
5PECIRA'Y1'C
TIME SHARING OPERATING SYSTEM (TSOS)

Interactive BASIC System
Information Manual

llCIBLJO
Information
Systems

70-00-518
February 1969

The information contained herein is subject to change
without notice. Revisions may be provided to advise
of such additions and/or changes.

February 1969

The development of the BASIC Language and the
original version of this manual were supported in part
by the National Science Foundation under terms of
Grant NSF GE 3864 to Dartmouth College. Under
this grant Dartmouth Professors John G. Kemeny and
Thomas E. Kurtz developed the BASIC Language and
a compiler for operation under a time-sharing system
in use at Dartmouth.

The printing of this manual by RCA does not neces
sarily constitute endorsement of RCA products by
Dartmouth College.

© Copyright 1968 by Trustees of Dartmouth Col
lege. Reproduced with the permission of Trustees of
Dartmouth College.

1. WHAT IS
A PROGRAM

2. A BASIC
PRIMER

3. ADVANCED
BASIC

4. EXTENSIONS
TO BASIC

CONTENTS

An Example
Formulas

Numbers
Variables

Loops
Lists and Tables
Use of the Time-Sharing System
Errors and Debugging .
Summary of Elementary BASIC Statements

LET
READ and DATA
PRINT
GO TO
IF--THEN
FOR and NEXT
DIM
END or STOP

More About Print
Functions
GOSUB and RETURN
INPUT
Some Miscellaneous Statements

Matrix Operations .
MAT READ and MAT PRINT
Matrix Addition, Subtraction, and Multiplication
Scalar Multiplication
Identity Matrix
Assignment
Matrix Transposition
Matrix Inversion
Matrix ZER and CON Function
Dimensioning
Example

Alphanumeric Data and String Manipulation
The DIM Statement
The LET Statement
The IF-THEN Statement
The PRINT Statement

Computed GO TO Statement
Multiple Variable Replacement
Print Function TAB
Function SGN
Function RND

iii

Page

1-1

2-1
2-5
2-6
2-7
2-7
2-10
2-12
2-14
2-18
2-18
2-19
2-19
2-20
2-20
2-21
2-21
2-22

3-1
3-4
3-6
3-7
3-8

4-1
4-2
4-2
4-3
4-3
4-3
4-4
4-4
4-4
4-4
4-6
4-7
4-7
4-7
4-7
4-8
4-8
4-8
4-9
4-10
4-10

5. ENHANCEMENTS
TO BASIC

6. EDITING
COMMANDS

APPENDICES

CONTENTS
(Cont'd)

Function TIM .
Data File Operations.

FILES Statement
Data-WRITE Statement
Data-SCRATCH Statement
File-READ Statement
WHEN Statement
RESTORE Statement

NEW .. .
OLD .. .
RENAME or REN
SCRATCH or SCR 0 • • 0 0 0 • 0 • 0 • • 0 0 • • 0 • • 0 0 0 0 • 0 0 • 0

LENGTH or LEN o. 0 • 0 •••• 0 0 •••• 0 •• 0 •••••• 0 0 0 ••• 0

STATUSorSTA 0 •• 0 •• 000.000 ••• 0 0.00000000.00 •••

SAVE orSAV 000. 0 0 • 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 .00.00000 •••

UNSA VE or UNS 0 0 • 0 • • 0 • • • • • 0 0 0 0 • • • • • 0 • 0 • 0 0 • • • 0 •

CATALOG or CAT o. 0 • 0 0 0 0 0 0 • 0 0 0 •• 0 0 •• 0 0 0 0 0 0 0 ••• 0

BYE 0 •• 00000.00000.0000 •• 0 •• 0 0 0 0 0 ••• o. 0 0 o. 0 0 0

RUN 0000000000000.0000 •• 0000000. 0.0. 0 0 •• 00. o.
LIST or LIS 0 0 0 00 0 • 0 • 0 0 0 •• 0 • 0 0 0 •• 0 0 0 • 0 •• 0 • 0 ••• 0 •

DELETE or DEL 0 • 0 0 0 •• 0 0 0 0 0 0 0 0 •• 0 • 0 • 0 • 0 •• 0 0 •• 0 ••

EXTRACTorEXT 0 •• 000000. 0 0 0 0 0 0 0 0 0 o. 0 0 0 0000000

RESEQUENCE or RES . 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 •

DUPLICATE or DUP 0 0 0 0 0 0 0 0 • 0 • 0 0 • 0 • 0 0 0 •• 0 0 0 0 0 0 •• 0

MERGE or MER . 0 0 0 0 •• 0 0 • 0 • 0 0 0 0 • 0 0 0 ••• 0 0 0 •• 0 ••••

WEA VE or WEA . 0 • 0 0 0 0 0 0 • 0 •• 0 • 0 • 0 • 0 0 0 0 0 0 0 •••••• 0

Page

5-1
5-1
5-1
5-2
5-2
5-2
5-3
5-5

6-1
6-1
6-2
6-2
6-2
6-2
6-2
6-2
6-3
6-3
6-3
6-3
6-3
6-4
6-4
6-4
6-5
6-6

SYNCHK or SYN 0 •••• 0 0 0 0 0 ••• 0 • 0 •• 0 •• 0 0 0 • • • • 6-6
NOSYNCHK or NO . 6-6

A. Compiler Diagnostics .. 0 • 0 • • • • 0 0 • • • • 0 • • • 0 • 0 • • • 0

B. Post-Compilation Diagnostics 0 0 0 ••

C. Run-Time (Execution) Diagnostics 0 •••••••

D. System Error Diagnostics .. 0 • 0 0 ••• 0 • 0 0 •• 0 •• 0 ••••

E. Saved File Organization 0 0 ••• 0 ••••••• 0 •• 0 •

F 0 Glossary ...0 0 • • • • • • • • • 0 • • • • 0 • • 0 0 • • • • 0 • • • • • •

iv

A-I
B-1
C-l
D-l
E-l
F-l

1. WHAT IS A
PROGRAM

• A program is a set of directions, or a recipe, that is used to tell a
computer how to provide an answer to some problem. It usually starts with
the given data as the ingredients, contains a set of instructions to be per
formed or carried out in a certain order, and ends up with a set of answers as
the cake. And, as with ordinary cakes, if you make a mistake in your
program, you will end up with something else - perhaps hash!

Any program must fulfill two requirements before it can be carried out.
The first is that it must be presented in a language that is understood by the
computer. If the program is a set of instructions for solving a system of
linear equations and the computer is an English-speaking person, the
program will be presented in some combination of mathematical notation
and English. If the computer is a French-speaking person, the program must
be in his language; and if the computer is a high-speed digital computer, the
program must be presented in a language which the computer understands.

The second requirement for all programs is that they must be
completely and precisely stated. This requirement is crucial when dealing
with a digital computer which has no ability to infer what you mean - it
does what you tell it to do, not what you meant to tell it.

We are, of course, talking about programs which provide numerical
answers to numerical problems. It is easy for a programmer to present a
program in the English language, but such a program poses great difficulties
for the computer because English is rich with ambiguities and redundancies,
those qualities which make poetry possible, but computing impossible.
Instead, you present your program in a language which resembles ordinary
mathematical notation, which has a simple vocabulary and grammar, and
which permits a complete and precise specification of your program. The
language you will use is BASIC (Heginner's All-purpose ~ymbolic Instruction
~ode) which is, at the same time, precise, simple, and easy to understand.

1-1

2. A BASIC
PRIMER

AN EXAMPLE • The following example is a complete BASIC program for solving a
system of two simultaneous linear equations in two variables:

ax + by = c
dx + ey = f

and then solving two different systems, each differing from this system only
in the constants c and f.

You should be able to solve this system, if ae - bd is not equal to 0, to
find that

ce - bf x =---
ae- bd and af - cd

y = ae - bd

If ae - bd = 0, there is either no solution or there are infinitely many,
but there is no unique solution. If you are rusty on solving such systems,
take our word for it that this is correct. For now, we want you to under
stand the BASIC program for solving this system.

Study this example carefully - in most cases the purpose of each line in
the program is self-evident - and then read the commentary and
explanation.

10 READ A, B, D, E
15 lET G = A * E - B * D
20 IF G = 0 THEN 65
30 READ C, F
37 lET X = (CifE - B*F) I G
42 lET Y = (A *F - C*D) / G
55 PRINT x, Y
60 GO TO 30
65 PRINT "NO UNIQUE SOLUTION"
70 DATA 1, 2, 4
80 DATA 2, -7, 5
85 DATA 1, 3, 4, -7
90 END

We immediately observe several things about this sample program. First,
we see that the program uses only capital letters, since the teletypewriter has
only capital letters.

2-1

AN EXAMPLE
(Cont'd)

A BASIC Primer

A second observation is that each line of the program begins with a
number. These numbers are called line numbers and serve to identify the
lines, each of which is called a statement. Thus, a program is made up of
statements, most of which are instructions to the computer. Line numbers
also serve to specify the order in which the statements are to be performed
by the computer. This means that you may type your program in any order.
Before the program is run, the computer sorts out and edits the program,
putting the statements into the order specified by their line numbers. (This
editing process facilitates the correcting and changing of programs, as we
shall explain later.)

A third observation is that each statement starts, after its line number
with an English word. This word denotes the type of the statement except
that the word LET may be excluded. There are several types of statements
in BASIC, nine of which are discussed in this chapter. Seven of these nine
appear in the sample program of this section.

A fourth observation, not at all obvious from the program, is that
spaces have no significance in BASIC, except in messages which are to be
printed out, as in line number 65 of the preceding example. Thus, spaces
may be used, or not used, at will to make the program more readable.
Statement 10 could have been typed as 10READA,B,D,E and statement 15
as 15LETG=A *E-B*D.

With this preface, let us go through the example, step by step. The first
statement, lOis a READ statement. It must be accompanied by one or more
DATA statements. When the computer encounters a READ statement while
executing your program, it will cause the variables listed after the READ to
be given values according to the next available numbers in the DATA
statements. In the example, we read A in statement 10 and assign the value 1
to it from statement 70 and, similarly with Band 2, and with D and 4. At
this point, we have exhausted the available data in statement 70, but there is
more in statement 80, and we pick up from it the number 2 to be assigned to
E.

We next go to statement 15, which is a LET statement, and first
encounter a formula to be evaluated. (The asterisk "*,, is used to denote
multiplication.) In this statement we direct the computer to compute the
value of AE-BD, and to call the result G. In general, a LET statement directs
the computer to set a variable equal to the formula on the right side of the
equals sign. We know that if G is equal to zero, the system has no unique
solution. Therefore, we next ask, in line 20, if G is equal to zero. If the
computer discovers a yes answer to the question, it is directed to go to line
65, where it prints "NO UNIQUE SOLUTION". From this point, it would
go to the next statement. But lines 70, 80, and 85 give it no instructions,
since DATA statements are not executed, and it then goes to line 90 which
tells it to "END" the program.

If the answer to the question "Is G equal to zero?" is "no", as it is in
this example, the computer goes on to the next statement, in this case 30.
(Thus, an IF-THEN tells the computer where to go if the "IF" condition is
met, but to go on to the next statement if it is not met.) The computer is

2-2

AN EXAMPLE
(Cont'd)

A BASIC Primer

now directed to read the next two entries from the DATA statements, -7 and
5, (both are in statement 80) and to assign them to C and F respectively. The
compu ter is now ready to solve the system

x + 2y = -7 4x + 2y = 5

In statements 37 and 42, we direct the computer to compute the value
of X and Y according to the formulas provided. Note that we must use
parentheses to indicate that CE - BF is divided by G; without parentheses,
only BF would be divided by G and the computer would let

X = CE _ BF
G

The computer is told to print the two values computed, that of X and
that of Y, in line 55. Having done this, it moves on to line 60 where it is
directed back to line 30. If there are additional numbers in the DATA
statements, as there are here in 85, the computer is told in line 30 to take
the next one and assign it to C, and the one after that to F. Thus, the
computer is now ready to solve the system

x + 2y = I
4x + 2y = 3.

As before, it finds the solution in 37 and 42 and prints them out in 55,
and then is directed in 60 to go back to 30.

In line 30 the computer reads two more values, 4 and -7, which it finds
in line 85. It then proceeds to solve the system

x + 2y = 4
4x + 2y = -7.

and to print out the solutions. It is directed back again to 30, but there are
no more pairs of numbers available for C and F in the DATA statements ..
The computer then informs you that it is out of data, printing on the paper
in your teletypewriter "OUT OF DATA" and stops.

For a moment, let us look at the importance of the various statements.
For example, what would have happened if we had omitted line number 55?
The answer is simple: the computer would have solved the three systems and
then told us when it was out of data. However, since it was not asked to tell
us (PRINT) it answers, it would not do it, and the solutions would be the
computer's secret. What would have happened if we had left out line 20? In
this problem just solved, nothing would have happened. But, if G were equal
to zero, we would have set the computer the impossible task of dividing by
zero in 37 and 42, and it would tell us so emphatically, printing "DIVISION
BY ZERO." Had we left out statement 60, the computer would have solved
the first system, printed out the values of X and Y, and then gone on to line
65 where it would be directed to print "NO UNIQUE SOLUTION". It
would do this and then stop.

2-3

AN EXAMPLE
(Cont'd)

A BASIC Primer

One very natural question arises from the seemingly arbitrary
numbering of the statements: why this selection of line numbers? The
answer is that the particular choice of line numbers is arbitrary, as long as
the statements are numbered in the order which we want the machine to
follow in executing the program. We could have numbered the statements 1,
2, 3, ... , 13, although we do not recommend this numbering. We might
number the statements 10, 20,30, ... , 130. We normally put the numbers
such a distance apart so that we can later insert additional statements if we
find that we have forgotten them in writing the program originally. Thus, if
we find that we have left out two statements between those numbered 40
and 50, we can give them any two numbers between 40 and 50 - say 44 and
46; and in the editing and sorting process, the computer will put them in
their proper place.

Another question arises from the seemingly arbitrary placing of the
elements of data in the DATA statements: why place them as they have been
in the sample program? Here again, the choice is arbitrary and we need only
put the numbers in the order that we want them read (the first for A, the
second for B, the third for D, the fourth for E, the fifth for C, the sixth for
F, the seventh for the next C, etc.). In place of the three statements
numbered 70, 80, and 85, we could have put

75 DATA 1, 2, 4, 2, -7, 5, 1, 3, 4, -7
or we could have written, perhaps more naturally,

70 DATA 1, 2, 4, 2
75 DATA -7, 5
80 DATA 1, 3
85 DATA 4, -7

to indicate that the coefficients appear in the first data statement and the
various pairs of righthand constants appear in the subsequent statements.

The program and the resulting run is shown below exactly as it appears
on the teletypewriter:

*10 READ A, B, D, E
*15 LET G = A * E - B * D
"*20 IF G = 0 THEN 65
*30 READ C, F
*37 LET X = (C * E - B * F) I G
*42 LET Y = (A * F - C * D) I G
*55 PRINT X, Y
*60 GO TO 30
*65 PRINT tI NO UNIQUE SOLUTION"
*10 DATA 1, 2, 4
*Be DATA 2, -7, 5
*85 DATA 1, 3, 4, -7
'*90 END
*RUN

4 -5.5
.666667 .166667

-3.66667 3.83333
30 READ A,B,D,E
> OUT OF DATA

2-4

AN EXAMPLE
(Cont'd)

FORMULAS

A BASIC Primer

After typing the program, we type RUN followed by depressing ETX.
Up to this point the computer checks the program but does not execute it. It
is this command which directs the computer to execute your program.

• The computer can perform a great many operations - it can add,
subtract, multiply, divide, extract square roots, raise a number to a power,
and find the sine of a number (on an angle measured in radians), etc. - and
we shall now learn how to tell the computer to perform these various
operations and to perform them in the order that we want them done.

The computer performs its primary function (that of computation) by
evaluating formulas which are supplied in a program. These formulas are very
similar to those used in standard mathematical calculation, with the
exception that all BASIC formulas must be written on a single line. Five
arithmetic operations can be used to write a formula. These are:

Symbol Example Meaning

+ A+B Addition (add B to A).

- A-B Subtraction (subtract B from A).
* A*B Multiplication (multiply B by A).

I AlB Division (divide A by B).

t Xt2 Raise to the power (find X2).

1\ XI\2 Alternative exponentiation.
** X**2 Alternative exponentiation.

We must be careful with parentheses to make sure that we group
together those things which we want together. We must also understand the
order in which the computer does its work. For example, if we type A + B *
C t D, the computer will first raise C to the power D, multiply this result by
B, and then add A to the resulting product. This is the same convention as is
usual for A + B*CD. If this is not the order intended, then we must use
parentheses to indicate a different order. For example, if it is the product of
Band C that we want raised to the power D, we must write A + (B * C) t D;
or, if we want to multiply A + B by C to the power D, we write (A + B) *
C t D. We could even add A to B, multiply their sum by C, and raise the
product to the power D by writing «A+B) *C) t D. The order of priorities is
summarized in the following rules:

1. The formula inside parentheses is computed before the paren
thesized quantity is used in further computations.

2. In the absence of parentheses in a formula involving addition,
multiplication, and the raising of a number to a power, the com
puter first raises the number to the power, then performs the
multiplication, and the addition comes last. Division has the same
priority as multiplication, and subtraction the same as addition.

3. In the absence of parentheses in a formula involving only multipli
cation and division, the operations are performed from left to
right, even as they are read. So also does the computer perform
addition and subtraction from left to right.

2-5

FORMULAS
(Cont'd)

Numbers

A BASIC Primer

These rules are illustrated in the previous example. The rules also tell us
that the computer, faced with A - B - C, will (as usual) subtract B from A
and then C from their difference; faced with AlBIC, it will divide A by Band
that quotient by C. Given At B tc, the computer will raise the number A to
the power B and take the resulting number and raise it to the power C. If
there is any question in your mind about the priority, put in more
parentheses to eliminate possible ambiguities.

In addition to these five arithmetic operations, the computer can
evaluate several mathematical functions. These functions are given special
3-letter English names, as follows:

Functions Interpretation

SIN (X) Find the sine of X

COS (X) Find the cosine of X X interpreted as a number,

TAN (X) Find the tangent of X
or as an angle measured in
radians

ATN (X) Find the arctangent of X

EXP(X) Find eX

LOG (X) Find the natural logarithm of X (In X)

ABS(X) Find the absolute value of X (I X I)
SQR (X) Find the square root of X (yX)

Two other mathematical functions are also available in BASIC: INT and
RND; these are explained in Section 3. In place of X, we may substitute any
formula or any number in parentheses following any of these formulas. For
example, we may ask the computer to find y4 + X3 by writing SQR (4
+Xt3), or the arctangent of 3X - 2ex +8 by writing ATN (3*X-2*EXP
(X)+8).

Since we have mentioned numbers and variables, we should be sure that
we understand how to write numbers for the computer and what variables
are allowed.

• A number may be positive or negative and it may contain up to six
digits, but it must be expressed in decimal form. For example, all of the
following are numbers in BASIC: 2, -3.675, 123456, - .654321, and
83.4156. The following are not numbers in BASIC: 14/3, y7, and
.00123456789. The first two are formulas, but not numbers, and the last
one has more than six digits. We may ask the computer to find the decimal
expansion of 14/3 ory7, and to do something with the resulting number,
but we may not include either in a list of DATA. We gain further flexibility
by use of the letter E, whieh stands for times ten to the power. Thus, we may
write .00123456 in a form acceptable to the computer in any of several
forms: .123456E-2 or 123456E-ll or 1234.56E-6. We may write ten million
as lE7 and 1965 as 1.965E3. We do not write E-7 as a number, but must
write 1 E7 to indicate that it is 1 that is multiplied by 107 •

Actually, numbers up to 15 digits long are acceptable to BASIC; the
number 12.3456789 is acceptable, but is effectively rounded to 12.34568.

2-6

Variables

LOOPS

A BASIC Primer

• A variable in BASIC is denoted by any letter, or by any letter followed
by a single digit. Thus, the computer will interpret E7 as a variable, along
with A, X, N5, 10, and 01. A variable in BASIC stands for a number, usually
one that is not known to the programmer at the time the program was
written. Variables "are given or assigned values by LET, READ, or INPUT
statements. The value so assigned will not change until the next time a LET,
READ, or INPUT statement is encountered with a value for that variable.

Although the computer does little in the way of correcting, during com
putation, it will sometimes help you when you forget to indicate absolute
value. For example, if you ask for the square root of -7 or the logarithm of -5,
the computer will give you the square root of 7 with the error message that
you have asked for the square root of a negative number, or the logarithm of
5 with the error message that you have asked for the logarithm of a negative
number. Any run-time error, however, results in program termination.

Six other mathematical symbols are provided for in BASIC, symbols of
relation, and these are used in IF-THEN statements where it is necessary to
compare values. An example of the use of these relation symbols was given
in the sample program in Section I. Any of the following six standard
relations may be used:

Symbol Example Meaning

= A=B Is equal to (A is equal to B)

< A < B Is less than (A is less than B)

<= A <= B Is less than or equal to
(A is less than or equal to B)

> A>B Is greater than (A is greater than B)

>= A >= B Is greater than or equal to
(A is greater than or equal to B)

<>- A ~> B Is not equal to (A is not equal to B)

• We are frequently interested in writing a program in which one or more
portions are performed not just once but a number of times, perhaps with
slight changes each time. In order to write the simplest program, the one in
which this portion to be repeated is written just once, we use the
programming device known as a loop.

The programs which use loops can, perhaps, be best illustrated and
explained by two programs for the simple task of printing out a table of the
first 100 positive integers together with the square root of each. Without a
loop, our program would be 101 lines long and read:

10 PRINT 1, SQ,R (1)
20 PRINT 2, SQR (2)
30 PRINT 3, SQR (3)

.
99 PRINT 99, SQ,R (99)
100 PRINT 100, SQ,R (100)
101 END

2-7

LOOPS
(Cont'd)

A BASIC Primer

With the following program, using one type of loop, we can obtain the
same table with far fewer lines of instruction, 5 instead of 101:

10 rET X = 1
20 PRINT X, SQR (X)
30 lET X = X + 1
40 IF X < = 100 THEN 20
50 END

Statement 10 gives the value of 1 to X and initializes the loop. In the
line 20 is printed both 1 and its square root. Then, in line 30, X is increased
by 1, to 2. Line 40 asks whether X is less than or equal to 100; an
affirmative answer directs the computer back to line 20. Here it prints 2 and
y2, and goes to 30. Again X is increased by 1, this time to 3, and at 40 it
goes back to 20. This process is repeated - line 20 (print 3 and y3), line 30
(X = 4), line 40 (since 4~ 1 00 go back to line 20), etc. - until the loop has
been traversed 100 times. Then, after it has printed 100 and its square root
has been printed, X becomes 101. The computer now receives a negative
answer to the question in line 40 (X is greater than 100, not less than or
equal to it), does not return to 20 but moves on to line 50, and ends the
program. All loops contain four characteristics: initialization (line 10), the
body (line 20), modification (line 30), and an exit test (line 40).

Because loops are so important and because loops of the type just
illustrated arise so often, BASIC provides two statements to specify a loop
even more simply. They are the FOR and NEXT statements and their use is
illustrated in the program:

10 FOR X = 1 TO 100
20 PRINT X, SQR (X)
30 NEXT X
50 END

In line 10, X is set equal to 1, and a test is set up, like that of line 40
above. Line 30 carries out two tasks: X is increased by 1, and the test is
carried out to determine whether to go back to 20 or go on. Thus lines 10
and 30 take the place of lines 10, 30, and 40 in the previous program - and
they are easier to use.

Note that the value of X is increased by 1 each time we go through the
loop. If we wanted a different increase, we could specify it by writing

10 FOR X = 1 TO 100 STEP 5

and the computer would assign 1 to X on the first time through the loop, 6
to X on the second time through, lIon the third time, and 96 on the last
time. Another step of 5 would take X beyond 100, so the program would
proceed to the end after printing 96 and its square root. The STEP may be
positive or negative, and we could have obtained the first table, printed in
reverse order, by writing line 10 as

10 FOR X = 100 TO 1 STEP -1

In the absence of a STEP instruction, a step size of + 1 is assumed.

2-8

LOOPS
(Cont'd)

A BASIC Primer

More complicated FOR statements are allowed. The initial value, the
final value, -and the step size may all be formulas of any complexity. For
example, if Nand Z have been specified earlier in the program, we could
write

FOR X = N + 7*Z TO (Z-N) /3 STEP (N-4*Z)/lO

For a positive step-size, the loop continues as long as the control
variable is less than or equal to the final value. For a negative step-size, the
loop continues as long as the control variable is greater than or equal to the
final value.

If the initial value of the step-size is greater than the final value specified
in the FOR statement, the compiler terminates the program with a diagnostic
statement. The same is true when the initial value is less than a final step-size
which is negative.

I t is often useful to have loops within loops. These are called nested
loops and can be expressed with FOR and NEXT statements. However, they
must actually be nested and must not cross, as the following examples
illustrate:

Allowed Allowed Not Allowed

~FORX
~FORX

~FORX
FOR Y -FORY FOR Y

[NEXT Y rF°RZ NEXT X

NEXT X ~EXTZ NEXTY

[FORW

NEXTW

~NEXTY

[FORZ

NEXTZ

"---NEXT X

2-9

LISTS AND
TABLES

A BASIC Primer

• In addition to the ordinary variables used by BASIC, there are variables
which can be used to designate the elements of a list or of a table. These are
used where we might ordinarily use a subscript or a double subscript, for
example the coefficients of a polynomial (ao ' a1 , a2 , ...) or the elements of
a matrix (bi'j). The variables which we use in BASIC consist of a single letter,
which we call the name of the list, followed by the subscripts in parentheses.
Thus, we might write A(O), A(1), A(2), etc. for the coefficients of the
polynomial and B(1, 1), B(1,2), etc. for the elements of the matrix.

We can enter the list A(O), A(1), ... A(1 0) into a program very simply
by the lines:

10 FOR r = 0 TO 10
20 READ A(r)
30 NEXT r
40 DATA 2, 3, -5, 7, 2.2, 4, -9, 123, 4, -4, 3

We need no special instruction to the computer if no subscript greater
than 10 occurs. However, if we want larger subscripts, we must use a
dimension (DIM) statement, to indicate to the computer that it has to save
extra space for the list or table. When in doubt, indicate a larger dimension
than you expect to use. For example, if we want a list of 15 numbers
entered, we might write:

10 DlM A(25)
20 READ N
30 FOR r = 1 TO N
40 READ A(r)
50 NEXT r
60 DATA 15
70 DATA 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47
Statements 20 and 60 could have been eliminated by writing 30 as FOR

I = 1 to 15, but the form as typed would allow for the lengthening of the list
by changing only statement 60, so long as it did not exceed 25.

We would enter a 3x5 table into a program by writing:

10 FOR r = 1 TO 3
20 FOR J = 1 TO 5
30 READ B (r,J)
40 NEXT J
50 NEXT r
60 DATA 2, 3, -5, -9, 2
70 DATA 4, -7, 3, 4, -2
80 DATA 3, -3, 5, 7, 8

Here again, we may enter a table with no dimension statement, and it
will handle all the entries from B(O,O) to B(1 0, 10). If you try to enter a
table with a subscript greater than 10, without a DIM statement, you will get
an error message telling you that you have a subscript error. This is easily
rectified by entering the line:

5 DIM B(20,30)
if, for instance, we need a 20 by 30 table.

LISTS AND
TABLES

(Cont'd)

A BASIC Primer

The single letter denoting a list or a table name may also be used to
denote a simple variable without confusion. However, the same letter may
not be used to denote both a list and a table in the same program. The form
of the subscript is quite flexible, and you might have the list item B(I+K) or
the table items B(I,K) or Q(A(3,7), B - C).

A list and run of a problem which uses both a list and a table is
provided next. The program computes the total sales of each of five sales
men, all of whom sell the same three products. The list P gives the price/item
of the three products and the table S tells how many items of each product
which each man sold. You can see from the program the product number 1
sells for $1.25 per item, number 2 for $4.30 per item, and number 3 for
$2.50 per item; and also that salesman number 1 sold 40 items of the first
product, 10 of the second, and 35 of the third, and so on. The program reads
in the price list in lines 10, 20, 30, using data in line 900, and the sales table
in lines 40-80, using data in lines 910-930. The same program could be used
again, modifying only line 900 if the prices change, and only 910-930 to
enter the sales in another month.

This sample program did not need a dimension statement, since the
computer automatically saves enough space to allow all subscripts to run
from 0 to 10. A DIM statement is normally used to save more space. But in a
long program, requiring many small tables, DIM may be used to save less
space for tables, in order to leave more for the program.

Since a DIM statement is not executed, it may be entered into the
program on any line before END; it is convenient, however, to place DIM
statements near the beginning of the program.

NEW PROGRAM WJ1E:--SAIESI
READY

*10
*20
*30
*40
*50
*60
*70
*80
*90
*100
*ll0
*120
*130
*140
*150
"*900
*910
*920
*930
*999
*RUN

FOR I = 1 'IO 3
READ P(I)

NEXT I
FOR I = 1 TO 3

FOR 3 = 1 ro 5
READ S(I,3)

NEXT 3
NEXT I
FOR 3 = 1 TO 5

rET S = °
FOR I = 1 TO 3

LET 8 = 8 + P(I) * 8(1,3)
NEXT I
PRINT "WTAL 8AIE8 FOR 8AIE8MAN

NEXT J
DATA 1.25, 4.30, 2.50
DATA 40, 20, 37, 29, 42
DA~4 10, 16, 3, 21, 8
DATA 35, 47, 29, 16, 33
END

2-11

IIoJ 1:d-" S " ~,

LISTS AND
TABLES

(Cont'd)

USE OF THE
TIME-SHARING

SYSTEM

TOTAL SAlES FOR SATESMAN l
TOTAL SATES FOR SAIESMAN 2
TOTAL SATES FOR SAIESMAN 3
TOTAL SAIES FOR SATESMAN 4
TOTAL SATES FOR SATESJ.1AN 5

A BASIC Primer

$ l80.5
$ 211.3
$ l3l.65
$ l66.55
$ l69.4

• Now that we know something about writing a program in BASIC, how
do we set about using a teletypewriter to type in our program and then to
have the computer solve our problem?

Sitting down at the teletypewriter, you first push the button labeled
ORIG. This turns on the teletypewriter. You wait for the dial tone and then
dial the computer number. The computer answers with a "BEEP" tone. The
computer will then type %PLEASE LOGON and a / on the next two lines.
You are to type in LOGON and your IDENTIFICATION. Press the ETX
(Control C) key. (You must push the ETX (Control C) key after typing
any line - only then does your line enter the computer.)

The computer will type a slash (/) - and you should type EXECUTE
BASIC before hitting the ETX (Control C) key next.

The computer then types NEW OR OLD and an asterisk, and in
response you type the appropriate adjective: NEW if you are about to type a
new problem and OLD if you want to recover a problem on which you have
been working earlier and have stored in the computer's memory.

The computer then asks NEW PROGRAM NAME - (or OLD
PROGRAM NAME, as the case may be) and you type any combination of
letters and digits you like that start with a letter, but no more than eight. In
the sample problem preceding you will remember that we named it SALES 1.
If you are recalling an old problem from the computer's memory, you must
use exactly the same name as that which you gave the problem before you
asked the computer to save it.

The computer then types READY and an *, then you should begin to
type your program. Make sure that each line begins with a line number
which contains no more than five digits and contains no non-digit characters.
Also be sure to number each line and to press the ETX key at the comple
tion of each line.

If, in the process of typing a statement, you make a typing error and
notice it immediately, you can correct it by pressing the backward arrow
(shift key above the letter 0). This will delete that which is in the preceding
space, and you can then type in the correct character. Pressing this key a
number of times will erase from this line the characters in that number of
preceding spaces. The carriage return, RETURN key will delete the entire
line being typed.

2-12

USE OF THE
TI M E-SHAR' NG

SYSTEM
(Cont'd)

A BASIC Primer

After typing your complete program, you type RUN and press the ETX
key. The computer will then analyze your program. If the program is one
which the computer can run, it will then run it and type out any results for
which you have asked in your PRINT statements. This does not mean that
your program is correct, but that it has no errors of the type known as
execution or run-time errors as opposed to grammatical errors. If it has
errors of this type, the computer will type an error message (or several error
messages).

If you are given an error message, informing you of an error in line 60,
for example, you can correct this by typing a new line 60 with the correct
statement. If you want to eliminate the statement on line 110 from your
program, you can do this by typing 110 and then the ETX key. If you want
to insert a statement between those on lines 60 and 70, you can do this by
giving it a line number between 60 and 70.

After you have all of the information you want, and are ready to leave
the teletypewriter, you should type BYE. The computer then returns control
to the TSOS Executive and responds with a slash. You may then LOGOFF
to receive the amount of time you used and free the terminal for use by
others.

A sample use of the time-sharing system is shown below.

'108001 PLEASE lOGON.
/WGON FCZ
0/08002 WGON ACCEPIED AT 1046 ON 11/19/68, TSN 0093
ASSIGNED.
/EXEC BASIC
%1001 PROGRAM WADING

NEvI OR OLD
*NEW
NEW PROGRAM NAME--CTEST
READY
*10 FOR N=1,7
?10 FOR N=lTO 7
'*20 PRINT N,SQR(N)
*30 NEXT N
*40 PRINT "DONE"
*50 END
*RUN
1
2
3
4
5
6
7

DONE

1
1.41421
1.73205
2
2.23607
2.44949
2.64575

2-13

ERRORS AND
DEBUGGING

A BASIC Primer

• I t may occasionally happen that the first run of a new problem will be
free of errors and give the correct answers. But it is much more common that
errors will be present and will have to be corrected. Errors are of three types:
errors of form (or grammatical errors) and run-time errors, both of which
prevent the running of the program, and logical errors in the program, which
cause the computer to produce wrong answers or no answers at all.

Grammatical errors cause the system to respond with a question mark
(?) followed by a copy of the incorrect statement up to, but not including,
the first character in error. In the previous example, line 10 was typed as:

*10 :BIOR N=l, 7

Because the comma is not permitted in a FOR statement, the system
responded:

?10 FOR N=l

The error must be corrected. In this case the remainder of the correct
source statement is typed and the line

?10 FOR N=l TO 7

is successfully processed by BASIC.

Logical errors are often harder to uncover, particularly when the
program gives answers which seem to be nearly correct. In either case, after
the errors are discovered, they can be corrected by changing lines, by insert
ing new lines, or by deleting lines from the program. As indicated in the last
section, a line is changed by typing it correctly with the same line number; a
line is inserted by typing it with a line number between those of two existing
lines; and a line is deleted by typing its line number and pressing the ETX
key. Notice that you can insert a line only if the original line numbers are
not consecutive integers. For this reason, most programmers will start out
using line numbers that are multiples of five or ten, but that is a matter of
choice.

These corrections can be made at any time - whenever you notice
them - either before or after a run. Since the computer sorts lines out and
arranges them in order, a line may be retyped out of sequence. Simply
retype the offending line with its original line number.

As with most problems in computing, we can best illustrate the process
of finding the errors (or bugs) in a program, and correcting (or debugging) it,
by an example. Let us consider the problem of finding that value of X
between 0 and 3 for which the sine of X is a maximum, and ask the machine
to print out this value of X and the value of its sine. If you have studied
trigonometry, you know that rr/2 is the correct value; but we shall use the
computer to test successive values of X from 0 to 3, first using intervals of
.1, then of .01, and finally of .001. Thus, we shall ask the computer to find
the sine of 0, of .1, of .2, of .3 , of 2.8, of 2.9, and of 3, and to
determine which of these 31 values is the largest. It will do it by testing SIN
(0) and SIN (.1) to see which is larger, and calling the larger of these two

2-14

ERRORS AND
DEBUGGING

(Cont'd)

A BASIC Primer

numbers M. Then it will pick the larger of M and SIN (.2) and call it M. This
number will be checked against SIN (.3), and so on down the line. Each time
a larger value of M is found, the value of X is remembered in XO. When it
finishes, M will have been assigned to the largest of the 31 sines, and XO will
be the argument that produced that largest value. It will then repeat the
search, this time checking the 301 numbers 0, .01, .02, .03, ... , 2.98, 2.99,
and 3, finding the sine of each and checking to see which sine is the largest.
Lastly, it will check the 3001 numbers 0, .001, .002, .003, , 2.998,
2.999, and 3, to find which has the largest sine. At the end of each of these
three searches, we want the computer to print three numbers: the value XO
which has the largest sine, the sine of that number, and the interval of
search.

Before going to the teletypewriter, we write a program and let us
assume that it is the following:

10 READ D
20 lET XO = 0
30 FOR X = 0 TO 3 STEP D
40 IF SIN (X) <= M THEN 100
50 lET XO = X
60 LET M = SIN (Xo)
70 PRINT XO, X, D
80 NEXT XO
90 GO TO 20
100 DATA .1, .01, .001
110 END

We shall list the entire sequence on the teletypewriter and make
explanatory comments on the right side.

NEW OR OLD
*NEW
NEW PROGRAM NAME--MAXSIN
READY
*10 READ D
'*20 LWR Xo=o
?20 L

ET XO=O

2-15

After typing line 20, BASIC
notices that LET was mistyped
in line 20; so we retype it, this
time correctly, retyping only the
incorrect characters.

ERRORS AND
DEBUGGING

(Cont'd)

*FOR x=o TO 3 STEP D
130 FOR X=O TO 3 STEP D
*40 IF SIN(X)<=M THEN 100
*50 lET XO=X
*60 lET M=SIN(X)
*70 PRINT XO,X,D
*Bo NEXT XO
*90 GO TO 20
*100 DATA .1, .01,.001
*110 W_END
*RUN

80 NEXT XO
>ILlEGAL FOR-NEXT NESTING

>FOR BUT NO NEXT, LINES 30
*40 IF SIN(X) < = M THEN 80
*Bo NEXT X

*RUN
.1
.2
.3
.4
.5
.6
.7
.8
.9
1
1.1

.1

.2

.3

.4

.5

.6

.7

.8

.9
1
1.1

2-16

A BASIC Primer

Notice the use of the underline
to erase a character in line 110,
which should have started with
E.

The next 3 error messages relate
to lines 30 and 80, where we see
that we mixed variables. This is
corrected by changing line 80.

We make this change by retyping
line 80. In looking over the pro
gram, we also notice that the
IF-THEN statement in 40
directed the computer to a
DATA statement and not to line
80 where it shou Id go.

We try to RUN again.

.1 This is obviously incorrect. Be

.1

.1

.1

.1

cause we are having every value
of X printed, we direct the
machine to stop printing by
hitting the BREAK key while it

.1 is running. We ponder the pro-

.1 gram for a while, trying to figure

.1 out what is wrong with it. We

.1 notice that SIN (0) is compared

.1 with M on the first time through

.1 the loop, but we had assigned no
value to M. So we wonder if
giving a value less than the max
imum value of the sine will do it,
say -1

Because we hit the BREAK to
stop the PRINT loop, control
was returned to the TSOS
Executive which responded with
a slash. If we had not been in a
PRINT loop, the ESCAPE key
would also have returned control
to the Executive.

ERRORS AND
DEBUGGING

(Cont'd)

/INTR
MAXSIN •••
STOP AT 00040,
END OR CONTlNUE--END
~O LET M:-1
*RUN
0 0
.1 • 1
.2 .2
.3 .3
.4 .4
.5 .5
. 6 .6
.7 .7
.8 .8
.9 .9

BREAK (hit BREAK key)
/R

*70
*85 PRINT XO, M, D
*RUN

1.6
1.6
1.6
1.6

.999574

.9995711-

• 999574

BREAK (hit BBEAK key)
/R

*90 GO TO 10
*5 PRINT "X VALUE", "SIN",

"RESOLUTIONII

*RUN

2-17

.1

.1

.1

.1

.1

.1

.1

.1

.1

.1

A BASIC Primer

The Executive Command INTR
will return control to BASIC, re
porting the status of our pro
gram before behaving like the
R ESU ME command, whereas
the Executive command
RESUME will return control to
BASIC and respond only with an
asterisk, permitting modifica
tions to our program.

We first return control to BASIC
using the I NT R command,
which reports the status of our
program, and in turn, offers us
the choice of continu ing or end
ing the execution of MAXSIN.
We respond END and BASIC
responds with an *.

Had we responded CONT,
BASIC would have continued
printing our results .

We see that we initialized XO in
stead of M in line 20, so we
change line 20 to give an initial
value to M .

We are about to print out almost
the same table as before. It is
printing out XO, the current
value of X, and the interval size
each time that it goes through
the loop.

We fix this by moving the
PR I NT statement outside the
loop. Typing 70 ETX deletes
that line, and line 85 is outside
of loop. We also realize that we
want M printed and not X.

We see that we are performing .1
the same operation (the case for .1
D=.l) over and over again . .1
So we stop it and inspect the
program again. Of course, line
90 sent us back to line 20 to
repeat the operation and not
back to line 10 to pick up a new
value for D. We also decide to
put in headings for our columns
by aPR I NT statement.

ERRORS AND
DEBUGGING

(Cont'd)

SUMMARY OF
ELEMENTARY

BASIC
STATEMENTS

LET

X VALUE
1.6
1.57
1.571
10 READ D

>OUT OF DATA

*LIST

SINE
.99957l~

1
1.

A BASIC Primer

RESOLUTION Exactly the desired results. Of
.1 the 31 numbers (0, .1, .2, .3,
.01 ... , 2.8, 2.9, 3), it is 1.6 which
.001 has the largest sine, namely

.999574. Similarly for the finer
su bdivisions.

5 .PRINT "x VALUE", IISINE II
,

Having changed so many parts of
the program, we ask for a list of
the corrected program.

II RE SOL1YI1 ION"
10 READ D
20 lET M= -1
30 FOR X :::: 0 TO 3 STEP D
40 IF SIN(X) <:::: M THEN 80
50 lET XO::::X
60 lET M = SIN(X)
80 NEXT X
85 PRINT XO, M, D
90 GO TO 10

100 DATA .1, .01, .001
110 END

"*SAVE
READY

The program is saved for later
use. This should not be done un
less future use is necessary.

In solving this problem, there are two common devices which we did
not use. One is the insertion of a PRINT statement when we wonder if the
machine is computing what we think we asked it to compute. For example,
if we wondered about M, we could have inserted 65 PRINT M, and we would
have seen the values. The other device is used after several corrections have
been made and you are not sure just what the program looks like at this
stage - in this case type LIST, and the computer will type out the program
in its current form for you to inspect.

• In this section we shall give a short and concise description of each of
the types of BASIC statements discussed earlier. In each form, we shall
assume a line number, and shall use brackets to denote a general type. Thus,
[variable] refers to a variable, which is a single letter, possibly followed by a
single digit, or a $ sign.

• This statement is not a statement of algebraic equality, but is rather a
command to the computer to perform certain computations and to assign
the answer to a certain variable. Each LET statement is of the form:
LET[variable] = [formula] . LET is optional.

Examples:

100 lET X = X + 1
259 lET W7 = (H-x4t3)*(Z - A/(A - B)) - 17

2-18

READ and DATA

PRINT

A BASIC Primer

• We use a READ statement to assign to the listed variables values
obtained from a DATA statement. Neither statement is used without one of
the other type. A READ statement causes the variables listed in it to be
given, in order, the next available numbers in the collection of DATA
statements. Before the program is run, the computer takes all of the DATA
statements in the order in which they appear and creates a large data block.
Each time a READ statement is encountered anywhere in the program, the
data block supplies the next available number or numbers. If the data block
runs out of data, with a READ statement still asking for more, the program
is assumed to be done.

Since we have to read in data before we can work with it, READ
statements normally occur near the beginning of a program. The location of
DATA statements is arbitrary, as long as they occur in the correct order. A
,common practice is to collect all DATA statements and place them just
before the END statement.

Each READ statement is of the form: READ [sequence of variables]
and each DATA statement of the form: DATA [sequence of numbers].

Examples:

150 READ X, Y, Z, Xl, Y2, Q9
330 DATA 4, 2, 1.7
340 DATA 6.734E-3, -174.321, 3.14159265

234 READ B (K)
263 DATA 2, 3, 5, 7, 9, 11, 10, 8, 6, 4

10 READ R (r,J)
4·40 DATA -3, 5, -9, 2.37, 2.9876, -437.234E-5
450 DATA 2.765, 5.5576, 2.3789E2

Remember that only numbers are put in a DATA statement, and that
15/7 and vl3 are formulas, not numbers.

• The PRINT statement has a number of different uses and is discussed in
more detail in Section 3. The common uses are:

a. To print out the result of some computations

b. To print out verbatim a message included in the program

c. To perform a combination of a and b

d. To skip a line

We have seen examples of only the first two in our sample programs.
Each type is slightly different in form, but all start with PRINT after the line
number.

Examples of type A:

100 PRIN'I' X, SQR eX)
135 PRINT x, Y, Z, B*B - ll-*A'*C, EXP (Pl. - B)

2-19

PRINT
(Cont'dj

GO TO

IF - THEN

A BASIC Primer

The first will print X and then, a few spaces to the right of that
number, its square root. The second will print five different numbers: X, Y,
Z, B2 -4AC, and eA - B • The computer will compute the two formulas and
print them for you, as long as you have already given values to A, B, and C.
It can print up to five numbers per line in this format.

Examples of type b:

100 PRINT IlNO UNIQUE SOLUTION"
430 PRmT "X VALUE", 11 SINE" , "RESOLUTION"

Both have been encountered in the sample programs. The first prints
that simple statement; the second prints the three labels with spaces between
them. The labels in 430 automatically line up with three numbers called for
in a PRINT statement - as seen in MAXSIN.

Examples of type c:

150 PRINT liTHE VALUE OF X IS",X
30 PRINT "THE SQUARE ROOT OF II ;X, II IS II ;SQR (X)

If the first has computed the value of X to be 3, it will print out: THE
VALUE OF X IS 3. If the second has computed the value of X to be 625, it
will print out: THE SQUARE ROOT OF 625 is 25.

Example of type d:

250 PRIl'lT

The computer will advance the paper in a teletypewriter one line when
it encounters this command. .

• There are times in a l"rogram when you do not want all commands
executed in the order that they appear in the program. An example of this
occurs in the MAXSIN problem where the computer has computed XO, M,
and D and printed them out in line 85. We did not want the program to go
on to the END statement yet, but to go through the same process for a
different value of D. So we directed the computer to go back to line 10 with
a GO TO statement. Each is of the form GO TO [line number].

Example:

150 GO TO 75

• There are times that we are interested in jumping the normal sequence
of commands, if a certain relationship holds. For this we use an IF - THEN
statement, sometimes called a conditional GO TO statement. Such a
statement occurred at line 40 of MAXSIN. Each such statement is of the
form

IF [formula] [relation] [formula] THEN [line number]

2-20

IF - THEN
(Cont'dj

FOR and NEXT

Examples:

40 IF SIN (x) < ;:: M THEN 80
20 IF G ;:: 0 THEN 65

112 IF A$="YEStI THEN 175
224 IF C$=D$ THEN 400

A BASIC Primer

The first asks if the sine of X is less than or equal to M, and directs
the computer to skip to line 80 if it is. The second asks if G is equal to 0,
and directs the computer to skip to line 65 if it is. In each case, if the answer
to the question is No, the computer will go to the next line of the program.

• We have already encountered the FOR and NEXT statements in our
loops, and have seen that they go together, one at the entrance to the loop
and one at the exit, directing the computer back to the entrance again. Every
FOR statement is of the form

FOR [variable] ;:: [formula TO formula STEP formula]

Most commonly, the expressions will be integers and the STEP omitted.
In the latter case, a step size of one is assumed. The accompanying NEXT
statement is simple in form, but the variable must be precisely the same one
as that following FOR in the FOR statement. Its form is NEXT variable.

Examples:

30 FOR X ;:: 0 TO 3 STEP D
80 NEXT X

120 FOR x4 = (17 + COS (Z»/3 TO 3*SQR (10) STEP 1/4
235 NEXT x4

240 FOR X ;:: 8 TO 3 STEP -1

456 FOR J = -3 TO 12 STEP 2

Notice that the step size may be a formula (1/4), a negative number
(-1), or a positive number (2). In the example with lines 120 and 235, the
successive values of X4 will be .25 apart, in increasing order. In the next
example, the successive values of X will be 8,7,6,5,4,3 in the last example,
on successive trips through the loop, J will take on values -3, -1, 1, 3, 5, 7, 9,
and 11.

If the initial, final, or step-size values are given as formulas, these
formulas are evaluated once and for all upon entering the FOR statement.
The control variable can be changed in the body of the loop; of course, the
exit test always uses the latest value of this variable.

If you write 50 for Z = 2 TO -2, without a negative step size, the body
of the loop will not be performed and the computer will terminate program
preparation.

DIM • Whenever we want to enter a list or a table with a subscript greater than
10, we must use a DIM statement to inform the computer to save us
sufficient room for the list or the table.

2-21

DIM
(Cont'dj

END or STOP

Examples:

20 Drn H (35)
35 DIM Q (5,25)

A BASIC Primer

The first would enable us to enter a list of 35 items (or 36 if we
use H(O)), and the latter a table 5 x 25, or by using row 0 and column 0 we
get a 6 x 26 table.

• The STOP and END statements result in termination of program
execution. A TSOS BASIC program need not include a terminal END
statement, since one will automatically be supplied by the compiler; how
ever, several END statements may be included, each of which can terminate
the program.

The STOP statement results in the following being printed to the
terminal.

STOP AT line-number, END OR CONT - -

If the user responds "END", then execution is terminated. Any other
response indicates execution is to be continued at the next sequential line
number.

Example:

/EXEC BASIC
%LOOI PROGR?\.M LOADING
NE~'; OR OLD
*NE~v
NEW PROGRAM Ni\.ME--EYU
READY
*10 PRIWf I1 THIS IS A TEST PROGRAlv11t

'*20 S'IOP
*RUN

THIS IS A TEST PROGRAM
S1UP AT 00020, END OR CONT--END

The STOP is useful where we want to RUN part of our program. STOP,
examine the results, then RUN more of the program.

Example:

*30 PRIl-l'T "THIS IS ANOTHER LINE"
*40 STOP
*RUN

. THIS IS A TEST PROGRAM
S'l'OP AT 00020, END OR CONT--CONT

THIS IS ANOTHER LINE
STOP AT 00040, END OR COWf--END

*

2-22

3. ADVANCED
BASIC

MORE ABOUT
PRINT

• The uses of the PRINT statement were described in Section 2, but we
shall give more detail here. Although the format of answers is automatically
supplied for the beginner, the PRINT statement permits a greater flexibility
for the more advanced programmer who wishes a different format for his
output.

The teletypewriter line is divided into five zones of fifteen spaces each.
Some control of the use of these comes from the use of the comma: a
comma is a signal to move to the next print zone or, if the fifth print zone
has just been filled, to move to the first print zone of the next line.

Shorter zones can be manufactured by use of the semicolon; and the
zones are four spaces long for I-digit numbers, six spaces long for 2-digit,
3-digit, and 4-digit numbers; and nine spaces long for 5-digit and 6-digit
numbers. Numbers that cannot be represented as 6 or less digits are
represented in E-notation and occupy either 11 or 12 characters; these
numbers are printed in 15 space long zones.

For example, if you were to type the program

10 FOR I = 1. TO 15
20 PRINT I
30 NEXT I
40 END

the teletypewriter would print 1 at the beginning of a line, 2 at the beginning
of the next line, and so on, finally printing 15 on the fifteenth line. But, by
changing line 20 to read

20 PRINT I,

you would have the numbers prin ted in the zones, reading

1
6

11

2
7

12

3
8

13

4
9

14

5
10
15

If you wanted the numbers printed in this fashion, but more tightly
packed, you would change line 20 to replace the comma by a semicolon:

20 PRINT I;

and the result would be printed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

You should remember that a label inside quotation marks is printed just
as it appears and also that the end of a PRINT signals a new line, unless a
comma or semicolon is the last symbol.

3-1

MORE ABOUT
PRINT
(Cont'd)

Advanced BASIC

Thus, the instruction

40 PRINT 8,T

will result in the printing of two numbers and the return to the next line,
while

40 PRINI' 8, T

will result in the printing of these two values and no return - the next
number to be printed will occur in the third zone, after the values of X and
Y in the first two.

Examples:

10 LET 8=12
20 IE~1 T=24
30 lET R=36
40 PRINT 8,T,
50 PRINT R
60 END

*RUN
12 24

*

10 LF.~' 8=12
20 LET T=21+
30 LET R=36
40 PRINT S,T
50 PRIN1J.' R
60 END

*RUN
12 24
36.

*

36

Since the end of a PRINT statement signals a new line, you will
remember that

250 PRINT

will cause the typewriter to advance the paper one line. It will put a blank
line in your program, if you want to use it for vertical spacing of your
results, or it causes the completion of partially filled line, as illustrated in the
following fragment of a program:

50 };'OR 11 == 1 TO N
110 FOR J = 0 TO M
120 PRINT B(H,J);
130 NEXT J
140 PRINf
150 NEXT M

3-2

MORE ABOUT
PRINT
(Cont'd)

Advanced BASIC

This program will print B(l,O) and next to it B(l, 1). Without line 140,
the teletypewriter would then go on printing B(2,0), B(2, 1), and B(2,2) on
the same line, and even B(3,0), B(3,1), etc., if there were room. Line 140
directs the teletypewriter, after printing the B(1,1) value corresponding to M
= 1, to start a new line and to do the same thing after printing the value of
B(2,2) c6rresponding to M = 2, etc.

The following rules for the printing of numbers will help you in inter
preting your printed results:

1. If a number is an integer, the decimal point is not printed. If the
integer contains more than six digits, the teletypewriter will give
you (a) a decimal point followed by the first digit, (b) the next
five digits, and (c) an E followed by the appropriate integer and
sign. For example, it will take 32,437,580,259 and write it as
.324376E+ 11.

2. For any decimal number, no more than six significant digits are
printed.

3. Trailing zeros after the decimal point are not printed. The
following program, in which we print out the first 45 powers of 2,
shows how numbers are pr1nted.

READY
*10 FOR I=l TO 45
*20 PRINT 2**I
*30 NEXT I
*40 END
*RUN
2
4
8
16
32
64
128
256
512
1024
2048
4096

/RESUME
'*20 PRINT 2**I;
*RUN
2 4 8 16 32 64 128 256 512
16384 32768 65536 131072 262144
.209715E+07 • 41943lE+07 • 83886IE+07
• 671089E+08 .134218E+09 • 268436E+09
• 214749E+10 • 429497E+10 • 858994E+10
• 687195E+1l • 137439E+12 • 274878E+12
.219903E+13 • 439805E+13 • 8796IE+13

3-3

1024 2048 4096 8192
524288 .104858E+07
• 167772E+08 • 335544E+08
• 536871E+09 .107374E+10
• 171799E+1l • 343598E+1l
• 549756E+12 .10995IE+13

.175922E+14 • 351844E+14

FUNCTIONS

Advanced BASIC

• There are two functions which were listed in Section 2 but not
described. These are INT and RND.

The INT function is the function which frequently appears in algebraic
computation as [x], and it gives the greatest integer not greater than x. Thus
INT(2.35)=2, INT (-2.35)=-3, and INT (12)=12.

One use of the INT function is to round numbers. We may use it to
round to the nearest integer by asking for INT (X + .5). This will round 2.9,
for example, to 3, by finding:

INT (2.9 + .5) = INT (3.4) = 3.

You should convince yourself that this will indeed do the rounding
guaranteed for it (it will round a number midway between two integers up to
the larger of the integers).

It can also be used to round to any specific number of decimal places.
For example, INT (1 O*X + .5)/1 0 will round X correct to one decimal place,
INT (100*X + .5)/100 will round X correct to two decimal places, and INT
(X* lOt D + .5)/1 0 t D round X correct to D decimal places.

The function RND produces a random number between 0 and 1. The
fonn of RND requires an argument and so we write RND(X) or RND (Z).

If we want the first twenty random numbers, we write the program
below and we get twenty six-digit decimals. This is illustrated in the
following program.

*10 FOR L :=; 1 'ro 20
"*20 PRINT RND (X) ,
*30 NEXT L
*40 END
*RUN

.188369

.375162

.556681

.. 51+3786

.869783

.1821+69

.497407

.678303

.. 858106E-01

.528736

.542784E-02
• 361059E-01

.657089

.185368

.490766

.678639

.285174

.129168

.655323E-02

.603213

On the other hand, if we want twenty random one-digit integers, we
could change line 20 to read

20 PRINT INT (1 O*RND(X))

and we would then obtain

180623151 1 540 4 0 560 6 6

*

3-4

FUNCTIONS
(Cont'd)

Advanced BASIC

We can vary the type of random numbers we want. For example, if we
want 20 random numbers ranging from I to 9 inclusive, we could change line
20 as shown

20 PRINT INT(9~-RND(X)+I);
*RUN
2816342 522 651 5 1 571 7 6
*

or we can obtain random numbers which are the integers from 5 to 24
inclusive by changing line 20 as in the following example:

'*20 PRINT INT(20*rum(X)+5);
*RUN

8 22 6 18 10 12 8 15 8 7 16 14 5 14 5 15
18 5 18 17

In general, if we want our random numbers to be chosen from the A
integers of which B is the smallest, we would call for

INT (A *RND(X) + B).

If you were to run the first program of this section again, you would
get the same twenty numbers in the same order. But we can get a different
set by "throwing away" a certain number of the random numbers. For
example, in the following program we find the first ten random numbers and
do nothing with them. We then find the next twenty and print them. You
will see, by comparing this with the first program, that the first ten of these
random numbers are the second ten of the earlier program.

*10 FOR I ;:;:: 1 'IO 10
'*20 lET Y ;:;:: RND (X)
-*30 NEXT I
*40 FOR I ;:;:: 1 1U 20
-*50 PRINT RND (X) ,
*60 NEXT I
*70 END
*RUN

.556681
• 5L~3786
.272974
.294905
*

.497407

.678303

.933245

.338766

. 542784E-02

.361059E-Ol

.91.~376L~

.313263

.l~90766

.678639

.93821

.715332E-Ol

.655323E-02

.603213

.876867
• 751L~34

In addition to the standard functions, you can define any other
function which you expect to use anum ber of times in your program by use
of a DEF statement. The name of the defined function must be three letters,
the first two of which are FN. Hence, you may define up to 26 functions,
eg., FNA, FNB, etc.

3-5

FUNCTIONS
(Cont'd)

GOSUB AND
RETURN

Advanced BASIC

The handiness of such a function can be seen in a program where you
frequently need the function e- x 2. You would introduce the function by the
line

30 DEF FNE (x) = EXP(-Xt2)

and later on call for various values of the function by FNE(.I), FNE(3.45),
FNE(A+2), etc. Such a definition can be a great time-saver when you want
values of some function for a number of different values of the variable.

The DEF statement may occur anywhere in the program, and the
expression to the right of the equal sign may be any formula which can be fit
onto one line. It may include any combination of other functions, including
ones defined by different DEF statements, and it can involve other variables
besides the one denoting the argument of the function. Thus, assuming FNR
is defined by

70 DEF FNR(X) = SQR (2 + LOG (X) - EXP (Y'*Z) * (X + SIN (2'*Z»)

if you have previously assigned values to Y and Z, you can ask for FNR
(2.175). You can give new values to Y and Z before the next use ofFNR.

The use of DEF is generally limited to those cases where the value of
the function can be computed within a single BASIC statement. Often much
more complicated functions, or even pieces of a program, must be calculated
at several different points within the program. For these functions, the
GOSUB statement may frequently be useful, and it is described next.

• When a particular part of a program is to be performed more than one
time, or possibly at several different places in the overall program, it is most
efficiently programmed as a subroutine. The subroutine is entered with a
GOSUB statement, where the number is the line number of the first
statement in the subroutine. For example,

90 GOSUB 210

directs the computer to jump to line 210, the first line of the subroutine.
The last line of the su brou tine should be a return command directing the
computer to return to the earlier part of the program. For example,

350 RETURN

will tell the computer to go back to the first line numbered greater than 90
and to continue the program there.

The following example, a program for determining the greatest common
divisor, GCD, of three integers using the Euclidean Algorithm, illustrates
the use of a subroutine. The first two numbers are selected in lines 30 and 40
and their GCD is determined in the subroutine, lines 200-310. The GCD just
found is called X in line 60, the third number is called Y in line 70, and the
subroutine is entered from line 80 to find the GCD of these two numbers.
This number is, of course, the greatest common divisor of the three given
numbers and is printed out with them in line 90.

3-6

GOSUB AND
RETURN

(Cont'd)

INPUT

Advanced BASIC

You may use a GOSUB inside a subroutine to perform yet another
subroutine. This would be called "nested GOSUBs". In any case, it is
absolutely necessary that a subroutine be left only with a RETURN
statement, using a GOTO or an IF-THEN to get out of a subroutine will not
work properly. You may have several RETURNs in the su brou tine so long as
exactly one of them will be used.

The user must be very careful not to write a program in which a
GOSUB appears inside a subroutine which refers to one of the subroutines
already entered. (Recursion to 15 levels is allowed.)

*10 PRINT" A", \ B", t1 e", t!GCD"
*20 READ A, B, C
*30 LET X = A
*40 LET Y = B
*50 GOSUB 200
*60 LET X = G
*70 LET Y = C
*80 GOSUB 200
~90 PRINT A, B, C, G
*100 GO TO 20
*110 DATA 60, 90, 120
*120 DATA 38456, 64872, 98765
*130 DATA 32, 384, 72
*200 LET Q = INT(X/Y)
*210 LET R = X - Q*Y
*220 IT R = 0 THEN 300
*230 lET X = Y
*240 LET Y = R
*250 GO TO 200
*300 lET G = Y
*310 RE'ruRN
*320 END
*RUN

A
60
38456
32

B
90
64872
384

C
120
98765
72

GCD
30
1
8

• There are times when it is desirable to have data entered during running
of a program. This is particularly true when one person writes the program
and enters it into the machine's memory, and other persons are to supply the
data. This may be done by an INPUT statement, which acts as a READ
statement but does not draw numbers from a DATA statement. If, for
example, you want the user to supply values for X and Y into a program,
you will type

40 INPUT X, Y

3-7

INPUT
(Cont'd)

SOME
MISCELLANEOUS

STATEMENTS

Advanced BASIC

before the first statement which is to use either of these numbers. When it
encounters this statement, the computer will type a question mark. The user
types two numbers, separated by a comma, presses the ETX key, and the
computer goes on with the rest of the program.

Frequently an INPUT statement is combined with a PRINT statement
to make sure that the user knows what the question mark is asking for. You
might type

20 PRINT "YOUR VALUES OF X, Y, AND Z ARE";
30 INPUT X, Y, Z

and the machine will type out

YOUR VATJUES OF X, Y, AND Z ARE?

Without the semicolon at the end of the line 20, the question mark would
have been printed on the next line.

Data entered via an INPUT statement is not saved with the program.
Furthermore, it may take a long time to enter a large amount of data using
INPUT. Therefore, INPUT should be used only when small amounts of data
are to be entered, or when it is necessary to enter data during the running of
the program such as with game-playing programs.

If excessive data is entered, it is ignored; however, data must be entered
according to the type of variable in the INPUT statement. When the data
required is numeric, for example, then the submission of alphabetic or
special characters causes a run-time error. There is one exception to this; if
the first four characters of input are STOP, then program execution is
termina ted.

• Two other BASIC statements that may be useful from time to time are
REM and RESTORE.

REM provides a means for inserting explanatory remarks in a program.
The computer completely ignores the remainder of that line, allowing the
programmer to follow the REM with directions for using the program, with
identifications of the parts of a long program, or with anything else that he
wants. Although what follows REM is ignored, its line number may be used
in a GOSUB or IF-THEN statement.

100 REM n~SERT DATA IN LINES 900-99E3.. THE FIRST
110 REM NUMBER IS N, THE NUMBER OF POINTS.. THEN
120 REI-1 THE DATA POINTS THEMSELVES ARE ENTERED, BY

200 REM THIS IS A SUBROUTmE FOR SOINING EQUATIONS

300 RETURN
520 GOSUB 200

3-8

SOME
MISCELLANEOUS

STATEMENTS
(Cont'd)

Advanced BASIC

Sometimes it is necessary to use the data in a program more than once.
The RESTORE statement permits reading the data as many additional times
as it is used. Whenever RESTORE is encountered in a program, the computer
restores the data block pointer to the first number. A subsequent READ
statement will then start reading the data all over again. A word of warning
- if the desired data are preceded by code numbers or parameters,
superfluous READ statements should be used to pass over these numbers. As
an example, the following program portion reads the data, restores the data
block to its original state, and reads the data again. Note the use of line 57(
to "pass over" the value of N, which is already known.

100 READ N
110 FOR I = 1 TO N
120 READ X

200 NEXT I
560 RESTORE
570 READ X
580 FOR I = 1 TO N
590 READ X

3-9

4. EXTENSIONS
TO BASIC

MATRIX
OPERATIONS

• Although you can work out for yourself programs which involve matrix
computations, there is a special set of eleven instructions for such com
putations. They are identified by the fact that each instruction must start
with the word 'MAT'.

The matrix operation statements available in BASIC and the extensions
to BASIC are among the most powerful and useful in the entire language.

The following is a list of available matrix commands. Use of each of the
commands is described in detail in Section 2.

MAT READ A,B,C,

MAT PRINT A,B;C,

MATC=A+B

MAT C= A- B

MATC=A*B

MAT C = INV(A)

MAT C = TRN(A)

MAT C = (K) * A

MATC=CON

MAT C= ZER

MATC= IDN

MAT A=B

4-1

Read the matrices, A,B,C, their dimensions
having been previously specified. Data is read
in row-wise sequence.

Print the matrices A,B,C, with A and C in the
regular format, but B closely packed.

Add the two matrices A and B and store the
result in matrix C.

Subtract the matrix B from the matrix A and
store the result in matrix C.

Multiply the matrix A by the matrix Band
store the result in matrix C.

Invert the matrix A and store resulting matrix
in C.

Transpose the matrix A and store the
resulting matrix in C.

Multiply the matrix A by the value
represented by K. K may be either anum ber
or an expression, but in either case it must be
enclosed in parentheses.

Set each element of matrix C to one.
(CON=constant.)

Set each element of matrix C to zero.

Set the diagonal elements of matrix C to
one's, yielding an identity matrix.

Equivalent to MAT A = 1 *B.

MAT READ and
MAT PRINT

Matrix Addition,
Subtraction, and

Multiplication

Ex tensions to BASIC

• Data may be read into or printed from a matrix without having to
reference each element of the matrix individually by using the MAT READ
and MAT PRINT commands.

Examples:

100 MAT READ A,F,H,G

150 NAT PRINT C

17 5 10J~ T REfill Z

190 VU\T PRINT A, L

Information is read into a matrix using the DATA statement. The
elements in the DATA statement are taken in row order (i.e.,
At,t ,At ,2, ... , At 'm , A2 ,t , A2 '2' ... ,A2 , , ... , A ,).

m n m

Information is read from DATA statements until the matrix array is
completely filled. Partial matrices may not be read or printed.

Example:

110 DIM 1(2,3), M(2,2)

150 VlAT READ L,M

160 IE~l L(2,2) = -2*L(2,2)

200 1V1AT PRINT L,M

500 DATi\. 1,2,3,1+,5,6,3,-12,0,7

L is defined as a 2 by 3 matrix and M as a 2 by 2 matrix (line number
110). The MAT READ statement reads from the DATA statement located at
line number 500 in row order. The matrix element, L2 '2 is recomputed at
line number 160. The two matrices are then printed to yield:

-\ ~] 2
and

-10

• Matrices can be added, subtracted and multiplied using the matrix
arithmetic commands. The matrix dimensions must be conformable for each
operation. If dimensions are not conformable, execution is terminated and
you receive a dimension error message.

The matrix arithmetic statements may take three forms. They are:

MATC=A+B

MAT J = G-P
or

4-2

MATP=Q*R

MAT A=B

Matrix Addition,
Subtraction, and

Multiplication
(Cont'dj

Scalar Multiplication

Identity Matrix

Assignment

Ex tensions to BASIC

Only one operation may be performed per statement.

Example:

612 MAT H=A*B

615 r.W.T H=H+E

618 M!\.T H=H- Ie

• A matrix can be multiplied by a scalar expression using the command:

MAT X = (expression) *D

where X and D are matrices and the expression in parentheses is a scalar
quantity. The parentheses are required to indicate scalar multiplication
rather than matrix multiplication. Only one operation may be performed per
statement.

Examples:

10 MlI.T F=(2)"*G

50 MA.'.C Q=(2.33+M)"*Q

75 M!\T B~(N)~A

• An identity matrix is defined by the statement:

MATB=IDN

or MAT R = IDN (expression, expression)

In the first statement, the matrix variable B is set up as an identity
matrix. If B is not defined to be square, you will receive a dimension error
message. In the second statement, the size of the identity matrix R is deter
mined at execution time by the value of the expression enclosed in paren
theses.

Examples:

90 MAT A=LT)N

100 MAT V=IDN(2*N+1,2*N+l)

120 If.Ll\T B=mN(Q,Q)

130 Ml\ T \'7= IDN

140 MI\'T C=TIJN(l,l)

• Matrix assignment is accomplished by:

255 MAT A = B

4-3

Matrix Transposition

Matrix Inversion

Matrix Zer and Con
Functions

Dimensioning

Extensions to BASIC

• Matrices are transposed using the form:

MAY Y = TRN(Z)

where Y and Z are both matrices. The matrix Z transpose will replace matrix
Y. Y and Z must conform for transposition.

•

Examples:

300 Ml\'T G=TRN(H)

4·00 MAT U=TRN(V)

Matrix transposition in place (MAT A = TRN(A)) is not allowed.

Matrices are inverted using the form:

MAT I = INV(J)

where I and J are both matrices. I will contain the matrix J inverse. I and J
must conform for inversion.

Examples:

550 I'/Jl\T K=INV(Il)

560 Ml\T A=INV(B)

Matrix inversion in place (MAT A=INV(A)) is not allowed. If a matrix
is singular, you will receive the message ALMOST SINGULAR MATRIX.

• The ZER function is used to zero out all elements of a matrix. It may
also be used to redefine the dimensions of a matrix during execution as
described in Dimensioning. As an example

MATC=ZER

will zero out the elements of matrix C.

The CONstant function is used to set all elements of a matrix to one.
As an example

MATC=CON

will set all elements of matrix C to one.

• Every matrix variable used in a program must be given a single-letter
name.

A matrix variable must be defined in a DIM statement. This sets aside
the amount of storage required by the matrix variable during execution of
the program. For example:

DIM P(3,4),Q(5,5)

4-4

Dimensioning
(Cont'dj

Extensions to BASIC

The DIM statement defines both a P and Q matrix. P is defined as a 12
element matrix, and Q is defined as a 25 element matrix. Note that the first
element of P is P(l, 1) and the last element P(3,4). The elements of Q run
from Q(I, I) through ,Q(5,5).

Prior to any computation using the MAT statements, you must declare
the precise dimensions of all matrices to be used in the computation. Four of
the MAT statements themselves are used to accomplish this dimensioning.
They are:

MAT READ C(M,N)

MAT C = ZER(M,N)

MAT C = CON(M,N)

MAT C = IDN(N,N)

The first three statements specify matrix C as consisting of M rows and
N columns. The fourth statement specifies matrix C as a square matrix of N
rows and N columns. These same instructions may be used to redimension a
matrix during running. A matrix may be redimensioned to either a larger or a
smaller matrix provided the new dimensions do not require more storage
space than was originally reserved by the DIM statement. To illustrate,
consider the following statements:

laD J11 A (8 ,8) , B (8 ,8) , c (8 ,8)

50 MAT REfill A(2,2),B(2,2)

60 MJ\T C = ZER(2,2)

100 IvIAT A = IDN(8,8)

110 }/J\ TREAD B (It, 4) , C (4, l~)

Observe that the DIM statement reserves enough storage to accom
modate three matrices, each consisting of 64 elements. The initial MAT
READ specifies the dimensions of both matrices A and B as two rows and
two columns.

The MAT READ also reads the number of values required by the
dimensions into the storage which was reserved by the DIM statement. The
MAT READ reads the values in row-wise sequence. In the initial MAT
READ, the elements in the order read are A(l, 1), A(l,2), A(2,1), A(2,2),
B(I, I), B(1,2), B(2, I), and B(2,2). Statement 60 illustrates the ZER being
used to specify dimensions and to zero the elements of the matrix C. State
ments 100 and 110 illustrate the redimensioning concept, where matrix A is
redimensioned as an eight row, eight column identity matrix and matrices B
and C are redimensioned as four row, four column matrices into which data
is to be read.

4-5

Dimensioning
(Cont'd)

Example

Ex tensions to BASIC

While the combination of ordinary BASIC instructions and MAT
instructions makes the language very powerful, you must be careful about
your dimensions. In addition to having both a DIM statement and a
declaration of current dimension, you must be careful with the eleven MAT
statements. For example, a matrix product MAT C = A *B may be illegal for
one of two reasons: A and B may have dimensiop~ such that the product is
not defined, or C may have the wrong dimensions for the answer. In either
case you will receive an error message.

• The following program illustrates some of the capabilities of the
MAT instructions.

100 DIM A(2,2),B(2,2),C(2,2)
110 DIM D(2,2)
120 MAT A=IDN
130 MAT B=ZER
140 MAT C=CON
150 MAT READ D
160 DATA 1,2,3,4
170 MAT PRINT A;B;C;D
180 DIM E(2,2)
190 MAT E=A+D
200 MAT PRINT E
210 MAT E=B-D
220 MAT PRINT E
230 MAT E=C*D
240 MAT PRINT E
250 MAT E=INV(A)
260 MAT PRINT E
270 MAT E=TRN(A)
280 MAT PRINT E

*RUN
1 0
0 1
0 0
0 0
1 1
1 1
1 2
3 4
2 2
3 5

-1 -2
-3 -4
4 6
4 6
1 0
0 1
1 0
0 1
*BYE

4-6

ALPHANUMERIC
DATA AND

STRING
MANIPULATION

The DIM Statement

The LET Statement

The IF--THEN
Statement

Ex tensions to BASIC

• Alphanumeric data, names, and other identifying information can be
handled in the BASIC language using string variables. You can input, store,
compare and output alphanumeric and certain special characters in the
Spectra 70 character set.

A STRING is any sequence of alphanumeric and certain special
characters in the Spectra 70 character set not used for control purposes in
TSOS.

STRING size is limited to 15 valid characters.

A STRING VARIABLE is denoted by a letter followed by a "$". For
example: A$,B$,X$.

• Strings can be set up as one-dimensional arrays only. Requests for
two-dimensional arrays are not allowed and when encountered will initiate
an error comment.

Examples:

10 DIM A(5),C$(20),A$(12),D(10,5)

20 Drn R$(35)

30 Drn M$(15),B$(15)

In statement 10, only C$ and A$ are string variables. R$, as
dimensioned in statement 20, will set aside space in core for 35, 15 character
arrays. Any or all of these strings may be less than 15 characters.

• Strings and string variables may appear in only two forms of the LET
statement. The first is used to replace a string variable with the contents of
another string variable:

Example:

56 LET G$ = H$

and the second is used to assign a string to a string variable:

Example:

60 LET J$ = "THIS STRING"

Arithmetic operations may not be performed on string variables.
Requests for addition, subtraction, multiplication or division involving string
variables produce an error message.

• Only one string variable is allowed on each side of the IF-THEN
relation. All of the six standard relations (=,< >,<,>,<=,>=) are valid. When
strings of different lengths are compared, the shorter string is taken to be
the lesser of the two.

4-7

The PR I NT Statement

COMPUTED
GO TO

STATEMENT

MULTIPLE
VARIABLE

REPLACEMENT

Ex tensions to BASIC

• The PRINT statement also can contain string variables intermixed with
ordinary BASIC variables. When a string variable is encountered which has
not been assigned, the PRINT statement will produce no print out. A semi
colon after a string variable in a PRINT statement causes the string to be
printed and the variable following that string to be directly connected to it.

Examples:

35 PRINT A,16,B$,C$;N

40 PRINT 100+1, "DATA" ,L$;M$;N$

50 PRINT S$

• The computed GO TO statement is included in BASIC, providing a
multi-branched switch. The form of the statement is:

ON expression GO TO In} ,ln2 , ...

where:

expression is a valid BASIC expression.

In}, ln2' . .. is a sequence of line numbers to which the statement
will transfer depending on the expression value.

For example:

ON X+Y GO TO 575, 490, 650

The above statement will transfer control to 575, 490, or 650
respectively, depending upon whether the value of the expression X+ Y
yields 1, 2, or 3 respectively.

The expression value will be truncated to its integer value if it is not
already an integer. For example, if X+ Y = 2.5 it will be truncated to 2 and
the program will branch to the second line in the list.

• The LET statement permits multiple variable replacement.

For example:

LET X=Y=Z=21 *N/2

The statement places the value of the expression "21 *N/2" in variables
X, Y, and Z. Any valid expression may be used.

4-8

PRINT FUNCTION
TAB

Ex tensions to BASIC

• The PRINT statement permits tabbing of the teletypewriter. Whenever
the print function TAB is used in the PRINT statement, it will cause the
print head to move over to the position indicated by the argument of TAB.
For example:

PRINT X; TAB(N) ;Y;TAB(2*N);Z

The statement will cause the print head to move over to the Nth
position after printing the value of X and to the (2*N)th position after
printing the value of Y.

The use of the comma and semi-colon remains unchanged in the PRINT
statement. Thus, when a comma follows a variable in a PRINT statement, a
fixed field width is reserved before the next entry in the statement is
recognized. The semi-colon causes this field width to be minimized. Thus,
when the teletype is being tabbed, the semi-colon should be used.

If the argument of TAB is less than the current teletypewriter position,
it is ignored.

All arguments of TAB are modulo 75. Teletypewriter print positions
are assumed to run 0 through 74.

LIST
100 X=l
110 ON X GOTO 119,180,200
119 PRINT "0000000001111111111222222222233333333333"
120 PRINT "1234567890123456789012345678901234567890"
130 PRINT TAB(10);1
ll~O PRINT TAB(20);1
150 PRINT TAB(~O);l
160 PRINT TAB(8);1:TAB(18);1;TAB(28);1

*RUN
0000000001111111111222222222233333333333
1234567890123456789012345678901234567890

1

1 1

4-9

1
1

1

FUNCTION SGN

FUNCTION RND

Ex tensions to BASIC

• The function SGN (argument) yields + 1, -1, or 0 depending upon the
value of the argument. The following table describes the options:

Function Argument Value Yield

SGN Zero 0

SGN positive, non-zero +1

SGN negative, non-zero -1

Examples:

SGN (0) yields 0

SGN (-1 • 82) ;{i e Id s -1

SGN (989) yie Ids +1

SGn (- .001) yields -1

SGN (-0) yIelds 0

• The function RND(x) is a psuedo random number generator designated
as follows:

(a) If x > 0, then RND(x) is always the same function of x.

(b) If x < 0, the system supplies a different arbitrary random number
between 0 and 1.

(c) If x = 0, the system supplies a pseudo random number which is a
function of the previous random number generated by RND. If
x = 0 the first time RND is called in a program, the system will
supply a fixed number.

To generate a sequence of pseudo random numbers, the user would call
any of these options followed by repeated calls to option (c).

4-10

5. ENHANCE
MENTS

TO BASIC

FUNCTION TIM

DATA FILE
OPERATIONS

FI LES Statement

• The function TIM(X) is available in BASIC. The function TIM
effectively tells the user the amount of time required to run his program.
The variable X, although a dummy argument, is required. The value of
TIM(X) is processor time, in seconds, used since the RUN command was
given.

Example:

25 PRINT "TIME="; TIM(X)

• Files are referenced according to the order in which they appear in the
FILES statement. The first filename in the first FILES statement is
associated with the file designator, #1. In the following example, file B
would be referenced by the file designator #2, a third file by #3, and a
fourth file by #4.

If more than four files are referenced, a diagnostic would be printed.

Example:

NEW
NE\'l PROORAM NAME--READ
READY
*10 FlIES A;B
*20 FOR I=1 TO 10
*30 READ#1 ,A (I)
*40 NEX'l' I
*35 PRINT A(I)
*RUN
1
2
3
4
5
6
7
8
9
10

*

5-1

FILES Statement
(Cont'd)

Data-WRITE
Statement

Data--SCRATCH
Statement

File-READ
Statement

Enhancements to BASIC

Had the data file A not been previously created using the WRITE
statement, the computer would have responded:

*RUN
30 READ #l,A(I)

> FIlE IN vffilTE MODE

*

Files are initially in the input mode after the program has been
compiled, provided the files have been previously created. If BASIC is
creating a file for the first time, the file is automatically opened in the
output mode.

LIST
10 FIlES A;B
20 SCRATCH #1
30 FOR I=l TO 10
35 INPUT A(I)
40 WRITE #l,A(I)
50 NEXT I
60 END

*RUN

• The WRITE statement results in data values being written to the
referenced file. The data values may be either expressions or specIfic
Hollerith strings. Hollerith strings must be limited to 15 characters.

• The SCRATCH statement does the following:

1. Any data in the file is erased and the file mode is set to output.

2. The EOF (end of file) condition for this file is reset.

• The READ statement for files results in variables being assigned values
from the data file referenced by the file-designator. If the file is exhausted of
data (EOF condition raised for this file), a WHEN statement must be used
to:

1. Prevent a diagnostic to be printed and prevent BASIC from
terminating the program.

2. Allow the user to continue his program by going to a specified line
number.

5-2

WHEN
Statement

Enhancements to BASIC

• The WHEN statement is used in conjunction with the FILE-READ
statement as described above.

If no WHEN statement referencing this file has been executed, a
diagnostic is printed and execution terminates.

Example:

LIST
READY
*LIST

100 FILES A
110 FOR I=l TO 10
120 READ #l,A(I)
130 PRINT A(I)
140 NEXT I

*

If a WHEN statement referencing this file has been executed, then
control passes to the line-number specified in the WHEN statement.

Any attempt to read a file while the EOF condition is raised for this file
results in a diagnostic being printed and execution being terminated.

Example:

100 FlIES A
110 FOR I=l TO 10
120 READ #l,A(I)
130 PRINT A(I)
140 NEXT I

110 FOR I=l TO 12
*RUN
1
2
3
4
5
6
7
8
9
10

120 READ #l,A(I)
> SUBSCRIPr VALUE EXCEEDS BOUNDS

*10 DIM A(12)

5-3

WHEN *RUN
Statement 1

(Cont'dj 2
3
4
5
6
7
8
9
10

*

170 READ #l,A(I)
> EOr ENCOUNTERED

Enhancements to BASIC

The WHEN statement contains the line number to be branched to if the
EOF condition is raised for this file. The line-number is saved in a table and
remains in effect until another WHEN statement referencing the same file is
executed. Note that the WHEN statement is global. It need only be issued at
the beginning of the program, and need be reissued only if the "EOF"
line-number is to be changed.

Example:

65 WHEN EOF#1 GO TO 200

The WHEN statement may also be used to test for a run-time error to
avoid program termination.

Whenever a run time error is detected, a diagnostic is printed and execu
tion is terminated. If a when statement has been previously executed, the
diagnostic is printed and execution continues at the specified line-number.
This facility should aid debugging.

Note:

The statement in which the error occurred has not gone to completion.
Consequently, results of this statement are unpredictable.

Example:

o REM THIS IS AN EXAMPLE OF WHEN ERROR
10 WHEN ERROR GOTO 100
20 A=5
30 B=123E45
40 A=B*B
50 PRINT l! END tI
60 END

100 REM ERROR ROUTINE
110 PRINT "A=tI ;A, tlB=";B

*run
40 A=B*B

> OVERFWW
A= 5 B= .123E+48

5-4

RESTORE
Statement

Enhancements to BASIC

• The RESTORE statement causes the following:

The file pointer to be reset to the first item in the file.

The file mode to be set to input.

The EOF condition for this file to be reset.

The RESTORE statement must be used prior to reading files that have
been written in the same program.

Example:

*RES
READY
*LIST

100 FlIES A
110 SCRATCH #1
120 FOR I=l TO 10
130 WRITE #1, I
140 NEXT I
150 RESTORE #1
160 FOR I=l TO 10
170 READ #l,A(I)
180 PRINT A(I)
190 NEXT I

'*RUN
1
2
3
4
5
6
7
8
9
10

5-5

6. EDITING
COMMANDS

NEW

• The RCA Spectra 70 BASIC editing commands provide the user with
additional program preparation facilities. Each command may be entered
when BASIC has responded with an asterisk (*). An abbreviated command,
consisting of the first three characters of the complete command name, can
be used for all commands. Commands may not be entered with line
numbers. Thus, each editing command is executed immediately upon entry.
The following.editing commands are available with Spectra 70 BASIC.

• The NEW command erases the current contents of the user's work
space. The system responds:

NEW PROGRAM NAME -

requesting the user to supply a name for the program to be constructed. The
system responds:

READY

when a satisfactory name has been supplied. This name is referred to as 'the
program name'.

OLD • The OLD command erases the current contents of the user's work
space. The system responds:

OLD PROGRAM NAME -

requesting the user to supply the name of a program which he has previously
saved in his library. If a correct name is supplied, that program is loaded into
the user's work space, its name becomes the program name, and the system
responds:

READY

Otherwise, the user is informed that the program he named does not exist in
his library.

User I may load User 2's BASIC program (provided the catalog entry
specifies SHARE=YES) by specifying the program name as follows:

$user2.BAS.filename

When a file is being read from the user's library, every statement is
syntax checked as it is read. If a syntax error is discovered, the entire

. statement is printed to the terminal and is not entered in the program.

Note:

When the user logs on and requests TSOS BASIC, he is immediately
prompted to enter either of the commands NEW or OLD by the system
response

NEW OR OLD?

6-1

OLD
(Cont'd)

RENAME
or

REN

SC~ATCH
or

SCR

LENGTH
or

LEN

STATUS
or

Editing Commands

Program construction (modification of an old program) may not begin
until the work space is given a name. I f the user does not issue the old or
new command, NEW is assumed and the program takes on the default name
"NONAME" .

• The RENAME (or REN) command allows the user to rename the
program currently contained in his work space without erasing the work
space. The system will respond:

NEW PROGRAM NAME -

requesting the user to supply the new name.

• The SCRATCH (or SCR) command erases the current contents of the
user's work space but retains the program name.

• The LENGTH (or LEN) command prints, on the user's terminal, the
total amount of space, in bytes, occupied by the program currently in his
work space. The value is rounded to the closest multiple of 100 bytes.

• The STATUS (or STA) command prints, on the user's terminal:

STA I. The program name.

SAVE
or

SAV

UNSAVE
or

UNS

2. The current date and time of day.

3. The amount of CPU time used since logon.

• The SAVE (or SA V) command is used to save, in the user's library, a
copy of the source program currently contained in his work space. The
system first checks to see if a previous (BASIC) program with the current
program name has been saved. If one has, the system responds:

OVERWRITE PREVIOUS FILES (YES,NO)?

Otherwise, the program in the user's work space is saved in his library and
cataloged using the current program name.

• The UNSAVE (or UNS) command erases the catalog entries for the files
named, and releases the corresponding library space used for saving the
named programs.

Format:

UNS[AVE] file-name {,file-name} ~

6-2

CATALOG
or

CAT

Editing Commands

• The CATALOG (or CAT) command prints a list of the names of all
(BASIC) programs previously saved on the user's library.

BYE • The BYE command returns control to the TSOS Executive.

RUN • The RUN command directs the system to compile and execute the
program contained in the user's work space.

LIST • The LIST (or LIS) command directs the system to print, on the user's
or terminal, the sequence of lines referenced. If no line number list is given, the

LIS entire program is printed. Lines will be reformatted by the system.

DELETE
or

DEL

When creating a paper tape, the following steps are advised:

1. Place the terminal in T mode and create a header of nulls (control,
shift, P) or rubouts.

2. Place the terminal in K mode and enter the List command without
typingETX.

3. Place the terminal in KT mode and type XOFF,ETX.

When using this tape for input, the first input line will be null and
BASIC will reply with a question mark. However, the tape is now correctly
positioned for the first input line of the program.

Format:

LIS [T] [line-number-list]

• The DELETE (or DEL) command directs the system to delete, from
the user's work space, the sequence of lines referenced.

Format:

DEL [ETE] [line-num ber-list]

Example:

DEL 120, 160-210

The line numbered 120 and an lines numbered 160 to 210, inclusive,
are deleted.

A single line can also be deleted by typing its line number followed by
ETX (no text). If no line number list is specified, the DELETE command is
equivalent to SCRATCH (the entire program is deleted).

6-3

EXTRACT
or

EXT

RESEQUENCE
or

RES

DUPLICATE
or

DUP

Editing Commands

• The EXTRACT (or EXT) command directs the system to extract, from
the user's work space, the sequence of lines referenced. All other lines of
source text are automatically deleted.

If no line number list is specified, the EXTRACT command is ignored
(the entire program is extracted).

Format:

EXT[RACT] [line-number-list]

• The RESEQUENCE (or RES) command directs the system to renumber
the sequence of lines referenced, using the range of line numbers specified.
Note that only a single sequence of lines may be resequenced.

Format:

RES [EQUENCE] [line-number {-ITO} line-number]
[AS range]

Example:

RES 300-350 AS 1000(10)

The lines numbered 300 to 350, inclusive, are renumbered 1000, 1010,
etc., andthen deleted from the program.

The system adjusts all references to the resequenced line numbers.

If the "AS range" option is not specified, the implied range is 100(10).

If no line number . sequence is specified, the entire program is
resequenced.

• The DUPLICATE (or DUP) command directs the system to duplicate
the sequence of lines referenced, using the range of line numbers specified.
The duplicated lines are not deleted from the program.

The system does not adjust any line number references.

If the "AS range" option is not specified, the implied range is 100(10).

If no line number sequence is specified, the entire program is duplicated
using the implied range I OO(10).

Format:

DUP[LICATE] [line-number {-ITO} line-number

[AS range]]

6-4

MERGE
or

MER

Editing Commands

• The MERGE (or MER) command directs the system to merge a
specified sequence of the program previously saved under the given file name
into the program contained in the user's work space.

Fomat:

MER[GE] file-name [~line-number {-ITO} line-number]
[AS range]

If the named file cannot be found on the user's library space, the
system responds:

EITHER FILENAME INCORRECT OR FILE NOT CATALOGED.
REENTER COMMAND.

If the sequence option "line-number {-ITO} line-number"· is omitted,
the entire saved program is merged.

If the "AS range" option is specified, the saved program is loaded from
the library, resequenced using the given range values, and then merged with
the program in the user's work space.

Example:

MERGE DATABASE AS 900(1)

The program "DATABASE" is resequenced using line numbers
900,901, ... , and then merged with the current work space program.

Note:

A TSOS BASIC program consists of any sequence of BASIC statements.
In particular, a program could consist of all DATA statements, hence
providing a facility for constructing data files.

If the "AS range" option is not specified, the saved program is not
resequenced prior to the merge operation. The user should beware of
conflicting line numbers in this situation.

Note:

If a source statement having the same line number as a previous
statement, is entered into the user's work space (either from the
terminal or a saved file), the new statement replaces the old statement.

6-5

WEAVE
or

WEA

SVNCHK or
SVN

NOSVNCHK
or NOS

Editing Commands

• The WEAVE (or WEA) command causes two or more files to be
merged. For example:

WEA[VE] file-name {,file-name} ~

is equivalent to:

MERGE file-name 1
MERGE file-name2

MERGE file-namen

• The SYNCHK (or SYN) command causes all source input from saved
files to be syntax checked. This is the default case in BASIC.

This command is used in connection with the OLD, MERGE and
WEAVE commands.

• The NOSYNCHK (or NOS) command causes source input from saved
files to bypass the syntax checker and be entered directly into the user's
work space. This command should be issued before the command which
accesses the disk. It greatly increases the speed in which source files are
brought into work space.

This command is used in connection with the OLD, MERGE and
WEAVE commands.

CAUTION:

This command should be used only·
wi th files which have been saved by
the BASIC system. BASIC writes
these files in a specified format and
any other format may cause BASIC to
work incorrectly. When BASIC writes
a file, a guard character is placed in
each line. If this guard character is not
present during input, the mode is
automatically changed to SYNCHK
and the current input line plus all
future input lines will be syntax
checked.

6-6

APPENDIX A

COMPILER
DIAGNOSTICS Message

FUNCTION PREVIOUSLY
DEFINED

ARRAY PREVIOUSLY
DIMENSIONED

NO SUCH LINE #

FOR NESTING (MAX=7)

NESTED FOR'S WITH SAME
INDEX

NEXT BEFORE FOR

ILLEGAL FOR-NEXT
NESTING

31 CONSTANTS ALLOWED
PER EXPR

OVERFLOW

UNDERFLOW

ILLEGAL OPERATION

MEMORY EXCEEDED

A-I

Description

A user defined function (DEF statement)
has been multiply defined.

An array (matrix) has been multiply
dimensioned (DIM statement).

Reference is made (GOTO, IF, ON
statement) to a non-existent line number.

The maximum level of nesting of
FOR-loops is 7.

The construction:
FOR I = 1 to 10 l

,~
no NEXT I

FOR I = 2 to 6
is illegal.

The matching NEXT statement must
follow its corresponding FOR statement
(in the logical sequence of statements).

FOR-loops may be nested, but they must
not overlap.

e.g.
FOR I = 1 to 10
FOR J = 1 to 10

NEXT I

The maximum number of constants
allowed in any arithmetic expression
is 31.

A numeric constant exceeds the maximum
single-precision floating-point value
(about 1075).

A numeric constant is smaller than the
minimum single-precision floating-point
value (about 10-78).

Any of
MATA = A*B
MATA=B*A
MATA = INV(A)
MATA = TRN(A)

The generated object code exceeds 16
pages (65,536 bytes) in size.

COMPILER
DIAGNOSTICS

(Cont'd)
Message

4 DATA FILES MAX

FI LENAME > 8 CHARS

DATA FILE DEFINED TWICE

A-2

Appendix A

Description

Only four files can be referenced in a
BASIC program.

A filename is a letter followed by at most
7 alphanumeric characters.

There can be only one file-designator
associated with each data file.

APPENDIX B

POST
COMPILATION
DIAGNOSTICS

Message

READ OR RESTORE, BUT NO
DATA

FOR BUT NO NEXT,
LINES a, b, c

UNDIMENSIONED MATRICES:
x, y, z

USED AS VECTOR AND
ARRAY: x, y, z

UNDEFINED FUNCTIONS:
x, y, z

MEMORY EXCEEDED

NO DATA FILES DEFINED

filename - PASSWORD
PROTECTED

filename - OPEN ERROR

filename - LOCKED

filename - CATALOG ERROR

B-1

Description

The user has implied the need for DATA
elements, but none were supplied.

The program contains dangling FOR
statements in lines numbered a, b, and c.

Variables x, y, and z were used as
matrices but not explicitly dimensioned
(01 M statement).

Variables x, y, and z were used as both
vectors (1-d imensional) and arrays
(2-dimensional).

The functions x, y, z were not defined.

The object code generated, plus array
storage allocation (which caused the
error) exceeds 16 pages.

Data files have been referenced, but no
FI LES statement appears in program.

Enter the password via the TSOS
password command.

The file could not be opened for some
reason. Retry.

Two BASIC users are referencing the
same file, one in read mode and the
other in write mode. The first person to
access the file gets it and locks it to
other users. Several users may read a
file simultaneously, but only one user
at a time can write the file.

Space could not be obtained for the
file. Retry.

APPENDIX C

RUN-TIME
(EXECUTION)

DIAGNOSTICS
Message

INVALID INDEX

VALUE OUTSIDE RANGE

SUBSCRIPT VALUE EXCEEDS
RANGE

GOSUB NESTING (MAX=15)

RETURN BEFORE GOSUB

INVALID FOR PARAMETERS

OVERFLOW

UNDERFLOW

DIVISION BY ZERO

INVALID EXPONENT

EXP (LARGE NOS.)

LOG (-X)

SQR (-X)

0**0

O**(-X)

FUNCTION NESTING (MAX=8)

ERROR IN SIN-COS ROUTINE

C-I

Description

A number is converted to integer for use
as an index (subscript or ON expression)
and its value does not lie in the range
O~ x < 216.

The value of an ON expression exceeds
the number of line-numbers in the ON
statement.

The value of a subscript exceeds the
upper bound declared for an array.

The maximum level of nesting for
subroutine calls is 15.

A RETURN statement is executed prior
to a GOSUB (subroutine call).

On initial entry to a FOR-loop the
condition (final value - initial value) *
step> 0 is not satisfied.

A number exceeding the maximum
single-precision floating-point value
during expression evaluation.

A number smaller than the minimum
single-precision floating-point value
during expression evaluation.

Division by zero was specified.

A**B, where B < o.

A specific case of numeric overflow.

Logarithm for a negative number was
specified.

Square root of a negative number was
specified.

Zero to a zero power was specified.

Zero to a negative power was specified.

The maximum level of nesting for
(defined) function calls is 8.
INT(RND(O)) is a nested function of
level 2.

Overflow and underflow resulting from
expression evaluation.

RUN-TIME
(EXECUTION)

DIAGNOSTICS
(Cont'd)

Message

NON-MATRIX

NON-SQUARE MATRIX

CURRENT DIM>MAX. DIM

ALMOST SINGULAR MATRIX

OUT OF DATA

I LLEGAL CONSTANT

INVALID NUMERIC DATA

INVALID FILE DESIGNATOR

FI LE I N READ MODE

FILE IN WRITE MODE

INVALID DATA ON FILE

ALPHA STRING> 15 CHAR

C-2

Appendix C

Description

MA T operation uses a vector or array
whose row or column bound is O.

The matrix addition, subtraction,
multiplication, inversion, transposition
and scalar multiplication operations does
not fulfill the obvious conformities of
matrix dimensions.

The current (active) bound of a matrix
exceeds the maximum specified bound.

e.g.
DIM A(5,5)
MAT A=IDN(6,6)

Detected during matrix inversion.

The set of D AT A elements has been
exhausted and a READ statement is
executed.

A string (numeric) DATA element is read
into a numeric (string) variable.

Invalid numeric constant read in during
execution of an I NPUT statement.

A file designator has value < 1 or greater
than the number of data files in the
program.

Scratch-statement must be issued before
writing a file.

Restore-statement must be issued before
reading a file which has just been written.

Trying to read alphanumeric data into
numeric variable or vice versa or bad data
on file.

A write statement contains a Hollerith
string> 15 characters.

APPENDIX D

SYSTEM
ERROR

DIAGNOSTICS

Message Description

System Diagnostics

INPUT LI N E TOO LONG,
REENTER

SYSTEM ERROR. REENTER

OUT OF SRC TXT MEM.
TRY A SAVE,OLD,UNSAVE
OF TH IS PROG RAM

"machine" INTERRUPT AT
L'XXXXXX'

Either the input line (counting all carriage
returns, backspaces, and non-BASIC
characters) exceeded 88 characters, or the
input line after editing exceeded 80
characters. Reenter the line within the
above lim its.

An error has occurred either in BASIC or
the TSOS Executive. If reentry fails, save
all relevant data and consult your RCA
representative.

You have run out of virtual memory space
for your program. The last line entered was
not accepted. If you have been editing your
source program, try saving it on disc and
recalling it. If the above message is printed
again, then save your program on paper tape
and try to run it later.

An error has occurred within BASIC or the
TSOS Executive. Please save all relevant
data and consult your RCA representative.

Editing Command Diagnostics

ERROR DURING CATALOGING,
REENTER

LINE NUMBER> 5 DIGITS

INCORRECT FORMAT

SYSTEM ERROR. REENTER

EXTRACT COMMAND
REQUIRES INCREASING
LINE-NUMBERS

D-l

Basic could not obtain space for this file.
Some reasons for this are:

1. A write password has been placed on
the file.

2. A hardware error occurred.
Retry the SAVE command.

During DUP, RES, or MER, a line number
has exceeded 5 digits. List the file and
make appropriate corrections.

An incorrect format was specified for an
editing command. Correct and reenter.

Same as system monitor message.

The extract command must have the line
number list in numerically ascending order.
Reenter the command.

SYSTEM
ERROR

DIAGNOSTICS
(Cont'd)

Appendix D

Message Description

Editing Command Diagnostics (Cont'd)

INCREMENT < 1 The increment in the AS option of DUP,
RES and MER must be a positive integer.

EITHER FI LENAME The file specified does not exist. Check
INCORRECT OR FI LE NOT the filename and if incorrect reenter the
CATALOGED. REENTER command.
COMMAND

ENTER PASSWORD VIA TSOS This file has been protected by a password.
PASSWORD COMMAND. I f the user does not know the password, he
REENTER COMMAND cannot access the file. If he knows the pass-

word, then he must escape to the TSOS
Executive and use the password command
to enter the password before he can access
the file.

ERROR DURING FILE An error occurred while accessing the file.
OPENING. REENTER Reenter the command.

AN ERROR OCCURRED Some error occurred while processing the
WHILE PROCESSING command. Try again.
COMMAND. REENTER

PROGRAM NAME INCORRECT, The name specified is not syntactically
REENTER COMMAND correct. Reenter the command.

OUT OF DISK SPACE Space could not be obtained for the file.
The users public space allotment is
exhausted or the system has become
saturated.

D-2

APPENDIX E

SAVED FILE
ORGANIZA

TION

• All files saved by BASIC have the qualifier BAS. prefixed to the name
supplied by the user before the filename is cataloged. Thus the BASIC file
JOE is cataloged and known in the TSOS system as BAS.JOE. The program
is saved in source program form in the same format used by the LIST
command. As BASIC files are being read in (via the OLD, MERGE, or
WEA VE commands), every line is syntax checked just as if it were being read
from a terminal. If an error is discovered, the line is rejected and is written to
the terminal preceded by a question ma~k. The line is not entered into the
program file and the user must wait for the READY message before he can
reenter such lines from the terminal. Thus the user must be extremely
careful when processing BASIC programs created by other TSOS products.

The following paragraphs assume the user has some knowledge of DMS
(Data Management Systems, see 79-00-614).

All BASIC files are created under SAM (Sequential Access Method).
Variable length blocked format is used with a blocksize of 1070 bytes.
Initially BASIC requests two tracks for the file and depends on the
secondary space allocation feature of DMS to obtain more tracks as needed.
The BASIC file JOE would be cataloged and allocated as follows:

ICA T ALOG FILENAM = BAS.J OE,SHARE= NO ,ACCESS=WRITE

IALLOCATE FILENAM=BAS.JOE,FORG=SEQ,SPACE=
(TRACK,2, 1)

BASIC files have a retention period of 30 days.

Only the user who created the file can access it. This user can read and
write to the file and no protection passwords (read or write) are needed to
access the file.

user:
The above default attributes can be changed in several ways by the

1. The user can catalog and allocate space for the file using the TSOS
Execu tive before saving to the file.

2. After the file has been saved, the user can issue a catalog command
in the STATE=UPDATE mode to modify the catalog entries.

3. The user can issue a file command before the file is written with
LINK=BASIC to select a specific device on which to write the file.

E-l

SAVED FILE
ORGANIZA

TION
(Cont'd)

Appendix E

Several examples should clarify the above ideas:

1. User 1 wants to make BASIC file PETE sharable and wants to
associate the read password C'1234' with it. He could do this in
two ways:

a. Before issuing the BASIC SAVE command he would escape
to the TSOS Executive and issue the catalog and allocate
commands as follows:

fCAT FILENAM= BAS.PETE,SHARE=YES,RDP ASS=
C'1234'

f ALLOC FILENAM=BAS.PETE,FORG=SEQ,SPACE=
(TRACK, 2,1)

Note:

When cataloging a file with ST ATE=NEW (default), the user
must also specify the allocate command. When BASIC knows
a file has been cataloged, BASIC assumes space has been
allocated for the file. If the user does not allocate space, an
error will occur during open processing.

b. After issuing the BASIC SAVE command he would escape to
the executive and issue the catalog command.

fCAT FILENAM=BAS.PETE,STATE=UPDATE,SHARE=
YES,RDPASS=C'1234'

Another user would access this file as follows:

[PASSWORD C'1234"

[EXEC BASIC

NEW OR OLD

~OLD

OLD PROGRAM NAME - $USERI.BAS.PETE

Note that the password is specified in the TSOS password
command and that BASIC allows a fully qualified name only when
the $USERID option is specified. If a $ is the first character of the
filename, the name is not syntax checked.

2. User 2 wants to make BASIC file MARK reside on the private disk
pack BASOO 1. He could do this in two ways. Before saving the file
he would escape to the executive and type in either of the
following:

a. fCAT FILENAM=BAS.MARK

f ALLOC FILENAM=BAS.MARK,FORG=SEQ,SPACE=
TRACK,2, 1),DEVICE=D564,VOLUME=BASOO 1

b. fFILE LINK=BASIC,FILENAM=BAS.MARK,FORG=SEQ,
SPACE=(TRACK,2, 1),DEVICE=D564,VOLUME=BASOO 1

E-2

SAVED FILE
ORGANIZA

TION
(Cont'd)

Appendix E

3. User 3 wants to make BASIC file BOB reside on the private tape
volume 000 149. In addition, he wants the retention period of the
file to be 60 days. Before saving the file, he would escape to the
executive and enter the following file command:

/PILE LINK=BASIC,PILENAM=BAS.BOB,DEVICE=TAPE,
VOLUME=OOO 149 ,RETPD=60

The user would have to issue the same command to read the tape
during another logon session.

Note:

If the user has used the file command with LINK=BASIC, he
should issue the TSOS command

/RELEASE BASIC

before reading or writing to another BASIC file.

The above examples are intended to give a flavor of what can be done
with the executive commands. Many other combinations are possible.

F-1

APPENDIX F

GLOSSARY

A lphameric characters. A generic term for
ALPHA-betic characters, nuMERIC digits and
special characters.

Argument. A variable upon whose value the
value of a function depends. The arguments of a
function are listed in parentheses after the func
tion name, whenever that function is used. The
computations specified by the function defini
tion occur using the variables specified as
arguments.

Arithmetic statement. A type of BASIC state
ment that specifies a numerical computation; a
LET statement.

Constant. A quantity that does not change
either from one execution of a program to
another, or during execution of that program; a
number that remains fixed.

Line error. An error in the transmission of data
over telephone lines.

Debugging. Process of locating errors in a pro
gram and correcting them.

Editing statement. A command to the system to
do something with a program. It is not retained
as part of the program.

Expression. A series of constants, variables, and
functions which may be connected by operation
symbols and punctuated by parentheses, if
required, to cause a desired computation.
Another word for expression is FORMULA.

Integer number. A number without any decimal
poin t which can be generated with the INT
function.

Library. A collection of user-written programs
stored within the system usually on disc.

F-l

Line number. A number assigned by the user by
which each statement can be identified. I t is
associated with a single BASIC statement and by
which reference may be made to that statement.

List. A string of items, written in a meaningful
format, which designate quantities to be trans
mitted for input/output.

Loop. Repeated execution of a portion of a
program.

Magnitude. The size of a quantity as distinct
from its sign. Thus, + I 0 and -10 have the same
magnitude.

Operators. Characters that designate mathemat
ical operations, such as +, -, etc.

Program. A set of instructions that will direct a
computer in performing certain specified opera
tions.

Program statement. An instruction that becomes
a part of a program.

Real number. A number with a decimal point. A
floating-point number.

Routine. A logical section of a program. A
sequence of program statements. A Subroutine.

Statement. An instruction to the computer to
perform some sequence of operations.

System. The total system consisting of the
computer and the control system program under
which user programs operate. User programs are
prepared with supporting components which
behave as sub-systems.

Terminal. A data communications device
through which commands, programs, and data
are transmitted.

Appendix F

GLOSSARY
(Cont'd)

Time sharing. The simultaneous access and use
of a single computer system by multiple users.

Transfer. To terminate one sequence of instruc
tions and begin another sequence.

Transfer statement. Any instruction causing a
transfer, whether conditional or not. A branch
statement.

F-2

Truncation. Shortening of a number by
dropping digits without rounding. The result is
that portion of the number preceding the
decimal poin t.

Variable. A symbol whose numeric value
changes from one iteration of a program to the
next or within each iteration of a program.

	001
	002
	003
	004
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	A-01
	A-02
	B-01
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	E-03
	F-01
	F-02

