
United States Patent [19J

Simionescu et al.

[54] EMBEDDED CACHE MANAGER

[75] Inventors: Horia Cristian Simionescu, Foster
City; Luan Kha Bui, Fremont, both of
Calif.; James A. Henson, Bend, Oreg.;
Clifford M. Gold, Fremont, Calif.

[73] Assignee: Quantum Corporation, Milpitas, Calif.

[21] Appl. No.: 09/327,293

[22] Filed: Jun. 7, 1999

Related U.S. Application Data

[63] Continuation-in-part of application No. 08/940,074, Sep. 29,
1997, abandoned.

[51] Int. Cl.7 .. G06F 12/12
[52] U.S. Cl. ... 711/113
[58] Field of Search 711/112, 113,

711/118, 133

[56] References Cited

5,005,089
5,204,963
5,247,653
5,283,875
5,317,713
5,465,343
5,603,002
5,680,570
5,696,931
5,701,450

U.S. PATENT DOCUMENTS

4/1991 Thanos et al. 395/77.08
4/1993 Noya et al. 395/750
9/1993 Hung 395/500
2/1994 Gibson et al. 395/400
5/1994 Glassburn 395/425

11/1995 Henson et al. 395/439
2/1997 Hashimoto 395/440

10/1997 Rantala et al. 395/440
12/1997 Lum et al. 395/440
12/1997 Duncan 395/595

IDLE

I lllll llllllll Ill lllll lllll lllll lllll lllll 111111111111111111111111111111111
US006141728A

[11] Patent Number:

[45] Date of Patent:

6,141,728
Oct. 31, 2000

5,754,889
5,768,617
5,890,213

5 /1998 Packer 395 /876
6/1998 Liu .. 395/825
3/1999 Sokolov 711/113

Primary Examiner-Eddie P. Chan
Assistant Examiner-Kevin L. Ellis
Attorney, Agent, or Firm-Michael Zarrabian

[57] ABSTRACT

A method for managing data blocks in a cache buffer
defining date block segments, and for automatically trans
ferring data into and out of the cache buffer. A cache list
comprises a plurality of entries each including information
identifying a corresponding cache segment, and a set of
consecutive data blocks stored in the cache segment. Pro
viding cache status for a requested set of date blocks
includes traversing the cache list to locate entries identifying
the starting data block in the requested set, and consecutive
data blocks successively following the starting data block
without interruption, and identifying as a missing data block
the first data block in said succession, including said starting
data block, not identified in any entry. The missing data
block is used to provide status: a full hit if the missing data
block is not in the requested set; a miss if the missing data
block is the starting data block in the requested set, or a
partial hit otherwise. In response to a write command for a
new set of data, the cache list is traversed to locate all entries
identifying sets of data blocks overlapping the new set. If a
located entry identifies a set of data blocks fully overlapping
the new set, there is a full hit. If no entry is located, there is
miss. Otherwise, there is a partial hit. The new set can be
automatically transferred into a predesignated buffer area
selected by the cache manager.

68 Claims, 30 Drawing Sheets

630

RESCAN

NEWRDCMD & AUTOSCANENA

RESCAN

{XFERACTV &
CACH£DS£C=O}

{XFERACTV &
CACH£DS£CT!=O}

615

FULL
HIT

616
MISS

618

~~~~ 

SU XFERACTV 

LOWCRS=1 

IF AUTOENABLE 
621 

666 

622 

623 
,._L_O_~_C_R_S=_1 --~ TRANSFERi.----------, 

625 

HXFERDONE 
CLEANUP i.---~ 

630 

IDLE 

624 

ZERO TRGCOUN T SCAN FOR 
NEXT SEGMENT 



U.S. Patent Oct. 31, 2000 Sheet 1 of 30 

,------------------, ~15 
I JO ~ 
I CPU I 
I 
I 40 
I 
I 
I RAM 
I 
I 45 I 
I 
I 

ROM I 

35 
50 

AT 
INTERFACE 

25 

CACHE 
SYSTEM 

10 

I 
~------------------~ FIG. 1 

90 
90 

HOST 

• 
• 
• 

55~ 
CA CHE BUFFER 

65 _:i_ 

CONTROLLER 
v61 

CMD STATE H 
.---+1 

CACHE CTL ..-. t-69 

l 
CACHE MANAGER 

{FIRMWARE AND µP) 

FIG. 2 

80 
_C_ 

~.,... 1-.r-

55 

70 
~.,... 

• • 
• 

/ 
/' 

__) 
' " 

70 

• 
• 
• 

FIG. 3 

v-- 60 

• • 
• 

6,141,728 

20 

DISK 
DRIVE 

75 

75 



START LBA I 

VALID LBAs 
. 

SEGMENT 
SIZE I 

BUFFER I POINTER 

FLAGS 

LBA OFFSET I """ 

VIDEO I DISK I WRITE I RELEASE I UNAVAIL. INOT DIRTY! TRIM 
DA TA ACTIVE PENDING INTERR. 

90 
FIG. 4 

LOCKED 

d 
• 
\JJ. 
• 
~ 
~ ...... 
~ = ...... 

0 
I') 

!""'" 
~ 

"""' ~ 

N c c c 

'Jl 

=-~ 
~ ..... 
N 
0 

""" ~ c 

0--, .... 
~ 
~ 
~ .... 
.....::. 
N 
00 



U.S. Patent 

228 
-~--..... 

SET MAX > 
LBA ERROR 

NO 

Oct. 31, 2000 

IDLE 

NO 

GENERATE 
LBA 

SAVE 
LBA 

212 

XFER COUNT 
BUFF. POINTER 

!NIT 
RUNNING LBA 

Sheet 3 of 30 

200 

206 

214 

216 

218 

SET 
BUSY 

SET 
DASP 

6,141,728 

210 

NEW COMMAND 
INTERRUPT 

NO 

YES 

FIG. 5A 



U.S. Patent Oct. 31, 2000 

262 

SET 
MARK ACTIVE 

260 

INCREMENT 
COMMANDS 

SYNC 

Sheet 4 of 30 6,141,728 

242 230 

SYNC 

NO 

NO 
240 

SET 
SCAN ACTIVE 

DISABLE 
AUTO EOG 

START 
INTERFACE 

252 

FIG. 58 



U.S. Patent 

NO 

NO 

Oct. 31, 2000 

288 

CLEAR > 
SCAN ACTIVE 

SET 
CLEANUP ACTV. 

Sheet 5 of 30 6,141,728 

270 

IDLE 

!NIT 
CACHE LBA 

ZERO 
CACHE SECT. 

FIG. 6 

278 



U.S. Patent 

330 

INCREMENT 
ENTRY POINTER 

CLEAR 
SCAN ACTIVE 

336 

Oct. 31, 2000 Sheet 6 of 30 6,141,728 

306 

!NIT 
ENTRY POINTER 

GET 
ENTRY 

CLEAR 
XFER ACTIVE 

308 

FIG. 7 

SET 
LOCK FLAG 

314 

INCREMENT 
CACHE LBA & 
CACHE SECT. 

CLEAR 
SCAN ACTIVE 



U.S. Patent 

MISS 
INTERRUPT 

Oct. 31, 2000 Sheet 7 of 30 

< 

340 

SAVE 
MISSING LBA 

SET 
PARTIAL HIT 

SET 
XFER ACTIVE 

PARTIAL HIT 
INTERRUPT 

364 

FIG. 8 

6,141,728 

FULL HIT 
INTERRUPT 

346 

NO 



U.S. Patent Oct. 31, 2000 Sheet 8 of 30 6,141,728 

394 

INCREMENT 
ENTRY POINTER 

YES 

ENABLE 
FIRM. TRIGGER 

NO 

YES 404 

SET 
SCAN ACTIVE 

370 

LOAD CRS FROM 
CACHE SECT. 

!NIT 
ENTRY POINTER 

372 

GET 
ENTRY 

374 

382 

START 
INTERFACE 

SYNC 

FIG. 9 

378 

SET LOCK FLAG 
YES LOAD BUFFER 

NO 

384 
YES 

POINTER/LOAD 
TRIGGER COUNT 

CLEAR 
LOCK FLAG 

INCREMENT 
CACHE LBA 

388 

CLEAR 
XFER. ACTIVE 

392 



U.S. Patent Oct. 31, 2000 

418 

INCREMENT 
ENTRY POINTER 

Sheet 9 of 30 

!NIT 
ENTRY POINTER 

GET 
ENTRY 

CLEAR 
NO LOCK FLAG 

6,141,728 

410 

412 

NO 414 

YES 

CLEANUP 
INTERRUPT 

420 

422 

FIG. 10 



d 
• 

FIG. 11 \JJ. 
• 
~ 

426 ~ ...... 
448 YES / c:A 1n:n~ NO 

~ 

!NIT = ...... 
CACHE LBA 

!NIT 428 
ENTRY POINTER 0 

436 I") 

!""" 
~ 

INCREMENT H r-430 '"""' GET ENTRY 
~ 

ENTRY POINTER N c c c 

~34 ~32 
YES NO YES 

'Jl =-~ 
~ ..... 
'"""' 

SET TRIM FLAG ~AY._~q"_T~£~ 
c 
0 ....., 
~ c 

YEST I ~·--_ 442 

TRIM ENTRY ~ ..........._ fftu:x. / 
0--, .... 
~ 
~ 
~ .... 
.....::. 
N 
00 



U.S. Patent Oct. 31, 2000 

SET 
LOCK FLAG 

WRITE LBA 
BUFF. POINTER 

YES 

FIG. 12 

Sheet 11 of 30 6,141,728 

SET 
LOCK FLAG 

SET 
WRITE DATA 

FLAG 

SAVE 
ENTRY 

BUFF. POINTER 

LOAD 
BUFF. REGISTER 

cws 

460 



U.S. Patent Oct. 31, 2000 Sheet 12 of 30 6,141,728 

!NIT 476 

486 
ENTRY POINTER 

INCREMENT 
ENTRY POINTER 

GET 478 

YES 

CLEAR 
MARK ACTIVE 

MARK 
INTERRUPT 

ENTRY 

FIG. 13 

482 

SET 
LOCK FLAG 

WRITE 
LBA 

BUFF. POINTER 

SET 
WRITE DATA 

FLAG 

SAVE 
ENTRY 

BUFF. POINTER 

LOAD 
BUFF. REGISTER 

cws 

484 



530 

532 

552 

534 

: 536 
I 

R/W 
CHANNEL 

550 '554 

CACHE 
BUFFER 
MEMORY 

514 

,--------------- -------------, 
I 566 510 I 

: DATA ADDR CACHE 
FORMATTER BUFFER MANAGER 

MANAGER 

570 

572 512 

I z 
564 584 

568 580 
562 

CACHE 
LIST 

STATE 
MACHINE 

MOTOR ..........._~------- PROCESSOR I/F 
1 

HEAD SERVO MICRO- 1 HOST I 
DRIVERS 1 SPINDLE I/F . . 1 

;r-------j I ~ 
L-----~-------- ----- ------

/ 
540 506 . 560 

ROM MICRO
PROCESSOR 

502 

DISK DRIVE 500 
504 5 

FIG. 14 

HOST 
60 

56 
µ 

ROM 
_J 

54 

~ 
RAM 

_J 
50 

-----v 
I/F 
_J 

52 
µ 

CPU 
_J 

58 ---v 
I/F 

d 
• 
\JJ. 
• 
~ 
~ ...... 
~ = ...... 

0 
I") 

!""" 
~ 

'"""' ~ 

N c c c 

'Jl =~ 
~ ..... 
'"""' ~ 
0 ....., 
~ c 

0--, .... 
~ 
~ 
~ .... 
.....::. 
N 
00 



U.S. Patent Oct. 31, 2000 Sheet 14 of 30 6,141,728 

.-- -
A T /SCSI/1394 I/F V- 562 

563-1 • 

r----+--t 56 9 
~571 

• t'-573~575 

HOST I/F 
j\._ 588 

581:1 

611 
564 

_) 
61~) ( 

~I 
612~ 

CACHE-

621 
J ~) 

CA CHE 
583

_::i_ ~ 
~ __._-+----1 MICRO I/F 

..... 
~ 'b [~S-H-AD_O_W___,J 

J_ _.. REG'S tT 
l J \ ~ . ( 

617( 615 619 
568 619 t"'\ 

I '-604 
601-.... t--"' '- i-609 

• • • 
CACHE 
ENTRY 

RAM 

607 
~l 

603 

6oi 

....__,_ _ __.:h5 
\.-._ 584 

510j 

BUFFER 
585

..J. 8: 
f'-- 577 I /F 589..l _. Cl:l 

/' 591 Q:: 
_. ( OFF SE 7j ~ ~ 2 ) 

I <.... "'( ...I 

'---586 587 ( 
579 566 

• 

CACHE 
CONTROL 

STATE 
MACHINE 

~ 

-c::-580 

593 
1 ..... 

..... 
( 

597 

5~5 

FIG. 15 

582~ 

EQUNS 
MUX 
586 

ADD 
COMPARE 
NEGATE 
TEST= 
588 



U.S. Patent Oct. 31, 2000 Sheet 15 of 30 6,141,728 

~ 
(,.Q 
0) 
l() 

-.J kl ~ ~ a 
l.i.J .... 

~ '-
(/) I 
~ I 

I 
I 

~ 
"""" ~ 
0) 

µl() 

~ I 
I 2§ ~" ... I 
I ~ 
~ 
~ 

I C'\J 
I 0) 

I l() 

I 

~ 
kJ 

~ '<:::t: ...... I ~ ~ a 
I 

(.) 

I 
I 
I 

~ 
~ 

I C) 

I 
0) 
l() 

I µ 
I 

~ ~ ~ .... 

~ 
~ " '<:::t: 

I 
I h I \ I 

/'-- I ~ l--1 (,.Q ~ 

~"' 
~ ~ 
l() l() 



604 

605 

cur_fwacc 

602 0 

from SM cren tryoddr{ 4: 0 J 
FWen tradr{ 4: 0 J 

from Shadow 
CRAM Request Reg.\ l510 30 

601 31 

from FW shadow wr 
from SW wr stlba 

609 

607 

from 
Shadow Reqs. 

from 
SM 
0 
:9 ....... 
~ 
Q.) 
c:: 

606 I I 608 

612 ~ 
600_) 85 t 36 10 9 0 

I I I I 

ES TRLBA I EFLA GS 

I 

603 

to State r------r------------lL-_________ _JLL._ Machine 

Data formatting for 
Firmware Shadow Regs. 

FIG. 17 \_584 
580 

d 
• 
\JJ. 
• 
~ 
~ ...... 
~ = ...... 

0 
I") 

!""" 
~ 

'"""' ~ 

N c c c 

'Jl =~ 
~ ..... 
'"""' O'I 

0 ....., 
~ c 

0--, .... 
~ 
~ 
~ .... 
.....::. 
N 
00 



U.S. Patent Oct. 31, 2000 Sheet 17 of 30 6,141,728 

RESCAN 

{XFERACTV & 
CACHEDSEC=O) 

630 

IDLE 

NEWRDCMD & AUTOSCANENA 

SCAN 
ACTIVE 

614 

RESCAN 

DONE 615 
WITH 
SCAN 

616 
MISS 

617 

{XFERACTV & 
CACHEDSECT! =0) 

620 FULL 
HIT 

6lB PARTIAL 

SET XFERACTV 

LOWCRS=1 

LOWCRS=1 

625 

_ ____.____._....._ 

HIT1 

LOADCRS 

DELAY 
FOR CRS 

IF AUTOENABLE 
621 

666 

622 

623 

624 

HIT 

HXFERDONE 
CLEANUP -----------' 

ZERO TRGCOUN T SCAN FOR 
NEXT SE GM ENT 

630 

FIG. 18 



U.S. Patent Oct. 31, 2000 Sheet 18 of 30 6,141,728 

653 630 
IDLE ----FROM 644 

STARTSCAN 

NOVALID & LASTENTRY 

NOVALID & 
!LASTENTRY 

.'HIT & 
!HIT & !LASTENTRY --C~'H-K-....... LASTENTRY 

ENTRY 1 
646 

1ST HIT 

!HIT & !LASTENTRY 
!HIT & 

__ C_._'H_K_ LASTENTRY 
-------------1 ENTRY2 

648 
!LASTENTRY I 
{!CACHEGTEND & XFERACTV} 

656 

ACTT 
.'CACHEGTEND ---

XFERACTV 
CACHEGTEND 

2ND HIT 

621 

634 

617 

638 
-~-- !XFERACTV & 
MULTIPLE !CACHEGTEND 

PARTHSTAT CACHEDSECT.'=0 

XFERACTIV 642 NOPARTIAL 
620 

CACHEDSECT=O 

XFERACTV & 
{CACHEDSECT=O} 

!XFERACTV & 
CACHEGTEND 

618 

FULLHSTAT 

MISSHSTATi---------- RESCAN 

I 
614 

FIG. 18A 

644 

TO 630 
XFERACTIV 

620 



U.S. Patent Oct. 31, 2000 Sheet 19 of 30 6,141,728 

630 

FWACCESS 1------....... IDLESC 

o-- .' fwcramreq 
~ 

~ !nova/id 
~ 

!hit & !lastent CHKENTRYT __ __, 

hit1 646 !hit & Josten! SHOULD 

!hit & !lastent CHKENTRY2 i----~ 

hit2 

HITT 

ACT1 

ACT2 

ACTJ 

648 

621 

656 

658 

660 

NOT 
HAPPEN 

Calculate 
TRGCOUNT 

& 
ROLL COUNT 662 

Load Buffer } 
or if firstxfer 

rescanloadbu f fer -----ACT4 

LOADCRS 
firstxfer 

622 

664 

ACT5 

---~.....___ (hdecsec I crsdlydone) 
DELAYCRS --.....---

::::.. ...... 
(.,..) 

~ 
~ 

& !lowers 

load or reload if between segments 

zerotrgcount 

! zero trgcoun t 

670 

.__ ___ CJ') ___ z_e_ro_t-=rg'-c_o_u_n-{t XFWAI TTC en trynx lxf er 

hxferdone hlowcrs 

620_! DONE 
GO TO CLEANUP 

SCANACTV FIG. 19 



XFER MODE 

> 

GET ENTRY 
632 

CHK£NTRY1 SRCH >=ES 
646 

CHKENTRY2 ££ > SRCH 
648 

HITT 
621 

ACT1 
656 

ACT2 sideA = T1 <£SIZE 
658 

ACTJ 
660 

ACT4 HBptr < Highbptro 
662 

+ -

££ = ES+EVALID T1 = -SRCH 

NUMFOUND = ££- T1 = -ES 
SRCH 

T1 = SRCH-ES 

T1 = T1 + OFFSET T2 = -£SIZE 

T1 = T1-£SIZE?!A? 
RCNT = T1-£SIZ£ 

{!A?FF} 

HBptr = TT + EBPTR RCNT = -RCNT 

HBp tr = HBp tr - Bsizeo 

FIG. 20 

CHK= 

get invalid 

get hit1 

get hit2 

SCRCHLBA = ££, 
ENTRADDR = 0 

HnsBfrptr rollover for 
hardsegmen t ? 

HBptr rollover in Buffer 
? 

d 
• 
\JJ. 
• 
~ 
~ ...... 
~ = ...... 

0 
I") 

!""" 
~ 

'"""' ~ 

N c c c 

'Jl =~ 
~ ..... 
N c 
0 ....., 
~ c 

0--, .... 
~ 
~ 
~ .... 
.....::. 
N 
00 



U.S. Patent Oct. 31, 2000 Sheet 21 of 30 6,141,728 

r----£ offset------t --t NUMFOUND r-
EBPTR ES SRCH EE 

LBA 

FIG. 20A 

~ ESIZE------i 

___ t_sR_c_H_L_B_A_t £_££offset -------·1 
EBPTR ES 

FIG. 208 

L OWBP TR offset H!GHBP TRoffset 

---------BUFSIZEoffset------------i 

I I 
SRCH LBA [[ 

FIG. 20C 



U.S. Patent Oct. 31, 2000 Sheet 22 of 30 6,141,728 

( IDLE 
630 

J newwrcmd & automarkena 

!did reuse SCAN in LBA mode didreuse {inner LBA hit} 
Check all entries for overlap with 

CMD - CMDLBA + SECCN T "'---- 702 

SCAN in Bu ff er mode 
Check all entries 

r_704 

Scan 2x 
y Scan AWptr + 

N 

Seccnt>HighBptro 1 

Scan AWptr -
BAWptr+Secnt 

!did reuse & 

Scan AWptr -
HighBptro 

j_ 

Scan Low Bptro -
BAWptr+Secnt 

-Bufsize 

allocateena did reuse 

ALLOCATE MODE 

{Buffer outer hit invalidated 
and reused entry}! 
!allocafeena 

If not successful at 
finding an en try, or if 

there was a mark, do an HNS 
interrupt {and prevent AT from EOC}. 

The hardware w111 try to find an entry 
for the write by doing the following 
{in order of preference}: V 706 

1} If Expand Sequential is enabled, 
use the Sequential Allocated 
entry {if applicable}. 

2) Scan for an invalid entry. 

Load Host CWS & 
Buffer Cmd Oueue 

DONE 

J) If Valid Only Allocation is enabled, scan 
for an entry with only the valid bit set. F/G. 21 



WR JL 
NEWCMD 

MARKACTV _j -~ 

--< LBA SCAN , x BFR SCAN , x ALLOCATION / >re= 
INVALIDA TED n L 702 I\ L 704 706 J 1 

ONE _____ J L__ _ ____ J ~-- I 

DIRTY 

INNER HIT 

WRITE ENTRY & 
SAVE 

~ 
_____ J LL_ 

/ 
/ 

' Save entry, 
use new A Wp tr 
(If Lbareuse enabled 
& first time) 

\ I 
J I 

/ I 
/ I 

I I 
I I 
I I 

~ Save entry, : 
Save en try, use A Wp tr 1 

u~A~ij L~D n 
(If Bfrreuse enabled 1 1

'--

& first time) I 

HNSCWS ~ 
I 

BCQ ENTRY =r 
I 

BCQ FLAGS =x= 
I 

FIG. 22 

d 
• 
\JJ. 
• 
~ 
~ ...... 
~ = ...... 

0 
I") 

!""" 
~ 

'"""' ~ 

N c c c 

'Jl =~ 
~ ..... 
N 
~ 

0 ....., 
~ c 

0--, .... 
~ 
~ 
~ .... 
.....::. 
N 
00 



U.S. Patent Oct. 31, 2000 Sheet 24 of 30 6,141,728 

738 630 

FWA CCESS 1---------... IDLESC 

~ i-:-!..:....:f w.:..:c~ra::.m.:....:.:r~e~q ____ _.;>-----''----~ nova/id & lost en t 
E: GET £NTRYt--------------, b ...._ ____ _..:..;_~!lo~s~t~en~t~~....,...~....,.,, 
~ 

! {hit 1 & hit2) 

& !lostent 
716 

714 
!{hit1 & hit2) & lostent 

hif 1 & hit2 

HITT 
!outotrim 

auto trim 
Determines: 

Trim hi. 
Trimlo. 

invalidate, 
or 

Do Reuse 

718 
HIT2 

720 
ACT1 

e.-.r 722 724 
726~~ 

ACT4(1bomode) 
ACT6{bufmode) 

728 

730 

!lostent 
Writes new flogs and 
data fields to the CRAM 

FIG. 23 

CRAM WR 

lostent 732 

740 
-~-'RS_.T.._A~li-[..... Determine what mode to do 

next: bufmode, allocate 
or done 



U.S. Patent Oct. 31, 2000 Sheet 25 of 30 6,141,728 

A 8 c D 

ws EE WS>ES WS~EE WE>ES WE>EE WS=WS WE=EE 

(j) I WR I 
I ENTRY I 0 0 1 0 0 0 

ES EE 

0 I WR 
I ENTRY! 

I 1 0 1 1 0 0 

® WR 
0 0 1 0 0 

l£J 

© WR 
0 0 1 1 0 

E I 

® WR 

I E 0 0 1 0 0 1 

® I WR I 1 0 1 0 0 0 
E 

@ ~E I 0 0 1 0 1 0 

0 El WR I 1 0 1 0 0 1 

@ WR 
0 0 1 1 

E 
0 1 

I 
WR 

1 
I E 

No 
Overlap 

WR 

I E I 
0 0 

FIG. 24 



U.S. Patent Oct. 31, 2000 Sheet 26 of 30 6,141,728 

ws WE i 750 i XLO =WE-ES 

(j) TRJMLO 

CV TRIMHI 
----------

1 

1 WS>ES & 
: WE>EE 

Q) NO CHANGE 
-----------

1 I 

I {WS>ES&! WE>EE) 1 

~O~ !!'!!_r:~E~~S=:_~~: 

(j) INVALIDATE 
r----------1 

I (' WS>ES&WE>EE) 1 

I OR (! WS>ES&! WS=ES I 

: &WE=EE) : 

WR ESTABLA=E START +X LO 

t VALID= VALID-X LO 

EE {OK {HARD SEGM) 

ENTRY 

t 
ES : 
IX 

1
752 

I LO 1 

SIZE= ESIZE-XLo(!HARD SEGM) 

{
OK {HARD SEGM) 

BPTR= EBPTR+XLO (!HARD SEGM) 

I" .. I 

-{OFFSET+XLoMOD ESIZE (HARD SEGM) 
OFFSET- O(!HARD SEGM) 

WS WE i 754 i 
WR 

ENTRY 

t I t 
ES 756: EE 

I I 
I X I 
i" HI .,I 

.------to 760 
ENTRY 

WR 

758 

~762 

~ 
764 

FIG. 25 

XHl=EE-WS 

ESTABLA=OK 

VALID= VALID-X HI 

{
OK (HARD SEGM) 

SIZE= VALID (!HARD SEGM) 

BP TR= OK 
OFFSET=OK 

LBA Reuse Enable 

NO CHANGE 
MARK-SAVE 
(no need for BPTR) 

LBA Reuse Not Enabled 

Same operation as Trim HI 



m? LBA SCAN 
702 

> 

GET ENTRY 
710 

CHKENTRY1 KE> ES cmp1 
712 

CHKENTRY2 WS <EE cmp2 
714 

HITT (gt!} WS >ES gt! 
716 

HIT2 (gt2) KE> EE gt2 
718 

ACT! 
720 

ACT2 
722 

ACTJ OFFSET +X > SIZE 
724 

ACT4 Ebp tr > Highbp tro 
726 

CRAMm? 
732 

+ -

EE = ES+ VALID T1 = -ES 

X_LO = KE-Tl Tl = -WS 

X_HI =EE-TT T1 = -X_LO 

(!gf 1) VALID = VAL-XLO (gt!} Tl = X_HI 

(Thi) VALID = V-Xhi 
(Thi & !hard}: SIZE = Nvalid 

(Tio & hard} OFFST = O+Xlo 
(Tio & !hard}: SIZE = SZ-Xlo 

Tio: S TBLA = + Xlo T2 = -SIZE 

(Tio & hard}: OFFS ?-Size 
(Tio & !hard} Ebptr = +Xlo 

T2 = -Bu fsizeo 

Ebptr = ?-Bufsizeo 

FIG. 26 

CHK= 

get invalid 

get hif 1 

get hit2 

WS = ES (eq!} domark; !gf 1 -> !trimlo 

KE= EE (eq2) >> dotrimh1;10,noth,invalid 

Operations depend on which 
trim 

OFFSET gets dee if > size 

EBPtr wraps around Bfr 

d 
• 
\JJ. 
• 
~ 
~ ...... 
~ = ...... 

0 
I") 

!""" 
~ 

'"""' ~ 

N c c c 

'Jl =~ 
~ ..... 
N 
-..J 
0 ....., 
~ c 

0--, .... 
~ 
~ 
~ .... 
.....::. 
N 
00 



U.S. Patent Oct. 31, 2000 Sheet 28 of 30 6,141,728 

(j) TRIMLO rTR WEPTR 

t 
----------
I 
I !WE> [[ + 
: !WE= EE 
----------

0 = £OFFSET: Leave things alone 

Modify size valid 

OFFSET=EoFFSET-XLo 

BPTR=W[PTR 

SIZ£=£SIZ£-X LO =R 

=B PTR2-WEPTR 

WR 

XLO 

EprRltz 
I ,,. 

VALID=EVALID if VALID 5 EsJZE -£OFFSET 

else=[ SIZE -[OFFSET 

NEWLBA=EsTLBA 

@= EOFFSET:agreement BPTR,ELBA. ... 

+size valid 

OFFSET=O 

BPTR=WEPTR 

I 
SIZE 

SIZ£=£siz£-X=R X-£ OFFSET 

=B PTR2-W£PTR 

R 

·1 
I 
1 8PTR2 
I 

•' 

VALID=O if VALID 5 WEPTR - (£OFFSET + £ BPTR) 

else=VALID-{W£pTR-(£oFFS£T + EBpTR)) {Max=New size) 

NEWLBA=EsTLBA -(WEPTR-(£ OFFSET+ £8 PTR)) 

=EsTBLA + T{X-EoFFSET) 

FIG. 27A 



U.S. Patent 

@OFFSET 

OFFSET=O 

BPTR=EPTR 

Oct. 31, 2000 

0 TRIMHI 

I I 
1 ! WE>ES&WE>EE) 1 

l__<~E~~S!~E~~E2 _: 

SJZE=ESIZE-X H1=R 

= WS PTR2-EBPTR1 

Sheet 29 of 30 

, .. R 

EprRlbkl 
1 .. 

VALID=O if £VALID 5 E SIZE-£! OFFSET 

6,141,728 

11--sP_li_R_m_'R----1r m 

I 
I BPTR2 
I 

.,.1 

else VALID=£ VALID-{ESIZE-EoFFSET) {Max=New Size) 

NEWLBA=EsTLBA +{EsIZE -[OFFSET) 

@=OFFSET 

OFFS£ T = E OFFS£ T 

BPTR=EPTR1 

SIZE=EsizE-X=R 

= WS PTR-E BPTR7 

VALID=EVALJD if £VALID 5 R-E OFFSET 

else=R-E OFFSET 

NEWLBA=E STLBA 

FIG. 278 



smdecode 
WR BFR SCAN 

704 > + -

GET ENTRY 
710 

CHKENTRY1 WE> ES empt ff = ES+ESIZE Tl = -ES 
712 

CHKENTRY2 WS <ff cmp2 X_LO = WE-Tl Tl = -ws 
714 

H!TJ (gt1) WS >ES gt1 X_HI = ff-Tt Tl = -X_LO 
716 

H!T2 {gt2) WE> ff gt2 [{!gtt) VALID = VAL-XLO~ {gt2) Tl = -X_HI 
718 

ACTJ Tio: Xlo > [offset Tio: NewSize=Sz-Xlo T2 = -[offset 
720 Thi: R = Sz-Xhi 

ACT2 T!oA: TJA = Esz-Eoffset 
Thi: R > [offset T!oB: TJB = Xlo-Eoffset 

722 Thi· NewSize=Sz-Xhi 

ACT3 TloA: E valid > Tl A T!oA: Noffset = [offset-Xia 
724 TloB: E valid > T1 B ThiA: T2A = [sz-Eoffset T!oB: TX = -TJB 

ThiB: T28 = R-Eoffset 
ACT4 ThiA: E valid > T2A T!o81: Nvalid = E valid- Tl B ThiA: TX = - T2A 726 Th1B: E valid > T28 ThiA: Nstlba = Estlba+ T2A 

ACT5 T!oB: Nvalid > Nsize T!o81: Nstlba = Estlba-T18 
728 ThiA 1: Nvalid = E valid- T2A 

ACT6 ThiA 1: Nvalid > Nsize 
730 

WR CRAM 
732 

TrimLo=!gt2 & !eq2 TrimHi =(gt1 & gt2)1 Invalidate= (1gt1 & 
735 {gt1 & eq2) gt2) I {!gt1 & eq2) 

FIG. 28 
CHK= 

get invalid 

get hif 1 

get hit2 

WS = ES {eq1) domark; !gt1 -> !trim/a 

WE= ff {eq2) gt2->! trim/a 
» dotrimhi,lo,invalid 

»Tio: ! side A ? 

» Thi: .'sideA ? 

lastlba = highbptro» 
T!oA {Nvalid = ? TJA:Evalid) 
T!oB {Nvalid = ? TBC: doin v) Nbptr ? Lowbptro doinv:next > CRAMWR 

ThiA f;Nvalid = ? TBC:doinv} 
ThiB Nvalid = ? T2B:Evalid) 

doinv:next > CRAMWR 
Tlo81: Nvalid = ? Nsize: 

Nva!id 
ThiA 1: Nvalid = ? Nsize: 

Nvalid 
Tio, TloB: Nbptr = WE 

T!oB, ThiA: Noffset = 0 

d 
• 
\JJ. 
• 
~ 
~ ...... 
~ = ...... 

0 
I") 

!""" 
~ 

"'"" ~ 

N c c c 

'Jl =~ 
~ ..... 
~ c 
0 ....., 
~ c 

0--, .... 
~ 
~ 
~ .... 
.....::. 
N 
00 



6,141,728 
1 

EMBEDDED CACHE MANAGER 
2 

multiple write commands are issued by the host, existing 
cache managers have no ability to buffer the data, and keep 
the cache coherent, without multiple interruptions. 

Reference to Related Application There is, therefore, a need for a method of managing a 

This is a continuation-in-part of U.S. patent application 5 cache buffer which quickly, and efficiently, detects data in 
the cache buffer. There is also a need for such a method to Ser. No. 08/940,074 filed on Sep. 29, 1997, now abandoned. 

FIELD OF THE INVENTION 

The present invention relates to cache systems. More 
particularly, the invention relates to a cache buffer manager 
and a method and apparatus for managing a cache buffer 
embedded within a storage device for transferring data 
between a host device and the storage device. 

BACKGROUND 

A cache buffer is a high speed memory buffer inserted 
between a host and a storage device, such as a disk drive, to 
store those portions of the disk drive data currently in use. 
Since the cache, typically implemented as semiconductor 
memory, is several times faster than the disk drive, using the 
cache can reduce the effective disk access time. 
Conventionally, a firmware cache manager has controlled 
transfer of data into and out of the cache buffer, and has 
managed the data stored in the cache buffer. A typical cache 
manager utilizes a cache directory containing data block 
memory addresses, and control bits for cache management 
and access control. The cache manager searches the cache 
directory to fetch and store data blocks in the cache buffer, 
and uses a replacement strategy to determine which data 
blocks to retain in the cache buffer and which to discard. 

However, a major disadvantage of existing cache man
agers is slow operational speed in detecting data blocks in 
the cache buffer. This is because the cache manager must 
search through the cache directory and examine the entries 
therein to determine if one or more requested data blocks are 
in the cache buffer. This is a time consuming process, 
typically performed by a microprocessor executing instruc
tions requiring multiple clock cycles. As such, existing 
cache managers commonly search for the first of a set of 
consecutive data blocks, and rarely search for all the data 
blocks in the set. 

Most cache buffers are organized into multiple segments 
each storing a set of data blocks. As a result, a logically 
consecutive set of data blocks may exist as multiple subsets 
stored in different cache segments. Another disadvantage of 
existing cache managers is that, although all the data blocks 
of a requested set may exist as subsets stored in different 
cache segments, because of their slow operational speed, 
existing cache managers can only search for the subset 
containing the first data block in the requested set. As a 
result, such cache managers record a partial hit and attempt 
to transfer the remaining subsets into the cache buffer from 
the disk drive. This is a very time consuming task that causes 
replacement of existing, and most likely useful, data blocks, 
wastes precious cache buffer space, and prevents seamless 
delivery of the requested consecutive data blocks to the host. 

Yet another disadvantage of existing cache managers is 
their inability to effectively buffer data from the host. Every 
time the host issues a write command, the cache manager is 
interrupted to store data from the host into the cache buffer 
and communicate with the disk drive. As such, there is little 

10 

15 

quickly, and efficiently retrieve data stored in the cache 
buffer. There is also a need for such a method to quickly, and 
efficiently, buffer multiple data transfers into the cache 
buffer. There is also a need for an improved cache manager 
architecture embedded within a random access mass storage 
device, such as a hard disk drive. 

SUMMARY 

The present invention satisfies these needs. 

In one embodiment, the present invention provides 
method of managing the data in a cache buffer including data 
segments, and transferring data into and out of the cache 

20 buffer. The method of the present invention can be used to 
respond directly to read and write commands from a host, 
and to provide a cache manager with cache status informa
tion such as cache miss, partial hit and full hit information. 
A cache list for organizing the data comprises a plurality of 

25 entries each including information identifying a correspond
ing cache segment, and a set of consecutive data blocks 
stored in the cache segment. Providing cache status for a 
requested set of data blocks includes traversing the cache list 
to locate entries identifying the starting data block in the 

30 requested set, and consecutive data blocks successively 
following the starting data block without interruption, and 
identifying as a missing data block the first data block in said 
succession, including said starting data block, not identified 
in any entry. The first missing data block is used to deter-

35 mine status: a full hit if the missing data block is not in the 
requested set; a miss if the missing data block is the starting 
data block in the requested set; or a partial hit otherwise. 
Further, in case of a full or partial hit, the identity of said 
missing data block is also provided. The cache status infor-

40 mation can be used by the cache manager to transfer the 
requested set of data blocks out of the cache buffer. 
Alternatively, the step of traversing the cache list can include 
locating entries identifying the starting data block, and 
consecutive data blocks successively following the starting 

45 data block up to, and including, the last data block of the 
requested set. Therefore, only cache status of the requested 
data blocks is checked. After locating an entry identifying a 
data block next in sequence to the last data block of the 
requested set, indicating a full hit, the requested data blocks 

50 can be transferred out. Similarly, after locating a missing 
data block, all data blocks from the starting data block up to 
the missing data block can be transferred out. Additionally, 
this approach enables the firmware to fetch any missing or 
additional data blocks from disk, as in the case of a partial 

55 cache hit. 
In response to a write command for a requested set of 

data, the cache list is traversed to locate all entries identi
fying sets of data blocks overlapping the new set to be 
written to cache. If a located entry identifies a set of data 

60 blocks fully overlapping the new set, there is a full hit. If no 
entry is located, there is a miss. Otherwise, there is a partial 
hit. This information can be reported to the cache manager 
to transfer the new set of data blocks into the cache buffer. 

or no parallelism between the host and the cache manager in 
handling data. Further, the cache manager must take the time 65 

to execute its replacement strategy to store the data into the 
cache buffer and keep the cache directory coherent. As 

The new set can be automatically transferred into a predes
ignated buffer area selected by the cache manager. In that 
case, each of said located entries is marked invalid so that 
they are not considered in response to subsequent read 



6,141,728 
3 

commands. In case of a partial hit or a miss, the above steps 
can further include locating an entry previously marked 
invalid, and updating the information in the invalid entry to 
identify: (1) the predesignated buffer as a corresponding data 
segment, and (2) the new set as the set of data blocks stored 5 
in the corresponding data segment. 

In case of a full hit, where a located entry identifies said 
starting data block, and the sequence of the last data block 

4 
FIGS. 6-13 show a flowchart illustrating an example of a 

cache control state machine implementation of cache buffer 
management according to principles of the present inven
tion; 

FIG. 14 is a block diagram of a host-connected hard disk 
drive including a cache controller having a single cache 
controller state machine in accordance with principles of the 
present invention. 

FIG. 15 is a more detailed block diagram of the cache 
controller of FIG. 14. 

FIG. 16 is a more detailed block diagram of a dedicated 
arithmetic logic unit of the FIG. 15 cache controller. 

of the set identified in the entry matches or succeeds that of 
the last data block of the new set, the new set can be 

10 
transferred to the corresponding data block locations in the 
segment identified in the entry. When data is transferred into 
the cache buffer in case of a full or partial hit, each located 
entry can be updated to identify a set of data blocks which FIG. 17 is a more detailed block diagram of a cache list 

15 random access memory unit of the FIG. 15 cache controller. do not overlap the new set. 
The present invention provides efficient and quick scan of 

the cache list to find every data block requested and transfer 
the data if necessary. It saves the cache manager from the 
labor intensive task of searching for data, which reduces 
performance of the cache manager. Given a starting data 

20 
block in a requested set, unlike existing systems, the present 
invention searches to find data blocks beyond the requested 
data blocks. As a result, after traversing the cache list, the 
cache manager can be provided with cache status based on 
the requested set, including a miss, partial hit, full hit, and 

25 
the first missing data block which needs to be read into the 
cache buffer from the disk drive. 

FIG. 18 is a state flow diagram of an overall cache read 
process carried out by the FIG. 15 cache controller. 

FIG. 18A is a state flow diagram of a cache read scan 
operation of the FIG. 15 cache controller state machine 
within the overall cache read process flow of FIG. 18. 

FIG. 19 is a state flow diagram of a cache read transfer 
process of the FIG. 15 cache controller state machine. 

FIG. 20 is a functional matrix diagram showing simulta
neous parallel processing steps carried out by the arithmetic 
logic unit of the FIG. 15 cache controller during the FIG. 19 
cache read transfer process. 

FIGS. 20A, 20B and 20C provide several cache read 
transfer process examples further illustrating the FIG. 20 
processing steps. 

FIG. 21 is a state flow diagram of a cache write command 
scan flow process of the FIG. 15 cache controller state 
machine in handling host write commands. 

The transfer operation provides the ability to perform 
real-time data gathering of discontinuous pieces of data in 
the cache buffer, and to seamlessly provide the host with a 30 
single stream of data. This is because a cache list traverse 
provides information about what data is in the cache buffer 
and where it is. Therefore, the data can be transferred 
without spending time between successive searches to find 
the next piece of data to transfer to the host. 

The present invention also provides buffering of data from 
the host. Multiple write commands from the host are buff
ered until the cache manager decides to write the buffered 
data to disk. This allows the cache manager to operate 
without interruption by every write command. Since subse- 40 
quent writes can overlap one another, the present invention 
provides marking and trimming capabilities to resolve over
laps as described above. As such, all overlaps can be 
resolved in real-time, keeping the cache list coherent, and 
allowing for subsequent reads. 

FIG. 22 is a series of timing diagrams illustrating write 
35 scan process timing of the FIG. 15 cache controller state 

machine in accordance with the FIG. 21 state flow diagram. 

BRIEF DESCRIPTION OF THE DRAWINGS 

These and other features, aspects and advantages of the 
present invention will become better understood with regard 
to the following description, appended claims and accom
panying drawings where: 

FIG. 1 is a block diagram of an example of a computer 
architecture in which the present invention can be imple
mented. 

FIG. 23 is a state flow diagram of cache write scan of the 
FIG. 15 cache controller state machine carried out for write 
LEA scan and for write buffer scan modes of FIG. 21. 

FIG. 24 is a table showing all possible overlap conditions 
which may be detected during an LEA mode write scan 
process. 

FIG. 25 shows four cache trim operations, one of which 
may be performed as a result of the LEA mode write scan 

45 process. 
FIG. 26 is a functional matrix diagram showing simulta

neous parallel processing steps carried out by the arithmetic 
logic unit of the FIG. 15 cache controller during write LEA 

50 
scan mode operation of the cache controller state machine in 
accordance with the FIG. 23 cache read transfer process. 

FIGS. 27 A and 27B show two cache trim operations, one 
of which may be performed as a result of the buffer mode 
write scan process. 

FIG. 2 shows a block diagram of a cache system including 55 
a cache buffer, a firmware-implemented cache manager, and 

FIG. 28 is a functional matrix diagram showing simulta
neous parallel processing steps carried out by the arithmetic 
logic unit of the FIG. 15 cache controller during write buffer 
scan mode operation of the cache controller state machine 
carried out in accordance with the FIG. 23 cache read 

a hardware controller including a command state machine 
and a cache control state machine according to principles of 
the present invention; 

FIG. 3 shows a block diagram of a cache buffer organized 
into segments, and an embodiment of a cache list according 
to principles of the present invention for managing transfer 

60 transfer process. 

of data into and out of the cache buffer; 
FIG. 4 shows an example cache list entry; 
FIGS. 5a-5b show a flowchart illustrating an example 65 

command state machine implementation of the command 
processing aspect of the present invention; 

DESCRIPTION OF PREFERRED 
EMBODIMENTS 

FIG. 1 shows a block diagram of an exemplary computer 
system 10 in which a method embodying aspects of the 
present invention can be implemented. The computer system 
10 typically includes a host 15 and a storage device, such as 



6,141,728 
5 

a disk drive 20, interconnected via a cache system 25. The 
cache system 25 is utilized to buffer transfer of data between 
the host 15 and the disk drive 20 according to the present 
invention. As those skilled in the art will recognize, the 
present invention is capable of being implemented in a 5 

system having other storage devices. Additionally, the host 
15 generally refers to a host/AT interface, which one skilled 

6 
many of data blocks 75 therein within the range of the 
requested set, and (5) if the sequence of the last data block 
of the requested set succeeds that of the last data block of the 
set identified in the located entry 90, denoting as the running 
block, the block next in sequence to said last block of the 
identified set, and repeating steps (2)-( 4). 

Similarly, in response to a read command, after locating 
a missing data block, all data blocks 75 from the starting data 
block up to the missing data block are transferred by: (1) 

in the art will recognize to include, for example, a CPU 30 
interconnected via a Bus 35 to a RAM 40, ROM 45 and an 
AT interface 50. 

Referring to FIG. 2, a first embodiment of the presently 
preferred cache system 25 includes a cache buffer 55 and a 
cache manager 60 for storing data into and retrieving data 
from the cache buffer 55. In one aspect, the present invention 
provides a method of managing the data in the cache buffer 
55, and transferring data into and out of the cache buffer 55 
is implemented into a hardware controller 65 including a 
command state machine 67 and a cache control state 

10 denoting the starting data block as a running data block, (2) 
traversing the cache list 80 to locate the entry 90 identifying 
the running data block, (3) accessing the data segment 70 
corresponding to the located entry 90, ( 4) transferring as 
many of data blocks 75 therein within the range of the 

15 requested set, and (5) if the sequence of the missing data 
block succeeds that of the last data block of the set identified 
in the located entry 90 by at least two, denoting as the 
running block, the block next in sequence to said last block 

machine 69. The method of the present invention can be 
used to respond directly to read and write commands from 20 

the host 15, and to provide the cache manager 60 with cache 
status information such as cache miss, partial hit, and full hit 
information. The cache manager is most preferably imple
mented as firmware executed by a microprocessor. 

Referring to FIG. 3, the cache buffer 55 is organized into 25 

a plurality of cache segments 70 each for storing one or more 
data blocks 75. To manage the data segments 70 and the data 
stored therein according to the present invention, a cache list 
80 comprises a plurality of entries 90 each including infor
mation identifying: (1) a corresponding cache segment 70, 30 

and (2) a set of consecutive data blocks 75 stored in the 
cache segment 70. 

Providing cache status for a requested set of data blocks 

of the identified set, and repeating steps (2)-( 4). 
To service a write command for a requested set including 

a starting data block, the cache list 80 is traversed to locate 
all entries 90 identifying sets of data blocks 75 overlapping 
the requested set. If a located entry 90 identifies a set of data 
blocks 75 fully overlapping the requested set, there is a full 
hit. If no entry 90 is located, there is miss. Otherwise, there 
is a partial hit. This information can be reported to the cache 
manager 60 to transfer the requested set of data blocks 75 
into the cache buffer 55. 

75 includes traversing the cache list 80 to locate entries 90 
identifying the starting data block in the requested set, and 
consecutive data blocks 75 successively following the start
ing data block without interruption, and identifying as a 
missing data block a first data block in said succession of 
consecutive data blocks 75, including said starting data 

40 
block, not identified in any entry 90. The missing data block 

Finding overlaps includes comparing the range of the data 
blocks 75 in the requested set to the range of data blocks 75 
identified in each entry 90. Four basic types of comparisons 
include range checking for the starting data block of the 
requested set, for the last or ending data block of the 
requested set, for the starting data block of each set identi-

35 fied in the entries 90, and for the ending data block of each 
set identified in the entries 90. 

is then used to provide cache status including: a full hit if the 
missing data block is not in the requested set; a miss if the 
missing data block is the starting data block in the requested 
set; or a partial hit otherwise. Further, in case of a full or 

45 
partial hit, the identity of said missing data block is also 
provided. The cache status information can then be used by 
the cache manager 60 in order automatically to transfer the 
requested set of data blocks 75 out of the cache buffer 55. 

In order to minimize fragmentation, the requested set is 
preferably stored in a contiguous area of the buffer 55. 
Therefore, the requested set can be automatically transferred 
into a predesignated buffer area selected by the cache 
manager 60. In that case, each of said located entries 90 is 
marked invalid so that they are not considered in response to 
subsequent read commands. In case of a partial hit or a miss, 
the steps can further include locating an entry 90 previously 
marked invalid, and updating the information in the invalid 
entry 90 to identify: (1) the predesignated buffer as a 
corresponding data segment 70, and (2) the requested set as 
the set of data blocks 75 stored in the corresponding data 
segment 70. 

In case of a full hit, where the located entry 90 identifies 
said starting data block, and the sequence of the last data 
block of the set identified in the entry 90, matches or 
succeeds that of the last data block of the requested set, the 

As such, the cache manager 60 is provided with cache 50 
status for the requested data blocks, and a look ahead into the 
cache buffer 55 for all data blocks 75 therein which are in 
logical sequence with the staring data block. Alternatively, 
the step of traversing the cache list 80 can include locating 
entries 90 identifying the starting data block, and consecu
tive data blocks 75 successively following the starting data 
block up to, and including, the last data block of the 
requested set. Therefore, only cache status of the requested 
data blocks 75 is checked. 

55 requested set can be transferred into the corresponding data 
blocks 75 in the segment 70 identified in the entry 90. 

When data is transferred into the cache buffer 55 in case 
of a full or partial hit, each located entry 90 can be updated 
to identify a set of data blocks 75 which do not overlap the 

60 requested set. In case of a buffer overlap, where the predes
ignated buffer overlaps a data segment 70 identified in an 
entry 90, all such entries 90 are updated to resolve overlaps 
by identifying a segment size which does not overlap the 

In response to a read command, after locating an entry 90 
identifying a data block next in sequence to the last data 
block of the requested set, indicating a full hit, the requested 
data blocks 75 are transferred out by: (1) denoting the 
starting data block as a running data block, (2) traversing the 
cache list 80 to locate the particular entry 90 identifying the 65 

running data block, (3) accessing the data segment 70 
corresponding to the located entry 90, ( 4) transferring as 

predesignated buffer. 
Referring to FIGS. 2 and 4-13, an exemplary embodiment 

of the present invention, implemented as two interacting 
state machines 67 and 69 is described. The exemplary 



6,141,728 
7 

implementation is primarily specific to an AT interface. 
However, those skilled in the art recognize, the present 
invention is also capable of being implemented for other 
interfaces between a host device and a storage device. 

The state machines include a Command State Machine 5 

(CM) 67 and a Cache Control State Machine (CSM) 69. 
Both state machines 67, 69 can be implemented in a logic 
circuit, such as an ASIC, as described below. Generally, CM 
67 stores commands issued by the host and keeps a com
mand history. CSM 69 performs operations in response to 10 

the commands to manage transfer of data into and out of a 
cache buffer 55. The cache buffer 55 is a portion of memory 
starting at a low address and proceeding to a high address 
whereupon it rolls over to the low address. The buffer 55 is 
organized into a variable number of segments, up to at least 15 

thirty-two, each for storing a plurality of data blocks 
(Command Logical Block Address -LEA). In the following 
description the cache manager 60 is referred to as "firm
ware" as it is typically, although not necessarily, imple
mented as a firmware-programmed microprocessor embed- 20 

ded within the storage device, e.g. disk drive. 
CM 67 includes a Command FIFO in external RAM, 

comprising at least eight Command entries. For interfaces 
where command queuing is supported (SCSI) the Command 
FIFO already exists. Each Command entry includes: 25 

Command LEA-the first LEA required by the Com
mand. 

Transfer Count-the number of LBAs to be transferred. 
Buffer Pointer/Cache Entry Pointer-the memory address 

of a Segment where data has been stored, or the pointer 30 

to a Cache Entry describing that Segment. 
Referring to FIG. 4, the CSM 69 includes a Cache List 

comprising thirty-two entries each entry 90 including: 
Start LEA-lowest LEA stored in a corresponding Seg-

ment. 
Valid LEA-the number of contiguous valid LBAs in the 

Segment starting with the Start LEA 

35 

Segment Size-the size reserved for the Segment in the 
Buffer; expressed as the number of LBAs that can be 

40 
stored therein. 

Buffer Pointer-starting address of the Segment in the 
Buffer. 

LEA Offset-the offset of the Start LEA relative to the 
starting address of the Segment. 45 

Flags: 
Locked-Segment locked by the CSM. 
Trim-Cache Entry needs to be trimmed by firmware. 
Not Dirty-valid Cache Entry. 
Unavailable-set by firmware to prevent CSM from 50 

using the Cache Entry. 
Release Interrupt-set by firmware asking CSM to 

generate an interrupt when the Cache Entry is 
released. 

Write Pending-there is write data in the Segment. 55 

Disk Active-the disk drive is reading or writing in the 
Segment (set by firmware). 

Video Data-data in the Segment can be used for video 
only. 

CM 67 and CSM 69 interact with one another, the 60 

firmware 60, the host interface 50 and a disk drive interface 
71 through the following registers: 

Interrupt Register-includes flags associated with inter
rupts including: 
CSM 69 generated interrupts: 65 

CACHE MISS, PARTIAL HIT and FULL HIT, gen
erated at the end of Detection operation. 

8 
CLEANUP, generated at the end of a Cleanup opera

tion. 
MARK, generated at the end of a Mark operation. 

Host interface 50 generated interrupts: 
NEW COMMAND, AUTO WRITE and AUTO 

READ (i.e. type of command). 
Auto Enable Register-Configures CSM 69 to define the 

extent of its operation. The firmware can configure 
through this register: 
Auto Scan-when enabled, allows CSM 69 to scan for 

read hits. If Auto Scan is enabled, then: 
Auto Read Transfer-if there is a Full Hit, the data 

is transferred automatically. 
Auto Partial Transfer-if there is a Partial Hit, as 

much data as there is found in cache is transferred 
automatically. 

Auto Mark-when enabled, the CSM 69 is allowed to 
Mark for trimming all overlapping segments. If Auto 
Mark is enabled then: 
Auto Trim-CSM Trims Cache Entries. 
Auto Reuse-When Auto Trim enabled and Full Hit 

is detected, CSM 69 Reuses Cache Entry 
Segments, rather than Trims them. 

Auto Allocate-CSM 69 uses invalid Cache Entries 
to store information pertaining to buffered write 
commands, including, Start LEA, Valid LBAs, 
Segment Address, Segment Size and Write Pend
ing flag. 

Auto EOC-CSM 69 writes buffer data and informs 
the host that write command is complete. Auto 
EOC allows stacking of write commands. In exist
ing systems, transfer starts, but the host is not 
informed of its completion, until firmware 
resolves all overlaps. 

The following definitions apply to the description below: 
Auto Write interrupt-generated by CM to inform the 

firmware of Auto Write command. 
Auto Mark Active step-posted by CM 67 to trigger CSM 

69 to auto Mark. 
Auto-Command-implies an automatic read or write 

command. 
Command LEA-first LEA in a requested set of LBAs. 
Cache LEA register-used by CSM 69 to Scan. 
Cache Sector register---count of the number of sectors 

found for transfer. 
Current Write Sector register---containing the number of 

available sectors for a write. 
End LEA-contains sum of Command LEA and Transfer 

Count. 
Entry Pointer-points to current Cache List entry. 
Full Scan---describe it as compares to regular Scan. 
Lock Flag-used to lock Segments during data transfer. 
Maximum LEA-is the LEA boundary of the disk drive. 
Missing LEA register---contains the last LEA sequential 

to the Start LEA not found in the cache. 
Running LEA-used to scan the buffer, contains the 

identity of the last LEA Transferred, so subsequent 
LBAs can be Transferred. 

Scan Active step-posted by CM to trigger CSM to Scan. 
Sector Address---computed based on Segment Address. 
Trigger Count Register-loaded with the number of sec-

tors (LBAs) to be transferred out of a Segment with a 
hit. 

Command State Machine (CM) 67 

Referring to FIGS. 5a-5b, the operation of CM 67 is 
described. CM 67 idles at a step 200 and checks for a New 



6,141,728 
9 

Command at a step 202. Upon detecting a New Command 
at step 202, CM 67 sets an AT Interface specific BUSY 
signal at a step 204 and a DASP signal at a step 206. If the 
New Command is not an Auto-Command as tested at a step 
208, CM 67 generates an interrupt for the firmware to handle 5 
the New Command at a step 210. An Auto-Command 
implies an automatic read or write. If the New Command is 
an Auto-Command, CM 67 saves the New Command infor
mation in the Command FIFO by generating a Command 
Logical Block Address (LEA) at a step 212, and saves the 10 
LEA, a Transfer Count and a Buffer Pointer at a step 214. 
The Buffer Pointer is provided by the firmware for writing 
data to a designated portion of the Buffer. CM 67 then 
initializes the Running LEA register to the Command LEA 
at a step 216. Having stored the information pertaining to the 15 
New Command in the Command FIFO, CM 67 issues an 
Auto-Command interrupt at a step 218 to inform the firm
ware that the New Command has been received. 

CM 67 then compares the Command LEA with a Maxi
mum LEA at a step 220 to determine if the Command LEA 20 
is within the boundaries of the disk drive. If the Command 

10 
command. CM 67 then starts the Interface at step 254, as 
above, to transfer as much data into the Buffer as possible, 
with the firmware completing the command and informing 
the host. CM 67 then proceeds to step A 

Therefore, CM 67 triggers CSM 69 in two possible ways 
by posting either: (1) a Scan Active at step 240, or (2) a Mark 
Active at step 262. CM 67 also starts the transfer Interface 
at step 254 to transfer data. 

Cache Control State Machine (CSM) 69 

Referring to FIG. 6-13, the operation of CSM 69 is 
described. CSM generally includes eight classes of opera
tions: Decode, Scan, Detection, Transfer, Cleanup, Mark, 
Reuse, and Allocate. 
Decode 

Referring to FIG. 6, in Decode, CSM 69 determines the 
actions to be performed. CSM 69 idles at a step 270 until 
triggered, and first determines if a Cleanup Active step is 
posted at a step 272. If so, CSM 69 proceeds to step B to 

LEA is not within a boundary, then CM 67 sets a Max LEA 
Error condition at a step 228 and disables Automatic End of 
Command at step 226 to allow the firmware to deal with the 
error. If the Command LEA is within the boundary, CM 67 
determines if the New Command is a read or a write 
command at step 224. 

If the New Command is a read command, CM 67 syn
chronizes its operation with the CSM 69 and proceeds to 
determine if Auto Scan is enabled at a step 232. If Auto Scan 
is not enabled, CM 67 is done and proceeds to a step A If 
Auto Scan is enabled, Scan still cannot be performed until 

Cleanup. Otherwise, if a Mark Active step is posted at a step 
274, CSM 69 proceeds to step C to Mark. Otherwise, CSM 
69 determines if a Scan Active step is posted at a step 276. 
If so, CSM 69 initializes the Cache LEA register to the 
Command LBAat a step 278. CSM 69 then compares Cache 
LEA to the End LEA register at a step 280 which contains 

25 
the sum of the Command LEA and the Transfer Count. If 
End LEA is greater than the Cache LEA, CSM 69 deter
mines if a Scan Active is posted at a step 282. If so, this is 
the first Scan for the New Command, and so the Cache 

it is determined that there are no stacked write commands 
that have unresolved overlaps. To determine such, CM 67 
checks if an unresolved command counter does not equal 
"1" at a step 234. If the counter does not equal "1", CM 67 
loops through steps 230-234 until firmware resolves the 
write command overlaps, which is indicated by the counter 
being decremented to equal "1". CM 67 then checks if the 
CSM 69 is active at a step 236. If CSM 69 is active, CM 67 
loops through steps 230-236 until CSM 69 becomes inac
tive. Thereafter, CM 67 posts a Scan Active step at step 240 
to trigger CSM to Scan, and proceeds to step A 

If the New Command is a write command, CM 67 
synchronizes with CSM 69 at a step 242, and proceeds to 
determine if the firmware has locked the Buffer at a step 244 
to prevent a race condition with the hardware. When the 
Buffer is unlocked, CM 67 generates an Auto Write interrupt 
at a step 246 to inform the firmware of the Auto Write 
command. CM 67 then determines if Auto Mark is enabled 

30 
Sector count, containing the number of sectors found for 
Transfer, is initialized to zero at a step 284. Thereafter, CSM 
69 proceeds to step E Scan. 

If Scan Active is not posted in step 276, CSM 69 
determines if a Transfer Active is posted at a step 286. If not, 

35 
there is no further action to perform and CSM 69 proceeds 
to idle step 270. Otherwise, the Cache LEA is initialized at 
step 278 to the value of the Running LEA, which contains 
the identity of the last LEA Transferred, to allow Transfer of 
subsequent LBAs requested by the New Command. As 

40 
transfers take place, the Running LEA is updated. If Cache 
LEA is greater than End LEA as tested at step 280, the New 
Command is satisfied, and CSM 69 clears the Scan Active 
at step 288. Thereafter, CSM 69 determines if Transfer 
Active is posted at step 300, and if so, it is cleared at step 

45 
302. CSM 69 then posts Cleanup Active at step 304, to 
trigger Cleanup to free any segments remaining locked by 
Transfer, and proceeds to idle state 270. If Cache LEA is less 
than End LEA as tested in step 280, and Scan Active is not 
posted as tested at step 282 (Transfer Active only), CSM 69 

50 
proceeds to step D to Transfer data found by Scan. 

at a step 248; and, if so, posts a Mark Active step at a step 
262 to trigger CSM 69 to auto Mark. CM 67 then waits for 
CM to complete auto Marking by synchronizing at step 264 
and checking if CSM is active at step 266. When CSM 69 
has completed auto Marking, CM 67 compares a Current 55 

Write Sector (CWS) register, containing the number of 
available sectors for a write, with the Transfer Count for the 
write command at a step 250. If there are enough available 
sectors to completely buffer the write, CM 67 determines if 
the Command FIFO is full at step 256. If the Command 60 

FIFO is not full, CM 67 increments the number of com
mands stored in the Command FIFO and starts the Interface 

Therefore, all possibilities of the active steps of CSM 69 
are: 

Cleanup Active only; 
Mark Active only; 
Scan Active only-Scan to find (Detect) data in cache; 
Transfer Active only-Transfer data found by a previous 

Scan; and 
Scan Active and Transfer Active only-while Transfer

ring data, Scan the cache to find new data to append to 
data being Transferred. 

Scan 
Referring to FIG. 7, when Scan Active step is posted, 

CSM 69 proceeds to step E, and begins by initializing the 
Entry Pointer to the first Cache List entry at step 306. CSM 
69 accesses the contents of the entry at step 308 and 
determines if the Cache LEA is identified in this entry at step 
310, i.e. an LEA hit. 

at step 254 to transfer data from the host store into the Buffer 
starting from the Buffer Pointer. If the Command FIFO is 
full, or if there are not enough available sectors to com- 65 

pletely buffer the write, CM 67 disables Automatic End of 
Command at step 252, so the firmware completes the 



6,141,728 
11 

If not, CSM 69 determines if the entry is the last Cache 
List entry at step 332, and if not, the Entry Pointer is 
incremented at step 330, and CSM 69 proceeds to the next 
entry at step 308. If the entry is the last entry, CSM 69 clears 
Scan Active at step 336, and determines if Transfer Active 5 

is posted at step 338. If Transfer Active is not posted, CSM 
69 proceeds to step F to Detect. Otherwise, CSM 69 checks 
the Cache Sector register to determines if any new cache 
sectors have been found for Transfer at step 324. If not, in 
SCSI mode at step 326, CSM 69 clears Transfer Active at 10 

step 328 and proceeds to step A without any active steps. In 
AT mode, CSM 69 remains in transfer mode, and so, 
proceeds to step A with Transfer Active step set. If new 
cache sectors have been found at step 324, CSM 69 proceeds 
to step A, leaving Transfer Active set, for the found data 15 

sectors to be Transferred. 
If there is an LEA hit as found at step 310, CSM 69 

determines if the Cache LEA is greater than End LEA at step 
312. This is because during a Scan, if Transfer Active is not 
set, CSM 69 may Scan Cache List entries for LBAs well 20 

beyond the New Command range, and so may find LEA hits 
beyond the End LEA If the current LEA hit is beyond the 
New Command range, the Segment with the LBAhit therein 
need not be locked, as the Segment will not be used for the 
current Transfer. Therefore, if End LEA is greater than 25 

Cache LEA, CSM 69 locks the Segment corresponding to 
the current Cache List entry at step 314. Otherwise, the 
Segment is not locked. CSM 69 then increments the Cache 
LEA and the Cache Sector at step 316 based on the number 

12 
CSM 69 first determines if the Cache LEA is less than 

End LEA at step 342. If so, in this AT interface specific 
implementation, if the number of LBAs in the hit are smaller 
than a block count as determined at step 354, CSM 69 
generates a MISS interrupt at step 354, otherwise, CSM 69 
posts a PARTIAL HIT in the Interrupt Register at step 358. 
And, if Partial Hit Autoread is enabled, step 360, CSM 69 
posts a Transfer Active at step 362, and generates a PAR
TIAL HIT interrupt at step 364. If Partial Hit Autoread is not 
enabled, CSM 69 generates a PARTIAL HIT interrupt at step 
364, without posting Transfer Active step to trigger a 
Transfer, and proceeds to step A. 

If Cache LEA is greater than or equal to End LEA as 
tested in step 342, CSM 69 posts the FULL HIT at step 346 
in the Interrupt Register, and determines if Full Hit Au tore ad 
is enabled at step 348. If so, CSM 69 posts a Transfer Active 
at step 350, and generates a FULL HIT interrupt at step 352. 
If Full Hit Autoread is not enabled, CSM 69 generates a 
FULL HIT interrupt at step 352, without posting Transfer 
Active step to trigger a Transfer, and proceeds to step A. 
Transfer 

Referring to FIG. 9, when Transfer Active is posted and 
Scan Active is not, CSM 69 proceeds to step D. In this AT 
specific implementation, CSM 69 loads an AT interface 
specific register, Current Read Sectors (CRS), with the 
number of sectors available for transfer from the Cache 
Sector register at step 370. Cache Sector contains the 
number of sectors found during Scan, now to be transferred. 
CRS is an interface register for the amount of data for the 

of valid LBAs data found in this Segment. 30 interface to transfer. 
CSM 69 again determines if the Cache LEA is greater 

than the End LEA at step 318. If not, there are more LBAs 
in the command range to find, and so, CSM 69 proceeds to 
Scan again at step 306, where the Entry Pointer is initialized 
to the first entry of the Cache List to find the remaining 35 

LBAs in the New Command range. However, if the Cache 
LEA is greater than the End LEA as tested at step 318, all 
LBAs in the command range have been found, and CSM 69 
determines whether Transfer Active is posted at step 320. 
This allows CSM 69 to determine if it is in a Scan and 40 

Transfer process or in a purely Scan process in which it 
performs a full Scan of the Cache List. If the former case, 
both Transfer Active and Scan Active are set, and in the latter 
case, only Scan Active is set, whereupon CSM 69 proceeds 
to Scan beyond the range of the New Command at step 306. 45 

Although the Cache LEA is beyond the range of the New 
Command, the Scan process continues until no further LEA 
hits are found. 

To find the addresses of the aforementioned sectors in the 
Buffer, CSM 69 proceeds by initializing the Entry Pointer to 
the first entry of the Cache List at step 372, accesses that 
entry at step 374, and determines if the Cache LEA is 
identified in that entry at step 376, i.e. an LEA hit. If not a 
hit, CSM 69 determines if the entry is the last Cache List 
entry at step 396, and if not, increments the Entry Pointer to 
the next Cache List entry at step 394 and checks for an LEA 
hit again at step 376. When a hit is found, CSM 69 locks the 
entry Segment with the hit by setting the Lock Flag, loads 
the Buffer Pointer with the sector address of where the data 
is, and loads a Trigger Count register with the number of 
sectors to be transferred from the Segment at step 378. The 
sector address is computed based on the Segment address, its 
length, number of valid LBAs therein, and the current LEA, 
providing an offset for the sector in the Segment. CSM 69 
then determines if the Interface has been started at step 380, 
and if not, CSM 69 starts the Interface at step 382, and 
synchronizes with the Interface at step 384 to transfers data However, in a transfer process, there is no reason for CSM 

69 to search for LEA hits beyond the New Command range, 
whereupon CSM 69 clears Scan Active at step 322 and 
proceeds to step A to Decode. There, since Transfer Active 
is set, Decode triggers Transfer to transfer data from Seg
ments with LEA hits therein. 

50 from the sector pointed to by the Buffer Pointer based on the 
Trigger Count. With each sector transferred, the Interface 
decrements the Trigger Count. When the Trigger Count is 
zero as tested at step 386, all the data in the Segment has 
been transferred and the transfer for the next Segment with 

Detection 
Referring to FIG. 8, in step F, CSM 69 interprets the 

"results" of the Scan process to provide information includ
ing a full hit, a partial hit or miss. CSM 69 also generates 
interrupts informing the firmware of such information, and 
based on the setting in the Auto Enable Register, transfers 
data. 

By step F, the Cache LEA contains the last LEA sequen
tial to the Start LEA not found in the cache. CSM 69 saves 

55 an LEA hit can begin. 
To do so, CSM 69 again traverses the Cache List to find 

the next Segment and compute the next Buffer Pointer: CSM 
69 clears the Lock Flag for the current Segment, and 
increments the Cache LEA at step 388 to the sum of the start 

60 LEA for the last transfer and the number of LBAs trans
ferred. CSM 69 then proceeds to find the next Segment for 
transfer by traversing the Cache List at step 372. As such, 
CSM 69 seamlessly concatenates and transfers data from 

the Cache LEA in the Missing LEA register at step 340, and 
begins the process of determining a FULL HIT, a PARTIAL 65 

HIT, or a MISS. At the end of this determination process, 
CSM 69 proceeds to step A to Decode. 

different Segments to the host. 
In the worst case, CSM 69 traverses the Cache List 

beginning to end only once to find all the data to be 
transferred. This is because the amount of data to be trans-



6,141,728 
13 

ferred has already been determined in the previous full Scan 
and stored in CRS in step 370. In a full Scan, the Cache List 
may be fully traversed more than once since the Cache LEA 
is incremented as an LEA in sequence with the Start LEA of 
the new Command is found. 

Back in step 386, if count is not triggered, and there is a 
disconnect or abort 390, CSM 69 stops the transfer by 
clearing Transfer Active at step 392 and proceeds to step A 
Otherwise, for this AT interface specific implementation, for 
multiple commands, data is transferred in blocks of a block 
count value (e.g. four LBAs at a time). If CRS is lower than 
the block count, the Interface cannot transfer and generates 
a Low CRS signal as detected at step 402. In response, CSM 
69 posts a Scan Active at step 404, and since Transfer Active 
has already been posted, CSM 69 proceeds to step A to 
Decode and perform another Scan for data not yet accounted 
for (e.g., data transferred to the cache while the last Transfer 
was taking place). 

As such, CSM 69 transfers data out the Buffer so long as 
new data is fed into the Buffer. This is accomplished as 
follows: CM 67 initially loads the Running LEA with the 
Start LEA CSM 69 then initializes the Cache LEA to the 
Running LBAin Decode. As data is transferred, the Running 
LEA is incremented to keep track. When CSM 69 begins 
Scan, it initializes the Cache LEA to the Running LEA, 
whereupon a Scan of the Cache List to the end of the New 
Command range is performed to find LEA hits. Thereafter, 
CSM 69 returns to Transfer and loads the CRS register as 
described above to begin transferring the data found during 
Scan. After the found data is transferred, CSM 69 again 
returns to Scan to find more data, and returns to Transfer to 
transfer the data out of the Buffer. The process continues and 
data is seamlessly transferred out of the Buffer so long as the 
request data is found in the Buffer. 

14 
step 432, i.e. a Trim Hit. If not a Trim Hit, and if the entry 
is not the last Cache List entry as tested at step 434, CSM 
69 increments the Entry Pointer at step 436 and cycles to the 
next entry at step 430. If the current entry is the last entry at 

5 step 434, CSM 69 determines if the current pass through 
Mark is a buffer trim at step 446. If a buffer trim, Mark is 
complete and CSM 69 proceeds to step J to Allocate. If not 
a buffer trim, CSM 69 sets the Buffer Trim flag at step 448, 
and begins its second pass at step 424. The Cache LEA is 

10 initialized to a Buffer Pointer (not an LEA). Cache LEA is 
a generic register and its contents are interpreted based on 
the Buffer Trim flag. The same LEA hit steps are performed 
for the buffer to determine buffer overlap. 

Back in step 432, if CSM 69 finds a Trim Hit, CSM then 
15 determines if Auto Trim is enabled at step 438, and if not, it 

sets the Trim Flag at step 444 for the entry to prevent the 
entire entry from participating in subsequent read Scans. The 
flag also indicates to the firmware that the entry has to be 
trimmed by the firmware. If Auto-Trim is enabled, CSM 69 

20 determines if Auto Reuse is enabled at step 440, and if not, 
it trims the entry at step 442 by changing the values in the 
current Cache List entry to reflect the new Segment after 
trimming. Based on the type of trimming (LEA or buffer 
trimming), trimming includes changing one or more of: the 

25 Start LEA, reducing the number of Valid LBAs, changing 
the Buffer Pointer, or reducing Segment Size. After 
trimming, the entry describes a section of the buffer that 
includes valid data which can be used by Scan and Transfer. 
Back in step 483, if Auto Reuse is enabled, CSM 69 

30 proceeds to step G to Reuse. When CSM 69 completes 
ascertaining both LEA and buffer overlaps, it determines if 
a buffer trim took place at step 446, and if so, it proceeds to 
step J to Allocate. 
Reuse 

Returning back to step 396, if CSM 69 determines that the 35 

entry is the last Cache List entry but the transfer is not 
complete, CSM 69 enables a firmware trigger mode at step 
398 and loops in this step, waiting for firmware to set a 
trigger flag at step 400. When the trigger flag is set, CSM 69 
posts a Scan Active at step 404 and proceeds to step A to 40 

perform another Scan. If, however, the trigger flag is not set, 
CSM 69 synchronizes with the interface at step 384 and 
proceeds as described above. 

Referring to FIG. 12, when Auto Reuse is enabled, CSM 
69 proceeds to step G, where it provides for full hit data in 
a write command to be transferred directly into position in 
the hit Segment, rather then to a position indicated by 
Auto-Write Pointer. 

In step 450 CSM 69 determines if trimming has been 
requested by an Auto Write New Command at step 450 (not 
by the firmware). If not, CSM 69 proceeds to step H to trim 
the Segment and the data is placed in the Buffer location 
pointed to by the Auto-Write Pointer. Otherwise, CSM 69 Cleanup 

Referring to FIG. 10, when Cleanup Active is posted, 
CSM 69 proceeds to step B, and traverses the Cache List to 
ensure that all Segments locked during a Transfer are 
unlocked. This is because Transfer locks all the Segments 
with hits. 

In steps 410-418 CSM 69 sequentially traverses the 
Cache List and clears the Lock Flag in every entry. 
Thereafter, CSM 69 clears the Cleanup Active at a step 420, 
generates a Cleanup Interrupt at a step 420, and proceeds to 
step A to Decode. 
Mark 

Referring to FIG. 11, when Mark Active is posted, CSM 
69 proceeds to step C, where it ascertains both LEA and 
buffer overlaps. CSM 69 makes two passes through Mark, 
one for ascertaining LEA overlaps, and another for deter
mining buffer overlaps. 

45 determines if the Segment is being used by the disk drive at 
step 452. If so, CSM 69 proceeds to step H to trim the 
Segment and the data is placed in the Buffer location pointed 
to by the Auto Write Pointer. Otherwise, CSM 69 determines 
the type of overlap trim at step 454. If LEA trim, CSM 69 

50 determines if the Segment completely includes the New 
Command segment (full hit) at step 456. If not, CSM 69 
proceeds to step H to trim the segment and the data is placed 
in the buffer location pointed to by the Auto-Write Pointer. 
If the Segment is an including segment, CSM 69 sets the 

55 Lock Flag for the Segment at step 458, and then: (1) sets the 
write data flag, (2) saves the entry Buffer Pointer back in the 
Command FIFO, replacing the Autowrite Pointer there with 
the Buffer Pointer which points to where the data will be 
stored in the Segment, and (3) provides the Buffer Pointer 

60 the transfer Interface by loading the Buffer Register and 
updating CWS with the amount of data to be transferred at 
step 460. CSM 69 then proceeds to step I for Marking, where 
the Buffer Pointer saved by Reuse is used by Mark at step 
424. 

In step 424, CSM 69 determines if a Saves Pointer to a 
Cache List entry exists, indicating a previous pass through 
Mark. If not, CSM 69 initializes the Cache LEA to the 
Running LEA, and initializes the Entry Pointer to the first 
entry of the Cache List at step 428. CSM 69 accesses the 65 

entry at step 430, and determines if the New Command LEA 
range overlap the current LEA set identified in the entry at 

Back at step 454, if the trimming is buffer trimming, CSM 
69 determines if the current Segment is included in a new 
segment starting from the Auto-Write pointer at step 462 



6,141,728 
15 

(i.e. the new segment beginning before the start of the 
current segment, and ending beyond the end of the current 
segment). If so, the entry becomes invalid and can be reused 

16 
which is then compiled into object code and linked with 
object libraries as necessary to generate executable code for 
the processor. The program instructions can also be imple-

to describe the new segment created. To do so, CSM 69 sets 
Segment Lock Flag at step 468, and a new Start LEA and 5 

Buffer Pointer are placed in the entry at step 470. Thereafter, 
CSM 69 performs step 460 described above and proceeds to 
step I. The entry and the corresponding Buffer area are 
reused in both buffer trim and LEA trim cases. 

mented in assembly language which is then assembled into 
object code and linked with object libraries as necessary to 
generate executable code. 

Preferably, the controller 65 is implemented in a logic 
circuit configured by the program instructions to perform the 
steps described above. The logic circuit can be an Applica-

Trimming an entry includes increasing or decreasing the 
number of Valid LBAs in the entry to resolve overlaps. 
Allocation 

Referring to FIG. 13, CSM 69 proceeds to step G to look 
for an invalid Cache List entry to use as a new entry. In step 
472, CSM 69 determines if Auto Allocation is enabled. If 
not, CSM 69 clears Mark Active at step 490, generates a 
Mark Interrupt for the firmware at step 492, and proceeds to 
step A to Decode. If Auto Allocation is enabled, CSM 69 
determines if the New Command is Auto Write at step 474, 
indicating to the CSM 69 that it is not under firmware 
control. If the New Command is not Auto Write, CSM 69 
clears Mark Active at step 490, generates a Mark Interrupt 
for the firmware at step 492, and proceeds to step A to 
Decode. If the New Command is Auto Write, CSM 69 
begins searching the Cache List for all entries with Not Dirty 
bits set, indicating they are invalid. CSM initializes the 
Entry Pointer at step 476 to the first entry of the Cache List, 
accesses the entry at step 478, and determines if it is invalid 
at step 480. If the entry is invalid, CSM 69 proceeds to lock 
the entry at step 482, and allocate a segment by writing the 
LEA, writing the Buffer Pointer, setting the Write Data Flag, 
Saving the Entry back in the Command FIFO, and loading 
the Buffer Register and the CWS at step 484. This is an entry 
for the current write command. Therefore, subsequent reads 
may find hits in this segment and use the data therein. After 
allocating an invalid entry, or if CSM 69 reaches the last 
entry at step 488 without finding any invalid entries, it clears 
Mark Active 490, generates a Mark Interrupt for the firm
ware to know that marking has been performed at step 492, 
and proceeds to step A to decode. 

In CSM 69 the Scan, Transfer and Cleanup operations are 
self-triggered. The firmware 60 can also place CSM 69 to 
any of CSM steps describe above. CSM 69 performs the 
action associated with the directed step, based on the values 
provided by the firmware in the Auto Enable Register. To 
ensure that the firmware and the CSM 69 do not compete, 
and the cache remains coherent, firmware disables CM 67 
while CSM 69 is performing operations for the firmware. 

Although in the above implementation, the cache list 
included 32 entries, other cache list sizes are also possible. 
The number of entries in the cache list can be selected to suit 
different performance criteria in a given system. For 
example, a cache list can include 4000 entries to keep track 
of 4000 LBAs in a 2-megabyte buffer. However, longer lists 
can require relatively more time to search. Further, the 
number of cache list entries can be less than the number of 
possible segments in the cache buffer. Due to locality of 
reference by the host, most data segments include a large 
number of consecutive data blocks. As such, the cache list 
need not reference all data segments to keep track of the data 
in use by the host. Traversing the cache list can include 
sequential search, binary search, or other search schemes 
known to those skilled in the art. 

The present invention can be implemented as program 
instructions to be performed by a processor or to configure 
a logic circuit. The program instructions can be implemented 
in a high level programming language such as C, Pascal, etc. 

10 tion Specific Integrated Circuit (ASIC). An ASIC is a device 
designed to perform a specific function as opposed to a 
device such as a microprocessor which can be programmed 
to performed a variety of functions. The circuitry for making 
the chip programmable is eliminated and only those logic 

15 functions needed for a particular application are incorpo
rated. As a result, the ASIC has a lower unit cost and higher 
performance since the logic is implemented directly in a 
chip rather than using an instruction set requiring multiple 
clock cycles to execute. An ASIC is typically fabricated 

20 using CMOS technology with custom, standard cell, physi
cal placement of logic (PPL), gate array, or field program
mable gate array (FPGA) design methods. 

A dedicated logic circuit, such as an ASIC, provides 
higher performance than a microprocessor since the logic is 

25 implemented directly in the chip rather than using an 
instruction set requiring multiple clock cycles to be executed 
by a microprocessor. 

Referring now to FIG. 14, an alternative preferred 
embodiment 510 of the controller logic circuit 65 can be 

30 embedded within a memory device, such as a hard disk drive 
500 having at least one embedded microprocessor 502 and 
a ROM 504. The cache manager/controller 510 is preferably 
included within a disk drive multi-function controller chip 
506. Typically, the ROM 504 includes data and program 

35 instructions to enable the microprocessor 502 to interact 
with a spindle motor/voice coil motor controller 512 in the 
disk drive, and to oversee transfer of data between a host and 
the disk drive through the disk drive 500. The disk drive 500 
includes the cache buffer 514 for storing data into and 

40 retrieving data from the disk drive. The disk drive can also 
be used to store and maintain the cache list 80. Preferably, 
the cache list 80 is stored in a fast local memory 520 for 
efficient access by the cache controller 510. 

The disk drive 500 also conventionally includes at least 
45 one rotating data storage disk 530 having a magnetic surface 

for storing user information in e.g. concentric data tracks. 
The disk 530 is rotated at a desired angular velocity by a 
spindle motor 532 controlled by the spindle motor controller 
512. A data transducer head 534, including write and read 

50 elements, flies in close proximity to the data storage surface 
upon an air bearing. A head positioner 536 including e.g. a 
voice coil motor positions the head 534 at desired radial 
locations for random access to storage locations for writing/ 
reading operations. A motor driver 540 supplies controlled 

55 driving currents to the spindle motor 532 and to the voice 
coil motor 538 of the head positioner 536. A read pream
plifier 550 amplifies minute signals derived from the read 
element during data reading from disk, while a write driver 
552 provides write current to the write element for data 

60 writing to the storage disk 530. A read/write channel 554 
provides coding, decoding and signal processing in order to 
encode data for writing to disk and in order to recover data 
from magnetic flux transitions read from disk. 

The disk multi-function chip 506, the buffer memory 
65 array 514, microprocessor 502, along with the read/write 

channel chip 554 and motor driver chip 540, comprise the 
principal discrete elements of drive electronics of the disk 



6,141,728 
17 

drive 500. A host bus 560 following a known convention 
such as AT (IDE), SCSI, or IEEE 1394, enables the disk 
drive 500 to be connected to the host interface 50. 

18 
scan request line 563, a read/write control line 565, a path 
567 providing command LEA and sector count information, 
a sector start control line 569, a sectorsavailable path 571, a 
transfer done line 573, and a path 575 providing The disk multi-function chip 506 includes several impor

tant functions including a host interface controller 562, a 
buffer manager 564 (including an address generator 566), 
the embedded cache manager 510 in accordance with prin
ciples of the present invention, a microcontroller interface 
568, a disk data formatter/sequencer 570, and the spindle/ 
head controller 512, all being internally connected within 
the chip 506 via an internal bus structure 572. The interface 
controller 562 connects to the host 50 via the bus structure 
560. The buffer manager 564 connects to and controls the 
buffer memory array 514. 

5 sectorsavailable, load-sector control, buffer pointer/entry, 
and flags information to the host. 

A path 577 sends a zero trigger count value from the cache 
controller state machine 580 to the cache buffer interface 
586. A path 579 provides rollover and reload values from the 

10 cache controller state machine 580 to the cache buffer 
interface 586. A firmware interrupt control line 581 from the 
cache controller state machine 580 causes regular program 
execution by the microprocessor 502 to be interrupted in 
order to provide data transfer operations under firmware 

The formatter/sequencer 570 directly connects to the 
read/write channel chip 554. The spindle/head position 
controller 512 connects to the motor driver chip 540. The 
microcontroller interface 568 directly connects to the micro
processor 502. In some embodiments of the disk multi
function chip 506, a microcontroller core may be directly 
integrated within the silicon structure thereof instead of 
being a separate chip as shown in FIG. 14. In the FIG. 14 
example, the drive-embedded cache system essentially com
prises the buffer memory 514, the buffer manager 564 and 
address generator 566, the interface 562 and the embedded 
cache manager 510. 

15 control whenever a cache miss, or partial cache hit is 
detected by the cache controller 510. 

A path 583 sends end of cache segment information from 
the cache-buffer interface 586 to the buffer manager 564. A 
path 585 sends a buffer load, buffer reload control signal 

20 from the cache-buffer interface 586 to the buffer manager 
564. A path 589 sends a cache segment starting address to 
the address generator 566 of the cache buffer manager 564. 
A path 591 returns a buffer address write pointer address 
from the buffer manager 564 to the cache-buffer interface 

25 block 586. 
A state values path 593 extends from the cache controller 

state machine 580 to the ALU 582 and a results path 595 
extends from the ALU to the state machine 580. A multi
plexer control path 597 also extends from the cache state 

30 machine 580 to the ALU 582. 

Also shown within FIG. 14 is the host computer 5. The 
host computer 5 includes the interface 50 connected to the 
bus 560. The interface 50 is necessarily compatible with the 
interface controller 562 of the disk drive as well as with the 
bus structure 560. The host 5 also conventionally includes a 
central processing unit 52, a random access memory array 
54, a read only memory 56, and a plurality of input/output 
ports 58 enabling other peripherals such as keyboard, 
mouse, display, modem, network devices to be attached and 35 

used. An internal host bus structure 60 interconnects the 
CPU 52 with disk interface 50, RAM 54, ROM 56, and 1/0 
58. 

A shadow address path 601 extends from the cache
microprocessor interface 612 to the cache list RAM 584. A 
cache list entry address path 602 extends from the cache 
state machine 580 to the cache list RAM 584. A 
bi-directional cache entry data path 603 extends between the 
cache list RAM 584 and the cache state machine 580, while 
a bi-directional firmware cache entry data path 604 extends 
between the cache-microprocessor interface 612 and the 
cache list RAM 584. A firmware access control line 605 

40 extends from the cache state machine 580 to control an 
address multiplexer 610 of the cache list RAM 584, while a 
state machine write control line 607 and a shadow write 
control line 609 extend respectively from the state machine 

The embedded cache manager 510 is illustrated in greater 
detail in FIG. 15. Referring to FIG. 15, the embedded cache 
manager 510 of the present embodiment includes a single 
multi-state cache control state machine 580, an arithmetic/ 
logic unit (ALU) 582 and the cache list RAM 584. The 
buffer manager interface 586 connects directly to the buffer 
manager 564 and includes a word offset block 587 which 45 

enables the cache controller 510 to control automatic 

580 and the cache-microprocessor interface 612. These 
latter two control lines control data multiplexers 606 and 
608 within the cache list RAM 584. Only two multiplexers 
606 and 608 are explicitly shown in FIG. 17. In practice, 
each field of the cache list has a separate multiplexer 
enabling that particular field selectively to be written and 

50 read. 

addressing of multiple cache segments within the cache 
buffer memory array 514 without firmware intervention. A 
cache-host interface 588 directly interfaces with the host 
interface controller 562. A cache microprocessor interface 
612 includes a bank of firmware shadow registers which are 
written to and read by the microprocessor 502 via micro
processor interface 568 enable firmware and the cache 
controller 510 to coordinate respective cache management 
activities. Shadow registers enable the microprocessor 502 55 

to write entries directly to the cache list RAM 584. The 
cache microprocessor interface 612 provides control and 
status handshaking between the microprocessor 502 and the 
cache controller state machine 580. Shadow registers are 
most preferably provided for valid LEA, start LEA low, start 60 

LEA high, segment size, buffer pointer, LEA offset, and 
flags fields of the cache entries, see FIG. 17, discussed 
below. 

A series of data paths and control lines are shown inter
connecting the functional blocks of FIG. 15. A series of 
paths extend between the host interface controller 562 and 
the cache-host interface block 588. These paths include a 

A cache control line 611 extends from the microprocessor 
interface 568 to the cache-microprocessor interface 612. A 
cache-microprocessor read data path 613 extends oppositely, 
from the cache-microprocessor interface 612 to the micro
processor interface 568. A write strobe control line 615, a 
microprocessor write data path 617, and an address path 619 
also extend from the microprocessor interface 568 to the 
cache-microprocessor interface 612. 

The ALU 582, shown in greater structural detail in FIG. 
16, includes an equations setup block 586 which comprises 
a series of multiplexers controlled by control signals on path 
597 thereby enabling various combinations of values on path 
593 to be set up for simultaneous arithmetic/logical opera
tions carried out by a functions unit 588. Essentially, the 

65 functions unit 588 includes an addition function 590 which 
performs an addition function upon two values, a compari
son unit 592 which compares two values to determine which 



6,141,728 
19 

is larger, a negation unit 594 which returns a negative 
function of a value, and a test-equal unit 596 which deter
mines if two values are equal. The comparison unit 592 and 
the equivalency determination unit 596 put out single bit 
results, whereas the addition unit 590 and the negation unit 5 

594 put out multi-bit results. These results are returned to the 
cache state machine 580 via path 595. 

All of the arithmetic/logic functions of a particular step or 
act are carried out simultaneously within a single clock cycle 
of the state machine 580, so that the state machine 580 10 

operates very quickly in managing the cache. A local cache 
list is stored in the cache table RAM 584 and this cache list 
is directly accessed by the cache control state machine 580 
and contains information concerning the user data blocks 
presently in segments of the cache buffer memory 514. 

The cache entry RAM 584, depicted in FIG. 17, is 
organized in the drive multi-function chip 506 as a 32 entries 

15 

by 86 bit random access memory array 600 having two 
address ports 601 and 602, and a data path 603. The data 
path 603 selectively writes a table entry via a series of data 20 

multiplexers, including a starting LEA field data multiplexer 
606, and a flag field multiplexer 608 (the other field multi
plexers not being shown in FIG. 17). An address multiplexer 
610 selects between the two address ports 601 and 602. The 
shadow registers of block 612 are written and read by the 25 

microprocessor 502 under drive firmware control. 
Each single cache entry data word has a width (86 bits) 

sufficient to contain all of the fields needed for a particular 
cache entry. These fields most preferably include: starting 
LEA [26:0] which represents the starting LEA for the cache 30 

entry; valid LEA [11:0] which describes how many LEAs 
are valid for this particular entry; buffer pointer offset [11:0] 
which points to the beginning of the corresponding segment 
in the cache buffer 514 and is defined in terms of sector size; 
segment size [11:0] which indicates the size of the present 35 

cache entry in terms of sector size and which must be greater 
than the valid LEA field value; LEA offset [11:0] which is 
the address offset from the beginning of the buffer segment 

20 
[ 4] release interrupt-this flag is set when drive firmware 

wants to access an entry locked by the cache controller 
510; when the cache controller 510 has finished with 
this cache list entry, it clears this flag and generates a 
firmware interrupt which notifies the disk firmware that 
the entry may now be accessed; 

[3] unavailable-when this flag is set, the present cache 
entry is unavailable to the cache controller 510; this 
flag is set by the drive firmware when it is creating a 
new cache entry; following completion of the new 
entry, the firmware clears this flag; 

[2] valid-this cache entry is presently valid; this flag 
may be set and cleared by both the cache controller 510 
and by the disk firmware; if the valid bit is set, the 
cache controller 510 will check it for a cache hit or miss 
during cache list scan; if the valid flag is not set during 
write transfer, the cache controller 510 will use the 
entry for a new write and if the entire entry is over
lapped with a current write, then the cache controller 
510 will clear the valid flag; 

[1] mark-set by the cache controller 510, this flag 
denotes that the present cache entry needs cache trim
ming; if this flag is set, then the cache controller 510 
will ignore this cache list entry during read transfer; 
this flag is cleared by the disk firmware after it syn
chronizes this entry with the latest write data by trim
ming the entry; 

[O] locked-this flag is set by the cache controller 510 
which presently needs this cache entry for cache reads 
thereby preventing firmware from overwriting this 
entry; 

The host interface block 562 receives commands from the 
host computer 5 and signals the cache controller 510 to 
perform a cache scan. The information received by the cache 
controller 510 includes a logical block address (LEA) of a 
starting block (sector), a number of sectors to be transferred, 
and whether the new command is read or write. For a host 
data read command, the cache controller 510 scans the cache 
list maintained in cache RAM 584 for a hit and monitors the of the starting LEA of the present entry; and a cache entry 

flags field [9:0]. 
The cache entry flags [9:0] are most preferably defined as 

follows: 

[9] Reserved; 

[8] available to indicate firmware update-cache entry is 

40 transfer of hits across multiple cache segments and/or for 
partial cache hits. For a host data write command the cache 
controller 510 scans for any overlap between current cache 
buffer data and write data, and takes appropriate action. 
Host Read Command 

currently being accessed by drive firmware; 45 Referring now to FIG. 18, upon receiving a read com-
mand from the host interface 562, the cache controller 510 
leaves an idle state 630 and enters a scan active process 614. 
The scan active process 614 follows a process flow outlined 
in detail in FIG. 18A. The scan process continues to scan the 

[7] video data-set and cleared by firmware, the present 
cache entry is good only for video reads; the cache 
controller 510 ignores this entry for regular reads 
during read transfer; 

50 cache table entries until all of the entries have been consid-
[6] disk active-this flag is set when the disk firmware is 

presently using this cache entry, either for a disk read 
or write and cleared by firmware following completion 
of the disk activity; if during a write transfer this flag 
is set and an overlap is determined to exist, the cache 55 
controller 510 will set the mark flag; during read 
transfer the cache controller 510 can use this entry for 
a read scan (i.e. sector prefetch is active and the read 
command is sequential); 

[5] write pending-the cache entry is pending a write to 60 

disk; this flag is set by the cache controller 510 when 
the cached data needs to be written to disk, and is 
cleared by the drive firmware following writing to disk; 
if the write pending flag is set and there is an overlap, 
during a write transfer the cache controller 510 may 65 

trim the entry during LEA scan but never during buffer 
scan; 

ered. During a first scan, no transfer to host is occurring 
(transfer_active is negated or !xferactv). When the scan 
active process 614 ofFIG.18Ais complete, a done with scan 
action 615 is reached in the FIG. 18 process flow. If 
transfer_active is then true and the number of cached 
sectors is zero, a return is made to the scan active state 614 
and its process flow is repeated. If transfer_active is then 
false, the scan active process 614 has determined a cache 
miss and action 616 is reached which causes process flow to 
return to the scan active state 614. Also, following a first 
scan with zero hits, the sectors available register is loaded 
with zero. 

If a cache partial hit 617 or a cache full hit 618 is 
determined, and an automatic transfer enable control is true, 
then the FIG. 18 cache read process flow progresses to a 
transfer mode 620 where transfer_active is set true. The 
transfer mode 620 is set forth in greater detail in FIG. 19 and 



6,141,728 
21 

includes a number of the same states reached by the cache 
controller state machine 580 during the scan active mode 
614 outlined in FIG. 18A Transfer mode 620 progresses to 
a first hit state 621 at which requested sectors have been 
located in cache. A state 666 is then reached which causes 5 

the number of sectors found in cache to be loaded into a 
host-accessible register. This cached sectors found register 
accessible by the host is loaded with pointers to the sectors 
available for transfer. 

22 
machine 580 proceeds to the read transfer active process 620 
set forth in the FIG. 19 process flow diagram. On the other 
hand, if the number of requested sectors equals zero, mean-
ing no sectors were found during cache scan, a cache-miss 
state 642 is reached, followed by a rescan process 644 which 
essentially causes a return to idle and a scan through all of 
the cache list entries again, since no requested entries have 
yet been located. Also, if during transfer active if the clear 
scan state 634 is reached, and the number of cached sectors 

A delay step 622 is then reached which imposes a delay 
while the host determines whether the number of sectors 
now ready for transfer from cache (CRS) meets a minimum 
multi-block transfer requirement (e.g. 2-256 sectors) of the 
host. If the number of available sectors is above a minimum 
number, a transfer state 623 is reached which causes the 
sectors found in cache to be sent to the host. If trigger count 
(trgcount), a value representing the number of sectors avail
able for transfer in a particular cache table entry, reaches 
zero, a scan for a next segment process 624 is reached and 
a return is made to the transfer state 623. This process of 
rescanning and transferring continues until the transfer of all 
of the requested sectors is completed. At the same time, 
firmware causes the disk drive to read additional sectors 
from disk into the cache buffer, and these additional sectors 
are located during rescanning and are thereupon automati
cally transferred to the host. 

10 equals zero, the state machine 580 proceeds directly to 
rescan 644. 

Once a valid entry is located among entries of the cache 
list at step 632, states 646 and 648 are needed to check to 
determine if a particular cache entry is a hit. State 646 

15 determines if the search logical block address (LEA) is 
greater than or equal to the cache entry start (ES), while state 
648 determines whether the cache entry end (EE) is greater 
than the search LEA Once states 646 and 648 are passed, 
the hitl state 621 is reached. State 621 adds the number of 

20 additional sectors found during the present scan to the 
current total of sectors available for transfer to the host. If 
transfer is active, flow proceeds from hit state 621 to an 
ACTl state 656. ACTl state 656 determines if the cache 
segment including the cache hit is longer than the last LEA 

If a low sectors available signal is received from the host, 
meaning that either the read process is currently transferring 
the last sector found, or for a multiple-sector transfer the last 
sector of a block is currently being transferred and the cache 
does not have enough additional sectors to transfer the next 
block, as tested at either state 622 or 623, a return is made 

25 of the sought-after sequence to be transferred. If so, all of the 
requested sectors have been found, and the clear scan state 
634 is reached. However, if the cache segment is not greater 
than the last LEA of the sought-after sequence of sectors, 
then a rescan via scan active 614 will be made to find any 

to the scan active process 614 of FIG. 18A in order to locate 
the remaining sectors needed to complete a hostrequested 
transfer. When the transfer of requested sectors to the host is 
completed, a read cleanup process 625 is reached, followed 
by a return to the idle state 630. 

30 additionally requested sectors in the cache. This rescan 
process automatically permits the firmware to retrieve any 
missing sector(s) from disk and store them in the cache 
buffer, and update the cache list entry table. 

In the FIG. 18A flow process, if a sector is not the 
35 end-of-sequence sector, a return is made to the get entry state 

632, and read scanning is resumed. Also, if at states 646 or 
648 it is determined that there is no hit, and it is not the last 
entry, the firmware call state 653 may be reached. Further, 
if at the hit state 621 it is determined that there it is not the 

The scan active process 614 graphed in FIG. 18A begins 
with scanning the cache list for any entries that contain the 
read command LEA Each cache list entry is obtained by the 40 

state machine 580 and tested for "valid" at step 632. If the 
entry is valid, states 646 and 648 test the entry against the 
LEA requested by the host. If the present cache list entry is 
not valid or does not include an LEA matching the requested 
LEA, the state machine 580 loops back to step 632 until the 45 

last entry is checked. If the last entry does not include a 
matching LEA, a clear-scan state 634 is reached. 

When the scan is completed at state 634, the cache 
controller 510 may interrupt the drive firmware (drive 
firmware is executed by microprocessor 502); and, depend- 50 

ing upon whether the scan results in a full cache hit, a partial 
cache hit, or a cache miss, the cache controller 510 may then 
enter a transfer mode in which the cache controller 510 starts 
a data transfer between the cache buffer 514 and the host 5, 
as by automatically loading a buffer starting address into the 55 

buffer manager 564 and informing the host of the number of 
valid sectors requested by the host which are present in the 
cache buffer 514. 

Following the clear scan state 634 the cache state machine 
510 proceeds either to the full-hit process 618 when the 60 

number of blocks found in the cache exceeds the end of the 
requested set ( cachegtend), which denotes a full cache hit, or 
a multiple state 638, which is reached in the event that the 
LEA of the last requested sector is not found within any 
entry of the cache list. If the number of requested sectors 65 

found in cache during the scan is greater than zero, the 
partial hit process 617 is reached, and the cache state 

last entry, or the number of blocks found in the cache is not 
greater than the end and transfer is active, the get entry state 
632 is reached and a rescan begins. If, at the clear scan state 
634, it is determined that the number of blocks in cache is 
greater than the end, then the full hit state 618 is reached if 
transfer_active is false. If transfer_active is true as tested at 
the clear scan state 634, transfer mode is entered if the 
number of cached sectors is greater than zero. Otherwise, a 
rescan occurs. 

The firmware access state 653 is an optional state at which 
the firmware can access to read a cache table entry or to 
modify a cache table entry. In order for the firmware to do 
so it sends a firmware cache table (CRAM) request. The 
cache controller state machine 580 will detect a pending 
firmware request when the state machine goes to the next 
CRAM entry and will thereupon enter state 653 for one 
cycle during which the firmware request for access will be 
serviced. 

If the number of valid sectors available in the cache buffer 
514 matches or exceeds the starting LEA and sector count, 
the host 5 will negate a low _sectors_available signal via 
path 571, and this action causes the cache controller 510 to 
remain in the data transfer mode. In FIG. 19 the state 
machine 580 enters the data transfer mode at the get entry 
state 632 which gets the first cache list entry marking as 
valid a requested sector. The cache entry is again checked at 
steps 646 and 648 to determine whether a particular entry is 
a hit. If no valid entry is found at state 632, or if there is no 



6,141,728 
23 

hit and the entry is not the last, as tested at states 646 and 
648, a return is then made to the get entry state 632. 

In the FIG. 19 transfer mode, the first hit state 621 is 
reached following state 648, and state 621 is then followed 

24 

by five action states: ACTl 656, ACT2 658, ACT3 660, 5 
ACT4 662 and ACTS 664. These states represent progres
sive parallel data calculations and manipulations of the ALU 
582 needed to calculate the starting address location value, 

With reference to FIG. 20, at HIT 1 (state 621), Tl (a 
temporary register) is loaded with SRCH-ES; at ACTl 
(state 656), OFFSET is added to Tl, and a temporary buffer 
T2 is set equal to-ESIZE. At ACT 3 (state 660) the starting 
LEA pointer in buffer address space HEptr is equal to Tl 
+EEPTR, which is the starting block entry address in cache 
buffer space. Therefore, with reference to FIG. 20, the ALU 
582 is calculating this starting buffer address HEptr through 
the ACT 3 state 660. a trigger count value (number of sectors available in a cache 

segment for transfer out before a next scan is required) and 
10 

a segment rollover count value, and to load these values into 
the cache buffer interface block 586. The actual calculations 
and manipulations of the ALU 582 occurring for states 632, 
646, 648, 621, 656, 658, 660, and 662 are set forth for each 

There are two special cases that must be considered. One 
of the cases is considered in FIG. 20E. This case arises when 
the cache buffer 514 is divided into hard segments, raising 
the possibility of segment wrap around. Therefore, in the 
FIG. 20E example sector 14 is shown to be wrapped around 
within the buffer. Therefore, the transfer process has to of the add, compare, negate and equivalence functions of the 

ALU in FIG. 20. 
When operating in the FIG. 19 data transfer mode, the first 

scan (scan active process 614) has already been completed, 
and the initial cache scan result determines whether one or 
more sectors requested by the host are located within the 
cache. During data transfer, it is necessary to look again to 
locate the entries which have been previously found. 

The following definitions apply with reference to FIGS. 
20, 20A, 20E, and 20C: 

SRCH LEA: Search for LEA; this is the logical block 
address being sought among the valid entries of the 
cache table. In order to be a hit, ES~SRCHLEA<EE. 
SRCH LEA is incremented by NUMFOUND once a hit 
is detected. 

ES: Cache entry start, i.e., the LEA of the starting entry 
in the cache buffer. 

EE: Entry end, i.e., the LEA+l of the last entry, which is 
also equal to LEA Entry Start+number of valid sectors. 

NUMFOUND: Number of LEAs found in an entry, which 
is also equal to EE-SRCHLEA. 

EEPTR: This is the buffer pointer at the beginning of the 
cache entry. 

ESIZE: This is the size in sectors or blocks of the cache 
entry. 

EVALID: This is the number of valid consecutive sectors 
stored within a cache entry 

In the FIG. 20Aexample, assume that the transfer process 
is searching the particular cache entry for LEA 14. So, the 
transfer process will determine what buffer address holds 
sector 14. The process has an entry start (ES), which in the 
present example is sector 11. The process has a number of 
valid sectors (EVALID), which in this example is 8. The 
process also has the size in sectors or blocks of the cache 
entry (ESIZE), and knows the entry buffer pointer (EEPTR) 
marking the beginning of this particular cache entry. With 
these values available, the ALU 582 then determines the 
number of LEAs found in the entry, by subtracting the 
sought-after LEA of the first sector (SRCH LEA) from the 
cache entry end (EE). In the FIG. 20A example, the transfer 
process has located five sectors in this particular cache entry 
which are available for immediate transfer to the host (i.e. 
EE-SRCH LEA, or sectors 19-14). 

In this case: NUMFOUND=S (=how many sectors can be 
transferred before scanning for the next transfer) and this 
count equals Trigger Count. The buffer starting address in 
buffer address space (HEptr) in the FIG. 20A example is 
equal to the sought-after LEA(SRCH LEA) minus the entry 
starting address (ES) plus an offset (Eoffset) from the 
beginning of the cache segment (EEPTR) to the entry 
starting address (ES), or 

HBptr~(SRCH LBA-ES+Eoffset)+EBPTR. 

15 check to see if a starting LEA buffer offset (SRCH LEA
ES+OFFSET) is greater than the entry size (ESIZE), then a 
rollover condition is detected, and the starting buffer address 
HEptr equals (SRCHLEA-ES+EOFFSET)+EEPTR
ESIZE. In this special case, at ACT 2 (state 658), -ESIZE is 

20 added to (ESIZE is subtracted from) the current value in Tl 
providing ESIZE is not greater than Tl. 

Another, more complicated special case is where the 
cache entry actually wraps around the end of the physical 
cache buffer space and continues at the beginning of the 

25 cache buffer space. This case is illustrated in FIG. 20C. In 
this special case, the transfer process must check to see 
whether the starting buffer address (HEptr) is higher than or 
equal to the high address of the cache buffer (Highbptroffse,). 
The high buffer pointer, low buffer pointer and buffer size 

30 values are registered and programmed and are available to 
the state machine. In order to make the check needed, the 
size of the cache buffer is checked by locating the high end 
address (Highbptroffse,). This condition is checked at ACT4 
(state 662) where HEptr is checked to be less than Highbp-

35 troffser If the FIG. 20C condition is present, then 
(SRCHLEA-ES+Eoffset)+EEPTR<HIGHEPT0 ffset is false, 
and the starting buffer address HEptr will be equal to SRCH 
LEA-ES+ EOFFSET +EEPTR-EUFSIZEoffset" 

If a first data sector transfer is to be made as determined 
40 at an ACT 5 state 664 of the FIG. 19 transfer mode process, 

a state 666 is reached which causes the number of sectors 
ready to be transferred to the host to be loaded, followed by 
a delay step 668 which waits for the host 5 to decide whether 
the number of sectors ready to send meets a minimum 

45 transfer requirement, after sectors ready to send has been 
loaded by the state machine 580 at state 666. If so, process 
flows to a transfer-waiting-to-complete state 670 which 
awaits completion of the transfer of sectors to the host 5. If 
not, a return is then made to the idle state 630 (FIG. 18) and 

50 the process returns to the scan active mode. 
Reaching the ACT 5 state 664 during a subsequent 

transfer means that the transfer process has just completed 
finding the values of the next segment. During a segment 
transfer it is necessary to enter a transfer wait state to wait 

55 until the previous segment is fully transferred to the host. 
Accordingly, if the zero_trigger_count value is still true, 
the previous segment is still being transferred and process 
flow progresses to the Read_Transfer_Trigger_Count 
equals 0 (RxFTCO) state 672 which imposes a wait until the 

60 end of transfer of the previous segment, and then proceeds 
to the transfer_wait_count state 670. On a sector boundary 
a segment-to-segment jump state, a low-sectors-available 
(hlowcrs) state, or a transfer-done (hxferdone) state may be 
reached. When a cache-to-host transfer is complete, a 

65 cleanup routine is entered from state 670 which cleans up the 
states of the state machine 580 and ALU 582 and the scan 
idle state 630 is entered. 



6,141,728 
25 26 

to begin the transfer to cache. The state machine 580 then 
returns to the idle state where it remains during the transfer 
from host unless there is not enough room in the cache buffer 
for the transfer and firmware intervenes. If, during either 

5 scan process 702 or 704, the state machine 580 cannot find 
any cache entry corresponding to the write entry based either 
on LEA space or buffer space, and if there is insufficient 
space allocated for overwriting, the state machine 580 leaves 
the allocate mode 706 and enters a done state 708 which 

The cache controller state machine 580 monitors current 
progress of the automatic data sector transfer from a current 
buffer segment via a sector-decrement pulse provided by the 
host interface over a path 623. By remaining in data transfer 
mode, the cache state machine 580 is able automatically to 
jump from one buffer segment to another buffer segment in 
order for automatic transfer data sectors stored across mul
tiple buffer segments. Cross-segment transfers are enabled 
when the cache controller state machine 580 causes the 
buffer manager 564 to roll over to a reload address of the 10 

next segment. Transfer is finished when the host asserts a 
transfer-complete status upon transfer of the last sector of 
the read request. 

causes a firmware interrupt. Firmware then takes over cache 
buffer management in order to carry out the current write 
command. 

When the cache hit is partial, the host 5 will assert the 
low _sectors_available value at the beginning of the last 15 

transferable cached sector. Thereupon the cache controller 
state machine 580 rescans the cache list for the missed LEA 

As shown in FIG. 23, the cache controller state machine 
580 follows progressive states during both the LEA scan 
mode process 702 and the buffer scan mode process 704. 
During the LEA mode write scan process 702, after leaving 
idle state 630, the cache controller state machine 580 reaches 
a get entry state 710 which scans for cache list entries having 
a "valid" flag. If valid, the entry is checked at a state 712 and 
at a state 714 for overlap. If there is no overlap, the state 
machine 580 will return to state 710 and check the next entry 

If the cache controller state machine 580 does not find the 
missed LEA, then the sectors_available value equals zero 
(or less than multiple) and this condition will stop the 20 

automatic data transfer to host. 
(entry+l). Scan continues as firmware clears out the cache 
or otherwise allocates buffer space for storage of the blocks 
incoming from the host 5. If an overlap is detected at state 

During the first scan if a partial hit is detected, the cache 
state machine 580 alerts the drive firmware to fetch the 
missing data sectors, and if by the time of cache list rescan 
the drive firmware has added to or expanded a cache list 
entry, the cache state machine 580 will detect this fact during 
the rescan and will reload sectors available in the buffer 
manager 564 and thereby continue the transfer to host. This 
process of monitoring, rescanning, and reloading will be 
continued by the cache manager 510 until the data transfer 30 

is completed. 

25 714, states 716 and 718 will determine what kind of overlap 
is present. If cache autotrim is enabled, HITl state 716 and 
HIT2 state 718 are reached which determine whether the 
cache trimming operation will be a trim-high, trim-low, 
invalidate or reuse cache trimming operation. Then follow 
four to six action states 720, 722, 724, 726, 728 and 730. 
Only the first four action states 720-726 are used for ALU 

Host Write Command operations during LEA scan mode 702 while all six action 
states 720-k730 are used for ALU operations during buffer 
scan mode. All of the possible write scan overlap conditions 

35 which can be found during the LEA and buffer scan pro
cesses 702 and 704 are graphed in FIG. 24. Via logic 
equation simplification techniques, the trimming operations 
for LEA scan mode can be reduced to the FIG. 25 trim-low, 

Turning now to FIG. 21, upon receiving a write command 
via the host interface 562, the cache manager 510 leaves the 
idle state 630 and begins to scan the cache table entries to 
locate any overlap between the data sectors to be written and 
the data sectors currently stored in the cache buffer 514 as 
represented by the cache list entries in cache RAM 584. This 
overlap can occur not only in LEA space but also in buffer 
space. As shown in FIG. 21, the cache write scans are 40 

performed by the cache controller state machine 580 sequen
tially on all cache list entries for an overlap. An LEA scan 
process 702 first scans all cache table entries for an overlap 

trim-high, no change and invalidate operations. 
Cache trimming operations during data writing free up 

writing space in the cache buffer which would otherwise be 
occupied by partially valid data and which therefore could 
not be partially overwritten with newer, replacement data. 
LEA mode cache trimming operations performed during the in LEA space by reference to the write command LEA value 

as compared to cache entry starting LEA and the sector 
count. If no reuse occurs as a result of the LEA scan process 
702, a buffer space process 704 scans all entries for an 
overlap in the buffer space by use of a buffer autowrite 
pointer and the cache entry's buffer pointer and size. 

If no cache entries are reused following the LEA scan 
mode 702 and the buffer scan mode 704, the state machine 
580 enters an allocation process 706 which scans the cache 
list for an entry available for overwriting. A hierarchical 
approach is preferred. The process 706 first looks for a 
sequential allocated entry in the table, if enabled. Next, the 
process 706 looks for a first invalid entry. Finally, if an entry 
having valid bit only set is located, and valid-only allocation 
is enabled, a cache table entry having only its valid bit set 
will be allocated for writing. 

During either the LEA scan mode 702 or the buffer scan 
mode 704, if a cache autotrim flag is set by firmware, the 
cache controller state machine 580 will automatically trim 
any overlap between a write segment and a corresponding 
cache entry segment. If, during either scan process 702 or 
704 a cache table entry is reused, then the state machine 580 
enters a done process 708 at which it will load sectors_ 
available and buffer_Pointer registers which enable the host 

45 cache controller state machine four action states 720--726 
are explained in the FIG. 26 matrix table of ALU operations. 
FIG. 25 graphically explains the trim-low, trim-high, no 
change and invalidate cache write operations performed 
during the LEA cache scan process 702. If the write scan 

50 occurs during the buffer mode process 704, trimlow and 
trim-high operations are shown in FIG. 27A and 27B, 
respectively, and six action states 720--730 are required, as 
shown in the FIG. 28 ALU operation matrix table. 

With reference to FIG. 25 TRIMLO, a write block 
55 sequence 750 from the host 5 has a starting address pointer 

(WS) and an ending address pointer (WE). An existing cache 
entry sequence 752 includes a starting address pointer (ES) 
and an ending address pointer (EE). In the trim-low 
(TRIMLO) example of FIG. 26, the write sequence 750 

60 overlaps in part the cache sequence 752; however, the 
starting address WS of the write block sequence 750 is lower 
than the starting address ES of the cache sequence 752. 
Further, the ending address WE of the write sequence 750 is 
lower than the ending address EE of the cache sequence 752. 

65 An overlap area is designated XL 0 , and it is the function of 
the cache controller state machine 580 automatically to 
overwrite the XLo overlap with so much of the write 



6,141,728 
27 

sequence 750 as overlaps with the cache entry sequence 752. 
The trim-low equations performed by the ALU unit 582 are 
shown to the right of the trim-low example of FIG. 25. 

A trim-high (TRIMHI) example is also shown in FIG. 25. 
Therein, a cache sequence 756 has a starting address ES 
which is lower than a starting address WS of a write 
sequence 754. The cache sequence 756 also has an ending 
address EE which is lower than an ending address WE of the 
write sequence 754. In this case, an area of overlap between 
the entry 756 and the write sequence 754 is designated XHI, 
and the trim-high equations performed by the ALU unit 582 
are set forth to the right hand side of the trim-high example 
in FIG. 26. 

Ano-change or reuse example is also set forth in FIG. 25. 
In this example, a write sequence 758 lies entirely within a 
cache sequence 760, and the write sequence 758 may be 
written directly to the appropriate location of the cache 
buffer 514 without any cache trimming being required. 

28 
found. In this known approach, every write command com
ing in occupies its own separate entry in the cache list. 

Since data sequence writes are likely to be LBA
sequential, it becomes possible for a second command to add 

5 to or edit an existing cache list entry by expanding the 
number of sequential sectors specified in cache buffer, 
providing that the sector locations are also sequential in 
buffer address space. Returning to the example above, if 
cache list entry #5 initially specified LEA 10 to LEA 15, and 

10 the second command specified LEA 16 to LEA 20, it is 
possible to modify cache list entry #5 now to specify a total 
write sequence of LEA 10 to LEA 20. 

In carrying out its scan the cache controller state machine 
580 can mark an entry, perform cache trimming or 

15 invalidating, or reuse a cache list entry. Once the cache 
controller state machine 580 has completed its write scan 
and cache trimming at states 733 or 735, depending on 
whether it is operating in LEA mode 702 or buffer mode 
704, it will load the sectors_available and buffer_pointer A cache sequence invalidation example is also set forth in 

FIG. 25. In this example, a write sequence 762 has a starting 
address before, and an ending address after, a cache 
sequence 764. In this case the cache controller state machine 
580 marks the cache sequence 764 as invalid. This sequence 
764 then is available to be overwritten with a portion of the 
write sequence 762 of the same size as the invalidated 25 

sequence 764. 

20 values in the buffer manager 564 at state 732 in order to 
enable the host 5 to begin automatic transfer of sectors to the 
cache buffer 514 without firmware intervention. The cache 
manager state machine 580 then returns to its idle state 630 
and remains idle during the write transfer unless insufficient 
space exists in the cache buffer 514 and the drive firmware 
intervenes. 

LEA mode ALU process flow leading up to an action state 
732 which carries out one of trim-low, trim-high, no change 
or invalidate is set forth in FIG. 26. Buffer mode ALU 

As explained during host write sequences the cache 

process flow leading up to an action state 732 which carries 30 

out one of trim-low, trim-high, or invalidate is set forth in 
FIG. 28. 

controller state machine 580 may also create cache list 
entries, set appropriate flags of a particular cache entry, and 
interrupt the drive firmware. Since a buffer write queue is 
used, the cache controller 510 will also load the entry I 
autowrite registers and flags to enable the host 5 to write to 
the queue of write commands contained in the cache list. As already mentioned, the cache list maintained in cache 

RAM 584 has e.g. 32 entries, for example as shown in FIG. 
17. When a write command comes in from the host 5, the 
cache list is scanned. The valid bit of each flag field is 
checked. If an invalid or "dirty" entry (valid bit equals zero) 
is found, the cache controller state machine 580 uses the first 
available dirty entry for the write command as a default case. 

If, following a first scan of the cache list, there are no dirty 
entries found in the cache list, then an "only-valid" condition 
is sought. An only-valid condition exists if the valid bit of an 
entry is the only flag bit set, and no other flag bits are set 
within the flag field of the entry. This condition means that 
cache data identified by this particular entry has already 
been written to disk, and there are no prefetch or other 
activity with regard to that particular entry. When a valid
only entry is found during cache list rescan, it is overwritten 
with the new write command. 

If there are no dirty entries, and if there are no valid-only 
entries found after plural scans of the cache list, the cache 
controller state machine 580 interrupts the firmware at a 
state 738 and prevents the host from automatically ending 
the write command. Thereupon, the drive firmware will 
intercept and complete the write command. 

In certain situations it may be possible to expand an 
existing cache entry rather than having to allocate a new 
entry. In a known approach a first write command specified 

The present invention therefore provides efficient and 
35 quick scan of the cache list to find every data block 

requested and transfer the data if necessary. It saves the drive 
firmware from the labor intensive task of searching for data, 
which otherwise impairs performance of a cache manager. In 
the above preferred implementations, the cache list can be 

40 stored in fast local memory and searched quickly by the 
logic circuit or the cache controller state machine 580 
(second preferred embodiment). Further, given a starting 
data block or LEA, unlike existing systems, the present 
invention searches to find data blocks beyond the requested 

45 data blocks. As a result, after a cache scan, the cache 
manager can be provided with cache status based on the 
requested set, including a miss, partial hit, full hit, and the 
first missing data block which needs to be read into the cache 
buffer from the disk drive. In the mean-time all available 

50 data blocks in the cache buffer can be transferred to the host. 
As such, the present invention takes advantage of locality of 
reference or sequential access by the host. 

The transfer operation provides the ability to perform 
real-time data gathering of discontinuous pieces of data in 

55 the cache buffer, and to seamlessly provide the host with a 
single stream of data. This is because a cache scan provides 
information about what data is in the cache and where it is. 
Therefore, the data can be transferred without spending time 
between successive searches to find the next piece of data to a write segment having LEA 10 to LEA 15. Upon receipt of 

this first command, the cache controller state machine 580 
scans the cache list. The first dirty cache entry of the cache 
table is found upon cache scan to be entry #5, and the first 
command is thereupon written to entry #5. When a second 
write command comes in, the cache controller state machine 
580 again scans the cache list to look for a first available 65 

cache entry. Since cache entry #5 is now taken up with the 
first command, it is unavailable, and another entry must be 

60 transfer to the host. 
The present invention also provides buffering of data from 

the host. Multiple write commands from the host are 
"stacked" until the cache manager decides to write the 
buffered data to disk. This allows the cache manager to 
operate without interruption by every write command. The 
above implementation provides stacking of 8 write com
mands into the FIFO. Since subsequent writes can overlap 



6,141,728 
29 30 

in sequence to the last data block of the requested set, 
transferring the requested set of data blocks out of the cache 
segments. 

one another, the present invention provides marking and 
trimming capabilities to resolve overlaps as described 
above. As such, all overlaps can be resolved in real-time, 
keeping the Cache List coherent, and allowing for subse
quent auto-read hits. 

4. The method of claim 3, wherein the step of transferring 
5 includes: 

The present invention can be used with different cache 
managers utilizing replacement strategies such as: hardware 
or logical segmentation, LFU, LRU, localities or single 
thread mode. The present invention can also be used directly 
as a hardware accelerator by the cache manager for its scan 10 
and trimming functions described above. 

Although the present invention has been described in 
considerable detail with regard to the preferred versions 
thereof, other versions are possible. It will be understood by 
those skilled in the art that various changes in form and 15 
detail can be made therein without departing from the spirit 
and scope of the invention as defined by the appended 
claims. Other means, comprising memory devices, 
processors, logic circuits, and/or analog circuits, for per
forming the above steps are possible and contemplated by 20 
the present invention. Additionally, the cache buffer man
agement method according to principles of the present 
invention can be implemented for other interfaces, such as, 
for example, a SCSI interface, an IEEE-1394 interface, or a 
Fibre-channel interface. The disclosures and the descriptions 25 
herein are purely illustrative and are not intended to be in 
any sense limiting. 

What is claimed is: 
1. In a cache system comprising a cache buffer including 

a plurality of cache segments, each cache segment organized 30 
into a plurality of data block locations for storing data, and 
a cache manager for storing data into and retrieving data 
from said segments, a method of managing data transfer into 
and out of the segments, comprising the steps of: 

(a) maintaining a cache list comprising a plurality of 35 

entries each including information identifying: (1) a 
corresponding cache segment, and (2) a set of consecu
tive data blocks stored in the cache segment; and 

(b) in response to a request for transfer of a consecutive 
set of one or more data blocks out of the cache buffer, 40 

the requested set including a starting data block, per
forming steps including: 
(1) traversing the cache list to locate entries identifying 

the starting data block from among any of the data 
blocks stored in the cache segment, and consecutive 45 

data blocks successively following the starting data 
block without interruption, identifying as a missing 
data block the first data block in said succession, 
including said starting data block, not identified in 
any entry; and 50 

(2) providing cache information including: 
(i) cache hit status comprising: (1) a full hit if the 

missing data block is not in the requested set; (2) 
a miss if the missing data block is the starting data 
block in the requested set; or (3) a partial hit 55 

otherwise; and 
(ii) identity of said missing data block in case of a 

full or a partial hit; 

(a) denoting the starting data block as a running data 
block; 

(b) traversing the cache list to locate the entry identifying 
the running data block; 

(c) accessing the data segment corresponding to the 
located entry; 

( d) transferring as many of data blocks therein within the 
range of the requested set; and 

( e) if the sequence of the last data block of the requested 
set succeeds that of the last data block of the set 
identified in the located entry, denoting as the running 
block, the block next in sequence to said last block of 
the identified set, and repeating steps (b)-(d). 

5. The method of claim 2, wherein step (b) further 
includes: after locating a missing data block, transferring out 
of the cache segments all consecutive data blocks from the 
starting data block up to the missing data block. 

6. The method of claim 5, wherein the step of transferring 
includes: 

(a) denoting the starting data block as a running data 
block; 

(b) traversing the cache list to locate the entry identifying 
the running data block; 

(c) accessing the data segment corresponding to the 
located entry; 

( d) transferring as many of data blocks therein within the 
range of the requested set; and 

( e) if the sequence of the missing data block succeeds that 
of the last data block of the set identified in the located 
entry by at least two, denoting as the running block, the 
block next in sequence to said last block of the iden
tified set, and repeating steps (b )--( d). 

7. In a cache system comprising a cache buffer including 
a plurality of cache segments, each cache segment organized 
into a plurality of data blocks for storing data, and a cache 
manager for storing data into and retrieving data from said 
segments, a method of managing data transfer into and out 
of the segments, comprising the steps of: 

(a) maintaining a cache list comprising a plurality of 
entries each including information identifying: (1) a 
corresponding cache segment, and (2) a set of consecu
tive data blocks stored in the cache segment; and 

(b) in response to a request for transfer of a consecutive 
set of one or more data blocks into the cache buffer, the 
requested set including a starting data block, perform
ing steps including: 
(1) traversing the cache list to locate all entries iden

tifying sets of data blocks overlapping the requested 
set; and 

(2) providing cache hit status including: (i) a full hit if 
a located entry identifies a set of data blocks fully 
overlapping the requested set, (ii) a miss if no entry 
is located, and (iii) a partial hit otherwise; wherein, said cache status information can be used by the 

cache manager to transfer data out of the cache buffer. 
2. The method of claim 1, wherein step (b)(l) includes 

traversing the cache list to locate entries identifying the 
starting data block, and consecutive data blocks successively 
following the starting data block up to, and including, the 
last data block of the requested set. 

60 wherein, said cache hit status can be used by the cache 
manager to transfer data into the cache buffer. 

3. The method of claim 2, wherein step (b)(l) further 
includes: after locating an entry identifying a data block next 

8. The method of claim 7, wherein step (b) further 
includes: (i) transferring the requested set of data blocks into 
a predesignated buffer, and (ii) marking each located entry 

65 as invalid. 
9. The method of claim 8, wherein step (b) further 

includes locating an entry marked invalid, and updating the 



6,141,728 
31 

information in the invalid entry to identify: (i) the predes
ignated buffer as a corresponding data segment, and (ii) the 
requested set as the set of data blocks stored in the corre
sponding data segment. 

32 
14. The method of claim 13, wherein step (b)(l) includes 

traversing the cache list to locate valid entries identifying the 
starting data block, and consecutive data blocks successively 
following the starting data block up to, and including, the 

10. The method of claim 7, wherein step (b) further 
includes: (i) transferring the requested set of data blocks into 
a predesignated buffer, and (ii) updating the information in 
each located entry to identify sets of data blocks which do 
not overlap the requested set. 

5 last data block of the requested set. 

11. The method of claim 7, wherein: 
10 

(i) each cache list entry includes the address and size of 
the corresponding data segment in the buffer; and 

(ii) step (b) further includes transferring the requested set 
of data blocks into a predesignated section of the buffer 
having an address and a size, and updating the segment 15 
size in each located entry to resolve overlaps. 

12. The method of claim 7, wherein step (b) further 
includes: (i) locating an entry identifying said starting data 
block, and determining if the sequence of the last data block 
of the set identified in the entry, matches or succeeds that of 20 
the last data block of the requested set, and (ii) if so, 
transferring the requested set of data blocks into correspond
ing data blocks in the segment identified in the entry. 

13. In a cache system comprising a cache buffer including 
a plurality of cache segments, each cache segment organized 25 
into a plurality of data blocks for storing data, and a cache 
manager for storing data into and retrieving data from said 
segments, a method of managing data transfer into and out 
of the segments, comprising the steps of: 

(a) maintaining a cache list comprising a plurality of 30 
entries each including information identifying: (1) a 
corresponding cache segment, (2) a set of consecutive 
data blocks stored in the cache segment, and (3) entry 
validity; 

(b) in response to a request for transfer of a consecutive 35 

set of one or more data blocks out of the cache buffer, 
the requested set including a starting data block, per
forming steps including: 
(1) traversing the cache list to locate valid entries 

identifying the starting data block, and consecutive 40 

data blocks successively following the starting data 
block without interruption, identifying as a missing 
data block the first data block in said succession, 
including said starting data block, not identified in 
any entry; and 45 

(2) providing cache information including: 
(i) cache hit status comprising: (1) a full hit if the 

missing data block is not in the requested set; (2) 
a miss if the missing data block is the starting data 
block in the requested set; or (3) a partial hit 50 

otherwise; and 
(ii) identity of said missing data block in case of a 

full or a partial hit; and 
( c) in response to a request for transfer of a consecutive 

set of one or more data blocks into the cache buffer, the 55 

requested set including a starting data block, perform
ing steps including: 

15. The method of claim 14, wherein step (b)(l) further 
includes: after locating an entry identifying a data block next 
in sequence to the last data block of the requested set, 
transferring the requested set of data blocks out of the cache 
segments. 

16. The method of claim 15, wherein the step of trans
ferring includes: 

(a) denoting the starting data block as a running data 
block; 

(b) traversing the cache list to locate the valid entry 
identifying the running data block; 

(c) accessing the data segment corresponding to the 
located entry; 

( d) transferring as many of data blocks therein within the 
range of the requested set; and 

( e) if the sequence of the last data block of the requested 
set succeeds that of the last data block of the set 
identified in the located entry, denoting as the running 
block, the block next in sequence to said last block of 
the identified set, and repeating steps (b)-(d). 

17. The method of claim 14, wherein step (b) further 
includes: after locating a missing data block, transferring out 
of the cache segments all consecutive data blocks from the 
starting data block up to the missing data block. 

18. The method of claim 17, wherein the step of trans
ferring includes: 

(a) denoting the starting data block as a running data 
block; 

(b) traversing the cache list to locate the valid entry 
identifying the running data block; 

(c) accessing the data segment corresponding to the 
located entry; 

( d) transferring as many of data blocks therein within the 
range of the requested set; and 

( e) if the sequence of the missing data block succeeds that 
of the last data block of the set identified in the located 
entry by at least two, denoting as the running block, the 
block next in sequence to said last block of the iden-
tified set, and repeating steps (b )--( d). 

19. The method of claim 13, wherein step (c) further 
includes: (i) transferring the requested set of data blocks into 
a predesignated buffer, and (ii) marking each located entry 
as invalid. 

20. The method of claim 19, wherein step (c) further 
includes locating an entry marked invalid, and updating the 
information in the invalid entry to identify: (i) the predes
ignated buffer as a corresponding data segment, and (ii) the 
requested set as the set of data blocks stored in the corre
sponding data segment. 

21. The method of claim 13, wherein step (c) further 
includes: (i) transferring the requested set of data blocks into 
a predesignated buffer, and (ii) updating the information in 
each located entry to identify sets of data blocks which do 

(1) traversing the cache list to locate all entries iden
tifying sets of data blocks overlapping the requested 
set; and 60 not overlap the requested set. 

(2) providing cache hit status including: (i) a full hit if 
a located entry identifies a set of data blocks fully 
overlapping the requested set, (ii) a miss if no entry 
is located, and (iii) a partial hit otherwise; 

wherein, said cache status information can be used by the 65 

cache manager to transfer data into and out of the cache 
buffer. 

22. The method of claim 13, wherein: 
(i) each cache list entry includes the address and size of 

the corresponding data segment in the buffer; and 
(ii) step (c) further includes transferring the requested set 

of data blocks into a predesignated section of the buffer 
having an address and a size, and updating the segment 
size in each located entry to resolve overlaps. 



6,141,728 
33 

23. The method of claim 13, wherein step (c) further 
includes: (i) locating an entry identifying said starting data 
block, and determining if the sequence of the last data block 

34 
cally transferring out of the cache segments all consecutive 
data blocks from the starting data block up to the missing 
data block. 

of the set identified in the entry, matches or succeeds that of 
the last data block of the requested set, and (ii) if so, 
transferring the requested set of data blocks into correspond
ing data blocks in the segment identified in the entry. 

29. The controller of claim 28, wherein the logic circuit 
5 for transferring data includes means for performing the steps 

of: 

24. A controller for managing data transfer into and out of 
a cache buffer including a plurality of cache segments, each 
cache segment organized into a plurality of data blocks for 10 

storing data, the controller comprising: 
(a) a cache list comprising a plurality of entries each 

including information identifying: (1) a corresponding 
cache segment, and (2) a set of consecutive data blocks 
stored in the cache segment; and 

(b) a logic circuit which automatically operates such that 
in response to a request for transfer of a consecutive set 

15 

(a) denoting the starting data block as a running data 
block; 

(b) traversing the cache list to locate the entry identifying 
the running data block; 

(c) accessing the data segment corresponding to the 
located entry; 

( d) transferring as many of data blocks therein within the 
range of the requested set; and 

( e) if the sequence of the missing data block succeeds that 
of the last data block of the set identified in the located 
entry by at least two, denoting as the running block, the 
block next in sequence to said last block of the iden
tified set, and repeating steps (b )--( d). of one or more data blocks out of the cache buffer, the 

requested set including a starting data block, the logic 
circuit performs steps including: 20 

30. A controller for managing data transfer into and out of 
a cache buffer including a plurality of cache segments, each 
cache segment organized into a plurality of data blocks for 
storing data, the controller comprising: 

(1) traversing the cache list to locate entries identifying 
the starting data block, and consecutive data blocks 
successively following the starting data block with
out interruption, identifying as a missing data block 
the first data block in said succession, including said 25 

starting data block, not identified in any entry; 
(2) providing cache information including: 

(i) cache hit status comprising: (1) a full hit if the 
missing data block is not in the requested set; (2) 
a miss if the missing data block is the starting data 30 

block in the requested set; or (3) a partial hit 
otherwise; and 

(ii) identity of said missing data block in case of a 
full or a partial hit; 

wherein, said cache status information can be used by the 35 

cache manager to transfer data out of the cache buffer. 
25. The controller of claim 24, wherein the logic circuit 

for traversing the cache list further include means for 
traversing the cache list to locate entries identifying the 
starting data block, and consecutive data blocks successively 40 

following the starting data block up to, and including, the 
last data block of the requested set. 

26. The controller of claim 25 wherein the logic circuit for 
traversing the cache list, further includes means for perform
ing the steps of: after locating an entry identifying a data 45 

block next in sequence to the last data block of the requested 
set, transferring the requested set of data blocks out of the 
cache segments. 

(a) a cache list comprising a plurality of entries each 
including information identifying: (1) a corresponding 
cache segment, and (2) a set of consecutive data blocks 
stored in the cache segment; 

(b) a logic circuit which automatically operates such that 
in response to a request for transfer of a consecutive set 
of one or more data blocks into the cache buffer, the 
requested set including a starting data block, the logic 
circuit performs steps including: 
(1) traversing the cache list to locate all entries iden

tifying sets of data blocks overlapping the requested 
set; and 

(2) providing cache hit status including: (i) a full hit if 
a located entry identifies a set of data blocks fully 
overlapping the requested set, (ii) a miss if no entry 
is located, and (iii) a partial hit otherwise; 

wherein, said cache hit status can be used by the cache 
manager to transfer data into the cache buffer. 

31. The controller of claim 30, wherein the logic circuit 
for traversing the cache list the further includes means for 
performing the steps of: (i) transferring the requested set of 
data blocks into a predesignated buffer, and (ii) marking 
each located entry as invalid. 

32. The controller of claim 31, wherein the logic circuit 
for traversing the cache list further includes means for 
locating an entry marked invalid, and updating the informa-

27. The controller of claim 26 wherein the logic circuit for 
transferring data includes means for: 

(a) denoting the starting data block as a running data 
block; 

(b) traversing the cache list to locate the entry identifying 
the running data block; 

50 tion in the invalid entry to identify: (i) the predesignated 
buffer as a corresponding data segment, and (ii) the 
requested set as the set of data blocks stored in the corre
sponding data segment. 

33. The controller of claim 30, wherein the logic circuit 

(c) accessing the data segment corresponding to the 
located entry; 

(d) transferring as many of data blocks therein within the 
range of the requested set; and 

55 for traversing the cache list further includes means for: (i) 
transferring the requested set of data blocks into a predes
ignated buffer, and (ii) updating the information in each 
located entry to identify sets of data blocks which do not 

( e) if the sequence of the last data block of the requested 60 

set succeeds that of the last data block of the set 
identified in the located entry, denoting as the running 
block, the block next in sequence to said last block of 
the identified set, and repeating steps (b )-( d). 

28. The controller of claim 25 wherein the logic circuit for 65 

traversing the cache list further includes means for perform
ing steps of: after locating a missing data block, automati-

overlap the requested set. 
34. The controller of claim 30, wherein: 
(i) each cache list entry includes the address and size of 

the corresponding data segment in the buffer; and 
(ii) the logic circuit for traversing the cache list further 

includes means for transferring the requested set of data 
blocks into a predesignated section of the buffer having 
an address and a size, and updating the segment size in 
each located entry to resolve overlaps. 



6,141,728 
35 

35. The controller of claim 30, wherein the logic circuit 
for traversing the cache list further includes means for: (i) 
locating an entry identifying said starting data block, and 
determining if the sequence of the last data block of the set 
identified in the entry, matches or succeeds that of the last 5 
data block of the requested set, and (ii) if so, transferring the 
requested set of data blocks into corresponding data blocks 
in the segment identified in the entry. 

36. A controller for managing data transfer into and out of 
a cache buffer including a plurality of cache segments, each 10 
cache segment organized into a plurality of data blocks for 
storing data, the controller comprising: 

(a) a cache list comprising a plurality of entries each 
including information identifying: (1) a corresponding 
cache segment, (2) a set of consecutive data blocks 15 
stored in the cache segment, and (3) entry validity; and 

(b) a logic circuit automatically operating such that: 
(1) in response to a request for transfer of a consecutive 

set of one or more data blocks out of the cache buffer, 
the requested set including a starting data block, the 20 

controller performs steps including: 
(i) traversing the cache list to locate valid entries 

identifying the starting data block, and consecu
tive data blocks successively following the start
ing data block without interruption, identifying as 25 

a missing data block the first data block in said 
succession, including said starting data block, not 
identified in any entry; 

(ii) providing cache information including: 
(1) cache hit status comprising: a full hit if the 30 

missing data block is not in the requested set; 
a miss if the missing data block is the starting 
data block in the requested set; or a partial hit 
otherwise; and 

(2) identity of said missing data block in case of 35 

a full or a partial hit; 

36 
(b) traversing the cache list to locate the valid entry 

identifying the running data block; 

(c) accessing the data segment corresponding to the 
located entry; 

( d) transferring as many of data blocks therein within the 
range of the requested set; and 

( e) if the sequence of the last data block of the requested 
set succeeds that of the last data block of the set 
identified in the located entry, denoting as the running 
block, the block next in sequence to said last block of 
the identified set, and repeating steps (b)-(d). 

40. The controller of claim 37, wherein the logic circuit 
for traversing the cache list in response to the command to 
transfer data out, further includes means for performing 
steps of: after locating a missing data block, transferring out 
of the cache segments all consecutive data blocks from the 
starting data block up to the missing data block. 

41. The controller of claim 40, wherein the logic circuit 
for transferring data includes means for performing the steps 
of: 

(a) denoting the starting data block as a running data 
block; 

(b) traversing the cache list to locate the valid entry 
identifying the running data block; 

(c) accessing the data segment corresponding to the 
located entry; 

( d) transferring as many of data blocks therein within the 
range of the requested set; and 

( e) if the sequence of the missing data block succeeds that 
of the last data block of the set identified in the located 
entry by at least two, denoting as the running block, the 
block next in sequence to said last block of the iden-
tified set, and repeating steps (b )--( d). 

42. The controller of claim 36, wherein the logic circuit 
for traversing the cache list in response to the command to 
transfer data in, further includes means for performing the 
steps of: (i) transferring the requested set of data blocks into 

(2) in response to a request for transfer of a consecutive 
new set of one or more data blocks into the cache 
buffer, the requested set including a starting data 
block, the controller performs steps including: 
(i) traversing the cache list to locate all valid entries 

identifying sets of data blocks overlapping the 
new set; and 

40 
a predesignated buffer, and (ii) marking each located entry 
as invalid. 

(ii) providing cache hit status including: a full hit if 
a located entry identifies a set of data blocks fully 45 

overlapping the new set; a miss if no entry is 
located; and a partial hit otherwise; 

wherein, said cache hit status can be used by the cache 
manager to transfer data into and out of the cache buffer. 

37. The controller of claim 36, wherein the logic circuit 50 

for traversing the cache list in response to the command to 
transfer data out, further includes means for traversing the 
cache list to locate valid entries identifying the starting data 
block, and consecutive data blocks successively following 
the starting data block up to, and including, the last data 55 

block of the requested set. 
38. The controller of claim 37, wherein the logic circuit 

for traversing the cache list in response to the command to 
transfer data out, further includes means for performing the 
steps of: after locating an entry identifying a data block next 60 

in sequence to the last data block of the requested set, 
transferring the requested set of data blocks out of the cache 
segments. 

39. The controller of claim 38, wherein the logic circuit 
for transferring data out includes means for: 

(a) denoting the starting data block as a running data 
block; 

65 

43. The controller of claim 42, wherein the logic circuit 
for traversing the cache list in response to the command to 
transfer data in, further includes means for locating an entry 
marked invalid, and updating the information in the invalid 
entry to identify: (i) the predesignated buffer as a corre
sponding data segment, (ii) the requested set as the set of 
data blocks stored in the corresponding data segment, and 
(iii) mark the entry as valid. 

44. The controller of claim 37, wherein the logic circuit 
for traversing the cache list in response to the command to 
transfer data in, further includes means for: (i) transferring 
the requested set of data blocks into a predesignated buffer, 
and (ii) updating the information in each located entry to 
identify sets of data blocks which do not overlap the 
requested set. 

45. The controller of claim 37, wherein: 

(i) each cache list entry includes the address and size of 
the corresponding data segment in the buffer; and 

(ii) the logic circuit for traversing the cache list in 
response to the command to transfer data in, further 
includes means for transferring the requested set of data 
blocks into a predesignated section of the buffer having 
an address and a size, and updating the segment size in 
each located entry to resolve overlaps. 

46. The controller of claim 45, wherein the logic circuit 
for traversing the cache list in response to the command to 



6,141,728 
37 

transfer data in, further includes means for: (i) locating a 
valid entry identifying said starting data block, and deter
mining if the sequence of the last data block of the set 
identified in the entry matches or succeeds that of the last 
data block of the requested set, and (ii) if so, transferring the 5 
requested set of data blocks into corresponding data blocks 
in the segment identified in the entry. 

47. A cache manager of a peripheral data store for 
automatically managing data transfer between a host and a 
cache buffer of the storage device including a plurality of 10 
cache segments, each transfer between the host and the 
cache buffer being carried out without intervention of a 
programmed device microcontroller, each cache segment 
organized into a plurality of data blocks for storing data, the 
cache manager comprising: 15 

(a) a cache list memory array comprising a cache list of 
entries each including information identifying: (1) a 
corresponding cache segment, (2) a set of consecutive 
data blocks stored in the cache segment, and (3) entry 
validity; and 

(b) a cache controller state machine automatically oper
ating such that: 
(1) in response to a request from the host for transfer of 

20 

a consecutive set of one or more data blocks out of 
the cache buffer, the requested set including a start- 25 

ing data block, the cache controller state machine 
performing steps including: 
(i) traversing the cache list to locate valid entries 

identifying the starting data block, and consecu
tive data blocks successively following the start- 30 

ing data block without interruption, identifying as 
a missing data block a first data block in said 
succession, including said starting data block, not 
identified in any entry; 

(ii) providing cache information including: 
(1) cache hit status comprising: a full hit if the 

missing data block is not in the requested set; 
a miss if the missing data block is the starting 
data block in the requested set; or a partial hit 
otherwise; and 

(2) identity of said missing data block in case of 
a full or a partial hit; 

(2) in response to a request from the host for transfer of 

35 

40 

a consecutive new set of one or more data blocks into 
the cache buffer, the new set including a starting data 45 

block, the cache controller state machine performing 
steps including: 

38 
automatic transfer means for performing the steps of: after 
locating an entry identifying a data block next in sequence 
to the last data block of the requested set, automatically 
transferring the requested set of data blocks out of the cache 
segments. 

50. The cache manager of claim 49 wherein the automatic 
transfer means for transferring data out includes data block 
locating means for: 

(a) denoting the starting data block as a running data 
block; 

(b) traversing the cache list to locate the valid entry 
identifying the running data block; 

(c) accessing the data segment corresponding to the 
located entry; 

( d) automatically transferring as many of data blocks 
therein within the range of the requested set; and 

( e) if the sequence of the last data block of the requested 
set succeeds that of the last data block of the set 
identified in the located entry, denoting as the running 
block, the block next in sequence to said last block of 
the identified set, and repeating steps (b)-(d). 

51. The cache manager of claim 48 wherein the logic 
means for traversing the cache list in response to the host 
command to transfer data out of the cache buffer to the host 
further includes automatic block transfer means, operative 
after locating a missing data block, for automatically trans-
ferring out of the cache segments all consecutive data blocks 
from the starting data block up to the missing data block. 

52. The cache manager of claim 51, wherein the automatic 
block transfer means for transferring data includes block 
locating means for performing the steps of: 

(a) denoting the starting data block as a running data 
block; 

(b) traversing the cache list to locate the valid entry 
identifying the running data block; 

(c) accessing the data segment corresponding to the 
located entry; 

( d) automatically transferring as many of data blocks 
therein within the range of the requested set; and 

( e) if the sequence of the missing data block succeeds that 
of the last data block of the set identified in the located 
entry by at least two, denoting as the running block, the 
block next in sequence to said last block of the iden
tified set, and repeating steps (b )--( d). 

53. The cache manager of claim 47 wherein the cache 
(i) traversing the cache list to locate all valid entries 

locating identified sets of data blocks overlapping 
the new set; and 

(ii) providing cache hit status including: a full hit if 
a located entry corresponds to an identified set of 
data blocks fully overlapping the new set; a miss 
if no such entry is located; and a partial hit 
otherwise; 

50 controller state machine for traversing the cache list in 
response to the host command to transfer data in, further 
includes block transfer-in means for performing the steps of: 
(i) transferring a new set overlapping the identified set of 
data blocks into a predesignated buffer, and (ii) marking as 

55 invalid each entry of the identified set. 
whereby said cache hit status can be used by the cache 
manager for automatic transfer of data into and out of the 
cache buffer in accordance with requests from the host. 

48. The cache manager of claim 47 wherein the cache 
controller state machine includes logic means for automati- 60 

cally traversing the cache list to locate valid entries identi
fying the starting data block, and consecutive data blocks 
successively following the starting data block up to, and 
including, the last data block of the requested set. 

49. The cache manager of claim 48 wherein the logic 65 

means for automatically traversing the cache list in response 
to a host command to transfer data out further includes 

54. The cache manager of claim 53 wherein the block 
transfer-in means includes means for locating an entry 
marked invalid, and updating the information in the invalid 
entry to: (i) identify the predesignated buffer as a corre
sponding data segment, (ii) identify the new set as the set of 
data blocks stored in the corresponding data segment, and 
(iii) mark the entry corresponding to the new set as valid. 

55. The cache manager of claim 47 wherein the cache 
controller state machine for traversing the cache list in 
response to the host command to transfer data in, further 
includes block transfer-in means for: (i) scanning the cache 
list to find sets of data blocks which fully or partially overlap 



6,141,728 
39 

the new set, (ii) trimming the cache list in order to free up 
writing space in the cache buffer which would otherwise be 
occupied by said sets of data blocks which fully or partially 
overlap the new set, and (iii) transferring the new set of data 
blocks into a space of the cache list which has been trimmed. 5 

56. The cache manager of claim 55 wherein the block 
transfer-in means performs one of trim low, trim high, no 
change, and invalidate cache list trimming operations. 

57. The cache manager of claim 56 wherein the block 
transfer-in means scans in logical block address mode for 

10 

locating entrys having full or partial overlap with a logical 
block address of the new set. 

40 
62. The cache manager of claim 47 wherein: 
(i) each cache list entry includes the address and size of 

the corresponding data segment in the buffer; and 
(ii) the cache controller state machine for automatically 

traversing the cache list in response to the command to 
transfer a new set of data blocks into the cache buffer 
further includes means for transferring the new set of 
data blocks into a predesignated section of the buffer 
having an address and a size, and updating the segment 
size in each identified entry of the cache list to resolve 
overlaps. 

63. The cache manager of claim 62 wherein the cache 
controller state machine further includes means for: (i) 
locating a valid entry identifying said starting data block, 58. The cache manager of claim 56 wherein the block 

transfer-in means scans in buffer mode for locating buffer 
space entries having full or partial overlap with a buffer 
space address of the new set. 

15 and determining if the sequence of the last data block of the 
set identified in the entry matches or succeeds that of the last 
data block of the new set, and (ii) if so, transferring the new 
set of data blocks into corresponding data blocks in the 59. The cache manager of claim 55 wherein the block 

transfer-in means performs cache buffer space allocation by 
one of (i) sequentially extending buffer space of an existing 20 
cache list entry to include the new set, (ii) allocating a 
marked invalid entry to the new set, and (iii) allocating a 
marked valid-only entry to the new set. 

60. The cache manager of claim 47 wherein the cache 
controller state machine for traversing the cache list in 25 
response to the host command to transfer data in, further 
includes block transfer-in means for: (i) transferring the new 

segment identified in the entry. 
64. The cache manager of claim 47 wherein the peripheral 

data store comprises a disk drive. 
65. The cache manager of claim 64 being embedded 

within electronics of the disk drive and being directly 
connected to a disk drive interface circuit. 

66. The cache manager of claim 65 wherein cache hit 
status automatically causes an embedded microcontroller of 
the disk drive automatically to transfer disk data blocks 
requested by the host from disk storage and update the cache 
list in response to a cache miss or partial cache hit so that 

set of data blocks into a predesignated buffer, and (ii) 
updating the information in each located entry to identify 
sets of data blocks which do not overlap the new set. 30 such disk data blocks may be located automatically by the 

cache manager during a subsequent scan of the cache list. 
67. The cache manager of claim 47 further comprising a 

dedicated arithmetic logic unit controlled by the cache 
controller state machine. 

61. The cache manager of claim 60 wherein the block 
transfer-in means scans the cache entries for logical block 
address entry overlap, scans the cache entries for physical 
cache buffer address overlap, and allocates buffer space 
within existing cache table entries by one of (i) extending a 35 
block sequential entry, (ii) scanning for an invalid entry and 
overwriting an entry for the new set in place of the invalid 
entry, and (iii) scanning for a valid only entry having only 
a valid bit set in a flag field, and overwriting an entry for the 
new set in place of the valid only entry. 

68. The cache manager of claim 67 wherein the dedicated 
arithmetic logic unit provides simultaneous add, compare, 
negate and test equal logic operations during a single clock 
cycle. 

* * * * * 


