | 83A |
| Fig. 9-10 | 4L-1370-50-A2 | Nameplate "SEL" | 1 | 5 | B | 83A |
| Fig. 9-10 | 4L-1370-51-A2 | Nameplate "FORM FEED" | 1 | 5 | B | 83A |
| Fig. 9-10 | 4L-1370-52-A2 | Nameplate "LINE FEED" | 1 | 5 | B | 83A |
| Fig. 9-10 | 4LP-3424 | SRQV 101A rotary switch | 1 | 5 | B | 83A |

### 7.8 Troubleshooting Flow Charts

These flow charts are provided for remedying troubles which might develop for the user, and should be referred to after confirming what the trouble is.

| Trouble |  |  | I tem |
| :---: | :---: | :---: | :---: |
| Classification | Description |  |  |
| Operation trouble at power-up | Print head does not come to home position. | Does not move at all. | (1) |
|  |  | Keeps running to right or left. | (2) |
|  |  | Vibrates. | (3) |
|  | Breaker opens. |  | (4) |
| Operation trouble after power-up | Does not start spacing or printing when input data is applied. |  | (5) |
|  | Spaces but does not print. |  | (6) |
|  | Prints but does not space. |  | (7) |
|  | Print head does not return to home position after printing. |  | (8) |
|  | Does not line-space |  | (9) |
|  | Paper out function does not work. |  | (10) |
|  | Characters are skipped, or wrong characters are printed. |  | (11) |
|  | Some dots are not printed. |  | (12) |
|  | Breaker opens after a while. |  | (13) |
|  | Circuit board fuse blows. |  | (14) |
|  | Operating panel switches do not work. |  | (15) |
|  | Print is not dark enough. |  | (16) |

Item (1)


Item (2)


Item (3)


Breaker opens when power is switched on.


Printer does not start spacing or printing when input data is applied.


Item (6)

Printer spaces, but does not print.


## Printer prints, but does not space.



Item (8)

Print head does not return to home position after printing.



Item (10)

Paper out function does not work.



Item (12)

Some dots are not printed.



Item (14)


Item (15)


Print is not dark enough.


## 8. CIRCUIT DIAGRAMS

This section provides circuit diagrams of the Microline 84 in the following order:

Figure 8-1 Table of Symbols
Figure 8-2 Schematic Diagram

Figure 8-1 Table of Symbols

| Symbol | Mark | Description | SN 7405 N (SN 74 LS05) <br> inverter (open collector) |
| :--- | :--- | :--- | :--- |


|  | Mark | Description |
| :--- | :--- | :--- | :--- |
|  |  | Capacitor |


| Symbol | Mark | Description |
| :---: | :---: | :---: |
|  | Q | 339 <br> Comparator |
| $[0=01$ | BK | Circuit breaker |
| W | THERMI STOR | Thermistor |
| $\underline{\underline{I}}$ | SG | Signal ground |
| $3 \\| \xi$ | TF | Transformer |
|  |  | Home position detector |
|  | F | Fuse |
|  | Q | SN74LS04 Inverter |






## 9. TABLE OF COMPONENT PARTS

(1) For USA

This section lists the main component parts of the MICROLINE 84 in the order of the following schematic diagrams:


|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Notes:

1) The parts marked with * are not included in the table of component parts. Any of them may be ordered by specifying parts numbers.
2) "83A" in the compatibility column indicates this unit is compatible with ML 83A.
(2) For Europe

This section lists the main component parts of the MICROLINE 84 in the order of the following schematic diagrams:


Notes:

1) The parts marked with * are not included in the table of component parts. Any of them may be ordered by specifying parts numbers.
2) "83A" in the compatibility column indicates this unit is compatible with ML 83A.


Figure 9-1 General Assembly Diagram (LY-42859-2)


Figure 9-1 General Assembly Diagram (LY-42859-3)

Figure 9-1 General Assembly Diagram (LY-42859-2) (for USA for 115 V )
(3rd edition)


Figure 9-1 General Assembly Diagram (LY-42859-3) (for Europe (for 220/240 V))
(3rd edition)

| I tem <br> No. | Part No. | Description | Qty | Remarks | Compatibility |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1LM-61285-3 | Cover unit | 1 |  |  |
| 2 | 1LR-1217-1 | Printer unit | 1 |  |  |
| 3 | LY-43360 | HLPA circuit board | 1 |  |  |
| 4 | 4L-1738-3 | Decorative nameplate | 1 |  |  |
| 5 | 4L-1629 | Machine nameplate | 1 |  |  |
| 6 | 3LP-37257-4 | Operation panel connection cord | 1 |  |  |
| 7 | 4LP-37587-2 | Head connection cord | 1 |  | 83A |
| 8 | 4LP-6401-bl | Tie-wrap | 8 |  | 83A |
| 9 | LY-39702 | Tractor unit | 1 |  | 83A |
| 10 | 4LP-37202-10 | DC power connection cord | 1 |  |  |
| 11 | 4L-1557 | Caution for carriage tie down | 1 | Components | 83A |
| 12 | 4LP-1457-6 | Fastener ( 250 mm long, yellow) | 1 | for packing | 83A |



Figure 9-2 Printer Unit (lLR-1217)

Figure 9-2 Printer Unit (lLR-1217)

| Item No. | Part No. | Description | Qty | Remarks | Compatibility |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3LR-190990-10 | Print head assembly | 1 | With grey grounding wire |  |
| 2 | 1LR-193470-2 | Base unit | 1 |  |  |
| 3 | 3LR-192190 | Ribbon drive assembly | 1 |  |  |
| 4 | 4LR-191870-3 | Carriage assembly | 1 |  |  |
| 5 | 5LR-132450 | Carriage shaft (U) | 1 |  | 83A |
| 6 | 5LR-193455-1 | Carriage shaft (L) | 1 |  | 83A |
| 7 | 5LR-132451 | Eccentric collar | 2 |  | 83A |
| 8 | 5LR-132115 | Adjusting lever (welded) | 1 |  | 83A |
| 9 | 5LR-132452 | Adjusting bracket | 1 |  | 83A |
| 15 | (-) $\mathrm{B}_{3}-6-\mathrm{HH}$ | Bolt | 2 |  |  |
| 20 | ${ }_{( } \mathrm{P}_{3}-12-\mathrm{HH}$ | Small pan-head screw | 1 |  |  |
| 21 | $\oplus \mathrm{P}(\mathrm{SW}) 3-6-\mathrm{HH}$ | Small pan-head screw | 4 |  |  |
| 22 | $3 \mathrm{~N}_{4}-\mathrm{HH}$ | Locknut | 2 |  |  |
| 23 | $\mathrm{SW}_{4}-\mathrm{HHC}$ | Spring washer | 2 |  |  |
| 25 | $\mathrm{SW}_{3}-\mathrm{HHC}$ | Spring washer | 1 |  |  |
| 26 | $2 \mathrm{~N}_{3}-\mathrm{HH}$ | Nut | 1 |  |  |



Figure 9-3 Base Unit (lLR-193470-2)

Figure 9-3 Base Unit (1LR-193470-2) (1/2)

| Item No. | Part No. | Description | Qty | Remar ks | Compatibility |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1LR-132461 | Base-frame weld | 1 |  | 83A |
| 2 | 4LR-193450 | Side frame (L) clinched | 1 |  | 83A |
| 3 | 3LR-193452 | Side frame (R) | 1 |  | 83A |
| 4 | 4LR-193462-4 | Paper guide (welded) | 1 |  |  |
| 6 | 3LR-132467 | Paper chute | 1 |  | 83A |
| 7 | 4LR-132468 | Paper separator | 1 |  | 83A |
| 8 | 5LR-132473-3 | LF motor (pressure-fitted) | 1 |  |  |
| 9 | 4LR-191854-2 | Space motor (pressure-fitted) | 1 |  |  |
| 10 | 5LR-132475 | LF idle gear | 1 |  | 83A |
| 11 | 5LR-132480 | Paper lock release lever (adhered) | 1 |  | 83A |
| 12 | 5LR-132482 | Paper lock release lever bracket | 1 |  | 83A |
| 13 | 4LR-132483 | Roller support shaft | 1 |  | 83A |
| 14 | 4LR-132484 | Feed roller spring | 3 |  | 83A |
| 15 | 5LR-132485 | Friction roller | 3 |  | 83A |
| 16 | 4LR-132488-2 | Idle pulley bracket | 1 |  | 83A |
| 17 | 5LR-192206 | Column indicator assembly | 1 |  |  |
| 18 | 5LR-132494 | Shoulder nut | 2 |  | 83A |
| 20 | 5LR-129808-2 | Paper-tear-off bar shaft | 1 |  | 83A |
| 21 | 5LR-192198-1 | Detent spring (R) | 1 |  |  |
| 22 | 5LR-192198-2 | Detent spring (L) | 1 |  |  |
| 23 | 5LR-132222 | Ribbon quide (R) | 1 |  | 83A |
| 24 | 5LR-132229 | Ribbon guide (L) | 1 |  | 83A |
| 25 | 3LR-129900-4 | Platen assembly | 1 |  | 83A |
| 26 | 4LR-129907 | Paper out assembly | 1 |  | 83A |
| 27 | 4LR-129847-3 | Home sensor assembly | 1 |  | 83A |
| 28 | 4LR-132233 | Platen knob | 1 |  | 83A |
| 29 | 5LR-194124 | Detent spring | 1 |  |  |
| 30 | 4LR-191875 | Cable guide | 1 |  |  |

Figure 9-3 Base Unit (1LR-193470-2) (2/2)


Figure 9-4 Platen Assembly (3LR-129900-4)

Figure 9-4 Platen Assembly (3LR-129900-4)



Figure 9-5 Paper Out Assembly (4LR-129907)

Figure 9-5 Paper Out Assembly (4LR-129907)



Figure 9-6 Ribbon Drive Assembly (3LR-192190)

Figure 9-6 Ribbon Drive Assembly (3LR-192190)

| Item No. | Part No. | Description | Qty | Remar ks | Compatibility |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3LR-192191 | Ribbon bracket (clinched) | 1 |  |  |
| 2 | 5LR-192194 | Ribbon change lever (clinched) | 1 |  |  |
| 3 | 4LR-129827 | Ribbon gear | 1 |  | 83A |
| 4 | 5LR-93429-3 | Snap shaft | 1 |  |  |
| 5 | 5LR-129876 | Friction spring | 1 |  | 83A |
| 6 | 5LR-192197 | Ribbon drive gear (pressure fitted) | 1 |  |  |
| 7 | 5LR-192196 | Ribbon spool gear (clinched) | 2 |  |  |
| 8 | 5LR-191325 | Compression spring | 2 |  |  |
| 9 | 5LR-129841 | Detent spring | 1 |  | 83A |
| 10 | 4LP-14 20-5 | Synchro belt | 1 |  | 83A |
| 11 | 5LR-191859 | Pressure roller | 1 |  | 83A |
| 12 | 5LR-129842-2 | Friction felt | 2 |  |  |
| 13 | 5LR-129843 | Special washer | 2 |  | 83A |
| 16 | 5LR-132516 | Plastic washer | 2 |  | 83A |
| 21 | 5KX-9057 | E-snap ring ( $\mathrm{E}_{2}$ ) | 2 |  |  |
| 22 | $5 \mathrm{KH}-12050$ | E-snap ring ( $\mathrm{E}_{3}$ ) | 4 |  |  |



Figure 9-7 Carriage Assembly (4LR-191870-3)


Figure 9-10 HLSW Circuit Board Assembly (LY-43359)

| Symbol | Part No. | Description | Qty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| (1) | 3LP-16742 | HLSW circuit board | 1 |  |
| D1 to D3 | D4LP-44373 | Light-emitting diode | 3 |  |
| R1 to R3 | R4LP-8446-391 | Resistor 1/4 W 390 ohms | 3 |  |
| Sw5 | 4LP-3424 | Rotary switch | 1 |  |
| SWl to 4 | 3LK-50700-2 | Key switch | 4 |  |
|  | 4L-1370-49-A2 | Nameplate "TOF SET" | 1 |  |
| (3) | 4L-1370-50-A2 | Nameplate "SEL" | 1 |  |
| (4) | 4L-1370-51-A2 | Nameplate "FORM FEED" | 1 |  |
| (5) | 4L-1370-52-A2 | Nameplate "LINE FEED" | 1 |  |
| (6) | J4LP-5524-12 | EI-Connector 12P | 1 |  |



Note 1) Mount LED (D1 to D3) as shown below.


Figure 9-10 HLSW Circuit Board Assembly (LY-43359)

Figure 9-9 Operation Panel Assembly (4LM-59767)

| $\begin{gathered} \text { Item } \\ \text { No. } \end{gathered}$ | Part No. | Description | Qty | Remarks | $\begin{aligned} & \text { Compati- } \\ & \text { bility } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4LM-59768 | Circuit board bracket | 1 |  |  |
| 2 | 5LM-59693 | Display panel | 1 |  | 83A |
| 3 | LY-43359 | HLSW circuit board | 1 |  |  |
| 4 | 4LR-194100 | Insulator | 1 |  |  |
| 10 | $\oplus \mathrm{P}(\mathrm{SW}+\mathrm{W}) 3$ 3-6-HH | Small pan-head screw | 2 |  |  |


Figure 9-9 Operation Panel Assembly (4LM-59767)

Figure 9-8 Cover Unit (1LM-61285-3) (for Europe (for 220/240 V))
(2nd edition)

| Item No. | Part No. | Description | Qty | Remarks | $\begin{aligned} & \text { Compati- } \\ & \text { bility } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1LM-60106 | Upper cover | 1 |  | 83A |
| 2 | 1LM-61286 | Lower cover | 1 |  |  |
| 3 | 2LM-60112 | Access cover | 1 |  | 83A |
| 4 | 4LM-59767 | Operation panel assembly | 1 |  |  |
| 5 | 5LM-59696 | Blank plate | 1 |  | 83A |
| 6 | 4LM-60115 | Circuit board support | 2 |  | 83A |
| 7 | 2LR-192199-3 | Power supply assembly | 1 |  |  |
| 8 | 3LM-60116 | Cord clamp | 1 |  | 83A |
| 9 | 5LM-61519 | Ground board | 2 |  | 83A |
| 11 | 5LP-6463-C-5 | Cord bushing | 1 |  | 83A |
| 12 | 4LP-6726-2 | Quite-tight | 6 |  | 83A |
| 13 | 5LP-1416 | Rubber foot | 4 |  | 83A |
| 15 | 5LM-61287 | Blank plate | 1 |  |  |
| 18 | 5L-1667 | Switch indicating board | 1 |  |  |
| 21 | 2LR-192189-3 | Transformer assembly | 1 |  |  |
| 24 | (-) B4-6-HH | Bolt | 1 |  |  |
| 25 | $\oplus \mathrm{P}(\mathrm{SW}) 3-5-\mathrm{HH}$ | Small pan-head screw | 3 |  |  |
| 27 | $\oplus \mathrm{P}(\mathrm{SW}+\mathrm{W}) 3-8-\mathrm{HH}$ | Small pan-head screw | 6 |  |  |
| 28 | ¢ P $\mathrm{P}(\mathrm{SW}+2 \mathrm{~W}) 3-6-\mathrm{HH}$ | Small pan-head screw | 2 |  |  |
| 29 | (f) $\mathrm{P}(\mathrm{SW}+2 \mathrm{~W}) 4-18-\mathrm{HH}$ | Small pan-head screw | 6 |  |  |
| 30 | ¢ P (SW+W) 4-12-HH | Small pan-head screw | 2 |  |  |
| 31 | ( $\mathrm{P}(\mathrm{SW}+2 \mathrm{~W}) 4-8-\mathrm{HH}$ | Small pan-head screw | 4 |  |  |
| 32 | ¢ $\mathrm{P}(\mathrm{W}) 3$ 3-5-HH | Small pan-head screw | 2 |  |  |
| 34 | SW4-HHC | Spring washer | 1 |  |  |
| 36 | 2W4-HH | Washer | 2 |  |  |



Figure 9-8 Cover Unit (lLM-61285-3) (for Europe) (for 220/240 V)

Figure 9-8 Cover Unit (lLM-61285-2) (for USA (for 115 V))
(2nd edition)

| Item No. | Part No. | Description | Qty | Remarks | $\begin{aligned} & \text { Compati- } \\ & \text { bility } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1LM-60106 | Upper cover | 1 |  | 83A |
| 2 | 1LM-61286 | Lower cover | 1 |  |  |
| 3 | 2LM-60112 | Access cover | 1 |  | 83A |
| 4 | 4LM-59767 | Operating panel assembly | 1 |  |  |
| 5 | 5LM-59696 | Blank plate | 1 |  |  |
| 6 | 4LM-60115 | Circuit board support | 2 |  | 83A |
| 7 | 2LR-192199-2 | Power supply assembly | 1 |  |  |
| 8 | 3LM-60116 | Cord clamp | 1 |  | 83A |
| 9 | 5LM-61519 | Ground board | 2 |  | 83A |
| 11 | 5LP-6463-C-5 | Cord bushing | 1 |  | 83A |
| 12 | 4LP-6726-2 | Quite-tight | 6 |  | 83A |
| 13 | 5LP-1416 | Rubber foot | 4 |  | 83A |
| 14 | 5LP-6765 | Mark band | 1 |  | 83A |
| 15 | 5LM-61287 | Blank plate | 1 |  |  |
| 18 | 5L-1667 | Switch indicating board | 1 |  |  |
| 21 | 2LR-192189-2 | Transformer assembly | 1 |  |  |
| 24 | (-) B4-6-HH | Bolt | 1 |  |  |
| 25 | $\oplus \mathrm{P}(\mathrm{SW}) 3-5-\mathrm{HH}$ | Small pan-head screw | 3 |  |  |
| 27 | ¢ P (SW+W) 3-8-HH | Small pan-head screw | 6 |  |  |
| 28 | $\oplus \mathrm{P}(\mathrm{SW}+2 \mathrm{~W}) 3-6-\mathrm{HH}$ | Small pan-head screw | 2 |  |  |
| 29 | $\oplus \mathrm{P}(\mathrm{SW}+2 \mathrm{~W}) 4-18-\mathrm{HH}$ | Small pan-head screw | 6 |  |  |
| 30 | ¢ P (SW+W) 4-12-HH | Small pan-head screw | 2 |  |  |
| 31 | ¢ P (SW+2W) 4-8-HH | Small pan-head screw | 4 |  |  |
| 32 | $\oplus \mathrm{P}(\mathrm{W}) \cdot 3-5-\mathrm{HH}$ | Small pan-head screw | 2 |  |  |
| 34 | SW 4-HHC | Spring washer | 1 |  |  |
| 36 | 2W4-HH | Washer | 1 |  |  |



Figure 9-7 Carriage Assembly (4LR-191870-3)


Figure 9-11 Power Supply Assembly (2LR-192199-2) (for USA)



II-102


Figure 9-11 Power Supply Assembly (2LR-192199-3) (for Europe)


Note 1) Heat sink (7) and regulator FS7805 (TR1, TR2) mounting


Note 2) Diode bracket (3) and resistor (R1, R2) mounting


Figure 9-12 HLPS-2 Cirbuit Board Assembly (LY-43361-2) (for USA) (2nd edition)

Figure 9-12 HLPS-2 Circuit Board Assembly (LY-43361-2) (for USA) $1 / 2$ (2nd edition)

| Symbol | Part No. | Description | Qty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 3LP-16757 | HLPS circuit board | 1 |  |
| D5 | D4LP-44171-15 | Zener diode RDl0EB | 1 |  |
| D1 to D4, D6 to D13 | D4LP-9409-2 | Diode U05C | 12 |  |
| R4, R6, R8 | R4LP-8446-102 | Resistor 1/4 W l kilohm | 3 |  |
| R5 | R4LP-8446-512 | Resistor l/4 W 5.1 kilohms | 1 |  |
| R3 | R4LP-8447-102 | Resistor 1/2 W l kilohm | 1 |  |
| R7 | R4LP-8224-302 | Resistor 2 W 3 kilohms | 1 |  |
| R1, R2 | R4LP-8225-300 | Resistor 3 W 30 ohms | 2 |  |
| C2 to C4 | C4LP-8449-104 | Film capacitor $100 \mathrm{~V} 0.1 \mu \mathrm{~F}$ | 3 |  |
| Cl | C4LP-8593-104 | MP capacitor $0.1 \mu \mathrm{~F}$ | 1 |  |
| C7 | C4LP-8520-3 | Electrolytic capacitor $10 \mathrm{~V} 10,000 \mu \mathrm{~F}$ | 1 |  |
| C5 | C4LP-8520-7 | Electrolytic capacitor $16 \mathrm{~V} 6800 \mu \mathrm{~F}$ | 1 |  |
| C6 | C4LP-8520-26 | Electrolytic capacitor $50 \mathrm{~V} 6800 \mu \mathrm{~F}$ | 1 |  |
| C8 | C4LP-8382-42 | Electrolytic capacitor $50 \mathrm{~V} 1 \mu \mathrm{~F}$ | 1 |  |
| Tr 4 | Q4LP-44331 | Transistor 2SA952 | 1 |  |
| Tr 3 | Q4LP-44335 | Transistor 2SC2719 | 1 |  |
| Trl, $\operatorname{Tr} 2$ | I4LP-11830-49 | Regulator FS7805 | 2 |  |
| Tr 5 | D4LP-44386-2 | Thyristor CUl2Cll | 1 |  |
| Ll | H4LP-45187-2 | SC coil | 1 |  |
| Tr 3 | Q4LP-44335 | Transistor 2 SC 2719 | 1 |  |
| CN2 | 4LP-2886 | AMP nylon connector 2P | 1 |  |
| CNl | 4LP-5902-4 | AMP socket header 4P | 1 |  |
| CN3 | 4LP-5523-6 | AMP EI connector 6P | 1 |  |
| CN4 | 4LP-5691-10 | Circuit connector for brake cable l0p | 1 |  |
| F1 | 4LP-6735-13 | Fuse 2A | 1 |  |
| F2 | 4LP-6735-15 | Fuse 3A | 1 |  |
| (2) <br> (3) <br> (4) | $\begin{aligned} & 5 \mathrm{~L}-90186 \\ & 5 \mathrm{LK}-51174 \\ & 4 \mathrm{LP}-44106-3 \end{aligned}$ | Fuse holder <br> Diode bracket <br> SERCON | $\begin{aligned} & 4 \\ & 1 \\ & 3 \end{aligned}$ |  |

Figure 9-12 HLPS-2 Circuit Board Assembly (LY-43361-2) (for USA) 2/2 (2nd edition)


Note 1) Heat sink (7) and regulator FS7805 (Trl, Tr2) mounting


Figure 9-12 HLPS-3 Circuit Board Assembly (LY-4336l-3) (for Europe) $1 / 2$ (2nd edition)

| Symbol | Part No. | Description | Qty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| (1) | 3LP-16757 | HLPS circuit board | 1 |  |
| D5 | D4LP-44171-15 | Zener diode RDIOEB | 1 |  |
| D1 to D4, D6 to D13 | D4LP-9409-2 | Diode U05C | 12 |  |
| R4, R6, R8 | R4LP-8446-102 | Resistor 1/4 W l kilohm | 3 |  |
| R5 | R4LP-8446-512 | Resistor $1 / 4$ W 5.1 kilohms | 1 |  |
| R3 | R4LP-8447-102 | Resistor 1/2 W 1 kilohm | 1 |  |
| R7 | R4LP-8224-302 | Resistor 2 W 3 kilohms | 1 |  |
| R1, R2 | R4LP-8225-300 | Resistor 3 W 30 ohms | 2 |  |
| C2 to C4 | C4LP-8449-104 | Film capacitor $100 \mathrm{~V} 0.1 \mu \mathrm{~F}$ | 3 |  |
| Cl | C4LP-8593-104 | MP capacitor 0.1 iF | 1 |  |
| C7 | C4LP-8520-3 | Electrolytic capacitor $10 \mathrm{~V} 10,000 \mathrm{FF}$ | 1 |  |
| C5 | C4LP-8520-7 | Electrolytic capacitor $16 \mathrm{~V} 6800 \mu \mathrm{~F}$ | 1 |  |
| C6 | C4LP-8520-26 | Electrolytic capacitor $50 \mathrm{~V} 6800 \mu \mathrm{~F}$ | 1 |  |
| C8 | C4LP-8382-42 | Electrolytic capacitor $50 \mathrm{~V} 1 \mathrm{\mu} \mathrm{~F}$ | 1 |  |
| SW1 | 4LP-3622 | AC slide switch | 1 |  |
| Tr 4 | Q4LP-44331 | Transistor 2SA952 | 1 |  |
| Tr1, Tr 2 | 14LP-11830-49 | Regulator FS7805 | 2 |  |
| Tr5 | D4LP-44386-2 | Thyristor Cul2Cll | 1 |  |
| Ll | H4LP-45187-2 | SC coil | 1 |  |
| Tr3 | Q4LP-44335 | Transistor 2SC2719 | 1 |  |
| CN2 | 4LP-2886 | AMP nylon connector 2P | 1 |  |
| CN1 | 4LP-5902-4 | AMP socket header 4P | 1 |  |
| CN3 | 4LP-5523-6 | AMP EI connector 6P | 1 |  |
| CN4 | 4LP-5691-10 | Circuit connector for brake cable 10P | 1 |  |
| F1 | 4LP-6735-13 | Fuse 2A | 1 |  |
| F2 | 4LP-6735-15 | Fuse 3A | 1 |  |
| (2) | 5L-90186 | Fuse holder | 4 |  |
| (3) | 5LK-51174 | Diode bracket | 1 |  |
| (4) | 4LP-44106-3 | SERCON | 3 |  |

Figure 9-12 HLPS-3 Circuit Board Assembly (LY-43361-3) (for Europe) $2 / 2$ (2nd edition)



Figure 9-13 Transformer Assembly (2LR-192189-2) (for USA)

Figure 9-13 Transformer Assembly (2LR-192189-2) (for USA)
(2nd edition)



Figure 9-13 Transformer Assembly (2LR-192189-3) (for Europe) (2nd edition)

Figure 9-13 Transformer A.ssembly (2LR-192189-3) (for Europe)
(2nd edition)

| Item No. | Part No. | Description | Qty | Remar ks | Compatibility |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4LP-45191-129 | Power supply transformer | 2 |  |  |
| 2 | J 4LP-5903-4 | AMP maintaining lock connector plug | 1 |  |  |
| 3 | J 4LP-5525-6 | AMP El connector plug | 1 |  |  |
| 4 | J 4LP-5811 | Contactor (pin) | 4 |  |  |
| 5 | J 4LP-5526 | Contactor | 6 |  |  |
| 6 | J 4 LP-5851 | U-element connector No. 557 | 3 |  |  |
| 7 | J 4LP-5852 | U-element connector No. 558 | 3 |  |  |
| 11 |  | Insulation SUMI tube $F \varnothing 5 \times 20$ | 1 |  |  |
| 12 | 4LP-6401-b ${ }_{1}$ | Tie-wrap | 5 |  |  |
|  |  | Silicon vanished glass tube $\phi 3 \times 40$ | 1 |  |  |
|  |  | Silicon vanished glass tube $\varnothing 3 \times 50$ | 2 |  |  |
|  |  | Silicon vanished glass tube $\not \subset 3 \times 55$ | 1 |  |  |
|  |  | Silicon vanished glass tube $\varnothing 3 \times 60$ | 1 |  |  |
|  |  | Silicon vanished glass tube $\phi 3 \times 70$ | 1 |  |  |
|  |  | Silicon vanished glass tube $\phi 3 \times 250$ <br> Silicon vanished glass tube $\phi 3 \times 295$ | 1 3 |  |  |



Figure 9-14 HLPA Circuit Board Assembly (LY-43360) 1/4
(2nd edition)

| Symbol | Part No. | Description | Qty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2LP-97741 | HLPA circuit board | 1 |  |
| D32 | D4LP-44171-10 | Zenor diode RD6.2EB | 1 |  |
| D5 | D4LP-44156-12 | Zenor diode AU01-13 | 1 |  |
| D3, D4 | D4LP-44156-16 | Zenor diode AU01-20 | 2 |  |
| D8, D9 | D4LP-9409-2 | Diode U05C | 2 |  |
| D1, D2, D6, D7, | D4LP-9471-1 | Diode SMlA-02 | 22 |  |
| $\begin{aligned} & \text { Dl0, Dll, Dl3, Dl5, } \\ & \text { Dl7, D19 to D31 } \end{aligned}$ |  |  |  |  |
| D33 to D41 | D4LP-9300 | Diode lS2075 | 9 |  |
| D12, D14, D16, D18 | D4LP-44117-1 | Diode V09C | 4 |  |
| R35, R41 | R4LP-8446-201 | Resistor l/4 W 200 ohms | 2 |  |
| R4, R6, R8, R10 | R4LP-8446-331 | Resistor 1/4 W 330 ohms | 4 |  |
| R26, R40 | R4LP-8446-511 | Resistor 1/4 W 510 ohms | 2 |  |
| R19, R30, R31 to | R4LP-8446-102 | Resistor 1/4 W l kilohm | 11 |  |
| R33, R36 to R39, |  |  |  |  |
| R43, R44 |  |  |  |  |
| R20 | R4LP-8446-202 | Resistor 1/4 W 2 kilohms | 1 |  |
| R23, R24 | R4LP-8446-242 | Resistor 1/4 W 2.4 kilohms | 2 |  |
| R14, R18, R21 | R4LP-8446-152 | Resistor 1/4 W 1.5 kilohms | 3 |  |
| R25, R34 | R4LP-8446-512 | Resistor l/4 W 5.1 kilohms | 2 |  |
| R22, R42, R45 | R4LP-8446-103 | Resistor 1/4 W 10 kilohms | 3 |  |
| R29 | R4LP-8446-513 | Resistor l/4 W 51 kilohms | 1 |  |
| R28 | R4LP-8446-683 | Resistor l/4 W 68 kilohms | 1 |  |
| R16 | R4LP-8446-104 | Resistor 1/4 W 100 kilohms | 1 |  |
| R15 | R4LP-8446-304 | Resistor 1/4 W 300 kilohms | 1 |  |
| R17 | R4LP-8482-223 | Resistor 1/4 W 22 kilohms F | 1 |  |
| Rl2 | R4LP-8482-513 | Resistor 1/4 W 51 kilohms F | 1 |  |
| R13 | R4LP-8482-474 | Resistor 1/4 W 470 kilohms F | 1 |  |
| R11 | R4LP-8505-2R2 | Resistor $1 / 2 \mathrm{~W} 2.2$ ohms | 1 |  |
| R27 | R4LP-8447-202 | Resistor 1/2 W 2 kilohms | 1 |  |

Figure 9-14 HLPA Circuit Board Assembly (LY-43360) 2/4 (2nd edition)

| Symbol | Part No. | Description | Qty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| R5, R7, R9 | R4LP-8318-102 | Resistor 1 W 1 kilohm | 3 |  |
| R2, R3 | R4LP-8224-102 | Resistor 2 W 1 kilohm | 2 |  |
| Rl | R4LP-8441-5 | Resistor 5 W l ohm | 1 |  |
| MRI | R4LP-8396-431 | 8-element module 430 ohms | 1 |  |
| MR3 to MR5 | R4LP-8396-102 | 8-element module 1 kilohm | 3 |  |
| MR2, MR6 to MR8 | R4LP-8396-512 | 8-element module 5.1 kilohms | 4 |  |
| C3 | C4LP-8449-152 | Film capacitor $100 \mathrm{~V} 0.0015 \mu \mathrm{~F}$ | 1 |  |
| C10, C16 | C4LP-8449-102 | Film capacitor $100 \mathrm{~V} 0.001 \mu \mathrm{~F}$ | 2 |  |
| C4 | C4LP-8449-223 | Film capacitor $100 \mathrm{~V} 0.022 \mu \mathrm{~F}$ | 1 |  |
| C5 | C4LP-8596-223 | High-precision film capacitor $50 \mathrm{~V} 0.022 \mu \mathrm{p}$ | 1 |  |
| C15 | C4LP-8452-471 | Ceramic capacitor 50 V 470 pF | 1 |  |
| C9 | C4LP-8571 | Ceramic capacitor 400 V 100 pF | 1 |  |
| C7, Cl2 | C4LP-8470-7 | Tantalum electrolytic capacitor $35 \vee 1 \mu \mathrm{~F}$ | 2 |  |
| C8, C14, C18, C19, C21 to C27 | C4LP-8486 | Laminated ceramic capacitor $50 \vee 0.1 \mu \mathrm{~F}$ | 11 |  |
| C1, C2, C17, C20 | C4LP-8519-12 | Electrolytic capacitor $25 \vee 47 \mu \mathrm{~F}$ | 4 |  |
| OSC2, Cl3 | 4LP-12127-1 | Ceramic oscillator with capacitor $6.14 \mathrm{MHz}$ | 1 |  |
| OSC1, Cll | 4LP-12127-3 | Ceramic oscillator with capacitor $9.0 \mathrm{MHz}$ | 1 |  |
| Q1 | 14LP-11836-00 | $\mu \mathrm{PC} 339 \mathrm{C}$ | 1 |  |
| 210 | I4LP-11499-06 | 8039 | 1 |  |
| Q12 | I4LP-11368-06 | 8155 | 1 |  |

Figure 9-14 HLPA Circuit Board Assembly (LY-43360) 3/4 (2nd edition)

| Symbol | Part No. | Description | Qty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| Q16, Q17 | I4LP-11699-09 | MB8128-15 2-kilobyte S RAM | 2 |  |
| Q14 | I4LP-11714-04 | M5L8243 I/O EXPANDER | 1 |  |
| Q13, Q18 | 14LP-11124-40 | 74LS75 | 2 |  |
| Q15 | 14LP-11117-40 | 74LS02 | 1 |  |
| Q8 | 14LP-11131-40 | 74LS04 | 1 |  |
| 06, Q7, Q9 | 14LP-11136-40 | 74LS05 | 3 |  |
| Q5 | 14LP-11348-40 | 74 LS 257 | 1 |  |
| Q3 | I4LP-11136-00 | 7405 N | 1 |  |
| Q2 | I4LP-11145-00 | 7406N | 1 |  |
| Q4 | I4LP-11146-00 | 7407N | 1 |  |
| (Q11) | 4LP-9490-F-06 | 40-pin IC socket | 1 |  |
| (Q19 to Q22) | 4LP-9490-D-06 | 24-pin IC socket | 4 |  |
| SWl | 4LP-3425-8 | DIP switch | 1 |  |
| Tr2 to $\operatorname{Tr} 4$ | Q4LP-44251 | Transistor 2SB727 $543440 \mid$ | 3 |  |
| Trl | Q4LP-44401 | Transistor 2SB791 5 Ste | 1 |  |
| Tr5 to $\operatorname{Tr} 8$ | Q4LP-44252 | Transistor 2SD768 | 4 |  |
| Tr9 to $\operatorname{Tr} 12$ | Q4LP-44385 | Transistor 2SD986 | 4 |  |
| Trl3 to $\operatorname{Tr} 20$ | Q4LP-44331 | Transistor 2SA952 | 2 |  |
| Trl4 to Trl6, Tr 21 | Q4LP-44335 | Transistor 2SC2719 | 4 |  |
| Trl7 to Trl9 | Q4LP-44419 | Transistor array STA 301 | 3 |  |
| CN17 | 4LP-5663 | 36-plug connector | 1 |  |
| CN10, CN11 | 4LP-5523-3 | AMP EI connector 3P | 2 |  |
| CN3 | 4LP-5523-6 | AMP EI connector 6P | 1 |  |
| CN2 | 4LP-5523-7 | AMP EI connector 7P | 1 |  |
| CN5 | 4LP-5523-10 | AMP EI connector 10P | 1 |  |
| CN6, CN8, CN9 | 4LP-5523-12 | AMP El connector 12P | 3 |  |
| CN1 | 4LP-5850-10 | Brake cable connector 10P | 1 |  |
| CN4 <br> (CN4) | $\begin{aligned} & 4 L P-9490-B-03 \\ & 4 L P-5551 \end{aligned}$ | IC socket (16P) Connector locker | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |  |

Figure 9-14 HLPA Circuit Board Assembly (LY-43360) 4/4
(2nd edition)

| Symbol | Part No. | Description | Qty | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| (2) | 4LP-44106-3 | SERCON | 6 |  |
| (3) | 4LP-4967-8 | Insulating bushing | 6 |  |
| (4) | 4LB-102200-6-B | Collar | 2 |  |
| (5) | 5LR-104062 | Circuit board mounting metal | 2 |  |
| (6) | LX-5094-1 | Set screw | 2 |  |
| (7) | 5LK-50620 | Diode bracket | 2 |  |
| (8) | 3LK-50749 | Transistor mounting board | 1 |  |
| (9) | ¢ P (SW+W) 2.6-8-HH | Small pan-head screw | 6 |  |
| (10) | ¢ P (SW+W) 3-6-HH | Small pan-head screw | 5 |  |
| (11) | ( ${ }^{\text {P }} 3-12-\mathrm{HH}$ | Small pan-head screw | 2 |  |
| (12) | SW 4-HHC | Spring washer | 2 |  |
| (13) | W4-HH | Washer | 2 |  |
| (14) | SW3-HHC | Spring washer | 2 |  |
| (15) | W3-HH | Washer | 2 |  |
| (16) | 3N3-HH | Locknut | 2 |  |
| S1, S2 | 5KH-31036-50 | U-shaped jumper wire, 5 mm long | 2 |  |
| CH1, CH2, GND, | 5LR-86639 | Check terminal | 4 |  |
| (17) | 4L-1481 | Number indication attaching nameplate | 1 |  |
| *Q19 (001) | LYH-20174 | EPROM, program ROM | 1 |  |
| *Q20 (002) | LYH-20173 | EPROM, program ROM | 1 |  |
| *Q21 (003) | LYH-20175 | EPROM, character generator | 1 | For USA |
| *Q22 (004) | LYH-20176 | EPROM, character generator | 1 |  |
| *Q11 (005) | LYH-8016 | EPROM, program ROM | 1 |  |
| *Q19 (001) | LYH-20174 | EPROM, program ROM | 1 | ) |
| *Q20 (002) | LYH-20186 | EPROM, program ROM | 1 |  |
| *Q21 (003) | LYH-20188 | EPROM, character generator | 1 | For |
| *Q22 (004) | LYH-20176 | EPROM, character generator | 1 | Europe |
| *Q11 (004) | LYH-8016 | EPROM, program ROM | 1 | ) |

(Note) The items indicated by * are not included in this parts list. Order them separately.


Figure 9-15 Tractor Unit (LY-39702)
(2nd edition)

| Item No. | Part No. | Description | Qty | Remarks | $\begin{aligned} & \text { Compati- } \\ & \text { bility } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5LR-129881 | Side plate (L) | 1 |  | 83A |
| 2 | 4LR-129884 | Side plate (R) | 1 |  | 83A |
| 3 | 5LR-129885-2 | Tractor shaft | 1 |  | 83A |
| 4 | 5LR-129886-2 | Tractor shaft | 1 |  | 83A |
| 6 | 4LR-129889 | Tractor gear | 1 |  | 83A |
| 7 | 4LR-129890 | Idle gear | 1 |  | 83A |
| 8 | 4LR-129891 | Knob | 1 |  | 83A |
| 9 | 5LR-129895 | Bias spring | 1 |  | 83A |
| 10 | 5LR-123498 | Bushing | 2 |  | 83A |
| 11 | 5LR-123467 | Sheet guide | 1 |  | 83A |
| 12 | FMX-35100-2 | Sprocket assembly (R) | 1 |  | 83A |
| 13 | FMX-35150-2 | Sprocket assembly (L) | 1 |  | 83A |
| 14 | 5LR-194059 | Clamp lever (L) | 1 |  |  |
| 15 | 5LR-194060 | Clamp lever (R) | 1 |  |  |
| 21 | 5KD-50242 | E-snap ring | 4 |  |  |
| 22 | 5KH-12050 | E-snap ring | 1 |  |  |
| 31 | ( ${ }^{\text {( 3-5-23D }}$ | Bind screw | 2 |  |  |
| 32 | ¢ P (SW+2W) 3-8-23D | Small pan-head screw | 2 |  |  |



Figure 9-16 Sprocket Assembly (R) (FMX-35100-2)


okl

Figure 9-16 Sprocket Assembly (L) (FMX-35150-2)


## PART III Appendixes

## APPENDIX A SPECIFICATIONS

1. General Specifications
(1) Print system: Printing direction:
(2) Printing speed:
(3) Character composition

Basic matrix:
Characters:
$9(W) \times 7(H)$ dots
$n(W) \times 13(H)$ dots
( $\mathrm{n}=8$ to $12 \ldots$ CQ MODE)
(4) Character-to-character space

Changeable by function code
5 CPI :
6 CPI:
8.5 CPI:

10 CPI :
12 CPI :
17 CPI:
Impact dot matrix
Bidirectional
200 characters/second ( $10 \mathrm{CPI}, 12 \mathrm{CPI}$, or 17 CPI )
100 characters/second, unidirectional 2-pass printing (5 CPI, 6 CPI , or 8.5 CPI )
$9(\mathrm{~W}) \times 9(\mathrm{H})$ dots
5) Maximum number of characters per line

Changeable by function code

| Character-to- <br> character <br> space | 5 CPI | 6 CPI | 8.5 CPI | 10 CPI | 12 CPI | 17 CPI |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of <br> characters | 68 <br> char- <br> acters | 81 <br> char- <br> acters | 115 <br> char- <br> acters | 136 <br> char- <br> acters | 163 <br> char- <br> acters | 231 <br> char- <br> acters |

Note: For the CQ mode, see Appendix F, paragraph 9.1.
(6) Line space

Changeable by function code

| $6 \mathrm{LPI}:$ | $4.23 \mathrm{~mm}(0.166 \mathrm{inch})$ |
| :--- | :--- |
| $8 \mathrm{LPI}:$ | $3.175 \mathrm{~mm}(0.125$ inch $)$ |
|  | $\mathrm{n} / 144$ inch possible |

Note: $n$ is specified as: ESC, \%, $9, n 3$.
(7) Kinds of printing:

Alphanumeric characters and symbols:

63 (SP, and DEL not included)

Lower-case English letters and symbols:

31
Note: " $g$ ", " $j$ ", " $p$ ", " $q$ ", " $y^{\prime \prime}, ", ", " ; ", "-"$, and $c$ are printed as DESCENDER characters shifted down by 2 dots for the 6 LPI mode.

Special graphic characters 64
(8) Paper feed system
(a) Friction feed system
(b) Tractor feed system

By mounting tractor unit, paper 76.2 to 406.4 mm ( 3 to 16 inches) wide can be mounted.
(9) Paper feed control
(a) With TOF (Top-of-Form) function
(b) With VT (Vertical Tabulation) function
(10) Column indicator:
(11) Paper out

Rear paper feed:

Bottom paper feed:

Column indicator is equipped with $2.54 \mathrm{~mm} \quad(0.10$ inch) scale.

Detects absence of paper 50 mm (2 inches) from the present printing line.
Detects absence of paper 25.4 mm (1 inch) from the present printing line.
(12) Character set

Standard:
US ASCII
JIS (with graphic)
BRITISH
GERMAN
FRENCH
SWEDISH
DANISH
NORWEGIAN
NETHERLANDISH
ITALIAN
TRS-80
Equivalent to JIS
JIS (without graphic)
Note: Character sets can be selected by the DIP switch on the HLPA-circuit board.
Character sets are shown in Appendix H.
(13) Interface specifications
(a) Standard

- Parallel interface (Centro-interface)
(b) Option
- High speed (H.S.) RS-232-C and current loop serial interface
- IEEE 488 parallel interface
(14) Media specifications
(a) Cut sheet

Standard paper size is A4 ( 210 mm wide, 297 mm long), but paper up to 381 mm ( 15 inches) wide can be used.
Ream: 45 to $55 \mathrm{~kg}\left(52\right.$ to $64 \mathrm{~g} / \mathrm{m}^{2}$ )
Multiple-part paper cannot be used.
(b) Sprocket paper

When tractor unit is mounted, sprocket paper ranging from 76.2 mm ( 3 inches) to 406.4 mm ( 16 inches) can be used.
One-part paper
Ream: 45 to 55 kg ( 52 to $64 \mathrm{~g} / \mathrm{m}^{2}$ )

Multiple-part paper:

| Type | Ream | No. of copy sheet | Remarks |
| :--- | :---: | :---: | :---: |
| Carbon-lined <br> paper | 30 to 34 kg | Up to 4 sheets |  |
| incl. original |  |  |  |
| Pressure- <br> sensitive <br> paper | 35 to $\left.40 \mathrm{~g} / \mathrm{m}^{2}\right)$ |  <br> Interleaf <br> paper $45 \mathrm{~kg}\left(52 \mathrm{~g} / \mathrm{m}^{2}\right)$ | Up to 3 sheets <br> incl. original |
|  | $30 \mathrm{~kg}\left(35 \mathrm{~g} / \mathrm{m}^{2}\right)$ | Up to 4 sheets <br> incl. original | When using <br> tractor unit |

Note: 1) The paper thickness should be 0.28 mm or less.
2) The parts of multiple-part paper must be sticked at both edges with spot paste or paper staples. The spot pasting must be uniform, and should not cause considerable corrugation.
(15) Ribbon specifications

Genuine OKI ribbons are recommended. Other ribbons must meet the following specifications:

| Spool: | 3-inch standard spool (Underwood type) |
| :---: | :---: |
| Ribbon length: | 35 m maximum. |
| Ribbon width: | 12.7 mm (0.5") |
| Ribbon thickness: | 0.1 mm (0.004") maximum |
| Fabric: | Nylon (40 denier $\times 40$ denier) |
| Color (ink): | Single color (black) |
| Eyelet: | With reversing eyelets <br> (Thickness: $2.4 \pm 0.3 \mathrm{~mm}$, diameter: 7.8 mm) |
| Ink viscosity: | Low viscosity (about $500 \pm 100 \mathrm{cps}$ at $25^{\circ} \mathrm{C}$ ) |

(16) Ribbon life:
(17) Ribbon diagram number:
(18) Ambient temperature During operation:

During non-operation:
During storage:
(19) Relative humidity
During operation:

During non-operation:
During storage:
4.5 million to 5.0 million characters
When purchasing, specify the OKI genuine ribbon number 4LP-1322-3.
$5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
$-10^{\circ} \mathrm{C}$ to $43^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (when packed)

20 to $90 \%$ RH
5 to $95 \%$ RH
5 to 95\% RH (when packed)

Note: Packages must be kept free of dew.
(20) Vibration

During operation:
Less than $0.3 \mathrm{G}(10 \mathrm{~Hz})$
(21) Shock

During non-operation:
Less than 3 G
(22) Noise

65 dB on the average as measured 1 m from front of printer and 1 m above the floor, when the printer is operating on a table 64 cm high. This is the average noise measured in the A range FAST when all the characters are continuously printed at 136 columns on each line, using the built-in test pattern (10 CPI, 6 LPI , not including graphics).
(23) Input power

Single-phase AC.
(a) $115 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz} \pm 2 \%$
(b) $220 \mathrm{~V} \pm 10 \% / 240 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz} \pm 2 \%$

Note: Specify either (a) or (b) in your order. In case of (b), 220 or 240 V can be selected with internal switch.
(24) Power consumption

During operation:
When not operating:

Approx. 100 VA maximum
Approx. 60 VA
(25) Power cord

Approx. $2.3 \mathrm{~m}(7.7 \mathrm{ft})$ long
(Plugs and cords meeting UL, CSA standards are available.)
(26) Outside dimensions

512 mm ( 20.15 inches) (W) $\times 328 \mathrm{~mm}$ (12.91 inches) (D) $\times 133 \mathrm{~mm}(5.24$ inches) (H)
(See figure A-1.)
(27) Weight

Printer proper:
Approx. 14 kg
Approx. 0.7 kg
2. Interface Specifications
2.1 Parallel Interface
(1) Connectors

Printer end: $\quad 36$-pin receptacle, equivalent to 57-40360-12D56
(Amphenol or Daiichi Electronics;
The arrangement of connector pins is as shown in figure B-1.
Cable end:
36-pin plug, equivalent to 57-30360 (Amphenol or Daiichi Electronics), or $\begin{aligned} & \text { plug 552274-1-1 } \\ & \text { (Amphenol) } \\ & \text { cover 552073-1 } \\ & \text { (Amphenol) - or equivalent }\end{aligned}$
(2) Cable

Use a cable less than 5 meters in overall length. (A shielded cable composed of twisted paired wires is recommended for noise prevention)
(3) Parallel interface levels

Low level: $\quad 0.0$ to +0.8 V
High level: $\quad+2.4$ to +5.0 V
(4) Parallel interface circuits
(a) Receiver (Equivalent to 18155)

(b) Driver (Equivalent to SN7406)

(5) Parallel interface signal

Refer to Appendix B.
(6) Parallel interface timing chart

Refer to Appendix C.

## APPENDIX B INTERFACE SIGNALS

Table B-1 Parallel Interface Signals

| Pin No. | Signal | Direction | Description |
| :---: | :---: | :---: | :---: |
| 1 | $\overline{\overline{\text { DATA }}}$ | To printer | Samples input data when changing from low level to high level. |
| 2 | DATA BIT 1 | To printer | Indicate input data. High level indicates " 1 " and low level " 0 ". |
| 3 | DATA BIT 2 |  |  |
| 4 | DATA BIT 3 |  |  |
| 5 | DATA BIT 4 |  |  |
| 6 | DATA BIT 5 |  |  |
| 7 | DATA BIT 6 |  |  |
| 8 | DATA BIT 7 |  |  |
| 9 | DATA BIT 8 |  |  |
| 10 | $\begin{aligned} & \overline{\overline{\text { ACKNOWL- }}} \\ & \overline{\text { EDGE }} \end{aligned}$ | From printer | Indicates character input completion, or function operation end at low level. |
| 11 | BUSY | From printer | Indicates data cannot be received at high level. Data can be input at low level. |
| 12 | PAPER END | From printer | High level indicates paper end. |
| 13 | SELECT | From printer | High level indicates the select (on-line) condition. |
| 14, 16, 33 | OV | - | Signal ground |
| 17 | CHASSIS GROUND | - | Frame ground |


| Pin No. | Signal | Direction | Description |
| :--- | :--- | :--- | :--- |
| 18 | +5 V | From <br> printer | +5 V supply ( 50 mA <br> maximum) |
| 19 to 30 | 0 V | - | Twisted pair return (For <br> pins 1 to 11$)$ |
| 31 | $\overline{\text { INPUT- }}$ <br> PRIME | To printer | Controller is initialized at <br> low level. <br> Pulse width more than <br> 5.0 ms. |
| 32 | $\overline{\text { FAULT }}$ | From <br> printer | From high to low level <br> when paper runs out. |
| 15,34, <br> 35,36 |  | - | Unused |

Note: Pin arrangement:


Figure B-1 Connector Pin Arrangement

## APPENDIX C INTERFACE TIMING CHART

## 1. Parallel Interface Timing Chart



## Note: $\quad T$ Minimum: $150 \mu \mathrm{~s}$

Maximum: Printing, carriage return and line spacing time

## APPENDIXD BLOCK DIAGRAM



## APPENDIX E FUNCTIONS OF SWITCHES, BUTTONS, AND OTHERS

Remove the upper cover for operation of these switches and buttons. (Refer to paragraph 4.6)

1. DIP Switches

Figure E-1 DIP switches on HLPA Circuit Board

$\qquad$

Functions in the tables below can be selected by setting and combinations of DIP switches on PC board. The DIP switch names and numbers are indicated on PC board by silk-screen print.

Table E-1 DIP Switches on HLPA Circuit Board

| $\begin{gathered} \text { DIP } \\ \text { Switch (SW1) } \end{gathered}$ |  | ON | OFF |
| :---: | :---: | :---: | :---: |
| No. | Silk- <br> screen <br> print |  |  |
| 1 | 7/8 | 7 bits | 8 bits |
| 2 | CR | As CR is received, printer prints, automatically returns carriage, and moves paper up one line. | As CR is received, printer prints, and automatically returns carriage. |
| 3 | DE | As DEL code is received, printer prints ${ }^{\text {E. }}$. | Printer ignores DEL code. |
| 4 |  | Unused |  |
| 5 | 1 | Character sets Refer to Table E-2 |  |
| 6 | 2 |  |  |  |
| 7 | 4 |  |  |  |
| 8 | 8 |  |  |  |

## 2. Breaker

A built-in breaker is mounted on the power source circuit board on the rear right of the printer, to protect the printer from the input current.

When the breaker opens, all the operation of printer halts. Check the causes and take appropriate measures, then, push the button and reset the breaker.


Figure E-2 Breaker and Power Switch
3. Power Source Voltage Select Switch

A sliding switch for power source voltage selection is mounted on the power source circuit board on the rear right of the printer. Set the switch according to a.c. input voltage, as follows:
(Refer to figures E-2 and E-3)

| Model | Power Source Voltage Select Switch Position | AC input voltage |
| :---: | :---: | :---: |
| 200 V |  | 220 V |
|  |  | $\begin{aligned} & 230 \mathrm{~V} \\ & 240 \mathrm{~V} \end{aligned}$ |

Figure E-3

## APPENDIX F DESCRIPTION OF FUNCTIONS

## 1. Character Sets

Any of the 10 kinds of character sets shown in Table E-2 can be selected by combination of the DIP switch SW1 $(5,6,7,8)$ on the operating panel circuit board.
Character and graphic allocations are as shown in Table F-1. The optional character set can be selected by replacing the standard character generator with a character generator containing the desired characters.

Table F-1

| Kind | 8 bits |  | 7 bits |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{b}_{8}=0$ | $\mathrm{~b}_{8}=1$ | SI side | SO side |
| Standard <br> (US ASCII <br> $\sim$ TRS-80) | Alphanumeric <br> symbols, <br> lower case | Graphic | Alphanumeric <br> symbols, <br> lower case | Graphic |
| Option | Characters <br> $(94)$ | Characters <br> $(94)$ | Characters <br> (94) | Characters <br> $(94)$ |

## 2. Data Receiving and Printing System

Conditions for printing start, carriage return and line change are as follows:
(1) CR only is received:
(2) LF only is received:
(3) Data and LF are received:
4) Data and CR are received:

Ignored.
Line spacing only.
The printer prints data, moves the paper up one line, and automatically returns the carriage.

As shown in the table below:

| DIP SW1 (2) on <br> operating panel | Operation |
| :---: | :--- |
| ON | After printing data, the printer moves the paper up <br> one line, and returns the carriage automatically. |
| OFF | After printing data, the printer returns the carriage <br> automatically, but does not move the paper up. |

(5) Data, CR , and LF are received:

As shown in the table below:

| DIP SW1 (2) on <br> operating panel | Operation |
| :---: | :--- |
| ON | After printing data, the printer returns the carriage <br> automatically, and moves the paper up two lines. |
| OFF | After printing data, the printer returns the carriage <br> automatically, and moves the paper up one line. |

(6) Data, LF , and CR are received:
(7) FF only is received:
(8) VT and channel numbers are received:
(9) Data and FF are received:
(10) Data, VT, and channel number are received:

The printer prints data, moves the paper up one line, and automatically returns the carriage.

Form feed

Vertical tab operation.
Form feed after printing

Vertical tab operation after data printing

Note: 1) Any code not listed in the character set table is ignored.
2) The number of data characters is 136 or less (10 CPI), or 163 or less ( 12 CPI), or 231 or less (17 CPI).
3) If the number of data characters is more than can be printed in a line, that is, 137 (10 CPI) or more, 164 (12 CPI) or more, or 232 (17 CFI) or more, the excess characters are automatically carried over to the next line. In the CQ mode, no automatic CR or LF is performed. (See paragraph 9.1.)

## 3. Vertical Tab Function

This printer has an electronic VFU (Vertical Format Unit), and 12 different formats are stored in the memory. (Cleared by power off.)

### 3.1 Vertical tab setting

The paper is fed to the tab position for the selected channel number according to the format loaded as mentioned in paragraph 3.2 as VT and channel number codes are received.

The channel numbers range from 1 to 12; the corresponding codes are shown in Table F-2.

Table F-2

| Channel No. | Code | Channel No. | Code |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 7 | 7 |
| 2 | 2 | 8 | 8 |
| 3 | 3 | 9 | 9 |
| 4 | 4 | 10 | $:$ |
| 5 | 5 | 11 | $;$ |
| 6 | 6 | 12 | $<$ |

Note: 1) If no format is loaded, or if the input channel number code is not listed in Table F-2, it is ignored.
2) If a channel number not stored in the memory is selected, it is igncied.

### 3.2 Format loading method

After switching the power on, input data in the format shown below, and set the tab.


DC4 is the start code, and ? is the end code.
Input as many SP codes as required for the desired number of lines up to the tab positions, and select channel numbers for the tab positions. Because of the RAM capacity, the set value m must be 54 or less and the number of line spacing $n$ must be 128 or less.

## Example of format


(1) Description of operation example 1

After printing 5 lines and receiving channel No. 1, the paper stops after spacing 4 (9-5) lines. Then, after printing 10 lines and receiving channel No. 3, the paper stops after spacing 35 (15$10+30$ ) lines.
(2) Description of operation example 2

After printing 5 lines and receiving channel No. 2, the paper stops after spacing $19(9-5+15)$ lines. Then, after printing 15 lines and receiving channel No. 1, the paper stops after spacing $17(30-15+2)$ lines.

### 3.3 Direct skip function

If any of the following function codes is received, the paper will be fed as many lines as the number selected.

ESC, VT, X1, X2
$X 1$ and $X 2$ are digits, 0 through 9 , representing the number of lines to be skipped. Any number from 0 to 99 can be selected by combination of $X 1$ and $X 2$.

## 4. Top of Form (TOF) Function

The top of from function refers to a function by which the printer, upon receiving the FF code after format length and top of form have been set as mentioned in paragraphs 4.1 and 4.2, rapidly feeds the paper up to the top of form of the next format.

### 4.1 Format length setting

Select a format length (page length) with the rotary switch on the operating panel or by function codes.
(1) Selection with the rotary switch

Any of the 10 format lengths shown in Table 4-2 can be selected.
(2) Selection-1 by function codes

A format length can be selected by inputting the following codes from the outside: ESC, F, X1, X2
X 1 and X 2 are digits, 0 through 9 , representing the number of lines per page. Any number from 0 to 99 can be selected by the combination of X1 and X2.
Note: 1) The rotary switch is ineffective if function codes are used for format length selection. The rotary switch is made effective again by applying the function codes ESC, F, O, and 0.
2) Immediately after power is switched on, the format length represented by the rotary switch position at that time is selected.
(3) Selection-2 by function codes

A format length can be selected by inputting the following codes from the outside: ESC, G, X1, X2. Setting is in 0.5 inch graduations.
$X 1$ and $X 2$ are digits, 0 through 9 . The number of lines per page is represented by combination of $\mathrm{X} 1 \times 0.5$ and $\mathrm{X} 2 \times 0.5$.

Note: $\quad$ The rotary switch is ineffective if function codes are used for format length selection. The rotary switch is made effective again by applying the function codes ESC, G, O, and 0 .

### 4.2 Top of form (TOF) position setting

The first printing line can be set by depressing the TOF SET switch after selection of a format length with the rotary switch mentioned as 4.1 or selecting the codes ESC and 5.

The paper position where the TOF switch is depressed or the specified codes are applied will be the top of form. Format length is also selected at the same time, and remains unchanged until the switch is depressed again or the specified codes are applied. Therefore, format length does not change only by switching the rotary switch.
Note: 1) Immediately after power is switched on, the format length represented by the rotary switch position at that time is selected, and the paper position at that time is the TOF position.
2) If current pitch is changed before a page is finished, the number of lines selected is counted by the number of line space before changing until the top of form position is reached. It is from the next page that the count of lines at the newly selected line space pitch begins.

## 5. Charaster Pitch Selection

The number of characters per inch in a line can be changed by using the following function codes (this applies to both characters and graphics, and character width changes proportionately):
(1) RS: 10 CPI
(2) GS: 12 CPI
(3) $\mathrm{FS}: 17 \mathrm{CPI}$

Character pitch is changed by the function codes after a line, not halfway in a line.
If the function codes for character pitch change come continuously in a line, the last function code is valid. (the code is valid from the next line).

## 6. Enlarged Character Printing Function

Double-width characters are printed when the following function code is received:
US: Double-width character printing start code
(1) 5 CPI (from 10 CPI )
(2) 6 CPI (from 12 CPI )
(3) 8.5 CPI (from 17 CPI$)$

Enlarged character printing can be stopped by an RS (for 10 CPI ), GS (for 12 CPI ), or FS (for 17 CPI ) code input.
Switching is possible by the unit of character, before the line is finished.
Note: 1) if 10 CPI is enlarged and released by the code GS (or FS), the next line will be 12 (or 17) CPI and the enlarged part of it will be 6 (or 8.5) CPI.
2) If enlarged character printing exceeds the line length, the last character of the line will automatically be printed in normal size. However, the enlarged mode continues until release code is applied.

## 7. Line Space Change

Line space is changed when the following continuous codes are received:
(1) ESC, 6: 6 LPI ( 0.166 inch line spacing)
(2) ESC, 8: 8 LPI ( 0.125 inch line spacing)
(3) ESC, \%, 9, X1: X1/144 inch line spacing

Note: 1) X1 is a binary number between 0 and 127.
2) If $X 1$ is specified as 0 , the $X 1 / 144$-inch line spacing is cancelled and the previous specification (6 LPI or 8 LPI) is applied instead.
8. APA Graphic Function
(1) APA printing with half dots (printing speed 100 CPS )

ESC \% 1 n1 n2

(2) APA printing without half dots (printing speed 120 CPS)

ESC \% 2 n 1 n 2


Note: 1) N1 and N2 are linked 2-byte binary numbers, and b8 is not used. (In case of 8 -unit code system, set 0 to bit 8.1 Refer to Table F-3 for maximum value setting.


Example: With 546 dot line

2) This function is ineffective in the incremental mode.
8.1 Correspondence between print head pin and interface data bit


### 8.2 Horizontal pitch

(1) Specification of ESC \% 1
(2) Specification of ESC \% 2


|  | $P$ |
| :--- | :---: |
| 10 CPI | $1 / 120$ inch |
| 12 CPI | $1 / 144$ inch |
| 17 CPI | $1 / 204$ inch |

### 8.3 Notes on APA graphic Function

(1) When APA printing of half dots ESC \% 1 is specified, avoid continuous printing at the minimum unit of horizontal pitch because printing density is reduced.

P

| 10 CPI | $1 / 60$ inch |
| :--- | :--- |
| 12 CPI | $1 / 72$ inch |
| 17 CPI | $1 / 102$ inch |



Undesirable printing


Desirable printing
(2) The maximum printing dot line numbers in the line including APA graphic are as follows.

Table F-3 Character-to-Character Space

| Printing pitch | ESC, \%, 1 | ESC, \%, 2 |
| :---: | :---: | :---: |
| 10 CPI | 1632 | 816 |
| 12 CPI | 1956 | 978 |
| 17 CPI | 2048 | 1024 |

(Dot line)

Computing method of dot line number in the line of mixed printing of ESC \% 1, ESC \% 2, and character codes.
a) Specification of ESC \% 1, n1 and n2 Dot line of $\mathbf{n 1 , n 2}$
b) Specification of ESC \% 2, n1, n2 Dot line of $n 1, n 2$ doubled
c) Character code: 12 dot lines per character
d) Extenstion character code: $\mathbf{2 4}$ dot lines per character

Example of data


Values given in the column for ESC \% 1 specification in Table F-3 are applied for the maximum printing dot line number for one line.

For the widths (number of dots) of CO mode characters, see Appendices I and J.
(3) Data exceeding the maximum printing dot line number is received and discarded, and the printing operation starts when printing start code (CR, LF ... etc.) is received.

9. Correspondence Quality (CQ) Printing Function

Only in this printing, proportional spacing is carried out.
ESC1 CQ printing is performed for the data after this command.
Note: 1) In the incremental mode, this function cannot be used.
2) $A$ line is printed by two passes (two-pass printing at a printing speed of 100 CPS ).
3) 96 types of data ( 20 H to 7 FH ) can be used.
9.1 Notes on CQ printing start
(1) The maximum number of characters per line in the CO mode is determined by the total widths (number of dots) of the individual characters (see Appendices I and J).
This total must not exceed the maximum number of dots per line shown in the ESC\%1 column of Table F-3
(2) Data exceeding the maximum printing dot line number is received and discarded, and the printing operation starts when printing start code (CR, LF, ... etc.) is received.

## 10. Downline Loadable CG Function

ESC $\underbrace{\text { \% A } C}$ " $C$ " is a code in the range of 20 H to 5 FH .
$\xrightarrow{\longrightarrow} A$ one-character pattern is loaded into the downline loadable CG. Designate pseudo $11 \times 7$ pattern data after the $C$.

Note: $\quad$ The pattern data is pseudo $11 \times 7$ data.
Example: The method to load the following pattern for character ' 2 ' is as follows:


Loading method:

ESC \% A $222 \mathrm{H} 41 \mathrm{H} 00 \mathrm{H} 7 \mathrm{FH} 00 \mathrm{H} 41 \mathrm{H} 00 \mathrm{H} 7 \mathrm{FH} 00 \mathrm{H} 41 \mathrm{H} 22 \mathrm{H} *$
Note: After 22H marked with * is loaded, the downline loadable CG mode is automatically cancelled.

## 11. Underline Printing Function

ESC C: Designates underline printing for the data after this command.
ESC D: Cancels underline printing for the data after this command.

## 12. Superscript/Subscript Printing Function

ESC J: Designates superscript printing for the data after this command.
ESC K: Cancels superscript printing for the data after this command.
ESC L: Designates subscript printing for the data after this command.
ESC M: Cancels subscript printing for the data after this command.
Note: 1) In the incremental mode, this function cannot be used.
2) Superscript printing and subscript printing cannot be designated at a time.
3) Emphasized printing cannot be designated.

## 13. Emphasized Printing Function

ESC H: Designates emphasized printing for the data after this command (with 1/144 inch line spacing).
ESC I: Cancels emphasized printing for the data after this command.

ESC T: Designates emphasized printing for the data after this command (overlap printing).
Note: 1) ESC $H$ and ESC T cannot be used at a time on a line.
2) In the incremental mode, this function cannot be used.

## 14. Incremental Printing Function

ESC O: Designates the incremental mode for the printing after this command.

ESC P: Cancels the incremental mode for the printing after this command.
Note: 1) The incremental mode cannot be designated or cancelled before a line is finished.
2) This function is not provided for $C Q, A P A$, and emphasized printing.
15. Horizontal Tab

Example of loading: ESC HT n1, n2, .... , nm CR
n 1 to nm are three-digit integers, and m is 16 or less.
ESC HT CR: HT memory clear
15.1 Horizontal tabulator
(1) Example of loading

| E | H | 0 | 1 | 0 | , | 0 | 2 | 0 | , | 0 | 3 | 0 | R |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{C}$ | T | 0 | 1 | 0 |  |  |  |  |  |  |  |  |  |

(2) Printing example in the case of receipt of following data after execution of (1) loading given above.

ABC $\underset{\mathrm{T}}{\mathrm{H}} 1234567890 \underset{\mathrm{~T}}{\mathrm{H}} \mathrm{ABC} \underset{\mathrm{F}}{\mathrm{L}}$ Received data (a)
A BC $\underset{\mathrm{T}}{\mathrm{H}} 123456789 \underset{\mathrm{~T}}{\mathrm{H}}$ A B C $\mathrm{F}_{\mathrm{L}}^{\mathrm{L}}$ Received data (b)

Character positions


## 16. Select/Deselect Function

When SEL LED is off, depressing of SEL switch or receipt of DCI code makes the SEL LED illuminate, and the printer is set in select (on-line) condition. Subsequent input data for the line are printed.
When SEL LED is on, depressing of SEL switch or receipt of DC3 code makes the SEL LED turned off, and the printer is set in deselect (off-line) condition, and ignores input code other than DCl code.
Note: 1) The printer is set in select (on-line) condition when power is supplied.
2) If the printer goes to deselect condition due to paper end, it can be returned to select condition simply by depressing the SEL switch after installing new paper.

## 17. Buffer Clear Function

When the CAN code is received, the data before CAN code of the line being received is cleared. But in the incremental mode, this code is ignored.
The function code is executed, but enlarged character printing is released, and the 7 bit shift is changed to the SI side.

## 18. DEL Code

The DEL code is either ignored or accepted for printing the mark DEL as selected with DIP switch SW1 (3), as shown in Table E-1. In case of the character set of TRS-80, the space for the DEL mark is left blank.
15.2 Notes on use of horizontal tabulator
(1) Specification of tabulator setting position on loading: n1< $\mathrm{n} 2 \ldots<\mathrm{nm}$
(2) Values up to the maximum printing number per line can be given to nm .
(3) When CQ printing or APA graphic printing is specified, HT specification given later to the line is ignored.
(4) Change of the character pitch specification requires re-setting of tabs.

## 19. Paper End Function

A microswitch detects the paper out when it is about 50 mm (2 inches) from the printing position, in case of rear paper feed.

In case of bottom paper feed, paper out is detected at about $\mathbf{2 5 ~ m m}$ (1 inch) from the printing position.
Due to input speed differences, etc., 3 to 5 lines can be printed after paper-end detection. After printing, a paper end signal is sent to the interface, the PAPER LED lights, and the printer stops.
PAPER LED is released when SEL switch is depressed after setting the paper.

## 20. Initial Reset Condition

The printer is set to the following initial conditions when the power is switched on, or as the I-PRIME signal is received from the parallel interface.

| Printing pitch: | 10 CPI |
| :--- | :--- |
| Line space pitch: | 6 LPI |
| Select/deselect: | Select (on-line) |

Page length: Set at the position designated by rotary switch

Table G-1 Table of Function Codes

| Command | Function code |  | Description |
| :---: | :---: | :---: | :---: |
|  | Decimal | Hexadecimal |  |
| LF | 10 | OA | Moves paper up one line. |
| CR | 13 | OD | Returns carriage. |
| FF | 12 | OC | Feeds paper to the first line of next form (TOF: top-of-form) |
| VT <br> 31H to <br> 3 CH | $\begin{gathered} 11 \\ 49 \text { to } \\ 60 \end{gathered}$ | $\begin{gathered} 0 B \\ 31 \text { to } \\ 3 C \end{gathered}$ | Feeds paper to tab position of same channel number as set in VFU. |
| HT | 9 | 09 | Take space up to the next HT position |
| BS | 8 | 08 | Take one character backspace. Valid in the incremental mode only. |
| DC1 | 17 | 11 | Sets the printer in select (on-line) condition. |
| DC3 | 19 | 13 | Releases the printer from select condition, and sets it in deselected (off-line) condition. |
| DC4 | 20 | 14 | Loads tab position in VFU. |
| RS | 30 | 1E | Designates 10 CPI . |
| GS | 29 | 1D | Designates 12 CPI . |
| FS | 28 | 1 C | Designates 17 CPI . |
| US | 31 | 1F | Designates wider characters. |


| Command | Function Code |  | Description |
| :---: | :---: | :---: | :---: |
|  | Decimal | Hexadecimal |  |
| So | 14 | OE | Shifts out character set in case of 7-bit code. |
| SI | 15 | OF | Shifts in character set in case of 7-bit code. |
| CAN | 24 | 18 | Clears buffer. Invalid in the incremental mode. |
| ESC $\cdot 0$ | $27 \cdot 48$ | 1B 30 | Designates the ordinary character generator. The printer turns into this mode when the power is turned on or the I-PRIME signal is received. |
| ESC 1 | $27 \cdot 49$ | $1 \mathrm{~B} \cdot 31$ | Designates the character generator for CQ. |
| ESC $\cdot 2$ | $27 \cdot 50$ | 1B 32 | Designates the character generator for downline loadable character generator. |
| ESC $\cdot 5$ | 27-53 | 1B $\cdot 35$ | Set TOF (first line of printing). |
| ESC $\cdot 6$ | $27 \cdot 54$ | 1B $\cdot 36$ | Designates 6 LPI. |
| ESC $\cdot 8$ | 27-56 | 1B-38 | Designates 8 LPI . |
| ESC $\cdot \mathrm{C}$ | $27 \cdot 67$ | 1B. 43 | Attaches an underline to the characters after this command. |
| ESC• D | $27 \cdot 68$ | 1B. 44 | Prints the characters after this command without underline. |

Table G-1 (con.)

| Command | Function code |  | Description |
| :--- | :---: | :---: | :--- |
|  | Decimal | Hexadecimal |  |
| ESC $\cdot \mathrm{F} \cdot$ <br> 0.0 to <br> 9.9 | $27 \cdot 70$ <br> $48 \cdot 48$ to <br> $57 \cdot 57$ | $1 \mathrm{~B} \cdot 46$ <br> $30 \cdot 30$ to <br> $39 \cdot 39$ | Designates the number of lines <br> per page length. |
| ESC $\cdot \mathrm{G}$ <br> 0.0 to <br> 9.9 | $27 \cdot 71$ <br> $48 \cdot 48$ to <br> $57 \cdot 57$ | $1 \mathrm{~B} \cdot 47$ <br> $30 \cdot 30$ <br> $39 \cdot 39$ | Designates the length of line <br> spacing per page. <br> The length is $\mathrm{N} / 2$ inches. |
| ESC $\cdot \mathrm{H}$ | $27 \cdot 72$ | $1 \mathrm{~B} \cdot 48$ | Designates emphasized printing <br> for the characters after this com- <br> mand (with $1 / 144$ inch line <br> spacing). |
| ESC $\cdot$ I | $27 \cdot 73$ | $1 \mathrm{~B} \cdot 49$ | Cancels emphasized printing for <br> the characters after this command |
| ESC $\cdot \mathrm{J}$ | $27 \cdot 74$ | $1 \mathrm{~B} \cdot 4 \mathrm{~A}$ | Designates superscript printing <br> for the characters after this com- <br> mand. |
| ESC $\cdot \mathrm{K}$ | $27 \cdot 75$ | $1 \mathrm{~B} \cdot 4 \mathrm{~B}$ | Cancels superscript printing for <br> the characters after this com- <br> mand. |
| ESC $\cdot$ L | $27 \cdot 76$ | $1 \mathrm{~B} \cdot 4 \mathrm{C}$ | Designates subscript printing for <br> the characters after this com- <br> mand. |
| ESC $\cdot \mathrm{M}$ | $27 \cdot 77$ | $1 \mathrm{~B} \cdot 4 \mathrm{D}$ | Cancels subscript printing for <br> the characters after this com- <br> mand. |


| Command | Function code |  | Description |
| :---: | :---: | :---: | :---: |
|  | Decimal | Hexadecimal |  |
| $\begin{aligned} & \mathrm{ESC} \cdot \mathrm{~N} \\ & \mathrm{n} \end{aligned}$ | $\begin{array}{r} 27 \cdot 78 \\ 1 \text { to } 11 \end{array}$ | $\begin{gathered} 1 B \cdot 4 E \\ 01 \text { to } 0 B \end{gathered}$ | Designates the number of char-acter-to-character spaces for dot expansion line. " $n$ " is a binary number of max. $11\left(\mathrm{OB}_{\mathrm{H}}\right)$. |
| ESC - V | $27 \cdot 86$ | 1B - 56 | Designates single CSF exhaust. |
| ESC. S | $27 \cdot 83$ | 1B-53 | Designates single CSF inhalation. |
| ESC. T | $27 \cdot 84$ | 1B. 54 | Designates emphasized printing for the characters after this command (without 1/144 inch line spacing). |
| $\begin{aligned} & \text { ESC } \cdot \% \cdot 1 \\ & \text { n1 } \cdot n 2 \end{aligned}$ | $\begin{gathered} 27 \cdot 37 \cdot 49 \\ \mathrm{n} 1 \cdot \mathrm{n} 2 \end{gathered}$ | $\begin{gathered} 1 \mathrm{~B} \cdot 25 \cdot 31 \\ \mathrm{n} 1 \cdot \mathrm{n} 2 \end{gathered}$ | Designates start of full graphic printing with half dots. " n 1 " and " n 2 " are the numbers of graphic codes. |
| $\begin{aligned} & \text { ESC } \cdot \% \cdot 2 \\ & \mathrm{n} 1 \cdot \mathrm{n} 2 \end{aligned}$ | $\begin{gathered} 27 \cdot 37 \cdot 50 \\ n 1 \cdot n 2 \end{gathered}$ | $\begin{gathered} 1 \mathrm{~B} \cdot 25 \cdot 32 \\ \mathrm{n} 1 \cdot \mathrm{n} 2 \end{gathered}$ | Designates start of full graphic printing without half dots. " n 1 " and " n 2 " are the numbers of graphic codes. |
| $\begin{aligned} & \text { ESC } \cdot \% \cdot 9 \\ & \text { n3 } \end{aligned}$ | $\begin{gathered} 27 \cdot 37 \cdot 57 \\ \text { n3 } \end{gathered}$ | $\begin{gathered} 1 B \cdot 25 \cdot 39 \\ n 3 \end{gathered}$ | Designates line spacing of $1 / 144$ inch multipled by " $n 3$." n3 127 |
| $\begin{aligned} & \mathrm{ESC} \cdot \% \cdot \mathrm{~A} \\ & \mathrm{C} \end{aligned}$ | $\begin{gathered} 27 \cdot 37 \cdot 65 \\ C \end{gathered}$ | $\begin{gathered} 1 \mathrm{~B} \cdot 25 \cdot 41 \\ \mathrm{C} \end{gathered}$ | Loads a one-character pattern into the downline loadable CG. " C " is a code in the range of $\wedge 20$ to $\wedge 5$ F. |

Table G-1 (con.)

| Command | Function code |  | Description |
| :--- | :---: | :---: | :--- |
|  | Decimal | Hexadecimal |  |
| ESC $\cdot \mathrm{VT} \cdot$ <br> 0.0 to <br> 9.9 | $27 \cdot 11$ <br> $48 \cdot 48$ <br> to $57 \cdot 57$ | $1 \mathrm{~B} \cdot 0 \mathrm{~B}$ <br> $30 \cdot 30$ to <br> $39 \cdot 39$ | Directly skips as many as the <br> designated number of lines. |
| ESC $\cdot \mathrm{HT}$ <br> $\mathrm{n} \cdot \mathrm{CR}$ | $27 \cdot 9$ | $1 \mathrm{~B} \cdot 09$ <br> $\mathrm{n} \cdot 13$ | Sets a tab in the HT memory. |
| ESC $\cdot \mathrm{O}$ | $27 \cdot 79$ | $1 \mathrm{~B} \cdot 4 \mathrm{~F}$ | Designates incremental printing <br> for the characters after this com- <br> mand. |
| ESC $\cdot \mathrm{P}$ | $27 \cdot 80$ | $1 \mathrm{~B} \cdot 50$ | Cancels incremental printing <br> for the characters after this com- <br> mand. |

Cautions on printing mode selection:

1. A dot expansion line means on-line data stored as dot patterns in the 2K-byte RAM when the line includes CQ characters or APA printing.
2. Refer to Table F-3 for the number of printable dots of a dot expansion line.
3. A line including CO characters of full graphic printing (with half dots) is printed only in the forward direction at a printing speed of 100 CPS.
4. A line including full graphic printing (without half dots) is printed only in the forward direction at a printing speed of 120 CPS.
5. If emphasized printing, special graphic character printing, or superscript/subscript printing is designated, the printing direction becomes forward only.
6. If the incremental mode is designated, the printing direction becomes forward only, and emphasized printing, CQ character printing, superscript/subscript printing, and full graphic printing cannot be designated.
7. In superscript/subscript printing, emphasized printing cannot be designated.
8. Superscript/subscript printing designation and underline designation are reset every time the line is changed.
9. In a dot expansion line, horizontal tab cannot be set.
10. If character generator selection is erroneous, designation of printing mode is not guaranteed.

## APPENDIX H CHARACTER SETS

|  | b $8=0$ |  |  |  |  |  |  |  |  | b $8=1$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{\|l\|} \hline b 7 \\ b 6 \\ b 5 \\ \hline \end{array}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ 1 \\ 0 \end{array}$ | $\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \\ & 1 \end{aligned}$ | 1 1 0 | 1 1 1 |
| b4b3b2b1 | R C | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| 0000 | 0 |  |  | SP | 0 | （2） | P | （7） | P | － | $\downarrow$ |  |  |  | $\downarrow$ |  | 2 |
| 0001 | 1 |  | OCI | ！ | 1 | A | Q | a | q | － | 7 | 5 | 円 |  | T | $E$ | 円 |
| 0010 | 2 |  |  | ＂ | 2 | B | R | b | $r$ | － |  |  | 年 |  | 4 | $\underline{\square}$ | 年 |
| 0011 | 3 |  | DC3 | （1） | 3 | C | S | C | S |  |  | 7 | 月 |  |  | $=$ | 月 |
| 0100 | 4 |  | DC4 | \＄ | 4 | D | T | d | $\dagger$ |  |  |  | $日$ |  |  |  | 日 |
| 0101 | 5 |  |  | \％ | 5 | E | $u$ | e | $u$ |  |  |  | 時 |  |  |  | 時 |
| 0110 | 6 |  |  | a | 6 | F | V | $f$ | v |  | $!$ |  | 分 |  | I |  | 分 |
| 0111 | 7 |  |  | ， | 7 | G | W | g | w |  |  |  | 秒 |  |  | $\checkmark$ | 秒 |
| 1000 | 8 | BS | CAN | 1 | 8 | H | X | h | x | 1 | $\Gamma$ |  |  | － | $T$ | P |  |
| 1001 | 9 | HT |  | 1 | 9 | I | Y | 1 | y |  | 7 |  |  |  |  |  | $Y$ |
| 1010 | A | LF |  | ＊ | ： | $J$ | Z | j | $z$ | － | ， |  | $d$ |  |  |  | 1 |
| 1011 | 8 | VT | ESC | ＋ | ； | K | （3） | k | （8） |  | $\lambda$ |  | $\delta$ |  |  |  | $\delta$ |
| 1100 | C | FF | FS | ， | $<$ | L | （4） | 1 | （9） |  | $r$ |  | $\div$ |  | $\Gamma$ |  | $\div$ |
| 1101 | D | CR | GS | － | $=$ | M | （5） | m | （10） |  | 1 | $\bigcirc$ | $\pm$ |  | $\checkmark$ | $\bigcirc$ | $\pm$ |
| 1110 | E |  | RS | － | $>$ | N | （6） | n | （11） |  | ＊ |  |  |  | － |  | \％\％ |
| 1111 | F |  | US | 1 | ？ | 0 | － | $\bigcirc$ | DEL |  | $\bigcirc$ |  | SP | 4 | $\checkmark$ |  | SP |

Note：For TRS－80，even when the input code of＂DEL＂is input，it is processed as a space when printing．

| Language | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ． 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| US ASCII | \＃ | （1） | 1 | $\backslash$ | 1 | － |  | 1 | 1 | 1 | $\sim$ |
| BRITISH | f |  |  |  |  |  |  |  |  |  |  |
| GERMAN |  | § | Ä | Ö | Ü |  |  | ä | Ö | ü | B |
| FRENCH | f | a | － | c | § |  |  | é | ù | è | è |
| SWEDISH |  | É | Ä | Ö | $\AA$ | Ü | é | ä | Ö | å | ü |
| DANISH |  |  | $A E$ | $\Phi$ | A | U |  | æ | $\varnothing$ | à | ü |
| NORWEGIAN |  |  | $A E$ | $\Phi$ | Å |  | － | æ | $\varnothing$ | å |  |
| DUTCH | f |  |  | IJ |  |  |  |  | ij |  |  |
| ITALIAN | f | 5 | － | C | é |  | ù | à | ò | è | $i$ |
| TRS－80 |  |  | 1 | 1 | － | $\rightarrow$ |  |  |  |  | － |

Note：Differences among languages（Same as US ASCII if blank）

Figure H－1 Character Set（Standard 8 Bits）

|  | SI Side |  |  |  |  |  |  |  |  | SO Side |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \mathrm{b7} \\ & \mathrm{~b} 6 \\ & \mathrm{~b} 5 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & \hline 1 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & \hline 1 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 1 \\ & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \end{aligned}$ | 1 <br> 1 <br> 1 |
| b4b3 b2b1 | R ${ }^{\text {c }}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| 0000 | 0 |  |  | SP | 0 | （2） | P | （7） | p |  |  | ＝ | $\mathbf{x}$ |  | $1$ |  |  |
| 0001 | 1 |  | DCI | ！ | 1 | A | Q | 0 | q |  | DCI | $F$ | 円 |  | $T$ |  |  |
| 0010 | 2 |  |  | ＂ | 2 | B | R | b | r |  |  | 들 | 年 |  |  |  |  |
| 0011 | 3 |  | OC3 | （1） | 3 | C | S | c | s |  | DC3 | $\pm$ | 月 |  | $F$ |  |  |
| 0100 | 4 |  | DC4 | \＄ | 4 | D | T | d | $\dagger$ |  | DC4 |  | 日 |  |  |  |  |
| 0101 | 5 |  |  | \％ | 5 | E | $u$ | e | $u$ |  |  |  | 時 |  |  |  |  |
| 0110 | 6 |  |  | \＆ | 6 | F | v | $f$ | v |  |  |  | 分 |  | 1 |  |  |
| 0111 | 7 |  |  | ， | 7 | G | w | g | w |  |  |  | 秒 |  | 1 |  |  |
| 1000 | 8 | BS | CAN | 1 | 8 | H | $\times$ | n | x | BS | CAN | － |  |  | $\Gamma$ |  |  |
| 1001 | 9 | HT |  | ） | 9 | I | $Y$ | i | $y$ | HT |  |  |  |  | 7 |  |  |
| 1010 | A | LF |  | ＊ | ： | J | Z | j | $z$ | LF |  | ， | A |  | $L$ |  |  |
| 1011 | B | $V T$ | ESC | ＋ | ； | K | （3） | k | （8） | $V T$ | ESC |  | J |  | 1 |  |  |
| 1100 | C | FF | FS | ， | ＜ | L | （4） | 1 | （9） | FF | FS |  | $\div$ |  | $\Gamma$ |  |  |
| 1101 | D | CR | GS | － | $=$ | M | （5） | m | （1） | CR | GS | $\bigcirc$ | $\pm$ |  | 7 |  |  |
| 1110 | E | SO | RS |  | $>$ | N | （6） | n | （11） | So | RS | $\square$ |  |  | 4 |  |  |
| 1111 | F | SI | US | ／ | ？ | 0 | － | $\bigcirc$ | DEL | SI | US | $\cdots$ | SP | 4 | ） |  |  |

Note：For TRS－80 even when the input code of＂DEL＂is input，it is processed as a space when printing．

| Language | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| US ASCII | \＃ | ＠ | 1 | $\backslash$ | 1 |  |  | 1 | 1 | 1 | $\sim$ |
| BRITISH | f |  |  |  |  |  |  |  |  |  |  |
| GERMAN |  | § | Ä | Ö | Ü |  |  | ä | ö | ü | B |
| FRENCH | £ | à | － | 9 | § |  |  | é | ù | è | è |
| SWEDISH |  | E | Ä | 0 | A | Ü | é | ä | $\bigcirc$ | $\stackrel{3}{ }$ | ü |
| DANISH |  |  | $A E$ | $\Phi$ | A | Ü |  | æ | $\varnothing$ | å | ü |
| NORWEGIAN |  |  | AE | $\Phi$ | A |  | － | æ | $\varnothing$ | a |  |
| DUTCH | E |  |  | IJ |  |  |  |  | ij |  |  |
| ITALIAN | £ | $\S$ | － | c | é |  | ù | à | ò | è | $i$ |
| TRS 80 |  |  | 1 | 1 | － | － |  |  |  |  | － |

Note：Differences among languages（Same as US ASCII if blank）

Figure H－2 Character Set（Standard 7 Bits）

Table I-1 Table of Proportional Character Codes

| Hex code | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Char | SP | ! | " | \# | \$ | \% | \& | , |
| Width | 12 | 8 | 10 | 12 | 12 | 12 | 12 | 8 |
| Hex code | 28 | 29 | 2A | 2B | 2 C | 2D | 2E | 2 F |
| Char | 1 | 1 | * | + | , | - | . | 1 |
| Width | 8 | 8 | 10 | 10 | 8 | 10 | 8 | 10 |
| Hex code | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 |
| Char | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Width | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
| Hex code | 38 | 39 | 3A | 3B | 3 C | 3D | 3 E | 3 F |
| Char | 8 | 9 | : | ; | < | = | $>$ | ? |
| Width | 12 | 12 | 8 | 8 | 10 | 10 | 10 | 10 |
| Hex code | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
| Char | @ | A | B | C | D | E | F | G |
| Width | 12 | 12 | 12 | 11 | 12 | 12 | 12 | 12 |
| Hex code | 48 | 49 | 4A | 4B | 4C | 4D | 4E | 4F |
| Char | H | 1 | $J$ | K | L | M | N | 0 |
| Width | 12 | 8 | 12 | 12 | 12 | 12 | 12 | 12 |


| Hex code | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Char | P | 0 | R | S | T | U | V | W |
| Width | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
| Hex code | 58 | 59 | 5A | 5B | 5 C | 5D | 5E | 5 F |
| Char | X | Y | z | [ | 1 | ] | $\wedge$ | - |
| Width | 12 | 12 | 10 | 8 | 10 | 8 | 10 | 12 |
| Hex code | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 |
| Char |  | a | b | c | d | e | $f$ | g |
| Width | 8 | 12 | 12 | 12 | 12 | 12 | 10 | 12 |
| Hex code | 68 | 69 | 6A | 6B | 6C | 6D | 6E | 6 F |
| Char | h | i | j | k | 1 | m | $n$ | o |
| Width | 12 | 8 | 8 | 12 | 8 | 12 | 12 | 12 |
| Hex code | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 |
| Char | p | q | r | s | t | $u$ | $v$ | w |
| Width | 12 | 12 | 11 | 12 | 11 | 12 | 12 | 12 |
| Hex code | 78 | 79 | 7A | 78 | 7 C | 7 D | 7E | 7 F |
| Char | x | $y$ | $z$ | 1 |  | , | $\sim$ | DEL |
| Width | 12 | 12 | 10 | 8 | 8 | 8 | 10 | 12 |

Table I-2 Widths (Number of Dots) of Proportional Characters

| 8 dots |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Char | Hex code |  |  |
| $!$ | 21 | $\cdot$ | $2 E$ | 1 | $5 D$ | 1 | $7 B$ |  |  |
| , | 27 | $:$ | $3 A$ | $\cdot$ | 60 | 1 | $7 C$ |  |  |
| 1 | 28 | $;$ | $3 B$ | $i$ | 69 | 1 | $7 D$ |  |  |
| 1 | 29 | 1 | 49 | $j$ | $6 A$ |  |  |  |  |
| , | $2 C$ | 1 | $5 B$ | 1 | $6 C$ |  |  |  |  |


| 10 dots |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 dots |  |  |  |  |  |  |  |
| Char | Hex code |
| $\prime \prime$ | 22 | $<$ | $3 C$ | 1 | $5 C$ | $C$ | 43 |
| $*$ | $2 A$ | $=$ | $3 D$ | $\wedge$ | $5 E$ | $r$ | 72 |
| + | $2 B$ | $>$ | $3 E$ | $f$ | 66 | $t$ | 74 |
| - | $2 D$ | $?$ | $3 F$ | $z$ | $7 A$ |  |  |
| $/$ | $2 F$ | $Z$ | $5 A$ | $\sim$ | $7 E$ |  |  |


| 12 dots |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Char | Hex code |
| SP | 20 | (1) | 40 | 0 | 51 | g | 67 |
| \# | 23 | A | 41 | R | 52 | h | 68 |
| \$ | 24 | B | 42 | S | 53 | k | 6B |
| \% | 25 | D | 44 | T | 54 | m | 6D |
| \& | 26 | E | 45 | U | 55 | n | 6 E |
| 0 | 30 | F | 46 | V | 56 | - | 6 F |
| 1 | 31 | G | 47 | W | 57 | p | 70 |
| 2 | 32 | H | 48 | X | 58 | q | 71 |
| 3 | 33 | $J$ | 4A | Y | 59 | s | 73 |
| 4 | 34 | K | 4B | - | 5 F | $u$ | 75 |
| 5 | 35 | L | 4C | a | 61 | $v$ | 76 |
| 6 | 36 | M | 4D | b | 62 | w | 77 |
| 7 | 37 | $N$ | 4E | c | 63 | x | 78 |
| 8 | 38 | 0 | 4F | d | 64 | $y$ | 79 |
| 9 | 39 | P | 50 | e | 65 | DEL | 7F |

## APPENDIX J PROPORTIONAL CHARACTERS (VARIOUS LANGUAGES)

Table J-1 Table of Proportional Character Codes
(Various Languages)

| Hex code <br> Language |  | 23 | 40 | 5B | 5 C | 5D | 5E | 60 | 7B | 7 C | 7D | 7E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| US ASCII | Char <br> Width | $\begin{gathered} \# \\ 12 \end{gathered}$ | $\begin{aligned} & @ \\ & 12 \end{aligned}$ | $\begin{aligned} & \text { [ } \\ & 8 \end{aligned}$ | $10$ | $\begin{aligned} & 1 \\ & 8 \end{aligned}$ | $\left\lvert\, \begin{aligned} & \wedge \\ & 10 \end{aligned}\right.$ | 8 | $\begin{aligned} & 1 \\ & 8 \end{aligned}$ | $\begin{aligned} & 1 \\ & 8 \end{aligned}$ | $\begin{aligned} & 3 \\ & 8 \end{aligned}$ | $\sim$ |
| BRITISH | Char <br> Width | $\begin{array}{\|c\|} \hline \mathrm{f} \\ 12 \end{array}$ |  |  |  |  |  |  |  |  |  |  |
| GERMAN | Char <br> Width |  | $\begin{gathered} \hline \\ 10 \end{gathered}$ | $\begin{aligned} & \ddot{\mathrm{A}} \\ & 12 \end{aligned}$ | $\begin{aligned} & 0 \\ & 12 \\ & \hline \end{aligned}$ | $\begin{array}{\|c\|} \hline \ddot{1} \\ 12 \\ \hline \end{array}$ |  |  | $\begin{gathered} \text { ä } \\ 12 \end{gathered}$ | $\begin{array}{\|c} \text { ö } \\ 11 \end{array}$ | $\begin{aligned} & \text { ü } \\ & 12 \end{aligned}$ | B 12 |
| FRENCH | Char <br> Width | $\begin{gathered} \mathrm{f} \\ 12 \end{gathered}$ | $\begin{gathered} \mathrm{a} \\ 12 \end{gathered}$ | 8 | $\begin{gathered} c \\ 12 \end{gathered}$ | $\begin{gathered} \S \\ 10 \end{gathered}$ |  |  | $\begin{aligned} & \text { é } \\ & 12 \end{aligned}$ | $\begin{gathered} \text { ù } \\ 12 \end{gathered}$ | $\begin{aligned} & \mathrm{è} \\ & 12 \end{aligned}$ | ê |
| SWEDISH | Char <br> Width |  | $\dot{E}$ $12$ | $\begin{aligned} & \ddot{A} \\ & 12 \end{aligned}$ | $\begin{gathered} \hline \text { Ö } \\ 12 \end{gathered}$ | $\begin{gathered} \AA \\ 12 \end{gathered}$ | $\begin{gathered} \ddot{U} \\ 12 \end{gathered}$ | $\begin{array}{\|c\|} \hline \mathrm{e} \\ 12 \\ \hline \end{array}$ | $\begin{array}{l\|l\|} \hline a \\ 12 \end{array}$ | $\begin{array}{\|c\|c} 0 \\ 11 \end{array}$ | $\begin{gathered} \mathrm{a} \\ 12 \end{gathered}$ | ü 12 |
| DANISH | Char Width |  |  | $\begin{aligned} & A \in \\ & 12 \end{aligned}$ | $\begin{aligned} & \hline \Phi \\ & 12 \end{aligned}$ | $\begin{aligned} & \AA \\ & 12 \end{aligned}$ | $\begin{gathered} \ddot{u} \\ 12 \end{gathered}$ |  | $\begin{aligned} & \text { æ } \\ & 12 \end{aligned}$ | $\begin{gathered} \varnothing \\ 12 \end{gathered}$ | $\begin{array}{\|l\|} \hline \mathrm{a} \\ 12 \\ \hline \end{array}$ | ü |
| NORWEGIAN | Char <br> Width |  |  | $\begin{aligned} & A E \\ & 12 \end{aligned}$ | $\begin{aligned} & \Phi \\ & 12 \end{aligned}$ | $\begin{aligned} & \AA \\ & \hline 12 \end{aligned}$ |  | 8 | $\begin{aligned} & \text { æ } \\ & 12 \end{aligned}$ | $\begin{gathered} \varnothing \\ 12 \end{gathered}$ | $\begin{gathered} \mathrm{å} \\ 12 \end{gathered}$ |  |
| DUTCH | Char <br> Width | $\begin{gathered} \mathrm{E} \\ 12 \end{gathered}$ |  |  | IJ |  |  |  |  | ij 12 |  |  |
| ITALIAN | Char <br> Width | $\begin{gathered} \mathrm{f} \\ 12 \end{gathered}$ | $\begin{gathered} \hline \\ 10 \\ \hline \end{gathered}$ | 8 | c 12 | $\begin{gathered} \text { é } \\ 12 \end{gathered}$ |  | $\begin{aligned} & \hline \dot{\mathrm{u}} \\ & 12 \end{aligned}$ | à | ò | è | i |

Table J-1 con.

| Hex code Language |  | 23 | 40 | 5B | 5 C | 5D | 5 E | 60 | 7B | 7C | 7D | 7E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Equivalent to ASCII | Char Width |  |  | 1 10 | 1 10 | $12$ | $\mid 12$ |  |  |  |  | - |
| JIS (with graphic) | Char Width |  |  |  | $*$ 12 |  |  |  |  |  |  | - 12 |
| JIS (without graphic) | Char <br> Width |  |  |  | $*$ 12 |  |  |  |  |  |  | - 12 |
| Equivalent to JIS | Char Width |  |  | 1 | 1 <br> 10 | - | $\left\lvert\, \begin{aligned} & - \\ & 12 \end{aligned}\right.$ |  |  |  |  | - |

Note: 1) Same as US ASCII if blank.
2) For the ASCII and JIS models, DEL (hex code: 7F) is processed as SP when printing.

Table J-2 Widths (Number of Dots) of Proportional Characters (Various Languages)

| 8 dots | 10 dots | 11 dots | 12 dots |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Char | Char | Char | Char |  |  |  |  |  |  |
| i | 1 | O | * | Ė | A | £ | è | æ | - |
| . | 1 | ö | Ä | è | $\Phi$ | - | é | $\varnothing$ | $\rightarrow$ |
|  | § |  | $\AA$ | Ü | IJ | ä | ù | ij |  |
|  |  |  | à | 0 | c | å | ü | B |  |

## APPENDIX K PRINTING FORMAT



Note: 1) By mounting the tractor feed unit, sprocket paper ranging from 76.2 mm (3 inches) to 406.4 mm (16 inches) wide can be used.
2) L: Multiple of 25.4 mm (1 inch)

A: Leave 16.9 mm (or 4 line spaces at 6 LPI) blank before and after the perforations to avoid being affected by the perforations.
B: $\quad 25.4 \mathrm{~mm}$ (1 inch)
12.7 mm ( 0.5 inch) is also possible for paper 381 mm (15 inches) wide or less.
3) C: Line space of $4.23 \mathrm{~mm}(6 \mathrm{LPI})$ and 3.18 mm ( 8 LPI) can be selected.

## 4) Ream

a) One-part paper: 45 to 55 kg
b) Multiple-part paper
-Carbon-lined paper and pressure-sensitive paper with ream of 30 to $34 \mathrm{~kg}\left(35\right.$ to $\left.40 \mathrm{~g} / \mathrm{m}^{2}\right)$ can be used for up to 4 sheets, including the original. With fixed pin platen, up to 3 sheets can be used.
-Interleaf paper less than $45 \mathrm{~kg}\left(52 \mathrm{~g} / \mathrm{m}^{2}\right)$ per ream can be used for up to 3 sheets, including the original.
$\bullet /$ Interleaf paper with ream of $30 \mathrm{~kg}\left(35 \mathrm{~g} / \mathrm{m}^{2}\right)$ can be used for up to 4 sheets, including the original. This is applicable when the tractor unit is used.
5) When fastening multiple-part paper, use adhesive spots or paper staples along both edges. Make sure that carbon copies are uniformly pasted and free of wrinkles.
6) The thickness of multiple-part paper must be 0.28 mm or less.
7) Right margin sprocket holes may be horizontally oval.


Unit: mm

Note: 1) Standard paper size: $\quad$ A4 $(210 \times 297 \mathrm{~mm})$
2) Paper width W: From 210 to 381 mm (15 inches)
3) Paper length L: Less than 300 mm
4) Ream:
5) Line space pitch $C$ : $\quad 4.23 \mathrm{~mm}(6 \mathrm{LP})$ and
3.18 mm ( 8 LPI ) selectable
6) Paper must be free of folds and bends.
7) Multiple-part paper cannot be used.

SINCE 1881
electric industry company, Ifd

## American Sales/ Okidata Corporation

 Mt. Laurel, New Jersey 08054, U.S.A. Tel: 609-235-2600 Telex: (25) 710-897-0792
European Sales/ Oki Electric Europe GmbH: Service Support Emanuel-Leutze str. 8 Centre: 4000, Düsseldorf 11 West Germany Tel: (0211) 592031
TLX: 8587218 OKI D

For further information, please contact;

