








































































































































































































































































































































































































































































- �~�-�.�,�,�- "-

All operations are managed by the Input/Output Microprocessor· �(�I�o�M�-�)�~�-�=�-�~�~�.�.�:�l�:�:�B�~�r�a�;�r�n�o�v�e�s� 
are performed on a cycle steal basis transparent to the CPU. The CPU is 
interrupted upon completion of an I/O operation. Commands are issued via two 
paths: 

The first are commands to the 10M that define: 

1. The area in memory which contains the SOURCE data. 

2. The area in memory that should receive the DESTINATION data. 

3. The conditions that will terminate the move commands. 

Instructions to the 10M are issued by storing the commands in reserved memory 
locations. The 10M provides I/O progress information to the CPU with regard to 
both the source and destination data. The address of the last character read from 
the SOURCE and the last character wri tten in the DESTINATION is stored in 
separate memory locations; both are available for reference by the CPU. 

The second command path utilizes the CPU I/O bus to select the Word Move 
Controller, or to interrogate the controller status. 

�"�c�o�~�I�~�i�~�f�i�~�n� "·0"£ "a, �~� mo've'"\:ommand is' 'sign'alled to· the "CPU �.�'�S�Y�~�§�~�t�'�H�A�·�g�·�'�"� a "status flag and 
issuing an interrupt request. 

The following description assumes Ontel standard assignment for the Word Move 
Controller as Device Number 4 on the 10M. 

10M COMMANDS 

Memory locations 0820 through 0826 are re'served for use by the 10M as SOURCE 
commands and locations 0860 through 0866 as DESTINATION" �c�o�~�m�a�n�d�s�.� 

\ SOURCE DESTINATION 

7- 6 5 4 3 2 1 0 7 6 5 4 3 2 

0820 SOSL 0860 

0821 SOSH 0861 

0822 saCL 0862 

0823 SOCH 0863 
-"-

0824 SOTL 0864 

082S SOTH 0865 

0826 SOTC 0866 

6E-1-2 

1 0 

DESL 

DESH 

DECL 

DECR 

DETL 

DETH 

DETC 

Addressing 
Commands' 

Terminating 
Commands 



Locations 0820/0860 - 0823/0863 define the :Addressing comrria-naS~ah(r~c0824/0864 -
0826/0866 the Terminating commands as described below: 

ADDRESSING COMMANDS 

SOSL-LOCA TIaN 0820 

SOSH-LaCA TION 0821 

DESL-LOCA TION 0860 

DESH-LOCA TION 0861 

Source 'Data Starting Address (Low) 

Source Data Staring Address (High) 

Destination Data Staring Address (Low) 

Destination Data Starting Address (High) 

The first character to be transferred from the Source will be at address 
(SaSH) (SOSL) +1 and the first character to be transferred into the Destination 

will be at addre.·ss· (DESH)- - (DESL) .-+.1 -9r ther-eafter as the conditions indi~ate._ 
~ . . . .. '\.. . ' . 

The Source and Destination addressing commands are independent of each other~ The 
programmer may set them' to any memory location, as well as to overlapping 
addresses. 

SOCH-LOCA TION 0823 Source Current Address (High) 

DECL-LOCA TION 0862 Destination Current Address (Low) 

DECH-LOCA TION 0863 Destination Current Address (High) 

SOCL, SOCH, DECL and DECH registers are reserved for use by the 10M to provide 
progress information regarding the I/O cycle.' (SOCL) (SOCH) points to the last 
location from which Source data has been read. (DECL) (DECH) points to the 
last location in the Destination to which data has been transferred. These registers 
are initialized by the 10M at the start of a Print or Word Wraparaound command. 

TERMINATING COMMANDS 

SOTL-LOCA TION 0824 

SOTH-LOCA TlaN 0825 

Source Data Terminating Address (Low) 

Source Data Terminating Address (High) 

Bit 7 = 1 Move data until the end of the buffer 
is reached 
Bi t 7 = 0 Move da ta until a terminating 
character is encountered or,. if .. no terminating 
character is found, to the end of the buffer. 

6E-1-3 



DETL-LOCA TION 0864 

DETH-LOCA TION 0864 

SOTC-LOCA TION 0826 

DETC-LOCA TION 0866 

Destination Data Terminating Address-,-(LQW) 
. ~. _ .... ~.- --. -.-~-.- .~':~.-~ '/~ .. ~.~ .".-.- -.' _. -: ~ :::-~ " .. -.·::~~~~~=~~~:f~·~"';-·~--~·-·-.~~~~ -

Destination Data Terminating Address (High) 

Bit 7 = 1 Move data until the end of the buffer 
is reached. 
Bit 7 = 0 Move data until a terminating 
character is encountered or, if no terminating 
character is found, to the end of the buffer. 

Source Terminating Character. If Bit 7 of DETH 
is Low and the character written to the 
destination channel matches DETC, the command 
will be terminated. 

Destination Terminating Character. If Bit 7 of 
DETH· is' Low and the . character : wri:tt~n tp . .the 
destination channel matches DETC, the command 
will be terminated. 

The programmer may set termInatIng conditions for the Source Channel that are 
ipdep~n.dent o~ .. the.t~rminating ~ondl~ion 9f tDe Destination Channel. The commands 

, 'wl{r'''terhlirYA1;e''·<lfrtn·redhifeiY·'· ·arter.':\ ~t·~e:fl1lil1atii)g\:con:di{~orf '-is" ~n~oui1'tered:'~: if} ' .. ei th~.F c~.t!le . 
Source Channel or the Destination Channel .3.:nd. a CPU. Interrupt Request wil,1 be set .. 

. . 

CPU I/O BUS COMlv~ANDS 

Commands to the Word Move Controller may be executed if it has been selected as 
the active I/O device. The controller will remain selected until a different I/O 
device selection is made. 

SELECT 

Command: 

Command Byte: 

SEL 

B4 

Selects the Word Move Controller for I/O operations. 

STOP 

Command: DVCL 

Command Byte: NONE 

Aborts any activity and clears' the controller. DVCL will set the Word Move 
Controller NOT BUSY flag and clear SOURCE TERMINA TION.~and. DESTINATION '
TERMINATION flags. It will also clear the auxiliary and secondary buffers. 

6E-1-4 

I 
l 
I. 



STATUS 

Command: 

Status Byte: 

Bit 7 
Bit 6 
Bit 5 

Bit 4 

Bit 3 
Bit 2 
Bit. 1 
Bit 0 

IFL 

NOT BUSY 
PRINTER SELECTED 
SOURCE TERMINATION (Move command terminated 
on Source Termination Commands) 
DESTINATION TERMINATION (Move command 
terminated on Destination Termination Commands) 
Reserved 
Reserved 
PRINTER NOT READY 
PRINTER- ·BUS·Y -executiAg a ·print operation: 

Loads the accumulator with an operational status byte from. the Word Move controller. 

Command: 

Command Byte: 

RIGHT MARGIN 

Command: 

Command !?yte: 

OUT 

Eight bi t binary number which defines the location 
of the left text margin by specifying the first 
all owable data position on the line. The first 
position on the line is HEX 00. 

OFL-

Eight bi t binary number which defines the location 
of the right text margin by specifying the position 
following the last allowable data position on the line. 

6E-l-' 



MOVE PARAMETERS 

Command: 

Bit 7 

Bit 6, Bit 5 

Bit 6 

0 
0 
1 

, Bit 4 

Bit 3 

Bit 2 

Bit 1 

COM2 

o - Word Wrap 
1 - No Word Wrap 

Define the page width by specifying the number of data 
positions per line as follows: 

Bit 5 Posi tions Per Line 

o 
1 
o 

80 
132 
160 

o " ,Durir:g word wrap, fill with, NULL (Hex 00) from the 
last 'data w6rd to the end of' 'the line a:na from' the' ' 
beginning of the next line to the position preceding 
the left margin. 

1 - During the word wrap, fill with NULL (Hex 00) from 
, ,~Q~"/J~st..,, .p,q1.~,~.:·V{.gr g, ,JO'. ,.tJ}~ ;.:- ri~n.}.~,. fOa.:rg~.Q.:;.:~fl9~;,J .. ~.~P. ,·~~,B:· 

t.<? '.the. ,feIt, .ma.rg'in ,on t~e.: ~ollo~i.ng line~,: . 'pat'a 
. prevIously' entered 'In the' sKip'perl 'area' are' naf" ciff'ecte'd •. 

o - The terminating conditions for the Source are as given 
by the 10M commands. 

1 - In addition to the 10M terminating conditions for the 
Source, data codes Hex 10 1 F and Hex 90 ,to Hex 9F 
will act as terminating codes. 

o - The terminating conditions for the Destination are as 
given by the 10M commands • 

., 
1 - In addition to the 10M terminating conditions for the 

Destination, data codes Hex 10 to Hex IF and Hex 90 
to Hex 9F will act as terminating codes. 

o - The conditions for word delimiter area as specified in 
the section on Move Data With Wraparound 

1 - In addition to the standard word delimiter, all data 
codes Hex 10 to Hex IF and Hex 90 to Hex 9F will 
act as word delimiter. 

6E-1-6 



PRINT 

Command: COMl 

Command Byte NONE 

Transfers data from the source location in memory to the Printer. The data transfer 
starts at the Source Data Starting Address + 1 and ends when the last data transfer 
has been performed as defined by the Source terminating conditions. The Destination 
Channel, is not affected. For a detailed description of the Print Command see 
Section 6D of the OP-l Reference Manual. 

MOVE COMMANDS 

Command: COM3 

Command' Byte: ., . See Below 

These commands move data from a Source to a Destination in memory. Two 
auxiliary buffers are used by this command. The operation is illustrated in Figure 
6E-l-1. 

MEMORY 

WORD 
DETECTOR 

Figure 6E-l-l 

PO'SITION 
ANALYSER 

SELECT OR 

The Move command is also controlled by the boundary conditions set in the Left 
Margin, Right Margin and Move Parameter commands. 

MOVE DATA WITH WRAPAROUND (Move Parameter Bit 7 = 0) 

Command Byte: Eight bit binary number which specifies the position on the 
text line where the Destination starts. The first position 
on the line is Hex 00. 

6E-1-7 



This command is designed to move data from a Source to a Destination in memory 
while maintaining word integrity on the display. The operation starts by filling the 
256 byte auxiliary buffer via the Source Channel. A t_ the~ _ c:ompletion of this 
operation, a word is passed into the 64 byte secondary buffef'ano--fne+*'-illi'Xiliary buffer 
is kept full in harmony with this transfer. After a word has been accumulated, the 
word is passed to the Destination Channel for storage. The command execution 
sequence is illustrated in Figure 6E-1-2. New MOVE DATA WITH WRAPARAOUND 
command should be is~ued only after a DVCL command. 

The operation of the command is governed by the following rules: 

1. - A word is defined as any byte string that is followed by a space (ASCII 20). 
The space is considered part of the word. In the case of multiple spaces, only 
the last space is the word delimiter. (All spaces, including the last space are 
included as part of the word). As a factory installed option, the Word Move 
Controller can be specified to treat each .space as a word delimiter rather than 
just the last space of multiple spaces. 

2. Nulls (ASCII 00) are deleted .from Source da.ta. 

3. Word storage operation by the Destination channel will take place only if the 
word (including all trailing spaces) will fit into the text line as defined by the 
Right Margin setting. If a word is too long and does not fit, the balance of the 
text line will be filled with nulls to the right margin an~ the word _will, ,be. s~0~e9 _ 
in the ne~.t .'.tfi;;XJ .. li~e·.:,.~t,~~r.~tJr.l.g,:"at:" . .the';,left~·'.h1:drgin_ ,:s.etting:.;:··':.NuHs,:\vil1-:~"··~rSd: 'De':" 
written from" the" right margin of the first line to the left margIn of the second 
line if Move Parameter Bit 4 is zero. 

4. If a Source termination occurs during execution of this operation, the controller 
will be halted and bit 5 of the status byte will be set. All the data in the 
buffers will remain unchanged. If a new Source command is issued followed by 
another Move Data wi~h Wraparound command while bit 5 of the status word is 
set, the hal ted operation will be resumed using the new Source command and 
continuing with the previous destination "command. Similarly, if a Destination 
termination occurs during execution of this operation, it will be halted and bit 4 
of the status byte will be set. If new Destination commands are issued followed 
by a new Move Data with wraparound command while bit 4 of the status byte is 
set, the halted operation will be resumed using the new Destination command and 
continuing with the previous source commands. If there is still data in the FIFO, 
the data will be moved unconditionally .when the operation is resumed. These 
capabilities are especially useful when the Word Move Controller is used in 
association with some memory or data boundary condi tions such as end of 
memory, i.e. when a boundary is reached, the program will issue new commands 
to resume operation at a new memory location. 

5. The operation of this command is dependent upon at least one space code 
trailing every word and non-space code following the space codes. 

6. If the command byte of the MOVE WITH WRAPAROUND instruction specifi~~_ ~ 
position on the line that is outside of the text margins:=.:..- __ ::--, -

a. Between ~ Right Margin and end of line - data will be written starting at the 
Left Margin of the next line. 

b. Between start of line and Left Margin - data will be written starting at the 
specified position for that line only. 

,~ , ft 



7. Words longer than 64 bytes will be written on their text lines regardless of word 
integrity. The left and right margins will, ~_observed, h~~_~_~r~'~':~-:"'-:;t,! 

, ,. •• • • ::.~ -, -- - ,,- - ' p 

Words not greater than 64 bytes, but longer than the text line will be written on 
their text -lines only if the starting position is the left margin, otherwise the 
word will be written starting at the left margi~ of the next line. 

8. An INIT instruction will clear the Left Margin, Right Margin and Move 
Parameters to Hex 00. DVCL will not affect them. 

9. As a factory installed option, the detection of space and null can be extended to 
include tagged space (ASCII AD) and null (ASCII 80). 

MOVE DATA WITHOUT WRAPAROUND (Move Parameter Bit 7 = 1) 

Command Byte: NONE 

Moves data unconditionally from a Source to a Destination in men1ory. 
command is executed, the Word Move Controller reads a string of bytes 
source into the auxiliary buffers, providing an effective buffer length of 
Data are passed to the destination in groups of 64 bytes. The buffers are 
harmony with the storage operation in the destination. 

Operation CiLUers trom a rv~OVE WiTH ·W'RAPAR·dO·N·6-a§':·.fdUdWS:"' 

1- Left and Right margins are not detected or used. 
2- Word integrity is not maintained; all words are written to the 

Destination regardless of line ends. 
3- No data is deleted from the Source. 
4- No fill characters are written. 
5- Response to Terminati~n is handled in the following manner: 

When this-. 
from the 
320 bytes. 
refilled in 

If the Source Termination is detected during the execution of this command, no 
further transfers from the Source will occur (although the Source Current Address 
will increment) and any remaining data in the buffer will be automatically passed 
to the Destination channel for storage. Unless a Destination channel termination 
occurs, all the data that has been read from the 'source is passed to the 
Destination Channel and stored in memory. Status bit 5 and interrupt request 
will be set at the completion of this operation. -

If a Destination termination is detected, execution of this operation will be 
hal ted and interrupt request will set; no further transfers will occur and any 
remaining data in the buffers will be held unchanged. New Destination address 
commands can be issued and if another Move Data command is issued while 
status bit 4 is set, the operation that had previously terminated will resume using 
new Destination commands and continue with the previous Source commands and 
starting with the data left in the buffers. If bit 5 had been previously set, no 
transfer from the Source will take place. New Move data commands should be 
issued only after a DVCL has been issued. The command execution -sequence is 
illustrated in Figure 6E-1-3. 

6E-1-9 



SPECIAL OPTIONS 

The Word Move Controller can be specified to include one or both of the following, 
options in order to 'provide software compatibility with the Byte String Controller: 

1- The Fill character is SPACE instead of NULL and the word delimiter will be 
the first NULL or SPACE code following the word. The NULL or SPACE will be 
considered as part of the word. Multiple NULLS or SPACES following the 
delimiter will be deleted. 

2- The command for MOVE WITHOUT WORDWRAP will be a COM3 with a 
command byte of Hex 80. Care must be taken to insure that MOVE WITH 
WORDWRAP instructions do not have a command byte with bit 7 = 1. 

TIMING 

The timing is contingent of Source and Destination access operations performed for 
each command. The timing period is: 

INTERRUPT CONTROL 

Priority Level No.3 - Cycle is completed, i.e. one or both of the terminating 
conditions have been met. Identical to IFL status bit 7 (NOT BUSY). 

6E-I-IO 



INCREMEN'r 

EST.I",AnON AO::RESS 
,. S"f;oqE O~E. BY·IE 
FROU SECONOAPY 

BUFFER TO 
CESTIN"TIOIoi 

IHCIH"'[HT 'OU'!C( 
AOO'!ESS l REAO O"'E 
IYTE FROIooI UEuORY 

INTO SUfFER 

aE~IN" TION "C:O'lE 55 

'STCqE ONE NULL 

COOE INTO 

01;511"";10'" 

WITH NEW 

DESTINATION 

COt.lt.lAND 

CO~J COOjT,,,,uf 
WIT .. HEy" SOURC~ 

CouUAHO 

"c6~j'" " 
CONTINIJE 
WITH NiW 

1;E51'IN,,1;el'O 
CO"''''''NO 

INCREMENT 

DESTI~ATION 

AOORESS 

Move Data With Wraparound Command 
Execution Sequence 

(Sim plified) 
Figure 6E-1-2 

6E-l-l1 

NO 

IHCREuEHT 
DESTINATION "OOREIS 

, STORE A NUll 
(ODE "liTO 

0£5TI .... TION 



YES 

INCREMENT DESTINATION 

ADDRESS' STORE 
ONE BYi£ FROM 

NO 

INCREMENT SOURCE 

ADDRESS, READ ONE 

BYTE "FROM IotEMORY 

INTO BUFrER 

YES 

YES SETINT 
>-------~, STATUS~--~ 

BIT .. 

COM3-CONTINUE 

WITH NEW 

DESTINATION COMMANDS 

----<::) 

INHIBIT ALL 

FURTHER DATA 

INPUT TO BUfFER 

Move Data Without Wraparound Command 
Execution Sequence 

<Simplified) 

Figure 6E-1-3 

SE TINT 

& STATUS 

81 T I 



APPENDIX A: INSTRUCTIONS IN OPCODE ORDER 

HEX MACASM ASM80 
Opcode Mnemonic Mnemonic (f>eration 

00 NOP NOP No Operatio:" 
01 LXIB me wad Irrmediate bytes into oc 
02 STAX B A.@BC Store at (BC) 
03 INX B !NBC Increment OC 
04 INR B INB Increment B 
05 OCRB OCB Decrement B 
06 MVI B I.B wad ]mmediate byte into B 
07 RIC RLC Rotate A Left 
08 
09 DAD B ADBC Add BC to HL 
OA LDA.X B @BC.A wad byte at (BC) into A 
OB OCXB OCBC Decrement OC 
DC INR C IOC Increment C 
OD OCRC OCC Decrement C 
OE MVI C I.C wad Immediate byte into C 
OF' ROC RRG Rotate A Right 
10 
11 LXID I.DE Load Immediate Into DE 
12 5TAX D ' A.@DE Store A at (DE) 
13 INX D INDE Increlnent DE 
lA INR D IND Incr ement D -
1'5'~:- :OClt D- -OCIY. 'I),:k;:r, 0}fl~n.t . ~P:.; 
16:, MVI.P,. 1.D Loa~ TImmediate 'byte into D 
17 RAL :AAL 'ROtate A Left Thru' Carry- -
18 
19 DAD D ADDE Add- DE to HL 
1A ~D @DE.A wad byte at (DE) into A 
IB OCXD OCDE Decrement DE 
lC INR E lNE Increment E 
10 OCRE OCE Decrement E 
IE MVI E I.E. wad Immediate byte into E 
IF RAR RAR Rotate A Right Thru Carry 
20 RIM Read Interrupt Mask 
21 LXIH I.HL wad lnunediate byte into HL 
22 SHLD addr HL.@I Store HL at irorned. addr. 
23 INX H 'INHL Increment HL 
24 INR H INH Increment H 
25 OCRH OCH Decrement H 
26 MVIH I.H Load Lmmediate byte into H 
27 DM DAA. Decimal Adjust A 
28 
29 DAD H AIHL Add HI.. to HI.. 
2A IBLD addr @I.HL wad bytes at immed. addr. 

into HI.. 
2B rex H OCHL Decrement HL 
2C INR L INL Increment L 
2D OCRL OCL .. Decranent L lo-i ......... 

2E MVI L I.L IDad Immed iate byte into L 
2F 01A Qt1A Canp1anent A 
30 S1M Set Interrupt Mask 
31 LXI SP, I.SP Load Immediate bytes into SP 
32 STA Adr. A.@I Store Immed. addr. 

A-I 



HEX MACASM ASM80 
~ode Mnemonic Mnemonic Operation 

33 INX SP INSP Increment SP 

34 INR M· It-M Increment byte at (FIL) 

35 OCRM OCM Decrement byte at (HL) 
36 MVI M I.M Copy Immediate byte to (HL) 

37 STC src Set Carry Flag 
38 
39 DAD SP ADSP Add SP to HL 
]A LDA Mdr @I.A wad byte at irnmed. addr. into A 
3B OCX SP OCSP Decrement SP. 

3C INR A INA. Increment A 
3D OCR A OCA Decrement byte into A 
3E MVI A I.A wad Irrrrnediate To A 
3F CMC O1C Complement Carry Flag 
40 r!f)V B,B Copy B to B 

',41 l10V "B,C ·C.H Copy'.C to·B 
42 r!fJV B,D D.B Copy D to B 
43 MOV B,E E.B Copy E to B 
44 MJV B,H H.B Copy H to B 
45 MOV B,L L.B Copy L to B 

. 4.6 r!fJV B,M M.B ,wad byte at. (HL) into B 
::;:::~'~t '~a~h'B ;"1(' 'A';B~ :C6py··:1i:·:t::O.:-·B·~ 

.. 48' IDV C,S: B~ •. C Copy. B ):,0 ~ 
49 MOV e,c Copy C to C' 
4A r!fJV e,D D.C Copy D to C 
4B MOV C,E E.C Copy E to C 
4C OOV C,H H.C Copy H to C 
4D MOV C,L L.C Copy L to C 
4E 1!'IJV C,M M.C wad byte at (HL) into C 
4F MOV C,A A.C Copy A to C 
50 OOV D,B B.D Copy B to D 
51 MOV D,C ' C.D Copy C to D 
52 l!lJV D,D Copy D to D 
53 MOV D,E E.D Copy E to D 
54 WJV'D,H H.D Copy H to D 
56 MOV D,M M.D wad byte at (HL) into 0 

57 OOV D,A A.D Copy A to D 
58 MOV E,B B.E Copy B to E 
59 t!DV E,C C.E Copy C to E 
SA MOV E,D D.E Copy D to E 
5B WJV E,E Copy E to E 
5C MOV E,H H.E Copy H to E 
5D WJV E,L L.E Copy L to E 
5E MOV E,M M.E wad byte at (HL) into E 

SF f!{JV E,A A.E Copy A to E 
60 MOO H,B B.H Copy B to H 
61 t!DV H,C C.H Copy C to H 
62 MOV H,D D.H Copy D to H 
63 t!DV H,E E.H Copy E to H 

A-2 



HEX MACASM ASM80 
Ofx::ode Mnerronic Mnenonic Operation 

64 MOV H,H 
~~;:..';; -':.-.. -Copy H ~~to '·H~~~~;;'-;;::·--

65 IDV H,L L.H Cbpy L to H 
66 MOO H,M M.H Load byte at (HL) into H 
67 rov H,A A.H Copy A to H 
68 MOV L,B B.L Copy B to L 
69 IDV L,C C.L COpy C to L 
6A MOV L,D D.L Copy D to L 
6B rov L,E E.L Copy E to L 
6C MOV L,H H.L Copy H to L 
6D mv L,L 
6E MOV L,M M.L wad byte at (HL) into L 
6F rov L,A A.L Copy A to L 
70 MOV M,B B.M Store B at (HL) 
71 mv M,C C.M Store C at (HL) 

72 MOV M,D D.M Store D at (HL) 

·.73 ~V.f1,E E.M. Stor:e· E at .. .{~~). 
74 MOV M,H H.M Store H at (HL) 

75 MJV M,L L.M Store L at (HL) 
76 HLT HLT Halt 
77 r-'DV M,A A.M Store A at (HL) 

78 MOV A,B .B.A Copy B to A 
~·l9: ·Wf:j-"A",;C :~eJiA :Copy: -C:;:~<?< A-
7A t1QV A,D p.A. Copy D to A .. 
7B mVA,E E.A COpy E·t6 A 
7C MOV A,H H.A Copy H to A 
7D mv A,L L.A Copy L to A 
7E MOV A,M M.A wad byte at (HL) into A 

7F rov A,A Copy A to A 
80 ADD B ADB Add B to A 
81 ADDC AOC AddCtoA 
82 ADDD ADD Add D to A 
83 ADDE ADE Add E to A 
84 ADD H AIH Add H to A 
85 ADDL ADL Add L to A 
86 ADDM ADM Add Byte at (HL) to A 

87 ADD A ADA MdAtoA 
88 AOC B ACB Add B to A with Carry 
89 AOC C ACC Add C to A with Carry 
8A AOC D ACD Add D to A with Carry 
8a AOC E ACE Add E to A with Carry 
8C AOC H ACH Add H to A with Carry 
8D AOC L ACL Add L to A with Carry 
8E AOC M ACM Md Byte at (HL) to A w/Carry 

8F AOC A ACA Add A tq A with Carry 
90 SUB B SUB Subtract B from A 

91 SUB C sue Subtract C from A 
92 SUB 0 SUD Subtract 0 from A 

A-3 



~ 

HEX MACASM ASM80 
f 

Opcode Mnanonic Mr;lemonic Operation 
.-...... ~. _. 

93 SUB E SUE Subtract E from A 
94 SUB H SOH SUbtract H from A 
95 SUB L SOL Subtract L from A 
96 SUB M SUM SUbtract byte at (HL) fran A 
97 SUB A Subtract A from A 
98 SBB B SBB SUbtract B from A with Borrow 
99 SBB C SOC Subtract C from A with Borrow 
9A SBB D SBD SUbtract D fram A with Borrow 
9B SBB E SBE Subtract E from A with Borrow 
9C SBB H SBH SUbtract H from A with Borrow 
9D SBB L SBL Subtract L from A with Borrow 
9E SBB M SEM Subtract M from A with Borrow 
9F SBB A SBA Subtract A from A with Borrow 

. l\J) ·Pl-1A.: B: :ijq3. ~-:~,·~t~ ~ .. Al ANA C NOC 
A2 ANA D NDD AND 0 with A 
A3 ANA E NOE AND E with A 
A4 ANA H NDH AND H with A 
1\5 ANA L NOL AND L with A 

:A6 :l\N~'M' ·:·~EM- ~~D:.,:M.~9tY'~±tt ,~ 
.A7 -ANA A AND A wi'th :A 
'A8 "iRA'B' ;'XRB' 'Exclus ive:.OR . B .wi th ~ 1\, 

A9 XRA C XRC Exclusive OR C with A 
AA XRA D XRD Exclusive OR D with A 
AS XRA E XRE Exclusive OR E with A 
AC XRA H XRH Exclusive OR H with A 
AD XRA L XRL Exclusive OR L with A 
AE XRA M XIM Exclusive OR byte at (HL) w/A 
AF XRA A XRA Exclusive OR A with A 
BO ORA B ORB OR B with A 
B1 ORA C ORC OR C with A 
B2 ORA D ORO OR D with A 
B3 ORA E ORE OR E with A 
B4 ORA H ORB OR H with A 
B5 ORA L ORL OR L with A 
B6 ORA M om OR Memory with A 
B7 ORA A TST Test A (OR A with A) 
B8 CNP B CPB Compare B wi th A 
B9 CMPC CFC Compare C with A 

A-4 



HEX 
Opcode 

BA 
BB 
BC 
BD 
BE 
BF 
CO 
Cl 
C2 
C3 
C4 
CS 
C6 
C7 
C8 
C9 
CA 
CB 
CC 
CD 

: cr;;:. 
CF 

:,1)0· 

Dl 
D2 
D3 
D4 
D5 
D6 
D7 
D8 
D9 
DA 
m 
oc 
DO 
DE 

DF 
EO 
El 
E2 
E3 
E4 
E"S 
E6 
E7 

MACASM 
Mnemonic 

Q1PD 
0tP E 
CMPH 
01P L 
CMPM 
Q1.P A 
RNZ 
FOPB 
JNZ addr 
JMP addr 
CNZ addr 
PUSH B 
ADI 
RSl' 0 
RZ. 
"~"": .. 
JZ addr 

CZ addr 
CALL ador 

. ACL'·· . 
"RST."f' 
",RNe "" 
FOPD 
JNC addr 
our 
CNC addr 
PUSH D 
SUI 
RST 2 
RC 

JC addr 
IN 
CC addr 

SBI 

RSr 3 
Rro 
FOPH 
JPO addr 
XTHL 
CFO addr 
PUSH H 
ANI 
RST 4 

ASM80 
Mnanonic 

cm 
CPE 
em 
CPL 
CPM 
CPA 
RFZ 
ST.BC 
JFZ 
JMP 
CFZ 
BC.sr 
ADI 
RSTO 

. RI:Z 
"Rkl' . 

JTZ 

crz 
GAL 
ACT . 
"'RST~ 
·~.FC" 
ST. DE 
JFC 
OPr 
CFC 
DE.sr 
SUI 
RST2 
RrC 

JTC 
IPl' 
CIt: 

SBI 

RST3 
RFP 
ST.HL 
JFP 
HL.ST 
CFP 
HL.sr 
NDI 
RST4 

A-S 

Operation 

'Comp:ire-D'\'/ith~'A- -
Canpare E with A 
Compare H with A 
Canpare L with A 
Compare Byte at (HL) with A 
Canpare A with A 
Return if Not Zero 
Pop Stack Into Be 
Jump if Not Zero 
Jump (uncoooitional) 
Call if Not Zero 
Push BC onto Stack 
Add Irrrrned ia te byte to A 
Restart 0 
Return if Zero 
'Returri (tllcorrli·t:ioflcrl) 
Jump if Zero 

Call if Zero 
Call (unconditional) 
Aqd:. I~¢Q ~ b)'te to, A 'iJ/Ca~ ry 
\Re~it~irt "1': 
,Re,t~lr;I). ~(,J~?, ~r.r.Y' . 

, Pop Stack Into DE 
Jump if No Carry 
Output Instruction 
Call if No Carry 
Push DE onto Stack 
Subtract Immed. byte from A 
Restart 2 
Return if Carry (set) 

Jump if Carry (set) 
Input Instruction 
Call if Carry (set) 

Subtract Irnmed. byte from A 
w/Borrow 
Restart 3 
Return if Parity Odd (reset) 
Pop Stack Into HL 
Jump if Par i ty Odd (reset) 
Exchange HL with Stack 
Call if- Par i ty Odd (reset) 
Push HL onto Stack 
And rrraned. byte with A 
Restart 4- ,- ,.". 



HEX 
Opcooe 

E8 
E9 
EA 
EB 
EC 
ED 
EE 
EF 
FO 
Fl 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 
FA 
FB 
FC 
FD 
FE 
FF 

MACASM 
Mnemonic 

RPE 
ECHL 
JPE addr 
XCHG 
ere addr 

XRI 
RST 5 
RP 
roPPEW 
JP addr 
OJ addr 
CP addr 
PUSH PSW 
ORI 
RST 6 
RM 
SPHL 
JM addr 
EI 
CM 

CPI 
RST 7 

ASM80 
Mnemonic 

RrP 
J@HL 
JTP 
HL\DE 
crP 

XRI 
RST5 
RFS 
ST.A 
JFS 
DIN 
CFS 
A.ST 
,ORI 
RST6 
RrS 
HL.SP 
JTS 
EIN 
crs 

CPI 
RST7 

A-6 

Operation 

Return if Parity Even (set) 
Jump to (HL) 
Jump if Parity Even (set) 
Exchange HL with DE 
Call if Parity Even (set) 

Exclusive OR Imm.byte with A 
Restart 5 
Return if Positive (sign reset) 
Pop A and Flags fran Stack 
Jump if Positive (sign reset) 
Disable Interrupts 
Call if Positive (sign reset) 
Push A with Flags onto Stack 
QR Immediate· byt.e wi.t..h. A 
Restart 6 . 
Return if Minus (sign set) 
Load HL to SP 
Jump if Minus (sign set) 
Enable Interrupt? 
'eal-l·· :if· .. ; .. r~±nt1s·. '(.sign-,set] 

CO~Par e" Imrhea fa'te byt~' wi th' A"·· 
Restart 7 



APPENDIX B 

INSTRlJCTIONS IN MNEMONIC ORDER WITHIN GROUP 

HEX MACASM ASM80 
Ofx;ode Mnemonic Mnenonic Operation 

DATA TRANSFER GIDJP 

OA Ln\X 3 @BC.A wad (BC) into A 
1A IDAX D @DE.A wad (DE) into A 
3A LDA addr @I.A wad byte at addr into A 
2A IBID addr @I.HL wad bytes at addr into HL 
01 LXI B I.BC wad immed. bytes into BC 
11 LXI D I.re wad rrruned. bytes into DE 
21 LXI H I.HL wad Immed. bytes into HL 
31 LXI SP I.SP Load Immed. bytes into SP 
47 mv B,A A.B Copy A to B 
4F MOV C,A A.C Copy A to C 
57 r!iJV D,A A.D Copy A to D 
5F MOV E,A A.E Copy A to E 
67 llV H,A A.H Copy A to H 
6F MOV L,A A.L Copy A to L 
77 tt'DV M,A A.M Store, A at. :(HL) " 
78 . 'MCN'-"A';'B- B~A €CJfYj'," B';,,,t-o:, 'Ii: 
48 t!DV C,B B.C Copy B to C 
50 MOV D,B B.D Copy B to D 
58 l"DV E,B B.E Copy B to E 
60 MOV H,B B.H Copy B to H 
68 f:l{)V L,B B.L Copy B to L 
70 MOV M,B B.M Store B at (HL) 

79 f!DV A,C C.A Copy C to A 
41 MOV B,C C.B Copy C to B 
51 mv D,C C.D Copy C to D 
59 MOV E,C C.E Copy C to E 
61 f!DV H,C C.H Copy C to H 
69 MOV L,C C.L Copy C to L 
71 f:l{)V M,C C.M Store C at (HL) 

7A MOV A,D D.A Copy D to A 
42 mv B,D D.B Copy D to B 
4A MOV C,D D.C Copy D to C 
SA t!{JV E,D D.E Copy D to E 
62 MCN H,D D.H Copy D to H 
6A fIiJV L,D D.L Copy D to L 
72 MOV M,D D.M Store D at (HL) 
7B l!IJV A,E E.A Copy E to A 
43 MOV B,E E.B Copy E to B 

4B lIDV C,E E.C Copy E to C 
53 MOV D,E E.D Copy E to D 
63 __ l!IJV H,E e.H 

.... ""' .. 
Copy E to H 

68 MOV L,E E.L Copy E to L 
73 MJV M,E E.M Store E at (HL) 

B-1 



HEX 
Opcode 

MACASM 
Mnemonic 

DATA TRANSFER GROUP - Continued 

7C 
44 
4C 
54 
5C 
6C 
74 
7D 
45 
4D 
55 
5D 
65 
75 
7E 
46 
4E 
56 

~:-,~5E 

66 
6E 
3E 
06 
OE 
16 

, IE 
26 
2E 
36 
22 
F9 
02 
12 
32 
EB 

1!DV A,H 
MOV B,H 
rov C,H 
MOl D,H 
IDV E,H 
MOV L,H 
f!{)V M,H 
MOV A,L 
rov B,L 
MOV C,L 
MJV D,L 
MOO E,L 
~'DV H,L 
MOV M,L 
rlDV A,M 
MOV B,M 
rl()v C,M 
MOV D,M 
mV."E;M"." 
MOV H,M 
r!(JV L,M 
MVI A 
MVIB 
MVI C 
MVI D 
MVI E 
MVI H 
MVI L 
MVI M 
SHID addr 
SPHL 
STAX B 
STAX D 
STA addr 
XCHG 

ASM80 
Mneroonic 

H.A 
H.B 
H.C 
H.O 
H.E 
H.L 
H.M 
L.A 
L.B 
L.C 
L.D 
L.E 
L.H 
L.M 
M.A 
M.B 
M.C 

, ~.L!, 
,·M.i:E'.; 
M~H 
M.L 
I.A 
I.B 
I.C. 
1.0. 
I.E 
I.H 
I.L 
I.M 
m...@I 
HL.SP' 
A.@OC 
A.@DE 
A.@I 
HL\DE 

B-2 

\ 

Operation 

Copy H to A 
Copy H to B 
Copy H to C 
Copy H to 0 
Copy H to E 
Copy H to L 
Store H at (HL) 
Copy L to A 
Copy L to B 
wad L to C 
Copy L to D 
wad L to E 
load L to' H' 
Store L at (HL) 
load byte at (HL) into A 
wad byte at (HL) into B 
load byte at (HL) into C 
LOad ,byte' (It, (HL) into, 0 

.. T ~ad·h~·~P·. a'·.t.: '1m. \~ j'~,tO .fE 
-~.:. ~~:N~&.\i?~:.! \.~ ..... ; ~~~~ ·':'··f-~!'"t.,r4· ""'~::'r-.¥ 
wad byte at' {HL} .into H, 
wad byte at (HL) into L 
wad Imrned. byte into A 
Load Immed. byte into B 
wad Immed. byte into C 
Load Imned. byte into 0 
wad Imrned. byte in to E 
Load Irnmed. byte in to H 
!Dad Irruned. byte in to L 
Store Immed. byte at (m..) 
Store HL Direct 
Copy HL to SP 
Store A at (BC) 
Store A at (DE) 
Store A at Immed. Mdr. 
Exchange HL with DE 



HEX MACASM ASM80 
Op:::ode Mnemonic Mnemonic Operation 

ARITHMETIC GroJP. 

8F AOC A .!..CA Add A to A with Carry 
88 AOC B j :::B Add B to A with Carry 
89 AOC C ACC Add C to A wi th Carry 
8A AOC D ACD Add D to A with Carry 
8B AOC E ACD Add E to A with Carry 
8C AOCH ACH Add H to A with Carry 
CE . ACI ACI kid Imned. byte to A w/Carry 
80 AOC L ACL Add L to A with Carry 
8E AOC M ACM Add Byte at (HL) to A w/Carry 
87 ADD A Afi1\ Add A to A 
80 ADDB AOO Md B to A 
81 ADD C AOC Add C to A 
82 ADDD ADD At::3.d D to A 
83 ADD E ADE Add E to A 
84 ADD H ADH Add H to A 
C6 ADI ADI Add Imrned ia te Byte to A 
85 ADDL ADL Md L to A 
86 ADD M ADM Add Byte (HL) to A 
09 DAD B ADBC Add BC to HL 
19 DAD D AnDE. Add .DE to· HL 

29 IYill H 'ADHL Add HL ·to ·flu'. 
39 DAD SP ADSP Add SP to HL 
27 DM OM Decimal Adjust A 
3D DCRA OCA Decrement A 
05 OCRB OCB Decrement B 
00 DCRC OCC Decrement C 
15 OCR D OCD Decrement D 
1D OCRE OCE Decrement E 
25 OCRH OCH Decrement H 
2D OCRL OCL Decrement L 
35 OCRM DCM Decrement Byte at (HL) 

OB OCXB OCOC Decremen t BC 
lB OCXD OCIE Decr ement DE 
2B OCX H. OCHL Decrement HL 
3B OCX SP OCSP Decr ement SP 
3C INR A INA Increment A 
04 INR B INB Increment B 
OC INR C INC Increment C 
14 INR D IND Increment D 
lC INR E INE Increment E 
24 INR H INH Increment H 
2C INR L INL Increment L 
34 INR M INM Increment Byte at (HL) 

03 INX B !NBC Increment BC 
13 INX D !NOE . Increment DE 
23 INX H INHL Increment In.. 

33 INX SP INSP Increment SP 

B-3 



HEX 
Opcode 

MACASM 
Mnemonic 

ARITHMETIC GROUP -,Continued 

9F 
98 
99 
9A 
9B 
9C 
DE 

9D 
9E 

37 
9F 
90 
91 
92 
93 
94 
D6 
95 
96 

SBB A 
SBB B 
SBB C 
SBB D 
SBB E 
SBB H 
SBr 

SBB L 
SBB M 

STC 
SUB A 
SUB B 
SUB C 
SUB P 
SUB E 
SUB H : 
SUI 
SUB L 
SUB M 

ASM80 
Mnanonic 

SBA 
SBB 
SOC 
SBD 
SBE 
SBH 
SBr 

SBL 
SBM 

S'IC 

SUB 
sue 
SUD 
SUE 
StJ.:-i 
SUI 
SUL 
SUM 

8-4 

. Operation' 

Subtract A from A w/Borrow 
Subtract B from A w/Borrow 
Subtract C from A w/Borrow 
Subtract 0 from A w/Borrow 
Subtract E from A w/Borrow 
Subtract H from A w/Borrow 
Subtract Immediate byte from 
A w/Borrow 
Subtract L fram A w/Borrow 
Subtract byte at (HL) from 
A w/Bor;r,ow 
Set Carry 
Subtract A from A 
Subtract B from A 
Subtract C from A 
Subtract D from A 

. ·SUbtr'"act·E ':f·rr.in':A,' , 
SOOtr a'ct·.H. fran A , 
Subtr a:ct :rmffiea·. "byte" from" A 
Subtract L from A 
Subtract byte at (HL) from A 



HEX 
Opcode 

F3 
FB 
76 
Fl 
Cl 
d! 
El 
F5 
C5 
D5 
E5 
E3 
20 
30 

DB 
D3 

MACASM 
Mnemonic 

DI 
EI 
HLT 
pop PSW 
FOPB 
POPD 
FOPH 
PUSH PSW 
PUSH B 
PUSH D 
PUSH H 
XTHL 
RIM 
SIM 

IN 
our 

AS.\i80 
Mnerronic Operation 

STACK & MACHINE CONTroL GRJUP 

DIN 
EIN 
HLT 
sr.A 
ST.BC 
ST.rn 
ST.HL 
A.ST 
Be.ST 
DE.ST 
HL.ST 
HL/sr 

I PI' 
OPr 

B-5 

Disable Interrupts 
Enable Interrupts 
Halt 
Pop Accumulator and Flags 
Pop Stack into BC 
Pop Stack into 00 
Pop Stack into HL 
Push A and Flags onto Stack 
Puch Be onto Stack 
Push DE onto Stack 
Push HL onto Stack 
Exchange HI; wi.th· St~.c;k-: 
Read Interrupt Mask 
Set Interrupt Mask 

Input Instruction 
Output Instruction 


