
4150 Processor Functional Specification

Steve Small, Editor

PE-T-1440

August 16, 1988

4150 Processor Functional Specification

Steve Small, Edi tor

PE-T-1440

August 16, 1988

Copyright c 1988 by
Prime Computer, Inc.

Natick, Massachusetts 01760
All Rights Reserved

4150 Processor Functional Spec PE-T-1440

Date: August 16, 1988

To: Prime Engineering

From: Steve Small, Editor

Subject: 4150 Processor Functional Spec

Reference: PE-TI-999 Fox Architecture Document

Abstract

This document defines the functional operation and hardware architecture for the 4150 and

4050 processors. The 4150 is the top of the line office environment machine as well as the

entry level computer room machine. Both processors are TTL processors that support Prime's

S, R, V, and I mode instruction sets.

Except where specifically noted in the text, all statements made in This document apply to

both the 4150 and the 4050 processors.

I'd would like to take this opportunity to thank the writers of this document.

Alphabetically:

Denise Chiacchia

Tony Dorohov

Tom Kinahan

Mark Laird

Brian Lefsky

Tom O'Brien

Stu Rae

Sherri Root

Steve Small

..

Table of Contents 4150 Funct. Spec.

Table of Contents

1. System Overview

1.1 Introduction

1.2 System Packaging

1.3 Diagnostic Processor

1.4 System Power

1.S Configuration Rules
1.5.1 Memory
1.5.2 I/O
1.5.3 Power

1.6 9155 and 4050/4150 Comparisons

2. Processor Overview

2.1 General Description

2.2 Board Descriptions

2.3 VLSI Requirements

2.4 Major and Critical Paths

2.5 Processor Physical Description

3. Pipeline Control Unit Functional Overview

3.1 Introduction
3.1.1 Stage Clock Generation

3.2 9755 and 4150 Comparisons

3.3 VLSI Requirements

3.4 Major and Critical Paths

4. Control Store Unit Functional Overview

4.1 Introduction
4.1.1 Microsequencer
4.1.2 Control Store RAM
4.1.3 Maintenance & Initialization Logic
4.1.4 Parity Checker
4.1.5 BCYPDA

4.2 9755 and 4150 Comparisons

4.3 VLSI Requirements

4.4 Major and Critical Paths

5. Instruction Decode/Effective Address Formation Functional Overview

5.1 Introduction
5.1.1 Instruction Decoding

PRIME RESTRICTED

Page i

Page

1

1

3

4

4

5
5
6
7

7

9
9

12

12

13

14

17

17
19

20

20

20

21

21
23
23
23
23
23

23

24

24

25·

25
25

4150 Functional Specification
Page ii

5.1.2 · Effective Address Formation
5.1.3 Register File Collisions

5.2 9755 and 4150 Comparisons

S.3 VLSI Requirements

S.4 Major and Critical Paths

6. Branch Cache Functional Overview

6.1 Introduction
6.1.1 Overview of Operation

6.2 9755 and 4150 Comparisons

6.3 VLSI Requirements

6.4 Major and Critical Paths

7. Cache Functional Overview

7.1 Introduction
7.1.1 Basic Cache Operation
7.1.2 Cache Writes and Operand Reads

7.2 9755 and 4150 Comparisons

7.3 VLSI Requirements

7.4 Major and Critical Paths

8. Storage Management Unit Functional Overview

8.1 Virtual Memory Concept
8.1.1 Introduction
8.1.2 Segmentation
8.1.3 Protection Rings

8.2 Addressing Cache
8.2.1 Cache Address Sources
8.2.2 Virtual· to Physical Address Translation
8.2.3 Memory Traps
8.2.4 . UNIX Support

8.3 9755 and 4150 Comparisons

8.4 VLSI Requirements

8.S Major and Critical Paths

9. Execution Unit Functional Overview

9.1 Introduction

9.2 9755 and 4150 Comparisons

9.3 VLSI Requirements

9.4 Major and Critical Paths

10. Memory Controller Unit Functional Overview

10.1 Introduction

PRIME RESTRICTED

28
28
28

29

29

31

31
33

34
34

34

35
35
35
37

37

37

38

39

41
41
42
42

43
43
43
44
45

45
45
46

47

47

49

so
50

St
51

Table of Contents

10.1.1 Overview of Operation

10.2 9755 and 4150 Comparisons

10.3 VLSI Requirements

10.4 Major and Critical Paths

11. 1/0 Interface Functional Overview

11.1 Introduction
11.1.1 Overview of Operation

11.2 9755 and 4150 Comparisons
11.2.1 Burst DMT Mode

11.3 VLSI Requirements

11.4 Major and Critical Paths

12. System Busses Functional Overview

12.1 Introduction
12.1.1 BB
12.1.2 BD
12.1.3 BVMA
12.1.4 BPA, BPD
12.1.5 MA, MD
12.1.6 BD Arbitration

12.2 9755 and 4150 Comparisons

12.3 VLSI Requirements

12.4 Major and Critical Paths

13. Processor Diagnostic Aid Functional Overview

13.1 Introduction
13.1.1 General

13.2

13.1.2 Z80 Microprocessor
13.1.3 Stack
13.1.4 Halts I Delays
13.1.5 Delay Counter
13.1.6 Sense Registers
13.1.7 Forcing Microcode Address
13.1.8 Reading/Writing Control Store

9755
13.2.1
13.2.2
13.2.3
13.2.4
13.2.5
13.2.6
13.2.7
13.2.8
13.2.9

and 4150 Comparisons
Stand Alone I Self Diagnostic Mode
Power Up Circuit
Sense Register 4
Stack
BCY Match Counter
Micro looper
New Halt/Trigger Condition (ARM2)
New Halt/Trigger Condition (ARMl)
Bus Virtual Memory Address (BVMA) Interface

PRIME RESTRICTED

4150 Funct. Spec.
Page iii

51

53

54

54

55

55
55

57
57
57

57

59

59
59

{

(.

60

60

61

61

63

63
63
65
65
65
65
66
66
66

66
66
66
67
67
67
67
67-
68
68

4150 Functional Specification
Page iv

13.3 VLSI Requirements 68

13.4 Major and Critical Paths 68
13.4.1 Stack Write Cycle 68
13.4.2 Halt Path 68
13.4.3 Trigger Path 69

14. Microcode Functional Overview 71

14.1 Introduction 71
14.1.1 Microcode Fields 71

14.2 9755 and 4150 Comparisons 73
14.2.1 Timing Changes 73
14.2.2 Shift Instruction Implementation 73
14.2.3 Multiply Implementation 73
14.2.4 Divide Implementation 74
14.2.5 I/O 74

14.3 Microdiagnostics 74

15. VLSI Requirements 85

15.1 Introduction 85

15.2 Microseq uencer 85

15.3 Cache Address 85

15.4 STLB Set Select 86

15.5 Cache Set Select 86

15.6 PEALU 86

15.7 Barrel Shifter 87

15.8 Write Buffer Address 87

15.9 Register File Address 87

16. Diagnostic Processor Interface Detailed Description 89

16.1 DP Two Way Communication 91

16.2 DP One Way Communication 92
16.2.1 PDA Acting as the DP 93

16.3 VLSI Usage 93

16.4 Timing Diagrams 93

16.5 9755 Comparisons 96

16.6 Critical Paths 97

16.7 Partitioning 97

17. System Initialization Detailed Description 99

17.1 SYS VERIFY 99
17.1.1 Sysverify Overlays 99

17.2 SYSCLR 134

PRIME RESTRICTED

Table of Contents

18. Pipeline Control Unit Detailed Description

18.1 Instruction Flow Overview

18.2

18.3

PCU

PCU
18.3.1
18.3.2

Operation

Control
Front End Control
Back End Control

18.4 External PCU Hold Conditions
18.4.1 Variable Length Microcode Step Timing
18.4.2 EHOLDs
18.4.3 Traps
18.4.4 Miscellaneous

18.S

18.6

18.7

9755 and 4150 Comparisons

Clock Distribution

Critical Paths

18.8 . Timing Diagrams

18.9 Partitioning

19. Control Store Unit Detailed Description

19.1 Control Store Memory

19.2 Microinstruction Sequencing
19.2.1 Normal Microinstruction Sequencing
19.2.2 Abnormal Microinstruction Sequencing

19.3 RCC Latches

19.4 VLSI Usage

19.5 Critical Paths

19.6 Timing Diagrams

19.7 9755 Comparisons

19.8 Partitioning

20. Instruction Decode Detailed Description

20.1 Instruction Fetch

20.2 Instruction Stream Formats
20.2.1 Aligned Short Instructions
20.2.2 Aligned Long Instructions
20.2.3 Unaligned Short Instructions
20.2.4 Unaligned Long Instructions

20.3 Instruction Decode
20.3.1 Decode Net
20.3.2 Register File Address Generation

20.4 VLSI Usage

20.S 9755 Comparisons

20.6 Critical Paths

PRIME RESTRICTED

4150 Funct. Spec.
Page v

135

135

138

139
143
143

144
145
147
147
150

151

151

151

153

153

155

157

157
158
166

167

168
168
169

169

169

171

171

173
173
173
174
174
174
174
179

181
181

181

4150 Functional Specification
Page vi

20.7 Partitioning

21. Effective Ad.dress Formation Detailed Description

21.1 Discussion of Basic Ad.dressing Mod.es

21.2 Memory Reference Instruction Formats

21.3 EAF Decoding

21.4 Microcode Assisted EAF

21.S Hardware EAF
21.5.1 I Mode Immediate and Register to Register Instructions
21.5.2 Indirect Support

21.6 Register File Tracking/Collisions
21.6.1 5-9 Register Collision
21.6.2 4-6 Register Collision

21.7 VLSI Usage

21.8 9755 Comparisons

21.9 Major and Critical Paths

21.10 Partitioning

22. Branch Cache Detailed Description

22.1 VLSI Usage

22.2 9755 Comparisons

22.3 Major and Critical Paths

22.4 Partitioning

23. Cache Detailed Description

23.1 Associative Memory Introduction

23.2 Cache Organization

23.3 Element Selection

23.4 Cache Replacement

23.S Cache Reads and Writes
23.5.1 Unaligned Cache Write
23.5.2 Unaligned Cache Read

23.6 Cache Miss

23.7 Error Detection and Reporting

23.8 VLSI Usage

23.9 9755 Comparisons

23.10 Critical Paths

23;11 Partitioning

24. Storage Management Unit Detailed, Description

24.1 Cache and STLB Addressing
24.1.1 IRP

PRIME RESTRICTED

181

183

183

185

186

190

190
192
194

195
196
197
199

199

199

200

201

204

204

205

205

207

207

210

212

213

214
215
219
221

228

229

229

229

230

231

231
233

Table of Contents

24.1.2 EAS and EAD
24.1.3 ERMA and PRMA
24.1.4 Feedback Paths

24.2 STLB Organization
24.2.1 Shared Bit
24.2.2 IOTLB Support

24.3 Traps
24.3.1 Read Address Trap
24.3.2 STLB Miss
24.3.3 Access Violation
24.3.4 Page Modified Trap
24.3.5 Write Address Trap
24.3.6 Flat Trap
24.3.7 Wrap Trap

24.4 VLSI Usage

24.S Critical Paths

24.6 9755 Comparisons

24.7 Partitioning

25. Execution Unit Detailed Description

25.1 ALU Logic
25.1.1 ALU Modes
25.1.2 Carry
25.1.3 ALU Output
25.1.4 BA Mux
25.1.5 IBB Mux
25.1.6 RD and RS

25.2 Barrel Shifter Logic
25.2.1 BDI Encoding
25.2.2 Shift
25.2.3 BDI Output

25.3 Register File
25.3.1 Register File Bypass
25.3.2 Register File Tracking
25.3.3 RP /REC

25.4 Multiply
25.4.1 Booth's Algorithm
25.4.2 Multiply Implementation

25.5 Divide
25.5.1 Non-Restoring Divide Algorithm
25.5.2 Divide Implementation

25.6 Floating Point
25.~.1 Floating Add
25.6.2 Floating Subtract
25.6.3 Floating Multiply

PRIME RESTRICTED

4150 Funct. Spec.
Page vii

233
233
234

234
235
236

238
238
238
239
239
240
240
240

240

241

241

242

243

246
246
248
249
249
249
250

250
251
251
252

252
253
253
254

254
254
258

262
262
265

267
267
269
270

4150 Functional Specification
Page viii

25.6.4 Floating Divide
25.6.5 Rounding
25.6.6 Quadruple Precision

25.7 Character and Decimal Instructions
25.7.1 Introduction
25. 7.2 Character Instructions
25. 7 .3 Decimal Instructions

25.8 System Timers

25.9 Trap Logic
25.9.1 Fetch Cycle Traps
25.9.2 Non-Fetch Cycle Traps

25.10 Parity Reporting

25.11 VLSI Usage

25.12 Critical Paths

25.13 9755 Comparisons

25.14 Partitioning

26. Memory Controller Unit Detailed Description

26.1 Overview

26.2 Write Buffer
26.2.1 Data Write Buffer
26.2.2 Address Write Buffer
26.2.3 Valid Write Buffer
26.2.4 The WB as a Whole
26.2.5 Memory Timer OPeration Scheduler (MTOPS)
26.2.6 WB Diagnostics

26.3 CPU Request & Acknowledge
26.3.1 CPU Write
26.3.2 CPU Read

26.4 Memory Timer
26.4.1 Read Status
26.4.2 MT Abort
26.4.3 MT Diagnostic Features

26.S Memory Configurations

26.6 Refresh

26.7 Parity Checking/Generating

26.8 Error Reporting

26.9 Battery Back Up

26.10 VLSI Usage

26.11 Critical Paths

26.12 Timing Diagrams

26.13 9755 Comparisons

PRIME RESTRICTED

270
270
272

274
274
276
289

306
307
307
308

308
Jf'

3

3

311

313
313
315
317
318
319
320
321
325

326
327
328

329
334
336
336

336
338
339

339

340

341

341

341

342

Table of Contents

26.14 Partitioning

27. 1/0 Interface Detailed Description

27.1 DMx Control

28.

27.2 DMA/DMC/DMT/DMQ IN

27.3 DMA/DMC/DMT /DMQ OUT

27.4 Burst DMA Mode
27.4.1 Burst DMA IN
27.4.2 Burst DMA OUT

27.S 32-Bit Burst DMA Mode

27 .6 Extended DMA

27. 7 Programmed 1/0

27.8 Parity Checking

27.9 Required 1/0 Controller Revision Levels

27.10 Timing Diagrams

27.11 97SS Comparisons

27.12 Critical Paths

27.13 Partitioning

Bus D Arbitration Detailed Description

28.1 E Unit

28.2 MC Unit

28.3 S Unit

28.4 BPA

28.S PDA

28.6 VLSI Usage

28.7 Critical Paths

28.8 9755 Comparisons

28.9 Partitioning

29. Processor Diagnostic Aid Detailed Description

29.1 Stack
29.1.1 Inhibits
29.1.2 Storing Data into the Stack
29.1.3 Reading Data from the Stack

29.2 Sense Registers
29.2.1 SRl and SR2
29.2.2 SR3
29.2.3 SR4

29.3 Halts and Delays
29.3.1 Halts .
29.3.2 Delays

PRIME RESTRICTED

.,

4150 Funct. Spec.
Page ix

343

345

345

348

349

349
350
350

350

351
'.151

35~

353

354

355

355
355
355
356

356

357

357

357

357

359

361
361
362
362

362
362
363
363

36:t
363
363

4150 Functional Specification
Page x

29.4 Event Counter 364
29.4.1 Loading 364
29.4.2 Reading 364
29.4.3 Selecting Events to Count 364

29.S Control Store lnterf ace 364
29.5.1 Reading/Writing Control Store 364

29.6 BDH Interface 365
29.6.1 FORCEBCY 366
29.6.2 Load Decode Net 367
29.6.3 Load Memory 367

29.7 Microprocessor 367

29.8 PDA Configurations 369
29.8.1 PDA Debug Configuration 369
29.8.2 Manufacturing CPU Debug Configuration 370
29.8.3 Customer or Field System Configuration 370

29.9 How to Debug the PDA 370

29.10 Timing Diagrams 371

29.11 Critical Paths 372
29.11.1 Stack Write Cycle 372
29.11.2 Halt Path 373
29.11.3 Trigger Path 373

29.12 VLSI Usage 373

29.13 9755 Comparisons 373
29.13.1 Self Diagnostic Mode 373
29.13.2 Stack 373
29.13.3 Trigger Conditions 373
29.13.4 Event Counter 374
29.13.5 Power Up Circuit 374
29.13.6 BVMA Interface 374

29.14 Partitioning 374

30. CMI Board Discussion 375

30.1 4150 And 4050 Differences 377

30.2 Programmable Parts 377
30.2.1 PALs 377
30.2.2 PROMs 379

30.3 Diagnostic Features 380

30.4 Critical Paths 381

31. · IS Board Discussion 383
...

31.1 4150 And 4050 Differences 385

31.2 PALs 385
31.2.1 PCU PALs 385
31.2.2 Parity Clocks 385

PRIME RESTRICTED

Table of Contents

31.2.3 EAS, EAD, and INSTAT Clocks
31.2.4 Branch Cache Control
31.2.5 Register Collisions
31.2.6 BVMA Select Control
31.2.7 Cache Write Control
31.2.8 RMA Clocks
31.2.9 Unaligned Read and Cache Data Clocks
31.2.10 Displacement, Opcode, and BB Latch Control
31.2.11 BB and PMA selects
31.2.12 IRPL, IRPH, and RPST clocks
31.2.13 STLB Write Pulses Enables
31.2.14 Short/Long Instruction Control
31.2.15 TRAPVLD Clock Enable
31.2.16 Displacement ALU and EAS mux control
31.2.17 Base Register ALU control
31.2.18 Control of Ring Bits
31.2.19 Base Register File Address Generation
31.2.20 Base Register Parity Checking

31.3 PROMs
31.3.1 Destination
31.3.2 IAC
31.3.3 Trap

31.4 Critical Paths

32. E Board Discussion

32.1 4150 And 4050 Differences

32.2 Programmable Parts
32.2.1 PALs
32.2.2 PROMs

32.3 Diagnostic Features

32.4 Critical Paths

33. PDA Board Discussion

33.1 4150 And 4050 Differences

33.2 Programmable Parts
33.2.1 PALS
33.2.2 PROMs

33.3 Diagnostic Features

33.4 Critical Paths
33.4.1 Stack Write Cycle
33.4.2 Halt Path
33.4.3 Trigger Path

PRIME RESTRICTED

4150 Funct. Spec.
Page xi

385
385
385
385
385
386
386
386
386
386
386
386
386
386
387
387
387
387

387
387
387
387

387

389

391

391
391
393

394

394

395

397

397
397
398

398

398
398
399

• 399

4150 Functional Specification
Page xii

PRIME RESTRICTED

..

List of Figures

List of Fl.gures

FIG. 1-1. System Diagram of 4150

FIG. 2-1. Block Diagram of 4150 Processor

FIG. 3-1. Block Diagram of Pipeline Control Unit

FIG. 3-2. Stage Clocking Example

FIG. 4-1. Block Diagram of Control Store

FIG. 5-1. Block Diagram of Instruction Decode Unit

FIG. 5-2. Block Diagram of EAF Unit

FIG. 6-1. Block Diagram of Branch Cache

FIG. 7-1. Block Diagram of Cache

FIG. 8-1. Block Diagram of Storage Management Unit

FIG. 9-1. Block Diagram of Execution Unit

FIG. 10-1. Block Diagram of Memory Controller

FIG. 11-1. Block Diagram of I/O Interface

FIG. 13-1. Block Diagram of PDA

FIG. 16-1. Diagnostic Processor Interface Signals

FIG. 16-2. Diagnostic Processor Interface Block Diagram

FIG. 16-3. Read Data from DP to CPU

FIG. 16-4. Write Data from CPU to DP

FIG. 16-5. Load RBCYH & RBCYL

FIG. 16-6. Write Control Store

FIG. 18-1. Conceptual Flow of Pipelined Instructions

FIG. 18-2. Block Diagram of Pipeline Control Unit

FIG. 18-3. S-R Flip-Flop View of Stage Active Functionality

FIG. 18-4. AND Gate View of Stage Clock Enables

FIG. 18-5. Consecutive Odd Pipeline Stages Illustration

FIG. 18-6. PCU Hold Condition Block Diagram

FIG. 18-7. TX NX Illustrations

FIG. 18-8. Pipeline Flow For RP Trap

PRIME RESTRICTED

,,

41SO Funct. Spec.
Page xiii

2

10

18

20

22

26

27

32

36

40

48

52

56

64

89

90

94

94

95

96

135

136

141

142

143

144•

146

150

4150 Functional Specification
Page xiv

FIG. 18-9. Stage Clocking Example

FIG. 19-1. Block Diagram of Control Store

FIG. 19-2. JUMP BCY Formation

FIG. 19-3. DECODE and LDA BCY Formation

FIG. 19-4. BDH Branch BCY Formation

FIG. 19-5. GOTO BCY Formation

FIG. 19-6. EMIT BCY Formation

FIG. 19-7. CRTN BCY Formation

FIG. 19-8. CALL w/ JUMP Operation

FIG. 19-9. CALL w/ GOTO Operation

FIG. 19-10. PUSH w/ EMIT Operation

FIG. 19-11. FORCEBCY Timing

FIG. 19-12. Control Store Memory Write Cycle Timing

FIG. 20-1. Block Diagram of Instruction Decode Unit

FIG. 21-1. Block Diagram of EAF Unit

FIG. 21-2. Pipeline Flow During Indirect

FIG. 21-3. Generalized Pipeline Flow

FIG. 21-4. 5-9 Register Collision Pipeline Flow

FIG. 21-5. 4-6 Register Collision Pipeline Flow

FIG. 21-6. 4-6 Register Collision Bypass

FIG. 22-1. Block Diagram of Branch Cache

FIG. 23-1. Direct Mapped Cache (Analogy)

FIG. 23-2. Two Set Associative Memory (Analogy)

FIG. 23-3. Block Diagram of Cache

FIG. 23-4. Aligned Cache Writes

FIG. 23-5. Unaligned Cache Writes: No RMA destination

FIG. 23-6. Unaligned Cache Writes: RMA destination

FIG. 23-7. Unaligned Read Timing

FIG. 23-8. Unaligned Cache Miss: First Word only

PRIME RESTRICTED

153

156

159

160

160

161

162

163

164

165

166

167

169

172

184

194

195

196

197

198

202

208

209

211

215

217

219

220

223

List of Figures 4150 Funct. Spec.
Page xv

FIG. 23-9. Unaligned Cache Miss: Second Word only 225

FIG. 23-10. Aligned Cache Miss 227

FIG. 24-1. Block Diagram of Storage Management Unit 232

FIG. 24-2. STLB and IOTLB Mapping to the Same Location 237

FIG. 25-1. Block Diagram of Execution Unit 244

FIG. 25-2. Execution Unit Data Flow Diagram 245

FIG. 25-3. Register File Location Layout 253

FIG. 25-4. Register File Read/Write Timing 253

FIG. 25-5. Booth's Algorithm 255

FIG. 25-6. Booth's Algorithm: Multiplier = 3 Example 256

FIG. 25-7. Booth's Algorithm: Multiplier = 118 Example 257

FIG. 25-8. Booth's Algorithm: Multiplier = -2 Example 258

FIG. 25-9. Multiply Hardware Slicing 260

FIG. 25-10. Non-Restoring Divide Example: 6 I 2 263

FIG. 25-11. Non-Restoring Divide Example: 5 I -4 264

FIG. 25-12. Non-Restoring Divide Example: 14 I 3 265

FIG. 25-13. Quadruple Precision Normalize 273

FIG. 25-14. Character and Decimal Alignment 275

FIG. 26-1. Block Diagram of Memory Controller 314

FIG. 26-2. Write Buffer Block Diagram 316

FIG. 26-3. Data Write Buffer Organization 317

FIG. 26-4. VWB Location Format 319

FIG. 26-5. Aligned Write VWB Patterns 323

FIG. 26-6. Unaligned Write VWB Patterns (Examples) 324

FIG. 26-7. WACK Timing Diagram 341

FIG. 26-8. STREAD Timing Diagram 342

FIG. 27-1. Block Diagram of I/O Interface 346

FIG. 27-2. BPCSTRB and BPCBSTRB Timing 353

FIG. 27-3. 64 Bit Write Timing (SW ACK Chain) 353

PRIME RESTRICTED

4150 Functio:nal Specification
Page xvi

FIG. 28-1. Transfer of BD Control, E to MC 355

FIG. 28-2. Transfer of BD Control, E to S 356

FIG. 28-3. Transfer of BD Control, E to BPA 356

FIG. 28-4. Transfer of BD Control, E to PDA 357

FIG. 29-1. Block Diagram of PDA 360

FIG. 29-2. PDA BDH Interface Fields 366

FIG. 29-3. PDA Stack Write Pulse Timing 372

FIG. 30-1. CMI Board Block Diagram 376

FIG. 31-1. IS Board Block Diagram 384

FIG. 32-1. E Board Block Diagram 390

FIG. 33-1. PDA Board Block Diagram 396

..

PRIME RESTRICTED

List of Tables 4150 Funct. Spec.
Page xvii

List of Tables

TABLE 1-1. Memory Configurations 6

TABLE 1-2. 1/0 Controller Required Revision Levels 7

TABLE 5-1. BB Data During Different Pipeline Stages 28

TABLE 9-1. ALU Data Sources 49

TABLE 14-1. 4150 Microcode Fields 71

TABLE 14-2. CS and CU Field Definitions 72

TABLE 16-1. DP Interface One-Way Communication Commands 92

TABLE 18-1. Pipeline Hold Conditions 145

TABLE 19-1. CS and CU Field Definitions 158

TABLE 19-2. RCC/RCM Distribution Summary 168

TABLE 20-1. BB Data During Different Pipeline Stages 173

TABLE 20-2. Decode Net Address Bit Generation 176

TABLE 20-3. DNCNTRL{04:05}+ Interpretation 178

TABLE 20-4. Base Register File Address Selection 179

TABLE 20-5. 321 Mode Extended Base Register Selection 180

TABLE 20-6. I Mode Index Register Selection 180

TABLE 20-7. Non-I Mode Index Register Selection 181

TABLE 21-1. S or R Mode EAF Decoding 187

TABLE 21-2. V Mode EAF Decoding 188

TABLE 21-3. I Mode EAF Decoding 189

TABLE 21-4. I Mode EAF Function Table 190

TABLE 21-5. Register File ALU (ALUBX) Control 192

TABLE 21-6. Displacement ALU (ALUD) Control 192

TABLE 23-1. 4150 Baseball Team Statistics 207

TABLE 23-2. FIFO Cache Replacement Algorithm .. 214

TABLE 23-3. Memory Images for Figures 23-7, 23-8, 23-9, and 23-10 220"

TABLE 23-4. Notes for Figure 23-7 221

TABLE 23-5. Notes for Figure 23-8 224

PRIME RESTRICTED

4150 Functional Specification
Page xviii

TABLE 23-6. Notes for Figure 23-9 226

TABLE 23-7. Notes for Figure 23-10 228

TABLE 24-1. STI..B Entry Format 234

TABLE 25-1. ALU Data Sources 247

TABLE 25-2. ALU Modes 248

TABLE 25-3. BDI Modes 251

TABLE 25-4. ADJUST ALU Mode 268

TABLE 25-5. ZFF IACs 275

TABLE 25-6. ZMV BDI Alignment 277

TABLE 25-7. ZMSTRT ZBIT Jump Conditions for ZMV 278

TABLE 25-8. Other ZMSTRT Jump Conditions for ZMV 278

TABLE 25-9. ZMF AST Jump Conditions for ZMV 279

TABLE 25-10. ZMSHRT Jump Conditions for ZMV, Part 1 279

TABLE 25-11. ZMSHRT Jump Conditions for ZMV, Part 2 280

TABLE 25-12. ZMSHRT Jump Conditions for ZMV, Part 3 280

TABLE 25-13. ZMEXIT Jump Conditions for ZMV, Part 1 281

TABLE 25-14. ZMEXIT Jump Conditions for ZMV, Part 2 282

TABLE 25-15. Character ALU Modes 283

TABLE 25-16. ZMSTRT ALU Modes For Character Instructions 283

TABLE 25-17. ZMF AST ALU Modes For Character Instructions 284

TABLE 25-18. ZMSHRT ALU Modes For Character Instructions 284

TABLE 25-19. ZMEXIT ALU Modes For Character Instructions 285

TABLE 25-20. Decimal Instruction Control Word Format 291

TABLE 25-21. Decimal Field Type Definitions 292

TABLE 25-22. ADJUST Decimal Jump Conditions 294

TABLE 25-23. OBTAIN Decimal Jump Conditions 294

TABLE 25-24. UNLPCK Decimal Jump Conditions 295

TABLE 25-25. UNLUNP Decimal Jump Conditions 295

TABLE 25-26. XADP BDI mode 297

PRIME RESTRICTED

List of Tables

TABLE 25-27. XADU BDI mode

TABLE 25-28. DECMxNEQ- Link Bit Input

TABLE 25-29. UNLPCK ALU Mode, Unload Packed

TABLE 25-30. UNLUNP ALU Mode, Unload Unpacked

TABLE 25-31. OBTAIN ALU Mode

TABLE 25-32. ADJUST ALU Mode

TABLE 25-33. E Unit Parity Error Codes

TABLE 26-1. WB Pointer Selection Chart

TABLE 26-2. MTOPS Decision Chart

TABLE 26-3. ECC Check Bit Generation

TABLE 26-4. Syndrome Bits

TABLE 26-5. Memory Configuration Slot Sizes

TABLE 26-6. Memory Configurations

TABLE 27-1. BPC Mode Line Decoding

TABLE 27-2. 1/0 Controller Required Revision Levels

TABLE 29-1. Control Store Command Table

TABLE 29-2. Table of PDA BDH Commands

TABLE 30-1. CMI Diagnostic Register Layout

PRIME RESTRICTED

4150 Funct. Spec.
Page xix

297

298

299

299

300

300

309

319

324

333

334

337

338

347

352

365

366

381

{
'··

System Overview 4150 Funct. Spec.
Page 1

1. System Overview

1.1 Introduction

The 4050 and 4150 are TTL super-minicomputers based on the 9755 pipeline. They are

targeted as the high-end of Prime's office product line and as entry level computer room

machines, replacing the 2755 and 9755 in the current product line.

These three board CPUs support S, R, V, and I mode addressing, including the latest

enhancements such as ASCII8, "C" instructions, and 32IX mode. Additional major features

include soft error recovery in the cache and STLB, a fully associative write buffer, a variable

speed cooling system, and optional battery backed-up memory. The 4150 is designed to operate

with at least Rev 20.2.5 of the PRIMOS operating system, although some features are not

available until Rev 21. The 4050 requires at least Rev 20.2.6 or 21.0.2B.

UNIX support is being implemented and will be phased into newly built machines during

1988. The IS and CMI boards initially shipped will not provide the necessary hardware

support for UNIX.

The 4050 and 4150 systems are very similar. They share hardware architecture, much

microcode, use the same memory boards and diagnostic processor, and have identical mechanical

features. They even share one CPU board. When only one system is mentioned throughout

this document, it may be assumed that any comments are relevant for both systems, unless

the two are being compared.

The 4050 system has an average performance of 2.7 MIPs, can also support up to 64 MB of

main memory, supports up to 10 I/O controllers, and has a sustained 1/0 bandwidth of 5.8

MB/s.

The 4150 system is has an average performance of 3.6 MIPs, can support up to 64 MB of

main memory, supports up to 10 1/0 controllers, and has a sustained I/O bandwidth of 6.24

MB/s.

Major new features added to the 9755 design include:

• A 2-way set associative, 128KB cache with soft error recovery

• A 2-way set associative, lK entry STLB with soft error recovery

• A fully associative write buffer

• New floating point algorithms

• A ne·w diagnostic processor

PRIME RESTRICTED

I I I I I I Bulkhead

~
1111 1 • I to

1 1 Peripherals

-~ Diagnostic CMI
Req/Grant I 1/0 I H • •

onsole I ~ Processor ~ Ll H w \.. /

....----.~~~~~~~ ...
·~~,:~,~,~~,~~~~--~i I Mem

When the power shunt board is used in place of the BBU,
power is shunted from P.S.#2 to the BBU power bus.

Figure 1-1 System Diagram of 4150

System Overview 4150 Funct. Spec.
Page 3

• A diagnostic history floppy disk

• Up to 32 MB memory with Abel memory boards (64 MB with Cain boards)

• Battery backed-up main memory

• Lower power

• Over 15 dBA quieter in most environments

• Smaller footprint

• Uses standard 208V AC power (not 3 phase)

1.2 System Packaging

The system is packaged in a minimum of two cabinets. The first (main) cabinet contains the

processor, memory, diagnostic processor, and I/O controllers. The main cabinet may optionally

contain a battery backed-up power supply for memory protection and/or one Roadrunner (Sr.)

for up to 64 asynchronous communications ports. The second and subsequent (peripheral)

cabinets contain peripheral devices.

The main cabinet contains a single 22-slot backplane that integrates the diagnostic processor,

power supplies, CPU, memory, and I/O. All boards and power supplies are mounted vertically

and accessible from the front of the cabinet.

The main cabinet is the same height and depth as a 2755 (low-boy) cabinet, but is wider

(24.5''). The cooling system draws air in from the bottom of the cabinet, across the boards,

into the blower and out the back of the cabinet at the top. Besides providing a very efficient

and relatively quiet cooling system, this design allows cabinets to be abutted at their sides,

resulting in an overall floor space requirement equal to or less than that of the 2755 CPU

cabinet. In fact, in typical configurations requirmg no more than 64 asynchronous

communications lines, no more than 1.5 GB of disk storage, and one tape drive, the 4050 or

4150 requires less space than a 2755.

Cables are routed from the front of the cabinet to the back across the top of the cabinet.

They are guided by cable troughs and are easily accessible by removing the top panel and

dropping the hinged rear panel.

The status panel is located at the top of the front panel. Below thi status panel is a pop­

open panel which hides the floppy disks (2) and the key switch.

All external connectors are bulkheaded in the rear. All rear bulkheads, a portion of the

exhaust duct, and the PDU hinge outward for service. In some configurations, a Roadrunner

will be installed on the rear panel. It derives its cooling from exhaust air. Therefore, it is

located just below the exhaust port and becomes a part of the exhaust port.

PRI'.viE RESTRICTED

4150 Functional Specification
Page 4

System Packaging

The peripheral cabinet(s) may contain disk drives, tape drives, communications ports, or some

combination thereof. Each office peripheral cabinet may be considered to have an upper

section and a lower section. Each section can house either 2 FSD disk drives,. one streamer or

quad density tape drive, or 64 asynchronous communication ports (Roadrunner Sr.). This

cabinet is the same as the new 2755 peripheral cabinet. The standard 53" peripheral cabinet

is used in the computer room, which has four sections.

Total main bay power dissipation and heat output are higher than those of the 2755. The

4050 and 4150 processors dissipate approximately 70% more power than the 2755 processor,

resulting in approximately 135 Watts higher system power dissipation. The remaining power

dissipation is configuration dependent and could also be higher due to new controllers and

more slots.

Although greater cooling capacity is required, in a typical environment the main bay noise

level is lower than that of the 2755. A new, higher efficiency, speed-controlled cooling

system is employed to achieve much higher air flow without increasing noise levels.

1.3 Diagnostic Processor

The Mink diagnostic processor provides a superset of the functionality of its 9755 equivalent,

the Weasel. New DP functions implemented on the Mink include a high speed parallel

interface to reduce control store loading time by at least 5:1, BBU support, analog voltage

sensing of 5V supplies, voltage and frequency margining (using additional capabilities in the

power supplies and in the clock generator in the processor), and support for the RAS bus.

New higher density half-height floppy disks are used, with one for microcode storage and one

available as a system log to maintain a record of major system events to support field service.

1.4 System Power

Two Aphrodite power supplies are used. One powers the Mink, CPU, and memory, while the

other powers the 110. Power for the floppy disk and blower is taken from the processor's

Aphrodite. Both supplies are required in all system configurations. The Roadrunner, if

present, contains its own power supply.

A Daphne power supply with integral BBU can be installed directly into the system

backplane for a low cost BBU solution. The supply blocks one memory slot and four 1/0

slots. In addition, the system can still support 24 MB of main memory with Abel memory
" boards or the full system maximum of 64 MB with Cain boards. The Daphne is capable of

providing extensive ri.de-through of main memory, the Mink, and the dynamic memory refresh

logic in the CPU. When the Daphne is in the system, the last displaced 1/0 slot must have

a shield installed to prevent noise coupling from the power supply into adjacent logic. When

-the Daphne is not present, a ·shunt board must be plugged into the Daphne slot to pass power

PRIME RESTRICTED

System Overview 4150 Funct. Spec.
Page S

and control signals from the CPU Aphrodite to the logic that would have been powered by

the Daphne. All memory and 1/0 slots are usable with the shunt board in place~

Note that all 10 1/0 slots are powered from one Aphrodite power supply, which must be

considered in configuring the system in case there are a number of new controllers with

excessive power consumption.

The system is configured for 208V 60Hz input power in domestic applications and 240V 50

Hz in international configurations. The internal power supplies and peripherals in domestic

systems will be configured for 120V, which the PDU derives from the 208 V input.

International systems will have all 240V power supplies and peripheral devices. The

maximum operational configuration of the main bay will dissipate about 1800 W.

1.S Configuration Rules

1.S.1 Memory

1. Only 8 MB Abel, 16 MB Cain, and 32 MB Cain boards may be used.

2. Always begin in slot #l and do not skip slots unless the 32 MB Cain boards are
used.

3. Always skip the next slot when using a 32 MB Cain board. 32 MB Cain boards
may be placed only in slots 1 and 3. If there is one 32 MB Cain board, slot 2
may not be used. If there are two 32 MB Cain boards, no other boards may be
used.

4. Always put the highest density remammg board in the next legal slot. Thus,
exhaust the supply of 32 MB boards before inserting 16 MB boards and exhaust
the supply of 16 MB boards before inserting 8 MB boards.

Table 1-1 shows the legal memory configurations.

PRIME RESTRICTED

System Overview 4150 Funct. Spec.
Page S

and control signals from the CPU Aphrodite to the logic that would have been powered by

the Daphne. All memory and 1/0 slots are usable with the shunt board in place.

Note that all 10 1/0 slots are powered from one Aphrodite power supply, which must be

considered in configuring the system in case there are a number of new controllers with

excessive power consumption.

The system is configured for 208V 60Hz input power in domestic applications and 240V 50

Hz in international configurations. The internal power supplies and peripherals in domestic

systems will be configured for 120V, which the PDU derives from the 208 V input.

International systems will have all 240V ·power supplies and peripheral devices. The

maximum operational configuration of the main bay will dissipate about 1800 W.

1.S Configuration Rules

1.S.1 Memory

1. Only 8 MB Abel, 16 MB Cain, and 32 MB Cain boards may be used.

2. ·Always begin in slot #1 and do not skip slots unless the 32 MB Cain boards are
used.

3. Always skip the next slot when using a 32 MB Cain board. 32 MB Cain boards
may be placed only in slots 1 and 3. If there is one 32 MB Cain board, slot 2
may not be used. If there are two 32 MB Cain boards, no other boards may be
used.

4. Always put the highest density remammg board in the next legal slot. Thus,
exhaust the supply of 32 MB boards before inserting 16 MB boards and exhaust
the ·supply of 16 MB boards before inserting 8 MB boards.

Table 1-1 shows the legal memory configurations.

PRIME RESTRICTED

4150 Functional Specification
Page 6

Slot

Slot

Slot

Slot

64 MB Configurations

2 3 4

32 32
32 16 16
16 16 16 16

48 MB Configurations

2 3 4

32 16
16 16 16
16 16 8 • 8

32 MB Configurations

2 3 4

32
16 16
16 8 • 8

8 8 8 8

16 MB Configurations

16
8

2

8

3 4

TABLE 1-1.

Slot

Slot

(See Note 1)

Slot

(See Note 1)

Slot

Memory Configurations

56 MB Configurations

2 3 4

32 16 8
16 16 16 8

40 MB Configurations

2 3 4

32 8
16 16 8
16 8 • 8 • 8

24 MB Configurations

2 3 4

16 8
8 8 8

8 MB Configurations

2 3 4

8

NOTE 1: 8 MB holes are created in memory where indicated by the
asterisks in the configuration tables. These produce some additional

Configuration Rules

(See Note 1)

Primos memory management overhead and should be avoided when possible.

1.S.2 110

The highest priority slot is slot #l 0, the most distant slot from the processor. The other slots

descend in priority from slot 10 down to slot 1.

Power available for I/O controllers is limited to that available from one Aphrodite, .130A

+SV, and 7A each from +12V and -12V.

If a Daphne BBU is present in the system, the number of I/O controllers is limited to six.

The amount of power available for I/O ·controllers is not reduced.

PRIME RESTRICTED

System Overview 4150 Funct. Spec.
Page 7

1.5.2.l Required 1/0 Controller Revision Levels

Certain I/O controllers must be at a specified revision level to work in a 4150 or 4050

system. Table 1-2 shows these requirements.

TABLE 1-2. I/O Controller Required Revision Levels

Boord Nome Slang Nome Model Number Port Number Revision

IDC3 Koala 6580 TLA10019-001 R
MSTC Minnow 2382-003 TLA10234-001 R
MPC4 7010T SPL91521-91 H
STSC Streamer 2301-901 AA
A SYNC LAC ICS3 CLAC304 ESA10063-001 c
BMTC Mor Ii n 2023-001 N
PNC II 2384-001 G

1.5.3 Power

Two Aphrodite power supplies are always required.

Either a shunt board or a Daphne power supply is required.

1.6 9755 and 4050/4150 Comparisons

The 4050 and 4150 differ from the 9755 in technology, partitioning, packaging, and

performance characteristics. The six 9755 boards have been compressed into three boards. The

three backplanes of the 9755 have been replaced by one backplane that integrates the

diagnostic processor, power supplies, CPU, memory, and I/O. Performance variations occur due

to the 4050 and 4150's slower cycle times, VLSI enhancements (especially for floating point

operations), new I/O microcode, larger set associative cache, larger set associative STLB, larger

branch cache, associative write buffer, more efficient memory interface and increased main

memory capability.

The 4050 and 4150 boards are all mounted vertically.

horizon tally.

All 9755 boards were mounted

New higher density memory boards (Abel and Cain) support a new processor interface. New

slot selection logic suppresses "holes" in memory for certain mixed memory configurations.

Although most 4050 and 4150 microcode is derived from 9755 microcode, substantial editing ..
was performed to at least half of the code. The remaining code was rewritten to take

advantage of special new hardware or machine dependei:it characteristics such as the new

VLSI, I/O, and the DP interface. Some microcode fields have been redefined. New

microdiagnostics have been written to enhance the coverage afforded by the 9755 diagnostics

and cover new hardware.

PRIME RESTRICTED

4150 Functional Specification
Page 8

9755 and 4050/4150 Comparisons

The Mink DP provides the functionality of its 9755 equivalent, the Weasel, with the addition

of a high speed parallel interface to reduce control store loading time by at least 5:1, BBU

support, analog voltage sensing of 5V supplies, voltage and frequency margining (using

additional capabilities in the power supplies and in the clock generator in the processor), and

hardware support for the RAS bus. New higher density half-height floppy disks are used,

with one for microcode storage and one available as a system log to maintain a record of

major system events to support field service. Note that RAS bus support is being phased into

the processor during 1988, requiring a different backplane than that originally shipped in the

early systems.

1/0 priority net arbitration has been moved into the processor.

The 4050 and 4150 have a larger set associative cache and STLB. Soft error recovery is

implemented on both.

The major processor busses were converted to tristate buses. Therefore, special controls to

eliminate clashes had to be implemented. Bus timing had to be altered to accommodate these

changes.

The write buffer has been made fully associative in the 4050/4150 processors, so that it is no

longer necessary to empty the write buffer before performing a main memory read operation.

Writes can be merged more effectively so that fewer (and larger) main memory write

operations are performed.

The Daphne power supply with integral BBU is available to provide a guaranteed five

minutes of memory ride-through on the 4050 and 4150, with fully charged batteries. Due to

the very low load placed on the DAPHNE, the actual ride-through capability observed will be

much more than five minutes.

The PDA is similar to the 9755 FEP with enhancements such as a deeper stack, higher

density displays (including support for the PT200 132 character display), and special support

for triggering halts and stack traces from any combination of up to four random signals

collected from any CPU board(s).

PRIME RESTRICTED

Processor Overview 4150 Funct. Spec.
Page 9

2. Processor Overview

2.1 General Description

The 4150 and 4050 processors are each implemented on three 16" x 17" boards. They both

use "AS" and "ALS" SSI and MSI components, CMOS static RAMs with TI'L compatible 1/0,

Motorola MCA2800ALS Macrocell arrays (ECL internal, TI'L external VLSI), and. high speed

PALs and PROMs.

The "AS" and "ALS" logic families were chosen to allow a power/performance tradeoff with

pin-compatible devices, while retaining the highest performance commercial TI'L logic family.

This has led to an office-installable configuration of a machine(4150) with performance similar

to that of a 9755. Separate I/O RAMs (AMD9150) used in the register file and Registered

Dual Bus Interface (74AS646) parts helped in dealing with the problem of building machines

with a technology usually oriented toward shared buses (TTL), but based on a pipeline and

hardware organization designed to take advantage of separate input and output buses common

in ECL, the technology in which the 9755 was implemented.

The 4050 processor cycle time is 133.33 nsec. This means that a new single microstep

instruction may be executed every 133.33 nsec. The 4150 can do the same thing in 125 nsec.

General perfc. rmance enhancements include a larger, better organized cache and STLB, an

associative write buffer, a faster memory cycle, and new I/O microcode. Standard burst mode

performance is 5.8 MB/s for the 4050 and 6.2 MB/s for the 4150. The general mix

performance, measured via the GASP benchmark in 321X mode, is 2.3 MIPS for the 4050 and

3.0 MIPS for the 4150.

Floating point performance has been emphasized, with special hardware and new algorithms

added to speed up floating point execution. In 321X mode, the 4050 execute 3000 single

precision Whetstones per second and 2300 double precision Whetstones per second. The 4150

executes 4300 single precision Whetstones per second and 3100 double precision Whetstones per

second. The single precision Whetstone number divided by 1000 is often quoted as a floating

point performance in MIPS, which would indicate 3.0 MIPS and 4.1 MIPS, respectively, in the

environment modeled by Whetstones.

The often quoted average of GASP and single precision Whetstones performance is 2.7 MIPS

for the 4050 and 3.6 MIPS for the 4150.

Because of the delays produced by the technology translation at the inputs and outputs of the

VLSI parts, it was determined that they would only help with performance in cases when a·

significant amount of serial logic could be implemented within the chip. This led to fully

parallel look-ahead carry logic in the PEALU (ALU VLSI), as well as parallel distribution of

all ALU outputs separately to every PBDI (barrel shifter VLSI) part. Most other parts were

PRIME RESTRICTED

Memory

I Control •

~
* - The C.S. and P .C.U. generate controls to almost all

units. Several units return control to the C.S. and
P.C.U. to affect future controls.

Figure 2-1 Block Diagram of 4150 Processor

Processor Overview 4150 Funct. Spec.
Page 11

primarily intended to reduce component count, typically replacing from 40 to 85 20-pin DIPs

with one VLSI part. Each VLSI part consumes the area of about eight 20-pin DIPs. Much

of that area is reserved space around the part to enhance routing, as well as cooling of other

nearby parts.

The functional microcode is derived from 9755 microcode about 80o/o of the time. The

remainder of the code has been rewritten to take advantage of special new hardware or

machine dependent characteristics such as I/O and the Diagnostic Processor (DP) interface.

Increased hardware capabilities have required some changes in the size of the microcode fields.

The parity fields have been redefined to help make more control bits available.

The 4050, 4150, and 6350 are highly microcode compatible. Some areas, especially I/O, are

very different. In other areas in which differences exist, the code is written to adapt to the

target machine. Most code runs identically on all of the machines. The 4050 and 4150 have

control stores with 16K words of 80 bits each. All functional code will fit within 8K

words. However, the available technology in TTL supported a 16K word RAM more easily.

The microdiagnostics were also derived from those of the 9755.

enhancements have been made to improve testing and to test

Approximately 35K words of microdiagnostics are in existence today.

However, significant

new functionality.

The diagnostic processor interface has been redesigned to work with the Mink diagnostic

processor.

Standard Prime I/O is supported with a sustained burst mode transfer rate of about 5.8 MB/s

on the 4050 and 6.24 MB/s on the 4150. Ten l/O controllers are supported in the fully

configured systems.

The priority net arbitration in the I/0 bus has been moved into the. processor. This allows

for faster settling of the priority net as well as the ability to determine which controller

was granted access. Slot 10 is the highest priority slot.

The two-way set associative cache with 128K bytes of total data storage and the two-way set

associative STLB with 1024 total entries provide improved general mix performance, as well as

improved consistency in performance across environments by eliminating susceptibility to two­

way thrashing. Three-way thrashing is very uncommon, especially with system software

support to help prevent it. Since thrashing cannot be prevented by static allocation when

using EPFs, performance variation due to thrashing was a major concern .

• A fully associative write buffer reduces the memory access latency, thus reducing the average

memory access time. It also improves the memory bus utilization and; therefore, the effective'

bandwidth.

Major busses are implemented with tri-state interfaces. Special control circuitry is provided to

ensure that there is a complete turn-off of one driver before turn-on of the next driver.

PRIME RESTRICTED

4150 Functional Specification
Page 12

General Description

Although there are some performance implications, reliability would be negatively impacted if

this were not carefully implemented.

A Processor Diagnostic Aid (PDA) is supported to assist with complicated debugging. This

device is used in development and manufacturing, and in some cases for engineering assisted

field support. It is similar to the 9755 FEP with enhancements such as a deeper stack,

higher density displays (including support for the PT200 132 character display), common

source code for the 4050, 4150 and 6350, and, in the 4050 and 4150, the ability to halt or

trigger the stack on any combination of up to four random signals collected from any CPU

board(s).

2.2 Board Descriptions

The E board is a combination of the El and E2 boards of the 9755, with some variations.

For example, the 1/0 addressing and priority resolution logic reside on the 4050 and 4150 E

boards.

The CMI board includes the control store, the memory controller, and the 1/0 support (other

than that mentioned under the E board). It also contains the DP interface support and master

clock generation circuitry. This is roughly equivalent to the CS, MC, and clock boards on the

9755. The decode net logic and other instruction decoding hardware used for microcode

sequencing are included as well.

The IS board contains the cache, STLB, PCU, branch cache, and effective addressing hardware.

It is roughly equivalent to the I and S boards in the 9755.

The PDA is the rough equivalent of the 9755 FEP.

2.3 VLSI Requirements

The E board uses three Macrocell options and a total of eleven parts. There are seven

PEALU parts which implement the major elements of the arithmetic and logical data paths.

There are three PBDI barrel shifter parts. These parts provide many special data

rearrangement functions, in.eluding the ability to determine how to shift data for floating

point adjust and normalize operations directly from the data, or from the difference of the

exponents. It also supports guard digits and rounding. One PRFADR register file addressing

part is used. It contains the E unit copy of RP (program counter), REC (event counter), and

skip net support.

The CMI board uses two Macrocell options and a total of four parts. There are two PUSEQ

parts which generate microcode addresses, support microcode subroutines, decode instructions to

produce microcode entry points, and implement the last stage of the condition testing (jump

net) for microcode sequencing. There are two PADBCF parts which implement the associative

PRIME RESTRICTED

Processor Overview 4150 Funct. Spec.
Page 13

functions for the write buffer. These parts generate the address for the write buffer, detect

read/write collisions, merge data, and independently select and initiate write operations.

The IS board uses three Macrocell options and a total of six parts. There are two PCADR

cache addressing parts which include RP, EAS, EAD, and increment and decrement hardware.

These chips generate memory addresses. Some support for effective address formation is also

included. The PSSS is the STLB · set selection part, which detects associative matches, hits and

misses on STLB accesses, IOTLB addressing, parity checking, soft parity error support, and

selects the correct STLB data. The PCSS is the cache set selection part. It performs similar

functions to those of the PSSS, except that they apply to the cache instead of the STLB. It

also provides special support for branch instructions.

2.4 Major and Critical Paths

The 4050 master clock period is nominally 33.33 nsec, which results in a "beat rate" (the

elementary unit of useful time) of 66.67 nsec. A microcode step takes two beats, or 133.33

nsec. The 4150 master clock period is nominally 31.25 nsec, which results in a ''beat rate"

of 62.5 nsec and a microstep time of 125 nsec. These compare to 20, 40 and 80 nS,

respectively in the 9755.

All path delay calculations have been done to ensure worst case operation of the system at

nominal master clock frequency. The worst case times for all logic parts are those quoted in

the data books for 50 pF loading. These are specified for 0 to 70 degrees C and 5.0V +/-

10%, except for a few parts that specify 5.0V +/- 5%. Line propagation delays are estimated,

usually adding a penalty of 0.5 nS for each input in the net. Clock skews are based on

published min/max data for parts in the path and approximately 25% of worst case delay as

skew between outputs of the same device. VLSI delays are based on information generated

by the vendor's simulation software.

Minimum delays are used only for hold times. In these cases, clock skews are calculated as

negative times and line propagation delays are considered to be zero. In these cases, the

minimum times specified in data books or 25% of VLSI maximum times are used as minimum

delays.

Margin testing is done to ensure that the design provides adequate safety margins to allow for

some degradation in component performance over time. Testing at high frequency (34 MHz)

and at both low (4.75) and high (5.25) voltage are performed to ensure stability at nominal ..
frequency. The high margin crystal is included in the system and may be selected via the

Diagnostic Processo.r. · The power supplies support Diagnostic Processor controllable voltages to·

perform voltage margining. All systems are tested at margins in manufacturing.

PRIME RESTRICTED

4150 Functional Specification
Page 14

2.5 Processor Physical Description

Major and Critical Paths

The shrinking of the 9755 into three board systems required extensive use of high density

components such as PALs, octal (and greater) density parts, and the Macrocell arrays. The

partitioning was driven by two factors: real estate to implement the required functions, and

interconnect limitations between the boards. The insertion of the CPU, DP, memory, and VO

into one backplane and within one chassis required that the processor boards be of

substantially similar size. The width of the CPU boards (vertical dimension when inserted in

the system) is the same as all of the other boards in the backplane. The depth is slightly

different to allow for the difference in the way that the new connectors seat compared to

the way the edge connectors seat. Each CPU board has one 488-pin, 4-row high density

connector. Power end ground have been distributed through the connectors to provide signal

shielding and minimize ground inductance.

Each board is capable of housing the equivalent of approximately 375 20-pin DIPs or

equivalent. Spacing is very tight, but 200 mil spacilig has been enforced between component

holes on any two adjacent components in both directions, except for resistor SIPs. This is

done to ensure auto-insertion capability of all unsocketed components, except SIPs, and the

sockets for all socketed components, with the possible exception of the VLSI sockets.

Each CPU backplane slot is a dedicated slot and cannot accept any other board (except that

the IS and PDA may be exchanged). The power supply pins are identical to prevent

disastrous results if the wrong board is plugged into a slot, but some damage could still occur

from totem pole drivers that could be placed in contention. The connectors are keyed using

keying pins that are installed into the connector before assembly of the board or backplane to

help prevent this.

If a CPU board is inserted backwards, the connector will not mate properly with the

backplane connector. Labels have been included on the CPU board silk screens indicating

which edge should be up when properly inserted. The boards with edge connectors have no

such protection, and can easily be inserted incorrectly. Such boards can be damaged if installed

incorrectly. This is particularly true of the Mink, since it is oriented opposite to the rest of

the boards with edge connectors. Labels on the chassis above and below each slot indicate

"component side" of each slot and should be used to properly orient the boards.

All boards and power supplies are inserted vertically. All boards except the E and Mink

have their components on the side of the board nearer the 1/0 power supply. The IS and

Mink boards face each other with the Mink in "backwards", and the E and CMI boards face

each other with the E board in "backwards".

The cooling towers on the VLSI parts and the modem on the Mink would require a board

pitch (spacing) of over 1 ", totaling about 4.5'' for the Mink and CPU boards. With the

pairings described above, the total backplane requirement is about 2.75" for the Mink and

PRIME RESTRICTED

Processor Overview 4150 Funct. Spec.
Page 15

CPU. The excessively high components on these boards are arranged in a configuration that

allows them to pass each other without conflicts. This permits insertion or withdrawal of

any board without requiring any other board to be moved.

When inserting a PDA in the system, the PDA should be inserted before the IS board because

of the very close spacing of those boards and the length of the connector pins on the IS

boards. These pins frequently contact the housing of the PDA connector if the]S is inserted

first.

..

PRIME RESTRICTED

4150 Functional Specification
Page 16

PRHv1L RESTRICTED

Pipeline Control Unit Functional Overview 4150 Funct. Spec.
Page 17

3. Pipeline Control Unit Functional Overview

3.1 Introduction

The 4150 CPU is implemented as a ten stage synchronous pipeline, capable of handling up to

five machine level instructions simultaneously. The time for each stage to complete its

operation is termed a ''beat". The 4150 beat is 62.5 nsec in duration, while the 4050 beat is

66.67 nsec. Optimally, machine level instructions can enter into and depart from the pipeline

every two beats (125 nsec on the 4150, 133.33 nsec on the 4050).

The primary functions of each stage are:

STAGE 1

STAGE 2

STAGE 3 -

STAGE 4

STAGE 5

STAGE 6

STAGE 7

STAGE 8 -

STAGE 9

STAGE 10

Program counter (IRP) loaded into registers addressing cache, STLB, and
branch cache.

Instruction is fetched and loaded into cache data registers (RCD). STLB is
accessed for possible use. Branch cache is accessed for possible use.

Instruction opcode is transferred to the control store (CS) and decoding of
the instruction begins.

The base and index registers are accessed in the Instruction (I) unit for
required effective address information. Decode net address point is calculated
in CS.

Effective address calculation in I unit.
generated.

Control store address (BCY) is

Effective address loaded into STLB and cache address registers. Microcode
word loaded into RCM registers on all boards.

Operand data is accessed and loaded into cache data registers. STLB accessed
for possible use. Register file source address loaded in execution (E) unit.

Begin execution of operation in E unit.

Complete execution of operation. Register file destination address loaded in
E unit.

Write results to register file.

The PCU resides entirely on the IS board, which was designed by Tony Dorohov.

PRIME RESTRICTED

Stage
Active __._
Clocks ...

... IAC FLUSH -.

Stage
Stage

Clock Clock Clocks_...
Enables ...i Distribution

Memory Busy .. PCU Hold
Cache Miss •

......J Condition
Unaligned Read: Generator

.J Unaligned Write:
EAF Step

..

...
RP Trap _...
NXDone

..
_...

TX Done
...

_... ..

Figure 3-1 Block Diagram of Pipeline Control Unit

Pipeline Control Unit Functional Overview 4150 Funct. Spec.
Page 19

3.1.1 Stage Clock Generation

The Pipeline Control Unit (PCU) controls which of the 10 stages are clocked in any given

beat. During each beat, the PCU distributes clock enables (ENCSOl+ ..; .. .ENCSlo+) to clock

generation circuits on all the processor boards, which in turn generate the associated clock

pulse (CSOl+ ... CSlo+) on the subsequent beat.

The PCU consists of:

• Registers containing bits denoting which states are currently active (i.e. STlA+
denoting stage 1 is currently active)

• Combinatorial logic which collects information from all boards which may affect
stage clocking.

• Drivers which distribute the stage clock enables to all the CPU boards.

If a stage is active and there are no external conditions received by the PCU indicating that

the stage should be delayed, the enable line will be driven active to all the boards activated

during that stage.

If a stage is clocked, its active bit in the register is cleared and the active bit for the next

stage is set. For example, when stage 1 is clocked at CSOl+ the active bit for stage 2 ST2A+

will be set. Refer to Figure 3-2.

The external conditions that the PCU receives include:

• Cache miss

• Register file collisions

• Fetch cycle traps

• E unit exception conditions

Some of the capabilities of the PCU include:

1. Holding the front end of the pipeline (stages 1-6) while cycling multi-microcode
through the E unit.

2. Extending all even stages of the pipeline if extra time is required for a particular
stage to complete its operation.

3. Flushing the pipeline following execution of a conditional instruction.

4. Force NOPs into the E unit while instruction refill occurs in the front of the
pipeline.

PRIME RESTRICTED

4150 Functional Specification
Page 20

FIG. 3-2. Stage Clocking Example

TMCU<+ -1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-

FENEOB+ , __ , , __ , , __ , ,_
ENCS01+

CS01+ -----------

ENCS02+ -----------

CS02+ ----------------

ENCS03+ ------

CS03+ -----------

ENCS04+ -----------

CS04+ ----------------

Introduction

5. Suspend all pipeline operations during non-overlappable operations such as cache
miss.

3.2 9755 and 4150 Comparisons

There are no functional differences between the 9755 and 4150 PCUs.

3.3 VLSI Requirements

No VLSI parts are required in the PCU implementation.

3.4 Major and Critical Paths

The critical path through the PCU starts when a pipeline hold condition fs detected, continues

through the PCU by s~utting off all the ENCSxf(signals, and ends when the setup times of

these signals are met throughout the machine.

PRIME RESTRICTED

Control Store Unit Functional Overview 4150 Funct. Spec.
Page 21

4. Control Store Unit Functional Overview

4.1 Introduction

The major element of the Control Store (CS) is a random access memory in which the system

microcode image is stored. The CS allows the overlapping of the execution of the current

microinstruction with the fetching of the next microinstruction from the CS RAM.

The CS logic was designed by John Strusienski. It resides on the CMI board, which was

designed by Tom O'Brien.

The control store logic may be broken into the following hardware elements:

• Microsequencer

• Control store RAM

• Maintenance & initialization logic

• Parity checkers on the CS RAMs

• BCYPDA bus

PRIME RESTRICTED

D

c

B

A

8 7 6 s '+ 3 2

----------------------------;;,:----------------- -----------------i . ---------- -------------------------------,------,- --------: r---- Ml I I

1111 I I
M I

..---~1> tw:HTM.Jt

lllJH

~)-·, ·-<J..lll..,.,_~'l-----1r><'i=;:;,_J

SELBDIH

-» !'~D - ,

->-~ > F!R:llTRI.•

... ,
I

llJX!llET

<~
:: I :: -~ [I T I -J

cs• >
---' I

l!IFfll)

HICROSE~

.------,-

!>'"Tl!

16

q.s.e.1.U.14.16

Bt'1CB3-161

nICROIJEllBICER

JB

., I -
7 t:

I I
I
I
I I
I I
I I
I
I
I
I I
I I
I
I l4

..
,._
cs-

14

ll'CLK•H

161'1: X 81

.... """"'
,...,...

1'E

CV

tlJTE: TIIENTY
J6K l 4 Mt5

llCY•

ODOmllli

l/U
Attflll-EllD

I
I
I
I
I
I
I
I
I
I
I

"JCRD-lEOIEllCER

C!NIRDL LOSIC
FElF -~ I PIRIJl(~·,))

s.1.a.11.12.11.1s

CS INttRNN. STATU9

I 1llClt.

L--

•

Cl'IRO

""""' Cl'lRl<
lffW.
lf'Sl'9CUI
ll'Plff'L
nPFetY

r l91!1U

TnCLK L
r;;;,-;,~
LLST~

--------------------;;.;._~--8---~~L~-----,
""""' CHml2
SYJQJ(CNTAl..3 l'l'Cl.JlitR
Dml..1 ~ f'A.. VRllECS

>H I-= IPa.J< ='"
t"\IFHil l.Ol'IRCYL
F1EY

BYllCLR
tmO:IJ(

8TAltal

:s D~-

lfll!ECS

PLII'

\l!lmll

l'fllm

2ll ~-·
UIGIC

..
..

In, \)LACC

..

"'
11Dl. r_ 1 NXll (13-181 •

r~~DL STORE - OOTPur I

LSD PllllE 221

PRD£ CCll'llTER. It«:.
FllAlllllMili;-..,.-,

cs: llLilCI(Q[lllAfln

I a I 7 I '? I s f' 4 I 3 I 2 I -

Figure 4-1 Block Diagram of Control Store

Control Store Unit Functional Overview 4150 Funct. Spec.
Page 23

4.1.1 Microsequencer

The microsequencer consists of two VLSI chips which produce the control store address. The

address bits are referred to as BCY bits. (On an ancient Prime machine, addresses were

referred to as Y, leading to the name Bus Control Y. The name has, unfortunately, stuck.)

4.1.2 Control Store RAM

The control store consists of a 16K x 80-bit static RAM array. The output of the array is

buffered, latched, or clocked as appropriate, and then sent to all microcode controlled hardware

in the machine.

4.1.3 Maintenance & Initialization Logic

The maintenance & initialization logic consists of the interface between the Diagnostic Processor

(DP) or Processor Diagnostic Aid (PDA) and the CPU. There are two times when this interface

is used:

• When the CPU is halted, either the DP or the PDA may write or read the CS
RAMs.

• When the CPU is running, either the DP or the PDA may force the execution of
a specific microinstruction. This is known as FORCEBCY.

4.1.4 Parity Checker

The outputs of the control store RAMs (80 bits) include one parity bit for each nine data

bits.

4.1.5 BCYPDA

The control store sends a private bus containing BCY information to the PDA. This bus

allows the PDA to record the microinstruction stream for display at a later time.

4.2 9755 and 4150 Comparisons

There are no functional differences between the 9755 and 4050 CS units.

PRIME RESTRICTED

4150 Functional Specification
Page 24

4.3 VLSI Requirements

9755 and 4150 Comparisons

Two microSEQuencer (PUSEQ) VLSI chips are needed to implement the control store logic.

4.4 Major and Critical Paths

The major path through the CS involves receiving a jump condition from another unit,

changing the BCYs, and accessing the CS RAMs. This is a two beat path from CS8+ to

TRCML+.

Conditional ReTurNs (CRTNs) are critical, but TXNX logic is used to make this path work

because of the I unit intervention needed. This is a two beat path from CS8+ to TRCML+.

The internal PUSEQ push/pop stack path is critical, due to the time required from TSTACK+

to TWRITE-.

PRIME RESTRICTED

Instruction Decode/Effective Address Formation Functional Overview 4150 Funct. Spec.

5. Instruction Decode/Effective Address Formation
Functional Overview

5.1 Introduction

Page 25

The Instruction (I) unit operates during stages 3, 4, 5, and 6 in the pipeline, performing

instruction decode and effective address formation.

The I unit resides partially on the IS board, which was designed by Tony Dorohov, and

partially on the CMI board, which was designed by Tom O'Brien.

S.1.1 Instruction Decoding

The instruction information is read from cache and clocked into the Cache Set Select (PCSS)

VLSI chip at the end of stage 2. The PCSS VLSI transfers the instruction information over

Bus B (BB) to the I unit and Control Store (CS) unit for instruction decode during stages 3

and 4.

The PCSS VLSI provides the necessary staging and steering logic to properly format instruction

opcodes and displacements for decoding and effective address formation. The cache data

registers (RCD) located on the PCSS VLSI are clocked at the end of stage 2 with instruction

information and at the end of stage 7 with data information. Under f'i.111 pipeline operation

the PCSS part sources BB every beat with an alternating stream of 32-bit instruction data

composed of opcode and displacement, or 32-bit operand data targeted for the Execution (E)

unit. Table 5-1 illustrates these actions. It is important to note that the instruction stream

data is read during during stage 2 and driven onto BB during stage 3, while operand data is

read during stage 7 and driven onto BB during stage 8.

Note that since the displacement is not needed until stage 5 for effective address calculation,

the combination of opcode and displacement placed on BB at any odd beat is comprised of the

currently prefetched opcode and the last prefetched displacement. The reason for this

displacement staging is because the opcode must first be decoded to determine the instruction

length and location of . the displacement within the instruction.

The decode net is an SK x 20-bit lookup table addressed by the instruction decoding logic.

The output is used by the microsequencer to address the CS RAM. The addresses produced in

this manner are the addresses of the microcode entry points for all PMA instructions. The

lookup table also contains control information used internally on the I "unit.

PRIME RESTRICTED

Cache A
....

r- --..

FMA

I _.. Cache B

Data Registers are
clocked at CS2+ for
instruction fetches and at
CS7 + for operand fetches.

I

A

.... 1---i -.
Data

Instruction

_.. Alignment
....
....

..... I---....
B

Data

BBH{1 :16}+

BBL{1 :16}1.._

CS4+

Figure 5-1 Block Diagram of Instruction Decode Unit

r--
To

OPCODE Unit EAF_..
--..-

_.. Decoder --

Decode Net
Address

~~

Decode
Net
RAMs

To

-f
,~

}
cs_..

Index
Address

OPCOOE I ~ Register File I Base

..
BBH{1 :16}..., Latch r--1

Address

Address Generation

• I

CS4+
Indirect
MUX .

.i BVMAH

BRFH{1 :16}+ • I I MUX

IRF{1 :16}+ Base + Index

BRFL{1 :16}+ I ALU
FIRPL{1 :16}+._

•

BBL{1 :16}~ Displacement
Latch

ALU
Displacement

ALU

ALU

Figure 5-2 EAF Unit Block Diagram

I •I Index RF
IRF{1 :16}+

...
,..... Base RF

BRFH{1 :16}+

BRFL{1 :16}+

... ,..

-
~

~
BVMAL
MUX

Cache
Address
Register

FMA

The Cache Address
Register is clocked
at CS1 + for instruction
fetches and at TRCML+
for operand fetches.

4150 Functional Specification Introduction
Page 28

TABLE 5-1. BB Data During Different Pipeline Stages

INSTRUCTION fl 0 I 1 2 3 4 BBH / BBL

STAGE 5 3 1 OPCODE 1 / DISP 0
6 4 2
7 5 3 1 OPCODE 2 / DISP
8 6 4 2 OPERAND 0

7 5 3 1 OPCODE 3 / DISP 2
8 6 4 2 OPERAND 1

5.1.2 Effective Address Formation

The I unit effective address formation takes place between stage 4 and stage 6. The opcode

bits pass through combinational logic to form the base and index register files' read addresses.

These addresses are latched during stage 4. The upper 16 bits of the effective address are

formed by the contents of the high side of the base register or by the program counter for

RP relative operations. The lower 16 bits of the address are formed by taking the contents of

the base register or program counter and feeding it thru an index ALU and displacement

ALU. The index ALU is used for Base Register (BR) + Index (X) and Register Program

counter (RP) + X operations. The displacement ALU is used for BR + DISP, RP + DISP, BR +
X + DISP, and RP + X + DISP operations. The calculation takes place during stages 4, 5 and

6, with the final full virtual address being loaded into the registers addressing cache and the

STLB at the end of stage 6.

5.1.3 Register File Collisions

A pipelined processor depends on keeping the pipeline full to achieve its performance goals.

This means effective addresses for the next instruction must be calculated while the current

instruction is still executing. Unfortunately, if the next instruction uses the result of the

current one in its effective address calculation, the address will be calculated incorrectly. This

condition is called a register file collision. Special logic is implemented as part of the EAF

unit to detect and generate a pipeline hold condition, if necessary, when register file collisions

occur.

5.2 9755 and 4150 Comparisons

An extra bit has been added to the decode net control bit field to help with the tracking of

floating point registers.

An extra address bit has been added to the decode n~t to double the usuable size to 8K

locations. Since the decode net RAMs are 16K deep, no extra logic is needed to utilize the

extra 4K except for the one address bit. This address bit is bit 2 of the KEYS register, the

Double Precision bit. This extra address bit allows extra microcode entry points for PMA

instructions in native UNIX mode.

PRIME RESTRICTED

Instruction Decode/Effective Address Formation Functional Overview 4150 Funct. Spec.
Page 29

5.3 VLSI Requirements

The I unit VLSI requirements are:

• 2 PCSS chips, which format the cache data for the I and E units

• 2 PCADR chips, which implement the displacement ALU

5.4 Major and Critical Paths

• Clocking cache data to opcode valid on BBH. The data must be valid before the
end of the beat.

• Return to fetch generation to RMA clock with instruction address. This path must
be less than 1 beat.

• Register collision detection to holding off EAF address latch enable. This path must
be less than 1 beat.

PRIME RESTRICTED

41SO Functional Specification
Page 30

PRIME RESTRICTED

Branch Cache Functional Overview 41SO Funct. Spec.
Page 31

6. Branch Cache Functional Overview

6.1 Introduction

One major goal of a pipelined architecture is to maintain a continuous stream of instructions

flowing through the pipe. This insures that the maximum possible performance is achieved. ·An

obvious pitfall of pipelined instruction flow is the branch or jump class of instructions, which

alter the normal instruction sequence. A jump or branch will force the machine to "flush", or

remove from the pipe, all of the partially processed instructions which follow the branch.

Since this pipe flushing degrades performance, the 4150 is equipped with a branch cache,

which tries to take advantage of certain known properties of branches and jumps.

Examination of the pipelined execution of a 00 loop shows that all but one of the iterations

through the loop branch to the top of the loop, and thus flush the pipe. The branch cache

logic is intended to avoid this pipe flush by substituting the target address of the branch (in

this case, the address of the top of the DO loop) for the address of the. next sequential

instruction. Since many branch instructions are conditional in nature, the branch cache

operations can sometimes be a detriment rather than an aid to machine performance. This

problem has led to the development of an algorithm for loading target addresses into the

branch cache. In simple English, this algorithm is, ''branch the way you branched last time

you executed this instruction". This allows the branch cache to maintain a high performance

level during DO loop execution as well as during those conditional branches which are rarely

taken.

The branch cache functionality is distributed among the entire machine and the microcode. The

Instruction (I) unit holds the branch cache itself and controls the variations in instruction

sequencing. The Execution (E) unit maintains the true program counter. The Control Store (CS)

unit provides an alternate ·microcode entry point in the case of unaligned branches, and the

microcode controls the updating and invalidation of the branch cache.

PRIME RESTRICTED

Target Address
To I Unit Branch Branch

cache
BVMA

Cache
Address RAMs
Register

Instruction Hit
BCHIT-

State Detect
Machine

Branch
GOOD BR-

Verification
GAFFE-

To E Unit

Figure 6-1 Block Diagram of Branch Cache

.;,

Branch Cache Functional Overview 4150 Funct. Spec.
Page 33

6.1.1 Overview of Operation

The branch cache logic consists of three main parts:

1. The branch cache array

2. The detection logic

3. The IRP/RP control logic

One simple way to understand the operation of these various parts would be to describe the

normal operation of the branch cache.

The branch cache is initially set to be invalid. At some point in the program execution a

conditional branch instruction is executed. For the sake of this discussion, we will assume the

condition is true. The branch instruction microcode will proceed to update the branch cache

with the target address, mark the entry as valid, reload the I unit program counter (IRPL)

with the target address, and flush the pipe. This is the slow and painful way to branch, but

it only needs to be done once for each 00 loop construct. Further encounters with this

branch instruction will cause branch cache hits to occur, resulting in IRPL being loaded with

the target address rather than IRPL+2, which would occur for a sequential operation.

Now the problem is the case in which the branch condition is false and the next sequential

instruction should be executed. In this case the I unit has assumed that the condition is true

and loaded the target address fnto IRPL before the E unit has actually looked at the condition.

The front end of the pipeline has been partially filled with bad instructions. Here the

hardware and microcode determine that the branch was not valid. The branch cache is

invalidated, the correct program counter value obtained from the E unit is loaded into IRPL,

and the pipe is flushed. Further executions of this instruction will assume that the condition

will not be met.

The actual hit detection is accomplished by comparing the portion of the current IRPL value

not used to address the branch cache to the corresponding value that was stored during the

branch cache update. If these values match and the valid bit is set, there is a hit. The hit

condition will cause the instruction flow to be modified by taking the target address from the

branch cache and storing it in IRPL.

Before the branch instruction is permitted to enter the E unit, the branch target must be

validated. This is done during the effective address formation of the branch instruction. A full

32-bit comparison is done between the a staged version of the program counter and . the target

address. The results of this comparison is clocked and sent to the E unit for program counter·

(RP) control and to be used by the Conditional ReTurN (CRTN) logic.

There are a variety of problems or "Gaffes" which could cause the branch cache to do the

wrong thing. For example, a specific location in one segment could contain a valid branch

PRIME RESTRICTED

4150 Functional Specification
Page 34

Introduction

instruction and thus force a branch cache update with good data. A second segment could

contain a non-branch instruction in the same relative word location. Execution of this second

instruction would cause the first instruction's target address to find its way. into IRPL sinee

the branch cache does not check segment numbers or the user ID. Since non-branch microcode

is not equipped to deal with changes in instruction flow, a microcode trap handler is used to

reload IRPL, invalidate the branch cache, and flush the pipe.

6.2 9755 and 4150 Comparisons

The 9755 branch cache was 256 locations deep. The 4150 branch cache is 1024 locations

deep.

The 9755 didn't have the ability to do a full 32-bit branch cache validation. This meant that

any branch that could possibly leave the segment was never allowed to have a validated

branch cache entry. The 4150 has no such restriction.

A third difference involves a deficiency in the 4150 hardware. The value of IRPL16 inside

the Cache Address VLSI chip is not always accurate. This results in improper validation of

branches. To overcome this, the branch cache validation signal can only be trusted if a

branch actually occurred. The effect of this difference is that the 9755 had the ability to

forward branch by one, while the 4150 does not. (This is not a very useful function.)

6.3 VLSI Requirements

The branch cache logic partially controls the pre-IRPL mux selects in the Cache Address VLSI

chip (PCADR). One mux select line is controlled by the branch cache hit detection logic,

which will force the next update of IRPL to come from the branch cache array rather than

the PCADR increment logic used to advance IRPL under normal operation. Thus the

substitution of the branch target address for the next sequential IRPL value is done through a

mux select line.

The PCADR part also produces the signal which lets the rest of the CPU know that the

addresses involved in the current branch operation are valid.

The microsequencer (PUSEQ) VLSI chip on the CS unit has the ability to force decode net

address bit 12 to a logic zero on unaligned branches.

6.4 Major and Critical Paths

For the most part there are no critical timing paths in ~he branch cache logic. The major path

from the clocking of the branch cache address register, through branch cache hit detection, and

switching the mux to meet the IRPL setup time has 1 1/2 beats to do the job. The branch

cache validation path through the PCADR is somewhat critical. Here, the effective address

calculation must be compared to the staged IRPL value in two beats.

PRIME RESTRICTED

Cache Functional Overview 4150 Fu:nct. Spec.
Page JS

7. Cache Functional Overview

7 .1 Introduction

The 4150 contains a two way, set associative, virtually addressed instruction and data cache.

Each set has a data capacity of 16K elements, organized in a 2 x 32-bit arrangement. The

total cache data capacity is 128KB. The cache access time is designed to be one beat, so

accesses may be made every beat. The cache hit rate is projected at 99%.

The cache resides entirely on the IS board, which was designed by Tony Dorohov.

7.1.1 Basic Cache Operation

There are two sections in each cache entry, a data section and an index section. The index

section assists in cache hit/miss decisions. It contains excess address bits (bits which would

specify addresses greater than 16K), status bits which relate to the validity ('f the data in the

corresponding location of the data section, and history bits which relate to how old that data

is.

The cache hit or miss determination is done in parallel with the data access. The low order

address bits are used to address the cache RAMs directly. The excess address bits are

compared with the bits in the index section. If all these bits match and if the validity bits

are set, the data in the corresponding location of the data section is valid, and a cache. hit has

been detected. This process goes on simultaneously in both cache sets, and either may detect a

hit.

If neither set detects a hit, a cache miss sequence is started. The address which caused the

miss undergoes a virtual to physical translation and is sent to the Memory Controller (MC)

over BB, along with a cache miss read request. The· pipeline is stopped until the MC fetches

the data from memory. Any cache miss causes the MC to fetch 64 bits, all of which are

written into the cache;

The decision of which set of the cache to write into is made with the help of the history

bits in the index sections of the cache. A Least Recently Used (LRU) algorithm is used.

When the data is finally fetched, it is written into registers and placed on BB for 1 beat .

..

PRIME RESTRICTED

A Elements
MBPMA (from STLB)

4~ ,,
BD .. Index

...
..... 16K .. Index

""""1 Cache

Elements
--....- Register

Miss CMISS +

.... Detection --.....

Data .. Data
...... --....- Register

,,
Cache
Address

,, Data

~
Selection BB

......

BVMA Registers
....

~

....

16K
Index Index

Elements
..

Register

....
..

Data
Data

.... Register
,,

B Elements

Figure 7-1 Block Diagram of Cache

Cache Functional Overview 4150 Funct. Spec.
Page 37

7.1.2 Cache Writes and Operand Reads

The cache reads the operand data and index during stage 7 of the pipeline and stores the data

into registers at the end of the beat. The cache data registers are partitioned into even and

odd quantities. Data from cache can be accessed in either 16 or 32-bit quantities. A 32-bit

cache read from an odd address is called an unaligned read. Unaligned reads require an extra

beat to read the second data word.

Control circuitry writes the cache with data driven on BD by the E unit 1 and 1/2 beats

after CS7+. Cache writes can be 16 or 32 bits long. A 32-bit write to an odd address is

called an unaligned write. Unaligned writes are handled by a combination of hardware and

microcode. Unaligned writes require four extra beats over the aligned case, one to reload the

address and three to write the second word. They are handled differently depending on

whether the microstep is reloading RMA or not.

7.2 9755 and 4150 Comparisons

The 9755 had a direct mapped, 4K x 32-bit cache. Except for the size, each set of the the

4150 cache is implemented the same as was the 9755's cache. Additional logic controls the

interaction between the two sets.

The set associative cache implementation allows two virtual addresses which have identical

displacements (low 16-bits) to reside in cache simultaneously. Consider the case where two

segments are being used frequently, perhaps by two different subroutines. The likelihood that

references will be made to each segment with identical displacements is high. Thrashing

occurs when one reference causes another one to be overwritten, only to be overwritten by

the original one a short time later. In a direct mapped cache each of these references causes

a cache miss sequence.

opposite cache sets, and

extremely rare.

7.3 VLSI Requirements

In a set associative cache, the data for each reference can be in

no thrashing results. Although 3-way thrashing· can occur, it is

Two Cache Set Select· (PCSS) chips are used extensively in the cache implementation. Each

chip is responsible for making the hit/miss decision on one of the cache sets. These chips also

drive BB with the address during a miss sequence, as well as driving the data onto BB at the

end of the access. Finally, the chips also perform parity checking of the cache data.

PRIME RESTRICTED

4150 Functional Specification
Page 38

7.4 Major and Critical Paths

The ability to read cache every beat is the major path through the cache.

VLSI Requirements

Detecting a RP cache miss and subsequently holding off the next odd stage clocks from

occurring at the end of the beat.

Detecting an EA cache miss and subsequently holding off the next even stage clocks from

occurring at the end of the beat.

Getting data from the E unit to the cache in one beat during memory writes.

Generating the memory trap signal on the S unit and inhibiting any cache misses that may

be pending at the end of the beat.

Generating the signals TEBBLCH+ to control the BB latch on the E unit and TCLA+ to

control the opcode latch in the decode net. The signal TEBBLCH+ is generated at CS7+ and

must be pulled away after the the data is stable on BB and before the end of the beat. The

signal TCLA+ is generated at CS2+ and must be pulled away after the opcode is stable on BB

but before the end of the beat.

PRIME RESTRICTED

Storage Management Unit Functional Overview 4150 Funct. Spec.
Page 39

8. Storage Management Unit Functional Overview

The Storage Management (S) unit contains the cache, Segment Translation Lookaside Buffer

(STLB), and branch cache functions. The cache is discussed in chapter 7, and the branch cache

is discussed in chapter 6. The rest of the S unit contains logic involved in addressing these

storage devices. The majority of this logic sits in the Cache Address (PCADR) VLSI option,

which sources the S unit internal memory address bus (BVMA). BVMA is the source for all

memory related address pointers in the I and S units. These include the cache address registers,

the STLB address registers, Register Memory Address (RMA), the backup effective address

register (ERMA), and the backup program counter (PRMA). ERMA contains a copy of RMA

from the last time it contained an operand address. PRMA contains a copy of RMA from the

last time it contained the value of the program counter. The S unit also contains the

memory trap logic.

The S unit resides entirely on the IS board, which was designed by Tony Dorohov.

PRIME RESTRICTED

EAH BVMAH MUX .. BVMAH -...
....

Hashing c: ~ STLB --c:: ..
IRPL

...
~ Miss

+2 EAL BVMAL Detection ... STLB Address I-

~ IRPH 4~ c: MUX c:. Register ...
~ RMA .. IRPL c: BVMAL branch ... -.. -...

STLBA -.
~ ...

-::: T -L- ...
IOTLE Set

~ EASH
~ 512 .. Selection

r
- ..

i STLB/ .. EASL ... EAS±1 Absolute
EAS±2

-...
Address

BDH ~ EAD±1 STLBB Selection ... EADH - ... t-- EAD±2 I IOTLE
BDL ~ ... EADL 512 ,...

i .. ERMAH
..

===
,...

BB ..
ERMA+ 1

==
,... .. ERMAL ... -... ,...

ERMA+2 Cache
__..,, Address --...

... PRMAL Register BB
MUX

Figure 8-1 Block Diagram of Storage Management Unit

Storage Management Unit Functional Overview 4150 Funct. Spec.
Page 41

8.1 Virtual Memory Concept

8.1.1 Introduction

The 4150, like all 50 series processors, has a virtual memory system. Virtual memory is a

concept where the amount of storage addressable by the programmer exceeds the amount of

real memory connected to the CPU. All the virtual storage resides in disk units or other fast­

access mass-storage devices and is brought into the real memory only as needed.

The components of a virtual memory system are disks, main memory, and cache.

Cache

Main memory

Disks

The cache is a high speed data buffer between main memory and the
pipeline. The cache stores copies of the information contained in the most
recently referenced memory locations. During program execution the buffer is
used to speed up memory references.

The main memory is packaged on printed circuit boards. The 4150 supports
up to 64 MB of memory.

Disks provide storage for all virtual memory. The size of the disk storage
will vary from system to system. For example, one peripheral bay with
four disks installed could easily provide 3.2 GB of disk storage.

Note, the virtual address specifies a location in the virtual address space. This address may or

may not correspond to a location currently loaded in physical memory.

This concept is very similar to a higher order cache. The virtual memory equivalent of a line

is a page, with the real memory filling the role of the cache storage. Whenever an address is

generated, a check must be run to see whether the particular page is in the real memory or

in the mass storage device. The latter case corresponds to a page fault, which is analogous to

a miss in cache terminology. In the case of a hit the hardware must determine which real

page corresponds to the desired one. This means the virtual memory hardware must convert

the virtual address into something that can address a physical memory location Ca physical

address), and must then search physical memory for that location. PRIMOS employs a series of

tables to translate between a virtual address and a physical address (See the System

Architecture guide for more details). By manipulating these tables, the relationship between

virtual and real addresses can change arbitrarily.

A high speed buffer called the Segment Translation Lookaside Buffer (STLB) contains the

virtual-to-physical address mapping for the most recently accessed virtual addresses. The ,,
system uses the STLB with the cache to reduce the time needed to access information. If these

buffers contain valid information for the process making a reference to a piece of data, the

processor can access them in very little time instead of having to make a long memory access.

PRIME RESTRICTED

4150 Functional Specification
Page 42

8.1.2 Segmentation

Virtual Memory Concept

The virtual memory is divided into units called segments that contain up to 128 KB each. A

program and its data sets can be viewed as a collection of linked segments. The links arise

from the fact that a program segment may use or "call" another program or data segment

Segments are virtual units, not physical ones, that aid the user and the system in organizing

their virtual address spaces. The virtual address space of each user contains 4096 segments.

These are subdivided into four groups of 1024 each. The segments are subdivided to make

address translation and segment sharing easier.

8.1.2.1 Shared and Unshared Segments

In the Prime virtual memory scheme each user address space of 4096 segments is divided into

shared and unshared space. The first 2048 segments are shared with all other users. This

allows the operating system, shared libraries, and shared subsystems to be seen by all users.

The second 2048 segments are private, containing information unique to each user. This means

if two users reference segment '4000, they are specifying completely different locations.

This arrangement of shared and unshared segments means that there is no possibility of one

user's private space conflicting with that of another user. It also means that one copy of

PRIMOS and the shared system software need be maintained, and thus reduces memory use.

8.1.3 Protection Rings

Designating shared and unshared segments is not the only form of protection available to the

50 Series virtual memory. Three hardware implemented rings provide a security system that

checks each memory reference for its right to access the specified part of memory.

8.1.3.1 Ring 0

Ring 0 represents the highest level of protection and grants the greatest number of privileges.

The kernel of PRIMOS runs under Ring 0 protection, which means that its segments cannot be

accessed by the users except through protected entry points, and that it has read, write, and

execute privileges to all segments. PRIMOS can access any information in the system.

8.1.3.2 Ring 3

Users run under Ring 3 protection, which means that they cannot arbitrarily access Ring 0

routines or items contained in the private segments of other users' address spaces. Each segment

·under ring 3 protection may have a different combination of read, write, and execute access

rights.

PRIME RESTRICTED

Storage Management Unit Functional Overview 4150 Funct. Spec.
Page 43

8.1.3.3 Ring 1

Ring 1 provides privileges less powerful than those of Ring 0 but more powerful than those

of Ring 3.

8.2 Addressing Cache

8.2.1 Cache Address Sources

8.2.1.1 IRP Register Logic

The Instruction unit Register Program counter (IRP) provides addresses for fetching instructions

of the executing program. The contents of IRP are loaded into the cache and STLB address

registers at the end of stage 1. IRP is then incremented by two at the next CS2.S+.

8.2.1.2 ERMA and PRMA Logic

ERMA and PRMA are registers used primarily for restoring cache addresses in the event of a

cache miss or unaligned read. The PRMA register is used to store instruction addresses while

ERMA is used to store operand addresses. When an instruction is fetched from cache the

address is simultaneously clocked into RMA, PRMA, and the cache and STLB address registers

at the end of stage 1. The copy stored in PRMA is used to restore the miss address during

Register Program counter (RP) (instruction stream) cache misses. When an operand is fetched

from cache, the address is simultaneously clocked into ERMA and the cache and STLB address

registers at the end of stage 6. The address stored in ERMA is used to restore the miss

address during EA (data stream) cache misses. ERMA is also used to provide the correct

address during unaligned reads and writes.

8.2.1.3 EAS and EAD Registers

The EAS/EAD registers are microcode visible 32-bit registers used primarily in string

instruction handling. The EAS/EAD registers are used together for executing string instructions,

procedure call, process. exchange, and other microcode algorithms where consecutive memory

locations are referenced.

8.2.2 Virtual to Physical Address Translation

A two set associative Segment Translation Lookaside Buffer (STLB)' is implemented in the

4150. For a discussion of two set associative memories, refer to chapter 7. The STLB has a·

total of 1024 entries, 512 per set. The STLB provides the most recent virtual-to-physical

address translations.

The steps the 4050 takes to convert the virtual address into a physical address are:

PRIME RESTRICTED

4150 Functional Specification
Page 44

Addressing Cache

1. Check the STLB and the cache. If both contain the correct information, the reference can

be completed. If the STLB contains the wrong information go on to the next step (STLB miss

routine).

2. Translate the virtual address into a physical address. During the translation, identify if

the virtual page containing the information is currently loaded into memory. If it is, load

the physical page address (the result of the translation) into the STLB and retry the access

(go back to step 1). If main memory does not contain the page, go to the next step (page

fault handling routine).

3. Find the correct virtual page on the disk and move it into main memory. The reference is

retried after the virtual page is loaded into a physical page.

8.2.3 Memory Traps

Memory traps are breaks in the microcode execution. These breaks may occur due to any one

of the following reasons:

• The STLB entry contains the wrong virtual to physical translation (STLB miss)

• A procedure tries to reference a memory location for which it has insufficient
access rights (access violation)

• The memory address is in the read address trap range during V, S, and R modes.
This signifies that the addressed location is in the current user's register file and
not in memory. (address trap)

When a trap occurs the processor saves the current microinstruction address on the microcode

stack and goes to the predetermined microinstruction address that handles traps. The processor

handles the trap, then returns to the microinstruction address where the trap originally

occurred. Detection of memory related traps is performed by the S unit each time the cache

is accessed for instruction or operand data.

Traps can be detected for both instruction and operand accesses. For operand accesses, the trap

logic is enabled during stage 7 and a trap can be detected by the end of the beat. Should one

occur, the PCU is notified and a special pipeline trap sequence is entered. At the end of the

trap handler, all addresses will be restored in the S unit and the pipeline will be started up

in the same state as when the trap occurred. The S unit trap logic also handles E unit traps

which are clocked at the end of stage 7. All E unit traps take precedence .. over those in the S

unit. If no E unit trap is detected, the S unit .will send a trap address to the control store

and the microcode will handle the trap. Instruction related memory. traps are detected during

CS2, but are not serviced until all instructions ahead in the pipeline have been executed. Upon

detecting an instruction related memory trap, the S unit informs the PCU, which then allows

the pipeline to completely empty. Once this occurs, the PCU allows the S unit trap to be

processed.

PRIME RESTRICTED

Storage Management Unit Functional Overview 4150 Funct. Spec.
Page 45

8.2.4 UNIX Support

The 50 series architecture stipulates that 32-bit accesses to the last 16-bit address in a segment

wrap around to the beginning of the segment for the second half of the data. UNIX requires

that the last 16 bits of such a reference be the first 16 bits of the next segment. New S

unit hardware is added in the 4150 to support this functionality, the flat address space

hardware.

The flat address space hardware allows the microcode and the hardware to interact in such a

way that data that spans a segment boundary can be referenced correctly in UNIX mode.

Two new S unit traps have been created, flat trap and wrap trap. Flat trap and the

associated microcode trap handler allows reads of 32 bits of cache data across a segment

boundary. Wrap trap and the associated microcode trap handler makes EAS and EAD behave

like 32-bit up/down counters instead of 16-bit up/down counters on the low side. Both of

these traps are enabled only when the machine is in mapped mode, I mode, and bit 2 of the

keys is set.

8.3 9755 and 4150 Comparisons

The 4150 does not support direct microcode reads of EAS and EAD registers as the 9755 did.

Reads of EAS and EAD are performed by having the microcode first transfer EAS or EAD to

RMA and then reading RMA.

The 4150 does not support the operation EAD+l>MA.

The 4150 STLB entries contain extra control bits which the 9755 didn't implement. There are

3 bits for the purge count and 2 bits to help control the 2 set STLB.

The 4150 has 1024 total entries organized as 2 sets with 512 elements each. The 9755 has 1

STLB with 512 entries.

There are no longer separate clocks on the low side of the various address registers (EAS,

EAD, RMA, etc.). This is because of pin restrictions on the PCADR VLSI chip. The high

side of these registers contain loopback paths, so that when the low side is clocked with a

new value, the high side is clocked with itself.

The 4150 includes UNIX support hardware.

8.4 VLSI Requirements

Four VLSI chips of two types are used in the S unit.

• 2 STLB Set Select (PSSS) chips, which perform STLB miss detection, STLB set
selection, and memory trap generation. The PSSS chips also contain a eopy of
RMA. This feature is used to support direct microcode reads of RMA and
generation of memory addresses during cache misses.

PRIME RESTRICTED

4150 Functional Specification
Page 46

VLSI Requirements

• 2 Cache ADdRess (PCADR) chips, which implement IRP, EAS, EAD, the ERMA and
PRMA registers, ERMAL increment logic, EAS and EAD increment/decrement logic,
and the BVMA mux.

8.S Major and Critical Paths

1. From memory trap detect at CS2+ to holding off increment of IRP at CS2.5+. 1/2
beat path.

2. From clocking IRPL at CS2.5+ to loading cache and STLB address registers 112 beat
later at CSl+. 1/2 beat path.

3. Clocking cache
unaligned reads.

address register
1 beat path.

with ERMAL+l one beat after CS7+ during

4. From clocking cache address register at CSl+ (and TRCML+) to reading physical
addres.s (physical page number) from STLB and loading into registers on PCSS part
at CS2+ (and CS7+). 1 beat.

5. From MPMA mux control generation at TRCML+ to selecting proper data from
PSSS chips to clocking that data on PCSS part at CS7+. 1 beat.

PRIME RESTRICTED

Execution Unit Functional Overview 4150 Funct. Spec.
Page 47

9. Execution Unit Functional Overview

9.1 Introduction

The Execution (E) Unit consists of the Arithmetic Logic Units (ALUs), the barrel shifter, and

the register file and its addressing logic. Other registers which facilitate data manipulation are

also present. The function of the E unit is to read one or more of the sources of data

available to it, manipulate this data in the ALU, transport or manipulate the data in the

barrel shifter, and load the data into one of the registers on the E, I, or S units, into

memory, into the branch cache, or into the register file. The ALUs, barrel shifter, and the

register file addressing logic are implemented in VLSI.

The E unit functions are implemented entirely on the E board, which was designed by John

Strusienski.

The manipulation of data occurs in two stages, first through the ALU and then through the

barrel shifter. The ALU has two busses sent to it, Bus A and Bus B. The main 48-bit ALU

is divided into three 16-bit sections. These sections are designated (in decreasing significance)

High (H), Low (L), and Extended (E). There is an additional 8-bit ALU for use in multiplies

which is designated as Extra (X).

The sources for busses A and B are shown in Table 9-1.

Data manipulation is accomplished by a combination of ALU and barrel shifter modes. The

barrel shifter is connected to the ALU output. The ALU may be used in arithmetic mode,

logical mode, transport mode, or in combinations of these modes. The barrel shifter can be

used to do shifts/rotates on 16, 32, or 48-bit boundaries. The barrel shifter is also used for

floating point adjust and normalize operations, greatly enhancing floating point performance

over previous machines. Both of these data manipulation entities are entirely under microcode

control.

A new microcode instruction (hereafter referred to as I(n)) is read at stage 6 (even). The

next odd stage (stage 7) marks the beginning of the execution of this instruction. The register

file and/or cache are .read during this stage to fetch operands. Execution continues for the

next two beats, stages 8 and 9. The pipe alternates between odd and even stages. Because of

the odd-even action of the pipe, stage 8 of I(n) and stage 6 of I(n+l) are executed at the

same time, where I(n+l) is the next instruction in the microinstruction stream. Similarly,

when the execution of I(n) is finished at the end of stage 9, stage. 7 of I(n+l) has been

executed, and I(n+ 1) can be processed on the .. next beat. Results of I(n) are then written to

the register file (or other destination) during stage 10 of the the current microinstruction.

From this description, some general observations about reads/writes of the register file can be

made. The register file is read during stage 7, an odd pipe stage. Writes to the register file

PRIME RESTRICTED

D

c

B

A

8 7

flJJH(ll;ISJ+

RlHCU:J81

15DHISI:191t

ILl.t<

6

- - - - - -- --)(llUHQ11;Up•

I
I
I
I
I
1Fl.Hll'll:l6)i

I
I
I
I
I

5 4 3
DECTHIL=161 +

DE.Clift.. OTBIUIO

fl..'i8L4JU• I EJ I
I
I

I I I

~---------------------------~--~~ OTB L--- I _____ J

PPR'-'l'.lil\1Ul81+ DE01Cll8:16J +

_ ------ -1< BOILCl1:]8lt

\
i~: l i I I SH!FlER IO(lJl8l• .. l• 1 flJ.Jel :48) I U.J J----

1 lflll8HBJ• • • :
• I f I

IUL
BO

~ru

Fl«IM:MT~~~~~~--;-~~~~~~~~~~~~

RILISJ:l&l t

L----------J
......-~·]flUD.CIL: LID• SlifTCHHBl :en

'lb!.. ::LI_. -I. - - - - - - - - J

~(IH;l6J+

---------1 --
AJ.e

2

llJIIBl:32J t

..

RS(lllL:lfBJt

K BOIER!;IW+

I 11..ECEl:llBlt

tMal..E lltl: 161. EJ f-------1:

I I
I I

8

I

l!fflREL-SHIFT
CONTRIL

~-------------------------------~

'' DUXY•

77

BllXX+

r-:-1
L::_J

7

Bii
R
E
;
I

'

6

PflUTY

REGISTER-FILE REGISTER-FILE

flD'l:E!ISIN;;

RI

RICIL•5SJ• ~lSTt:Rj Rftlll1·58J•

BO! PARITY

5

L _________ J

BSCNTRL Cll :05) I 11..LIBI:un-

RSUIL•llBl•

t1101Lt:Sl:J6J t

RP REC

PmlTY

llJXPllt < TO REG Fl LE l

tl.JXPIR

RS PARITY

Ill! Pllt!TT

BOI PRRllY

q 3

Figure 9-1 Block niagram of Execution Unit

nnER

FRCtDJCll!l8)"+

111•

BO PfRlTT ~

!Ml Ill PllR!Tf

2

UID PACE 381
PR IIE IXH'UTER, INC.

. f"MlllOM

POS9Y1 E ·lll[T BUICK

DlfDRI

Execution Unit Functional Overview

BUS

A(H)

B(H)

A(L)

B(L)

A(E)

B(E)

A(X)

B(X)

TABLE 9-1.

SOURCE

RIH(1:16)
BDH(1: 16)

BDIH(1:16)
BBH(1 :16)
PACK(1 :16)
RCMCU(1: 16)

RIL(1:16)
BDL(1:16)
RPREC(1:16)

BDIL(1: 16)
BBL(1:16)
RCMCU(1:16)
FNRMCNT(1:16)

RIE(1:16)

BDIE(1 :16)
BBL(1: 16)
KEYS/PARITY

(1:16)
RCMCU(1: 16)

Rl(0:7)
EMIT(0:7)

JUNK(0:7)
88(0:7)
EMIT(0:7)

ALU Data Sources

COMMENT

Register file high side
Bus 0 high side

Bus 0 internal high side
Bus B high side
Packer prom output
Microcode word emit field

Register file low side
Bus D low side
RP or REC

Bus 0 internal low side
Bus B low side
Ucode word emit field
Norma Ii ze Count

Register file extended

Bus 0 internal extended
Bus B low side data
Keys register and Parity
information data
Ucode word emit field

ZEROS
FRNDBIT(01:03) Round bits
11 ZEROS

FGROBIT(01:03) Guard bits
ZEROS
FRNDBIT(01:03) Round bits
11 ZEROS

4150 Funct.; Spec.
Page 49

occur during stage 10, an even pipe stage. Thus, on alternate stages of the pipe the register

file is being either read (odd stages) or written (even stages).

9.2 9755 and 4150 Comparisons

The 4150 E unit contains the functionality of the 9755 El and E2 boards combined. It was

designed to run at a 62.5 nsec beat rate. The implementation is different in the areas where

the VLSI parts are used. Floating point and shift instructions see considerable performance

improvement due to the availability of the barrel shifter. Multiply and divide instructions

have also been re-implemented with considerable improvement in performance. A 56-bit data

path has been implemented through the ALU to support multiply, boosting performance over

the old 48-bit path.

PRIME RESTRICTED

4150 Functional Specification
Page 50

9.3 VLSI Requirements

The VLSI requirements for the E unit are:

9755 and 4150 Comparisons

• 7 Execution ALU (PEALU) chips, each of which contains an 8-bit slice ALU and
some of the associated registers and multiply logic.

• 3 Bus Data Interface (PBDI) chips, each of which contains a 16-bit barrel shifter
and the associated floating point logic.

• 1 Register File Address (PRF ADR) chip, which includes the register file address
logic, microsecond timer, as the RP and REC counters.

9.4 Major and Critical Paths

The critical paths on the E unit include:

• Partial product generation during multiply operations

• Partial quotient generation during divide operations

• Generation of jump conditions for the CS

• Rounding operations

• Register file write cycle

PRIME RESTRICTED

Memory Controller Unit Functional Overview 4150 Funct. Spec.
Page 51

10. Memory Controller Unit Functional Overview

10.1 Introduction

The purpose of the 4150's Memory Controller (MC) logic is to act as an interface between the

memory and the rest of the CPU. The MC acts as a buffer which accepts data destined -for

memory, stores the data internally, and then either writes to memory or reads memory and

merges new data with existing data and writes this to memory while the CPU continues

prOcessing. These writes happen in minimum time from the CPU's viewpoint since it doesn't

have to wait for the memory write cycle to complete.

The MC logic resides entirely on the CMI board, which was designed by Tom O'Brien.

10.1.1 Overview of Operation

The MC board controls reading, writing, and refreshing of main memory. It generates Error

Correction Code (ECC) check bits on data going to memory and checks the entire data anc

check word during memory reads. It also checks parity on BD during CPU write operations.

The MC accepts 16 or 32-bit writes from the CPU, stores and/or merges them into a write

buffer, and then writes the data to main memory sometime later.

Read operations can be started by microcode request or by cache miss. In either case, the MC

always fetches 64 bits from main memory and sends the appropriate word(s) back to the

CPU. The requested data is usually available 22 beats after the request was issued.

The Write Buffer (WB) consists of four 64-bit locations addressed on a MOD4 boundary. Each

location is further divided into four 16-bit . sections. Any combination of 16 or 32-bit writes

from the CPU within a MOD4 boundary may be merged into the same WB location. The

WB notifies the Memory Timer (MT) of pending memory cycles. If a 64-bit write or an

aligned 32-bit write is pending in the WB, the MT does the appropriate write to memory. If

only 16, 48, and unaligned 32-bit writes are pending, the MT reads main memory and merges

the appropriate data into the WB. This action forces an aligned write to be pending in the

WB, and a memory write will follow.

The MT contains a sequencer which executes refresh, memory write, and memory read

routines. It starts a particular routine when it sees the request for that routine. For

example, it starts a refresh routine when it gets a request from the refresh counter, and starts

a memory write routine when it gets a request from the WB. Signals produced by the MT.

control the WB, the ECC logic, a~d main memory. ECC bits are generated on every write to

memory, and checked on every read. The code used is a single error correcting, double error

detecting code. Corrected data is written back into the WB, from which it is written back to

memory again, correcting main memory.

PRIME RESTRICTED

MEMORY
ADDRESS

BB
~ I ~

ADDRESS

I
I WRITE

REFRESH

BUFFER

MA

.. I ..

I
--

I • MEMORY Diagnostic ·
-..i Register I L TIMER _J

PARITY I I STATUS
CK. GEN .

WRITE •
BUFFER

H , BD • I •I ,. • -1 I DATA
RAMS MD

MEMORY

I

ERROR DATA

PA!ITY I :l DETECTION
AND

CHECK I I

CORRECTION

Figure 10-1 Block Diagram of Memory Controller

Memory Controller Unit Functional Overview 4150 Funct. Spec.
Page 53

Main memory is divided into 2 arrays of 39-bits each, 32 data and 7 ECC bits. Memory

configurations on the 4150 can vary from 8 to 64 MB. The MC automatically adjusts its

memory addressing scheme to interface to any legal memory configuration during system

initialization. This adjustment leaves no holes in the physical address space provided all the

memory arrays used are the same and that the configuration rules are followed. These rules

are discussed in chapter 26.

10.2 9755 and 4150 Comparisons

The MC logic for the 4150 is completely different from that of the 9755. The major

differences are:

• The 4150 has one MT, as opposed to the two MTs on the 9755. Each memory
word is 64 bits wide (plus check bits) and is broken down into two 32-bit half
words. Each half goes to a separate memory board on the 9755, while all bits in
the word go to the same board on the 4150. Since each 9755 memory board only
contained 32 bits (plus check bits) a separate write or read was required for each
32 bits required, thus a separate MT was required for each half word. Each 4150
memory board contains 64 data bits. Separate MTs are, therefore, no longer needed
since all data bits are written to the one board.

• In the 9755 a memory array read could only occur when the WB was empty.
This insured that the CPU was not getting stale data from memory. This is not
necessary on the 4150. The MT can replace stale data from memory with the
fresh data from the WB "on the fly". This results in much faster throughput,
since there is no time wasted in emptying the WB whenever a read is requested.

• The 9755 data bus consists of two 32-bit (plus check bits) data buses. The 4150
data bus consists of one 32 bit (plus check bits) data bus. The data is sent over to
the memory board 32 bits at a time, latched on the memory array, and written
into the array either 32 bits or 64 bits at a time depending on the operation
specified.

• A completely new memory array board is used with the 4150, employing 256K (8
MB boards) or 1 MB (32 MB boards) DRAMs and supporting the new memory bus
design.

• The ECC logic is completely different between the two process0rs. The 4150
utilizes an ECC chip to check/correct data, while discrete logic with a different
code was used on the 9755.

• The MC logic on the 4150 contains DMx support since the 1/0 logic is tied very
closely to the Memory Controller. This allows 1/0 data transfers to take place
between the 1/0 interface and the MC without the use of BD.

• There are 12 refresh address bits on the 4150 while there are 8 bits on the 9755.
This is to accommodate the larger RAM size on the memory array boards and to
provide extra bits for future expansion if needed.

PRIME RESTRICTED

4150 Functional Specification
Page 54

9755 and 4150 Comparisons

• The 4150 has Battery Back Up (BBU) capability. The MC provides refresh to the
memory array boards in the case of a short term power failure to maintain the
integrity of data in memory.

10.3 VLSI Requirements

The MC uses two ADdress BUFf er VLSI chips (P ADBUF) in a bit-slice fashion. Each slice

processes half of the memory address bits.

10.4 Major and Critical Paths

The critical paths are as follows:

• The path from the time the memory address is latched into the MC until the WB
pointer is latched during a CPU .memory access must be less than 2.5 beats.

• Setting MBSY- on the MC unit on a READ or WRITE and sending it to the S
unit is a one beat path.

The major paths are as follows:

• Bringing data back from memory into the MC and going through an error
correction routine if a correctable error (ECCC) is detected adds 3 beats to the
memory read routine.

PRIME RESTRICTED

110 Interface Functional Overview 41SO Funct. Spec.
Page SS

11. 1/0 Interface Functional Overview

11.1 Introduction

The main function of the I/O logic is to transfer data between memory and a peripheral

controller as rapidly and efficiently as possible.

The 110 data interface resides on the CMI board, which was designed by Tom O'Brien. The

110 address interface resides on the E board, which was designed by John Strusienski. The

control interface is split between the two boards.

11.1.1 Overview of Operation

Direct Memory transfer (DMx) operations are started by a peripheral controller asserting a

request after having been set up by PIO instructions. This causes the microcode to trap out

of its current operation to service the I/O request. Arbitration is do!\e among multiple

requesting controllers, and one controller is granted the bus to do its transfers.

A typical I/O transfer consists of an address phase and a data phase. In the address phase,

the I/O controller which has won control sends information to the CPU about what kind of

transfer is required and where the data for the transfer is to be written (or read from).

During the data phase the data is actually transferred. Another address phase is performed,

overlapping the data phase, to see if any other controllers need service. When all controllers

have been serviced the microcode returns to what it was doing.

The controllers' request lines and other control signals make up Bus Peripheral Control (BPC).

Address information sent by the controller during an address phase is received on Bus

Peripheral Address (BPA). Data is actually exchanged over Bus Peripheral Data (BPD) during

the data phase.

The main data path is very straightforward. On an output transfer, data is read from

memory and clocked into the BPD data register under control of the Memory Timer (MT).

Data is then driven onto BPD under microcode control. There is no need to use the system

BD bus. On input transfers· data is clocked into the BPD data register from BPD under

microcode control, with no need to use the system BD bus. From there, the MT writes it

directly to the Write Buffer (WB).

In burst mode transfers, a single address phase is followed by four consecutive data phases

without any additional address phases. These burst mode transfers may be requested at any

time, but ;will only be honored by the CPU if the address and the amount of data to be·

transferred meet the proper requirements.

PRIME RESTRICTED

BO -- --

BPA

Register

File

Addressing

BPD{01 :16}

.. ~ r--

...
............
~ .. -...
............
r---1 .. ----
i.-.....1

. r---1

..._
............

_.MCBDH ,, - a

_.MCBDL a

BD

BPD{17:32}

4~

r---1

... l+J -....
............

WRITE
... BUFFER ...

DATA ,, ... -- RAMS

...._

--
Figure 11-1 Block Diagram of 110 Interface

...
To-FTo m

Mem2 ry .
--..

110 Interface Functional Overview 4150 Funct. Spec.
Page 57

11.2 9755 and 4150 Comparisons

The control and data paths for the 4150 will be closely tied into the memory controller logic,

and so will be unlike that of the 9755 or any other existing machines. Data goes to (or

from) memory on an internal MC bus, so it is not necessary to place I/O data on the system

bus for I/0 transfers.

11.2.1 Burst DMT Mode

This new mode transfers four words for each address phase instead of the normal one word

in regular DMT operations. This mode is to DMT as burst DMA is to normal DMA.

11.3 VLSI Requirements

There are no VLSI chips required for any ,I/O processing. However, memory will be

addressed in the normal manner, which means that the address will be stored in the PADBUF

VLSis iti the MC.

11.4 Major and Critical Paths

Data going to (or from) the BPD drivers utilizes the internal MC data bus, so the 1/0 data

timing is dependent on the MC timing.

During a burst transfer, 64 bits are written into the WB data RAMs in the time it normally

takes to write 32 bits. There is critical timing in this operation which involves turning off

one set of BPD drivers after the first 32 bits have been written and getting the next set of

drivers turned on to allow the second 32 bits to be written 3 TMCLKs (93.75 ns) later.

PRIME RESTRICTED

4150 Functional Specification
Page 58

PRIME RESTRICTED

System Busses Functional Overview 4150 Funct. Spec.
Page 59

12. System Busses Functional Overview

12.1 Introduction

The major system busses are Bus B (BB), Bus D (BD), Bus Virtual Memory Address (BVMA),

Bus Peripheral Address (BPA), Bus Peripheral Data (BPD), the Memory Address bus (MA), and

the Memory Data bus (MD). They are briefly described below.

Busses connect different boards together, and are therefore implemented in the backplane. The

4150 backplane was designed by John Strusienski.

12.1.1 BB

BB can only be driven by the S unit. It is most frequently used for transferring cache data

to the E unit (operands) or CS (instruction stream). It also drives the physical address to the

MC on memory references. BB consists of 32 data bits plus 4 parity bits. It is visible to

the PDA.

12.1.2 BD

BD can be driven by the following units:

• E

•MC

• cs

• s

e PDA

• 110 Interface

It is most frequently used to transport E unit results to I or S unit destinations or memory.

It is also used for transporting data from memory to cache during cache misses, as well from

the Diagnostic Processor (DP) to the CPU. BD consists of 32 data bits plus 4 parity bits. It

is visible to the PDA.

12.1.3 BVMA

BVMA is driven only by the S unit. It is used to send the virtual memory address for a

current memory access to the cache, STLB, and branch cache. BVMA consists of 32 address

bits. A copy of it is visible to the PDA.

PRIME RESTRICTED

4150 Functional Specification
Page 60

12.1.4 BPA, BPD

Introduction

BPA and BPD are used for transferring address and data information, respectively, between the

CPU and the 1/0 controllers. BPA consists of 18 address bits plus 2 parity bits. BPD

consists of 32 data bits plus 4 parity bits. These busses are not visible to the PDA.

12.1.S MA, MD

Busses Memory Address (MA) and Memory Data (MD) are used to address main memory and

transfer data to and from memory, respectively. MA consists of 25 address bits plus four

parity bits. MD consists of 32 data bits plus 7 check bits. These busses are not visible to

the PDA.

12.1.6 BD Arbitration

Bus BD is the only bus in the system that can be driven by multiple sources on different

processor boards. Skew problems and the need to avoid delays in bus arbitration to avoid

tristate clashes made it necessary to keep the bus arbitration hardware on one board. The

ALEG microcode field is central to the bus arbitration decision since it can specify BD as an

ALU source during any microcode step. The E unit is the only unit which looks at this field,

and therefore has the additional task of performing BD arbitration.

The E unit normally has control of BD. Control of the bus has to be relinquished in case of

cache misses, PDA Force BCYs, 1/0 transfer address phases, and explicit microcode controlled

memory reads. When a change of BD control is about to happen, the following sequence

occurs:

1. The current unit in control is disabled.

2. One half beat later, the new unit to be in control is enabled.

This scheme provides a half beat period between any two units driving BD to avoid tristate

clashes.

12.2 9755 and 4150 Comparisons

• 9755 busses used wired-OR technology. 4150 busses use tristate technology.

• BPA, BPD, MA, MD are completely contained in backplane on the 4150. These
busses were connected from one backpla;ne to another with cabling on the 9755.

• BA (the E unit ALU A leg input bus) is no longer an inter-board bus in the
4150.

PRIME RESTRICTED

System Busses Functional Overview 4150 Funct. Spec.
Page 61

12.3 VLSI Requirements

BB is always driven directly by two PCSS chips. MA is driven by the buffered outputs of

two PADBUF chips. BD is usually driven by the buffered outputs of PBDI chips.

12.4 Major and Critical Paths

The major path in this section of the machine is the BD arbitration path. This path includes

detecting a need to pass control of BD to a new source, as well as actually performing the

change in time to allow the new source to get the data to its destination without causing a

tristate clash.)

PRIME RESTRICTED

4150 Functional Specification
Page 62

PRIME RESTRICTED

Processor Diagnostic Aid Functional Overview 4150 Funct. Spec.
Page 63

13. Processor Diagnostic Aid Functional Overview

13.1 Introduction

13.1.1 General

The 4150 Processor. Diagnostic Aid (PDA) is functionally equivalent to a Field Engineering

Panel (FEP) on 9755 baSed machines. The functions and operation of the PDA as

implemented on the 4150 processor will be described in this chapter.

All of the PDA's functions are implemented on the PDA board, which was designed by Tom

Kinahan.

The purpose of the PDA is to aid in the debug of the 4150 processor by sampling and

displaying the operation of the CPU for the operator. It samples the CPU's major busses and

clock signals and displays them. The operator can control data sampling with a number of

commands similar to those implemented on commercial logic analyzers. The PDA incorporates

a Z80 microprocessor to implement many of these functions. All of these capabilities make

the PDA an important debugging tool.

The majority of the PDA is dedicated to a large (1K by 160 bits) stack. The stack samples

CPU busses and stores them for an operator to examine later. The 4150 PDA samples all the

stage clocks, control store addresses (BCYs), hold conditions, BDL, BDH, BBL, BBH, BVMA, PCU

status, 1/0 priority, write buffer pointer bits, 4 logic analyzer bits, memory data valid,

memory busy, return to fetch level, INIT+, and machine check.

The PDA can load, read, and modify the 16K x 80-bit control store by using a bus that is

common to the Diagnostic Processor, PDA, and control store. Current software restrictions limit

access to the lower SK of control store.

The PDA can halt the CPU on various conditions such as Machine Check or sense register

matches.

The PDA can FORCEBCY, which means that it can make the CPU begin executing microcode

at a specified address. Using this FORCEBCY functionality, the PDA can work with the

system's microcode to load main memory and/or the decode net.

The PDA works in a basic configuration called host mode. Host mode requires a host CPU

running PRIMOS. The operator logs onto the host and uses an assignable AMLC line to give

commands to the. PDA. installed in the test system. A self .diagnostic mode .is available to

debug the PDA. It allows access to the Z80 memory and to diagnostic routines via a Mink

Diagnostic Processor.

PRIME RESTRICTED

0

c

B

R

8 7 6

POOi\11 lllD<PIJllE

l61l

BUS

Fl(f'f

n£ 161 BITS no.J.JE :
l'Ol'ECT .EtO.JJ.UD..D.GtD..D.tsl ~.t.1.
BOH.BCIL.e&f.BBl.
ff'l.RTNFL. UfflTii:. lflC1'L.
RPTRll'. !C11'1:. SRllOOT. I/OSEl..BtE

168

llERTtlK-

fmRES!; iJECOOE
BJTS

10
srf\Ctl FU:RES6

ctlJNTER
lll2

lllNESET ~~.__
':2~~~!

5

Zlll llllffERED mTA
BUS

I·

'I 3

Z-8li!IA CPU

ue

UART 1

~
~Cilllll

1611>8 PROM
fool---------t---1 l"9 I 1-JFFF

j.. ~
~4ee8-7FFF'

R
0
0

Z R
B E
0 s

s

.-------,•"""
fE.GISTER

-..
F£aIE

Jl3

~...,.., llU<TER

ecse-11
ENTRCIL CLOCKS
GENE al

TltLK llB

... -T
8 7

BERT CLOCKB

PENEOBFRA

COHTRU.STM

I "lit<

ll<lERF!ll:E

1113

!Di
IHTS<FRCE

11!3

BOO-B7t

6

Jll

5

Figure 13-1

"°'
C!JlTR!L

REGlSTER

ll2

q

Block Diagram of PDA

32

LU

.,._T/DEUff

UlOIC

fl'NE[l!

3

2

EN6RL+

LDSRIH•
LDSRLL+

POOBCY3-I6

ENSR'2•
LDSR2H•

·I LOSR2L•

P!RlCY1l-16 ·I

ENSR3•

LOSR31+•

~ LDSR1+

POl8CY3-16 I

ENS!l4BL-4

&tf'SR•Bl -4

SR'lBI -q

2

SENSE

REGISTER

l

SENSE

REGIST!il

2

•ENSE

REGISTER

3

SENSE

REGISTER

SR LEO ... , ..

I 5"2EQ

LB4

I SR3EQ

1911

5R4EQ

HI'!

LBIJ PACE 1118

PRII£ CXM'UTER, It«:.
Fllflllllilt'lli.

POSSUl1 POA BLOCK

Processor Diagnostic Aid Functional Overview 4150 Funct. Spec.
Page 65

Host mode allows access to the microcode database, is able to load control store, and can

display the microcode labels in a stack dump. Host mode allows access to microcode address

labels, which can be used with the sense register commands, update control store (UC)

command, and the GO command. The host CPU also has access to source listings which can be

displayed at the user's terminal without leaving the PDA command environment. Stack

dumps can be saved and spooled for future reference, and abbrevs can be used.

The PDA does NOT detract from the performance of the CPU while installed. It does NOT

steal cycles from the CPU. Its major function is stack storage, and as such cannot impair the

behavior of the processor. Having a PDA installed in a system will not affect system

behavior. It CAN , do evil things to the CPU when the operator is unskilled in its use.

Examples of this would be modifying control store while the machine is running, or causing

the machine to halt accidently.

13.1.2 Z80 Microprocessor

A Z80 microprocessor is used in this implementation. It was chosen due to its ease of use and

because there were large amounts of code written for it that could be easily adapted to the

4150 PDA.

13.1.3 Stack

The stack on the 4150 PDA is lK x 160 bits. This allows the operator to see almost

anything in the CPU s/he might want.

13.1.4 Halts I Delays

The operator has the option of halting or triggering on sense register matches. Sense registers

have parameters that allow the operator to halt the CPU or trigger the delay counter

depending on what s/he wishes.

13.1.S Delay Counter

The delay counter can be set to a value such that the s~ck will not trigger until that

number of beats after the sense register match. There are various methods of using the delay

counter such as pre-triggering (when you want to see the trigger label at the top of the

stack), post-triggering (when you want to see the trigger label at the bottom of the stack)

and center triggering (when -'you want the trigger label to be somewhere between the top and

bottom). The type of triggering can 0e controlled by changing the value of the delay counter.

A delay of 1 gives post-triggering while a delay of 1024 gives pre-triggering. The delay

counter is a 16-bit counter and can have any value between 1 and 65535 inclusive. A value

larger than 1024 results in the trigger point not appearing in the stack.

PRIME RESTRICTED

4150 Functional Specification
Page 66

13.1.6 Sense Registers

Introduction

Sense registers are multi-bit comparators that trigger the delay counter. When the delay

counter reaches zero, the stack triggers (stops the storing of additional data) or PDAHAL T- is

asserted. AB an example, the operator could set a sense register match on SRl to a microcode

abel of START (octal 200). If the microsequencer were to issue the address of START to the

control store, the sense register would become active and the proper action would be taken.

In this case, it would stop the stack from storing additional data, also known as triggering.

The action of triggering the stack allows the operator to capture the events leading up to

and/or some known number of events after the sense register match.

13.1.7 Forcing Microcode Address

The operator can FORCEBCY. This is the ability to force microcode execution to begin at any

desired address. The microcode assist package must be loaded into the control store for this to

operate properly.

13.1.8 Reading/Writing Control Store

The 4150 PDA can read and write control store. This will only work when the PDA is in

host mode. This is due to the fact that the code running on the host system will tell the

PDA what to load into the control store under test.

13.2 9755 and 4150 Comparisons

The differences between the 9755 and 4150 PDA are detailed in the following subsections.

13.2.1 Stand Alone I Self Diagnostic Mode

The 4150 PDA does not support the full stand alone mode that the 9755 FEP supports.

Instead, the 4150 PDA supports only a self diagnostic mode. This mode is accessible from the

Mink Diagnostic Processor by issuing the 'MO PDA' command.

13.2.2 Power Up Circuit

The 4150 PDA has a circuit that disables all internal tristate busses on power up and manual

reset. It does NOT disable the Z80 memory. Internal busses are re-enabled with a single Z80

write to a known address.

PRIME RESTRICTED

Processor Diagnostic Aid Functional Overview 4150 Funct. Spec.
Page 67

13.2.3 Sense Register 4

Sense Register 4 will have the same functionality as in the 9755. However, SR4 has evolved

into having each CPU board support it. Each CPU board has four testpoints connected to open

collector drivers which are wire-ANDed onto the backplane and connected as the inputs to

SR4. SR4 will function just as the other sense registers except that it cannot be used as an

event counter input. In addition, the contents of these 4 bits will be on the stack for operator

perusal.

13.2.4 Stack

The 4150 PDA will use a lK deep stack in contrast with the 9755 which has a 256 location

stack. See the PDA User's Guide for the stack format.

13.2.S BCY Match Counter

One function that was often mentioned as an improvement to the PDA is a match counter,

and this suggestion has been implemented in the 4150 PDA. This counter will, when enabled,

count the number of sense register matches rather than halting or triggering. As a result,

when the operator specifies the contents of a sense register, s/he can make the processor halt

after a specified number of iterations of that address. Due to software dependencies the

counter could only be 31-bits wide, making the maximum value of the event counter equal to

2,147,483,647 and the minimum equal to -2,147,483,648.

The match counter has an 8 to 1 mux as its enable. Connected to this Z80 programmable

mux are SRl, SR2, SR3L, SR3H, SR4, GHOLD+, DMx, and 1 input that is programmable by

the operator by adding a wire to the signal to be counted.

The match counter can be displayed. This means that there is now a means of metering how

many times an event (e.g. a microcode step) has occurred since it was armed.

13.2.6 Microlooper

The 9755 FEP had a microlooper. The 4150 PDA does not have a microlooper. To get this

functionality, the operator can update the control store. In addition to this, the method for

forcing BCY address by microcode assist precludes the need for a microlooper.

13.2.7 New Halt/Trigger Condition (ARM2)

This new halt condition is a combination of both an SR2 match AND an SR3 match. This·

supports halting and/or triggering on a match of both Effective Address and BCY Address.

This means that it can halt on any specific instruction that references a predefined effective

address.

PRIME RESTRICTED

4150 Functional Specification
Page 68

9155 and 4150 Comparisons

Warning: Due to the fact that there could be considerable time between the SR3 and the SR2

match, this feature may not do what you expect.

13.2.8 New Halt/Trigger Condition (ARMt)

This feature allows the operator to use SRl as an enable and SR2 as the trigger for the

stack, or to halt the CPU. It uses a registered SRl match signal, which cannot be cleared

until a RESET- becomes active. This is a new feature in the 4150 PDA.

Warning: Due to the fact that there could be considerable time between the SRl and the SR2

match, this feature may not do what you expect.

13.2.9 Bus Virtual Memory Address (BVMA) Interface

The BEMA bus on a 9755 and·· the BVMA bus on a 4150 are basically the same thing.

BVMA contains the Effective Address (EA) during TRCML and the Program Counter (RP)

during CSl. The 4150 PDA has BVMA in the stack and as an input to sense register 3 as

in the 9755. BVMA comes to the PDA active low. Please note that PDA software adjusts for

this inversion.

13.3 VLSI Requirements

No VLSI parts are used to implement PDA functionality.

13.4 Major and Critical Paths

13.4.1 Stack Write Cycle

The stack write cycle has proven to be the most critical path in the PDA. The path

involves sampling data from the backplane and the rest of the CPU and storing it into

registers while the address for the stack becomes stable. At this point, the write pulse, which

is shaped by the use of delay lines, stores the data into the stack RAM.

13.4.2 Halt Path

The timing from the sense register match to finally result in the PDAHALT- signal going

active in 2 beats is a critical path.

PRIME RESTRICTED

Processor Diagnostic Aid Functional Overview 4150 Funct. Spec.
Page 69

13.4.3 Trigger Path

This path involves getting a sense register match to result in a stack trigger in two beats.

PRIME RESTRICTED

4150 Functional Specification
Page 70

PRIME RESTRICTED

Microcode Functional Overview 4150 Funct. Spec.
Page 71

14. Microcode Functional Overview

14.1 Introduction

The 4150 microword contains 13 fields and a total word length of 80 bits. Table 14-1 briefly

describes these fields.

The lion's share of functional microcode was written by Denise Chiacchia, Paul Curtis, and

Andy Ray. Tom O'Brien wrote the DMx microcode. Stu Rae coordinated the microdiagnostic

effort. Microdiagnostic writers were Denise Chiacchia, Tony Dorohov, Mark Mason, Stu Rae,

Sherri Root, and Steve Small.

14.1.1 Microcode Fields

TABLE 14-1. 4150 Microcode Fields

RCM Bits Field Nome I Bi ts Labels

41-45 BLEG 5 RCMBB1-5
65-68 TXNX 4 RCMTXNX1-4
1,2,32-36,69,
71-79 cu 17 RCMCU 00-16
23-29,31 DST 8 RCMDST1-8
46-49,51-55 RFS 7 RCMRF01-7

RFD 2 RCMRF08-09
3 TR 1 RCMTR1
37-39 cs 3 RCMCS1-3
14-19,21,22 A LEG-ALU 8 RCMALU1-8
4-6 EAE 3 RCMEA1-3
7-9, 11-13 BDL 6 RCMBDL1-6
56-59,61-64 IAC 8 RCMIAC1-8
10,20,30,40,
50,60,70,80 PARITY 8 RCMPAR1-8

The EAE field is a 3-bit field which controls increment and decrement operations on the low

16-bits of the two .. effective address registers (EAS and EAD) .

The ALEG-ALU field controls the 56-bit ALU and the muxes on the ALEG input of the

ALUs. The register file is usually the input to the A leg. Other sources include the

multiplier registers, CU field, BD, RPL, and the normalize count register.

PRIME RESTRICTED

4150 Functional Specification
Page 72

Introduction

The 5-bit BLEG field specifies one of 32 possible sources to the B input of the ALUs. There

are 16 sources for the 48 MSBs of the B input, and 2 sources for the 8 LSBs. Cache data is

usually the input to the B leg.

The 6-bit BDL field controls the barrel shifter's operation.

The 8-bit IAC field refers to independent action codes. Hardware units which don't have

their own microcode fields are used infrequently, and their functions tend to be peripheral to

the main data flow through the machine. As such, they are said to function independently.

The IAC field controls these independent hardware functions.

The RF fields (RFS and RFD) specify which register is to be used in the current operation.

The RFS field is 7 bits wide, while the RFD field is 2 bits wide.

The CS and CU fields are used to determine the address of the next microcode instruction.

The CS field is 3 bits wide, while the CU field is 17 bits wide.

The CU field contains one of .. wo types of information:

• An emit value, which is a number whose value is known at assembly time for
use as data

• Information used to calculate the address of the next microinstruction to be
executed.

The value of the CS field determines how to interpret the CU field. When the CS field is

010, bits 1-2 of the CU field further define the CS operation. Table 14-2 lists the values of

the CS field and CU bits 1-2, and shows the operation specified by each pair of values.

TABLE 14-2. CS and CU Field Definitions

CS Field (RCM CU Bi ts 1-2 I CU Operation
Bi ts 49-51) (RCM Bits 32-33)1

000 RTN
001 JUMP
010 00 DECODE
010 01 BDH branch
010 10 LOA
010 11 GOTO
011 EMIT
100 CRTN
101 CALL w/ JUMP
110 CALL w/ GOTO
111 PUSH w/ EMIT

PRIME RESTRICTED

Microcode Functional Overview 4150 funct. Spec.
Page 73

The 8-bit DST field controls which destinations are to be written at the end of the microstep.

The 4-bit TXNX field controls how long a microstep will take to execute. There. are two

possible ways to extend a step:

• A TX increases the time between CS7 and CS8 by 31.25 nsec for every TX
specified. For example, TX= 2 would increase the time interval by 62.5 nsec.

• An NX increases the time between CS8 and TRCML by 31.25 nsec for every NX
specified. For example, NX= 2 would increase the time interval by 62.5 nsec.

The 1-bit TR field controls whether DMx traps can occur during that microstep. A TR value

of 1 will disallow such traps.

There are 8 parity bits generated for the microword.

14.2 9755 and 4150 Comparisons

The microcode for the 4150 is substantially the same as that for the 9755. The most obvious

exceptions include some changes in timing, changes in shift instruction implementation due to

the barrel shifter, significant changes in 1/0 microcode, and changes in the arithmetic

algorithms, especially multiply and divide. The VLSI speed and the barrel shifter

functionality contribute to a number of these changes.

14.2.1 Timing Changes

The 4050 beat rate is longer than that of the 9755. As expected, some instructions take

longer, on average, to execute in the 4050. However, due to data path optimization and new

microcode algorithms, some instructions actually execute faster on the 4050. Exact timing

comparisons are not available at this time, but will be included here in future revisions of

this document.

14.2.2 Shift Instruction Implementation

The shift instructions now provide a shift amount to the barrel shifter, which implements up

to a 48-bit shift in one step.

14.2.3 Multiply Implementation

Multiplication is done with .. a 3-bit Booth's algorithm instead . of the 2-bit .Booth's algorithm:

used in the 9755. A three operand adder is· provided inside the PEALU chip.

PRIME RESTRICTED

4150 Functional Specification
Page 74

14.2.4 Divide Implementation

9755 and 4150 Comparisons

The non-performing divide implemented on the 9755 has been replaced by a non-restoring

divide in the 4150.

14.2.S 110

The microcode will have less involvement in the 110 in the 4150 than in the 9755. The

primary reasons for this are:

• The 4150 beat rate is slower than that of the 9755. Consequently, an 110
transfer taking a given amount of time will execute more microcode steps on a
9755 than it will on a 4150. Therefore, the 4150 microcode can't do as many
things as the 9755 microcode did. More 1/0 functionality must be implemented in
hardware.

• Data can be routed directly from BPD to memory in the MC, so E unit data paths
aren't needed.

14.3 Microdiagnostics

The microdiagnostics for the 4150 are structured much like the 9755 microdiagnostics. There is

a Kernel which exercises the minimum core of hardware required to allow Mother, the

microdiagnostic executive, to run reliably. The CS and E units are tested first, including the

floating point logic. The I and S units are exercised next, with many of the tests devoted to

parity, and cache and STLB array testing. These tests use the array test procedure established

for the 9755. The memory subsystem is the last part of the microdiagnostic effort. These

diagnostics test the cache miss logic, the write buffer operations, and the main memory arrays.

There are a total of 9_diagnostic overlays, known as UDIAG1-UDIAG9. Most of the

diagnostic overlays map directly to SYSV overlays. UDIAGl thru UDIAG4 are exact copies of

SYSVl thru SYSV4, UDIAG6 is a copy of SYSV5, and SYSV6 was split into two diagnostic

overlays UDIAG8 and UDIAG9. This leaves two microdiagnostic overlays unaccounted for,

both of which contain array tests deemed to time consuming for initialization testing.

UDIAGS contains the I Unit array tests. The following is an index of the tests contained in

UDIAG5 .

•
• INDEX OF TESTS IN UDIAGS
•
•
•••
•
••••• BEGINNING OF CACHE ARRAY TESTS • ••••
•
•••
• TEST3001 - VALID BIT TEST OF ONE CACHE CELL (A SIDE)

PRIME RESTRICTED

Microcode Functional Overview 4150 Funct. Spec.

• TEST3002 - VALID BIT TEST OF ONE CACHE CELL (B SIDE)
• TEST3003 - VALID BIT. TEST OF ALL CACHE CELLS {A SIDE)
• TEST3004 - VALID BIT TEST OF ALL CACHE CELLS (B SIDE)
• TEST3005 - VALID BIT WALKING ONES ON ADDRESS (A SIDE)
• TEST3006 - VALID BIT WALKING ONES ON ADDRESS (B SIDE)
• TEST3007 - VALID BIT WALKING ZEROES ON ADDRESS (A SIDE)
• TEST3008 - VALID BIT WALKING ZEROES ON ADDRESS (B SIDE)
• TEST3009 - VALID BIT WRITE RECOVERY (A SIDE)
• TEST300A - VALID BIT WRITE RECOVERY (B SIDE)
• TEST3008 - VALID BIT READ ACCESS (A SIDE)
• TEST300C - VALID BIT READ ACCESS (B SIDE)
• TEST300D - DATA TEST OF ONE CACHE CELL (A SIDE - HI WORD)
• TEST300E - DATA TEST OF ONE CACHE CELL (A SIDE - LO WORD)
• TEST300F - DATA TEST OF ONE CACHE CELL (B SIDE - HI WORD)
• TEST3010 - DATA TEST OF ONE CACHE CELL (B SIDE - LO WORD)
• TEST3011 - DATA TEST OF ALL CACHE CELLS (A SIDE)
• TEST3012 - TEST_TNUM
• TEST3013 - DATA TEST OF ALL CACHE CELLS (B SIDE)
• TEST3014 - CACHE DATA, WALK A ONE THRU ADDRESS LINES (A SIDE)
• TEST3015 - CACHE DATA, WALK A ONE THRU ADDRESS LINES (B SIDE)
• TEST3016 - CACHE DATA, ·WALK 'AZERO THRU ADDRESS LINES (A SIDE)
• TEST3017 - CACHE DATA, WALK A ZERO THRU ADDRESS LINES (B SIDE)
• TEST3018 - CACHE DATA WRITE RECOVERY (A SIDC)
• TEST3019 - CACHE DATA WRITE RECOVERY (B SIDE)
• TEST301A - TEST_TNUM
• TEST301B - CACHE DATA READ ACCESS (A SIDE)
• TEST301C - CACHE DATA READ ACCESS (B SIDE)
• TEST301D - CACHE DATA CONTENTS EQUAL ADDRESS (A SIDE)
• TEST301E - CACHE DATA CONTENTS EQUAL ADDRESS (B SIDE)
• TEST301F - TEST_TNUM
• TEST3020 - FORCE BITS TEST (A SIDE - FORCE BIT SET)
• TEST3021 - FORCE BITS TEST (A SIDE - FORCE BIT CLEARED)
• TEST3022 - FORCE BITS TEST (B SIDE - FORCE BIT SET)
• TEST3023 - FORCE BITS TEST (B SIDE - FORCE BIT CLEARED)
• TEST3024 - TEST_TNUM
• TEST3030 - INDEX TEST ONE CELL (A SIDE)
• TEST3031 - INDEX TEST ONE CELL (B SIDE)
• TEST3032 - INDEX TEST ALL CELLS (A SIDE)
• TEST3033 - INDEX TEST ALL CELLS (B SIDE)
• TEST3034 - INDEX WALKING ONES ON ADDRESS (A SIDE)
• TEST3035 - TEST_TNUM
• TEST3036 - INDEX WALKING ONES ON ADDRESS (B SIDE)
• TEST3037 - INDEX WALKING ZEROES ON ADDRESS (A SIDE)
• TEST3038 - INDEX WALKING ZEROES ON ADDRESS (B SIDE)
• TEST3039 - INDEX WRITE RECOVERY (A SIDE)
• TEST303A - INDEX WRITE RECOVERY (B SIDE)
• TEST303B - TEST_TNUM
• TEST303C - INDEX READ ACCESS (A SIDE)
• TEST303D - INDEX READ ACCESS (B SIDE)
• TEST303E - TEST_TNUM
•
•
•••
•
•••••
•

BEGINNING OF STLB ARRAY TESTS • ••••
•••
• TEST3200 - PART 2 OF THE LBVAA ARRAY TESTS
• TEST3201 - PART 2 OF THE LBVAB ARRAY TESTS
• TEST3202 - PART 2 OF THE LBPAA ARRAY TESTS
• TEST3203 - PART 2 OF THE LBPAB ARRAY TESTS

PRIME RESTRICTED

Page 75

4150 Functional Specification: Microdiagnostics
Page 76

• TEST3284 - PART 2 OF THE LPIDA ARRAY TESTS
• TEST3285 - PART 2 OF THE LPIDB ARRAY TESTS
• TEST3286 - PART 2 OF THE PCNTA ARRAY TESTS
• TEST3287 - PART 2 OF THE PCNTB ARRAY TESTS
• TEST3288 - PART 2 OF THE ARRA ARRAY TESTS
• TEST3289 - PART 2 OF THE ARRB ARRAY TESTS
• TEST328A - PART 2 OF THE PMODA ARRAY TESTS
• TEST321B - PART 2 OF THE PMODB ARRAY TESTS
• TEST328C - PART 2 OF THE FRCA ARRAY TESTS
• TEST3280 - PART 2 OF THE FRCB ARRAY TESTS
• TEST328E - PART 2 OF THE LBPVLDA ARRAY TESTS
• TEST328F - PART 2 OF THE LBPVLDB ARRAY TESTS
• TEST3218 - PART 2 OF THE PARITY BIT ARRAY TESTS, STLBA
• TEST3211 - PART 2 OF THE PARITY BIT ARRAY TESTS, STLBB
• TEST3212 - PART 2 OF THE PARITY BIT ARRAY TESTS, IOTLBA
• TEST3213 - PART 2 OF THE PARITY BIT ARRAY TESTS, IOTLBB
• TEST3214 - PART 2 OF THE LBPOWNA ARRAY TESTS
• TEST3215 - PART 2 OF THE LBPOWNB ARRAY TESTS
• TEST3216 - TEST_TNUM
••••••SAVE SOME ROOM FOR FUTURE LBVAAW AND LBVABW WALKING 1'S AND 0'S TESTS
• TEST3250 - LBPAA, FLOAT 1 THROUGH ADDRESS OF STLBA, CALL LBPAAW
• TEST3251 - LBPAA, FLOAT 1 THROUGH ADDRESS OF STLBA, CALL LBPAAW
• TEST3252 - LBPAA, FLOAT 1 THROUGH ADDRESS OF STLBA, C~lL LBPAAW
• TEST3260 - LBPAA, FLOAT 0 THROUGH ADDRESS OF STLBA, CALL LBPAAW
• TEST3261 - LBPAA, FLOAT 0 THROUGH ADDRESS OF STLBA, CALL LBPAAW
• TEST3262 - LBPAA, FLOAT 0 THROUGH ADDRESS OF STLBA, CALL LBPAAW
• LBPAAW - COMMON ROUTINE USED FOR PARTS 3 & 4 OF THE LBPAA ARRAY TESTS.
• TEST3278 - LBPAB, FLOAT 1 THROUGH ADDRESS OF STLBB, CALL LBPABW
• TEST3271 - LBPAB, FLOAT 1 THROUGH ADDRESS OF STLBB, CALL LBPABW
• TEST3272 - LBPAB, FLOAT 1 THROUGH ADDRESS OF STLBB, CALL LBPABW
• TEST3288 - LBPAB, FLOAT 0 THROUGH ADDRESS OF STLBB, CALL LBPABW
• TEST3281 - LBPAB, FLOAT 0 THROUGH ADDRESS OF STLBB, CALL LBPABW
• TEST3282 - LBPAB, FLOAT 0 THROUGH ADDRESS OF STLBB, CALL LBPABW
• LBPABW - COMMON ROUTINE USED FOR PARTS 3 & 4 OF THE LBPAB ARRAY TESTS.
• TEST329EI - PART 5 OF THE STLBA LBPAA ARRAY TESTWRITE RECOVERY CHECK
• TEST3291 - PART 5 OF THE STLBB LBPAB ARRAY TESTWRITE RECOVERY CHECK
• TEST3292 - PART 6 OF THE STLBA ARRAY TESTREAD ACCESS CHECK .OF LBPAA
• TEST3293 - PART 6 OF THE STLBB ARRAY TESTREAD ACCESS CHECK OF LBPAB
• TEST32A0 - LPIDA, FLOAT 1 THROUGH ADDRESS STLBA, CALL LPIDAW
• TEST32A1 - LPIDA, FLOAT 1 THROUGH ADDRESS STLBA, CALL LPIDAW
• TEST32A2 - LPIDA, FLOAT 1 THROUGH ADDRESS STLBA, CALL LPIDAW
• TEST3280 - LPIDA, FLOAT 0 THROUGH ADDRESS STLBA, CALL LPIDAW
• TEST3281 - LPIDA, FLOAT 0 THROUGH ADDRESS STLBA, CALL LPIDAW
• TEST3282 - LPIDA, FLOAT 0 THROUGH ADDRESS STLBA, CALL LPIDAW
• LPIDAW - COMMON ROUTINE USED FOR PARTS 3 & 4 OF THE LPIDA ARRAY TESTS.
• TEST32C8 - LPIDB, FLOAT 1 THROUGH ADDRESS STLBB, CALL LPIDBW
• TEST32C1 - LPIDB, FLOAT 1 THROUGH ADDRESS STLBB, CALL LPIDBW
• TEST32C2 - LPIDB, FLOAT 1 THROUGH ADDRESS STLBB, CALL LPIDBW
• TEST32D8 - LPIDB, FLOAT 0 THROUGH ADDRESS STLBB, CALL LPIDBW
• TEST32D1 - LPIDB, FLOAT 0 THROUGH ADDRESS STLBB, CALL LPIDBW
• TEST32D2 - LPIDB, FLOAT 0 THROUGH ADDRESS STLBB, CALL LPIDBW
• LPIDBW - COMMON ROUTINE USED FOR PARTS 3 & 4 OF THE LPIDB ARRAY TESTS.
• TEST32E0 - PART 5 OF THE STLBA LPIDA ARRAY TEST WRITE RECOVERY CHECK
• TEST32E1 - PART 5 OF THE STLBB LPIDB ARRAY TEST WRITE RECOVERY CHECK
• TEST32E2 - PART 6 OF THE STLBA ARRAY TEST READ ACCESS CHECK OF LPIDA
• TEST32E3 - PART 6 OF THE STLBB ARRAY TEST READ ACCESS CHECK OF LPIDB
• TEST32F0 - LPCNTA, FLOAT 1 THROUGH ADDRESS STLBA, CALL LPCAW
• TEST32F1 - LPCNTA, FLOAT 1 THROUGH ADDRESS STLBA, CALL LPCAW
• TEST32F2 - LPCNTA, FLOAT 1 THROUGH ADDRESS STLBA, CALL LPCAW
• TEST3300 - LPCNTA, FLOAT 0 THROUGH ADDRESS STLBA, CALL LPCAW
• TEST3301 - LPCNTA, FLOAT 0 THROUGH ADDRESS STLBA, CALL LPCAW

PRIME RESTRICTED

Microcode Functional Overview 4150 Funct. Spec.
Page 77

• TEST3302 - LPCNTA, FLOAT 0 THROUGH ADDRESS STLBA, CALL LPCAW
• LPCAW - COMMON ROUTINE USED FOR PARTS 3 & 4 OF THE LPCNTA ARRAY TESTS.
• TEST3310 - LPCNTB, FLOAT 1 THROUGH ADDRESS STLBB, CALL LPCBW
• TEST3311 - LPCNTB, FLOAT 1 THROUGH ADDRESS STLBB, CALL LPCBW
• TEST3312 - LPCNTB, FLOAT 1 THROUGH ADORESS STLBB, CALL LPCBW
• TEST3320 - LPCNTB, FLOAT 0 THROUGH ADDRESS STLBB, CALL LPCBW
• TEST3321 - LPCNTB, FLOAT 0 THROUGH ADDRESS STLBB, CALL LPCBW
• TEST3322 - LPCNTB, FLOAT 0 THROUGH ADDRESS STLBB, CALL LPCBW
• LPCBW - COMMON ROUTINE USED FOR PARTS 3 & 4 OF THE LPCNTB ARRAY TESTS.
• TEST3330 - PART 5 OF THE STLBA LPCNTA ARRAY TEST WRITE RECOVERY CHECK
• TEST3331 - PART 5 OF THE STLBB LPCNTB ARRAY TEST WRITE RECOVERY CHECK
• TEST3332 - PART 6 OF THE STLBA ARRAY TEST READ ACCESS CHECK OF LPCNTA
• TEST3333 - PART 6 OF THE STLBB ARRAY TEST READ ACCESS CHECK OF LPCNTB
• TEST3334 - TEST_TNUM
• TEST3340 - ARRA, FLOAT 1 THROUGH ADDRESS STLBA, CALL ARRAW
• TEST3341 - ARRA, FLOAT 1 THROUGH ADDRESS STLBA, CALL ARRAW
• TEST3342 - ARRA, FLOAT 1 THROUGH ADDRESS STLBA, CALL ARRAW
• TEST3350 - ARRA, FLOAT 0 THROUGH ADDRESS STLBA, CALL ARRAW
• TEST3351 - ARRA, FLOAT 0 THROUGH ADDRESS STLBA, CALL ARRAW
• TEST3352 - ARRA, FLOAT 0 TH~OUGH ADDRESS STLBA, CALL ARRAW
• ARRAW - COMMON ROUTINE USEo-roR" PARTS 3 &: 4 OF THE ACCESS RIGHTS ARRAY TESTS.
• TEST3360 - ARRB, FLOAT 1 THROUGH ADDRESS STLBB, CALL ARRBW
• TEST3361 - ARRB, FLOAT 1 THROUGH ADDRESS STLBB, CALL ARRBW
• TEST3362 - ARRB, FLOAT 1 THROUGH ADDRESS STLBB, CALL ARRBW
• TEST3370 - ARRB, FLOAT 0 THROUGH ADDRESS STLBB, CALL ARRBW
• TEST3371 - ARRB, FLOAT 0 THROUGH ADDRESS STLBB, CALL ARRBW
• TEST3372 - ARRB, FLOAT 0 THROUGH ADDRESS STLBB, CALL ARRBW
• ARRBW - COMMON ROUTINE USED FOR PARTS 3 & 4 OF THE ACCESS RIGHTS ARRAY TESTS.
• TEST3380 - PART 5 OF THE STLBA ARRA ARRAY TEST WRITE RECOVERY CHECK
• TEST3381 - PART 5 OF THE STLBB ARRB ARRAY TEST WRITE RECOVERY CHECK
• TEST3382 - PART 6 OF THE STLBA ARRAY TEST READ ACCESS CHECK OF ARRA
• TEST3383 - PART 6 OF THE STLBB ARRAY TEST READ ACCESS CHECK OF ARRB
• TEST3390 - PMODA, FLOAT 1 THROUGH ADDRESS STLBA, CALL PMODAW
• TEST3391 - PMODA, FLOAT 1 THROUGH ADDRESS STLBA, CALL PMODAW
• TEST3392 - PMODA, FLOAT 1 THROUGH ADDRESS STLBA, CALL PMODAW
• TEST33A0 - PMODA, FLOAT 0 THROUGH ADDRESS STLBA, CALL PMODAW
• TEST33A1 - PMODA, FLOAT 0 THROUGH ADDRESS STLBA, CALL PMODAW
• TEST33A2 - PMODA. FLOAT 0 THROUGH ADDRESS STLBA, CALL PMODAW
• PMOOAW - COMMON ROUTINE USED FOR PARTS 3 & 4 OF THE PMODA ARRAY TESTS.
• TEST3380 - PMODB, FLOAT 1 THROUGH ADDRESS STLBB, CALL PMODBW
• TEST3381 - PMODB, FLOAT 1 THROUGH ADDRESS STLBB, CALL PMODBW
• TEST3382 - PMODB, FLOAT 1 THROUGH ADDRESS STLBB, CALL PMODBW
• TEST33C0 - PMODB, FLOAT 0 THROUGH ADDRESS STLBB, CALL PMODBW
• TEST33C1 - PMODB, FLOAT 0 THROUGH ADDRESS STLBB, CALL PMODBW
• TEST33C2 - PMODB, FLOAT 0 THROUGH ADDRESS STLBB, CALL PMODBW
• PMOOBW - COMMON ROUTINE USED FOR PARTS 3 & 4 OF THE PMODB ARRAY TESTS.
• TEST33D0 - PART 5 OF THE STLBA PMODA ARRAY TEST WRITE RECOVERY CHECK
• TEST33D1 - PART 5 OF THE STLBB PMODB ARRAY TEST WRITE RECOVERY CHECK
• TEST33D2 - PART 6 OF THE STLBA ARRAY TEST READ ACCESS CHECK OF PMODA
• TEST33D3 - PART 6 OF THE STLBB ARRAY TEST READ ACCESS CHECK OF PMODB
• TEST33E0 - FRC, FLOAT 1 THROUGH ADDRESS STLBA, CALL FRCAW
• TEST33E1 - FRC, FLOAT 1 THROUGH ADDRESS STLBA, CALL FRCAW
• TEST33E2 - FRC, FLOAT 1 THROUGH ADDRESS STLBA, CALL FRCAW
• TEST33F0 - FRC, FLOAT 0 THROUGH ADDRESS STLBA, CALL FRCAW
• TEST33F2 - FRC, FLOAT 0 THROUGH ADDRESS STLBA, CALL FRCAW
• TEST33F3 - FRC, FLOAT 0 THROUGH ADDRESS STLBA, CALL FRCAW
• FRCAW - COMMON ROUTINE USED FOR PARTS 3 & 4 OF THE FRCA ARRAY TESTS.
• TEST3400 - FRC, FLOAT 1 THROUGH ADDRESS STLBB, CALL FRCBW
• TEST3401 - FRC, FLOAT 1 THROUGH ADDRESS STLBB, CALL FRCBW
• TEST3402 - FRC, FLOAT 1 THROUGH ADDRESS STLBB, CALL FRCBW
• TEST3410 - FRC, FLOAT 0 THROUGH ADDRESS STLBB, CALL FRCBW

PRIME RESTRICTED

4150 Functional Specification
Page 78

• TEST3411 - fRC, FLOAT 0 THROUGH ADDRESS STLBB, CALL fRCBW
• TEST3412 - fRC, FLOAT 0 THROUGH ADDRESS STLBB, CALL fRCBW
• FRCBW - COMMON ROUTINE USED FOR PARTS 3 & 4 Of THE fRCB ARRAY TESTS.
• TEST3420 - PART 5 Of THE STLBA fRCA ARRAY TEST WRITE RECOVERY CHECK
• TEST3421 - PART 5 Of THE STLBA fRCA ARRAY TEST WRITE RECOVERY CHECK
• TEST3422 - PART 5 Of THE STLBB fRCB ARRAY TEST WRITE RECOVERY CHECK
• TEST3423 - PART 5 Of THE STLBB fRCB ARRAY TEST WRITE RECOVERY CHECK
• TEST3424 - PART 6 Of THE STLBA fRCA ARRAY TEST READ ACCESS CHECK
• TEST3425 - PART 6 Of THE STLBA fRCA ARRAY TESTREAD ACCESS CHECK
• TEST3426 - PART 6 Of THE STLBB fRCB ARRAY TEST READ ACCESS CHECK
• TEST3427 - PART 6 Of THE STLBB fRCB ARRAY TESTREAD ACCESS CHECK
• TEST3430 - VLDA, FLOAT 1 THROUGH ADDRESS STLBA, CALL VLDAW
• TEST3431 - VLDA, FLOAT 1 THROUGH ADDRESS STLBA, CALL VLDAW
• TEST3432 - VLDA, FLOAT 1 THROUGH ADDRESS STLBA, CALL VLDAW
• TEST3440 - VLDA, FLOAT 0 THROUGH ADDRESS STLBA, CALL VLDAW
• TEST3441 - VLDA, FLOAT 0 THROUGH ADDRESS STLBA, CALL VLDAW
• TEST3442 - VLDA, FLOAT 0 THROUGH ADDRESS STLBA, CALL VLDAW
• VLDAW - COMMON ROUTINE USED FOR PARTS 3 & 4 Of THE VLDA ARRAY TESTS.
• TEST3450 - VLDB, FLOAT 1 THROUGH ADDRESS STLBB, CALL VLDBW
• TEST3451 - VLDB, FLOAT 1 THROUGH ADDRESS STLBB, CALL VLDBW
• TEST3452 - VLDB, FLOAT 1 THROUGH.ADDRESS STLBB, CALL VLDBW
• TEST3460 - VLDB, FLOAT 0 THROUGH ADDRESS STLBB, CALL VLDBW
• TEST3461 - VLDB, FLOAT 0 THROUGH ADDRESS STLBB, CALL VLDBW
• TEST3462 - VLDB, FLOAT 0 THROUGH ADDRESS STLBB, CALL VLDBW
• VLDBW - COMMON ROUTINE USED FOR PARTS 3 & 4 Of THE VLDB ARRAY TESTS.
• TEST3470 - PART 5 Of THE STLBA VLDA ARRAY TEST WRITE RECOVERY CHECK
• TEST3471 - PART 5 Of THE STLBA VLDA ARRAY TEST WRITE RECOVERY CHECK
• TEST3472 - PART 5 Of THE STLBB VLDB ARRAY TEST WRITE RECOVERY CHECK
• TEST3473 - PART 5 Of THE STLBB VLDB ARRAY TEST WRITE RECOVERY CHECK
• TEST3474 - PART 6 Of THE STLBA VLDA ARRAY TEST READ ACCESS CHECK
• TEST3475 - PART 6 Of THE STLBB VLDA ARRAY TESTREAD ACCESS CHECK
• TEST3476 - PART 6 Of THE STLBB VLDB ARRAY TEST READ ACCESS CHECK
• TEST3477 - PART 6 Of THE STLBB VLDB ARRAY TESTREAD ACCESS CHECK
• TEST3480 - PARITY, FLOAT 1 THROUGH ADDRESS STLBA, CALL PARAW
• TEST3481 - PARITY, FLOAT 1 THROUGH ADDRESS STLBA, CALL PARAW
• TEST3482 - PARITY, FLOAT 1 THROUGH ADDRESS STLBA, CALL PARAW
• TEST3490 - PARITY, FLOAT 0 THROUGH ADDRESS STLBA, CALL PARAW
• TEST3491 - PARITY, FLOAT 0 THROUGH ADDRESS STLBA, CALL PARAW
• TEST3492 - PARITY, FLOAT 0 THROUGH ADDRESS STLBA, CALL PARAW
• PARAW - COMMON ROUTINE USED FOR PARTS 3 & 4 Of THE PARITY BIT ARRAY TESTS.
• TEST34A0 - PARITY, FLOAT 1 THROUGH ADDRESS STLBB, CALL PARBW
• TEST34A1 - PARITY, FLOAT 1 THROUGH ADDRESS STLBB, CALL PARBW
• TEST34A2 - PARITY, FLOAT 1 THROUGH ADDRESS STLBB, CALL PARBW
• TEST34B0 - PARITY, FLOAT 0 THROUGH ADDRESS STLBB, CALL PARBW
• TEST3481 - PARITY, FLOAT 0 THROUGH ADDRESS STLBB, CALL PARBW
• TEST3482 - PARITY, FLOAT 0 THROUGH ADDRESS STLBB, CALL PARBW
• PARBW - COMMON ROUTINE USED FOR PARTS 3 & 4 OF THE PARITY BIT ARRAY TESTS.
• TEST34C0 - PART 5 Of THE STLBA PARITY ARRAY TEST WRITE RECOVERY CHECK
• TEST34C1 - PART 5 Of THE STLBA PARITY ARRAY TEST WRITE RECOVERY CHECK
• TEST34C2 - PART 5 Of THE STLBB PARITY ARRAY TEST WRITE RECOVERY CHECK
• TEST34C3 - PART 5 Of THE STLBB PARITY ARRAY TEST WRITE RECOVERY CHECK
• TEST34C4 - PART 6 Of THE STLBA PARITY ARRAY TEST READ ACCESS CHECK
• TEST34C5 - PART 6 Of THE STLBA PARITY ARRAY TESTREAD ACCESS CHECK
• TEST34C6 - PART 6 Of THE STLBB PARITY ARRAY TEST READ ACCESS CHECK
• TEST34C7 - PART 6 Of THE STLBB PARITY ARRAY TESTREAD ACCESS CHECK
••••••SAVE SOME ROOM FOR FUTURE IOTLB WALKING 1'S AND 0'S TESTS
•••••• SAVE SOME ROOM FOR FUTURE IOTLB WRITE 'RECOVERY TESTS
•••••• SAVE SOME ROOM FOR FUTURE JOTLB READ ACCESS TESTS
• TEST3520 - LBPOWN, FLOAT 1 THROUGH ADDRESS STLBA, CALL POWNAW
• TEST3521 - LBPOWN, FLOAT 1 THROUGH ADDRESS STLBA, CALL POWNAW
• TEST3522 - LBPOWN, FLOAT 1 THROUGH ADDRESS STLBA, CALL POWNAW

PRIME RESTRICTED

Microdiagnostics

:Microcode Functional Overview 4150 Funct. Spec.
Page 79

• 11ST3530 - LBPOWN, FLOAT 0 THROUGH ADDRESS STLBA, CALL POWNAW
• l!ST3531 - LBPOWN, FLOAT 0 THROUGH ADDRESS STLBA, CALL POWNAW
• 11ST3532 - LBPOWN, FLOAT 0 THROUGH ADDRESS STLBA, CALL POWNAW
• RllNAW - COMMON ROUTINE USED FOR PARTS 3 t 4 OF THE POWNA ARRAY TESTS
• 1EST3540 - LBPOWN, FLOAT 1 THROUGH ADDRESS STLBB, CALL POWNBW
• 11ST3541 - LBPOWN, FLOAT 1 THROUGH ADDRESS STLBB, CALL POWNBW
• 11ST3542 - LBPOWN, FLOAT 1 THROUGH ADDRESS STLBB, CALL POWNBW
• 1EST3550 - LBPOWN, FLOAT 0 THROUGH ADDRESS STLBB, CALL POWNBW
• ltST3551 - LBPOWN, FLOAT 0 THROUGH ADDRESS STLBB, CALL POWNBW
• ltST3552 - LBPOWN, FLOAT 0 THROUGH ADDRESS STLBB, CALL POWNBW
• RllteW - COMMON ROUTINE USED FOR PARTS 3 t 4 OF THE POWNB ARRAY TESTS
• 1EST3560 - PART 5 OF THE STLBA LBPOWNA ARRAY TEST WRITE RECOVERY CHECK
• 1EST3561 - PART 5 OF THE STLBA LBPOWNA ARRAY TEST WRITE RECOVERY CHECK
• 11ST3562 - PART 5 OF THE STLBB LBPOWNB ARRAY TEST WRITE RECOVERY CHECK
• 11ST3563 - PART 5 OF THE STLBB LBPOWNB ARRAY TEST WRITE RECOVERY CHECK
• 1EST3564 - PART 6 OF THE STLBA LBPOWNA ARRAY TEST READ ACCESS CHECK
• 1EST3565 - PART 6 OF THE STLBA LBPOWNA ARRAY TEST READ ACCESS CHECK
• 1EST3566 - PART 6 OF THE STLBB LBPOWNB ARRAY TEST READ ACCESS CHECK
• 1IST3567 - PART 6 OF THE STLBB LBPOWNB ARRAY TEST READ ACCESS CHECK
• lEST3568 - TEST_TNUM
•
UIIAG7 contains the Memory array tests. The following is an inde~ of the tests contained

in UDIAG7 .

•
• INDEX OF TESTS IN UDIAG7
•
•
• 1£ST2200 - MEMORY SCAN DATA TEST 0 - 32 MB (CALLS TEST220X)
• TEST2201 - TEST_TNUM
• lEST2202 - MEMORY SCAN DATA TEST 32 - 64 MB (CALLS TEST220X)
• lEST2203 - TEST_TNUM
• 1EST2210 - MEMORY MARCH DATA TEST 0 - 16 MB (CALLS TEST221X)
• lEST2211 - TEST_ TNUM
• 1IST2212 - MEMORY MARCH DATA TEST 16 - 32 MB (CALLS TEST221X)
• lfST2213 - TEST_TNUM
• TEST2214 - MEMORY MARCH DATA TEST 32 - 48 MB (CALLS TEST221X)
• TEST2215 - TEST_TNUM
• 11ST2216 - MEMORY MARCH DATA TEST 48 - 64 MB (CALLS TEST221X)
• TEST2217 - TEST_TNUM
• TEST2220 - ADDRESS AS DATA TEST 0 - 32 MB (CALLS TEST222X)
• TEST2221 - TEST_TNUM
• lEST2222 - ADDRESS AS DATA TEST 32 - 64 MB (CALLS TEST222X)
• lEST2223 - TEST_TNUM
• 11ST2230 - MEMORY MARCH CHECK BITS TEST 0 - 16 MB (CALLS TEST221X)
• 11ST2231 - TEST_ TNUM
• 11ST2232 - MEMORY MARCH CHECK BITS TEST 16 - 32 MB (CALLS TEST221X)
• 11ST2233 - TEST_TNUM
• TEST2234 - MEMORY MARCH CHECK BITS TEST 32 - 48 MB (CALLS TEST221X)
• TEST2235 - TEST_TNUM
• TEST2236 - MEMORY MARCH CHECK BITS TEST 48 - 64 MB (CALLS TEST221X)
• TEST2237 - TEST_TNUM
• lIST2240 - WALKING 1'S MEMORY DATA TEST, BITS 1-4, 0-8 MB (CALLS TEST224X)
• lIST2241 - TEST_TNUM
• T£ST2242 - WALKING 1 'S MEMORY DATA TEST, BITS 5-8, 0-8 MB (CALLS TEST224X)
• TEST2243 - TEST_TNUM
• TEST2244 - WALKING 1'S MEMORY DATA TEST, BITS 9-12, 0-8 MB (CALLS TEST224X)
• 11ST2245 - TEST_TNUM
• 1fST2246 - WALKING 1'S MEMORY DATA TEST, BITS 13-16, 0-8 MB (CALLS TEST224X)
• TEST2247 - TEST_TNUM

PRIME RESTRICTED

4150 Functional Specification
Page 80

• TEST2248 - WALKING 1'S MEMORY DATA TEST,
• TEST2249 - TEST_TNUM
• TEST224A - WALKING 1'S MEMORY DATA TEST,
• TEST2248 - TEST_TNUM
• TEST224C - WALKING 1'S MEMORY DATA TEST,
• TEST224D - TEST_TNUM
• TEST224E - WALKING 1'S MEMORY DATA TEST,
• TEST224F - TEST_TNUM
• TEST2250 - WALKING 1'S MEMORY DATA TEST,
• TEST2251 - TEST_TNUM
• TEST2252 - WALKING 1'S MEMORY DATA TEST,
• TEST2253 - TEST_TNUM

Microdiagnostics

BITS 17-20, 0-8 MB {CALLS TEST224X)

BITS 21-24, 0-8 MB {CALLS TEST224X)

BITS 25-28, 0-8 MB {CALLS TEST224X)

BITS 29-32, 0-8 MB (CALLS TEST224X)

BITS 1-4, 8-16 MB (CALLS TEST224X)

BITS 5-8, 8-16 MB (CALLS TEST224X)

• TEST2254 - WALKING 1 'S MEMORY DATA TEST, BITS 9-12, 8-16 MB {CALLS TEST224X)
• TEST2255 - TEST_TNUM
• TEST2256 - WALKING 1'S MEMORY DATA TEST, BITS 13-16, 8-16 MB {CALLS TEST224X)
• TEST2257 - TEST_TNUM
• TEST2258 - WALKING 1'S MEMORY DATA TEST, BITS 17-20, 8-16 MB {CALLS TEST224X)
• TEST2259 - TEST_TNUM
• TEST225A - WALKING 1 'S MEMORY DATA TEST, BITS 21-24, 8-16 MB (CALLS TEST224X)
• TEST225B - TEST_TNUM
• TEST225C - WALKING 1'S MEMORY DATA TEST, BITS 25-28, 8-16 MB (CALLS TEST224X)
• TEST225D - TEST_TNUM
• TEST225E - WALKING 1 'S MEMORY DATA TEST, BITS 23-32, 8-16 MB (CALLS TEST224X)
• TEST225F - TEST_TNUM
• TEST2260 - WALKING 1 'S MEMORY DATA TEST, BITS 1-4, 16-24 MB {CALLS TEST224X)
• TEST2261 - TEST_TNUM
• TEST2262 - WALKING 1'S MEMORY DATA TEST, BITS 5-8, 16-24 MB (CALLS TEST224X)
• TEST2263 - TEST_TNUM
• TEST2264 - WALKING 1 'S MEMORY DATA TEST, BITS 9-12, 16-24 MB (CALLS TEST224X)
• TEST2265 - TEST_TNUM
• TEST2266 - WALKING 1 'S MEMORY DATA TEST, BITS 13-16, 16-24 MB {CALLS TEST224X)
• TEST2267 - TEST_TNUM
• TEST2268 - WALKING 1'S MEMORY DATA TEST, BITS 17-20, 16-24 MB (CALLS TEST224X)
• TEST2269 - TEST_TNUM
• TEST226A - WALKING 1 'S MEMORY DATA TEST, BITS 21-24, 16-24 MB (CALLS TEST224X)
• TEST226B - TEST_TNUM
• TEST226C - WALKING 1'S MEMORY DATA TEST, BITS 25-28, 16-24 MB (CALLS TEST224X)
• TEST2260 - TEST_TNUM
• TEST226E - WALKING 1 'S MEMORY DATA TEST, BITS 29-32, 16-24 MB (CALLS TEST224X)
• TEST226F - TEST_TNUM
• TEST2270 - WALKING 1 'S MEMORY DATA TEST, BITS 1-4, 24-32 MB (CALLS TEST224X)
• TEST2271 - TEST_TNUM
• TEST2272 - WALKING 1 'S MEMORY DATA TEST, BITS 5-8, 24-32 MB {CALLS TEST224X)
• TEST2273 - TEST_TNUM
• TEST2274 - WALKING 1'S MEMORY DATA TEST, BITS 9-12, 24-32 MB {CALLS TEST224X)
• TEST2275 - TEST_TNUM
• TEST2276 - WALKING 1'S MEMORY DATA TEST, BITS 13-16, 24-32 MB (CALLS TEST224X)
• TEST2277 - TEST_TNUM
• TEST2278 - WALKING 1'S MEMORY DATA TEST, BITS 17-20, 24-32 MB (CALLS TEST224X)
• TEST2279 - TEST_TNUM
• TEST227A - WALKING 1'S MEMORY DATA TEST, BITS 21-24, 24-32 MB (CALLS TEST224X)
• TEST227B - TEST_TNUM
• TEST227C - WALKING 1 'S MEMORY DATA TEST, BITS 25-28, 24-32 MB (CALLS TEST224X)
• TEST2270 - TEST_TNUM
• TEST227E - WALKING 1'S MEMORY DATA TEST, BITS 29-32, 24-32 MB (CALLS TEST224X)
• TEST227F - TEST_TNUM
• TEST2280 - WALKING 1'S MEMORY DATA TEST, BITS 1-4, 32-40 MB (CALLS TEST224X)
• TEST2281 - TEST_TNUM
• TEST2282 - WALKING 1'S MEMORY DATA TEST, BITS 5-8, 32-40 MB (CALLS TEST224X)
• TEST2283 - TEST_TNUM
• TEST2284 - WALKING 1'S MEMORY DATA TEST, BITS 9-12, 32-40 MB (CALLS TEST224X)

PRIME RESTRICTED

Microcode Functional Overview 4150 Funct. Spec.
Page 81

• TEST2285 - TEST_TNUM
• TEST2286 - WALKING 1'S MEMORY DATA TEST, BITS 13-16, 32-40 MB (CALLS TEST224X)
• TEST2287 - TEST_TNUM
• TEST2288 - WALKING 1 'S MEMORY DATA TEST, BITS 17-20, 32-40 MB (CALLS TEST224X)
• TEST2289 - TEST_TNUM
• TEST228A - WALKING 1'S MEMORY DATA TEST, BITS 21-24, 32-40 MB (CALLS TEST224X)
• TEST228B - TEST_TNUM
• TEST228C - WALKING 1'S MEMORY DATA TEST, BITS 25-28, 32-40 MB (CALLS TEST224X)
• TEST228D - TEST_TNUM
• TEST228E - WALKING 1'S MEMORY DATA TEST, BITS 29-32, 32-40 MB (CALLS TEST224X)
• TEST228F - TEST_TNUM
• TEST2290 - WALKING 1'S MEMORY DATA TEST, BITS 1-4, 40-48 MB (CALLS TEST224X)
• TEST2291 - TEST_TNUM
• TEST2292 - WALKING 1'S MEMORY DATA TEST, BITS 5-8, 40-48 MB (CALLS TEST224X)
• TEST2293 - TEST_TNUM
• TEST2294 - WALKING 1'S MEMORY DATA TEST, BITS 9-12, 40-48 MB (CALLS TEST224X)
• TEST2295 - TEST_TNUM
• TEST2296 - WALKING 1'S MEMORY DATA TEST, BITS 13-16, 40-48 MB (CALLS TEST224X)
• TEST2297 - TEST_TNUM
• TEST2298 - WALKING 1 'S MEMORY. DATA TEST, BITS 17-20, 40-48 MB (CALLS TEST224X)
• TEST2299 - TEST_TNUM
• TEST229A - WALKING 1'S MEMORY DATA TEST, BITS 21-24, 40-48 MB (CALLS TEST224X)
• TEST2298 - TEST_TNUM
• TEST229C - WALKING 1'S MEMORY DATA TEST, BITS 25-28, 40-48 MB (CALLS TEST224X)
• TEST229D - TEST_TNUM
• TEST229E - WALKING 1'S MEMORY DATA TEST, BITS 29-32, 40-48 MB (CALLS TEST224X)
• TEST229F - TEST_TNUM
• TEST22A0 - WALKING 1 'S MEMORY DATA TEST, BITS 1-4, 48-56 MB (CALLS TEST224X)
• TEST22A1 - TEST_TNUM
• TEST22A2 - WALKING 1'S MEMORY DATA TEST, BITS 5-8, 48-56 MB (CALLS TEST224X)
• TEST22A3 - TEST_TNUM
• TEST22A4 - WALKING 1'S MEMORY DATA TEST, BITS 9-12, 48-56 MB (CALLS TEST224X)
• TEST22A5 - TEST_TNUM
• TEST22A6 - WALKING 1'S MEMORY DATA TEST, BITS 13-16, 48-56 MB (CALLS TEST224X)
• TEST22A7 - TEST_TNUM
• TEST22A8 - WALKING 1'S MEMORY DATA TEST, BITS 17-20, 48-56 MB (CALLS TEST224X)
• TEST22A9 - TEST_TNUM
• TEST22AA - WALKING 1'S MEMORY DATA TEST, BITS 21-24, 48-56 MB (CALLS TEST224X)
• TEST22AB - TEST_TNUM
• TEST22AC - WALKING 1'S MEMORY DATA TEST, BITS 25-28, 48-56 MB (CALLS TEST224X)
• TEST22AD - TEST_TNUM
• TEST22AE - WALKING 1'S MEMORY DATA TEST, BITS 29-32, 48-56 MB (CALLS TEST224X)
• TEST22AF - TEST_TNUM
• TEST22B0 - WALKING 1'S MEMORY DATA TEST, BITS 1-4, 56-64 MB (CALLS TEST224X)
• TEST22B1 - TEST_TNUM
• TEST22B2 - WALKING 1'S MEMORY DATA TEST, BITS 5-8, 56-64 MB (CALLS TEST224X)
• TEST22B3 - TEST_TNUM
• TEST22B4 - WALKING 1'S MEMORY DATA TEST, BITS 9-12, 56-64 MB (CALLS TEST224X)
• TEST22B5 - TEST_TNUM
• TEST22B6 - WALKING 1'S MEMORY DATA TEST, BITS 13-16, 56-64 MB (CALLS TEST224X)
• TEST22B7 - TEST_TNUM
• TEST22B8 - WALKING 1'S MEMORY DATA TEST, BITS 17-20, 56-64 MB (CALLS TEST224X)
• TEST22B9 - TEST_TNUM
• TEST22BA - WALKING 1'S MEMORY DATA TEST, BITS 21-24, 56-64 MB (CALLS TEST224X)
• TEST22BB - TEST_TNUM .
• TEST22BC - WALKING 1'S MEMORY DATA TEST, BITS 25-28, 56-64 MB (CALLS TEST224X)
• TEST22BD - TEST_TNUM
• TEST22BE - WALKING 1'S MEMORY DATA TEST, BITS 29-32, 56-64 MB (CALLS TEST224X)
• TEST22BF - TEST_TNUM
• TEST22C0 - WALKING 1'S MEMORY ADDRESS TEST, MA14-13, 0-8 MB (CALLS TEST22CX)
• TEST22C1 - TEST_TNUM

PRIME RESTRICTED

41SO Functional Specification Microdiagnostics
Page 82

• TEST22C2 - WALKING 1'S MEMORY ADDRESS TEST, MA12-11, 0-8 MB (CALLS TEST22CX)
• TEST22C3 - TEST_TNUM
• TEST22C4 - WALKING 1'S MEMORY ADDRESS TEST, MA10-9, 0-8 MB (CALLS TEST22CX)
• TEST22C5 - TEST_TNUM
• TEST22C6 - WALKING 1'S MEMORY ADDRESS TEST, MAB-7, 0-8 MB (CALLS TEST22CX)
• TEST22C7 - TEST_TNUM
• TEST22C8 - WALKING 1'S MEMORY ADDRESS TEST, MA6-5, 0-8 MB (CALLS TEST22CX)
• TEST22C9 - TEST_TNUM
• TEST22CA - WALKING 1'S MEMORY ADDRESS TEST, MA4-3, 0-8 MB (CALLS TEST22CX)
• TEST22CB - TEST_TNUM
• TEST22CC - WALKING 1'S MEMORY ADDRESS TEST, MA2-1, 0-8 MB (CALLS TEST22CX)
• TEST22CD - TEST_TNUM
• TEST22CE - WALKIN(; 1'S MEMORY ADDRESS TEST, MA0-99, 0-8 MB (CALLS TEST22CX)
• TEST22Cr - TEST_TNUM
• TEST2208 - WALKING 1'S MEMORY ADDRESS TEST, MA98-97, 0-8 MB (CALLS TEST22CX)
• TEST22D1 - TEST_TNUM
• TEST22E0 - WALKING 1'S MEMORY ADDRESS TEST, MA14-13, 8-16 MB (CALLS TEST22CX)
• TEST22E1 - TEST_TNUM
• TEST22E2 - WALKING 1'S MEMORY ADDRESS TEST, MA12-11, 8-16 MB (CALLS TEST22CX)
• TEST22E3 - TEST_TNUM
• TEST22E4 - WALKING 1 'S MEMORY ADDRESS TEST, MA10-9, 8..:;16 MB (CALLS TEST22CX)
• TEST22E5 - TEST_TNUM
• TEST22E6 - WALKING 1 'S MEMORY ADDRESS TEST, MA8-7, 8-16 MB (CALLS TEST22CX)
• TEST22E7 - TEST_TNUM
• TEST22E8 - WALKING 1 'S MEMORY ADDRESS TEST, MA6-5, 8-16 MB (CALLS TEST22CX)
• TEST22E9 - TEST_TNUM
• TEST22EA - WALKING 1 'S MEMORY ADDRESS TEST, MA4-3, 8-16 MB (CALLS TEST22CX)
• TEST22EB - TEST_TNUM
• TEST22EC - WALKING 1'S MEMORY ADDRESS TEST, MA2-1, 8-16 MB (CALLS TEST22CX)
• TEST22ED.- TEST_TNUM
• TEST22EE - WALKING 1 'S MEMORY ADDRESS TEST, MA0-99, 8-16 MB (CALLS TEST22CX)
• TEST22Er - TEST_TNUM
• TEST22re - WALKING 1 ·s MEMORY ADDRESS TEST, MA98-97, 8-16 MB (CALLS TEST22CX)
• TEST22r1 - TEST_TNUM
• TEST2300 - WALKING 1'S MEMORY ADDRESS TEST, MA14-13, 16-24 MB (CALLS TEST22CX)
• TEST2301 - TEST_TNUM
• TEST2302 - WALKING 1'S MEMORY ADDRESS TEST, MA12-11, 16-24 MB (CALLS TEST22CX)
• TEST2303 - TEST_TNUM
• TEST2304 - WALKING 1'S MEMORY ADDRESS TEST, MA10-9, 16-24 MB (CALLS TEST22CX)
• TEST2305 - TEST_TNUM
• TEST2306 - WALKING 1'S MEMORY ADDRESS TEST, MAB-7, 16-24 MB (CALLS TEST22CX)
• TEST2307 - TEST_TNUM
• TEST2308 - WALKING 1'S MEMORY ADDRESS TEST, MA6-5, 16-24 MB (CALLS TEST22CX)
• TEST2309 - TEST_TNUM
• TEST230A - WALKING 1'S MEMORY ADDRESS TEST, MA4-3, 16-24 MB (CALLS TEST22CX)
• TEST2308 - TEST_TNUM
• TEST230C - WALKING 1'S MEMORY ADDRESS TEST, MA2-1, 16-24 MB (CALLS TEST22CX)
• TEST230D - TEST_TNUM
• TEST230E - WALKING 1'S MEMORY ADDRESS TEST, MA0-99, 16-24 MB (CALLS TEST22CX)
• TEST230F - TEST_TNUM
• TEST2310 - WALKING 1'S MEMORY ADDRESS TEST, MA98-97, 16-24 MB (CALLS TEST22CX)
• TEST2311 - TEST_TNUM
• TEST2320 - WALKING 1'S MEMORY ADDRESS TEST, MA14-13, 24-32 MB (CALLS TEST22CX)
• TEST2321 - TEST_TNUM
• TEST2322 - WALKING 1'S MEMORY ADDRESS TEST, MA12-11, 24-32 MB (CALLS TEST22CX)
• TEST2323 - TEST_TNUM
• TEST2324 - WALKING 1'S MEMORY ADDRESS TEST, MA10-9, 24-32 MB (CALLS TEST22CX)'
• TEST2325 - TEST_TNUM
• TEST2326 - WALKING 1'S MEMORY ADDRESS TEST, MA8-7, 24-32 MB (CALLS TEST22CX)
• TEST2327 - TEST_TNUM
• TEST2328 - WALKING 1'S MEMORY ADDRESS TEST, MA6-5, 24-32 MB (CALLS TEST22CX)

PRIME RESTRICTED

Microcode Functional Overview 4150 Funct. Spec.
Page 83

• TEST2329 - TEST_TNUM
• TEST232A - WALKING 1'S MEMORY ADDRESS TEST, MA4-3, 24-32 MB (CALLS TEST22CX)
• TEST232B - TEST_TNUM
• TEST232C - WALKING 1'S MEMORY ADDRESS TEST, MA2-1, 24-32 MB (CALLS TEST22CX)
• TEST232D - TEST_TNUM
• TEST232E - WALKING 1'S MEMORY ADDRESS TEST, MA0-99, 24-32 MB (CALLS TEST22CX)
• TEST232F - TEST_TNUM
• TEST2330 - WALKING 1'S MEMORY ADDRESS. TEST, MA98-97, 24-32 MB (CALLS TEST22CX)
• TEST2331 - TEST_TNUM
• TEST2340 - WALKING 1'S MEMORY ADDRESS TEST, MA14-13, 32-40 MB (CALLS TEST22CX)
• TEST2341 - TEST_TNUM
• TEST2342 - WALKING 1'S MEMORY ADDRESS TEST, MA12-11, 32-40 MB (CALLS TEST22CX)
• TEST2343 - TEST_TNUM
• TEST2344 - WALKING 1'S MEMORY ADDRESS TEST, MA10-9, 32-40 MB (CALLS TEST22CX)
• TEST2345 - TEST_TNUM
• TEST2346 - WALKING 1'S MEMORY ADDRESS TEST, MA8-7, 32-40 MB (CALLS TEST22CX)
• TEST2347 - TEST_TNUM
• TEST2348 - WALKING 1'S MEMORY ADDRESS TEST, MA6-5, 32-40 MB (CALLS TEST22CX)
• TEST2349 - TEST_TNUM
• TEST234A - WALKING 1'S MEMORY ADDRESS TEST, MA4-3, 32-40 MB (CALLS TEST22CX)
• TEST234B - TEST_TNUM
• TEST234C - WALKING 1'S MEMORY ADDRESS TEST, MA2-1, 32-40 MB (CALLS TEST22CX)
• TEST234D - TEST_TNUM
• TEST234E - WALKING 1'S MEMORY ADDRESS TEST, MA0-99, 32-40 MB (CALLS TEST22CX)
• TEST234F - TEST_TNUM
• TEST2350 - WALKING 1'S MEMORY ADDRESS TEST, MA98-97, 32-40 MB (CALLS TEST22CX)
• TEST2351 - TEST_TNUM
• TEST2360 - WALKING 1'S MEMORY ADDRESS TEST, MA14-13, 40-48 MB (CALLS TEST22CX)
• TEST2361 - TEST_TNUM
• TEST2362 - WALKING 1'S MEMORY ADDRESS TEST, MA12-11, 40-48 MB (CALLS TEST22CX)
• TEST2363 - TEST_TNUM
• TEST2364 - WALKING 1'S MEMORY ADDRESS TEST, MA10-9, 40-48 MB (CALLS TEST22CX)
• TEST2365 - TEST_TNUM
• TEST2366 - WALKING 1'S MEMORY ADDRESS TEST, MA8-7, 40-48 MB (CALLS TEST22CX)
• TEST2367 - TEST_TNUM
• TEST2368 - WALKING 1'S MEMORY ADDRESS TEST, MA6-5, 40-48 MB (CALLS TEST22CX)
• TEST2369 - TEST_TNUM
• TEST236A - WALKING 1'S MEMORY ADDRESS TEST, MA4-3, 40-48 MB (CALLS TEST22CX)
• TEST236B - TEST_TNUM
• TEST236C - WALKING 1'S MEMORY ADDRESS TEST, MA2-1, 40-48 MB (CALLS TEST22CX)
• TEST236D - TEST_TNUM
• TEST236E - WALKING 1'S MEMORY ADDRESS TEST, MA0-99, 40-48 MB {CALLS TEST22CX)
• TEST236F - TEST_TNUM
• TEST2370 - WALKING 1'S MEMORY ADDRESS TEST, MA98-97, 40-48 MB (CALLS TEST22CX)
• TEST2371 - TEST_TNUM
• TEST2380 - WALKING 1'S MEMORY ADDRESS TEST, MA14-13, 48-56 MB (CALLS TEST22CX)
• TEST2381 - TEST_TNUM
• TEST2382 - WALKING 1'S MEMORY ADDRESS TEST, MA12-11, 48-56 MB (CALLS TEST22CX)
• TEST2383 - TEST_TNUM
• TEST2384 - WALKING 1'S MEMORY ADDRESS TEST, MA10-9, 48-56 MB (CALLS TEST22CX)
• TEST2385 - TEST_TNUM
• TEST2386 - WALKING 1'S MEMORY ADDRESS TEST, MA8-7, 48-56 MB (CALLS TEST22CX)
• TEST2387 - TEST_TNUM
• TEST2388 - WALKING 1'S MEMORY ADDRESS TEST, MA6-5, 48-56 MB (CALLS TEST22CX)
• TEST2389 - TEST_TNUM
• TEST238A - WALKING 1'S MEMORY ADDRESS TEST, MA4-3, 48-56 MB (CALLS TEST22CX)
• TEST238B - TEST_TNUM
• TEST238C - WALKING 1'S MEMORY ADDRESS TEST, MA2-1, 48-56 MB (CALLS TEST22CX)
• TEST238D - TEST_TNUM
• TEST238E - WALKING 1'S MEMORY ADDRESS TEST, MA0-99, 48-56 MB (CALLS TEST22CX)
• TEST238F - TEST_TNUM

PRIME RESTRICTED

4150 Functional Specification
Page 84

Microdiagnostics

• TEST2390 - WALKING 1'S MEMORY ADDRESS TEST, MA98-97, 48-56 MB (CALLS TEST22CX)
• TEST2391 - TEST_TNUM
• TEST23A0 - WALKING 1'S MEMORY ADDRESS TEST, MA14-13, 56-64 MB (CALLS TEST22CX)
• TEST23A1 - TEST_TNUM
• TEST23A2 - WALKING 1'S MEMORY ADDRESS TEST, MA12-11, 56-64 MB (CALLS TEST22CX)
• TEST23A3 - TEST_TNUM
• TEST23A4 - WALKING 1'S MEMORY ADDRESS TEST, MA10-9, 56-64 MB (CALLS TEST22CX)
• TEST23A5 - TEST_TNUM
• TEST23A6 - WALKING 1'S MEMORY ADDRESS TEST, MAB-7, 56-64 MB (CALLS TEST22CX)
• TEST23A7 - TEST_TNUM
• TEST23A8 - WALKING 1'S MEMORY ADDRESS TEST, MA6-5, 56-64 MB (CALLS TEST22CX)
• TEST23A9 - TEST_TNUM
• TEST23AA - WALKING 1'S MEMORY ADDRESS TEST, MA4-3, 56-64 MB (CALLS TEST22CX)
• TEST23AB - TEST_TNUM
• TEST23AC - WALKING 1'S MEMORY ADDRESS TEST, MA2-1, 56-64 MB (CALLS TEST22CX)
• TEST23AD - TEST_TNUM
• TEST23AE - WALKING 1'S MEMORY ADDRESS TEST, MA0-99, 56-64 MB (CALLS TEST22CX)
• TEST23AF - TEST_TNUM
• TEST23B0 - WALKING 1'S MEMORY ADDRESS TEST, MA98-97, 56-64 MB (CALLS TEST22CX)
• TEST23B1 - TEST_TNUM
• TEST23C0 - WRITE ABORT ON MA PARITY ERROR TEST
• TEST23C1 - BACK TO BACK 32 BIT WRITE TEST
• TEST23C2 - BACK TO BACK 16 BIT WRITE TEST
• TEST23C3 - RANDOM 16 BIT WRITE TEST
• TEST23C4 - TEST_TNUM

Note that the section on system initialization detatils the tests covered in each SYSV overlay.

Refer to this section for the index of tests for the remaining UDIAGS. The SYSVs are

organized as follows: Two overlays are dedicated primarily to the E unit and 2 overlays are

mainly IS unit tests. A fifth overlay tests the MC unit and memory. The sixth overlay tests

all the leftovers, including I/O. Each overlay is self contained, and executes the Kernel

routines before starting the tests. All tests are capable of running by themselves (no previous

tests need be run to set up conditions). Optimal Replaceable Units (ORUs) are defined to the

board level. A variety of tests are included to validate the operations of individual VLSI

chips.

The 6 SYSV overlays in the 4150 are an improvement over the 9755's 2 SYSV overlays.

Areas of the machine which have significantly better coverage include the E unit, the MC,

and overall error reporting.

PRIME RESTRICTED

VLSI Requirements· 41SO'Fwict. s~ ,.
Page 85

15. VlSI Requirements

15.1 Introduction

The following VLSI parts are used in the 4150:

1. Microsequencer

2. Cache Address

3. STLB Set Select

4. Cache Set Select

5. Execution ALU

6. Barrel Shifter

7. Write Buffer Address

8. Register File Address

The mnemonic for each part has a "P" prepended to distinguish it from its cousin on the

6350. Each is briefly described in turn in the sections below. For more detailed information,

refer to the individual part specifications.

15.2 Microsequencer

The microsequencer (PUSEQ) is used to control the sequencing of the control store (CS). The

PUSEQ's BCY (Bus Control Address) outputs are used to address the CS RAMs.

The PUSEQ is partitioned into two identical slices. Each slice produces 7 of the 14 bits

necessary to address the CS. Each slice also produces decode net address bits. Both slices

reside on the CMI board.

The PUSEQ was designed by Ed Karaian.

15.3 Cache Address

The Cache Address Chip (PCADR) contains logic to maintain and source the I, branch cache,

cache, and S units' internal memory address bus. . This bus is used to produce the address for

all memory . related accesses on the IS board. These include -cache address, STLB address,.

branch cache address, and backup copies of the effective address (ERMA) and program counter

(PRMA) registers. The PCADR also supports Effective Address. Formation.

PRIME RESTRICTED

4150 Functional Specification
Page 86

Cache Address

PCADR is partitioned into two identical slices. One slice produces the low order bytes of

both BVMAH and BVMAL, while the other slice produces the high order bytes of those same

busses. Both PCADR slices reside on the IS board.

The PCADR was designed by Tony Dorohov.

15.4 STI.B Set Select

The Segment Translation Lookaside Buffer (STLB) contains previously translated physical

memory addresses. The 4150 uses a two set STLB. The STLB Set Select (PSSS) chip is

responsible for determining which set, if either, has a valid address translation for the current

memory reference. If neither set has such a valid translation a memory trap is raised, and

the processor's microcode has to determine what to do about the memory access.

The PSSS is partitioned into two identical slices. Each slice watches one set of the STLB for

valid translations and signals its findings on its outputs. The IS board on which the PSSS

chips sit is responsible for monitoring these outputs and taking the translation from the valid

set. Both slices reside on the IS board.

The PSSS was designed by Mark Mason.

15.S Cache Set Select

The 4150 uses a two set data cache similar in principle to the two set STLB. The Cache Set

Select (PCSS) chip watches the cache to determine which set, if either, has valid data, and to

signal a cache miss if neither set is valid. The PCSS also drives BB with the required source

as specified by the microcode, aligning data properly on the fly.

The PCSS is partitioned into two identical slices. Each slice watches one set of the cache and

signals its findings on its outputs. The IS board on which the PCSS chips sit is responsible

for making the final hit/miss decision, and startmg a cache miss routine on the MC if

necessary. Both slices reside on the IS board.

15.6 PEALU

The 4150 E unit contains a 48-bit data path which can be extended to 56-bits for multiply

and divide operations. The E unit ALU (PEALU) chip provides the full function 2-input

ALU which performs the number crunching functions of the data path. Look ahead carry

logic and carry-save adder logic is also provided by these chips.

The 56-bit data path is made up of 7 identical PEALU slices, each 8-bits wide. All 7 slices

reside on the E board.

The PEALU was designed by Stu Rae.

PRIME RESTRICTED

VLSI Requirements , ; , 1 • ,4150 Funct. Spec.
Page 87

15.7 Barrel Shifter

The Bus D Internal (PBDI) chip provides full shifting (arithmetic, logical, and barrel), rotating,

normalizing of floating point numbers, floating point adjusting, and decimal packing and

unpacking, all over a full 48-bits. It also provides guard bit support for multiplication.

The PBDI is implemented in three identical slices. Each slice produces 16 outputs which are

driven to the rest of the machine. All three slices reside on the E board.

15.8 Write Buffer Address

The write buffer attempts to make better use of the memory bandwidth by saving 16-bit and

32-bit writes from the CPU and trying to concatenate them into 64-bit writes before actually

doing the write to memory. The ADdress BUFfer (PADBUF) chip provides the address and

valid bit memories necessary for 'such a buffer.

The PADBUF is implemented in two identical slices, each of which drives half of the

memory address bus. Status of the write buffer as a whole can be determined from either

slice. Both slices reside on the CMI board.

The P ADBUF was designed by Steve Small.

15.9 Register File Address

The Register File Address (PRF ADR) chip provides an 8-bit address to the E unit's register

file. The addresses are determined from RCM bits, BPA bits, DTAR bits, BBH bits, base

register select bits, or BOPS bits. The PRF ADR chip can handle all of these cases. The skip

net and the RP and REC counters are also implemented by the PRF ADR.

Only one PRF ADR slice is necessary to perform all these functions. The slice resides on the

E board.

The PRF ADR was designed by John Strusienski and John Wishart.

PRIME RESTRICTED

4150 Functional Specification
Page 88

PRIME RESTRICTED

~ . ·. . . j'.f ,.. .•••

Diagnostic Processor Interface Detailed Description 4150 Funct. S_pec.
Page 89

_ 16. Diagnostic Processor Interface Detailed Description

The interface between the Diagnostic Proces.sor (DP) and the CPU has been changed from a

serial port, as it existed on prior CPUs, to a parallel port. The parallel port will allow 8 -bits

of information plus parity to be transmitted simultaneously. The data and control lines

involved in the communication between the DP and the CPU are shown in Figure 16-1.

FIG. 16-1. Diagnostic Processor Interface Signals

DPrULL+A \
DPREQ+ \

> CONTROL LINES
CPUACK+A /
CPUREQ+A /

.DPDATl00:07f+A \
> DATA LINES

DPPAR+A /

The interface has two modes of operation:

1. When the CPU is running two way communication is used.

2. When SYSCLR- is asserted the DP has direct control over the interface. One way
communication is used in this case.

PRIME RESTRICTED

DPDAT+A

TO/FROM
DIAGNOSTIC

PROCESSOR

BDH{01 :08}+

FROM CPU

BDL{01 :08}+

TO CPU

8

RCCDAT

u-SEQ

BDH{01 :08}+A

8

TOCS

CS RAMs

14

FRavt

DECODE NET

FDA

Figure 16-2 Diagnostic Processor Interface Block Diagram

Diagnostic Processor Interface Detailed Description 4150 Funct. Spec.
Page 91

16.1 DP Two Way Communication

When sending data from the DP to the CPU, the DP data is placed on BDL{01:08}+ .. When

sending data from the CPU to the DP, the data is placed on BDH{01:08}+.

To send data -to the CPU from the DP, the following handshaking takes place (illustrated in

Figure 16-3):

1. The DP raises DPREQ+ which causes a fetch cycle trap on the CPU.

2. After taking a fetch cycle trap and detecting DPREQ+, the CPU raises CPUACK+A.

3. The DP resets DPREQ+ and places the data on DPDAT{00:07}+A. The DP keeps
the data on the bus until CPUACK+ is reset by the CPU.

4. The DP data is buffered and placed on BDH{Ol:OS}+A. It is then driven onto
BDL{Ol:OS}+ where it proceeds to its destination.

5. The CPU resets CPUACK+.

The CPU may send data to the DP for display on the system console. To send data from

the CPU to the DP, the following handshaking takes place (illustrated in Figure 16-4):

1. The program wishing to send data to the system console executes a PIO instruction.
This instruction causes the DP to assert DPREQ+, producing a fetch cycle trap in
the CPU as before.

2. The CPU examines DPFULL+A sent out by the DP which tells the CPU if the
DP's input buffer is empty or full. If this signal is low the CPU raises

. CPUREQ+A and places its data on BDH{01:08}+. The data is buffered
BDH{01:08}+A and driven onto the DP bus DPDAT{00:07}+A.

3. After receiving CPUREQ+A, the DP sets DPFULL+ active. After an appropriate
amount of time, the CPU resets CPUREQ+A and takes the data off the bus. The
falling edge of CPUREQ+A latches the data onto the DP, so the CPU must
guarantee hold time.

4. After reading the data out of its buffer the DP resets DPFULL+.

In both transmitting modes mentioned above the CPU controlled when the data was put on

the bus. If the DP and the CPU both have data to send to each other it is up to the CPU to

determine the order of operations. Parity is checked on BDH{01:08}+A along with the

transmitted parity bits. The result of the parity checker is sent directly to the jump net. This

signal will only be valid when data is being held on the bus, and at other times will not be·

guaranteed.

PRIME RESTRICTED

4150 Functional Specification
Page 92

16.2 DP One Way Communication

DP Two Way Communication

This mode of operation takes place when SYSCLR- is asserted. In this case, the DP drives all

four control lines. The CPU decodes three of these lines and uses the fourth as a clock

signal. Table 16-1 shows the encodings.

TABLE 16-1. DP Interface One-Way Communication Commands

Operation CPUACK+A DPFULL+A CPUREQ+A DPREQ+
CNT01 CNT02 CNT03 CLOCK

No-op 1 1 1 t
Load RBCYL 0 1 t
Load RBCYH 1 0 0 t
Read CS 0 1 t
Write CS 0 t

The purpose of the three control lines is to set up the data path so the data on

DPDAT{00:07}+A can get clocked into the correct destination when the fourth control line goes

active.

To write control store the following sequence of operations takes place. NOTE: The clock line

is held in the high state when the control lines are changed. Also, the clock line must be

valid when SYSCLR- is asserted so that miscellaneous clocks do not occur.

1. The control lines are set to load RBCY high or low.

2. The data to load RBCY with is put on the data bus.

3. The fourth control line is toggled.

4. The control lines are changed to load the other half of RBCY, and steps 2 and 3
are repeated.

5. RBCY contains the address of the current control store location that is going to be
written. The control lines can now be set to Write CS.

6. The clock line is toggled. This step starts off the write pulse timing chain and
does not need to have correct data on the DP bus.

7. The correct data for the first 8 bits of the 80 bit microcode word are be placed
on the bus and the clock line toggled.

8. Repeat step 7 for the second 8 bits. Continue until all 80 bits are written.

9. At this point one microcode word has been written and it is time to change the
RBCY address. Repeat steps 1-8 until the entire control store has been written.

Note that the entire 80 bit microcode word must be written each time. There is no support

for writing selective fields in the microcode.

PRIME RESTRICTED

Diagnostic Processor Interface Detailed Description 4150 Fun'ct. · Spec:
Page 93

The loading of RBCY and the writing of the control store is illustrated in Figures 16-5 and

16-6.

It is important to understand that when the control lines are changing the data paths are also

changing. This means the CPU could be driving the DP bus at the same time the DP is

driving the bus. Therefore, when the DP changes the control lines the DP should not be

driving the DP bus.

Reading control store is very similar to writing it. After loading RBCY, the control lines in

step 5 are set to Read CS. The CPU is now driving the DP bus with the first 8 bits of the

current control store location. When the fourth control line is toggled (in step 7) the second

8 bits of the control store are presented to the DP. This operation continues until the last 8

bits of the 80 bit microcode word are sent back to the DP. Now RBCY can be loaded with

the next microcode word address and the above process repeated.

16.2.1 PDA Acting as the DP

The above operations are done exactly the same way for the PDA to load ~nd verify the

control store. The only difference is that the PDA asserts GDPOFF+, which causes the DP to

get off the DP bus so that the PDA can drive it. The CPU does not have any knowledge of

who it is getting the data from, so the PDA and DP must perform the operations the same

way. Also, note that the PDA only needs this interface to read and write control store. Once

the CPU is running the PDA does not need the diagnostic processor interface.

The above control signals are all TTL open collector lines. The DP bus itself is a tristate

bus.

16.3 VLSI Usage

There are no VLSI chips used in the DP interface.

16.4 Timing Diagrams

PRIME RESTRICfED

4150 Functional Specification · ·
Page.94

,. Timing Diagrams . · · · .:, , . ,

FIG. 16-3. Read Data from DP to CPU

TMCLK+ -1 1-1 1-1 1-1 1-1 1-1 1-1 1-1
CS7+ -1 I I I

MP READ- I

CPUACK+A -1
MPDATENB-

MPTOCP-

DATA ON DPDAT xx xxxxxxxxxxxxxxxx

DATA ON BDL xxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx

FIG. 16-4. Write Data from CPU to DP

TMCLK+ -1 1-1 1-1 1-1 1-1 1-1 1-1 1-1
CS8+ -1 I I

MPWRITE- I

CPUREQ+A -1
DPFULL+A -1 L

CLOCK DATA IN DP t

MPDATENB-

CPTOMP-

DATA ON BDH xxxxxxxx xxxxxxxxxxxxxxxx

DATA ON DPDAT xxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx

PRIME RESTRICTED

Diagnostic Processor Interface Detailed Description 41SO Funct. Spec.
Page 9S

FIG. 16-5. Load RBCYH & RBCYL

SYSCLR-

SELBDH-

CPUACK+A

DPFULL+A

CPUREQ+A

DPREQ+ 1-1 ,_,
BDH+A/FDA xx xx xxx xx

PRIME RESTRICTED

41SO Functional Specification Timing DiagraJb.s·n•:L s~, ·,.
Page 96

CSCLK+

RAMWE1-

DATENB1-

RAMWE2-

DATENB2-

RAMWE3-

DATENB3-

RAMWE4-

DATENB4-

RAMWE5-

DATENB5-

RAMWE6-

DATENB6-

RAMWE7-

DATENB7-

RAMWEB-

DATENBB-

RAMWE9-

DATENB9-

RAMWE10-

DATENB10-

FIG. 16-6. Write Control Store

, ,, ,_, ,_, ,_, ,_, ,_, ,_, ,_, ,_, ,_,
,_,
,_,
,_,
,_,
,_,
,_,
,_,

, __ ,
,_,

, __ ,
,_,
,_,
,_,
,_,
,_,
,_,
,_,
,_,
,_,
,_,

16.S 91SS Comparisons

The DP interface is implemented as a parallel bus in the 4150 as opposed to the serial bus of

· the 9755. All control logic is, therefore, completely different.

The 9755 DP is a Weasel board, while the 4150 uses a Mink board.

PRIME RESTRICTED

Diagnostic Processor Interface Detailed Description

16.6 Critical Paths

4150 Funct.' Spec.·
Page 97

There are no critical paths in the DP interface. This rather unusual claim can be made

because the entire interface is under microcode control during two way communieation,

allowing timing to be fixed with TXs and/or microcode control during two way

communication and each step has TXs and/or NXs. During one way communication, SYSCLR­

is active, and the timing is based on information received from the DP, which is under a Z80

microprocessor control. The Z80's timing is much slower than the 4150's.

16.7 Partitioning

The DP interface logic resides entirely on the CMI board, which is discussed in chapter 30.

PRIME RESTRICTED

4150 Functional Specification
Page 98

PRIME RESTRICTED

System Initialization Detailed ·Description 4150 Funct. Spec.
Page 99

1 7. System Initialization Detailed Description

17.1 SYSVERIFY

The purpose of Sysverify is to guarantee the integrity of the ·system at coldstart prior to

booting. In the event some failure is detected, the Sysverify package allows intervention

through the Diagnostic Processor (DP) in order to more easily determine what hardware failure

has occurred.

The Sysverify diagnostics are configured into six overlays. Normal execution sequences through

all the overlays with no intervention. At power on, the DP loads in and starts SYSVl

executing. When this has completed, the overlay sends the DP a 45 hex to inform it that

the overlay has completed. The DP acknowledges and then loads and begins execution of the

next Sysverify overlay.

Completion of the final overlay will cause the DP to load functional microcode and the

decode net, and then begin the Boot procedure.

17.1.1 Sysverify Overlays

The SYSVl overlay is mainly responsible for testing the register file, the Pipeline Control

Unit (PCU), Register Event Counter (REC) and Register Program counter Low (RPL), register

file addressing and address traps. Most of the Execution (E) unit ALU modes and many of

the E unit Jump Conditions (JCs) are verified on a slice by slice basis. The following is an

index of the tests contained in SYSVl.

•
• INDEX OF TESTS IN SYSV1
•
•
• TEST0114 - TEST OF RDL, ALL, AND 80 SWAP MODE
• TEST0115 - TEST OF ROE, ALE, AND 80 SWAP MODE.
• TEST0116 - TEST OF RSL
• TEST0117 - TEST OF RSE, ALE
• TEST0118 - TEST OF RFL.
• TEST0119 - TEST OF RFE.
• TEST011A - NORSALU9 CLOCK
• TEST0118 - RSUM(IBB) - HIGH SIDE
• TEST011C - RSUM(IBB) - LOW SIDE
• TEST011D - RSUM(IBB) - EXTENDED SIDE
• TEST011E - NORSCLK (SDI PATH)
• TEST011F - TEST OF ROH LEFT SHIFT LOW BIT= 0
• TEST0120 - TEST OF ROH LEFT SHIFT LOW BIT = 1
• TEST0121 - ROE LOADED FROM ALU WITH LEFT SHIFT
• TEST0122 - RDL.LOADED FROM ALU WITH LEFT SHIFT
• TEST0123 - TEST OF RDL LEFT SHIFT LOW BIT = 0
• TEST0124 - TEST OF RDL LEFT SHIFT LOW BIT = 1
• TEST0125 - TEST OF RDE LEFT SHIFT LOW BIT = 0
• TEST0126 - TEST_TNUM
• TEST0129 - TESTS THAT THE U_TIMER CAN BE LOADED WITH A ZERO
• TEST012A - TESTS THAT THE U_TIMER CAN BE LOADED WITH ALL ONES

PRIME RESTRICTED

4150 Functional Specification
Page 100

• TEST012B - TESTS THE U_TIMER WITH WALKING ONES
• TEST012C - TEST OF TX OF 1
• TEST012D - TEST OF TX OF 2
• TEST012E - TEST OF TX OF 3
• TEST012F - TEST OF TX OF 4
• TEST0130 - TEST OF NX OF 2
• TEST0131 - TEST OF NX OF 4
• TEST0132 - TEST OF TX 0 NX 0
• TEST0133 - TEST OF TX = 1 , AND NX = 2
• TEST0134 - TEST OF TX= 1, AND NX = 4
• TEST0135 - TEST OF TX= 1, AND NX = 6
• TEST0136 - TEST OF TX = 2, NX = 2
• TEST0137 - TEST OF TX = 2, NX = 4
• TEST0138 - TEST OF TX = 5, NX = 2
• TEST0139 - TEST OF TX = 3, NX = 2
• TEST013A - TEST_TNUM
• TEST0150 - TEST OF REC.
• TEST0151 - TEST EMIT TO REC
• TEST0152 - TEST EMIT ZERO TO REC
• TEST0153 - TEST EMIT $5555 TO REC
• TEST0154 - TEST EMIT $AAAA TO REC
• TEST0155 - TEST FOR REC INCREMENT
• TEST0156 - TEST REC DECREMENT
• TEST0157 - TEST JUMP ON FRECC13 TRUE
• TEST0158 - FRECC13 NOT
• TEST0159 - FRECOUT TRUE
• TEST015A - FRECOUT NOT
• TEST015B - FNRECOUT FALSE
• TEST015C - FNRECOUT TRUE
• TEST015D - REC INC/DEC COMBINATIONS
• TEST015E - REC06 TRUE
• TEST015F - REC06 FALSE
• TEST0160 - NREC13 FALSE
• TEST0161 - NREC13 TRUE
• TEST0162 - TEST_TNUM
• TEST0163 - LOAD RPL
• TEST0164 - INCREMENT RPL BY 1
• TEST0165 - INCREMENT RPL BY 2
• TEST0166 - TEST OF REC INC BY '200
• TEST0167 - TEST OF REC DEC BY '200
• TEST0168 - TEST OF FRECOV = 1, INC BY
• TEST0169 - TEST OF FRECOV = 1, DEC BY
• TEST016A - TEST OF FRECOV = 1, INC BY '200
• TEST016B - TEST OF FRECOV = 1, DEC BY '200
• TEST016C - TEST OF FRECOV = 0, INC
• TEST016D - TEST OF FRECOV = 0, DEC
• TEST016E - TEST OF FRECOV = 0, INC BY '200
• TEST016F - TEST OF FRECOV = 0, DEC BY '200
• TEST0170 - TEST OF RBRP1 AND RBRP2 = 0
• TEST0171 - TEST OF RBRP1 AND RBRP2 = 01
• TEST0172 - TEST OF RBRP1 AND RBRP2 = 10, INCRPBY1,INCRPBY1
• TEST0173 - TEST OF RBRP1 AND RBRP2 = 10, INCRPBY1,INCRPBY1
• TEST0174 - TEST OF RBRP1 AND RBRP2 = 11, INCRPBY1 3 TIMES
• TEST0175 - TEST OF RBRP1 AND RBRP2 = 11, INCRPBY1,INCRPBY1, INCRPBY1
• TEST0176 - TEST OF RBRP1 AND RBRP2 = 11, INCRPBY1, INRPBY2
• TEST0177 - TEST OF OLDRPBU1 AND OLDRPBU2 = 0
• TEST0178 - TEST OF OLDRPBU1 = 1
• TEST0179 - TEST OF OLDRPBU2 = 1
• TEST017A - TEST_TNUM
• TEST0180 - WALK ONES THROUGH RFH
• TEST0181 - WALK ONES THROUGH RFL

PRIME RESTRICTED

SYSVERIFY

System Initialization Detailed Description 4150 Funct. Spec.
Page 101

• TEST0182 - WALK ONES THROUGH RFE
• TEST0183 - WALK ZEROES THROUGH RFH
• TEST0184 - WALK ZEROES THROUGH RFL
• TEST0185 - WALK ZEROES THROUGH RFE
• TEST0186 - WALKING ONES THROUGH THE ADDRESS (RFH}
• TEST0187 - WALKING ONES THROUGH THE ADDRESS (RFL)
• TEST0188 - WALKING ONES THROUGH THE ADDRESS (RFE}
• TEST0189 - WALKING ZEROES THROUGH THE ADDRESS (RFH)
• TEST018A - WALKING ZEROES THROUGH THE ADDRESS (RFL)
• TEST018B - WALKING ZEROES THROUGH THE ADDRESS (RFE)
• TEST018C - WRITE RECOVERY (RFH)
• TEST018D - WRITE RECOVERY (RFL)
• TEST018E - WRITE RECOVERY (RFE)
• TEST018F - READ ACCESS (RFH)
• TEST0190 - READ ACCESS (RFL)
• TEST0191 - READ ACCESS (RFE)
• TEST0192 - CONTENTS EQUALS ADDRESS (RFH)
• TEST0193 - CONTENTS EQUALS ADDRESS (RFL)
• TEST0194 - CONTENTS EQUALS ADDRESS (RFE)
• TEST0195 - RFH BYPASS
• TEST0196 - RFL BYPASS
• TEST0197 - RFE BYPASS
• TEST0198 - .INVOKE A BYPASS DECISION WHICH DOES NOT BYPASS (RFL)
• TEST0199 - TEST_TNUM
• TEST01A0 - TR0 - LOGICAL TO PHYSICAL MAPPING
• TEST01A1 - TR1 - LOGICAL TO PHYSICAL MAPPING
• TEST01A2 - TR2 - LOGICAL TO PHYSICAL MAPPING
• TEST01A3 - TR3 - LOGICAL TO PHYSICAL MAPPING
• TEST01A4 - TR4 - LOGICAL TO PHYSICAL MAPPING
• TEST01A5 - TRS - LOGICAL TO PHYSICAL MAPPING
• TEST01A6 - TR6 - LOGICAL TO PHYSICAL MAPPING
• TEST01A7 - TR7 - LOGICAL TO PHYSICAL MAPPING
• TEST01A8 - TRS - LOGICAL TO PHYSICAL. MAPPING
• TEST01A9 - TR9 - LOGICAL TO PHYSICAL MAPPING
• TEST01AA - TR10 - LOGICAL TO PHYSICAL MAPPING
• TEST01AB - TR11 - LOGICAL TO PHYSICAL MAPPING
• TEST01AC - REOIV - LOGICAL TO PHYSICAL MAPPING
• TEST01AD - RDSAVE - LOGICAL TO PHYSICAL MAPPING
• TEST01AE - CFF00 - LOGICAL TO PHYSICAL MAPPING
• TEST01AF - RATMP - LOGICAL TO PHYSICAL MAPPING
• TEST01B0 - RMASAVE - LOGICAL TO PHYSICAL MAPPING
• TEST01B1 - PARREG0 - LOGICAL TO PHYSICAL MAPPING
• TEST01B2 - PARREG1 - LOGICAL TO PHYSICAL MAPPING
• TEST01B3 - PARREG2 - LOGICAL TO PHYSICAL MAPPING
• TEST01B4 - PARREG3 - L~ICAL TO PHYSICAL MAPPING
• TEST0185 - PBSAVE - LOGICAL TO PHYSICAL MAPPING
• TEST01B6 - SYSREG1 - LOGICAL TO PHYSICAL MAPPING
• TEST01B7 - DSWPARITY - LOGICAL TO PHYSICAL.MAPPING
• TEST01B8 - PSWPB - LOGICAL TO PHYSICAL MAPPING
• TEST01B9 - PSWKEYS - LOGICAL TO PHYSICAL MAPPING
• TEST01BA - PLA - LOGICAL TO PHYSICAL MAPPING
• TEST01BB - PLB - LOGICAL TO PHYSICAL MAPPING
• TEST01BC - DSWRMA - LOGICAL TO PHYSICAL MAPPING
• TEST01BD - DSWSTAT - LOGICAL TO PHYSICAL MAPPING
• TEST01BE - DSWPB - LOGICAL TO PHYSICAL MAPPING
• TEST01BF - RSAVPTR - LOGICAL TO PHYSICAL MAPPING
• TEST01C0 - FERRET1 - LOGICAL TO PHYSICAL MAPPING
• TEST01C1 - DSWITCH - LOGICAL TO PHYSICAL MAPPING
• TEST01C2 - TODBUF - LOGICAL TO PHYSICAL MAPPING
• TEST01C3 - LIGHTS - LOGICAL TO PHYSICAL MAPPING
• TEST01C4 - ACK1 - LOGICAL TO PHYSICAL MAPPING

PRIME RESTRICTED

4150 l'actional Specification:'•' I l; ..• •·' • , SYS VERIFY
Page E

• 115RttC5 - INTVEC - LOGICAL TO PHYSICAL MAPPING
• Tl!illl1C6 - ACK2 - LOGICAL TO PHYSICAL MAPPING
• T1518tC7 - C6666 - LOGICAL TO PHYSICAL MAPPING
• lt5181C8 - PICSTAT - LOGICAL TO PHYSICAL MAPPING
• Tl591C9 - C0080 - LOGICAL TO PHYSICAL MAPPING
• TBl91CA - CB0B0 - LOGICAL TO PHYSICAL MAPPING
• T!!IR1CB - C8000 - LOGICAL TO PHYSICAL MAPPING
• 115Rt1CC - C3F - LOGICAL TO PHYSICAL MAPPING
• T15181CD - !UART - LOGICAL TO PHYSICAL MAPPING
• Tf5181CE - ONE - LOGICAL TO PHYSICAL MAPPING
• TE!!illt1CF - MINUS1 - LOGICAL TO PHYSICAL MAPPING
• TE5191D0 - DGR17 - LOGICAL TO PHYSICAL MAPPING
• T151t1D1 - DGR16 - LOGICAL TO PHYSICAL MAPPING
• 11519102 - DGR15 - LOGICAL TO PHYSICAL MAPPING
• TBil9fD3 - DGR14 - LOGICAL TO PHYSICAL MAPPING
• TE!!lla1D4 - DGR13 - LOGICAL TO PHYSICAL MAPPING
• Telil91D5 - DGR12 - LOGICAL TO PHYSICAL MAPPING
• TBil8106 - DGR11 - LOGICAL TO PHYSICAL MAPPING
• 11519107 - DGR10 - LOGICAL TO PHYSICAL MAPPING
• TBiillt108 - DGR7 - LOGICAL TO PHYSICAL MAPPING
• Tl!lla1D9 - DGR6 - LOGICAL TO PHYSICAL MAPPING
• 11518tDA - DGR5 - LOGICAL TO PHYSICAL MAPPING
• Tf5181DB - DGR4 - LOGICAL TO PHYSICAL MAPPING
• TE5181DC - DGR3 - LOGICAL TO PHYSICAL MAPPING
• TE51a1DD - DGR2 - LOGICAL TO PHYSICAL MAPPING
• TE5191DE - DGR1 - LOGICAL TO PHYSICAL MAPPING
• TE5181DF - DGR0 - LOGICAL TO PHYSICAL MAPPING
• TE5At1E0 - CURRENT REGISTER SET MODALS (CRS = 0)
• T£5181E1 - CURRENT REGISTER SET MODALS (CRS = 1)
• Tl5i81E2 - CURRENT REGISTER SET MODALS (CRS = 2)
• Teil81E3 - CURRENT REGISTER SET MODALS (CRS = 3)
• TE5181E4 - RF32 READ & WRITE
• TE5J8tE5 - RF48 READ & WRITE {CHECKING LOW SIDE)
• TE518tE6 - RF48 READ & WRITE (CHECKING EXTENDED SIDE)
• TE5181E7 - TEST_TNUM
• TE5181F0 - GR0 - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• TE5181F1 - GR1 - LOGICAL TO PHYSICAL MAPPING {CRS = 0)
• TBillt1F2 - GR2 - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• TE5191F3 - GR3 - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• Tf5191F4 - GR4 - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• TE5191F5 - GR5 - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• TE5191F6 - GR6 - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• T£Sre1F7 - GR7 - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• TI511S1F8 - FAR0 - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• T15191F9 - FLR0 - LOGICAL TO PHYSICAL MAPPING (CRS • 0)
• ll5181FA - FAR1 - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• T15181FB - FLR1 - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• Tl5191FC - PB - LOGICAL TO PHYSICAL MAPPING (CRS • 0)
• TE5191FD - SB - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• 115J81FE - LB - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• TE5181FF - XB - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• TE518280 - DTAR3 - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• TE5Jll281 - DTAR2 - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• ~02 - DTAR1 - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• TE519203 - DTAR0 - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• TE518204 - KEYS - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• 11518285 ~ OWNER - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• 11511l206 - FCODE - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• TE5111287 - FADDR - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• TE518208 - RTIMER - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• Tf519209 - CR31 - LOGICAL TO PHYSICAL MAPPING (CRS = 0)

PRIME RESTRICTED

System Initialization Detailed Description 4150 Funct. Spec.
Page 103

• TEST020A - CR32 - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• TEST020B - CR33 - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• TEST020C - TPB - LOGICAL TO PHYSICAL MAPPING (CRS = 0)
• TEST0200 - TSB - LOGICAL TO PHYSICAL MAPPING (CRS • 0)
• TEST020E - TLB - LOGICAL TO PHYSICAL MAPPING {CRS • 0)
• TEST020F - XEQPB - LOGICAL TO PHYSICAL MAPPING (CRS • 0)
• TEST0210 - GR0 - LOGICAL TO PHYSICAL MAPPING (CRS • 1)
• TEST0211 - GR1 - LOGICAL TO PHYSICAL MAPPING {CRS = 1)
• TEST0212 - GR2 - LOGICAL TO PHYSICAL MAPPING {CRS • 1)
• TEST0213 - GR3 - LOGICAL TO PHYSICAL MAPPING (CRS • 1)
• TEST0214 - GR4 - LOGICAL TO PHYSICAL MAPPING (CRS • 1)
• TEST0215 - GR5 - LOGICAL TO PHYSICAL MAPPING (CRS • 1)
• TEST0216 - GR6 - LOGICAL TO PHYSICAL MAPPING (CRS • 1)
• TEST0217 - GR7 - LOGICAL TO PHYSICAL MAPPING {CRS • 1)
• TEST0218 - FAR0 - LOGICAL TO PHYSICAL MAPPING (CRS = 1)
• TEST0219 - FLR0 - LOGICAL TO PHYSICAL MAPPING (CRS • 1)
• TEST021A - FAR1 - LOGICAL TO PHYSICAL MAPPING (CRS = 1)
• TEST021B - FLR1 - LOGICAL TO PHYSICAL MAPPING (CRS = 1)
• TEST021C - PB - LOGICAL TO PHYSICAL MAPPING {CRS = 1)
• TEST0210 - SB - LOGICAL TO PHYSICAL MAPPING {CRS • 1)
• TEST021E - LB - LOGICAL -TO-PHYSICAL'·MAPPING {CRS • 1)
• TEST021F - XB - LOGICAL TO PHYSICAL MAPPING (CRS = 1)
• TEST0220 - DTAR3 - LOGICAL TO PHYSICAL MAPPING (CRS = 1)
• TEST0221 - DTAR2 - LOGICAL TO PHYSICAL MAPPING (CRS = 1)
• TEST0222 - DTAR1 - LOGICAL TO PHYSICAL MAPPING (CRS = 1)
• TEST0223 - DTAR0 - LOGICAL TO PHYSICAL MAPPING {CRS = 1)
• TEST0224 - KEYS - LOGICAL TO PHYSICAL MAPPING (CRS = 1)
• TEST0225 - OWNER - LOGICAL TO PHYSICAL MAPPING (CRS = 1)
• TEST0226 - FCODE - LOGICAL TO PHYSICAL MAPPING (CRS = 1)
• TEST0227 - FADDR --LOGICAL TO PHYSICAL MAPPING (CRS = 1)
• TEST0228 - RTIMER - LOGICAL TO PHYSICAL MAPPING (CRS = 1)
• TEST0229 - CR31 - LOGICAL TO PHYSICAL MAPPING (CRS = 1)
• TEST022A - CR32 - LOGICAL TO PHYSICAL MAPPING (CRS = 1)
• TEST022B - CR33 - LOGICAL TO PHYSICAL MAPPING (CRS = 1)
• TEST022C - TPB - LOGICAL TO PHYSICAL MAPPING (CRS = 1)
• TEST0220 - TSB - LOGICAL TO PHYSICAL MAPPING (CRS = 1)
• TEST022E - TLB - LOGICAL TO PHYSICAL MAPPING (CRS = 1)
• TEST022F - XEQPB - LOGICAL TO PHYSICAL MAPPING (CRS = 1)
• TEST0230 - GR0 - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST0231 - GR1 - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST0232 - GR2 - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST0233 - GR3 - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST0234 - GR4 - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST0235 - GR5 - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST0236 - GR6 - LOGICAL TO PHYSICAL MAPPING (CRS • 2)
• TEST0237 - GR7 - LOGICAL TO PHYSICAL MAPPING (CRS • 2)
• TEST0238 - FAR0 - LOGICAL TO PHYSICAL MAPPING (CRS • 2)
• TEST0239 - FLR0 - LOGICAL TO PHYSICAL MAPPING (CRS • 2)
• TEST023A·- FAR1 - LOGICAL TO PHYSICAL MAPPING (CRS • 2)
• TEST023B - FLRf - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST023C - PB - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST0230 - SB - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST023E - LB - LOGICAL TO PHYSICAL MAPPING (CRS • 2)
• TEST023F - XB - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST0240 - DTAR3 - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST0241 - DTAR2 - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST0242 - DTAR1 - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST0243 - DTAR0 - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST0244 - KEYS - LOGICAL TO PHYSICAL.MAPPING (CRS = 2)
• TEST0245 - OWNER - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST0246 - FCODE - LOGICAL TO PHYSICAL MAPPING (CRS = 2)

PRIME RESTRICTED

4150 Funbtional Specification ' · · · · 1

Page 104

• TEST0247 - FADDR - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST0248 - RTIMER - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST0249 - CR31 - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST024A - CR32 - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST024B - CR33 - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST024C - TPB - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST0240 - TSB - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST024E - TLB - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST024F - XEQPB - LOGICAL TO PHYSICAL MAPPING (CRS = 2)
• TEST0250 - GR0 - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0251 - GR1 - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0252 - GR2 - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0253 - GR3 - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0254 - GR4 - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0255 - GR5 - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0256 - GR6 - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0257 - GR7 - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0258 - FAR0 - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0259 - FLR0 - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST025A - FAR1 - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0258 - FLR1 - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST025C - PB - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0250 - SB - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST025E - LB - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST025F - XS - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0260 - DTAR3 - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0261 - DTAR2 - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0262 - DTAR1 - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0263 - DTAR0 - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0264 - KEYS - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0265 - OWNER - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0266 - FCODE - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0267 - FADDR - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0268 - RTIMER - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0269 - CR31 - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST026A - CR32 - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST026B - CR33 - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST026C - TPB - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0260 - TSB - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST026E - TLB - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST026F - XEQPB - LOGICAL TO PHYSICAL MAPPING (CRS = 3)
• TEST0270 - TEST_TNUM
• TEST0276 - TEST OF ADDRESS TRAP, X REGISTER
• TEST0277 - TEST OF ADDRESS TRAP, GR2H REGISTER
• TEST0278 - TEST OF ADDRESS TRAP, GR2L
• TEST0279 - TEST OF ADDRESS TRAP, Y REGISTER
• TEST027A - TEST OF ADDRESS TRAP, FAR1H REGISTER
• TEST0278 - TEST OF ADDRESS TRAP, FAR1L REGISTER
• TEST027C - TEST OF ADDRESS TRAP, FLR1L REGISTER
• TEST0270 - TEST_TNUM
• TEST027E - TEST OF ADDRESS TRAP, DTAR3H REGISTER
• TEST027F - TEST OF ADDRESS TRAP, FCODEH REGISTER
• TEST0280 - TEST OF ADDRESS TRAP, FADDRL REGISTER
• TEST0281 - TEST OF ADDRESS TRAP, FAR0H REGISTER
• TEST0282 - TEST OF ADDRESS TRAP, SSH REGISTER
• TEST0283 - TEST OF ADDRESS TRAP, SSL REGISTER
• TEST0284 - TEST OF ADDRESS TRAP, LBH'REGISTER
• TEST0285 - TEST OF ADDRESS TRAP, LBL REGISTER
• TEST0286 - TEST OF ADDRESS TRAP, OMX ADDR '60 HIGH
• TEST0287 - TEST OF ADDRESS TRAP, OMX ADDR '60 LOW
• TEST0288 - TEST_TNUM

PRIME RESTRICTED

SYS VERIFY

System Initialization Detailed Description

• TEST028A - TEST OF ADDRESS TRAP, OMX ADDR '62 HIGH
• TEST028B - TEST OF ADDRESS TRAP, OMX AOOR '62 LOW
• TEST028C - TEST OF ADDRESS TRAP, OMX ADOR '64 HIGH
• TEST0280 - TEST OF ADDRESS TRAP, OMX ADDR '64 LOW
• TEST028E - TEST OF ADDRESS TRAP~ OMX ADOR '66 HIGH
• TEST028F - TEST OF ADDRESS TRAP, OMX ADDR '66 LOW
• TEST0290 - TEST OF ADDRESS TRAP, OMX ADDR '70 HIGH
• TEST0291 - TEST OF ADDRESS TRAP, OMX ADDR '70 LOW
• TEST0292 - TEST OF ADDRESS TRAP, OMX ADDR '72 HIGH
• TEST0293 - TEST OF ADDRESS TRAP, OMX ADDR '72 LOW
• TEST0294 - TEST OF ADDRESS TRAP, OMX ADDR '74 HIGH
• TEST0295 - TEST OF ADDRESS TRAP, OMX ADDR '74 LOW
• TEST0296 - TEST OF ADDRESS TRAP, OMX ADDR '76 HIGH
• TEST0297 - TEST OF ADDRESS TRAP, OMX ADDR '76 LOW
• TEST0298 ~ TEST_TNUM
• TEST02A0 - TEST OF RF SOURCE vs • RF DEST FIELDS RFS =
• .TEST02A 1 - TEST OF RF SOURCE vs . RF DEST FIELDS RFS =
• TEST02A2 - TEST_TNUM
• TEST0300 - JUMP ON FALHEQ TRUE
• TEST0301 - JUMP ON FALHEQ FALSE
• TEST0302 - JUMP ON FALHNE TRUE
• TEST0303 - JUMP ON FALHNE FALSE
• TEST0304 - JUMP ON FALLENE TRUE
• TEST0305 - JUMP ON FALLENE FALSE
• TEST0306 - JUMP ON FALLNE TRUE
• TEST0307 - JUMP ON FALLNE FALSE
• TEST0308 - JUMP ON FAL32EQ TRUE
• TEST0309 - JUMP ON FAL32EQ FALSE

* TEST030A - JUMP ON FAL32NE TRUE
• TEST030B - JUMP ON FAL32NE FALSE
• TEST030C - JUMP ON FAL48EQ TRUE
• TEST030D - JUMP ON FAL48EQ FALSE
• TEST030E - TEST_TNUM
• TEST0310 - TA (HIGH SIDE)
• TEST0311 - TA (LOW SIDE)
• TEST0312 - TA (EXTENDED SIDE)
* TEST0313 - TB (HIGH SIDE)
• TEST0314 - TB (LOW SIDE)
• TEST0315 - TB (EXTENDED SIDE)
• TEST0316 - AND (HIGH SIDE)
• TEST0317 - ANO (LOW SIDE)
• TEST0318 - AND (EXTENDED SIDE)
• TEST0319 - OR (HIGH SIDE)
• TEST031A - OR (LOW SIDE)
• TEST031B - OR (EXTENDED SIDE)
• TEST031C - XOR (HIGH SIDE)
• TEST0310 - XOR (LOW SIDE)
• TEST031E - XOR (EXTENDED SIDE)
• TEST031F - NOTA (HIGH SIDE)
• TEST0320 - NOTA (LOW SIDE)
• TEST0321 - NOTA (EXTENDED SIDE)
• TEST0322 - NOTB (HIGH SIDE)
• TEST0323 - NOTS (LOW SIDE)
• TEST0324 - NOTB (EXTENDED SIDE)
• TEST0325 - ZEROES (HIGH SIDE)
• TEST0326 - ZEROES (LOW SIDE)
• TEST0327 - ZEROES (EXTENDED SIDE)
• TEST0328 - MINUS1 (HIGH SIDE)
• TEST0329 - MINUS1 (LOW SIDE)
• TEST032A - MINUS1 (EXTENDED SIDE)
• TEST032B - A.AND./B (HIGH SIDE)

PRIME RESTRICTED

'013
'164

4150 Funct. Spec..'.' •. ·
Page 105

4150 Functional Specification SYSVERIFY •'. j,

Page 106

• TEST032C - A.AND./B (LOW SIDE)
• TEST032D - A.AND./B (EXTENDED SIDE)
• TEST032E - /A.AND.B (HIGH SIDE)
• TEST032F - /A.AND.B (LOW SIDE)
• TEST8330 - /A.AND.B (EXTENDED SIDE)
• TEST8331 - TEST ALE (LOW SLICE) PROPAGATE TRUE
• TEST0332 - TEST ALE (LOW SLICE) PROPAGATE FALSE
• TEST0333 - TEST ALE (LOW SLICE) GENERATE TRUE
• TEST8334 - TEST ALE (LOW SLICE) GENERATE FALSE
• TEST0335 - TEST ALL (LOW SLICE) PROPAGATE TRUE
• TEST8336 - TEST ALL (LOW SLICE) PROPAGATE FALSE
• TEST0337 - TEST ALL (LOW SLICE) GENERATE TRUE
• TEST8338 - TEST ALL (LOW SLICE) GENERATE FALSE
• TEST0339 - TEST ALH (LOW SLICE) PROPAGATE TRUE
• TEST033A - TEST ALH (LOW SLICE) PROPAGATE FALSE
• TEST033B - TEST ALH (LOW SLICE) GENERATE TRUE
• TEST033C - TEST ALH (LOW SLICE) GENERATE FALSE
• TEST033D - TEST ALE (HIGH SLICE) PROPAGATE TRUE
• TEST033E - TEST ALE (HIGH SLICE) PROPAGATE FALSE
• TEST033F - TEST ALE (HIGH SLICE) GENERATE TRUE
• TEST0340 - TEST ALE (HIGH SLICE) GENERATE FALSE
• TEST0341 - TEST ALL (HIGH SLICE) PROPAGATE TRUE
• TEST0342 - TEST ALL (HIGH SLICE) PROPAGATE FALSE
• TEST0343 - TEST ALL (HIGH SLICE) GENERATE TRUE
• TEST0344 - TEST ALL (HIGH SLICE) GENERATE FALSE
• TEST0345 - TEST ALH (HIGH SLICE) PROPAGATE TRUE
• TEST0346 - TEST ALH (HIGH SLICE) PROPAGATE FALSE
• TEST0347 - TEST ALH (HIGH SLICE) GENERATE TRUE
• TEST0348 - TEST ALH (HIGH SLICE) GENERATE FALSE
• TEST0349 - TEST_TNUM
• TEST0350 - ADD (HIGH SIDE)
• TEST0351 - ADD (LOW SIDE)
• TEST0352 - ADD (EXTENDED SIDE)
• TEST0353 - SUBS (HIGH SIDE)
• TEST0354 - SUBS (LOW SIDE)
• TEST0355 - SUBS (EXTENDED SIDE)
• TEST0356 - SUSA (LOW SIDE ONLY)
• TEST0357 - INCA (HIGH SIDE)
• TEST0358 - INCA (LOW SIDE)
• TEST0359 - INCA (EXTENDED SIDE)
• TEST035A - INCB (HIGH SIDE)
• TEST035B - INCB (LOW SIDE)
• TEST035C - INCB (EXTENDED SIDE)
• TEST0350 - DECA (HIGH SIDE)
• TEST035E - DECA (LOW SIDE)
• TEST035F - DECA (EXTENDED SIDE)
• TEST0360 - TEST_TNUM
• TEST0370 - JUMP ON FALH00 (TA MODE)
• TEST0371 - JUMP ON FALH00 (TB MODE)
• TEST0372 - JUMP ON FALH00 (XOR MODE)
• TEST0373 - JUMP ON FALH00 (INCA MODE)
• TEST0374 - JUMP ON FALH00 (DECA MODE)
• TEST0375 - JUMP ON FALH00 (ADD MODE)
• TEST0376 - JUMP ON FALH00 (SUBB MODE)
• TEST0377 - TEST_TNUM
• TEST0378 - JUMP ON ALHCOUT TRUE
• TEST0379 - JUMP ON ALHCOUT FALSE
• TEST037A - JUMP ON FALHOV TRUE
• TEST037B - JUMP ON FALHOV FALSE
• TEST037C - JUMP ON ALH16 TRUE
• TEST037D - JUMP ON ALH16 FALSE

PRIME RESTRICTED

System Initialization Detailed Description

• TEST037E - JUMP ON ALL16 TRUE
• TEST037F - JUMP ON ALL16 FALSE
• TEST0380 - TEST C=0 TRUE
• TEST0381 - TEST C=ALH01 TRUE
• TEST0382 - TEST C=ALH01 FALSE
• TEST0383 - JUMP ON NCBIT (USING C=ALH01)
• TEST0384 - JUMP ON NCBIT (USING ALH01 FALSE)
• TEST0385 - TEST C=COV TRUE
• TEST0386 - TEST C=COV FALSE
• TEST0387 - TEST C=ALHCOUT TRUE
• TEST0388 - TEST C=ALHCOUT FALSE
• TEST0389 - TEST C=ALHOV TRUE
• TEST038A - TEST C=ALHOV FALSE
• TEST03BB - TEST C=SOVFLAC TRUE (ALH 10)
• TEST03BC - TEST C=SOVFLAC TRUE (ALH 01)
• TEST038D - TEST C=SOVFLAC TRUE (CBIT SET)
• TEST03BE - TEST C=SOVFLAC FALSE (UNNORMALIZED)
• TEST038F - TEST C=SOVFLAC FALSE (CBIT RESET)
• TEST0390 - TEST C=SOVFLAC TRUE (CBIT SET - NORMALIZED)
• TEST0391 - JUMP ON LINK {USING L=0)
• TEST0392 - JUMP ON Nl.:INK (USING 'L=0)
• TEST0393 - TEST C=BDICBIT TRUE
• TEST0394 - TEST C=BDICBIT FALSE
• TEST0395 - TEST C=PLINK TRUE
• TEST0396 - TEST C=PLINK FALSE
• TEST0397 - TEST L=ALH01 TRUE
• TEST0398 - TEST L=ALH01 FALSE
• TEST0399 - TEST L=ALH03 TRUE
• TEST039A - TEST L=ALH03 FALSE
• TEST039B - TEST L=ALHCOUT TRUE
• TEST039C - TEST L=ALHCOUT FALSE
• TEST0390 - TEST L=ALHOV TRUE
• TEST039E - TEST L=ALHOV FALSE
• TEST039F - TEST L=ALLOV TRUE
• TEST03A0 - TEST L=ALLOV FALSE
• TEST03A1 - TEST L= BDICBIT TRUE
• TEST03A2 - TEST L= BDICBIT FALSE
• TEST03A3 - TEST_TNUM
• TEST03B0 - TEST ALL CIN = 0
• TEST03B1 - TEST ALL CIN = 1
• TEST03B2 - TEST ALE CIN • 0
• TEST03B3 - TEST ALE CIN = 1
• TEST03B4 - TEST ALL CIN = COE(0)
• TEST03BS - TEST ALL CIN = COE(1)
• TEST03B6 - TEST ALH CIN = 0 .
• TEST03B7 - TEST ALH CIN = 1
• TEST03BB - TEST ALH CIN = COL(0)
• TEST03B9 - TEST ALH CIN = COL(1)
• TEST03BA - TEST ALH CIN = CBIT(1)
• TEST03BB - TEST ALH CIN = CBIT(0)
• TEST03BC - TEST ALL CIN = ALHCOUT(0)
• TEST03BD - TEST ALL CIN = ALHCOUT(1)
• TEST03BE - TEST_TNUM
• TEST03C0 - TB:ZERO (HIGH SIDE)
• TEST03C1 - TA/TB (HIGH SIDE)
• TEST03C2 - TB/ZERO (HIGH SIDE)
• 'TEST03C3 - TB/TA (HIGH SIDE)
• TEST03C4 - ZERO/TB (HIGH SIDE)
• TEST03CS - ZERO/TA (HIGH SIDE)
• TEST03C6 - TCB:ZERO (HIGH SIDE)
• TEST03C7 - TB:TA (LOW SIDE)

PRIME RESTRICTED

,4150 Funct. Spec~ , .. ·
Page 107

4150 Functional Specification
Page 108

• TEST03C8 - TA:TB (LOW SIDE)
• TEST03C9 - TA:ZERO (LOW SIDE)
• TEST03CA - TB:ZERO (LOW SIDE)
• TEST03CB - ZERO:TB (LOW SIDE)
• TEST03CC - ZERO:TA (LOW SIDE)
• TEST03CD - TCB:ZERO (LOW SIDE)
• TEST03CE - INCA:ADD (LOW SIDE)
• TEST03CF - ADD: INCA (LOW SIDE)
• TEST0300 - DECA:SUBB (LOW SIDE)
• TEST0301 - TB/TA (EXTENDED SIDE)
• TEST0302 - TA/ZERO (EXTENDED SIDE)
• TEST0303 - TA/TB (EXTENDED SIDE)
• TEST0304 - TB:ZERO (EXTENDED SIDE)
• TEST0305 - TCB:ZERO (EXTENDED SIDE)
• TEST0306 - TEST_TNUM
• TEST03E0 - JUMP ON ADL00 TRUE
• TEST03E1 - JUMP ON ADL00 FALSE
• TEST03E2 - JUMP ON ADL01 TRUE
• TEST03E3 - JUMP ON ADL01 FALSE
• TEST03E4 - JUMP ON AM0 TRUE
• TEST03E5 - JUMP ON AM0 FALSE
• TEST03E6 - JUMP ON AM1 TRUE
• TEST03E:' - JUMP ON AM1 FALSE
• TEST03E8 - JUMP ON AM2 TRUE
• TEST03E9 - JUMP ON AM2 FALSE
• TEST03EA - JUMP ON NASCII8 TRUE
• TEST03EB - JUMP ON NASCll8 FALSE
• TEST03EC - JUMP ON CRS1 TRUE
• TEST03ED - JUMP ON CRS1 FALSE
• TEST03EE - JUMP ON CRS2 TRUE
• TEST03EF - JUMP ON CRS2 FALSE
• TEST03F0 - JUMP ON FVIM TRUE
• TEST03F1 - JUMP ON FVIM FALSE
• TEST03F2 - JUMP ON FNRND TRUE
• TEST03F3 - JUMP ON FNRND FALSE
• TEST03F4 - JUMP ON KEYSH11 TRUE
• TEST03F5 - JUMP ON KEYSH11 FALSE
• TEST03F6 - JUMP ON RDE01 TRUE
• TEST03F7 - JUMP ON RDE01 FALSE
• TEST03F8 - JUMP ON RDE05 TRUE
• TEST03F9 - JUMP ON RDE05 FALSE
• TEST03FA - JUMP ON CC48EQ TRUE
• TEST03FB - JUMP ON CC48EQ FALSE
• TEST03FC - JUMP ON CCEQ TRUE (SETCC)
• TEST03FD - JUMP ON CCEQ TRUE (SETCC48)
• TEST03FE - JUMP ON CCEQ FALSE (SETCC)
• TEST03FF - JUMP ON CCEQ FALSE (SETCC48)

SYSVERIFY ·.

The SYSV2 overlay runs through the remaining JCs before thoroughly testing out all the Bus

D Internal (BDI) barrel shifter modes. Additionally, a number of tests are executed to verify

some of the more random E unit functions such as the link bit. The following is an index

of the tests contained in SYSV2 .

•
• INDEX OF TESTS IN SYSV2
•
•
• TEST0400 - JUMP ON CCNE14 TRUE (SETCC)
• TEST0401 - JUMP ON CCNE14 TRUE (SETCC48)
• TEST0402 - JUMP ON CCNE14 FALSE (SETCC)

PRIME RESTRICTED

Spb:m Initialization Detailed Description •,', '4150 Funct. Spec.
Page 109

• 1EST0403 - JUMP ON CCNE14 FALSE {SETCC48)
• TEST0404 - JUMP ON CCL T TRUE
• 1EST0405 - JUMP ON CCL T FALSE
• 1EST0406 - JUMP ON CCGE TRUE
• 1EST0407 - JUMP ON CCGE FALSE
• 1£ST0408 - JUMP ON CCGT TRUE
• lfST0.409 - JUMP ON CCGT FALSE {LESS THAN)
• 1EST040A - JUMP ON CCGT FALSE {EQUAL)
• 1EST040B - JUMP ON CCLE TRUE {LESS THAN)
• 1EST040C - JUMP ON CCLE TRUE {EQUAL)
• 1EST040D - JUMP ON CCLE FALSE
• 1EST040E - CRTN ON CCNE TRUE
• 1£ST040F - CRTN ON CCNE FALSE
• 1£ST0410 - JUMP ON FLEX TRUE
• lfST0411 - JUMP ON FLEX FALSE
• TEST0412 - CRTN ON FLEXRTN TRUE
• TEST0413 - CRTN ON FLEXCRTN FALSE
• lEST0414 - JUMP ON FNIEX TRUE (NO IAC PRESENT)
• TEST0415 - JUMP ON FNIEX TRUE (NO KEYS BIT PRESENT)
• TEST0416 - JUMP ON FNIEX TRUE (NO OVERFLOW PRESENT)
• lt:ST0417 - JUMP ON FNIEX FALSE
• TEST0418 - JUMP ON CCNE15 TRUE (SETCC)
• TEST0419 - JUMP ON CCNE15 FALSE {SETCC)
• TEST041A - TEST_TNUM
• TEST0420 - JUMP ON FALH04 TRUE
• TEST0421 - JUMP ON FALH04 FALSE
• TEST0422 - JUMP ON FALH07 TRUE
• lEST0423 - JUMP ON FALH07 FALSE
• TEST0424 - JUMP ON FALH08 TRUE
• TEST0425 - JUMP ON FALH08 FALSE
• TEST0426 - JUMP ON FALH13 TRUE
• TEST0427 - JUMP ON FALH13 FALSE
• TEST0428 - JUMP ON FALH14 TRUE
• TEST0429 - JUMP ON FALH14 FALSE
• TEST042A - JUMP ON FALH15 TRUE
• TEST042B - JUMP ON FALH15 FALSE
• TEST042C - JUMP ON FALL02 TRUE
• 1£ST042D - JUMP ON FALL02 FALSE
• TEST042E - JUMP ON FBA48EQ TRUE
• 1£ST042F - JUMP ON FBA48EQ FALSE
• 1£ST0430 - JUMP ON FBA48EQ14 TRUE
• TEST0431 - JUMP ON FBA48EQ14 FALSE
• 1£ST0432 - JUMP ON FIBB48EQ TRUE
• 1EST0433 - JUMP ON FIBB48EQ FALSE
• 1£ST0434 - TEST_TNUM
• TEST0436 - JUMP ON FNALH02 TRUE
• 1£ST0437 - JUMP ON FNALH02 FALSE
• 1EST0438 - JUMP ON FNALH05 TRUE
• 1£ST0439 - JUMP ON FNALH05 FALSE
• TEST043A - JUMP ON FALLOV TRUE
• TEST043B - JUMP ON FALLOV FALSE
• TEST043C - JUMP ON FALHLT TRUE
• TEST0430 - JUMP ON FALHLT FALSE
• TEST043E - JUMP ON FALLL T TRUE
• TEST043F - JUMP ON FALLLT FALSE
• TEST0440 - JUMP ON FALHGE TRUE
• TEST0441 - JUMP ON FALHGE FALSE
• TEST0442 - JUMP ON FALHGT TRUE
• TEST0443 - JUMP ON FALHGT FALSE {LESS THAN)
• TEST0444 - JUMP ON FALHGT FALSE {EQUAL)
• TEST0445 - JUMP ON FALHLE TRUE {LESS THAN)

PRIME RESTRICTED

4150 Functional· Spectfication
Page 110

• TEST8446 - JUMP ON FALHLE TRUE (EQUAL)
• TEST0447 - JUMP ON FALHLE FALSE
• TEST0448 - JUMP ON FALL00 FALSE
• TEST8449 - JUMP ON FALL00 TRUE
• TEST844A - TEST_TNUM
• TEST844D - JUMP ON FNALLHBZ TRUE
• TEST044E - JUMP ON FNALLHBZ FALSE
• TEST844F - JUMP ON FAL51NE TRUE
• TEST0450 - JUMP ON FAL51NE FALSE
• TEST0451 - JUMP ON ALUMIN1(CS9) SINGLE PRECISION - TRUE
• TEST0452 - JUMP ON ALUMIN1(CS9) SINGLE PRECISION - FALSE
• TEST0453 - JUMP ON ALUMIN1(CS9) DOUBLE PRECISION - FALSE ADL00
• TEST0454 - JUMP ON ALUMIN1(CS9) DOUBLE PRECISION - TRUE
• TEST0455 - JUMP ON ALUMIN1(CS9) DOUBLE PRECISION - FALSE
• TEST0456 - CRTN ON BITSFEEQ
• TEST0457 - JUMP ON FALLLT14 TRUE
• TEST0458 - JUMP ON FALLLT14 FALSE
• TEST0459 - JUMP ON FALLLE TRUE (LESS THAN)
• TEST045A - JUMP ON FALLLE TRUE (EQUAL)
• TEST0458 - JUMP ON FALLLE FALSE
• TEST045C - JUMP ON FSPLUS FALSE
• T~ST0450 - JUMP ON FSPLUS TRUE
• TEST045E - JUMP ON FSMINUS FALSE
• TEST045F - JUMP ON FSMINUS TRUE
• TEST0460 - JUMP ON ADL02 TRUE
• TEST0461 - JUMP ON ADL02 FALSE
• TEST0462 - JUMP ON FEOI TRUE
• TEST0463 - JUMP ON FEOI FALSE
• TEST0464 - JUMP ON PXM TRUE
• TEST0465 - JUMP ON PXM FALSE
• TEST0466 - JUMP ON FALHNE TRUE
• TEST0467 - JUMP ON FALHNE FALSE
• TEST0468 - JUMP ON JCAP1 TRUE
• TEST0469 - JUMP ON JCAP1 FALSE
• TEST046A - JUMP ON JCAP2 TRUE
• TEST046B - JUMP ON JCAP2 FALSE
• TEST046C - JUMP ON FTRAP_ALH00 TRUE
• TEST046D - JUMP ON FTRAP_ALH00 FALSE
• TEST046E - JUMP ON FTRAP_ALH02 FALSE
• TEST046F - JUMP ON FTRAP_ALH02 TRUE
• TEST0470 - JUMP ON FTRAP_ALHCOUT TRUE
• TEST0471 - JUMP ON FTRAP_ALHCOUT FALSE
• TEST0472 - JUMP ON FTRAP_ALHNE TRUE
• TEST0473 - JUMP ON FTRAP_ALHNE FALSE
• TEST0474 - JUMP ON TRAP_ALL00 TRUE
• TEST0475 - JUMP ON TRAP_ALL00 FALSE
• TEST0476 - JUMP ON ALHEQ TRUE (LIVE TX=2)
• TEST0477 - JUMP ON ALHEQ FALSE (LIVE TX=2)
• TEST0478 - JUMP ON ALHNE TRUE (LIVE TX=2)
• TEST0479 - JUMP ON ALHNE FALSE (LIVE TX=2)
• TEST047A - JUMP ON ALHEQ TRUE (LIVE TX=1)
• TEST0478 - JUMP ON ALHEQ FALSE (LIVE TX=1)
• TEST047C - JUMP ON ALHNE TRUE (LIVE TX=1)
• TEST047D - JUMP ON ALHNE FALSE (LIVE TX=1)
• TEST047E - RESET & READ THE LIVE KEYS
• TEST047F - SET & READ THE LIVE KEYS
• TEST0480 - JUMP ON FFPNZA = 10:B NO BYPASS
• TEST0481 - JUMP ON FFPNZA = 01:B NO BYPASS
• TEST0482 - JUMP ON FFPNZA FALSE NO BYPASS
• TEST0483 - JUMP ON FFPNZA = 10:B (RS BYPASS)
• TEST0484 - JUMP ON FFPNZA = 01:B (RS BYPASS)

PRIME RESTRICTED

SYS VERIFY

S-,stem Initialization Detailed Description 4150 Funct:.' Spec.:
Page 111

• 1EST0485 - JUMP ON FFPNZA FALSE (RS BYPASS)
• 1EST0486 - JUMP ON FFPNZA15 = 10:B NO BYPASS
• 1EST0487 - JUMP ON FFPNZA15 = 01 :B NO BYPASS
• 1EST0488 - JUMP ON FFPNZA15 FALSE NO BYPASS
• 1EST0489 - JUMP ON FFPNZA15 = 10:B (RS BYPASS)
• TEST048A - JUMP ON FFPNZA15 = 01:B (RS BYPASS)
• lEST048B - JUMP ON FFPNZA15 FALSE (RS BYPASS)
• lEST048C - TEST_TNUM
• TEST0490 - JUMP ON FF48POW2 FALSE
• 1EST0491 - JUMP ON FF48POW2 TRUE
• 1EST0492 - JUMP ON FF24NPOW2 TRUE (ie. IT IS NOT A POWER OF 2)
• 1EST0493 - JUMP ON FF24NPOW2 FALSE (ie. IT IS A POWER OF 2)
• TEST0494 - JUMP ON FMIN1 TRUE
• TEST0495 - JUMP ON FMIN1 FALSE
• 1EST0496 - JUMP ON DPUNNORM FALSE
• 1£ST0497 - JUMP ON DPUNNORM TRUE (FAC0 UNNORMALIZED)
• 1EST0498 - JUMP ON DPUNNORM TRUE (FAC0 UNNORMALIZED)
• TEST0499 - JUMP ON DPUNNORM TRUE (FAC1 UNNORMALIZED)
• 1EST049A - JUMP ON DPUNNORM TRUE (FAC1 UNNORMALIZED)
• TEST049B - JUMP ON DPUNNORM TRUE (TR048 UNNORMALIZED)
• 1EST049C - JUMP ON DPUNNORM TRUE (TR048 UNNORMALIZED)
• TEST049D - JUMP ON FNORM1,FNORM2 - UNNORMALIZED RS (00)
• TEST049E - JUMP ON FNORM1,FNORM2 - UNNORMALIZED FAC (00)
• 1EST049F - JUMP ON FNORM1,FNORM2 - A NO SHIFT CASE (01)
• lEST04A0 - JUMP ON FNORM1,FNORM2 - A LEFT SHIFT BY 1 CASE (10)
• TEST04A1 - JUMP ON FNORM1,FNORM2 - AN UNPREDICTABLE CASE (11)
• 1EST04A2 - TEST_TNUM
• 1EST04B0 - JUMP ON GNFCYTR TRUE (ie NO TRAP PENDING)
• TEST04B1 - JUMP ON GNFCYTR FALSE - END-OF-INSTRUCTION CASE
• TEST04B2 - JUMP ON GNFCYTR FALSE - PIC CASE
• TEST04B3 - JUMP ON GNFCYTR FALSE - CP TIMER CASE
• TEST04B4 - TEST_TNUM
• TEST0500 - S$LEFT32 E=0 (HIGH SIDE)
• TEST0501 - S$LEFT32 E=0 (LOW SIDE)
• TEST0502 - S$LEFT48
• TEST0503 - S$LEFT_H E=0
• 1EST0504 - S$LEFT_L E=0
• TEST0505 - TEST_TNUM
• TEST0507 - R$LEFT32 (LOW SIDE)
• TEST0508 - R$LEFT32 (HIGH SIDE)
• 1EST0509 - S$LEFT_H E=0,ALL (HIGH SIDE)
• TEST050A - S$LEFT_H E=0,ALL (LOW SIDE)
• TEST050B - R$LEFT_H,ALL (HIGH SIDE)
• TEST050C - R$LEFT_H,ALL (LOW SIDE)
• 1EST050D - ALH,S$LEFT_L E=0 (LOW SIDE)
• TEST050E - TEST_TNUM
• TEST0510 - S$RIGHT_H E=0 (HIGH SIDE)
• TEST0511 - S$RIGHT32 E=0
• TEST0512 - S$RIGHT32 E=ALH00 (HIGH SIDE)
• lEST0513 - S$RIGHT32 E=ALH00 (LOW SIDE)
• lEST0514 - S$RIGHT32 E=0 (LOW SIDE)
• TEST0515 - S$RIGHT32 E=0 (LOW SIDE)
• TEST0516 - R$RIGHT_H,L (HIGH SIDE)
• TEST0517 - R$RIGHT_H,L (LOW SIDE)
• TEST0518 - R$8LEFT32 (HIGH SIDE)
• TEST0519 - R$LEFT32 (LOW SIDE)
• TEST051A - S$5RIGHT 4B BITS
• TEST051B - S$9RIGHT 48 BITS
• TEST051C - R$8LEFT32 (LOW SIDE)
• lEST051D - TEST_TNUM
• TEST0551 -> TEST0590 => CALL TEST055X - TEST [S$NLEFT_H E= 0) SDI MODE

PRIME RESTRICTED

4150 ·Functional Specification
Page 112

• TEST0591 -> TEST05D0 => CALL TEST059X - TEST
• TEST05D1 -> TEST05DF => CALL TEST05DX - TEST
• SHFTCNT = 1 : 1 5
• TEST05E0 -> TEST060F => CALL TEST05EX - TEST
• SHFTCNT = 16:64
• TEST0610 - TEST_TNUM
• TEST0621 -> TEST063F => CALL TEST062X - TEST
• SHFTCNT = 1 : 31
• TEST0640 -> TEST065F => CALL TEST064X - TEST
• SHFTCNT = 32 : 64
• TEST0660 - TEST_TNUM

[

S$NLEFT32 E= 0] BDI MODE
S$NRIGHT_H] BD MODE

S$NRIGHT_H] BDI MODE

S$NRIGHT32 E= 0] BD MODE

S$NRIGHT32 E= 0 1 BD MODE

• TEST0661 -> TEST06A0 => CALL TEST066X - TEST [R$NLEFT32 ,E] (1:64 ROTATES
• TEST06A1 -> TEST06E0 => CALL TEST06AX - TEST [R$NLEFT_H, L ,E] HIGH SIDE
• TEST 1:64
• TEST06E1 -> TEST06EF => CALL TEST06EX - TEST R$NRIGHT_H,L,E 1 BDI MODE
• SHFTCNT = 01:15
• TEST06F0 -> TEST06FE => CALL TEST06EX - TEST R$NRIGHT_H,L,E BDI MODE
• SHFTCNT = 16:31
• TEST06FF - TEST_TNUM
• TEST0700 -> TEST070E =>CALL TEST06EX - TEST R$NRIGHT_H,L,E] BDI MODE
• SHFTCNT = 32:47
• TEST070F - TEST_TNUM
• TEST0710 -> TEST071E =>CALL TEST06EX - TEST R$NRIGHT_H,L,E] BDI MODE
• SHFTCNT = 48:63
• TEST071f - TEST_TNUM
• TEST0721 -> TEST073F => CALL TEST072X - TEST R$NRIGHT32,E] BO MODE
• SHFTCNT = 1 : 31
• TEST0740 -> TEST075F => CALL TEST074X - TEST R$NRIGHT32,E] SD MODE
• SHFTCNT = 32 : 63
• TEST0760 - TEST_TNUM
• TEST07C1 -> TEST07EF => CALL TEST07CX - TEST ADJUST
• ADJUST = 1 : 47
• TEST07F0 -> TEST07FF => CALL TEST07FX - TEST ADJUST]
• ADJUST = 48 : 64
• TEST0800 - TEST_TNUM
• TEST0811 -> TEST083F =>CALL TEST081X - TEST ADJUST]
• ADJUST = -1 :-47
• TEST0840 -> TEST084E => CALL TEST084X - TEST ADJUST]
• ADJUST =-48 :-64
• TEST084F - TEST_TNUM
• TEST0860 -> TEST086E => CALL-TEST086X - NORMALIZE (ALH)
• TEST086F - TEST_TNUM
• TEST0870 -> TEST087F => CALL TEST087X - NORMALIZE (ALL)
• TEST0880 -> TEST088F => CALL TEST088X - NORMALIZE (ALE)
• TEST0890 - TEST_TNUM
• TEST08A0 -> TEST08AE => CALL TEST08AX - NORMALIZE (ALH)
• TEST08Af - TEST_TNUM
• TEST0880 -> TEST08BF => CALL TEST08BX - NORMALIZE (ALL)
• TEST08C0 -> TEST08CF => CALL TEST08CX - NORMALIZE (ALE)
• TEST0800 - NORMALIZE (ALH)BACK SHIFT CHECK FNCNT= -1
* TEST0801 - NORMALIZE (ALH)BACK SHIFT CHECK FNCNT= 0
• TEST08D2 - NORMALIZE (ALH) ZERO CASE. CHECKS FNCNT= 47
• TEST0803 - NORMALIZE (ALH) $FFFF . CHECKS FNCNT= 0
* TEST0804 - NORMALIZE (ALH) $8000 CASE. CHECKS FNCNT= 0
* TEST0805 - NORMALIZE (ALH) $4000 CASE. CHECKS FNCNT= 0
• TEST0806 - NORMALIZE (ALH)CHECK ALH00=0 FOR BACK SHIFT
• TEST0807 - NORMALIZE (ALH)FIX00 CHECK FNCNT= 47
• TEST08D8 - NORMALIZE (ALH)FIX00 CHECK FNCNT= 47
• TEST0809 - TEST_TNUM

BD MODE POSTIVE

BO MODE POSTIVE

BO MODE NEGITIVE

SD MODE NEGITIVE

CHECK FNCNT= 14

CHECK FNCNT= 30
CHECK FNCNT= 46

CHECK FNCNT= 14

CHECK FNCNT= 30
CHECK FNCNT= 46

DEC

to 0

to 15
to 31

to 0

to 15
to 31

• TEST08E0 -> TEST08EE => CALL TEST08EX - NORMALIZE (ALH) CHECK ROH= $4000,
* FNCNT= 14 to 0

PRIME RESTRICTED

SYSVERIFY

System Initialization ·Detailed Description 4150 Funct. Spec.
Page 113

• TEST08F0 -> TEST08FE => CALL TEST08FX - NORMALIZE (ALL) CHECK RDL • $4000,
• FNCNT• 30 to 15
• TEST0900 -> TEST090E •> CALL TEST090X - NORMALIZE (ALE) CHECK RD • $4000 ,
• FNCNT• 46 to 31
• TEST0910 -> TEST0913 => CALL TEST091X - GUARD1 GUARD2 TEST
• TEST0914 - TEST 16 BIT SHIFT RIGHT OF RS48 FROM ALH TO ALL
• TEST0915 - TEST TO SEE LOWER 8 BITS OF RSE IS COPIED TO EACH 8 BIT SECTION
• TEST0916 - TEST TO SEE LOWER 8 BITS OF RSE IS COPIED TO EACH 8 BIT SECTION
• TEST0917 - TEST TO SEE LOWER 8 BITS OF RSE IS COPIED TO EACH 8 BIT SECTION
• TEST0918 - TEST RIE/LINK LEFT SHIFT MODE (LINK• 1)
• TEST0919 - TEST RIE/LINK LEFT SHIFT MODE (LINK = 0)
• TEST091A - TEST RIE/LINK LEFT SHIFT MODE (LINK • 1 RISCLK)
• TEST091B - TEST RIE/LINK LEFT SHIFT MODE (LINK • 0 RISCLK)
• TEST091C - TEST RIL LEFT SHIFT MODE (SHIFT IN 1)
• TEST091D - TEST RIL LEFT SHIFT MODE (SHIFT IN 0)
• TEST091E - TEST RIL LEFT SHIFT MODE (SHIFT IN 1/RISCLK)
• TEST091F - TEST RIL LEFT SHIFT MODE (SHIFT IN 0/RIBCLK)
• TEST0920 - TEST RIH LEFT SHIFT MODE (SHIFT IN 1)
• TEST0921 - TEST RIH LEFT SHIFT MODE (SHIFT IN 0)
• TEST0922 - TEST RIH LEFT SHIFT MODE (SHIFT IN 1/RI8CLK)
• TEST0923 - TEST RIH LEFT'SHIFT MODE (SHIFT IN 0/RI8CLK)
• TEST0924 - TEST ROE LEFT SHIFT MODE (SHIFT IN 1/RI8CLK)
• TEST0925 - TEST ROE LEFT SHIFT MODE (SHIFT IN 0/RI8CLK)
• TEST0926 - OUT OF RANGE OF GREATER THAN 64.
• TEST0927 - ADJUST MODE ALU SELECT (PASS BLEG)
• TEST0928 - ADJUST MODE ALU SELECT (PASS ALEG)
• TEST0929 - SDI CONDITIONAL TRANSPORT FAST MULTIPLY FEATURE (TRUE)
• TEST092A - SDI CONDITIONAL TRANSPORT FAST MULTIPLY FEATURE (FALSE)
• TEST0928 - REC -> FRDX HARDWARE
• TEST092C - BDI CONDITIONAL TRANSPORT (ALH -> BOIL IF AL51=0)
• TEST092D - DIVIDE MODE ALTERNATE ALU SELECT INPUT (ADD)
• TEST092E - DIVIDE MODE ALTERNATE ALU SELECT INPUT (SUBA)
• TEST092F - TEST_TNUM
• TEST0950 - TEST OF THE [QNORM] BO MODE WITH ADJCNTS OF -1:-47
• TEST0951 - TEST_TNUM
• TEST0960 - TEST OF THE [QADJUST] BO MODE WITH ADJCNTS OF -1:-47
• TEST0961 - TEST OF THE [ADJUST] BO MODE POSTIVE ADJUST
• TEST0962 - TEST OF THE [ADJUST] BO MODE POSTIVE ADJUST
• TEST0963 - TEST OF THE [ADJUST] BO MODE POSTIVE ADJUST
• TEST0964 - TEST_TNUM
• TEST0970 - TEST0977 => CALL TEST097X - TEST BDI NORMALIZE OF 31 AND 32 BITS,
• TEST DOES NORMALIZE FROM 48 TO 1

SYSVJ begins the Instruction (I) unit verification. The first thing verified are the basic data

paths. Then cache addressing is tested, followed by each cache set by itself. and then both

sets together. Cache invalidate and force other set functions are also tested. The decode net

is read and written before being tested for specific adqressing mode entry points. Finally, I

unit JCs are tested and PMA addressing modes (EAF) testing begins. The following is an

index of the tests contained in SYSV3 .

•
• INDEX OF TESTS IN SYSV3
•
•
• TEST2000 - BO -> RS -> MA -> BB HIGH SIDE
• TEST2001 - BO -> RS -> MA -> BB LOW SIDE
• TEST2002 - RF -> BO -> MA -> BB BDI BYPASS PATH HIGH SIDE
• TEST2003 - RF -> BO -> MA -> BB SDI BYPASS PATH LOW SIDE
• TEST2004 - BO -> ERMA -> MA -> BB

PRIME RESTRICTED

4150 Functional Specification
Page 114

• TEST2885 - BO -> ERMA -> MA -> BB
• TEST2086 - BO -> ERMA -> MA -> ERMA+1 -> MA -> BB CHECK ERMAH FOR NO INCR
• TEST2007 - BO -> ERMA -> MA -> ERMA+2 -> MA -> BB CHECK ERMAH FOR NO INCR
• TEST2008 - BO -> ERMA -> MA -> ERMA+1 -> MA -> BB CHECK CARRY PROPAGATE
• TEST2009 - BO -> ERMA -> MA -> ERMA+1 -> MA -> BB CHECK WITH EXPPAT
• TEST200A - BO -> ERMA -> MA -> ERMA+2 -> MA -> BB CHECK CARRY PROPAGATE
• TEST2008 - BO -> ERMA -> MA -> ERMA+2 -> MA -> BB CHECK WITH EXPPAT
• TEST208C - BO -> RMA NBD->RMAL CHECK RMAH
• TEST2080 - NBD -> RMA BO -> RMAL CHECK RMAL
• TEST200E - BO -> EAS -> MA -> BB HIGH SIDE
• TEST200F - BO -> EAS -> MA -> BB LOW SIDE
• TEST201t - BO -> EAS -> MA -> EAS+1 -> MA -> BB CHECK EASH FOR NO INCR
• TEST2011 - BO -> EAS -> MA -> EAS+2 -> MA -> BB CHECK EASH FOR NO INCR
• TEST2012 - BO -> EAS -> MA -> EAS-1 -> MA -> BB CHECK EASH FOR NO OECR
• TEST2013 - BO -> EAS -> MA -> EAS-2 -> MA -> BB CHECK EASH FOR NO OECR
• TEST2014 - BO -> EAS -> MA -> EA5+1 -> MA -> BB CHECK CARRY PROPAGATE
• TEST2015 - BO -> EAS -> MA -> EAS+1 -> MA -> BB CHECK WITH EXPPAT
• TEST2016 - BO -> EAS -> MA -> EAS+2 -> MA -> BB
• TEST2017 - BO -> EAS -> MA -> EAS-1 -> MA -> BB
• TEST2018 - BO -> EAS -> MA -> EAS-2 -> MA -> BB
• TEST2019 - BO -> EAS NBD-> EASL CHECK EASH
• TEST201A - NBD -> EAS BD-> EASL CHECK EASL
• TEST201B - BO -> EAO -> MA -> BB HIGH SIDE
• TEST201C - BO -> EAD -> MA -> BB LOW SIDE
• TEST2010 - BD -> EAD -> MA -> EAD+1 -> MA -> BB
• TEST201E - BD -> EAO -> MA -> EAD+2 -> MA -> BB
• TEST201F - BO -> EAD -> MA -> EAD-1 -> MA -> BB
• TEST2020 - BO -> EAD -> MA -> EAD-2 -> MA -> BB
• TEST2021 - BO -> EAD -> MA -> EAD+1 -> MA -> BB
• TEST2022 - BO -> EAD -> MA -> EAD+2 -> MA -> BB
• TEST2023 - BD -> EAD -> MA -> EAD-1 -> MA -> BB
• TEST2024 - BO -> EAD -> MA -> EAD-2 -> MA -> BB
• TEST2025 - BO-> !RP -> MA -> BB
• TEST2026 - BO -> IRP -> MA -> BB CHECK IRPL
• TEST2027 - TEST_TNUM
• TEST2040 - CACHE ADDRESSING

CHECK
CHECK
CHECK
CHECK

• TEST2041 - CACHE ADDRESSING,
• TEST2042 - CACHE ADDRESSING,
• TEST2043 - CACHE ADDRESSING,
• TEST2044 - CACHE ADDRESSING,
• TEST2045 - CACHE ADDRESSING,
• TEST2046 - CACHE ADDRESSING,

ELEMENT A HIGH DATA
ELEMENT A LOW DATA
ELEMENT B HIGH DATA
ELEMENT B LOW DATA
ELEMENT B E SIDE DATA
ELEMENT A E SIDE DATA

• TEST2047 - TEST_TNUM
• TEST2060 - TEST INVALID BIT CACHE B, HIGH SIDE DATA
• TEST2061 - TEST INVALID BIT CACHE B, LOW SIDE DATA
• TEST2062 - TEST INVALID BIT CACHE A, HIGH SIDE DATA
• TEST2063 - TEST INVALID BIT CACHE A, LOW SIDE DATA

EAOH FOR NO INCR
EADH FOR NO INCR
EADH FOR NO DECR
EADH FOR NO DECR

• TEST2064 - CACHE ELEMENT 'B' INVALID BIT, JUMP ON NCMISS
• TEST2065 - CACHE ELEMENT 'A' INVALID BIT, JUMP ON NCMISS
• TEST2066 - FORCES BOTH CACHES INVALID, JUMP ON NCMISS
• TEST2067 - IAC FRCELE RC032A ON CSS CHIP
• TEST2068 - IAC FRCELE RCD32B ON CSS CHIP
• TEST2069 - FRCA - ELEMENT 'A' HIGH SIDE DATA
• TEST206A - FRCA - ELEMENT 'A' LOW SIDE DATA
• TEST2068 - FRCB - ELEMENT 'B' HIGH SIDE DATA
• TEST206C - FRCB - ELEMENT 'B' LOW SIDE DATA
• TEST2060 - TEST_TNUM
• TEST20B0 - Testing read and write of location 0 of decode net
• TEST2081 - Testing read and write of al I locations of decode net.
• TEST2082 - Test decode net addressabi I ity, locn 0 vs 1
• TEST20B3 - Test decode net addressabi I ity, locn 0 vs 2

PRIME RESTRICTED

SYSVERIFY

s,.tem Initialization Detailed Description

• 1EST20B4 - Test decode net addressabi ity,
• 1EST20B5 - Test decode net addressabi ity,
• 1EST20B6 - Test decode net addressabi ity,
• 1EST20B7-Test decode net addressabi ity,
• 1EST20B8 - Test decode net addressabi ity,
• 1EST20B9 - Test decode net addressabl ity,
• 1EST20BA - Test decode net addressabi ity,
• 1EST20BB - Test' decode net addressabi ity,
• 1EST20BC - Test decode net addressabi ity,
• 1EST20BD - Test decode net addressabi ity,
• 1EST20BE - Test decode net addressab i i ty,
• 1EST20BF-Test decode net addre.ssabi ity,
• 1EST20C0 - Test decode net addressabi •ty,
• 1EST20C1 - Test decode net addressabi ty,
• 1EST20C2 - Test decode net addressabi ty,
• 1EST20C3 - Test decode net oddressabi ty,
• 1EST20C4 - Test decode net oddressobi ty,
• ltST20C5 - Test decode net oddressabi ty,
• 1EST20C6 - Test decode net oddressobi ty,
• TEST20C7 - Test decode net oddressobi ty,
• l£ST20C8 - Test decode net' oddressobi ty,
• 1fST20C9 - Test decode net oddressabi ty,
• lEST20CA - TEST_ TNUM

ocn 0 vs 4
ocn 0 vs $8
ocn 0 vs $10
ocn 0 vs $20
ocn 0 vs $40
ocn 0 vs $80
ocn 0 vs $100
ocn 0 vs $200
ocn 0 vs $400
ocn 0 vs $800
ocn $FFF vs $FFE
ocn $FFF vs $FFD
ocn $FFF vs $FFB
ocn $FFF vs $FF7
ocn $FFF vs $FEF
ocn $FFF vs $FDF

locn $FFF vs $FBF
locn $FFF vs $F7F
locn $FFF vs $EFF
locn $FFF vs $OFF
locn $FFF vs $BFF
locn $FFF vs $7FF

• 1EST20CB - TEST THE OPCODE REGISTER FOR A ZERO
• 1EST20CC - TEST OPCODE BIT 16 FOR 1
• 1EST20CD - TEST OPCODE BIT 15 FOR 1
• 1EST20CE - TEST OPCODE BIT 14 FOR 1
• TEST20CF - TEST OPCODE BIT 13 FOR
• 1£ST2000 - TEST OPCODE BIT 12 FOR
• JEST2001 - TEST OPCODE BIT 11 FOR
• 1EST20D2 - TEST OPCODE BIT 10 FOR
• TEST20D3 - TEST OPCODE BIT 09 FOR
• 1EST20D4 - TEST OPCODE BIT 08 FOR
• tEST20D5 - TEST OPCODE BIT 07 FOR
• 1EST20D6 - TEST OPCODE BIT 06 FOR
• 1EST20D7 - TEST OPCODE BIT 05 FOR
• 1EST20D8 - TEST OPCODE BIT 04 FOR
• lEST2009 - TEST OPCODE BIT 03 FOR
• 1£ST20DA - TEST OPCODE BIT 02 FOR
• 1EST20DB - TEST OPCODE BIT 01 FOR 1
• llST20DC - TEST OPCODE REGISTER FOR ALL ONES
• 1EST20DD - TEST OPCODE BIT 16 FOR 0
• ltST20DE - TEST OPCODE BIT 15 FOR 0
• 1EST20DF - TEST OPCODE BIT 14 FOR 0
• 1£ST20E0 - TEST OPCODE BIT 13 FOR 0
• 1l'.ST20E1 - TEST OPCODE BIT 12 FOR 0
• T£ST20E2 - TEST OPCODE BIT 11 FOR 0
• 1EST20E3 - TEST OPCODE BIT 10 FOR 0
• 1£ST20E4 - TEST OPCODE BIT 09 FOR 0
• 1EST20E5 - TEST OPCODE BIT 08 FOR 0
• lEST20E6 - TEST OPCODE BIT 07 FOR 0
• TEST20E7 - TEST OPCODE BIT 06 FOR 0
• TEST20E8 - TEST OPCODE BIT 05 FOR 0
• TEST20E9 - TEST OPCODE BIT 04 FOR 0
• TEST20EA - TEST OPCODE BIT 03 FOR 0
• 1EST20EB - TEST OPCODE BIT 02 FOR 0
• TEST20EC - TEST OPCODE BIT 01 FOR 0
• TEST20ED - TEST_TNUM _
• lEST20EE - TEST SKIP DECODE
• 1EST20EF - TEST SHI FT DECODE
• lEST20F0 - TEST SHIFT DECODE

PRIME RESTRICTED

4150 Funct. Spec.
Page 115

4150 Functional Specification .
Page 116

• TEST28F1 - TEST SHIFT DECODE
• TEST20F2 - TEST_ TNUM
• TEST20F5 - TEST SKIP ON A REG BIT LSB SET (SLN), FNSKIP IS FALSE
• TEST20F6 - TEST SKIP ON A REG BIT 16 SET (SAS), FNSKIP IS FALSE
• TEST20F7 - TEST SKIP ON A REG BIT 15 SET, FNSKIP IS FALSE
• TEST20F8 - TEST SKIP ON A REG BIT 14 SET, FNSKIP IS FALSE
• TEST20F9 - TEST SKIP ON A REG BIT 13 SET, FNSKIP IS FALSE
• TEST20FA - TEST SKIP ON A REG BIT 12 SET, FNSKIP IS FALSE
• TEST20FB - TEST SKIP ON A REG BIT 11 SET, FNSKIP IS FALSE
• TEST20FC - TEST SKIP ON A REG BIT 10 SET, FNSKIP IS FALSE
• TEST20FD - TEST SKIP ON A REG BIT 09 SET, FNSKIP IS FALSE
• TEST20FE - TEST SKIP ON A REG BIT 08 SET, FNSKIP IS FALSE
• TEST20FF - TEST SKIP ON A REG BIT 07 SET, FNSKIP IS FALSE
• TEST2100 - TEST SKIP ON A REG BIT 06 SET, FNSKIP IS FALSE
• TEST2101 - TEST SKIP ON A REG BIT 05 SET, FNSKIP IS FALSE
• TEST2102 - TEST SKIP ON A REG BIT 04 SET, FNSKIP IS FALSE
• TEST2103 - TEST SKIP ON A REG BIT 03 SET, FNSKIP IS FALSE
• TEST2104 - TEST SKIP ON A REG BIT 02 SET, FNSKIP IS FALSE
• TEST2105 - TEST SKIP ON A REG BIT 01 SET, FNSKIP IS FALSE
• TEST2106 - TEST SKIP ON A REG BIT 16 RESET, FNSKIP IS TRUE
• TEST2107 - TEST SKIP .ON A REG BIT 15 RESET, FNSKIP IS TRUE
• TEST2108 - TEST SKIP ON A REG BIT 14 RESET, FNSKIP IS TRUE
• TEST2109 - TEST SKIP ON A REG BIT 13 RESET, FNSKIP IS TRUE
• TEST210A - TEST SKIP ON A REG BIT 12 RESET, FNSKIP IS TRUE
• TEST210B - TEST SKIP ON A REG BIT 11 RESET, FNSKIP IS TRUE
• TEST210C - TEST SKIP ON A REG BIT 10 RESET, FNSKIP IS TRUE
• TEST210D - TEST SKIP ON A REG BIT 09 RESET, FNSKIP IS TRUE
• TEST210E - TEST SKIP ON A REG BIT 08 RESET, FNSKIP IS TRUE
• TEST210F - TEST SKIP ON A REG BIT 07 RESET, FNSKIP IS TRUE
• TEST2110 - TEST SKIP ON A REG BIT 06 RESET, FNSKIP IS TRUE
• TEST2111 - TEST SKIP ON A REG BIT 05 RESET, FNSKIP IS TRUE
• TEST2112 - TEST SKIP ON A REG BIT 04 RESET, FNSKIP IS TRUE
• TEST2113 - TEST SKIP ON A REG BIT 03 RESET, FNSKIP IS TRUE
• TEST2114 - TEST SKIP ON A REG BIT 02 RESET, FNSKIP IS TRUE
• TEST2115 - TEST SKIP ON A REG BIT 01 RESET, FNSKIP IS TRUE
• TEST2116 - TEST SKIP ON SENSE SWITCH 1 SET TO 1, FNSKIP IS FALSE
• TEST2117 - TEST SKIP ON SENSE SWITCH 2 SET TO 1, FNSKIP IS FALSE
• TEST2118 - TEST SKIP ON SENSE SWITCH 3 SET TO 1, FNSKIP IS FALSE
• TEST2119 - TEST SKIP ON SENSE SWITCH 4 SET TO 1, FNSKIP IS FALSE
• TEST211A - TEST SKIP ON SENSE SWITCH 1 RESET TO 0, FNSKIP IS FALSE
• TEST211B - TEST SKIP ON CBIT SET TO 1
• TEST211C - TEST SKIP ON A REG LESS THAN OR EQUAL TO 0
• TEST211D - JUMP ON OPCODE BIT 16 FOR 1
• TEST211E - JUMP ON OPCODE BIT 15 FOR
• TEST211F - JUMP ON OPCODE BIT 14 FOR
• TEST2120 - JUMP ON OPCODE BIT 07 FOR
• TEST2121 - JUMP ON OPCODE BIT 16 FOR 0
• TEST2122 - JUMP ON OPCODE BIT 15 FOR 0
• TEST2123 - JUMP ON OPCODE BIT 14 FOR 0
• TEST2124 - JUMP ON OPCODE BIT 07 FOR 0
• TEST2125 - TEST_TNUM
• TEST2150 - TEST 16S INDIRECT EAF
• TEST2151 - TEST 32R INDIRECT EAF
• TEST2152 - TEST 32R INDIRECT, POST-INDEXING
• TEST2153 - TEST 32R STACK RELATIVE
• TEST2154 - TEST 32R STACK RELATIVE, INDIRECT
• TEST2155 - TEST 32R STACK RELATIVE, INDIRECT, POST-INDEXING
• TEST2156 - TEST 32R STACK POST-INCREMENT
• TEST2157 - TEST 32R STACK POST-INCREMENT INDIRECT
• TEST2158 - TEST 32R STACK POST-INCREMENT, INDIRECT, POST-INDEXING
• TEST2159 - TEST 32R STACK PRE-DECREMENT

PRIME RESTRICTED

SYS VERIFY

System Initialization Detailed Description 4150 Funct. Spec.
Page 117

• TEST215A - TEST 32R STACK PRE-DECREMENT, INDIRECT
• TEST215B - TEST 32R STACK PRE-DECREMENT, INDIRECT, POST-INDEXING
• TEST215C - TEST 64R INDIRECTION
• TEST215D - TEST 64R INDIRECT POST-INDEXING
• TEST215E - TEST_TNUM
• TEST21A0 - TEST OF IRPL, INCREMENT
• TEST21A1 - TEST OF IRPL, TWO SHORT ALIGNED INSTR. AND ONE LONG INSTR
• TEST21A2 - TEST OF IRPL, 1 LONG INSTR, 1 SHORT INSTR, AND 1 LONG INSTR
• TEST21A3 - TEST OF IRPL, 1 SHORT ALIGNED INSTR AND 2 LONG UNALIGNED
• TEST21A4 - TEST OF RPL, INCREMENT, THREE LONG ALIGNED INSTRUCTIONS •
• TEST21A5 - TEST OF RPL, 1 LNG INSTR, 1 SHORT INSTR, 1 LNG, ODD START ADDR
• TEST21A6 - TEST OF RPL, 2 SHORT ALIGNED INSTR AND 1 LONG INSTR.
• TEST21A7 - TEST OF RPL, 1 SHORT ALIGNED INSTR AND 2 LONG UNALIGNED
• TEST21A8 - TEST_TNUM
• TEST21C0 - INSTRUCTION ALIGNMENT, 2 LONG ALIGNED
• TEST21C1 - INSTRUCTION ALIGNMENT, 2 SHORT ALIGNED, 1 LONG ALIGNED
• TEST21C2 - INSTRUCTION ALIGNMENT, 1 SHORT ALIGNED, 1 LONG UNALIGNED, 1 SHORT
• TEST21C3 - INSTRUCTION ALIGNMENT, 2 SHORT ALIGNED (MR), 1 LONG ALIGNED (MR)
• TEST21C4 - INSTRUCTION ALIGNMENT, SHORT ALIGNED, 1 LONG UNALIGNED, 1 SHORT
• TEST21C5 - INSTRUCTION ALIGNMENT, 2 LONG UNALIGNED, CHECK RPL
• TEST21C6 - INSTRUCTION ALIGNMENT, 2 SHORT ALIGNED, 1 LONG ALIGNED, CHECK RPL
• TEST21C7 - INSTR ALIGNMENT,1 SHORT UNALIGNED,1 LONG ALIGNED,1 SHORT.CHECK RPL
• TEST21C8 - INSTR ALIGNMENT,2 SHORT ALIGNED (MR),1 LONG ALIGNED (MR),CHECK RPL
• TEST21C9 - INSTR ALIGNMENT,1 SHORT UNALIGNED,1 LNG UNALIGNED,1 SHORT,CHK RPL
• TEST21CA - TEST_TNUM
• TEST2300 => TEST230W - IMMEDIATE TYPE 1, FIRST NIBBLE
• TEST2301 => TEST230W - IMMEDIATE TYPE 1, SECOND NIBBLE
• TEST2302 => TEST230W - IMMEDIATE TYPE 1, THIRD NIBBLE
• TEST2303 => TEST230W - IMMEDIATE TYPE 1, FOURTH NIBBLE
• TEST2304 •> TEST230X - IMMEDIATE TYPE 2, FIRST NIBBLE
• TEST2305 => TEST230X - IMMEDIATE TYPE 2, SECOND NIBBLE
• TEST2306 => TEST230X - IMMEDIATE TYPE 2, THIRD NIBBLE
• TEST2307 => TEST230X - IMMEDIATE TYPE 2, FOURTH NIBBLE
• TEST2308 => TEST230Y - IMMEDIATE TYPE 3, FIRST NIBBLE
• TEST2309 => TEST230Y - IMMEDIATE TYPE 3, SECOND NIBBLE
• TEST230A => TEST230Y - IMMEDIATE TYPE 3, THIRD NIBBLE
• TEST230B => TEST230Y - IMMEDIATE TYPE 3, FOURTH NIBBLE
• TEST230C - TEST OF GOOD DECODE NET ENTRY POINT FOR GR0 REG-TO-REG
• TEST230D => TEST230Z - TEST GR0 THE HIGH SIDE NIBBLES
• TEST230E => TEST230Z - TEST GR0 THE HIGH SIDE NIBBLES
• TEST230F => TEST230Z - TEST GR0 THE HIGH SIDE NIBBLES
• TEST2310 => TEST230Z - TEST GR0 THE HIGH SIDE NIBBLES
• TEST2311 => TEST231W - TEST GR0 THE LOW SIDE NIBBLES
• TEST2312 => TEST231W - TEST GR0 THE LOW SIDE NIBBLES
• TEST2313 => TEST231W - TEST GR0 THE LOW SIDE NIBBLES
• TEST2314 => TEST231W - TEST GR0 THE LOW SIDE NIBBLES
• TEST2315 - TEST OF GOOD DECODE NET ENTRY POINT FOR GR1 REG-TO-REG
• TEST2316 => TEST231X - TEST GR1 THE HIGH SIDE NIBBLES
• TEST2317 => TEST231X - TEST GR1 THE HIGH SIDE NIBBLES
• TEST2318 => TEST231X - TEST GR1 THE HIGH SIDE NIBBLES
• TEST2319 => TEST231X - TEST GR1 THE HIGH SIDE NIBBLES
• TEST231A => TEST231Y - TEST GR1 THE LOW SIDE NIBBLES
• TEST231B => TEST231Y - TEST GR1 THE LOW SIDE NIBBLES
• TEST231C => TEST231Y - TEST GR1 THE LOW SIDE NIBBLES
• TEST231D => TEST231Y - TEST GR1 THE LOW SIDE NIBBLES
• TEST231E - TEST OF GOOD DECODE NET ENTRY POINT FOR GR2 REG-TO-REG
• TEST231F => TEST231Z - TEST GR2 THE HIGH SIDE NIBBLES
• TEST2320 => TEST231Z - TEST GR2 THE HIGH SIDE NIBBLES
• TEST2321 => TEST231Z - TEST GR2 THE HIGH SIDE NIBBLES
• TEST2322 => TEST231Z - TEST GR2 THE HIGH SIDE NIBBLES
• TEST2323 => TEST232W - TEST GR2 THE LOW SIDE NIBBLES

PRIME RESTRICTED

4150 Functional Specificatibn . ; . · ~ ,
Page 118

• TEST2324 => TEST232W - TEST GR2 THE LOW SIDE NIBBLES
• TEST2325 => TEST232W - TEST GR2 THE LOW SIDE NIBBLES
• TEST2326 => TEST232W - TEST GR2 THE LOW SIDE NIBBLES
• TEST2327 - TEST OF GOOD DECODE NET ENTRY POINT FOR GR3 REG-TO-REG
• TEST2328 => TEST232X - TEST GR3 THE HIGH SIDE NIBBLES
• TEST2329 => TEST232X - TEST GR3 THE HIGH SIDE NIBBLES
• TEST232A => TEST232X - TEST GR3 THE HIGH SIDE NIBBLES
• TEST232B => TEST232X - TEST GR3 THE HIGH SIDE NIBBLES
• TEST232C => TEST232Y - TEST GR3 THE LOW SIDE NIBBLES
• TEST232D => TEST232Y - TEST GR3 THE LOW SIDE NIBBLES
• TEST232E => TEST232Y - TEST GR3 THE LOW SIDE NIBBLES
• TEST232F => TEST232Y - TEST GR3 THE LOW SIDE NIBBLES
• TEST2330 - TEST OF GOOD DECODE NET ENTRY POINT FOR GR4 REG-TO-REG
• TEST2331 => TEST233W - TEST GR4 THE HIGH SIDE NIBBLES
• TEST2332 => TEST233W - TEST GR4 THE HIGH SIDE NIBBLES
• TEST2333 => TEST233W - TEST GR4 THE HIGH SIDE NIBBLES
• TEST2334 => TEST233W - TEST GR4 THE HIGH SIDE NIBBLES
• TEST2335 => TEST233X - TEST GR4 THE LOW SIDE NIBBLES
• TEST2336 => TEST233X - TEST GR4 THE LOW SIDE NIBBLES
• TEST2337 => TEST233X - TEST GR4 THE LOW SIDE NIBBLES
• TEST2338 => TEST233X - TEST GR4 THE LOW SIDE NIBBLES
• TEST2339 - TEST OF GOOD DECODE NET ENTRY POINT FOR GRS REG-TO-REG
~ TEST233A => TEST233Y - TEST GRS THE HIGH SIDE NIBBLES
• TEST233B => TEST233Y - TEST GRS THE HIGH SIDE NIBBLES
• TEST233C => TEST233Y - TEST GRS THE HIGH SIDE NIBBLES
• TEST2330 => TEST233Y - TEST GRS THE HIGH SIDE NIBBLES
• TEST233E => TEST233Z - TEST GRS THE LOW SIDE NIBBLES
• TEST233F => TEST233Z - TEST GRS THE LOW SIDE NIBBLES
• TEST2340 => TEST233Z - TEST GRS THE LOW SIDE NIBBLES
• TEST2341 => TEST233Z - TEST GRS THE LOW SIDE NIBBLES
• TEST2342 - TEST OF GOOD DECODE NET ENTRY POINT FOR GR6 REG-TO-REG
• TEST2343 => TEST234W - TEST GR6 THE HIGH SIDE NIBBLES
• TEST2344 => TEST234W - TEST GR6 THE HIGH SIDE NIBBLES
• TEST2345 => TEST234W - TEST GR6 THE HIGH SIDE NIBBLES
• TEST2346 => TEST234W - TEST GR6 THE HIGH SIDE NIBBLES
• TEST2347 => TEST234X - TEST GR6 THE LOW SIDE NIBBLES
• TEST2348 => TEST234X - TEST GR6 THE LOW SIDE NIBBLES
• TEST2349 => TEST234X - TEST GR6 THE LOW SIDE NIBBLES
• TEST234A => TEST234X - TEST GR6 THE LOW SIDE NIBBLES
• TEST234B - TEST OF GOOD DECODE NET ENTRY POINT FOR GR7 REG-TO-REG
• TEST234C => TEST234Y - TEST GR7 THE HIGH SIDE NIBBLES
• TEST234D => TEST234Y - TEST GR7 THE HIGH SIDE NIBBLES
• TEST234E => TEST234Y - TEST GR7 THE HIGH SIDE NIBBLES
• TEST234F => TEST234Y - TEST GR7 THE HIGH SIDE NIBBLES
• TEST2350 => TEST235W - TEST GR7 THE LOW SIDE NIBBLES
• TEST2351 => TEST235W - TEST GR7 THE LOW SIDE NIBBLES
• TEST2352 => TEST235W - TEST GR7 THE LOW SIDE NIBBLES
• TEST2353 => TEST235W - TEST GR7 THE LOW SIDE NIBBLES
• TEST2354 - TEST OF GOOD DECODE NET ENTRY POINT FOR FLR0 REG-TO-REG
• TEST2355 => TEST235X - TEST FLR0 THE LOW SIDE NIBBLES
• TEST2356 => TEST235X - TEST FLR0 THE LOW SIDE NIBBLES
• TEST2357 => TEST235X - TEST FLR0 THE LOW SIDE NIBBLES
• TEST2358 => TEST235X - TEST FLR0 THE LOW SIDE NIBBLES
• TEST2359 - TEST OF GOOD DECODE NET ENTRY POINT FOR FLR1 REG-TO-REG
• TEST235A => TEST235Y - TEST FLR1 THE LOW SIDE NIBBLES
• TEST235B => TEST235Y - TEST FLR1 THE LOW SIDE NIBBLES
• TEST235C => TEST235Y - TEST FLR1 THE LOW SIDE NIBBLES
• TEST235D => TEST235Y - TEST FLR1 THE LOW SIDE NIBBLES
• TEST235E - TEST OF GOOD DECODE NET ENTRY POINT FOR L INSTR, PB AS BASE REG
• TEST235F => TEST235Z - TEST PB THE HIGH SIDE NIBBLES
• TEST2360 => TEST235Z - TEST PB THE HIGH SIDE NIBBLES

PRIME RESTRICTED

SYS VERIFY

System Initialization Detailed Description 4150 Funct. Spec.

• TEST2361 => TEST235Z - TEST PB THE HIGH SIDE NIBBLES
• TEST2362 => TEST235Z - TEST PB THE HIGH SIDE NIBBLES
• TEST2363 - TEST OF GOOD DECODE NET ENTRY POINT FOR L INSTR, SB AS BASE REG
• TEST2364 => TEST236W - TEST SB THE HIGH SIDE NIBBLES
• TEST2365 => TEST236W - TEST SB THE HIGH SIDE NIBBLES
• TEST2366 => TEST236W - TEST SB THE HIGH SIDE NIBBLES
• TEST2367 => TEST236X - TEST SB THE LOW SIDE NIBBLES
• TEST2368 => TEST236X - TEST SB THE LOW SIDE NlBBLES
• TEST2369 => TEST236X - TEST SB THE LOW SIDE NIBBLES
• TEST236A => TEST236X - TEST SB THE LOW SIDE NIBBLES
• TEST236B - TEST OF GOOD DECODE NET ENTRY POINT FOR L INSTR, LB AS BASE REG
• TEST236C => TEST236Y - TEST LB THE HIGH SIDE NIBBLES
• TEST236D •> TEST236Y - TEST LB .THE HIGH SIDE NIBBLES
• TEST236E => TEST236Y - TEST LB THE HIGH SIDE NIBBLES
• TEST236F => TEST236Z - TEST LB THE LOW SIDE NIBBLES
• TEST2370 => TEST236Z - TEST LB THE LOW SIDE NIBBLES
• TEST2371 => TEST236Z - TEST LB THE LOW SIDE NIBBLES
• TEST2372 => TEST236Z - TEST LB THE LOW SIDE NIBBLES
• TEST2373 - TEST OF GOOD DECODE NET ENTRY POINT FOR L INSTR, XB AS BASE REG
• TEST2374 => TEST237W - TEST XB THE HIGH SIDE NIBBLES
• TEST2375 => TEST237W ~ TEsT-xB THE HIGH SIDE NIBBLES
• TEST2376 => TEST237W - TEST XB THE HIGH SIDE NIBBLES
• TEST2377 => TESi237X - TEST XB THE LOW SIDE NIBBLES
• TEST2378 => TEST237X - TEST XB THE LOW SIDE NIBBLES
• TEST2379 => TEST237X - TEST XB THE LOW SIDE NIBBLES
• TEST237A => TEST237X - TEST XB THE LOW SIDE NIBBLES
• TEST237B - TEST_TNUM
• TEST23AB => TEST23AY - 64R,DIRECT,LONG REACH.PB D,CHECK THE VALUE OF EAH
• TEST23AC => TEST23AY - 64R,DIRECT,LONG REACH.PB 0,CHECK THE VALUE OF EAH
• TEST23AD => TEST23AY - 64R,DIRECT,LONG REACH.PB 0,CHECK THE VALUE OF EAH
• TEST23AE => TEST23AZ - 64R,DIRECT,LONG REACH.PB 0,CHECK THE VALUE OF EAL
• TEST23AF => TEST23AZ - 64R,DIRECT,LONG REACH.PB 0,CHECK THE VALUE OF EAL
• TEST23B0 => TEST23AZ - 64R,DIRECT,LONG REACH.PB 0,CHECK THE VALUE OF EAL
• TEST23B1 => TEST23AZ - 64R,DIRECT,LONG REACH.PB I 0,CHECK THE VALUE OF EAL
• TEST23B2 => TEST23BW - 64R,INDEXED.LONG REACH,PBl(D+X),CHECK THE VALUE OF EAH
• TEST23B3 => TEST23BW - 64R,INDEXED,LONG REACH,PBl(D+X),CHECK THE VALUE OF EAH
• TEST23B4 => TEST23BW - 64R,INDEXED,LONG REACH,PBl(D+X),CHECK THE VALUE OF EAH
• TEST23B5 => TEST23BX - 64R,INDEXED,LONG REACH,PBl(o+X),CHECK THE VALUE OF EAL
• TEST23B6 => TEST23BX - 64R, INDEXED, LONG REACH, PB I (D+X), CHECK THE VALUE OF EAL
• TEST23B7 s> TEST23BX - 64R,INDEXED,LONG REACH,PBl(D+X),CHECK THE VALUE OF EAL
• TEST23B8 => TEST23BX - 64R, INDEXED, LONG REACH,PBI (D+X) ,CHECK THE VALUE OF EAL
• TEST23B9 => TEST23BY - 64R,INDEXED,LONG REACH,D <> 0,CHECK THE VALUE OF EAH
• TEST23BA => TEST23BY - 64R,INDEXED,LONG REACH,D <> 0,CHECK THE VALUE OF EAH
• TEST23BB => TEST23BY - 64R,INDEXED,LONG REACH,D <> 0,CHECK THE VALUE OF EAH
• TEST23BC - 64R,INDEXEO,LONG REACH,0 <> 0,CHECK THE VALUE OF EAL
• TEST23BO - 64R,INDEXEO,LONG REACH,O <> 0,CHECK THE VALUE OF EAL
• TEST23BE - 64R,INDEXED,LONG REACH,D <> 0,CHECK THE VALUE OF EAL
• TEST23BF - 64R, INDEXED, LONG REACH, D <> 0, CHECK THE VALUE OF EAL
• TEST23C0 - TEST_TNUM
• TEST23E0 => TEST23EW - 64V, INDEXED,
• TEST23E1 •> TEST23EW - 64V, lNDEXED,
• TEST23E2 => TEST23EW - 64V, INDEXED,
• TEST23E3 - 64V, INDEXED, SB+ 0 + X,
• TEST23E4 - 64V, INDEXED, SB+ 0 + X,
• TEST23E5 - 64V, INDEXED, SB+ D + X,
• TEST23E6 - 64V, INDEXED, SB+ 0 + X,
• TEST23E7 => TEST23EX - 64V, INDEXED,
• TEST23E8 => TEST23EX - 64V, INDEXED,
• TEST23E9 => TEST23EX - 64V, INDEXED,
• TEST23EA => TEST23EY - 64V, INDEXED,
• TEST23EB => TEST23EY - 64V, INDEXED,

SB + 0 + X,
SB + 0 + X,
SB + 0 + X,
CHECK EAL
CHECK EAL
CHECK EAL
CHECK EAL
LB+ 0 + Y,
LB+ 0 + Y,
LB+ D + Y,
LB+ 0 + Y,
LB+ 0 + Y,

CHECK EAH
CHECK EAH
CHECK EAH

CHECK EAH
CHECK EAH
CHECK EAH
CHECK EAL
CHECK EAL

PRIME RESTRICTED

Page 119

41SO Functional Specification
Page 120

• TEST23£C => TEST23EY - 64V, INDEXED, LB+ D + Y, CHECK EAL
• TEST23ED => TEST23EY - 64V, INDEXED, LB+ D + Y, CHECK EAL
• TEST23EE => TEST23EZ - 32I, DIRECT, XB + D, CHECK EAH
• TEST23EF => TEST23EZ - 32I, DIRECT, XB + D, CHECK EAH
• TEST23F8 => TEST23EZ - 32I, DIRECT, XB + D, CHECK EAH
• TEST23F1 s> TEST23FW - 32I, DIRECT, XB + D, CHECK EAL
• TEST23F2 => TEST23FW - 32I, DIRECT, XB + D, CHECK EAL
• TEST2Jf3 => TEST23FW - 32I, DIRECT, XB + D, CHECK EAL
• TEST23f4 => TEST23FW - 32I, DIRECT, XB + D, CHECK EAL
• TEST23f5 => TEST23FX - 321, INDIRECT, l(PB + D), CHECK EAH
• TEST23f6 => TEST23FX - 32I, INDIRECT, I(PB + D), CHECK EAH
• TEST2lf7 => TEST23FX - 321, INDIRECT, I(PB + D), CHECK EAH
• TEST23FB => TEST23FY - 321, INDIRECT, I(PB + D), CHECK EAL
• TEST23f9 => TEST23FY - 32I, INDIRECT, I(PB + D), CHECK EAL
• TEST23FA => TEST23FY - 32I, INDIRECT, I(PB + D), CHECK EAL
• TEST2JFB => TEST23FY - 32I, INDIRECT, I(PB + D), CHECK EAL
• TEST23FC => TEST23FZ - 32I, GENERAL REGISTER RELATIVE, D + GR0L, CHECK EAH
• TEST23FD => TEST23FZ - 32I, GENERAL REGISTER RELATIVE, D + GR0L, CHECK EAH
• TEST23FE => TEST23FZ - 32I, GENERAL REGISTER RELATIVE, D + GR0L, CHECK EAH
• TEST23FF => TEST240V - 32I, GENERAL REGISTER RELATIVE, D + GR0L, CHECK EAL
• TEST2480 => TEST240V - 32I, GENERAL 'REGISTER RELATIVE, D + GR0L, CHECK EAL
• TEST2481 => TEST240V - 32I, GENERAL REGISTER RELATIVE, D + GR0L, CHECK EAL
• TEST2482 => TEST240V - 32I, GENERAL REGISTER RELATIVE, D + GR0L, CHECK EAL
• TEST2483 => TEST240W - 32I, GENERAL REGISTER RELATIVE, D + GR1L, CHECK EAH
• TEST2484 => TEST240W - 32I, GENERAL REGISTER RELATIVE, D + GR1L, CHECK EAH
• TEST2485 => TEST240W - 32I, GENERAL REGISTER RELATIVE, D + GR1L, CHECK EAH
• TEST2486 => TEST240X - 32I, GENERAL REGISTER RELATIVE, D + GR1L, CHECK. EAL
• TEST2487 => TEST240X - 321, GENERAL REGISTER RELATIVE, D + GR1L, CHECK EAL
• TEST2488 => TEST240X - 321, GENERAL REGISTER RELATIVE, D + GR1L, CHECK EAL
• TEST2489 => TEST240X - 32I, GENERAL REGISTER RELATIVE, D + GR1L, CHECK EAL
• TEST248A => TEST240Y - 32I, GENERAL REGISTER RELATIVE, D + GR2L, CHECK EAH
• TEST24el3 => TEST240Y - 32I, GENERAL REGISTER RELATIVE, D + GR2L, CHECK EAH
• TEST248C => TEST240Y - 32I, GENERAL REGISTER RELATIVE, D + GR2L, CHECK EAH
• TEST2480 => TEST240Z - 32I, GENERAL REGISTER RELATIVE, D + GR2L, CHECK EAL
• TEST248E => TEST240Z - 32I, GENERAL REGISTER RELATIVE, D + GR2L, CHECK EAL
• TEST248F => TEST240Z - 32I, GENERAL REGISTER RELATIVE, D + GR2L, CHECK EAL
• TEST2418 => TEST240Z - 32I, GENERAL REGISTER RELATIVE, D + GR2L, CHECK EAL
•

SYSVERIFY

SYSV 4 continues vigorously through the addressing modes before moving onto aligned and

unaligned cache reads. Two other functional areas are tested out here, the branch cache and

the Segment Translation Lookaside Buffer (STLB). The following is an index of the tests

contained in SYSV 4 .

•
• INDEX OF TESTS IN SYSV4
•
•
• TEST2411 => TEST241W - 32I, GENERAL REGISTER RELATIVE, D + GR3L, CHECK EAH
• TEST2412 => TEST241W - 32I, GENERAL REGISTER RELATIVE, D + GR3L, CHECK EAH
• TEST2413 => TEST241W - 32I, GENERAL REGISTER RELATIVE, D + GR3L, CHECK EAH
• TEST2414 => TEST241X - 32I, GENERAL REGISTER RELATIVE, D + GR3L, CHECK EAL
• TEST2415 => TEST241X - 32I, GENERAL REGISTER RELATIVE, D + GR3L, CHECK EAL
• TEST2416 => TEST241X - 32I, GENERAL REGISTER RELATIVE, D + GR3L, CHECK EAL
• TEST2417 => TEST241X - 32I, GENERAL REGISTER RELATIVE, D + GR3L, CHECK EAL
• TEST2418 => TEST241Y - 32I, GENERAL REGISTER RELATIVE, D + GR4L, CHECK EAH
• TEST2419 => TEST241Y - 321, GENERAL REGISTER RELATIVE, D + GR4L, CHECK EAH
• TEST241A => TEST241Y - 321, GENERAL REGISTER RELATIVE, D + GR4L, CHECK EAH
• TEST241B => TEST241Z - 32I, GENERAL REGISTER RELATIVE, D + GR4L, CHECK EAL
• TEST241C => TEST241Z - 321, GENERAL REGISTER RELATIVE, D + GR4L, CHECK EAL

PRIME RESTRICTED

Sptem Initialization Detailed Description, ... 4150 Funct. Spec.
Page 121

• TEST241D => TEST241Z - 321, GENERAL REGISTER RELATIVE, D + GR4L, CHECK EAL
• TEST241E => TEST241Z - 321, GENERAL REGISTER RELATIVE, D + GR4L, CHECK EAL
• lEST241f => TEST242V - 321, GENERAL REGISTER RELATIVE, D + GRSL, CHECK EAH
• TEST2420 => TEST242V - 321, GENERAL REGISTER RELATIVE, D + GRSL, CHECK EAH
• TEST2421 ==> TEST242V - 321, GENERAL REGISTER RELATIVE, D + GR5L, CHECK EAH
• TEST2422 •> TEST242W - 321, GENERAL REGISTER RELATIVE, D + GR5L, CHECK EAL
• 1EST2423 => TEST242W - 321, GENERAL REGISTER RELATIVE, 0 + GR5L, CHECK EAL
• 1EST2424 => TEST242W - 321, GENERAL REGISTER RELATIVE, D + GRSL, CHECK EAL
• TEST2425 => TEST242W - 321, GENERAL REGISTER RELATIVE, D + GRSL, CHECK EAL
• TEST2426 => TEST242X - 321, GENERAL REGISTER RELATIVE, D + GR6L, CHECK EAH
• TEST2427 => TEST242X - 321, GENERAL REGISTER RELATIVE, D + GR6L, CHECK EAH
• lEST2428 ==> TEST242X - 321, GENERAL REGISTER RELATIVE, 0 + GR6L, CHECK EAH
• TEST2429 => TEST242Y - 321, GENERAL REGISTER RELATIVE, D + GR6L, CHECK EAL
• lEST242A => TEST242Y - 321, GENERAL REGISTER RELATIVE, 0 + GR6L, CHECK EAL
• l!ST242B => TEST242Y - 321, GENERAL REGISTER RELATIVE, D + GR6L, CHECK EAL
• 1EST242C => TEST242Y - 321, GENERAL REGISTER RELATIVE, 0 + GR6L, CHECK EAL
• TEST242D => TEST242Z - 321, GENERAL REGISTER RELATIVE, D + GR7L, CHECK EAH
• 1EST242E => TEST242Z - 321, GENERAL REGISTER RELATIVE, D + GR7L, CHECK EAH
• TEST242F" => TEST242Z - 321, GENERAL REGISTER RELATIVE, D + GR7L, CHECK EAH
• TEST2430 => TEST243V - .32I, GENERAL REGISTER RELATIVE, D + GR7L, CHECK EAL
• TEST2431 => TEST243V - 321, GENERAL REGISTER RELATIVE, D + GR7L, CHECK EAL
• T£ST2432 => TEST243V - 321, GENERAL REGISTER RELATIVE, D + GR7L, CHECK EAL
• l£ST2433 => TEST243V - 321, GENERAL REGISTER RELATIVE, D + GR7L, CHECK EAL
• 1EST2434 - TEST_ TNUM
• lEST2454 => TEST245W - 321, INDEXED, BR+ D + GR1H, CHECK EAH
• T£ST2455 => TEST245W - 321, INDEXED, BR + D + GR1H, CHECK EAH
• TEST2456 => TEST245W - 32I, INDEXED, BR + D + GR1H, CHECK EAH
• TEST2457 => TEST245X - 321, INDEXED, BR + D + GR1H, CHECK EAL
• T£ST2458 => TEST245X - 321, INDEXED, BR+ D + GR1H, CHECK EAL
• TEST2459 •> TEST245X - 321, INDEXED, BR+ D + GR1H, CHECK EAL
• TEST245A •> TEST245X - 321, INDEXED, BR + D + GR1H, CHECK EAL
• TEST245B => TEST245Y - 321, INDEXED, BR+ D + GR2H, CHECK EAH
• TEST245C => TEST245Y - 321, INDEXED, BR+ D + GR2H, CHECK EAH
• TEST245D => TEST245Y - 321, INDEXED, BR+ D + GR2H, CHECK EAH
• TEST245E => TEST245Z - 321, INDEXED, BR+ D + GR2H, CHECK EAL
• TEST245F" => TEST245Z ~ 32I, INDEXED, BR+ D + GR2H, CHECK EAL
• TEST2460 => TEST245Z - 321, INDEXED, BR+ D + GR2H, CHECK EAL
• lEST2461 => TEST245Z - 321, INDEXED, BR+ D + GR2H, CHECK EAL
• TEST2462 => TEST246W - 321, INDEXED, BR+ D + GR3H, CHECK EAH
• 1EST2463 => TEST246W - 321, INDEXED, BR+ D + GR3H, CHECK EAH
• TEST2464 => TEST246W - 32I, INDEXED, BR+ D + GR3H, CHECK EAH
• TEST2465 => TEST246X - 321, INDEXED, BR + D + GR3H, CHECK EAL
• TEST2466 => TEST246X - 321, INDEXED, BR+ D + GR3H, CHECK EAL
• TEST2467 => TEST246X - 321, INDEXED, BR+ D + GR3H, CHECK EAL
• TEST2468 •> TEST246X - 321, INDEXED, BR+ D + GR3H, CHECK EAL
• 1EST2469 => TEST246Y - 321, INDEXED, BR+ D + GR4H, CHECK EAH
• TEST246A => TEST246Y - 321, INDEXED, BR + D + GR4H, CHECK EAH
• lEST246B •> TEST246Y - 321, INDEXED, BR + D + GR4H, CHECK EAH
• TEST246C •> TEST246Z - 321, INDEXED, BR + D + GR4H, CHECK EAL
• TEST246D => TEST246Z - 321, INDEXED, BR+ D + GR4H, CHECK EAL
• TEST246E => TEST246Z - 321, INDEXED, BR+ D + GR4H, CHECK EAL
• 1EST246F" => TEST246Z - 321, INDEXED, BR + D + GR4H, CHECK EAL
• TEST2470 => TEST247V - 321, INDEXED, BR+ D + GRSH, CHECK EAH
• TEST2471 => TEST247V - 321, INDEXED, BR+ D + GRSH, CHECK EAH
• TEST2472 => TEST247V - 321, INDEXED, BR+ D + GRSH, CHECK EAH
• TEST2473 => TEST247W - 321, INDEXED, BR + D + GRSH, CHECK EAL
• 1EST2474 => TEST247W - 321, INDEXED, BR+ 0 + GRSH, CHECK EAL
• TEST2475 => TEST247W - 321, INDEXED, BR+ D + GR5H, CHECK EAL
• 1EST2476 => TEST247W - 321, INDEXED, BR+ D + GRSH, CHECK EAL
• 1EST2477 => TEST247X - 321, INDEXED, BR+ D + GR6H, CHECK EAH
• 1EST2478 => TEST247X - 321, INDEXED, BR+ D + GR6H, CHECK EAH

PRIME RESTRICTED

4150 Functional Specification
Page 122

• TEST2479 => TEST247X - 32I, INDEXED, BR+ D + GR6H, CHECK EAH
• TEST247A => TEST247Y - 32I, INDEXED, BR+ D + GR6H, CHECK EAL
• TEST2478 => TEST247Y - 32I, INDEXED, BR+ D + GR6H, CHECK EAL
• TEST247C => TEST247Y - 32I, INDEXED, BR+ D + GR6H, CHECK EAL
• TEST247D => TEST247Y - 32I, INDEXED, BR+ D + GR6H, CHECK EAL
• TEST247E => TEST247Z - 32I, INDEXED, BR+ D + GR7H, CHECK EAH
• TEST247F => TEST247Z - 32I, INDEXED, BR+ D + GR7H, CHECK EAH
• TEST2488 => TEST247Z - 32I, INDEXED, BR+ D + GR7H, CHECK EAH
• TEST2481 •> TEST248V - 32I, INDEXED, BR+ D + GR7H, CHECK EAL
• TEST2482 => TEST248V - 32I, INDEXED, BR+ D + GR7H, CHECK EAL
• TEST2483 => TEST248V - 32I, INDEXED, BR+ D + GR7H, CHECK EAL
• TEST2484 => TEST248V - 32I, INDEXED, BR+ D + GR7H, CHECK EAL
• TEST2485 => TEST247W - 32I, IND, POSTINDEXED, I{BR + D) + GR1H, CHECK EAH
• TEST2486 => TEST247W - 32I, IND, POSTINDEXED, I{BR + D) + GR1H, CHECK EAH
• TEST2487 => TEST247W - 32I, IND, POSTINDEXED, I{BR + D) + GR1H, CHECK EAH
• TEST2488 => TEST248X - 32I, IND, POSTINDEXED, I{BR + D) + GR1H, CHECK EAL
• TEST2489 => TEST248X - 32I, IND, POSTINDEXED, I{BR + D) + GR1H, CHECK EAL
• TEST248A => TEST248X - 32I, IND, POSTINDEXED, I{BR + D) + GR1H, CHECK EAL
• TEST248B => TEST248X - 32I, IND, POSTINDEXED, I{BR + D) + GR1H, CHECK EAL
• TEST248C => TEST247Y - 321, IND, POSTINDEXED, I{BR + D) + GR2H, CHECK EAH
• TEST248D => TEST247Y - 321 ;'IND; POSTINDEXED, ·I{BR + D) + GR2H, CHECK EAH
• TEST248E => TEST247Y - 32I, IND, POSTINDEXED, I{BR + D) + GR2H, CHECK EAH
• TEST248F ~> TEST248Z - 321, IND, POSTINDEXED, I{BR + D) + GR2H, CHECK EAL
• TEST2498 => TEST248Z - 32I, IND, POSTINDEXED, I{BR + D) + GR2H, CHECK EAL
• TEST2491 => TEST248Z - 32I, IND, POSTINDEXED, l{BR + D) + GR2H, CHECK EAL
• TEST2492 => TEST248Z - 321, IND, POSTINDEXED, I{BR + D) + GR2H, CHECK EAL
• TEST2493 => TEST249W - 321, IND, POSTINDEXED, l(BR + D) + GR3H, CHECK EAH
• TEST2494 => TEST249W - 32I, IND, POSTINDEXED, I{BR + D) + GR3H, CHECK EAH
• TEST2495 => TEST249W - 321, IND, POSTINDEXED, I{BR + D) + GR3H, CHECK EAH
• TEST2496 => TEST249X - 321, IND, POSTINDEXED, I(BR + D) + GR3H, CHECK EAL
• TEST2497 => TEST249X - 321, IND, POSTINDEXED, I{BR + D) + GR3H, CHECK EAL
• TEST2498 => TEST249X - 32I, IND, POSTINDEXED, I(BR + D) + GR3H, CHECK EAL
• TEST2499 => TEST249X - 32I, IND, POSTINDEXED, I{BR + D) + GR3H, CHECK EAL
• TEST249A => TEST249Y - 32I, IND, POSTINDEXED, I(BR + D) + GR4H, CHECK EAH
• TEST2498 => TEST249Y - 321, IND, POSTINDEXED, l(BR + D) + GR4H, CHECK EAH
• TEST249C => TEST249Y - 321, IND, POSTINDEXED, l(BR + D) + GR4H, CHECK EAH
• TEST2490 => TEST249Z - 32I, IND, POSTINDEXED, I(BR + D) + GR4H, CHECK EAL
• TEST249E => TEST249Z - 32I, IND, POSTINDEXED, I(BR + D) + GR4H, CHECK EAL
• TEST249F => TEST249Z - 321, IND, POSTINDEXED, I(BR + D) + GR4H, CHECK EAL
• TEST24A8 => TEST249Z - 321, IND, POSTINDEXED, l{BR + D) + GR4H, CHECK EAL
• TEST24A1 => TEST24AV - 32I, IND, POSTINDEXED, I(BR + D) + GR5H, CHECK EAH
• TEST24A2 => TEST24AV - 321, IND, POSTINDEXED, I(BR + D) + GR5H, CHECK EAH
• TEST24A3 => TEST24AV - 32I, IND, POSTINDEXED, I{BR + D) + GR5H, CHECK EAH
• TEST24A4 => TEST24AW - 32I, IND, POSTINDEXED, I{BR + D) + GR5H, CHECK EAL
• TEST24A5 => TEST24AW - 32I, IND, POSTINDEXED, I{BR + D) + GR5H, CHECK EAL
• TEST24A6 => TEST24AW - 32I, IND, POSTINDEXED, I{BR + D) + GR5H, CHECK EAL
• TEST24A7 => TEST24AW - 32I, IND. POSTINDEXED. I(BR + D) + GR5H, CHECK EAL
• TEST24A8 => TEST24AX - 32I, IND, POSTINDEXED, I{BR + D) + GR6H, CHECK EAH
• TEST24A9 => TEST24AX - 32I, IND, POSTINDEXED, I{BR + D) + GR6H, CHECK EAH
• TEST24AA c> TEST24AX - 32I, IND, POSTINDEXED, I{BR + D) + GR6H, CHECK EAH
• TEST24AB => TEST24AY - 32I, IND, POSTINDEXED, I{BR + D) + GR6H, CHECK EAL
• TEST24AC => TEST24AY - 32I, IND, POSTINDEXED, I{BR + D) + GR6H, CHECK EAL
• TEST24AD => TEST24AY - 32I, IND, POSTINDEXED, I(BR + D) + GR6H, CHECK EAL
• TEST24AE => TEST24AY - 32I, IND, POSTINDEXED, I(BR + D) + GR6H, CHECK EAL
• TEST24AF => TEST24AZ - 32I, IND, POSTINDEXED, I{BR + D) + GR7H, CHECK EAH
* TEST2480 => TEST24AZ - 32I, IND, POSTINDEXED, I{BR + D) + GR7H, CHECK EAH
• TEST2481 => TEST24AZ - 321, IND, POSTINDEXED, l(BR + D) + GR7H, CHECK EAH
• TEST2482 => TEST24BW - 321, IND, POSTINDEXED, l(BR + D) + GR7H, CHECK EAL
• TEST2483 => TEST24BW - 321, IND, POSTINDEXED, l(BR + D) + GR7H, CHECK EAL
• TEST2484 => TEST24BW - 321, IND, POSTINDEXED, I(BR + D) + GR7H, CHECK EAL
• TEST2485 => TEST24BW - 321, IND, POSTINDEXED, I(BR + D) + GR7H, CHECK EAL

PRIME RESTRICTED

SYSVERIFY

System Initialization Detailed Description 4150 Funct. Spec.
•'

• TEST2486 - TEST_TNUM
• TEST2506 => TEST250X - 321. IND, PREINDEXED, l(BR + D + GR1H),
• TEST2507 => TEST250X - 321, IND, PREINDEXED, l(BR + D + GR1H),
• TEST2508 => TEST250X - 321, IND, PRE.INDEXED, I (BR + D + GR1H),
• TEST2509 => TEST250Y - 321, IND, PREINDEXED, I(BR + D + GR1H),
• TEST250A => TEST250Y - 321, IND, PREINDEXED, I(BR + D + GR1H),
• TEST2508 => TEST250Y - 321, IND, PREINDEXED, l(BR + D + GR1H),
• TEST250C => TEST250Y - 321, IND, PREINDEXED, l(BR + D + GR1H),
• TEST250D => TEST250Z - 321, IND, PREINDEXED, I(BR + D + GR2H),
• TEST250E •> TEST250Z - 32I, IND, PREINDEXED, l(BR + D + GR2H),
• TEST250F => TEST250Z - 321, IND, PREINDEXED, I(BR + D + GR2H),
• TEST2510 => TEST251V - 32I, IND, PREINDEXED, I(BR + D + GR2H),
• TEST2511 => TEST251V - 32I, IND, PREINDEXED, I(BR + D + GR2H),
• TEST2512 => TEST251V - 32I, IND, PREINDEXED, I(BR + D + GR2H),
• .TEST2513 => TEST251V - 321, IND, PREINDEXED, I(BR + D + GR2H),
• TEST2514 => TEST251W - 32I, IND, PREINDEXED, I(BR + D + GR3H),
• TEST2515 => TEST251W - 321, IND, PREINDEXED, l(BR + D + GR3H),
• TEST2516 => TEST251W - 32I, IND, PREINDEXED, I(BR + D + GR3H),
• TEST2517 => TEST251X - 32I, IND, PREINDEXED, l(BR + D + GR3H),
• TEST2518 => TEST251X ~ 32I, IND, PREINDEXED, I(BR + D + GR3H),
• TEST2519 => TEST251X - 32I, IND, PREINDEXED, ·1(BR + D + GR3H),
• TEST251A => TEST251X - 32I, IND, PREINDEXED, I(BR + D + GR3H),
• TEST2518 => TEST251Y - 32I, IND, PREINDEXED, I(BR + D + GR4H),
• TEST251C => TEST251Y - 32I, IND, PREINDEXED, I(BR + D + GR4H),
• TEST251D => TEST251Y - 321, IND, PREINDEXED, I(BR + D + GR4H),
• TEST251E => TEST251Z - 321, IND, PREINDEXED, I(BR + D + GR4H),
• TEST251F => TEST251Z - 32I, IND, PREINDEXED, l(BR + D + GR4H),
• TEST2520 => TEST251Z - 32I, IND, PREINDEXED, I(BR + D + GR4H),
• TEST2521 •> TEST251Z - 32I, IND, PREINDEXED, I(BR + D + GR4H),
• TEST2522 •> TEST252W - 32I, IND, PREINDEXED, I(BR + D + GR5H),
• TEST2523 => TEST252W - 32I, IND, PREINDEXED, I(BR + D + GR5H),
• TEST2524 => TEST252W - 32I, IND, PREINDEXED, I(BR + D + GR5H),
• TEST2525 => TEST252X - 321, IND, PREINDEXED, l(BR + D + GR5H),
• TEST2526 => TEST252X - 32I, IND, PREINDEXED, I(BR + D + GR5H),
• TEST2527 => TEST252X - 321, IND, PREINDEXED, I(BR + D + GRSH),
• TEST2528 => TEST252X - 321, IND, PREINDEXED, I(BR + D + GRSH),
• TEST2529 => TEST252Y - 32I, IND, PREINDEXED, I(BR + D + GR6H),
• TEST252A => TEST252Y - 32I, IND, PREINDEXED, l(BR + D + GR6H),
• TEST2528 => TEST252Y - 32I, IND, PREINDEXED, I(BR + D + GR6H),
• TEST252C => TEST252Z - 32I, IND, PREINDEXED, I(BR + D + GR6H),
• TEST252D => TEST252Z - 321, IND, PREINDEXED, l(BR + D + GR6H),
• TEST252E => TEST252Z - 32I, IND, PREINDEXED, I(BR + D + GR6H),
• TEST252F => TEST252Z - 32I, IND, PREINDEXED, I(BR + D + GR6H),
• TEST2530 => TEST253V - 321, IND, PREINDEXED, l(BR + D + GR7H),
• TEST2531 => TEST253V - 321, IND, PREINDEXED, I(BR + D + GR7H),
• TEST2532 => TEST253V - 321, IND, PREINDEXED, I(BR + D + GR7H),
• TEST2533 => TEST253W - 321, IND, PREINDEXED, I(BR + D + GR7H),
• TEST2534 => TEST253W - 32I, IND, PREINDEXED, I(BR + D + GR7H),
• TEST2535 => TEST253W - 32I, IND, PREINDEXED, I(BR + D + GR7H),
• TEST2536 => TEST253W - 321, IND, PREINDEXED, I(BR + D + GR7H),
• TEST2537 - TEST_TNUM

CHECK EAH
CHECK EAH
CHECK EAH
CHECK EAL
CHECK EAL
CHECK EAL
CHECK EAL
CHECK EAH
CHECK EAH
CHECK EAH
CHECK EAL
CHECK EAL
CHECK EAL
CHECK EAL
CHECK EAH
CHECK EAH
CHECK EAH
CHECK EAL
CHECK EAL
CHECK EAL
CHECK E:AL
CHECK· EAH
CHECK EAH
CHECK EAH
CHECK EAL
CHECK EAL
CHECK EAL
CHECK EAL
CHECK EAH
CHECK EAH
CHECK EAH
CHECK EAL
CHECK EAL
CHECK EAL
CHECK EAL
CHECK EAH
CHECK EAH
CHECK EAH
CHECK EAL
CHECK EAL
CHECK EAL
CHECK EAL
CHECK EAH
CHECK EAH
CHECK EAH
CHECK EAL
CHECK EAL
CHECK EAL
CHECK EAL

• TEST2577 - 32R, DIRECT, SECTOR 0 REL., CHECK DECODE ENTRY POINT
• TEST2578 => TEST257X - 32R, DIRECT, SECTOR 0 REL., PBH I 0 + D, CHECK EAH
• TEST2579 => TEST257X - 32R, DIRECT, SECTOR 0 REL., PBH I 0 + D, CHECK EAH
• TEST257A => TEST257X - 32R, DIRECT, SECTOR 0 REL., PBH I 0 + D, CHECK EAH
• TEST2578 => TEST257Y - 32R, DIRECT, SECTOR 0 REL., PBH I 0 + D, CHECK EAL
• TEST257C => TEST257Y - 32R, DIRECT, SECTOR 0 REL., PBH I 0 + D, CHECK EAL
• TEST257D => TEST257Y - 32R, DIRECT, SECTOR 0 REL., PBH I 0 + D, CHECK EAL
• TEST257E => TEST257Y - 32R, DIRECT, SECTOR 0 REL., PBH I 0 + D, CHECK EAL
• TEST257F - 32R, DIRECT, PROCEDURE REL., CHECK DECODE ENTRY POINT
• TEST2580 => TEST258W - 32R, DIRECT, PROC. REL., PBH I RPL + D + 1, CHECK EAH

PRIME RESTRICTED

Page 123

4150 Functional Specification
Page 124

• TEST2581 => TEST258W - 32R, DIRECT, PROC. REL., PBH I RPL + D + 1, CHECK EAH
• TEST2582 => TEST258W - 32R, DIRECT, PROC. REL., PBH I RPL + D + 1, CHECK EAH
• TEST2583 => TEST258X - 32R, DIRECT, PROC. REL., PBH I RPL + D + 1, CHECK EAL
• TEST2584 => TEST258X - 32R, DIRECT, PROC. REL., PBH I RPL + D + 1, CHECK EAL
• TEST2585 => TEST258X - 32R, DIRECT, PROC. REL., PBH I RPL + D + 1, CHECK EAL
• TEST2586 => TEST258X - 32R, DIRECT, PROC. REL., PBH I RPL + D + 1, CHECK EAL
• TEST2587 => TEST258Y - 32R, DIRECT, PROC. REL., PBH I RPL + D + 1, CHECK EAL
• TEST2588 => TEST258Y - 32R, DIRECT, PROC. REL., PBH I RPL + D + 1, CHECK EAL
• TEST2589 => TEST258Y - 32R, DIRECT, PROC. REL., PBH I RPL + D + 1, CHECK EAL
• TEST258A => TEST258Y - 32R, DIRECT, PROC. REL., PBH I RPL + D + 1, CHECK EAL
• TEST258B - 32R, INDEXED, SECTOR 0 REL., CHECK DECODE ENTRY POINT
• TEST258C => TEST258Z - 32R, INDEXED, SECTOR 0 REL., PBH I D + X, CHECK EAH
• TEST258D => TEST258Z - 32R, INDEXED, SECTOR 0 REL., PBH I D + X, CHECK EAH
• TEST258E => TEST258Z - 32R, INDEXED, SECTOR 0 REL., PBH I D + X, CHECK EAH
• TEST258F => TEST259V - 32R, INDEXED, SECTOR 0 REL., PBH I D + X, CHECK EAL
• TEST2590 => TEST259V - 32R, INDEXED, SECTOR 0 REL., PBH I D + X, CHECK EAL
• TEST2591 => TEST259V - 32R, INDEXED, SECTOR 0 REL., PBH I D + X, CHECK EAL
• TEST2592 => TEST259V - 32R, INDEXED, SECTOR 0 REL., PBH I D + X, CHECK EAL
• TEST2593 - 32R, INDEXED, PROCEDURE REL., CHECK DECODE ENTRY POINT
• TEST2594 => TEST259W - 32R, INDEXED, PROC. REL., PBH RPL+D+X+1, CHECK EAH
• TEST2595 => TEST259W - 32R,· INDEXED, PROC. REL.,- PBH RPL+D+X+1, CHECK EAH
• TEST2596 => TEST259W - 32R, INDEXED, PROC. REL., PBH RPL+D+X+1, CHECK EAH
• TEST2597 => TEST259X - 32R, INDEXED, PROC. REL., PBH RPL+D+X+1, CHECK EAL
• TEST2598 => TEST259X - 32R, INDEXED, PROC. REL., PBH RPL+D+X+1, CHECK EAL
• TEST2599 => TEST259X - 32R, INDEXED, PROC. REL., PBH RPL+D+X+1, CHECK EAL
• TEST259A => TEST259X - 32R, INDEXED, PROC. REL., PBH RPL+D+X+1, CHECK EAL
• TEST259B => TEST259Y - 32R, INDEXED, PROC. REL., PBH RPL+D+X+1, CHECK EAL
• TEST259C => TEST259Y - 32R, INDEXED, PROC. REL., PBH RPL+D+X+1, CHECK EAL
• TEST259D => TEST259Y - 32R, INDEXED, PROC. REL., PBH RPL+D+X+1, CHECK EAL
• TEST259E => TEST259Y - 32R, INDEXED, PROC. REL., PBH RPL+D+X+1, CHECK EAL
• TEST259F - TEST_TNUM
• TEST25CF - 16S, SECTOR 0 REL., CHECK DECODE ENTRY POINT
• TEST2500 => TEST25DW - 16S, SECTOR 0 REL., PBH I 0 + D, CHECK EAH
• TEST25D1 => TEST25DW - 16S, SECTOR 0 REL., PBH I 0 + D, CHECK EAH
• TEST25D2 => TEST25DW - 16S, SECTOR 0 REL., PBH I 0 + D, CHECK EAH
• TEST25D3 => TEST25DX - 16S, SECTOR 0 REL., PBH I 0 + D, CHECK EAL
• TEST25D4 => TEST25DX - 16S, SECTOR 0 REL., PBH I 0 + D, CHECK EAL
• TEST25D5 => TEST25DX - 16S, SECTOR 0 REL., PBH I 0 + D, CHECK EAL
• TEST25D6 => TEST25DX - 16S, SECTOR 0 REL., PBH I 0 + D, CHECK EAL
• TEST25D7 - 16S, CURRENT SECTOR REL., CHECK DECODE ENTRY POINT
• TEST25D8 => TEST25DY - 16S, CUR. SECT. REL., PBH I RPL[01:07] D, CHECK EAH
• TEST25D9 => TEST25DY - 16S, CUR. SECT. REL., PBH I RPL[01:07) D, CHECK EAH
• TEST25DA => TEST25DY - 16S, CUR. SECT. REL., PBH I RPL[01:07) D, CHECK EAH
• TEST25DB => TEST25DZ - 16S, CUR. SECT. REL., PBH I RPL[01:07] D, CHECK EAL
• TEST25DC => TEST25DZ - 16S, CUR. SECT. REL., PBH I RPL[01:07) D, CHECK EAL
• TEST25DO => TEST25DZ - 16S, CUR. SECT. REL., PBH I RPL[01:07] D, CHECK EAL
• TEST25DE => TEST25DZ - 165, CUR. SECT. REL., PBH I RPL[01:07] I D, CHECK EAL
• TEST25DF - 16S, SECTOR 0 REL., INDEXED, CHECK DECODE ENTRY POINT
• TEST25E0 => TEST25EW - 16S, SECT. 0 REL., INDEXED, PBH I 0 + D + X, CHECK EAH
• TEST25E1 => TEST25EW - 165, SECT. 0 REL., INDEXED, PBH I 0 + D + X, CHECK EAH
• TEST25E2 => TEST25EW - 16S, SECT. 0 REL., INDEXED, PBH I 0 + D + X, CHECK EAH
• TEST25E3 => TEST25EX - 16S, SECT. 0 REL., INDEXED, PBH I 0 + D + X, CHECK EAL
• TEST25E4 => TEST25EX - 16S, SECT. 0 REL., INDEXED, PBH I 0 + D + X, CHECK EAL
• TEST25E5 => TEST25EX - 16S, SECT. 0 REL., INDEXED, PBH I 0 + D + X, CHECK EAL
• TEST25E6 => TEST25EX - 16S, SECT. 0 REL., INDEXED, PBH I 0 + D + X, CHECK EAL
• TEST25E7 - 16S, CURRENT SECTOR REL., CHECK DECODE ENTRY POINT
• TEST25E8 => TEST25EY - 16S, CUR. SECT. REL., PBH l(RPL[01:07]ID)+X, CHECK EAH
• TEST25E9 => TEST25EY - 16S, CUR. SECT. REL., PBH l(RPL[01:07)ID)+X, CHECK EAH
• TEST25EA => TEST25EY - 16S, CUR. SECT. REL., PBH l(RPL[01:07]ID)+X, CHECK EAH
• TEST25EB => TEST25EZ - 16S, CUR. SECT. REL., PBH l(RPL[01:07]ID)+X, CHECK EAL
• TEST25EC => TEST25EZ - 16S, CUR. SECT. REL., PBH l(RPL[01:07)ID)+X, CHECK EAL

PRIME RESTRICTED

SYS VERIFY

System Initialization Detailed Description 4150 Funct. Spec.
Page 125

• TEST25ED => TEST25EZ - 16S, CUR. SECT. REL., PBH l(RPL[01:07]ID)+X, CHECK EAL
• TEST25EE => TEST25EZ - 16S, CUR. SECT. REL., PBH I (RPL[01 :07] ID}+X, CHECK EAL
• TEST25EF - TEST_TNUM
• TEST262F - 64V, DIRECT, CHECK DECODE ENTRY POINT, LOX SHORT
• TEST2630 => TEST263W - 64V, PC+ 0 + 1, CHECK EAL, POSITIVE DISPLACEMENT
• TEST2631 => TEST263W - 64V, PC+ 0 + 1, CHECK EAL, POSITIVE DISPLACEMENT
• TEST2632 => TEST263W - 64V, PC+ 0 + 1, CHECK EAL, POSITIVE DISPLACEMENT
• TEST2633 => TEST263W - 64V, PC+ 0 + 1, CHECK EAL, POSITIVE DISPLACEMENT
• TEST2634 - 64V, DIRECT, CHECK DECODE ENTRY POINT, LOA SHORT
• TEST2635 => TEST263X - 64V, PC+ 0 + 1, CHECK EAL, NEGATIVE DISPLACEMENT
• TEST2636 => TEST263X - 64V, PC+ D + 1, CHECK EAL, NEGATIVE DISPLACEMENT
• TEST2637 => TEST263X - 64V, PC+ 0 + 1, CHECK EAL, NEGATIVE DISPLACEMENT
• TEST2638 => TEST263X - 64V, PC+ 0 + 1, CHECK EAL, NEGATIVE DISPLACEMENT
• TEST2639 - 64V, DIRECT, CHECK DECODE ENTRY POINT, LDL
• TEST263A => TEST263Y - 64V, PBH I 0, CHECK EAL, ALIGNED
• TEST263B => TEST263Y - 64V, PBH I 0, CHECK EAL, ALIGNED
• TEST263C => TEST263Y - 64V, PBH I D, CHECK EAL, ALIGNED
• TEST2630 => TEST263Y - 64V, PBH I D, CHECK EAL, ALIGNED
• TEST263E => TEST263Z - 64V, PBH I D, CHECK EAL, UNALIGNED
• TEST263F => TEST263Z - 64V, PBH I D, CHECK EAL, UNALIGNED
• TEST2640 => TEST263Z - 64V, PBH I D, CHECK EAL, UNALIGNED
• TEST2641 => TEST263Z - 64V, PBH I D, CHECK EAL, UNALIGNED
• TEST2642 - 64V, INDIRECT, CHECK DECODE ENTRY POINT, LDL
• TEST2643 => TEST264W - 64V, I{PBH I D), CHECK EAH
• TEST2644 => TEST264W - 64V, I{PBH I D), CHECK EAH
• TEST2645 => TEST264W - 64V, I{PBH I D), CHECK EAH
• TEST2646 => TEST264X - 32I, I(PBH I D), CHECK EAL
• TEST2647 => TEST264X - 32I, I(PBH I D), CHECK EAL
• TEST2648 => TEST264X - 32I, I(PBH I D), CHECK EAL
• TEST2649 m> TEST264X - 32I, I{PBH I D), CHECK EAL
• TEST264A - 64V, INDIRECT, POINTER FAULT, CHECK EASH
• TEST264B - 64V, INDIRECT, POINTER FAULT, CHECK EASL
• TEST264C - TEST_TNUM
• TEST2800 - 32-BIT, ALIGNED CACHE READ, BOTH ELEMENTS OF CACHE VALID.
• TEST2801 - 32-BIT, ALIGNED CACHE READ, BOTH ELEMENTS OF CACHE VALID.
• TEST2802 - 32-BIT, ALIGNED CACHE READ, 'A' ELEMENT OF CACHE VALID ONLY.
• TEST2803 - 32-BIT, ALIGNED CACHE READ, 'A' ELEMENT OF CACHE VALID ONLY.
• TEST2804 - 32-BIT, ALIGNED CACHE READ, 'B' ELEMENT OF CACHE VALID ONLY.
• TEST2805 - 32-BIT, ALIGNED CACHE READ, 'B' ELEMENT OF CACHE VALID ONLY.
• TEST2806 - 32-BIT, ALIGNED CACHE READ, BOTH ELEMENTS OF CACHE VALID.
• TEST2807 - 32-BIT, ALIGNED CACHE READ, BOTH ELEMENTS OF CACHE VALID.
• TEST2808 - 32-BIT, ALIGNED CACHE READ, 'A' ELEMENT OF CACHE VALID ONLY.
• TEST2809 - 32-BIT, ALIGNED CACHE READ, 'A' ELEMENT OF CACHE VALID ONLY.
• TEST280A - 16-BIT, ALIGNED CACHE READ, BOTH ELEMENTS OF CACHE VALID.
• TEST280B - 16-BIT, ALIGNED CACHE READ, BOTH ELEMENTS OF CACHE VALID.
• TEST280C - 16-BIT, UNALIGNED CACHE READ, BOTH ELEMENTS OF CACHE VALID.
• TEST280D - 16-BIT, UNALIGNED CACHE READ, BOTH ELEMENTS OF CACHE VALID.
• TEST280E - 16-BIT, ALIGNED CACHE READ, 'A' ELEMENT OF CACHE VALID ONLY.
• TEST280F - 16-BIT, ALIGNED CACHE READ, 'A' ELEMENT OF CACHE VALID ONLY.
• TEST2810 - 16-BIT, UNALIGNED CACHE READ, 'B' ELEMENT OF CACHE VALID ONLY.
• TEST2811 - 16-BIT, UNALIGNED CACHE READ, 'B' ELEMENTS OF CACHE VALID ONLY.
• TEST2812 - 32-BIT, UNALIGNED CACHE READ, ACROSS MOD4 BOUNDARY, 'B' ELEMENT
• OF CACHE VALID ONLY, FOR BOTH MOD4 WORDS
• TEST2813 - 32-BIT, UNALIGNED CACHE READ, ACROSS MOD4 BOUNDARY, 'B' ELEMENT
• OF CACHE VALID ONLY, FOR BOTH MOD4 WORDS
• TEST2814 - 32-BIT, UNALIGNED CACHE READ, ACROSS MOD4 BOUNDARY .-ACROSS CACHE
• ELEMENTS, 'B' ELEMENT OF CACHE VALID FOR FIRST MOD4 WORD; 'A'
• ELEMENT OF CACHE VALID FOR SECOND MOD4 WORD
• TEST2815 - 32-BIT, UNALIGNED CACHE READ, ACROSS MOD4 BOUNDARY, ACROSS CACHE
• ELEMENTS, 'B' ELEMENT OF CACHE VALID FOR FIRST MOD4 WORD; 'A'
• ELEMENT OF CACHE VALID FOR SECOND MOD4 WORD

PRIME RESTRICTED

4150 Functional Specification
Page 126

• TEST2816 - TEST_TNUM
• TEST2830 - CHECK JUMP CONDITION CACHE UPDT
• WRITE TO CACHEA ->CACHES-> CACHEA check CUPDT toggles
• TEST2831 - CHECK JUMP CONDITION CACHE UPDT
• WRITE TO CACHES-> CACHEA -> CACHES check CUPDT toggles
• TEST2832 - CHECK JUMP CONDITION CACHE UPDT
• WRITE TO CACHEA -> CACHEA check CUPDT toggles
• TEST2833 - CHECK JUMP CONDITION CACHE UPDT
• WRITE TO CACHES-> CACHES check CUPDT toggles
• TEST2834 - TEST_TNUM
• TEST2840 => BRNCIRP - BRANCH CACHE ADDRESS= $00000000,DATA= EXPPAT,
• CHECK IRPL
• TEST2841 => BRNCIRP - BRANCH CACHE ADDRESS= $FFFFFFFFI ISETADDR,
• DATA= EXPPAT, CHECK IRPL
• TEST2842 => BRNCIRP - BRANCH CACHE ADDRESS= 01 ISETADDR,DATA= EXPPAT,
• CHECK IRPL
• TEST2843 => BRNCIRP - BRANCH CACHE ADDRESS= IRPH5SETI ISETADDR,DATA= EXPPAT,
• CHECK IRPL
• TEST2844 => BRNCIRP - BRANCH CACHE ADDRESS=WALKING ONES,DATA=EXPPAT,
• CHECK IRPL
• TEST2845 => BRNCIRP - BRANCH CACHE ADDRESS=WALKING ZEROS,DATA=EXPPAT,
• CHECK IRPL
• TEST2846 => BRNCHIT - BRANCH CACHE ADDRESS= $00000000,DATA= EXPPAT,
• JUMP ON NBCHIT
• TEST2847 => BRNCHIT - BRANCH CACHE ADDRESS= $FFFFFFFFI ISETADDR,DATA= EXPPAT,
• JUMP ON NBCHIT
• TEST2848 => BRNCHIT - BRANCH CACHE ADDRESS=01 ISETADDR,DATA= EXPPAT,
• JUMP ON NBCHIT
• TEST2849 => BRNCHIT - BRANCH CACHE ADDRESS=IRPH5SETI ISETADDR,DATA= EXPPAT,
• JUMP ON NBCHIT
• TEST284A => BRNCHIT - BRANCH CACHE ADDRESS=WALKING ONES,DATA=EXPPAT,
• JUMP ON NBCH IT
• TEST284B => BRNCHIT - BRANCH CACHE ADDRESS=WALKING ZEROS,DATA=EXPPAT,
• JUMP ON NBCH IT
• TEST284C - TEST_TNUM
• TEST2850 - TEST INCREMENT OF IRP WITH ONE GOOD BRANCH
• TEST2851 - TEST CRTN CONDITION TRUE AND GOODBRANCH FALSE, TARGET MISCOMPARE
• TEST2852 - TEST CRTN CONDITION TRUE AND GOODBRANCH FALSE, SEG MISCOMPARE
• TEST2853 - TEST CRTN CONDITION FALSE AND BCHIT FALSE, INVLD SET
• TEST2854 - TEST CRTN CONDITION FALSE AND BCHIT FALSE, INDEX MISCOMPARE
• TEST2855 - TEST CRTN CONDITION FALSE AND BCHIT TRUE
• TEST2856 - TEST CRTN CONDITION TRUE AND GOODBRANCH
• TEST2857 - TEST_TNUM
• TEST2880 - DIAGNOSTIC READ OF STLB ELEMENT 'A' LBPA
• TEST2881 - DIAGNOSTIC READ OF STLB ELEMENT 'B' LBPA
• TEST2882 - DIAGNOSTIC READ OF STLB ELEMENT 'A' LPID
• TEST2883 - DIAGNOSTIC READ OF ELEMENT 'B' LPID
• TEST2884 - DIAGNOSTIC READ OF ELEMENT 'A' ACCESS RIGHTS
• TEST2885 - DIAGNOSTIC READ OF ELEMENT 'B' ACCESS RIGHTS
• TEST2886 - DIAGNOSTIC READ OF ELEMENT 'A' LBVA
• TEST2887 - DIAGNOSTIC READ OF ELEMENT 'B' LBVA
• TEST2888 - DIAGNOSTIC READ OF ELEMENT 'A' PURGE COUNT
• TEST2889 - DIAGNOSTIC READ OF ELEMENT 'B' PURGE COUNT
• TEST28BA - READ OF SRMAL
• TEST2888 - READ OF SRMAL, CHECKING FLOPPED LBPA FROM CSS ON BBH
• TEST288C - CHECK OF STLB UPDATE ALGORITHM
• TEST288D - CHECK OF STLB HARD PARITY BITS (FRCA, FRCB)
• TEST28BE - CHECK OF STLB HASH
• TEST28BF - CHECK OF IOTLB/STLB ADDRESSING
• TEST2890 - READ OF STLB VALID BITS (BPVLDA-,BPVLDB-)
• TEST2891 - READ OF STLB PAGE MODIFIED BITS (BPUMODA,BPUMODB)

PRIME RESTRICTED

SYS VERIFY

System Initialization Detailed Description 4150 Funct. Spec.

• 1EST2892 - CHECK or FAVIOL LOGIC
• 1EST2893 - CHECK or SHARED BIT FOR STLB ELEMENT 'A'
• 1EST2894 - CHECK or SHARED BIT FOR STLB ELEMENT ·e·
• 1EST2895 - TEST_TNUM
•

Page 127

Memory diagnostics are contained in SYSVS. The overlay performs a thorough test of the MC
logic. starting with the basic data paths and going through the MT, ECCC and ECCU

detection, and verification of the refresh circuitry. The memory arrays are partially tested.

TU. constraints prevent a thorough test of the memory arrays. (Such tests would take

appmximately 15 min/8 MB of memory.) The following is an index of the tests contained in

SYSVS .

•
• IM>EX or TESTS IN SYSVS
•
•
• TEST4000 - BDL -> DATA WRITE BUFFER -> BDL
• TEST4001 - BDH -> DATA WRITE BUFFER -> BDH
• TEST4002 - BDH -> DATA WRITE BUFFER -> MD -> BDH
• TEST4003 - BDL -> DATA WRITE BUFFER -> MD -> BDL
• 1EST4004 - BBH -> ADDR WRITE BUFFER -> MA -> BDH
• TEST4005 - BBL -> ADDR WRITE BUFFER -> MA -> BDL
• TEST4006 - TESTNUM
• TEST401X - DATA WRITE BUFFER HIGH SIDE
• TEST401Y - DATA WRITE BUFFER LOW SIDE
• 1EST402X - ADDRESS WRITE BUFFER BITSf 17:24J
• TEST402Y - ADDRESS WRITE BUFFER BITSl1:16J
• TEST4028 - TESTNUM
• 1EST403X - WRITE BUFFER LOCATION ? HIT DETECT
• TEST4034 - TESTNUM
• 1EST404X - VALID WRITE BUFFER LOCATION ? BIT 0 OR 2
• TEST404Y - VALID WRITE BUFFER LOCATION ? BIT 1 OR 3
• TEST4050 - WRITE BUFFER LOCATION 3 FREE ADDRESS
• 1EST4051 - WRITE BUFFER LOCATION 2 FREE ADDRESS
• TEST4052 - WRITE BUFFER LOCATION 1 FREE ADDRESS
• TEST4053 - WRITE BUFFER LOCATION 0 FREE ADDRESS
• TEST4054 - TESTNUM
• TEST4060 - MEMORY TIMER DIAGNOSTIC ROUTINE
• TEST4061 - NO VALID BIT BYPASSES
• TEST4062 - BOTH VALID BIT BYPASSES
• TEST4063 - ONE VALID BIT BYPASS
• TEST4064 - DATAV BEFORE MRDY TEST
• TEST4065 - TESTNUM
• TEST4070 - MA SHIFTER 4 MBYTE UNI MODE
• 1EST4071 - MA SHIFTER 16 MBYTE UNI MODE
• TEST4072 - TESTNUM
• TEST4080 - REFRESH TEST
• TEST408V - 64 BIT MEMORY WRITE TEST
• TEST408W - 32 BIT EVEN MEMORY WRITE TEST
• TEST408X - 32 BIT ODD MEMORY WRITE TEST
• TEST408Y - 16 BIT MEMORY WRITE TEST
• TEST408Z - UNALIGNED 32 BIT MEMORY WRITE TEST
• TEST408B - TESTNUM
• lEST40C6 - 32-BIT, ALIGNED CACHE MISS, BOTH ELEMENTS or CACHE INVALID,
• FORCE UPDATE ON 'A' ELEMENT
• TEST40C7 - 32-BIT, ALIGNED CACHE MISS, BOTH ELEMENTS or CACHE INVALID,
• FORCE UPDATE ON 'A' ELEMENT
• TEST40C8 - 32-BIT, ALIGNED CACHE MISS, BOTH ELEMENTS or CACHE INVALID,

PRIME RESTRICTED

4150 Functional Specification
Page 128

• FORCE UPDATE ON 'A' ELEMENT
• TEST40C9 - 32-BIT, ALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID.
• FORCE UPDATE ON 'A' ELEMENT
• TEST40CA - 32-BIT, ALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'B' ELEMENT
• TEST40CB - 32-BIT, ALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE 'ON 'B' ELEMENT
• TEST40CC - 32-BIT, ALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'B' ELEMENT
• TEST40CD - 32-BIT, -ALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'B' ELEMENT
• TEST40CE - 32-BIT, UNALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'B' ELEMENT
• TEST40CF - 32-BIT, UNALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'B' ELEMENT
• TEST40D0 - 32-BIT, UBALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'B' ELEMENT
• TEST40D1 - 32-BIT, UNALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'B' ELEMENT
• TEST40D2 - 16-BIT, ALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'A' ELEMENT OF CACHE
• TEST40D3 - 16-BIT, ALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'A' ELEMENT OF CACHE
• TEST40D4 - 16-BIT, ALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'B' ELEMENT OF CACHE
• TEST40D5 - 16-BIT, ALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'B' ELEMENT OF CACHE
• TEST40D6 - 16-BIT, UNALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'A' ELEMENT OF CACHE
• TEST40D7 - 16-BIT, UNALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'A' ELEMENT OF CACHE
• TEST40D8 - 16-BIT, UNALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'B~ ELEMENT OF CACHE
• TEST40D9 - 16-BIT, UNALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'B' ELEMENT OF CACHE
• TEST40DA - 32-BIT, UNALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'A' ELEMENT ACROSS MOD4 BOUNDARY, MISS ON
• FIRST WORD
• TEST40DB - 32-BIT, UNALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'A' ELEMENT ACROSS MOD4 BOUNDARY, MISS ON
• FIRST WORD
• TEST40DC - 32-BIT, UNALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'A' ELEMENT ACROSS MOD4 BOUNDARY, MISS ON
• SECOND WORD
• TEST40DD - 32-BIT, UNALIGNED CACHE MISS, BOTH ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'A' ELEMENT ACROSS MOD4 BOUNDARY, MISS ON
• SECOND WORD
• TEST40DE - 32-BIT, UNALIGNED CACHE MISS, 'A' ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'A' ELEMENT ACROSS MOD4 BOUNDARY, MISS ON
• FIRST WORD
• TEST40DF - 32-BIT, UNALIGNED CACHE MISS, 'A' ELEMENTS OF CACHE INVALID,
• FORCE UPDATE ON 'A' ELEMENT ACROSS MOD4 BOUNDARY, MISS ON
• FIRST WORD
• TEST40E0 - 32-BIT, UNALIGNED CACHE MISS, 'B' ELEMENT OF CACHE INVALID,
• FORCE UPDATE ON 'B' ELEMENT ACROSS MOD4 BOUNDARY, MISS ON
• SECOND WORD
• TEST40E1 - 32-BIT, UNALIGNED CACHE MISS, 'B' ELEMENT OF CACHE INVALID,
• FORCE UPDATE ON 'B' ELEMENT ACROSS MOD4 BOUNDARY, MISS ON
• SECOND WORD
• TEST40E2 - 16-BIT, ALIGNED WRITE, BOTH ELEMENTS OF CACHE INVALID CACHE
• SHOULD NOT GET UPDATED, DUE TO CACHE MISS

PRIME RESTRICTED

SYS VERIFY

System Initialization Detailed Description 4150 Funct. Spec.
Page 129

• TEST40E3 - 16-BIT, ALIGNED WRITE, 'A' ELEMENT OF CACHE VALID CACHE
• SHOULD GET UPDATED
• TEST40E4 - 16-BIT, ALIGNED WRITE, BOTH ELEMENTS OF CACHE VALID BOTH
• ELEMENTS CACHE SHOULD GET UPDATED
• TEST40E5 - 32-BIT, ALIGNED WRITE, BOTH ELEMENTS OF CACHE INVALID CACHE
• SHOULD NOT GET UPDATED
• TEST40E6 - 32-BIT, ALIGNED WRITE, BOTH ELEMENTS OF CACHE INVALID CACHE
• SHOULD NOT GET UPDATED
• TEST40E7 - 32-BIT, ALIGNED WRITE, 'B' ELEMENT OF CACHE VALID CACHE
• SHOULD GET UPDATED
• TEST40E8 - 32-BIT, ALIGNED WRITE, 'B' ELEMENT OF CACHE VALID CACHE
• SHOULD GET UPDATED
• TEST40E9 - 32-BIT, UNALIGNED WRITE, BOTH ELEMENTS OF CACHE INVALID CACHE
• SHOULD NOT GET UPDATED
• TEST40EA - 32-BIT, UNALIGNED WRITE, BOTH ELEMENTS OF CACHE INVALID CACHE
• SHOULD NOT GET UPDATED
• TEST40EB - 32-BIT, UNALIGNED WRITE, 'A' ELEMENT OF CACHE VALID FIRST
• 16-BIT WORD. FIRST 16-BIT WORD OF CACHE SHOULD GET UPDATED,
• NOT THE SECOND WORD
• TEST40EC - 32-BIT, UNALIGNED WRITE, 'A' ELEMENT OF CACHE VALID FIRST
• 16-BIT WORD. FIRST 16-BIT WORD OF CACHE SHOULD GET UPDATED,
• NOT THE SECOND WORD
• TEST40ED - 32-BIT, UNALIGNED WRITE, ''A' ELEMENT OF CACHE VALID SECOND
• 16-BIT WORD. SECOND 16-BIT WORD OF CACHE SHOULD GET UPDATED,
• NOT THE FIRST WORD
• TEST40EE - 32-BIT, UNALIGNED WRITE, 'A' ELEMENT OF CACHE VALID SECOND
• 16-BIT WORD. SECOND 16-BIT WORD OF CACHE SHOULD GET UPDATED,
• NOT THE FIRST WORD
• TEST40EF - 32-BIT, UNALIGNED WRITE, 'A' ELEMENT OF CACHE VALID BOTH 16_BIT
• WORDS. BOTH 16-BIT WORDS OF CACHE SHOULD GET UPDATED.
• TEST40F0 - 32-BIT, UNALIGNED WRITE, 'A' ELEMENT OF CACHE VALID BOTH 16-BIT
• WORDS. BOTH 16-BIT WORDS OF CACHE SHOULD GET UPDATED.
• TEST40F1 - 32-BIT, ALIGNED CACHE READ, 'A' ELEMENT OF CACHE HAS BAD PARITY.
• BOTH SIDES OF CACHE SHOULD GET UPDATED.
• TEST40F2 - 32-BIT, ALIGNED CACHE READ, 'B' ELEMENT OF CACHE HAS BAD PARITY.
• BOTH SIDES OF CACHE SHOULD GET UPDATED.
• TEST40F3 - TEST_TNUM
• TEST40F4 - CACHE MISS CAUSED BY LBPOWN+.
• TEST40F5 - CACHE MISS CAUSED BY LBPOWN+.
• TEST40F6 - TESTNUM
• TEST4160 - ECCC JUMP CONDITION, EVEN ACCESS
• TEST4161 - ECCC JUMP CONDITION, ODD ACCESS
• TEST4162 - ECCU TRAP TEST, EVEN ACCESS
• TEST4163 - ECCU TRAP TEST, ODD ACCESS
• TEST4165 - TESTNUM
• TEST418X - ECCC DATA TEST HIGH SIDE
• TEST419X - ECCC DATA TEST LOW SIDE
• TEST41A0 - TESTNUM
• TEST41CX - ECCC SYNDROME TEST
• TEST41E0 - ECCC ERROR ADDRESS TEST
• TEST41E1 - ECCC RECYCLE TEST
• TEST41E2 - TESTNUM

SYSV6 tests the basic I/O data paths, character and decimal instruction hardware, and the

system timers. It also tests parity checking throughout the whole machine. The following is

an index of the tests contained in SYSV6 .

•
• INDEX OF TESTS IN SYSV6
•

PRIME RESTRICTED

4150 Functional Specification
Page 130

•
• TEST6000 - PARTIAL PRODUCT BUS
• TEST6001 - MULTIPLY TEST
• TEST6002 - DIVIDE TEST, ALTSELECT - ALHCOUT - LINK - RIE16
• TEST6003 - DIVIDE TEST, ALTSELECT - ALHCOUT - LINK - RIE16
• TEST6004 - DIVIDE TEST, ALTSELECT - ALHCOUT - LINK - RIE16
• TEST6005 - DIVIDE TEST, ALTSELECT - ALHeOUT - LINK - RIE16
• TEST6006 - TEST_TNUM
• TEST6020 - TEST OF ARGTSBIT - S BIT SET
• TEST6021 - TEST OF ARGTSBIT - S BIT RESET
* TEST6022 - TEST OF ARGTLBIT - L BIT SET
• TEST6023 - TEST OF ARGTLBIT - L BIT RESET
• TEST6024 - TEST OF ARGTBR1=0 AND ARGTBR2=0
• TEST6025 - TEST OF ARGTBR1=0 AND ARGTBR2=1
• TEST6026 - TEST OF ARGTBR1=1 AND ARGTBR2=0
• TEST6027 - TEST OF ARGTBR1=1 AND ARGTBR2=1
• TEST6028 - TEST OF NARGEBIT TRUE - XB E BIT = 0, BIT FIELD = 0
• TEST6029 - TEST OF NARGEBIT FALSE - XB E BIT= 1, BIT FIELD= 0
• TEST602A - TEST OF NARGEBIT FALSE - XB E BIT = 0, BIT FIELD= 8
• TEST6028 - TEST OF NARGEBIT FALSE - XB E BIT = 0, BIT FIELD= 4
• TEST602C - TEST OF NARGEBIT FALSE - XB E BIT = 0, BIT FIELD = 2
• TEST602D - TEST OF NARGEBIT FALSE - XB E BIT = 0, BIT FIELD =
• TEST602E - XB AS GR(TBR)
• TEST602F - TLB AS GR(TBR)
• TEST6030 - TPB AS GR(TBR)
• TEST6031 - TSB AS GR(TBR)
• TEST6032 - TEST_TNUM
• TEST6040 - LCC HARDWARE, NO BYTE SWAP ON BBE, IAC CBYTESWAP NOT ASSERTED
* RMAH04+ = 1
• TEST6041 - LCe HARDWARE.NO BYTE SWAP ON BBE, CBYTESWAP ASSERTED, RMAH04+ a

• TEST6042 - LCC HARDWARE, BYTE SWAP ON BBE, CBYTESWAP ASSERTED, RMAH04+ = 0
• TEST6043 - sec HARDWARE, BDI MODE [H,L], HIGH SIDE, CSTORE NOT ASSERTED
• RMAH04+ = 1
• TEST6044 - sec HARDWARE, BDI MODE [H,L]. LOW SIDE. CSTORE NOT ASSERTED
• RMAH04+ = 1
• TEST6045 - sec HARDWARE, BDI MODE [H,H]. HIGH SIDE, eSTORE ASSERTED
• RMAH04+ = 0
• TEST6046 - sec HARDWARE, BDI MODE [H,H], LOW SIDE, CSTORE ASSERTED
• RMAH04+ = 0
• TEST6047 - sec LOGIC, BDI MODE [E,E]. HIGH SIDE, CSTORE ASSERTED, RMAH04+ = 1
• TEST6048 - sec LOGIC, SDI MODE [E,E], LOW SIDE, CSTORE ASSERTED. RMAH04+ = 1
• TEST6049 - TEST_TNUM
• TEST6100 => TEST610W - TEST OF ZMSTRT,
• TEST6101 => TEST610W - TEST OF ZMSTRT,
• TEST6102 => TEST610W - TEST OF ZMSTRT,
• TEST6103 => TEST610W - TEST OF ZMSTRT,
• TEST6104 => TEST610X - TEST OF ZMSTRT,
• TEST6109 => TEST610Y - TEST OF ZMSTRT,
• TEST610E => TEST610Z - TEST OF ZMSTRT,
• TEST6110 - TEST OF ZMSTRT, FXSRCDST=1
• TEST6111 => TEST611X - TEST OF ZMSTRT,
• TEST6112 => TEST611X - TEST OF ZMSTRT,
• TEST6113 => TEST611X - TEST OF ZMSTRT,
• TEST6114 - TEST OF ZMSTRT, FXBITS=00
• TEST6115 - TEST OF ZMSTRT, FXBITS=01
• TEST6116 - TEST OF ZMSTRT, FXBITS=10
• TEST6117 - TEST OF ZMSTRT, FXBITS=11
• TEST6118 - TEST OF OBTAIN, MODE= 8888
• TEST6119 - TEST OF OBTAIN, MODE= ABBS
• TEST611A - TEST_TNUM
• TEST6120 - TEST OF OBTAIN, MODE= AABB

MODE= AAAA,
MODE= AAAA,
MODE= AAAA,
MODE= AAAA,
MODE= BAAA,
MODE= BBAA,
MODE= BBBA,

FXSRCDST=0
FXSRCDST=0
FXSRCDST=0

ZFF0&:1=00,
ZFF0&:1=00,
ZFF0&:1=00,
ZFF0&:1=00,
ZFF0&:1=01,
ZFF0&:1=10,
ZFF0&:1=11 ,

PRIME RESTRICTED

ZFF2&:3=00
ZFF2&:3=01
ZFF2&:3=10
ZFF2&:3=11
ZFF2&:3=00
ZFF2&:3=01
ZFF2&:3=10

SYSVERIFY

System Initialization Detailed Description

• TEST6121 - TEST OF OBTAIN, MOOE= AAAB
• TEST6122 - TEST OF UNLPCK, MOOE= BABB
• TEST6123 - TEST OF UNLPCK, MOOE= BBAB
• TEST6124 - TEST OF UNLPCK, MOOE= BAAB
• TEST6125 - TEST OF UNLPCK, MOOE= BBBA
• TEST6126 - TEST OF UNLPCK, MODE= BBAA
• TEST6127 - TEST OF UNLPCK, MOOE= BAAA
• TEST6128 - TEST OF UN'LUNP, MODE= BABB
• TEST6129 - TEST OF UNLUNP, MODE= BBAB
• TEST612A - TEST OF UNLUNP, MODE= BAAB
• TEST612B - TEST OF UNLUNP, MODE= BBBA
• TEST612C - TEST OF UNLUNP, MODE= BBAA
• TEST612D - TEST OF UNLUNP, MODE= BAAA
• TEST612E - TEST OF ZSTRD=0
• TEST612F - TEST OF ZSTRD=1
• TEST6130 - TEST OF ZBITS (ZFF01
• TEST6131 - TEST OF ZBITS (ZFF01
• TEST6132 - TEST OF ZBITS (ZFF01
• TEST6133 - TEST OF ZBITS (ZFf01
• TEST6134 - TEST_TNUM

ALIGNMENT),
ALIGNMENT),
ALIGNMENT),
ALIGNMENT),

• TEST6300 - ASCil8 TEST, SET/RESET
• TEST6301 - PACKER PROM, PACKED FORMAT

FZBITS=00,
FZBITS=01,
FZBITS=10,
FZBITS=11,

ZMFAST
ZMFAST
ZMFAST
ZMFAST

• TEST6302 - PACKER PROM, {SIGN) IAC FOR NEGATIVE EMBEDDED SIGN
• TEST6303 - PACKER PROM, (SIGN) IAC FOR NEGATIVE UNEMBEDDED SIGN
• TEST6304 - PACKER PROM, (SIGN) IAC FOR POSITIVE EMBEDDED SIGN
• TEST6305 - PACKER PROM, (SIGN) IAC FOR POSITIVE UNEMBEDDED SIGN
• TEST6306 - XADU TEST, DECIMAL ALU CORRECTORS AND UNPACK LOGIC
• TEST6307 - XADP, DECIMAL ALU CORRECTORS AND PACK LOGIC
• TEST6308 - TEST OF DECNE JUMP CONDITION
• TEST6309 - TEST OF BTD CONVERSION
• TEST630A - TEST OF OTB CONVERSION
• TEST630B - TEST_TNUM
• TEST6400 - TEST FOR OMX RF 0
• TEST6401 - TEST FOR OMX RF 1
• TEST6402 - TEST FOR OMX RF 2
• TEST6404 - TEST FOR OMX RF 4
• TEST6408 - TEST FOR OMX RF 8
• TEST640F - TEST FOR OMX RF 15
• TEST6410 - TEST FOR OMX RF 16
• TEST6417 - TEST FOR OMX RF 23
• TEST6418 - TEST FOR OMX RF 27
• TEST641D - TEST FOR OMX RF 29
• TEST641E - TEST FOR OMX RF 30
• TEST641F - TEST FOR OMX RF 31
• TEST6420 - TEST_TNUM
• TEST6500 - JUMP ON GPICOV FALSE (USING INHIBIT EXTERNAL MODAL BIT)
• TEST6501 - JUMP ON GPICOV FALSE (USING STOPPIC IAC}
• TEST6502 - JUMP ON PIC FALSE (USING RESETPOV)
• TEST6503 - JUMP ON PIC TRUE (PIC HAS TO OVERFLOW HERE)
• TEST6504 - JUMP ON GPICOV TRUE
• TEST6505 - JUMP ON GTIMEROV FALSE USING DSCPTMR
• TEST6506 - JUMP ON TMR FALSE USING DSCPTMR
• TEST6507 - JUMP ON TMR TRUE (TMR HAS TO OVERFLOW HERE)
• TEST6508 - JUMP ON GTIMEROV TRUE
• TEST6509 - TEST_TNUM
• TEST6600 - EXPPAT -> BDH(01:16) -> BPD(01:16) -> BDH(01:16).
• TEST6601 - EXPPAT -> BDH(01:16) ~> BPD(01:16) -> BDL(01:16),
• TEST6602 - EXPPAT -> BDL(01:16) -> BPD(01:16) -> BDL(01:16),
• TEST6603 - EXPPAT -> BDL(01:16) -> BPD(01:16) -> BDH(01:16),
• TEST6604 - USERF JUMP CONDITION TRUE
• TEST6605 - USERF JUMP CONDITION FALSE

PRIME RESTRICTED

PARITY OFF
PARITY OFF
PARITY OFF
PARITY OFF

4150 Funct. Spec.
Page 131

4150 Functional Specification
Page 132

• TEST6606 - DEVICE 20 OR 4 JUMP CONDITION TEST (TRUE AND FALSE)
• TEST6607 - CMI Burst Mode 646s - 1st word OUT and IN
• TEST6608 - CMI Burst Mode 646s - 2nd word OUT
• TEST6609 - CMI Burst Mode 646s - 3rd word OUT
• TEST660A - CMI Burst Mode 646s - 4th word OUT
• TEST660B - TEST_TNUM
• TEST7000 - CLEAR OUT ALL ,'PE'S, JUMP ON FMCHK
• TEST7001 - TEST_TNUM
• TEST7010 - JUMP ON RCCER FALSE (NO PARITY ERROR)
• TEST7011 - JUMP ON RCCER TRUE (RCCPER1)
• TEST7012 - JUMP ON RCCER TRUE (RCCPER2)
• TEST7013 - JUMP ON RCCER TRUE (RCCPER3)
• TEST7014 - JUMP ON RCCER TRUE (RCCPER4)
• TEST7015 - JUMP ON RCCER TRUE (RCCPERS)
• TEST7016 - JUMP ON RCCER TRUE (RCCPER6)
• TEST7017 - JUMP ON RCCER TRUE (RCCPER7)
• TEST7018 - JUMP ON RCCER TRUE (RCCPERB)
• TEST7019 - TEST_TNUM
• TEST7020 - TEST OF BAD PARITY, BAH, WALKING ONES
• TEST7021 - TEST OF BAD PARITY, BAH, WALKING ZEROS
• TEST7022 - TEST OF BAD PARITY, BAL, WALKING ONES
• TEST7023 - TEST OF BAD PARITY, BAL, WALKING ZEROS
• TEST7024 - TEST OF BAD PARITY, BAE, WALKING rn4ES
• TEST7025 - TEST OF BAD PARITY, BAE, WALKING ZEROS
• TEST7026 - TEST_TNUM
• TEST7030 - IAC FORCEBADP RCD32A DATA
• TEST7031 - IAC FORCEBADP RCD32B DATA
• TEST7032 - IAC FORCEBADP RCD32A DATA - JUMP (NCMISS)
• TEST7038 - IAC ISBADP RCD32A INDEX, WALKING ONES THROUGH INDEX
• TEST7039 - IAC ISBADP RCD32B INDEX, WALKING ONES THROUGH INDEX
• TEST703A - HARD CACHE PE, GOOD DATA.GOOD INDEX - NO PE
• TEST703B - HARD CACHE PE, RCD32A BYTE 1
• TEST703C - HARD CACHE PE, RCD32A BYTE 2
• TEST703D - HARD CACHE PE, RCD32A BYTE 3
• TEST703E - HARD CAHCE PE, RCD32A BYTE 4
• TEST703F - HARD CACHE PE, RCD32A INDEX
• TEST7040 - HARD CACHE PE, RCD32B BYTE 1
• TEST7041 - HARD CACHE PE, RCD32B BYTE 2
• TEST7042 - HARD CACHE PE, RCD32B BYTE 3
• TEST7043 - HARD CACHE PE, RCD32B BYTE 4
• TEST7044 - HARD CACHE PE, RCD32B INDEX
• TEST7045 - TEST_TNUM
• TEST7050 - NFATALCPE JUMP CONDITION TRUE
• TEST7051 - NFATALCPE JUMP CONDITION FALSE
• TEST7052 - TEST_TNUM
• TEST7060 - CHECK OF STLB PARITY ERROR REPORTING
• TEST7061 - HARD STLB PARITY ERRORS, STLBA AND STLBB
• TEST7062 - TEST_TNUM
• TEST7070 => TEST707X - BO BYTEWISE PARITY TRAP TEST
• TEST7071 => TEST707X - BO BYTEWISE PARITY TRAP TEST
• T[ST7072 => TEST707X - BD BYTEWISE PARITY TRAP TEST
• TEST7073 => TEST707X - BO BYTEWISE PARITY TRAP TEST
• TEST7074 => TEST_TNUM
• TEST7078 => TEST707Z - MA 6-BIT-WISE PARITY TRAP TEST
• TEST7079 => TEST707Z - MA 6-BIT-WISE PARITY TRAP TEST
• TEST707A => TEST707Z - MA 6-BIT-WISE PARITY TRAP TEST
• TEST707B => TEST707Z - MA 6-BIT-WISE PARITY TRAP TEST
• TEST707C - ECCU Trap test
• TEST707D - MISSING MEMORY MODULE TRAP TEST
• TEST707E - ABORT WRITE ON MA PARITY TEST
• TEST707F - TEST_TNUM

PRIME RESTRICTED

SYS VERIFY

System Initialization Detailed Description 4150 Funct. Spec.
Page 133

• TEST7100 - CHECK OF FMTRP LOGIC
• TEST7101 - CHECK OF FSPE LOGIC
• TEST7102 - CHECK OF MEMTRAP ON ALIGNED ADDRESS
• TEST7103 - CHECK OF MEMTRAP, CAUSED BY PARITY ERROR ON ALIGNED ADDRESS
• TEST7104 - CHECK OF ACCESS VIOLATION ON ALIGNED ADDRESS
• TEST7105 - CHECK OF PAGE MODIFIED TRAP ON ALIGNED ADDRESS
• TEST7106 - CHECK OF READ ADDRESS TRAP ON ALIGNED ADDRESS
• TEST7107 - CHECK OF MEMTRAP ON UNALIGNED ADDRESS
• TEST7108 - CHECK OF MEMTRAP, CAUSED BY PARITY ERROR ON UNALIGNED ADDRESS
• TEST7109 - CHECK OF ACCESS VIOLATION ON UNALIGNED ADDRESS
• TEST710A - CHECK OF PAGE MODIFIED TRAP ON UNALIGNED ADDRESS
• TEST710B - CHECK OF READ ADDRESS TRAP ON UNALIGNED ADDRESS
• TEST710C - CHECK OF READ ADDRESS TRAP ON SEGMENT WRAP
• TEST7110 - POINTER FAULT, 64V, INDIRECT, I(PB + D)
• TEST7111 - POINTER FAULT, 32I, INDIRECT, I(BR + D)
• TEST7112 - TEST OF IRPL HOLD DUE TO MEMORY TRAP
• TEST7113 - TEST_TNUM
• TEST7200 - RING ZERO ADDRESS, NO RIGHTS, NO ACCESS VIOL.
• TEST7201 - RING 1, NO RIGHTS; CACHE READ; GET ACCESS VIOL.
• TEST7202 - RING 1, NO RIGHTS; MEMORY WRITE; GET ACCESS VIOL.
• TEST7203 - RING 1, NO RIGHTS; RTN TO FETCH; GET ACCESS VIOL.
• TEST7204 - RING 1, GATE ACCESS; ISSUE IACGATE; NO ACCESS VIOL.
• TEST7205 - RING 1, GATE ACCESS; DO NOT ISSUE IACGATE; GET ACCESS VIOL.
• TEST7206 - RING 1, READ ACCESS ONLY; CACHE READ; NO ACCESS VIOL.
• TEST7207 - RING 1, READ ACCESS ONLY; MEMORY WRITE; GET ACCESS VIOL.
• TEST7208 - RING 1, READ ACCESS ONLY; RTN TO FETCH; GET ACCESS VIOL.
• TEST7209 - RING 1, READ AND WRITE ACCESS; CACHE READ; NO ACCESS VIOL.
• TEST720A - RING 1, READ AND WRITE ACCESS; MEMORY WRITE; NO ACCESS VIOL.
• TEST720B - RING 1, READ AND WRITE ACCESS; RTN TO FETCH; GET ACCESS VIOL.
• TEST720C - RING 1, EXECUTE ACCESS ONLY; CACHE READ; GET ACCESS VIOL.
• TEST720D - RING 1, EXECUTE ACCESS ONLY; MEMORY WRITE; GET ACCESS VIOL.
• TEST720E - RING 1, EXECUTE ACCESS ONLY; RTN TO FETCH; GET ACCESS VIOL.
• TEST720F - RING 1,EXECUTE AND WRITE ACCESS; CACHE READ; GET ACCESS VIOL.
• TEST7210 - RING 1, EXECUTE AND WRITE ACCESS; MEMORY WRITE; GET ACCESS VIOL.
• TEST7211 - RING 1, EXECUTE AND WRITE ACCESS; RTN TO FETCH; GET ACCESS VIOL.
• TEST7212 - RING 1, EXECUTE AND READ ACCESS; CACHE READ; NO ACCESS VIOL.
• TEST7213 - RING 1, EXECUTE AND READ ACCESS; MEMORY WRITE; GET ACCESS VIOL.
• TEST7214 - RING 1, EXECUTE AND READ ACCESS; RTN TO FETCH; NO ACCESS VIOL.
• TEST7215 - RING 1, ALL ACCESS; READ CACHE; NO ACCESS VIOL.
• TEST7216 - RING 1, ALL ACCESS; MEMORY WRITE; NO ACCESS VIOL.
• TEST7217 - RING 1, ALL ACCESS; RTN TO FETCH; NO ACCESS VIOL.
• TEST7218 - RING 3, NO RIGHTS; CACHE READ; GET ACCESS VIOL.
• TEST7219 - RING 3, NO RIGHTS; MEMORY WRITE; GET ACCESS VIOL.
• TEST721A - RING 3, NO RIGHTS; RTN TO FETCH; GET ACCESS VIOL.
• TEST721B - RING 3, GATE ACCESS; ISSUE IACGATE; NO ACCESS VIOL.
• TEST721C - RING 3, GATE ACCESS ONLY; DO NOT ISSUE IACGATE; GET ACCESS VIOL.
• TEST721D - RING 3, READ ACCESS ONLY; CACHE READ; NO ACCESS VIOL.
• T£ST721E - RING 3, READ ACCESS ONLY; MEMORY WRITE; GET ACCESS VIOL.
• T£ST721F - RING 3, READ ACCESS ONLY; RTN TO FETCH; GET ACCESS VIOL.
• TEST7220 - RING 3, READ AND WRITE ACCESS; CACHE READ; NO ACCESS VIOL.
• TEST7221 - RING 3, READ AND WRITE ACCESS; MEMORY WRITE; NO ACCESS VIOL.
• TEST7222 - RING 3, READ AND WRITE ACCESS; RTN TO FETCH; GET ACCESS VIOL.
• TEST7223 - RING 3, EXECUTE ACCESS ONLY; CACHE READ; GET ACCESS VIOL.
• TEST7224 - RING 3, EXECUTE ACCESS ONLY; MEMORY WRITE; GET ACCESS VIOL.
• TEST7225 - RING 3, EXECUTE ACCESS ONLY; RTN TO FETCH; GET ACCESS VIOL.
• TEST7226 - RING 3, EXECUTE AND WRITE ACCESS; CACHE READ; GET ACCESS VIOL.
• TEST7227 ·- RING 3, EXECUTE AND WRITE ACCESS; MEMORY WRITE; GET ACCESS VIOL.
• TEST7228 - RING 3, EXECUTE AND WRITE ACCESS; RTN TO FETCH; GET ACCESS VIOL.
• TEST7229 - RING 3, EXECUTE AND READ ACCESS; CACHE READ; NO ACCESS VIOL.
• TEST722A - RING 3, EXECUTE AND READ ACCESS; MEMORY WRITE; GET ACCESS VIOL.
• TEST722B - RING 3, EXECUTE AND READ ACCESS; RTN TO FETCH; NO ACCESS VIOL.

PRIME RESTRICTED

4150 Functional Specification
Page 134

• TEST722C - RING 3, ALL ACCESS; READ CACHE; NO ACCESS VIOL.
• TEST722D - RING 3, ALL ACCESS; MEMORY WRITE; NO ACCESS VIOL.
• TEST722E - RING 3, ALL ACCESS; RTN TO FETCH; NO ACCESS VIOL .
•
•

17.2 SYSCLR

SYS VERIFY

After the functional microcode has been loaded, the DP releases SYSCLR-. This should cause

microcode to start executing from address 200 octal as discussed in chapter 19. Sysclr

microcode disables traps to prevent bogus traps from occurring while it accomplishes the

following system initialization tasks:

1. Clear the microsequencer stack and RPA.

2. Clear 400 octal register file locations and the modals.

3. Initialize RP and IRP to 1000 octal.

4. Loads all the constant registers.

5. Initialize the PCU.

6. Invalidate the cache, branch cache, and STLB.

7. Reset all I/O signals, initialize the Write Buffer, memory controller diagnostic
register, and register file copy of same.

8. Size memory.

· 9. Reset all addressable latches.

10. Clear out any parity errors.

11. Update keys with live keys.

12. Enable traps and send the DP a 47 hex to inform it that Sysclr is complete.

This same microcode is executed whenever the SYSOFF command is issued from the system

console.

PRIME RESTRICTED

Pipeline Control Unit Detailed. Description 4150 Funct. Spec.
Page 135

18. Pipeline Control Unit Detailed Description

18.1 Instruction Flow Overview

The Pipeline Control Uilit (PCU) of the 4150 is almost the same as that of the 9755 system.

The central processor is implemented as a ten stage synchronous pipeline, capable of handling

up to 5 machine -level instructions simultaneously. The time for each stage to complete its

particular operation is termed a ''beat". A beat is two ticks of the system clock. Optimally,

machine-level instructions can enter into and depart from the pipeline every two beats. Since

instructions enter the pipeline only once every other beat the industry refers to this machine

as a 5 stage pipeline with a basic cycle of two beats. A beat in this type of machine is

often referred to as a minor cycle.

Figure 18-1 diagrams the concept of instructions flowing through the pipeline. Across the top

are numbered beats which mark time progressing toward the right; vertically are shown

activities of the various stages. Within the diagram, capital letters denote indiviaual Pi\.

level instructions, while numerals indicate additional microcode instructions needed to complete

a PMA level instruction. Figure 18-1 and the associated explanation are highly simplified, and

are intended simply to give a flavor of how instructions proceed through the pipeline.

FIG. 18-1. Conceptual Flow of Pipelined Instructions

TIME -->

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
STAGE 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

1 P>MA IEI IFI IGI IHI I I I I I I I I JI IK I I I LI I IMI I
2 INST I IEI IFI IGI IHI I I I I I I I I JI I IKI I ILi IMI
3 DEC IDI IEI IFI IGI I I I I IHI I I I IJ I I IKI I ILi IM
4 BR,X I IDI IEI IFI IGI I I I I IHI I I I I IJ I I fKI ILi
5 BCY ICI IDI IEI IFI 111121 IGI IHI III I IJ I I IKI IM
6 EA,RCM I ICI IDI IEI IFI 111 121 IGI IHI I I I I I IJ I IKI
7 OP,RF IBI ICI IDI IEI IFI 111121 IGI IHlul III I IJI IK
8 EX1 I IBI ICI IDI IEI IFI 111 121 IGI I IHI I I I I I JI
9 EX2 fAI IBI tel IDI IEI IFJ 11 I 121 IGI I IHI I I I I I J
10 WR I IAI IBI tel IDI IEI f Fl 11 I 121 I IGI I I HI I I I

At time l, the pipeline has five instructions (E, D, C, B, and A) being simultaneously

processed in the five "odd" ~ges; instruction "A" is in the final stage of execution at the

end of the pipeline, while instruction "E" is just entering the pipeline. During time period 2,

the same five instructions are being processed, this time in the "even" stages. Similarly

during time periods · 3 through 8, the pipeline is processing at optimum efficiency. At each

point in time, 5 machine level instructions are being processed. Every two beats an

instruction is retired and a new one enters the pipeline.

PRIME RESTRICTED

Stage
Active -....
Clocks -..

_ IAC FLUSH .. __.._ ,..

Stage
Stage

Clock Clock Clocks ..
Enables ... Distribution ... -..

Memory Busy PCU Hold -..
Cache Miss __.,, Condition - d,.. Unaligned Rea Generator .. Unaligned Write:_ ..
EAF Step

-..
....

RP Trap
_

NX Done
......
....

TX Done
,..
_

Figure 18-2 Block Diagram of Pipeline Control Unit

Pipeline Control Unit Detailed. Description 4150 Funct. Spec.
Page 137

There are many instances in which a portion of the pipeline can become blocked. Examples

of this are:

• Multiple microcode steps required for a PMA instruction

• Cache misses

• Unaligned operand read cycles

• Traps

• Incorrect pre-fetch sequences (which require refilling the pipeline)

• Register collisions

• Time extensions to perform certain arithmetic operations in the execution unit.

To illustrate one such example, assume PMA instruction "F" requires two extra microcode step

to complete its function. In Figure 18-1, these two extra microcode steps are indicated by the

l's and 2's that appear in the pipeline from time periods T9 through T16. Since PMA

instruction F is not a terminal microcode step (one which retires an instruction), the front of

the pipeline must be stopped. No more pre-fetching can occur until the Execution (E) unit

can complete the two extra microcode steps. At time period Tl3, the pipeline control unit

"realizes" that microcode step 2 is terminal, and therefore instructions can continue to advance

in the front end of the pipeline.

Another example of delaying the front end of the pipeline is evident in time period T18.

Assume PMA instruction "H" is a memory reference instruction requiring 32 bits of data and

further assume that the effective address is odd. The odd effective address requires cache to

be cycled twice in order to access both words of data. This operation is performed

automatically in hardware. During time period Tl 7, stage 7 loads the autoincremented address

into the cache address registers while reading the first portion of the data. During T18, stage

8 reads the second portion of the desired 32 bits of data. It is readily seen that an unaligned

data read results in a beat penalty. Once the unaligned operation is complete the pipeline can

again process with full parallelism (T19).

One final example of a pipeline delay is shown during time period T21. PMA instruction "I"

requires extra time to complete an arithmetic operation. The execution phase is given an extra

beat, which holds up the entire pipeline for 1 beat.

Delays and conflicts increase the ideal instruction processing time of 125 nsec.

PRIME RESTRICfED

4150 Functional Specification
Page 138

18.2 PCU Operation

Instruction Flow Overview

The PCU mechanism is a state machine that maintains the status information about all

instructions in the pipeline. It consists of three basic elements:

• registers containing bits denoting which stages are currently active or processing
data

• combinatorial logic which collects conditions from all boards which may delay
stage clocking

• drivers which distribute the clock stage enables to all boards

If a stage is active and there are no external conditions received by the PCU indicating that

the stage should be delayed, the enable line will be driven active to all boards handling that

particular stage. The external conditions that the PCU receives include:

• Instruction information and exception and register collisions from the Instruction (I)
unit.

• Memory exception, cache miss, and branch cache conditions from the Storage
management (S) unit.

• Microcode specified timing information that controls the length of the execution and
microcode control word formation stages.

• Fetch cycle traps and exception conditions from the E unit, such as integer
exception, parity error, etc.

Some of the capabilities of the PCU include:

• Holding the front end of the pipeline (stages 1-6) while cycling multi-microcode
through the E unit (fetching microcode and executing stages 7-10).

• Altering the flow of instructions based on control information provided by the
microcode, An example of this is flushing the pipeline following execution of a
conditional branch instruction when it is determined that the branch cache has
predicted incorrect program flow.

• Extending all even stages if extra time is required for a particular stage to
complete its operation.

• Alter the relative overlap of stages 6 and 8 to facilitate different types of
microcode sequencing, including live conditional branches.

• Force NOPs (NOP _STEP) into the E unit while instruction refill occurs in the
front of the pipeline. This makes the E unit do nothing while the next
instruction is being fetched.

PRIME RESTRICTED

Pipeline Control Unit Detailed Description 4150 Funct. Spec.
Page 139

• Suspend all pipeline operations during non-overlappable operations such as cache
miss access to main memory.

• Introduce separation between sequential instructions in the front end of the pipeline
in order to handle, "register-usage collisions" between instructions.

• Hold an instruction in the fetch stage if a memory trap occurs. This allows all
instructions ahead in the pipeline to complete execution so that the exception can
be processed in the correct order.

18.3 PCU Control

The pipeline can conceptually be thought of as cons1stmg of a front end and a back end. The

front end of the pipeline consists of stages 1 through 6, and is responsible for fetching and

decoding the instruction stream. The signals ENCS01 + ... ENCS05+ and ENIN.IT + are generated and

distributed to the rest of the processor. The stage clocks CS1 + CS6+ indicate the successful

completion of stage 1 ... stage 6. Note that the signal ENINIT + is used to generate CS6+.

At this point, it is important to make the distinction between the signals CS05+ and

CS05BCY +, and the signals CS06+ and TRCML+. The signal CSOS+ and CS06+ are stage

clocks in the front end of the pipeline indicating the successful completion of stage 5 and

stage 6 respectively. These clocks, like all the front end pipeline clocks, occur only ONCE per

instruction.

The signals CSOSBCY + and TRCML+ are used in the back end of the pipeline. The signal

CSOSBCY+ is used by the CS unit to clock the BCY address for the control store. This clock

occurs at the end of almost every ODD beat. The exception to this would be during CRTN

ODD-ODD sequences discussed below. The signal TRCML+ follows every CS05BCY + on the

EVEN beat. The signal TRCML+ occurs at every CS6+, which is a reason why many people

confuse the two signals. Like all the clock signals in the back end of the pipeline,

CS05BCY + and TRCML+ may occur MANY times during an instruction if the instruction

requires more than one microcode step to complete execution. These two microcode fetch

stages are symbolized by F and T, respectively, throughout this document.

The rest of the pipeline consists of stages 7 through 10, and is responsible for executing

program instructions. Unlike the front end of the pipe where each stage is executed only once

per instruction, the stages in the back end of the pipeline are executed several times during

multi-microcode instructions. The signals ENCS07+ .. ENCS10+, along with ENCSOSBCY+ and

ENTRCML+, are generated and distributed throughout the processor. The back end of the pipe

is microcode driven, while the front end of the pipe is controlled entirely by the hardware.

At the beginning of each stage of the pipeline, that stage's active signal is asserted. If there

are no external conditions inhibiting the successful completion of the stage, the stage clock is

asserted at the end of the beat and the stage active signal is reset. The stage active signals are

PRIME RESTRICTED

4150 Functional Specification
Page 140

PCU Control

clocked by registers and remain active until the successful completion of that particular stage.

If there does exist a condition that inhibits the successful completion of the stage, the stage

active signal remains active until the hold condition goes away. For example, at the

beginning of stage 1, the signal STlA+ is asserted. If there are no external conditions

inhibiting the successful completion of stage l, the signal ENCSOl + is asserted and distributed

to the rest of the processor. At the end of the beat this signal resets the STlA+ signal,

signaling the successful completion of the stage. The signal ENCSOt+ also generates a CSt+

stage clock, and is used to generate all other clocks that are to be active at CSt +. CSt +

indicates the end of stage 1. In general, CSn+ indicates the end of stage n.

Figure t8-3 shows a simplified S-R flip-flop view of the conditions for setting and resetting

the stage clock active signals. Figure 18-4 shows a simplified AND gate view for issuing

stage clock enable signals. Refer to these figures during the following sections.

PRIME RESTRICTED

FLUSH+

CS2+

CS1+
------tR

CS2 +

FLUSH+

CS3+

CS4 +

FLUSH+

CSS+

TRCML+

STARTR+

STRTPIPE+

s
c
R

s
c
R

CSOSBCY+
------tR

TRCML+ S

CS?+ ----R

CS8+
------tS

CS9+ ----R

ST1A+

ST3A+

STSA+

STSBCYA+

ST7A+

ST9A+

CS1 + s
FLUSH+ c
CS2+

R

CS3 + s
FLUSH+ c
CS4+

R

css + s
FLUSH+ c
CS6+

R

CSOSBCY+ S

TRCML+
-------iR

CS?+ ----s

CS8+ ----R

CS9+ -------.s

CS10+ ----R

ST2A+

ST4A+

·sT6A+

TRCMLA+

ST8A+

ST10A+

Figure 18-3 S-R Flip-Flop View of Stage Active Functionality

ST1A+

ST2A+

FEVEN-

ST3A+
RDY1T06+

HLDCS03-

FE VEN-

ST5A+

RDY1T06+

HLDCS05-

FEVEN-

STSBCYA+
HLDCS5BCY­

FEVEN-

ST?A+

HLDCS07-

FEVEN-

ST9A+

HLDCS09-

FEVEN-

ENCS01+

ENCS03+

ENCS05+

ST2A+

RDY1T06+

HLDCS02-

FEVEN+

ST4A+

RDY1T06+

HLDCS04-

FEVEN+

ST6A+

RDY1T06+

HLDCS06-

FEVEN+

TR CM LA+

ENCS05BCY+ HLDTRCML-

ENCS07+

ENCS09-

FEVEN+

ST8A+

HLDCS08-

FEVEN+

ST10A+

HLDCS10-

FEVEN+

ENCS02+

ENCS04+

ENINIT+

ENTRGML+

ENCS08+

ENCS10+

Figure 18-4 AND Gate View of Stage Clock Enables

Pipeline Control Unit Detailed Description 4150 Funct. Spec.
Page 143

18.3.1 Front End Control

The PCU is initialized on a master clear by forcing the stage active (ST Ax) signals to the

inactive state. The front end (stages 1 to 6) of the pipe is started when the back en.d (stages

F to 10) issues IAC FqJSH (via microcode). The signal FIACFLUSH+ is used to sequence PCU

stages 1 to 6 when beginning program instruction execution or when flushing the pipeline is

necessary because of a wrong guess during a conditional branch instruction.

The front end of the pipe is globally gated by the signal RDYl T06+. This signal indicates

that stages 1 through 6 should cycle if there is nothing else holding it off. This signal is

asserted when the microcode does a return-to-fetch or a return from Effective Address

Formation (EAF) microcode routine. It is also asserted when the pipe is refilling following a

flush.

The signal FEVEN+ is fundamental to the generation of most of the ENCS signals. It acts to

force all of the even stages to be segregated from all of the odd stages in the pipe. Whe·

FEVEN+ is active only the even ENCS signals (ENCS02 ... ENCS10) will be generated. In tL

normal case, FEVEN+ is merely the equivalent of STSBCYA+. However, there are special cases

in which we need to generate successive ODD beats. One example of this is when the

microcode algorithm does a conditional return-to-fetch (CRTN). The condition code register (on

the E unit) is clocked at CS09+. If the condition is true and the return taken, we need to

generate a CSl+ one beat later. Thus in these cases the PCU will conditionally enable stages

1, 3 and 5 one beat after stage 7 and 9 of the CRTN, with the even stages happening one

beat after that. This sequence is illustrated in Figure 18-5.

FIG. 18-5. Consecutive Odd Pipeline Stages Illustration

CRTN taken {ODD-ODD sequence)

T-8-0 (CRTN step)
F-7-9

1-3-5·---
T-8-0

18.3.2 Back End Control

CRTN not taken

T-8-0 (CRTN step)
F-7-9
~~- <===dead beat

T-8-0

The back end of the pipeline begins with the clocking of the microcode address (BCY)

CSOSBCY+. The signal FEVEN+ segregates the even stage clocks from the odd stage clocks.

The TXNX hardware contro~s the clock enables in the back end of the pipeline. (See section

18.4.1.) The microcode uses it to specify timing information that controls the duration of the

clock intervals in the back end of the pipeline.

The microcode can specify that only the back end of the pipeline be sequenced, as during

PRIME RESTRICTED

4150 Functional Specification
Page 144

PCU Control

multi-microcode execution, or sequence the front end of the pipeline when a return (RTN+ is

active) is specified and the microcode stack is empty (NRCSFL+ is active).

18.4 External PCU Hold, Conditions

The PCU can extend the length of and/or delay the occurrence of the various clock stages.

These hold conditions are discussed in the following subsections. Figure 18-6 shows a block

diagram of this functionality, while Table 18-1 defines the actions taken.

Memory Write
Memory Read
Memory Busy

PCU Hold
HLDCS01-

Cache Miss HDLCS02-Condition
Unaligned Read Generator HLDCS03-
Unaligned Write HLDCS04-
EAF Step HLDCS05-
RP Trap HLDCS06- (HLDINIT-)

Unaligned RP Trap HLDCSSBCY-
NX Done HLDTRCML-

TX Done HLDCS07-
FIWAIT HLDCS08-
FINOP HLDCS09-

FT RAP HLDCS10-
GENAP

FIG. 18-6. PCU Hold Condition Block Diagram

PRIME RESTRICTED

Pipeline Control Unit Detailed Description 4150 Funct. Spec.
Page 145

TABLE 18-1. Pipeline Hold Conditions

Condition CS1 CS.2 CS3 CS4 CS5 CS5BCY CS6 TRCML CS7 cse CS9 CS10

Memory Busy on Write x x x x x x x x x x x x

Memory Busy on Read x x x x x x x x x x x x

Cache Miss x :x x x x x x x x x x x

Uno I igned Read x x x x x x x x x x x x

Uno I igned Write x x x x x x x x x x x x

EAF Step x x

RP Trap x

Uno I igned RP Trap x

NX Done x x x x

TX Done x x x x x

Register Collision FI WAIT)(x x x x

FT RAP x x x x x

Register Col I is ion FINOP x x x

GENAP x

18.4.1 Variable Length Microcode Step Timing

The microcode specifies timing information that controls the length of the execution and

microcode control and formation stages. These microcode extensions are specified in the TME

field by Time eXtension (TX) and Next microstep eXtension (NX) conditions.

The TX portion of the time extension causes CS08+ for the current step and TRCML+ for the

next step to be delayed by the number of TMCLKs specified (one TMCLK is half of a beat).

The NX portion of the extension delays the occurrence of TRCML+ for the next step from

CS08+ of the current step by the number of TMCLKs specified. If both fields are zero, CS08+

for a microcode step occurs 4 TMCLKs (two beats) after TRCML+ for that step and the

TRCML+ of the next step is coincident with CS08+ for the current step. Figure 18-7

illustrates these actions.

The TX specifier can be 0-6 TMCLKs, while the NX specifier can be 0-8 TMCLKs. The TX

specifier can be an odd number (half beat granularity), but the NX specifier can only be an

even number (full beat granularity).

PRIME RESTRICTED

4150 Functional Specification
Page 146

External PCU Hold Conditions

FIG. 18-7. TX NX Illustrations

A. No microcode extension : TX=0,NX=0

T-8-0 LOA
F-7-9
T-8-0 STA

8. TX microcode extension TX=2,NX=0

T-8-0 LOA
F-7-9
--0

T-8 STA

C. NX microcode extension: TX=0,NX=2

T-8-0 LOA
F-7-9-
-8-0
T-- STA

F-7-9

0. TX,and NX microcode extension: TX=2,NX=2

T-8-0 LOA
F-7'-9-
--0
-8-
T-- STA

F-7-9

The TXNX logic is implemented in the following manner: The TX specification can be an

even or odd number. An even TX means that TRCML+ and CS08+ will be delayed on full

beat boundaries. For example, a TX= 2 inserts a one beat (2 TMCLKs) delay, while a TX= 4

inserts a 2 beat delay. An odd TX means the delay will be on half beat boundaries. For

example, a TX= 1 will insert a half beat delay (1 TMCLK), while a TX= 3 will insert a 1

and 112 beat delay (3 TMCLKs).

Even TXs and NXs are handled by down counters which are clocked at the end of every

beat. The counter is loaded with the number of full beat delays specified by the TX or NX

field at CS7+. These counters generate the signals TXDONE- and NXOONE- when the delay

has finished. For example, a TX=2 would load the TX counter with 1 at CS7+. The

counter would make TXDONE- inactive during stage 8, thereby holding off the TRCML+ of

the next instruction and CS08+ for the current instruction for one beat. A beat after CS7+

the counter would count down, and the signal TXOONE- would be activated.

PRIME RESTRICTED

Pipeline Control Unit Detailed Description 4150 Funct. Spec.
Page 147

The odd portion of the TX specification is implemented by inserting a one TMCLK delay in

the signal FENEOB+ (sent to all boards) during stage 8. This pushes the end of the beat after

CS7+ out a half a beat. Therefore, for a TX=3, FENEOB+ would be delayed by a half beat

creating a TX=1, and the TX counter would delay TRCML+ and CS08+ one beat for an

additional TX of 2.

18.4.2 EHOLDs

When the S unit needs more time to complete an operation it uses the signal FEHOLD+ to

insert extra beats in the pipeline. This signal inhibits all clock enables in the PCU. There are

five instances in which holding the pipeline is required:

1. Writes to memory when the Memory Controller (MC) is busy: The signal
FEHOLD+ is raised at CS7+ if a memory access is requested .and the MC is
asserting MBSY-. The PCU is held in the hold state until MBSY- is removed.

2. Cacne misses: During cache misses the signal FEHOLD+ is asserted to suspend all
pipeline clocks until the cache miss is completed.

3. Unaligned writes: If microcode is doing an unaligned write and no traps are
pending and no RMA destination has been called out in the current step, FEHOLD+
is asserted for one beat starting at the rising edge of TRCML+. This extra beat is
used to clock the cache address register with the address for the write of the
second word. (If microcode was loading RMA in the write step, the delay
associated with that load is used to get the incremented address and the extra beat
is not necessary.)

4. Explicit memory reads: If a microstep is waiting on data from an explicit read
(the signal IACMRDY- asserted) but the data is not available yet from the MC,
FEHOLD+ is held active until the data becomes available (MDA TA V + is asserted).

S. Unaligned reads: If microcode is doing an unaligned read, FEHOLD+ is asserted at
CS7+ and held (for two beats unless a cache miss occurs) until the end of the
unaligned read operation. (See unaligned read discussion in chapter 24 for more
details.)

18.4.3 Traps

The S Unit may detect a memory "trap" condition at CS2+ of an attempted instruction fetch.

The possible conditions are:

• Address trap

• Access violation

• Any of several problems starting with an STLB miss.

PRIME RESTRICTED

4150 Functional Specification
Page 148

External PCU Hold Conditions

The basic ground rules for handling these conditions (referred to as RP traps) are as follows:

1. An instruction must not be allowed to enter the E unit if the fetch of any
portion of that instruction generated an RP trap. The data supplied by such a fetch
is invalid and must not be used. (An exception is the Address Pointer (AP) part of
a GENAP instruction. 'The E unit reads the AP as part of the execution phase, and
can deal with any traps that arise at that point.)

2. All instructions which have already been successfully fetched must be executed to
completion before attempting to deal with an RP trap. The flow of execution may
change before the trapping instruction would have entered the E unit, and a trap
must never be raised unless the trapping instruction is going to be executed. An
example: Suppose a segment is executing in which some of the pages are defined.
Suppose further that the last instruction in the last defined page is a non-branch­
cached jump instruction back to some previous word in this page. In this case we
will prefetch into the undefined page before executing the JMP that changes the
flow of execution. If we went ahead and tried to deal with the STLB miss (and
subsequent page fault), PRIMOS would halt due to an attempted page fault to an
undefined page.

3. A branch cache gaffe trap must take precedence over an RP trap. Consider a long
unaligned instruction with a branch cache hit on the first word that sends IRP off
to an undefined page. (This is an error on the part of the branch cache). On the
attempted fetch of the second word of the instruction, we get an RP trap
condition. The branch cache gaffe mechanism will also be trying to deal with this
situation. We must not allow any attempt to deal with the RP trap since we did
not really intend to fetch this erroneous second word.

4. The RP trap mechanism must work for targets of XEC instructions.

5. The RP trap mechanism must be prepared for the trap condition to disappear before
the E unit gets around to attempting to deal with the trap. An example is the
case of prefetch into a new page causing an STLB miss, but one of the
instructions already in the pipe happens to resolve the STLB miss as part of an
operand fetch.

18.4.3.1 Implementation Details

It is necessary to provide some mechanism of getting to the correct trap handler and providing

the faulting address. We chose to transfer the faulting address from IRP to RMA in the S

unit. (RMA actually means ERMA, cache address, or STLB address in this context.) This has

several advantages over alternative schemes:

1. The trap condition can be "re-created" when we are ready, and the normal operand
trap mechanism exploited, including the microcode entry points.

2. The trapping address is accessible simply by reading "RMA". No special mechanism
is required for providing the trapping address to the microcode.

PRIME RESTRICTED

Pipeline Control Unit Detailed Description 4150 Funct. Spec.
Page 149

3. We make one last check for. existence of the trap condition, ensuring that we
never take a trap that has already been serviced.

All RP traps are taken out of the NOP _STEP, since it is required that we finish all previous

instructions and not initiate any new ones. This provides a clean mechanism for restarting the

pipe after dealing with the trap without attempting to re-execute already completed

instructions.

The cycling of the front end of the pipe is frozen on detection of an RP trap by inhibiting

ENCS03+. The back end is allowed to continue to cycle in order to complete any instructions

already fetched, except for the case of an unaligned long instruction with an RP trap on the

second word. For these cases ENCSOS+ is also frozen. Generation of ENCSOl + and ENCS02+

is not frozen, in order to continuously retry the fetch and generate the trap out of· the

NOP _STEP at the proper time. Note that CSl + is needed to reload the cache address registers

with IRP, and that CS2+ is needed to relatch the RPTRAP- signal. Figure 18-8 illustrates the

pipeline flow when an RP trap is detected.

It is very important to note that while we do freeze the IRP address that caused the RP trap,

it is possible to overwrite this frozen address via BD. For example, we can load IRP with a

new address if we jump over the trapping address. In this case we would load IRP via BD

with the new address and flush the front end of the pipeline. By continuing to generate

CSl and CS2 clocks the RP trap would be cleared when the jump address was loaded into

IRP.

The S unit is obliged to inhibit any change to IRP at CS2.5 of any instruction which raises

an RP trap. This enables dealing with the trap later since the trapping IRP is frozen. The S

unit must also not allow any RP cache misses to occur on RP traps, since in the case of an

RP STLB miss, the physical address may not be valid.

PRIME RESTRICTED

4150 Functional Specification
Page 150

External PCU Hold Conditions

1
2

FIG. 18-8. Pipeline Flow For RP Trap

Instruction i+4 causes an RP trap. This trap is not taken
until all instructions ahead of it have finished execution.

instruction IRP=1000 (Octa I)

1 3 i+1 =1002
2 4 6 T

1 3 5 F 7 i+2 =1004
2 4 6 T B

1 3 5 F 7 9 i+3 =1006
2 4 6 T B 0

1 3 5 F 7 9 i+4 =1010
2

1
2

1
2

1

4 6 T B 0 •1 FINISHED
5 F T 9 i+4 =1010

6 T 8 0 i+1 FINISHED
F 7 9 •2 i+4 =1010
T B 0 i+2 FINISHED

F 7 9 i+4 =1010
T 8 0 i+3 FINISHED

F Enter Trap Code
T

F 7

Notes:
•1 Instruction i+4 causes RP trap at next CS2+

Next CS3+ is inhibited unti I we hove resolved
the potential trap.
Signal RPTRAP- is generated at CS2+.

•2 The signal FEXNOP+ goes active, signifying that
there ore no longer any instructions left in
the front end of the pipe I ine and that the
next microcode entry point wil I be the NOP_STEP.

18.4.4 Miscellaneous

Given an instruction i requiring microcode assistance during the EAF stage, CS3+ of instruction

i+l and CS1+ of instruction i+2 are delayed until the E unit goes from the EAF microcode to

the actual execution microcode.

During GENAPs (3 word instructions) ENCS04+ of instruction i+ 1 is inhibited for two beats.

During a 5-9 register file collision, CS6+ of instruction i+2 and CS8+ of instruction i+t are

inhibited for one beat.

PRIME RESTRICTED

Pipeline Control Unit Detailed Description 4150 Funct. Spec.
Page 151

18.S 9755 and 4150 Comparisons

The 4150 and the 9755 PCUs are functionally identical.

18.6 Clock Distribut~on

The master clock lines in the 4150 are among the most important signals in the processor.

They have very -high fan-outs because they drive many registers. A synchronous system's

reliability is based on the premise that a noise-free clock is available.

The 4150 has two oscillators, one at 32 MHZ to generate the nominal clock rate (TMCLK-)

and one at 34 MHZ to generate the high frequency clock rate (TMCLKHF-). These oscillators

feed a 2-to-1 multiplexer. Normally the multiplexer select line points to the 32 MHZ

oscillator. If the Diagnostic Processor issues an high frequency command (used during frequency

margining), the mux is switched to select the 34 MHZ oscillator. (The. 4050's nominal clock

rate is 30 MHz. It uses the same 34 MHz high frequency clock rate as the 4150.)

The multiplexer generates four outputs, one for each board in the system.. The signals

generated are TMCLK-E, TMCLK-IS, TMCLK-CMI, and TMCLK-PDA. Each board uses an

74AS1804 to buffer its version of the TMCLK signal and to generate positive versions of the

clock with which to drive all the registers on that board.

The clock line lengths are controlled such that each board receives the signal at approximately

the same time. The CMI board, which generates the master clock signals to all the boards,

receives its TMCLK version off the backplane as well. The signal TMCLK-CMI is generated

on the CMI board and driven onto the backplane. The CMI then receives this signal on

another pin of the backplane. This is done so that each board on the system receives its

version of the system clock at approximately the same time.

18.7 Critical Paths

1 beat paths (62.5 nsec)

Generating RPTRAP- (at TRCDIE+) at the end of stage 2 and preventing all stage 3 clocks

from occurring at the end of the beat. The following stage 3 clocks need to be held:

• TRCDIE+ -> FMTRPA+ -> HLD3- -> AENCS03- -> ENST3A+ -> keeping ST3A+
from being reset at the end of the beat. Time = 57.0 ns

• TRCDIE+ -> FMPTRPA+ -> HLD3- -> AENCS03- -> ENTRPST+ -> keeping TRPST+
from going active at the end of the beat. Time = 57.0 ns

PRIME RESTRICTED

4150 Functional Specification
Page 152

Critical Paths

Generating a Return to Fetch at TRCML+, which in turn starts the front end of the pipe

moving at the end of the beat. TRCML+ -> RCMSxx -> RTNTOFCH- -> RDY1T06+ ->

AENCSOl- -> ENSTlA+ -> reset of STlA+ at the end of the beat. Time = 57.0 ns

Generating a Conditional Return to Fetch (CRTN+) on the E unit at CS9+, and then

generating CSl+, CS3+, and· CSS+ stage clocks in 1 and 1/2 beats. TSETCC+ -> CCxx -> JC09

-> PCRTN+ -> GCRTN+ -> ENSTlA+ -> reset of STlA+. Time = 79.5 ns

Memory traps inhibiting a potential cache miss at the end of the beat. TRCDIE+ ->

FMTRPA+ -> DISMISSPE-IS(22H) -> GHOLD- -> ENFCMISS -> holding FCMISS+ from going

active at the end of the beat. Time = 52.5 ns

Memory traps inhibiting GHOLD+ signal from holding off stage clocks at the end of the beat

if a cache miss is pending.

• IS stage clock timing: TRCDIE+ -> FMTRPA+ -> DIMISSPE-IS -> CMISSNDIS- ->

GHLOORNEOB+ and stopping the inhibit of all sta.ge clocks at the end of the beat.
Time= 54.5 ns

• E stage timing: (CMI timing almost identical) TRCDIE+ -> FMTRPA+ ->

DISMISSPE-IS -> CMISSNDIS -> GHLDORNEOB+ -> stopping the inhibit of all stage
clocks at the end of the beat. Time = 60.5 ns

Cache miss detected and stopping all the stage clocks at the end of the beat. Note no memory

trap detected.

• IS board timing: TRCDIE+ -> CMISS-Al -> CMISS+ -> CMISSNDIS- ->

GHLDORNEOB+ -> inhibiting next stage clocks from occurring at the end of the
beat. Time = 56.5 ns

• E board timing: (CMI timing almost identical) TRCDIE+ -> CMISS-Al -> CMISS+ ->

CMISSNDIS- -> GHOLOORNEOB+ -> inhibiting all stage clocks from occurring at
the end of the beat. Time = 62.5 ns

FEHOLD+ preventing TCADR+ from occurring at the end of the beat. FEHOLD+ ->

ENTRMCL-IS -> ENTCADRA- -> ENTCADR+ -> stopping TCADR+ from going active at the

end of the beat. Time = 57.0 ns

TX and NX steps pushing out even stage clocks which would have occurred at the end of the

beat.

• Pushing out TCADR+: NXDONE- -> ENTRCML-IS -> ENTCADRA- -> ENTCADR+
-> stopping TCADR+ from occurring at the end of the beat. Time = 60.0 ns

• Pushing out FSELSRMA+: TXDONE- -> ENCS08-IS -> ENCS08+IS -> PENSELSRMA­
-> ENSELSRMA+ -> pushing out FSELSRMA+. Time = 62.5 ns

PRIME RESTRICTED

Pipeline Control Unit Detailed Description 4150 Funct. Spec.
Page 153

Inhibit clocking FSELSRMA+ at CS7+ of memory write if an RP trap occurred during

TRMCL+: TRCDIE+ -> FMTRPA+ -> GTRAP+ -> PENSELSRMA+ -> ENSELSRMA+ ->

inhibiting FSELSRMA+ from going active at the end of the beat. Time = 61.5 ns

18.8 Timing Diagrams

FIG. 18-9. Stage Clocking Example

TMCLK+ -1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-
FENEOB+ 1-1 1-1 1-1 ,_
ST1A+ ,_

•1
ENCS01+ I I

CS01+

ST2A+
•1

ENCS02+

CS02+

ST3A+
•1 •1

ENCS03+ I

CS03+

ST4A+
•1

ENCS04+

CS04+

Notes:
•1 The sig.nals ENCS01+, ENCS02+, ENCS03+, and ENCS04+ are not

register outputs. When the signals become active
in the beat are depended on the various hold conditions
that gate them.

18.9 Partitioning
.

Clock distribution is implemented on every board as necessary and appropriate. The master

system clock, TMCLK, is generated on the CMI board, which is also responsible for generating

odd TXs. The microsequencer also resides on the CMI, which is discussed in detail in Chapter

30. Trap sequences are initiated by the E unit, which is discussed in Chapter 32. The

remainder of the PCU functionality is implemented on the IS board, which is discussed in

Chapter 31.

. PRIME RESTRICTED

4150 Functional Specification
Page 154

PRIME RESTRICTED

Control Store Unit Detailed Description 41SO Funct. Spec.
Page 1S5

19. Control Store Unit Detailed Description

The Control Store (CS) unit is responsible for holding and retrieving microcode bits, generating

the next microinstruction address from information in the current .microinstruction, and

distributing microcode bits to the other logic units as needed.

The microinstruction word is discussed in chapter 14.

The control store is loaded by the Diagnostic Processor (DP). The DP interface is discussed in

chapter 16.

PRIME RESTRICTED

0

c

B

A

8 7 6 5 q 3 2

1111 - - -
[------------------------------------
- I. - -· r-EJ--::- -- --

11'12 ~--,

-)) ~' :0 - ~ 7

CS2

<~

MICRO-SEQUENCER

COORDL LOSJC

-

r-----"'~\')OACNTR\..1•
,;

IUXD!ET

SE1.B01• _ _:::r 16

16

~-
I / FEIF))

MICROSEDtelCER
~----,...,

ll'TR

lf.5.6.7.U.U.16

BCYCSS-16)

MICROSEIXENCER

11''11' EIFfllll

""
3.S.9.1B.12. l3.15

I

I
I I
I I
I
I
I
I
I

I
I I
I
I
I
I
I I
I

I
I
I I
I
I
I
I
I
I I
I I
I I
I
I
I

rFCl.K•A

--- - - - - --- ----------'

8 7

~ -- ------------ ------ -----------------~~ --8----.;;.;;,;L~ - - -- _,
CPl.F.EO CHTRl..3 CNTRL.2
tFfEO SY1ClJ't CNTRL3 l'FQ.l'(tfl

CPIRl< >dl CNmLl S'r'SCLR PA.. WRJTECS

=LR > ~ PF(LK =TH
l'f'f"IR"l P\IRFRIL LOFIJRSCYl

'"'""' F1l:Y

~l
EllltUI

~--~ /WRITE

L-.~~roRE

BYSCLR
SYNCLK

SY!ICLR
VRllCCS

STR!n:9

IOUTrol

PLUP

Owe-
IRITECD

~------·---~

s 5 q

Figure 19-1 Block Diagram of Control Store

0
OIRCNTftU1 PffiITY

ux;tc
H>-R 20 I

/ ..
--7-j_

... I~>=
2
7 " BCro..! Ill 121 . : I

c

31

TRC!L

I C~OL STD~ "'" OOTPUT I

B

I LBIJ PAllE 221 I A
PRitE cat'UTER. It.:.

FRllll-.IAll.

CS: BLOCK DiflCAfln

3 2

Control Store Unit Detailed Description 4150 Funct. Spec.
Page 157

19.1 Control Store Memory

The CS memory is a 16K x 80-bit memory. The address to the CS memory is referred to as

BCY. (On an ancient Prime machine, addresses were referred to as Y, leading to the name

Bus Control Y. The name has, unfortunately, stuck.) The 'RAMs ·used are 16K x 4 RAMs
'

with an access time of 25 nanoseconds.

The CS memory ·is loaded by the DP or PDA during system initialization. The following

sequence of DP interface transactions is executed to load the CS memory:

1. Load RBCYH.

2. Load RBCYL.

3. Write CS. This writes the first 8 bits of the current CS memory address.

4. Repeat step 3 nine more times to write the rest of the current 80-bit word.

5. Repeat steps 1, 2, 3, and 4 until the entire CS memory has been written.

Reading the CS memory is very similar to writing it. The Write CS command in step 3

above would be replaced with a Read CS.

Note that the entire 80-bit microword must be written each time a microaddress is accessed.

There is no provision for writing selected microword fields only.

The CS can be loaded by either the DP or the PDA. It can't tell the difference between the

two.

19.2 Microinstruction Sequencing

The currently executing microinstruction contains information on how to generate the next

microinstruction's address in the CS and CU fields; These fields, combined with information

from other functional units, are input to the microsequencer, which produces the next

microinstruction address. Some examples of information coming from other units which might

affect microinstruction sequencing are jump conditions, traps, and effective address formation

signals.

Table 14-2 .shows the CS and CU field definitions. It is reprinted here as Table 19-1. The

table shows the possible choices for next BCY generation under normal operation. Each will

be discussed in turn, followed by a discussion of cases when abnormal things, such as traps,

occur.

PRIME RESTRICTED

4150 Functional Specification Microinstruction Sequencing
Page 158

TABLE 19-1. CS and CU Field Definitions

CS Field {RCM CU Bits 1-2 I CU Operation
Bi.ts 49-51) {RCM Bi ts 32-33) I

000 RTN
001 JUMP
010 00 DECODE
010 01 BDH branch
010 10 LOA
010 11 GOTO
011 EMIT
100 CRTN
101 CALL w/ JUMP
110 CALL w/ GOTO
111 PUSH w/ EMIT

19.2.1 Normal Microinstruction Sequencing

A new BCY value is generated during each stage 5 BCY. (Recall the difference between

stage 5 and stage 5 BCY as discussed in chapter 17.2.) The address is clocked into Register

BCY (RBCY) at CS5BCY +. The CS memory is accessed during the next beat, and clocked or

latched as necessary at Trigger Register Control Memory Late (TRCML+). (Why late ? Being

early wouldn't work, and it's very difficult to be precisely punctual in these matters. In

other words, the meaning of late in TRCML+ was lost with the meaning of using Y to

indicate an address.)

Microinstruction sequencing always starts from the same CS memory address, 200 octal. This

is set by the DP or PDA, and can be changed by either. The signal START- is a

synchronized version of SYSCLR- sent by the DP. This signal causes the microsequencer to

keep RBCY = 200 octal. When the first CS5BCY + clock period starts after SYSCLR- is

released, the first microinstruction's bits are fetched.

The first microinstruction is executed twice after SYSCLR- is released. This is to ensure traps

get turned off in the CPU until the microcode gets a chance to clean the machine up. This

happens only on the first release of SYSCLR- after power on.

19.2.1.1 RTN

The microsequencer includes a microinstruction stack for use in microcode subroutine calls and

returns. When a RTN operation is done, the top microinstruction on the stack is fetched as

the next inicroinstruction for execution, and the stack pointer is updated appropriately.

A RTN operation may be done when the stack is empty. This is called a Return to Fetch

Level (RTNFL), and indicates that the next PMA instruction in the pipe should enter the E

unit.

PRIME RESTRICTED

Control Store Unit Detailed Description 4150 Funct. Spec.
Page 159

The signals listed below are associated with the RTN operation:

• NRCSFL-
This signal tells the PCU that the stack is empty. If the microcode does a return,
the PCU will start the front of the pipe.

• PUSH- and GIACPOP-

•

•

These two signals define what type of stack operation is going to occur so that
the TWRITE+ and TSTACK+ clock pulses can be generated.

NOOP+
This signal
NOP_STEP
unit time
NOPs.

FWRITE-

is generated by the I unit and causes the microsequencer to go to the
when it is doing a Return to Fetch level. This signal allows the I

to decode the next instruction while the E unit continues executing

This signal triggers the stack write pulse circuit inside the microsequencer which
generates the write pulse for the microcode stack. The stack write pulse is
generated when TSTACK+ or a trap occurs and is active for 1/2 beat after CSS+.

19.2.1.2 JUMP

The JUMP operation looks at the Jump Conditions (JCs) received from the other units. The

microsequencer uses the JCs to generate Jump Address (JA) bits. These bits become the four

least significant BCY bits, allowing the microsequencer to go to the address specified by the

result of the jump operation. Figure 19-2 shows how the BCYs are formed during a jump.

FIG. 19-2. JUMP BCY Formation

JUMP

Microcode Syntax: JUMP (n conds) TO (nu2 labels), n = 1 ,2,3,4.
can do up to a 16 way branch

Interpretation of CU field:

cu 1-2 cu 0,3,4 cu 5,6,7 cu 8,9,10 cu 11,12,13 cu 14,15,16

BCY11-12 JA 13 I JA 14 JA 15 JA 16 I CODE GRP I

Next address g~nerated:

BCYJ-10 11-12 13 14 15 16

RCH03-10 CU 1,2 JA I JA I JA I JA I

Note: RCH is the register which holds the current BCYs.

The jump net selects the specified condition(s) and sends them to the microsequencer, which

PRIME RESTRICTED

4150 Functional Specification Microinstruction Sequencing
Page 160

uses them to generate BCY{13:16}+. The microcode assembler makes sure that unspecified

jump conditions (the other three on a two-way jump, for example) are correct.

19.2.1.3 DECODE and LDA

The DECODE operation generates a microsequencer address which is determined by the result

of the decode net and EAF unit output. Logical Decode net Address (LDA) does the same

operation. Figure 19-3 shows the BCY formation for these operations.

FlG. 19-3. DECODE and LDA BCY Formation

LOA

Microcode Syntax: CS= (2,LDA)

Next address generated:
BCY03-16

From decode net or EAF unit

DECODE

Microcode Syntax: CS= (2,DECODE)

Next address generated:
BCY03-16

From decode net or EAF unit

19.2.1.4 BDH Branch

The BDH Branch operation generates a microsequencer address which is determined by the

value placed on BDH{Ol:OS}+, which is then clocked into the RBCY register. This register is

clocked on 8-bit boundaries. Figure 19-4 shows the BCY formation for this operation.

FlG. 19-4. BDH Branch BCY Formation

BDH branch

Microcode Syntax: CS= (2,BDH)

Next address generated:
BCY03-16

RBCY

PRIME RESTRICTED

Control Store Unit Detailed Description 4150 Funct. Spec.
Page 161

Some signals associated with BDH branch operations include:

e TRBCYH-
This clock triggers the high side of the RBCY register inside the microsequencer
during control swre writes and BDH branches. The data is loaded 8 bits at a
time over BDH. 'This clock goes active at TRCML+ and stays active for one beat.

e TRBCYL-
This clock triggers the low side of the RBCY register inside the microsequencer
during control store writes and BDH branches. The data is loaded 8 bits at a
time over BDH. This clock goes active at TRCML+ and stays active for one beat.

19.2.1.S GOTO

The GOTO operation generates a microsequencer address which is determined by the data

contained in the CU field of the microcode word. Figure 19-5, shows the BCY formation for

this operation.

FIG. 19-5. GOTO BCY Formation

GOTO

Microcode Syntax: GOTO label

Next address generated:
BCY03-16

cu 3-16

19.2.t.6 EMIT

The EMIT operation generates a microsequencer 'address which is determined by the current

microcode address with BCY bit 12 inverted. Figure 19-6 shows the BCY formation for this

operation.

PRIME RESTRICTED

......... '\ ..

4150 Functional Specification
Page 162

Microinsiruction Sequencing

FIG. 19-6. EMIT BCY Formation

EMIT

Microcode Syntax: = EMIT constant given in BLEG or DEST field

Interpretation of CU field:

cu 1-16

EMIT CONSTANT

Next address generated:

BCY03-11 12 13-16

RCH3-11 "'RCH12 RCH13-16

19.2.1.7 CRTN

The CRTN operation generates a microsequencer address which is determined by the result of

the CRTN condition, which comes from the jump net. If the condition is true, the address

generated is the output of the Register Control Stack (RCS). If the condition is false, the

address is generated in a similar fashion to the GOTO or JUMP cases. Figure 19-7 shows

how the BCYs are formed for this operation.

CRTN operations may cause RTNFL sequences.

PRIME RESTRICTED

Control Store Unit Detailed Description

FIG. 19-7. CRTN BCY Formation

CRTN

Microcode Syntax: CRTN (cond) ELSE ~OTO label
CRTN (cond) ELSE JUMP (n conds) TO (n••2 labels)

where n == 1,2.

Interpretation of CU field:

cu 1-4 cu 5-7 cu S-10 cu 11-13 cu 14-16

BCY 11-14 CRTN I JA 15 JA 16 I CODE GRP

Next address generated, CRTN false:

BCY03-10 11-14 15 16

RCH cu 1-4 JA JA

Next address generated, CRTN true:

BCY03-16

I Popped from microinstruction stock I

19.2.1.8 CALL w/ JUMP

4150 Funct. Spec.
Page- 163

The CALL [w/jump] operation works like a JUMP, but also pushes an address onto the

microinstruction stack. Figure 19-8 illustrates this operation, which implements a conditional

CALL.

PRIME RESTRICTED

4150 Functional Specification
Page 164

Microinstruction Sequencing

FIG. 19-8. CALL w/ JUMP Operation

CALL w/ JUMP

Microcode Syntax:- CALL (n conds) TO (n••2 labels), n=1,2,3,4. [PUSH label]

Interpretation of CU field:

cu 1 ,2 cu 0,3,4 cu 5-7 cu 8-10 cu 11-13 cu 14-16

BCY11-12 I JA 13 I JA 14 I JA 15 I JA 16 CODE GRP

Next address generated:

BCY03-10 11-12 13 14 15 16

RCH 03-10 CU 1,2 JA JA JA JA

Address pushed onto RCS:

BCY03-10 11 12-16

RCH 03-10 NRCH11 RCH 12-16

19.2.1.9 CALL w/ GOTO

The CALL [w/GOTO] operation works like a GOTO, but also pushes an address on the

microinstruction stack. Figure 19-9 illustrates this operation.

PRIME RESTRICTED

Control Store Unit Detailed Description 4150 Funct. Spec.
Page 165

FIG. 19-9. CALL w/ GOTO Operation

CALL w/ GOTO

Microcode Syntax: CALL label (PUSH label]

Interpretation of CU field:

cu 3-16

BCY03-16

Next address generated:

BCY03-16

cu 3-16

Address pushed onto RCS:

BCY03-10 11 12-16

RCH 03-10 ""RCH11 RCH 12-16

19.2.1.10 PUSH w/ EMIT

The PUSH [w/EMIT} operatio~ generates a microsequencer address, which is determined by the

current address with bit 12 inverted, and pushes the current address with bit 11 inverted

onto the stack. Figure 19-10 illustrates this operation.

PRIME RESTRICTED

4150 Functional Specification
Page 166

Microinstruction Sequencing

FIG. 19-10. PUSH w/ EMIT Operation

PUSH w/ EMIT

Microcode Syntax: PUSH [label] EMIT constant given in BLEG or DEST field

Interpretation of CU field:

cu 1-16

EMIT CONSTANT

Next address generated:

BCY03-11 12 13-16

RCH 3-11 ""RCH12 RCH 13-16

Address pushed onto RCS:

BCY03-10 11 12-16

RCH 03-10 RCH 12-16

19.2.2 Abnormal Microinstruction Sequencing

19.2.2.1 Traps

The microinstruction sequence can be altered by a trap. This causes the microcode to vector

out of an instruction and handle some event, and then resume execution from where it was

when the trap occurred.

When a trap occurs, BCY{13:16}+ are replaced with bits coming from either from E unit or

the S unit, depending on which unit detected the trap. The E unit is the default case. The

address of the microinstruction which would normally have been fetched next is pushed onto

the microinstruction stack. E unit traps vector to octal locations 0-17, while S unit traps

vector to octal locations 20-37.

The signals below are used in the trap logic:

e FTRAP+
This signal is generated by the I unit and causes the microsequencer to vector to
an address specified by the trap address proms.

e FTRAPSEQA+
This signal informs the CPU that the microcode currently executing is trap
microcode and therefore hold onto any information pertaining to the instruction
trapped out of.

PRIME RESTRICTED

Control Store Unit Detailed Description 4150 Funct. Spec.
Page 167

19.2.2.2 FORCEBCY

With microcode assistance, the PDA can force execution to proceed from a particular address

by asserting FORCEBCY + at TRCML+. This signal causes the microsequencer to vector to CS

memory location 72_ octal and begin executing microcode. The microcode. takes the data from

BD and loads it into RBCY high and low. Now the microsequencer does a BDH branch and

executes from that new BCY address. Figure 19-11 illustrates this operation.

FIG. 19-11. FORCEBCY Timing

TMCLK+ LI 1-1 1-1 LI 1-1

CS7+ I

PDAFBCY-

EUTOBD- ---------

css+

19.2.2.3 Effective Address Formation

-
LI 1-1 LI

I

I

LI LI 1-1 1-1

I

t PDA t
tDRIVES t
t BO t

1-1 LI

1-

The signal FGEAF+ tells the microsequencer to get the next address (if at fetch level) from

the EAF unit instead of the decode net. This signal goes active when the current instruction's

operand can't be calculated without the use of the E unit's ALU. The EAF unit sends four

bits to provide sixteen decode points into the microcode. These four bits effect BCY bits 13,

14, 15, and 16.

19.3 RCC Latches

The microcode bits, commonly called the RCCs, must be sent to all the CPU functional units

to be clocked by TRCML+. Some units in the system need the current microcode word to be

held for them until CS7+ of the current step, in which case they are latched with TRCML­

and then clocked by the appropriate unit at CS7+. Other units need the RCCs clocked at

TRCML+. Signals that are latched are called RCCxx, while those that are clocked are called

RCMxx. Table 19-2 lists of all the RCCs and RCMs sent to other units on a board by board

basis, and what is done to them before they leave the CS.

PRIME RESTRICTED

4150 Functional Specification
Page 168

TABLE 19-2.

I RCC

RCC/RCM Distribution Summary

I RCM
I I Latched! Clocked
IRCC field I 'at TRCML at TRCML Board receiving RCC field
I I
IRCCBB I x E IS
I I
IRCCTXNX I x x IS CMI PDA
I I
jRCCDST I x x E IS CMI
I I
IRCCRF I x E
I I
IRCCCU3-13 I x x E CMI
I I
IRCCCU1-2 I x E IS CMI
I I
IRCCCU14-16 I x E IS CMI
I I
IRCCCS I x IS CMI
I I
IRCCALU I x E
I I
IRCCEAE I x IS
I I
IRCCBDL I x E
I I
IRCCIAC I x x E IS CM!

19.4 VLSI Usage

RCC Latches

The microsequencer is implemented using two PUSEQ VLSI chips in a bit-slice fashion. Each

chip produces half the BCYs used to address the CS memory, as well as having internal logic

to support the microinstruction stack, jump net, and trap address formation.

19.S Critical Paths

The major path through the CS involves receiving a jump condition from another unit,

changing the BCYs, and accessing the CS RAMs. This is a two beat path from CS8+ to

TRCML+.

Conditional ReTurNs (CRTNs) are critical, but TXNX logic is used to make this path work

because of the I unit intervention needed. This is a two beat path from CS8+ to TRCML+.

The internal PUSEQ push/pop stack path is critical, due to the time required from TSTACK+

to TWRITE-.

PRIME RESTRICTED

Control Store Unit Detailed Description 4150 Funct. Spec.
Page 169

19.6 Timing Diagrams

FIG. 19-12. Control Store Memory Write Cycle Timing

CSCLK+ ~I l~I l~I l~I l~I l~I l~I l~I l~I l~I l~I
w w w w w w w w w w

RAMWE1- 1-1

RAMWE2- , __ ,
RAMWE3- ,_,
RAMWE4- ,_,
RAMWE5- ,_,
RAMWE6- ,_,
RAMWE7- ,_,
RAMWE8- ,_,
RAMWE9- ,_,
RAMWE10- ,_,

19.7 9755 Comparisons

The 4150 control store is 16K deep. The 9755 control store was SK deep.

The 4150 control store includes 1 parity bit for every 9 data bits. The 9755 included 1

parity bit for every 8 data bits.

The CU, BDL, and BB fields have an extra bit added to them in the 4150 control store.

Also, the EAE field was shortened by one bit.

19.8 Partitioning

All CS functionality is implemented on the CMI board, which is discussed in chapter 30.

PRIME RESTRICTED

4150 Functional Specification
Page 170

PRIME RESTRICTED

Instruction Decode Detailed Description 4150 Funct. Spec.
Page 171

20. Instruction Decode Detailed Description

20.1 Instruction Fetch

The Instruction (I) unit receives two words (32 bits) of instruction stream data fetched by the

Storage management (S) unit during stage 2. This data is clocked into the Cache Set Select

(PCSS) VLSI chip· at the end of stage 2.

PRIME RESTRICTED

Cache A
........ ,.

FMA

........ Cache B .,..

-

r-

I

Data Registers are
clocked at CS2+ for
instruction fetches and at
CS?+ for operand fetches.

A
-

...__, .,.
Data

Instruction

........
Alignment

,. ..
........ 1----.

B

Data

BBH{1 :16}+

BBL{1 :16},:t._
~

CS4+

Figure 20-1 Block Diagram of Instruction Decode Unit

To

OPC6DE Unit EAF __.._
.....

........ Decoder

-

Decode Net
Address

·~
Decode
Net
RAMs

To

-f
t

1 cs_...
J

Instruction Decode Detailed Description 4150 Funct. Spec.
Page 173

20.2 Instruction Stream Formats

Four instruction formats in the instruction stream are possible. An instruction may be long

or short, unaligned or aligned. Alignment refers to whether the instruction starts on a

Register Program co~nter Low (RPL) even (RPL16=0) or odd boundary (RPL16=1). Regardless

of the composition of the instruction stream, the data just fetched is displayed on Bus B (BB)

for other units to examine during stage 3 as illustrated in Table 20-1.

TABLE 20-1. BB Data During Different Pipeline Stages

INSTRUCTION fl 0 I 1 2 I 3 I 4 I BBH / BBL

STAGE 5 I 3 1 I I OPCODE 1 / DISP 0
6 I 4 2 I I
7 I 5 3 I 1 I OPCODE 2 / DISP 1
8 I 6 4 I 2 I OPERAND 0

I 7 5 I 3 1 I OPCODE 3 / DISP. 2
I 8 6 I 4 2 I OPERAND 1

Instruction alignment is needed because the decode net and effective address calculation

hardware are dedicated to BBH and BBL respectively. The PCSS chip contains swap muxes

for the instruction alignments. Instruction swaps are determined by the nature of the last

instruction. By using the current RP and the result from the last instruction's decode

indicating instruction length, the swap control for the current prefetched instruction can be

determined. The instruction length of the current instruction is determined by the decode net

control bit 1 (DNCNTRLl+) for generic instructions, or the outputs of the Effective Address

Formation (EAF) unit for other instructions. Swaps are required if the last instruction was

found to be aligned (RP=even) short or unaligned (RP=odd) long. The four possibilities are

discu~ in the following sections.

20.2.1 Aligned Short Instructions

On an aligned instruction fetch (RP=even), the first word contains opcode information. It is

put on BBH and the second word is clocked in a register inside the PCSS chip and held until

stage 5. By this time the first word has been decoded and determined to be a short

instruction. The data word saved in the PCSS chip is therefore the next opcode. A swap

occurs inside the PCSS chip, and this word is driven out on BBH.

20.2.2 Aligned Long Instructions

On an aligned instruction fetch (RP=even), the first word contains opcode information. It is

put on BBH and the second word is clocked in a register inside the PCSS chip and' held until

stage 5. By this time the first word has been decoded and determined to be a long

instruction. The data word saved in the PCSS chip is therefore the displacement portion of

PRIME RESTRICTED

4150 Functional Specification
Page 174

Instruction Stream Formats

the instruction. It is driven out on BBL for the effective address calculation of the current

instruction.

20.2.3 Unaligned Short Instructions

On an unaligned instruction fetch (RP=even) the second word contains the opcode information

and is put on BBH.

20.2.4 Unaligned Long Instructions

On an unaligned instruction fetch (RP=even) the second word contains the opcode information

and is put on BBH.

The displacement word is not available until the next stage 2 (stage 4 of the current

instruction). The displacement word is then driven onto BBL during stage 5. Note that a

swap is necessary inside the PCSS chip to accomplish this.

20.3 Instruction Decode

The properly aligned instruction information is put on BB during stage 3 and latched at the

end of the beat. The instruction is decoded during stages 3 and 4 with pertinent information

stored in registers clocked at the end of stage 4. The instruction decoding process consists of:

• Generating the microcode entry point from the decode net to be clocked at the end
of stage 4. If the Execution (E) unit is not running multi-microcode and the
current instruction does not require microcode EAF help, the decode net entry point
is used to address the Control Store during stage 5.

• Determining the form of the instruction.

• Generating the base and index register file addresses to be clocked at the end of
stage 4 for EAF calculation during stages 5 and 6.

• Determining the type of EAF to perform.

The microsequencer contains hardware to map the instruction opcode to a decode net address

during stage 3. The decode net is accessed during stage 4 and the microcode entry point for

the specific instruction is stored in registers at the end of the beat.

20.3.1 Decode Net

The decode net is an 8K x 20-bit lookup table. Twelve of the 20 bits comprise the decode

net data sent to the microsequencer for decode net address calculation. Six other bits are

control bits for the I unit to use, and the last 2 bits are for parity.

PRIME RESTRICTED

Instruction Decode Detailed Description 4150 Funct. Spec.
Page 175

The address generation for the decode net is produced from the opcode bits by the

microsequencer. The addressing is not straightforward due to the two pieces of information

the decode net must supply. The first is an entry point in the control store for the

microcode to start executing the instruction being decoded. The second is register file tracking

information for the EAF unit. The encoding performed on the opcodes separates the

instructions into different groups as follows:

• Generic B - non memory reference instructions, SRVI modes (e.g. IAB), addresses 0
to 1024 decimal

• Generic A - non memory reference instructions, SRVI modes (e.g. CRA), addresses
1025 to 2048 decimal

• I mode special memory reference (e.g. DFL), addresses 2049 to 2176 decimal

• I mode memory reference (e.g. LH), addresses 2177 to 2304 decimal

• S and R mode not double - single precision instructions (e.g. FA), addresses 2432
to 2560 decimal

• V mode memory reference - (e.g. LDA), addresses 2688 to 2816 decimal

• S and R mode· double - double precision instructions (e.g. DFA), addresses 2944 to
3072 decimal

• Skips - instructions that skip, any mode (e.g. SSl), addresses 3073 to 3328 decimal

• Shifts - instructions that shift, any mode (e.g. LRL), addresses 3329 to 3584
decimal

• Register generics - instructions that operate on registers, any mode (e.g. LEQ),
addresses 3585 to 4096 decimal

The different classifications of instructions are based on both the type of operation the

instruction is trying to perform and on how the modals and keys are set. For more

information on which instructions are in which categories see the System Architecture

Reference Guide.

The decode net· address consists of 13 bits, DNA{01:12}+ and DOUBLE-. Table 20-2 shows

how the address bits are created.

PRIME RESTRICTED

4150 Functional Specification
Page 176

TABLE 20-2.

DECODE GENA SHIFT SKIP
ADDR GENS

DNA01 0 - 1

DNA02 OPCD02+ 0

ONA03 OPCD07+

DNA04 OPCD08+ 0 0

Instruction Decode

Decode Net Address Bit Generation

REGISTER SR-MODE V-MODE I-MODE I-MODE
GENERICS MEMORY MEMORY MEMORY SPECIAL

OPCD02+ OPCD02+ OPCD02+ OPCD02+ OPCD02+

0 0 0 0

GOPCD13+ GOPCD13+ GTM0- GTM0-

DNA05 OPCD09+ OPCD09+ OPCD09+ OPCD09+ GOPCD14+ GOPCD14+ OPCD04- OPCD09+

DNA06 OPCD10+ OPCD10+ OPCD10+ OPCD10+ DBLMD- 0 0

DNA07 OPCD11+ OPCD11+ OPCD11+ OPCD11+ 0 0 0

DNA08 OPCD12+ OPCD12+ OPCD12+ OPCD12+ 0 0 0 1 •

DNA09 OPCD13+ OPCD07+ OPCD13+ OPCD13+ OPCD06+ OPCD06+ OPCD06+ OPCD07+

DNA10 OPCD14+ OPCD08+ OPCD14+ OPCD14+ OPCD05+ OPCD05+ OPCD05+ OPCD08+

DNA11 OPCD15+ OPCD15+ OPCD15+ OPCD15+ OPCD04- OPCD04- OPCD01- OPCD01-

DNA12 OPCD16+ OPCD16+ OPCD16+ OPCD16+ OPCD03- OPCD03- OPCD03- OPCD03-

DOUBLE DBLMD- DBLMD- DBLMD- DBLMD- DBLMD- DBLMD- DBLMD- DBLMD-

1. The terms GOPCD13+ and GOPCD14+ equal OPCODE13+ and OPCODE14+,
respectively, except when they aren't really opcode bits but are part of a
displacement, which is true for V-mode and R-mode short memory reference
formats. (Note that in R-mode there are memory reference instructions which are
one word but do NOT use the short memory FORMAT (e.g. stack pop)). In these
cases GOPCD{13:14}+ are forced to zero.

2. The term GTMO- indicates that the Tag Modifier bits (OPCDlO+, OPCDll+) are
both zero if GTMO- = 0 and are not both zero if GTMO- = 1. GTMO- = 0
indicates a register-register or immediate format, GTMO- = 1 indicates a memory
reference format.

3. The term DBLMD- indicates the state of the "double-precision" bit in the RMODE
keys. DBLMD- = 0 implies the double-precision bit is set.

4. It should be noted that in some cases bits supplied for a particular class are not
necessarily useful to that class, but are the most convenient for the hardware to
supply.

PRIME RESTRICTED

Instruction Decode Detailed Description 4150 Funct. Spec.
Page 177

There are six decode net bits (DNCNTRL{01:06}+) which are sent directly to other units to use

as described below:

• DNCNTRLOl + is used to determine the length of generic instructions, including
register generics.

DNCNTRL01 + = 0 indicates a one word instruction (or GENAP, see below).

DNCNTRLOl+ 1 indicates a two word instruction.

DNCNTRL01 + serves no purpose at all for memory referencing instructions. It is
set to 0 for all these cases.

• DNCNTRL02+ has two different meanings depending on the instruction type.

DNCNTRL02+ = 1 for generic instructions indicates that this instruction is a
GEN AP.

DNCNTRL02+ = 1 for memory referencing instructions indicates that the microcode
desires that the effective address be incremented by two while it is being
calculated. This is useful for DF AD and DFSB, which need to determine the
exponent difference as quickly as possible. (In Prime's bizarre floating point format
the exponent resides in the fourth word of a double precision memory argument.)

• DNCNTRL03+ is used to determine whether the instruction is permitted to attempt
to use the branch cache. That is, the microcode for this instruction is prepared to
deal with any branch cache hits that might occur. DNCNTRL03+ = 0 indicates
that this is a branch or JMP instruction. DNCNTRL03+ = 1 indicates that it is
not.

• DNCNTRL{04:05}+ are used as part of the register tracking mechanism. Since the
architecture supports many different addressing modes, and thus many different
ways to address/modify a register, the decode net specifies which register (if any)
is modified by an instruction. The interpretation of these bits is shown in Table
20-3. They are used by the EAF unit during register file collision detection.

• DNCNTRL06+ is "used for exponent tracking now that the EAF unit has a copy of
both floating point registers (exponent only).

PRIME RESTRICTED

4150 Functional Specification
Page 178

TABLE 20-3.

Instruction Decode

DNCNTRL{04:05}+ Interpretation

ADDRESSING MODE DNCNTRL04 DNCNTRL05 REGISTER MODIFIED

Al I non-321 0 0 None
0 1 XB

0 y

1 1 x
321 0 0 None

0 XB
0 GR(RDN)
1 GR(RD)

Note: GR(RD) means that the destination register is one of the 8
321 mode general registers, specified by bits 7, 8, and 9 of the
opcode. GR(RDN) means that the destination register is one of the
four "odd" 321 general registers (GRl, GR3, GR5, GR7) selected in
the same manner as GR(RD) but with the least significant bit forced
to 1 instead of coming from opcode bit 9.

20.3.1.1 Decode Net Initialization

The Diagnostic Processor (DP) (or PDA) sends the decode net data and addresses to the CPU

during system initialization. The DP interface is discussed in chapter 16.

The decode net is loaded by the microcode in the following manner:

1. SYSCLR microcode resets the double precision bit in the KEYS register, which
allows access to the first 4K of the SK decode net. The console command
"LDNET" invokes the console microcode to assist in loading the decode net.

2. RMA is loaded with the address of the decode net location to be loaded. This is
done by setting the bits in RMA to make the decode net addressing think the
instruction is a Generic type B or A. This allows the first 2K of decode net to be
accessed.

The second 2K is loaded by setting a bit in the control store diagnostic register
which overrides the decode net addressing logic and sets bit one of the address
active. RMA is still loaded as if the first 2K of decode net is being addressed,
but the signal from the diagnostic register called FBLKSEL+ causes the second 2K
of decode net to be addressed.

KEYS register bit 2, double _precision, is set by the console microcode, and the
preceding pattern is repeated to load the other 4K of the decode net.

3. RMA is supplied to the microsequencer over BB during stage 8. The
microsequencer takes the RMA address and produces a decode net address. The data
for the decode net is held in RS and received on BDH and BDL. The write pulse
is generated at CS8+, and all 20 bits are written at one time. Extensive use of
TX and NX delays allows CS8+ to be positioned so that the address and data hold
and setup times are correct.

PRIME RESTRICTED

Instruction Decode Detailed Description 4150 Funct. Spec.
Page 179

20.3.2 Register File Address Generation

The opcode bits and addressing mode information are used to generate the base register file

and index register file addresses during stage 4. The EAF unit needs this information to

correctly calculate effective addresses. The term ''base" register file address applies loosely

since it may address a' base, general, or floating point register. The general and floating point

registers are used in some I mode instructions. The "base registers" are 32-bit registers while

the index registers are 16-bit registers.

The base register file addresses are FBRFRDA{01:04}+. Table 20-4 shows how these bits are

interpreted.

TABLE 20-4. Base Register File Address Selection

FBRFRDA{01:04J+ BRFH{1:16J+ BRFLI 1: 16J+

0000 GR0H GR0L
0001 GR1H GR1L
0010 GR2H GR2L
0011 GR3H GR3L
0100 GR4H GR4L
0101 GR5H GR5L
0110 GR6H GR6L
0111 GR7H GR7L
1000 0 0
1001 FLR0H FLR0L
1010 0 0
1011 FLR1H FLR1L
1100 PBH 0
1101 SSH SSL
1110 LBH LBL
1111 XBH XBL

••• PBL is defined to be zero

For sector relative, procedure relative, and generic
instructions IRPL{1:16}+ is selected instead of the low
word from the base register file.

•••

The hardware forces the selection of some base register (addresses 1100 to 1111 binary) under

the following conditions:

• If the machine is in R, S, or V mode

• If the machine is in I mode and the instruction needs a base register. That is, the
instruction is not a floating point or integer register-to-register instruction. This
condition will make the signal GTMO+ go active.

The following conditions specify which base register to use:

PRIME RESTRICTED

4150 Functional Specification
Page 180

Instruction Decode

• For memory reference instructions, refer to the System Architecture Guide. The
register is determined by the opcode of the individual instruction.

• For generic instructions, PB is specifically selected to handle the possibility that the
instruction might be a GENAP (which would require that the PBH be selected to
form the address of the GENAP).

• During phase 1 of an indirect operation, PB is selected to obtain a zero to add to a
possible post-index register.

• We must select PB on any instruction not explicitly needing some other base
register. This avoids false register collision detection. (Refer to Chapter 21 for more
detail.)

If we are not forcing the selection of some base register then we must be executing a 321

mode floating or integer register-to-register instruction. In this case, opcode bits 12 through 16

are used to select which register file location to address. Table 20-5 shows how these bits

are interprl'!ted.

TABLE 20-5. 321 Mode Extended Base Register Selection

OPCODE BITS
12 13 14 15 16 REGISTER

0 0 0 FLR0
0 1 0 FLR1
0 0 0 0 0 GR0
0 0 1 0 0 GR1
0 0 0 0 GR2
0 1 1 0 0 GR3

0 0 0 0 GR4
0 1 0 0 GR5

0 0 0 GR6
1 0 0 GR7

Tables 20-6 and 20-7 show the interpretation of the index register file address bits

(FXRFDA{2:4}+). In I mode, these bits are a copy of OPCODE{12:14}+.

TABLE 20-6. I Mode Index Register Selection

FXRFRDAf2:4f+ XRFf1:16f+

000 GR0H
001 GR1H
010 GR2H
011 GR3H
100 GR4H
101 GRSH
110 GR6H
111 GR7H

PRIME RESTRICTED

Instruction Decode Detailed Description

20.4 VLSI Usage

TABLE 20-7.

OPCODE02+
(X field)

0

Non-I Mode Index Register Selection

INDEX REGISTER

GR5H (Y register)
GR7H (X register)

Two PCSS VLSI chips are used for aligning the instruction stream.

Two PUSEQ VLSI chips are used in generating the decode net address.

20.S 9755 Comparisons

4150 Funct. Spec.
Page 181

An extra bit has been added to the decode net control bit field to help. with the tracking of

floating point registers.

An extra address bit has been added to the decode net, which double sthe size to 8K locations.

Since the decode net RAMs are 16K deep, no extra logic is needed to utilize the extra 4K

except for the one address bit. This address bit is the KEYS register bit 2, the double precision

bit. The extra address bit allows extra microcode entry points for PMA instructions in the

native UNIX mode.

20.6 Critical Paths

Clocking the opcode at CS2+, forming the decode net address during stage 3, and clocking the

contents of the decode net at CS4+. (2 beat path, needs to be done in 125 nsec) Worst case

path involves using the DNCNTRLl+ signal to generate a unaligned condition to be clocked at

CS4+. TRCDIE+ -> BBxx -> DNAxx -> DNCNTRLl+ -> LDNCTRLl+ -> LONG+ -> UNAL+ ->

F4UNAL+. Time = 110.5 ns

TCLA+, used to latch the opcode information on the CMI board, must not be active at the

end of the beat to avoid latching bad data. Using the signal FENEOB+IS3, which becomes

active at midbeat, we need to close the latch in less then a 1/2 a beat. FENEOB+IS3 ->

TCLA+. Time = 28 ns

20. 7 Partitioning

The decode net is implemented on the CMI board, which is discussed in chapter 30. The rest

of the I unit functionality is implemented on the IS board, which is discussed in chapter 31.

PRIME RESTRICTED

4150 Functional Specification
Page 182

PRIME RESTRICTED

Effective Address Formation Detailed Description 4150 Funct. Spec.
Page 183

21. Effective Address Formation Detailed Description

When an instruction makes a memory reference, it provides information from which the

virtual address can be calculated. This is referred to as calculating the effective address.

Depending on the type of instruction, the information can be provided in several different

formats, and the calculation done in various ways. This chapter gives a detailed description

of how the Effective Address Formation (EAF) unit performs the effective address calculation.

21.1 Discussion of Basic Addressing Modes

The effective address hardware is implemented to handle without penalty the common cases of

S, R, V, and I mode address formation such as BR + X + D, RP + X + D, etc. The EAF unit

uses the contents of the fields in a memory reference instruction to select which of the four

types of address formations to use:

• Direct

• Indexed

• Indirect

• Indirect indexed

The effective address calculation takes place during stages 5 and 6, with the final virtual (or

absolute) address being loaded into the registers addressing cache and the STLB on the Storage

management (S) unit at the end of stage 6.

The following is a brief description of the type of address formations supported on all 50

series machines. For a more detailed description see The System Architecture Guide.

• Direct Addressing - The effective address is calculated by adding the contents of
the base register to the displacement (BR + D).

• Indexed Addressing - The effective address is calculated by adding the contents of
the base register, index register, and the displacement (BR + X + D).

• Indirect Addre8sing - There are two forms of indirect addressing, short and long
form:

o Short Form Indirection (16-bit indirection) - Depending on the addressing
mode, indirect addressing takes one of two forms. In the first, the
displacement is treated· as the address of a location in the procedure segment.
The EAF unit then uses the contents of the addressed location as the
effective address.

PRIME RESTRICTED

IRF{1 :16}+ ~ Base+ Index
ALU

Displacement

BRFL{1 :16}+ ALU

FIRPL{1 :16}+

BBL{1 :16}~ Displacement
Latch

ALU

Figure 21-1 EAF Unit Block Diagram

I •I Index RF
IRF{1 :16}+

..
......, Base RF

BRFH{1 :16}+

BRFL{1 :16}+

...

... ---

BVMAL
MUX

Cache
Address
Register

FMA

The Cache Address
Register is clocked
at CS1 + for instruction
fetches and at TRCML+
for operand fetches.

Effective Address Formation Detailed Description 4150 Funct. Spec.
Page 185

Some addressing modes allow more than one level of indirection. In this
second case, the displacement is treated as the address of some indirect address
space. If this addressed location contains another indirect address, then the
EAF unit uses these contents as the address of another location in memory.
This indirection chain is followed until one addressed location does not
contain an indirect address. The EAF unit uses the result of the chain as
the effective address.

o Long Form indirection (32 bit indirection) - In the long form of indirect
addressing the displacement points to a location in memory that contains the
32-bit (or, occasionally, 48-bit) effective address.

• Indirect Indexed Addressing - This type of addressing takes one of two forms,
indirect preindexed or indirect postindexed.

o When calculating a preindexed indirect address, the EAF uni~ adds the value
of the index register to the contents of the base register and the displacement
and uses the sum as an indirect address. It resolves any indirection chain and
uses the result of the chain (or the indirect address itself, if there was no
chain to follow) as the effective address.

o When calculating a postindexed indirect address, the EAF unit adds the
contents of the base register and displacement and uses the result as an
indirect address. It resolves any indirection chain, then adds the result of the
chain (or the indirect address itself, if there was no chain to follow) to the
contents of the specified index register to form the effective address.

21.2 Memory Reference Instruction Formats

Memory reference instructions can be short (one word) or long (two word). To help

understand the detailed explanations of the EAF hardware in the various addressing modes, a

brief summary of direct addressing is given below.

I mode

V mode

All memory reference instructions are two words long. The displacement is
16 bits, and is contained in the second word of the instruction. During
EAF calculation this displacement is added to a base register. If no base
register is specified in the instruction, PB is selected. PBL is defined as
zero. Therefore, the displacement is added to zero to form the effective
address.

Memory reference instructions can be one or two words long. For long
memory reference instructions the displacement is contained in the second
word. The effective address is calculated the same way as for I mode.

Unlike I mode, V mode has short memory reference instructions. All short
memory referencing instructions in v mode contain a sector bit. If the bit
is active the instruction is using procedure relative addressing mode. The 9-
bit displacement field is added to (or subtracted from, if it is negative) the
Program Counter (IRPL) to form the effective address. It is important to

PRIME RESTRICTED

4150 Functional Specification
Page 186

Memory Reference Instruction Formats

R mode

note that in procedure relative mode the displacement is added to IRPL and
not to a base register.

If the sector bit is not active the instruction is using base register relative
addressing mode. In this mode the 9-bit displacement field is used to encode
both a base register and displacement. Depending on the address, the
displacement is added to either the SB or LB base registers.

Like_ V mode, R mode contains both short and long memory referencing
instructions. For long memory referencing instructions the displacement is
contained in the second word. Opcode bits 15 and 16 are decoded to
determine if the displacement is added to the SB register (stack relative) or
to zero to form the effective address. For short memory referencing
instructions, the type of operation is dependent on the sector bit. If the
sector bit is active it is again procedure relative mode, and the sign extended
displacement is added to IRPL to form the effective address. If the sector bit
is zero, then the displacement is added to zero.

21.3 EAF Decoding

The EAF unit uses three PROMs to decode the necessary EAF operation. The microsequencer

supplies the address for the EAF PROMs. This address is an encoding of the opcode bits,

modals, and keys. Tables 21-1, 21-2, and 21-3 show the input and output signals used by

the PROMs. Table 21-4 shows the opcode decoding necessary to determine the type of EAF

necessary in I mode.

The outputs of the EAF decode PROMs supply the following information:

1. Four bits from the EAF PROMs are sent to the microsequencer to provide 16
decode points in the microcode.

2. Nine bits are used by the EAF unit to tell it what type of addressing needs to be
performed. (INDIRECT+, LONG+, POSTINDEX+, PREINDEX+, 32ITA+, ENADRTR+,
FEAF13+, FEAF14+, FGEAF+).

3. The EAF PROMs have a second job of generating ring weakening information.
Two bits of the EAF decode address, FEAF13+ and FEAF14+, are used for this
purpose. Ring weakening is discussed in Chapter 24.

The common outputs of the three EAF PROMs share a tristate bus. Depending on the

addressing mode, one of the PROMs is enabled.

The EAF PROMs are accessed during stage 4 and all pertinent information is clocked at the

end of stage 4.

PRIME RESTRICTED

Effective Address Formation Detailed Description

Note:

SRMODEEAF+
AM1+
AM2+
SRVLONG+
DLT100+
OPCD01+
OP2NLSX+
OPCD15+
OPCD16+

PPREINDEX+
PLONG+
PEAF+
PPOSTINDEX+
PEAF13+
PEAF14+
PEAF15+
PEAF16+

TABLE 21-1. S or R Mode EAF Decoding

Address definition

- SR mode instructions non generic non PIO
- modal bit
- modal bit
- SRV mode long displacements
- displacement less than 100 octal
- indirection bit
- Opcode 2 ORed into Lsx signal
- CB bit •1
- CB bit •1

PROM output

- EAF wi 11 be PREINDEXed
- instruction Is Long
- EAF unit needs microcode EAF help
- EAF wi 11 be POSTINDEXed
- EAF decode address bit
- EAF decode address bit
- EAF decode address bit
- EAF decode address bit

The CB bits (bits 15 and 16) of R mode two word
instructions distinguishes between long form memory
and stack relative instruction types.

PRIME RESTRICfED

4150 Funct. Spec.
Page 187

4150 Functional Specification
Page 188

VMODEEAF+
SRVLONG+
DLT100+
LIVE+
LSX+
OPCD07+
OPCD01+
OPCD02+
OPCD12+

PPREINDEX+
PLONG+
PEAF+
POST INDEX+
PEAF13+
PEADRTR+
PEAF15+
PINDIRECT+

TABLE 21-2. V Mode EAF Decoding

Address definition

- V mode non generic
- SRV mode long displacements
..,. displacement less than 100 octal
- V mode displacement may be in register file range
- instructions that load or store to X reg

sector bit for short form •1
- indirection bit
- using x register
- using y register

PROM outputs

- EAF wi I I be PREINDEXed
- instruction is long
- EAF unit needs microcode EAF help
- EAF wi I I be POSTINDEXed
- EAF decode address bit
- Enables address traps
- EAF decode address bit
- EAF wi I I be indirect

Note: If the instruction is short and the sector bit is set
then RP relative mode is used.

PRIME RESTRICTED

EAF Decoding

Effective Address Formation Detailed Description

TABLE 21-3. I Mode EAF Decoding

Address definition

IMODEEAF+ - I mode non generic instructions
SKIPSPL+. - I mode special memory ref or V mode skips
OPCD10+ TM bit defines type of EAF
OPCD11+ - TM bit defines type of EAF
OPCD12+ - SR bit
OPCD13+ - SR bit
OPCD14+ - SR bit
OPCD15+ - BR bit defines RR or Immediate
OPCD16+ - BR bit defines RR or Immediate

NOTE: TM = 3
TM = 2
TM = 1
TM = 0

indirect or indirect postindexed
indirect or indirect preindexed
direct or indexed
Register-to-register(RR) or Immediate

BR = 0
BR = 1
BR = 2
BR= 3

SR = 0
SR = 1
SR = 2
SR = 3
SR = 4
SR = 5
SR = 6
SR = 7

General RR
Immediate Type 1 or Type 2
Floating RR or Immediate Type 3
Undefined

GR0
GR1 or FR1
GR2
GR3 or FR2
GR4
GR5
GR6
GR7

PROM outputs

PPREINDEX+
PLONG+
PEAF+
POSTINDEX+
PEAF13+
PEAF14+
P32ITA+
PINDIRECT+

- EAF wi I I be PREINDEXed
- instruction is long
- EAF unit needs microcode EAF help
- EAF wi II be POSTINDEXed
- EAF decode address bit
- EAF decode address bit
- I mode RR instruction/or Immediate
- EAF wi I be indirect

PRIME RESTRICTED

4150 Funct. Spec.
Page 189

4150 Functional Specification EAF Decoding
Page 190

TABLE 21-4. I Mode EAF Function Table

OPCODES
(4&:5) (10: 16) FEAF INDEXING

EAF type SP TM SRC BR 13: 14 step i ta pre post long ind weaken
Indirect x 11 000 xx 00 IND_32I 0 0 0 1 1 1
IND Post-x x 11 s>0 xx 00 IND_32I 0 0 1 1
Ind i re ct x 10 000 xx 00 IND_32I 0 0 0 1
IND Pre-x x 10 s>0 xx 00 IND_32I 0 1 0 1
Di re ct x 01 000 xx 0 0 0 0
Indexed x 01 s>0 xx 0 1 1 0 1
Reg-Reg 0 00 xxx 00 01 0 0 0 0 0
Immediate1 0 00 000 01 11 0 0 1 0 0
Immediate2 0 00 s>0 01 10 - 0 0 0 0 0
Spec RR 00 xxx 00 10 UAF 0 0 0 0 0
Spec IM1or2 00 xxx 01 10 UAF 0 0 0 0 0
Immediate3 00 000 10 11 0 0 1 0 0
Floating-Reg 00 0x1 10 01 1 0 0 0 0 0
Non-Spec IM3 0 00 000 10 10 UAF 0 0 0 0 0
Non-Spec FR 0 00 s>0 10 10 UAF 0 0 0 0 0
Undefined x 00 010 10 10 UAF 0 0 0 0 0
Undefined x 00 1xx 10 10 UAF 0 0 0 0 0
Gen-Reg Rel x 00 xxx 11 0 0 0

21.4 Microcode Assisted EAF

Instructions using the stack register or executing indirection or post-indexing need extra beats

and microcode assistance to complete the effective address formation. If the instruction needs

microcode assistance in the EAF calculation, the front end of the pipeline is held up and the

microsequencer executes microcode to finish generating the effective address. The microcode

entry point is determined by 4 control bits from the EAF PROM. The last step of the

microcode executes a (CS= 2,DECODE), telling the PCU to return to fetch level and restart the

front end of the pipeline.

21.5 Hardware EAF

The effective address is calculated by adding an offset to the first location within the

segment the program is executing in. The segment number is generally provided in one of

three ways:

1. If the instruction contains a base register, the segment number is found in the
specified base register.

2. If the instruction does not contain a base register
found in the program counter (base register PB).
segment number field contains the segment number.

PRIME RESTRICTED

field, the segment number is
In indirect addressing, the

Effective Address Formation Detailed Description 4150 Funct. Spec.
Page 191

The offset portion of the effective address can be calculated in any of the following ways:

• Displacement (16 bit number given explicitly within the instruction)

• Displacement t offset from BR

• Displacement + index register

• Displacement + offset from BR + index register

• Indirect address

• Indirect address + index register

The EAF hardware includes two ALUs to do these calculations, the Register Fiie ALU

(ALUBX) and the Displacement ALU (ALUD). These ALUs calculate the 16-bit offset of the

instruction.

ALUBX handles the Base Register + Index Register (BR + X) calculation. If no indexing is

required, the ALU is put in Transport A mode, resulting in the contents of the selected Base

Register, or IRPL (sector relative, procedure relative, generic instructions) appearing on

ALUBX{1:16}+.

ALUD handles arithmetic operations between the output of ALUBX and the Displacement

field. The term displacement is used rather loosely because the data on the displacement bus

input can be one of several things, depending on the situation:

• Short memory reference instructions - 9-bit displacement extracted from the single
instruction word plus 7 bits of sign extension (supplied by the displacement and
sign extension logic in the PCSS VLSI chip)

• Long memory reference instructions - second word of the instruction

• 64V and 32I 32-bit indirects - The low order 16-bits of the 32-bit indirect pointer

• Two word generics - Second word of the instruction

• GENAPs - Same as one word generics, but irrelevant since ALUD will operate in
TA mode (transport ALUBX) and ignore this data

• I mode integer and floating register to register - Again irrelevant since ALUD will
operate in TA mode

• I mode immediate - Second word of the instruction (which has immediate data)

Tables 21-5 and 21-6 summarize the ALUBX and ALUD controls.

PRIME RESTRICTED

4150 Functional Specification Hardware EAF
Page 192

TA
TA
ADD
ADD

TABLE 21-5. Register File ALU (ALUBX) Control

ALUBXADD+ ALUBXCIN-

0
0
1

0
1
'0
1

TABLE 21-6.

OPERATION

F= BR + 1
F= BR
F= BR+ X +
F= BR+ X

Displacement ALU (ALUD) Control

TRNSPRTA+ TRNSPRTB+ EAFCIN- OPERATION

0 0 0 F = 1
ZERO 0 0 1 F = 0

0 1 0 F = DISP +
TB 0 1 1 F = DISP

0 0 F = BRX + 1
TA 0 1 F = BRX

0 F = DISP + BRX +
ADD F = DISP + BRX

21.S.1 I Mode Immediate and Register to Register Instructions

For all S, R, and V mode instructions, stages 5 and 6 are used to calculate effective addresses

for operand reads during stage 7. For these instructions, the contents of the register file and

displacement field are used to generate an effective address which is loaded into RMA at the

end of stage 6. This address is used to access memory for the operand data during stage 7.

The following instructions show some examples of this kind of operation:

LOA MEM
LOA MEM.X
LOA MEM,LB0+7
JMP •-2

EA = MEM (DISP)
EA = MEM+X (DISP+X)
EA = MEM+7+LB (DISP+BR+X)
EA = IRP-2 (DISP+IRP)

The microcode for LDA, for example, simply does a cache read, passes the data through the

Execution (E) unit's main ALU, and writes it into the A register in the register file. The

microcode doesn't care how the effective address was formed. The address for the cache access

was calculated by the EAF unit during stages 5 and 6.

For I mode register to register (RR) and immediate instructions, stages 5 and 6 are used to

transfer operand information to RMA at the end of stage 6. No memory reference is required

because the operand information is contained in the register file (for RR instructions) or in the

displacement field (for immediate instructions).

There are three types of immediate instructions:

• Immediate Type 1 - (half word immediate) EAF unit transfers 16-bit immediate
data located in second word of instruction into RMAH. Stores zeroes into RMAL.

PRIME RESTRICTED

Effective Address Formation Detailed Description 4150 Funct. Spec.
Page 193

• Immediate Type 2 - (full word immediate) EAF unit transfers 16-bit immediate
data located in second word of instruction, sign-extended, into RMAH and RMAL.

• Immediate Type 3 - (Floating immediate) transfers high byte of immediate data
located in second word of instruction to high byte of RMAH. Zeroes low byte of
RMAH. Trarifel'.s low byte of immediate data located in second word of
instruction to low byte of RMAL. Zeroes high byte of RMAL.

Examples of these -kinds of instructions are:

RR instructions:

L GR1 ,GR2
L GR3,GR4

Immediate instructions:

L GR1,'123456 Immediate Type 1
L GR1, '123456L Immediate Type 2 (32 bit sign ext)

The operand information stored in RMA at the end of stage 6 is then accessed during stage 7

and transferred to the E unit. For example, the microcode for L GR1,GR2 transfers the

contents of RMA into the destination register (GRl in this case).

The following are examples of the EAF ALUs' control for some I mode instructions. Please

refer to Tables 21-5 and 21-6.

Direct addressing L GR1,MEM

Direct indexed L GR1 ,MEM,GR3
addressing

Indirect L GR1,MEM•
addressing

Indirect
addressing
pre indexed

Indirect
addressing
post indexed

L GR1,MEM,GR3•

L GR1 .MEM, •GR3

ALUBX operation FX = BR (BR=PBL=0)
ALUD operation FD = DISP + FX

ALUBX operation FX = BR + X (BR=PBL=0)
ALUD operation FD = DISP + FX

Phase 1 :
ALUBX operation FX = BR (BR=PBL=0)
ALUD operation FD = DISP + FX

Phase 2:
ALUBX operation FX = BR (BR=PBL=0)
ALUD operation FD = FX + DISP (DISP=IP)

Phase 1 :
ALUBX operation FX = BR + X (BR=PBL=0)
ALUD operation FD ""' FX + DISP

Phase 2:
ALUBX operation FX = BR (BRL=PBL=0)
ALUD operation FD = FX + DISP (DISP+IP)

Phase 1 :
ALUBX operation FX = BR (BR=PBL=0)
ALUD operation FD = FX + DISP

Phase 2:
ALUBX operation FX = BR + X (BR=PBL=0)
ALUD operation FD = FX + DISP (DISP+IP)

PRIME RESTRICTED

4150 Functional Specification
Page 194

RR instruction L GR1 ,GR3

Direct using L GR1, LBo+4
base register

Immediate Type L GR1.,'123456
half word immediate

Immediate Type 2 L- GR1 , '123456L
f u I I word immediate

21.5.2 Indirect Support

Hardware EAF

ALUBX operation FX = BR (BR=GR3)
ALUD operation FD= FX

ALUBX operation FX = BR (BR=XB)
ALUD operation FD = FX + DISP (DISP=4)

ALUBX operation don't care
ALUD operation FD = 0

ALUBX operation don't care
ALUD operation FD = DISP

Instructions in which indirection is specified require two phases of execution. In the first

phase, which is call Indirect Phase One (INDPHASE1-), the effective address is computed in

the normal manner during stage 5 and 6, and the specified word is fetched. This address is

called the indirect pointer (IP). The signal INDPHASEl- is active during stages 5 and 6. The

signal FGEAF- becomes active at the end of stage 4. This signal then holds off stage 1 of

instruction i+2 for 2 beats and stage 3 of instruction i for 2 beats. Refer to Figure 21-1.

During this period, the EAF microcode step for indirection is executed. This microcode step

reads the contents of cache and forms a second effective address and stores it into RMA.

FIG. 21-2. Pipeline Flow During Indirect

1 stage of instruction (LOA TONY,•)
2

1 3 stage of instruction i+1
2 4

5 F •
6 T +

1 3 F 7 stage 1 of instruction i+2
2 4 6 T 8 -

• FGEAF- holds of stage 1 and 3
+ microcode assisted EAF step executed

e.g l64RV microcode step for 64V indirection
- LOA microcode executed

In the second phase, which is called Indirect Phase Two (INDPHASE2-), the operation specified

by the instruction is executed using the second address. The signal INDPHASE2- is active for

the two beats.

The base register address is clocked at the end of stage 4 and at the end of the phase 1 (at

INIT+) of an indirect operation. The appropriate base register is fetched during stage 5 for

generating the address for the indirect pointer (IP). The additional clocking at INIT + forces

the fetching of PB. (PBL is all zeros, as discussed in Chapter 20.) The reason for this is

PRIME RESTRICTED

Effective Address Formation Detailed Description 4150 Funct. Spec.
Page 195

that if post indexing is specified, we want to add the Index register to the IP. The Base +

Index ALU (ALUBX) control is designed such that it will be in add mode at this time.

Therefore by adding the index register to zero, the desired index register is effectively

transported through ALUBX. It is then added to the IP via the Displacement ALU.

During the 1st beat or' phase 2 of the indirect the low 16 bits of the IP are read out of

cache and latched _in the displacement latch. This value is then loaded into RMAL directly,

or added to the index register (if Post-indexing) and then stored into RMAL.

The upper 16 bits of the IP (if 32 bit indirection) are read from cache and brought through

a mux to RMAH during phase 2 of indirects. Note that if 16-bit indirection is specified,

RMAH is not loaded at the end of phase 2.

21.6 Register File Tracking/Collisions

In a non-pipelined computer all the operations involved in executing a single instruction are

completed before the next instruction is started. This is not true in a pipeline. Register

collisions occur when two instructions in the pipeline need to use the same register at the

same time. The register files on the EAF unit and E unit are written at stage 10 of the

pipeline. The EAF unit reads its register file for EAF calculations and I mode RR operations

during stages 5 and 6. Figure 21-2 shows that by the time that instruction i has finished

with stage 10, instructions i+l and i+2 would have BOTH finished with stage 6. That is, if

instruction i was writing 'to a register file location (e.g. L GR1,TOJ\1Y) that EITHER

instruction i+l (e.g. L GR3,GR1) or i+2 (e.g. L GR5,GR1) was using to calculate its effective

address (or for an operand in I mode RR), there is a serious problem. Both instructions (i+ 1

and i+2) would have read the register file (during stage 5 and 6) BEFORE instruction i

would have written it with the new data (during stage 10). Both of these cases create

"register file collisions". The first case creates what is referred to as a 4-6 collision, while

the latter case creates what is referred to as a 5-9 collision.

FIG. 21-3. Generalized Pipeline Flow

stage of instruction (L GR1 , TONY)
2

1 3 stage of instruction i+1 (L GR3,GR1)
2 4

1 3 5 F stage of instruction 1+2 (L GRS,GR1)
2 4 6 T

3 5 F 7
4 6 T 8

5 F 7 9
6 T 8 0 stage 10 of instruction i

stage 8 of instruction i+1
stage 6 of instruction i+2

PRIME RESTRICTED

4150 Functional Specification
Page 196

21.6.1 5-9 Register Collision

Register File Tracking/Collisions

A 5-9 register collision occurs when instruction i is modifying a register file location used by

instruction i+2. The term "5-9" means that the register file collision is detected at stage 5 of

instruction i+2 and stag~ 9 of instruction i. When this conflict occurs, stage 6 of instruction

i+2 is held off for one beat until stage 10 for instruction i has finished executing (until

instruction i has written the register file with the correct information). Figure 21-3

illustrates this action.

FIG. 21-4. 5-9 Register Collision Pipeline Flow

stage of instruction (L GR1,TONY)
2

1 3 stage of instruction i+1 (NOP)
2 4

1 3 5 F stage of instruction 1+2 (L GR3,D+GR1).
2 4 6 T

3 5 F 7
4 6 T 8
5 F 7 9 •

0 stage 10 of instruction i
6 T 8 stage 6 of instruction i+2

• 5-9 register col I is ion detected, stage 6 of instruction i+2 is
delayed 1 beat.

The register file detection logic for 5-9 collisions are implemented as follows: The register

file read addresses (for both the base and index registers) are clocked at the end of stage 4.

The register file write addresses are clocked at the end of stage 8. Stage 4 of instruction i+2

occurs at the same time as stage 8 of instruction i. The register file read address of

instruction i+2 is compared to the register file write address of instruction i during the next

beat. The signal BRC59+ refers to an address match of the base register and XRC59+ refers to

an address match of the index register. These signals mean that a "potential" register file

collision exists which needs to hold up the pipeline.

Special "bypass logic" is implemented that enables BVMA to be driven directly from BD.

This bypass path is used during 5-9 collisions in I mode register-to-register instructions. For

example in a sequence such as:

L R1, TONY
L R3,DOROHOV
A R2,R1

the EAF unit will fetch a stale value for Rt. Rather than hold up the pipe for 1 beat and

wait for Rl to be updated with the correct data and then read the register file, we take

advantage of the fact that BD happens to have the right data (from the L Rl,TONY

PRIME RESTRICTED

Effective Address Formation Detailed Description 4150 Funct. Spec.
Page 197

instruction) coming over BD just as we are finishing stage 6 of the A R2,Rl instruction.

Therefore we do not have to hold up the pipeline to wait for the register file to be updated.

This bypass path is only helpful for I mode RR instructions. Collisions involving the base or

index registers cannot be bypassed, because the contents of those registers are used in the EAF

calculation logic (e.g. L GR3,DISP+PB). Therefore, if BRC59+ is active or XRC59+ is active

and we are doing indexing in the EAF phase (using the index register), then we have a

register collision that requires holding up the pipeline. In these cases the signal FIW AIT- is

asserted at the end of stage 5, causing the PCU to hold off all even clocks for one beat.

21.6.2 4-6 Register Collision

A 4-6 register collision occurs when instruction i is modifying a register fiie location used by

instruction i+l. The term "4-6" means that the register file collision is .detected at stage 4 of

instruction i+ 1 and stage 6 of instruction i. When this conflict occurs, stage 5 of instruction

i+ 1 is held off for two beats. This would mak.: stage 5 of instruction i+ 1 happen at the

same time as stage 9 of instruction i. At that point there is a 5-9 register collision, and the

hardware discussed above (for 5-9 collisions) would come into play. Figure 21-4 illustrates

this type of collision.

FIG. 21-5.

1
2

1 3
2 4

1 3 5 F
2 4 6 T +

F 7
T 8 $

3 5 F 7 9 •
0

4 6 T 8

4-6 Register Collision Pipeline Flow

stage of instruction

stage of instruction i+1

stage of instruction 1+2

NOP_STEP (NOP)

stage 10 of instruction i
stage 6 of instruction i+1

(L GR1, TONY)

(L GR3,DISP+GR1)

+ 4-6 register file collision detected, stage 5 of instruction i+1 is
delayed 2 beats.

$The E unit executes a NOP while waiting for stage 6
of instruction i+1

• 5-9 register file collision detected, stage 6 of instruction i+1 is
delayed 1 beat.

The register file detection logic for 4-6 collisions are implemented as follows: The register

file write (or destination) address is generated on the E unit at the end of stage 8. This

PRIME RESTRICTED

4150 Functional Specification Register File Tracking/Collisions
Page 198

address is clocked on the EAF unit at the end of stage 9. Therefore, by the time the register

file write address for instruction i is transferred to the EAF unit, instruction i+l would have

finished stage 7, and would have read stale data from the register file.

To handle register file collisions between consecutive instructions in the pipeline, we must

know the register file destination address of instruction i in time to stop stage 6 of

instruction i+ 1 from occurring. This critical knowledge is provided by the decode net.

Decode net control bits 4 thru 6 (DNCTRL{04:06}+) specify which register (if any) the

impending instruction plans to modify (refer to Table 20-3). This information is clocked on

the EAF unit at the end of stage 4 of the instruction.

Remember that stage 4 of instruction i corresponds to stage 2 of instruction i+l. During stages

3 and 4 of instruction i+ 1 (stages 5 and 6 of instruction i) the register file read address is

being calculated. This read address is compared to the write address of instruction i. The

signal BRC46+ means an address match of the base register, while XRC46+ ·means an address

match of the base register. These signals mean that a register file l-Ollision exists that may

need to hold up the pipeline. Just as the case for 5-9 collisions, special "bypass" logic exists

which is used to alleviate 4-6 collisions during I mode RR instructions.

As discussed earlier, I mode RR instructions take information from the EAF unit's copy of the

register file and put it into RMA at the end of stage 6. The E unit then copies RMA into

the destination register.

EAF unit in 4-6 register

Refer to Figure 21-5.

It also copies RMA into a special E unit register, RD, to assist the

collisions. Now lets examine how this helps I mode RR instructions.

FIG. 21-6. 4-6 Register Collision Bypass

1 stage of instruction (L GR1,GR2)
2

1 3 stage of instruction i+1 (L GR3,GR1)
2 4

1 3 5 F stage of instruction 1+2
2 4 6 T

3 5 F 7
4 6 T B •

5 F 7 9
6 7 B 0 stage 10 of instruction

• A this point RD on the E unit hos the contents of GR1

Notice that at the end of stage 6 of instruction i+ 1, RMA would have stale data from it's

copy of GRl, but RD has the new version of GRl being put there by instruction i. Therefore,

by switching the BLEG selects on the E unit from selecting RMA (and stale data) to selecting

RD (and new data), we can correctly execute instruction i+l without holding up the pipeline.

(RD and RMA are two different E unit BLEG sources.)

PRIME RESTRICTED

'\

Effective Address Formation Detailed Description 4150 Funct. Spec.
Page 199

The signal USERD+ on the EAF unit does this switch. If BRC46+ is active and we are

executing an I mode RR instruction, USERD+ becomes active at the end of stage 6. The E

unit uses this signal to select RD rather than RMA.

Unfortunately this ~'bypass" logic works only for I mode RR instructions. Therefore, if

BRC46+ is active AND' we are using a base register (not I mode RR), or if XRC46+ is active

AND we do need _to do indexing during the EAF phase, then we must hold up the pipeline.

Under these conditions, the signal FINOP+ is activated at the end of stage 4 of instruction i+l.

This signal instructs the PCU to hold off stage 5 for two beats.

21.7 VLSI Usage

Two PCADR VLSI cl1ips are used

21.8 9755 Comparisons

to implement the displacement A T T T (A T T TT'\'\
r1..l..JV 'I"J...1....oV......,../•

The EAF unit on the 4150 performs register tracking on the Floating Point registers. The

9755 did not. The reason the 9755 didn't have to is that all microcode transferring data to an

floating point register also had an EAF step, which eliminates any potential register collisions.

The EAF unit has only one set of user registers in its register file. The 9755 had 4 user

register sets in its register file.

21.9 Major and Critical Paths

One Beat Paths (62.5 nsec)

1. Register Collisions - 5-9 collision detection generating FIWAIT-. Path starts on E
unit and ends on EAF unit. CS8+ -> RFDSTRAD5+ -> XR2FC9+ -> XRC59+ ->
ENIW AIT- ->FIWAIT-ClOE) at end of beat. Time = 58.0 ns.

2. FGEAF- generated at CS4+ to inhibiting CSl+ and CS3+ stage clocks at the end of
the beat. Path starts on I unit and concludes on EAF unit. CS4+ -> FGEAF- ->
HLDl- -> AENCSOl- -> ENSTlA+ -> inhibit the reset of ST1A+. Time = 61.0 ns.
ST3A+ timing is identical.

Two Beat Paths (125 nsec)

EAF calculations. These paths start at CS4+ and end at TRCML+ two beats later. Indexing

takes 117 ns. No indexing takes 115 ns.

PRIME RESTRICTED

4150 Functional Specification
Page 200

21.10 Partitioning

Major and Critical Paths

The decode net and EAF PROMs are implemented on the CMI board, which is discussed in

chapter 30. The rest of the EAF unit is implemented on the IS board, which is discussed in

chapter 31.

PRIME RESTRICTED

Branch Cache Detailed Description 41SO Funct. Spec.
Page 201

22. Branch Cache Detailed Description

The branch cache logic consists of a 17-bit branch cache address register, a lK x 24-bit branch

cache array, some hit detection logic, some more logic used to validate the branch target, and

some logic used to help manage IRP (I unit program counter) and detect branch cache gaffe

traps.

The Execution (E) unit branch· cache response logic influences the condition under test during

branch instruction microcode, and controls the loading of the E unit RP.

The branch cache address register is loaded from BVMA at CSl + with the current value of

IRP. (In the event of an unaligned operand read and the loading of the address register

happening simultaneously, BVMA will contain ERMA+l, not IRP. In this case, the branch

cache registers will be loaded a beat after CS1+.) The branch cache address register drives the

address lines of the branch cache array.

Each branch cache location contains a 16-bit branch target address (BRNA{01:16}+) and a 6-bit

index which represents the high order branch cache address bits within a segment. An

additional index bit, IRPHOS+, is included in the index to help improve branch cache

performance by separating branches in system code from user code. Each array entry also

contains a valid bit (BCVLD+) and a bit used to track even vs. odd references.

The hit detect logic compares the current program counter to the index stored in the branch

cache. A hit is prevented when the branch cache entry is invalid or if the branch cache is

disabled by the addressable latch DISBCHITAL+. In addition, if the program counter was just

loaded with an odd address and a branch cache hit is indicated for the even address the

signal PASSEDHIT+ is activated, disabling the HIT+ signal. If a hit occurs, the branch target

address BRNA{01:16}+ is loaded into IRP a half beat after CS2+. The BCHITORLD+ signal

indicates whether the normal increment/hold of IRP should be performed or whether the

branch cache target should be loaded into IRP.

The effective address of the branch instruction is compared against a staged version of the

program counter to validate the branch. Since the branch cache hit logic doesn't have a full

32-bit tag and a notion of which user owns the entry, it is possible that the prediction logic

can make a mistake. The GOODBR+ signal is a function of the partial validation signals.

GOODBR+ cannot be trusted if an RP trap is pending. An erroneous validation may be

indicated if the effective address was based on invalid cache data. In addition, the value of

IRPL16+ is only valid if the IRP register was loaded. This implies that GOODBR+ cannot be

trusted if a BCHIT+ and the corresponding IRP load didn't occur. The signal DISGOODBR­

disables GOODBR+ from going active in these cases.

The Instruction (I) unit alignment logic looks at the state of the current IRP value, in

addition to whether a branch cache hit has occurred, to determine whether the next opcode is

PRIME RESTRICTED

Target Address
To I Unit Branch Branch

cache BVMA Cache
Address RAMs
Register

Instruction Hit
BCHIT-

State Detect
Machine-

.

Branch
GOODBR-

Verification
GAFFE-

To E Unit

Figure 22-1 Block Diagram of Branch Cache

Branch Cache Detailed Description 4150 Funct. Spec.
Page 203

to be fetched from the high or low side of cache. Built into the RP clock is the knowledge

of whether the branch occurred on the even or odd word and whether the instruction is long

or short. If a branch cache hit occurred on the odd word and the even word is a short

instruction, the IRP increment must be prevented, but the fact that a branch occurred must

not be lost. If the aoove case occurs, TRPST + will not occur at the normal time, CS3+, and

the branch state will be held. FIRPL16+ will toggle, enabling the TRPST + clock for the next

CS3+.

The instruction state machine keeps track of instruction alignment in the instruction stream

and issues the HIT+, GOODBR+, and BCGAFFE+ signals at the appropriate times. GOODBR+

and HIT+ are used by the E unit in calculating whether to CRTN-TO-FETCH or not. The

BCGAFFE+ signal is issued when a BCHIT + occurred on a non-branch instruction or on the

opcode of a long unaligned branch. A trap occurs to get the instruction stream back in order.

Unaligned branches pose a difficult problem for the pipeline. The ihstruction fetch logic

fetches 32 bits every other beat, and is expected to present the I unit with an opcode to be

decoded every other beat. In addition, the I unit must provide the displacement to the EAF

logic. For a normal unaligned instruction, the I unit provides for a bypass of the CS4 registers

in the EAF unit. This allows the displacement of the previous instruction to be sent to the

EAF logic at the same time as the opcode of the current instruction is being sent to the I

unit.

In the case of an unaligned branch, the pipeline must wait for the displacement of the branch

to be fetched before allowing the branch cache to vector to the target. This requirement is

imposed so that the branch can be validated by the GOODBR logic. Unfortunately, by waiting

for the displacement, the fetch of the target instruction was prevented. This condition starves

the pipeline, and an additional fetch is required if a branch cache hit occurs.

A mixture of microcode and hardware is used to solve this problem. One can observe that

most branch instruction require two microcode steps. The hardware, recognizing that an

unaligned branch has occurred, can allow the pipeline to asynchronously fetch the target of

the branch during execution of the first step of the algorithm, thereby filling the hole in the

pipe. This is referred to as 'overlapped refill' of the pipeline. The signal that initiates this is

F3GENAPST +. The pipeline enters the GENAP state during unaligned branches because the

desired result, filling a hole in the pipeline, is the same function performed when skipping

over the third word of three word GENAP instructions.

Since all branches are not multi-microcoded instructions, a method for dealing with the single

microcode step branches is required. The microcode for the branches is carefully allocated such

that single microcode step branches are allocated with BCY12+ active and multi-microcode step

branches with BCY12+ inactive. In addition, a NOP microcode step is provided for each single

microcode step branch that has the same microcode address as the branch, except that BCY12+

is inactive. Each NOP step then goes to its corresponding branch step. With this hardware

PRIME RESTRICTED

4150 Functional Specification
Page 204

and microcode in place, in the event of an unaligned branch, the hardware can simply force

BCY12+ inactive by activating LDAENB12+. If the branch instruction requires more than one

microcode step, the algorithm begins in the normal place. If the branch normally needs only

one step the hardware forces execution to begin at the corresponding NOP step, and then

execution proceeds as normal. The NOP step acts as a place holder for overlapped refill.

22.1 VLSI Usage

The branch cache logic partially controls the pre-IRPL mux selects in the Cache Address VLSI

chip (PCADR). One mux select line is controlled by the branch cache hit detection logic,

which will force the next update of IRPL to come from the branch cache array rather than

the PCADR increment logic used to advance IRPL under normal operation. Thus the

substitution of the branch target address for the next sequential IRPL value is done through a

mux select line.

The PCAD:(part also produces the signal which lets the rest of the CPU know that the

addresses involved in the current branch operation are valid.

The microsequencer (PUSEQ) VLSI chip on the CS unit has the ability to force decode net

address bit 12 to a logic zero on unaligned branches.

22.2 9755 Comparisons

The 9755 branch cache was 256 locations deep. The 4150 branch cache is 1024 locations

deep.

The 9755 didn't have the ability to do a full 32-bit branch cache validation. This meant that

any branch that could possibly leave the segment was never allowed to have a validated

branch cache entry. The 4150 has no such restriction.

A third difference involves a deficiency in the 4150 hardware. The value of IRPL16+ inside

the Cache Address VLSI chip is not always accurate. This results in the branch cache

validation not always being correct. To overcome this, the branch cache validation signal can

only be trusted if a branch actually occurred. The effect of this difference is that the 9755

had the ability to forward branch by one, while the 4150 does not. (This is not a very

useful function.)

Finally, system and user entries are isolated from each other in the 4150 branch cache. This

was not done in the 9755.

PRIME RESTRICTED

Branch Cache Detailed Description 4150 Funct. Spec.
Page 205

22.3 Major and Critical Paths

For the most part there are no critical timmg paths in the branch cache logic. The major path

from the clocking of the branch cache address register, through branch cache hit detection, and

switching the mux J;o meet the IRPL setup time has 1 112 beats to do the job. The branch

cache validation path through the PCADR is somewhat critical. Here, the effective address

calculation must be compared to the staged IRPL value in two beats.

22.4 Partitioning

The branch cache is implemented entirely on the IS board, which is discussed in chapter 31.

PRIME RESTRICTED

4150 Functional Specification
Page 206

PRIME RESTRICTED

Cache Detailed Description 4150 Funct. Spec.
Page 207

23. Cache Detailed Description

23.1 Associative Memory Introduction

Consider Table 23-0, which is to be stored in a computer's memory. It consists 'of a list of

records for the 4150 baseball team. Each record contains 5 data fields:

1. The player's first name

2. The player's second name

3. The player's position

4. The player's batting average

5. The player's homerun total

Most information storage and retrieval problems involve accessing certain subfields within a set

of records in answer to questions such as, "How many homeruns did Steve Small hit and

what was his batting average?"

TABLE 23-1. 4150 Baseball Team Statistics

NAME POSITION BA HR

Tony Dorohov SS .400 50
Steve Sma I I c .275 10
Bob Parrow LF .350 30
Denise Chiacchia p .330 2
Tom Kinahan 1B .225 15
Tom O'Brien 3B .300 20
Car I Dimanno CF .100 1
Lynne Mu I cahy 2B .200 3
Mork Lai rd RF .250 5

If a conventional random access memory is being used, it is necessary to specify exactly the

physical address of the Steve Small entry in the table, e.g., by the instruction

READ ROW 2

An alternative approach is to search the entire table using the NAME data field as an address.

In such a system, the request for the data would be in the form of an instruction such as

READ NAME = Steve Small

The memory would be searched until Steve Small was found in the NAME field. This type

of search is called an associative search.

An associative memory is one in which any stored item can be accessed directly by using the

contents of the item in question as an address.

PRIME RESTRICTED

41SO Functional Specification
Page 208

Associative Memory Introduction

For example, to implement the above search algorithm we could have the direct mapped cache

structure shown in Figure 23-1.

FIG. 23-1. Direct Mapped Cache (Analogy)

MEMORY (CACHE) STLB

Dimanno CF .100 1 Dimanno
Chiocchia p .330 2 Chiacchia
Dorohov SS .400 50 Dorohov

• O'Brien 3B .300 20 O'Brien
Lai rd RF .250 5 Lai rd
Mulcahy 2B .200 3 Mu I cahy
Par row LF .350 30 Parrow
Sma 11 c .275 10 Smal I

t t

I I
I I

CACHE ADDRESS REGISTER STLB ADJRESS REGISTER

"First Name" Hash of 1st and
last name

•Note that BOTH Kinahan and O'Brien map to the same location
because their first names ore both Tom. Therefore only one
name can be stored in memory.

Each location in memory is stored according to the player's first name. No two player having

the same first name can be in memory at the same time. Therefore, data about Tom Kinahan

and Tom O'Brien cannot both be in cache simultaneously.

We address each location in the memory (analogous to 4150 cache) by using the FIRST NAME

data field (analogous to the low 14 bits of the address field in the 4150).. Each location in

memory also contains a LAST NAME field (analogous to the INDEX in the 4150 cache).

Now assume we want the data related to ''Tom O'Brien".

address register with the FIRST NAME data field of ''Tom".

''Tom" we would read the following data out of memory:

O'Brien 3B .300 20

We would load the memory

At the address specified by

Now notice this very important point. The contents of cache may have eontained the

information for Tom Kinahan and not for Tom O'Brien. This is analogous to the cache miss

cases for the 4150. To make sure we read the correct location, we have to compare the

LAST NAME field located irt the STLB to the LAST NAME field in the cache. If we were

inquiring about Tom Kinahan, the contents of the STLB would have been the LAST NAME

data field of "Kinahan", and we would be notified that the information we are looking for is

PRIME RESTRICTED

Cache Detailed Description 4150 Funct. Spec.
Page 209

not in cache. The information for the "correct" Tom would then be written into cache (via a

cache miss operation) and we would then read the correct information.

The above is an example of a direct mapped cache. The problem with this type of

organization is that .we could not store both the data related to Tom Kinahan and the data

related to Tom O'Brien 'in cache at the same time.

Now consider an associated memory organization, illustrated in Figure 23-2.

I
I
I
I
I
I I
-->I

I
I
I
I
I

FIG. 23-2. Two Set Associative Memory (Analogy)

(SET A)
MEMORY (CACHE)

Dimonno CF .100 1
Chiocchia p .330 2
Dorohov SS .400 50
O'Brien 38 .300 20
Lai rd RF .250 5
Mu I cohy 28 .200 3
Parrow LF .350 30
Smal I c

t

I
I
I

.275 10

CACHE ADDRESS REGISTER

"First Name"

(SET B)
MEMORY (CACHE)

Kinahan 1b .225 15

(SET A)
STLB

Dimonno
Chiocchia
Dorohov
O'Brien
Loi rd
Mu I cohy
Parrow
Smal I

t

I
I
I

STLB ADDRESS REGISTER

Hash of 1st ond
last name

(SET B)
STLB

I
I
I
I
I

I I
l<--

Kinahan 1

I
I
I
I

In this organization we have added another cache set and another STLB set. Now assume we

were inquiring about Tom Kinahan. We would load the memory address registers with "Tom"

and address BOTH caches and both STLBs. The cache in SET A would contain the information

PRIME RESTRICTED

4150 Functional Specification
Page 210

Associative Memory Introduction

about Tom O'Brien and therefore would notify us that it does not contain the information we

are looking for. However, the SET B cache would contain the correct information, and we

would not take a cache miss.

This 1s an example of a two way set associative cache. The 4150 processor implements this

type of memory structure in the cache.

23.2 Cache Organization

Cache memories are generally described in terms of total memory size. The 4150 'cache size'

is 128 Kb.

The cache placement algorithm describes how the cache is organized. Ideally, the cache would

be organized as a single fully associative memory, implying that any word in main memory

could be assigned to any location in the cache. Each time the cache is accessed, all locations

would be examined simultaneously, checking whether the physical address tag or 'index'

matches the current physical address. However, since large associative memories are expensive

and slow, caches are typically organized as a group of small, inexpensive, and relatively fast

associative memories. Each associative memory is referred to as a 'set', and each set is made

up of memory 'elements'. The number of elements in a set is considered the 'set size'. Each

element contains a 'line' or 112 'block' of bytes that are transferred between memory and

cache during an update. (A line is the amount of data transferred between cache and the E

unit on a cache read. A block is the amount of data transferred between main memory and

cache during a cache update.) Once a set is selected, the set is searched associatively for the

appropriate element giving the desired line. From the line, a number of bytes, a 'word', are

chosen and finally presented to the CPU.

Fully associative memories aren't used in the 4150. Instead, two caches are addressed

simultaneously, giving the effect of an associative search. During a cache access, each cache

array provides one of two elements of the selected set. The set selection is performed via a

simple bit selection algorithm, whereby bits of the virtual address are used to directly address

the cache array. The cache can be described as follows:

• cache size = 128k bytes

• sets = 16K

• set size = 2 elements

• block size = 8 bytes

• line size = 4 bytes

The 4150 cache employs a VLSI chip named the Cache Set Select option (PCSS). This part

PRIME RESTRICTED

A Elements
MBPMA (from STLB)

~

•
BD ... Index

....

..... 16K Index
-.... Cache

Elements
.....

Register
Miss CMISS.._+

.... Detection
......

......
-

Data
... Data

...... -.. Register
,,

Cache
Address

,, ... Data

~
Selection BB

BVMA Registers
-.... ~

..

16K
Index Index ...__

Elements
...... Register

...

Data
D~ta .. Register -....

~· I

B Elements

Figure 23-3 Block Diagram of Cache

4150 Functional Specification
Page 212

Cache Organization

chooses which element of the selected set is to be presented to the Execution (E) unit during

operand fetches and to the Instruction (I) unit during instruction fetches. It's important to

remember that the PCSS option doesn't select the set, it selects the desired element within a

set !

23.3 Element Selection

The PCSS is the only source of BB. One important function is to provide 16-bit word

swapped data to the E unit and instruction fetch logic. This function, in combination with

the desire to minimize the loading of the cache outputs, not to mention pin limitations,

motivated the interesting slicing of BB. Slice "A" of the PCSS drives the high bytes of BBH

and BBL, while slice "B" drives the low bytes. This slicing facilitates 16x16 swaps by

providing all the necessary data to a single slice without the need for a single cache data line

driving more than one VLSI chip.

In addition, each PCSS option is dedicated to ori~ of the two cache indices associated with a

set. The basic algorithm of the PCSS is to compare the dedicated cache index to the physical

page address presented to it by the STLB Set Select option (PSSS). If the comparison is true,

the PCSS drives BB with data from the cache element it's dedicated to. Otherwise, it drives

data from the other cache element.

It's very easy to speak of the dedicated cache element or other cache element from a single

PCSS slice, but the situation becomes nearly hopeless when the cache is spoken of in its

entirety. The dedicated cache element to one PCSS option is the "other" cache element to the

second PCSS option. It is necessary to provide a means of describing the cache that is

applicable on the chip as well as at the board level. During the development of the cache

additional terminology was adopted to help characterize the cache.

The elements of all the sets are physically divided into two cache arrays. One cache, 'Cache

A', contains all the element A's of all the sets, while the second cache, 'Cache B', contains all

the element B's. Slice "A" of the PCSS is dedicated to 'Cache A', it considers the data it

receives from cache A as the 'main' data and the data it receives from cache B as the

'auxiliary' data. Similarly, slice "B" of the PCSS is devoted to 'Cache B', and refers to the

data from cache B as its 'main' data and the data from cache A as its 'auxiliary' data.

Cache data has been traditionally partitioned into an 'even' half and an 'odd' half. Even and

odd refers to the 'high' or 'low' 16-bit words, and they get their names from the evenness or

oddness of the address. Either or both sets of descriptors are acceptable and are riddled

throughout the documentation.

Under normal operating conditions, each PCSS compares a copy of the physical page number to

its dedicated index. If they are the same, the PCSS slice puts its main data on the BB

outputs. Otherwise, the PCSS slice puts its auxiliary data out on BB. The result of the

PRIME RESTRICTED

Cache Detailed Description 4150 Funct. Spec.
Page 213

comparison is also presented at the output so that the external logic can determine whether a

cache miss has occurred. A cache miss is detected when both PCSS options indicate that a

miscompare has occurred, or when a parity error is detected.

'
23.4 Cache Replacement

The replacement algorithm of a cache refers to a method used in deciding which of the

eligible cache elements should be replaced next. When both of the cache elements are used and

a third data block needs to be brought in, the replacement algorithm dictates which element

will be emptied to make room for the new data. Different replacement algorithms can be

used to accomplish this task. Examples of replacement algorithms follow:

• LRU - update the Least Recently Used element

• FIFO - the First In is the First Out

• Random - randomly choose which to replace

The FIFO approach is used on the 4150 because of ease of implementation. The LRU provides

the best performance, but requires status to be taken on every access. FIFO needs only to

record status on updates. The random approach was dropped because of its unpredictable

behavior.

The conventional means for implementing a FIFO algorithm is to maintain a status memory

for the elements. The status memory is common for all elements and tracks information for

a particular block for all the elements. Whenever an element needs to be updated, the status

memory is queried for the appropriate block. This information indicates which element is to

be modified. During the element update, the status memory is modified to indicate which

element should be updated next time the block is to be modified.

The problem with the conventional method is that special control logic is required to update

the status memory when any of the elements is modified.

The 4150 provides an efficient means of distributing the replacement algorithm between the

elements without requiring a centralized status memory and unique control. Included with

each element is an additional bit called the update bit. This bit, in conjunction with the

corresponding bit in the other element, indicates which element is to be updated next. When

the element is actually modified, this bit is toggled. Table 23-2 shows how the control logic

interprets the update bits and decides which element to update next.

Included with each cache cell is a force bit. The force bit is used to mark a cache block

permanently invalid. This bit is set by microcode when ari unrecoverable error is detected in

a cache cell. The idea here is that if a cell is stuck either high or low in the data or tag,

then an additional error will be undetectable. To proceed executing after an error is detected

PRIME RESTRICTED

4150 Functional Specification
Page 214

TABLE 23-2.

Current State
a b

0 0
0

1
0

Cache Replacement

FIFO Cache Replacement Algorithm

Next state
Element to modify a b

a 0
b , ,
a 0
b 0 0

is possible, by using one of the other eligible cache cells, but reliability is sacrificed. To

avoid reducing the reliability in the name of enhanced performance and improved availability,

the force bit is used to completely ignore the offending cache cell.

23.5 Cache Reads and Writes

As discussed previously, each cache entry contains 32 bits of data, partitioned into 16-bit even

and 16-bit odd data words. Cache reads or writes can be 16 bits or 32 bits. Which data

location is read from or written to depends on the the least significant bit of the cache

address. If the least significant bit of the cache address is a 1 the address is an odd address;

if the least significant bit is a 0 the address is an even address.

Aligned writes are illustrated in Figure 23-4. The E unit sends the data to be written to the

cache whh the first 16 bits on BDH and the other 16 bits on BDL. If only 16 bits are

being written, the E unit sends the 16 bits on both BDH and BDL.

Unaligned reads and writes occur if a 32-bit operation is made to an odd address.

PRIME RESTRICTED

Cache Detailed Description

FIG. 23-4. Aligned Cache Writes

lnstruction "i" does a cache write.

- - - - - - -
FENEOB+ _j 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-

TRCt.1L+ ----1 i ---1 A 1-----------'-
CS7+ ----1 i 1----

-
TCADR+ ---1 1----------------

-
TERMA+ ---1 1----------------

FENCWRT+ ------

FDESMEMxx+ ----- 2

Notes:

WE-
3

1-1

1. Al I cache writes specify a TX=2
2. FDESMEMxx+ is not a signal name.

FDESMEMxx+ = FDESMEM32+ for 32 bit destinations
= FDESMEM16+ for 16 bit destinations

3. Cache write would occurs at CS8.5 if TX=0
WE- is not a signal name but is used to symbolize
the cache write enables.

TCAE- write pulse to even side element A
TCAO- write pulse to odd side of element A
TCBE- write pulse to even side of element B
TCBO- write pulse to odd side of element B

16 BIT EVEN WRITE
16 BIT ODD WRITE
32 BIT EVEN WRITE

WE- = TCAE- or TCBE­
WE- = TCAO- or TCBO­
WE- = TCAE- and TCAO-

or TCBO- and TCBE-

23.S.1 Unaligned Cache Write

4150 Funct. Spec.
Page 215

Unaligned writes are processed by a combination of hardware and microcode. Storage

management (S} unit hardware handles the pointer manipulation, E unit hardware aligns the

data correctly, and the microcode assists in writing it. Unaligned writes require four extra

beats over the align·ed case, one to reload the address and three to write the second word.

They are handled differently depending on whether the microstep is reloading RMA or not.

The two cases are discussed below.

PRIME RESTRICTED

4150 Functional Specification
Page 216

23.5.1.1 Unaligned Write With No RMA Destination

Cache Reads and Writes

The majority of unaligned writes are executed in store instructions which have no need to

reload RMA. (Refer to Figure 23-5.)

At TRCML+ of the unaligned write the cache address registers get loaded with the memory

address of the first word. The E unit aligns the data so that the first 16 bits to be written

appear on BDL. The -cache detects the unaligned 32-bit write and automatically turns it into

a 16-bit write to the odd side. During CS7+ of the write the BVMA selects switch to point

to ERMA+l, the address of the second 16 bits. Therefore, by simply switching the BVMA

selects we will load the address of the second word into the cache address registers at the

next TRCML+.

Meanwhile, the microinstruction jumps on the LSB of the unincremented address to determine

whether or not it was attempting an unaligned operation. If it was, it ju:nps to a cleanup

step which knows that the address for writing the second word has already been loaded into

RMA. It simply puts the second word onto BDH and does .i 16-bit write. If we were

writing three consecutive words (rather than 2), the cleanup step has the option of combining

the second and third words and doing a 32-bit aligned write.

There must be a way of delaying the loading of cache address registers with the address of

the second word until after the first write has completed. An NX= 2 and a RMA destination

are conditionally inserted if a write turns out to be unaligned. This is accomplished by

generating an FEHOLD+ for one beat starting at the next TRCML+.

PRIME RESTRICTED

Cache Detailed Description 4150 Funct. Spec.
Page 217

FIG. 23-5. Unaligned Cache Writes: No RMA destination

Instruction "i" does a cache write.

- - - - - - -
FENEOB+ _,, ,_, LI 1-1 1-1 1-1 1-1 1-1 1-1 LI LI I

TRCML+ I i 1-1 ,_
- -

TCADR+ IAI _____ 1s1 _____ 1 1--
- -

TERMA+ ICI ----1 l~~~~~~~~~~-

FEHOLD+ ---~--~~I E 1-~--------

CS7+

css+

FUNALWRHLD+

UNALWR+

FENCWRT+

FDESMEMxx+ 2 , __

Notes:

WE-
3 ,_, 4 ____ _

1-1

1. All cache writes with no RMA destination have
TX=2 in the microcode step.

A. RMA and cache address register gets loaded with memory
address of first word of write.

8. RMA and coche address registers get loaded with ERMA+1.
BVMA selects ore pointing to ERMA+1.

C. ERMA gets loaded with address of 1st word.
E. FEHOLD+ delays second write to cache until first write

hos finished.
2. FDESMEMxx+ is not o signal name.

FDESMEMxx+ = FDESMEM32+ for 32 bit destinations
= FDESMEM16+ for 16 bit destinations

3. Write first word to odd side of cache.
WE- = TCAO- or TCAE-

4. Write second word to even side of cache.
WE- = TCAE- or TCBE-

23.5.1.2 Unaligned Write With RMA Destination

All 32-bit writes to cache with an RMA destination have a microcode restriction of TX= 2,

NX= 2. This operation is similar to the unaligned write just discussed. Refer to Figure 23-6.

PRIME RESTRICTED

4150 Functional Specification
Page 218

Cache Reads and Writes

Note that because the write has a destination of RMA, a TCADR+ clock will occur at the

next TRCML+. This TRCML+ is pushed out an additional two beats (with a NX=2) from

CS8+ to allow the first data word to finish writing before reclocking the cache address

registers. The EA>MA which the microstep was trying to do is lost and must be redone on

the next step.

Meanwhile, the microstep jumps on the LSB of the unincremented address to determine

whether or not it was attempting an unaligned operation. If it was, it jumps to a cleanup

step which knows that the address for writing the second word has already been loaded into

RMA. It simply puts the second word onto BDH and does a 16 bit write. If we were

writing three consecutive words (rather than 2), the cleanup step has the option of combining

the second and third words and doing a 32 bit aligned write. This step also re-executes the

EA>MA which was overridden in the first step.

PRIME RESTRICTED

Cache Detailed Description 4150 Funct. Spec.
Page 219

FIG. 23-6. Unaligned Cache Writes: RMA destination

Instruction "i" does a cache write.

- - -FENEOB+ .J LI ,_, ,_, ,_, ,_, ,_, ,_, ,_, ,_, ,_, I

TRCML+ ----1 i 1----- ,_, ,_
- -TCADR+ ___ IAl _____ jBj _______ IDI---

-
TERMA+ ___ jCj __________ j 1----

CS7+ ____ , i , ____ _ , _
csa+

UNALWR+

FENCWRT+ ------

FDESMEMxx+ ----- 2 , __

Notes:

WE-
3 ,_, 4 ___ _

'-·'
1. Al I cache writes with RMA destination specify a

TX=2, NX=2 in the microcode.
A. RMA and cache address register gets loaded with memory

address of first word of write.
B. RMA and cache address registers get loaded with ERMA+1.

BVMA selects ore pointing to ERMA+1
C. ERMA gets loaded with address of first word.
D. RMA and cache address register get loaded with EA>MA

that ERMA+1>MA (note B) destroyed.
2. FDESMEMxx+ is not a signal name.

FDESMEMxx+ = FDESMEM32+ for 32 bit destinations
= FDESMEM16+ for 16 bit destinations

3. Write first word to odd side of cache.
WE- = TCAO- or TCAE-

4. Write second word to even side of cache.
WE- • TCAE- or TCBE-

23.S.2 Unaligned Cache Read

A 32-bit cache read from an· odd address is referred to as an unaligned read. The first 16 bits

of data are located at the odd address, while the second 16 bits are located at the next even

address. Unaligned reads are handled by stopping the pipeline for 1 beat while the address of

the second word is loaded in the cache address registers and a extra cache cycle is executed.

Table 23-3 shows the starting memory image for Figure 23-7, which illustrates an unaligned

read. The notes for Figure 23-7 are in Table 23-4.

PRIME RESTRICTED

4150 Functional Specification
Page 220

Cache Reads and Writes

TABLE 23-3. Memory Images for Figures 23-7, 23-8, 23-9, and 23-10

500
502
504
506
510

1000 LOC
1001
1002
1003
1004
1005
1006
1007
1010
1011

L GR1,LOC+1
L GR2,LOC+4
L GR3,LOC+6
L
L

DATA
DATA
DATA
DATA

GR4,LOC+B
GR5,LOC+10

0
10
20
30

DATA 40
DATA 50
DATA 60
DATA 70
DATA 100
DATA 110

instruction i
i+1
i+2
i+3
i+4

FIG. 23-7. Unaligned Read Timing

CS1+ I i+3 I i+4 , _

CS2+ --1 i+2 ____ ,i+3 , __

CS3+ li+2 ____ ,i+3 ,_

CS4+ --1 i+1 ____ , i+2 , __

CS5+ I i+1 ____ ,i+2 , _

TRCML+ --1 i ___ ,i+1 , __

CS7+ I i ____ ,i+1 ,_

FEHOLD+

FUNALBLIP+

DFUNALBLIP+

- - - - -
TCADR+ __ l1l_l4l_l7l_l91-1CI __

- - - -
TRCDIE+ __ 121_1s1_1s1_IAl_IDI __

- - - -
TRCDD+ --_l3l_l6l ___ 1e1_IEI_

- -TERMA+ __ IFl _____ IGI----

- -
TPRMA+ ___ IHl-1I1-----

PRIME RESTRICTED

Cache Detailed Description

TABLE 23-4. Notes for Figure 23-7

1. Load RMA,and Cache Address Registers with '1001.
The BVMA selects point to EA.

F. Load ERMA with '1001.
2 Load RCDE with Opcode {instruction i+2).
3. Load RCDO 'with Displacement (instruction i+2).
4. Load RMA and the Cache Address Registers with '1002.

The ~VMA selects, which normally would hove pointed
to IRP, now point to ERMAL+1. After the
read of the second word of the unaligned, we wi I I
reload RMA with the RP address. See note 7.

H. Lood PRMAL with '1002. Note that PRMAL should hove
been stored with the next RP address, but due to the
unaligned miss, it gets loaded with ERMA+1. PRMAL
wi 11 later get loaded with the correct address.
See note I.

5. Load RCDE with '0 (contents of '1000). Note that because
the 32-bit read is unaligned this data is no good.

6. Load RCDO with '10 (contents of '1001). Because the read
is unal igned,this data is the first word, not the second
word.

7. Load RMA with '506. We must now redo the CS1 that
we lost due to the unaligned read. The BVMA selects
points to IRP.

I. Load PRMAL with the correct RP address.
8. Load RCDE with '20 (contents of '1002). This is the second

word of the data.
9. Load RMA 0nd the cache address registers with '1004.

Load ERMA with '1004. BVMA selects point to EA.
A. Load RCDE with Opcode (instruction i+3).
8. Load RCDO with Displacement (instruction i+3).
C. Load RMA and the cache address registers with '510.

Load ERMA with '510. BVMA selects point to IRP.
D. Load RCDE with '40 (contents of '1004).
E. Load RCDO with '50 (contents of '1005).

23.6 Cache Miss

4150 Funct. Spec.
Page 221

RP cache misses are enabled during stage 3 of the pipeline (the beat after CS2+) provided we

are not retrying an RP address trap. The signal RPACC- specifies that RP cache misses are

enabled.

EA cache misses are enabled if we are reading cache for the E unit (OPRD+) during the beat

after CS7+ (or the beat after TRCDIE+ for the second word of an unaligned read)

(FENEACMISS+), and we are not retrying an EA read address trap (FIACADRTR-). The signal

EAACC- that EA misses are enabled.

Cache misses are enabled if RP misses or EA misses are enabled (GHOLDEN+), and no E unit

trap (FEUTRAP-) or a memory trap (FMEMTRAP-) occurred during the last beat. Potential

memory traps must take priority over cache misses because misses are invalid for certain type

of memory traps. For example, read address traps override cache misses, while an STLB miss

implies that the BPMA bits used in the cache miss detection logic for the index comparison

PRIME RESTRICTED

4150 Functional Specification
Page 222

Cache Miss

are invalid. Deferring cache misses is never a problem, since if a trap occurs, the step getting

the miss will be retried. If FMEMTRAP+ is raised without a trap occurring, the step will be

retried as a NOP step.

If cache misses are enabled (DISMISSPE- not active), the signal GHOLD- becomes active if any

of the following conditions are met:

• An index miscompare on both cache sets

• An parity error in either of the caches

• A shared bit being set in either

GHOLD- causes a cache miss to begin at the end of the beat. All register clocks which would

normally occur at that time must be squashed so that invalid data is not sampled.

Unfortunately, by the time a miss is detected it is to late to tell the Pipeline Control Unit

(PCU) to inhibit all stage clocks in the machine. Instead, a special mechanism effectively

freezes the entire pipeline for one beat. The timing involved in generating the GHOLD- signal

is so tight that each board has to create its. own version to save a gate delay. The cache

unit sends over the following signals to enable each board to generate its own inhibit stage

clock signal:

DISMISSPE- disable cache misses

MISSPEA+ Index miscompare element A OR,
Parity error on element A or B OR,
Shared bit active in STLB element A or B

MISSPEB+ Index miscompare element B OR,
Parity error on element A or B OR,
Shared bit active in STLB element A or B

CMISSNDIS- Cache miss enabled and index miscompare
on both cache sets

CPEANDIS- Cache miss enabled and cache parity error

CPEBNDIS- Cache miss enabled and cache parity error

SHAREDNDIS- Cache miss enabled and shared bit in STLB

element A

element B

element A or B

The holding of the pipeline for the remainder of the miss is accomplished by the PCU.

Figure 23-8 illustrates the cache miss timing on the first word of a 32-bit read. The notes

for this figure are in Table 23-5. Figure 23-9 shows the timing for a miss on the second

word of the read, and its notes are in Table 23-6. Figure 23-10 shows the timing for an

aligned miss on both words. Its notes are in Table 23-7. All three figures start with the

memory image shown in Table 23-3.

PRIME RESTRICTED

Cache Detailed Description 4150 Funct. Spec.

FIG. 23-8. Unaligned Cache Miss: First Word only

Timing for EA cache miss at location 1001 for instruction i.

~ - - - - - - - - - - - -
FENEOB+ -1 1-1' 1-1 LI 1-1 l"'"'I LI LI LI LI 1-1 1-1 1-1 1-1 1-1 1-

TRCML+ ------1 ; I I 1+11_

CS7+

GHOLD+

FEHOLD+

MDATAV+

FCMDATAV+

DFCMDATAV+

D2FCMDATAV+

FCMISS+

FISTCUPDT+

WE-

----1 i 1------------------

------>> __ 11 I 2 1--------
______ >> __ _

______ >> __ _

______ >> ____ _

3
1-1

4

1-1

FUNALBLIP+ ---- 1-

1-DFUNALBLIP+ -------------------
- - - - - -

TCADR+ __ IALIEl--1I1-----IJ 1---IMLINLIOI __
- - - - -TRCDIE+ -·-IBLIFl ________ IKl _____ IOl_IRI--

- -TRCDo+ __ 1c1_1G1 ________ 1L1 ______ 1s1_

CS1+ ---1 i+31-----------------
- -

TPRMAL+ IH1--------------1P1----

TERMA+ --101------------------ITI_

PRIME RESTRICTED

Page 223

4150 Functional Specification
Page 224

TABLE 23-5. J\otes for Figure 23-8

1. MDATAV+ comes from the Memory Controller (MC),
signifying that data is being sent over BO to the
cache. The time between when FEHOLD+ becomes
active to when the first MDATAV+ is sent depends on
what the MC is doing when GHOLD+ is asserted.

2. The second MDATAV+ comes 2 beats ofter the first MDATAV+
if there is no ECC. If on ECC exists, the second MDATAV+
will follow the first by 4 beats.

A. Load RMA and Cache Address registers with '1001.
8. Load RCDE with Opcode (instruction i+2).
C. Load RCDO with Displacement (instruction i+2).
D. Load ERMA with '1001.
E. Load RMA and cache address registers with '1002.

BVMA selects point to ERMA+1.
F. Load RCDE with xx (from location '1000).

Cache miss so xx is bod data.
G. Load RCDO with xx (From location '1001).

Cache miss so xx is bod data.
H. Load PRMAL with '1001.
I. Load cache address registers with '1001.

BVMA selects point to ERMA.
This address is sent to the MC over BB (ofter virtual
to physical translation).

3. Write '0 to location '1000, '10 to location '1001
in cache data RAMs.

J. Load cache address registers with '1003.
BVMA selects point to EA, bit 15 is inverted.

K. Load RCDE with '0 (Bod data due to unol igned).
L. Load RCDO with '10 (1st word).
4. Write '20 to location '1002, '30 to location '1003

in cache data RAMs.
M. Load RMA and cache address registers with '1002.

BVMA selects point to ERMA+1.
N. Load RMA and cache address register with '506.

BVMA selects point to IRP.
0. Load RCDE with '20 (correct second word).
P. Load PRMAL with '506.
Q. Load RMA and cache address registers with '1004.
R. Load RCDE with Opcode of instruction i+3.
S. Load RCDO with Displacement of instruction i+3.
T. Load ERMA with '1004.

PRIME RESTRICTED

Cache Miss

Cache Detailed Description 4150 Funct. Spec.

FIG. 23-9. Unaligned Cache Miss: Second Word only

Timing for EA cache miss at location 1002 for instruction i.

- - - - - - - - - - - - -
FENEOB+ -1 LI' U LI 1-1 LI 1-1 LI LI 1-1 LI 1-1 1-1 LI LI 1-

TRCML+ I i I I i+1 I_

CS7+ Ii 1------------------

GHOLD+

FEHOLD+ 1 __

MDATAV+ --------·»--1 1 1---

FCMDATAV+ ________ >.> __ _

DFCMDATAV+ ________ >> ___ _

D2FCMDATAV+ ________ » ____ _

FCMISS+ --------

FISTCUPDT + --------

WE-
3

1-1
4

1-1

FUNALBLIP+ ----1' 1-

1-DFUNALBLIP+ -----
--- - - - -

TCADR+ __ !ALI El_I I 1--1K1-----1Ll ___ IN1-IP 1--
- - - - -TRCDIE+ __ IBl_IFl_IJl ________ IMl ______ IOI __

- - -TRCDo+ __ 1c1_1c1 ________________ IRI_

CS1+ ---1 i+31------------------
- -

TPRMAL+ IHl---------------101 ___ _
- -

TERMA+ --101-------------------ISI_

PRIME RESTRICTED

Page 225

4150 Functional Specification
Page 226

TABLE 23-6. Notes for Figure 23-9

1. MDATAV+ comes from the MC.
signifying that data is being sent over BD to the
cache. The time between when FEHOLD+ becomes
active to when the first MDATAV+ is sent depends on
what the MC is'doing when GHOLD+ is asserted.

2. The second MDATAV+ comes 2 beats after the first MDATAV+
if there i_s no ECC. If an ECC exists. the secondMDATAV+
will follow the first by 4 beats.

A. Load RMA and Cache Address registers with '1001.
B. Load RCDE with Opcode (instruction i+2).
C. Load RCDO with Displacement (instruction i+2).
D. Load ERMA with '1001.
E. Load RMA and cache address registers with '1002.

BVMA selects point to ERMA+1.
F. Load RCDE with '0 (from location '1000).
G. Load RCDO with '10 (from location '1001).
H. Load PRMAL with '1001.
I. Load cache address registers with '510.

BVMA selects point to IRP.
J. Load RCDE with xx (from '1002).

Cache miss therefore xx is bad data.
K. Load cache address registers with '1002.

BVMA selects point to ERMA+1.
This address sent to MC over BB (after virtual
to physical translation).

3. Write '20 to location '1002, '30 to location '1003.
in cache data RAMs.

L. Load cache address registers with '1004.
BVMA selects point to ERMA+I, bit 15 inverted.

M. Load RCDE with '20 (correct second word).
4. Write '0 to location '1000, '10 to location '1001

in cache data RAMs.
N. Load RMA and cache address registers with '506.
0. Load PRMAL with '506.
P. Load RMA and cache address registers with '1004.
Q. Load RCDE with Opcode of instruction i+3.
R. Load RCDO with Displacement of instruction i+3.
s. Load ERMA with '1004.

PRIME RESTRICTED

Cache Miss

Cache Detailed Description 4150 Funct. Spec.
Page 227

FIG. 23-10. Aligned Cache Miss

Timing for EA cache miss at location 1004 for instruction i+l.

- - - - - - - - - - - - -
FENEOB+ -1 -1-1 1-1 1-1 1-1 1-1 1-1 1-1 LI LI LI 1-1 LI 1-1 LI f_

PRIME RESTRICTED

4150 Functional Specification
Page 228

TABLE 23-7. Notes for Figure 23-10

1. MDATAV+ comes from the Memory Controller (MC),
signifying that data is being sent over BD to the
cache. The time between when FEHOLD+ becomes
active to wnen ,the first MDATAV+ is sent depends on
what the MC is doing when GHOLD+ is asserted.

2. The second MDATAV+ comes 2 beats ofter the first MDATAV+
if there i-s no ECC. If on ECC exists, the second MDATAV+
wi 11 fol low the first by 4 beats.

A. Load RMA and cache address registers with '1004.
B. Load RCDE with Opcode (instruction i+3).
C. Load RCDO with Displacement (instruction i+3).
D. Load ERMA with '1004.
E. Load RMA and cache address registers with '510.

BVMA selects point to IRP.
F. Load RCDE with xx (from location '1004).

Cache miss so xx is bad data.
G. Load RCDO with xx (from location '1005).

Cache miss so xx is bod data
H. Load PRMAL with '510.
l. Load cache address registers with '1004.

BVMA selects point to ERMA.
This address is sent to the MC over BB (ofter virtual
to physical translation).

3. Write '40 to location '1004, '50 to location '1005
in cache data RAMs.

J. Load cache address registers with '1006.
BVMA selects point to EA, bit 15 is inverted.

K. Load RCDE with '40 (from address '1004).
L. Load RCDO with '50 (from address '1005).
4. Write '60 to location '1006, '70 to location '1007.
M. Load RMA and cache address registers with '510.

BVMA selects point to PRMAL.
Q. Load RMA and cache address registers with '510.
R. Load RCDE with Opcode of instruction i+4.
S. Load RCDO with Displacement of instruction i+4.
T. Load ERMA with '510.

23.7 Error Detection and Reporting

Cache Miss

On every cache access, read or store, parity is checked for the cache cell being used. If a

parity error is detected the signal FISSOFTPE+ becomes active and causes a fetch-cycle trap on

the E unit. A cache miss is also taken, and BOIB elements of the selected cache set are

updated with the correct data. The reason both elements are updated is to make the control

for fatal parity error detection more simple.

If both caches have a parity error after the update from memory, a fatal error is detected

and a machine check is taken. If no fatal parity error is detected, there is a recoverable

parity error. A recoverable parity error means that either a transient parity error occurred or

there is a hard parity error in only one of the elements. The microcode must determine

whether the error was a transient error or whether a cache cell is permanently damaged.

PRIME RESTRICTED

Cache Detailed Description 4150 Funct. Spec.
Page 229

This error detection can be done in various ways requiring varying amounts of hardware. The

4150 implements a microcode algorithm that over a period of time executes a run time

diagnostic. The diagnostic program would be initiated by a hardware timer that is generally

used for maintaining wall clock time on the CPU. When invoked, the diagnostic wakes up

and begins a cache test that searches for hard cache errors. After testing a portion of the

cache, the diagnostic returns control to the CPU and waits until the next interrupt. When

and if a hard failure is detected, the appropriate cache cell is forced invalid by setting its

FRCINVLD bit. The diagnostic is also responsible for reporting the SOFT and HARD errors to

the operating system's error log. The main reason this approach was taken was so that the

hardware would not need to remember the address of the error.

23.8 VLSI Usage

The cache data registers are located on the PCSS chips. A part of the eache miss detection is

done on the PCSS chips.

The cache address registers are in the PCADR chips.

23.9 9755 Comparisons

The following enhancements have been made to the cache organization:

• 2 way, set associative organization

• Recovery from single bit soft errors

• Recovery from single bit hard parity errors

• Fatal error detection

• Map out facility of single bit hard errors

23.10 Critical Paths

1 beat paths (62.5 nsec)

Reading data from cache and loading it into RCD registers in one beat. TCADR+ -> FMAxx

-> cache RAM access -> setup at RCD registers. Time = 42.5 ns

Writing data to cache RAM during store operations. Data must be brought from E unit and

written into cache RAMs in one beat. SELBDI- -> BDxx -> BDxx+IS -> BCDxx -> setup on

cache data RAM. Time = 53.0 ns

PRIME RESTRICTED

4150 Functional Specification
Page 230

23.11 Partitioning

Critical Paths

All of the cache functionality is implemented on the IS board, which is discussed in chapter

31.

PRIME RESTRICTED

Storage Management Unit Detailed Description 4150 Funct. Spec.
Page 231

24. Storage Management Unit Detailed Description

24.1 Cache and STLB Addressing

There are a multitude of ways to address cache. Bus Virtual Memory Address (BVMA) is the

source for the Cache and STLB address registers. The Cache ADdRess (PCADR) VLSI chip can

be viewed as a 9:1 mux that selects the proper source for BVMA. External control is used to

select one of the following BVMA sources:

• IRP - Incremented program counter.

e BD - Bus 'D' data.

• EA - Effective address data.

• EAS - Microcode pointer (source).

• EAD - Microcode pointer (destination).

• EAS/EAD incremented - Pre-incremented microcode pointers.

• ERMA - Backed up RMA for effective address.

• ERMA incremented - Pre-incremented ERMA.

• PRMA - Backed up RMA for program counter.

There are inherent priorities in the encoding of the BVMA selects which are exploited in the

control logic.

The Storage management (S) unit maintains a copy of the cache address in the RMA register

contained in the STLB Set Select (PSSS) VLSI chip. The reason for this register is to correct a

side effect of the design goal of having only one source to BB. For timing considerations the

Cache Set Select (PCSS) VLSI chip is the only source to BB. In order to read the RMA value

in a similar manner as in the 9755, RMA data would have to make two VLSI chip crossings

before reaching BB, (PCADR to PSSS to PcSS). In addition, special bypass logic would be

required to provide the quick data path, not to mention the added complexity to the control

logic. As an alternative, a copy of RMA is maintained in the PSSS chip and is read by

sending the PCSS chip the data over Multiplexed Bus Physical Memory Address (MBPMA)

during a RMA read. Support for direct reads of EAS and EAD has not been provided for

the same reason. Reads of EAS and EAD are performed by having the microcode first·

transfer EAS or EAD to' RMA and then reading RMA.

PRIME RESTRICTED

EAH BVMAH MUX ... BVMAHi
Hashing

~ ~ STLB -:: ..
IRPL

..
~ Miss

+2 EAL .. BVMAL Detection
STLB Address I-.. IRPH 4~ ::: MUX

~ Register ...

branc~
... RMA ... IRPL ~ BVMAL --... -- STLBA l ~_L ...
~ I -- IOTLB Set .. ~ EASH ...

~ 512 .. Selection --...

J i STLB/ ... EASL ... EAS±1 Absolute
EAS±2

-....
Address

BDH ~ EAD±1 STLBB Selection .. EADH ... 1-- EAD±2 I IOTLE
BDL ... EADL ~ 512 -..

i .. ERMAH ..
--...

-== BB ERMA+ 1

==
- ...

--... ERMAL - ...
ERMA+2 Cache

..... Address -..
... PR MAL Register BB --...

MUX

Figure 24-1 Block Diagram of Storage Management Unit

Storage Management Unit Detailed Description 41SO Funct. Spec.
Page 233

24.1.1 IRP

The IncRemented Program counter (IRP) provides a pointer tO the cache location that is to be

used to fetch the next instruction. IRP is selected on BVMA during odd pipeline stages unless

there is an unaligned read in progress. The PCADR maintains IRP in two parts. The high

side, or segment portion, is loaded from BDH and does:1;1't change until it's loaded again. The

low side can be loaded from BDL, incremented by two, loaded from. the branch cache target

field, or held at its current value. The IRP value will be held at its current value under

two conditions. The first occurs when a short instruction has been decoded. In this case the

IRP must be held so that instruction fetching doesn't get too far ahead. The second case occurs

during memory related traps. Here, IRP must be held so that fetching can be suspended until

the trap condition is resolved.

The IRP selects are carefully chosen to provide priority on externally controlled select lines.

Loading from BD has highest priority, followed by holding, loading from branch cache, and

incrementing. The reason for this is that detecting a RP trap, program counter related trap,

and holding the IRP value must take precedence over loads from the branch cache or

increments in order to maintain the state of the machine during the duration of the trap.

24.1.2 EAS and EAD

To reduce pin count and the requirement for additional clocks, the PCADR chip has the

ability to recycle high side data when only the low side of some registers are being modified.

This scheme was used for EAS, EAD, and ERMA.

The EAS and EAD logic provides a shared incrementer/decrementer to manipulate these

pointers under microcode control. The EAE microcode field dictates which hardware register is

to be incremented or decremented, and by what value (one or two). Since the EAE field is

only 3 bits, the EAD+ 1 state was sacrificed to support no operation.

24.1.3 ERMA and PRMA

The ERMA and PRMA registers are used_ to provide back up registers for RMA in the event

of a cache miss. During a cache read the cache address registers are modified before the cache

miss is detected. To properly modify the correct cache location a backup of the cache address

register is used. Logic external to the PCADR knows whether the cache miss was on the

instruction or operand and uses the appropriate backup register, PRMA or ERMA. A special

input to the PCADR allows cache address bit 15 to be inverted so that the other half of the

cache block can be modified.

PRIME RESTRICTED

4150 Functional Specification
Page 234

Cache and STLB Addressing

24.1.4 Feedback Paths

Due to- pin restrictions on the PCADR part the 4150 does not have separate clocks for tJ:?-e

high sides of ERMA, EAS, and EAD registers. For example, an EAS or EASL destination will

both create a TEAS+ clock that will go to both the EASH and EASL registers. To

compensate for the lack of separate clocks, each of these registers have a feedback path. If __ _

this path is selected, the register is clocked with the data currently in that register, leaving ·it-~"'·-·

unchanged.

When either ERMAL, EASL, or EADL destination is called out, the signal SELFDBCK+

becomes active. This signal will activate the feedback paths.

Note for RMAL destinations (e.g. 16 bit indirects), ERMAH is clocked into RMAH.

24.2 STLB Organization

The Segm~ntation Table Lookaside Buff er (STLB) provides the most recent virtual-to-physical

address translations. The STLB organization is much like the cache organization. There are

1024 STLB entries, organized as 512 sets with 2 elements per set. The address to the STLB

is hashed in a manner similar to the 9755.

The format for each STLB entry is shown in Table 24-1.

8PMA01 - 8PMA16
BPMARP
BPMALP
BVMA05 - BVMA16
.PID01 - PID10
PIDP
ARR1X,W,R

ARR3X,W,R

PCNT01 - PCNT03
STLBVLD
PMOD
SHARED
BFRCS
BUPDTS

TABLE 24-1. STLB Entry Format

upper 16 bits of physical address
parity bit low byte
parity bit high byte
segment number of each entry
process ID bits for entry
parity bit for PIO field
ring 1 access bits (time multiplexed with
MBIO bits during OMX)
ring 3 access bits (time multiplexed with
MBIO bits during OMX)
purge count
val id entry bit
page modified bit
shared bit
Hard parity bit
Update bit

The IOTLB contains 256 entries to support 4 segments of 1/0 windows. The IOTLB entries

are stored redundantly in the two STLB elements to maintain availability in the event of a

parity error in the IOTLB. IOTLB misses are not. supported in the hardware since the size of

the IOTLB is known to software, which is responsible for ensuring that no cell is used more

than once.

Like the cache, the STLB employes a distributed FIFO replacement algorithm and has force

bits to map out offending memory cells.

PRIME RESTRICTED

Storage Management Unit Detailed Description 4150 Funct. Spec.
Page 235

The STI.B uses two slices of the PSSS to perform the element selection and memory trap

detection. Like the PCSS, each PSSS is dedicated to one STLB set, and each slice is responsible

for only half of the data. The 'A' slice deals with the high bytes of the physical page

address (Bus Physical Memory . Address or BPMA), and the 'B' slice deals with the low bytes.

Under normal operating conditions, each PSSS compares a copy of-virtual address and process

identification bits (PID) to the tag of its dedicated elem:ent. If they are the same, the PSSS

slice puts its main data, BPMA, on the MBPMA outputs. Otherwise, the PSSS slice puts its

auxiliary data out on MBPMA. There are two copies of the MBPMA bus to minimize the

loading on the signals between the PSSS and PCSS VLSI chips. The data on the two MBPMA

busses are identical during normal operation, but differ during RMA and diagnostic reads.

There is an external clocked copy of MBPMA that is used for providing the cache index

RAMs with the physical page address during cache updates.

The result of the comparison is also presented to the outputs so that external logic can

determine whether a memory trap has occurred. A memory trap is detected when both PSSS

options indicate that a memory trap has occurred or when a parity error is detected. The

PSSS VLSI chip provides information about what type of memory trap has occurred. There are

separate output signals for access violation, page modified trap, and address trap. In the case of

access violation or page modified trap, the outputs will only be activated if the tag

comparison is true. Unfortunately, this rule is was not always followed, and if a FORCE bit

is set, the access violation and page modified trap signals may be active even if the tag

comparison is false. Because of this the microcode trap handlers for access violation and page

modified must be cognizant of the fact that an erroneous page modified trap or access

violation may have occurred, and check for a STLB miss before proceeding.

A quick purge mechanism is used to reduce some of the overhead associated with purges of

the STLB. Included in each element of the STI.B is a three bit purge count field. A three

bit register is loaded whenever the PID register is loaded, and whenever the STI.B is updated

the purge count field is updated with the register contents. During a STI.B read, the purge

count bits are compared to the copy of the current purge count bits internal to the PSSS. The

purge count bits can be thought of as three additional valid bits. Whenever a PTI.B

instruction is encountered, the microcode will increment a register that is used to load this

field. By incrementing the purge count register, subsequent STI.B references will indicate a

mismatch. This quick purge mechanism allows the STI.B to be quick purged seven times

before a complete purge is required.

24.2.1 Shared Bit

The architecture provides the notion of a 'shared' bit. Shared here refers to a multiple

number of virtual addresses sharing a single physical address. When two virtual addresses

share the same physical address a potential cache consistency problem can occur. If both

PRIME RESTRICTED

4150 Functional Specification
Page 236

STLB Organization

references don't share the same cache location, modifications through one cache leaf will not

be reflected in the other cache leaves. Cache leaves are sections of the cache which correspond

to physical pages in memory. Each cache set on the 4150 has 32 cache leaves.

The shared bit solves this problem by forcing references to a page with the shared bit set to

take a cache miss. The shared bit is included in the . page map table of the memory

management data structures. This bit is loaded during STLB updates and is queried on every

cache reference. After STLB data selection is performed, if the shared bit of the selected

element is set, the subsequent cache reference will take a cache miss regardless of whether or

not there lS a tag match.

It should be noted that there is a subtle difference between the shared bit implementation on

the 4150 and the 9755. On the 9755, the shared bit causes the cache to be loaded with the

invalid bit set, while on the 4150 the shared bit just causes the cache miss to occur. The

reason for this difference lies in one of the goals of the cache organizations. To maintain

high availability, it is desirable to keep the cache valid during references. If the cache cell

were to be invalidated, then in the event of a parity error, the data selection mechanism

would be defeated and memory data would effectively be restricted to one set.

In addition, the 9755 required special attention when the software wanted to change the state

of the shared bit. In the 9755, when the shared bit was first set the software had to

guarantee that the data wasn't already resident in cache. If this were the case, since the

shared bit only invalidated the cache on cache misses, a cache miss was required before the

shared bit performed as the architecture dictates. In the 4150, once the shared bit is set, cache

misses occur immediately. When the shared bit is released, the cache reverts back to normal

operation.

24.2.2 IOTLB Support

Special support is given for cache addressing during I/O operations. Under IAC control,

BDH{05:14}+ will be zeroed before RMA is loaded to help the microcode generate addresses in

a certain range. This is necessary because 1/0 transfers are only allowed in the first four

virtual memory segments.

24.2.2.1 Cache Invalidation During DMx Input Operations

Whenever a Direct Memory transfer (DMx) to main memory is performed it is necessary to

invalidate the cache location corresponding to the memory address where the input data is

destined. The necessity for this is best explained by considering the alternative. Suppose

th'ere is some valid data in cache location 100 which corresponds to the same valid data in

memory location 100. Further suppose that a DMx input transfer occurs to memory address

100. The data is transferred directly from the 1/0 controller to main memory. (Details of

PRIME RESTRICTED

Storage Management Unit Detailed Description 4150 Funct. Spec.
Page 237

this are best left for chapter 27, which discusses the I/O interface.) The contents of location

100 in memory have been altered, but not the contents of cache location 100. Furthermore,

the cache can't be updated because the data never appeared on BD. Continuing with the

scenario, sometime later the CPU asks for the contents of location 100. The cache dutifully

sends it the contents of cache location 100, the stale data. If the cache was invalidated

during the DMx operation, the cache would initiate a cache miss .. sequence on the subsequent

read request, fetching the proper data from main memory.

The cache is invalidated during DMx operations by the use of the IAC DMX. Whenever this

IAC is used during a microinstruction which has a memory destination, the cache location

pointed to by RMA is invalidated.

Unfortunately, that is not the end of the story. A further complication arises because the

virtual to physical address translations for data accesses are accomplished via the STLB, while

the same translations for DMx transfers are done via the IOTLB. Different virtual addresses

may map to the same physical memory address. Figure 24-2 illustrates this. The STLB

entry for virtual address 1400 and the IOTLB entry for virtual address 1600 both map to

physical address 1500. Substituting address 1600 for address 100 in the scenario discussed

earlier leads to an error. Cache location 1600 would be invalidated during the DMx operation,

but when the CPU subsequently requested the data at address 1400, that data would still

appear valid in the cache.

FIG. 24-2. STLB and IOTLB Mapping to the Same Location

STLB MEMORY

1400
1477

---->I
---->I 1500

I OT LB 1501

1600

PRIME RESTRICTED

4150 Functional Specification
Page 238

STLB Organization

The IOTLB is equipped with extra bits to help avoid this problem. Whenever a DMx input

transfer is performed, the microcode instructs the S unit to get these Mapped Bus 1/0 (MBIO)

bits from the IOTLB and merge them into RMA. On the PCADR chip ERMAL{02:06}+ are

multiplexed with the MBIO bits. If a mapped 1/0 operation is performed, the mux selects

point to the MBIO bits. Therefore an RMA>MAL operation (placing ERMA onto BVMA) will

enable the MBIO bits to control what cache leaf is written· to. This is done by issuing IAC

DMX and destination [RMA>MAL] in the same microinstruction. In the example shown in

Figure 24-2, this would change RMA from 1600 to 1400, and the correct cache location would

be invalidated.

24.3 Traps

The following subsections describe S unit traps. The traps are listed in order of priority, from

highest to lowest.

24.3.1 Read Address Trap

If a memory reference instruction forms an EA between 'O - '7 (V mode) or 'O - '37 (S and

R modes), the addressed location is in the current register file, not memory. When such an

address is calculated, this trap aborts the memory read and loads a cache entry with the

contents of the addressed register. The cache is marked invalid and cache misses are disabled

during the microstep retry. A cache miss occurs on the next reference to this cache entry.

24.3.2 STLB Miss

An STLB miss trap is taken if any of the following conditions occur:

1. The virtual address translation is not located in the STLB. This is detected by
comparing the current virtual address' segment and page bits to those of the
virtual address which caused the STLB to be written. Each STLB entry specifies
the segment number of the virtual address used when the STLB entry was
written.

2. The STLB contains invalid data. This is detected by checking the STLB entry's
valid bit. If it contains a 1, the entry is valid; if it contains a 0, the entry is
invalid.

3. The PID in the STLB entry must be identical to that of the process making the
reference IF the segment number specified is in private address space. The PID is
ONLY checked if the segment specified in the virtual address is greater than or
equal to '4000 (private user address space).

The STLB miss trap microcode checks if the virtual page containing the information is

currently in main memory. If it is, the microcode translates the virtual address to a physical

PRIME RESTRICTED

Storage Management Unit Detailed Description 4150 Funct. Spec.
Page 239

one, and then puts the translation into the STLB. The reference is retried after the translation

is loaded into STLB.

If the page is not in physical memory a page fault occurs. A fault occurs when the software

tries to perform an action that cannot complete without special help. A software routine

called the page fault handler finds the virtual page on the disk and moves it into main

memory. The virtual-to-physical translation is loaded in the STLB and the reference is retried.

24.3.3 Access Violation

An access violation occurs if a procedure tries to reference a memory location for which it

has insufficient access rights. This trap causes an access violation fault.

The access rights of a procedure referencing a memory location are stored in that memory

location's STLB entry. Different access rights are given depending on whether the procedure

making the memory reference is in Ring 1 or Ring 3. Procedures in Ring 0 have all access to

any procedure that they reference.

The hardware checks the access rights of a particular memory reference by first isolating the

ring number of the procedure making the reference. The referenced memory page's access rights

for a procedure in that particular ring are then checked against the operation specified by the

procedure making the memory reference.

For example, if the instruction specifies a read operation and the selected access field allows

reads, then the read operation is valid. If, however, the instruction specifies a write and the

access field allows only reads, then the operation is invalid and an access violation trap

occurs.

Access rights are assigned on page boundaries. When a new page is loaded into cache its access

rights are loaded into the STLB from the particular procedure's segment descriptor table. (See

System Architecture Guide for more details.)

24.3.4 Page Modified Trap

This trap occurs during each step that writes into a physical page that is being modified for

the first time. This is determined by examining the state of the STLB entry's page modified

bit. If the bit is a l, the page is being modified for the first time since this STLB entry was

loaded. The trap routine loads a new translation into the STLB entry and resets the page

modified bit.

PRIME RESTRICTED

4150 Functional Specification
Page 240

24.3.5 Write Address Trap

Traps

This trap occurs during write operations specifying an address within the range 'O - '7 (V

mode) or 'O - '37 (S and R modes). This trap aborts the write to memory and directs the

write to the appropriate register file location.

24.3.6 Flat Trap

Flat trap is caused by a 32-bit cache read that crosses the segment boundary when the flat

address space is being used (UNIX). It shares trap a vector with one of the address traps.

The trap microcode determines which trap has occurred by checking if the machine is in I

mode (address traps can not happen in I mode). Then it reads the first word from the next

segment and writes it into cache, marking it invalid. The original address is reloaded into

RMA, and cache misses are disabled for the retry. This operation is just like an address trap,

except that the data is read from memory instead of the register file.

24.3.7 Wrap Trap

Wrap trap is caused by a carry or borrow out of the low side when incrementing or

decrementing EAS or EAD . It shares a trap vector with one of the address traps. The trap

microcode determines the type of trap by checking if the machine is in I mode. Then it

jumps on condition EASOP to determine if it was an EAS or EAD operation that caused the

trap. (Jump condition EASOP is high if EAS has been modified after EAD was last modified.)

Next it determines if it was an increment or a decrement by looking at the low side of the

modified register. If it is positive, the operation which caused the trap was a decrement.

The high side of the modified register is incremented or decremented accordingly.

24.4 VLSI Usage

Four VLSI chips of two types are used in the S unit.

• 2 STLB Set Select (PSSS) chips, which perform STLB miss detection, STLB set
selection, and memory trap generation. - The PSSS chips also contain a copy of
RMA. This feature is used to support direct microcode reads of RMA and
generation of memory addresses during cache misses.

e 2 Cache ADdRess (PCADR) chips, which implement IRP, EAS, EAD, the ERMA and
PRMA registers, ERMAL increment logic, EAS and EAD increment/decrement logic,
and the BVMA mux.

PRIME RESTRICTED

Storage Management Unit Detailed Description 4150 Funct. Spec.
Page 241

24.S Critical Paths

1. From memory trap detection at CS2+ to holding off incrementing of IRP at
CS2.5+. 112 beat path.

2. Path starts at TRCDIE+ (at CS2+), generating a memory trap and then holding off
IRPL load at CS2.5. This is a 1/2 beat path.

3. FMTRPA+ -> GFMTRAP+ -> holding off IRPL clock at CS2.5. 1/2 beat path.
Time = 30.0 ns

4. From clocking IRPL at CS2.5+ to loading cache and STLB address registers 1/2 beat
later at CSl +. 112 beat path.

5. TIRPL+ -> BVMA -> setup on the cache address registers. 112 beat path. Time
25.5 ns

6. Clocking cache
unaligned reads.

address register
1 beat path.

with ERMAL+l one beat after CS7+ during

7. TRCML+ -> RCMBB02+ -> UNALRD+ -> MASEL3A+ -> MASEL3+ -> BVMAxx ->

cache address register setup. 1 beat path. Time = 61.5 ns

8. From clocking cache address register at CSl+ (or TRCML+) to reading physical
address (physical page number) from STLB and loading into registers on PCSS part
at CS2+ (or CS7+). 1 beat.

9. TSADR+ -> FMAxx -> STLB RAMs -> MPBMAxx -> setup on index registers on
PCSS. 1 beat path. Time = 55.0 ns

10. From MPMA mux control generation at TRCML+ to selecting proper data from
PSSS chips to clocking that data on PCSS part at CS7+. 1 beat.

11. TRMCL+ -> RCMBBxx -> PMASELxx -> MBPMAxx -> setup on index registers on
PCSS. 1 beat path. Time = 57.0 ns

24.6 9755 Comparisons

The 4150 does not support direct microcode reads of EAS and EAD registers as the 9755 did.

Reads of EAS and EAD are performed by having the microcode first transfer EAS or EAD to

RMA and then reading RMA.

The 4150 does not support the operation EAD+l>MA.

The 4150 STLB entries contain extra control bits which the 9755 didn't implement. There are

3 bits for the purge count and 2 bits to help control the 2 set STLB.

The 4150 STLB has 1024 total entries organized as 512 sets with 2 elements each. The 9755

has 1 STLB with 512 entries.

PRIME RESTRICTED

4150 Functional Specification
Page 242

91SS Comparisons

The shared bit in an STLB entry no longer requires that the data be invalidated in the cache

before the bit is set.

The 4150 includes UNIX support hardware.

24.7 Partitioning

All S unit functionality is implemented on the IS board, which is discussed in chapter 31.

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 243

25. Execution Unit Detailed Description

The main function of the Execution (E) unit is to read one or more of the data sources

available, manipulate the data in the ALUs, transport the resulting data through the barrel

shifter logic, and load the data into the necessary regist~r file locations. The E unit's essential

sections are:

•ALU

• Barrel Shifter

• Register File

The first few sections of this chapter will describe these parts of the E unit without trying

to explain .how they all work together. That information appears in ~he latter sections of

this chapter.

The general data flow through the E unit is illustrated in Figure 25-2.

The E unit also has exception detection logic which can cause processor traps. The system

timers are also part of the E unit.

PRIME RESTRICTED

D

c

B

A

8

llJJHCIL:tm ..

RlHCIUJBl

BIJHll!llJ:18Jt

1111:

7 6

;--- --- - -- - --~- - - - - - - - - - - -- -- --. l<RQIHQU:161t

I

11.U.

>

I
I
I
I
lfl..HtlJ:lBJ•

I
I
I
I
I

--------~J
:-f'<"(fJ{)Hlll:l81t

,.---------- --K BPI! clJ:Jmr

5 q

BEC111fl. DTil/81D

OTB

3
DEQ'Hll:J6) •

ll.\lll·!8J· I

I
I ~
I

I I

L----------~
DE01Cl8=J6)•

i~1 I BA<REL I I 1 l N-teU4m i I 1 SHIIUFTER Ian 1111 :1111 • IRJ.<11:1m.. I t---
' I • ' • I I

~:~:::: : r
' I

R[LllUSHIJt

RP(lt: • 1 ~m~ 3=' I n::::ij L _____________________ -~ ------- -·

''
BJIXT•

7/

QIXl+

r-:1
L_J

Bl!
R
E
c
1

'

fl.UE
---------l BGNCl-IUll:IBJ•

Kllliflll:IAl•

I fl.E(IU:IEDt

I fl.EmB:LBH

: RSErB9:18J •

I
I
I
I
I

llJXfLE(l8: 181 ..

BFIRl ·SHIFT
CON11U

__________________ J

Pfl!nY

REGJSTER-f'JLE REPlSIER·FllE

......,.IN&

RI

R1m1,5Bl• j.miSTE~ ORmM8l• I

SHFTCNT" Cl.1 ;li!l7)

88arTRl..(llJ :85).

PARJTY

PARITY

I I

'-----------J

I=!___.;
I L:_J I l __________ J

fl.LEBl:tBl·

R8Cli:llBJ ..

PllOIUlll:JBJt

II' REC TlllBI

ltJXPlll C TO REG Flt.I' l

llJXl'lll

2

llJJ m1:32Jt

..

ftSCIUltBlt

FIDllJ dl: lBli

f#rP

Ill PllUTT

~ ..---
l.llJ PAllE 311

PRDE Cttl'UTER. IN:.
- FllllllllllHll. i!illi.

BO! PARITY RS PARITY BUii Bil PARITY

8 7 6

Figure 25'-l

IOI PRRITY

5 4

Block Diagram of Execution Unit

3 2

P09Slll E·lllIT llUJCI(

DiflllMI

~ B
ALH .. BOIH .. RSH ~ RFH ~ RIH 1--' --...- --

~ A
, , J .

~ B
ALL ... BOIL ... RSL ~ RFL ~ RIL I--... ...

L.-. A

A~ ,,

~ B
ALE .. BOIE ... RSE ~ RFE ~ RIE ~ ... --

~ A

.4~ , ,

Figure 25-2 Execution Unit Data Flow Diagram

4150 Functional Specification
Page 246

25.1 ALU Logic

The ALU is implemented using Execution Arithmetic Logic Unit (PEALU) VLSI chips. Eac;:h

PEALU slice is 8-bits wide and has its own unique select inputs. Seven 8-bit slices are needed

to create a 56-bit ALU. They are divided as follows:

• ALH - The ALH slices are called ALHl and ALH2.

• ALL - The ALL slices are called ALLl and ALL2.

• ALE - The ALE slices are called ALEl and ALE2.

e ALX - The ALX slice is called ALX.

The ALX slice is only used during floating point operations.

25.1.1 ALU Modes

The main data path consists of the ALU manipulating data from two sources, the ALEG and

the BLEG, each of which are fed by a number of sources. The sources for busses A and B

are shown in Table 25-1.

The manipulation of data occurs in two stages, first through the ALU and then through the

barrel shifter (BDI). This is accomplished by a combination of both ALU and BDI modes.

The ALU is capable of operating in a variety of different logical and arithmetic modes. There

are 32 possible operating modes. These modes are selected by the microcode word ALU field.

Most ALU modes are for byte (8-bit) wide operations, while some are for nibble (4-bit) wide

. operations. The nibble operations are denoted by a colon which separates the high and low

nibble functions respectively. These modes are shown in Table 25-2.

The ALU selects are produced independently for each 16-bit ALU section (H, L, E). Each

section can therefore act independently of or in tandem with its neighbors. The select signals

are clocked internally in the ALU VLSI chips at CS7+.

There is one other ALU select input called DIV+ which is used to support a single bit (per

beat) non-restoring divide algorithm. This select is used to switch the ALU modes between

ADD and SUBA during divides based on the sign bit of the previous iteration. This select is

enabled if and only if the other five ALU selects are in divide mode (ALU selects = '00).

PRIME RESTRICTED

Execution Unit Detailed Description

BUS

A(H)

B(H)

A(L)

B(L)

A(E)

B(E)

A(X)

B{X)

TABLE 25-1.

SOURCE

RIHl1:16I
BOHi 1: 161

BDIHl1:16I
BBHl1 :161
PACKI 1: 161
RCMCUf1: 161
RDHf1:16I

RILf 1: 161
BDLl1:16I
RPRECj1:16I

BDILf 1 :16f
BBLI 1: 1-61
RCMCUf1:16I
FNRMCNTf1:16f
ROLi 1: 161

RIEl1:16f

BDIEl1:16f
BBLI 1 : 16 f
KEYS/PARITY

11 : 16f
RCMCU f 1 : 16 f
RDEl1:16f

RJl0:7f
EMITl0:71

JUNKl0:7f
BBl0:71
EMITl0:71

ALU Data Sources

COMMENT

Register file high side
Bus 0 high l)lide

Bus 0 internal high side
Bus B·high side
Packer PROM output
Microcode word emit field
Register Doto high side

Register file low side
Bus D low side
RP or REC

Bus D internal low side
Bus 8 low side
Microcode word emit field
Normalize Count
Register Doto low side

Register file extended

Bus D internal extended
Bus B low side data
Keys register and parity
information data
Microcode word emit field
Register Data extended

ZEROS
FRNDBITl01:03f Round bits
11 ZEROS

FGRDBIT!01:03f Guard bits
ZEROS
FRNDBITl01:03I Round bits
11 ZEROS

PRIME RESTRICTED

4150 Funct. Spec.
Page 247

4150 Functional Specification
Page 248

TABLE 25-2. ALU Modes

ALU SELECTS (octal) ALU MODE

00 DIVIDE(SUBA)
01 INCA
02 ADD
03 SUBB:DECA
04 SUSA
05 ZERO:ADD
06 Undefined Mode
07 SUBB
10 NOTA
11 INCA
12 INCA:ADD
13 DECA
14 DECB
15 ZERO: INCB
16 INCB
17 NOTB
20 OR
21 TA:ZERO
22 AND
23 OR:TA
24 XOR
25 ZERO:TB
26 A.AND./B
27 /A.AND.B
30 TA
31 TA:TB
32 TB:TA
33 ZERO:TA
34 TB
35 ZERO
36 TB:ZERO
37 ONES

25.1.2 Carry

ALU Logic

The ALUs provide full look-ahead carry across all 56 bits. This is accomplished by the carry

select inputs. ALH and ALL both have two carry selects, ALE has only one carry select, and

ALX has it's carry selects always tied low.- These carry selects control the ALUs' Group

Generates (GG) and Group Propagates (GP) for 16, 32, 48, or 56-bit add operations. ALE slices

have only one carry select for either 48 or 56-bit operation, while ALX has none since it is

only used in a 56-bit operation. ALH and ALL need two carry selects, since each may be

involved in 16, 32, 48, or 56 bit operations.

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 249

25.1.3 ALU Output

The ALUs drive both positive and negative logic versions of their outputs. Along with

current operation data the ALUs also provide result information. (In the following list, as

well as throughout the remainder of the chapter, "x" can be "H", ''L", or ''E" to represent the

ALU section from which it is coming.) This informatio~ consist of the three signals:

• ALxOO- (external sign of result)

• ALxC0{1:2}+ (carry out on both byte and nibble boundaries)

• ALxEQ+ (zero detect)

25.1.4 BA Mux

The Bus A (BA) mux selects one of four possible sources which becomes the A leg input to

the ALU. The mux has two selects, BAxSEL{2:3}+. These signals are generated by decoding

the microcode ALU field, which is clocked at CS7+. The four possible sources are:

RI Register file output data

RS Register Stage BDI data clocked at CS9+ internal to the ALU

EMIT microcode CU field bits

RCRY Register CarRY bits from the carry save adder clocked by TRSUM+

25.1.S IBB Mux

The Internal Bus B (IBB) mux selects one of five possible sources which becomes the B leg

input to the ALU. The mux has three selects, IBBxSEL{1:3}+. These signals are generated by

the decoded BB microcode field, which is clocked at CS7+. The five possible sources are:

EMIT

RD

RSUM

BBH

JUNK

microcode CU field bits

Register Data internal to the ALU clocked by TRDx+

Register SUM bits from -the carry save adder clocked by TRSUM+

main system Bus B High side data, latched on the rising edge of
BBLA TCH+. The latch enable signal opens the latch at CS7+ and clo8es it
sometime before CS8+.

data which is ALU slice dependent.

• ALH - pack PROM data

• ALL - microcode CU field bits clocked at CS7+

• ALE - oondition code and parity information

PRIME RESTRICTED

4150 Functional Specification
Page 250

• ALX - guard bits

25.1.6 RD and RS

ALU Logic

The ALUs contain two special registers called Register Stage (RS) and Register Data (RD).

RS gets loaded with BDI output data clocked at CS9+, and is placed on the ALUs' A leg via

BD. When a write to the register file is followed by a read from the same location, a copy

of RS internal to the ALU is read instead of the actual register file. This is known as a

register file bypass operation. These operations are necessary because of the pipelin,ed nature of

the machine. The data being produced by the current microinstruction is saved at the end of

stage 9, and the next calculation starts at the beginning of the next stage 8. These times are

identical; the end of stage 9 marks the beginning of the next stage 8. The register file is not

written with the results of the current microinstruction until the end of stage 10 (the end of

the next stage 8). Thus, the data being accessed from the register file at the beginning of

stage 8 doesn't get into :he register file until the end of stage 8.

There are actually three RS registers in the E unit, the one just described, which is internal

to the PEALU slices, and two external. One of these is used to drive BD, while the other is

used to drive the register file input.

RD gets loaded with either BDI output data or ALU output data depending on the BB select

input, and is then placed on the ALUs B leg. RD is used for divide quotient collection in

addition to its duties as a microcode destination, and that of acting as the multiplicand

register.

· 25.2 Barrel Shifter Logic

The barrel shifter is implemented with three Bus D Internal (PBDI) VLSI chips. Each slice is

16 bits wide, creating a 48-bit data path. They are divided as follows:

• BDIH - Bus D Internal High side data

• BDIL - Bus D Internal Low side data

• BDIE - Bus D Internal Extended side data

Note that because the barrel shifter is capable of 48-bit shifts, all 48 bits of data from the

ALUs are needed by each slice in order to generate its 16 bits of output. Personality pins tell

the slices which part of the data path they belong to (High (H), Low (L), or Extended (E)

sides).

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 251

25.2.1 BDI Encoding

The barrel shifters are controlled by the decoded microcode BDL field. The field is decoded

with support hardware external to the VLSis to provide each chip with five control lines

BDlxSEL{1:5}+. The BDI functions are shown in Table 25-3.

TABLE 25-3. BDI Modes

BDISEL1+ BDISEL2+ BDISEL3+ BDISEL4+ BDISEL5+ RESULT

0 0 0 0 0 Rotate Left 32
0 0 0 0 1 Shift Left 32
0 0 0 0 Rotate Right 32
0 0 0 1 Shift Right 32
0 0 0 0 Reverse Mask Adjust
0 0 0 1 Adjust E Side
0 0 1 0 Adjust L Side
0 0 1 Adjust H Side
0 0 0 0 Reverse Mask Shift Left 48
0 0 0 1 Shift Left 48
0 0 0 Normalize
0 0 1 1 Shift Right 48
0 1 0 0 Rotate Left 16
0 0 Shift Left 16
0 0 Rotate Right 16
0 1 1 Shift Right 16

0 0 x x ZERO
0 1 0 0 Undefined
0 0 1 Transport E Side
0 0 Transport L Side
0 1 Transport H Side

0 x x Unpack
x x Multiply

E slice only operates in 48 bit mode for shifts and rotates.
E s I ice does not operate in Unpack mode.

The DECIMAL{Ol:16}+ and UNPACK{Ol:08}+ BDI inputs are used for transporting decimal data

on all sides except the L side. The Register Event Counter (REC) is the input on the L side

decimal data path. This is because in floating multiply algorithms, the step doing the last 48

by 8 multiply terminates by writing REC to the register file, and this is accomplished by

inverting the mode of the barrel shifter from multiply to decimal transport mid-step.

25.2.2 Shift

The barrel shifter is capable of shifting 48 bits of data. The amount to shift during any

operation is determined by six count bits called BDICNT{Ol:06}+. These count bits are the

outputs of muxes which are controlled by the BDL microcode field.

PRIME RESTRICTED

4150 Functional Specification
Page 252

25.2.3 BDI Output

The barrel shifter outputs 48 bits of data to three destinations:

• RS - needed for register file input data, clocked at CS9+

• BD - data is sent out onto Bus D

• ALUs - internal RS clocked at CS9+

25.3 Register File

Barrel Shifter Logic

The Register File ADdRess (PRF ADR) VLSI generates the address for the register file

read/write phases. A TRCML+ clock is used to distinguish between the read and write phases.

Besides the main purpose of address generation, the PRF ADR VLSI contains other information

such as:

• Register File Bypass

• Register File Tracking

• Register Program counter (RP)

• Register Event Counter (REC)

Register file source and destination address information needed by the PRF ADR is contained in

the RFS and RFD microcode fields. The register file itself is implemented with lK x 4-bit

static RAMs. The register file is divided into three sections:

• Register File High (RFH)

• Register File Low (RFL)

• Register File Extended (RFE)

There are 256 register file locations in both RFH and RFL, while RFE has only 128 locations.

One RFE locations is accessible. through either of two RFH or RFL locations, as shown in

Figure 25-3.

The register file is read during stage 7 and written during stage 10 as shown by Figure 25-4.

Data read from the register file is placed into Register Input (RI) before being read into the

ALU.

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 253

FIG. 25-3. Register File Location Layout

RFH RFL RFE

Even Address

Odd Address

FIG. 25-4. Register File Read/Write Timing

t t Register file write

25.3.1 Register File Bypass

The destination and source register file addresses are compared in the PRF ADR VLSI chip at

TRCML+. If a match is detected, HITON7+ and HITON8+ are generated, and the data for the

source register can be found in RS. The signal HITON7+ goes active when bits 1-7 of the

address match, while HITON8+ goes active when bits 1-8 match. HITON8+ is used for RFH

and RFL tracking, while HITON7+ is used for RFE tracking. (Recall, RFE has half as many

locations as RFH or RFL.)

25.3.2 Register File Tracking

The four LSBs of the destination register are used by the EAF unit for register file tracking.

This information is only valid when a resident user register has been accessed.

PRIME RESTRICTED

4150 Functional Specification
Page 254

25.3.3 RP /REC

Register File

The RP and REC registers are located inside the PRFADR slice. REC is a 16-bit register, while

RP is a 15-bit register with bit 16 maintained external to the chip. Both of these registers are

loaded from bus MBDIL{01:16}+, and only one of the registers can be read out of the slice at

a time. (Bus MBDIL is a bus which is multiplexed between the L ALU's output and the

microcode EMIT field.) Both registers share the increment and decrement logic inside the slice.

REC is always in load mode during stage 9, and in INC/DEC mode during stage 8. RP is

always loaded or incremented by TRCML+. In cases of error reporting· or other conditions

where the I unit's RP is inaccurate (because it is prefetching future instructions), the E unit's

RP comes to the rescue and gets execution back on track. REC is also used as an exponent

ALU during multiply. The default modes are RP in increment, and REC in load.

25.4 Multiply

25.4.1 Booth's Algorithm

The 4150 multiply is a 3-bit modified Booth's algorithm designed to operate on 8 bits of

multiplier per beat. Thus, a 48 x 8-bit multiply producing a 56-bit partial product can be

accomplished each beat. Six consecutive 48 x 8-bit multiplies Cin 6 beats) will produce a 48-bit

product (discarding unneeded low order product bits).

Booth's algorithm accomplishes a multiplication by strategically adding easily producible factors

of the multiplicand. The factors to add are determined by scrutinizing the multiplier. All

the factors used are shifted copies of the multiplicand or the two's complement of the

multiplicand. Refer to Figure 25-5.

Restricting ourselves to 8-bit signed arithmetic for the moment, we see that the multiplier is

broken up into four 3-bit factors. This is done by the addition of a "hidden" bit below the

least significant bit. The hidden bit is always 0. For any value of any factor we can

extract the appropriate coefficient from the factor table. This coefficient is "multiplied" by a

copy of the multiplicand, and the four resulting partial products are added together. In

reality, no multiplication is necessary since all the coefficients are products of 2. All the

partial products can be formed by shifting and/or two's complementing a copy of the

multiplicand. Figures 25-6, 25-7, and 25-8 illustrate the operation of this algorithm for

multipliers of 3, 118, and -2 respectively.

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spe~

FIG. 25-5. Booth's Algorithm

Hidden Bit
I
I

8 v

I I I I I 11 I
RS I I I I I I I I 11 0 I

1~1~1~1~1~1~1~1~11~1

-----1 f'actor 1

f'actor 4

f'actor 16

f'actor 64

Factor 1 Factor 4 Factor 16 Factor 64

0 0 0 I 0 0 0 0 I 0 0 0 0 I 0 0 0 0 I 0
0 0 1 I 1 0 0 1 I 4 0 0 1 I 16 0 0 1 I 64
0 1 0 I 1 0 1 0 I 4 0 , 0 I 1s 0 , 0 I 64
0 1 , I 2 0 1 1 I 8 0 1 1 I 32 0 , 1 I 128
1 0 0 1-2 1 0 0 l-8 1 0 0 l-32 0 0 l-128
1 0 , 1-1 , 0 , l-8 1 0 1 l-16 0 1 l-64
1 1 0 l-1 , 1 0 l-4 1 1 0 l-16 1 0 l-64
1 1 1 I 0 1 1 , I 0 1 1 1 I 0 1 1 I 0

PRIME RESTRICfED

Page 255

4150 Functional Specification
Page 256

FIG. 25-6. Booth's Algorithm: Multiplier = 3 Example

Hidden Bit
I
I

8 v

11 I
RS I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 1 I I 0 I

1-1-1-1-1-1-1-1-11-1

I I Factor 1

Factor 1 Factor 4 Factor 16 Factor

0 0 0 I 0 0 0 0 I 0 0 0 0 I 0 0 0 0
0 0 1 I 1 0 0 1 I 4 0 0 1 I 16 0 0 1
0 1 0 I 1 0 1 0 I 4 0 1 0 I 16 0 1 0
0 1 1 I 2 0 1 1 I 8 0 1 1 I 32 0 1 1
1 0 0 l-2 1 0 0 l-8 1 0 0 l-32 0 0
1 0 1 l-1 1 0 1 l-8 1 0 1 l-16 0 1
1 1 0 l-1 1 1 0 l-4 1 1 0 l-16 1 1 0
1 1 1 I 0 1 1 1 I 0 1 1 1 I 0 1 1 1

Result= 3 x multi pl icond = -1 x multiplicand
+ 4 x mu It i p I i cond_
+ 0 x multiplicand
+ 0 x multiplicand

3 x multiplicand

PRIME RESTRICTED

Factor 4

Factor 16

Factor 64

64

I 0
I 64
I 64
I 128
l-128
l-64
l-64
I 0

Factor 1
Factor 4
Factor 16
Factor 64

Multiply

Execution Unit Detailed Description 4150 Funct. Spec.
Page 257

FIG. 25-7. Booth's Algorithm: Multiplier 118 Example

Hidden Bit
I
I

8 v

I I I I I I 11 I
RS I 0 I 1 I 1 I 1 I 0 I 1 I 1 I 0 I I 0 I

l~l~l~l~l~l~l~l~I l~I

I I Factor

Factor 4

Factor 16

Factor 64

Factor 1 Factor 4 Factor 16 Factor 64

0 0 0 I 0 0 0 0 I 0 0 0 0 I 0 0 0 0 I 0
0 0 1 I 1 0 0 I 4 0 0 1 I 16 0 0 1 I 64
0 1 0 I 1 0 1 0 I 4 0 1 0 I 16 0 1 0 I 64
0 1 1 I 2 0 1 1 I 8 0 1 1 I 32 0 1 1 I 128
1 0 0 l-2 0 0 l-8 0 0 l-32 0 0 l-128

0 1 1-1 0 1 l-8 0 1 l-16 0 1 l-64
1 0 l-1 1 1 0 l-4 0 l-16 1 0 l-64

1 1 1 I 0 1 1 1 I 0 1 1 I 0 1 1 I 0

Result=118 x mu It i p I i cond = -2 x mu It i p I i cand Factor 1
+ 8 x mu It i p I i cand Factor 4
+ -16 x mu It i p I i cand Factor 16
+ 128 x mu I t i p I i cand Factor 64

118 x multiplicand

PRIME RESTRICTED

4150 Functional Specification
Page 258

FIG. 25-8. Booth's Algorithm: Multiplier -2 Example

Hidden Bit

I
I

8 v

RS
I I I I I I II I
I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 0 11 0 I
l~l~l~l~l~l~l~l~I l~I

I I

Factor 1 Factor 4 Factor 16 Factor

0 0 0 I 0 0 0 0 I 0 0 0 0 I 0 0 0 0
0 0 1 I 0 0 1 I 4 0 0 1 I 16 0 0 1
0 0 I 0 0 I 4 0 1 0 I 16 0 0
0 1 I 2 0 1 1 I 8 0 1 I 32 0 1

0 0 l-2 0 0 l-8 0 0 l-32 0 0
0 1 l-1 0 1 l-8 1 0 l-16 0 1

0 1-1 1 1 0 l-4 1 0 l-16 0
1 1 1 I 0 1 1 1 I 0 1 1 I 0 1 1

Result = -2 x mu It i p I i cand = -2 x multiplicand

+ 0 xmultiplicand

+ 0 xmultiplicond

+ 0 xmultiplicand

-2 x mu It i p I i cond

25.4.2 Multiply Implementation

25.4.2.1 Multiply Hardware

Factor

Factor 4

Factor 16

Factor 64

64

I 0
I 64
I 64
I 128
l-128
l-64
l-64
I 0

Factor
Factor 4
Factor 16
Factor 64

Multiply

The multiply logic consists of a portion of each of the seven PEALU slices, the RS register, a

2:1 mux found on the output of ALE bits 9-16, and random logic. Some special clocking is

also required to allow some clocks to operate on beat boundaries. There are a number of other

little features inserted in the machine to solve special problems. These include the ability to

reset the contents of RI, insert rounding bits into the original partial product using the RI

path, and conditional decrement feature found in the REC controls.

The PEALU multiply logic consists of:

• Factor logic, used
and multiplicand.
loop.

to generate intermediate factors from portions of the multiplier
This logic does the multiplication during each iteration of the

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 259

• Carry-save adder, used to combine the several factors with the partial product to
generate the next partial product in carry-save format. This logic combines the
result of the current multiplication with the partial results from the previous
iterations.

• Multiplicand register, used to hold the 48-bit multiplicand for the duration of the
multiply operation. This logic also includes RD.

• Main ALU, used to convert the partial product, in carry-save format, to two's
complement format.

• RS register, used to hold the multiplier, which is sent over the BDI bus from the
barrel shifter.

The 3-bit Booth's algorithm is implemented in each 8-bit PEALU slice. Our problems

(multiply problems, anyway) would be over if all we ever wanted were 16-bit products.

Since this isn't the case, we need some way to keep track of partial products produced by

early iterations while we actually perform later iterations. This sounds like a job for the

RSUM amd RCRY registers. Refer to Figure 25-9. This Figure shows two PEALU slices (if

you imagine them as only one bit wide for the moment). Since we want to get a four bit

product and we can only do two bit arithmetic we will need the services of these registers.

In the example shown we are multiplying 2 x 3 unsigned. Three is the multiplicand, 2 is

the multiplier. On the first iteration, each slice has a 0 in RS (the lsb of the multiplier).

each slice multiplies 1 x 0 in the multiply logic (the multiplicand is also sliced) while adding

RSUM + RCRY in the ALU. (Assume RCRY =:= RSUM = 0 on the first iteration.) The

output of the ALU to the left (RSUM + RCRY = O) is added to the partial product (O), and

the result is stored in RSUM and RCRY. In the example, after the first iteration RSUM and

RCRY on both slices are still equal to 0. On the second iteration, each slice has a 1 in RS.

Each slice multiplies 1 x 1 while adding the ALU output of the slice to the left (RSUM +

RCRY = 0) and storing the result (1) in RSUM and RCRY. The operation is finished by

adding RSUM + RCRY on all the slices to obtain the final result.

Meanwhile, back in 48-bit arithmetic mod~, the BDl VLSI logic is used to guarantee that each

of the 7 PEALU slices is provided with the same 8 bits of the multiplier. This is called

"broadcasting" the multiplier. The BDI takes the 8 LSBs of the ALEMUX input and duplicates

this byte on every 8-bit BDI output bus.

Another unusual section of logic is the RS register at the output of the BDI VLSI logic. This

register is preceded by a 48-bit 2:1 mux, which ·provides a straight path to .the register for_

normal operations and a second path which implements a 48 bit 'right shift by 8' algorithm.

The purpose of this feature is to allow the multiplier, which is held in RS, to move a new

byte of information into the low order 8 bits every iteration of the multiply loop.

PRIME RESTRICTED

1

2

Each slice performs the operation:

RS x MCAND + RSUM + RCRY

The results are stored in RSUM and RCRY.

The slices are connected:

Multiply

RCRY RSUM

0--+ 0

0 -- + 1

+
1

11
x10

0110

MCA ND
RS

RCRY

0

0

Adder

Multiply

RSUM

+ 0

+ -1

+
1

Figure 25-9 Multiply Hardware Slicing

0

l
0

Execution Unit Detailed Description 4150 Funct. Spec.
Page 261

25.4.2.2 Multiply Algorithm

A 16 x 16 bit integer multiply (MPY) is performed as follows:

1. Fetch the memory operand (multiplier) and pass it through the ALH slices. The
low order 16 bits of the multiplier are forced to be zero through the ALL and
ALE slices. This is detected in the BDI logic by testing the ALU outputs for this
condition and altering the BDI shift controls if the condition is met. The altered
controls will cause the BDI logic to perform a 32-bit right shift, putting the low
byte of ALH into the coveted multiplier spot (e.g. right justifying the multiplier).
The BDI also drives all zeroes during the first half of the step, which are clocked
into RS, clearing the hidden bits.

2. The MultipliCAND (MCAND) is moved from the register file to the MCAND/RD
registers. The first 8 bits of the multiplier are "broadcast" to the various PEALU
chip RS registers, and some features are invoked.

The first feature is a set of controls used to alter the normal RS, RSUM/RCRY
clocks to operate on a beat boundary.

The second feature is used to zero RI, thus providing an initial partial product of
all zeroes. (Recall that each slice adds the output of the previous slice's ALU to
its partial products, expecting them to be the sum RSUM + RCRY. By passing RI,
RSUM + RCRY = 0 is assured for the first iteration.) It is important to note that
the multiplicand passes through RI during this step, but the multiplicand is clocked
into the MCAND register at CS8+, before RI gets cleared.

3. After the mutliplicand and multiplier are loaded (which occurs in parallel), one
beat of the inner loop of the multiply is performed. This terminates the second
step of the microcode algorithm. Then one more beat of the inner loop is executed,
which occurs during the next microcode step, and the product is saved back into
the register file.

One beat of the inner loop performs the operation:

(MCAND * 8 bits of multiplier) + RSUM + RCRY

The parenthetical part of the expression is performed by the factor logic, while the
3 operand addition is accomplished by the carry-save adder.

4. MCAND gets loaded left shifted by one because the multiply hardware is optimized
for floating point. The MPY product is right shifted by one, with the shift end
being the true sign bit.

PRIME RESTRICTED

4150 Functional Specification
Page 262

25.S Divide

25.5.1 Non-Restoring Divide Algorithm

Multiply

The 4150 implements a single bit non-restoring divide algorithm at the rate of a bit per beat.

The concept behind a non-restoring divide algorithm is that successive iterations of the inner

loop of the divide will reduce the partial remainder until it eventually reaches zero (or as

close to zero as the precision of the divide will allow). If the last iteration left a positive

remainder, subtract on this iteration. If the last iteration left a negative remainder, add on

this iteration.

The sign bit produced by each iteration is a quotient bit, and can be saved in a shift register.

If the dividend and divisor have the same sign these bits must be inverted before storage.

Negative quotients require a increment to obtain a final result since the algorithm produces 1 's

complement numbers.

The algorithm always uses positive/positive numbers, and should therefore always produce a

positive remainder. If the remainder isn't positive, adding the divisor to it will make it

positive.

N quotient bits require n+ 1 iterations of the algorithm. The first one effectively divides the

sign bits, which is meaningless.

Figures 25-10, 25-11, and 25-12 illustrate the operation of the algorithm. Each one shows the

algorithm in operation as if it were doing a long division the way you were taught in

elementary school (assuming you're young enough to have been taught the 'new' math).

Quotient bits are collected down the left side of the page. The algorithm appears to be

drifting to the right after each iteration. This is a graphical representation of the dividend

being shifted one place left after each iteration as the sign bit is shifted off for quotient bit

collection. The figures illustrate 8 bits divided by 4 bits, but the algorithm is easily

expanded as many bits as necessary.

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 263

FIG. 25-10. Non-Restoring Divide Example: 6 I 2

0 0 0 0 0 1 1 0
- 0 0 0

Quotient Bits• 0 < 1 1 0 0 1 1 0

v

+ 0 0 1 0

0 < 1 1 1 0 1 , 0

+ 0 0 1 0

0 < 1 1 1 0
+ 0 0 0

1 < 0 0 0 1 0
0 0

, < 0 0

6 / 2 = 3 remainder 0

•Quotient bits ore inverted before collection
if the divisor and dividend hove like signs.

PRIME RESTRICTED

, 0

0 0 Remainder

4150 Functional Specification
Page 264

FIG. 25-11. Non-Restoring Divide Example: 5 I -4

0 0 0 0 0 1 0 1
- 0 0 0

Quotient Bits• 1 < 1 0 ~ 0 1 0 1

I
I
I
I
I
I
I
I
I
v

+ 0 1 0 0

1 < 0 0 1 0 1
+ 0 1 0 0

1 < 1 0 1 0
+ 0 1 0 0

1 < 1 0 1
+ 0 0 0

••• 0 < 0 0 0 1

5 I -4 = -1 remainder -1

•Quotient bits are not inverted before collection
if the divisor and dividend have different signs.

••The algorithm requires positive/positive. The
divisor is inverted before the divide starts.

•••Negative quotients require an increment to obtain
the final answer because the algorithm produces
1's complement answers.

••

Remainder ••••

••••The algorithm always produces positive remainders.
The microcode must explicitly make the remainder
negative when necessary.

PRIME RESTRICTED

Divide

Execution Unit Detailed Description

FIG. 25-12. Non-Restoring Divide Example: 14 I 3

Quotient Bi ts • 0 <

I 0 <
I
I
I 1 <
I
I
I 0 <
I
I
v 0 <

00001110
- 0 0 1

101 110
+ e 0 1 1

1 1 0 1 0
+ 0 0 1

0 0 0 0 0
0 0 1

1 1 0 0
+ 0 0 1 1

1 1
+ 0 0 ••

4150 Funct. Spec.
Page 265

0 0 0 Remainder

14 / 3 = 4 remainder 2

•Quotient bits are inverted before collection
if the divisor and dividend have like signs.

•• The algorithm must always produce a positive
remainder. If it doesn't, odd the divisor to
it ot make it positive.

25.S.2 Divide Implementation

25.5.2.1 Divide Hardware

The divide logic consists of a section of each of the seven PEALU VLSI chips and some

special clocking features. The 48-bit RI . is implemented as a 48-bit shift register (left shift by

1) in order to capture the quotient through the link bit. Clocking, control, and parity

checking during a divide operation are handled by microcode via the IAC field.

The hardware is set up to accept only positive numbers divided by positive numbers.

Microcode is used to accept any other combination of numbers and do the appropriate action

required by the hardware.

The PEALU VLSI divide logic consists of:

• A special ALU mode which uses the ALTernate SELect (ALTSEL) input of the
chip to determine if the operation will be an add or a subtract.

• The RD register, which is used to hold the partial remainder. The RD register is

PRIME RESTRICTED

4 lSO Functional Specification
Page 266

Divide

fed by a 2:1 mux. One of the mux inputs is the 56-bit ALU output wired as a
one bit left shift. This mux input allows us to left shift the partial remainder
automatically each iteration.

• The RSUM_IBB register is used to hold some data temporarily during the setup to
the inner loop.

The RI register usually operates as a 48-bit, parallel load, parallel unload register, and is

generally clocked at CS7+. During a divide, RI operates as the quotient register. RI becomes a

48-bit shift register, set to perform a left shift by 1 at every clock. Since the inner loop of

the divide is set to dispatch one bit per beat, the clock to RI must also perform at the rate

of one bit per beat. The shift input to RI is the link bit. The link bit input is ALHCOUT+

(ALH Carry Out), which is selected by issuing IAC DIVIDE.

Creative clocking allows the algorithm to be performed in few microcode steps. Since the

· . ·. inner -loop operates at a rate of one bit per beat, there should be two bits per microcode step.

If the microcode step has a TX= 2 in it, there would be three beats during the step and thus

three bits of quotient. This use of TXs allows the microcode to extend the usefulness of each

step and reduce the length of the algorithm in terms of steps executed.

2s.s.2.2 Divide Algorithm

A 32 I 16 bit integer divide (DIV) yielding 16 bits of quotient and 16 bits of remainder is

performed as follows:

1. The algorithm starts out by checking the signs of the divisor and the dividend, 2's
complementing these arguments as necessary so that the inner loop is entered with
a positive divisor and a positive dividend. The dividend is loaded into RD.

2. The divisor is subtracted from the dividend, creating a partial remainder. The sign
bit of this partial remainder is used to select the ALU operation to perform on the
next iteration. The sign bit is also saved in RI as. the quotient. This is one
iteration. The result of the operation is loaded into RD left shifted by 1.

3. The ALU mode selection will be an add if the result of the last iteration
produced a negative number.

The ALU mode selection will be a subtract if the result of the last iteration
produced a positive number.

4. Repeat step three as many times as necessary to produce the desired number of
quotient bits. The value in RD at the end is the remainder. If it is negative,
add the divisor to it to make it positive again.

5. Fix the sign of the quotient and remainder as necessary based on the signs of the
original operands.

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 267

25.6 Floating Point

Floating point numbers allow non-integers and very large numbers to be represented inside a

computer. The reader is strongly urged to familiarize him/herself with the floating point

chapter of the System Architecture Reference Manual before attempting this section.

In general, the floating point instruction set performs operations on two floating ·point

operands. One of the operands is in memory (cache), while the other is in a Floating

ACcumulator (F AC). The FA Cs are in the register file of the E unit. The exponent part of

any floating point number is kept in excess 128 notation.

All floating point numbers are stored in a format called normalized. This means that the

first two bits of the mantissa are different. Storing numbers in this fashion assures that

there is no duplication of sign bits at the beginning of the number, and provides as many

bits as possible at the end of the number for significant digits (precision). The binary point

is always assumed to be between bit 1 and bit 2.

25.6.1 Floating Add

A floating point add in binary is analogous to a scientific notation add in base ten. Just as

you have to line up the decimal point before you can do the addition in base ten (remember

the 'new' math?), you have to line up the binary points before you can do the addition in

base two. Keeping that in mind, here's the algorithm for a floating point add.

1. Make the exponents of the two numbers equal.
binary points, and is called adjusting. The
excruciating detail below.

2. Add the two mantissas.

3. Normalize the result.

25.6.1.1 Adjust

This is the same as lining up the
adjust function is explained in

As stated above, adjusting is done to align the binary point before an addition. Since the

binary points don't really exist they can't be moved. We have to settle for moving the data

around. The data can't be shifted left, since that would destroy significant bits. Shifting

data to the right (sign extending) while holding the Cimaginary) binary point stationary

implies that the mantissa is getting smaller. To keep the number the same, you have to add

to the exponent. The exponent will consequently get larger. When the exponents are equal

the binary points are aligned. Thus we have to adjust the operand with the smaller exponent

(the smaller operand).

Adjusting is done in two steps:

PRIME RESTRICTED

4150 Functional Specification
Page 268

Floating Point

1. Subtract the exponents. N = expl - exp2. ALU operation. Store N in the latch
LADJCJ\TT (Latch ADJust CouNT).

2. Shift the mantissa of the smaller operand right IN! places, sign extended, in the
barrel shifter.

For example:

010E3
101 E1 101E1 needs to be adjusted. It would become 11101E3.

010E3
011E3

010E48
010E-5

Neither operand needs adjusting.

010E-5 needs to be adjusted.

The last example illustrates the Out-of-RANGE (ORANGE) case. The barrel shifter can't shift

more than 48 bits. The barrel shifter detects this case and puts out all zeros in this case,

and the algorithm proceeds normally.

Tha ALU automatically selects the correct operand to adjust during step 2 if the microcode

uses the ALU mode ADJUST. It is assumed by the table that expl was the F AC (A leg

operand) and exp2 was the memory (B leg) operand. Table 25-4 illustrates this mode of

operation.

TABLE 25-4. ADJUST ALU Mode

FALL00+ ALU Mode

0 (TB.TB.TB)
1 (TA, TA, TA)

The last two bits shifted off the right end during a barrel shifter adjust operation are saved

in the guard bits. These bits may be shifted back in during a normalize operation to increase

the precision of the result.

25.6.1.2 Normalization

Normalization is done at the end of every floating point operation to insure that there are no

duplicate sign bits and that the answer is as precise as possible.

To discard extra sign bits we must shift the data left. The guard bits will be the first two

bits shifted in at the right, with all subsequent bits forced to zero by the barrel shifter.

Shifting left while holding the (imaginary) binary point stationary implies that the mantissa

is getting larger. To keep the number the same we have to subtract the shift count from

the exponent.

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 269

Normalization is also done in two steps:

1. Shift the data left until the first two bits are different. N = the number of
places shifted, Positive for left shift, negative for right shifts. This operation is
done in the barrel shifter, which reports N in an ALU accessible register named
FNRMCNT (flopped normalize count).

2. Add N to the exponent in the ALU.

Continuing with the example discussed under adjust:

01000 E3
+ 11101 E3

00101 E3
I
I N =

I
v

0101 E2

0100 E3
+ 0110 E3

01010 E3

I
I N = -1
I
v

0101 E4

The second example shows what happens when the addition causes an overflow. (We are

adding two positive numbers and are about to get a negative result.) The barrel shifter

monitors the ALU overflow condition and shifts the sign bit back in automatically in this

case.

25.6.2 Floating Subtract

The floating point subtract algorithm cheats by converting itself into a floating point add:

1. Two's complement the number to be subtracted.

2. Adjust the mantissa that needs adjusting.

3. Add the mantissas.

4. Normalize the result.

PRIME RESTRICTED

4150 Functional Specification
Page 270

2S.6.3 Floating Multiply

Floating Point

A floating point multiply operation is analogous to a scientific notation multiply in base ten.

Alignment of the binary points of the operands isn't necessary. The tricky part to remember

is that the exponents are in excess 128 notation.

The algorithm:

1. Add the two exponents and subtract 128. Cexpl + 128) + Cexp2 + 128) - 128
(exp3 + 128)

2. Multiply the two mantissas together. This is the same operation as the integer
multiply discussed earlier.

3. Normalize the result.

Special hardware is available to assist with each step. The multiply hardware of step 2 and

the normalize hardware of step 3 have already been discussed. Step 1 discusses the exponent

manipulation. The exponent are actually added in the ALU, L side, and the result is stored

in the Register Event Counter (REC) inside the PRFADR chip. This general purpose up/down

counter is usually used in a strict increment or decrement mode, but also supports addition or

subtraction of 128 for exponent operations.

2S.6.4 Floating Divide

The floating divide algorithm needs no further introduction:

1. Subtract the divisor's exponent from the dividend's exponent and add 128. Cexpl +
128) - (exp2 + 128) + 128 = (exp3 + 128)

- 2. Divide the dividend mantissa by the divisor mantissa. This is the same operatibn
as the integer divide discussed earlier.

3. Normalize the result.

4. Round the result. Rounding is discussed -in the next section.

5. Normalize the result.

25.6.S Rounding

Rounding is a software selectable floating point option. Rounding is enabled by setting a bit

in the MODALS register. When this bit is active all floating point results are rounded before

storage.

Rounding refers to adding a 1 to the bit of lesser significance than the least significant bit.

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 271

For example, double precision arithmetic produces a 48-bit result. To round the result we add

a 1 to bit 49. If this produces a carry out, bits 1-48 change accordingly.

What is bit 49 if there are only 48 bits in the answer? The guard bits are bits 49 and 50

in double precision. Earlier, it was stated that the guard bits were saved during an adjust

operation. The guard bits are available as inputs to ALX. The addition of a 1 for rounding

occurs in ALX for double and quadruple precision. In quadruple precision, the 1 is added to

bit 97. Single precision rounding is done at bit 25 in ALL.

Rounding can lead to a performance degradation. We can't perform a rounding operation until

we know where bit 49 is (assume double precision for this discussion). We don't where bit

49 is until after we normalize the result. If we normalize the result and then round we

have to normalize the result again to make sure the carry didn't propogate all the way to bit

2 or higher. We can solve this problem by looking at the result before it is normalized,

determine where bit 49 ·is, round, and then normalize. The round bit inputs to ALX provide

this feature. Round bit 1 is input at bit 49, while round bit 2 is input at bit 50.

Consider the possible positioning of bit 49 before normalization. ·We can find out where bit

49 is by looking at bits 1-3 of the answer and the overflow indicator. There are four

possibilities for how much normalization will be needed. Each is discussed in turn:

• The overflow indicator is not on and bits 1-3 are all the same. Normalization
will shift left at least 2 bits (bit 3 becomes bit 1), and both guard bits will be
shifted in. Result bit 49 is currently somewhere beyond bit 50. All bits beyond
bit 50 are 0, so adding a 1 can't produce a carry out. No rounding needs to be
done.

• The overflow indicator is not on and bits 1 and 2 are the same, while bit 3 is
different. Normalization will shift exactly 1 bit left (bit 2 becomes bit 1), and 1
guard bit will be shifted in. Result bit 49 is currently at bit 50. Set round bit
2, add it to the guard bits in ALX, propogate any carry outs, and normalize the
number.

• The overflow indicator is not on and bits 1 and 2 are different. Normalization
will not shift at all, as the number is already normalized. Result bit 49 is
currently at bit 49. Set round bit -1, add it to the guard bits in ALX, propogate
any carry outs, and normalize the number.

• The overflow indicator is on. Normalization will shift one bit right (bit 0
becomes bit 1). Result bit 49 is currently at bit 48. Set round bit 1, force guard
bit 1 to be set with signal RNDDONE-, and add the round and guard bits together
in ALX, forcing a carry into bit 48. Normalize the number.

PRIME RESTRICTED

4150 Functional Specification
Page 272

25.6.5.1 Rounding During Floating Multiply

Floating Point

The usual procedure if rounding is required is to do the operation and then round and

normalize in two steps at the end. Time can be saved in certain situations during floating

multiply by doing the rounding during the multiply. This saves the extra step of specifically

letting the logic which produces the round bits look at the result before normalization.

Rounding during multiply is done on the first iteration of the multiply loop. Recall that

there is a special feature which makes RI all zeros during the first iteration of the multiply.

The carry save adders in each PEALU slice interpret this as the sum of the partial products

of the previous iteration. If we can determine where bit 49 will be in the final result

before normalization we can inject a 1 into the otherwise all zeros word coming out of RI

during the first iteration, rounding on the fly.

Determining where bit 49 will be in the final result is the job of the (appropriately named)

guess PROM. This PROM looks at the first 4 bits of each operand and, if it can determine

where bit 49 will end up, produces one of two possible floating multiply round bits. If it

can't determine where bit 49 will be both bits are set to 0. The microcode is notified of the

success or failure of the attempt via jump conditions.

The round bits are injected via a multiplexer into ALL{9:10}+ during the first iteration in

single precision, or into ALH{1:2}+ during double precision. The least significant bit of a

multiply result ends up at ALE16+. Each multiply iteration effectively shifts the

accumulated partial products right 8 bits. Single precision multiplies 24 x 24 bits, requiring

three 24 x 8 iterations. Bit 25 is therefore at ALL bit 9 or 10 during the first iteration. A

similar analysis of double precision's six 48 x 8 bit iterations places bit 49 at ALH bit 1 or 2

during the first iteration.

25.6.6 Quadruple Precision

Quadruple precision deals with 96-bit mantissas. Quad operations must be done in pieces since

there isn't a 96-bit ALU in the E unit. Microcode is responsible for doing these operations

correctly.

There is logic in the barrel shifter to make the microcode's job a little easier by supporting

normalization of 96-bit numbers. This logic is called the reverse mask logic. A reverse mask

assumes LADJCNT has been loaded with the number of bits to mask. The operation does a

LADJCNT-bit rotate over 48 bits, saving only the bottom LADJCNT bits and forcing the rest

to zero. For example, suppose some result needs a 9 bit shift to be normalized correctly.

Figure 25-13 shows how this ,operation would take place.

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.

FIG. 25-13.

9 39

H

Quadruple Precision Normalize

48

L

9 bits need to be
shifted to normalize
the result.

1. Normalize the top 48 bits, zero filled, saving the normalize count
as usual in FNORMCNT.

39

H

I I
10 ... 01
I I

48

L

2. Subtract FNORMCNT from the exponent as usual. Load LADJCNT

3.

with FNORMCNT. Reverse mask the low 48 bits, saving the result
in a scratch register. This effectively moves the top 9 bits to
the bottom.

I I I I
39 10 ... 01 48 10 01 9

I I I I

H L scratch

Or the top 48 bi ts with scratch.

39 9 48

H L

4. Shift the bottom bits left LADJCNT places with the guard bits.

39 9

H

39

L

I I I
IGGl0 .. 01
I I I

PRIME RESTRICTED

Page 273

4150 Functional Specification
Page 274

25. 7 Character and Decimal Instructions

25.7.1 Introduction

Floating Point

The character and decimal instructions in the instruction set are usually discussed together

even though the differences between are more numerous than the similarities. The entire

topic has historically been treated as voodoo. A few of the incantations about character

instructions have leaked out over the years, while decimal has remained a closely guarded

black art. This section will attempt to bring these instructions out into the open. The reader

is strongly urged to familiarize him/herself with the character and decimal chapter of the

System Architecture Reference Guide. before reading this section. Please, kids, don't try this

at home, it's dangerous.

The major similarities between character and decimal are:

• Both operate on byte data.

• As a direct consequence of the first point, both have to worry about the alignment
of the operands.

• Each operand address points to a string of operands. On the rest of the instruction
set, an operand address points to a single operand.)

• Both use special ALU modes.

• Both use special jump conditions.

• Both are fairly incomprehensible at first (and second) glance.

The major differences between the two modes are:

• Character instructions always deal with byte data. Decimal instructions can deal
with either byte or nibble data.

• Character uses Field Length Registers (FLR) for operand lengths. Decimal uses its
control register for operand lengths.

• Character uses Field Address Registers (FAR) for operand addressing. Decimal uses
general registers for operand addressing.

• All the information needed to process character instructions is present in the
opcode, F ARs, and FLRs. Decimal instructions also need a control word (L register
in V mode, GR2 in I mode).

• Character strings are processed left to right (English). Decimal strings are processed
right to left (Hebrew).

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 275

25.7.1.1 Alignment

In the discussion of character and decimal instructions the term alignment is used to refer to

how a word is aligned in memory. Data operated on by character and decimal instructions

can start on byte boundaries. Figure 25-14 illustrates differences in alignment.

FIG. 25-14. Character and Decimal Alignment

8 9 16

• 1000 I w I I I I I I I I I x I I I I I I I I

17 24 25 32

• 1001 I YI I I I I I I I I z I I I I I I I I

In Figure 25-14, if a word begins at W it has alignment 0, at X it has alignment 1, at Y it

has alignment 2, and at Z it has alignment 3. The alignment information is stored in the

ZFF bits. These bits are set up to contain information on destination alignment in memory

(ZFF{O:l}+), source alignment in memory (ZFF{2:3}+), and the number of bytes (mod 4) to be

moved during this instruction (ZFF{4:5}+). The bits are saved in latches which are controlled

by microcode IACs as shown in Table 25-5. The entries in the table show the source for the

bits.

The ZFF bits are referred to as XFF bits in decimal instructions .. They are the same bits in

hardware. Microcode is schizophrenic, so uses two different names for the same piece of

hardware.

TABLE 25-5. ZFF IACs

IAC ZFF0 ZFF1 ZFF2 ZFF3 ZFF4 ZFFS

LXFF01 RIE01 RIE02

LXFF23 l-RIE01 RIE02

LXFF45 BBH09 BBH10

LZFF01 RIL16 RIE01

LZFF23 RI L16 RI E01

LZFF45 RIL15 RIL16

PRIME RESTRICTED

)

4150 Functional Specification
Page 276

Character and Decimal Instructions

25.7.2 Character Instructions

The character instruction set contains 8 instructions. All of them move at least 1 charac~er

from one place to another. A few samples, in increasing order of difficulty:

LDC

ZMV

ZED

Loads the character at the effective address into bits 9-16 of the specified
register. Bits 1-8 are cleared.

A string of characters in memory is copied into another string of characters
. in memory.

A string of characters in memory is accessed and edited under the control of
character edit string subprogram. The edited characters are stored into
another string in memory.

This section will describe all the hardware parts which have a role in character manipulation.

After this discussion there will be two examples of ZMV instructions which will demonstrate

how all the parts play together.

25.7.2.1 ZMV PROMs

ZMV is an ALU mode which really does most of its work in the barrel shifter. This mode

always tells the ALU to pass the B leg input through unchanged to the barrel shifter. It is

intended that the microcode is doing a read of a source string from cache during this step.

The barrel shifters goal is to realign the source string so that it has the same alignment as

the destination string in memory. Once this is done it is easy for the microcode to pick the

bytes it wants from each string, merge them together, and write them to memory.

The entities which provide the control for this operation are the ZMV PROMs. They provide

the shift count to the PBDI slices. They also produce some of the special character mode

jump conditions necessary to insure proper microcode sequencing.

The action that is taken for various alignments is shown in Table 25-6. In this table and

the rest of the tables in this section, X is a don't care entry.

The jump conditions which pertain to character conditions are ZBITl, ZBIT2, XSRCDST, and

ZSTRD. They are defined differently for different ALU modes.

ZMSTRT

ZMSTRT defines the jump conditions used to see how many reads you need to do in order to

write 32 bits to the destination at the same time.

• ZBITl is always zero.

• ZBIT2 is active if you need an extra read of the source to satisfy the destination.
It looks at the alignment of the source, ZFF{2:3}+, and destination, ZFF{O:l}+.

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 277

TABLE 25-6. ZMV BDI Alignment

Alignment
ZFF(0:3) I DST SRC BDI Mode 32 bi ts Result

0 0 0 0 ABCD ABCD No Rotate ABCD
0 0 0 1 ABCD XABC Left Rotate 8 bi ts ABCX
0 0 1 0 ABCD XXAB Left Rotate 16 bits ABXX
0 0 1 1 ABCD XXXA Left Rotate 24 bits AXXX

0 0 0 I XABC ABCD Lett Rotate 24 bi ts DABC
0 0 1 I XABC XABC No Rotate XABC
0 1 1 0 I XABC XXAB Lett Rotate 8 bits XABX
0 1 1 1 I XABC XXXA Lett Rotate 16 bits XAXX

1 0 0 0 I XXAB ABCD Left Rotate 16 bi ts CDAB
1 0 0 1 I XXAB XABC Lett Rotate 24 bi ts CXAB

0 1 0 I XXAB XXAB No Rotate XXAB
0 1 1 I XXAB XXXA Left Rotate 8 bi ts XXAX

1 1 0 0 I XXXA ABCD Left Rotate 8 bi ts BCDA
0 1 I XXXA XABC Left Rotate 16 bi ts BCXA
1 0 I XXXA XXAB Lett Rotate 24 bi ts BXXA

1 1 1 I XXXA XXXA No Rotate XXXA

• XSRCDST is active if there are 4 bytes to move. It looks at the destination
alignment, ZFF{O:l}+, and the number of bytes to move, ZFF{4:5}+.

• ZSTRD is active if the number of bytes to be written and the alignment are such
that they "straddle" across two 32 bit words.

Tables 25-7 and 25-8 illustrate these conditions.

ZMFAST

For ZMF AST, the information coming out of the ZMV PROMs is used to determine where

blank padding should begin. It looks at the destination alignment in ZFF{O:l}+, and number

of bytes to be padded in ZFF{4:5}+. ZSTRD is active if the number of bytes to be written

and the alignment are such that they "straddle" across two 32-bit words.

illustrates these conditions.

ZMSHRT

Table 25-9

ZMSHRT is used if there are less than 4 bytes in the destination. It looks at all of the ZFF

bits to define the jump conditions. ZBITl is active if ZFF{O:l}+, and ZFF{4:5}+ are all equal

to zero. ZBIT2 is active if you need an extra read of the source to meet the number of bits

required. XSRCDST is active if the source alignment is less than the destination alignment.

ZSTRD is active if the number of bytes to be written and the alignment are such that they

"straddle" across two 32-bit words. Tables 25-10, 25-11, and 25-12 illustrate these conditions.

ZMEXIT

PRIME RESTRICTED

4150 Functional Specification Character and Decimal Instructions
Page 278

TABLE 25-7. ZMSTRT ZBIT Jump Conditions for ZMV

Alignment
ZFF(0:3) DST SRC ZBIT(1 :2)

0 0 0 0 ABCD ABCD 0 0
0 0 0 , ABCD XABC 0 ,
0 0 1 0 ABCD XXAB 0 1
0 0 , 1 ABCD XXXA 0 1

0 1 0 0 XABC ABCD 0 0
0 0 1 XABC XABC 0 0
0 1 0 XABC XXAB 0 1
0 , 1 XABC XXXA 0 ,

0 0 0 XXAB ABCD 0 0
0 0 , XXAB XABC 0 0

1 0 1 0 XXAB XXAB 0 0
1 0 1 1 XXAB XXXA 0 1

1 0 0 XXXA A.BCD 0 0
1 0 1 XXXA XABC 0 0

1 1 1 0 XXXA XXAB 0 0
1 1 1 1 XXXA XXXA 0 0

TABLE 25-8. Other ZMSTRT Jump Conditions for ZMV

ZFF
0 1 4 5 DST BYTES XSRCDST ZSTRD

0 0 0 0 ABCD 0 1 0
0 0 0 1 ABCD 1 0 0
0 0 1 0 ABCD 2 0 0
0 0 1 1 ABCD 3 0 0

0 1 0 0 XABC 0 0
0 1 0 1 XABC 1 0 0
0 1 1 0 XABC 2 0 0
0 1 1 1 XABC 3 0 0

1 0 0 0 XXAB 0 1 0
1 0 0 1 XXAB 1 0 0
1 0 1 0 XXAB 2 0 0
1 0 1 1 XXAB 3 0

, 1 0 0 XXXA 0 1 0
, 1 0 1 XXXA 1 0 0
, , 1 0 XXXA 2 0
1 1 1 1 XXXA 3 0

ZMEXIT is used to merge the last write with destination bits which need to be preserved.

ZBITl is active if you need to do and extra read alignment and mask/merge of the source.

ZBIT2 is active if you need to do a read modify write of the destination. XSRCDST is

always active. ZSTRD is active if the number of bytes to be written and the alignment are

such that they "straddle" across two 32-bit words. Tables 25-13 and 25-14 illustrates these

conditions.

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 279

TABLE 25-9. ZMF AST Jump Conditions for ZMV

ZFF
0 1 4 5 DST BYTES ZB IT (1 : 2) XSRCDST ZSTRD

0 0 0 0 ABCD 0 0 0 0 0
0 0 0 1 ABCD 1 0 1 0 0
0 0 1 0 ABCD 2 1 0 0 0
0 0 1 1 ABCD 3 1 1 0 0

0 1 0 0 XABC 0 0 1 0
0 1 0 1 XABC 1 1 0 0 0
0 1 1 0 XABC 2 1 1 0 0
0 1 1 1 XABC 3 0 0 0 0

0 0 0 XXAB 0 1 0 0
0 0 1 XXAB 1 1 1 0 0
0 1 0 XXAB 2 0 0 0 0
0 1 1 XXAB 3 0 1 1 1

0 0 XXXA 0 1 1 1 0
0 1 XXXA 1 0 0 0 0

1 1 1 0 XXXA 2 0 1 1
1 1 1 1 XXXA 3 1 0 1

TABLE 25-10. ZMSHRT Jump Conditions for ZMV, Part 1

ZFF
0 1 4 5 DST BYTES ZBIT1 ZSTRD

0 0 0 0 ABCD 0 1 0
0 0 0 1 ABCD 1 0 0
0 0 1 0 ABCD 2 0 0
0 0 1 1 ABCD 3 0 0

0 0 0 XABC 0 0 0
0 0 1 XABC 1 0 0
0 1 0 XABC 2 0 0
0 1 1 XABC 3 0 0

0 0 0 XXAB 0 I 0 0
0 0 1 XXAB 1 I 0 0
0 1 0 XXAB 2 I 0 0
0 1 1 XXAB 3 I 0 1

1 1 0 0 XXXA 0 I 0 0
1 1 0 1 XXXA 1 I 0 0
1 1 1 0 XXXA 2 I 0
1 1 1 1 XXXA 3 I 0

PRIME RESTRICTED

41SO Functional Specification
Page 280

TABLE 25-11.

ZFF(2:5)

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1

0 0 0
0 0 1
0 1 1 0
0 1 1 1

0 0 0
0 0 1

1 0 1 0
1 0 1 1

1 1 0 0
1 1 0 1

1 0
1 1

TABLE 25-12.

zrr(0:3)

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1

0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1

1 0 0 0
0 0 1
0 1 0

1 0 1 1

0 0
0 1

1 1 1 0
1 1 1 1

Character and Decimal Instructions

ZMSHRT Jump Conditions for ZMV, Part 2

SRC BYTES ZBIT2

ABCD 0 0
ABCD 1 0
ABCD 2 0
ABCD J 0

XABC 0 0
XABC 1 0
XABC 2 0
XABC J 0

XXAB 0 0
XXAB 1 0
XXAB 2 0
XXAB J

XXXA 0 0
XXXA 1 0
XXXA 2
XXXA 3

ZMSHRT Jump Conditions for ZMV, Part 3

DST SRC XSRCDST

ABCD ABCD 0
ABCD XABC 0
ABCD XXAB 0
ABCD XXXA 0

XABC ABCD
XABC XABC 0
XABC XXAB 0
XABC XXXA 0

XXAB ABCD 1
XXAB XABC I 1
XXAB XXAB I 0
XXAB XXXA I 0

I
XXXA ABCD I 1
XXXA XABC I 1_

XXXA XXAB I
XXXA XXXA I 0

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 281

TABLE 25-13. ZMEXIT Jump Conditions for ZMV, Part 1

Alignment
ZfF(4:5) ZFf(0:3) DST SRC Bytes ZBIT(1 :2) ZSTRD

0 0 0 0 0 0 ABCD ABCD 0 0 0 0
0 0 0 0 0 1 ABCD XABC 0 '0 0 0
0 0 0 0 1 0 ABCD XXAB 0 0 0 0
0 0 0 0 1 1 ABCD XXXA 0 0 0 0

0 0 0 1 0 0 XABC ABCD 0 0 1 0
0 0 0 1 0 1 XABC XABC 0 1 1 0
0 0 0 1 1 0 XABC XXAB 0 0 1 0
0 0 0 1 1 1 XABC XXXA 0 0 1 0

0 0 1 0 0 0 XXAB ABCD 0 0 1 0
0 0 0 0 1 XXAB XABC 0 1 1 0
0 0 0 1 0 XXAB XXAB 0 1 1 0
0 0 1 0 1 1 XXAB XXXA 0 0 1 0

~ 0 1 0 0 XXXA ABCD 0 I 0 1 0
0 0 1 0 1 XXXA XABC 0 I 1 1 0
0 0 1 1 1 0 XXXA XXAB 0 I 1 1 0
0 0 1 1 1 1 XXXA XXXA 0 I 1 1 0

0 1 0 0 0 0 ABCD ABCD I 1 1 0
0 1 0 0 0 1 ABCD XABC I 0 0
0 1 0 0 1 0 ABCD XXAB I 0 0
0 1 0 0 1 1 ABCD XXXA I 0 0

0 1 0 1 0 0 XABC ABCD I 1 1 0
0 1 0 1 0 1 XABC XABC I 1 1 0
0 1 0 1 1 0 XABC XXAB I 0 1 0
0 1 0 1 1 1 XABC XXXA I 0 1 0

0 1 0 0 0 XXAB ABCD 1 1 0
0 1 0 0 1 XXAB XABC 1 1 0
0 1 0 1 0 XXAB XXAB 1 1 0
0 1 0 1 1 XXAB XXXA 0 1 0

0 1 1 1 0 0 XXXA ABCD 1 0 0
0 1 1 1 0 1 XXXA XABC 1 0 0
0 1 1 1 1 0 XXXA XXAB 1 0 0
0 1 1 1 1 1 XXXA XXXA 1 0 0

PRIME RESTRICTED

4150 Functional Specification Character and Decimal Instructions
Page 282

TABLE 25-14. ZMEXIT Jump Conditions for ZMV, Part 2

Alignment
ZFF(4:5} ZFF(0:3} DST SRC Bytes ZBIT(1 :2) ZSTRD

1 0 0 0 0 0 ABCD ABCD 2 1 1 0
0 e e e 1 ABCD XABC 2 e 1 0
0 0 0 1 0 ABCD XXAB 2 0 1 0
0 0 0 1 1 ABCD XXXA 2 1 1 0

1 0 0 0 0 XABC ABCD 2 1 1 0
1 0 0 0 1 XABC XABC 2 1 0
1 0 0 1 0 XABC XXAB 2 0 0
1 0 0 1 1 1 XABC XXXA 2 1 1 0

1 0 0 0 0 XXAB ABCD 2 1 0 0
1 0 0 0 1 XXAB XABC 2 1 0 0

0 0 1 0 XXAB XXAB 2 0 0
0 0 1 1 XXAB XXXA 2 0 0

1 0 1 1 0 0 XXXA ABCD 2 0 1
1 0 1 1 0 1 XXXA XA~ 2 0 1

0 1 1 1 0 XXXA XXAB 2 0
0 1 1 1 1 XXXA XXXA 2 1

1 1 0 0 0 0 ABCD ABCD 3 1 1 0
1 1 0 0 0 1 ABCD XABC 3 0 1 0
1 1 0 0 1 0 ABCD XXAB 3 1 1 0
1 1 0 0 1 1 ABCD XXXA 3 1 1 0

1 1 0 1 0 0 XABC ABCD 3 1 0 0
1 1 0 1 0 1 XABC XABC 3 1 0 0
1 1 0 1 1 0 XABC XXAB 3 1 0 0
1 1 0 1 1 1 XABC XXXA 3 1 0 0

1 1 0 0 0 XXAB ABCD 3 0 1
1 1 0 0 1 XXAB XABC 3 0 1
1 1 0 1 0 XXAB XXAB 3 1 1
1 1 0 1 1 XXAB XXXA 3 0 1

1 1 1 0 0 XXXA ABCD 3 0 1
1 1 1 0 1 XXXA XABC 3 0 1
1 1 1 1 1 0 XXXA XXAB 3 1 1
1 1 1 1 1 1 XXXA XXXA 3 1 1

25~7.2.2 XMODE PROMs

The XMODE PROMs control the ALU modes for character and decimal instructions. The 4

ALU modes associated with character moves are shown in Table 25-15. These ALU modes

behave differently for different combinations of ZFF bits.

The character ALU modes can be invoked without calling them out specifically in the

microcode word. This kind of ALU mode is called a "wired" ALU mode. Wired ALU

modes are designated by a "W" in t he ALEG - ALU table in the microcoder's handbook.

When a wired ALU mode is used the XMODE PROMs produce the jump conditions based on

RCMALU{6:8}+. RCMALU6+ equal to 0 implies a character ALU mode, while RCMALU6+

equal to 1 implies a decimal ALU mode.

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 283

TABLE 25-15. Character ALU Modes

MODE RCMALU(07:08)

ZMSTRT 0 0
ZMFAST 0 1
ZMEXIT 1 0
ZMSHRT 1 1

ZMSTRT

ZMSTRT looks at the the destination alignment. It is assumed that the source data has been

aligned to match the destination. We need to preserve the part of the destination which will

not be written over. To do this, the microcode puts the old destination word on the B leg

and the new source word on the A leg, and uses the ZMSTRT ALU mode. The ZFF bits

affect how the ALU performs as shown in Table 25-16. In this table, the string ABCDEFH

is being moved to the point starting at the J character.

TABLE 25-16. ZMSTRT ALU Modes For Character Instructions

B A
ZFF(0:1) DST SRC ALU mode Result

0 0 JKLM ABCD (TA:TA, TA:TA,) ABCD
0 1 IJKL DABC (TB:TA, TA:TA,) IABC
1 0 HIJK CDAB (TB:TB, TA:TA,) HIAB
1 1 GHIJ BCDA (TB:TB, TB:TA,) GHIA

ZMFAST

ZMFAST is used to make a 32-bit word to be written to the destination. On the A leg, the

microcode puts the old source word which has already been written (either partially or fully)

by a ZMSTRT. The new source word is passed on the B leg. ZMFAST is called out for the

ALU mode, which causes the XMv PROMs to produce the ALU operations are shown in Table

25-17. The table shows the movement of the string ABCDEFGH. The first byte(s) have

already been moved with a ZMSTRT.

ZMSHRT

ZMSHRT is used when there are less than 4 bytes in the destination. The aligned source

word is passed on the A leg and the destination is passed on the B leg. ZMSHRT is used to

mask merge the two character strings based on destination alignment and number of bytes to

be written. ZMSHRT ALU operations are illustrated in Table 25-18. In this table, the string·

being moved is either A, AB, or ABC, and it is being moved to line up with the Q in the

destination.

ZMEXIT

PRIME RESTRICTED

4150 Functional Specification Character and Decimal Instructions
Page 284

TABLE 25-17. ZMFAST ALU Modes For Character Instructions

Desired A B
ZFF(0:3) I DST I SRC SRC ALU Mode Result

I
0 0 0 0 I EFGH ABCD EFGH (TB:TB, TB:TB,) EFGH
0 0 0 1 I EFGH EFGD XXXH (TA:TA, TA:TB,) EFGH
0 0 1 0 I EFGH I EFCO XXGH (TA:TA, TB:TB,) EFGH
0 0 1 1 I EFGH I EBCD XFGH (TA:TB, TB:TB,) EFGH

1--1
0 1 0 0 I DEFG I DABC HEFG (TA:TB, TB:TB,) DEFG
0 0 1 I DEFG I XABC DEFG (TB:TB, TB:TB,) DEFG
0 1 0 I DEFG I DEFC HXXG (TA:TA, TA:TB,) DEFG
0 1 1 1 I DEFG I DEBC HXFG (TA:TA, TB:TB,) DEFG

I
1 0 0 0 I CDEF CDAB GHEF (TA:TA, TB:TB,) CDEF

0 0 1 I CDEF CXAB GDEF (TA:TB, TB:TB,) CDEF
0 1 0 I CDEF XXAB CDEF (TB:TB, TB:TB,) COEF

1 0 1 1 I CDEF CDEB GHXF (TA:TA, TA:TB,) CDEF
I

1 1 0 0 I BCDE BCDA FGHE (TA:TA, TA:TB,) BCDE
1 1 0 1 I BCDE CBXA FGDE (TA:TA, TB:TB,) BCDE
1 1 1 0 I BCDE BXXA FCDE (TA:TB, TB:TB,) BCDE
1 1 1 1 I BCDE XXXA BCDE (TB:TB, TB:TB,) BCDE

TABLE 25-18. ZMSHRT ALU Modes For Character Instructions

ZFF II B A
0 1 4 5 Bytes DST SRC ALU Mode Result

0 0 0 0 0 ORST ABCX (TB:TB, TB:TB,) QRST
0 0 0 1 1 QRST ABCX (TA:TB, TB: TB,) ARST
0 0 1 0 2 QRST ABCX (TA:TA, TB:TB,) ABST
0 0 1 1 3 QRST ABCX (TA:TA, TA:TB,) ABCT
0 1 0 0 0 PQRS XABC (TB:TB, TB: TB,) PQRS
0 1 0 1 .1 PQRS XABC (TB:TA, TB:TB,) PARS
0 1 1 0 2 PQRS XABC (TB:TA, TA:TB,) PABT
0 1 1 1 3 PQRS XABC (TB:TA, TA:TA,) PABC
1 0 0 0 0 OPQR CXAB (TB:TB, TB:TB,) OPQR
1 0 0 1 1 OPQR CXAB (TB:TB, TA:TB,) OPAR
1 0 1 0 2 OPQR CXAB (TB:TB, TA:TA,) OPAB

0 1 1 3 OPQR CXAB (TB:TB, TA:TA,) OPAB
1 0 0 0 NOPQ BCXA {TB:TB, TB:TB,) NOPQ
1 0 1 1 NOPQ BCXA (TB:TB, TB:TA,} NOPA

1 1 1 0 2 NOPQ BCXA (TB:TB, TB:TA,} NOPA
1 1 1 1 3 NOPQ BCXA (TB:TB, TB: TA,} NOPA

ZMEXIT merges the last source data to be written with the destination data which needs to

be preserved. It looks at destination alignment, and number of bytes to write. Table 25-19

illustrates the actions taken in this mode. In the table, we are at the end of a string which

ends in Q, QR, QRS, or QRST.

The bytes left column is different from the value given by ZFF{4:5}+. The reasoning for

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 285

this is as follows: Take the fifth line in the table as an example (ZFF{O:l}+ = 01, ZFF{4:5}+

= 00). The original number of bytes to be moved was some multiple of 4. On the first

store to memory (ZMSTRT) only 3 bytes could be moved because of the destination alignment.

All subsequent , moves (ZMF AST) stored 4 bytes. Therefore, at the end of the transfer there

is one byte of source string left over, which is merged with the destination.

TABLE 25-19. ZMEXIT ALU Modes For Character Instructions

ZFF bytes B A
0 1 4 5 left I DST SRC ALU Mode Result

0 0 0 0 0 I WXYZ QRST (TB:TB, TB:TB,) WXYZ
0 0 0 1 1 I WXYZ QRST (TA:TB, TB:TB,) QXYZ
0 0 1 0 2 I WXYZ QRST (TA:TA, TB:TB,) QRYZ
0 0 1 1 3 I WXYZ QRST {TA:TA, TA:TB,) QRSZ
0 1 0 0 1 I WXYZ QRST (TA:TB, TB:TB,) QXYZ
0 0 1 2 I WXYZ QRST (TA:TA, TB: TB,) QRYZ
0 1 0 3 I WXYZ QRST (TA:TA, TA:TB,) QRSZ
0 1 1 4 I WXYZ QRST (TA:TA, TA:TA,) QRST
1 0 0 0 2 I WXYZ QRST (TA:TA, TB:TB,) QRYZ

0 0 1 3 I WXYZ QRST (TA:TA, TA:TB,) QRSZ
0 1 0 4 I WXYZ QRST (TA:TA, TA:TA,) QRST
0 1 1 1 I WXYZ QRST (TA:TB, TB:TB,) QXYZ
1 0 0 3 I WXYZ QRST (TA:TA, TA:TB,) QRSZ

0 1 4 I WXYZ QRST (TA:TA, TA:TA,) QRST
1 0 1 I WXYZ QRST (TA:TB, TB:TB,) QXYZ
1 1 2 I WXYZ QRST (TA:TA, TB:TB,) QRYZ

25.7.2.3 ZMV Examples

As advertised, this section will attempt to show how all the special purpose character

hardware is supposed to play together to get the job done. What follows is an oversimplified

version of a ZMV algorithm. Any resemblance between this algorithm and the actual one is

strictly coincidental. The algorithm given here is perfectly adequate for our discussion, but

microcode may have efficiencies built into it not shown here. Also, this algorithm is not

guaranteed to be accurate in every case, but is meant for illustrative purposes only.

1. Load the ZFF flops wnn source and -destination string alignment information. Also
load the number of bytes left to process into a counter and the ZFF flops.

2. Fetch the first word of the source string. Align it in the barrel shifter using the
[ZMV] BDI directive. Fetch the first word of the destination string.

3. If there are less than 4 characters to move go to step 10.

4. Do a ZMSTRT ALU operation. I'f another read of the source string is not
necessary (indicated by ZBIT2), go to step 6.

5. Fetch the next source string, [ZMV] it, and perform a ZMF AST ALU operation to
produce an updated source string.

PRIME RESTRICTED

4150 Functional Specification
Page 286

Character and Decimal Instructions

6. Do a ZMSTRT ALU operation and write the result to the destination. Decrement
the number of characters left counter by (4 - destination alignment).

7. Fetch the next source string. [ZMV] it. Perform a ZMFAST ALU operation to
produce an updated source string.

8. lf there are 4 or less characters left to move got to step 15.

9. Write the updated source string to next destination string. Decrement the number
of characters remaining counter by 4. Go to step 7.

10. Perform a ZMSHRT ALU operation. If another read of the source string is not
necessary (indicated by ZBIT2), go to step 12.

11. Fetch the next source string, [ZMV] it, and perform a ZMF AST ALU operation to
produce an updated source string.

12. Perform a ZMSHRT ALU operation and write the results to the destination.

13. If the number of characters to be moved straddles a 32-bit boundary (indicated by
ZSTRD), fetch the next destination string. Otherwise end, go to the next
instruction.

14. Fetch the next source string, [ZMV] it, and perform a ZMFAST ALU operation to
produce an updated source string. Perform a ZMEXIT ALU operation and write
the results to memory. End, go to the next instruction.

15. Fetch the next (last) destination string. Perform a ZMEXIT ALU operation and
write the results to memory. End, go to the next instruction.

The step numbers shown in the outline of the algorithm are carried through the examples

that follow for reference.

ZMV Example, ~ Characters

The first example shows the execution flow of a ZMV instruction which moves three

characters from source address '1000 alignment 3 to destination address '2000 alignment 1.

I I I I -11 I I I I
Source '1000 I Z I R IV IM II D I L I P IQ I

1-1-1-1-11-1-1-1-1
1'

I

I I I I 11 I I I I
Dest ·2000 I H I t I $ I 1 I I ~ I & I • I ? I

1-1-1-1-11-1-1-1-1
1'

I

1. Load the ZFF flops and bytes remaining counter. ZFF

PRIME RESTRICTED

01 11 11. (ZFF{O:l}+

Execution Unit Detailed Description 4150 Funct. Spec.
Page 287

destination alignment, ZFF{2:3}+

Bytes remaining = 3.

source alignment, ZFF{4:5}+ number of bytes to move.)

2. Fetch first source string. This is the 32-bit word at address '1000, ZRVM. Align using

[ZMV] directive in barrel shifter. From Table 25-6, 8th line (ZFF{0:3} = 0111), ZRVM

becomes VMZR. Fetch first destination string. This is the 32-bit word at address •2000, #"$!.

3. There are less than 4 characters to move, go to step 10.

10. Perform a ZMSHRT ALU operation and check ZBIT2 to make sure we have enough data.

From Table 25-11, last line (ZFF{2:5}+ = 1111), ZBIT2 is set. Another read is necessary.

11. Fetch the next source string. This is the 32-bit word. at address '1002, DLPQ. Align

via [ZMV], producing· PQDL. (The ZFF bits haven't changed, so use the same line of Table

25-6.) Perform a ZMFAST ALU operation. From Table 25-17, 8th line (ZFF{0:3}+ = 0111),

the updated source string VMDL is produced.

12. Perform a ZMSHRT ALU operation. From Table 25-18, 8th line (ZFF{O:l}+ 01,

ZFF{4:5}+ = 11), The string #MDL is produced. Write this result to the destination.

Source '1000
I I I I 11 I I I I
I z IR Iv IM II DI LI p IQ I
1~1~1~1~11~1~1~1~1

t
I

- I 11
Dest '2000 I I IM ID I L II~ I & I • I ? I

l~l~l~I~· 11~1~1~1~1
t
I

13. There is no straddling of the 32-bit boundary, as indicated by ZSTRD (from Table 25-10,

8th line (ZFF{O:l}+ = 01, ZFF{4:5}+ = 11)). End, go to the next instruction.

ZMV Example, 2 Characters

This example moves 9 characters from source address '1000 alignment 2 to destination address

'2000 alignment 3. In the discussion, the-_ character is used as a place holder for the space

character in the string to be moved.

I 11 I I 11 I I
Source '1000 I X I X IR I . I I IP I A IR II RI 0 I WIX I

l~l~l~l~I l~l~l~l~I l~l~l~l~I
t

I

I I I 11 I I I 11 I I I I
Oest '2000 I I I I S I I C I U I M I B I I A I L I L I I

l~l~I~· 1~11~1~1~1~1 l~l~l~l~I

PRIME RESTRICTED

4150 Functional Specification
Page 288

Character and Decimal Instructions

t

I

1. Load the ZFF flops and bytes remallllD.g counter. ZFF = 11 10 01. (ZFF{0:1}+ =
destination alignment, ZFF{2:3}+ = source alignment, ZFF{4:5}+ = number of bytes to move.)

Bytes remaining = 9.

2. Fetch first source string. This is the 32-bit word at address '1000, XXR. . Align using

[ZMV] directive in barrel shifter. From Table 25-6, 15th line (ZFF{0:3} = 1110), XXR.

becomes .XXR
___ s.

Fetch first destination string. This is the 32-bit word at address '2000,

3. There are more than 4 characters to move.

4. Do a ZMSTRT ALU operation. From Table 25-16, 15th line (ZFF{0:3}+ = 1110), ZBIT2 is

not set. Another read of the source is not needed, go to step 6.

6. Do a ZMSTRT ALU operation and write the result to the destination. From Table 25-16,

last line (ZFF{O:l}+ = 11), the string ___ R is produced. Decrement the bytes remammg

counter by (4 - destination alignment). The destination alignment (ZFF{O:l}+) is 3, so

decrement the bytes remaining counter by l, leaving it equal to 8.

I I I I 11 I I I II I I I I
Source '1000 I X I X I R I . I I I P I A I R I I R I 0 I W I X I

l~l~l~l~I l~l~l~l~I l~l~l~l~I
t
I

I I I II I I I 11 I I I I
Dest '2000 I I I I R 11 C I U I M I B 11 A I L I L I I

l~l~l~l~I l~l~l~l~I l~l~l~l~I
t

I

7. Fetch the next source string. This is the 32-bit word at '1002, _PAR . Alignment via

[ZMV] (the ZFF bits haven't changed, still at line 15 of Table 25-6) produces R_PA .

Perform a ZMFAST ALU operation. From Table 25-17, line 15 (ZFF{0:3}+ = 1110), this

produces the updated source string ._PA .

8. There are more than 4 characters left to process.

9. Write the updated source string to the next destination string. This is the 32-bit word at

address '2002. Decrement the bytes remaining counter by 4, leaving it equal to 4.

I I 11 I 11 I
Source '1000 I X I X I R I I I I P I A I R I I R I 0 I W I X I

l~l~l~l~I 1~1~1~1~1 l~l~l~l~I
t
I

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 289

11 . I 11 I
Dest '2000 I I I I R 11 . I I P I A 11 A I L I L I I

l~l~l~l~I 1~1~1~1~11~1~1~1~1
t

I

7. Fetch the next source string. This is the 32-bit word at address '1004, ROWX .

Aligning_ it via [ZMV] . produces XROW Performing a ZMF AST ALU operation produces the

updated source string RROW .

8. There are 4 bytes or less remaining to process, go to step 15.

15. Fetch the next destination string. This is the 32-bit word at address '2004, ALL_ .

Perform a ZMEXIT ALU operation. From Table 25-19, 14th line (ZFF{O:l}+ = 11, ZFF{4:5}+

= 01), the string RROW is produced. Write this result to the destination string, the 32-bit

word at address '2004. End, go to the next instruction.

11 11 I
Source '1000 I X I X I R I I I I P I A I R I I R I 0 I W I X I

l~l~l~l~I l~l~l~l~I l~l~l~l~I
t

I

I I I I 11 I I I II I I I I
Dest '2000 I I I IRll I IPIAllRIRIOIWI

l~l~l~l~I l~l~l~l~I l~l~l~l~I
t

I

25. 7 .3 Decimal Instructions

The decimal instructions operate under V or I mode only. There are some similarities between

decimal instructions and floating point instructions, in that both the concept of ·a decimal

point. Decimal instructions operate on decimal ASCII characters or Binary Coded Decimal

(BCD) digits, and thus bear a Closer resemblance to character instructions.

Decimal instructions can be divided into three different groups:

1. decimal arithmetic instructions

2. decimal string instructions

3. decimal conversion instructions

Some examples of the deci~al arithmetic instructions:

Decimal Add (XAD)
Add the contents of two decimal fields and store the results in the
destination field.

PRIME RESTRICTED

4150 Functional Specification
Page 290

Decimal Multiply (XMP)

Character and Decimal Instructions

Multiply the contents of the source and destination fields and store the
result in the destination field.

Decimal Divide (XDV)
Divide the contents of the destination field by the contents of the source
field and store the result and the remainder in the destination field.

Some examples of decimal string instructions:

Decimal Move (XMV)
Move the contents of the source field into the destination field.

Decimal Compare (XCM)
Compare the contents of the source and destination field and set the
condition codes depending on the outcome of the compare.

Decimal Edit (XED)
Edit a decimal string under control of an edit subprogram.

Some examples of decimal conversion instructions:

Binary to Decimal Conversion (XBTD)
Convert a binary number contained in a register to a decimal number and
store the result in a memory location.

Decimal to Binary Conversion (XDTB)
Converts a decimal number in memory to a binary number and stores the
result in a register.

Decimal instructions need more information than can be contained in one opcode. To use these

instructions a control word must be provided in the L register (V mode), or register 2 (I

mode). The control word format is shown in the Table 25-20. Table 25-21 further defines

the control word fields.

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.

TABLE 25-20. Decimal Instruction Control Word Format

General Setup - VMODE:

EAFA 0,source_oddress
EAFA 1,destinotion_address
LDL controlword_address
operation

General Setup - IMODE:

EAFA 0,source_address
EAFA 1,destination_address
L 2,controlword_oddress
operation

Control Word Definition

Jalalalalalal0l0lblcl0ldlelflflfl lglglglglglglhlhlhlhlhlhlhlilil ii

0
1

0
6

0 1 1 1 1 1
9 0 2 3 4 6

H

a = source field length (digits)
b = source field negation flag

0 0 0
6 7

L

1 1 1
3 4 6

c = destination field negation flag (XAD, XMP, XDV, XCM only)
d = force sign positive flag (XAD, XMP, XDV, XMV)
e = round flag (XMV only)
f source field type (see below)
g = destination field length (digits)
h = scale differential (XAD, XMV, XCM only)

destination field type

PRIME RESTRICTED

Page 291

4150 Functional Specification Character and Decimal Instructions
Page 292

TABLE 25-21. Decimal Field Type Definitions

1
4 6

1
4 6

bit encoding

0 0 0 leading separate sign
0 0 trai I ing separate sign
0 packed decimal (requires odd II digits)

0 0 - leading embedded sign
0 trai I ing embedded sign

x x trai I ing sign
x 1 1 packed

x x - embedded sign

Embedded Sign Characters

Digit Positive Negative

0 0 + sp i - J
1 1 A J
2 2 B K
3 3 c L
4 4 D M
5 5 E N
6 6 F 0
7 7 G p

8 8 H Q

9 9 I R

25.7.3.1 The Decimal Instruction Game Plan

Some general comments about decimal instructions are in order before launching into a

description of the hardware. As mentioned above, decimal data may be stored in memory as

either ASCII characters or as BCD digits. The first format is known as "unpacked", while

the second is known as "packed". An ASCII digit is an 8-bit data element, and thus one

digit can fit in a byte. A BCD digit is a 4-bit data element, allowing two digits to fit in a

byte. The BCD digits are therefore more compact, more digits can be "packed" into a given

space. (Now that the two terms have been defined I will drop the quotation marks.)

Decimal data is almost always dealt with in packed format internally in the E unit.

Unpacked data is packed when it comes in. Packed data is unpacked, if necessary, before

storage.

Memory can be thought of as one long string· of continuous bytes, starting with byte 0

(address O) on the left and with increasing addresses proceeding to the right. Decimal

numbers are stored in memory with the most significant digit on the left, at the lower

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 293

address, and the lesser significant digits proceeding to the right at higher addresses. Character

strings are thought of in a similar fashion. Although no particular character has any more

significance than another (from a data processing point of view - spelling is out of the scope

of this discussion), we took the· first character in the string to be at the lowest address and

proceeded to the higher addresses in the course of our processing. Decimal numbers can't be

handled in this fashion. Decimal arithmetic instructions (XAD, for example) require that

operations proceed from least significant digit to most significant digit (or from the highest

address down to the lowest address). In short, character strings are processed from right to

left Gn English, if you will), while decimal strings are processed from left to right (in

Hebrew). (As of this writing there are no instructions that process data from top to bottom,

in Chinese.) Decimal strings must be processed right to left. There is no reason character

strings· couldn't be processed right to left also. However, in the English speaking world,

processing character strings from right to left would is counterintuitive. Oh, to be in Israel,

now that decimal instructions are here.

The tables for decimal string processing are frequently the mirror images of those for

character string processing because of the Hebrew nature of the job. The most important

difference is that the alignment information given for decimal strings refers to the alignment

of the least significant digit, not the most significant digit.

As with the character instructions discussed earlier, the hardware pieces necessary to process

decimal instructions will be described first. After this, an illustrative example will be given

to show how all the pieces play together.

25. 7 .3.2 ZMV PROMs

The ZMV PROMs .create the decimal jump conditions. Like the character jump conditions

ZBITl and ZBIT2, the decimal jump conditions are affected by the ALU mode which appears

in the instruction before the jump. XBIT{1:2}+ are determined in a similar fashion. Tables

25-22, 25-23, 25-24, and 25-25 show what XBIT{1:2}+ are for each decimal mode.

• For ADJUST, the ZMV PROMs look at the destination alignment.

• For OBTAIN, the ZMV PROMs look at the destination alignment and number of
bits to be processed.

• For UNLPCK, the ZMV PROMs look at the source and destination alignment.

• For UNLUNP, the ZMV PROMs look at the source alignment.

PRIME RESTRICTED

4150 Functional Specification Character and Decimal Instructions
Page 294

TABLE 25-22. ADJUST Decimal Jump Conditions

Mode = 00

XFF(0:1) I DST II XBIT(1:2)
1--11

0 0 I 4XXX 11 0 0
0 1 I 34XX 11 0 1
1 0 I 234X 11 1 0
1 1 I 1234 11 1 1

TABLE 25-23. OBTAIN Decimal Jump Conditions

Mode = 01

XFF
0 1 4 5 DST BYTES

0 0 0 0 4XXX 0
0 0 0 1 4XXX 1
0 0 1 0 4XXX 2
0 0 1 1 4XXX 3

0 1 0 0 34XX 0
0 1 0 1 34XX 1
0 1 1 0 34XX 2
0 1 1 1 34XX 3

XBIT(1 :2)

0 0
0 0
1 1
1 1

0 0
1 1
0 0
1 1

1 0 0 0 234X 0 0 0
1 0 0 1 234X 1 1 0

0 1 0 234X 2 1 1
0 1 1 234X 3 0 0

1 1 0 0 1234 0 0 0
1 1 0 1 1234 1 0 1
1 1 1 0 1234 2 1 0
1 1 1 1 1234 3 1 1

PRIME RESTRICTED

default
default

default

Execution Unit Detailed Description 4150 FuncL Spec.
Page 295

TABLE 25-24. UNLPCK Decimal Jump Conditions

Mode = 10

Alignment I
XFF(0:3) DST SRC I XBIT(1 :2)

I
0 0 0 0 4XXX 4XXX I 0 0
0 0 0 1 4XXX 34XX I 1 1
0 0 1 0 4XXX 234X I 1 0
0 0 1 1 4XXX 1234 I 0 1

I
0 1 0 0 34XX 4XXX I 0 1
0 1 0 1 34XX 34XX I 0 0
0 1 1 0 34XX 234X I 1 1
0 1 1 1 34XX 1234 I 1 0

11
0 0 0 234X 4XXX II 1 0
0 0 1 234X 34XX 11 0 1

1 0 1 0 234X 234X II 0 0
1 0 1 1 234X 1234 11 1 1

11
1 1 '0 0 1234 4XXX 11 1 1
1 1 0 1 1234 34XX 11 1 0
1 1 1 0 1234 234X 11 0 1
1 1 1 1 1234 1234 11 0 0

TABLE 25-25. UNLUNP Decimal Jump Conditions

Mode = 11

XFF(2:3) I SRC II XBIT(1 :2)
1--11

0 0 I 4XXX 11 0 0
0 1 I 34XX 11 0 1
1 0 I 234X 11 1 0
1 1 I 1234 11 1 1

25. 7 .3.3 Pack PRO Ms

The Pack PROMs take data off of BBH and BBL, convert it from an unpacked decimal

format to a packed decimal format, and input it on the A leg of the high side ALU. These

input are the JUNK inputs to the PEALU chips. This transformation of 4 decimal digits in

32-bits to 4 decimal digits in 16-bits is done because it is much easier to do arithmetic

operations and string manipulation in packed format.

No information is lost in the packing. The bits being thrown away are the bits which make·

a BCD digit an ASCII digit. These bits are easily recreated.

The Pack PROMs also check the sign of an unpacked decimal string if IAC SIGN is used.

The PROM looks at RDEOl + to determine if the sign is in the upper or lower byte of BBH.

PRIME RESTRICTED

4150 Functional Specification
Page 296

Character and Decimal Instructions

If RDEOl+ is inactive, the sign is in the high byte, and the pack PROMs will put a hex 2

on the most significant nibble if the sign is negative. If RDEOl+ is active, the sign is in the

lower byte, and the pack PROMs will put a hex 2 on the second nibble if the sign is

negative.

NOTE: There can never be a cache miss during this operation. To insure this, the microcode

accesses cache before it uses the Pack PROMs.

25.7.3.4 Decimal Corrector PROMs - DALU

After packing is accomplished, the microcode will typically put the data into an excess-6

format. This means that a hex 6 will be added to each of the 4-bit decimal digits. Again,

this is an aid in arithmetic operations. If two decimal digits are added together with one of

them in excess-6 format, any carry will happen automatically. This eliminates messy decimal­

to-binary, binary-to-decimal conversions in· the arithmetic algorithms. For example:

source
destination

Decimal Operation

ASCII 8
Digits

8081 8089
8080 8085

109
+ 5

114

Microcode
PACK Excess-6 DALU
PROMs Operation PROMS

0109 676F
0005 0005

6774 0114

The DALU PROMs work in conjunction with the BDI during an XADP or XADU BDI mode.

The PROMs are used to subtract out the excess 6 which the decimal algorithm placed into the

packed data. If the destination is unpacked, the microcode uses XADU. The High and Low

side BDI chips will automatically unpack the data in this mode. For a packed destination

XADP is used, which does not involve the BDI chips. Tables 25-26 and 25-27 show the

inputs to the PROMs, outputs of the PROMs, and, in the case of XADU, the output of the

BDI chip.

The DALU PROMs also are used to create DECM:xNEQ-, which is a possible link bit value.

(X in this case can be l, 2, 3, or 4, depending on the nibble which was 0.) The four signals

are NAND'ed together to form the signal DECMNEQ+, which is used for zero tracking so that

the microcode can tell if it skipped over zeros.

generated.

Table 25-28 shows how this signal is

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 297

TABLE 25-26. XADP BDI mode

ALH(01 :04) OECM(01:04)
I ALH(05:08) DECM(05:08)
I ALH(09: 12) DECM(09: 12)

ALHCOUT+ I ALH(13:16) DECM(13: 16)

I
1 I Q Q' ••
0 I 0 A
0 I 1 B
0 I 2 c
0 I 3 D
0 I 4 E
0 I 5 f
0 I 6 0
0 I 7 1
e I 8 2
0 I 9 3
e I A 4
e I B 5
e I c 6
e I D 7
0 I E 8
0 I f 9

•• Note: Q represents any number

TABLE 25-27. XADU BDI mode

ALH(01 :04) DECM{01:04) BDIH(01:08)
ALH(05:08) DECM(05:08) BDIH{09: 16)
ALH(09: 12) DECM(09: 12) BDIL(01:08)

ALHCOUT+ ALH{13:16) DECM(13:16) BDIL(09: 16)

1 Q Q BQ ••
0 0 A BA
0 1 B BB
0 2 c BC
0 3 D BO
0 4 E BE
0 5 f Bf
0 6 0 B0
0 7 1 B1
0 8 2 B2
0 9 3 BJ
0 A- 4 B4
0 B 5 BS
0 c I 6 B6
e D I 7 B1
0 E 11 8 BS
0 f 11 9 B9

•• Note: Q represents any number.

The hex B in the high nibble in ASCII 8
wi I I be a hex 3 if you are in ASCII 7 mode

PRIME RESTRICTED

4150 Functional Specification Character and Decimal Instructions
Page 298

TABLE 25-28. DECMxNEQ- Link Bit Input

XBIT(1:2) I LINK I ALHCOUT ALH(01:16) DECMxNEQ-
--1

00 0 I x xx xx 0
00 I 0 6666
00 I 0 <>6666 0
00 I 1 0000 1
00 I 1 <>0000 0

01 0 x xxxx 0
01 0 XXX6 1
01 0 <>XXX6 0
01 1 XXX0 1
01 1 <>XXX0 0

10 0 x xx xx 0
10 0 XX66
10 0 <>XX66 0
10 XX00 1
10 1 <>XX00 0

--1
11 0 I x xx xx 0
11 I 0 X666 1
1 1 I 0 <>X666 0
11 I X000 1
1 1 I <>X000 0

25.7.3.5 XMODE PROMs

These PROMs are used to control the decimal ALU modes.

The ALU modes associated with decimal are:

MODE RCMALU(06:08)

ADJUST 0 0
OBTAIN 0 1
UNLPCK 1 0
UNLUNP 1 1

ADJUST is identical to the floating point ADJUST discussed earlier. It is used to align the

decimal points of the operands if the scale differential is nonzero.

OBTAIN is the decimal version of the character ALU mode ZMF AST.

UNLPCK and UNLUNP are the decimal versions of the character ALU mode ZMSHRT.

UNLPCK operates on packed data, while UNLUNP operates on unpacked data.

These ALU modes behave differently for different XFF bits. Tables 25-32, 25-31, 25-29, and

25-30 illustrate the operation of these modes. The "/" character is used to differentiate a

nibble operation within an 8-bit PEALU slice from a byte operation between two PEALU

slices, which have been designated by the ":" character.

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct.. Spec.
Page 299

TABLE 25-29. UNLPCK ALU Mode, Unload Packed

XFF B A I ALU Modes I
0 1 4 5 DST SRC BYTES I ALH(01:08) ALH(09:16)1 Result

I
0 0 0 0 6789 1234 0 I TA TA 1234
0 0 0 1 6789 1234 1 I TA/TB TB 1789
0 0 1 0 6789 1234 2 I TA/TB 'TB 1789
0 0 1 1 6789 1234 3 I TA/TB TB 1789

I
0 0 0 6789 1234 0 I TA TA 1234
0 0 1 6789 1234 1 I TB/TA TB 6289
0 1 1 0 6789 1234 2 I TA/TA TB 1289
0 1 1 1 6789 1234· 3 I TA TB 1289

I
0 0 0 6789 1234 0 , 11 TA TA 1234
0 0 1 6789 1234 1 11 TB TA/TB 6739
0 1 0 6789 1234 2 11 TB/TA TA/TB 6239

1 0 1 1 6789 1234 3 11 TA TA/TB 1239
11

1 1 0 0 6789 1234 0 11 TA TA 1234
1 0 1 6789 1234 1 11 TB TB/TA 6784
1 1 0 6789 1234 2 11 TB TA 6734

1 1 1 1 6789 1234 3 11 TB/TA TA 6234

TABLE 25-30. UNLUNP ALU Mode, U.nload Unpacked

XFF B A
0 1 4 5 DST SRC BYTES I ALU Mode Result

I
0 0 0 0 6789 1234 0 I (TA,TA) 1234
0 0 0 1 6789 1234 1 I (TA:TB,TB) 1789
0 0 1 0 6789 1234 2 I (TA:TB,TB) 1789
0 0 1 1 6789 1234 3 I (TA:TB,TB) 1789

I
0 1 0 0 6789 1234 0 I (TA,TA) 1234
0 1 0 1 6789 1234 1 I (TB:TA,TB) 6289
0 1 1 0 6789 1234 2 I (TA:TA,TB) 1289
0 1 1 1 6789 1234 3 I (TA,TB) 1289

I
1 0 0 0 6789 1234 0 I (TA,TA) 1234
1 0 0 1 6789 1234 1 I (TB,TA:TB) 6739

0 1 0 6789 1234 2 11 (TB:TA,TA:TB) 6239
0 1 1 6789 1234 3 11 (TA,TA:TB) 1239

11
1 1 0 0 6789 1234 0 I 1-(TA,TA) 1234
1 1 0 1 6789 1234 1 I I (TB,TB:TA) 6784
1 1 1 0 6789 1234 2 I I (TB.TA) 6734
1 1 1 1 6789 1234 3 I I (TB:TA,TA) 6234

PRIME RESTRICTED

4150 Functional Specification
Page 300

Character and Decimal Instructions

TABLE 25-31. OBTAIN ALU Mode

A B ALH I
XFF(0:3) SRC SRC (01:08) (09:16)1 Result

0 0 0 0 2345 6789 TB TB 6789
0 0 0 1 2345 6789 TA/TB TB 2789
0 0 1 0 2345 6789 TA TB 2389
0 0 1 1 2345 6789 TA TA/TB 2349

0 0 0 2345 6789 TA TA/TB 2349
0 0 1 2345 6789 TB TB 6789
0 1 0 2345 6789 TA/TB TB 2789
0 1 1 2345 6789 TA TB 2389

1 0 0 0 2345 6789 TA TB 2389
1 0 0 1 2345 6789 TA TA/TB 2349

0 1 0 2345 6789 TB TB 6789
0 1 1 2345 6789 TA/TB TB 2789

1 1 0 0 2345 6789 TA/TB TB 2789
1 1 0 1 2345 6789 TA TB 2389
1 1 1 0 2345 6789 TA TA/TB 2349
1 1 1 1 2345 6789 TB TB 6789

TABLE 25-32. ADJUST ALU Mode

FALL00+ 11 ALU Mode
II

0 11 (TB.TB.TB)
1 I I (TA, TA, TA)

25.7.3.6 Binary to Decimal PROMs - BTD

There is one Binary to Decimal PROM, which doubles as a decimal to binary PROM (see next

section). It receives ALH(09:1S) and a signal which tells it whether a decimal to binary

conversion is being done. (If you are not doing a decimal to binary conversion it is assumed

that you are doing a binary to decimal conversion.)

During a binary to decimal conversion the PROM takes the 7-bit input and converts it two

BCD digits. These digits are passed through the H PBDI slice for storage.

25.7.3.7 Decimal to Binary PROMs - DTB

The two Decimal to Binary PROMs work in conjunction with the BTD PROM to convert a

BCD number in the range 0 to 9999 into it's binary equivalent. The DTB PROMs work on

the 2 most significant digits of the number. Therefore, they can be thought of as converting

multiples of 100 from 100 to 9900. The outputs are passed through the E · PBDI slice for

storage. The conversion of 0 to 99 is done in the BTD PROM when the signal FDTBSIG+ is

active. The two pieces of the conversion are added together to complete the conversion.

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 301

25.7.3.8 Introduction To Decimal Examples

The general execution of a decimal arithmetic instruction goes something like this:

1. Fetch the source and destination operands. Load the XFF flops with the alignment
information. Figure out the signs of the operan_ds based on the data type and
compute the sign of the result. If the scale differential is nonzero, shorten the
appropriate operand and update the XFF flops.

2. Fetch the source and/or destination operands and pack them if necessary.

3. Add excess 6 to one operand.

4. Do the operation.

5. Remove the excess 6 from the results. Unpack the result if necessary.

6. Store the result.

7. If more digits remain to be processed, got to step 2, Else end, go to next
instruction.

Looks pretty simple, right ?

A few comments about some of the operations just mentioned:

Pack

Excess 6

Unpack

If data is not packed in memory, it must be packed as it is brought into
the E unit. Packing takes 4 digits per 32 bits and crams (packs) it into 4
digits per 16 bits. No information is lost during this operation because the
bits being thrown away are the bits that make a digit an ASOI character.

Microcode add 6 to every packed digit in one operand during decimal
arithmetic instructions. This makes decimal carry outs happen naturally in
the hexadecimal world of the E unit. Obviously, the excess 6 must be
removed before the result can be stored.

Unpacking is the inverse of packing. Four BCD digits per 16 bits are
converted into 4 ASOI characters per 32 bits. This is done by the barrel
shifter, and can be done in the same microstep as excess 6 removal.

One other difficulty encountered in decimal instructions is the concept of a scale differential.

The System Architecture Reference Guide claims decimal instruction operate only on decimal

integers. The scale differential introduces a decimal point, which throws that claim out the

window.

To illustrate the concept, consider· two decimal numbers in memory, 9

suppose the scale differential of the two is equal to 1. This means that

is really 2.9, not 29.

9
+ 29

9
+ 2.9

PRIME RESTRICTED

and 29. Further·

the second number

4150 Functional Specification
Page 302

38

Character and Decimal Instructions

11.9

When the scale differential is nonzero, the longer operand is "shortened" to align the decimal

points. (This is similar to adjusting in floating point.) If the scale differential is negative,

there are more destination digits than source digits. The destination is "shortened". If the

scale differential is positive, there are more source digits than destination digits. The source is

"shortened". When shortening the destination, a check is done to see if any nonzero digits are

skipped over. If this is the case, the condition codes will not be set to EQ when exiting the

microcode routine, causing a decimal exception.

25.7.3.9 Decimal Arithmetic Example - XAD

The sign of each operand is controlled by the two sign control fields of the control word, so

there is no need for a decimal subtract instruction.

subtract.

XAD covers both decimal add and

The scale differential can be considered to be equivalent to moving the decimal point: left if

negative, right if positive. If there is a scale differential then the "shortening" of the source

or destination is done first. For addition operations you shorten the source by shortening the

source length register, updating the pointer to the least significant digit of the source, and

latching XFF{2:3}+ with the new alignment information. For subtraction you check to see if

there will be an initial borrow before you shorten the source. A borrow occurs when you

skip over a nonzero digit while shortening the source. For example:

destination
source
scale differential
effective source

Borrow Non-borrow

9
20

1
2.0

9

9
31

1
3. 1

- 2.0 no significant figures lost

Prime Decimal Answer 7

9
- 3.1 need a borrow for the 1

5.9 "real" result
Prime Decimal Answer 5 destination has only 1 digit

When the subtract is done borrowing, it updates the source length register, the pointer to the

least significant digit, and XFF{2:3}+.

To shorten the destination you merely update the destination least significant digit pointer.

The destination length and destination alignment are unchanged. Remember, if the destination

is being shortened, microcode keeps track of nonzero digits which may be skipped.

PRIME RESTRICTED

Execution Unit Detailed Description 4150 Funct. Spec.
Page 303

Now that step 1 of the general decimal algorithm has been elaborated on, here is the example.

XAD Example

In this example we will be adding two 5 digit numbers as shown:

12345
+ 67890

80235

The numbers are given in trailing separate sign format at the addresses shown. Each number

has a length of 6, and the scale differential is 0.

I II 11
Source '1000 I 1 I 2 I 3 I 4 I I 5 I+ I 7 I 3 II Alignment= 1

l~l~l~l~I 1~1~1~1~11
t

I

I I I I II I I II
Dest ·2000 I 9 I s I 1 I s I I 9 I 0 I+ I 2 I I Alignment= 2

l~l~l~l~I l~l~l~l~I I
t

I

1. The XFF flops are loaded to facilitate the extraction of the sign information. XFF{O:l}+ =

10 (destination alignment), XFF{2:3}+ = 01 (source alignment), and XFF{4:5}+ = 10 (length).

Fetching the source and destination operands and extracting the separate sign character shows

that both operands are positive. An addition is to be done. Since two positive numbers are

being added the result will be positive. The destination sign will not change. The two sign

digits don't have to be added together, so we can move the alignment pointers to point to the

least significant digits. This requires an update of the XFF flops. XFF = 01 00 10.

The scale differential is zero, so no further update of the source or destination pointers is

needed.

I I I I II I - I I 11
Source '1000 I 1 I 2 I 3 I 4 I I 5 I + I 7 I 3 I I Alignment = 0

1~1~1~1~11~1~1~1~1 I
t
I

~~~~~-,..---·~~~~~~ 

I I . II I I II 
Dest ·2000 I 9 I s I 7 I s 11 9 I 0 I+ I 2 I I Alignment= 1 

1~1~1~1~11~1~1..---1~1 I 
t 
I 

2. Fetch the source string at '1002, 5+ 73. Pack it to produce the string 5B73. (The ASCII 

PRIME RESTRICTED 



4150 Functional Specification 
Page 304 

Character and Decimal Instructions 

+ character becomes a B when packed.) Fetch the destination string at '2002, 90+2. Pack it to 

produce the string 90B2. Do an UNLPCK ALU operation to see whether the source and 

destination have equal alignment. If so, XBIT{1:2}+ will both be 0. From Table 25-24, 5th 

line, XBIT{1:2}+ = 01 in this example. This means the source least significant digit is one 

digit to the left of the destination least significant digit. (XBIT{1:2}+ is a measure of the 

difference between the two least significant digits, · positive for source to the left, negative for · 

source to the right.) Since the source is aligned to the left of the destination, more source 

digits are needed. Fetch the next source string from address '1000, 1234. Perform an 

OBTAIN ALU operation with the old source on the A leg and the new source on the B leg. 

From Table 25-31, 5th line, the updated source string is 5B74. We already know the source 

is aligned 1 digit to the left of the destination, so rotate the updated source string right 1 

digit, producing the string 45B7. The source digit s are now aligned with the destination 

digits. 

There may be digits in our strings which aren't to be added together. To handle this, 

perform an UNLPCK ALU operation with the destination string, 90B2, on the B leg, and all 

zeros on the A leg. From Table 25-29, 7th line, this produces the updated destination string 

9000. 

3. Add excess 6 to each nibble of the updated source string. This produces the string ABlD. 

4. Add the two updated strings together. Remember that this addition produced a carry out 

for the next iteration. 

AB1D 
+ 9000 

13810 

5. Remove the excess 6 from the result. As shown by Table 25-26 or 25-27, only nibbles 

which don't produce carry outs need the excess 6 removed. In this case, the three least 

significant nibbles didn't produce a carry, while the most significant nibble did. The excess 6 

removed result is therefore 35B7. Unpacking this .result produces the ASCII characters 35+7. 

(Both operations can be done at once by using Table 25-27.) 

6. Perform an U~TLUNP ALU operation with the result on the A leg and the original 

destination string, 90+2, on the B leg. From Table 25-30, 7th line, this produces the string of 

ASCII characters 35+2. Write this result to the destination address '2002. 

I I I 11 I I 11 
Source '1000 I 1 l2l3l4llSl+l713ll Alignment = 0 

1-1-1-1-11-1-1-1-11 
t 
I 

11 I 11 
Dest '2000 9 6 7 8 11 3 5 I+ 2 11 Alignment = 1 

PRIME RESTRICTED 



Execution Unit Detailed Description 4150 Funct. Spec. 
Page 305 

1-1-1-1-11-1-1-1-11 
t 
I 

7. More digits remain to be processed. XFF{4:5}+ are only important during the first 

iteration of the loop, and must be = 00 on all subseql.l-ent iterations. Clear them and go· to 

step 2. 

2. The source string has been exhausted, the entire thing has already been fetched. Some of 

the left over digits may have already been used. To remove them, perform an OBT AlN ALU 

operation with the old source string, 1234, on the A leg, and all zeros on the B leg. This 

produces the updated source string 1230 (from Table 25-31, 5th line). Recalling from last 

time through the loop, this needs to be rotated right 1 digit, producing 0123. Fetch the ne1 

destination string from address '2000, 9678. 

3. -Add excess 6 to each nibble of the updated source string, producing 6789. 

4. Add the strings together with the carry out of the last iteration. 

1 <--- Carry from last iteration 
6789 

+ 9678 

FE02 

5. Remove the excess 6 from the result and unpack it using Table 25-27. This produces the 

ASCII character string 9802. 

6. Write the result to destination address '2000. 

I I I I 11 I I II 
source ·1000 ·I 1 I 2 I 3 I 4 11 s I+ I 7 I 3 I I Alignment= 0 

1-1-1-1-11-1-1-1-1 I 
t 
I 

I II 11 
Dest ·2000 I 9 I 8 I 0 I 2 11 3 I s I+ I 2 I I Alignment m 1 

1_1_1_1_11_1_1_1_11 -, 
I 

7. No more digits to process. go to next instruction. 

25.7.3.10 Decimal Conversion Example - XBTD 

In the simplest case of 16-bit conversions, we take the 16-bit binary number and divide it by 

10000 to get the most significant decimal digit. Then the remainder will be divided by 100 

to get two 7-bit pieces which correspond to two decimal digits each. Therefore, from a 16-bit 

binary number you end up with 5 BCD digits. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 306 

Character and Decimal Instructions 

The first step is to divide the 16-bit number by a normalized 10000 and save the 2 bits of 

information which define the most significant decimal digit. (In a signed 16-bit number the 

maximum number is a hex 7FFF. This corresponds to a decimal 32767. The most significant 

digit is a 3, which takes only 2 bits.) 

The 14-bit remainder from the first division is divided by. 100. The 7-bit remainder from 

this operation is sent through the BTD PROMs by using the BTD ALU operation. These bits 

are stored in a scratch register. The 7-bit quotient is then sent through the BTD PROMs and 

put in a scratch register. The first 8 bits are added to the second 8 bits to produce the lowest 

4 BCD digits. 

For larger conversions (32 or 64-bits), at this point in each iteration of the loop you perform 

an OBTAIN ALU operation to mask/merge your new 4 digits with the last 4 digits that you 

created. 

When you have completed all of the digits except the last one, you can mask/merge this digit 

directly since it will be less than 9, and therefore already is a BCD digit. 

25.7.3.11 PMA Level Restrictions 

Decimal Multiply XMP 

For a Decimal Multiply, the user should always insure that there are at least (sourcelength) 

leading zeroes in the destination field before executing an XMP. 

Decimal Divide XDV 

The decimal divide instruction (XDV) requires both source and destination fields to be trailing 

embedded sign types. The destination field must contain at least (sourcelength) leading zeroes 

in order to insure room for both quotient and remainder. The quotient is returned in 

character positions 1 through (destlength-sourcelength) and the remainder in positions 

(destlength-sourcelength+l) through (destlength). Both quotient and remainder are trailing 

embedded signed fields. No overflow checking is done on this instruction. 

25.8 System Timers 

The E unit contains two system timers which keep track of process and wall clock time. 

They are called the Phantom Interrupt Code (PIC) timer and the ·microsecond timer. Both 

timers are clocked by a 1 MHZ clock, and cause fetch cycle traps when they overflow. The 

PIC timer is a 12-bit counter which overflows once every 4 milliseconds, while the 

microsecond timer is a 10-bit counter which overflows once every 1.024 milliseconds. 

PRIME RESTRICTED 



Execution Unit Detailed Description 4150 Funct. Spec. 
Page 307 

25.9 Trap Logic 

There are two types of E units traps which may occur, fetch cycle traps and non-fetch cycle 

traps. Fetch cycle traps are traps· that can occur only during a fetch cycle (the microsequencer 

is executmg a RTN to fetch), while non-fetch cycle traps occur anytime. 

There are times when we want to prevent traps from 'interrupting an instruction. T.raps can 

be turned completely on or off under microCode control by the IACs ENTRAPS and 

DISTRAPS. DMx traps may be prevented during certain operations by the TR microcode field. 

Other traps may be turned off individually by software via the modals register. 

25.9.1 Fetch Cycle Traps 

Fetch cycle traps can only cause the microsequencer to vector at the boundary between , 

instructions. The following are the possible fetch cycle traps: 

ECCC 

MINK TRAP 

ISSOFTPE 

EOI 

EX TINT 

PIC 

TIMER 

DNETPE 

Error Correction Code Correctable, MC detected a correctable error du1 ... ;1b e:i 

memory read operation 

Diagnostic processor request 

S unit soft cache parity error 

End Of Instruction 

EXTernal INTerrupt, requested by I/O controllers 

PIC timer overflow condition 

microsecond timer overflow condition 

decode net parity error 

PRIME RESTRICTED 



4150 Functional Specification 
Page 308 

25.9.2 Non-Fetch Cycle Traps 

Trap Logic 

Non fetch cycle traps allow the microsequencer to vector out of the middle of a PMA 

instruction and handle an event, and then resume execution of that instruction. The following 

are the possible non-fetch cycle traps: 

ECCU 

RCCPE 

MISMOD 

DMx 

MCHK 

ADRTRW 

BCGAFFE 

RXM 

Error Correction Code Uncorrectable 

RCC Parity Error, control store RAM parity error 

MISsing memory MODule 

Direct Memory transfer, requested by 1/0 controllers 

Machine CHecK, fatal parity error 

ADdRess TRap Write, sent from the S unit. 

Branch Cache GAFFE 

Restricted PMA instruction 

25.10 Parity Reporting 

The E unit checks parity on all operands entering the ALU unless specifically told not t: by 

microcode. It also collects the parity error reporting signals of the other functional units and 

combines them into one signal, MCHK+. (MCHK+ is clocked at CS7+ to report errors which 

occurred during the previous stage 8. It is displayed 1 beat later on the PDA.) If the 

MODALS are set to allow the reporting to software of such errors, the appropriate trap 

signals are sent to the PCU. 

Odd parity is assumed over each byte of data. The selected data and its associated parity bits 

are sent to the ALU's B leg inputs, while the data only is sent to the A leg inputs. The 

ALU generates a parity error signal if it detects a B leg parity error. It also generates a a 

parity bit based on the A leg input. These generated parity bits are compared against the 

original parity bits. If there is a difference, an error signal is generated. 

The E unit sends a code to the microcode trap handler to report on errors it detected. Table 

25-33 shows the code and its interpretation. The E unit is only prepared to handle the first 

parity error. If two errors occur simultaneously or if a second error occurs, the parity code 

will indicate which error occurred first. In the case of two simultaneous errors, the error 

code is prioritized from top to bottom of Table 25-33. For example, If a BBH left error and 

a BBH right error occurred simultaneously, the error code would indicate a BBH left error. 

PRIME RESTRICTED 



Execution Unit Detailed Description 4150 Funct. Spec. 

TABLE 25-33. E Unit Parity Error Codes 

Code Interpretation 

0 No error 
1 BBH left error-
2 BBH right error 
3 BBL left error 
4 BBL right error 
5 BAH error 
6 BAL error 
7 BAE error 

25.11 VLSI Usage 

The ALU is implemented with seven PEALU slices. Each VLSI slice defines 

boundary, so the ALU data path is 56 bits wide. The regular data path uses 4[ 

and the rest of the data path is used for multiplies and divides exclusively. 

Page 309 

The barrel shifter implements the 48 bit data path using three PBDI slices, with 16 bits per 

slice. 

The addressing of the register file is done by one PRF ADR VLSI. All timing, as to when the 

addressing switches between source and destination modes, is done with external logic. 

25.12 Critical Paths 

The critical paths on the E unit include: 

• Generation of jump conditions for the CS, 1 beat 

• Partial product generation during multiply operations, 1 beat 

• Partial quotient generation during divide operations, 1 beat 

• Rounding operations, 1 beat 

• Register file write cycle, 1 beat 

Some of the jump conditions in the E unit don't meet the 1 beat requirement. These jump 

conditions (see list) require a TX= 1 in the microcode step prior to branching. 

The first three jump conditions made the 1 beat limit for logical ALU operations, but didn't· 

mae it for arithmetic operations. The time shown are the logical times. 

Path Time (ns} 

CS75+A -> FALH02- 60.5 

PRIME RESTRICTED 



4150 Functional Specification 
Page 310 

CS75+A -> FALH05+ 
TRI+A -> FALEEc+ 

61.0 
56.5 

Critical Paths 

The following 35 jump conditions need the additional TX= 1. The times shown are for 

arithmetic ALU operations. 

Path Time (ns) Comment 

CS75+A -> FALHOV+ 86.5 
CS75+A -> F24PWROF2+, FMIN1+, 

or F48PWROF2- 82.0 
CS75+A -> FALLENE+ 78.0 
CS75+A -> FAL32Eo+ 79.0 
CS75+A -> FAL48Ec+ 83.0 
CS75+A -> FAL32NE+ 79.0 
CS75+A -> FALLNE+ 73.0 
CS75+A -> FALL LE+ 80.0 
CS75+A -> FBA48Ec+ 67.5 
CS75+A -> FALL00+ or FALL00+T 83.5 
CS75+A -> FALLOV+ 80.5 
CS75+A -> F8IEXTRAP- 105.5 1.5 beat path 
CS75+A -> FALLHBZ- 66.0 
CS75+A -> FALL02+ 67.5 
CS75+A -> FA.LL 16+ 63.5 
CS75+A -> FALH04+ 75.0 
CS75+A -> FALH02+T 68.0 
CS75+A -> FALH07+ 74.0 
CS75+A -> FALH08+ 77.0 
CS75+A -> FALH15+ 73.0 
CS75+A -> FALH16+ 73.5 
CS75+A -> FALH14+ 73.0 
CS75+A -> FALH13+ 75.0 
CS75+A -> FALH00+T or FALHLT+ 75.0 
CS75+A -> FALHNE+ or FALHNE+T 76.0 
CS75+A -> FALHEc+ 79.5 
CS75+A -> FALHGT+ 84.0 
CS75+A -> FALHLE+ 86.3 
CS75+A -> FALHGE+ 74.3 
CS75+A -> FALHCOUT+T 83.9 

25.13 9755 Comparisons 

The 9955 E unit logic existed on two boards- the El and E2. Due to the use of VLSis the 

logic fit on the E board only on the 4050. The 9755 did not have a barrel shifter. It did 

however have some muxing hardware for performing two, three or four bit shifts in one 

beat. The barrel shifter is essentially a large set of muxes capable of performing arbitrary 

number of shifts/rotates on the 48 bit data path. This makes it useful for normalizes and 

adjusts in floating point operations. 

The ALUs in the 4150 have multiply and divide logic incorporated in them. This sets them 

apart from the ALUs of the 9755. Other than this difference, all other features are the same. 

The PIC timer in the 9755 was implemented with BCD counters, while the 4150's PIC is 

PRIME RESTRICTED 



Execution Unit Detailed Description 4150 Funct. Spec. 
Page 311 

implemented using binary counters. This difference required the addition of an initial.i7,ation 

circuit to keep the PIC overflows at the desired · 1 per 4 millisecond rate. 

The 4150 uses a 56-bit ALU data path to support multiplication. The 9755 had a 48-bit data 

path. 

The 9755 used a non-performing divide algorithm. The 4150 uses a non-restoring divide 

algorithm. 

The 9755 implemented a 2-bit Booth's multiply. 

multiply. 

The 4150 implements a 3-bit Booth's 

Floating point out-of-range detection is implemented in the PBDI on the 4150, and is 

implemented somewhat differently than the 9755's. 

The 9755 had one RS, while the 4150 has three. 

25.14 Partitioning 

All E unit functions are implemented on the E board, which is discussed in Chapter 32. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 312 

PRIME RESTRICTED 



Memory Controller Unit Detailed Description 4150 Funct. Spec. 
Page 313 

26. Memory Controller Unit Detailed Description 

26.1 Overview 

The MC unit is responsible for the following functions: 

• Writing, reading, and refreshing the memory array boards. 

• Generating Error Correcting Code (ECC) check bits on memory writes and checking 
the returning data for ECC errors during memory reads 

• Checking BD parity on data coming into the MC during CPU write operations and 
generating good parity on data returning from memory during memory reads 

• Speeding up main memory write operations from the CPU's viewpoint through the 
use of a Write Buffer (WB). 

The MC receives 26 Bus B (BB) bits from the Storage Management (S) unit which it uses as 

memory address bits. It both drives and receives all of Bus D (BD), which is used as data 

to/from memory or status bits sent from the MC to the rest of the CPU. 

The main sections of the MC are: 

• Address 

• Data 

• Write Buffer 

• Memory Timer 

• Refresh 

• Status & Error Reporting 

• Control 

The basic goal behind the MC is to make main memory read and write operations occur as 

quickly as possible from the CPU's viewpoint. The MC contains a Write Buffer (WB) to 

assist in achieving this goal. It consists of 2 basic parts: 

• The address portion of the WB holds addresses sent from the S unit for main 
memory writes and reads. It also contains status bits corresponding to data being 
transferred to/from memory. It attempts to smooth out memory operations by 
combining 16 and 32-bit memory write operations into 64-bit operations to reduce 
the number of memory accesses. By combining memory operations, the performance 
of the CPU is improved because of the higher availability of the memory bus. 

PRIME RESTRICTED 



MEMORY 
ADDRESS 

BB .i I ~ 
ADDRESS 

I 
I WRITE 

REFRESH I 1 
BUFFER 

MA 

• 
I • 

I - I • MEMORY Diagnostic· 
~ Register I L TIMER _J 

PARITY I I STATUS 
CK. GEN. 

WRITE 
T 

BUFFER 

H , .. 
~ I .i , . -1 BD • I • DATA 

RAMS I I MD 
MEMORY 

I 
ERROR DATA 

PA!ITY I ;i DETECTION 
AND 

CHECK I I 

CORRECTION 

Figure 26-1 Block Diagram of Memory Controller 



Memory Controller Unit Detailed Description 4150 Funct. Spec. 
Page 315 

• The data section consists of RAMs which hold data destined for memory. ECC 
circuitry, which is associated with the WB data section, generates and checks ECC 
bits to improve the integrity of main memory. 

Other major functional sections of the MC include: 

• The Memory Timer (MT), which consists of a sequencer and PROMs whose data 
outputs are clocked and then sent to the memory boards as control signals or are 
utilized within the MC as control bits. 

• The refresh circuitry initiates a memory refresh routine approximately every 16 
microseconds and increments the refresh address each time so that it refreshes the 
entire memory array approximately every 4 milliseconds. 

• A status register, accessible by microcode, holds status and error information. 

26.2 Write Buffer 

The Write Buffer (WB) is a fully associative 4 x 64-bit memory which takes 16 or 32 

of data from the CPU and attempts to concatenate them into 32 or 64-bit quantities 

transfer to main memory. The goal is to smooth out traffic on the memory bus by doing 

fewer write operations, thereby providing higher memory availability to the CPU. 

The WB has four main functional areas: the Data Write Buffer (DWB), Address Write Buffer 

(AWB), the Valid Write Buffer (VWB), and the Memory Timer OPerations Scheduler (MTOPS). 

Refer to Figure 26-2. 

PRIME RESTRICTED 



MA 
.- 1v1~mory .. 

CPU 
.... 

AWB ..... BB __... --
HIT+ 

+-} WB WBFULL+ 
: Control Valid Bits ... 

r 
Hit Pointer 

L .. 
WBPTR __... w VWB - .... 

Control 
...11111.1 .... 

A~ 

Valid and Write 
Request Pending Bits 
Pointer ,t ... ..... 

MT OPS Request Signal~ .. MT 

t 

CPU 
BD __... DWB MD ....... Memory 

.... - .... 
~ 

---
-.... 

Figure 26~2 Write Buffer Block Diagram 



Memory Controller Unit Detailed Description 4150 Funct. Spec. 
Page 317 

26.2.1 Data Write Buffer 

The DWB is an 8 x 32-bit · memory. 

controlled by a separate write pulse. 

handled easily. 

Each 16-bit half of any location is independently 

This allows any 16-bit write from the CPU to be 

The DWB can be thought of as a 4 x 64-bit memory ·in the following fashion: Each DWB 

location is designed to represent one 64-bit data word as it might appear in main memory. 

(Refer to Figure 26-3.) The least significant bits of the memory address are BBL15+ and 

BBL16+. Thus, BBL15+ chooses which 32 bits of the 64-bit word are desired, while BBL16+ 

further specifies which 16 bits are desired. . The first two DWB locations make up a single 

64-bit word, with BBL15+ serving the same purpose to the DWB as it does to main memory. 

This view of the DWB organization is the one to bear in mind throughout the discussion of 

the WB. 

FIG. 26-3. Data Write Buffer Organization 

DWB 
addresses 

0 

2 

3 

4 

5 

6 

7 

32 bi ts 

32 bits 

32 bits 

32 bits 

32 bi ts 

32 bi ts 

32 bi ts 

32 bi ts 

I\ 
> DWB I ocoti on 0 

I/ 

I \ 
> DWB location 1 

I/ 
I\ 

> DWB location 2 
I/ 

I\ 
> DWB location 3 

I/ 

The DWB is addressed by 3 bits, referred to as the WB pointer. WBPTR{1:2}+ are produced 

by the VWB, and specify which of the 4 DWB locations is to be used during the next 

operation. The third address bit is based on BBL15+ as described above during CPU write 

operations, and distinguishes which half of the DWB loeation is to be accessed. Each 16-bit 

half of the resulting 32-bit location has a separate write pulse, TWBDH- and TWBDL-. 

During a Write ACKnowledge (WACK) chain, the VWB supplies the WB pointer, and data is 

written into the DWB under the control of the write pulses. 

During a write to memory, data is read out of the DWB under the control of the MT. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 318 

Write Buffer 

During a CPU read operation data may be read from the DWB instead of from memory. 

This occurs when the data in the WB hasn't been written out to memory yet. The VWB is 

responsible for recognizing this condition and replacing the stale data coming back from 

memory with the valid data from the DWB. 

Data may also be written into the DWB during a CPU r.e~d operation. This will occur if the 

ECCC logic discovers ther~ was a correctable error in the ~data that came back from main 

memory. In this case the corrected data is sent back to the CPU and also written into the 

DWB. Eventually this data will be written back to main memory to correct the error in 

memory. 

The DWB is implemented with 74ALS870 static RAMs. 

26.2.2 Address Write Buffer 

The A WB is a 4 x 26-bit content addressable memory. When a new memory address is 

latched (in latch LAIN) a comparison is done between LAIN and all locations of the A WB. 

The result of this comparison is reported on HIT+. The location which found a hit sends its 

address to the VWB for possible use in WB pointer generation. This value is referred to as 

the hit pointer. 

The contents of the 4 A WB locations are forced to be unique during system initialization, and 

should stay that way forever. 

The 26 bits stored in an AWB location are the valid physical address bits which could be 

used to address main memory. BBL15+ and BBL16+ are not included, as they only specify 

which 16-bit section of a 64-bit word is desired. Thus, A WB addresses are meant to represent 

MOD 4 memory boundaries. The A WB is addressed by WBPTR{1:2}+. 

Addresses are written into the A WB during either WACK or STart READ (STREAD) 

operations. If a hit wasn't found, the VWB supplies a new WB pointer, and the new address 

in written into the A WB when ADDMEMG- is active. 

The A WB supplies the memory address for all main memory accesses except refresh. The 

VWB generates the WB pointer and the MT causes the output of the AWB to be driven onto 

bus MA. This address can be latched (in latch LAOUT) before it is driven onto MA. 

The AWB has an address shifter on its output. This logic rearranges the address bits based 

on a 2-bit code which represents the memory configuration. This code is read at system 

initialization time, set in the CMI diagnostic register, and forgotten about. The code enables 

the shifter to swap address bits as necessary to prevent shadow memory or work around 

memory discontinuities. 

The A WB is implemented in the Andress BUFfer (P ADBUF) VLSI chip. 

PRIME RESTRICTED 



Memory Controller Unit Detailed Description 4150 Funct. Spec. 
Page 319 

26.2.3 Valid Write Buffer · 

The VWB consists of a 4 x 6-bit memory and its associated circuitry. Its goal in life is to 

keep track of data flow in and out of the WB. 

Each VWB location is ~roken up into four valid bits and two_ write pending bits, as shown 

in Figure 26-4. The VWB is addressed by WBPTR{1:2}:.. Each 'Valid bit represents 16 bits of 

valid data in the corresponding DWB location. A write pending bit set means that some 

valid data referenced by the valid bits has not been written out to memory yet, but needs to 

be. 

FIG. 26-4. VWB Location Format 

II 
V0 V1 V2 V3 I I WP0 WP1 

11 

V = Valid bit 
WP = Write Pending bit 

A WB location is said to be "free" if neither write pending bit is set in that VWB location. 

The VWB generates a "free address" to be used in ihe possible generation of WBPTR{1:2} from 

this information. 

As mentioned earlier, the VWB is responsible for generating WBPTR{1:2}. The WB pointer 

may be the "free pointer" generated by the VWB, the "hit pointer" generated by the A WB, or 

the "request pointer" generated by the MTOPS logic. The choice is controlled by the signals 

WBADMUX{2:3}+ as shown in Table 26-1. The selected pointer is latched (in latch LWBA) 

under the control of signal L WBAG-. 

TABLE 26-1. WB Pointer Selection Chart 

Desired Pointer WBADMUXf2:31+ 

Free pointer 00 

Hit pointer 01 

Request pointer 10 

The request pointer is selected whenever a main memory access is to be done. The MT takes 

care of this operation. Otherwise, during WACK and STREAD operations, the choice of the 

WB pointer is limited between either "free" or "hit". The free pointer must be used 

whenever the memory address presented on BB does not cause the A WB to assert the HIT+ 

signal. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 320 

Write Buffer 

As we have seen, BBL15+ and BBL16+ determine which 16 bits of a 64-bit word are of 

interest. The CPU may also wish to write 32 bits at a time. This option is specified by 

the signal WRT32+. The setting and resetting of bits in a VWB location are controlled by 

these three signals, along with a series of command lines. These command signals may be 

broken down into those that control valid bits and those ·that control write pending bits. The 

valid bit control lines are: 

• SETV AL+, which causes the current pattern of valid bits to be replaced by the 
pattern dictated by the three CPU signals, 

• MERGEV AL+, which sets any bits indicated by the three CPU signals while 
leaving the rest of the pattern unchanged, 

• SALL VAL+, which causes all the valid bits to be set, and 

• CLRVAL+, which causes all the valid bits to be cleared. 

The write pending bit control lines are: 

• SETWP+, which causes the write pending bit dictated by BBL15+ to be set, 

• CLRWP+, which causes both write pending bits to be cleared, and 

• SETBTHWP+, which causes both write pending bits to be set. 

Only one control signal in each group may be active at any time. Assertion of more than 

one command in each group leads to unpredictable results. 

executed when the clock signal V ALMEMG- is asserted. 

The commands are actually 

If all four VWB locations have a write pending bit set the WB is said to be full. This 

state is reported over the signal WBFULL+. No further CPU requests can be handled by the 

WB when this condition occurs until a WB location is emptied by writing its contents to 

memory. The reason is readily apparent when you consider the CPU trying to write into the 

full WB. If the A WB doesn't detect a HIT+, the external logic will ask the VWB for the 

free pointer. The free pointer can't have an indeterminate value, so the WACK chain will 

write the new data into the WB, overwriting data which hasn't yet gone out to memory. 

The VWB is implemented in the PADBUF VLSI chip. 

26.2.4 The WB as a Whole 

Stepping back, we can look at the big picture to see how the WB pieces just described play 

together. Suppose we have just initialized the A WB to have four unique addresses, and the 

VWB to have no valid or write pending bits set. (The system microcode is required to do 

this at system initialization time.) The CPU does a write request. The A WB does not detect 

PRIME RESTRICTED 



Memory Controller Unit Detailed Description 4150 Funct. Spec. 
Page 321 

a hit, so the external logic requests the free pointer from the VWB, which is latched in the 

L WBA latch. SETV AL+ and SETWP+ are asserted, and the WACK chain writes the new 

address into A WB (using ADDMEMG-) , sets the appropriate valid bit(s) and the correct write 

pending bit (using VALMEMG-), and writes the data into the DWB (using TWBDH- and/or 

TWBDL-). A CPU write request during which the A WB detects a hit works similarly. The 

important differences are that the external logic would ·have to ask for the hit pointer instead 

of the free pointer, arid that MERGEV AL+ should be asserted in place of SETV AL+. 

CPU read requests are handled in a similar fashion. If the A WB does not detect a hit the 

external logic must ask the VWB for the free pointer. CLRVAL+ is asserted, and the 

STREAD chain writes the new address into the A WB and clears all the valid bits. If the 

A WB does detect a hit, the STREAD chain must not clear the valid bits. In either case, when 

the data is returned from memory, the V\VB detects if the DWB contains more up-to-date 

data than the memory by using the valid bits, and replaces memory data with data from the 

DWB if necessary. This data is sent to the CPU and written into the DWB. SALL VAL+ is 

asserted, and all the valid bits are set. If there was a correctable error, SETBTHWP+ is also 

asserted, so both write pending bits will be set. (A design limitation makes it impossible to 

tell the VWB which 32-bit word had the correctable error in it, so both write pending bits 

must be set to insure the error is corrected in main memory.) 

CLRWP+ is asserted and both write pending bits are cleared after data is removed from the 

WB and written· to main memory. 

26.2.S Memory Timer OPeration Scheduler (MTOPS) 

The WB may contain data destined for as many as four different main memory locations at 

any given time. Choosing which main memory operation to do next, or even to wait a 

while before doing the next memory operation, is the job of the MTOPS. The original goal 

of smoothing out traffic on the main memory bus is achieved by the algorithms implemented 

in the MTOPS. 

Two conflicting forces are at work on the WB all the time. First, we want to save data in 

the WB as long as possible. The longer we save it, the greater the chance that the CPU will 

write more data destined for the same 64-bit location. (Imagine a program which is updating 

all the elements of a contiguous array.) If we save the data from the first CPU write until 

after the CPU ·does a second write to the same location we have saved ourselves one memory 

access. Opposing this desire is the WB full problem discussed earlier. If we save all the 

data we can, the WB will fill up very quickly, and we may have to stall the CPU. This 

defeats our purpose in life and makes us very depressed. 

A modified Least Recently Used (LRU) algorithm is used by the MTOPS to decide which 

memory operation to do next. The classic LRU algorithm, briefly stated, says that when 

PRIME RESTRICTED 



41SO Functional Specification 
Page 322 

Write Buffer 

trying to decide which data to move from an easily accessible place to a less accessible place, 

choose that data which was least recently used. The chances are very small that you will, 

need that data again soon if you haven't needed it lately. The LRU algorithm has been 

shown to be very efficient over time on a large number of computer systems in which it has 

been implemented. A system to keep track of just how recently---a particular piece of data 

has been used is inherent in the algorithm, adding overh"Cad,for each piece of data you keep 

track of. 

Before the MTOPS can apply the algorithm, however, it must sort the pending operations. A 

sorting operation can be done by examining the pattern of the valid and write pending bits in 

each VWB location. Figure 26-5 shows the 5 "aligned write" patterns. When any of these 

patterns occurs in a V¥lB location it means the data could be written to main memory 

directly in one access. The patterns shown in Figure 26-6 are examples of the multitudes of 

"unaligned write" patterns that may occur. These VWB locations cannot be written directly 

to main memory, since main memory can only write even multiples of 32 bits at a time. A 

read of main memory would have to be done to fill in the gaps in the valid bit pattern. 

Recall that any read of main memory causes the VWB to replace stale data being returned 

from memory with fresh data from the DWB, and that SALL VAL+ is asserted to set all the 

valid bits in the VWB location. Applying this to the examples shown in Figure 26-6, we see 

that all of these examples turn into one of the patterns shown in Figure 26-5. Thus, 

"unaligned writes" require two memory accesses to be written into memory. 

The WB uses a modified LRU algorithm referred to as Last Written (LW), in which only the 

last piece of data used is tracked. The MTOPS includes a L W latch which is controlled by 

signal L WG-. Whenever the latch is opened the current value of the WB pointer (in latch 

L WBA) is copied into the L W latch. In practice, the L W latch is only updated during 

WACK operations. The WB pointer value of the last piece of data that entered the WB is 

therefore always known. 

The MTOPS must decide which memory access should be done next using the sorted VWB 

patterns and the value in the L W latch. The decision is easiest when no write pending bit 

is set. In this case, the MTOPS doesn't assert any of its request lines, and everyone is happy. 

The decisions get harder as the number of locations with write pending bits set increases. 

The WB location whose pointer value is currently in the L W latch is disregarded. The data 

ref erred to by the _value in the L W latch is the MOST recently used, and therefore is most 

likely to be used again soon. Data in the WB location pointed to by the L W latch is 

therefore :NEVER a candidate to be written out to memory. 

The following paragraphs describe the decision . process for the four combinations of write 

pending bits. 

• If only one location has a write pending bit set it is the LW location. No request 
line is asserted. 

PRIME RESTRICTED 



Memory Controller Unit Detailed Description 4150 Funct. Spec. 
Page 323 

FIG. 26-5. Aligned Write VWB Patterns 

I I I 11 I 
I 1 1 I 1 I 1 11 I 
I I I 11 L 

64-bit aligned write 

I I I II 
I 1 1 I 1 I 1 II 0 
I I I 11 

I I II 
I 1 0 I 0 11 0 
I I II 

32-bit even aligned writes 

I I I 11 
I 1 1 I I 1 11 0 
I I I II 

I I I I II 
I e I e I 1 I 1 11 0 
I I I I 11 

32-bit odd aligned writes 

• If two locations have a write pending bit set, the one whose value matches the 
L W latch's value is disregarded. If the other one is an aligned write the MTOPS 
asserts its write request signal. If it is an unaligned write no request line is 
asserted. 

• If three locations have a write pending bit set, the one whose value matches the 
L W latch's value is disregarded. If one or both of the remaining locations is a 
64-bit aligned write, the MTOPS asserts its write request signal. If no 64-bit 
aligned write is present but one or both of the remaining locations is an aligned 
write, the write request signal will also be asserted. If both remaining locations 
are unaligned writes, the read request signal is asserted. In the cases where both 
locations have the same type of operations to do, the location with the higher WB 
pointer value is chosen by default. 

• If all four locations have a write pending bit set, the one whose value matches 
the L W latch's value is disregarded. Of the remaining three locations, if any of 
them is an aligned write the MTOPS · asserts its write request signal. If all three 
are unaligned writes, the read request signal is asserted. Ties among multiple 
locations with the same type of operation pending are again broken by WB pointer 
value. Aligned 64-bit writes take precedence over aligned 32-bit writes. 

PRIME RESTRICTED 



4150 Functional Specification Write Buffer 
Page 324 

FIG. 26-6. Unaligned Write VWB Patterns (Examples) 

I I I II I 
I 1 e I e I e II 0 I 
I I I II I 

I I I II 
I 1 1 I 1 I e II 
I I I II 

I I I II I 
I 1 1 I 1 I e II 0 I 1 
I I I II I 

I I I 11 
I e 1 I 1 I e II 1 

I I I 11 

I I I II I 
I e e I e I 1 II 0 I 
I I I II I 

Table 26-2 summarizes this information. 

TABLE 26-2. MTOPS Decision Chart 

Number of Locations 
w/ Write Pendings set Request ? 1st choice 2nd choice 3rd choice 

0 No 

No 

2 Only if 64 bit 32 bit 
aligned 

3 Yes 64 bit 32 bit uno I i gned 

4 Yes 64 bit 32 bit uno Ii gned 

When a decision has been reached the MTOPS sends the request pointer to the VWB for 

possible use in WB pointer generation. 

The request signals referred to in the discussion above are sent to the Memory Timer (MT) 

PRIME RESTRICTED 



Memory Controller Unit Detailed Description 4150 Funct. Spec. 
Page 325 

which evaluates them when it decides which MT routine to execute next. In addition to the 

read and write request signals there are two other signals which help the MT vector to the 

correct routine. The first indicates a 64-bit write is present, while the second indicates 

whether a 32-bit write is even or odd. These signals are only meaningful when the write 

request signal is asserted. 

One special case is not shown in Table 26-2. (Yes, there' ARE exceptions to every rule.) The 

decision rules just described make it possible for data to go into the WB and never come out. 

Consider the following sequence of CPU writes: 

1. The CPU writes 16 bits to memory which are placed in WB location 0. (This 
can only occur if locations 3, 2, and 1 are currently in use, and none of them 
detects a hit.) 

2. The CPU writes data to memory which is placed in some WB location other than 
location 0. 

Location 0 is not the last written location. The MTOPS can consider it as a candidate to be 

the next memory operation it requests. Location 0 contains an unaligned write. Unaligned 

writes aren't requested until there are three write pending bits set in the VWB. One of 

those locations with its write pending bit set is the last written location, leaving one other 

location besides location 0 under consideration. If that location contains an aligned write it 

gets requested before the unaligned write in location 0. If that location contains an unaligned 

write it gets requested before the unaligned write in location 0 because its WB pointer value 

is higher. Either way, when the access for the other location is finished its write pending 

bit is cleared, leaving two write pending bits set. The unaligned write in location 0 is no 

longer considered. 

This scenario doesn't happen frequently, but it can happen. When it does occur, it effectively 

makes the WB only three locations deep, impacting system performance. To get around this, 

the MTOPS detects when there is an unaligned write in location 0 and that location 0 is no 

longer the last written location, and empties the WB by requesting all pending accesses in 

turn. This is an automatic function similar to DENALLOPs+ described in the next section. 

The MTOPS is implemented in the PADBUF VLSI chip. 

26.2.6 WB Diagnostics 

Three diagnostic signals are available in the MC diagnostic register to control MTOPS functions. 

They are: 

DSINGOPS+ 

DENALLOPS+ 

Forces the WB to appear full whenever one write pending bit is set. 

Instructs the MTOPS to request any pending memory operation immediately, 
regardless of the value in the L W latch or the number of locations with 

PRIME RESTRICTED 



4150 Functional Specification 
Page 326 

Write Buffer 

write pending bits set. Memory operations are requested in the order shown 
in Table 26-2 until the WB is empty. 

DISLW+ Instructs the MTOPS to include all locations in the decision process, even the 
location referenced by the LW latch. This has the effect of altering the "1 
write pending" line in Table 26-2 to look identical to the "2 write 
pendings" ·line. 

Another diagnostic function in the MC diagnostic register is the FBADP+ bit. This bit 

instructs the AWB to force the MA parity bits to be a "1" during all memory accesses. This 

is a useful way to force bad parity onto MA to test the memory arrays. 

These four bits are all set inactive by microcode at system initialization time. They can be 

accessed by the PMA instruction MDWC. 

There are three other diagnostic signals in the MC diagnostic register which are used in 

initializing the WB. These bits force the WB pointer to some known value. These bits are 

accessible only by microcode. 

26.3 CPU Request & Acknowledge 

A memory write is initiated when the microcode DEST field specifies MEMWRITE or MEM32. 

The MC decodes the fact that a write request is pending, and at CS8+ of the microcode step 

it: 

1. Latches the address sent across BB from the S unit with signal BBL+ 

2. Clocks the data sent across BD from the E unit with signal TDATIN+ 

3. Sets a busy signal (MBSY-) so no other CPU request can occur until the address 
and data just received have been processed 

4. Sets an internal write request (CPWRTREQ-) to notify the write buffer logic that 
information is available to be processed if the write buffer is available 

A memory read operation is initiated by 1 of 2 methods: 

• a cache miss, or 

• when the mierocode IAC field specifies READHSM64 (Read High Speed Memory 64 
bits) 

In both cases the memory address is latched as in step 1 above, and an internal read request 

(CPREADREQ-) is activated to tell the WB that a read has been requested. MBSY- is also 

asserted here as in step 3 above. 

Step 4 above refers to WB availability. The WB is available for STREAD and WACK 

operations if both of the following are true: 

PRIME RESTRICTED 



Memory Controller Unit Detailed Description 4150 Funct. Spec. 
Page 327 

• The previous WACK operation is finished. 

• The MT is inactive, or, if it is active, it is finished using the WB for the memory 
operation it is controlling. 

26.3.1 CPU Write 

When a write request is posted, the MC logic starts the Write ACKnowledge (WACK) chain 

as soon as the WB is available. The signal PW ACK- is asserted and clocked at End of Beat 

(EOB) to become WACK+/-. This starts off the WACK chain of events. 

WACK+ goes through a series of registers which produce delayed versions of WACK+ every 

beat. These signals are used to differentiate among the different beats of the WACK chain, 

and assist in the proper sequencing of operations. There are three delayed versions of 

WACK+ in the WACK chain, DlWACK+, D2WACK+, and D3WACK+ ·respectively. Each 

one beat long. The operations carried out during a WACK chain are discussed below on 

beat by beat basis. 

• Prior to the WACK chain starting, the latched main memory address is sent to the 
WB which compares it against the four A WB locations. If the address matches one 
of the locations, the WB asserts the HIT+ signal. 

• WACK - The WACK chain asks for the WB pointer as shown in Table 26-1. If 
a hit is detected, the hit pointer is used. If a hit is not detected, the free pointer 
is used instead. The signals WBADMUX{2:3}+ tell the WB whether to use the hit 
or free pointer. The WB pointer is sent to the DWB RAMs to select a location 
into which to store the data. 

Signal WACK+ is sent to the WB on input pin LAING- which latches the address 
at the input to the WB for the duration of the write cycle. 

It is also gated to become signal LMTOPSG- which closes the WB latch that 
contains the MT operations to be requested. This prevents the upcoming update of 
the VWB from propagating spurious requests through the MTOPS logic to the MT. 

• Dl WACK - Once the WACK chain has started, the 74AS646 transceivers which 
hold the data that was clocked from the E unit are turned on to drive data in 
the direction of the WB RAMs. Either 16 or 32 data bits will be written into the 
RAMs based on the microcode destination field. The write pulses to the data RAMs, 
TWBDH- and TWBDL-, are half beat signals and are active during the second half 
of DlWACK. 

The appropriate valid and write pending control signals are also clocked into the 
WB during the seoond half of Dl WACK with signal V ALMEMG-. In addition, the 
address is clocked during the last half of this beat with signal ADDMEMG-. The 
latched main memory address is written into the A WB, while the VWB is clocked 
with the SETWP+ command and either the MERGEV AL+ command, if there was a 
hit, or SETV AL+ if there wasn't. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 328 

CPU Request & Acknowledge 

• D2W ACK - Signal MBSY- was asserted at CS8+ of the microcode step that issued 
the memory write. This is sent to the PCU. Its purpose is to hold up the pipeline 
should the microcode issue any other memory reads or writes before the MC logic 
has had a chance to process the existing write. Once the address, data, and 
appropriate status information have been written into the WB, the busy signal 
(MBSY-) goes inactive ,and the MC is then ready to accept more reads or writes 
from the CPU. This happens at the beginning of D2WACK. The system's processing 
of instructions will not be affected in any way by this signal except, if another 
memory operation is requested before the present one has been processed, the 
pipeline will be held up. 

D2W ACK- also goes into the WB on input LSTWRTG- to tell the write buffer to 
update the value in the LW latch. 

• D3W ACK - This is used to end the ABORT sequence during a write. ABORTs 
will be discussed in detail in section 26.4.2. 

26.3.2 CPU Read 

The STREAD chain is started in a fashion similar to that described for WACK. The 

STREAD chain generates and uses the delayed STREAD signals DlSTREAD+, D2STREAD+, and 

D3STREAD+. Each is one beat long. The operations performed by the STREAD chain are 

discussed below on a beat by beat basis. 

• STREAD - The latched memory address is compared as it was in the WACK 
chain, and the same hit decision is made. STREAD+ is also delayed by one TMCLK 
to become DSTREAD+, which is gated further to become MUXLAOUT +. This signal 
controls a mux in the WB that sends the proper address to the output latch which 
in turn will be sent to the memory arrays. 

• DlSTREAD, D2STREAD - Delay beats to allow time for subsequent operations. 

• D3STREAD - During the last half of this beat, the address is clocked into the WB 
with signal ADDMEMG-. The valid bits are cleared with signal V ALMEMG- if 
there was a miss, else they remain set. 

ABORT, which was mentioned in the WACK chain, goes active with STREAD and 
remains active until D3STREAD goes away. 

• The MT operation starts up in parallel with the STREAD chain of events and 
continues on after the STREAD chain is finished until the read operation has 
completed. 

The Memory Timer (MT) logic is activated with a request to the ,priority encoding 
logic by signal STREAD+. The MT addressing logic vectors to the MT routine 
which controls the reading of main memory. The memory address is sent out 
through the A WB to all memory array boards over memory address bus MA. Each 
memory array board examines the received address to see if that address is within 

PRIME RESTRICTED 



Memory Controller Unit Detailed Description 4150 Funct. Spec. 
Page 329 

its address range. The board that detects an address range match starts up its 
internal read logic. 

When the data is ready, the MT logic clocks the first 32 data bits from the 
memory arrays into the memory data bus (MD) data transceivers with signal 
MTDIN+. From there the data bits are sent to the ECC circuitry to check for any 
ECC Correctable (ECCC) or ECC Uncorrectable; (ECCU) problems. Parity is 
generated on the , returning data at the same time. 

All the data and parity bits are latched in a latch which connects MD with the 
BD transceivers. Stale data returning from memory is replaced with valid data 
from the DWB if necessary. This is accomplished by logic which examines the 
valid bit pattern for the current WB location in use. This guaranteed fresh, 
carrected data is written into both the BD transceivers and the DWB RAMs. ,...hf' 
data is automatically written into the WB just in case there was an ECCC 
detected so we may then write the corrected data back out to memory. The 
pending bits are set only in the case of an ECCC. 

Assuming no ECC problems, the MT logic brings the second 3'.t bits into fr 
receivers and processes them as it did the first 32. After the first 32 bits have 
been clocked into the BD transceivers, the MC notifies the CPU that it has data 
ready for it by asserting the signal MDA TA V +. The CPU issues IAC MRDY when 
it wants the first 32 data bits. This IAC will hold up the pipeline until it sees 
signal MDATAV+ sent from the MC unit. When MDATAV+ is asserted, the CPU 
takes the first 32 data bits from the transceivers and puts them either in cache or 
where the microcode specifies, or both. The MC logic knows that the first 32 bits 
have been taken because it sees signal MCTOBD- sent from the BD arbitration 
logic, which says the data can be put onto BD. The MC logic will keep 
MDA TA V + asserted until it sees MCTOBD-. 

After the first 32 bits have been taken, the second 32 data bits are then placed in 
the DWB RAMs and the BD transceivers. The second 32 bits will be taken by the 
CPU for a cache miss, and may or may not be taken otherwise depending on 
what is specified by .the microcode. If the microcode wants the second 32 bits, it 
issues IAC MCONBD which places the data from· the BD transceivers onto BD. If 
it does not want the data, the data will remain in the transceiver until 
overwritten by data from a subsequent read of main memory. 

All reads from memory are 64 bit reads, whether or not all 64 bits are required. 
When the memory cycle is completed, the MT releases MBSY- so the CPU will be 
able to process the next read or write when required. 

26.4 Memory Timer 

The .MT logic is used whenever it is necessary to read, write, or refresh the main memory 

arrays. This logic consists of: 

• Prioritization logic which resolves conflicts in case of simultaneous requests 

PRIME RESTRICTED 



4150 Functional Specification 
Page 330 

• Addressing logic which sequences through the routines 

• PROMs whose data is the control for the memory and other MC logic 

• Registers to stabilize the PROMs' outputs 

• Various control circuitry 

Memory Timer 

The priority encoding logic takes request inputs from various subsections of the MC logic and 

encodes the outputs in the following priority (highest to lowest): 

1. REFRESH - requested by refresh logic 

2. NOP - requested by a flip-flop set by SYSCLR-

3. CPU ST A TUS READ - requested by microcode 

4. CPU READ - requested by S unit (cache miss) or microcode (IAC READHSM64) 

5. 64-bit MT WRITE - requested by WB MTOPS logic 

6. 32-bit MT WRITE (odd) - requested by WB MTOPS logic 

7. 32-bit MT WRITE (even) - requested by WB MTOPS logic 

8. MT READ - requested by WB MTOPS logic 

CPU requests always have priority over WB requests, and refresh always has priority over 

everything else. 

The NOP routine, as the name suggests, does nothing. Its only purpose in life is to keep WB 

requests from occurring when returning power to the CPU after having been in battery 

backup mode. When returning from battery backup mode, there is no guarantee what kind 

of requests may be coming from the WB until it has been initialized. Therefore it may start 

requesting memory accesses which could destroy the data in memory which the MC labored so 

hard to keep correct during battery backup mode. When power is restored, a flip-flop is 

asynchronously set by SYSCLR-. It asserts a MT NOP request constantly. Whenever a 

refresh request isn't pending (most of the time) the NOP routine will be executed, keeping the 

WB from getting a request in. The flip-flop is reset by microcode after it has initialized the 

WB. 

When one or more request(s) are pending, the pr10nt1zation logic outputs the highest priority 

request as an encoded value. These signals, MTREQ-, MTOP2-, MTOPl-, and MTOPO- flow 

through an open latch to go to control circuitry and to some of the MT address register 

inputs. After the latch closes with signal MTACTIVE-, the three signals MTOP{2:0}+ are 

clocked to become three of the four most significant address bits to the MT PROMs. These 

PRIME RESTRICTED 



Memory Controller Unit Detailed Description 4150 Funct. Spec. 
Page 331 

three bits break the MT PROMs into eight different routines. Each of these routines may be 

up to 32 beats (PROM locations) long. 

Once the PROMs are addressed to start off a routine, the subsequent addresses are controlled 

by the clocked outputs of one of the PROMs. We thus ma:y go anywhere within a 32 

location routine by changing the five least significant address bits. This is analogous to a 

microcode next address. field. Indeed, there are even MT 'conditional branches. 

Once an MT routine has been started, the signal TMT + is activated. TMT + clocks the outputs 

of the PROMs and the next PROM address. This signal cycles until the MT routine is 

completed. 

The following example of a REFRESH request will show the manner in which all MT 

operations cycle. 

1. The refresh circuitry posts a refresh request which is fed into the prioritization 
logic as signal GMTRFREQ-. 

2. The prioritization logic output MTREQ- goes low signifying that some request is 
pending. The encoded signals MTOP{2:0}- all go low signifying that a REFRESH 
request is the highest priority request pending. 

3. These signals flow through an open latch to become signals LMTREQ- and 
LMTOP{2:0}-. From there they go to the inputs of the MT address register, and to 
circuitry which sets signals MTACTIVE+/- and, one beat later, PlMTACTIVE+/-. 

4. The combination of MT ACTIVE+ active and PlMT ACTIVE+ inactive causes the 
LMTOP{2:0}- signals to be clocked as MT AD{7:5}+ and clears the five least 
significant MT address bits (MTAD{4:0}+). The eight address bits now address 
location 0 of the MT PROMs, which is the first location of the REFRESH routine. 
(The three signals LMTOP{2:0}- will remain the same while the other five bits 
will change to point to subsequent locations within the routine as we execute the 
MT operation.) 

5. Signal PlMT ACTIVE- allows signal TMT + to occur, which clocks the PROM 
outputs to sequence through the operation. During the routine, appropriate MT 
signals flow from the MT to other parts of the MC and to the memory arrays to 
control the various operations. 

6. When the MT operation is complete, the signal MTDONE- shuts off MTACTIVE+ 
and, one beat later, PlMT ACTIVE+ signals. This in turn stops TMT + from cycling 
and opens the LMTOP{2:0}- latch to allow any new pending requests to be 
honored. 

All MT operations occur in the same manner. The main differences between the different 

operations being: 

• The prioritization logic will point the upper three address bits to a different 32 
location routine based on the highest priority input request. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 332 

Memory Timer 

• Different MT PROM output control signals will become active based on whichever 
routine is executing. 

All MT operations sequence in basically the same manner. In order to access the memory 

arrays, whether refreshing, writing, or reading we need the following items: 

• Memory address provided either from the WB or the refresh circuitry 

• MREQ- which is the memory request signal 

The following paragraphs highlight some of the MT signals, and show when and how they 

are used. 

When writing to memory, we will do either a 64-bit, 32-bit odd, or a 32-bit even write, 

based on the request from the WB. The sequence through each of the three routines is 

approximately the same with the exception of which write control signals. are sent to the 

memory arrays. 

• On a 64-bit write, the even word is sent to the memory array first. MT signal 
MLDIEV+ latches these bits onto the arrays. The odd word is sent to the array 
next. These bits are latched with signal MTLDIOD+. Signals MWEEV- and 
MWEOD- tell the memory array to write the even and odd 32 bits respectively 
in to memory. 

• On a 32-bit write, only the appropriate 32-bits would be sent along with either 
MLDIEV+ and MWEEV-, or MTLDIOD+ and MWEOD-. 

As the data destined for memory is latched at the output of the DWB RAMs, it is also sent 

to the ECC logic to generate the 7 check bits which are written with each 32 data bits. 

When we say we write 32 data bits to memory we always write the check bits with them, 

so each write is actually 39 or 78 bits. 

During a cache miss or a Read High Speed Memory operation, the memory array is started up 

by signal MREQ- as usual. When the data is ready to be returned, the signal MDOSELEV- is 

sent active to the array if the even word was requested first, or inactive if the odd word 

was requested first. 

When data is brough~ back from the memory arrays, it is clocked into a set of transceivers 

and driven onto bus MDATxx (an MC internal version of MD) while parity is being 

generated on the returning data. At the same time, the data is sent into the 74ALS632 ECC 

chip where it checks for ECCCs and ECCUs. MT signal MTCORRERR- becomes active .for one 

beat to tell the MT next address logic to look at signal ERR- which comes from the ECC 

chip. If ERR- is active, there has been an error detected a'.nd the next MT step will be in the 

error correction portion of the MT routine. ERR- is the jump condition for the MT's two-way 

branch to different sections of the read routine. While in the error correcting routine, the MT 

PRIME RESTRICTED 



Memory Controller Unit Detailed Description 41SO Funct. Spec. 
Page 333 

signal MTEDACSO+ is asserted to latch the data into the ECC chip, and MTMDEN- is removed 

to stop the transceivers from driving the returned data. MTOEBX- and MTOECBX- are asserted 

to drive the corrected data from the ECC chip to bus MDATxx where it takes the normal 

path of data being returned from memory. The data is written into the WB (as is all data 

returned from memory), and the write pending bit is set if there was an ECCC. It is not 

set on an ECCU. If it were, the ECC chip would gener.ate proper check bits on the bad data 

on the subsequent write to memory. When this data was next read from memory, there 

would be no error detected and we would think we are operating on good data. When an 

error is detected, the MT ECCC/ECCU routine is executed, which adds 3 beats to the memory 

read routine. 

The code used to generate ECC check bits is shown in Table 26-3. Table 26-4 shows the 

interpretation of the syndrome field. This field is returned during a read status MT routine. 

Check Bit 

0 
1 
2 
3 
4 
5 
6 

I 
I 
I 
I 
I 
I 
I 

TABLE 26-3. ECC Check Bit Generation 

Doto Bit 
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 

2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 

x x x x x x x x x x x x x x x x 
x x x x x x x x x x x x x x x x 
x x x x x x x x x x x x x x x x 

x x x x x x x x x x x x x x x x 
x x x'x x x x x x x x x x x x x 

x x x x x x x x x x x x x x x x 
x x x x x x x x x x x x x x x x 

x bits on each row are XOR'ed together to form the indicated check bit. 

PRIME RESTRICTED 



4150 Functional Specification Memory Timer 
Page 334 

TABLE 26-4. Syndrome Bits 

Bi ts 
1234567 Meaning 

0001010 correctable error at data bit 1 
0001111 correctable error at data' ~it 2 
~010010 correctable error at data bit 3 
0010100 correctable error at data bit 4 
0010111 correctable error at data bit 5 
0011000 correctable error at data bit 6 
0011011 correctable error at data bit 7 
0011101 correctable error at data bit 8 
0100010 correctable error at data bit 25 
0100100 correctab e error at data bit 26 
0100111 correct ab e error at data bit 27 
0101000 correctab e error at data bit 28 
0101011 correctab e error at data bit 29 
0101101 correct ab e error at data bit 30 
0110000 correctab e error at data bit 32 
0110101 correctab e error at data bit 31 
0111111 correctab e error at check bit 0 
1001011 correctab e error at data bit 17 
1001110 correctab e error at data bit 18 
1010011 correctab e error at data bit 19 
1010101 correctab e error at data bit 20 
1010110 correctab e error at data bit 21 
1011001 correctab e error at data bit 22 
1011010 correct ob e error at data bit 23 
1011i00 correct ab e error at data bit 24 
1011111 correctob e error at check bit 1 
1100011 correctab e error at data bit 9 
1100101 correctab e error at dot a bit 10 
1100110 correctab e error at data bit 11 
1101001 correctab e error at data bit 12 
1101010 correctable error at data bit 13 
1101100 correctable error at data bit 14 
1101111 correctable error at check bit 2 
1110001 correctable error at data bit 16 
1110100 correctable error at data bit 15 
1110111 correctable error at check bit 3 
1111011 correctable error at check bit 4 
1111101 correctable error at check bit 5 
1111110 correctable error at check bit 6 
1111111 no error 

All other syndromes indicate an uncorrectable error. 

26.4.1 Read Status 

During certain times it may be ne~essary to read the status of the MC. This is accomplished 

by doing a modified Read High Speed Memory operation. The microcode first issues IAC 

RDST AT, which sets the addressable latch RDST AT+. When this is set, all READHSM64 

operations are detected as status reads, which have higher priority in the MT priority logic 

PRIME RESTRICTED 



Memory Controller Unit Detailed Description 4150 Funct. Spec. 
Page 335 

than data reads. The MT routine vectors to the read status routine which, instead of 

accessing main memory, gets status information from the logic and places it on BD as though 

it were data from memory. The first 32 bits brought back consist of: 

· • 4 parity bits from, the A WB 

• 2 unused bits 

• 1 of 5 encoded DNET a:nd CS parity bits (other 4 in 2nd word) 

• 25 address bits from the A WB 

The second 32 bits brought back consist of: 

• Two memory size bits 

• Control Store parity error 

• Error bit 15 for ECCCs and ECCUs 

• Missing Memory Module error 

• ECCU error 

• Data or Memory address parity error 

• IIO parity error 

• 4 bus MCBD parity error bits 

• 4 bus MDAT parity error bits 

• 4 of 5 encoded DNET and CS parity bits (other 1 in 1st word) 

• 4 Memory address parity bits 

• ECCC error 

• 7 syndrome. bits indicating which bit was corrected on an ECCC 

The data is brought back in the following manner: Signal MTRDST AT- is gated and enables 

MA to be driven onto MD. MD is then enabled onto MDA Txx just as if it were data 

returning from memory. The ECC checking circuitry is not enabled, parity is generated on the 

bits, and they are then sent via the BD transceivers to the E unit. The second 32 bits are 

likewise placed onto MDATxx when MT signal MTSTAT- becomes active. Parity is generated 

and the data sent to the E unit as before. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 336 

26.4.2 MT Abort 

Memory Timer 

Refresh, CPU reads, cache misses, and CPU writes should and do take priority over WB 

requested memory operations. One method of doing this is utilizing the priority encoding 

scheme with the WB operations having lower priorities. ABORT logic allows a WB operation 

to be aborted even after it 'has been started if a higher -Priority request becomes active. WB 

operations may only be ab<;>rted if they have not yet issued MREQ- to the memory arrays. If 

they were to be aborted after this time the memory array contents could become 

unpredictable. 

Once the MT operation has started and before it makes signals GOKWRT + and GOKRD+ 

inactive, (OK to write and OK to read, respectively) they may be aborted. When a read is 

requested and the signal GOKRD+ is still active the STREAD chain starts. The signal ABORT+ 

is made active with STREAD+ and stays active through D3STREAD+. If a write is requested 

and GOKWRT+ is still active, the WACK chain starts. ABORT+ is made actfve with WACK+ 

and stays active through D3W ACK+. 

ABORT+ prevents the lower priority WB requests from happening in the MT prioritization 

logic. If one is already happening, it shuts the MT off and allows the higher priority request 

to be honored. 

26.4.3 MT Diagnostic Features 

The following MT diagnostic registers are accessible only by microcode: 

• DGSELBF AD+ forces the WB address mux to point to the WB location specified by 
signals DGBF AD{2:3}+ instead of the normal hit mechanism. 

• DISERCOR+ inhibits the MT addressing logic from looking at ECCCs and ECCUs. 

• DSMPLEM{1:4}- tell the logic to ignore any parity error received from memory 
array boards 1 thru 4 respectively, one bit per board. 

• PDMTMODE+ is clocked and becomes the high order address bit of the MT PROMs, 
which allows diagnostic testing of the MT logic with routines in the private half 
of the PROMs. 

26.5 Memory Configurations 

When the memory array boards are inserted into the backplane they are each connected to 

common signals MEMSIZEA- and MEMSIZEB-. These signals are pulled up by two resistors on 

the MC. The purpose of these signals is to show the largest size memory array board 

installed in the backplane. This is translates directly into MB/slot. Table 26-5 shows how 

these signals are interpreted. 

PRIME RESTRICTED 



Memory Controller Unit Detailed Description 4150 Funct. Spec. 

TABLE 26-5. Memory Configuration Slot Sizes 

AB Slot size SHFTCTRf1:2J+ 

11 
10 
0x 

4 MB 
8 MB 

16 MB 

01 
00 
10 

Page 337 

The initialization routine reads these two bits, the two highest order bits of the status word. 

It then sets two bits in the MC diagnostic register, SHFTCTR{1:2}+. These bits tell the A WB 

shift logic how to shift the upper memory address bits based on the memory available. Table 

26-5 shows the required settings for these bits. 

The shift logic necessary to do slot selection was designed into the PADBUF VLSI chip very 

early in the project. While it was anticipated that 32 MB memory array boards would be 

available during the 4150's lifetime, 4 MB was thought to be required, and 64 MB was 

conside .. ed to be an acceptable upper limit on memory size. 

The memory configuration rules are as follows: 

1. Only 8 MB Abel, 16 MB Cain, and 32 MB Cain boards may be used. 

2. Always 
used. 

3. Always 
may be 
may not 
used. 

begin in slot #l and do not skip slots unless the 32 MB Cain boards are 

skip the next slot when using a 32 MB Cain board. 32 MB Cain boards 
placed only in slots 1 and 3. If there is one 32 MB Cain board, slot 2 
be used. If there are two 32 MB Cain boards, no other boards may be 

4. Always put the highest density remammg board in the next legal slot. Thus, 
exhaust the supply of 32 MB boards before inserting 16 MB boards and exhaust 
the supply of 16 MB boards before inserting 8 MB boards; 

Table 26-6 shows the legal memory configurations. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 338 

TABLE 26-6. 

64 MB Configurations 

Slot 2 3 4 Slot 

32 32 
32 16 16 
16 16 16 16 

48 MB Configurations 

Slot 2 3 4 Slot 

32 16 
16 16 16 
16 16 8 • 8 (See Note 1) 

32 MB Configurations 

Slot 2 3 4 Slot 

32 
16 16 
16 8 • 8 (See Note 1) 

8 8 8 8 

16 MB Configurations 

Slot 2 4 Slot 

Memory Configurations 

56 MB Configurations 

2 3 4 
-. 

32 16~ 8 
16 16 16 8 

40 MB Configurations 

2 3 4 

32 8 
16 16 8 
16 8 • 8 • 8 

24 MB Configurations 

2 3 4 

16 8 
8 8 8 

8 MB Configurations 

2 4 

16 8 
8 8 

NOTE 1: 8 MB holes are created in memory where indicated by the 
asterisks in the configuration tables. These produce some additional 

Memory Configurations 

(See Note 1 ) 

Primos memory management overhead and should be avoided when possible. 

26.6 Refresh 

The MT refresh operation has already been discussed in the MT section. What remains to be 

discussed is the generation of the refresh address and the request. The signal BPCFCLK+ is 

provided by the buffered output of a 5 MHz crystal. The refresh circuitry takes this same 

crystal output and uses it as a clock to a counter whose carry out pulses approximately every 

16 microseconds. This carry out ;s also used as a clock to another counter whose outputs are 

the refresh addresses. We thus change to a new address with each carry out of the first 

counter, RFREQ-. This signal is clocked and recirculated until the MT priority logic has 

accepted it and started a MT REFRESH operation. It is then reset until the next counter 

overflow, which is in approximately 16 microseconds. 

PRIME RESTRICTED 



Memory Controller Unit Detailed Description 4150 Funct. Spec. 
Page 339 

When in the MT Refresh routine, signal ENRFAD+ allows the twelve refresh address bits onto 

MA in place of the address lines from the A WB. 

26.7 Parity Checking/Generating 

Parity is checked in two places: 

1. on bus MCBD as data comes into the WB RAMs on a write, and 

2. on MDATxx data latched at the output of the WB RAMs before the data is 
written to memory. 

During a CPU write the data is clocked into the BD transceivers. When the WB is available, 

the drivers are enabled onto MCBD (an MC internal version of BD). Parity checkers check 

the parity and the result is clocked at the end of D2WACK. 

The parity circuitry 6n MDATxx has two functions: 

1. Check parity on the data out of the WB RAMs destined for memory, and 

2. Generate parity on data read from memory, or on corrected data from the ECC 
logic, which is to be sent to the rest of the CPU. 

Nine-bit parity checker/generators are used in a dual purpose mode. 

When reading data from memory, 

checker/generator while the ninth 

checker/generator becomes the proper 

on the bus and is sent along with 

CPU logic. 

the eight data bits are placed 

bit input is forced low. 

parity for the eight data input 

on the inputs of the 

The output of the 

bits. This signal is placed 

all the data bits to be latched and sent to the WB and 

On a MT write to memory, the outputs from the RAMs are latched and sent to the same 

parity checker/generators. All nine bits are sent to the chip. The same output this time going 

high signifies a parity error, while no error is detected if it remains low. The error signals 

from all four checker/generators are combined and sent to the error reporting logic. 

26.8 Error Reporting 

There are four categories of errors reported in order of significance: 

1. MISMOD - Missing Memory Module 

2. ECCU - Uncorrectable memory error 

3. DAT ADPE - data parity or memory address parity error 

PRIME RESTRICTED 



4150 Functional Specification 
Page 340 

4. ECCC - correctable memory error 

Error Reporting 

When a memory array read or write operation takes place, the selected memory array sends 

back a signal MSEL VAL- meaning a valid memory array was accessed. The MT looks at this 

at the appropriate time and, if no valid signal is seen, causes FMISMOD+ to be set. This 

causes a Missing Memory Module Trap when FMISMO:Q+. reaches -the PCU. If subsequent 

MISMODs occur before the. trap condition is cleared out, the last trap address to occur will be 

reported, not the first. 

On a read from the memory arrays, the ECC checking circuitry has already been discussed. 

The resulting error, ECCC or ECCU is sent to the error detecting circuitry, and if no higher 

priority error already exists, will be clocked and reported to the PCU to be handled 

appropriately. The address that contained the first ECCU to cause a trap will be reported 

even if more occur before the trap condition has been cleared out. 

On a memory array operation, the array checks the address parity and sends back an error if 

one was detected. This memory address parity error is combined with the two previously 

discussed data parity errors. If no higher priority error exists, it is clocked as FDATADPE+ 

and sent to the PCU. The first occurrence of a parity error will be reported, not any 

subsequent parity errors until the condition has been cleared out. The same holds true for 

ECCCs. 

Any error detected will remain active unless followed by a higher priority error. The error 

is be cleared by IAC ACK.PE, acknowledge parity error. 

26.9 Battery Back Up 

Battery Back Up (BBU) is used to keep the main memory refreshed during a power failure. 

This occurs when the Diagnostic Processor (DP) senses a power failure and sends notification 

to the MC logic. The MC switches a mux from the normal refresh circuitry to a BBU mode 

upon receiving this notification. It also asserts ENALLOPS+ so that the MTOPS will empty 

the WB before the power goes off. (The DWB RAMs are not backed up. so any data 

remaining in them when the power goes off is lost.) 

The signal MRFSH- is asserted constantly to tell the memory array to do a refresh cycle 

whenever it sees a request (MREQ-). MREQ- is fed from the refresh address counter in this 

mode of operation. 

PRIME RESTRICTED 



Memory Controller Unit Detailed Description 4150 Funct. Spec. 
Page 341 

26.10 VLSI Usage 

The AWB, VWB, and MTOPS sections of the WB are implemented in VLSI in a slice fashion. 

Two PADBUF VLSI chips are used for this purpose. 

26.11 Critical Paths 

The path from the time the memory address is latched into the MC until the WB pointer is 

latched during a CPU memory access must be less than 2.5 beats. 

Setting MBSY- on the MC unit on a READ or WRITE and sending it to the S unit is a one 

beat path. 

26.12 Timing Diagrams 

TMCLK+ -1 

FENEOB+ -1 
,_, 1-1 ,_, 1-1 , __ , 

WACK+ 

D1WACK+ 

D2WACK+ 

D3WACK+ , __ 
TWBDH/L- 1--1 

ABORT+ , __ 
LMTOPSG-

FIG. 26-7. WACK Timing Diagram 

PRIME RESTRICTED 



4150 Functional Specification 
Page 342 

Timing Diagrams 

TMCLK+ _, 1-1 1-1 j_j 1-1 1-1 1-1 1-1 1-1 1-1 1-1 

FENEOB+ _j 1--1 j __ j 1--1 1--1 j __ , 

STREAD+ 

D1STREAD+ --------

02STREAD+ -------------

03STREAD+ ------------------

ABORT2+ 

MUXLAOUT+ ------

MTACTIVE+ --------

P1MTACTIVE+ ------------

LAOUTG-

MTLOAD-

, __ 
, __ 

TMT+ j __ j 

FIG. 26-8. STREAD Timing Diagram 

26.13 91SS Comparisons 

The MC logic for the 4150 is completely different from that of the 9755. The major 

differences are: 

• The 4150 has one MT, as opposed to the two MTs on the 9755. Each memory 
word is 64 bits wide (plus check bits) and is broken down into two 32-bit half 
words. Each half goes to a separate memory board on the 9755, while all bits in 
the word go to the same board on the 4150. Since each 9755 memory board only 
contained 32 bits (plus check bits) a separate write or read was required for each 
32 bits required, thus a separate MT was required for each half word. Each 4150 
memory board contains 64 data bits. Separate MTs are, therefore, no longer needed 
since all data bits are written to the one board. 

• In the 9755 ·a memory array read could only occur when the WB was empty. 
This insured that the CPU was not getting stale data from memory. This is not 
necessary on the 4150. The MT can replace stale data from memory with the 
fresh data from the WB "on the fly". This results in much faster throughput, 
since there is no time wasted in emptying the WB whenever a read is requested. 

• The 9755 data bus consists of two 32-bit (plus check bits) data buses. The 4150 
data bus consists of one 32 bit (plus check bits) data bus. The data is sent over to 

PRIME RESTRICTED 



Memory Controller Unit Detailed Description 4150 Funct. Spec. 
Page 343 

the memory board 32 bits at a time, latched on the memory array, and written 
into the array either 32 bits or 64 bits at a time depending on the operation 
specified. 

• Merges on writes are fully associative on the 4150, but could only occur on 
successive mergable writes on the 9755. 

• A completely new memory array board is used with the 4150, employing 256K (8 
MB boards) or 1 MB (32 MB boards) DRAMs and supporting the new memory bus 
design. 

• The 4150 is able to support 16 and 32 MB memory arrays and address up to 64 
MB of main memory. The 9755 was limited to 32 MB. 

• The ECC logic is completely different between the two processors. The 4150 
utilizes an ECC chip to check/correct data, while discrete logic with a different 
code was used on the 97 55. 

• The MC logic on the 4150 contains DMx support since the I/O logic is tied very 
closely to the Memory Controller. This allows I/0 data transfers to take place 
between the 1/0 interface and the MC without the use of BD. 

• There are 12 refresh address bits on the 4150 while there are 8 bits on the 9755. 
This is to accommodate the larger RAM size on the memory array boards and to 
provide extra bits for future expansion if needed. 

• The 4150 has Battery Back Up (BBU) capability. The MC provides refresh to the 
memory array boards in the case of a short term power failure to maintain the 
integrity of data in memory. 

26.14 Partitioning 

All the MC functions described in this chapter are implemented on the CMI board, which is 

discussed in chapter 30. BD arbitration is handled by the E unit and is discussed in 28. 

The MC will not drive BD until the arbitration logic on the E unit sends signal MCTOBD- to 

the MC. The MC drives BD while this signal is active. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 344 

PRIME RESTRICTED 



1/0 Interface Detailed Description 41SO Funct. Spec. 
Page 345 

27. 1/0 Interface Detailed Description 

The Input Output (I/O) logic has the job of controlling the transfer of data from memory to 

a peripheral controller (Output), and the transfer of data from a peripheral controller to main 

memory (Input). The. manner in which this trans~e~ occurs ls different than on previous 

Prime machines mainly because the I/O data path logic ~esides on the same logic board as the 

Memory Controller (MC). The result of this is that the data being transferred does not go 

across BD as it did in all previous machines for DMx operations. 

Because the data on an input transfer goes directly into the DWB RAMs from the BPD 

transceivers, and because data for output transfers is placed into these same transceivers on a 

memory read, the control of I/O transfers is very closely tied to both the microcode and the 

memory timer logic. The address to/from BPA still goes across BD as on other CPUs, since 

BPA resides on a different board than the BPD transceivers. 

27.1 DMx Control 

The Bus Peripheral Control (BPC) signals are asserted under microcode control. They are 

produced by decoding microcode IACs which are clocked at CS8+ into 74AS194 register parts. 

The BPC signals have the same meaning and conform to the I/O specification as in all other 

Prime CPUs. 

A request for a DMx transfer is honored by the microcode trapping out of its natural 

execution sequence. The microcode then enters the DMx microcode routine. This starts an I/O 

address phase, which is described below: 

1. IAC SDEN (Set DMx ENable) is issued, which sets FDEN+ at CS8+. This signal is 
buffered and sent to all the controllers as signal BPCDEN+. 

2. All controllers which have a data request pending assert their request signals, 
BPCDRQ{l:lO}-. 

3. The I/O arbitration logic picks the controller with the highest priority and asserts 
that controller's grant line DMXORINT{Ol:lO}+. All other grant lines are reset. The 
controller with the highest priority is the one with the highest slot number. 

4. IAC RDEN (Reset DMx ENABLE) is issued, which resets FDEN+ and BPCDEN+ at 
CS8+. The controller which has won control of the bus starts driving the BPC 
mode lines with a code which indicates what kind of DMx transfer is being 
requested. Table 27-1 shows these values. It also drives BPA with the necessary 
address calculation information. 

S. IAC LBPAMOD (Latch BPA MODe lines) is issued, which causes the BPC mode 
lines to be latched for use in the jump net. 

PRIME RESTRICTED 



SPA 

Register SD / 

File 

Addressing 

BPD{01 :16} BPD{17:32} 

• .....--i 4~ 

_ ... .... ... .... 
....___. 
.....--i .. .... r----... .....-
....___. _ ... .... ~ 
.....--i 

~ .. .... -..... .....-
....___. 
,_......., .. .... -..... ... 
.....__. 

WRITE 
.... MCBDH ,, .. BUFFER __... 

BD .....-
0 

-..... To-FTo m - .... 
DATA .... ... 

.... MCBDL ,, Memo .. __... 
......-

4~ 
.... RAMS ... 

ry 

.... ......-
. 

.... ......-

Figure 27-1 Block Diagram of 1/0 Interface 



1/0 Interface Detailed Description 4150 Funct. Spec. 
Page 347 

6. IAG SDCPN (Set DMx Clear Priority Net) is issued, which causes BPCDCPN+ to be 
set at CS8+. This tells the controllers that the address phase is over and that all 
unserviced requests should be requested again .. All grant lines are reset. 

7. IAC RDEN is issued, which resets BPCDCPN+ at CS8+. The microcode branches on 
the mode lines .to, determine which type of DMx transfer has been requested. 

Note that IAC RDEN resets both BPCDEN+ and BPCDCPN+. 

TABLE 27-1. BPC Mode Line Decoding 

BPC Mode Lines 
OMx Modes M000+ M001+ M002+ M003+ INMOD+ 

OMO 0 0 0 0 0/1 
I 11 ego I 0 0 0 1 0/1 
I I I ego I 0 0 0 0/1 
I I I ego I 0 0 1 1 0/1 
16-b it OMA 0 0 0 0/1 
16-bit burst OMA 0 0 1 0/1 
I I legal 0 1 0 0/1 
32-bit burst OMA 0 1 1 0/1 
OMT 0 0 0 0/1 
16-bit burst OMT 0 0 1 0/1 
I 11 ego I 0 1 0 0/1 
I 11 ego I 0 1 1 0/1 
OMC. 1 0 0 0/1 
I 11 ego I 0 1 0/1 
I I I ego I 1 0 0/1 
I 11 ego I 0/1 

BPCINMOO+ = 1 imp I ies input transfer (to CPU) 
BPCINMOD+ = 0 implies output transfer (to controller) 

An i I legal request wi II cause a machine check. 

The following sections describe the data transfer when the controller requested a 

DMA/DMC/DMT/DMQ IN and then a DMA/DMC/DMT/DMQ OUT transfer. The data transfer 

phase is the sa,me for all four types of transfers. The address calculation is slightly different 

in each, and may be based on data from the register file, main memory, or from the 

peripheral controller, depending on the type of request. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 348 

27.2 DMA/DMC/DMT /DMQ IN 

DMx Control 

1. The microcode issues IAC SSTROB (Set STROBe) which is clocked at CS8+ as 
ISTRB+. This is clocked one TMCLK later, is buffered, and sent to the controller as 
BPCSTRB+. This makes the controller start driving BPD with the data to be 
transferred. 

2. The microcode sets · a:nd resets BPCDEN and latches the mode lines as discussed in 
section 27.1. This action overlaps the next address phase with the current data 
phase, which yields an overall time savings in cases when there are more DMx 
requests pending. 

3. The address calculation is done: 

• For DMA, the address is taken from the address register of the DMA register 
pair pointed to by BPA. It is written into RMA. Both the address register 
and the range register are incremented. If the incremented range register 
value is 0, BPCEOR+ is asserted by the 1/0 interface hardware. 

• For DMC, the address is taken from the first memory location pointed to by 
BPA. This a · '1ress is written into RMA. The memory location where it 
came from is updated with the incremented value. The original 
unincremented value .is compared with the value in the next memory 
location. If these values are equal, BPCEOR+ is asserted by the I/0 interface 
hardware. 

• For DMT, the address on BPA is written into RMA. BPCEOR+ is never 
asserted. 

• For DMQ, the address on BPA is the address of a Queue Control Block (QCB) 
in memory. A DMQ input transfer is analogous to the PMA ABQ (Add to 
Bottom of Queue) instruction. Queues and the ABQ instruction are discussed 
in the System Architecture Reference Guide. BPCEOR+ is asserted by the 1/0 
interface hardware if the current transfer fills the queue. 

4. The microcode is.sues IAC ENBPDIN (ENable BPD IN) to allow the BPD transceivers 
to turn on and drive from BPD toward the Write Buffer (WB). The same step 
also issues a memory write request and IAC TBPD (Trigger BPD). IAC TBPD is 
clocked at CS8+, and is used to clock the BPD data into the 74ALS646 
transceivers. The memory write request causes the S unit to drive RMA onto BB 
to be used as .the memory address as in a normal write operation. 

5. From this point on, the MC logic takes over as it would on a normal memory 
write operation with one exception. The data to be written into the WB is taken 
from BPD instead of BD. The 1/0 data is written into the write buff er and then 
proceeds to memory as does all other data. 

6. The microcode issues IAC RSTROBE (Reset STROBe), which resets BPCSTRB+. This 
tells the controller to stop driving BPD. 

PRIME RESTRICTED 



1/0 Interface Detailed Description 4150 Funct. Spec. 
Page 349 

27.3 DMA/DMC/DMT/DMQ OUT 

1. The beginning steps in DMA/DMC/DMT /DMQ OUT routines are the same as for 
DMA/DMC/DMT/DMQ IN routines. The microcode issues IAC SSTROB, overlaps 
another address phase, and does the address calculation as for the corresponding 
input operation.· 

• The address calculation for DMQ OUT is an exception. A DMQ output 
transfer is analogous to the PMA RTQ (Remove from Top of Queue) 
instruction. Queues and the RTQ instruction are discussed in the System 
Architecture Reference Guide. BPCEOR+ is asserted by the I/0 interface 
hardware if the queue is empty when the transfer begins. In this case, a 
special microcode path is taken which sends 0 to the controller as data. 

2. A memory read operation is executed in place of a memory write. 

· 3. IAC ENBPDOUT (ENable BPD OUT) is issued, which turns on the BPD transceivers 
and enables them to drive BPD. 

4. When the data returns from memory, it is handled in the normal manner (checks 
and corrects for ECCC, stale memory data replaced by the WB), and it is put into 
the normal BD transceivers and sent to the rest of the CPU. The data is not 
needed on the E or S units, so it is simply ignored. As it is being processed 
normally, it also is being clocked into the 74ALS646 BPD transceivers via signal 
TBPD+, which is generated from IAC TBPD. 

5. The microcode issues IAC RSTROBE, which resets BPCSTRB+. The controller uses 
this trailing edge to clock the data on BPD. 

27.4 Burst DMA Mode 

Burst DMA mode is basically the same as normal OMA except that four 16-bit words are 

transferred during each data phase instead of the normal one word. In order for this to 

happen, certain requirements must be met. There must be at least four words remaining to be 

transferred, and the address must be aligned on a MOD4 boundary. These conditions are 

verified by DMx microcode, using the E unit for any calculations. The result is sent to the 

EOR logic of the 1/0 interface, which will assert BPCEOR+ during the data phase if the 

burst increments ·the range register to zero. 

If the requirements are not met the DMx microcode reverts to the normal OMA .transfer 

sequence. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 350 

27.4.1 Burst DMA IN 

1. The address phase is the same as for any DMA request. 

Burst DMA Mode 

2. IAC SSTROB is issued to set BPCSTRB+. This tells the controller to send the first 
16-bit data word. 

3. IAC SBSTRB (Set Burst STRoBe) sets signal FBSTRB- at CS8+. This signal is gated 
such that BPCBSTRB+ is active during stage 8 and inactive during stage 7. Each 
trailing edge of BPCBSTRB+ causes the controller to send the next 16-bit data 
word. The first 16-bit word is clocked in a set of BPD transceivers by signal 
TBPD+, generated from IAC TBPD. 

4. The second word is clocked into another set of transceivers with signal TBPD2+, 
generated from IAC TBPD2. 

5. The third word is clocked into another transceiver by signal FW64+, generated 
from IAC W64 (Write 64 bits). This sanie microcode step starts up a normal 32-
bit memory write operation. What really happens is a 64-bit write operation from 
the BPD transceivers to the WB. IAC W64 modifies the WACK chain into a 
Super WACK (SWACK) chain to accomplish this. As the WACK chain starts up 
we already have three of the four words necessary to do the write. 

6. SW ACK chain logic clocks the fourth 16-bit data word into another set of BPD 
transceivers during Dl WACK, at the same time as it is clocking the first two 
words into the WB from the first two sets of BPD transceivers. IAC RSTROB is 
issued, which resets BPCSTRB+ and also deactivates FBSTRB- and subsequently stops 
BPCBSTRB+ from pulsing. 

7. The SW ACK chain logic writes the other two data words into the WB from the 
last two sets of BPD transceivers during D3WACK. 

27.4.2 Burst DMA OUT 

Burst DMA OUT is the same as DMA OUT, except that all four data words returned from 

memory are clocked into the BPD transceivers. They are clocked in 32 bits at a time as they 

are received from memory. These are enabled onto BPD by microcode in turn. The 

· microcode issues BPCSTRB+ and BPCBSTRB+ as it did for burst DMA IN mode. 

27.5 32-Bit Burst DMA Mode 

The 4150 was to have supported this new I/O mode which transfers twice as much data per 

data phase as regular burst mode. The implementation of this mode ran into some problems. 

The hardware designed into the I/O interface to support this mode was shown to be 

insufficient to yield the desired performance during the performance testing phase of the 

processor's development. It should be stressed that the mode works, and that the 4150 can 

PRIME RESTRICTED 



1/0 Interface Detailed Description 4150 Funct. Spec. 
Page 351 

support it. However, since the performance improvement of this mode over regular burst 

mode was only 10 - 15%, the mode was shut off. This was accomplished by making the 

microcode go down the normal burst mode path for all wide word burst mode requests. 

Should there be a midlife kicker to this machine, this mode could . be made active and 

productive by the addition of three 74ALS646s to the VO interface. 

27.6 Extended DMA 

There is a new 1/0 mode called extended DMA. This new mode allows channel reg.lsters to 

exist in memory or in the register file for DMA transfers. If the BPA address is greater than 

31 decimal (37 octal), the channel pair is in memory. If the address is equal or less than 31, 

the address is in the register file. The channel pairs must reside in the first four segments. 

Logic looks at the upper 13 of the 18 BPA address bits, and if they are all zero, the channel 

pair resides in the register file as previous DMA did. If any of these upper bits are non-zero, 

the channel pair is in memory. Extended DMA transf~rs proceed exactly like normal DMA 

transfers, except that each address phase is longer because of the fetch of the channel pair 

from memory. 

27.7 Programmed 1/0 

There are four Programmed 1/0 (PIO) instructions which may be executed by the CPU: 

1. OCP - Output Control Pulse 

2. OT A - Output from the A register of the CPU 

3. INA - Input to the A register of the CPU 

4. SKS - Skip if Ready Set 

The microcode enables the BPA transceivers to drive BPA with 16 bits which contain the 

opcode, function code, and controller address. It then asserts signal BPCPIO+, which tells all 

controllers to decode the last 6 BPA bits to see if it is its address. (Each controller has a 

hard-wired 6-bit .device address for the purposes of ,this comparison. No two controllers are 

allowed to have. the same device address.) The controller that detects its own address then 

drives BPCREDY-. If a controller responds ready to an INA, OTA, or SKS, the CPU drives 

BPCSTRB+, which causes the controller to execute the command. The microcode then resets 

BPCSTRB+ and BPCPIO+. The CPU skips the next instruction if a controller asserted 

BPCREDY-. 

The data destined for the controller on an OTA is placed into the BPD transceivers and 

enabled onto BPD while BPCSTRB+ is active. IAC IODAT (I/O DATa) allows the BD 

PRIME RESTRICTED 



4150 Functional Specification Programmed 1/0 
Page 352 

transceivers to pass live data from the E unit to BPD, bypassing the internal transceiver 

registers. IODA T is used for both OT A and INA instructions. During an OT A instruction, 

IAC OTA enables both the BPA and BPD drivers to drive the 110 bus. 

27 .8 Parity Checking 

Parity is checked on the pata placed onto MCBD by the BPD transceivers during DMx input 

transfers. This operation is similar to that which takes place during normal CPU write 

operations. The parity checkers check for good parity as the data is being written into the 

WB RAMs. One minor difference is that during a burst input operation the parity is checked 

twice, once as the first 32 bits are being written, and again as the second 32 bits are written. 

On a PIO INA instruction the parity is checked on BD as it is transferred from the 1/0 

interface logic to the E unit. 

On output DMx and PIO OTA transfers, parity is checked on BPD as signal BPCSTRB+ is 

being reset. It is not checked on BURST transfers as each BURST controller checks parity 

anyway. 

27 .9 Required 1/0 Con troll er Revision Levels 

Certain 110 controllers must be at a specified revision level to work in a 4150 or 4050 

system. Table 27-2 shov,rs these requirements. 

TABLE 27-2. I/O Controller Required Revision Levels 

Board Name Slang Name Model Number Part Number Revision 

IDC3 Koala 6580 TLA10019-001 R 
MSTC Minnow 2382-003 TLA10234-001 R 
MPC4 7010T SPL91521-91 H 

STSC Streamer 2301-901 AA 
A SYNC LAC ICS3 CLAC304 ESA10063-001 c 
BMTC Mar Ii n 2023-001 N 
PNC II 2384-001 G 

27.10 Timing Diagrams 

PRIME RESTRICTED 



I/O Interface Detailed Description 4150 Funct. Spec. 
Page 353 

FIG. 27-2. BPCSTRB and BPCBSTRB Timing 

TMCLK+ -1 1-1 1-1 1-1 1-1 1-1 IJ /_I 1-1 1-1 1-1 1-1 

FENEOB+ -1 1-'-1 1--1 1___; 1-1 1---1 1-1 
___;I 

CS8+ I. I I 
I 

BPCSTRB+ (CS8 + TMCLK) 

BPCBSTR8+ I__/ I (...CS8) 1--

FIG. 27-3. 64 Bit Write Timing (SW ACK Chain) 

TMCLK+ -1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 

FENEOB+ _1 1-1 1_1 1-1 1-1 1-1 

WACK+ 

01WACK+ 

02WACK+ 

TWBDH/L- 1--1 1--1 

27.11 9755 Comparisons 

The logic is implemented completely differently from the 9755 and all other Prime CPUs. 

The differences ate so vast that it is easier to list the similarities: 

1. Both machines transfer data between main memory and 1/0 controllers using a 
combination of hardware and microcode control. 

27.12 Critical Paths 

During an input burst · mode operation . the SW ACK. chain writes 64 bits into the WB RAMs 

in the same time a normal write does 32 bits. The timing is critical throughout this 

operation. Refer to Figure 27-3. After the first 32 bits are written at the end of 

DlWACK+ three critical things must happen in the next beat: 

1. Hold time must be met for the data just written. 

2. The least significant bit of the WB pointer must be changed. 

3. The BPD drivers which were driving the first 32 bits must be shut off, and the 
BPD transceivers with the second 32 bits must be turned on. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 354 

27.13 Partitioning 

Critical Paths 

The BPA interface and I/O arbitration logic (BPC request and grant lines) are implemented on 

the E board, which is discussed in chapter 32. The rest of the BPC interface, the BPD 

interface, and the EOR hardware are implemented on the CMI board, which is discussed in 

chapter 30. 

PRIME RESTRICTED 



Bus D Arbitration Detailed Description 4150 Funct. Spec. 
Page 355 

28. Bus D Arbitration Detailed Description 

The Bus D (BD) arbitration logic is needed to prevent TTL tristate clashes. BD can be driven 

by any CPU unit, but the E unit is normally driving the bus. To prevent any tristate 

clashes, the E unit .always stops driving BD one TMCLK+ -before some other unit needs 

control of the bus. When the other unit no longer - rie~ds control of the bus, that unit stops 

driving BD at CS7+, ·and the E unit starts driving at least one TMCLK later. 

28.1 E Unit 

The signal EUTOBD- tells the E unit that no other unit is driving BD and the E unit can 

now drive it. In most situations the E unit is driving the bus. 

28.2 MC Unit 

The signal MCTOBD- goes from the arbitration logic to the MC. This signal tells the ' 

that no other unit is driving BD and the MC can now drive it. The timing for this tram 

is shown in Figure 28-1. 

FIG. 28-1. Transfer of BD Control, E to MC 

TMCLK+ LI ,_, ,_, ,_, ,_, 1-1 ,_, ,_, ,_, 1-1 ,_, ,_, ,_, u 
CS7+ I I 

EUTOBD- ,_ 
MCTOBD-

CS8+ 
t t 
t CMI DRIVES BO t 
t t 

28.3 S Unit 

The signal ISONBD- goes from the arbitration logic to the S unit. This signal tells the S 

unit that no other unit is driving BD and the S unit can now drive the bus. Figure 28-2 

shows the timing of this transfer. 

PRIME RESTRICTED 



4150 Functional Specification S Unit 
Page 356 

28.4 BPA 

FIG. 28-2. Transfer of BD Control, E to S 

- -TMCLK+ '-' '-' ,_, ,_, ,_, ,_, '-' ,_, 1-1 ,_, ,_, ,_, '-' ,_, 

CS7+ I __ , -. 

EUTOBD- --1 

ISONBD-

CS8+ 
t 
t 
t 

IS DRIVES BD 
t 

t 
t 

The signal BPA TOBD- tells the 110 interface logic that no one else is driving BD, and tb1 

BPA can be placed on BD. The BPA logic only drives BD during DMx address phase. I 

only drives BDH{1:16}+ and BDL{15:16}+, so parity can only be checked on BDL during t; .• : 

time. Figure 28-3 shows the timing of the control transfer. 

FIG. 28-3. Transfer of BD Control, E to BPA 

TMCLK+ ,_, ,_, ,_, ,_, ,_, 
'-' 

,_, ,_, LI ,_, ,_, 1-1 1-1 1-1 

CS7+ I I I 

CS8+ I 

BPATOBD-

EUTOBD-
t BPA t 
t DRIVES t 
t BD t 

28.S PDA 

The PDA can drive. BD during a FORCEBCY operation, or when loading either memory or the 

decode net. During this time the PDA drives only BDH{01:16}+, so BD parity must not be 

checked at this time. Normally, if no other unit is driving BD, the E unit takes control of 

the bus. During a BDH branch, BD is selected as the ALEG of the ALU, causing the E unit 

to stop driving BD. By default, the PDA drives BDH data. Figure 28-4 shows the timing of 

this control transfer. 

PRIME RESTRICTED 



Bus D Arbitration Detailed Description 4150 Funct. Spec. 

FIG. 28-4. Transfer of BD Control, E to PDA 

TMCLK+ LI LI LI 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 LI 

CS7+ I I - I 

PDAFBCY-

EUTOBD- --------------- 1-___ , 
css+ 

28.6 VLSI Usage 

t PDA t 

tDRIVES t 
t BO t 

No VLSI chips are used in the implementation of the BD arbitration logic. 

28. 7 Critical Paths 

Page 357 

The critical path through the BD arbitration logic starts at CS7+ and ends half a beat later. 

The current BD driver must be shut off in this time to prevent tristate clashes with the new 

BD driver, which will be getting on the bus starting at CS7.5+ 

28.8 9755 Comparisons 

The 9755 was an ECL machine. No TTL tristate clashes could occur so there was no BD 

arbitration logic. 

28.9 Partitioning 

The BD arbitration logic is implemented on the E board, which is discussed in chapter 32. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 358 

PRIME RESTRICTED 



Processor Diagnostic Aid Detailed Description 4150 Funct. Spec. 
Page 359 

29. Processor Diagnostic Aid Detailed Description 

This chapter details the operation of the hardware component of the PDA. Details of the 

host software functionality can be found in the PDA Host User's Guide. 

The most useful feature of the PDA is to dynamically capture the the state of an executing 

machine. 

The PDA can be divided into several functional parts: stack, halts/delays, event counter, 

control store interface, sense registers, BDH interface, and the microprocessor. 

PRIME RESTRICTED 



D 

c 

B 

A 

8 
l'OS8lll llfCKPLAJE 

l61l 

BUS 

FLIP!! 

TtE tBI BITS l!CUllE ~ 

r"OfletT .EHOLO.ll1Cl..O.GtD...D.&'!!1-JB. 
IDl.EDL.BBH.BBL 
11'1.RTNFL. ItfflTK. TACttL. 
RPTRRP. ~. Sim:IRT .. l!OSEL.SDE 

7 

161! 

fERTa.li:-

6 

AODRESf' LiLCOllE 
ens 

10 i STACK AOORESS 
roJNTER 

lll2 

~~f,'._ 

Th3~fi~ a 

5 

J[q 

Z88 ~FFERED DATA 
BUS 

[. 

q 3 

Z-89A CPU 

llB 

~ 
~~ ... 

1
.. 

1 1 
l611x8 PR~:. j i-:J'FF 

r:::i ,..,._7FFF ~ I 
z 
8 
0 

..-~~~~~,E""" 

REGISTER 

llD<ESS 

IECOC£ 
113 

~rnNTmMru 
ENCS0-1B 

ENJRC!L CLOCKS 
GENEOll 

Ttt:LK 118 

""' 
fTl•CEllCT 

8 7 

BERT .CLOCKS 

FE!EllBFffl --

CONTRllt 9lOOE 

I MDII< 

IN'lffiFACE 

1113 

!DJ 
IHTERFR;E 

111'1 

lBl 

S'00-07t 

BQi.RfSS fm'JJF 

6 5 

Figure 29-1 

4 

Ptfl 

COOTR!L 

REGISTER 

ll2 

Block Diagram of PnA 

32 

Ill 

tft.T/UMT 

LOOIC 

Elfl 

FENEOO 

3 

2 

ENSRl+ 

LOSRlH.+ 

LDSR1L~ 

POOBCY3-16 

ENS!'2• 

LOSR2H~ 

• 1' LOSR2Lt 

PIH3CT3-l6 ·I 

~ 
EN!ll4Bl-4 
Cl"PSRllel p4 

SR'!BJ -q 

2 

SENSE 

REGlS:ER I SRLEO 

SENSE 

REGlSTER 

2 

SENSE 

REGISTER 

3 

SENSE 

REGISTER 

,.. 

I SRZEa 

104 

ISR3EO .. 
JM 

SR4EO 

ll'I 

LBO PACE lfllll 

PR11£ CCH'UTER. Ir«:. 
FRAlll-. -· 

POSSUl1 Pm BL.00< 

DlllGRftl 



Processor Diagnostic Aid Detailed Description 4150 Funct. Spec. 
Page 361 

29.1 Stack 

The stack on the PDA is a pre-increment stack, meaning that the stack address increments 

prior to the write pulse. The write pulse is only inhibited ·during a stack read cycle and 

therefore is always happening unless a stack read is in progress. If there are any inhibits on 

any particular beat the stack address remains the same for ihe next .. beat, .overwriting the 

inhibited data. 

The stack and its associated logic comprise the most critical path in the PDA. Once every beat 

the logic on the PDA must sample the state of the CPU busses, store that data into the stack 

RAMs and sample data for the next beat. Due to the timing involved, the data is stored in 

registers which are clocked by BEATCLOCK+, a PDA version of FENEOB+. Another version of 

BEATCLOCK+ called STKCLK+ is used to clock the stack address counters that determine the 

stack address. 

Due to the possibility of skew, part delay and write pulse delay, meeting worse case design 

constraints was accomplished only by considerable tuning of the wr~te pulse. 

29.1.1 Inhibits 

Stack inhibits are used to effectively get more stack depth by gating off the clock to the 

stack address counter during certain conditions. 

29.1.1.1 Microcode Label Trace 

The PDA can be made to trace microcode labels only, by only allowing stack address counter 

to increment when TRCML+ is active. In this case only the beats during which TRCML+ is 

active will be stored in the stack. 

29.1.1.2 EHOLD I GHOLD 

The PDA can Inhibit on GHOLD or Inhibit on EHOLD which prevents the stack address 

counter from clocking during a GHOLD+ or an EHOLD+ condition. 

GHOLD+ is a one beat signal that happens at the beginning of each cache miss. EHOLD+ is a 

signal that remains on for the duration of a cache miss or other pipeline hold condition. 

29.1.1.3 Multi-Microcode 

The operator can set, an Inhibit on Multi-Microcode condition, in which case the i;tack 

address counter is prevented from clocking whenever there is no INIT- clock. This effectively 

allows only the microcode's PMA entry points to appear in the stack. All other microcode is 

inhibited from the stack. It appears that the stack is saving only the PMA level instructions. 

Certain entry points do not indicate the true instruction under execution. Examples of this are 

indirection and shared PMA entry points such as BCOM16. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 362 

29.1.2 Storing Data into the Stack 

Stack 

74AS574s take a snapshot of the backplane every beat. Every rising edge of BEATCLOCK+ 

makes these devices clock the data and keep it steady for the proper setup and hold times for 

the stack RAMs. Some of these registers feed the data through 2 to 1 muxes. This allows 

some testing of the stack RAMs by feeding known good diagnostic data into the data inputs 

of the stack RAMs (lK x ,4 static RAMs with separate input and output pins). 

The clock signals are sampled by 74AS194s at TMCLK+ with a clock enable connected to 

FENEOBFRA+, the free running enable end of beat. BBH and BBL need special treatment 

because they are driven onto the backplane by a VLSI chip. The PDA uses 74ALS573s to 

latch this data before the end of beat and 74ALS574 registers to hold this data at the end of 

beat. This technique is also used on other less critical signals. 

29.1.3 Reading Data from the Stack 

The PDA stack RAM outputs are tristated together in groups of 5. These groups go through a 

4 to 1 mux onto the Z80 data bus. The read of the stack is mu.ch less critical than the 

write, since it is done by the Z80 at its speed, and the RAMs are very fast relative to the 

Z80. The operation of reading the stack is done by disabling the write pulse Cunder Z80 

control), incrementing the stack once (done by a Z80 command), and reading the 20 bytes of 

data at that stack location. Reading each of the 20 bytes is done by mapped memory on the 

Z80 microprocessor. The Z80 then increments the stack address and the operation continues 

until the entire stack is read. 

29.2 Sense Registers 

The sense registers on the 4150 PDA detect when a specific condition exists in the CPU. This 

allows the operator to halt the CPU to determine why that condition exists, or to trigger the 

stack which will make information about how the machine ended up in that state available 

to the operator. 

29.2.1 SRl and SR2 

Sense registers 1 and 2 have the ability to signal a match condition when they determine that 

a specific microcode· address has been executed. Some microcode address of interest is placed in 

the sense register, which is actually a set of 8-bit comparators with latches on the input. 

When the microcode address (or BCY) of interest appears at the inputs, it signals the match 

on the output and is registered. This registered output is used in the halt and delay circuits. 

PRIME RESTRICTED 



Processor Diagnostic Aid Detailed Description 4150 Funct. Spec. 
Page 363 

29.2.2 SR3 

Sense register 3 will signal the halt/delay circuit that a virtual address match has occurred. 

SR3 is connected to the Bus Virtual Memory Address (BVMA), and can be set to examine EA 

(BVMA during TRCML+) or RP (BVMA during CSl+). RP values by definition must be 

even, that is, the least significant bit must be zero. 

29.2.3 SR4 

Sense register 4 is the sense register you've been wa1tmg for. Until now, the PDA had to 

determine in advance what the operator might want to compare data against. Now, SR4 has 

inputs coming from all the CPU boards, allowing SR4 to look at any signal in the machine. 

Each CPU board has an open collector driver that receives input from testpoints which are 

placed strategically around the board. The output of the driver is connected in a wired-AND 

configuration with the other CPU boards on the backplane. These four signals feed into the 

PDA and become SR4. The operator has the option of setting a trigger or halt based on any 

SR4 pattern. 

Caution: Wires left connected to these binding posts must be removed in any production 

systems. This is due to the fact that on some occasion, a board that has something wired to it 

may be returned for work and at that time a technician may wire something else into SR4 

and this may cause misleading results with 2 or more signals driving SR4. 

29.3 Halts and Delays 

The halt and delay triggering in the 4150 PDA is functionally equivalent to previous 

machines. 

29.3.1 Halts 

Halts happen when the operator sets a halt condition on some sense register match. When this 

condition is set, the Halt/Delay logic generates a signal called GPDAHALT-, which goes to a 

register. The clocked version, PDAHALT-, goes to all the CPU boards, which suspends all 

clocks except TMCLK+ and those required for memory refresh. 

29.3.2 Delays 

Delays work in much the same way as halts except the Halt/Delay logic generates 

GDLYTRIG+ (instead. of GPDAHALT-), which starts the delay counter. When the delay 

counter reaches zero the stack address counter stops issuing new stack addresses, and the PDA 

holds the stack data. Write pulses continue to occur, continually overwriting the last pre­

incremented address. The last entry in every triggered stack dump is always trash because of 

this action. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 364 

29.4 Event Counter 

Halts and Delays 

The event counter in the 4150 PDA allows the operator two basic operations. First, it allows 

the operator to trigger the stack or halt the CPU when, for example, thirty-five iterations of 

LDA have happened. The other operation it can do is to count the number of LDAs that 

have been executed. 

The counted object could ·be such things as SR1, SR2, SR3, SR4 matches, GHOLDs, or DMx 

operations. One unused input is available on the multiplexer that controls this counted event. 

This allows seat-of-the-pants debug; if the operator wishes to see some other event counted, 

s/he can add one wire and see the desired count. 

Warning: The event counter counts beats, not occurrences. For example, if it is set to count 

occurrences of DMx, and one DMx operation occurs during which the signal FDMX+ is active 

for 15 beats, the event counter will be incremented by 15, not 1. 

29.4.1 Loading 

The event counter is loaded from the Z80 bus, and it requires that a single enable end of 

beat (SENEOB+) be generated by the microprocessor. 

29.4.2 Reading 

The Z80 in the PDA can read the value of the event counter by doing a read from the 

event counter memory mapped address. There are 4 bytes of data in the event counter and 

the microprocessor needs to do memory mapped reads from four different locations. 

29.4.3 Selecting Events to Count 

The event counter incorporates a multiplexer as described above to enable the counter to count 

a variety of specific events. The output of this mux is gated into the clock circuits of the 

counter to only allow a clock pulse into the counter when the mux sees the prescribed event. 

29.S Control Store Interface 

The control store interface allows the PDA to load and read control store. It employs a 

parallel tristate interface and four open collector control lines for control. 

29.5.1 Reading/Writing Control Store 

The PDA can read and write the control store. To do this, it first asserts DPOFF-A and then 

SYSCLR+B (2 of the control lines). This tells the control store that an access is to occur. 

There are four open collector control lines that the control store unit looks at to determine 

PRIME RESTRICTED 



Processor Diagnostic Aid Detailed Description 4150 Funct. Spec. 
Page 365 

which operation to do. These control lines are to be physically connected to identical control 

lines coming from the diagnostic processor. These control lines are made up of three control 

bits that determine the operation to be performed by the CS unit, and one clock signal which 

is sent whenever the data on the DPDAT A bus becomes valid. The control signals are be 

manipulated by Z80 software. The function of DPOFF-A is to tell the Diagnostic Processor 

that the PDA has control of the bus, and that it should not interpret the switching on the 

control lines as requests from the CPU. It also forces the Diagnostic Processor to force its 

tristate data bus drivers into their high impedance state. 

The four control signals are CNTl, CNT2, CNT3, and DPCLOCK. Their decoding is explained 

in Table 29-0. The signals are left in a high state when unused due to their open collector 

nature. 

Operation CNT1 CNT2 CNT3 DPCLOCK 
CPUACK+A DPFULL+A CPUREo+A DPREo+A 

NOP 1 + 
load RBCYL 0 + 
Load RBCYH 1 0 0 + 
Read CS 0 1 + 
Write CS 1 1 0 + 
Begin 0 0 + 
Unused 0 0 0 + 
Unused 0 0 + 

TABLE 29-1. Control Store Command Table 

Further details of the Diagnostic Processor interface are discussed in chapter 16. 

29.6 BDH Interface 

The BDH interface allows the PDA to load CPU memory, decode net, and force microcode 

execution address (FORCEBCY). Much of what is done with this interface is under control of 

the CPU microcode. In order to initiate any operation of this interface, the PDA asserts 

PDAFRBCY- to the CPU. This signals the CS to vector to control store location '77. At this 

location, the microcode reads BDH and operates on its value. During this time the PDA takes 

control of BDH and drives it with a command which tells the CPU what operation it is 

requesting. 

When the PD.A decides to use the BDH interface for some function, it starts a chairi of 

events that synchronizes with TRCML+ and drives the signal PDAFRBCY- to the CPU for one 

beat. After two CS8+ clocks occur, the PDA is driving BDH to the E unit for it to operate 

on. The next CS7+ ·will cause the PDA to release BDH and cause execution to take place by 

. microcode control. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 366 

FIG. 29-2. 

F I 
0 I 
R I 
c I 
E' I 
B I 
.c I 
YI 

I 

PDA BDH Interface Fields 

c D 
0 A 
M T 
M A 
A 
N 
D 

Bit Number I 1 2 I 3 I 4 I s 6 I 7 I s 9 - 16 

BDH COMMAND BYTE 

Command byte: 

$01 
$02 
$03 
$10 
$11 

$12 

DATA BYTE 

8 9 16 

Doto byte interpreted as: 

$dd = high address byte 
$dd low address byte 
$dd = high data byte 
$dd = low data byte 
$xx= don't care; 

write data to memory; 
increment memory address 

$dd = last data byte for DNET; 
write to DNET; 
increment DNET address 

NOTE: DNET is 20 bits wide; therefore three bytes are 
needed ta write a word. Only the top nibble of 
the third byte is used. 

NOTE: When the high bit of BDH is set, the rest of BDH 
is interpreted as a BCY location for a BDH branch: 

BDH1 
BDH2-8 gets latched to BCYH 
BDH10-16 = gets latched to BCYL 

TABLE 29-2. Table of PDA BDH Commands 

29.6.1 FORCEBCY 

BDH Interface 

If the PDA puts a "l" in the most significant bit of BDH the microcode interprets the 

command as a FORCEBCY. In this case, the least significant 14 bits, BDH 3 - 16, are 

interpreted as a microcode address, and the microsequencer will then vector off to that address. 

PRIME RESTRICTED 



Processor Diagnostic Aid Detailed Description 4150 Funct. Spec. 
Page 367 

29.6.2 Load Decode Net 

The load of the decode net is executed in three steps, load high address, load low address, and 

load data. 

29.6.2.1 Load High AO.dress 

Loading the decode net is accomplished by first signalling to the microcode that a decode net 

address is to be specified. The code for loading the high side of the address is in bits 6 - 8. 

Bits 9 - 16 contain the high side of the decode net address to be loaded. 

29.6.2.2 Load Low Address 

The low side address is specified in a similar manner. The command for loading low side 

address is in bits 6 - 8, and the address bits are in data bits 9 - 16 again. 

29.6.2.3 Load Data 

The decode net data is loaded in a similar fashion by asserting the command 'Load first 

decode net byte', and by sending the most significant byte of the decode net data in the data 

area. This operation is repeated by loading the second and third decode net data bytes (the 

decode net has 20 bits per entry). When asserting the command for the third byte of decode 

net data, the decode net data is taken from temporary registers in the CPU and actually 

placed in the decode net. This happens under microcode control. The microcode then 

increments the decode net address so that the PDA doesn't have to load the next address. 

29.6.3 Load Memory 

To load memory from the PDA a similar operation to loading the decode net is performed. 

The differences are: the commands for loading the address are different, and there are only 2 

data bytes for each address. The second byte writes the data to memory and increments the 

address pointer under· microcode cbntrol. 

29.7 Microprocessor 

As previously mentioned, the 4150 PDA uses a Z80 microprocessor operating at a clock speed 

of 2.5 MHz for a resultant cycle time of 400 nanoseconds. The following is the memory 

mapping for the microprocessor. 

PDASTAT0 EQU $E000 Read only 
PDASTAT1 EQU $E001 II 

CNTR1. EQU $E002 Write On I y 
CNTR2 EQU $E003 
CNTR3 EQU $E004 II 

CNTR4 EQU $E005 
HSR1H EQU $E008 
HNEWCLK EQU $E009 

PRIME RESTRICTED 



4150 Functional Specification Microprocessor 
Page 368 

HSR1L EQU $E00A 
HSR2H EOU $E008 
LDBDHL EOU $E00C 
HSR2L EQU $E00D 
RDCPDAT EOU $E00E Read Only 
HSR.381 EQU $E010 Write On I y 
HSR.382 EQU $E011 
HSR.383 EQU $E012 
HSR.384 EQU $E013 
SNDCPDAT EQU $E014 
CLKCPDAT EOU $E015 
ENCSCTRL EQU $E016 
CNTR5 EQU $E017 
EX DH NH EQU $E018 
EXDHNL EQU $E01C 
LD8DHH EQU $E01D 
ENDLY EQU $E01E 
RESET EQU $E01 F 
STACK EQU $E020 Rea Only 
8YTE01 EOU $E020 
8YTE02 EQU $E021 
8YTE03 EOU $E022 
8YTE04 EQU $E023 
8YTE05 EQU $E024 
BYTE06 EQU $E025 
8YTE07 EQU $E026 
BYTE08 EQU $E027 
BYTE09 EOU $E028 
BYTE10 EQU $E029 
8YTE11 EQU $E02A 
8YTE12 EQU $E028 
8YTE13 EQU $E02C 
8YTE14 EQU $E02D 
8YTE15 EQU $E02E 
8YTE16 EQU $E02F 
8YTE17 EQU $E030 
8YTE18 EQU $E031 
8YTE19 EQU $E032 
8YTE20 EQU $E033 
EN EXT EQU $E038 Write Only 
DLYCTH EQU $E03C 
DLYCTL EQU $E03D 
PDAREQ EQU $E03E 
LDEC1 EQU $E040 
LDEC2 EOU $E041 
LDEC.3 EQU $E042 
LDEC4 EQU $E043 
FRCWRT EQU $E044 
RDEC1 EQU $E048 Read Only 
RDEC2 EQU $E049 
RDEC.3 EQU $E04A 
RDEC4 EOU $E048 
HSR4 EOU $E04C Write Only 
FR8CY EOU $E04D 
SENE08 EQU $E04E 

The Seri a I Ports ore configured as f o I I ows: 

STANDALONE PORT READ DATA A000 
STANDALONE PORT READ STATUS A001 
STANDALONE PORT READ MODE REG - A002 

PRIME RESTRICTED 



Proce~sor Diagnostic Aid Detailed Description 4150 Funct. Spec. 
Page 369. 

STANDALONE PORT READ COMMAND - A003 
STANDALONE PORT WRITE DATA A004 
STANDALONE PORT WRITE STATUS - A005 
STANDALONE PORT WRITE MODE A006 
STANDALONE PORT WRITE COMMAND - A007 

HOST PORT READ l;>ATA C000 
HOST PORT READ STATUS C001 
HOST PORT READ MODE REG - C002 
HOST PORT READ COMMAND - C003 
HOST PORT WRITE DATA C004 
HOST PORT WRITE STATUS - C005 
HOST PORT WRITE MODE C006 
HOST PORT WRITE COMMAND - C007 

29.8 PDA Configurations 

The 4150 PDA can be configured in a variety of fashions. 

29.8.1 PDA Debug Configuration 

This typically will use a Mink Diagnostic Processor, an assignable line, and a terminal. The 

stand alone port of the PDA is set up as a debug port. From this port, which is accessed 

using the Mink 'MO PDA' command, a variety of debug routines that aid in diagnosing PDA 

problems . are available. The assignable line can be used for verifying that communication is 

possible between the host system and the PDA board. 

The self diagnostics that are available from the stand-alone port are described below: 

29.8.1.1 PDA Self Diagnostics 

· The· PDA supports self diagnostics via the stand alone port that is accessible via the Mink's 

'MO PDA' command. If the CPU is running and executing functional code, the operator can 

type 'VERY H' or 'VERY L' once s/he has the PDA> prompt. This will cause the PDA self 

diagnostics to run. The H argument for the VERY command means that the user wants the 

diagnostics to stop when an error is encountered, and the L argument means that the operator 

wants the PDA to loop on the error test, thereby allowing a technician to find the source of 

the problem. PDA stand alone code will print an error message on the · screen indicating the 

circuit in error and will give the technician ideas on where to start. 

The following are the possible PDA error messages while running VERY: 

• Delay Counter Carry Out Test Failed. Check for inability to load. 

• Memory Test Failed. 

• Sense Register Test Failed. Check for functional microcode running first. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 370 

• SRl TEST FAILED. 

• SR2 TEST FAILED. 

• Delay Trigger Test Failed. Check for proper clocks. 

• Event Counter Test Failed. 

• End of pass. 

• Verify passed. 

• Verify failed. 

29.8.2 Manufacturing CPU Debug Configuration 

PDA Configurations 

The PDA requires an assignable AMLC line from a host CPU which is executing the PDA 

HOST CO[,E. Connected to this host CPU will be a PT200 terminal. The PT200 is needed due 

to host code dependency on its 132 column format. 

29.8.3 Customer or Field System Configuration 

If a customer system or a system at some other field site has another known good system, 

then that site can do a similar setup as the manufacturing configuration. If this system is 

the only one available and it requires the use of a PDA, the PDA can be inserted into the 

system under test. The host code and microcode database can be installed on the system under 

test and an assignable line from the system under test must be connected to the PDA. A 

phantom user can set up the conditions under which the PDA should trigger, and it can then 

be left for the offending error to happen. At this point, presumably, the system has halted, 

and once the system is restarted, the system can initiate a process to get the stack dump 

information and store it in a file. The stack dump of the offending error can be used to 

determine the problem. 

The PDA will retain the stack dump information in all cases unless, of course, the power has 

been removed from the system. 

29.9 How to Debug the PDA 

The debug station for the 4150 PDA should include the following: 

• PT200 terminal 

• Z80 emulator 

PRIME RESTRICTED 



Processor Diagnostic Aid Detailed Description 4150 Funct. Spec. 
Page 371 

• Mink Diagnostic Processor 

• Fully functional 4150 CPU 

The following is the progression of steps in verifying PDA functionality: 

• Verify ZSO executes in wait loop 

• Verify stand alone communication via Diagnostic Processor. 

• Verify communication status from host system. 

• Update and load control store from PDA and determine that it in fact is loaded 
into control store by using Diagnostic Processor "MO ECS" command. 

• Execute PDA self verify tests from Diagnostic Processor terminal. 

• Start system executing microcode and observe stack dumps. 

• Verify sense registers 1, 2, and 4 in both halt and trigger modes. 

• Verify SR3 operation by getting virtual memory addresses changing through 
diagnostics 

• Test GBEA T functionality by halting CPU and examining stack dumps 

29.10 Timing Diagrams 

PRIME RESTRICTED 



4150 Functional Specification 
Page 372 

TMCLK+ 

GWP+ _J 

GWP- I 
DLYBEAT+ _J 

DLYBEAT- I 
DLY44.5NS-

WP-A 

DATA VALID x x x 

FIG. 29-3. PDA Stack Write Pulse Timing 

29.11 Critical Paths 

Timing Diagrams 

I 

L 

x x 

The critical paths on the 4150 PDA are the stack write pulse, the setup and hold times on 

the stack, and the halt path from a sense register match to the issuance of PDAHALT-. 

29.11.1 Stack Write Cycle 

The stack write cycle has proven to be the most critical path in the PDA. The path 

involves sampling data from the backplane and the rest of the CPU and storing it into 

registers while the address for the stack becomes stable. At this point, the write pulse, which 

is shaped by the use of delay lines, stores the data into the stack RAM. 

PRIME RESTRICTED 



Processor Diagnostic Aid Detailed Description 4150 Funct. Spec. 
Page 373 

29.11.2 Halt Path 

The timing from the sense register match to finally result in the PDAHALT- signal going 

active in 2 beats is a major path. 

29.11.3 Trigger Path 

This path involves getting a sense register match to result in a stack trigger in two beats. 

29.12 VLSI Usage 

No VLSis are used in the 4150 PDA. 

29.13 9755 Comparisons 

29.13.1 Self Diagnostic Mode 

The 4150 PDA does not support stand alone functionality as the . 9755 PEP did. It does 

support self diagnostics. 

29.13.2 Stack 

The 4150 PDA uses a lK deep stack in contrast with the 9755 which has a 256 location 

stack. The stack uses Random Access Memory with separate I/0 pins (AMD9150). 

29.13.3 Trigger Conditions 

29.13.3.1 SR2 Enables SR3 (New) 

This new halt/trigger condition is a combination of an SR3 match enabled by an SR2 match. 

This provides the function of halting/triggering on a match of both the Effective addresses 

and BCY. For example, the PDA can halt the machine on any specific instruction that 

references a predefined effective address. 

29.13.3.2 SRI Enables SR2 (New) 

This new condition allows the operator to halt/trigger the stack on the occurrence of an SR2 

enabled by an SR1 match. This uses a registered SR1 match signal, that cannot be cleared 

until a RESET- becomes active, logically ANDed with a live SR2 match. This is a new 

feature in the 4150 PDA. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 374 

29.13.3.3 SR1 Logically ANDed with SR4 (Deleted) 

9755 Comparisons 

There is a capability in the 9755 FEP to halt/trigger on the occurrence of an SR2 match 

logically ANDed with an SR4 match. This will not be included in the 4150 PDA. 

29.13.4 Event Counter 

The 4150 PDA has an Event Counter. An event counter is a new feature to this design. 

29.13.5 Power Up Circuit 

The 4150 PDA has a circuit that disables all tristate busses on power up and manual reset. It 

does NOT disable the Z80 RAM. This tristate condition can be disabled with a single Z80 

write to a known location. 

29.13.6 BVMA Interface 

The BEMA bus on a 9755 and the BVMA bus on a 4150 are basically the same thing. 

Similarly, the 4150 PDA has BVMA in the stack and as an input to sense register 3 as in 

the 9755. The BVMA bus is active low~ 

29.14 Partitioning 

All functions described in this chapter are implemented on the PDA board. The PDA board 

is discussed in chapter 33. 

PRIME RESTRICTED 



CMI Board DiscussiOn 4150 Funct. Spec. 
Page 375 

30. CMI Board Discussion 

The CMI board contains logic from three major functional units from which it derives its 

name: 

• Q>ntrol Store logic, 

• Memory Controller logic, and 

• !nput/Output (I/O) logic. 

The CMI board also contains the Diagnostic Processor (DP) interface, as well as parts of the 

PCU, the decode net, and Effective Address Formation (EAF) logic. These functions are 

described in detail in the chapters cited below: 

• Control Store - chapter 19 

• Memory Control - chapter 26 

• I/O - chapter 27 

• Diagnostic Processor (DP) Interface - chapter 16 

• EAF logic - chapter 21 

• Decode net - chapter 20 

• PCU - chapter 1 7 .2 

The CMI board is a combination of the 9755 CS board, which contains the Control Store and 

1/0 logic, the MC board, which contains the Memory Controller logic, and miscellaneous logic 

from the I board. 

PRIME RESTRICTED 



BB 

32 

26 

MEMORY 

TIMER 

BO ., I ... 

ADDRESS 
WRITE 

BUFFER 

REFRESH 1 .,. 

MEMORY 
ADDRESS 

MA 

LOPCD 

DNA 
DECODE-. 

NET 
RAMS 

u-SEQ 
VLSI 

FDA 

BCV 

TOPDA 

cs 
RAMS 

I I • MD 

--TOE,IS __. 
D RCC I ... RCM 

LOAD /(,ERIFY .__,,__ 

1• r •1 DIAGNOSTIC 
BD+A REGISTER 

MCBD 

BPD 

WRITE 
BUFFER 

DATA 1 ~ 
RAMS 

Figure 30-1 CMI BOARD BLOCK DIAGRAM 

STATUS 

DIAGNOSTIC 
PROCESSOR 



CMI Board Discussion 4150 Funct. Spec. 
Page 377 

30.1 4150 And 4050 Differences 

The CMI holds the master clock crystal oscillators. The nominal frequency in the 4150 is 32 

MHz, while it is 30 MHz in the 4050. 

30.2 Programmable Parts 

30.2.1 PALs 

30.2.1.1 Bus Enable 

The PAL at site 04H controls the loading of data into latches MCBD and MDAT, as well as 

the enabling of data onto MDAT. 

30.2.1.2 Burst OK & EOR 

The PAL at site 06D contains the logic for determining the BURST OK logic, enable burst 

strobe, and the End Of Range (EOR) logic. 

30.2.1.3 Miscellaneous Memory Control 

The PAL at site 08M controls signals to allow the refresh counter to be enabled/disabled. It 

also controls the margining of the system clock via DP control signals, and controls a mux 

used for enabling refresh during Battery Back Up (BBU) mode. 

30.2.1.4 Memory Address Parity 

The PAL at site lOC monitors and can disable address parity error reporting from the 

memory array boards. 

30.2.1.5 MCBD Miscellaneous Control 

The PAL at site lOH controls the direction and the driving of the BD transceivers. It also 

controls the data available signal (MDATAV+). 

30.2.1.6 Error Encoding 

The PAL at site lOL collects and reports the highest priority error detected on the CMI board. 

30.2.1.7 Write Buffer Control PAL 1 

The PAL at site 14H controls the write pulses to the DWB RAMs and the latch controls for 

writing the address, write pending, and valid bits into the Write Buffer. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 378 

30.2.l.8 DP Interface Miscellaneous Control 

Programmable Parts 

The PAL at 16G gates bit 15 used by the MC logic. It also controls which information is put 

onto the Decode Net address lines and the direction control for two way DP communication. 

30.2.1.9 Write Buffer Control PAL 2 

The PAL at site 16K controls the enable signals to the WB'for the writing of the Valid bits 

and Write Pending bits. 

30.2.1.10 WACK & STREAD 

The PAL at site 16L controls the initiation of the WACK and STREAD chain of events. It 

also has the ABORT logic. 

30.2.1.11 Bus MCBD Control 

The PAL at site 18G controls whether the WBD RAMs c: the MDAT latch information gets 

put onto MDAT. 

30.2.1.12 CPU Request 

The PAL at site 22F accepts the memory write, read, and cache miss signals, and controls the 

clocking of data from the E unit. 

30.2.1.13 MODALS 

The PAL at site 24D clocks Modal information when the Modals register is specified as the 

destination by microcode. 

30.2.1.14 EOB 

The PAL at site 24G controls the End of Beat (EOB) signal. 

30.2.1.15 BPD Dri~e 

The PAL at site 26E controls which set of BPD transceivers is enabled. 

30.2.1.16 DP Interface Control 

The PAL at site 26F controls DP interface handshaking and also collects decode net parity 

errors. 

PRIME RESTRICTED 



CMI Board Discussion 4150 Funct. Spec. 
Page 379 

30.2.1.17 Decode Net Address 

The PALs at sites 38D, 40D, and 400 control the decode net addressing. 

30.2.1.18 MT Priority 

The PAL at site 38N is' the priority encoder for Memo:ry Timer operations. 

30.2.1.19 Clock Control 

The PAL at site 42G enables TRCML, and INIT clocks. It also controls the writing of the CS 

address to the microsequencer. 

30.2.1.20 CS & DNET Error Reporting 

The PALs at sites 42K and 48N encode the CS and decode net errors. 

30.2.1.21 Addressable Latch 

The PAL at site 46D controls addressable latches FSPLUS, FSMINUS, ADL02, and E 

30.2.1.22 EAF 

The PAL at site 46G controls the resetting of FGEAF+/-. 

30.2.1.23 CS Write/Read 

The PAL at site 52F controls the writing and reading of CS memory based on signals 

received from the DP . 

.. 30.2.1.24 BPD Parity Check 

The PAL at site 54E controls checking of BPD parity on output non-burst transfers at the 

trailing edge of BPCSTRB+. 

30.2.2 PROMs 

30.2.2.1 Memory Timer 

The PROMs at.sites 02F, 02L, 04G, 02K, .06L, and 44N. control the Memory Timer sequencing 

and operations. 

30.2.2.2 Destination 

The PROMs at sites 52G and 54G decode the microcode DST field for all CMI board 

destinations. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 380 

30.2.2.3 IAC 

Programmable Parts 

The PROMs at sites 44F, 46E, 48F, and SOE decode the microcode IAC field. 

30.2.2.4 EAF 

The PROMs at sites 28D, 28E, and 30C decode the opcode for Effective Address Formation 
~ 

(EAF). 

30.2.2.5 BOP 

The PROMs at sites 52C and 54B control register file tracking. 

30.3 Diagnostic Features 

The CMI board contains a diagnostic register which is loaded from BD witrh microcode DST 

MDIAGR. Table 30-1 shows the layout of the register and briefly describes each bit's function. 

PRIME RESTRICfED 



CMI Board Discussion 4150 Funct. Spec. 
Page 381 

TABLE 30-1. CMI Diagnostic Register Layout 

Bit II 

2 

4 
5 
6 
7 
8 
9 

10 

Nome 

DGBFAD2+ 

DGBFAD3+ 

DGBFAD15+ 

DISERCOR+ 
DISERCK­
DMEMDIS­
DFBPARITY+ 
DGSELBFAD+ 
SHFTCTR1 
SHFTCTR2 

11 DSMPLEM1-
12 DSMPLEM2-
13 DSMPLEM3-
14 DSMPLEM4-
15 DLCKB-
16 DISRF+ 
17 DISLW+ 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

DGENRFAD­
DFRCBYPAS+ 
DCLRWB+ 
DFRCNOP-
D I AGOPS+ 
DENALLOPS+ 
DLOOP+ 
DMAONMD­
PDMTMOD E + 

30.4 Critical Paths 

Function 

MSB of write buffer pointer when DGBFSELAD+ 
is asserted. 
Middle bit of write bufl~r pointer when 
DGBFSELAD+ is asserted. / 
LSB of write buffer pointer when 
DGBFSELAD+ is osserted. 
Disables error correction. 
Disables error checking. 
Disables memory arrays. 
Forces MA parity bits to 1 regardless of address. 
Forces write buffer pointer to diog. reg. bits!1:3l 
MSB of MA shift control field 
LSB of MA shift control field 
Disables samp Ii ng of errors from memory or ray 1 
Disables somp Ii ng of errors from memory orroy 2 
Disables somp Ii ng of errors from memory or ray 3 
Di sob I es sampling of errors from memory array 4 
Locks check bits on memory orroys 
Di sob I es refresh 
Disables write buffer lost written algorithm 

Puts refresh address on MA 
Forces write buffer contents onto BO during reads 
Forces val id and write pending bits to 0 
Forces Memory Timer to do only NOP and Refresh 
Makes write buffer appear 1 location deep 

,Forces write buffer to empty 
Forces write buffer contents onto MOAT during reads. 
Forces MA on MD during reads 
Forces memory timer into diagnostic routine. 

• The critical path through the CS involves rece1vmg a jump condition from another 
unit, changing the BCYs, and accessing the CS RAMs. This is a two beat path 
from CS8+ to TRCML+. 

• Conditional ReTurNs (CRTNs) are critical, but TXNX logic is used to make this 
path work because of the I unit intervention needed. This is a two beat path 
from CS8+ to TRCML+. 

• The internal PUSEQ push/pop stack path is critical, due to the time required from 
TSTACK+ to TWRITE-. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 382 

Critical Paths 

• The path from the time the memory address is latched into the MC until the WB 
pointer is latched during a CPU memory access must be less than 2.5 beats. 

• Setting MBSY- on the MC unit on a READ or WRITE and sending it to the IS 
unit is a one beat path. 

• During an IO input burst mode operation the SWAqs_ chain writes 64 bits into 
the WB RAMs in the same time a normal write does 32 bits. The timing is 
critical throughout this operation. Refer to Figure 27-3. After the first 32 bits 
are written at the end of Dl WACK+ three critical things must happen in the next 
beat: 

1. Hold time must be met for the data just written. 

2. The least significant bit of the WB pointer must be changed. 

3. The BPD drivers which were driving the first 32 bits must be shut off, and 
the BPD transceivers with the second 32 bits must be turned on. 

PRIME RESTRICTED 



IS Board Discussion 41SO Funct. Spec. 
Page 383 

31. IS Board Discussion 

The IS board implements the Instruction (I) and Storage management (S) units, as well as the 

PCU, cache, EAF logic, and branch cache. These functions are described in detail in the 

chapters cited below: 

• I unit - chapter · 19 

• S unit - chapter 23 

• PCU - chapter 17 

• Cache - chapter 22 

• EAF logic - chapter 20 

• Branch cache - chapter 21 

The IS board is a combination of the 9755 I and S boards. The exceptions to this are the 

decode net and EAF decode logic, which have moved to the CMI, and the trap addressing 

logic, which is on the E board. 

PRIME RESTRICTED 



8 7 

0 

~ 
c 

ll«IEX 

'---j ~E 

L--

B 

EJ 
A D 

8 7 

~
-

E 

l 

6 

-----

acltll=IB•l& 
fll.IL-"8•[5 

CRH 

~ 
___IH_ll-ml 

5 

SM ROOR 

REGISTERS 

_.-
--
"""L lfll!IL. 

If 

PHTTRr;A 

I 6EGTR6A 

STU! 
R B.EnENT I ePl'ffllll-BB 

~ 
~~ 

3 2 

0 

SSSR 

l'R'"Rllll..:.UB.. 
L:llill_ 

~ 

~ r-1----

CSSR 

BMJJ-11! c 
I I:&""-... 

BCOAOIL.:JIL BBLBHIB 
CfDE 

I I .1 A-ELE!ENT 

CACHE llJDR 
REGlSTERS 

r--

L 

RITTF•S-18 
RmFl119-16 

lll'"'f"-='•J..:llL 
l::lllL 
:t-tG 

l~ 

~-~ 

s 5 

Figure 31-1 

I RPK811-B8 

t___.. 
STU! I BPrll!IS,_16_ 

CfDE 
B ELEIENT I :w.o••-1• 

~ 
~-' 

SSSB 

l'llPllEE.:.J.liB.. 

bllilL 

~ 

o EL.Enan 
IP[DlflliB ~ 

BEGruB 

If 3 

IS Board Block Diagram 

CS5B DBHB9-l6 

L-

BBLBS-16 B 

I LBDl'flGE - IA 
PRDE CCll'UlER, It«:. 

" AlfliillliH!ri. 111111. 

ts IJllIT llLIXK D[flGRlll 

2 



IS Board Discussion 4150 Funct. Spec. 
Page 385 

31.1 4150 And 4050 Differences 

There are no differences between the IS boards in the two machines. 

31.2 PALs 

31.2.1 PCU PALs 

The PCU is partially implemented in the PALs at sites 06A, 06C, 02A, 04A, 20A, 30A, 28A, 

22A, 22H, 58A, and 60M. 

31.2.2 Parity Clocks 

The PAL at site 56M generates clock enables for TCSSPE+, TSOFTPE+, TISPE+, TSSSPE+, 

TCSSPE+, and TFATALPE+ parity clocks. 

31.2.3 EAS, EAD, and INSTAT Clocks 

The PAL at site 58L generates clock enables for TEAS+, TEASH+, TEAD+, and TINSTAT+ 

clocks. 

31.2.4 Branch Cache Control 

The PAL at site 60A generates branch cache control information to be clocked by TINST AT+. 

31.2.5 Register Collisions 

The PALs at sites 02C and 56N contains logic to detect register file collisions. The PAL at 

02C generates a guess at the branch address used for stage 4-6 register collision detection. The 

PAL at 02C is used to generate IWAIT- for stage 5-9 register collisions. 

31.2.6 BVMA Select Control 

The PALs at sites 20J and .18J generate the BVMA selects for the PCADR VLSI. 

31.2.7 Cache Write Control 

The PALs at sites 52L and 54L generate the write enables for the cache RAMs. 

PRIME RESTRICTED 



4150 Functional Specification 
Page 386 

31.2.8 RMA Clocks 

PALs 

The PAL at site 56L generates the enables for the TCADR+, TSADR+, and TERMA+ clocks. 

31.2.9 Unaligned Read a~d Cache Data Clocks 

The PAL at site 52M generates the enables for TRCDIE+~ TRCOO+, and CS20R7+ clocks used 

to clock cache data. The· PAL also generates the enables for DFUNABLIP+ and FUNALBLIP+, 

which are used during unaligned reads. 

31.2.10 Displacement, Opcode, and BB Latch Control 

The PAL at site 44M generates the enables for TOPCD+, TDISP+, and TEBBLCH+, which are 

used to control the opcode, displacement, and BB latches. The first two of these latches are 

on the CMI board, while the last is on the E board. 

31.2.11 BB and PMA selects 

The PAL at site 56D generates the selects for the BB mux on the PCSS VLSI and PMA mux 

in the PSSS VLSI. 

31.2.12 IRPL, IRPH, and RPST clocks 

The PAL at site 04C generates the enables for TIRPL+, TIRPH+, and TRPST+ clocks. 

31.2.13 STLB Write Pulses Enables 

. The PAL at site 48L generates the enables for the STLB write pulses. 

31.2.14 Short/Long Instruction Control 

The PAL at site 60E controls the correct alignment of opcodes on BB. 

31.2.15 TRAPVLD Clock Enable 

The PAL at site 58E is used to generate the enable for FTRAPVLD clock. 

31.2.16 Displacement ALU and EAS mux control 

The PAL at site 14J is used to control the displacement ALU inside the PCADR VLSI. The 

PAL also generates the selects for the EAS muxes in the PCADR VLSI. 

PRIME RESTRICTED 



IS Board Discussion 4150 Funct. Spec. 
Page 387 

31.2.17 Base Register ALU control 

The PAL at site 42M is used to control the base register/index register ALU. 

31.2.18 Control of Ring Bits 

The PAL at site 40M is used to weaken the ring bit: 

31.2.19 Base Register File Address Generation 

The PAL at site 42P decodes the opcode bits and generates the base register file address. 

31.2.20 Base Register Parity Checking 

The PAL at site 34P is used to check parity on data coming out of the .register file. 

31.3 PROMs 

31.3.1 Destination 

The PROMs at sites 14D and 16D decode the microcode DST field for all IS board 

destinations. 

31.3.2 IAC 

The PROMS at sites 20D, 20E, and 22E decode the microcode IAC field for all IS board IACs. 

31.3.3 Trap 

The PROM at site 58D generates the IS board trap address for use by the microsequencer 

during trap sequences. 

31.4 Critical Paths 

One Beat Poths [62.5 nsec] 

FTRAP+ holding off TCADR+ clock 62.5 
Detection of 5-9 collision to generation of FIWAIT- 58.0 
Unaligned read detection to ERMAL+1 to RMA 62.5 
Memtrap to holding off cache miss on E-unit 60.5 
Cache miss (GHOLD) to holding off E-unit clocks 62.5 
FGEAF+ to inhibiting of CS1+ and CS3+ clocks 61.0 
NXDONE- to TCADR+ 60.0 

PRIME RESTRICTED 



4150 Functional Specification 
Page 388 

Two Beat Paths [125 nsec] 

Clocking base register address at CS4+ to clocking 
in the effective address at TRCML+. 

Clocking opcode at CS2+ to generating F4UNAL+ control 
bit at CS4+ 

Half Beet Paths [31.25 nsec] 

Memtrcp holding off increment of IRPL 
IRPL to PCADR registers and RMA 

PRIME RESTRICTED 

114. 0 

106.0 

30.0 
25.0 

Critical Paths 



E Board Discussion 4150 Funct. Spec. 
Page 389 

32. E Board Discussion 

The E Board implements the Execution unit, the system timers, BD arbitration, and the I/O 

address interface. These topics .are discussed in detail in the chapters cited below: 

• E unit - chapter 25 

• System timers - chapter 25 

• BD arbitration - chapter 28 

• I/O address interface - chapter 27 

PRIME RESTRICTED 



D 

c 

B 

A 

B 

OOJHCfl; HD~ . . 
RJHClt:JSJ 

80Hl0Jll8Jt 

7 6 

, ... ,., 

) 

~2" 
I 
I 
I 
I 
!ALH(81:16Ji 

I 
I 
I 
I 
I 

~---------------------- -------~J 
~1';(;1ott CIU: 161 t 

!UL 

5 q 3 2 
DECNC&L:JGJ ~ 

&lll01:32lt 

ocrna DTB/61U 

r-----..._ 

"-\1"1•182• I ~--1 
I i-----· 

I I 
L_ _ I _______ J 

OT6 

OECM rag: 16J .i. 

.. ____ ----1< BOIL@1:16lt 

i [:!]I 
I : l"-""''"'l I I ~ :.01 ~'''"" • :fl.LCIJ•~6J-t , • I t----

~~~ilT ! H 
RILl,U:l8Jf

'' 77

ILl.E

-~~t1PROOL Cil 1 : 1 SJ -t
,---

- - - - - - - --1 l!ONCH>"l•l!lll• K BIUFl!;!QJ+

I fLE:CB1:1!181t

MUXJLE 119• 161-t C' J I fl.EC89•l6l•

.-- : RSElmhl6l<

. I

~------------------- _________ J
15RRREL-SHJFT

CQHTill'-

8llXY•

Bllxtt

Bil
R
E
G
[

'

PARITY

RE!iJS'TER-FILE
REGISTER-FILE

AODRESSHC

RI

RIC81;58J.+ j:tmisreRf RRJ{8J:56)+

SHFTCNT CB1 ~)

.f!Sct4TRL {111 •iJSJ •

~IH

1 RSUH:'IB)t

I
L----------j

~ ..._________,:

I L:__J I L __________ J

fLLtS1:ta>-

RSCi!ll•IJBJ+

teDIU01 :JBJ t

RI' <EC

11.JXPm C TO REG Fll.E)

FRCtt'.:UCl1:LIDt
--'-~--'-

lll'

BO l'ffUTT ~

0

c

B

r-::1
L_J

I LOO PAllE 381 I A

BDI PRRCTI

8 7 5 5 4

Figure 32-1 E Board Block Diagram

ftJXPffi

BUS BO PARITY

3 2

PRrt£ CCH'UTER. INC.
FRAlll-. llABll.

POS9IJll E ·IJIIT BLOCK

DIAGRAll

E Board Discussion 4150 Funct. Spec.
Page 391

32.1 4150 And 4050 Differences

Two PALs are different between the 4150 and 4050 E boards.

1. The PAL at site 58E divides the nominal clock rate down into the 1 MHz signal
used to clock the, microsecond and PIC timers. Since the operating frequency of
the two machines is different, this PAL needs a different program depending on
the machine.

2. The PAL at site 32H provides the final error report to the microcode. One of the
bits provided indicates whether the hardware is a 4150 or a 4050. The microcode
uses this bit during its SYSCLR routine to verify that it is running on the correct
processor.

32.2 Programmable Parts

32.2.l PALs

32.2.1.l Clock Control

The PALs at sites 280, 38C, 34E, 380, 40E, and 42E control the clock generation for the

stage clocks.

32.2.1.2 RP16

The PAL at site 22A generates bit 16 of the RP register.

32.2.1.3 Register File RAM Control

The PAL at site 30M generates the register file RAM chip select.

32.2.1.4 BD Arbitration

The PAL at site SOC controls which unit of the CPU can drive BD.

32.2.1.5 Addressable Latches

The PAL at site 540 implements the following microcode addressable latches that are decoded

from the microcode IAC field.

• ADLOO

• ALD01

• ENTIMER

PRIME RESTRICTED

4150 Functional Specification
Page 392

• INTEOI

• DISPIC

• ENMINK

e ENBPA

• FDMX

32.2.1.6 Multiply

Programmable Parts

The PAL at site 48J generates fix factor logic needed by the ALUs during multiply

operations.

32.2.1.7 ZFF

The PAL at site 20G generates ALC information needed during decimal and ZMV instructions.

32.2.1.8 One MHz

The PAL at site 58E generates a 1 MHz clock needed for the PJC and microsecond timer logic.

This clock is derived from TMCLK+.

32.2.1.9 I/O Requests

The PALs at sites 54B and 58A look at the Interrupt and DMx request from the 1/0

controllers to determine which controller to grant the bus to. it selects the highest priority

request.

32.2.1.10 1/0 Grant Enable

The PAL at site 46D generates the I/O grant enable for the 1/0 controllers.

32.2.1.11 1/0 Grants

The PALs at sites 58C and 60C are priority generator PALs which generate the grant lines

for the I/O controllers.

32.2.1.12 Parity Reporting

The PALs at sites 52C, 32K, 42J, 44J, and 32H generate parity and machine check

information.

PRIME RESTRICTED

E Board Discussion 4150 Funct. Spec.
Page 393

32.2.1.13 Fetch Cycle Traps

The PAL at site 48C generates either a FCYTRAP or FCYJC fetch cycle condition.

32.2.1.14 Traps

The PAL at site 30C generates trap information for the- trap logic.

32.2.2 PROMs

32.2.2.1 ALU PROMs

The PROMs at sites 26L, 12D, 16F, 20L, 26K, lOD, lON, 18N, and 26N control the mode of

operation for the 56-bit ALU by decoding the microcode ALU field.

32.2.2.2 BB PROMs

The PROMs at sites lOF and 08F specify the B leg source input to the ALUs by decoding the

microcode BB field.

32.2.2.3 BDL PROMs

The PROMs at sites 06G, 02J, 02M, and 02H control the mode of operation for the BDI barrel

shifter by decoding the microcode BDL field.

32.2.2.4 DST PROMs

The PROMs at sites 30E, 30F, and 32D decode the microcode DST field for all E board

destinations.

32.2.2.S IAC PROMs

The PROMs at sites 32F, 36E, 48E, 34C, 56D, 58G, and 56E decode the microcode IAC field

for all E board IACs.

32.2.2.6 Register File PROMs

The PROMs at sites 48B and SOB specify which register file location is to be used in the

current operation.

32.2.2.7 Multiply PROM

The PROM at site 601 guesses the number of places to normalize during a. floating point

multiply operations.

PRIME RESTRICTED

41SO Functional Specification
Page 394

32.2.2.8 PACK PROMs

Programmable Parts

The PROMs at sites 04K, 14P, 16E, and 18M do ASCII to packed BCD conversion.

32.2.2.9 Decimal PROMs

The PROMs at sites 44H, 42H, 28H, 261, and 30H subtr~ct 6666 hex from packed decimal

data.

32.2.2.10 Decimal To Binary (DTB) PROMs

The PROMs at sites 34K and 36K do decimal to binary conversion.

32.2.2.11 ZFF and ZMV PROMs

The PROMs at sites 12F and 22M are used during decimal and character instructions.

32.2.2.12 Trap PROM

The PROM at site 06A calculates the E board trap address for use by the microsequencer

during trap sequences.

32.3 Diagnostic Features

The E board contains a PAL at site 54A which looks at the I/O controller grant lines. The

slot number of the controller being granted the bus is sent to the PDA for stack display.

32.4 Critical Paths

The critical paths have been identified as follows:

• Register File addressing - One beat path from TRCML to clocking of RI.

• Jump Conditions - One beat path from CS7+ to TJC+ flops.

• RS data - The output of BDis clocked at CS9+ to S unit's CSlOt data latches.

• Condition codes - The path from the E unit JC mux selects at TRCML+ to the CS
unit's TRCML+.

e Cache -> ALU -> RD - CS7+· clock to the CS8+ clock for RD inside the ALU.

• Register file read on register to register operations.

PRIME RESTRICTED

PDA Board Discussion 4150 Funct. Spec.
Page 395

33. PDA Board Discussion

The 4150 Processor Diagnostic Aid (PDA) consists of the board, its hardware, resident Z80

code, and the host code that runs on a 50 series system. The PDA board plugs into the 4150

backplane in its dedicated slot, the IS debug slot, _?r the IS -slot, and requires an RS-232

connection to the host system to allow communication between the host and the PDA. The

common method of getting to the stand alone port is to enter the command MO PDA to the

Diagnostic Processor.

The following 4150 PDA functions are discussed in detail in chapter 29:

• Z80 Microprocessor

e Stack

• Ha!ts I Delays

• Delay Counter

• Sense Registers

• Forcing Microcode Address

• Reading and Writing Control Store

PRIME RESTRICTED

D

c

B

A

8
,_., IRlllPUllE

1611

BUS

Fl.111'1

ll£ 181 BITS JllDJ.IE :
POeCT .MUJ.ltn.n.Ge«LD.~l ·JI.
IDf.!IDL.BBH.BBL.
11'1.RTlffl.IltlSTK.TRatL.
IPfRftP .tDl'l.SMMt". l/OSE... llE

7

lllll

IJERTIU-

11

6

Sf!DI IUJRESS
C(IJNTI:R

1112 I 1--r--~

5

~
SET -RESET --

e«:S8·18

ENTROt. a..otl<S
"'"EOB
m:l.K ILS

... ,_.,

8 7

BERT CLOQIB

FENEOllFRA

liGllIROL8111AE

I ntN<

~

1113

!DI
IN!ERFll;E

113

MNTDJ.IITTll . . -· . Ill
..

!00·17•

.JlUflfB CfCWf

6 5

Figure 33-1

.

ZllllllUFFl'lEJIXllft
BUS

q 3

Z-88R CPU

Ill

I· IR!T l !==I UIS 1·-

~
~cllllllJ

l611x8 PROM ---------+---i llS i l•:lfFF

2

ENSRL•

LOSRlH-t

LDSRLL.t

. PCFIBCY3-J6

ENSR2•

A a•--7FFF
LDSR2H•

LOSR2Lt

D
D

z R
8 E
8 s

s

PDA
CIJITR!L

1£1:!6TER

.AEGlSTOI

lllCIESS

llEC1IE

32

113

ll2

..-.rl:!-
-------, ..flll.l'.1=!_,

OOL YCNT f j I ..JllL.__'
BEftTCUhllEl.AYClltlllER ~

~_.1112 . ~!~·

q I 3

PDA Board Block Diagram

POOBCY3-l6

ENS!HBl-4

CrPSR4e1·4

SR'llll-~

111

tR..T/DEUtY

LllSIC ' --

~
I 2

-1

I

SENSE

R£GIS:ER I SRLEO ...
lH

5ENSE

REGl6TER I SA2EQ 2

1114

SENSE

REB!STal
3 I SR3EO ...

SENSE

REGISTER

111'1

111'1

3R4EO

LSD Pfl6E l•
PRll£ FMl~l!l'.-1.r«:.

POSSUll PDA BUICK
Q[flGRR1

[

IC

IF

PDA Board Discussion 4150 Funct. Spec.
Page 397

33.1 4150 And 4050 Differences

There are no differences between the PDA boards in the two machines.

33.2 Programmable Parts

33.2.1 PALS

33.2.1.1 Stack Inhibit PAL

The PAL at site 15B controls the inhibits to the stack. It uses inhibit conditions to generate a

signal called INHSTK-.

33.2.1.2 Stack Read PAL

The PAL at site 31K generates the stack read signals under Z80 control. It uses the Z80

address bus as inputs and EBYTEOl-04-, STKRD-, STKSELA+, STKSELB+ as outputs.

33.2.1.3 SR4 Comparator PAL

The PAL at site 31H is the sense register 4 PAL. It uses SR4 enables and data to generate

SR4EQ1- and SR4EQ2-.

33.2.1.4 Halt and Delay PALs

The PAL at site 21D generates one of the halt and one of the delay signals. It uses inputs

of sense register equal signals and enables and generates PSRHLT- and PSRDLY-.

The PAL at site 19D generates one of the halt and one of the delay signals. It uses inputs

of sense register equal signals and enables and generates QSRHLT- and QSRDLY-.

33.2.1.S Delay Inhibit PAL

The PAL at site 15C generates a delay inhibit signal. It uses various inhibit signals and

generates INHDL Y-.

33.2.1.6 · Z80 Decode PALs

The PALS at sites: 29K, 25K, 23K, 21K, 17K, and lSK are Z80 decode PALs. They generate

clocks to registers by decoding the Z80 address bus .

. PRIME RESTRICTED

: . ·.:•: -

4150 Functional Specification
Page 398

33.2.2 PROMs

33.2.2.1 Z80 Program PROMs

Programmable Parts

PROMs and RAMs (SK x 8) are interchangable in the following locations : 34K, 36K, 38K,

40K, 42K. The purpose of these locations is to pro_v~de executable Z80 code for the

microprocessor to run. Th~ typical configuration is with 2764 EPROM in locations 34K and

36K. Locations 38K and 42K typically will have pin compatible RAMs installed.

33.3 Diagnostic Features

The 4150 PDA has on board Z80 diagnostics that are executed from the Diagnostic Processor

in the 'MO PDA' environment. Please refer to section 29.8.1.1 for additional information.

33.4 Critical Paths

The critical paths on the 4150 PDA are the stack write pulse, the setup and hold times on

the stack, and the halt path from a sense register match to the issuance of PDAHALT-.

33.4.1 Stack Write Cycle

The stack write cycle has proven to be the most critical path in the PDA. The path

involves sampling data from the backplane and the rest of the CPU and storing it into

registers while the address for the stack becomes stable. At this point, the write pulse, which

is shaped by the use of delay lines, stores the data into the stack RAM.

I
I

Data -I
I

Beatclk+ -I>

I
I

Diag -I
1----­

----1
I
I

I
91s0 I

Ram I
I
I

3-9 ns. 1-5 ns. Sns setup before
write pulse rising edge

I
GWP- -
GWP+ -I

I
TMCLK+ -I>

+/-2ns.
2ns Control led

I 15ns I etch run AS1804
AS574 . -I Delay!------- I\

I I Line I DLY44.5NS- I I \
I I -IN \ WP-A,B,C,D
1-- IA)0--
1 IN I
I DLYDBEAT+ Rises Midbeat ID/
I I/

1-4 ns.
3-9 ns.

PRIME RESTRICTED

PDA Board Discussion 4150 Funct. Spec.

3ns AS574 min
1ns AS1804 min

4ns min TMCLK to WP falling

3ns AS574 min
15ns delay min

1ns AS1804 min

19ns TMCLK to WP rising

9ns AS574 max
2ns etch max
4ns AS1804 max

15ns max TMCLK to WP falling

9ns AS574 max
17ns delay max Et;h Delay not factored

4ns AS1804 max due to controlled lengths

30ns max TMCLK to WP rising

Page 399

Using a 15ns minimum write pulse width in the above exercise forces us to carefully look at

the path. Address and data setup and hold times are well within the specifications.

33.4.2 Halt Path

The timing from the sense register match to finally result in the PDAHALT- signal going

active in 2 beats is a major path.

19ns AS866 max delay d -> = (378)
2ns setup on as574 (19C)

21ns 8CY -> 19C (1 beat path)

9ns AS574 max elk-> out
15ns PAL delay
5.5ns AS08 delay
3ns AS194 setup

(19C)
(210)
(05C)
(21A)

32.Sns FSRn -> PDAHALT (1 beat path)

33.4.3 Trigger. Path

This path involves getting a sense register match to result in a stack trigger in two beats.

19ns AS866 max delay d -> = (378)
2ns setup on as574 (19C)

21ns BCY -> 19C (1 beat path)

9ns AS574 max elk -> out
15ns PAL delay
4.Sns AS10 delay
4.5ns AS74 setup

(19C)
(210)
(290)
(31E)

33ns FSRn -> PDAHALT (1 beat path)

PRIME RESTRICTED

4150 Functional Specification
Page 400

PRIME RESTRICTED

