
Time Sharing Operating System
(TSOS)

File Editor
Reference Manual

May 1971
OJ-003-2-00

Marketing Publications
Building 204-2
Cherry Hill, N.J.

The information contained herein
is subject to change without notice.
Revisions may be issued to advise
of such changes and/or additions.

Firslt Printing: February 1969 (70-00-623)
Reissued: May 1971 (DJ-003-2-00)

PREFACE

This reference manual gives a detailed description of the TSOS File Editor.
The TSOS File Editor is a program which creates, modifies, and displays
files.

This manual consists of four sections. Section I gives an overview of the
entire File Editor and its relationship to other software. Section 2 is a
comprehensive discussion of the syntax to be used in the detailed
descriptions of the commands of the File Editor. Section 3 contains those
descriptions and a complete discussion of each of the commands of the File
Editor arranged in alphabetic order. Section 4 introduces the user to the File
Editor procedure language and its use.

iii

CONTENTS

Page

1. INTRODUCTION

Functional Description. .. 1-1
File Editor Program Structure 1-2
Usage. 1-2

Conversational 1-2
Noneonversational 1-3

Files. • .. 1-5
Principal Files. .. 1-5
Secondary Files 1-6
Lines of a File 1-6
Line Numbers. .. 1-6

Comnland Language Description ~ .. 1-6
Control Commands 1-7
Input/Output Commands ~ .. 1-8
Line Content Commands ~ .. 1-8
Special Commands .. 1-9

Responses and Messages' .. 1-9
Diagnostic Messages 1-9
Execution Response Messages 1-11

2. SYNTAX

File Editor Syntax .. 2-1
File Editor Command Statements 2-1
Spaces and Delimiters .. 2-1
Name Field .. 2-1
Operation Field 2-2
Operand Field 2-2

Operand Syntax .. 2-2
Line Address Parameters 3-1
Line Address Formats 2-5
Defa"ults .. 2-6
Line Content Parameters 2-6
Session Attributes 2-11

3. FILE EDITOR VERBS

ALTER " 3-1
CHANGE ... 3-5
CLOSE " 3-8
DELETE ... 3-10

v

Page

FIN'D 3-12
GEl' ... ' .. 3-16
HAlJT .. 3-20
HEIJP '.' 3-21
INPUT .. 3-23
JUMP .. 3-27
LOOP .. ' .. 3-32
MOVE .. 3-37
NOTE ... 3-40
OPE,N ... 3-41
PRINT ... 3-45
QUALIF"Y .. 3-47
RESEQUENCE .. 3-49
RESET ... 3-51
SEARCII ... 3-56
SET ... ;. 3-59
TEXT .. 3-61
UPI)ATI~ ... 3-65
VERIF)r .. 3-67
WRITE ... 3-70

4. PROCEDURE LANGUAGE

The Procedure Definition .. 4-1
Procedure Files. .. 4-2
Procedure Calls. .. 4-3

Variations of Parameter Representations 4-4
Symbolic Parameter: 0 .. 4-4
Null Parameters and Null SymbolicParameters 4-5
Concatenation 4-5
Inner Calls .. 4-7

Example 1 .. 4-7
Example 2 .. 4-9

INDEX ... Z-1

vi

1. INTRODUCTION

FUNCTIONAL DESCRIPTION

The TSOS File Editor is a program supplied by RCA to enable the user to
create, modify, and display catalogued ISAM (indexed sequential access
method) files, primarily on an interactive basis. The File Editor is designed
to be used conversationally from a terminal so that the user may control
processing one command at a time. However, the File Editor may also be
used on a nonconversational basis. In the latter case, the commands are
either contained in a card deck or have already been stored in a disc file. In
any case, the File Editor generally gets its input from a logical sequential file
called SYSDTA. The output, in the form of responses and messages, is
directed to SYSOUT, which is either a terminal or the printer. (Refer to
figures 1-1, 1-2, and 1-3.)

The File Editor consists of basic command verbs, which perform editing
functions on the contents of a file. Each verb carries an array of parameters
that can specify just what data is to be acted upon by the verb. For example,
the verb can be made to operate on a single character within a sequence of
lines or it may operate on one entire line. When a verb is presented with its
array of optional parameters, it is referred to as a command statement.

A command statement can process a record or a series of records in one file.
This file must be cataloged as an ISAM file. Hence, at the beginning of a File
Editor session, the user must designate an existing ISAM file or request that
an ISAM file be cataloged and Inade available for the session. The file so
designated is then called the principal file.

The File Editor is able to read another file sequentially and makes insertions
from the file into the principal file. The File Editor can also write a part of
the principal file sequentially into a suitable output file. These input and
output files are referred to as secondary files.

The user of the File Editor may collect a series of command statements that
are intended for successive execution and store them as a unit in a user file.
Such a unit is called a File Editor procedure. A file containing such
procedures is called a File Editor procedure file. (A File Editor procedure is
comparable to a user-defined macro.)

During a File Editor session, the user may call into operation a procedure
with its optional parameters. This has the effect of entering into the session
the command statements fronl the procedure. Each command within the
procedure is then expanded with the specified parameter values before its
execution. When all the statements in the procedure have been executed, the
File Editor returns to the source of the procedure call for its next command
statement.

1-1

The File Editor has a standard method of handling defaults when the user
fails to specify values for the parameters in a command statement. The
specific details of default action are given in the Section 2 of this manual.
The default method generally consists of carrying symbolic pointers that
take on specific values during the session. As each command comes up for
execution, it is first scanned. If any commands lack explicit parameters, the
current values of the symbolic pointers are used. Other than these symbolics,
there is no interconnecting relationship between any two File Editor
command staterl1ents, with the exception of the JUMP and LOOP
commands.

In most cases, each command statement is discarded after execution. There
are two significant exceptions: one is the procedure file already mentioned;
the other is the LOOP command. The LOOP command allows the user to
specify a list of command statements and to execute this list repeatedly until
some criterion has been met. The specified list of command statements is
stored in the user's virtual memory and then individually executed.

FILE EDITOR PROGRAM STRUCTURE

USAGE

Conversa tional

The File Editor is a Class II program requiring 18 pages of virtual memory
for code and seven pages for each user's private work area. The code is
reentrant and thus may be shared. The File Editor appears to the TSOS
Executive System as a user program.

The File Editor can operate on either a conversational or non conversational
basis.

In conversational operation, the user activates the terminal by calling and
logging on to the TSOS. At LOGON time, the user may specify (within
limits) the buffer size associated with SYSDTA; otherwise, File Editor
requests a 270-byte buffer. The user must then make the following request
to the TSOS control language processor:

EXECUTE (EDIT)

The system then loads the File Editor and types an asterisk to indicate that
the File Editor session has begun.

Every input string from an interactive terminal must be terminated by the
ETX character, a standard procedure for TSOS.

1-2

All File Editor messages and responses go to SYSOUT, which, during a
conversational session, is the terminal by definition. If the terminal is a
teletypewriter!1 then an automatic line-feed (-1-) and a carriage-return (+-)
occur before each message and after every 71 characters. The carriage-return
and line-feed together are indicated in this manual by the single symbol +--1-.
With one exception, explained under the INPUT command, the user can use
the +--1- symbol freely while entering command statements and data from a
terminal. Once the user has typed in a command statement and depressed
the ETX key, the processing of that statement is under the control of the
File Editor. After the File Editor has terminated its processing (successfully
or unsuccessfully) and sent responses to the terminal, it requests the next
command statement by +--1- followed by an asterisk, *.

At any time during the File Editor session, the user may break in and
interrupt the current activity by depressing the BREAK key. The TSOS
control program responds by typing a slash, /, indicating that File Editor
processing has been suspended. If any input-output transmission was in
progress at the time, the message is discarded. The user may then proceed
with any logical TSOS system commands.

To reestablish the File Editor session) the user can issue one of two system
commands: /RESUME or /INTR.

/RESUME

This command returns control to the File Editor at the point where it was
interrupted except if a message was being transmitted to the terminal when
the user pressed BREAK. In this case, the rest of the message is lost, and a
new command read is issued.

/INTR

This command returns control to the File Editor's intervention routine,
which aborts whatever command was being processed at the time of the
break, and displays another asterisk (*) so that the user may issue a new
command.

N onconversa tional

The File Editor, when operating nonconversationally, can accept input either
from the card reader or a sequential cataloged file.

1. A non conversational session can be entered through the system' card
reader. In this case, all input lines by definition will be 80 bytes long. The
File Editor interprets the trailing edge of the punched card as the end of the
line (ETX). Command statements or data must be contained on one card and
cannot be continued on another card.

2. A nonconversational task can also be initiated by the system command
ENTER, which specifies the name of a cataloged file. The file must have
LOGON and LOGOFF as its first and last commands, respectively. An
example of a conversational user initiating a nonconversational File Editor
session is shown in figure 1-3.

1-3

All messages and responses are sent to SYSOUT, which during a
nonconversational session is by definition the printer ..

INPUT FROM SYSDTA

a. TER:MIN'AL, IF
CONVERSATIONAL

-----........ 1 FILE EDITOR

b. OTHERWISE, CARD
OR DISC FILE

OUTPUT TO SYSOUT

a. TERMINAL, IF
CONVERSATIONAL

b. OTHERWISE, PRINTER

FIGURE 1-1. INPUT AND OUTPUT DEVICES FOR FILE EDITOR

PRINCIPAl. FILE PRINCIPAL FILE

SECONDAHY FILE(SI ____ --I
FILE EDITOR

PROCEDUHE FILE- SECONDARY FILE(S)

FIGURE 1-2. FILES USED IN A FILE EDITOR SESSION

1-4

FILES

Principal File

Explanation Terminal Task Y

Conversationzil / LOGON
session begins. / EXECUTE (EDIT)

Terminal is SYSCMD. / ENTER Y
Task Yawaiting (Task sequence number
execution. of task Y displayed by

TSOS command
processor .)

Conversationcll / LOGOFF
session ends.

When resources are /LOGON
available, non- I EXECUTE_(EDIT),
conversationilll File ~OPEN X
Editor session is
executed:
SYSDTA==Y

~HALT
/ LOGOFF

During the initial conversational session, execution of task Y is requested by the
command ENTER Y. Later, when resources are available, the File Editor is executed
under the TSOS Executive with SYSDTA=Y.

FIGURE 1-3. EXAMPLE OF NONCONVERSATIONAL FILE EDITOR SESSION
INITIATED FROM TERMINAL

The File Editor can edit a principal file which is an ISAM file created under
TSOS and stored on a random access device; it might have been created in a
previous File Editor session, by the DATA command, or by a user program. It
may consist of fixed-length (F-type) or variable-length (V-type) records,
having numeric keys eight bytes long in any position acceptable to ISAM
(refer to the Data Management System Reference Manual). If the file is
composed of F-type records, the record length must be 2048 bytes or less; if
V-type, the block size must be 2048 bytes.

There can be only one principal file open at a time. If the file is new, File
Editor opens it in the OUTIN mode; if old, it is opened either INOUT or
INPUT, according to the user's preference.

If a principal file is password-protected, the user must supply that password
to the Data Management System either by the PASSWORD command (see
DMS Reference Manual), or as one of the parameters of the OPEN
command. (See Section 3 of this manual.)

1-5

Secondary Files

Lines of a File

Line Numbers

Secondary input files may be either SAM (sequential) or ISAM (indexed
sequential) files, but in either case are opened in the INPUT mode and
accessed sequentially. Secondary output files are always sequential (SAM)
files and are opened in either the Output or Extend mode, depending on the
user's preference.

A logical record of a principal file is called a line and is the basic unit that
the File Editor manipulates. A line consists of an unformatted character
string. The characters in the string can be any of the 256 bit configurations,
but the string length cannot exceed 2048 characters. A byte of data can be
presented to the File Editor in the form of a printable character or a pair of
hexadec:lmal characters; the File Editor can provide output data similarly.

[f a file contains F-type records and a smaller record is to be inserted into
the file, the record will be space-filled to the right. Records larger than the
specified record size will be truncated on the right and File Editor will
display an error lnessage.

To identify each line of the principal file, an 8-digit decimal number is
associated with each line in the form of a'key. This unique number is passed
by the File Editor to OMS for accessing that line.

The user can refer to a line by its 8-digit line number. Optionally, the line
number can be expressed to the File Editor in fewer than 8 digits when
leading O's are omitted; it can also have a decimal point to indicate its
positional alignment.

The user can also refer to a specific line by means of one of the 10 symbolic
line pointers provided by the File Editor. These are named $d, where d = 0,
1, 2 9. The user can store a line number in one of these symbolic line
pointers and then refer to that line in a command by the symbol.

COMMAND LANGUAGE DESCRIPTION

The command language of the File Editor consists of verbs by which the user
specifies the editing functions that he wishes to perform on the data in the
principal file. During conversational sessions, the commands are entered
through the terrrlinal keyboard. During non conversational sessions, they are
entered, typically, on punched cards through the card reader. They may also
be stored up during a conversational session and left for later execution by
means of the ENTER command as illustrated in figure 1-3. Finally, the File
Editor commands' may be grouped as a file of commands under the
procedure operations to form user-defined macros.

The verbs of the File Editor command language, which fall into four
categories, are described briefly below. They are described in detail in
Section 3 of this manual.

1-6

Control Commands

There are 8 control commands by which a user can open and close a file for
editing; can set, reset, and display certain automatic features of the File
Editor; and can terminate the editing session.

CLOSE

This command allows the user explicitly to close any file that is open in the
File Editor session.

OPEN

This co:mmand opens the specified ISAM file as the principal file and will, if
necessary, close another current principal file before opening the new file.

HALT

This command closes the principal file and the procedure file, if there is one
open, releases the File Editor, and returns control to the command language
processor.

HELP

This command displays various Inessages designed to help the user of the File
Editor.

SET

This command sets the desired value into either the current line pointer (*),
the syrnbolic line pointers $d, or the symbolic character counters #, by
which the effective domain of the Editor commands may be defined.

RESEQUENCE

This command renumbers the lines of the principal file.

RESET

This command changes the logical switches that define the attributes of a
particular session, such as the following:

1. The File Editor's response messages on SYSOUT.

2. Listing of File Editor commands on SYSOUT.

3. The position of the decimal point in line numbers.

4. Internal tabulation settings.

VERIFY

This command causes the current settings of the session-attribute switches
and the various symbolic pointers to be displayed on SYSOUT.

1-7

Input/Output Comnlands

The input/output commands provide a means for the user to create new lines
in the principal file, to copy lines into the principal file from a secondary
file, and to copy Hnes from the principal file into a secondary file.

TEXT

This command places the File Editor in the text mode, during which lines in
the principal file may be created, displayed, deleted, or replaced. The text
mode accepts data in character or hexadecimal format.

PRINT

This conlmand prints out a specified portion of the principal file on
SYSOUT.

MOVE

This command moves the contents of an existing line of the principal file to
a newly created line of the principal file.

GET

This command copies sequentially the contents of a series of lines from a
named secondary file into newly-created lines within the principal file.

INPUT

This comlmand enters text from SYSDTA into the principal file.

WRITE

This conlmand ,~opies a specified portion of the principal file into a
secondary file.

Line Content COlllmands

These commands scan a portion of the principal file for the purpose of
modifying specific contents.

FIND

This command scans each line in a specified range of lines to locate a
prescribed string.

SEARCH

This com}mand searches a specified range of the principal file and displays all
instances of the prescribed string.

DELETE

This comlnand deletes a specified portion of the principal file.

ALTER

This comJnand searches an area of the principal file for a specified string and
substitutes a given string for one or all occurrences of the specified string.

1-8

UPDATE

This command inserts a string of characters at a given point within each line
of a given range of lines.

CHANGE

This command permits the interactive user to perform character-by-character
editing on a given line or lines.

Special Commands

Procedure Call

There are five special commands in the File Editor.

JUMP

This cOlnmand changes the sequence of execution of commands either
conditionally or unconditionally.

LOOP

This command defines a series of commands that is to be executed
repeatedly until some criterion is met.

QUALIFY

This cOlnmand closes the current procedure file, if any, and opens the
specified file as the source file for procedure definitions.

NOTE

This command prints the entire contents of the statement in which it
appears.

This conlmand calls a predefined procedure.

RESPONSES AND MESSAGES

The File Editor gives the user two different types of response messages: one
is called a diagnostic response message and the other, an execution response
message. In the diagnostic response, some flaw has been noted in the
relationship between the Data Management System (DMS) and the File
Editor or between the user and the File Editor. Execution responses come to
the user fronl the File Editor only; there is no direct communication
between the user of the File Editor and the DMS. See figure 1-4.

Diagnostic Messages

Diagnostic response messages indicate, in general, two different classes of
error that can occur:

1. Syntax errors, which usually result in two-line error messages.

2. Execution errors, which always result in one-line error messages.

These error :messages can occur because the Editor's processing of a
. command takes place in two phases: an interpretation (or syntax-scanning
phase) and an execution phase.

1-9

If, during the interpretation phase, the Editor discovers a syntax error in the
user's command (for example, unrecognizable operand, command not found,
or illegal character), the syntax scan stops, execution is never attempted, and
a diagnostic message is issued.

If the syntax scan reveals no errors, the Editor attempts to execute the
co:mmand as stated. During execution, nonsyntactic errors may be caught,
either by the File Editor or by DMS (the execution of most File Editor
commands involves interaction with DMS). Certain errors (for example,
principal file not open; desired record does not exist) will be revealed before
any actual processing on the file is done. Other errors may not appear until
after a portion of the command has been executed (for example, an INPUT
command, putting records into the middle of an existing file, might try to
replace an existing record; and so forth.) In cases like this, any changes
already wrought upon the file remain; the command is aborted, and an error
message appears on SYSOUT.

DATA
MANAGEMENT
SYSTEM

.~

l' (b)

FILE EDITOR

~

,. (a)

[USER (SYSDTA) I

---~

The user can communicate directly with the File Editor at (a) and
the FiI,e Editor can communicate directly with the Data Management
System at (b), but there is no direct communication between the OMS
and th.~ user of the File Editor.

FIGURE 1-4. COMMUNICATION FLOW

1-10

Execution Response Messages

The second major category consists of File Editor messages which are
printed during or after command execution. This category is further divided
into:

1. File Editor-oriented messages.

2. User··oriented messages.

File Editor-Oriented Messages

File Editor-oriented messages are produced as a result of the successful
execution of the commands HALT, OPEN, and QUALIFY and are not under
the control of the user. These messages indicate the status of a file after
execution of the given command.

User-Oriented Messages

User~oriented messages are further subdivided into:

1. Conversational (TEXT, CHANGE) and output (PRINT, VERIFY)
messages.

2. Review messages.

3. Nonconversational messages.

CONVERSATIONAL/OUTPUT MESSAGES

The details of conversational/output messages are described in Section 3
under commands CHANGE, NOTE, TEXT, PRINT, and VERIFY.

REV~ EW MESSAGES

Review messages can be of three degrees of complexity:

1. No review - gives no indication of successful execution.

2. Partial review - in general, indicates the line number, length of lines
edited, and the total number of those lines.

3. Full review - displays, along with the line number and length of the line,
the contents of each line after it has been edited. Upon successful
termination of the File Editor command, a count of the total number of
lines edited is displayed.

Unless otherwise instructed, the File Editor gives no review information.

In order to obtain either a partial or full review, the user must issue a RESET
command indicating the desired degree of review. That degree of review then
holds for all further commands until another RESET command is given,
calling for a changed degree of review.

1-11

NONCONVERSATIONAL MESSAGES

The File Editor allows the user the option of receiving on SYSOUT a source
copy of the File Editor command currently being executed. This feature is
useful primarily to the nonconversational user because it allows him to
follow the sequence of commands in execution. This option is called List
and is controlled by the RESET command.

If the List option is exercised in an interactive environment, the File Editor
will repeatedly display on SYSOUT each user-issued command statement.
However! it can be useful during conversational operation to trace
specifically the sequence of commands that have been executed in the Loop
and Procedure modes.

The NOTE comnland will always send its output to SYSOUT, and hence the
List option does not affect the NOTE command.

1-12

2. SYNTAX

FILE EDITOR SYNTAX

Each of the File Editor commands, discussed in detail in the next section,
provides the user with the ability to adapt each command to a great variety
of different editing operations. A typical editing command may, for
example, operate on a single line, a part of a line, on a single character, or
upon particular syllables in a whole succession of lines. This section is a
general explanation of the symbolism used in the presentation of the specific
command.

File Editor Command Statements

A File Editor command statement consists of three main parts:

1. An optional name field followed by at least one space.

2. An operation field.

3. An optional operand field preceded by at least one space.

Spaces and Delimiters

Name Field

One or more spaces separate the fields from each other. The symbol Ll
(delta) is defined as meaning one or more spaces.

Similarly, exc(~pt in the case of procedure calls, any number of delimiters
(equal signs, commas, or spaces) are allowed between operands. The symbol
Jj) (slash Jj)) is defined as one or more delimiter symbols.

rp means (~} [(~ }]

The symbols Ll and Jj) appear in all File Editor commands; they are called
operand delimiters.

If a command statement is given a name, that name appears in the first field
of the statement. It may consist of from two to nine characters; the first
character must be a period (.), and the second character must be alphabetic
(one of the letters A through Z). The remaining characters, which are
optional, may be alphanumeric (A through Z, 0 through 9 only); the name
field must be separated from the operation field by at least one space.

2-1

Operation Field

Operand Field

The operation field of a command contains either a File Editor verb or a
procedure name and is followed by at least one space. The File Editor verbs
lnay be written in full or they may be abbreviated. Thus, the command

OPEN

can also be written

o The abbreviation for each command is shown
in Section 3.

All verbs must be terminated by at least one space if there is an entry in the
operand field. If no operands are present, the ETX can immediately follow
the cOlnmand.

The operand field is optional; if present, it must follow the operation field.
The operand fields of the File Editor commands may contain a great variety
of paraJneters. By means of these parameters, the user can select and specify
exactly what data he wishes the command to operate upon. Each command
also carries a complete set of default options that are exercised whenever the
user fails to indicate parameters specifically. The general applications of
default options are outlined in this section; their specific applications to
particll lar commands are discussed in section 3 of this manual.

Some commands carry more than one operand parameter; in such cases each
parameter must be followed by at least one delimiter. Except for the RESET
and VERIFY commands, the parameters carry positional significance; thus,
the exact order shown in the symbolic form of the comnland must be
observed. In the case of an interactive user at a terminal, the last parameter
must always be followed by an ETX to initiate execution of the command.

OPERAND SYNTAX

The dOlnain of a Fjle Editor command is that portion of a file in which the
command is to become effective. The domain of a command is defined by
two types of parameters:

1. Line address parameters that indicate a range of lines.

2. Line content parameters that indicate a specific segment of every line.

In the syntax of each command in this manual, line address parameters are
indicated by the symbols al and a2; line content parameters are indicated by
eel and ee2.

A keyword parameter specifies a unique situation within the domain of a
conlmand. This type of parameter is usually last in the operand field and, if
used, ntay usually be abbreviated to its first letter. For example, the
keyword parameter OLD can be written also as 0, and the keyword NEW, as
N.

2-2

If a keyword parameter is not specifically stated, a default value is used in
the execution of the command. The default values are indicated in the
description of each command by the underline.

The entire input command statelnent is scanned syntactically, and the value
of each parameter is determined before the command is executed.

Line Address Parameters

Line Number

Line address parameters are denoted by the symbols a I and a2; the first
symbol indicates the address of the line at which the operation is to begin,
and the second symbol indicates the address of the line at which the
operation should end. There are five different ways of assigning values to a I
and a2. They are:

1. Line number.

2. Current line pointer.

3. Last line pointer.

4. Symbolic line address.

5. Relative line: address.

A line number (also known as key) may consist of one to eight decimal digits
that uniquely address a line of a file. Although the numbers are stored
internally as full 8-digit numbers without decimal points, the user nlay
instruct the File Editor to introduce a decimal point anywhere in the line
number.

Thus, if the user wishes to set the decimal point between the third and
fourth digit from the right, he would enter the command:

RESET P3

The effect of the user's specifying an assumed decimal point is shown in
figure 2-1. The number 1.2476 is illegal because there are more than three
digits to the right of the decimal point and thus violates the value assigned in
the RESET command.

User Internal

1 00001000

1.2 00001200
8081.247 08081247

1.2416 Illegal

If the user issues the command, RESET P3, the File Edtior will accept all the above
numbers except 1.2476, even though all numbers appear inside the computer as
shown at right. The last value on the left carries four digits to the right of the point,
instead of three or less, and is therefore unacceptable.

FIGURE 2-1. LINE NUMBER RELATIONSHIPS

2-3

Current Line Pointer

The cunent line is defined as that line which will next be processed in
default of other explicit line address specifications. The symbol designating
the current line number is the asterisk *. If a command has a domain
represented by a 1 and a2, then the value of * will point to the next line to
be processed, if the command is effective. When the command has processed
its finallline, a2, the value of * will be set equal to a2. The convenience of
the current line pointer arises when the values of the line address parameters
are not specified; the default value of * will be used to define the domain of
command execution.

Last Line Pointer

Notes:

1. When a principal file is first opened, the value of * is set
equal to the first existing line of that file.

2. If a File Editor command modifies the value of * the way
it does so is described in the discussion of that command.

3. The user may change the value of * by using the SET
command.

For example,

SlET_*_=_200

sets the value of * equal to 200.

The last line of the principal file is designated symbolically by $. The use of
$ as the a2 pararneter would extend the domain of the command to the last
line of the principal file. The File Editor automatically adjusts the value of $
as new lines are appended to the file or old lines removed from it.

The expression $-n indicates the nth line from the last line in the file; the
expression $+n is meaningless, and thus illegal.

Symbolic Line Pointers

A symbolic line pointer is a symbol whose value can be set to any
nonnegative, 8-d:lgit decimal number to designate a line in a file. The File
Editor provides 10 such symbolic line pointers by the use of the symbol $n,
in which n = 0, :[, 2, ... , 9. The user may modify the value of $n (n = 0, 1,
2, ... ,9) with the SET command.

For exanlple,

SET $3:: 250

When the File Editor opens the principal file, it sets all 10 symbolic line
pointers equal to the line number of the first existing line of the opened file.

The SET command allows the user to set any $n to any line address
parameter, a; it does not require that a line with the address a exist, a feature
which is useful for creating new lines.

2-4

Relative Line Addressing

If there is a line in a file that can be addressed by a, then the expression a ± e
is a relative line address in which e is a numerical value that specifies the
number of lines preceding (-) or succeeding (+) line a. In order for the
relative line address 1000+5 to be valid, line 1000 must exist and be
followed by five lines of the file; 1000+5 then refers to the fifth line after
1000, whatever its actual line number may be. Similarly, for 1000-5 to be
valid, line 1000 must exist and be preceded by at least five lines of the file.

Line Address Formats

Notes:

1. If in relative line addressing the a is omitted, the current
line is assumed; that is, +3 is equivalent to * + e.

2. Unless otherwise specified, a ± e is a permissible form
whenever the symbols a, ai, or a2 (line address parameters)
appear in this manual.

Some File Editor commands require a clearly defined range of lines. This
range is expressed as al f/J a2, indicating that the command is to act
upon all lines from a 1 to a2 inclusive.

Other commlands require only one line address parameter. The syntax of this
type of command uses either the letter a or Q. The a represents the address of
a line which mayor may not already exist in the file. The Q represents the
address of a line which cannot exist. Although the details of the a and Q are
given in the respective command descriptions, their purpose can be
summarized with several of the File Editor commands.

The Get, Input, and Move commands, for example, all obtain data from a
secondary source and insert them into the principal file starting at line
address Q. The requirement that Q should not currently exist in the file
assures the user that he will not inadvertently destroy existing data. If several
lines are inserted and one of the later line numbers should coincide with or
exceed one already in existence, the insertion process stops automatically
before destroying or overstepping the existing line.

In other words, insertion of lines nlust begin at a new line number and stop
before the next higher existing line number.

The CHANGE command allows the user to change the contents of a specific
line. Hence, the line address parameter is stated as the symbol a and must be
an existing liine.

Finally, the TEXT command offers the user the opportunity to create new
lines as well as display, delete, or replace existing lines of the principal file.
The line address specified by the symbol a in these various cases mayor may
not exist, depending upon the needs of the command.

2-5

Defaults

The line address parameters are expressed within square brackets to indicate
that they may remain unspecified if the user so desires. Although the
detailed default actions are listed in the individual command narratives, the
following default actions, which are consistently applicable to all File Editor
commands, may be considered at this point.

Defaults of a 1 117> a2]

1. If a2 is not specified, then a2 is set equal to a 1.

2. If neither a2 nor al is specified, both are set equal to *.

Defaults of [a]

In the CHANGE and SET commands, the value of * is used when there is no
value assigned to [a]. If the parameter a is omitted in a TEXT or INPUT
command, the value of $ (the last line in the file) is incremented by the
standard or given increment, n, for each new line added; this new value of $
is used in default of a.

Default of [Q]

If Q is not specified in the GET, INPUT, and MOVE commands, the same
default action described for default of a in TEXT is used; that is, the newly
created lines are appended at the end of the principal file.

Line Content Parameters

The line content parameters provide the user with the means to manipulate
the contents of lines or line substrings. The line content parameter,
therefore, is a command parameter that specifies the location of a substring
within a line; a substring may also be an entire line.

There are two types of line content parameters.

1. The string parameter identifies a group of successive characters within a
line.

2. The character count parameter identifies a position within a line.

String Pararneters

The string paranleter called for by some File Editor commands may be
composed of a string of up to 255 characters enclosed in apostrophes (,) or
quotation marks ("). The string parameter may also be an address of a line
whose content is the string parameter. The string parameter is written
symbolically as

s· ,

2-6

in the user's input, it may take one of three forms:

I :, I string I :, I
in which string can contain up to 255 characters;

I :, I string I:, I
in which the string can contain any even number of hexadecimal characters
up to 510; and

La

in which the string referred to is the complete contents of line a in the file.

A character string may be bounded by apostrophes or quotation marks. In a
command statement where the File Editor is accepting a string as input, for
the CHANGE or UPDATE, the string is always enclosed in apostrophes. In a
command statement which directs the File Editor to search for a particular
string, for instance the FIND or ALTER, the choice of apostrophes or
quotation marks to enclose the character string allows the user to specify
more precisely the required searching operation. This is achieved through the
recognition of text delimiter characters. By means of the RESET command,
the user may define any characters to be text delimiters. The set of 256
characters can thus be divided into two mutually exclusive classes: text
delimiters and those characters that are not text delimiters. Unless otherwise
instructed, the File Editor considers the following characters to be text
delimiters:

(. "+/)"?-sp '=* ,. . . . ,

Consider the example,

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P I T E S T eLI T E S T , X I 0 R

---,

assuming the default case of text delimiters to be in effect. The string of
characters, TEST, appears twice in the line of text. In the first occurrence it
is preceded by a n.ondelimiter character.

In specifying a string, the user employs symbols called string sensors. In the
process of de:scribing a particular string, the user may realize that perhaps it
will not always have delimiters around it. Therefore, the File Editor has two
symbols called string sensors. These symbols are the apostrophe (,) and the
quotation mark (").

2-7

The apostrophe (always written ') indicates that a text delimiter character
nlust be present at the indicated point. The quotation mark (always written
") indicates that a text delimiter mayor may not be present. A character

string must be preceded and followed by one or the other of the string
sensor symbols.

Suppose that a range of lines is to be searched for the string ABCD. If the
user enters 'ABCD", he would thereby indicate that the string he wishes to
find nlust be -prefixed by a text delimiter, and it mayor may not be suffixed
by a text delimiter.

If an apostrophe or quotation mark also exists in the string, as a character, it
must be duplicated to prevent ambiguity.

Thus,

'AREA' 'X' names the string AREA'X.

Assulne that the class of text delimiters has been reset to: space (), plus (+),
and comma (,) and the current line is:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
._.

P I S W T A M V I S W T A + 1 , X I

In a searching operation, the string of characters SWT A can be described in
the ways show:t1 in figure 2-2.

r--

string Parameter Meaning
1---

'SWTA' The string SWTA must be preceded and succeeded by a text
delimiter. Only one match is made at column 16.

"SWTA' The string SWTA may be preceded but must be followed by
a text delimiter. Two matches occur; at columns 3 and 16.

'SWTA" The string SWTA must be preceded and may be succeeded
by a text delimiter. Only one match at column 16.

"SWTA" The string SWTA may be preceded and succeeded by a text
delimiter. Two matches occur at columns 3 and 16.

--
Through proper indications by means of the quotation mark and apostrophe, any
given string of characters may be isolated from surrounding text.

FIGURE 2-2. STHING PARAMETERS

2-8

Character-Count Parameters

The character-count parameters define the domain of a command as a fixed
field throughout a range of lines. A single parameter points to a unique
character position in a line. A pair of character-count parameters specifies
two unique character positions within a line, and thus defines an inclusive
field within that line. A pair of character-count parameters in conjunction
with a range of line numbers consistently defines a field in every line of that
range.

A symbolic character-count parameter is a symbol whose value can be set to
any nonnegative integral number not exceeding 32K. There are 10 symbolic
character-counters that are represented as:

#d where d = 0,1,2, ... ,9.

The values of these counters are defined at principal file initiation by the
OPEN command which sets each #d (d=O, 1, 2, ... ,9) equal to 1. The user
may modify these values with the SET command.

Certain File Editor commands preempt the user's control of the values in
certain symbolic parameters; they use #0, #1, and #2 as pointers to indicate
the outcome of a completed command. The commands which affect these
poin ters are:

1. The commlands that affect only #0 are:

ALTER
DELETE

GET
INPUT

MOVE
UPDATE

WRITE

2. FIND affects #0, #1, and #2.

3. OPEN affects #0 through #9.

Note: The symbolic character counters #d (d = 0, 1,2, ... ,
9) are considered halfword binary counters. The user can
perform positive fixed-point arithmetic with these variables.
For example, if the value of

#5 is 35, and

#7 is 20

then the expression

#5-#7+2

will have the value 1 7.

2-9

Current Line-Size Symbol

The nUITtber sign (#) represents symbolically the total number of characters
in the current line. The value of # cannot exceed the maximum record size.
Because the value of # is a function of the current line, it may not be
changed by the user. If the user changes the value of * and thus points to a
different line of the file, the value of # is automatically adjusted so as to
reflect the size of the line at the new value of *.

Note: The symbol # is similar to #d in that it may be
considered as an operand in positive, fixed-point arithmetic.
For example, if * is pointing to a line having 200 characters
in it, and if #6 has the value 15, then the expression

#··#6+5

has the value 190.

Exalnple - Suppose that the following conditions prevail:

* is set to line 50

#4 = 6, # 1 = 19, #2 = 26

and line 50 consists of 36 characters:

THIS IS A LINE OF THE PRINCIPAL FILE.

The graphic representation of line 50 is:

I 10 11 2 13 1415 617 18 19 20 21 22 2324 25 26 27 28 29 30 3: 32 ~3 3~ 35 36 ~7

LI NE o:tr TH E PR I NC I P AL F I L~

Notice that C# represents the 36th position, since # is the
number 36. Line position 4 may be pointed to by #-#2-#4.

Other special uses of the # symbol are described under the JUMP command.

Individual Character-Count Parameters

An individual character-count parameter has the symbolic form, Ce, in which
the e is an arithnletic expression. Every character-count parameter must be
capable of being resolved into a positive integral number not greater than
32K. The value of the parameter points to the nth character position of the
line, where n is the value of the positive integral number.

2-10

Arithmetic Expressions

Any of the foUowing are valid arithmetic expressions:

1. A decimal integer not exceeding 32,000.

2. The current line size symbol, #.

3. A symbolic: character counter, #d (d = 0, 1, 2, ... , 9).

4. An arithmetic expression of the form:

PI ± P2± ... ± Pi in which any element Pj can be a decimal integer, current
line-size symbol, or a symbolic character counter.

Character Fields

Some File Editor commands call for the definition of a character field. The
syntax which defines a character field is written as a pair of character count
parameters:

eel [P Ce2]

The first character of the field is pointed to by Ce 1 and the last character by
Ce2, with the: relationship el ~ e2 understood.

Either or both of the character count parameters may be omitted. In default
of one or more such parameters, all File Editor commands take the following
actions:

1. If only one parameter is specified, it is assumed to be Ce 1. The File Editor
assumes that the field extends from Cel to the end of the line.

2. If both parameters are missing, the File Editor assumes that the field
extends across the entire line.

3. If the requirement that el ~ e2 is violated, the command is aborted and a
diagnostic message is given on SYSOUT.

4. If any line within the specified range does not contain all the character
positions indicated by Cel or Ce2, then part or none of that line will be
edited, The following principles govern the editing in such a case:

a. If a line has fewer characters than specified by Ce I (and
hence Ce2), the line is considered outside the domain of the
command arid no editing takes place.

b. If the line has more characters than Cel but fewer than
Ce2, the field to be edited extends from Ce 1 to the end of
the line.

Example - The domain of a command is defined by the parameters ai, a2,
Cel, Ce2. Graphically, the dorrmin is shown by the heavier lines in figure 2-3.

2-11

c#

I

al

*

t

NULL

a2

$

Cel Ce2

The horizontal lines represent the lines of a principal file. The line address parameters, al
and a2, define the clomain or range of effectiveness of a command. The character count
parameters, Cel and Ce2, define the range within the lines. The lines affected are drawn
with heavier-weight lines. Thn current line pOinter is indicated by the asterisk, *, in the
line below a1. The value of C# is determined by the length of the line currently in process.
The dollar mark, $, indicates the last line in the principal file.

FIGURE 2-3. DOMAIN OF A PRINCIPAL FILE

2-12

Session Attributes

The particular attributes of any session with the File Editor are determined
by the values assigned to a group of variables that can be controlled by the
RESET command. In all cases, there are defined default attributes that are in
force at the beginning of the session. The following discussion covers both
the options offered by the RESET command and the default attributes
supplied by the File Editor.

Tex t Delimiters (D)

The default set of text delimiters has been previously described in the
discussion of string parameters. The RESET command grants the user the
right to make any set of the 256 available characters into text delimiters.

Guard Characters (G)

Increment (I)

A point of possible confusion exists when a user wishes to create a program
file to be used in a nonconversational session as SYSDT A or SYSCMD. If
this file is to have system c01nmands, the user is confronted with the
problem of inputting a line whose first character is a slash (/) without having
the command interpreted as a system command for immediate execution. To
resolve this confusion, the File Editor designates one character as the guard
character.

The guard character is a unique character that may precede a line of input
when using the INPUT, TEXT, or CHANGE commands. The guard character
is deleted by the File Editor and the subsequent input is interpreted purely
as text. It is not interpreted as a File Editor command or as a system
command.

The guard character for the File Editor in event of default is the period (.).
The user is cautioned against using the / or N characters as guard characters.

For example, the TEXT command allows the user to input data through the
terminal. The user indicates the end of his data by issuing the subcommand,
#END. If, however, the user wished #END to be part of his data (and
assuming that the guard character were set to %), he would type:

%#END

The guard character % would be deleted and the desired data, #END, would
then be stored ..

If the user is creating a series of new lines by a single command, the File
Editor will automatically calculate subsequent line numbers provided that
the user specitles the number for the first line and an increment, n, from
·which to calculate succeeding line numbers. Specifically, the number (key)
of the ith new line can be calculated from the formula.

ki=first number + (i-1)n.

2-13

Listing (L)

If the us.er wishes, he may specify a temporary line increment, to be used in
a given instance of a GET, INPUT, MOVE, or TEXT command. If he does
not, the File Editor takes the present value of the standard line increment I.
The standard increment I can be reset to any number from 0 to 99999999,
inclusive; its default value is 100.

The listing option allows the nonconversational user to trace the execution
of each of the File Editor commands. When this option is invoked by the
RESET command, the File Editor displays each command statement on
SYSOUT before it checks the syntax of the command and executes it.

Decimal Pointer (pj

Review (R)

Tabs (T)

The File Editor allows the principal file to have as many as 100,000,000
unique line numbers, each falling between

00000000 and 99999999, inclusive.

The user may set an assumed decimal point in anyone of the nine possible
positions by the RESET command. The positions are numbered 0 through 8
from right to left. In default of a specific setting, the File Editor assumes PO.
In this case, the numbers 00000351 and 351 are equivalent.

The cornplexity of information supplied by the various degrees of review is
described in Section 1. Without special action by the user, the File Editor
always gives no review. In order to obtain either partial or full review, the
user must issue a RESET command indicating the desired degree of review.
That degree of review then continues for all commands until another RESET
command is given in which some other degree of review is called for,
including the reestablishment of no review.

When he is creating new lines in the principal file with the TEXT and INPUT
commands, the user may wish to format those lines through the use of
tabulation positions. The File Editor allows a maximum of 10 such
tabulation positions. Associated with each terminal device is a control
character called TAB, which the File Editor interprets as a directive to
space-fiIll to the next tabulation position, if it exists. Otherwise, the tab
character is treated like any other input character.

The File Editor supplies four groups of tab settings that the user can request
with the RESET command. They are:

1. No tabs.

2. Asselnbly tabs.

3. COBOL tabs.

4. FORTRAN tabs.

The language tabs are supplied primarily to assist the user in the preparation
of source-language program files, but may also be useful in formatting lines
of a data file.

2-14

ALTER

al and a2

3. FILE EDITOR COMMAND VERBS

This section describes each of the following File Editor command verbs:

ALTER NOTE

CHANGE OPEN

CLOSE PRINT

DELETE QUALIFY

FIND RESEQUENCE

GET RESET

HALT SEARCH

HELP SET

INPUT TEXT

JUMP UPDATE

LOOP VERIFY

MOVE WRITE

The ALTER command searches a domain of the principal file for the first or
all occurrences of a specified string, and replaces it with another specified
string.

Name Operation Operand

[A] [.name~]

These two line-address parameters define the range of lines of the principal
file to be edited.

If a2 is not specified, the line indicated by a 1 is edited. If neither a 1 nor a2 is
specified, the line indicated by the current line counter * is edited.

3-1

Ce1 and Ce2

sl

s2

FIRST (F)

ALL (A)

This pair of line-content parameters defines a contiguous portion of every
line of the range. Notice that the quadruple a1, a2, Ce1, Ce2 defines the
domain of this conlmand.

If Ce2 is not spedfied, the line is edited from Ce1 to the end. If neither Ce2
nor Ce2 is specified, the entire line is edited.

This mandatory string parameter is the search argument for the command
(see Section 2 for a discussion of string parameters). If sl is null and Ce1 and
Ce2 are omitted, then all null lines within the domain are replaced by the
string s2. [f sl is null and Ce1 and Ce2 are specified, command execution is
terminated and a diagnostic message is displayed.

If neither sl nor s2 is specified, command execution is terminated and a
diagnostic message is displayed on SYSOUT.

This Inandatory string parameter is the replacement string for sl. Because sl
and s2 do not have to be of equal length, the replacement string s2 may
contract or expand the line. If s2 is null, then sl is deleted. This process,
however, never r'emoves a line from the principal file even if that line
becomes null.

The keyword parameter FIRST (abbreviated to F) specifies that, after
altering the first sl, the command is to terminate. This means that the
command, if succl~ssful, alters only one line of the file; * will be set to the
address of that line.

The keyword ALL (A) specifies that every sl within the domain of the
comnland is to be altered.

Command Execution

The ALTER conlmand scans the specified portions of each line of the
domain for an occurrence of sl, and if a match is found, a check is made on
the string sensor requirements. If these requirements are satisfied, then the
string sl is replaced by s2 and the scan pointer is positioned to the right of
s2. If the ALL (A) keyword was specified, the scanning and altering process
continues to the end of the domain. Otherwise, the command is terminated.

3-2

Command Termination

Indicators:

#0

*

Responses:

No review

If at lease one sl was alterec.. hen tht;:, command was
effective and #0 is set to 1. Jtherwise, the command was
ineffective and #0 is set to 0).

The value of * is set to the line address of the last line
scanned. (The use of keyword FIRST (F) causes * to be set
at the line address where the first sl was altered.)

No output to SYSOUT

Partial review For every altered line:

Line Number

Final line length and total count of lines altered

Full review For every altered line:

Line Number

Final line length

Altered contents and total count of lines altered.

3-3

Example

~~ R R, T A
~~ I 5.' IS

~~ BEG I N M V ex, Y

~~x

y

Z
ftEND
,~

~~

R RF

L REG5,A
ST REG7,Y
B NEXT

DC A(ITEMl)
DC A(POINT)
DC A(SEQ)

REVIEW MODE IS FULL

ALTER 5,35,C16, "Y"='Z' ,ALL
5 • < 18 >

BEGIN MVC X,Z
15 . <21>

ST REG7,Z
NUMBER OF LINES AFFECTED:

v
~~

R R
,~

~~

P 1 c ..
.?

BEGl(N MVC X,Z
L REG5,A
ST REG7.1 Z
B NEXT

X DC A(ITEMl)
y DC A(POINT)
z DC A(SEQ)
v
~.

3-4

<2>

CHANGE

a

x

The CHANGE command edits a line of the principal file character by
character.

Name Operation Operand

[~l [.name~ 1 I ~HANGE} [Jl)al [Jl)Xl [Jl)l

Indicates the line number of the line in the principal file that is to be edited.
If a is not specified, then the value of * is used.

If specified, indicates that input and output are to be in hexadecimal format.
Otherwise, character format is enlployed.

Command Execution

The line specified by the letter a is displayed on SYSOUT. The user then
types in a line of editing information. After reading the line of editing
information, the File Editor scans it in parallel with the original line and
constructs a new line character by character. Each charactet of editing
information tells the File Editor how to process the corresponding character
in the original line. The editing characters are:

- Retain this character.

? - Delete this character.

A quoted string - Insert this string. (See Section 2 for a discussion of string
parameters.)

Any character - Replace original character.

ETX - Retain the rest of the line.

File Editor scans and acts upon the editing information one character at a
time until it has all been used.

If the hexadecimal mode is set, then the original line is displayed in
two-character hexadecimal format. The editing information also is expected
in two-character hexadecimal format, thus:

- Retain this character.

3-5

?? - Delete th:is characters.

Quoted hex string - Insert this string (even number of hexadecimal
characters).

Any pair of hex characters - Replace original pair of hex characters.

ETX -- Retain the rest of the line.

The editing information must consist of an even number of characters.

After creating the new line, the File Editor reads the next command from
SYSDTA. If this is a null command (ETX), then the CHANGE process is
initiated autofaatically for the next existing line in the principal file. The
CHANGE process terminates when a nonnull command is issued from
SYSDT A after the creation of a new line.

Command Termination

Indicators: -----

* Points to the last line displayed.

Responses: -----
No review Content of old line.

Partial review Content of old line and number and length of new.

Full review Number, length and content of old and new lines.

Programrning Notes

1. A guard character (. in default) may be used when the editing information
has a IT1eaningful character at the beginning (for #).

2. In specifying a string, the user must follow standard string rules. (See
Section 2.)

The insertion of a string may result in the new line being longer than the old.
In fact, it is the only means by which a changed line can be longer than the
old one.

3. In case of error, the command is aborted and * will point to the last line
scanned.

3-6

Example

~e R R

D 100

INPUT 100

~e ABC D E F G H I J K L M N

#END

~eCHANGE 100

ABCDEFGHIJKLMN

~: . /? ? ' X Y Z ' # # P Q R 5

~:P 100, N
100. <15>

/XYZDEPQRS LMN

~eD 100
~q NPUT 100

~~ABCDE FGH I JKLMN
#END

(Note: two spaces follow "PQRS".)

~~CHANGE 100, X
C1C2C3C4C5C6C7C8C9DID2D3D4D5

~~ . 6 1 ? ? ? ? ' E 7 E 8 E 9 ' # # # # D 7 D 8 0 9 E 2 4 0 4 0

P 100 N X

100. <15>

61E7E8E9C4C5D7D8D9E24040D3D4D5

P .100 N

100 .

/XYZDEPQRS

<15>

LMN

3-7

CLOSE

filename

The CLOSE comJnand allows the user explicitly to close any file that is open
in the File Editor session.

Name Operation

[6] [.nanle6]
(
CLOSEj
CL

Operand

J,l>filename
J,l>*PROCEDURE*
J,l>*PROC*
J,l>*PRINCIPAL*
J,l>*PRIN*
J,7)*ALL*

The fully·qualified name of the file the user wishes to have closed.

PROCEDURE
or *PROC*

*PRINCIPAL *
or *PRIN*

ALL

Either of these keyword operands indicates that the user wishes to close
whatever procedure file is open.

Either of these keyword operands indicates that the user wishes to close the
principal file which is currently open.

This keyword parameter instructs the File Editor to close the principal file
which is currently open and also the procedure file, if there is one currently
open.

If the user does not specify any parameter, File Editor assumes lie ALL * was
intended.

Command Execution

File Editor closes whatever files the user has requested and puts out a
message naming the files closed. If the user specifies the name of a file
which is not open at this time, or if he specified *PROCEDURE* (or
PROC) and no procedure file is open at this time, the File Editor issues an
error message to draw his attention to this fact. In the same way, a user who
gives the eomlnand CLOSE *PRIN* when no principal file is open is made
aware of the discrepancy.

3-8

Command Termination

Exanlple

Indica tors: Not affected.

Responses: The names of any files closed are displayed on SYSOUT.

Assume that the principal file being edited is named PA YROLL.A and that
the procedure currently in use is named SALARY.DETAIL when the File
Editor receives the command CLOSE I(c ALL I(c •

User:

File Editor:

C LOS E ~~ ALL ~~

CLOSED PRINCIPAL FILE PAYROLL.A
CLOSED PROCEDURE FILE SALARY.DETAIL

3-9

DELETE

al and a2

Cel and Ce2

s

The DELETE ,;ommand deletes a specified domain of the principal file.

Name Operation Operand

[Ll] [.name~] IgELETE I [IPal [IPa2]] [IPCel [IPCe2]] [IPs] [IP]

These two line address parameters define the range of lines in the principal
file to be processed. If a2 is not specified, only the line indicated by a I is
edited., If neither al nor a2 is specified, the line indicated by the current line
pointer * is edited.

This pair of line content parameters defines a contiguous portion of every
line in the range. Notice that the quadruple ai, a2, Cel, Ce2 defines the
domain of the command.

If Ce2 is not specified, the line is edited from Cel to the end. If neither Cel
nor Ce2 is specified, the entire line is edited.

If this parameter is specified, then every string s within the domain is
deleted, thus contracting the line where each string s occurs.

Command Execution

If a string parameter s is not specified, the entire domain is deleted from the
principal file.

Null lines within the domain will be deleted only if Cel and Ce2 are not
given.

If s is specified, then the domain is scanned and each s is deleted.

Command Termination

Indicators:

#0

*
Responses:

No rev:lew

Set to I if anything is deleted; otherwise, it is set to O.

Set to the last line processed in the domain.

None.

Partial review List of line numbers and total number of lines affected.

Full review If the whole line is deleted (neither Cel nor Ce2 specified)
then the response is the same as for partial review. If lines are
changed, then the line number and its new contents are
displayed along with the total number of lines affected.

3-10

Programming Notes

Example

The command .DELETE 1 $ s (where s is a string of three, ten, or more
spaces enclosed by apostrophes) is useful for quickly deleting almost all
trailing blanks from a file. (Such a file might have been created by a
background task from punched cards, using the TEXT command.)

R R, TA
v ...
D 1 $

INPUT 5, IS

::COMPRE

#END
v ...
R RF

CLC
BE
8H
B

CLC
BNE
B

REVIEW MODE IS FULL
'''' ...

DELETE 10,25

A, B
X
y

Z

A,B
Z
X

10. DELETED 15. DELETED 20. DELETED 25. DELETED

NUMBER OF LINES AFFECTED: <4>

P 1 $

5 •
COMPRE

30.

<18>
CLC A,B

<16>
BNE Z

35. <16>
B X

3-11

Example A

,~ DELETE 1 $

~~ INPUT 5., IS

~es YMB 1 DC
SYMB2 DC
SYMB3 DC

~:MMB 1 MVC
CLC

#END

~~RESET RF

A(TIMBl)
A(TIMB2)
A(TIMB3)

MBl.,SYMBl
SYMB2.,MBI

REVIEW MODE IS FULL

~~ FIN D 5., $., , M B 1 '

20. <24>

MMBI MVC MBl.,SYMBl

NUMBER OF LINES AFFECTED: <0>

~e V E R I F Y ~e., # 0 ., # 1 ., # 2

0 := 1

1 = 16

#2 = 18

3-14

Example B

Using ALTER to find all occurrences of string 'THE':

~~ P R I NT 1 .1 $.1 N

100 <9>

THE QUICK

200 <9>

BROWN FOX

300 <15>

JUMPED OVER THE

400 <8>

LAZY DOG

500 <19>

AND THE SLEEPY CAT.

REVIEW MODE IS FULL

~e A L T E R 1.1 $.1 f THE f.1 'T HE'.1 ALL

100 <9>

THE QUICK

300 <15>

JUMPED OVER THE

500 <19>

AND THE SLEEPY CAT.

NUMBER OF LINES AFFECTED: <3>

3-15

GET

C'n'
X'h

filename

ReI

Re2

Kkl

The GET command copies a domain of a secondary file into the principal
file.

Name Operation Operand

[1,7) I C'n' I] I/) filename [11,7)Rel [Il>Re2 lJ
X'h' 1l>Kkl [1l>Kk2]

[Ll] [.name~]

[1l>Ce3 [1l>Ce4]]

{

[Jl)£] [Jl)In]}
Jl)KEY
I/)K

[Jl)]

This parameter gives the read password required to open the secondary file.
If not present, no password should be required to read this secondary file.

This parameter specifies the name of the secondary file to be accessed. This
param{~ter must be given.

ReI is a symbol made up of a key letter R and an expresssion el, the value
of whkh must be a positive nonzero integer specifying that copying should
start with the e 1 th logical record from the beginning of the secondary file.

Re2 is a symbol made up of a key letter R and an expression e2, specifying
that copying should end with the e2nd logical record from the beginning of
the secondary file. If ReI is specified but not Re2, then all the secondary file
from the elst line up to and including the last line is copied.

Kkl is a symbol made up of the key letter K and eight decimal digits. This
symbol specifies the key of a line in the secondary file at which copying is to
begin.

Note: The Kk parameters should be specified only if the
secondary input file is either an ISAM file with 8-byte
numeric keys or a SAM fue in which each record begins with
8 numeric characters.

3-16

Kk2

Rel,Re2
Kkl,Kk2

Ce3

Ce4

KEY

Q

In

Kk2 is a symbol made up of the key letter K and eight decimal digits. This
symbol specifies the key of a line in the secondary file at which copying is to
end. If Kk2 is not given and if Kkl is specified, then all the secondary file
from Kkl up to and including the last line is copied. (See programming note
5 below.)

If none of these options is specified, then all the records in the secondary file
are copied.

Ce3 is a symbol made up of the key letter C and an expression e3, whose
value nlust be positive number. If present, copying of records from the
secondary file begins at the e3th character of each record.

Ce4 is a symbol made up of the key letter C and an expression e4, whose
value must be a positive number. If present, copying of records from the
secondary file stops at the e4th character of each record.

If Ce3 but not Ce4 is given, copying begins at the e3rd character and extends
to the end of each record.

If neither Ce3 nor Ce4 is given, each record copied is copied in its entirety.

This parameter indicates that eight numeric bytes from the secondary file
record are to be used to create the key of the new principal file record. If the
secondary input file is an ISAM file, the new record has the same key as the
old record. If the secondary input file is an SAM file, the first eight bytes of
the input record are used to form the ISAM key of the new record in the
principal file.

This parameter is' a line number that does not exist in the principal file. New
lines will be created beginning with this number. If Q is not given, then the
lines are added to the end of the principal file.

This parameter may be used in conjunction with the Q parameter described
above. In is a symbol made up of the key letter I and n, where n specifies the
line nUlnber increment to be used to generate consecutive line numbers after
Q. If this parameter is not specified, then the standard line increment is
assumed.

3-17

Command Execution

The secondary file is opened for input and positioned to read the first record
of the dornain which may be one of the following:

1. e 1 th re,cord, if Re 1 is specified;

2. The reGord with Key k 1, if Kkl is specified and such a record exists in the
file. If the record with key kl does not exist, then the file will be positioned
to be read from the next higher-valued key within the range.

3. First record of the file if neither of the above are given.

The specified range of each secondary file record is used to create a principal
file record. If the Q and I parameters are used, the first line created in the
principal file will have a number Q, and subsequent lines will have numbers in
increlnents of n: Q+n, Q+2n, and so forth.

Thus, the Q and I parameters create a contiguous group of new records;
whereas the KEY parameter can result in new records being scattered
throughout the principal file.

Command Termination

Indicators.:

#0

*

Responses:

No review

If at least one line is created, the command is said to be
effective and #0 is set to 1. Otherwise, it is set to O.

The * is pointed to the last line created.

No output to SYSOUT.

Partial review List of line numbers created, their lengths, and the total
count.

Full review

Programming Notes

Every line created is printed out with its number and length
and, finally, the total number of lines created.

1. If a line in the domain has no content or it falls short of Ce 1 , then it is not
used to create a new line. The next line in the domain is considered in that
case.

2. This command is aborted if it is found before execution that Q already
exists in the principal file.

3-18

Exarnple

3. If the KEY parameter is used, existing lines in the principal file may be
replaced by newly created lines (if the old and new keys match). If the KEY
parameter is not used, the comrnand will be aborted if it attempts either to
replace or to overstep an existing line in the file.

4. If the cOlllmand is aborted during execution, all the lines that were
already created remain in existence, * points to the last such line, and #0 is
equal to I.

5. In the pararneter given syntactically as,

ReI Re2

Kkl Kk2

it is not necessary that k 1 and k2 be existing lines in the secondary file. They
serve only to define a range of lines in the secondary file to be copied.

6. el and e2 rnust be valid arithrnetic expressions conforming to the rules set
forth in Section 2 of this manual.

Assume that there is a secondary file named SUBFL that has the following
records:

CPDPOS
DFALSE

DC
L
L
SH
ST
DSKIP

A(O)
CREG4,CPDPOS
CREG5,O(O,CREG4)
CREG4,=Y(4)
CREG4,CPDPOS

and let the full review switch be on.

XGET SUBFL R4 R5 6 12
6., <26>

5H CREG4,=Y(4)
8. <27>

5T CREG4,CPDPOS

NUMBER OF LINES CREATED: < 2>

3-19

HALT

The HALT comlmand systematically terminates the' File Editor session and
returns control to the TSOS Command Language Processor.

Name Operation Operand

[A] [.nameil] I~ALTI [1,7)]

No paralmeters are permitted.

Command Execution

This cOInmand will close either or both of the following files if they are
open:

1. Principal file.

2. Procedure file,

Then it will release the File Editor from the user's virtual memory and return
to the TSOS Command Language Processor. The TSOS Command Language
prints a / on the terminal, indicating the end of the File Editor session. In
the nonconversational mode, the TSOS Command Language processor reads
the next command from SYSCMD.

Command Termination

Example

Indicators: -----
Responses:

None.

In all review modes, the File Editor displays the name of any
principal file closed, and also the name of any procedure file
closed.

Assume that the principal file being edited is named PAYROLL.VERSION3,
and that no procedure file is in use.

~~HAL T
CLOSED PRINCIPAL FILE PAYROLL.VERSION3

/

3-20

HELP

COMMAND

VERB LI ST

PROCCALL

PROCDEFN

PROCNAME

ABBREV

The HELP command displays on SYSOUT various messages designed to help
the user of the File Editor.

Name Operation Operand

Jl)COMMAND
Jl)VERBLIST
Jl)PROCCALL
Jl)PROCDEFN
Jl)PROCNAME
Jl)ABBREV
Jl)any command-verb
Jl)any operand

[D]

A message is printed describing the general syntax of File Editor commands.

Lists all File Editor verbs and procedure keywords

The general form of a File Editor procedure call is shown.

A description of File Editor procedure definitions is printed.

A description of procedure names is given.

The abbreviation scheme for File Editor commands is shown.

any command-verb

any operand

A message is given which lists all the operands that may be used with the
given verb.

A short description of the given operand is printed.

If no operands are specified in the HELP command, an extended message
describing the use of the HELP command itself is produced.

The various operands may be listed in any order in one HELP command;
each operand must be preceded by at least one syntax delimiter, for
example, a space or a comma.

3-21

Command Tennination

Example

Indicators:

Responses:

The command

No Change

The messages described in the parameter descriptions. The
setting of the review mode has no effect on the HELP
command.

HELP ALTER, AI, FIRST, PROCCALL

produces four messages, describing the ALTER command, the operands Al
and FIRST and procedure calls.

3-22

INPUT

Q

In

·x

The INPUT command creates new lines in the principal file, using textual
data which it reads from SYSDT A. By this command, the user can create
several lines in one terminal read operation, he can also create lines larger
than the SYSDTA buffer.

Name Operation Operand

[L1] [.nameL1] I ~NPUT I [f/J Q] [f) In] [f/J X] [f/J]

This paralneter specifies the line number for the first line to be created. If
specified, Q must not be an existing line number in the file. If it is not given,
then the new lines are added to the end of the file.

In is made up of a key letter I and a variable n in one of the forms:

$d (d=O, 1, ... 9)
$

*
integer of no more than 8 digits

specifying the line number increment to be used in generating consecutive
line numbers after Q. If this parameter is not specified, then the standard line
increment is used.

This symbol specifies that all input and output will be in two-character
hexadecimlal format. If X is not specified, the File Editor assumes that the
input will be in character for:mat.

Command Execution

The File Editor uses the text which it reads from SYSDT A to create lines in
the following manner:

1. The first line consists of all characters up to the first paired
carriage-return and line-feed (which may occur in either order); such a pair
will be denoted here by CR/LF.

2. Each additional line consists of all characters after the last previous
CR/LF and before the next CR/LF.

3. The CR/LF's themselves do not go into the file.

J-23

4. ETX's may be introduced at any point, without breaking the pattern of
lines delinlited by CR/LF. Thus, a line may be created in several pieces, each
(except the last) ending with an ETX, and the last ending with CR/LF and
(perhaps) an ETX.

5. ETX does not terminate the INPUT command, but merely allows the
Editor to create lines from what has been already typed; after creating a
group of lilnes, the File Editor returns to SYSDTA for more input.

6. To ~erminate the INPUT command, the user must type the character
#END (or #E) either just after the File Editor has issued a new read to
SYSDT A, or just after a CR/LF. The #END (#E) must be followed by an
ETX, with perhaps one or more intervening spaces.

7. If, at the time #END is read, an incomplete line (not terminated by
CR/LF) stands in the File Editor's INPUT buffer, that line will be made a
line of the file.

8. If the X (hexadecimal) parameter was given, each two successive
carriage-return/line-feed pairs must be separated by an even number of valid
hexadecinlal characters (0-9,A-F).

9. A caniage-return or line-feed standing alone will not be recognized and
will be made a part of the line in which it stands.

10. If the beginning line-number Q was given and does not exist in the file,
the first Bne created will have line-number Q; if Q was not given, the first line
created will have hne number $ + n if n was given; or $ + standard increment,
if n was not given.

11. Under the full review mode, the list of lines created, lengths, and
contents is output (if any lines have been created) each time the user types
an ETX. Under partial review mode, the list of lines created and lengths is
output either (1) at the end of the command, or (2) when the output buffer
becomes full (every 56 lines).

Command Termination

Indicators:

#0

*

No review

This indicator is set to 1 if at least one line is created;
otherwise it is set to o.

This indicator points to the last line created.

NO' output to SYSOUT.

Partial review List of line numbers and their length followed by total
number.

Full review Line number, length, and content of each line created
followed by total number.

3-24

Programming Notes

1. If the user attempts to transmlit a record longer than his task-buffer size,
the File Editor will ignore that record, and ask him to send a shorter one.

The task-buffer obtained by the File Editor is 270 bytes long; however, if
the user requested a larger buffer (up to 1024 bytes) in his LOGON
command, this larger buffer is used by File Editor.

2. In order to put a line beginning with #END in this file, the user should
prefix the line with a guard character (. in default). Any guard character
found at the beginning of an input record will be stripped off by the File
Editor. In order to create a line whose first character is the guard character,
the user should prefix it with another guard character.

3. Tab characters may appear in the input, and will cause the File Editor to
insert spaces up to the next tabulation position, if there is one. (See RESET
Command, T operand.) If there are no more tabulation positions, the tab
character is left as a valid character in the line created.

4. In the hexadecimal mode, each record must consist of one or more pairs
of hexadecimal characters. Two adjacent tab characters are required to cause
tabulation.

5 . The Editor will abort the INPUT command and issue a diagnostic message
if the user tries to replace or overstep an existing line. All lines previously
created, of course, will remain in the file; * will point to the last line created.

6. As the Video-Data Terminal (RCA 70/752) has no line feed button, the
single character carriage return is accepted by the INPUT command to stand
for the pair CR,LF.

7. It is difficult to use the INPUT command in background mode, since key
punches have neither CR nor LF. If desired, the EBCDIC equivalents. of CR
and LF (X'15' and X'25') may be multipunched to the right of the text in
each card. The punch configurations are 11,9,5 (CR) and 0,9,5 (LF). (The
TEXT command is much easier to use in background mode.)

8. If the input line is larger than the largest record permitted in the principal
file, a truncated line is saved, and the command is aborted.

3-25

Example

DELETE 1,~j
~~ I N PUT 1 0 (), I 5
x PROCEDURE DIVISrON.

PARA1.
OPEN INPUT FILEIN.
READ FILEIN AT END GO TO FINI.

#END
~~ P R I N T 1 ~~ N

100. <26>
PROCEDURE DIVISION.

105. <13>
PARA 1 .

110. <29>
OPEN INPUT FILEIN.

115. <41>
READ FILEIN AT END GO TO FINI.

~q N PUT 113, I 3

#END

PERFORM HSKPNG
PERFORM PGHD.

KEY OF RECORD TO BE PROCESSED EXCEEDS KEY RANGE
SPECIFIED The input was terminated when the

user tried to enter line 116, thus
overstepping the existing line 115.

~~PR I NT 1 g N
IOU. <26>

PROCEDURE DIVISION.
105. <13>

PARA 1.
110. <29>

OPEN INPUT FILEIN.
113 • <25 >

PERFORM HSKPNG
115 • <41 >

READ FILEIN AT END GO TO FINI.

3-26

JUMP

.name2

-.name2

$d
$

*

#d

The JUMP command interrupts the sequence of execution of commands.
The user may request an unconditional branch or may specify that the
branch is to be executed only if a specified condition is met.

Name Operation Operand

[~] [.name~] gUMPl [~[-] .namc2] {g; } [A[
[~] [a] [~]

>
JI>$d <

>=
<=
<>
~

(11)# I [~] [~] [c]
~#d >

<
>=
<=
<>
~

This parameter is optional; if it is specified, it indicates the name in the tag
field of the command that is to be executed next if the condition specified
in the operand field is met.

The minus sign before .name2 indicates a jump reverse, which is permissible
only inside a LOOP or a procedure.

If the .name2 field is not specified, the JUMP becomes ineffective (NOP).

Identifies the symbolic line address counter whose value will be compared
with the value of the address parameter a. If the result is true, the branch
takes place.

This symbol specifies the symbolic character counter whose value will be
compared with the value of the given expression e. If the result is true, the
branch takes place.

3-27

a

e

The cOTIaparison operators indicate the kind of comparison to be made
between the preceding operands and those which follow. They are:

=

>

<

>=

<=

<>

Jump if the two operands are equal.

Jump if the first operand exceeds the second.

Jump if the second exceeds the first.

Jump if the first is greater than, or equal to the second.

Jump if the first is less than or equal to the second.

Jump if the two are unequal.

If one or more spaces (indicated in the command format by
the delta symbol Ll) are present, the jump takes place if the
two operands are equal. This feature is included for
compatibility with earlier versions of File Editor.

Note: In paired symbols such as >= and <>, order is not
significant. They could equally well be written => and ><.

a is a line address parameter and may be a line number, *, $, or $d reference,
followed optionally by an arithmetic expression. If a is absent, the value of *
is used.

e is an arithmetic expression that may contain decimal numbers, #, or #d
references separated by the arithmetic operators + and -. If e is not present,
the value 0 is used.

Command Execution

The execution of this command requires a comparison of the symbolic line
address counter or symbolic character counter with the value specified by a
(for line address counter) or e (for symbolic character counter); if the result
is true, the next command to be executed is the one which has a name field
corresponding to .name2. If the result is false, the next command in
sequence is executed.

If there are no operands following .name2, the JUMP is considered to be an
unconditional branch to .name2.

Command Termination

Indicators: No change.

None to SYSOUT.

3-28

Programming Notes

Example

1. If a JUMP within a procedure definition attempts to jump outside that
definition, the command is aborted, as is the Procedure mode.

2. Within a procedure definition, a forward JUMP or reverse JUMP is
honored provided that .name2 can be found by searching in the specified
direction.

3. If a JUMP command tries to reverse JUMP out of a LOOP sequence (see
LOOP command), the LOOP will be terminated. The JUMP will be honored
only if the LOOP sequence was read from a procedure definition; otherwise,
it too will be terminated and a diagnostic message given.

4. A forward JUMP out of a LOOP sequence is permitted; the File Editor
will attempt to satisfy the JUMP by reading from the present command
source (SYSDTA or a procedure definition). No command read will be acted
upon until the JUMP is satisfied.

5. In the operand field of the JUMP command, the operands may be
separated by spaces, or not at all. However, no syntax delimiters other than
spaces are acceptable. For example,

JUMP .MAR Y *= 100 and
JUMP .MARY * = 100

are both acceptable, but

JUMP .MARY *,=,100

is not.

~~RESET R

~~DE LETE 1 $

(No review information required.)

(Delete all data from file.)

~~THE (A line-feed and carriage-return
was typed at the end of each line.)

QUICK

BROWN

FOX

JUMPS

OVER

3-29

THE

LAZY

DOG.

#END

~~RESET RF

REVIEW MODE IS FULL

~~ = ~) a .

~~J UMP . DOG (This is an unconditional jump and
would always be executed.)

~~ FIN D rCA T I

~: • DOG P R I N T ~~

30. 5

BROvJN

~~s ET # 2 = 10

#2 = 10

~JUMP .DOG #2=3+7 (This jump would be executed
because #2=10.)

~~ • CAT A L T E R ~~, ~~, I M V C I , I M V I I

~~ • DOG P R I N T 1 0 , 2 0

~~THE

QUICK

3-30

~~ SET # 2 = 3 4 5

#2::345

~~JUMP . DOG #2=3+7 (Thisjunlp would not be executed
because #2 is not equal to 10.)

~~ • CAT P R I N T 4 0

FOX

~~ . DOG P R I N T ~~ + 1

JUMPS

3-31

LOOP

.name2

as and a6

Xe

as D a6
Xe

The LOOP comJnand executes a sequence of commands repeatedly until a
specified termination condition is met.

Narne Operation

[~] [.naJne~] I tOOP I
Operand

1]>.name2 l1]>as [1]>a6] I
J7>Xe

[1]>]

.nanle2 is the na.me appearing in the name field of the statement that is to
ternlinate the Loop sequence.

After executing the command statement named .name2, the Loop sequence
is reentered if * is such that as ~ * ~ a6. Otherwise, the loop is terminated.

If neither as nor a6 is specified and Xe is not specified, the current value of
* at LOOP cornmand recognition is taken for as and a6. If a6 is not
specified, then a6 equals as.

Xe is a parameter consisting of the key-letter X and an expression e, whose
value must be positive. If this parameter is given, the loop sequence will be
executed e times.

These two options are mutually exclusive. If the Xe form is not explicitly
stated, then the File Editor assumes the as, a6 form.

Command Execution

1. Comnlands are read from the present command source (SYSDT A or a
called procedure), up to and including the one that contains .name2 in its
name field. This series of commands, called the Loop sequence, is saved in
virtual memory; these commands will be executed until some condition is
met.

2. Execution begins with the first command of the sequence, and normally
ternlinates with the last. If the Xe form of the command was given, the
entire sequence will be executed e times (or until an error occurs). If the as
[J7> a6] form was given, the sequence will be executed, and at the end, * will
be compared to as and a6. If * is not outside the range as to a6, inclusive,
the sequence will be executed again, and so on. If * is outside this range, the
Loop execution will terminate, and the File Editor will read a new command
from tht:~ present command source.

3-32

3. If a forward JUMP cannot be satisfied within the LOOP sequence, the
LOOP terminates, but the JUMP is honored, and must be satisfied from the
present command source before any new command will be executed.

4. If a reverse JUMP cannot be satisfied within the LOOP sequence, the
LOOP is terminated. The JUMP is honored only if the LOOP sequence was
read from a procedure definition; otherwise, it too will be terminated, and a
diagnostic messages given.

5. At LOOP termination, the entire sequence (but not the memory acquired
to hold it) is discarded, and may be reinvoked only by being read in again
from some cOlnmand source.

6. The total kngth of the code generated by the LOOP sequence commands
should not exceed 4050 bytes, which is more than enough for almost all
users. However, an experienced user who is entering an exceptionally large
LOOP sequence may wish to see whether he is in danger of running out of
space; he can do so by escaping from the File Editor (by depressing the ESC
key) and using IDA to scan the page where LOOP coding is stored. File
Editor acquires page (63)10 (3F 16) to store the code of a Loop sequence, so
the following IDA command

jDISPLAY L'3FFOO':L'3FFFF'

lets the user look at the last 256 bytes of that page to try to determine
whether he is approaching his limit.

It should be emphasized, however, that only in very exceptional cases does
the user need to worry about this.

COlnmand Termination

Indicators:

Responses:

Programming Notes

Remain set at whatever values were last given to them within
the Loop sequence.

None from the LOOP command itself.

1. Although a LOOP command may occur within a procedure definition, a
procedure can is not permitted within a LOOP sequence.

2. The commands in the LOOP sequence should not occupy a total of more
than 4050 bytes.

3-33

Example A

Example B

This loop removes trailing spaces from all lines of the principal file.

~~F I ND
~~ LOOP
~~s ET

I" $
.END"O,,$
#3=~
~~ , e ~. 3 " e # 3 " II !J. II

~: J U M P • END)1 # 0 = 0
~: • A SET # 3 :: # 3 - 1
:: FIN D ~~, e # ;> " e # 3 " II!J. II

~e J U M P -. A" H 0 = 1
~e SET # 3 = # 3 + 1
:e DEL E T E :e" C # 3
:~ . END SET ~: :: :: + 1

(Set to 1 st line)
(establishes loop)
(point #3 to end of current line)
(present line ends with space?)

Note: A denotes space character; at
terminal, user depresses space bar.

(no, go to .END)
(decrement column pointer)
(present line ends with space?)

(yes, go back to .A)
(set col. pointer to 1 st space)

(delete group of trailing spaces)
(get next line, go to head of loop)

Assume that the principal file contains the following records:

100. <24>
ell AAA"X'OO'

200. <19>
BH DINT

300. <24>
BEGINX MVI AAA"X'05'

400. <24>
ClI BBB"X'06'

500. <19>
BO DINT

600. <21>
B DSKIP

700. <24>
BEGINY MVI eGC,X'1I'

800. < 24>
MVI BBB"X'17'

900. <24>
MVI eeG,X'ST'

3-34

1000. <19>
B DINT

1100. <3>
AAA

1200. <3>
BBB

1300. <3>
CCC

1400. <4>
VALA

1500. < 4>
VALB

1600. < 4>
VALC

1700. <3>
ABC

Assume also that the following procedure, named LOOPR, is available for
the user to execute. (It is not necessary that the reader understand File
Editor Procedures at this stage, the example is designed merely to
demonstrate the execution of the LOOP command).

BEGIN LOOPR
S $7=1100
5 $8=1400
LOOP .ENDLP1}X3
ALTER 100 950 C16 L$7 L$8 ALL
JUMP .ENDLP #0=1
NOTE NONE FOUND
.ENDLP 5 $7=$7+1
S $8=$8+1
.ENDLP1 NOTE END OF LOOP EXEC'N
END LOOPR

X3 specifies that the
loop is to be performed
3 times

The results of executing the procedure LOOPR with full
review appear below:

:~ LOOPR
$7 = 1100.

$8 = 1400.

100.
eLI

300.

<25>
VALA,X'OO'

<25>

3-35

BEGINX MVI VALA~X'05'

NUMBER OF LINES AFFECTED: 2
$7 = 1200.

$8 = 1500.

.ENDLP1 NOTE END OF LOOP EXEC'N
·400.

CL.I
.800.

<25>
VALB~X'06'

<25>
MVI VALB~X'17'

NUMBER OF LINES AFFECTED: 2
$7 = 1300.

$8 = 1600.

.ENDLP1 NOTE END OF LOOP EXEC'N
lOO. <25>

BEGINY MVI
900.

VALC~X'll'

<25>
MVI VALC~X'ST'

NUMBER OF LINES AFFECTED: 2
$7 = 1400.

$8 = 1700.

.ENDLPI NOTE END OF LOOP EXEC'N

3-36

(End of first execution
of loop)

(End of second execution
of loop)

(End of 3rd execution
of loop)

MOVE

al and a2

Cel and Ce2

Q

In

The MOVE command copies a range of records from one area of the
principal file to another area of the same file; that is, it creates a new domain
inside the same principal file.

Name Operation Operand

[A] [.nameA]

[{

,(Jl)[al Jl) [a2]]
Jl)a I Jl)a I
Jl)a I

This pair of line address parameters indicates the range of lines of the
principal file to be processed. If a2 is not specified, the value of al is taken
for a2 also. If neither a I nor a2 is specified, * is used for both.

This pair of line content pararneters defines a contiguous portion of every
line of the range. The quadruple ai, a2, Cel ;Ce2 defines the domain of the
command.

If Ce2 is not specified, processing extends from Cel to the end of the line. If
neither Ce I nor Ce2 is spe'cified, the entire line is copied.

This parameter is a line number that does not exist in the principal file. New
lines are created beginning with this number. If Q is not given, then the lines
are added to the end of the principal file. In order for this parameter to be
recognized, either 'al and a2 must be present, or Cel must be present.
Otherwise, what the user intends as Q will be interpreted by the File Editor
as either a I or a2.

In is a symbol made up of key letter I and a variable n, specifying the line
number increment to be used to calculate succeeding line numbers after Q. If
this parameter is not specified, then the standard line increment is assumed.

COlnmand Execution

The MOVE command copies all lines from a specified domain of the principal
file, creating a series of new lines in the same sequence. The first line is Q (or,
in default, $+n) and subsequent lines have line number Q+n, Q+2n, . ..

3-37

Command Termination

Indicators:

#0

*

Responses:

No review

If at least one new line is created, then the command was
effective and #0 is set to 1. Otherwise, it is set to O.

'rhe * points to the last line created.

No output to SYSOUT.

Partial r·eview List of line numbers created, their lengths, and the total
count.

Full review

Programming Notes

The text of every line created is printed out along with its
number and length and finally the total number of lines
created.

1. If a line in the principal file has no content in the domain, then it is not
used to create a new line. The next line in the domain is then processed.

2. This command is aborted if it is found before execution that Q already
exists in the principal file.

3. The ~{OVE command will not allow a user to inadvertently destroy valid
data in the principal file. Thus, if a key about to be created already exists in
the file, the command will be aborted, and a diagnostic message printed. The
same is true if, in creating new keys, the MOVE command tries to overstep an
existing line.

4. If the command is aborted during execution, then all the lines that were
already created are preserved and * points to the last such line. Also, #0 is
equal to 1.

3-38

Example

~~DELETE 1 $
~q NPUT 5 15
~~C PDPOS

DFALSE L.
DC A(O)
CREG4,CPDPOS
CREG5,0(0,CREG4)
CREG4,=Y(4)
CREG4,CPDPOS
DSKIP

L.
'" SH ~~

ST
B

#END

~~ RE SET RF
REVIEW MODE IS FULL

~~MOVE 16,26,6,12
6 . 26

SH CREG4,=Y(4)
8 . 27

ST CREG4,CPDPOS
NUMBER OF LINES AFFECTED:

~~ PR I NT 1 $ N
5 . <19>

CPDPOS DC A(O)
6 . <26>

SH CREG4,=V(4)
8 . <27>

ST CREG4,CPDPOS

1. ° . <27>
DFALSE L CREG4,CPDPOS

15. <31>
L CREG5,0(0,CREG4)

2 ° . <26>
SH CREG4,=Y(4)

25. <27>
ST CREG4,CPDPOS

3 ° . <20>
B DSKIP ,.

~~

3-39

2

NOTE

The NOTE cOlnmand displays on SYSOUT the entire contents of the
statement in which it appears. It thus demonstrates that this statement has
been executed.

Name Operation

[L1] [.narneL1] I ~~OTE I
)~

Operand

[J,l> any characters] [J,l>]

The operand field is optional and, if present, is written on SYSOUT.

Command Execution

The entire command statement is displayed on SYSOUT.

Command Termination

Indicators: not applicable.

Responses: not applicable.

Programming Notes

Example

1. Even ilf the listing option is specified, the NOTE command is listed only
once.

2. The NOTE command is designed especially for use inside LOOP,
PROCEDURE, or nonconversational sessions to indicate that the command
processing has reached certain specified points, or to indicate the actual flow
of execution in the above situations.

:~ • END L. P NOT ERE A C HE DEN D 0 FLO 0 P

3-40

OPEN

C'n'
X'h'

filename

OLD orO

NEW or N

INPUT or I

EITHER or E

The OPEN command closes the principal file currently being edited, if any,
and opens the named file as the principal file.

Name Operation

[.1] [.name.1]

Operand

[IJ])C'n'}] T/J filename
T/JX'h'

T/JOLD
T/JO
T/JNEW
T/JN
T/JINPUT
T/JI
T/JEITHER
T/JE

[T/J]

Either of these parameters supplies the WRITE password required to access
the next principal file. Absence of this parameter indicates that no password
is required to access the named file.

This parameter identifies the next principal file to be opened.

Specifies that the file to be opened is an old file and is to be opened in
INOUT mode, that is, File Editor can read and write it. An old file is one
which has been written to at least once.

The file to be opened is a new file and is to be opened in OUTIN mode, that
is, File Editor can write it, then read it. A new file is one which has never
been written into, whether or not it has been cataloged or allocated.

The file to be opened is an old one and is to be opened in the INPUT mode,
that is, File Editor can read it but not write it.

The file is to be opened either OLD or NEW, depending on whether such a
file already exists or not.

The default value for this param.eter is EITHER.

3-41

Command Execution

I. If there is a principal file already open, it will be closed, and a message
printed to that effect.

2. The File Editor determines the status of the specified file.

If the file is new, and the user specifies the parameters OLD (0) or INPUT
(I), he is notified of his error. The parameters NEW and EITHER are both
acceptable. If the file has not been cataloged, or has been cataloged but not
allocated, File Editor catalogs it (if necessary) and allocates space for it. File
Editor specifies a primary and secondary space allocation for a new file of 3
half-pages of 2048 bytes each (2 tracks on a 70/564, I track on a 70/590).

If the file is old, the parameter NEW (or N) is an error and the user is so
notified. OLD, INPUT, and EITHER are all acceptable. After opening an old
file, File Editor tests its characteristics and, if they do not conform to its
own requirements, closes it immediately and sends an error message to the
user. The characteristics of a file acceptable to the File Editor are:

File-type = ISAIv[

Record -type = F or V

Key-length - 8

If F-type records., record size ~ 2048 bytes.

If V-type records, block size = 2048 bytes.

3. The File Editor applies a standard set of characteristics to any new file it
is asked to open. These characteristics are:

File·-type - ISAM

Record-format - V-type, with no print-control character

Key-length - 8 bytes

Key-position - 5 (immediately after four-byte record-length field)

Block-size - 2048 bytes

Retention-period - 0 days

Padding-factor - 20%

Initial space allocation - 3 PAM pages (that is, 2 tracks on a 70/564, I track
on a 70/590)

Automatic secondary allocation - 3 PAM pages

No read or write passwords

Write access

Not sharable

Direct-access, public volume

3-42

4. If the file is successfully opened, File Editor sends the user a message
containing the filename, the record-type, the status (OLD or NEW) of the
file, and, if INPUT was specified, a reminder that the file cannot be written
to.

COlnmand Termination

Indicators:

l. If the file is empty, *,$, all the $d pointers and # are set to zero. All the
#d pointers are set to 1.

2. If the file is not empty, * and all the $d pointers are set to the line
number of the first line of the file and # is set to the length of that line. $ is
set to the line number of the last line of the file and all the #d's are set to 1.

Responses:

In any review mode, a message notifies the user of the name of any file
closed and the name of the file opened.

Programming Notes

Exa:mple A

1. If the named file cannot be opened for any reason, any previous principal
file will still be closed; in this case an error message follows the informational
message saying that a file was closed.

2. To create a new file with special characteristics, such as a password or
shareability, the user may issue the DMS conlmands/FILE or /CAT ALOG
before opening it with File Editor. The /FILE command must contain the
parameter LINKNAME=PRINFILE. See the Data Management System
Reference Manual.

Assume that the name of the current principal file is PAYROLL.VERSION6
and the user wants to close it and create a new file to be named
PAYROLL. VERSION7.

User:
System:

OPEN PAYROLL.VERSION?,NEW
CLOSED PRINCIPAL FILE PAYROLL.VERSION6
OPENED PAYROLL. VERSION? AS NEW
V-·TYPE FILE.

3-43

Example B

User:

TSOS:

Editor:

User:

Editor:

To create a new file with fixed-length records of 256 bytes each, an initial
and secondary allocation of 1 0 PAM pages, and a write password:

/FILE NEWFILE,LINK=PRINFILE,SPACE=(lO,lO),
RECFORM=F,RECSIZE=256,KEYPOS=1

/CATALOG NEWFILE,STATE=UPDATE,WRPASS=C'50S3'

/PASSWORD C'SOS3'

/EXEC (EDIT)

%POOI - DLL V-XX

VERSION XXXX OF FILE EDITOR READY

~OPEN NEWFILE, NEW

OPENED NEWFILE AS NEW F-TYPE FILE

Note that the password could have been given in the File Editor OPEN
conlmand rather than in the Data Management PASSWORD command.

3-44

PRINT

al and a2

Cel and Ce2

N

x

The PRINT command writes a domain of the principal file to the SYSOUT
device.

Name Operation Operand

[~~al [~a2]] [~Cel [~Ce2]] [~N] [~X] [~]

This pair of line address pararneters indicates the range of lines of the
principal file to be processed.

If a2 is not specified, only the line indicated by al is printed. If neither al
nor n2 is specified, the line indicated by the current line pointer * is printed.

This pair of line content param,eters defines a contiguous portion of every
line in the range. The quadruple ai, a2, Cel, Ce2 defines the domain of the
command.

If Ce2 is omitted, each line is printed from Cel to the end. If both Cel and
Ce2 are omitted, the entire line is printed.

If N is specified, the line number and length are printed prior to the content
of each line. If N is not specified, the line number and associated length are
not printed.

If X is specified, the line is printed in two-character, hexadecimal format. If
X is not specified, the line is printed in normal character format.

Command Execution

This command prints out the specified lines on SYSOUT. If N is given, the
line number and the number of characters to be printed out of that line are
printed before the actual text.

After the whole domain has been printed, the File Editor reads the next
command. If the next command is a null command, that is, an ETX only,
the next existing line, if any, is printed out according to Cel, Ce2, N, and X
as given in the original command. Reading SYSDTA and printing the next
line continues until a nonnull command is read or the end of the file is
reached. If the end of the principal file is reached, the PRINT command is
aborted, an error message is printed, and the next command is read.

3-45

Command Termination

Indicators: * The value of * is set to the line address of the line last
printed.

Responses: Not applicable.

Programming Notes

Example

1. If full or partial review is on, the line numbers and lengths are printed,
regardless of whether N was specified or not.

2. Null lines are ignored by PRINT; that is, the File Editor passes them by
without informing the user of their presence.

3. Lines in the range which are not null but are still shorter than Ce2 are
treated by this command like null lines.

4. Note that the length printed out with the line number is not the total
length of the line but is the number of characters actually printed.

~~DE LETE 1 $

~q N P UT 1 0 0 I 10 0

~eHOW NOW BROWN COW

TO BE OR NOT TO BE
ALL IS L.OST
#END

~q N PUT 40 0 I 1 0 0

DATA
BASE
IS
VE R Y S r·1A L L AS YET
#END

COW
TO BE
LOST

(clear out existing content of file)

(and insert new text)

xPRINT 400,700,C6,C11

SMALL

3-46

QUALIFY

C'n'
X'h'

filename

The QUALIFY command opens a procedure file and makes all valid
procedures in that file available for execution.

Name Operation Operand

[~] [.na:me~] IguALIFYI
[fWJc'n' I]
lJJ>X'h'

f/) filename [f/)]

C'n' or X'h' is the read password that is associated with the named proc,edure
file. If this is not given, no password should be required to read the named
file.

This parameter supplies the nalTle of an ISAM file that contains one or more
File Editor procedures.

Command Execution

During a File Editor session, only one procedure file may be active at a time.
The QUALIFY command causes the designated file to be opened for input
(read only). The QUALIFY command acquires user memory, reads the
procedure file, and creates a directory of procedures. The user is then
notified of the number of valid procedures found and the name of the last
existing procedure. If another procedure file had previously been
QUALIFIED, it is closed, its directory released, and the new procedure file is
then activated as described above.

Command Termination

Indicators: Not applicable.

Responses: See Command Execution.

Programming Notes

1. The user must QUALIFY a procedure file before he may call any of the
procedures which it contains.

2. Once the procedure file has bl3en opened, it remains open until either:

a. A new QUALIFY command is given.

b. A CLOSE command is given for that file.

c. The File Editing session is terminated.

3-47

Example

3. If a user quahfies a file containing no valid procedure definitions (that is,
ordered pairs of valid BEGIN and END statements), he is given a diagnostic
message~, and the file will be closed.

4. If a procedure file contains some valid definitions along with some invalid
ones, the valid ones will be made available for execution, and the invalid
ones willl cause diagnostic messages to be printed.

5. Only one page (4096 bytes) of user's memory is obtained to hold the
procedure directory; because of this limitation, only the first 170 valid
procedure definitions in a procedure file will be made available for
execution. If a procedure file contains more than this number, the user will
be notified by a diagnostic message.

The command:

QUA L I F~ y C' V V PI' 1 PROC

causes the opening of a file called PROC whose associated password is VVPl.

3-48

RESEQUENCE

a

·In

The RESEQUENCE command allows the user to renumber the lines of the
principal file.

Name Operation

[~] [.na:me~] I RESEQUENCE I
RESEQ

Operand

[Jl)a] [Jl)Irt] [Jl)]

The new line number (record key) to be assigned to the first line in the file.
If this parameter is omitted, the value of the parameter In is used.

This parameter consists of the key-letter I and an increment n in one of the
following forms:

$d where d = 0, l. .. 9
$

*

or a decimal number which conforms to line number requirements. If In is
omitted, the current value of the standard line number increment is used.
The In paranleter is used as an increment to calculate subsequent line
numbers after the first.

Command Execution

The File Editor copies the entire contents of the principal file to a
temporary secondary file; as each record is copied, it is erased from the
principal file. When the principal file is empty, the records in the secondary
file are copied back into the principal file, with new record keys assigned.
After recopying is completed, the temporary secondary file is erased.

Command Termination

Indicators:

#0 Set to I if at least one record is created; otherwise set to O.

* Points to the last line created.

Responses:

No review No output to SYSOUT.

Partial review List of new line numbers and lengths, followed by total
number of lines resequenced.

Full review New line numbers, lengths and contents, followed by total
number of lines resequenced.

3-49

Programming Notes

Example

File Editor names the temporary secondary file:

FILE.EDITOR. SAM. RESEQUENCE. FILEd

where d is a decilnal digit 0-9. If it happens that all ten such filenames are
already in use when the command is given, File Editor notifies the user and
terminates the command.

Given a file with lines:

100. HOW NOW BROWN COW
110. TO BE OR NOT TO BE
120. ALL IS LOST
130. DATA
140. BASE
150. IS
160. VERY SMALL AS YET

Suppose the full review switch is on.

User: RESEQUENCE 100, 1100
Editor: 100 . <17> HOW NOW BROWN COW

200. <18> TO BE OR NOT TO BE
300. <11> ALL IS NOT LOST
400. <4> DATA
500. <4> BASE
600. <2> IS
700. <17> VERY SMALL AS YET

3-50

RESET

The RESET command allows the user to change those File Editor variables
which define the session attributes.

Name Operation Operand

[Ll] [.nameLl] I ~ESET I [Jl)A] [Jl)A[Jl)A[...]]] nO]

where:

[+n-m ...]

There are seven key-letter variables that may be modified by the user. The
following rules govern their use:

1. Each paramleter specified must be preceded by at least one syntax
delimiter.

2. Any of the seven parameters may be used more than once in one Reset
command. (See examples below.)

3. The parameters are entirely nonpositional and are recognized only by
their key letter.

4. If the key letter but no value is given, the File Editor default value is
reinstated.

The seven parameters are discussed below:

1. Text Delimiter:
D+s
D-s
D

where s is a string of characters consisting of regular characters or
hexadecimal characters. In the case D+s, all characters in the string are added
to the current list of delimiters. D-s deletes all characters in the string s from
the current list of delimiters.

D causes the list of File Editor defaults to be reinstated. These are () space
; : . , ! ' , , ? = + - * / . It is considered an error if one tries to reinstate an
existing delimiter or delete a nonexistent delimiter.

3-51

Guard Character:

Gs
G

The File-Editor-supplied guard character is the period (.). The period is
reestablished by issuing the second form above (G). The first form (Gs),
where s is a string of one character, resets the current guard character to a'
new character. The user is cautioned against using the / or # characters as the
guard character.

3. Standard Line Number Increment:

In
I

The default increment is 00000 100. This value is reinstated by issuing the
second form above (I). In the first form, In , n consists of either

4. Listing:

LY
LN
L

a. One to eight decimal digits.

b. A reference to one of the pointers *, $, $0, ... , $9.

L Y (List Yes) means that each command is to be displayed on SYSOUT
before it is executed. LN (List No) means that commands are not to be
displayedl. This facility is designed for the nonconversational user and for the
user who is trying to debug a procedure or a LOOP command. L has the same
effect as LN.

5. Decimal Pointer:

Pd
P

This parameter establishes the apparent decimal pointer for keys in the
principal file. Th(~ d may be a single decimal digit with a value of 0 through
8. The second form (P) reestablishes the File Editor default, which is a
decilnal point following the eighth digit. (This form has the same effect as
PO.)

3-52

6. Review:

RF
RP
RN
R

This parameter changes the amount of review information desired in
response to the execution of a comlnand. RF means full review; RP means
partial review; and RN and R mean no review. Specific details of the
resulting output are given with each command.

7. Tabs:

TA
TC
TF
T

+n-m ...

The 10 available tabs can be set as follows:

TA sets Assembler tabs at colurrms 10, 16,72;

TC sets COBOL tabs at columns 8, 12, 73;

TF sets FORTRAN tabs at columns 7, 73; and

T eliminates all tabs.

TA+n-m. .. resets Assembler tabs, then adds tab n and deletes tab m;
similarly, TC+n-In and TF+n-m.

T+n-m leaves established tabs as they are and then adds n and deletes
m.

Cornmand Execution

See parameter description above:.

COfllmand Termination

Indicators: See description above.

Responses:

No review None.

Partial review None.

Full review All values of variables set by this command are printed on
SYSOUT.

3-53

Programnling Notes

Example

See example.

~:RES ET RF
REVIEW MODE IS FULL

~:RES ET D
FILE EDITOR DELIMITERS

· (+ ! ~:) j - / , ? : ' = "
::RESET D-""

FILE EDITOR DELIMITERS
• (+ ! :~) j -,I , ? : ="

::RESET D+'A'
FILE EDITOR DELIMITERS

· (+ ! ::) j - / , ? : = " A
:: RES E T G' = '

GUARD CHARACTER = ' - ,
::RES ET G

GUARD CHARACTER = , ,
::RES ET 1$4

LINE INCREMENT = o •
~:RES ET 12

LINE INCREMENT = 2 .
::RES ET P3 P4

DECIMAL POINTER = 3
DECIMAL POINTER = 4

~:RESET R,T.A,D+'BCD',RF T+2,R
REVIEW MODE IS FULL

FILE EDITOR TABS
2 10 16 72

::VE R I FY R, T , D
REVIEW MODE IS OFF

FILE ED ITO R TAB S
2 10 16 72
FILE EDITOR DELIMITERS

· (+ ! ~:) j - / , ? : = " ABC D

FILE EDITOR DELIMITERS
. (+ ! ::) j - / , ? : ' ="

3-54

GUARD CHARACTER = t t .
$0 = o . $1 = o . $2 = o . $3 = o . $4 = o .

$5 = o . $6 = o • $7 = o . $8 = o .
$9 o • $ o . ,~ o . = = .,~ =

#0 = 1 #1 = 1 #2 .- 1 #3 = 1 #4 = 1 #5 = 1

#6 = 1 #7 = 1 #8 .- 1 #9 = 1 # = 0
L,INE INCREMENT = 100 .
DECIMAL POINTER = 0
REVIEW MODE IS OFF

FILE EDITOR TABS ARE NOT DEFINED.

3-55

SEARCH

al and a2

Cel and Ce2

s

N

x

The SEARCH command finds and displays all instances of a given string in a
particular range of the principal file.

Name Operation

[~] [.nanle~] (SEARCHl
SEA

Operand

[]J>al []J>a2]] []J>Cel []J>Ce2]] []J>s] []J>N] []J>X] []J>]

This pair of line a.ddress parameters defines the range of lines in the principal
file to be scanned. If a2 is absent, only al is scanned. If al and a2 are both
absent, the line indicated by the current line pointer, *, is scanned.

This pair of line content parameters defines a contiguous portion of every
line in the range. If Ce2 is omitted, File Editor scans every line from the el sf
colulnn to the end; if both Cel and Ce2 are absent, the entire line is scanned.

The quadruple ai, a2, Cel and Ce2 defines the domain of the command.

Specifies the string for which File Editor is to search the domain. If s is
omitted, then any lines which intercept both Cel and Ce2 are found.

If this key-letter parameter is specified, every line printed out is prefaced by
its line number and length.

If this key-letter parameter is specified, all lines printed are given in
hexadecbnal forrrtat.

Command Execution

If s is given, the domain ai, a2, Cel, and Ce2 is scanned for the string s.
Every line where s occurs is printed on SYSOUT.

If s is not given and Cel and Ce2 are both specified, an lines in the range ai,
a2 that have at least e2 characters are printed.

If s is not given, and Cel is specified but not Ce2, an lines in the range ai, a2
that have at least e I characters are printed.

If none of the parameters s, Cel and Ce2 are specified, File Editor displays
an lines in the range al, a2 on SYSOUT.

3-56

If N is specified in the Search command or the current review mode is full or
partial, every line displayed is prefixed by its line number and length.

If File Editor cannot find any line that meets all criteria, it displays a
message to that effect on SYSOUT.

Cornmand Termination

Indicators:

#0

*

Set to 1 if one or more lines are displayed; otherwise, set to
o.

Points to the last line in the domain.

Programming Notes

Example

1. If s is null and neither Cel nor Ce2 is specified, File Editor looks for null
lines. Each time it finds one, it displays the message <NULL LINE> ;·if the
parameter N was specified, or review mode is full or partial, the message is
prefaced by the line number of the null line and a length of zero.

2. If s is null and Cel is specified (with or without Ce2) File Editor displays
an error message and terminates the Search command.

Assume that the review mode is full and that the principal file contains the
following lines:

100 . SYMBI DC A(TIMBl)
200. SYMB2 DC A(TIMB2)
300. SYMB3 DC A(TIMB3)
400. MMBI MVC MBl,SYMBl
500. MVC S!,MB2,MBI

The command

SEARCH

produces the following results

100
SYMBI
400
MMBI

<23>
DC

<24>
MVC

A(TIMBl)

MBl,SYMBl

3-57

The conlmand

SEARCH 100,$,CIO, 'SYMBl' ,N

produces

400 <2L~>

MMBI MVC MBl,SYMBl

even though the current review mode is N (none).

3-58

SET

#d17> e

The SET command may be used to assign a value to a symbolic line pointer,
the current line pointer or a sY1nbolic character counter.

Name Operation Operand

[~] [.name~]

[{
17>$d [17>a]}]
17>* [17>a]
17>#d [17>e]

[17>]

Resets the value of a symbolic line pointer $d. 17>a, which must be present,
should be a decimal digit with a value of 0 through 9. a may be any line
address parmneter; if it is omitted, the value of * is taken.

Sets the current line pointer to a new value; at the same time, # will
automatically be set to the length of a. If a is omitted, the File Editor will
not change any values.

Resets the value of a symbolic character counter #d. d, which must be
present, must be a decimal digit with a value of 0 through 9. e may be any
arithmetic expression consisting of -decimal numbers or symbolic counters
joined by plus or minus signs; if e is omitted, the value I is used.

If the user issues a Set command with no parameters whatsoever, * and the
10 $d's are set to the address of the first line in the file; the 10 #d's are set
to I and # to the length of the first line of the file.

Co:mmand Execution

See above.

Command Termination

Indicators: Not changed.

Responses:

No review None.

Partial review None.

Full review The values of all variables set by this instruction.

3-59

Programming Note

Example

None.

~~5ET

$0 -. $1 = O. $2 = O. $3 = O.

$5 = O. $6 = O. $7 = O.

$ = o. v 0 = .

#0 = 1 #1 = 1 #2 = 1

#6 = 1 #7 = 1 #8 = 1

~~RE5ET RF
REVIEW MODE IS FULL

~~ 5 E T ~; 9 = 1 0 5 0
$9 = 1050.

:~ 5 E T tr 9 = 6 0 0

#9 = 600
~~ 5 E T t~ 4 = 2 0

#4 = 20
~~ 5 E T t~ 5 = # 9 - # 4

#5 = 580

~~ 5 ET ~~ = 53
~~ :: 53

3-60

#3 = 1

#9 = 1

$4 = o.

$8 = O. $9 = O.

#4 = 1 #5 = 1

= 0

TEXT

a

In

X

The TEXT conlmand permits the user to scan his file and make changes or
create new lines.

Name Operation Operand

[Ll] [.nameLl] []J)a] [1l>ln] []J)X] []J)]

If this parameter is specified, processing starts at line number a. If this
parameter is not specified, processing begins at the end of the file.

In is made up of the key letter I and a variable n of the form:

$d or

* or

integer of no nlOre than 8 digits.

This parameter specifies the increment value to be used during the execution
of this command and is called the temporary increment. If this parameter is
omitted, then the standard increment controlled by the RESET command is
used.

The increment (either the specified temporary or default standard)
determines the next line to be processed in the following manner: If the
current line is k, then the next line is either k + n or the next existing line of
the file, whichever is first.

This key-letter parameter indicates that input and output will be in
hexadecimal format for this cOlllmand. If this parameter is omitted, the File
Editor assumes character format input and output.

Command Execution

Processing begins with line a, its length and its contents being printed if it
exists. If a does not exist, then the number a is printed (and length zero). A
read is then issued to the terminal.

The user may then take one of two specific actions:

1. Send from SYSDT A a record containing several characters not beginning
with #. This will have the effect of either creating line *, if line * does not
already exist, or replacing the contents, regardless of length, of line * with
the record. Note, if the user wishes to input a line with # as the first
character, then he must precede it with the guard character. The guard
character is stripped off, and the remaining contents are stored.

3-61

2. Issue one of the following subcommands:

Command Termination

No review

a· #a,text

This command will replace or create line a using the specified
text. When line a has been edited, control will return to the
current line. a is a line number consisting of one to eight
digits; there must be no space between the #, the line number
and the comma.

b.#

This command leaves the current line undisturbed and
processing continues with the next line, as described above.

c. #PRINT

The symbol # followed by a syntactically correct File Editor
Pri.nt command will display the requested lines. Control
returns to the current line after these lines have been printed.
Note: The null command option of the PRINT command is
not allowed in #PRINT.

d.#DELETE

The symbol # followed by a syntactically correct File Editor
DELETE command will delete the requested domain of the
principal file and then return control to the current line.

c. #END [l1] or #E[l1]

This subcommand terminates the TEXT command.

* points to the last line created or displayed.

Line numbers, length, and original contents of lines edited
will be displayed on SYSOUT.

Partial review In addition to the above, line numbers and new lengths of
edited lines will be displayed, and also the total number of
lin'~s edited.

Full review In addition to all the above, the new contents of each edited
line will be displayed.

3-62

Programming Notes

Exanlple

TYPED
BY
FILE
EDITOR

FILE
EDITOR
ERROR
MESSAGE

TYPED
BY
FILE
EDITOR

In creating new lines, the TEXT command modifies the records which are
input by SYSDTA as follows:

1. It deletes all line-feed and carriage-return characters from the input.

2. It recognizes tab characters, and inserts an appropriate number of spaces.

3. It deletes the first character of the record if this is the guard character.

4. If the user responds with the null command (ETX only) then that line
becomes null.

S. The TEXT command reads data from the terminal using the tandem
write-read (WRTRD) macro. Therefore, after the File Editor types the
current line number and length and existing text, if any, the user may begin
typing data without waiting for an asterisk (*) to be printed. This is
illustrated in the TEXT command example.

~~OPEN ROVER, NEW
OPENED ROVER AS NEW V-TYPE FILE

~~ RES E T I 2 0 I)
~~TEXT 100

100. <0>
300 <0>-

SOO
700
700
900

<0>
<0>
<0>
<0>

SUBROUTINE ALPHA (BETA)
COMMON GAMMA (3,S),
DELTA (10), EPSILON
PARAM=BETA
#3S0, COMMON THETA
10 FORMAT (SX,18)
#70A, (FORMAT SX,14)

%0 TOOC ILLEGAL CHARACTER IN LINE ADDRESS.

900 <0> #700,10 FORMAT (SX,14)
900 <0> DO 2S 1=1, 3

1100 <0> #DELETE 3S0
1100 <0> #
1300 <0> 002S J=l,S
IS00 <0> #9S0, GAMMA (l,I)=PARAM
IS00 <0> GAMMA (l+l,J)=GAMMA(I,J)

:~PARAM

1700 <0> #E
v
~~

3-63

TYPED
BY
USER

TYPED
BY
USER

The file would then appear as follows:

100 <22> SUBROUTINE ALPHA (BETA)
300 <35> COMMON GAMMA (3,5), DELTA (10), EPSILON
500 <10> PARAM=BETA
700 <15> 10 FORMAT 5X,I4
900 <11> D025 1=1,3
950 <16> GAMMA (l,l)=PARAM

1300 <11> 0025 J=I,5
1500 <29> GAMMA (I+l,J)=GAMMA(I,J) ~~PARAM

3-64

UPDATE

al and a2

Ce

PREFIX
or
P

SUFFIX
or
S

s

The UPDATE command inserts a string of characters before or after a
specific character in an existing line.

Name Operation

[Al [.nameAl IgrDATE I
Operand

LJJ>al [JJ>a2]] [JJ>Ce]

[1~~UFFIXll JJ>s [JJ>]

JJ>PREFIX
JJ>P

This pair of line address parameters defines the range of lines of the principal
file to be processed.

If a2 is omitted, then a I is the only line edited. If neither a I nor a2 is
specified, the line indicated by the current line pointer * is edited.

This parameter consists of the key ~etter C and an expression designath;lg a
column number within the record. If specified, it determines where within
the record the: string s is to be placed. If not specified, either the beginning
or the end of the line is assumed, depending upon whether PREFIX or
SUFFIX is specified.

Explicit use of this parameter indicates that the string s is to precede the eth
character of the line.

This parameter indicates that the string s is to follow the eth character of the
line. If neither S or P is explicitly specified, then SUFFIX is assumed.

A valid string must be given.

3-65

Command Execution

I. The string given by s is inserted into each line in the range at a point
determined by the parameters Ce and PREFIX or SUFFIX.

2. If Ce is not given and SUFFIX is intended, the string s is added to the
right of each line.

3. If Ce is not given and PREFIX is specified, the string given by s is inserted
at the beginning of each line.

Command Termination

Indicators:

#0

*

Responses:

No review

Set to I if any line in the domain is updated; otherwise, set
to O.

The value of * is set to the address of the last line scanned in
the domain.

None.

Partial review List of line numbers and new lengths of lines affected and
total count.

Full review Line numbers, new lengths, new contents of lines affected,
and total count.

Programming Note

Example

If a line becomes larger than the maximum allowed for the principal file, a
truncated line is saved and the command aborted.

~~RESET RF

REVIEW MODE IS FULL
~: P R I NT 1 a , 2 a , N

10 .
MVC

15 .
AH

<27>
LAB 1, LAB TEMP

<26>
REG3,Y(523)

2 a . <27>
STH REG3,LABTEMP

15. <27>
AH REG3,=Y(523)

NUMBER OF LINES AFFECTED: <1>

3-66

VERIFY

The VERIFY command displays on SYSOUT various File Editor pointers
and session attribute switches.

This command is not positionally oriented, and so it departs from the
standard syntax format.

Name Operation

[Jl)]

where:

There are 11 keyword (letter, symbol) variables that may be displayed for
the user. The following rules govern their use:

1. If two or more parameters are used, they must be separated from one
another by dellimiters -- Jl). .

2. Anyone of the 11 parameters may be used more than once in one Verify
command.

3. The paralneters are entirely nonpositional and are recognized only by the
key letter.

COlllmand Execution

1. * displays the current value of * .

2. $d displays the current value of the specific symbolic line pointer; d
must be a single decimal digit from 0 through 9.

3. $ displays $0, ... , $9, $,*.

4. #d displays the current value of the desired symbolic character counter;
d must be a single decimal digit from 0 through 9.

5. # displays the current values of #0, #1, ... , #9, and #.

6. Delimiters D[X]

D displays the list of delimiters in regular character format; DX displays the
list in two-character hexadecimal format.

7. Guard Character G[X]

G displays the guard character as a regular character; GX displays the
character in two-character hexadecimal format.

3-67

8. Increment I

I displays the current value of the standard line number increment.

9. Decimal Pointer P

P displays the number of digits to the right of the assumed decimal pointer
for principal file line keys. This will be a decimal number from 0 through 8.

10. Rev:iew R

R displays the degree of review currently being given (full, partial, or none).

11. Tabs T

T displays the various current tab settings.

12. If no pararrleters are given, then all variables are displayed as regular
characters.

13. There is a sp,ecial form of the Verify command that displays all the above
variables in regular character format except for the guard and delimiter
characters, which it displays in two-character hexadecimal format. The
syntax of this command is as follows:

Name Operation

[A] [.nameA] (~ERIFYI

Operand

x [1])]
1])

X as a parameter can be used only as shown in this syntax; if it is used
otherwise, an appropriate error message is printed.

Command Termination

Example

There is no change in indicator values, and the review mode has no effect.

~~ 5 E T ~~= 53

:: = 53.

~~ 5 E T $ 5 = 2 0 7

$5 = 207.

~~SET # 7= 23
#7 = 23

~~ V E R I F Y ~~, $ ~) , # 7
~~ = 53.

$5 = 207.

3-68

#7 = 23
~eVER I FY

FILE EDITOR DELIMITERS
. (+ ! ~c) ; _ / , ? : ' ='~

GUARD CHARACTER = '. t

$0 = O. $1 = O. $2
$5 = 207. $6 = O.

$ = O. ~e = 53.
#0 = 1 #1 = 1 #2 = 1

#6 = 1 #7 = 23 #9
LINE INCREMENT = 100.
DECIMAL POINTER = 0
REVIEW MODE IS FULL

=

=

o . $3
$7 = 23.

#3 = 1

600 # =

FILE EDITOR TABS ARE NOT DEFINED,

~~VER I FY X
GUARD CHARACTER = '4B'

= o .
$8 =
#4 =
0

FILE EDITOR DELIMITERS IN HEXADECIMAL
404B4D4E5A5C5D5E60616B6F7A7D7E7F

$4 =
o . $9

20 #5

$0 = O. $1 = O. $2 = O. $3 = O. $4 = O.

o .
= 1050.

= 580

$5 = 207. $6 = O. $7 = O. $8 = 0.$9 = 1050.
$ = CI. ~~ = 5 3 •

#0 = 1 #1 = 1 #2 = 1 #3 = 1 #4 = 20

#5 = 580 #6 = 1 #7 = 23 #8 = 1 #9 = 600

= a
LINE INCREMENT = 100
DECIMAL POINTER = a
REVIEW MODE IS FULL

FILE EDITOR TABS ARE NOT DEFINED.

3-69

WRITE

C'n'
X'h'

filename

al and a2

Cel and Ce2

The WRITE cOITlmand copies a domain of the principal file into a sequential
(SAM) secondary file.

Name Operation

[A] [.nameA] (~RITE I
Operand

[Jl> (Jl)C'n'l] Jl> filename [Jl>al [Jl)a2]]
Jl>X'h'

[Jl>Cel [Jl>Ce2]]

[Ii~~:ll
[Jl>]

This parameter specifies the Write password required to open the secondary
file. If omitted, no password should be required to write to this file. (See
note on passwords, Section 3.)

This parameter, which must be given, specifies the filename of the secondary
file to be written to.

This pair of line address parameters defines the range of lines of the principal
file to be processed.

If a2 is omitted, then a I is the only line written. If both a I and a2 are
omitted, the line indicated by the current-line pointer, *, is written to the
secondary file.

This pair of line content parameters defines a contiguous portion of every
line in the range. The quadruple ai, a2, Cel, Ce2 defines the domain of the
comnland.

If Ce2 is. omitted, copying extends from Cel to the end of each line. If both
Cel and Ce2 aIe omitted, complete lines are copied.

3-70

KEY
K

NEW
N

OLD
o

If this parameter is specified, the File Editor constructs a secondary file
record thus: the first eight bytes consist of the ISAM key of principal file
record. The remainder of the secondary file record is formed from the
specified portion of the principal file record. (The secondary file created by
WRITE will be a SAM file, and so has no keys of its own.) Thus, principal-file
keys, as well as the contents of records, may be saved in the secondary file.

This parameter indicates that the user wants to erase the present contents, if
any, of the secondary file and write the designated lines of the principal file,
starting at the beginning of the secondary file.

This parameter indicates that the user wants to append the designated lines
of the principal file onto the present contents of the secondary file, leaving
the present contents unchanged.

Command Execution

1. If NEW (or N) is specified and the named file does not exist, it will be
cataloged, allocated three PAM pages with an automatic extension of three
PAM pages, and opened as a SAM file in OUTPUT mode. (This means that
the output-record-pointer will be positioned to the beginning of the file.)

2. If NEW is specified and the file exists, it will be opened as a SAM file in
the OUTPUT mode. If the narned file has been cataloged but not allocated,
it will be allocated as above, then opened for OUTPUT.

3. If OLD (or 0) is specified and the file exists, it will be opened in the
Extend mode (that is, the output-record-pointer will be positioned to the
end of the file).

4. If OLD is specified and the file does not exist (or has not been allocated),
the File Editor will abort the command and issue a diagnostic message.

5. After opening the secondary file as described above, the command copies
the specified domain of the principal file into the secondary file, then closes
the secondary file.

Command Termination

If at least one record is successfully written out, the command is said to be
effective and #0 is set to 1. Otherwise, it is set to O.

* Points to the last line written out.

3-71

Responses:

No revie.w None.

Partial r,eview Line number and size of each record written; also the total
count.

Full review Content, number, and size of each line written out and also
the total count.

Programming Notes

Example

1. The command passes over any lines that are shorter than el and considers
the next consecutive line inside the domain.

2. The user may, if he wishes, supply all information about a new file
through the T808 commands CATALOG and FILE before issuing a WRITE
command to the File Editor. The FCB linkname for the secondary file is
8ECFILE.

:~DE LETE 1 $

RF

5,15

:: J B 's 0 PIN ION S
SHALL REMAIN
FOREVER CLOAKED
IN MYSTERY
#END

5 . < 13>
JB'S OPINIONS

10. <02>
SHALL REMAIN

15. <05>
FOREVER CLOAKED

20. <00>
IN MYSTERY

NUMBER OF LINES AFFECTED: <4>
::W R I T ESE C F L, 1 0 , 2 0 , NEW

SHALL REMAIN

,~ "',.

FOREVER CLOAKED
IN MYSTERY

NUMBER OF LINES AFFECTED: <3>

3-72

4. PROCEDURE LANGUAGE

A procedure in the File Editor system is a group of commands taken from
the File Editor vocabulary that together perform a more complicated
operation than is possible with a single verb of the language. Each procedure
can be thought of as a macro within the File Editor structure. Furthermore,
procedures are not sets of commands that are limited to one particular form;
rather, they are generalized commands carrying parametric and symbolic
forms into which the user may inject specific values so as to cause a
particular procedure to perform a particular task.

THE PROCEDURE DEFINITION

The procedure definition is the outline of the procedure. It contains one or
more extended File Editor comlnands, together with identifying information
at the beginning and end of the definition. Thus, a procedure definition
begins with the keyword BEGIN, or its initial B, and ends with the keyword
END, or its initial E; the line containing BEGIN must also contain the name
of the procedure. The name of the procedure must begin with an alphabetic
character, followed by one to seven other characters which may be
alphabetic or numeric. For example, a procedure for searching out a
particular word might begin with:

BEGIN SRCHWRD

and end with::

END

or

END SRCHWRD.

Between the opening and closing lines of a procedure definition, there may
be one or more File Editor cornmands. Each such command may carry with
it symbolic parameters. In general, these parameters are shown in the form
:n, where n can be any decimal integer. Typical symbolic parameters,
therefore, are:

: 1 :34 :5 :14

Thus, one finds that typical statements in a procedure definition look like
the following examples:

SET * = :1

FIND *,:2,':3'

VERIFY *

4-1

Procedure Files

The following is a typical procedure definition consisting of eight
statements:

BEGIN SCRIDVRD

SET * := : 1

LOOP .LABEL :1,:2

FIND *,:2,':3'

JUMP .LABEL #0=0

VERIFY *

.LABEL SET *==*+ 1

END SCHRWRD

Such a procedure definition can be built up interactively by the user and
stored for future reference.

File Editor pro,~edure definitions are stored in a File Editor procedure file
and called forth at execution time. The user creates a File Editor procedure
file just as he would create any other file, by opening it as a new file and
inserting text (in this case, procedure definitions) into it by means of the
TEXT or INPUT commands.

The characteristics of a valid File Editor procedure file are:

1 . File-type = ISAM

2. Record-type =: Variable, with no print-control characters.

3. Key-length = 8

4. Key-position =: 5 (immediately after 4-byte record-length field)

5. Block-size = 2048

After the user has inserted procedure definitions in his procedure file, and
closed the file, he can then make it available as a source of procedure
definitions by issuing a QUALIFY command.

When a procedure file is qualified, that is, made available for procedure calls
during a File Editor session, only one page of virtual memory is allocated for
the directory of procedures. One page accommodates 170 procedures, and if
a procedure fiie contains more than this number, the user is notified that the
directory space has been exhausted. However, the first 170 procedures are
accessible.

4-2

Proced ure Calls

Because a user may have his procedure definitions residing in different files,
he must indicate to the File Editor which file he wishes the procedure calls
to refer to. He does this by issuing the QUALIFY command. For example, the
command

QUALIFY PROCFILA

opens PROCFILA and creates a directory of the procedures in that file. Any
procedure residing in PROCFILA may now be invoked by a procedure call.

A procedure call consists of the name of the procedure followed by the
desired values of the symbolic parameters. The name of the procedure is
placed in the operation field, and the various parameters are listed in the
operand field, PI, P2, P3, ... ,Pn.

Name Operation Operand

[~] [.name~]I procedure-name ~ PI ,P2,P3, ... , Pn

The parameters must be separated by commas. If there are no parameters in
the call, the ~~ following the procedure name may be omitted.

A parameter may not exceed 256 characters and must meet the following
requirements:

1. The beginning of a parameter in the operand field is indicated by the first
nonspace character in the operand field or the first nonspace character
following the comma that indicated the end of the previous parameter.

2. The end of a parameter is indicated by the ETX or by the next comma
which is not embedded in a quoted string.

3. If a quoted string appears in the parameter, the rules given in Section 2 for
string parameters must be observed.

When the procedure call is issued, the accompanying parameter values are
inserted into the procedure definition. This process is called expansion. To
illustrate the expansion of a procedure definition, consider the following
example:

The procedure named BECKON is defined as follows:

BEGIN BECKON

FIND :2

PRINT :1

ALTER: 1 ,:2,':3',':4'

END BECKON

4-3

This procedure is a general statement of a program that finds a specific line
in the principal file, prints out a line from the principal file, and substitutes a
new string for the first occurrence of another string within a range of lines.

In order to call this procedure, the user might write

BECKON *, *+5,40,50

The expansion of the procedure definition follows the rule that the order of
the parameter values in the procedure call corresponds to the numerical
value in the definition. Thus, the value : 2, in the FIND statement, looks to
the second positilon in the parameter lineup in the call statement; the value
given there is *+5. Similarly, the : I following PRINT becomes *. The fully
expanded procedure would then be as follows:

FIND *+5

PRINT *'
ALTER *,*+5,'40','50'

Note: The *+5 means the fifth line after the *.

Each procedure definition line is expanded and then executed.

A procedure call is not permitted within a Loop sequence. For example,

LOOP .BOTTOM: X3

BECKON 100,200,300

.BOTTOM

is illegal. The Loop sequence will be executed up to BECKON and then will
halt with a diagnostic message.

VARIATIONS OF PARAMETER REPRESENTATIONS

Symbolic Parameter: 0

The nam,e field of the procedure call, in addition to its standard use, is also
considered a parameter and is associated with the special symbolic
parameter, : O. Except for this special numbering convention, the item in the
name field will be treated during the expansion in exactly the same way as
the parameters given in the operand field of the call. For example, assume
the procedure caU:

.TAG BECKON 100,200,'ABLE','BAKER'

The procedure definition statement: ALTER: 1,:2,:3,':0' will be expanded
as ALTER 100,200,'ABLE','.TAG'.

4-4

Null Parameters and Null Syrnbolic Parameters

Concatenation

If a parameter is omitted from the operand field of a procedure call, such a
parameter becomes a null parameter. The value of a parameter is limited to
the extent between commas; every parameter except the last should be
followed by a comma.

The following is an example of a call in which the third parameter is null:

BECKON 100,5000"LABEL

If this same call had been written as:

BECKON 700

the last three parameters would be considered null.

When a symbolic parameter in a procedure definition statement corresponds
to a null parameter in a procedure call, it is said to be a null symbolic
parameter. During expansion, a null character value will replace the null
symbolic parameter. The effect is the same as if the symbolic parameter did
not appear in the statement.

For example, given the call,

BECKON 1 OO,500,IT

and the line,

FIND :1,:2,":3"

the expanded statement would be:

FIND 100,500,"IT".

But, if the call were

BECKON 200"IT

the expanded statement would be:

FIND 200,,"IT".

A symbolic parameter in a procedure definition statement may be
immediately preceded or followed by other characters or another symbolic
parameter. When the command is expanded, the characters that correspond
to the symbolic parameter are combined with the other characters or the
value associated with the other symbolic parameter. For example, in

FIND 100,500,':3S'

let the value associated with :3 be TAPE; the expanded command becomes:

FIND 100,500,'TAPES'.

There are two chaining situations that require special conventions to avoid
ambiguity.

4-5

Concatenation of a Symbolic Parameter with a Suffixed Decimal Digit

If one wishes, for example, to concatenate: 1 with the suffixed decimal digit
7, the problem is to avoid confusing this combination with : 17 which
identifies symbolic parameter 17. To avoid this ambiguity, the sign @ (at the
rate of) is designated as a separator. The @ is placed between the symbolic
parameter number and the numerical value to be concatenated with the
specific value. For example, the procedure definition statement

FIND 100,500, ':3@2'

with the value TAPE for the third parameter, would be expanded as:

FIND 100,500, 'TAPE2'

Concatenation of the Colon Character with a Suffixed Decimal Digit

Because a symbolic parameter is represented by a colon followed by one or
more decimal digits, there must be a special notation to indicate when the
same sequence of characters is to be interpreted literally and not as a
symbolic parameter. The convention adopted is to use two consecutive
colons when a literal interpretation is wanted. Thus, : 1 means symbolic
parameter 1, but :: 1 means a colon followed by a decimal 1. The:: 1 will be
replaced by : 1 during expansion.

The following rules govern the use of colons:

1. If the sequence colon-followed-by-a-digit is intended, then the colon must
be preceded by another colon. (Illustrated by example below.)

2. If the sequence colon-followed-by-any-other-character is intended, it does
not rnatter whether there are one or two colons (see examples band d
below).

3. Two consecutive colons in a procedure definition statement are always
replaced by a single colon during expansion, as in example band c below.
They will not be considered when identifying the beginning of a symbolic
paranleter in a procedure definition statement.

The following examples illustrate the application of the colon rules.
Assurning that the procedure call assigned a value LABEL to : 1, the model
staternents on the left are shown on the right in their expanded form.

Model Statement

a. FIND 100,500,': 1 '

b. FIND 100,500,'::SYMBOL'

c. FIND 100,500/:: l'

d. FIND 100,500,':SYMBOL'

4-6

Generated Command

FIND 100,500,'LABEL'

FIND 100,500,':SYMBOL'

FIND 100,500,': l'

FIND 100,500,':SYMBOL'

Inner Calls

EXaInple I

A procedure can contain as a part of its procedure definition another
procedure call. The call appears as a procedure definition statement and is
termed an inner call. The call that invoked the procedure containing the
inner call is considered to be the outer call. All symbolic parameters that
appear in an inner call are replaced by the values assigned to them by the
outer call, just as in the expansion of any other line of the procedure
definition.

Nesting of procedures in this :manner may go to any depth. Recursive
procedure calls are also permitted.

~~ 0 PEN P T F I L E , NEW

OPENED PTFILE AS NEW V-TYPE FILE.

~q NPUT 10
:~ BEG INC A L. L 0
FIND :2
PRINT : 1
ALTER :1,:2,':3',':4'
END CALLO
#END
:~P RI NT 1 $;
BEGIN CALL.O
FIND :2
PRINT :1
ALTER :1,:2,':3',':4 1

END CALLO
:~HAL T
/ LOGOFF BUT
%B003 LOGOFF AT 1332 ON 09/29/69, FOR TSN 2108.
%B014 CPU TIME USED: 0018.5120 SECONDS.
%BO 0 1 P LEASE LOGON.
/LOGON USERID
%B002 LOGON ACCEPTED AT 1333 ON 09/29/69. TSN 2127

ASS I GNED
/EXEC EDIT
%LOOI PROGRAM LOADING

VERSo 0005 OF FILE EDITOR RDADY
:~OPEN EK 1

OPENED EK1 AS OLD V-TYPE FILE.
:~QUALI FY PT FI LE

NUMBER OF ENTRIES CREATED: 1
NAME OF LAST ENTRY: CALLO

4-7

~~O 1 $
~q N P UT 1 0 ~ [1 0
~~AAA

BBB
eee
DOD
EEE
FFF
GGG
HHH
I I I
JJJ
KKK
LLL
#ENO
:~s E T :~= 10

:~RESE T LY
xeALLO x~x+5~GGG~XXX

CALLO x,x+5~GGGJXXX

F [N 0 :~+ 5
p I'~.I N'r ~~

FFF
A L T E R :~,:~ + 5 J ' G G G' ~ , X X X '

::P RI NT 1 $
PRINT 1 $
AAA
BBB
cec
ODD
EEE
FFF
XXX
HHH
I I I
JJJ
KKK
LLL

4-8

(To ensure that command statements
will be displayed on terminal before
they are executed.)

Example 2

~~ / EX E C (E C>I T)
%L001 DYNAMIC LOADER INVOKED

VERSo 0009 OF FILE EDITOR READY
~~ RE SET G I := I

~~OPEN PT FL NEW
OPENED PTFL AS NEW V-TYPE FILE.

~q NPUT I 113
~~BEG INS RCHW RD
S ET ~~=: 1
LOOP .LABEL :1 :2
FIN D ~~ : 2 t t : 3 t t
JUMP . LAB E L # 0 = 0
VE RI FY ~~

= . LAB E L S IE T ~~= ~~+ 1
END S RCHWRD
#END
~~HAL T
/ LOGOFF BUT
%B003 LOGOFF AT 1524 ON 10/10/69, FOR TSN 3363.
%B014 CPU TIME USED: 0016.0643 SECONDS
%B001 PLEASE LOGON.
/LOGON USERID
%B002 LOGON ACCEPTED AT 1524 ON 10/10/69, TSN 3375

ASS I GNED
/EXEC (EDIT)
%L001 DYNAMIC LOADER INVOKED

VERSo 0009 OF FILE EDITOR READY
~~OPEN PRINe
OPENED PRINC AS OLD V-TYPE -FILE.
~~DE LETE 1 $
~q N P UT 10 0 I 5 0
~~TH I S FILE
CONTAINS TEST
DAT A FOR THE
PURPOSE OF
MAKING A TEST
OF THE F.E. PROCEDURE
FACILITY. TEST FILE ONLY
#END
~~P RI NT 1 $ N

100. <9>
TH I S FI LE

150 <13>
CONTAINS TEST

200 <12>

4-9

DATA FOR THE
250 <10>

PURPOSE OF
300 <13>

MAKING A TEST
350 <21>

OF THE F.E. PROCEDURE
400 <25>

FACILITY. TEST FILE ONLY.
~: QUA L I F Y P T F L

NUMBER OF ENTRIES CREATED: 1
NAME OF LAST ENTRY: SRCHWRD

~:RESET L Y
~:SRCHWRD 100., 500" TEST

SRCHWRD 100.,500"TEST
SET ~:= 100
LOOP .LABEL 100 500
FIN D ~: 5 0 0 " T EST"
JUMP . LABE L #0=0
VE RI FY ~:

~: = 150.

· LABEL SET ~::::~+1

FIND ~: 500 "TEST"
J UM P . LAB E L # 0 = 0
VE RI FY ~:

:~ := 300.

· LABE L SET ~:= ~:+ 1
FIN D ::: 5 0 0 II T EST II
JUMP . LAB E L # 0 = 0
VE RI FY ::

:: =400.

· LAB EllS E T :: = :: + 1
END OF FILE OCCURRED READING THE PRINCIPAL FILE

::HALT
HALT

PROCEDURE FI LE CLOSED
/LOGOFF
%8003 LOGOFF AT 1532 ON 10/10/69" FOR TSN 3375
%8014 CPU TIME USED: 0008.5525 SECONDS.

4-10

Title TSOS File Editor Reference Manual

Document No. DJ-003-2-00

Date May 1971

nOli Computer
Systems

Your comments and suggestions will help us to furnish publications that
are more usefu I to you.

Is this pUblication:

Complete in its coverage?

Logically organized?

Technically accurate?

Easy to understand?

Other comments (Use additional page if necessary).

Name __________ _ Street or Box No. _______________ _

Job Title _____ _ City ___________________ _

Company ___________________ _ State _____ Zip ____________ _

Fold

Fold

BUSINESS REPLY MAIL - no postage necessary if mailed in the United States

Postage will be paid by addressee

RCA I COMPUTER SYSTEMS
DATA PROCESSING DIVISION
CAMDEN, N. J. 08101

ATTN: Marketing Publications
Bldg. 204-2, Cherry Hill

FIRST CLASS
PERMIT NO. 16
CAMDEN, N. J.

<l1
C

:J
OJ
c
o «

Publications
Purchase
Order

Item Quantity
No. Ordered

'I

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Ship To:

Ordering Number

IRCAIComputer Systems Division
Camden, N. J. 08101

nOli
Description or Title of Material

Bill To: (Complete if Publ ic:ations Are To Be
Purchased)

Customer P.O. #

Publ ications purchased will be furnished subject to all terms and conditions stated on the reverse
side of this Form.

Ship via Date Required

Authorized Signaturn Date

27·41.002

Order Number

Complete if Publ ications Are To Be Purchased

Unit Price Totals

----- ---

Sub Total

Indicate Appl ica-
ble Sales Tax
f----

Total Cost

Check Appropriate Block:

Bi II My Company I I
Remittance Enclosed I I

If Publ ications are to be purchased forward
this Form and any enclosur'es to:

RCA I Computer Systems Division

Reproduction Services

Camden, N. J. 08101

All other requests: Forward this form to the
nearest RCA District Office.

9170_

Terms And Conditions
Applicable To The Sale of RCA Publications and Forms

nOli

PRICES

All prices are subject to change or withdrawal without notice and all shipments will be billed at prices in effect on
date of shipment. Unless otherwise specified or required by law, all prices will be billed exclusive of state and local
sales and similar taxes, and such taxes will appear as additional items on invoices.

TRANSPORTAT ION

All shipments will be f.o.b. destination.

On shipments where Purchaser requests transportation involving expenses beyond those involved on transportation
normally selected by RCA, the Purchaser wi il be responsible for payment of such extra costs.

RCA reserves the right to ship from any location subject to the foregoing transportation terms.

DELIVERIES

It is the desire of RCA to meet requested dE,livery schedules. However, RCA shall not incur any liability due to any
delay or failure to deliver for any reason. Any delivery indication furnished by RCA only represents the best estimate
of the time required to make shipment. The del ivery of part of any order shall not obi igate RCA to make further
deliv.eries, and RCA reserves the right to decline servicing any order in whole or in part.

Of necessity, inventories and current production must be allocated in such a manner as to comply with applicable
Government regulations. In the absence of such regulations, RCA reserves the right to allocate inventories and
current production when, in its opinion, such allocation is necessary.

TERMS OF PAYMENT

Invoices shall be rendered at time of shipment and shall be payable net 30 days from date of shipment.

Partial shipments wi II be invoiced as made, and payments therefor are subject to the above terms.

GENERAL

In no event shall RCA be liable for indirect, consequential or special damages.

Information furnished by RCA is believed to be accurate and reliable. However, no responsibility is assumed by RCA
for its use~ nor for any infringements of patents or other rights of third parties which may result from its use. No
I icense is granted by implication or otherwise under any patent or patent rights of RCA.

This Agreement shall be governed by the laws of the State of New York and constitutes the entire Agreement between
the parties with respect to the subject matter hereof. It shall prevail regardless of any variation in the terms and
conditions of any other submitted by the Purchaser.

Page

ALTER 3-1
Arithmetic Expressions. .. 2-11
Asterisk, special meaning of 2-4

CHANGE 3-5
Character count parameters "............ 2-9
Character field "........... 2-11
CL()SE "............ 3-8
Colons, special uses of 4-1
Command language descri ption " 1-6
Command statements. 2-1
Concatenation of symbolic parameters 4-5
Control commands 1-7
Conversational usage .. 1-2
Current line pointer 2-4
Current Ii ne size symbol 2-10

Decimal pointer 2-14
DELETE 3-10
Delimiters , " ... 2-1,2-13
Diagnostic messages•.......•.. 1-9
Domain of command 2-12

Execution response messages 1-11

Files:
lines of 1-6
pri nci pal•.......................... 1-5
procedure 4-2
secondary 1-6

FIND•..... "•....... 3-12

GET '" 3-16
Guard character ".................. 2-13

HALT•.......... " 3-20
HELP " 3-21

I ncrementing line numbers 2-13
I nner procedure calls. .. 4-7
INPUT 3-23
Input-output commands. .. 1-8

JUMP 3-27

Keys 1-6
Keyword parameters .. 2-2

Z-l

INDEX

Page

Last line pointer "... 2-4
Line address:

defaults , . .. 2-6
formats , 2-5
parameters "............... 2-3

Line content commands "............... 1-8
Line content parameters .. 2-6
Line number 1-6,2-3
Line number increments 2-13
Listing option. .. 2-14
LOOP '" 3-32

Messages 1-9
MOVE 3-37

Name field 2-1
Nested procedure calls 4-7
Nonconversational usage. .. 1-3
NOTE•......•....................... 3-40

OPEN 3-41
Operand field 2-2
Operand syntax. .. 2-2
Operation field 2-2
Outer procedure calls•............ 4-7

Poi nter 2-4
Principal file 1-5
PRINT 3-45
Procedure:

call 4-3
definition 4-1
files 4-2
language•........................ 4-1

QUALIFY 3-47

Records .. 1-6
Relative line addressing. .. 2-5
RESEQUENCE. .. 3-49
RESET 3-51
Responses and messages 1-9
Review mode•................. 3-49

SEARCH " 3-56
Secondary files. .. 1-6
Session attri butes 2-13

Page Page

SET , 3-59 Tabulation settings 2-14
Spaces " 2-1 TEXT 3-61
Special commands. .. 1-9 Text delimiters 2-13
Statements 2-1
String parameters 2-6 UPDATE .. 3-65
Symbolic line pointers 2-4 Usage 1-3
Symbolic parameters. 4-1,4-5,4-6
Syntax 2-1 VE RI FY .. 3-67
SYSDTA .. , , , 1-1
SYSOUT 1-3 WRITE••.................... 3-70

Z-2

