

Locations 0820/0860 - 0823/0863 define the ‘Addressing commands ~and” 0824/0864 -
0826/0866 the Terminating commands as described below:

ADDRESSING COMMANDS

SOSL-LOCATION 0820 Source Data Starting Address (Low)
SOSH-LOCATION 0821 Source Data Staring Address (High)
DESL-LOCATION 0860 ‘ Destiﬁation Data Staring Address (Low)
DESH-LOCATION 0861 Destination Data Starting Address (High)

The first character to be transferred from the Source will be at address
(SOSH) (SOSL) +1 and the first character to be transferred into the Destination
- will be at address (DESH)-- (DESL) .+l-or thereafter as the conditions indicate..

The Source and Destination addressing commands are independent of each other. The
programmer may set them to any memory location, as well as to overlapping
addresses. '

SOCL-LOCATION- 0822 il Souree. Currrent :Address - (Low) -
SOCH-LOCATION 0823 Source Curren.t Addregs (Higi’;)
DECL-LOCATION 0862 Destination Current Address (Low)
DECH-LOCATION 0863 Destination Current Address (High)

SOCL, SOCH, DECL and DECH registers are reserved for use by the IOM to provide
progress information regarding the 1/O cycle. ~ (SOCL) (SOCH) points to the last
location from which Source data has been read. @ (DECL) (DECH) points to the
last location in the Destination to which data has been transferred. These registers
are initialized by the IOM at the start of a Print or Word Wraparaound command.

TERMINATING COMMANDS

SOTL-LOCATION 0824 Source Data Terminating Address (Low)
SOTH-LOCATION 0825 Source Data Terminating Address (High)
Bit 7 = 1 Move data until the end of the buffer
is reached.]
Bit 7 = 0 Move data until a terminating

character is encountered or, if no terminating
e - character is found, to the end of the buffer.

6E-1-3

DETL-LOCATION 0864 Destmanon Data Termmatmg Address_(Low)

“ .r—-z.--»‘ 4_4':.-.‘-.;'2'* S R

DETH-LOCATION 0864 Destmatlon Data Termmatmg Address (High)

Bit 7 = 1 Move data until the end of the buffer
is reached.

Bit 7 = 0 Move data until a terminating
character is encountered or, if no terminating
character is found, to the end of the buffer.

SOTC-LOCATION 0826 Source Terminating Character. If Bit 7 of DETH
is Low and the character written to the
destination channel matches DETC, the command
will be terminated.

DETC-LOCATION 0866 , Destination Terminating Character. If Bit 7 of

- DETH- is* Eow and the character ,written to the ..

destination channel matches DETC, the command
will be terminated.

The programmer may set terminating conditions for the Source Channel that are
independent of the terminating condition of the Destination Channel. The commands
Wifl Cterminate” 1mmedlate1,' after™ g “termmatmg “&onidifion - is- entouitered in’ eithef ithe.
Source Channel or the Destination Channel and a CPU. Int terrupt Request will be set.

CPU 1/O BUS COMMANDS
Commands to the Word Move Controller may be executed if it has been selected as

the active 1/O device. The controller will remain selected until a different I/O
device selection is made.

SELECT
Command: SEL
Command Byte: & B4

Selects the Word Move Controller for 1/O operations.

STOP
Command: " DVCL
Command Byte: NONE ' ' .

Aborts any activity and clears' the controller. DVCL will set the Word Move
Controller NOT BUSY flag and clear SOURCE TERMINATION and DESTINATION -
TERMINATION flags. It will also clear the auxiliary and secondary buffers.

6E-1-4

~ STATUS

Command:

Status Byte:
Bit
Bit
Bit
Bit
Bit
Bit
Bit,
Bit

S —NW L Wi VN

IFL

NOT BUSY

PRINTER SELECTED

SOURCE TERMINATION (Move command terminated
on Source Termination Commands)

DESTINATION TERMINATION (Move command
terminated on Destination Termination Commands)
Reserved

Reserved

PRINTER NOT READY

'PRINTER -BUSY "executirg a -print operation.

Loads the accumulator with an operational status byte from the Word Move controller.

LEET. MARGIN

Command:

Command Byte:

RIGHT MARGIN

Command:

Command Byte:

OuUT

Eight bit binary number which defines the location
of the left text margin by specifying the first
allowable data position on the line. The first
position on the line is HEX 00.

~OFL-

Eight bit binary number which defines the location
of the right text margin by specifying the position
following the last allowable data position on the line.

6E-1-5

MOVE PARAMETERS

Command:

Bit 7

Bit 6, Bit 5

Bit 6

COM2

0 - Word Wrap
1 - No Word Wrap

Define the page width by specifying the number of data
positions per line as follows:

Bit 5 Positions Per Line

0
0
1

. Bit 4

Bit 3

Bit 2

Bit 1

80
132
160

O OO

-, . During word wrap, fill with. NULL (Hex 00) from the
last data word to the end of ‘the line and from "thé
beginning of the next line to the position preceding
the left margin.

1 - During the word wrap, fill with NULL (Hex 00) from
“the.last. data .werd :to. the nght margin,, and then .Skip..
to the left margm on the i’ollowmg lme. Data
prewously entered in the’ sklpped area’ are not affected.

0 - The terminating condltlons for the Source are as given
by the IOM commands.

1 - In addition to the IOM terminating conditions for the
Source, data codes Hex 10 IF and Hex 90 to Hex 9F
will act as terminating codes.

0 - The terminating conditions for the Destination are as
given by the IOM commands.

1 - In addition to the IOM terminating conditions for the
Destination, data codes Hex 10 to Hex IF and Hex 90
to Hex 9F will act as terminating codes.

0 - The conditions for word delimiter area as specified in
the section on Move Data With Wraparound.

1 - In addition to the standard word delimiter, all data

- codes Hex 10 to Hex 1lF and Hex 90 to Hex 9F will
act as word delimiter.

6E-1-6

PRINT

Command: COM1

Command Byte NONE
Transfers data from the source location in memory to the Printer. The data transfer
starts at the Source Data Starting Address +1 and ends when the last data transfer
has been performed as defined by the Source terminating conditions. The Destination
Channel. is not affected. For a detailed description of the Print Command see
Section 6D of the OP-1 Reference Manual.

MOVE COMMANDS

Command: COM3
" Command Byte: - "~ " ' See Below
These commands move data from a Source to a Destination in memory. Two

auxiliary buffers are used by this command. The operation is illustrated in Figure
6E-1-1.

: POSITION
r—***“‘ ANALYSER
WORD
DETECTOR
R a_s%t:&%zz» BZYSTBE' l > avre [
| : BYT SELECTOR
MEMORY AUXHJARY_j’ sscoNDARY__J,
BUFFER : BUFFER -
UFE CUNULL'* GEN|™
DEST.
2ICHAN

Figure 6E-1-1

The Move command is also controlled by the boundary conditions set in the Left
Margin, Right Margin and Move Parameter commands.

MOVE DATA WITH WRAPAROUND (Move Parameter Bit 7 = 0)

Command Byte: Eight bit binary number which specifies the position on the
text line where the Destination starts. The first position
on the line is Hex 00.

6E-1-7

This command is designed to move data from a Source to a Destination in memory
while maintaining word integrity on the display. The operation starts by filling the
256 byte aux111ary buffer via the Source Channel. At the completion of this
operation, a word is passed into the 64 byte secondary buffer ‘and the auxiliary buffer
is kept full in harmony with this transfer. After a word has been accumulated, the
word is passed to the Destination Channel for storage. The command execution
sequence is illustrated in Figure 6E-1-2. New MOVE DATA WITH WRAPARAOUND
command should be issued only after a DVCL command.

The operation of the command is governed by the foilowing rules:

1. A word is defined as any byte string that is followed by a space (ASCII 20).
The space is considered part of the word. In the case of multiple spaces, only
the last space is the word delimiter. (All spaces, including the last space are
included as part of the word). As a factory installed option, the Word Move
Controller can be specified to treat each space as a word delimiter rather than
just the last space of multiple spaces.

2. Nulls (ASCII 00) are deleted.from Source data.

3. Word storage operation by the Destination channel will take place only if the
word (including all trailing spaces) will fit into the text line as defined by the
Right Margin setting. If a word is too long and does not fit, the balance of the
text line will be filled with nulls to the right margin and the Word will be .stored
in the next. text line.stasting:at-.the Jeft-:margin.- setting: < Nats will also be™
written from the right margin of the first line to the Ieft margin of the second
line if Move Parameter Bit 4 is zero. ’

4, If a Source termination occurs during execution of this operation, the controller
will be halted and bit 5 of the status byte will be set. All the data in the
buffers will remain unchanged. If a new Source command is issued followed by
another Move Data with Wraparound command while bit 5 of the status word is
set, the halted operation will be resumed using the new Source command and
continuing with the previous destination command., Similarly, if a Destination
termination occurs during execution of this operation, it will be halted and bit &4
of the status byte will be set. If new Destination commands are issued followed
by a new Move Data with wraparound command while bit 4 of the status byte is
set, the halted operation will be resumed using the new Destination command and
continuing with the previous source commands. If there is still data in the FIFO,
the data will be moved unconditionally .when the operation is resumed. These
capabilities are especially useful when the Word Move Controller is used in
association with some memory or data boundary conditions such as end of
memory, i.e. when a boundary is reached, the program will issue new commands
to resume operation at a new memory location.

5. The operation of this command is dependent upon at least one space code
trailing every word and non-space code following the space codes.

6. If the command byte of the MOVE WITH WRAPAROUND 1nstructxon specxﬁes a

position on the line that is outside of the text marginss. . . _:

a. Between Right Margin and end of line - data will be written starting at the
Left Margin of the next line.

b. Between start of line and Left Margin - data will be written starting at the
specified position for that line only.

fvc o

9.

Words longer than 64 bytes will be written on their text lines regardless of word
integrity. The left and right margins will be observed, however,
Words not greater than 64 bytes, but longer than the text line will be written on
their text lines only if the starting position is the left margin, otherwise the
word will be written starting at the left margin of the next line. ’

An INIT instruction will clear the Left Margin, Right Margin and Move
Parameters to Hex 00. DVCL will not affect them.

As a factory installed option, the detection of space and null can be extended to
include tagged space (ASCIl A0) and null (ASCII 80).

MOVE DATA WITHOUT WRAPAROUND (Move Parameter Bit 7 = 1)

Command Byte: NONE

Moves data unconditionally from a Source to a Destination in memory. When this.
command is executed, the Word Move Controller reads a string of bytes from the
source into the auxiliary buffers, providing an effective buffer length of 320 bytes.
Data are passed to the destination in groups of 64 bytes. The buffers are refilled in
harmony with the storage operation in the destination.

Operation differs from a MOVE WITH WRABAROUND a8 folldws:

1- Left and Right margins are not detected or used.

2- Word integrity is not maintained; all words are written to the
Destination regardless of line ends.

3- No data is deleted from the Source.

4- No fill characters are written.

5- Response to Termination is handled in the following manner:

If the Source Termination is detected during the execution of this command, no
further transfers from the Source will occur (although the Source Current Address
will increment) and any remaining data in the buffer will be automatically passed
to the Destination channel for storage. Unless a Destination channel termination
occurs, all the data that has been read from the source is passed to the
Destination Channel and stored in memory. Status bit 5 and interrupt request
will be set at the completion of this operation.

If a Destination termination is detected, execution of this operation will be
halted and interrupt request will set; no further transfers will occur and any
remaining data in the buffers will be held unchanged. New Destination address
commands can be issued and if another Move Data command is issued while
status bit 4 is set, the operation that had previously terminated will resume using
new Destination commands and continue with the previous Source commands and
starting with the data left in the buffers. If bit 5 had been previously set, no
transfer from the Source will take place. New Move data commands should be
issued only after a DVCL has been issued. The command executxon “sequence is
illustrated in Fxgure 6E-1-3.

6E-1-9

SPECIAL OPTIONS

The Word Move Controller can be specified to include one or both of the following
options in order to provide software compatibility with the Byte String Controller:

1- The Fill character is SPACE instead of NULL and the word delimiter will be
the first NULL or SPACE code following the word. The NULL or SPACE will be
considered as part of the word. Multiple NULLS or SPACES following the
delimiter will be deleted.

2- The command for MOVE WITHOUT WORDWRAP will be a COM3 with a
command byte of Hex 80. Care must be taken to insure that MOVE WITH
WORDWRAP instructions do not have a command byte with bit 7 = 1.

TIMING

The timing is contingent of Source and Destination access operations performed for
each command. The timing period is:

Source or Destination ‘Access = 15 usec per_ hyte

INTERRUPT CONTROL

" Priority Level No. 3 - Cycle is completed, i.e. one or both of the terminating
conditions have been met. Identical to IFL status bit 7 (NOT BUSY).

6E-1-10

START

. COM) CONTINUE

I r‘—mh« NEw sOurce]®

. OMUAND
INCREMENT BOURCE ¢

ADORESS § READ ONE
L BYTE FAOM MEMORY
INTO BUFFER

SOURCE
CHANNEL

IS wWORD

p— f
& STATUS walT

'm SECOMDARY TERMINATION
BUFFER ON 18 . s
BECUMDARY BUFFER
FulL
tOvVERFLD
T
INCREMENT
DESTINATION ACORESS
4 STCRE ONE NULL
CCOE INTO
DESTINATION) |
T fan
DESTINATION YES SET INT
CHANNEL | 4 STATUS

TERMINATION

2 e A .
INCREMENT
DE‘SUNAT'.ON ACDRESS
. e '$ STORE ONZ. BYTE
FROM SECONDARY
BUFFER TO
CESTINATION

COMMAND

DESTINATION vst. SET INT)
CHANNEL 1 o2 STATUS * warr
TERMINATION BIT « MARG.N 7O LEFT

MARGIN

COM3 CONTINUE ’

WITH NEW
DESTINATION
COMMAND

R = 1T ¥

. INCREMENT
INCREMENT DESTINATION ADDRESS
3 STORE A NULL
ESTINATION :
° CODE INTO

ADDRESS DESTINATION

SECONDARY
BUFFER

EMPTY
?

NO

YES

Move Data With Wraparound Command
Execution Sequence
(Simplified)

Figure 6E-1-2

6E-1-11

SYART

. ' ;

INCREMENT SOURCE 1

ADORESS & READ ONE) SETINT
BYTE FROM MEMORY 8 5TATUS
INTO BUFFER :) BiT s

SOURCE

CHANNEL
TERMINATION

INHIBIT ALL
FURTHER DATA
INPUT TO BUFFER

SECONDARY -
BUFFER
FuLt

AUXILIARY

BUFFER
EMPTY

B |

INCREMENT DESTINATION -
ADDRESS & STORE
OMNE BYTE FROM .

.} SESONDARY BUFFER ..

SV INTO DESTINATION

DESTINATION BETINT
CHANNEL 4 STATUS WAIT
TERMINATION BIT 4

COM3-CONTINUE
WITH NEW
DESTINATION COMMANDS

1S
SECONDARY
BUFFER
EMPTY

AUXILIARY
BUFFER
EMPTY

NO

Move Data Without Wraparound Command
Execution Sequence
(Simplified)

Figure 6E-1-3

HEX
Opcode

00
01
02
03
04
05
06
07
08
09
oA
0B

0D
OE
" OF"
10
11
12
13
14,
o'
16.
17
18
19

1B
1C

1E
1F
20
21
22
23
24
25
26
27
28
29

2C

2E
2F
30
31
32

APPENDIX A:

MACASM
Mnemonic

NOP
LXI B
STAX B
INX B
INR B
DCR B
MVI B
RIC

DAD B
LDAX B
DCX B
INR C
DCR C
MVI C
RRC

IXT D
STAX D
INX D
INR D

TCR D

MVI D,
RAL

DAD D
ILDAX D
DCX D
INR E

" DCR E

MVI E
RAR

RIM

ILXI H
SHLD addr
INX H
INR H
DCR H

MVI H
DAA

ASM80
Mnemonic

NOP
LBC
A.@BC
INBC
INB
DCB
I.B
RIC

ADBC
@BC.A
DCBC
INC
DCC
I1.C

I.DE

~A.QDE

INDE

PED".
I.D

ADDE
@DE.A
DCDE
INE
DCE
I.E.

I.HL
HL.@I

-INHL

DCH
iI.H

ADHL
€I.HL

DCL
I.L

I.5P
A- @I

INSTRUCTIONS IN OPCODE ORDER

Operation

- Mo Operation

Ioad Immediate bytes into BC
Store at (BC)

Increment BC

Increment B

Decrement B

Load Immediate byte into B
Rotate A left

Add BC to HL

" load byte at (BC) into A

Decrement BC
Increment C
Decrement C
Load Immediate byte mto C

. Rotate A Right

Load Immediate Into DE
Store A at (DE)
Increment DE

Increment D -

‘Decrement Dy,

Load]'mmedlate byte into D

Rotate A lteft Thru Carry

Add DE to HL

Ioad byte at (DE) into A
Decrement DE

Increment E

Decrement E

Ioad Immediate byte into E
Rotate A Right Thru Carry
Read Interrupt Mask

ILoad Immediate byte into HL
Store HL at immed. addr.
Increment HL

Increment H

Decrement H ,
Load Immediate byte into H
Decimal Adjust A

Add HL to HL

Load bytes at immed. addr.
into HL _

Decrement HL

Increment L

Decrement L

Load Immediate byte 1nto L
Complement A

Set Interrupt Mask

Load Immediate bytes into SP
Store Immed. addr.

L K5
.. 48

HEX MACASM ASM80

- 4E

Opcode Mnemonic Mnemonic Operation
33 INX SP ‘ INSP Increment SP
34 INR M- M Increment byte at (HL)
35 DCR M DM Decrement byte at (HL)
36 MVI M » I.M Copy Immediate byte to (HL)
37 STC SIC Set Carry Flag
38
39 DAD SP ADSP Add SP to HL
3a LDA Addr @I1.A Ioad byte at immed. addr. into A
3B DCX SP DCSP Decrement SP.
3C INR A nNa Increment A
3D DCR A DCA Decrement byte into A
3E MVI A I.A Load Immediate To A
3F cMC oC Complement Carry Flag
40 MOV B,B Copy B to B
~41 MoV -B,C C.B Copy-€ to B
42 MOV B,D D.B Copy D to B
43 MOV B,E E.B Copy E to B
44 MOV B,H H.B Copy H to B
45 MOV B,L L.B Copy L to B
. 46 MOV B,M M.B Load byte at (HL) into B .
MOV B, A B Copy A o B¢
MOV C,B- B.C Copy -B to C
49 MoV C,C ‘ Copy C to C
4n MOV C,D D.C Copy D to C
4B MOV C,E E.C Copy E to C
4C MOV C,H H.C Copy H to C
4D MOV C,L L.C Copy L to C
MOV C,M M.C Load byte at (HL) into C
4F MOV C,A A.C Copy A to C
50 MOV D,B B.D Copy B to D
51 MOV D,C C.D Copy C to D
52 MOV D,D Copy D to D
53 MOV D,E E.D Copy E to D
54 MOV D,H H.D Copy H to D
56 MOV D,M M.D Load byte at (HL) into D
57 MOV D,A A.D Copy AtoD
58 MOV E,B B.E Copy B to E
59 MoV E,C C.E Copy C to E
5A MOV E,D D.E Copy D to E
5B MOV E,E Copy E to E
5C MOV E,H H.E Copy H to E
5D MOV E,L L.E Copy L to E
5E MOV E,M M.E Ioad byte at (HL)into E
5F MOV E,A A.E Copy A to E
60 MOV H,B B.H Copy B to H
61 MOV H,C C.H Copy C to H .
62 " MOV H,D D.H Copy D to H
MOV H,E E.H Copy E to H

A-2

HEX
Opcode

64
65
66
67
68
69
6A
6B

6D
6E
6F
70
71
72
713
74
75
76
77
78
ey
A
7B
ic
D
7E
F
80
81
82
83
84
85
86
87
88
89
8A
8B

8D
8E
8F
90
91
92

§

Mnemonic

N N N N N wow

FEHODOWDPENI N QWD R E

- = - -

- 0~

£58555855585888¢

o RREEZEpOOOCOOOOTD@DD®

:

-

g

~

3
<

-

14

L N T TR T R "R Y
PROoommg QW

ggEggiggggase

EEEE
DOWPICEDEHDOWPINDIEOOW P DD N>

58

ADD

SUB
SUB

RODNHDRAWP S MIEO QWD X

ASM80

Mnemonic

. .

¢« .

TEmOoOWwP X

PP EE PREHREIRRENE MO O E DT

BEEEERERE

ACC
ACD
ACE
ACH
ACL
ACM
ACA

sucC
SUD

A-3

Operation

Copy L to H
Load byte at (HL) into H

Copy A to
Copy B to
Copy C to
Copy D to
Copy E to
Copy H to

(ol ol el -+

Load byte at (HL) into L
Copy A to L

Store
Store
Store
Store
Store
Store
Halt

Store

PoDmmoow

at (HL)
at (HL)
at (HL)
at.(HL),
at (HL)
at (BL)

at (HL)

Copy B to A
Lopy: G ko: A
Copy D to A,
Copy E to A
Copy H to A
Copy L to A
Load byte at (HL) into A
Copy A to A

Add
Add
aAdd
Add
Add
Add
Add
Add
aAdd
Add
Add
Add
Add
Add
Add By
Add A

rmmcowu’grmmcom

gr888E88¢
B P

to
te
to

Subtract

 Subtra
.. Subtra

ct
ct

t (HL) to A

A with Carry
A with Carry
A with Carry
A with Carry
A with Carry
A with Carry
at (HL) to A w/Carry
A with Carry
B from A

C from A

D from A

HEX
Opcode

ENAL

9838898998555 EEEEEEELE

MACASM
Mnemonic

SUB
SUB
SuB
SUB
SUB

AEPERrEIRNUORPRNEIEDQEPENIE0OUNERNINOQOW R R E®

ASMB0

Mnemonic

SBL

Subtract E from A
Subtract H from A
Subtract L from A

Subtract byte at (HL) from A

Subtract A from A

Subtract B from A with
Subtract C from A with
Subtract D from A with
Subtract E from A with
Subtract H from A with
Subtract L from A with
Subtract M from A with
Subtract A from A with
AND. B with
AND C with
AND D with
AND E with
AND H with
AND L with
AND Menmory swikth A

'wwww»y

‘AND A with A

Exclusive OR B withi A
Exclusive OR C with A
Exclusive OR D with A
Exclusive OR E with A
Exclusive OR H with A
Exclusive OR L with A

Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow
Borrow

Exclusive OR byte at (HL) w/A

Exclusive OR A with A
OR B with A

OR C with A

OR D with A

OR E with A

OR H with A

OR L with A

OR Memory with A
Test A (OR A with A)
Compare B with A
Compare C with A

HEX
Opcode

BA
BB

BD
BE
BF
Co
cl
c2
c3
ca
cs
Cé
c7
c8
c9

CcC
CD
CE
DO
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA

DE

DF
EO
El
E2
E3
E4
E5

E7

JZ2 addr

CZ addr
CALL addr

BCT

RreT T

“RNG ..

POP D
JINC addr
ouT

CNC addr
PUSH D
SUIL

- RST 2

RC

JC addr
™
CC addr

SBI

RST 3
RPO

FOP H
JPO addr
XTHL,
CPO addr
PUSH H
ANI

RST 4

ASM30
Mnemonic

CPD
CPE
CPH
CPL
CPM
CPA
RFZ
ST.BC
JFZ

CF2Z
BC.ST
ADI
RSTO

R

‘RET

JTZ

CTrz

ACI

“RSTY

REC..
ST.DE
JFC
OPT

DE.ST
SUL
RST2

IPT

SBI

" RST3

RFP
ST.HL
JFP
HL.ST
CFP
HL.ST
NDI
RST4

Operation

‘Compare D with A"

Compare E with A
Compare H with A
Compare L with A
Compare Byte at (HL) with A
Compare A with A
Return if Not Zero

Pop Stack Into BC

Jump if Not Zero

Jump (unconditional)
Call if Not Zero

Push BC onto Stack

2dd Immediate byte to A
Restart 0

Return if Zero

Returri (unconditional)

Jump if Zero

Call if Zero
Call (unconditional)
Add Immed. byte to A w/Carry

“Rastart 10

Return. if No Carry-

" Pop Stack Into DE

Jump if No Carry

Output Instruction

Call if No Carry

Push DE onto Stack
Subtract Immed. byte from A
Restart 2

Return if Carry (set)

Jump if Carry (set)
Input Instruction
Call if Carry (set)

Subtract Immed. byte from A
w/Borrow

Restart 3

Return if Parity Odd (reset)
Pop Stack Into HL

Jump if Parity Odd (reset)
Exchange HL with Stack

Call if Parity Odd (reset)

. Push HL onto Stack

And Immed. byte w1th A
Restart 4 e

.

MACASM
Mnemonic

RPE

PCHL .
JPE addr
XCHG

CPE addr

XRI

RST 5
RP

POP PSH
JP addr
DJ addr
CP addr
PUSH PSW
ORI

RST 6
RM

SPHL

JM addr
EI

CM

CPI
RST 7

ASM80
Mnemonic

RTP
J@HL
JTP
HL\DE

RST5
RFS
ST.A
JFS
DIN
CFS
A.ST

ORI

RST6

HL.SP
JTS
EIN
CTS

CPI
RST7

A-6

~ Operation.

Return if Parity Even (set)
Jump to (HL)

Jump if Parity Even (set)
Exchange HL with DE

Call if Parity Even (set)

Exclusive OR Imm.byte with A
Restart 5

Return if Positive (sign reset)
Pop A and Flags from Stack
Jump if Positive (sign reset)
Disable Interrupts

Call if Positive (sign reset)

‘Push A with Flags onto Stack

OR Immediate-byte with A
Restart 6 ‘
Return if Minus (sign set)
load HL to SP

Jump if Minus (sign set)
Enable Interrupts

Call-if-Kinus (sign' ety

Compare” Tmmédiate byte with A* "
Restart 7

- TA

APPENDIX B

INSTROCTIONS IN MNEMONIC ORDER WITHIN GROUP

HEX MACASM ASMB0
Opcode Mnemonic Mnemonic Operation

DATA TRANSFER GROUP

oA LDAX 3 - @BC.A Load (BC) into A
1A IDAX D @DE.A Ioad (DE) into A
3a LDA addr @I.A Load byte at addr into A
2a . IHLD addr @I.HL ' Load bytes at addr into HL
01 "LXI B I.BC Load immed. bytes into BC
11 IXI D I.DE Ioad Immed. bytes into DE
21 LXI H I.HL Load Immed. bytes into HL
31 ILXI SP I.SP Load Immed. bytes into SP
47 MOV B,A A.B Copy A to B
4F MOV C,A A.C Copy A to C
57 MOV D,A A.D Copy A to D
5F MOV E,A A.E Copy A to E
67 MOV H,A A.H Copy A to H
6F MOV L,A A.L Copy A to L .
77 MOV M,A AM Store A at (HL) ...
78 - MOF'E, B BiA €opy- Buko: A
48 MOV C,B B.C Copy B to C
50 MOV D,B B.D Copy B to D
58 MOV E,B B.E Copy B to E
60 MOV H,B B.H Copy B to H
68 MOV L,B B.L Copy B to L
70 MOV M,B B.M Store B at (HL)
79 MOV A,C c.A Copy C to A
41 MOV B,C C.B Copy C to B
51 MoV D,C C.D Copy C to D
59 MOV E,C C.E Copy C to E
61 MOV H,C C.H Copy C to H
69 MOV L,C C.L Copy C to L
71 MOV M,C C.M Store C at (HL)
MOV A,D D.A Copy D to A
42 MOV B,D D.B Copy D to B
4A MOV C,D D.C Copy D to C
5A MOV E,D D.E Copy D to E
62 MOV H,D D.H Copy D to H
6A MOV L,D D.L - Copy D to L :
72 MOV M,D D.M Store D at (HL)
B MOV A,E E.A Copy E to A
43 MOV B,E E.B Copy E to B
4B MoV C,E E.C Copy E to C
53 - MOV D,E E.D Copy E to D
63 __ MOV H,E e.H Copy E to H
6B MOV L,E E.L Copy E to L
73 MOV M,E E.M Store E at (HL)

HEX
Opcode

DATA TRANSFER GROUP - Continued

MACASM
Mnemonic

1c
44
4C
54
5C
6C
74
D
45
4D
55
5D
65
75
78
46
4E
56

BB

66
6E
3E
06
O0E
16
< 1E
26
2E
36
22
F9
02
12
32
EB

$35355z355855¢852¢8¢8585888888888
zrmmuomwrm&onmyzmmcomwzbmonmw

LI L I D T T TR

RERRXREpbOrD DN REE D E D

==

X wmwm
EEE
GEEERE
Row
"B

HHHHHHHHFZ{I&:.ZZZZ

ASM80
Mnemonic

ACWPERHrmO QW

»

t*rr*r*r*r*r!_mmm:nmmm

RrEImUOR PO NBOOE P REE D

e o & o . .
. [

E

HL..SP
A.@BC
A.GDE
A.QI

HL\DE

Operation

t
p088868
OO >

Store H
Copy L t
Copy L to
Ioad L to
Copy L to
Ioad L to
Ioad L to

o]

ITmoQwW

t (HL)

Store L at (HL)

Load byte at (HL)
Ioad byte at (HL)
Load byte at (HL)
Load byte at (HL)

into A
into B
into C
into. D

Ioad byte at (HLY into H
Load byte at (HL) into L

Load Immed.
Load Immed.
Load Immed.
Toad Immed.
Ioad Immed.
Load Immed.
Ioad Immed.

byte
byte
byte
byte
byte
byte
byte

into A
into B
into C
into D
into E
into H
into L

Store Immed. byte at (HL)
Store HL Direct
Copy HL to SP
Store A at (BC)
Store A at (DE)
Store A at Immed. Addr.
Exchange HL with DE

HEX MACASM ASM80
Opcode Mnemonic Mnemonic Operation

ARTITHMETIC GROUP .- .

8F ADC A rCA Add A to A with Carry
88 ADC B ;7B Add B to A with Carry
89 ACC C ECC Add C to A with Carry
8a ADC D ACD 2dd D to A with Carry
8B ADC E ACD Add E to A with Carry
8C ' ADC H ACH 2dd H to A with Carry
CE . ACI ACI 2dd Immed. byte to A w/Carry
8D ADC L ACL Add L to A with Carry
8E ADC M ACM Add Byte at (HL) to A w/Carry
87 ADD A ADA Add A to A ,
80 ADD B ADB Add B to A

81 ADD C ADC Add C to A

82 ADD D ADD Add D to A

83 ADD E ADE Add E to A

84 ADD H ADH Add H to A

C6 ADI ADI Add Immediate Byte to A
85 ADD L ADL Add L to A

86 ADD M ADM Add Byte (HL) to A

09 DAD B ADBC Add BC to HL

19 DAD D ADDE Add DE to HL

29 DAD H * ADHL Add HL .to Hi~.

39 DAD SP ADSP Add SP to HL

27 DAA DAA Decimal Adjust A

3D DCR A DCA Decrement A

05 DCR B DCB Decrement B

0D DCR C DCC Decrement C

15 DCR D DCD) Decrement D

1D DCR E _DCE ~ Decrement E

25 DCRH DCH Decrement H

2D DCR L DCL Decrement L

35 DCR M DCM Decrement Byte at (HL)
0B DCX B DCDC Decrement BC

1B DCX D DCDE Decrement DE

2B DCX H. : DCHL Decrement HL

3B DCX SP DCSP. Decrement SP

3C INR A INA Increment A

04 . INR B INB Increment B

0C INR C INC Increment C

14 INR D IND Increment D

1C INR E INE Increment E

24 INR H INH Increment H

2C INR L INL Increment L

34 INR M INM Increment Byte at (HL)
03 INX B INBC Increment BC

13 INX D INDE ‘Increment DE

23 INX H INHL Increment HL

33 INX SP INSP Increment SP

HEX MACASM ASM80 |
Opcode Mnemonic Mnemonic Operation

ARTTHMETIC GROUP - Continued

9F SBB A SBA Subtract A from A w/Borrow

98 SBB B SBB Subtract B from A w/Borrow

99 SBB C SBC Subtract C from A w/Borrow

9A SBB D SBD Subtract D from A w/Borrow

9B SBB E SBE Subtract E from A w/Borrow

9C SBB H SBH Subtract H fram A w/Borrow

DE SBI SBI Subtract Immediate byte from

‘ A w/Borrow

9D SBB L SBL Subtract L fram A w/Borrow

S9E SBB M SBM Subtract byte at (HL) from
< : A w/Borrow)

37 S1C STC Set Carry

9F . SUB A Subtract A from A

90 SUB B SUB Subtract B from A

91 SUB C suC Subtract C from A

92 SUB D SUD Subtract D from A

93 SUB E SUE - “Sobtract Efrom A

94 © SUB H - SUH | Sub*ract H. fra‘n A

D6 SuI SUI Subtract Immed. byte from A

95 SUB L SUL Subtract L from A

96 SUB M SUM Subtract byte at (HL) from A

B-4

HEX
Opcode

F3

76
F1
C1
da!
El
F5
C5
D5
E5
E3
20
30

DB
D3

Mnemonic

DI
EI

HLT

POP PSW
FOP B
POP D
POP H
PUSH PSW
PUSH B
PUSH D
PUSH H
XTHL

SIM

ASMS80
Mnemonic

Operation

STACK & MACHINE CONTROL GROUP

DIN
EIN
HLT
ST.A
ST.BC
ST.DE
T

 EEgEPY
Qg dE

'INPUT/OUTPUT GROUP

IPT
OPT

B-5

Disable Interrupts
Enable Interrupts

Halt

Pop Accumulator and Flags
Pop Stack into BC

Pop Stack into DE

Pop Stack into HL

Push A and Flags onto Stack
Puch BC onto Stack

Push DE onto Stack

Push HL onto Stack
Exchange HL with- Stack..
Read Interrupt Mask

Set Interrupt Mask

Input Instruction
Output Instruction

