
RIDGE

9010E volume 2 of 2 #A

ROS Reference·
Manual

Sections (2) thru (7)

INTRO(2) INTRO(2)

NAME
intro - introduction to system calls and error numbers (callable from C)

SYNTAX
#inelucle < errno.h>

DESCRIPTION

Page 1

This section describes all of the system calls. Most of these calls have one or more error
returns. An error condition is indicated by an otherwise impossible returned value. This is
almost always - 1; the individual descriptions specify the details. An error number is also made
available in the external variable errno. Errno is not cleared on successful calls, so it should be
tested only after an error has been indicated.

All of the possible error numbers are not listed in each system call description because many
errors are possible for most of the calls. The following is a complete list of the error numbers
and their names as defined in <errno.h>.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except
to its owner or super-user. It is also returned for attempts by ordinary users to do
things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn't, or
when one of the directories in a path name does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pz"d in k~71 or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or qUit), which the user has elected to catch,
occurred during a system call. If execution is resumed after processing the signal, it
will appear as if the interrupted system call returned this error condition.

5 EIO I/O error
Some physical I/O error~ This error may in some cases occur on a call following the
one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or beyond the limits of
the device. It may also occur when, for example, a tape drive is not on-line or no disk
pack is loaded on a drive.

7 E2IG Arg list too long
An argument list longer than 5,120 bytes is prese"nted to a member of the exec family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions,
does not start with a valid magic number (see a. o'Ut(4».

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respectively write) request is
made to a file which is open only for writing (respectively reading).

10 ECHILD No child processes
A waz"t, was executed by a process that had no existing or unwaited-for child processes.

11 EAGAIN No more processes
A fork, failed because the system's process table is full or the user is not allowed to
create any more processes.

(9010-E)

INTRO(2) INTRO(2)

12 EN OM EM Not enough space
During an exec, brk, or sbrk, a program asks for more space than the system is able to
supply. This is not a temporary condition; the maximum space size is a system parame­
ter. The error may also occur if the arrangement of text, data, and stack segments
requires too many segmentation registers, or if there is not enough swap space during a
fork.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an argument of a system
call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was required, e.g., in mou.nt.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted or an attempt was made to
dismount a device on which there is an active file (open file, current directory,
mounted-on file, active text segment). It will also occur if an attempt is made to
enable accounting when it is already enabled.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g., link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g., read a
write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path prefix
or as an argument to chdir(2).

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINV AL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted device; mentioning an
undefined signal in s~'gnal, or kill; reading or writing a file for which Iseek has generated
a negative pOinter). Also set by the math functions described in the (3M) entries of
this manual.

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no more opens can be accepted.

24 EMFILE Too many open files
No process may have more than 64 file descriptors open at a time.

25 ENOTTY Not a typewriter

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writing
(or reading). Also an attempt to open for writing a pure-procedure program that is
being executed.

27 EFBIG File too large

(9010-E)

The size of a file exceeded the maximum file size (1,082,201,088 bytes) or ULIMIT; see
u.limit(2} .

Page 2

INTRO(2) INTRO(2)

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links (1000) to a file. This
condition normally generates a signal; the error is returned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the domain of the
function.

34 ERANGE Result too large
The value of a function in the math package (3M) is not representable within machine
precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not exist on the specified
message queue; see msgop(2).

36 EIDRM Identifier Removed
This error is returned to processes that resume execution due to the removal of an
identifier from the file system's name space (see msgctl(2), semctl(2), and shmctl(2».

DEFINITIONS
Process ID

Each active process in the system is uniquely identified by a positive integer called a process ID.
The range of this ID is from 0 to 30,000.

Parent Process ID
A new process is created by a currently active process; see fork(2). The parent process ID of a
process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is identified by a positive integer called
the process group ID. This ID is the process ID of the group leader. This grouping permits the
signaling of related processes; see kill(2).

Tty Group ID
Each active process can be a member of a terminal group that is identified by a positive integer
called the tty group ID. This grouping is used to terminate a group of related process upon ter­
mination of one of the processes in the group; see exit(2) and signal(2).

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive integer called a real user ID.

Each user is also a member of a group. The group is identified by a positive integer called the
real group ID.

An active process has a real user ID and real group ID that are set to the real user ID and real
group ID, respectively, of the user responsible for the creation of the process.

Effective User ID and Effective Group ID
An active process has an effective user ID and an effective group ID that are used to determine
file access permissions (see below). The effective user ID and effective group ID are equal to
the process's real user ID and real group ID respectively, unless the process or one of its ances­
tors evolved from a file that had the set-user-ID bit or set-group ID bit set; see exec(2).

Super-user
A process is recognized as a super-user process and is granted special privileges if its effective

Page 3 (gOlD-E)

INTRO(2) INTRO(2)

user ID is O.

File Name.
Names consisting of 1 to 16 characters may be used to name an ordinary file, special file or
directory.

These characters may be selected from the set of all character values excluding \0 (null) and
the ASCII code for / (slash).

Note that it is generally unwise to use *, ?, [, or] as part of file names because of the special
meaning attached to these characters by the shell. See sh(1). Although permitted, it is advis­
able to avoid the use of unprintable characters in file names.

Path Name and Path Prefix
A path name is a null-terminated character string starting with an optional slash (/), followed
by zero or more directory names separated by slashes, optionally followed by a file name.

More precisely, a path name is a null-terminated character string constructed as follows:

<path-name> ::=<file-name >1 <path-prefix> <file-name> V
<path-prefix> ::=<rtprefix >1/ <rtprefix >
<rtprefix> ::=<dirname > /1 <rtprefix > <dirname > /

where <file-name> is a string of 1 to 16 characters other than the ASCII slash and null, and
< dirname > is a string of 1 to 16 characters (other than the ASCII slash and null) that names a
directory.

If a path name begins with a slash, the path search begins at the root directory. Otherwise, the
search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it named a non-existent
file.

Directory.
Directory entries are called links. By convention, a directory contains at least two links, • and
•• , referred to as dot and dot-dot respectively. Dot refers to the directory itself and dot-dot
refers to its parent directory.

Root Directory and Current Working Directory.
Each process has associated with it a concept of a root directory and a current working directory
for the purpose of resolving path name searches. A process's root directory need not be the
root directory of the root file system.

File Access Permissions.
Read, write, and execute/search permissions on a file are granted to a process if one or more of
the following are true:

The process's effective user ID is super-user.

The process's effective user ID matches the user ID of the owner of the file and the
appropriate access bit of the "owner" portion (0700) of the file mode is set.

The process's effective user ID does not match the user ID of the owner of the file, and
the process's effective group ID matches the group of the file and the appropriate access
bit of the "group" portion (070) of the file mode is set.

The process's effective user ID does not match the user ID of the owner of the file, and
the process's effective group ID does not match the group ID of the file, and the
appropriate access bit of the "other" portion (07) of the file mode is set.

Otherwise, the corresponding permissions are denied.

(9010-E) Page 4

ACCESS(2) (UNIX 5.0) ACCESS(2)

NAME
access - determine accessibility of a file

SYNTAX
int access (path, amode)
char *path;
int amode;

DESCRIPTION
Path points to a path name naming a file. Access checks the named file for accessibility accord­
ing to the bit pattern contained in amode, using the real user ID in place of the effective user ID
and the real group ID in place of the effective group ID. The bit pattern contained in amode is
constructed as follows:

04 read
02 write
01 execute (search)
00 check existence of file

Access to the file is denied if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

Read, write, or execute (search) permission is requested for a null path name.
[ENOENT]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix. [EACCES]

Write access is requested for a file on a read-only file system. [EROFS]

Write access is requested for a pure procedure (shared text) file that is being executed.
[ETXTBSY]

Permission bits of the file mode do not permit the requested access. [EACCES]

Path points outside the process's allocated address space. [EFAULT]

The owner of a file has permission checked with respect to the "owner" read, write, and exe­
cute mode bits, members of the file's group other than the owner have permissions checked
with respect to the "group" mode bits, and all others have permissions checked with respect to
the "other" mode bits.

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Otherwise, a value of - I is
returned and ermo is set to indicate the error.

SEE ALSO·
chmod(2), stat(2).

Pagel (9010-E)

ALARM(2)

NAME
alarm - set a process's alarm clock

SYNTAX

unsigned alarm (sec)
unsigned sec;

DESCRIPTION

(UNIX 5.0) ALARM(2)

Alarm instructs the calling process's alarm clock to send the signal SIGALRM to the calling pro­
cess after the number of real time seconds specified by sec have elapsed; see signal(2) .

Alarm requests are not s~ked; successive calls reset the calling process's alarm clock.

If sec is 0, any previously made alarm request is canceled. Sec is a virtually unlimited integer.

RETURN VALUE

Alarm returns the amount of time previously remaining in the calling process's alarm clock.

SEE ALSO
pause(2), signal(2).

Page 1 (9010-E)

BRK(2) (UNIX 5.0) BRK(2)

NAME
brk, sbrk - change data segment space allocation

SYNTAX
int brk (endds)
char *endds;

char *sbrk (ina)
int ina;

DESCRIPTION
Brk and sbrk are used to change dynamically the amount of space allocated for the calling
process's data segment; see exec(2). The change is made by resetting the process's break value
and allocating the appropriate amount of s·pace. The break value is the address of the first loca­
tion beyond the end of the data segment. The amount of allocated space increases as the break
value increases. The newly allocated space is set to zero.

Brk sets the break value to endds and changes the allocated space accordingly.

Sbrk adds incr bytes to the break value and changes the allocated space accordingly. [ncr can be
negative, in which case the amount of allocated space is decreased.

Brk and sbrk will fail without making any change in the allocated space if one or more of the
following are true:

Such a change would result in more space being allocated than is allowed by a system­
imposed maximum. [ENOMEMj

Such a change would result in the break value being greater than or equal to the start
address of any attached shared memory segment.·

RETURN VALUE
Upon successful completion, brk returns a value of 0 and sbrk returns the old break value.
Otherwise, a value of - 1 is returned and errno is set to indicate the error.

SEE ALSO

exec(2).

Pagel (9010-E)

CHDIR(2) (Ridge) CHDIR(2)

NAME
chdir - change working directory

SYNTAX

int chdir (path)
char *path;

DESCRIPTION
Path points to the path name of a directory. Chd£r causes the named directory to become the
current working directory, the starting point for path searches for path names not beginning
with l
Chdir will fail and the current working directory will be unchanged if one or more of the fol­
lowing are true:

A component of the path name is not a directory. [ENOTDIRj

The named directory does not exist. [ENOENTj

Search permission is denied for any component of the path name. [EACCESj

Path points outside the process's allocated address space. [EFAULTj

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of - 1 is returned and
ermo is set to indicate the error.

SEE ALSO

chroot(2) .

Page 1 (9010-E)

CHMOD(2) (UNIX 5.0) CHMOD(2)

NAME
chmod - change mode of file

SYNTAX

int chmod (path, mode)
char *path;
int mode;

DESCRIPTION
Path points to a path name naming a file. Ghmod sets the access permission portion of the
named file's mode according to the bit pattern contained in mode.

Access permission bits are interpreted as follows:

04000 Set user ID on execution.
02000 Set group ID on execution.
00400 Read by owner
00200 Write by owner
00100 Execute (or search if a directory) by owner
00070 Read, write, execute (search) by group
00007 Read, write, execute (search) by others

The effective user ID of the process must match the owner of the file or be super-user to
change the mode of a file.

If the effective user ID of the process is not super-user or the effective group ID of the process
does not match the group ID of the file, mode bit 02000 (set group ID on execution) is cleared.

Ghmod will fail and the file mode will be unchanged if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix. [EACCES]

The effective user ID does not match the owner of the file and the effective user ID is
not super-user. [EPERM]

The named file resides on a read-only file system. [EROFS]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of - 1 is returned and
ermo is set to indicate the error.

SEE ALSO

chown(2), mknod(2).

Pagel (9010-E)

CHOWN(2) (UNIX 5.0) CHOWN(2)

NAME
chown - change owner and group of a file

SYNTAX
int chown (path, owner, group)
char *path;
int owner, group;

D ESCRIPTI ON
Path points to a path name naming a file. The owner ID and group ID of the named file are set
to the numeric values contained in owner and group respectively.

Only processes with effective user ID equal to the file owner or super-user may change the own­
ership of a file.

If chown is invoked by other than the super-user, the set-user-ID and set-group-ID bits of the
file mode, 04000 and 02000 respectively, will be cleared.

Chown will fail and the owner and group of the named file will remain unchanged if one or
more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix. [EACCES]

The effective user ID does not match the owner of the file and the effective user ID is
not super-user. [EPERM]

The named file resides on a read-only file system. [EROFS]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of - I is returned and
ermo is set to indicate the error.

SEE ALSO
chmod(2).

Pagel (9010-E)

CLOSE(2)

NAME
close - close a file descriptor

SYNTAX
int cla;e (tildes)
int tildes;

DESCRIPTION

(UNIX 5.0) CLOSE(2)

Fildes is a file descriptor obtained from a creat, open, dup, or fcntl, system call. Close closes the
file descriptor indicated by fildes.

Close will fail if fildes is not a valid open file descriptor. [EBADF]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of - I is returned and
errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), open(2).

Pagel (9010-E)

CREAT(2) (UNIX 5.0) CREAT(2)

NAME

creat - create a new file or rewrite an existing one

SYNTAX

int creat (path, mode)
char *path;
int mode;

DESCRIPTION
Creat creates a new ordinary file or prepares to rewrite an existing file named by the path name
pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are unchanged. Other­
wise, the file's owner ID is set to the process's effective user ID, the file's group ID is set to the
process's effective group ID, and the low-order 12 bits of the file mode are set to the value of
mode modified as follows:

All bits set in the process's file mode creation mask are cleared. See umask(2).

Upon successful completion, a non-negative integer, namely the file descriptor, is returned and
the file is open for writing, even if the mode does not permit writing. The file pointer is set to
the beginning of the file. The file descriptor is set to remain open across exec system calls. See
fcntl(2). No process may have more than 64 files open simultaneously. A new file may be
created with a mode that forbids writing.

Creat will fail if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

A component of the path prefix does not exist. [ENOENT]

Search permission is denied on a component of the path prefix. [EACCES)

The path name is null. [ENOENT]

The file does not exist and the directory in which the file is to be created does not per­
mit writing. [EACCES]

The named file resides or would reside on a read-only file system. [EROFS]

The file is a pure procedure (shared text) file that is being executed. [ETXTBSY]

The file exists and write permission is denied. [EACCES]

The named file is an existing directory. [EISDIR]

Sixty-four (64) file descriptors are currently open. [EMFILE)

Path points outside the process's allocated address space. [EFAULTJ

RETURN VALUE

Upon successful completion, a non-negative integer, namely the file descriptor, is returned.
Otherwise, a value of - 1 is returned and errno is set to indicate the error.

SEE ALSO

close(2), dup(2), Iseek(2), open(2), read(2), umask(2), write(2).

Pagel (9010-E)

DUP(2) (UNIX 5.2) DUP(2)

NAME
dup, dup2 - duplicate an open file descriptor

SYNTAX

int dup (tildes)
int tildes;

int dup2 (fildes newfildes)
int tildes
int newfl.ldes

DESCRIPTION

Fildes is a file descriptor obtained from a ereat, open, dup , fentl , or pipe system call.

Dup and dup2 return a new file descriptor having the following in common with the original:

Same open file

Same file pointer (Le., both file descriptors share one file pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exee system calls. See fcntl (2).

Dup returns the lowest available file descriptor. Dup2 closes newfildes and returns the value
newfildes, which now refers to the same object as fildes.

Dup and Dup2 fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[EMFILE] Twenty (20) file descriptors are currently open.

Dup2 fails if:

[EMFILE] newfildes is not in the range 0 to 63.

RETURN VALUE

Upon successful completion a non-negative integer, namely the file descriptor, is returned.
Otherwise, a value of - I is returned and errno is set to indicate the error.

SEE ALSO

creat(2), close(2), exec(2), fcntl(2), open(2)

Pagel (9010-E)

EXEC(2) (UNIX 5.0) EXEC(2)

NAME
execl, execv, execle, execve, execdve, execlp, execvp, execdvp - execute a file

SYNTAX
int execl (path, argi), argl, ..• , argn, 0)
char *path, *argO, *argl, ••• , *argn;

int execv (path, argv)
char *path, *argv[];

int execle (path, argO, argl, ••• , argn, 0, envp)
char *path, * argO , *argl, •.• , *argn, *envp[];

int execve (path, argv, envp)
char *path, *argv[], *envp[];

int execdve (path, argv, envp)
char *path, *argv[], *envp[];

int execlp (file, argi), argl, ..• , argn, 0)
char *file, * argO, *argl, ..• , *argn;

int execvp (file, argv)
char *file, *argv[];

int execdvp (file, argv)
char *fil e, * argv[];

DESCRIPTION

Page I

Exec in all its forms transforms the calling process into a new process. The new process is con­
structed from an ordinary, executable file called the new process file. This file consists of a
header (see a. out(4)), a text segment, and a data segment. The data segment con tains an ini­
tialized portion and an uninitialized portion (bss). There can be no return from a successful
exec because the calling process is overlaid by the new process.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. As indicated, argc is conventionally at least one and the first member of the array
points to a string containing the name of the file.

Path points to a path name that identifies the new process file.

File points to the new process file. The path prefix for this file is obtained by a search of the
directories passed as the environment line "PATH =" (see environ(5)). The environment is sup­
plied by the shell (see sh(l)).

ArgO, argl, ... , argn are pointers to null-terminated character strings. These strings constitute
the argument list available to the new process. By convention, at least argO must be present
and point to a string that is the same as path (or its last component).

Argv is an array of character pointers to null-terminated strings. These strings constitute the
argument list available to the new process. By convention, argv must have at least one
member, and it must point to a string that is the same as path (or its last component). Argv is
terminated by a null pointer.

Envp is an array of character pointers to null-terminated strings. These strings constitute the
environment for the new process. Envp is terminated by a null pointer. For exec! and execv,
the C run-time startrofI routine places a pointer to the calling process's environment in the

(90IO-E)

EXEC(2) (UNIX 5.0) EXEC(2)

glo bal cell:
extern char **environ;

and it is used to pass the calling process's environment to the new process.

Execdve is like execve, and execdvp is like execvp, except the "d" forms place the new or over­
laid process into the interactive debugger (debug(1)) before execution begins.

File descriptors open in the calling process remain open in the new process, except for those
whose close-on-exec fiag is set; see JcntJ(2). For those file descriptors that remain open, the
file pointer is unchanged.

Signals set to terminate the calling process will be set to terminate the new process. Signals set
to be ignored by the calling process will be set to be ignored by the new process. Signals set to
be caught by the calling process will be set to terminate new process; see signal(2).

If the setruser-ID mode bit of the new process file is set (see chmod(2)), exec sets the effective
user ID of the new process to the owner ID of the new process file. Similarly, if the setrgroup­
ID mode bit of the new process file is set, the effective group ID of the new process is set to the
group ID of the new process file. The real user ID and real group ID of the new process remain
the same as those of the calling process.

The new process also inherits the following attributes from the calling process:

process ID, parent process ID, process group ID, tty group ID (see exit (2) and signal
(2)), current working directory, root directory, file mode creation mask (see umask
(2)), utime, stime, c1.ttime, and cstime (see times(2))

Exec will fail and return to the calling process if one or more of the following are true:

One or more components of the new process file's path name do not exist. [ENOENT]

A component of the new process file's path prefix is not a directory. [ENOTDIR]

Search permission is denied for a directory listed in the new process file's path prefix.
[EACCES]

The new process file is not an ordinary file. [EACCES]

The new process file mode denies execution permission. [EACCES]

The exec is not an execlp or execvp, and the new process file has the appropriate access
permission but an invalid magic number in its header. [ENOEXEC]

The new process file is a pure procedure (shared text) file that is currently open for
writing by some process. [ETXTBSY]

The new process requires more memory than is allowed by the system-imposed max­
imum MAXMEM. [ENOMEM]

The number of bytes in either the new process's argument list or the new environment
is greater than the system-imposed limit of >4092 bytes. [E2IG]

The new process file length is less than size values in its header. [EFAULT]

Path, argv, or envp point to an illegal address. [EFAULT]

RETURN VALUE
If exec returns to the calling process an error has occurred; the return value will be - 1 and
errno will be set to indicate the error.

SEE ALSO
exit(2), fork(2), environ(5) .

(9010-E) Page 2

EXIT(2) (UNIX System 5) EXIT(2)

NAME
exit, _exit - terminate process

SYNTAX

void exit (status)
intstatus;
void _exit (status)
int status;

DESCRIPTION

Ex£t terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wa£t, it is notified of the cal­
ling process's termination and the low order eight bits (Le., bits 0377) of status are
made available to it; see wa-it(2).

If the parent process of the calling process is not executing a wa£t, the calling process is
transformed into a zombie process. A zomb-ie process is a process that only occupies a
slot in the process table. It has no other space allocated either in user or kernel space.
The process table slot that it occupies is partially overlaid with time accounting informa­
tion (see <sys/proc.h» to be used by t-imes.

The parent process ID of all of the calling process's existing child processes and zombie
processes is set to 1. This means the initialization process (see -intro(2)) inherits each
of these processes.

An accounting record is written on the accounting file if the system's accounting rou­
tine is enabled; see acct(2).

If the process ID, tty group ID, and process group ID of the calling process are equal,
the SIGHUP signal is sent to each process that has a process group ID equal to that of
the calling process.

The C function exz"t may cause cleanup actions before the process exits. The function _ex-it cir­
cumvents all cleanup.

SEE ALSO

in tro(2), signal(2), wait(2) .

WARNING

See WARNING in s£gna/(2).

Page 1 (9010-E)

FCNTL(2) (UNIX 5.0) FCNTL(2)

NAME
fcntl - file control

SYNTAX

#include <fcntl.h>

int fcntl (fildes, cmd, arg)
int fildes, cmd, arg;

D ESCRIPTI ON
Fcntl provides for control over open files. Fildes is an open file descriptor obtained from a
creat, open, dup, or fcntl. system call.

The cmds available are:

F....P UPFD Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than or equal to argo

Same open file as the original file.

Same file pointer as the original file (i.e., both file descriptors share one file
pointer) .

Same access mode (read, write or read/write).

Same file status flags (Le., both file descriptors share the same file status flags).

The close-on-exec flag associated with the new file descriptor is set to remain open
across exec(2) system calls.

F _GETFD Get the close-on-exec flag associated with the file descriptor fildes. If the low-order
bit is 0 the file will remain open across exec, otherwise the file will be closed upon
execution of exec.

F _SETFD Set the close-on-exec flag associated with fildes to the low-order bit of arg (0 or 1 as
above) .

F _GETFL Get file status flags.

F _SETFL Set file status flags to arg. Only certain flags can be set; see fcntl(5).

Fcntl will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Gmd is F_DUPFD and 64 flle descriptors are currently open. [EMFILE]

Gmd is F _DUPFD and arg is negative or greater than 64. [EINVAL)

RETURN VALUE

Upon successful completion, the value returned depends on cmd as follows:
F _DUPFD A new file descriptor.
F _GETFD Value of flag (only the low-order bit is deflned).
F _SETFD Value other than - 1.

F _GETFL Value of file flags.
F _SETFL Value other than - 1.

Otherwise, a value of - I is returned and errno is set to indicate the error.

SEE ALSO

close(2), dup(2), dup2(2), exec(2), open(2), fcntl(5).

Page I (90IO-E)

FORK(2) (UNIX 5.0) FORK(2)

NAME
fork - create a new process

SYNTAX

int fork ()

DESCRIPTION
Fork causes creation of a new process. The new process (child process) is an exact copy of the
calling process (parent process). This means the child process inherits the following attributes
from the parent process:

environment
close-on-exec flag (see exec(2»
signal handling settings (Le., SIG_DFL, SIG_IGN,' function address)
set-user-ID mode bit
set-group-ID mode bit
process group ID
tty group ID (see exit(2) and signal(2»
current working directory
root directory
file mode creation mask (see umask(2»

The child process differs from the parent process in the following ways:

The child process has a unique process ID.

The child process has a different parent process ID (Le., the process ID of the parent
process) .

The child process has its own copy of the parent's file descriptors. Each of the child's
file descriptors shares a common file pointer with the corresponding file descriptor of
the parent.

The child process's utime, stime, cutime, and cstime are set to O.

Fork will fail and no child process will be created if one or more of the following are true:

The system-imposed limit on the total number of processes under execution would be
exceeded. [EAGAIN]

The system-imposed limit on the total number of processes under execution by a single
user would be exceeded. [EAGAINJ

RETURN VALUE

Upon successful completion, fork returns a value of 0 to the child process and returns the pro­
cess ID of the child process to the parent process. Otherwise, a value of - I is returned to the
parent process, no child process is created, and errno is set to indicate the error.

SEE ALSO

exec(2), times(2), wait(2).

Page I (9010-E)

GETPID(2) (UNIX 5.0)

NAME
getpid, getppid - get process, process group, and parent process IDs

SYNTAX

int getpid ()

int getppid ()

DESCRIPTION

Getpid returns the process ID of the calling process.

Getppid returns the parent process ID of the calling process.

SEE ALSO

exec(2), fork(2), intro(2), signal(2).

Pagel

GETPID(2)

(90IO-E)

GETUID(2) (UNIX 5.0) GETUID(2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real group, and effective group
IDs

SYNTAX
int getuid ()

int geteuid ()

int getgid ()

int getegid ()

DESCRIPTION
Getuid returns the real user ID of the calling process.

Geteuid returns the effective user ID of the calling process.

Getgid returns the real group ID of the calling process.

Getegid returns the effective group ID of the calling process.

SEE ALSO
intrO(2), setuid(2).

Pagel (9010-E)

IOC1L(2) (UNIX 5.0) IOCTL(2)

NAME
ioctl - control device

SYNTAX
ioct.l (fildes, request, arg)

DESCRIPTION
Ioetl performs a variety of functions on character special files (devices). The writeups of vari­
ous devices in Section 7 discuss how ioctl applies to them.

foetl will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADFl

Fildes is not associated with a character special device. [ENOTTY]

Request or arg is not Valid. See Section 7. [EINV ALl

RETURN VALUE
If an error has occurred, a value of - I is returned and enno is set to indicate the error.

SEE ALSO
termio(7) .

Page I (90IO-E)

KILL(2) (UNIX 5.0) KILL(2)

NAME
kill - send a signal to a process or a group of processes

SYNTAX
int kill (pid, sig)
int pid, sig;

DESCRIPTION
Kill sends a signal to a process or a group of processes. The process or group of processes to
which the signal is to be sent is specified by pid. The signal that is to be sent is specified by sig
and is either one from the list given in signal(2), or O. If sig is 0 (the null signal), error check­
ing is performed but no signal is actually sent. This can be used to check the validity of pid.

The real or effective user ID of the sending process must match the real or effective user ID of
the receiving process unless, the effective user ID of the sending process is super-user.

The processes with a process ID of 0 and a process ID of 1 are special processes (see intro(2»
and will be referred to below as procO and prod respectively.

If pid is greater than zero, /Jig will be sent to the process whose process ID is equal to pid. Pid
mayequal!.

If pid is 0, /Jig will be sent to all processes excluding procO and prod whose process group ID is
equal to the process group ID of the sender.

If pid is - 1 and the effective user ID of the sender is not super-user, /Jig will be sent to all
processes excluding procO and prod whose real user ID is equal to the effective user ID of the
sender.

If pid is - 1 and the effective user ID of the sender is super-user, /Jig will be sent to all
processes excluding procO and prod.

If pid is negative but not - 1, /Jig will be sent to all processes whose process group ID is equal to
the absolute value of pid.

Kill will fail and no signal will be sent if one or more of the following are true:

S";g is not a valid signal number. [EINVALj

No process can be found corresponding to that specified by pid. [ESRCH]

The user ID of the sending process is not super-user, and its real or effective user ID
does not match the real or effective user ID of the receiving process. [EPERM]

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of - 1 is returned and
ermo is set to indicate the error.

SEE ALSO
kill(1), ge tpid(2), signal(2) .

Pagel (9010-E)

LINK(2) (UNIX 5.0) LINK(2)

NAME
link - link to a file

SYNTAX
int link (pathl, path2)
char *pathl, *path2;

DESCRIPTION
Pathl points to a path name naming an existing file. Path2 points to a path name naming the
new directory entry to be created. Link creates a new link (directory entry) for the existing file.
Link fails and no link is created if one or more of the following are true:

A component of either path prefix is not a directory. [ENOTD IR]

A component of either path prefix does not exist. [ENOENT]

A component of either path prefix denies search permission. [EACCES]

The file named by pathl does not exist. [ENOENT]

The link named by path2 exists. [EEXIST]

The file named by pathl is a directory and the etIective user ID is not super-user.
[EPERM]

The link named by path2 and the file named by pathl are on ditIerent logical devices
(file systems). [EXDEV]

Path2 points to a null path name. [ENOENT]

The requested link requires writing in a directory with a mode that denies write permis­
sion. [EACCES]

The requested link requires writing in a directory on a read-only file system. [EROFS]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of - 1 is returned and
errno is set to indicate the error.

SEE ALSO

unlink(2).

Pagel (90l0-E)

LSEEK(2) (UNIX 5.0) LSEEK(2)

NAME
lseek - move read/write file pointer

SYNTAX
long Iseek (fildes, offset, whence)
int fildes;
long offset;
intwhenee;

DESCRIPTION
Fildes is a file descriptor returned from a creat, open, dup, or Icnt! system call. Lseek sets the
file pointer associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset.

If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location as measured in bytes from the
beginning of the file is returned.

Lseek will fail and the file pointer will remain unchanged if one or more of the following are
true:

Fildes is not an open file descriptor. [EBADF]

Fildes is associated with a pipe or fifo.

Whence is not 0, 1 or 2. [EINVAL]

The resulting file pointer would be negative. [EINVAL]

Some devices are incapable of seeking. The value of t;,he file pointer associated with such a
device is undefined.

RETURN VALUE
Upon successful completion, a non-negative integer indicating the file pointer value is returned.
Otherwise, a value of - 1 is returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), fcntl(2), open(2).

Page 1 (9010-E)

MKDIR(2) (bsd4.2) MKDIR(2)

NAME

mkdir - make a directory file

SYNTAX

mkdir(path, mode)
char *path;
intmode;

DESCRIPTION

Mkdir creates a new directory file with name path. The mode of the new file is initialized from
mode. (The protection part of the mode is modified by the process's mode mask; see
umask(2)).

The directory's owner ID is set to the process's effective user ID. The directory's group ID is
set to that of the parent directory in which it is created.

,The low-order 9 bits of mode are modified by the process's file mode creation mask: all bits set
in the process's file mode creation mask are cleared. See umask(2).

RETURN VALUE

A 0 return value indicates success. A "- 1" return value indicates an error, and an error code
is stored in errno.

ERRORS

Mkdir will fail and no directory will be created if:

[EPERM]

[ENOTDIR]

[ENOENT]

[EROFS]

[EEXIST]

[EFAULT]

[EIO]

The process's effective user ID is not super-user.

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

The named file resides on a read-only file system.

The named file exists.

Path points outside the process's allocated address space.

An I/O error occured while writing to the file system.

SEE ALSO

chm09-(2), stat(2), umask(2)

Page 1 (9010-E)

MKNOD(2) (UNIX 5.0) MKNOD(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNTAX
int mknod (path, mode, deY)
char *path;
int mode, dey;

DESCRIPTION
Mknod creates a new file named by the path name pointed to by path. The mode of the new
file is initialized from mode. Where the value of mode is interpreted as follows (in octal):

0170000 file type; one of the following:
0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file

0004000 set user ID on execution
0002000 set group ID on execution
0000777 access permissions; constructed from the following

00000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The file's owner ID is set to the process's effective user ID. The file's group ID is set to the
process's effective group ID.

Values of mode other than those above are undefined and should not be used. The low-order 9
bits of mode are modified by the process's file mode creation mask: all bits set in the process's
file mode creation mask are cleared. See umask(2). If mode indicates a block or character spe­
cial file, dev is a configuration dependent specification of a character or block I/O device. If
mode does not indicate a block special or character special device, dev is ignored.

Mknod may be invoked only by the super-user for file types other than FIFO special.

Mknod will fail and the new file will not be created if one or more of the following are true:

The process's effective user ID is not super-user. [EPERM]

A component of the path prefix is not a directory. [ENOTDIR]

A component of the path prefix does not exist. [ENOENT]

The directory in which the file is to be created is located on a read-only file system.
[EROFS]

The named file exists. [EEXIST]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE

Upon successful completion a value of 0 is returned. Otherwise, a value of - 1 is returned and
ermo is set to indicate the error.

SEE ALSO

mkdir(l), chmod(2), exec(2), umask(2), fS(4).

Page 1 (9010-E)

MOUNT(2) (UNIX 5.0) MOUNT(2)

NAME
mount - mount a file system

SYNTAX
int mount (spee, dir, rwfJ.ag)
char *spee, *dir;
int rwfJ.ag;

DESCRIPTION
M ou.nt requests that a removable file system contained on the block special file identified by
spec be mounted on the directory identified by d£r. Spec and d£r are pointers to path names.

Upon successful completion, references to the file d£r will refer to the root directory on the
mounted file system.

The low-order bit of rwflag is used to control write permission on the mounted file system; if 1,
writing is forbidden, otherwise writing is permitted according to individual file accessibility.

M ou.nt may be invoked only by the super-user.

M ou.nt will fail if one or more of the following are true:

The effective user ID is not super-user. [EPERM]

Any of the named files does not exist. [ENOENT]

A component of a path prefix is not a directory. [ENOTDIRj

Spec is not a block special device. [ENOTBLK]

The device associated with spec does not exist. [ENXIO]

D£r is not a directory. [ENOTDIR]

Spec or dir points outside the process's allocated address space. [EFAULT]

Dir is currently mounted on, is someone's current working directory or is otherwise
busy. [EBUSY]

The device associated with spec is currently mounted. [EBUSY]

RETURN VALUE

Upon successful completion a value of 0 is returned. Otherwise, a value of - I is returned and
errno is set to indicate the error.

SEE ALSO
umount(2).

BUGS

Currently, a tape cannot be mounted, and physical write-protect cannot be set.

Pagel (9010-E)

NICE(2) (UNIX 5.0) NICE(2)

NAME
nice - change priority of a process

SYNTAX
int nice (incr)
int incr;

DESCRIPTION
Nice adds the incr value to the "nice number" of the calling process. A low "nice number"
means high process priority. A high nice number means a lower priority.

Nice values range from 0 to 79, inclusive. A request to set the value beyond a limit results in
the value being set to the corresponding limit.

Only the super-user can add a negative value and thereby increase priority. [EPERM]

RETURN VALUE
Upon successful completion, nice returns the new nice process priority. Otherwise, a value of
- I is returned and ermo is set to indicate the error.

SEE ALSO
nice(l), exec(2).

Pagel (9010-E)

OPEN(2) (UNIX 5.0) OPEN(2)

NAME
open - open for reading or writing

SYNTAX
#include <fcntJ.h>
int open (path, oflag [, mode])
char *path;
int oflag, mode;

DESCRIPTION

Pagel

Path points to a path name naming a file. Open opens a file descriptor for the named ftle and
sets the file status fiags according to the value of oflag. Oflag values are constructed by or-ing
flags from the following list (only one of the first three flags below may be used):

OJtDONL Y Open for reading only.

O_WRONLY Open for writing only.

OJtDWR Open for reading and writing.

O....NDELAY This flag may affect subsequent reads and writes. See read(2) and write (2).

When opening a FIFO with 0JlDONLY or O_WRONLY set:

If O...,NDELA Y is set:

An open for reading-only will return without delay. An open for writing­
only will return an error if no process currently has the file open for read­
ing.

If O....NDELA Y is clear:

An open for reading-only will block until a process opens the file for writ­
ing. An open for writing-only will block until a process opens the file for
reading.

When opening a file associated with a communication line:

If O....NDELA Y is set:

The open will return without waiting for carrier.

If O....NDELA Y is clear:

The open will block until carrier is present.

O..,.APPEND If set, the file pointer will be set to the end of the file prior to each write.

O_CHEAT If the file exists, this flag has no effect. Otherwise, the file's owner ID is set to
the process's effective user ID, the file's group ID is set to the process's effective
group ID, and the low-order 12 bits of the file mode are set to the value of mode
modified as follows (see creat(2» :

OJXCL

All bits set in the process's file mode creation mask are cleared. See
umask(2) .

The "save text image after execution bit" of the mode is cleared. See
chmod(2) .

If the file exists, its length is truncated to 0 and the mode and owner are
unchanged.

If O-EXCL and O_CREA T are set, open will fail if the file exists.

Upon successful completion a non-negative integer, the file descriptor, is returned.

(90lO-E)

OPEN(2) (UNIX 5.0) OPEN(2)

The file pointer used to mark the current position within the file is set to the beginning of the
file.

The new file descriptor is set to remain open across exec system calls. See fcntl(2}.

No process may have more than 64 file descriptors open simultaneously.

The named file is opened unless one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

O_CREA T is not set and the named file does not exist. [ENOENT)

A component of the path prefix denies search permission. [EACCES]

Oflag permission is denied for the named file. [EACCESj

The named file is a directory and oflag is write or read/write. [EISDIRj

The named file resides on a read-only file system and oflag is write or read/write.
[EROFS]

Sixty-four (64) file descriptors are currently open. [EMFILEj

The named file is a character special or block special file, and the device associated with
this special file does not exist. [ENXIOj

The file is a pure procedure (shared text) file that is being executed and oftag is write
or read/write. [ETXTBSYj

Path poinU:i oUU:iide the process's allocated address space. [EFAULT)

O_CREA T and O-EXCL are set, and the named file exisU:i. [EEXIST)

O....NDELA Y is set, the named file is a FIFO, O_WRONL Y is set, and no process has the
file open for reading. [ENXIOj

RETURN VALUE

Upon successful completion, a non-negative integer, namely a file descriptor, is returned. Oth­
erwise, a value of - I is returned and ermo is set to indicate the error.

SEE ALSO
close(2}, creat{2}, dup(2}, fcntl(2}, Iseek(2}, read(2}, write(2}.

(90IO-E) Page 2

PAUSE(2) (UNIX 5.0) PAUSE(2)

NAME
pause - suspend process until signal

SYNTAX

pause ()

DESCRIPTION
Pause suspends the calling process until it receives a signal. The signal must be one that is not
currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause will not return.

If the signal is caught by the calling process and control is returned from the signal catching­
function (see signal(2», the calling process resumes execution from the point of suspension;
with a return value of - I from pause and en-no set to EINTR.

SEE ALSO
kill(2), signal(2), wait(2).

Pagel (9010-E)

PIPE(2) (UNIX 5.0) PIPE(2)

NAME
pipe - create an interprocess channel

SYNTAX
int pipe (Hides)
int Hides [2];

DESCRIPTION
Pipe creates an I/O mechanism called a pipe and returns two file descriptors, fi/des[O] and
fildes[l]. FJdes[o] is opened for reading, and fildes[l] is opened for writing.

Writes of up to 5120 bytes of data are buffered by the pipe before the writing process is
blocked. A read on file descriptor jildes[O] accesses the data written to fildes[l] on a first-in­
first-out basis.

No process may have more than 64 file descriptors open simultaneously.

Pipe will fail if 63 or more file descriptors are currently open [EMFILE].

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
ermo is set to indicate the error.

SEE ALSO
sh(l), read(2), write(2).

Pagel (9010-E)

PTRACE(2) (UNIX 5.0) PTRACE(2)

NAME
ptrace - process trace

SYNTAX
int ptrace (request, pid, addr, data);
int request, pid, addr, data;

DESCRIPTION

Page I

Ptraee allows a parent process to control the execution of its child process. Its primary use is
the implementation of breakpoint debugging.

The child process behaves normally until it encounters a signal documented in signal(2), at
which time it enters a stopped state and its parent is notified via wait(2). While the child is in
the stopped state, its parent can examine and modify it, and/or terminate or continue, by
means of ptraee.

request determines the precise action of ptraee:

o must be issued by the child process, to set its own trace flag, that indicates it
should be left in a stopped state upon receipt of a signal rather than the state
specified by June, so that it may be traced by its parent. see signal{2} for June info.
The pid, addr, and data arguments are ignored, and a return value is not defined
for this request. Peculiar results will ensue if the parent does not expect to trace
the child.

The remainder of the requests can only be used by the parent process. For each, pid is the pro­
cess ID of the child. The child must be in a stopped state before these requests are made.

1, 2 With these requests, the word at location addr in the address space of the child is
returned to the parent process. If I and D space are separated, request 1 returns a
word from I space, and request 2 returns a word from D space. If I and D space
are not separated, either request 1 or request 2 may be used with equal results.
The data argument is ignored. These two requests will fail if addr is not the start
address of a word, in which case a value of - I is returned to the parent process
and the parent's errno is set to EIO.

3 With this request, the word at location adar in the child's process control block in
the system's address space (see <sys/user.h» is returned to the parent process.
~A£ddr8sses ift -Mlis area :tallge from 9 to 1624 011 the :RDP-ll 5 and 0 to 2048 8ft the _
aD20S and VJOC. The data argument is ignored. This request will fail if addr is
not the start address of a word or is outside the USER area, in which case a value
of - I is returned to the parent process and the parent's errno is set to EIO.

4, 5 With these requests, the value given by the data argument is written into the
address space of the child at location addr. If I and D space are separated, request
4 writes a word into I space, and request 5 writes a word into D space. If I and D
space are not separated, either request 4 or request 5 may be used with equal
results. Upon successful completion, the value written into the address space of
the child is returned to the parent. These two requests will fail if addr is a loca­
tion in a pure procedure space and another process is executing in that space, or
addr is not the start address of a word. Upon failure a value of - I is returned to
the parent process and the parent's errno is set to EIO.

6 With this request, a few entries in the child's process control block can be written.
Data gives the value that is to be written. and addr is the location of the entry.
The few entries that can be written are the general registers, the program counter,
and the trapsword.

(9010-E)

PTRACE(2) (UNIX 5.0) PTRACE(2)

7 This request causes the child to resume execution. If the data argument is 0, all
pending signals including the one that caused the child to stop are canceled before
it resumes execution. If the data argument is a valid signal number, the child
resumes execution as if it had incurred that signal and any other pending signals
are canceled. The addr argument must be equal to I for this request. Upon suc­
cessful completion, the value of data is returned to the parent. This request will
fail if data is not 0 or a valid signal number, in which case a value of - I is
returned to the parent process and the parent's ermo is set to EIO.

S This request causes the child to terminate with the same consequences as exit{2}.

To forestall possible fraud, ptrace inhibits the setruser-id facility on subsequent exec{2} calls. If
a traced process calls exec, it will stop before executing the first instruction of the new image
showing signal SIG'IRAP.

GENERAL ERRORS
Ptrace will in general fail if one or more of the following are true:

Request is an illegal number. [EIO]

P,·d identifies a child that does not exist or has not executed a ptrace with request O.
[ESRCH]

SEE ALSO
exec(2), signal(2), wait(2).

(90IO-E) Page 2

READ(2) (UNIX 5.0) READ(2)

NAME
read - read from file

SYNTAX
int read (fildes, bur, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, or fcnt/ system call.

Read attempts to read nbyte bytes from the file associated with fildes into the buffer pointed to
by bu/.

On devices capable of seeking, the read starts at a position in the file given by the file pointer
associated with fildes. Upon return from read, the file pointer is incremented by the number of
bytes actually read.

Devices that are incapable of seeking always read from the current position. The value of a file
pointer associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually read and placed in the
buffer; this number may be less than nbyte if the file is associated with a communication line
(see ioctl(2) and termio(7», or if the number of bytes left in the file is less than nbyte bytes. A
value of 0 is returned when an end-of-file has been reached.

When attempting to read a file associated with a tty that has no data currently available:

If O....NDELA Y is set, the read will return a o.
If O....N"DELA Y is clear, the read will block until data becomes available.

Read will fail if one or more of the following are true:

Fildes is not a valid file descriptor open for reading. [EBADF]

Bul points outside the allocated address space. [EFAULT]

RETURN VALUE

Upon successful completion a non-negative integer is returned indicating the number of bytes
actually read. Otherwise, a - I is returned and ermo is set to indicate the error.

SEE ALSO
creat(2), dup(2), fcntl(2), ioctl(2), open(2), termio(7).

Page I (90IO-E)

RENAME(2) (bsd 4.2) RENAME(2)

NAME

rename - change the name of a file

SYNTAX

rename(from, to)
char *from, *to;

DESCRIPTION
Rename causes the link named from to be renamed as to. If to exists, then it is first removed.
Both from and to must be of the same type (that is, both directories or both non-directories),
and must reside on the same file system.

Rename guarantees that an instance of to will always exist, even if the system should crash in
the middle of the operation.

RETURN VALUE

A 0 value is returned if the operation succeeds, otherwise rename returns - I and the global
variable ermo indicates the reason for the failure.

ERRORS
Rename will fail and neither of the argument files will be affected if any of the following are
true:

[ENOTDIR]

[ENOENT]

[EACCES]

[ENOENT]

[EPERM]

[EXDEV]

[EACCES]

[EROFS]

[EFAULT]

[EINVAL]

SEE ALSO

open(2)

Page I

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.

The file named by from does not exist.

The file named by from is a directory and the effective user ID is not super­
user.

The link named by to and the file named by from are on different logical dev­
ices (file systems). Note that this error code will not be returned if the imple­
men tation permits cross-device links.

The requested link requires writing in a directory with a mode that denies write
permission.

The requested link requires writing in a directory on a read-only file system.

Path points outside the process's allocated address space.

From is a parent directory of to.

(90IO-E)

RMDIR(2) (bsd 4.2) RMDIR(2)

NAME
rmdir - remove a directory file

SYNTAX

rmdir{ path)
char *path;

DESCRIPTION
Rmdir removes a directory file whose name is given by path. The directory must not have any
entries other than. and ...

RETURN VALUE
A 0 is returned if the remove succeeds; otherwise a-I is returned and an error code is stored
in the global location errno.

ERRORS
The named file is removed unless one or more of the following are true:

[ENOTEMPTY]

[ENOENT]

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EBUSY]

[EROFS]

[EFAULT]

The named directory contains files other than"." and" .. " in it.

The pathname was too long.

A component of the path prefix is not a directory.

The named file does not exist.

A component of the path prefix denies search permission.

Write permission is denied on the directory containing the link to be removed.

The directory to be removed is the mount point for a mounted file system.

The directory entry to be removed resides on a read-only file system.

Path points outside the process's allocated address space.

SEE ALSO

mkdir(2), unlink(2)

Page 1 (9010-E)

SETUID(2) (UNIX 5.0) SETUID(2)

NAME
setuid, setgid - set user and group IDs

SYNTAX

int setuid (uid)
int uid;

int setgid (gid)
int girl;

DESCRIPTION
Setuz'd (setgz'd) is used to set the real user (group) ID and effective user (group) ID of the cal­
ling process.

If the effective user ID of the calling process is super-user, the real user (group) ID and
effective user (group) ID are set to uz'd (gid).

If the effective user ID of the calling process is not super-user, but its real user (group) ID is
equal to uz'd (gz'd), the effective user (group) ID is set to uz'd (gz'd).

Setuz'd (setgid) will fail if the real user (group) ID of the calling process is not equal to u£d (g~·d)
and its effective user ID is not super-user. [EPERMj

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of - 1 is returned and
errno is set to indicate the error.

SEE ALSO

getuid(2), setregid(2), setreuid(2), intro(2).

Page 1 (9010-E)

SETREGID(2) (bsd4.2) SETREGID(2)

NAME
setregid - set real and effective group ID

SYNTAX
setregi d(rgid, egi d)
int rgid, egid;

DESCRIPTION
The real and effective group ID's of the current process are set to the arguments. Only the
super-user may change the real group ID of a process. Unpriviledged users may change the
effective group ID to the real group ID, but to no other.

Supplying a value of - 1 for either the real or effective group ID forces the system to substitute
the current ID in place of the - 1 parameter.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of - I is returned and
errno is set to indicate the error.

ERRORS

[EPERM]

SEE ALSO

The current process is not the super-user and a change other than changing the
effective group-id to the real group-id was specified.

getgid(2), setreuid(2), setgid(3)

Page 1 (90IO-E)

SETREUID(2) (bsd 4.2) SETREUID(2)

NAME

setreuid - set real and effective user ID's

SYNTAX

setreui d(rui d, eui d)
int ruid, euid;

DESCRIPTION

The real and effective user ID's of the current process are set according to the arguments. If
mid or euid is - 1, the current uid is filled in by the system. Only the super-user may modify
the real uid of a process. Users other than the super-user may change the effective uid of a
process only to the real uid.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of - 1 is returned and
errno is set to indicate the error.

ERRORS

[EPERM]

SEE ALSO

The current process is not the super-user and a change other than changing the
effective user-id to the real user-id was specified.

getuid(2)' setregid(2), setuid(2)

Page 1 (9010-E)

SIGNAL(2) (UNIX 5.0) SIGNAL(2)

NAME
signal - specify what to do upon receipt of a signal

SYNTAX

#include <sys/signal.h>

int (*signal (sig, func»()
int sig;
int (*func)();

DESCRIPTION

Pagel

S'ignal allows the calling process to choose one of three ways in which it is possible to handle
the receipt of a specific signal. Big specifies the signal and June specifies the choice.

Sig can be assigned anyone of the following except SIGKlLL:

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIG'IERM
SIGUSRI
SIGUSR2
SIGCLD
SIGPWROFF
SIGIO
SIGRBUG
SIGDEBUG
SIGTRAP4
SIGTRAP5
SIGTRAP6
SIGTRAP7
SIGTRAP8
SIGTRAP9
SIGTRAPIO
SIGTRAPll
SIGTRAP12
SIGTRAP13
SIGTRAP14
SIGTRAP15
SIGINTOVER
SIGINTDIVZERO
SIGREALOVER
SIGREAL UNDER
SIGREALDIVZERO

01 hangup
02 interrupt
03 quit
04 illegal instruction (not reset when caught)
05 trap 21 (trace trap) (not reset when caught)
06 unused
07 trap 3 (emulator trap)
08 fioating point exception
09 kill (cannot be caught or ignored)
10 bus error
11 segmentation violation
12 bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination signal
16 user-defined signal 1
17 user-defined signal 2
18 child died
19 power went off
59 i/o is possible on a descriptor (see the c_lfiag lintrup in termio(7»
100 trap 0, enter system debugger (privilege req'd)
101 trap 1, enter program debugger
104 trap 4, reserved
105 trap 5, reserved
106 trap 6, reserved
107 trap 7, reserved
108 trap 8, reserved
109 trap 9, reserved
110 trap 10,reserved
111 trap 11,reserved
112 trap 12,reserved
113 trap 13,reserved
114 trap 14, user-defined trap!
115 trap 15, user-defined trap2
116 trap 16, integer overfiow
117 trap 17, divide by zero
118 trap 18, real overflow
119 trap 19, real underfiow
120 trap 20, real div by 0

(9010-E)

SIGNAL(2) (UNIX 5.0) SIGNAL(2)

SIGTRAP21 121 trap 21, reserved
SIGTRAP22 122 trap 22, reserved
SIGTR.AP23 123 trap 23, reserved
SIGTR.AP24 124 trap 24, reserved
SIGTR.AP25 125 trap 25, reserved
SIGTR.AP26 126 trap 26, reserved
SIGTR.AP27 127 trap 27, reserved
SIGTRAP28 128 trap 28, reserved
SIGTR.AP29 129 trap 29, reserved
SIGTR.AP30 130 trap 30, reserved
SIGPWRON 131 power went back on
SIGBOUNDS 132 array bounds exceeded

Func is assigned one of four values: SIG.....DBG, SIG....DFL, SIGJGN, or a Junction addreBB. The
actions prescribed by these values of are as follows:

(9010-E)

SIG..J)BG - suspend process and enter debugger (debug,j.

SIG_DFL - terminate process upon receipt of a signal
Upon receipt of the signal Big, the receiving process is to be terminated with all of
the consequences outlined in exit(2).

SIGJGN - ignore signal
The signal Big is to be ignored.

Note: the signal SIGKILL cannot be ignored.

Junctt'on a ddreBB - catch signal

SIGFPE

Upon receipt of the signal Bt'g, the receiving process is to execute the signal-catching
function pointed to by Junc. The signal number Big will be passed as the only argu­
ment to the signal-catching function. Before entering the signal-catching function,
the value of Junc for the caught signal will be set to its default value. The default
signal for SIGQUIT, SIGILL, SIGBUS, and SIGSEGV is SIG_DBG. All other
signals have a default setting of SIG_DFL.

Upon return from the signal-catching function, the receiving process will resume
execution at the point it was interrupted.

When a signal that is to be caught occurs during a read, a write, an open, or an ioctl
system calIon a slow device (Uke a terminal; but not a flle), during a pauBe system
call, or during a w.ait system call that does not return immediately due to the
existence of a previously stopped or zombie process, the signal catching function will
be executed and then the interrupted system call will return a-I to the calling pro­
cess with errno set to EINTR.

SIGREALOVER (118), SIGREALUNDER (119), and SIGREALDIVZERO (120)
work in conjunction with SIGFPE (08). When SIGFPE is set, 118, 119, and 120 are
set to the same value. When a hardware floating-point exception occurs, one of
118, 119, or 120 is generated. A process never receives SIGFPE as a result of a
floating-point exception.

A call to B£gna/ cancels a pending signal Big except for a pending SIGKILL signal.

S£gnal will fail if one or more of the following are true:

S£g is an illegal signal number, including SIGKILL. [EINVALj

Func points to an illegal address. [EFAULTJ

Page 2

SIGNAL(2) (UNIX 5.0) SIGNAL(2)

RETURN VALUE
Upon successful completion, signal returns the previous value of June for the specified signal
8-;g. Otherwise, a value of - 1 is returned and enno is set to indicate the error.

SEE ALSO
kill(l), kill(2), pause(2), wait(2), setjrnp(3C).

Page 3 (9010-E)

SPAWN(2) (Ridge) SPAWN(2)

NAME
spawnl, spawnv, spawnle, spawnve, spawnlp, spawnvp - spawn a process

SYNTAX

int spawnl (path, arg{l, argl, ••• , argn, 0)
char *path, *argO, *a.rgl, ••• , *argn;

int spawnv (path, argv)
char *path, *argv[];

int spawnle (path, argO, argl, .•. , argn, 0, envp)
char *path, *argO, *a.rgl, ••• , *argn, *~vp[];

int spawnve (path, argv, envp)
char *path, *argv[], *envp[];

int spawnlp (file, arg{l, argl, ••• , argn, 0)
char *file, *argO, *argl, ••• , *argn;

int spawnvp (file, argv)
char *file, *argv[];

DESCRIPTION

Page 1

spawn creates a new process. The new process is constructed from an ordinary, executable file
called the "new process file" consisting of a header (see a.ou.t (4)), a text segment, and a data
segment. The data segment contains an initialized portion and an uninitialized portion (bss).

Spawn is the exact equivalent of a combination of fork(2} and exec(2}, but executes faster.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. As indicated, argc is conventionally at least one and the first member of the array
points to a string containing the name of the file.

Path points to a path name that identifies the new process file.

File points to the new process file. The path prefix for this file is obtained by a search of the
directories passed as the env~ronment line "PA TIl =" (see environ(5». The environment is sup­
plied by the shell (see sh(l».

ArgO, argl, ... , argn are pointers to nUll-terminated character strings. These strings constitute
the argument list available to the new process. By convention, at least argO must be present and
point to a string that is the same as path (or its last component) .

Argv is an array of character pointers to null-terminated strings. These strings constitute the
argument list available to the new process. By convention, argv must have at least one member,
and it must point to a string that is the same as path (or its last component). Argv is terminated
by a null pointer.

Envp is an array of character pointers to nUll-terminated strings. 'These strings constitute the
environment for the new process. Envp is terminated by a null pointer. For spawnl and spawnv,
the C run-time start-off routine places a pointer to the calling process's environment in the glo­
bal cell:

extern char **environ;

(9010-E)

SPAWN(2) (Ridge) SPAWN(2)

and it is used to pass the calling process's environment to the new process.

File descriptors open in the calling process remain open in the new process, except for those
whose close-on-exec Hag is set; see fcntJ(2). For those HIe descriptors that remain open, the
file pointer is unchanged.

Signals set to terminate the calling process will be set to terminate the new process. Signals set
to be ignored by the calling process will be set to be ignored by the new process. Signals set to
be caught by the calling process will be set to terminate new process; see signal(2).

If the setruser-ID mode bit of the new process HIe is set (see chmod(2)), spawn sets the
effective user ID of the new process to the owner ID of the new process file. Similarly, if the
set-group-ID mode bit of the new process file is set, the effective group ID of the new process is
set to the group ID of the new process file. The real user ID and real group ID of the new pro­
cess remain the same as those of the calling process.

The new process also inherits the following attributes from the calling process:

process ID
parent process ID
process group ID
tty group ID (see exit(2) and signal(2))
current working directory
root directory
file mode creation mask (see umask(2))
utime, stime, cutime, and cstime (see times(2))

Spawn will fail and return to the calling process if one or more of the following are true:

The system limit on the number of executing processes, or the limit on the number of
executing processes for one user, is exceeded. [EAGAIN]

One or more components of the new process file's path name do not exist. [ENOENT]

A component of the new process file's path prefix is not a directory. [ENOTDIR]

Search permission is denied for a directory listed in the new process file's path prefix.
[EACCES]

The new process file is not an ordinary file. [EACCES]

The new process file mode denies execution permission. [EACCES]

The spawn is not an spawnlp or spawnvp, and the new process file has the appropriate
access permission but an invalid magic number in its header. [ENOEXEC]

The new process file is a pure procedure (shared text) file that is currently open for
writing by some process. [ETXTBSY]

The new process requires more memory than is allowed by the system-imposed max­
imum MAXMEM. [ENOMEM]

The number of bytes in either the new process's argument list or the new environment
is greater than the system-imposed limit of >4092 bytes. [E2IG]

The new process file is not as long as indicated by the size values in its header.
[EFAULT]

Path, argv, or envp point to an illegal address. [EFAULT]

RETURN VALUE
If an error occurs, spawn returns - I to the calling process and the errno will be set to indicate
the error. If successful, spawn returns the process ID of the new process, and ermo is set to
zero.

(90IO-E) Page 2

SPAWN(2) (Ridge) SPAWN(2)

SEE ALSO

exec(2). exit(2), fork(2), environ(S).

Page 3 (90IO-E)

STAT(2) (UNIX 5.0) STAT(2)

NAME
stat, fstat - get file status

SYNTAX

=l/=include <sys/types.h>
#include <sys/stat.h>

int stat (path, bur)
char *path;
struct stat *buf;

int fstat (fildes, bur)
int fildes;
struct stat *buf;

DESCRIPTION
Path points to a path name naming a file. Read, write or execute permission of the named file
is not required, but all directories listed in the path name leading to the file must be searchable.
Stat obtains information about the named file.

Similarly, jstat obtains information about an open file known by the file descriptor fildes,
obtained from a successful open, creat, dup, or jcntl. system call.

Buj is a pointer to a stat structure into which information is placed concerning the file.

While the contents of the structure pointed to by buj include the following members, they are
not necessarily in this order, nor are they necessarily the only entries:

ushort st_mode; /* File mode; see mknod(2) */
tA. ,·vt ino_t st_ino; /* File id number/

£UIC-t dev_t st_dev; /* ID of device containing * /
/* a directory entry for this file * /

-UI ... I- - dev_t st_rdev; /* ID of device * /
/* This entry is defined only for */
/* character special or block special files * /

short st_nlink; /* Number of links * /
ushort st_uid; /* User ID of the file's owner */
ushort st..,gid; /* Group ID of the file's group * /

lti"~ - off_t st_size; /* File size in bytes * /
I ~ ... ~ -- time_t st_atime; /* Time of last access * /

Pagel

time_t st_mtime; /* Time of last data modification * /
time_t st_ctime; /* Time of last file status change * /

/* Times measured in seconds since * /
/* 00:00:00 GMT, Jan. 1, 1970 */

st_atime Time when file data was last accessed. Changed by the following system calls:
creat(2), utime(2), and read(2).

st_mtime Time when data was last modified. Changed by the following system calls: creat(2),
utime(2), and write(2).

st_ctime Time when file status was last changed. Changed by the following system calls:
chmod(2), chown(2), creat(2), link (2), pipe(2), unlink (2), utime(2), and write (2).

Stat will fail if one or more of the following are true:

A component of the path prefix is not a directory; [ENOTDIRj

The named file does not exist. [ENOENTj

(90l0-E)

STAT(2) (UNIX 5.0) ~ STAT(2)

Search permission is denied for a component of the path prefix. [EACCES]

Buj or path points to an invalid address. [EFAULT]

Fstat will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Buj points to an invalid address. [EFAULT]

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of - 1 is returned and
errno is set to indicate the error.

SEE ALSO
chmod(2), chown(2), creat(2}, link(2}, time(2), unlink(2).

(90IO-E) Page 2

TIME(2) (UNIX 5.0) TIME(2)

NAME
time - get time

SYNTAX
long time {(long *) 0)

long time (tloc)
long *tloc;

DESCRIPTION
Time returns the value of time in seconds since 00:00:00 GMT, January 1, 1970.

If tloe (taken as an integer) is non-zero, the return value is also stored in the location to which
tloe points.

Time will fail if tloe points to an illegal address. [EFAULT}

RETURN VALUE
Upon successful completion, time returns the value of time. Otherwise, a value of - 1 is
returned and ermo is set to indicate the error.

Pagel (9010-E)

TIMES(2) (UNIX 5.0) TIMES(2)

NAME
times - get process and child process times

SYNTAX
#include <sys/types.h>
#include <sys/times.h>

long times (buffer)
struct tms *buffer;

DESCRIPTION
Times fills the structure pointed to by buffer with time-accounting information. The following is
this contents of the structure:

struct tms {
time _t tms_utime;
time _t tms_stime;
time _t tms_cutime;
time _t tms_cstime;

};

This information comes from the calling process and each of its terminated child processes for
which it has executed a wait. All times are milliseconds (thousandths of a second).

Tms_utime is the CPU time used while executing instructions in the user space of the calling
process.

Tms_stime is the CPU time used by the associated User Monitor process on behalf of the calling
process, not whole operating system time.

Tms_cutime is the sum of the tms_utimes and tms_cutimes of the child processes.

Tms_cstime is the sum of the tms_stimes and tms_cstimes of the child processes.

If buffer points to an illegal address, times fails and returns error 14 (EFAULT - bad address).
[DEFAULT]

RETURN VALUE

Page 1

Upon successful completion, times returns the elapsed real time, in milliseconds, since an arbi­
trary point in the past (e.g., system start-up time). This point does not change from one invo­
cation of times to another. If times fails, a-I is returned and ermo is set to indicate the error.

(9010-E)-

TRUNCATE(2) (bsd 4.2) TRUNCATE(2)

NAME
truncate, ftruncate - truncate a file to a specified length

SYNTAX
tnmcate(path, length)
char *path;
int length;

ftruncate(fd, length)
int fd, length;

DESCRIPTION
Truncate causes the file named by path or referenced by fd to be truncated to at most length
bytes in size. If the file previously was larger than this size, the extra data is lost. With ftrun­
cate, the file must be open for writing.

RETURN VALUES
A value of 0 is returned if the call succeeds. If the call fails a - I is returned, and the global
variable errno specifies the error.

ERRORS
Truncate succeeds unless:

[EPERM]

[ENOENT]

[ENOIDIR]

[ENOENT]

[EACCES]

[EISDIR]

[EROFS]

[ETXTBSY]

[EFAULT]

The pathname contains a character with the high-order bit set.

The pathname was too long.

A component of the path prefix of path is not a directory.

The named file does not exist.

A component of the path prefix denies search permission.

The named file is a directory.

The named file resides on a read-only file system.

The file is a pure procedure (shared text) file that is being executed.

Name points outside the process's allocated address space.

Ftr'Uncate succeeds unless:

[EBADF]

[EINVAL]

SEE ALSO
open(2)

BUGS

The fd is not a valid descriptor.

The fd references a socket, not a file.

Partial blocks discarded as the result of truncation are not zero filled; this can result in holes in
files which do not read as zero.

These calls should be generalized to allow ranges of bytes in a file to be discarded.

Page I (90IO-E)

UMASK(2) (UNIX 5.0)

NAME
umask - set and get file creation mask

SYNTAX
int umask (emask)
int emask;

DESCRIPTION

UMASK(2)

Umask sets the process's file mode creation mask to cmask and returns the previous value of
the mask. Only the low-order 9 bits of cmask and the file mode creation mask are used.

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
mkdir(1), sh(1). chmod(2), creat(2), open(2).

Pagel (90l0-E)

UMOUNT(2) (Ridge) UMOUNT(2)

NAME
umount - unmount a file system

SYNTAX
int umount (spec)
char *spec;

DESCRIPTION
Umo'Unt requests that a previously mounted file system contained on the block special device
identified by spec be unmounted. Spec is a pointer to a path name. After unmounting the file
system, the directory upon which the file system was mounted reverts to its ordinary interpreta­
tion.

Umo'Unt may be invoked only by the super-user.

Umo'Unt will fail if one or more of the following are true:

The process's effective user ID is not super-user. [EPERM]

Spec does not exist. [ENXIO]

Spec is not a block special device. [ENOTBLK]

Spec is not mounted. [EINVAL]

A file on spec is busy. [EBUSY]

Spec points outside the process's allocated address space. [EFAULT]

RETURN VALUE

Upon successful completion a value of 0 is returned. Otherwise, a value of - I is returned and
enno is set to indicate the error.

SEE ALSO
mount(2).

Pagel (90IO-E)

UNLINK(2) (UNIX 5.0) UNLINK(2)

NAME
unlink - remove directory entry

SYNTAX
int unlink (path)
char *path;

DESCRIPTION
Unlink removes the directory entry named by the path name pointed to by path. An error can
prevent removal:

A component of the path prefix is not a directory. [ENOTD IRj

The named file does not exist. [EN:OENTj

Search permission is denied for a component of the path prefix. [EACCESj

Write permission is denied on the directory containing the link to be removed.
[EACCESj

The named file is a directory and the effective user ID of the process is not super-user.
[EPERM]

The entry to be unlinked is the mount point for a mounted file system. [EBUSYj

The entry to be unlinked is the last link to a pure procedure (shared text) file that is
being executed. [ETXTBSYj

The directory entry to be unlinked is part of a read-only file system. [EROFSj

Path points outside the process's allocated address space. [EFAULTj

When all links to a file have been removed and no process has the file open, the space occupied
by the file is freed and the file ceases to exist. If one or more processes have the file open
when the last link is removed, the removal is postponed until all references to the file have
been closed.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of - 1 is returned and
en-no is set to indicate the error.

SEE ALSO
rm(1), close (2), link(2), open(2).

Pagel (90IO-E)

UTIME(2) (UNIX 5.0) UTIME(2)

NAME
utime - set file access and modification times

SYNTAX

#include <sys/types.h>
int utime (path, times)
char *path;
strudi utimbuf *times;

DESCRIPTION
Path points to a path name naming a file. Utime sets the access and modification times of the
named file.

If times is NULL, the access and modification times of the file are set to the current time. A
process must be the owner of the file or have write permission to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure and the access and
modification times are set to the values contained in the designated structure. Only the owner
of the file or the super-user may use utime this way.

The times in the following structure are measured in seconds since 00:00:00 GMT, Jan. 1, 1970.

struct utimbuf{

};

time_t actime;
time_t modtime;

/* access time * /
/* modification time * /

Utime will fail if one or more of the following are true:

The named file does not exist. [ENOENT]

A component of the path prefix is not a directory. [ENOTDIR]

Search permission is denied by a component of the path prefix. [EACCES]

The effective user ID is not super-user and not the owner of the file and t~mes is not
NULL. [EPERM]

The effective user ID is not super-user and not the owner of the file and times is NULL
and write access is denied. [EACCESj

The file system containing the file is mounted read-only. [EROFSj

Times is not NULL and points outside the process's allocated address space. [EFAULT]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of - 1 is returned and
ermo is set to indicate the error.

SEE ALSO
stat(2).

Pagel (9010-E)

\
'-

WAIT(2) (UNIX 5.0) WAIT(2)

NAME
wait - wait for child process to stop or terminate

SYNTAX
int wait (stat_loe) int *stat_lac;
int wait «int *)0)

DESCRIPTION
Wait suspends the calling process until it receives a signal that is to be caught (see signal(2»,
or until one of the calling process's child processes stops in a trace mode (see ptrace(2», or ter­
minates. If a child process stopped or terminated prior to the calion wait, return is immediate.

If staLloc (taken as an integer) is non-zero, 16 bits of information called "status" are stored in
the low-order bits of the location pointed to by staLloc. Status can be used to differentiate
between stopped and terminated child processes and, if the child process terminated, status
identifies the cause of termination and passes useful information to the parent. This is accom­
plished as follows:

If the child process stopped, the high-order eight bits of status will contain the number
of the signal that caused the process to stop and the low-order eight bits of the argu­
ment that the child process passed to exit (see exit(2»

If the child process terminated due to an exit call, the low-order eight bits of status will
be zero and the high-order eight bits will contain the low-order eight bits of the argu­
ment that the child process passed to exit (see exit(2».

If the child process terminted due to a signal, the high-order eight bits of status will be
zero and the low-order eight bits will contain the number of the signal that caused the
termination. In addition, if the low-order seventh bit (I.e., bit 200) is set, a "core
image" will have been produced (see signal(2».

If a parent process terminates without waiting for its child processes to terminate, the parent
process ID of each child process is set to 1. This means the initialization process inherits the
child processes (see intro(2».

Wait will fail and return immediately if either or both of the following are true:

The calling process has no existing unwaited-for child processes. [ECHILD J

StaLloc points to an illegal address. [EFAULTJ

RETURN VALUE
If wait returns due to the receipt of a signal, a value of -1 is returned to the calling process and

erYhO ~is set to EINTR. If wait returns due to a stopped or terminated child process, the process
ID of the child is returned to the calling process. Otherwise, a value of -1 is returned and ermo
is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), pause(2), signal(2).

WARNING
See WARNING in signal(2).

Pagel (9010-E)

WRITE(2) (UNIX 5.0) WRITE(2)

NAME
write - write on a file

SYNTAX
int write (fildes, but, nbyt.e)
int fildes;
char *but;
unsigned nbyt.e;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, d'Up, or Icntl system call. Wn'te attempts
to write nbyte bytes from the buffer pointed to by b'Ul to the file associated with the fildes.

On devices capable of seeking, the actual writing of data proceeds from the position in the file
indicated by the file pointer. Upon return from write, the file pointer is incremented by the
number of bytes actually written. On devices incapable of seeking, writing always takes place
starting at the current position. The value of a file pointer associated with such a device is
undefined.

If the O...APPEND fiag of the file status fiags is set, the file pointer will be set to the end of the
file prior to each write. Wnte fails and the file pointer remains unchanged if any of the follow­
ing are true:

Fildes is not a valid file descriptor open for writing.

An attempt was made 1:9 write a file that exceeds the process's file size limit or the
maximum file size. [EFBIGJ

B'UI points outside the process's allocated address space. [EFAULTJ

If a wnte requests that more bytes be written than there is room for only as many bytes as there
is room for will be written. For example, suppose there is space for 20 bytes more in a file
before reaching a limit. A write of 512 bytes will return 20. The next write of a non-zero
number of bytes will give a failure return (except as noted below).

RETURN VALUE
Upon successful completion the number of bytes actually written is returned. Otherwise, - I is
returned and ermo is set to indicate the error.

SEE ALSO
creat(2), dup(2), Iseek(2), open(2).

Page 1 (9010-E)

IN'lRO(3) IN'lRO(3)

NAME
intro - introduction to subroutines and libraries

SYNTAX

#include <stdio.h>

#include <math.h>

DESCRIPTION
This section describes functions found in various libraries, other than those functions that
directly invoke UNIX system primitives, which are described in Section 2 of this volume. Cer­
tain major collections are identified by a letter after the section number:

(3A)
(3B)
(3C)

(3F)
(3M)

(3S)

(3X)

C-callable Subroutines
Pascal-callable Subroutines
These functions, together with those of Section 2 and those marked (3S), constitute the
Standard C Library libc, which is automatically loaded by the C compiler, cc(1). The
link editor ld(1) searches this library under the - Ie option. Declarations for some of
these functions may be obtained from #inelude files indicated on the appropriate pages.
FORTRAN function library automatically accessed by F77 compiler.
These functions constitute the Math Library, libm. They are automatically loaded as
needed by the FORTRAN compiler. They are not automatically loaded by the C com­
piler, cc(1); however, the link editor searches this library under the - 1m option.
Declarations for these functions may be obtained from the #inelude file <math.h>.
These functions constitute the "standard I/O package" (see stdio(3S». These functions
are in the library libc, already mentioned. Declarations for these functions may be
obtained from the #include file <stdio.h>.
Various specialized libraries. The files in which these libraries are found are given on the
appropriate pages.

DEFINITIONS

FILES

A character is any bit pattern able to fit into a byte on the machine. The null character is a
character with value 0, represented in the C language as '\0'. A character array is a sequence
of characters. A null-terma·nated character array is a sequence of characters, the last of which is
the null character. A str£ng is a designation for a null-tenn'inated character array. The null str'ing
is a character array containing only the null character. A NULL pointer is the value that is
obtained by casting 0 into a pointer. The C language guarantees that this value will not match
that of any legitimate pointer, so many functions that return pointers return it to indicate an
error. NULL is defined as 0 in <stdio.h>; the user can include his own definition if he is not
using <stdio.h>.

Many groups of FORTRAN intrinsic functions have generic function names that do not require
explicit or implicit type declarat~on. The type of the function will be determined by the type of
its argument(s). For example, the generic function max will return an integer value if given
integer arguments (maxO), a real value if given real arguments (amaxl), or a double-precision
value if given double-precision arguments (dmaxl).

/lib/libc.a
/Ub /Ubm.a

SEE ALSO

ar(l), cc(l), Id(l), nm(l), intro(2), stdio(3S).

DIAGNOSTICS

Page 1

Functions in the Math Library (3M) may return the conventional values 0 or HUGE (the larg­
est single-precision floating-point number) when the function is undefined for the given argu­
ments or when the value is not representable. In these cases, the external variable errno (see

(9010-E)

INTRO(3) INTRO(3)

intro(2)) is set to the value EDOM orERANGE. As many of the FORTRAN intrinsic functions
use the routines found in the Math Library, the same conventions apply.

(9010-E) Page 2

AbortCommand(3B) (Ridge) AbortCommand{ 3B)

NAME
A bortCommand - abort a command process

SYNTAX
FUNCTION AbortCommand (pID : ProcessID) : Error;

DESCRIPTION
AbortCommand is used to kill a command process. Any files left open by the command process
will be closed, and other system resources will be freed.

The command process pID must have been created by the LoadCommand routine, and can be
either active or suspended. A user process that calls AbortCommand must be managed by the
same User Monitor that manages the process pID; in other words, it is not possible with
AbortCommand to kill processes that belong to another user.

An exit code is returned to the invoking process that started the command process via the
StartCommand routine. The exit code value is currently undefined when a process is killed by
A bortCommand.

SEE ALSO

LoadCommand (3B), StartCommand (3B)

NOTES
ErBadPID is returned if pID is not a valid command process ID.

Page I (9010-E)

Access (3B) (Ridge) Access (3B)

NAME
Access - check accesibility of a file.

SYNTAX
FUNCTION Access (name : String;

mode: Integer): Error;

DESCRIPTION
Access checks the file or directory name for accessibility according to the mode, which is any
additive combination of the values 4, 2, and 1, for read, write, and execute access, respectively.
Mode value 0 checks whether the directories leading to the file can be searched, and that the
file exists.

SEE ALSO
ChangeMode (3B)

NOTES
ErBadFileName is returned if the name is too long or contains invalid characters.

ErFileNotFound is returned if the file or directory cannot be found.

ErAccess is returned if any of the desired access modes would not be granted.

Pagel (90l0-E)

ChangeDir{ 3B) (Ridge) ChangeDir{ 3B)

NAME
ChangeD ir - change current working directory

SYNTAX
FUNCTION ChangeD ir (name : String) : Error;

DESCRIPTION
GhangeDir changes the current working directory to the pathname name. The current working
directory is the default prefix for pathnames not beginning with J.

SEE ALSO

NOTES

Pagel

GetCurrentDir (3B)

ErBadFileName is returned if the name is too long, or contains invalid characters, while ErNot­
Directory is returned if the name is not a directory.

(9010-E)

ChangeFileSize(3B) (Ridge) ChangeFileSize(3B)

NAME
ChangeFileSize - change the size of a file

SYNTAX
FUNCTION ChangeFileSize (handle: Link;

desiredSize : Integer) : Error;

DESCRIPTION
ChangeFileSaze extends or truncates the size of the open file specified by handle to the number
of bytes specified by desiredSize. The amount of secondary storage space allocated to the file is
changed if necessary.

The file must have been opened for writing.

SEE ALSO

NOTES

Pagel

Create (3B), Open (3B)

ErBadLink is returned if handle is not a valid open file, while ErNotWritable indicates that the
file cannot be written.

(90IO-E)

ChangeMode{ 3B) (Ridge) ChangeMode{ 3B)

NAME
ChangeMode - change access mode of a file

SYNTAX
FUNCTION ChangeMode (name: String;

accessMode: Halfword) : Error;

DESCRIPTION
ChangeM ode changes the access mode (permission bits) of the file or directory name to the
value aeeessMode. The bits are set to 1 to grant the access; to 0 to deny the access. The
access mode can assume combinations of the following:

100000000000 set user ID on execution
010000000000 set group ID on execution
001000000000 (not used)
000100000000 read permission for owner
000010000000 write permission for owner
000001000000 execute (or search directory) permission for owner
000000111000 read, write, and execute permission for group
000000000111 read, write, and execute permission for others

Only the owner of a file or directory, or the Super-User, can change its access mode.

SEE ALSO
Access (3B)

NOTES
ErBadFileName is returned of the name is too long, or contains invalid characters.

ErFileNotFound is returned if the file or directory cannot be found.

ErNotOwner is returned if the caller is neither the owner not the Super-User.

Pagel (9010-E)

Close(3B) (Ridge) Close(3B)

NAME
Close - close a file

SYNTAX
FUNCTION Close (handle: Link) : Error;

DESCRIPTION
Ga"ven a link handle to a file as returned by a Create or Open call, Close will close the associated
file. Programs which use large numbers of files should use Close when no more access to a file
is required, since there is a limit on the number of open files per process. All open files for a
process are closed automatically when the process terminates.

Unused secondary storage space may be deallocated, although Close does not change the logical
size of a file.

SEE ALSO
Create (3B), Open (3B)

NOTES

ErBadLink is returned if handle is not a valid open file.

Pagel (90IO-E)

CloseFile(3B) (Ridge) CloseFile(3B)

NAME
Close File - close a stream file

SYNTAX

PROCED URE CloseFile (var f : Text);

DESCRIPTION
GloseFile closes the stream file associated with f, which must have been opened by the OpenFile
routine. Closing a stream file causes any buffers to be fiushed if necessary, and the file
becomes inactive.

All open stream files are closed automatically when a program terminates normally, or when the
SysExit routine is called.

SEE ALSO
Close (3B), OpenFile (3B), SysExit (3B)

Pagel (9010-E)

ConcatString(3B)

NAME
ConcatString - concatenate two strings

SYNTAX

FUNCTION ConcatString (81 : String;
82 : String) : String;

DESCRIPTION

(Ridge) ConcatString(3B)

GoncatString creates a new string that is the concatenation of the strings 81 and 82. The new
string is returned, and neither 81 nor 82 are modified.

SEE ALSO
N ewString (3B)

Pagel (9010-E)

Copyorstri:Q~(aB)

NAME
CopyOfString - make a copy of a string

SYNTAX

(Ridge)

FUNCTION CopyOfString (s : String) : String;

DESCRIPTION

CopyQfString(3B)

GopyOjString creates a new string that is a copy of string s. The new string is returned, with the
same length and same contents as s. String s is not modified.

SEE ALSO
NewString (3B), OverlayString (3B)

Pagel (9010-E)

CopySubString(3B) (Ridge) CopySubString(3B)

NAME
CopySubString - copy a substring into another string

SYNTAX
PROCEDURE CopySubString (dest : String;

dFirst : Integer;
dL ast : Integer;
source : String;
sFirst : Integer);

DESCRIPTION
CopySubString copies the substring from source to the substring in dest. The characters starting
at position sFirst in the string source are copied to the characters in positions dFirst to dLast
in the string dest.

SEE ALSO

NOTES

Pagel

NewString (3b), SubString (3b)

No bounds check is made to insure that either of the substrings are completely contained within
the strings. No check is made for overlapping substrings when the source and destination are
the same string.

(9010-E)

Create{3B) (Ridge) Create{3B)

NAME
Create - create a file

SYNTAX
FUNCTION Create (name: String;

accessMode : Halfword;
allocSize : Integer;

var handle : Link;
var fiag : Integer) : Error;

DESCRIPTION
Create tries to create a new file, or prepares to rewrite an existing file. The string na:me
represents the pathname of the file.

If the file did not exist, it is given access mode aecessMode, and a file size of zero. If the file
did exist, its mode and owner remain unchanged, but the file size is truncated to zero length. In
either case, the file will be allocated sufficient storage space to hold allocSize bytes.

The file is then opened for both reading and writing, and handle will contain a link which is
used for subsequent input/output operations on the file.

A value is returned in flag that indicates whether the file should be accessed using block mode
only (0), character mode only (1), or either mode (2).

SEE ALSO

NOTES

Pagel

Close (3B), Delete (3B), Open (3B)

ErBadFileName is returned if the name is too long, or contains invalid characters.

If the file could not be created because of insufficient secondary storage space, ErVolumeFull is
returned.

ErAccess is returned if either the file exists and its access mode is not writable, or the file does
not exist but the directory in which it is to be created is not writable.

ErCantM0 difyD ir is returned if a directory with the pathname name already exists.

(90IO-E)

CreateEquate(3B) (Ridge) CreateEquate(3B)

NAME
CreateEquate - create a name equation

SYNTAX
FUNCTION CreateEquate (pID : ProcessID;

mapFrom : String;
mapTo : String) : Error;

DESCRIPTION
GreateEq'Uate creates a name equation for the alias mapFrom to the string mapTo. The name
equation is added to the list of name equations maintained by the User Monitor for each com­
mand process. When a name is specified in a request to the User Monitor, the name equation
list is searched and if the name matches mapFrom, the string mapTo is substituted for the
name. The most recent equation for mapFrom is used in the case of multiple equations for the
same string.

The parameter pID specifies to which command process the name equation applies. If the value
of pID is -1, then the name equation applies to all of the command processes managed by a
single User Monitor.

When a command process terminates, its list of name equations is automatically deleted. The
list associated with all command processes managed by a single User Monitor can only be shor­
tened by DeleteEquate.

SEE ALSO

NOTES

Pagel

D eleteEquate (3B)

ErBadFileName is returned if the strings are too long, while ErBadPID is returned if pID is not
a valid command process ID.

(90IO-E)

CreateSpecial{ 3B) (Ridge) CreateSpecial{ 3B)

NAME
CreateSpecial - create a directory or special file

SYNTAX
FUNCTION CreateSpecial (name: String;

accessMode : Halfword;
deviceFlag : Integer) : Error;

DESCRIPTION
OreateSpec£al creates a directory whose pathname is given by nam.e. The directory is given the
access mode aeeessMode.

The parameter devieeFlag must be zero to create a directory. A nonzero value is used to create
a device driver, which is not implemented. This interface is subject to change.

SEE ALSO
Create (3B), Delete (3B)

NOTES
ErBadFileName is returned if the name is too long, or contains invalid characters.

ErAccess is returned if the directory intended to contain nam.e is not writable.

Pagel {90IO-E)

DecodeTime(3B) (Ridge) DecodeTime(3B)

NAME
D ecodeTime - convert a timestamp to a date and time

SYNTAX
PROCED URE D ecodeTime (time : TimeStamp;

var year: Integer;
var month: Integer;
var day: Integer;
var hour: Integer;
var minute: Integer;
var second: Integer;
var millisecond: Integer;
var nanosecond: Integer);

DESCRIPTION

DecodeTime converts a timestamp to a set of numbers that represent a date and time. The
timestamp time is an encoding of the number of nanoseconds since the beginning of the year
1970. D ecodeTime converts the timestamp as described below, handling leap years properly.

The year will contain a value greater than or equal to 1900, the month will contain a value
from 1 to 12, and the day will contain a value from 1 to 31. The hour will contain a value from
o to 23, and both the minute and the second will contain a value from 0 to 59. The millisecond
will contain a value from 0 to 999, and the nanosecond will contain a value from 0 to 999999.

SEE ALSO

EncodeTime (3B)

Page 1 (9010-E)

Delete(3B) Delete(3B)

NAME
Delete - delete a file

SYNTAX

FUNCTION Delete (name : String) : Error;

DESCRIPTION3
Delete removes n8.IIle from the file system. The contents of a file are destroyed, and the secon­
dary storage space is freed.

A directory may be removed only if it is empty.

SEE ALSO

Create (3B)

NOTES

ErBadFileName is returned if the name is too long, or contains invalid characters.

ErFileNotFound is returned if the name cannot be found.

ErAccess is returned if the name is not writable.

ErD irNotEmpty is returned if n8.IIle is a directory, and it contains one or more entries.

Pagel (90IO-E)

DeleteEquate(3B) (Ridge) DeleteEquate(3B)

NAME
D eleteEquate - delete a name equation

SYNTAX
FUNCTION D eleteEquate (pID : ProcessID;

mapFrom : String) : Error;

DESCRIPTION
DeleteEquate removes the name equation for the alias mapFrmn from the list of name equa­
tions maintained by the User Monitor for the command process pID. If pID is the value -1,
then the name equation is removed from the list of name equations that applies to all command
processes managed by a single User Monitor. If multiple name equations exist for mapFrom,
then only the most recent mapping will be deleted.

When a command process terminates, its list of name equations is automatically deleted.
D eleteEquate is used to either delete a name equation before using CreateEquate to change a
mapping, or to delete a name equation from the list for all command processes.

SEE ALSO
CreateEquate (3B)

NOTES
ErBadFileName is returned if the name is too long, or contains invalid characters.

ErBadPID is returned if plD is not a valid command process ID.

ErNoEquate is returned if map From cannot be found.

Pagel (90IO-E)

Dispose(3B)

NAME
Dispose - deallocate a string

SYNTAX
PROCEDURE Dispose (s : String);

DESCRIPTION

(Ridge) Dispose(3B)

Dispose deallocates the data structure associated with string s, and makes its space on the heap
available for reuse. The heap storage management allows strings to be allocated and deallocated
in any order.

SEE ALSO
N ewString (3B)

NOTES
Unpredictable results will occur if s had never been allocated, or if it had already been disposed.

Page 1 (90lO-E)

EncodeTime(3B) (Ridge) EncodeTime{ 3B)

NA~IE

EncodeTime - convert a date and time to a timestamp

SYNTAX
PROCEDURE EncodeTime (year: Integer;

month: Integer;
day : Integer;
hour: Integer;
minute: Integer;
second: Integer;
millisecond: Integer;
nanosecond: Integer;

var time : TimeStamp);

DESCRIPTION
EncodeTime converts a set of numbers that represent a date and time to a timestamp. The
timestamp time is an encoding of the number of nanoseconds since the beginning of the year
1900. EncodeTime converts the set of numbers as described below, handling leap years prop­
erly.

The year should contain a value greater than or equal to 1900, the month should contain a
value from 1 to 12, and the day should contain a value from 1 to 31. The hour should contain
a value from 0 to 23, and both the minute and the second should contain a value from 0 to 59.
The millisecond should contain a value from 0 to 999, and the nanosecond should contain a
value from 0 to 999999.

SEE ALSO

D ecodeTime (3B)

NOTES

An input parameter that is out of range results in a timestamp that is equal to zero.

Pagel (90l0-E)

EqualString(3B) (Ridge) EqualString(3B)

NAME
EqualString
- compare two strings for equality

SYNTAX

FUNCTION EqualString (Sl : String;
s2 : String) : Boolean;

DESCRIPTION

EqualString compares the two strings 81 and 82 for equality. The value '1.rue is returned if both
strings have exactly the same length and contents, otherwise the value False is returned. The
contents are compared character by character, using the underlying character code values, thus
upper and lower case characters are not identical.

SEE ALSO

N ewString (3B)

Pagel (90lO-E)

FileStatus(3B) (Ridge) FileStatus(3B)

NAME

FileStatus - check the status of a stream file

SYNTAX

FUNCTION FileStatus (var f : Text) : Error;

DESCRIPTION

FileStatus checks the status of the open stream file associated with f. The value returned is zero
if no errors have occurred during any operations on the stream file.

The status may be tested immediately after an OpenFile call to check that the file was correctly
opened, or it may be checked after an input/output operation to insure that the transfer was
successfully completed.

SEE ALSO

OpenFile (3B)

NOTES

ErNotOpen is returned if the stream file is not open.

ErEOF is returned if there was an attempt to read past end of file.

ErFileStatus is returned if if any other error has occurred.

Pagel (90IO-E)

FillString(3B)

NAME
FillString - fill a string with a character

SYNTAX
PROCED URE FillString (s : String;

first: Integer;
last: Integer;
ch : Char); •

DESCRIPTION

(Ridge) FillString(3B)

FillString fills a substring within string s with the character ch. The characters from the position
first to the position last are all given the value of ch.

SEE ALSO
N ewString (3B)

NOTES
No bounds check is made to insure that the substring is completely contained within the string.

Pagel (9010-E)

GetArgs(3B) (Ridge) GetArgs (3B)

NAME
GetArgs - get command arguments

SYNTAX
FUNCTION GetArgs (var argc : Integer) : PStringVector;

DESCRIPTION
GetArgs is used by a command process to retrieve its co~mmand arguments from the User Moni­
tor. The command arguments are typically file names to be operated on, or options to control
the execution of the program. The invoking process, usually the Shell, accumulates the com­
mand arguments and passes them to the User Monitor via StartCommand when a command
process is started.

GetArgs sets the argument count into arge and returns a pointer to an array of strings, as
described by the following Pascal type definitions:

PStringVector = A StringVector;
StringVector = Array [0 .. 0] of String;

The array is indexed from zero, and actually contains arge+ I elements, where the last element
is the value Nil.

By convention, the string at position zero is the name of the command process, and the other
strings are the command arguments in sequence. Thus arge is always at least one.

SEE ALSO

NOTES

Page I

StartCommand (3B)

The strings returned by GetArgs should not be deallocated via Dispose since they are not allo­
cated by NewString.

(90IO-E)

GetCurrentDir(3B) (Ridge) GetCurrentDir(3B)

NAME
GetCurrentD ir - get the name of the current working directory

SYNTAX
FUNCTION GetCurrentDir : String;

DESCRIPTION
GetOurrentDi'r returns a string which is the pathname of the current working directory.

SEE ALSO
ChangeD ir (3B)

Pagel (9010-E)

LoadCodeAndData(3B) (Ridge) LoadCodeAndData(3B)

NAME
LoadCodeAndD ata - create a command process with existing data segment

SYNTAX
FUNCTION LoadCodeAndD ata (codeName : String;

dataName : String;
var pID : ProcessID) : Error;

DESCRIPTION
LoadGodeAndData creates a command process, using the datafile eodeNaIIle as the executable
code segment. The code file is found using the standard search order. If the name starts with
/, then that exact pathname is used. Otherwise, a pathname is constructed by appending
eodeNaIIle first to the current working directory, then the directory /bin, and finally to the
directory /usr/bin. The code file must have execute permission.

The existing file dataName is used as the data segment for the command process. If the name
starts with /, then that exact pathname is used. Otherwise, the file is looked for in the current
directory. The data file must have both read and write permission. The same file can be used
for both the code and the data segment.

If both files are found, a queue segment is allocated, and an inactive process is created. A pro­
cess ID is returned in pID, which is used for further management of the command process.

SEE ALSO

NOTES

Page I

AbortCommand (3B), LoadCommand (3B), StartCommand (3B)

ErBadFIleName is returned if a name is too long, or contains invalid characters.

ErFileNotFound is returned if a file cannot be found, while ErBadFileType is returned if it is
not a regular file.

(9010-E)

LoadCommaIld(3B) (Ridge) LoadCommand{ 3B)

NAME
LoadCommand - create a command process

SYNTAX
FUNCTION LoadCommand (name : String;

var pID : ProcessID) : Error;

DESCRIPTION
LoadGommand creates a command process, using the file naIIle as the executable code segment.
The code file is found using the standard search order. If the name starts with /' then that
exact pathname is used. Otherwise, a pathname is constructed by appending name first to the
current working directory, then the directory /bin, and finally the directory /usr/bin. The code
file must have execute permission.

If a code file is found, a data and a queue segment are allocated, and an inactive process is
created. A process ID is returned in pID, which is used for further management of the com­
mand process.

SEE ALSO

NOTES

Pagel

AbortCommand (3B), LoadCodeAndD ata (3B), StartCommand (3B)

ErBadFileName is returned if the name is too long, or contains invalid characters.

ErFileNotFound is returned if the file can not be found, while ErBadFileType is returned if it is
not a regular file.

(9010-E)

LookupName(3B) (Ridge) LookupName(3B)

NAME
LookupName - lookup a file name

SYNTAX
FUNCTION LookupName (name: String;

var fType : Integer;
var rID : FileID) : Error;

DESCRIPTION
LookupName takes a pathname n8.IIle and determines its mapping in the file system. If the
name is a regular file, then fType will contain the value 1, and fiD will contain the internal file
identifier.

If the name is a directory, then fType will contain the value o. The contents of fiD for a direc­
tory are interpreted as four I6-bit values in sequence according to the following Pascal type
definitions:

ownerID
groupID

= Halfword;
= Halfword;

protect = Halfword;
linkCount = Halfword;

The ownerID and groupID fields indicate the owner of the directory. The protect field is the
protection bits, or access mode, for the directory. The linkCoWlt field represents the number of
aliases, or links, to the directory from other directories in the file system.

SEE ALSO
ReadDirectory (3B), ReadLabel (3B)

NOTES

ErBadFileName is returned if the name is too long, or contains invalid characters.

ErFileNotFound is returned if the file or directory can not be found.

Page 1 (90IO-E)

NewString(3B) (Ridge) NewString(3B)

NAME
NewString - create a new string

SYNTAX
FUNCTION NewString (length: Integer) : String;

DESCRIPTION
NewString creates a new string, with enough space to hold length characters. A data structure
is allocated on the heap, with the length field filled in, and undefined values for the sequence of
characters. A pointer to this structure is returned by NewString, and the calling program can
fill in the desired characters.

When the string is no longer required, its space should be deallocated by the Dispose routine.

SEE ALSO
Dispose (3B)

Page 1 (9010-E)

Open(3B) (Ridge) Open(3B)

NAME
Open - open a file

SYNTAX
FUNCTION Open (name : String;

mode: Integer;
var handle : Link;
var fiag : Integer;
var fileSize : Integer) : Error;

D ESCRIPTI ON
Open tries to o·pen an existing file, where the string name represents the pathname of the file.
The file will be opened for reading (mode is 0), writing (mode is 1), or both reading and writing
(mode is 2).

If the file is opened successfully, handle will contain a link which is used for subsequent
input/output operations on the file. The file will be positioned at its beginning.

A value is returned in Hag that indicates whether the file should be accessed using block mode
only (0), character mode only (1), or either mode (2).

The value returned in fileSize is the number of bytes in the file. The size of a file that
represents a device driver may not be determinable when the file is first accessed, and will be
zero in this case.

SEE ALSO
Close (3B), Create (3B)

NOTES
ErBadFileName is returned if the name is too long, or contains invalid characters.

ErOpenMode is returned if mode is not 0, 1, or 2.

ErFileNotFound is returned if the file can not be found.

Pagel (90l0-E)

OpenFile(3B) (Ridge) OpenFile(3B)

NAME
OpenFile - open a stream file

SYNTAX
PROCEDURE OpenFile (var f : Text;

name : String;
mode : Char);

DESCRIPTION

OpenFile is used to associate a stream file with the variable f, which can then be used in stan­
dard Pascal input/output operations or can be a parameter to other stream file routines. The
string D8.IIle specifies the pathname of the file. The character mode can be one of four different
letters (upper or lower case) that indicate how the file should be opened, as described below.

The value r indicates the file should be opened for reading only, and therefore must exist.

The value w indicates the file should be opened for writing only, and is either created if it did
not exist, or truncated to zero length if it did exist.

The value a indicates the file should be appended to, which is similar to writing only. The file is
created if it did not exist. If the file exists, it is not truncated and the read/write cursor is posi­
tioned at the end of file.

The value u indicates that the file should be opened for update, which permits both reading and
writing. The file is created if it did not exist, and the read/write cursor is positioned at the
beginning of the file.

SEE ALSO

NOTES

Pagel

CloseFile (3B), Create (3B), FileStatus (3B), Open (3B)

The FileStatus routine should be used to determine if a stream file was opened successfully. A
stream file may not be opened correctly if the file name is not valid, does not exist or cannot be
accessed according to the mode. or if too many open files already exist.

(90IO-E)

OverlayString(3B) (Ridge) OverlayString(3B)

NAME
OverlayString - copy one string onto another

SYNTAX
PROCED URE OverlayString (dest : String;

source : String);

DESCRIPTION

OverlayString copies the characters of the source string onto the previous contents of the dest
string, and sets the length of dest to that of source. The source string is not modified.

SEE ALSO

NOTES

Page 1

CopyOfString (3B), NewString (3B)

Unpredictable results may occur if the destination string was not at least as long as the source
string.

(9010-E)

PositionFile{ 3B) (Ridge) PositionFile{ 3B)

NAME
PositionFile - move the read/write cursor of a stream file

SYNTAX
FUNCTION PositionFile (var f : Text;

offset: Integer;
origin: Integer) : Integer;

DESCRIPTION
PositionFiJe moves the read/write cursor of the stream file associated with f. The next input or
output operation on the stream file will occur at the new position, where position 0 is the first
byte of the file.

The new position becomes the byte position determined from the signed value in offset and the
value of origin. If origin is 0, the offset is from the beginning of the file; if origin is 1, the
offset is relative to the current position; if origin is 2, the offset is relative to the end of the
file. The return value of PositionFz1e is the resulting byte position in the file.

A successful PositionFiJe always clears the end-of-file status.

SEE ALSO

NOTES

Pagel

OpenFile(3B), SetFileSize(3B)

An error is indicated by return value -1. An error may occur if origin is not 0, 1, or 2, if the
stream file is not open or does not allow block mode or random access, or if the postion would
be beyond the end of the file.

(90l0-E)

ReadBlock(3B) (Ridge) ReadBlock(3B)

NAME
ReadBlock - read a block of a file

SYNTAX
FUNCTION ReadBlock (handle: Link;

bufAddr : pageAddress;
file Cursor : Integer;
length : Integer;

var actual: Integer) : Error;

DESCRIPTION
ReadBlock is used to read a block of data from the file specified by handle. The handle is a file
link returned from a successful Create or Open call, and it represents a file that must allow
block mode access.

The block of data from the file at the byte position specified by fileCursor is transferred to the
buffer address in the user process data segment specified by bufAddr, which must be page­
aligned.

The amount of data to be read is specified in length, and the amount actually transferred is
returned in actual, which can be from 0 to' 4096 bytes.

SEE ALSO

NOTES

Pagel

Create (3B), Open (3B), ReadChar (3B), WriteBlock (3B), WriteChar (3B)

ErBadLink is returned if handle is not a valid open file.

ErNotAligned is returned if bufAddr is not page-aligned, that is, an address that is not a mUlti­
ple of 4096, while ErBadBlockLength is returned if length is greater than 4096.

ErNotReadable is returned if the file was not opened to allow reading.

ErEOF is returned if an attempt is made to read a block past the end of file.

(9010-E)

ReadChar{ 3B) (Ridge) ReadChar{ 3B)

NAME
ReadChar - read a character

SYNTAX
FUNCTION ReadChar (handle : Link;

var ch : Char) : Error;

DESCRIPTION
ReadChar reads a single character from the flle specified by handle. The handle is a file link
returned from a successful Create or Open call, and it represents a file that must allow character
mode access.

The character is returned in eh, and can be any 8-bit value.

SEE ALSO
Create (3B), Open (3B), ReadBlock (3B), WriteBlock (3B), WriteChar (3B)

NOTES
ErBadLink is returned if handle is not a valid open file.

ErNotReadable is returned if the file was not opened to allow reading.

ErEOF is returned if an attempt is made to read a character past the end of file.

Page 1 (90IO-E)

ReadDirectory(3B) (Ridge) ReadDirectory(3B)

NAME
ReadDirectory - read the contents of a directory

SYNTAX
FUNCTION ReadD irectory (name : String;

firstRequest : Boolean;
dirPage : PDirectoryPage;

varnumEntries : Integer;
var anyMore : Boolean) : Error;

DESCRIPTION .

Pagel

ReadDirectory is used to read the contents of a .directory. The directory contents are returned
in a standard format, which contains entries that map a name to an internal file identifier, or
indicate that an entry is the name of a subdirectory.

Each call to ReadDirectory returns only one 4096-byte page of information. The entries are
returned in alphabetical order so that multiple requests can be made, each time specifying a
different place in the alphabetical list to start returning more entries. The parameters "firstRe­
quest" and "anyMore" are used as described below to make multiple requests, thus enabling a
large directory to be read.

The first call to ReadD irectory for a directory whose pathname is "name" should have the
parameter "firstRequest" set to True. The number of valid entries for the returned directory
page is returned in "numEntries". If more information exists in the directory than can be
returned in a single response, then the parameter "anyMore" will be set to True upon return,
otherwise "anyMore" will be set to False.

If "anyMore" is True, then another call to ReadDirectory should be made with "firstRequest" set
to False. The parameter "name" should be extended to include the directory name and the
name of the last entry returned, separated by a"/". The returned information will start with the
next alphabetical entry.

ReadDirectory places a block of directory information into the data area specified by "dlrPage"
in the following format:

PDirectoryPage = .. DirectoryPage;
DirectoryPage = Array [0 .. 127] of DirectoryEntry;
D irectoryEntry = Record

name : Array [1..16] of Char;
fType : Integer;
flD : FileID;

end;

The page may contain up to 128 entries, starting with entry number zero. Each entry has a
"name" field, which is 1 to 16 characters with blanks filled at the end. The "fType" field has the
value 1 if the entry is a regular file, and the "flD" field contains an internal file identifier in this
case.

The "fType" field has the value 0 if the entry is a directory. The contents of the "flD" field for
a directory are interpreted as four 16-bit values in sequence according to the following Pascal
type definitions:

ownerID
groupID

= Halfword;
=·Halfword;

protect = Halfword;
linkCount = Halfword;

(9010-E)

ReadDirectory(3B) (Ridge) ReadDirectory{ 3B)

The "ownerID" and "groupID" fields indicate the owner of the directory. The "protect" field is
the prorection bits, or access mode, for the directory. The "linkCount" field represents the
number of aliases, or links, to the directory from other directories in the file system.

SEE ALSO
CreateSpeclal (3B), LookupName (3B), ReadLabel (3B) ErBadFileName is returned if the
name is too long, or contains invalid characters, while ErNotDirectory is returned if the name
is not a directory.

(90IO-E) Page 2

ReadLabel(3B) (Ridge) ReadLabel(3B)

NAME
ReadLabel - read a file label

SYNTAX
FUNCTION ReadLabel (fID : FileID;

lab: PFileLabel) : Error;

DESCRIPTION
ReadLabel is used to read the contents of the file label for the file specified by the internal file
identifier flD. The file label contains information about the file that is maintained by the file
system.

ReadLabel places a block of file label information into ~e data area specified by lab in the fol­
lowing format:

PFileLabel = " FileLabel;
FileLabel = Record

internaJCreate : TimeStamp;
createTime
ref Time
modTime
ownerID
groupID
protect
linkCount
fileSize
uType

end;

: TimeStamp;
: TimeStamp;

: TimeStamp;
: Halfword;
: Halfword;

: Halfword;
: Halfword;

: Integer;
: Integer;

The internaiCreate field contains the time that the file was actually created. The createTIme
field contains the time that the file was logically created, which may be different than the intel"­
naiCreate time if the file is a copy of another file, for instance. The refiime field contains the
last time that the file was referenced, that is, closed after being opened for reading or writing.
The modTIme field contains the last time that the file was modified, that is, closed after being
opened for writing.

The ownerID and groupID fields indicate the owner of the directory. The protect field is the
protection bits, or access mode, for the file. The linkCount field represents the number of
name mappings, or links, to the file from directories in the file system.

The fileSize field maintains the size of the file in bytes. The uType field contains a file type
value maintained by the system.

SEE ALSO
LookupName (3B), ReadDirectory (3B)

NOTES
ErBadFileID is returned if rID is not a valid internal file identifier.

Pagel (90l0-E)

SearchString(3B) (Ridge)

NAME
SearchString - search for a character in a string,

SYNTAX
FUNCTION SearchString (s : String;

ch : Char) : Integer;

DESCRIPTION

SearchStcing(3B)

SearchStnng searches the string s for the' first occurrence of the character value ch. If ch is
found, then its position in the sequence of characters is returned. Zero is returned if ch can
not be found.

SEE ALSO
N ewString (3B)

Pagel (90IO-E)

SetFileSize{ 3B) (Ridge) SetFileSize{ 3B)

NAME
SetFileSize - change the size of a stream file

SYNTAX
FUNCTION SetFileSize (var f : Text;

desiredSize : Integer) : Error;

DESCRIPTION

SetFileSize extends or truncates the size of the stream file associated with t to the number of
bytes specified by desiredSize. The amount of secondary storage space allocated to the file is
changed if necessary.

The stream file must have been opened with a mode that allows writing.

If the stream file is truncated in front of the current read/write cursor, then the read/write cur­
sor is positioned to the new end of file.

SEE ALSO
OpenFile (3B), ChangeFileSize (3B), PositionFlle (3B)

NOTES
ErNotWritable is returned if the file is not writable.

Pagel (90IO-E)

SetDataBounds (3B) (Ridge) SetDataBourids(3B)

NAME
SeWataBounds - set the maximum stack 'and heap sizes,

SYNTAX
PROCEDURE SetDataBounds (desiredStackMax : Integer;

desiredHeapMax : Integer;
var resultingStackMax : Integer;
v-ar resultingHeapMax : Integer);

DESCRIPTION
SetDataBounda sets the maximum sizes of the stack and heap areas within the data segment
associated with the calling command process.

When a command process is created via the LoadCommand routine, its data segment is created
with a certain amount of secondary storage allocated to the stack and the heap areas. The stack
area grows upwards from location zero (increasing addresses), while the heap area grows down­
wards from the end of· the address space (decreasing addresses).

The default maximum size of both the stack and heap areas is 32M bytes. Data segment refer­
ences within the stack or heap area bounds will automatically be allocated secondary storage to
satisfy the references as needed. Data segment references outside the stack or heap area bounds
cause the command process to generate an illegal memory reference trap.

The default. maximum sizes m8¥ be changed via SeWataBounds, where desiredStaclcMax and
desiredHeapMax specify the maximum sizes in bytes for the stack and heap, respectively.
These values should be positive numbers, and will be rounded up to a multiple of 4096 if
necessary. The values resultingStaekMax and resultlngHeapMax are returned and indicate the
new maximum stack and heap sizes, resl>ectively.

The amount of secondary storage space allocated to the data segment is not changed by SetD a­
taBounds.

SEE ALSO

NOTES

Page· I

LoadCommand (3B)

If the desired size is less than the currently allocated size, then the maximum size is not
changed, and t.he current maximum size is returned.

(gaIO-E)

StartCommand{ 3B) (Ridge) StartCommand{ 3B)

NAME
StartCommand - start a command process executing

SYNTAX
FUNCTION StartCommand (pID : ProcessID;

args : PArgPage;
wait: Boolean;
debugFlag; Boolean) : Error;

DESCRIPTION
StartOommand is used to start execution of a command process. The command process pID
must have been created by the LoadCommand or LoadCodeAndData routine; StartCommand
activates pID, supplying its command arguments.

The command arguments are passed in a 4096-byte page to the User Monitor, which transmits
them to the command process when it calls GetArgs. The parameter args points to a page
which contains the arguments in the following format:

PArgPage = A ArgPage;
ArgPage = Record

argc : Integer;
strings: Array [0 .. 0] of StringBody;

end;

The argument page contains an argument count and zero or more strings packed sequentially.
The strings consist of a length field followed by the sequence of characters, with the length
fields aligned on word (4-byte) boundaries. By convention, the argument count is at least one,
with the first string being the command name the process was invoked with.

If wait is True, then the invoking process is suspended until the command process terminates.
In this case, the exit code of the command process is returned as the value of the StartCom­
mand routine. If wait is False, then the invoking process is not suspended and no indication is
given when the command process terminates.

If debugFlag is true, then the command process is not activated, and the Debug process is
notified that plD is a suspended process. The command process can be activated by Debug,
usually after breakpoints have been set. if debugFlag is false,tbe command process is activated
immediately.

SEE ALSO

NOTES

Pagel

AbortCommand (3B), GetArgs (3B), LoadCodeAndData. (3B), LoadCommand (3B), SysExit
(3B)

ErBadPID is returned if pID is not a valid command process ID.

ErCantStart is returned if the command process cannot be properly activated.

(9010-E) .

SubString(3B)

NAME
SubString - make a copy of a substring

SYNTAX
FUNCTION SubString (s : String;

first: Integer;
last: Integer) : String;

DESCRIPTION

(Ridge) SubString{3B)

SubString creates a new string that is a substring of string s. The characters from position first
through position last in s are copied into the new string,' which is then returned. String s is not
modified.

SEE ALSO
CopySubString (3B). NewString (3B)

NOTES
No bounds check is made to insure that the substring is completely contained within the string.

Pagel (90IO-E)

SysExit(3B) (Ridge) SysExit(3B)

NAME
SysExit - exit back to the system

SYNTAX
PROCEDURE SysExit (errorCode : Error);

DESCRIPTION
SY8Ezit exits back to the system, thus terminating the calling command process. Any open
stream files are closed before the process is terminated.

The exit code errorCode is returned to the invoking process which started the command process
via StartCommand. By convention, the value zero indicates suc~essful completion, while
nonzero errorCode values indicate different errors defined by the command process.

SEE ALSO
Close File (3B), StartCommand (3B)

NOTES
This routine never returns to its caller.

Pagel (90l0-E)

WriteBlock(3B) (Ridge) WriteBlock(3B)

NAME
WriteBlock - write a block of a file

SYNTAX
FUNCTION WriteBlock (handle: Link;

bufAddr : pageAddress;
file Cursor : Integer;
length: Integer;

var actual: Integer) : Error;

DESCRIPTION
WriteBlock is used to write a block of data to the file specified by handle. The handle is a file
link returned from a successful Create or Open call, and it represents a file that must allow
block mode access.

The block of data from the buffer address in the user process data segment specified by
bufAddr, which must be page-aligned, is transferred to the file at the byte position specified by
fUeCursor.

The amount of data to be written is specified in length, and the amount actually transferred is
returned in actual, which can be from 0 to 4096 bytes.

The file size is increased by any bytes which extend past the current end of file.

SEE ALSO

NOTES

Page 1

Create (3B), Open (3B), ReadBlock (3B), ReadChar (3B), WriteChar (3B)

ErBadLink is returned if handle is not a valid open file.

ErNotAligned is returned if bufAddr is not page-aligned, that is, an address that is not a mUlti­
ple of 4096, while ErBadBlockLength is returned if length is greater than 4096.

ErNotWritable is returned if the file was not opened to allow writing.

ErBadFileCursor is returned if an attempt is made to write a block beyond the current end of
file, which would leave a gap in the file.

(9010-E)

WriteChar(3B) (Ridge) WriteChar(3B)

NAME
WriteChar - write a character

SYNTAX
FUNCTION Write Char (handle : Link;

ch : Char) : Error;

DESCRIPTION
WriteChar writes a single character to the file specified by handle. The handle is a file link
returned from a successful Create or Open call, and it represents a file that must allow character
mode access.

The character eh that is written can be any 8-bit value.

SEE ALSO
Create (3B), Open (3B), ReadBlock (3B), ReadChar (3B), WriteBlock (3B)

NOTES
ErBadLink is returned if handle is not a valid open file.

ErNotWritable is returned if the file was not opened to allow writing.

Pagel (90IO-E)

A64L(3C) (UNIX 5.0) A64L(3C)

NAME
a641, 164a - convert between long integer and base-64 ASCII string

SYNTAX
long a641 (8)
char *8;

char *164a (I)
long I;

DESCRIPTION

BUGS

Pagel

These functions are used to maintain numbers stored in base-64 ASCII characters. This is a
notation by which long integers can be represented by up to six characters; each character
represents a "digit" in a radix-64 notation.

The characters used to represent "digits" are • for 0, / for 1, 0 through 9 for 2- 11, A through
Z for 12- 37, and a through z for 38- 63.

A641 takes a pointer to a null-terminated base-64 representation and returns a corresponding
long value. If the string pointed to by s contains more than six characters, a641 will use the
first six.

L64a takes a long argument and returns a pointer to the corresponding base-64 representation.
If the argument is 0, 164a returns a pointer to a null string.

The value returned by 164a is a pointer into a static buffer, the contents of which are overwrit­
ten by each call.

(9010-E)

ABORT(3C) ABORT(3C)

NAME
abort - generate an lOT fault

SYNTAX
int abort ()

DESCRIPTION
Abort causes an lOT signal to be sent to the process. This usually results in termination with a
core dump.

It is possible for abort to return control if SIGIOT is caught or ignored, in which case the value
returned is that of the kill(2) system call.

SEE ALSO
adb(1), exit(2), kill(2), signal(2).

DIAGNOSTICS

Pagel

If SIGIOT is neither caught nor ignored, and the current directory is writable, a core dump is
produced and the message "abort - core dumped" is written by the shell.

(90lO-E)

ABS(3C)

NAME
abs - return integer absolute value

SYNTAX
int ab; (i)
int i;

DESCRIPTION
Aba returns the absolute value of its integer operand.

BUGS

ABS(3C)

In two's-complement representation, the absolute value of the negative integer with largest
magnitude is undefined. Some implementations trap this error, but others simply ignore it.

SEE ALSO

Pagel (90IO-E)

ATOF(3C) (UNIX 5.0) ATOF(3C)

NAME
atof - convert ASCII string to floating-point number

SYNTAX
double atof (nptr)
char *nptr;

DESCRIPTION
Atol converts a character string pointed to by nptr to a double-precision floating-point number.
The flrst unrecognized character ends the conversion. Atol recognizes an optional string of
white-space charac~rs, then an optional sign, then a string of digits optionally containing a
decimal point, then an optional e or E followed by an optionally signed integer. If the string
begins with an unrecognized character, atol returns the value zero.

DIAGNOSTICS
When the correct value would overflow, atol returns HUGE, and sets ermo to ERANGE. Zero
Is returned on underflow.

SEE ALSO
scanf(3S) .

Pagel (90IO-E)

BSEARCH(3C) (UNIX 5.0) BSEARCH(3C)

NAME
bsearch - binary search

SYNTAX
char *b;earch « char *) key, (char *) base, nel, sizeof (*key), compar)
unsigned nel;
int (*compar) ();

DESCRIPTION
Bsearch is a binary search routine generalized from Knuth (6.2.l) Algorithm B. It returns a
pointer into a table indicating where a datum may be found. The table must be previously
sorted in increasing order according to a provided comparison function. Key points to the
datum to be sought in the table. Base points to the element at the base of the table. Nel is the
number of elements in the table. Gompar is the name of the comparison function, which is
called with two arguments that point to the elements being compared. The function must
return an integer less than, equal to, or greater than zero according as the first argument is to
be considered less than, equal to, or greater than the second.

DIAGNOSTICS

NOTES

A NULL pointer is returned if the key cannot be found in the table.

The pointers to the key and the element at the base of the table should be of type pointer-to­
element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be cast into type
pointer-to-element.

SEE ALSO
Ise arch { 3C), hsearch{ 3C), qsort(3C), tsearch{ 3C).

Pagel (90lO-E)

CLOCK(3C) (UNIX 5.0) CLOCK(3C)

NAME
clock - report CPU time used

SYNTAX
long clock ()

DESCRIPTION
Glock returns the amount of CPU time (in microseconds) used since the first call to clock. The
time reported is the sum of the user and system times of the calling process and its terminated
child processes for which it has executed wait(2) or sy8tem(3S).

The resolution of the clock is 1 millisecond on the Ridge 32, 10 milliseconds on Western Elec­
tric 3B processors, 16.667 milliseconds on Digital Equipment Corporation processors.

SEE ALSO

BUGS

Pagel

times(2), wait(2), system(3S).

The value returned by clock is defined in microseconds for compatibility with systems that have
CPU clocks with much higher resolution. Because of this, the value returned will wrap around
after accumulating only 2147 seconds of CPU time (about 36 minutes).

(9010-E)

CONV(3C) (UNIX 5.0) CONV(3C)

NAME
toupper, tolower, _toupper, _tolower, toascii - translate characters

SYNTAX

#include < ctype.h>

int toupper (c)
int c;

int tolower (c)
int c;

int _toupper (c)
int c;

int _tolower (c)
int c;

int toascii (c)
int c;

DESCRIPTION
Toupper and tolower have as domain the range of getc(3S): the integers from - 1 through 255.
If the argument of to upper represents a lower-case letter, the result is the corresponding upper­
case letter. If the argument of tolower represents an upper-case letter, the result is the
corresponding lower-case letter. All other arguments in ~he domain are returned unchanged.

_toupper and _tolower are macros that accomplish the same thing as toupper and tolower but
have restricted domains and are faster. _toupper requires a lower-case letter as its argument; its
result is the corresponding upper-case letter. _tolower requires an upper-case letter as its argu­
ment; its result is the corresponding lower-case letter. Arguments outside the domain cause
undefined results.

Toascii yields its argument with all bits turned off that are not part of a standard ASCII charac­
ter; it is intended for compatibility with other systems.

SEE ALSO
ctype(3C), getc(3S) .

Pagel (90IO-E)

CRYPT(3C) (UNIX 5.0) CRYPT(3C)

NAME
crypt, setkey, encrypt - generate DES encryption

SYNTAX
ehar *erypt (key, salt)
ehar *key, *salt;

void setkey (key)
ehar *key;

voidenerypt (bloek, edflag)
ehar *bloek;
int edflas;

DESCRIPTION
Crypt is the password encryption function. It is based on the NBS Data Encryption Standard
(DES), with variations intended (among other things) to frustrate use of hardware implementa­
tions of the DES for key search.

Key is a user's typed password. Salt is a two-character string chosen from the set [a-zA-ZO-
9.j]; this string is used to perturb the DES algorithm in one of 4096 different ways, after which
the password is used as the key to encrypt repeatedly a constant string. The returned value
points to the encrypted password. The first two characters are the salt itself.

The setkey and encrypt entries provide (rather primitive) access to the actual DES algorithm.
The argument of setkey is a character array of length 64 containing only the characters with
numerical value 0 and 1. If this string is divided into groups of 8, the low-order bit in each
group is ignored; this gives a 56-bit key which is set into the machine. This is the key that will
be used with the above mentioned algorithm to encrypt or decrypt the string block with the
function encrypt.

The argument to the encrypt entry is a character array of length 64 containing only the charac­
ters with numerical value 0 and 1. The argument array is modified in place to a similar array
representing the bits of the argument after having been subjected to the DES algorithm using
the key set by setkey. If edflag is zero, the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO
login(1), passwd(1), getpass(3C), passwd(4) .

BUGS

The return value points to static data that are overwritten by each call.

Pagel (9010-E)

CTIME{3C) (UNIX 5.0) CTIME{3C)

NAME
ctime, localtime, gmtime, asctime, tzset - convert date and time to string

SYNTAX
#include <time.h>

char *ctime (clock)
long *clock;

struct tm *localtime (clock)
long *clock;

struct tm *gmtime (clock)
long *clock;

char *asctime (tm)
struct tm *tm;

extern long timezone;

extern int daylight;

extern char *tzname[2];

voi d tzset ()

DESCRIPTION

Pagel

Ct£me converts a long integer, pointed to by clock, representing the time in seconds since
00:00:00 GMT, January 1, 1970, and returns a pointer to a 26-character string in the following
form. All the fields have constant width.

Sun Sep 16 01:03:52 1973\n\0

Localt£me and gmt£me return pointers to "tm" structures, described below. Localtime corrects
for the time zone and possible Daylight Savings Time; gmt~'me converts directly to Greenwich
Mean Time (GMT), which is the time the UNIX System uses.

Asctime converts a "tm" structure to a 26-character string, as shown in the above example, and
returns a pointer to the string.

Declarations of all the functions and externals, and the "tm" structure, are in the < time.h>
header file. The structure declaration is:

struct tm {

};

int tm_sec; /* seconds (0 - 59) * /
int tm_min; /* minutes (0 - 59) */
int tm_hour; /* hours (0 - 23) */
int tm_mday; /* day of month (1 - 31) */
int tm_mon; /* month of year (0 - 11) */
int tmJear; /* year - 1900 */
lnt tm_wday; /* day of week (Sunday = 0) */
lnt tmJday; /* day of year (0 - 365) */
int tm_isdst;

Tm_isdst is non-zero if Daylight Savings Time is in effect.

The external long variable timezone contains the difference, in seconds, between GMT and local
standard time (in EST, timezone is 5*60*60); the external variable dayl£ght is non-zero if and
only if the standard U .8.A. Daylight Savings Time conversion should be applied. The program
knows about the peculiarities of this conversion in 1974 and 1975; if necessary, a table for
these years can be extended.

(9010-E)

CTIME{3C) (UNIX 5.0) CTIME{3C)

If an environment variable named TZ is present, asctime uses the contents of the variable to

override the default time zone. The value of TZ must be a three-letter time zone name, fol­
lowed by a number representing the difference between local time and Greenwich Mean Time
in hours (with an optional .. :min"), followed by an optional three-letter name for a daylight
time zone. For example, the setting for New Jersey would be EST5EDT. The effects of setting
TZ are thus to change the values of the external variables timezone and daylight; in addition, the
time zone names contained in the external variable

char *tzname[2] = { "EST", "EDT" };

are set from the environment variable TZ. The function tzset sets these external variables from
TZ; tzset is called by asctime and may also be called explicitly by the user.

Note that in most installations, TZ is set by default when the user logs on, to a value in the
local jete/profile file (see profile (4».

SEE ALSO
time(2), getenv(3C), profile (4), environ(5).

BUGS

The return values point to static data whose content is overwritten by each call.

(9010-E) Page 2

CTYPE(3C) (UNIX S.O) CTYPE(3C)

NAME
isalpha, isupper, islower, is digit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl,
isascli - classify characters

SYNTAX
#include < etype.h>

int isal pha (c)
int c;

DESCRIPTION
These macros classify character-coded integer values by table lookup. Each is a predicate
returning nonzero for true, zero for false. Isasc,a is defined on all integer values; the rest are
defined only where isasci; is true and on the single non-ASCII value EOF (- 1 - see stdio(3S» .

is a lph a

iB'Upper

islower

iBdigit

isxdigit

isaln'Um

isspace

isp'Unct

isprint

isgraph

iBcntri

asascu

c is a letter.

c is an upper-case letter.

c is a lower-case letter.

c is a digit [0-9].

c is a hexadecimal digit [0-9], [A-F] or [a-f].

c is an alphanumeric (letter or digit).

c is a space, tab, carriage return, new-line, vertical tab, or form-feed.

c is a punctuation character (neither control nor alphanumeric),

c is a printing characrer, code 040 (space) through 0176 (tilde).

c is a printing cbaracter, like ispn'nt except false for space.

c is a delete character (0177) or an ordinary control character (less than 040).

c is an ASCII character, code less than 0200.

DIAGNOSTICS
If the argument to any of these macros is not in the domain of the function, the result is
undefined.

SEE ALSO
ascii(5).

Pagel (9010-E)

DRAND48(3C) (UNIX 5.0) DRAND4S(3C)

NAME
drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48, seed48, Icong48 - generate
uniformly distributed pseudo-random numbers

SYNTAX
double drand48 ()

double erand48 (xsubi)
unsigned short xsubi [3];

long Irand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi [3] ;

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed16v[3];

void Icong48 (param)
unsigned short param[7];

DESCRIPTION

Page 1

This family of functions generates pseudo-random numbers using the well-known linear
congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision floating-point values uni­
formly distributed over the interval $[0.0, -1.0).$

Functions Irand48 and nrand48 return non-negative long integers uniformly distributed over the
interval $[0, -2 sup 31).$

Functions mrand48 and jrand48 return signed long integers uniformly distributed over the
interval $[-2 sup 31 ,-2 sup 31).$

Functions srand48, seed48 and Icong48 are initialization entry points, one of which should be
invoked before either drand48, Irand48 or mrand48 is called. (Although it is not recommended
practice, constant default initializer values will be supplied automatically if drand48, Irand48 or
mrand48 is called without a prior call to an initialization entry pOint.) Functions erand48,
m'and48 and jrand48 do not require an initialization entry point to be called flrst.

All the routines work by generating a sequence of 48-bit integer values, $X sub i ,$ according
to the linear congruential formula

X sUb{n+ 1t=-(aX sub nA+ ~c) sUb{roman mod-mt-------n>=o.

The parameter $m A=A2 sup 48$; hence 48-bit integer arithmetic is performed. Unless Icong48
has been invoked, the multiplier value a and the addend value c are given by

a-mark =-roman 5DEECE66D Asub 16-=-roman 273673163155 Asub 8
c-Uneup =-roman BAsub 16-=-roman 13 Asub 8 .

The value returned by any of the functions drand48, erand48, Irand48, nrand48, mrand48 or
jrand48 is computed by first generating the next 48-bit $X sub i$ in the sequence. Then the
appropriate number orbits, according to the type or data item to be returned, are copied from
the high-order (leftmost) bits of $X sub i$ and transformed into the returned value.

(9010-E)

DRAND4S(3C) (UNIX 5.0) DRAND4S(3C)

NOTES

The functions drand48, Irand48 and mrand48 store the last 48-bit $X sub i$ generated in an
internal buffer; that is why they must be initialized prior to being invoked. The functions
erand48, nrand48 and jrand48 require the calling program to provide storage for the successive
$X sub i$ values in the array specified as an argument when the functions are invoked. That is
why these routines do not have to be initialized; the calling program merely has to place the
desired initial value of $X sub i$ into the array and pass it as an argument. By using different
arguments, functions erand48, nrand48 and jrand48 allow separate modules of a large program
to generate several independent streams of pseudo-random numbers, i.e., the sequence of
numbers in each stream will not depend upon how many times the routines have been called to

generate numbers for the other streams.

The initializer function 8rand48 sets the high-order 32 bits of $X sub i$ to the 32 bits contained
in its argument. The low-order 16 bits of $X sub i$ are set to the arbitrary value $roman 330E
sub 16 .$

The initializer function seed48 sets the value of $X sub i$ to the 48-bit value specified in the
argument array. In addition, the previol1s value of $X sub i$ is copied into a 48-bit internal
buffer, used only by 8eed48, and a pointer to this buffer is the value returned by 8eed48. This
returned pointer, which can just be ignored if not needed, is useful if a program is to be res­
tarted from a given point at some future time - use the pointer to get at and store the last $X
sub i$ value, and then use this value to reinitialize via seed48 when the program is restarted.

The initialization function Icong48 allows the user to specify the initial $X sub i ,$ the mUlti­
plier value $a,$ and the addend value $c.$ Argument array elements param!O-2} specify $X sub
i ,$ param!9-5} specify the multiplier $a,$ and paramf6} specifies the 16-bit addend $c.$ After
Icong48 has been called, a subsequent call to either 8rand48 or seed48 will restore the "stan­
dard" multiplier and addend values, a and $c,$ specified on the previous page.

The versions of these routines for the Ridge 32 are coded in portable C.

SEE ALSO
rand(3C).

(90lO-E) Page 2

ECVT(3C) (UNIX 5.0) ·ECVT(3C)

NAME
ecvt, fcvt,gcvt - convert fioating-point number to string

SYNTAX
char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt (value, ndigit, buf)
double value;
char *buf;

DESCRIPTION
Eevt converts value to a null-terminated string of ndigit digits and returns a pointer thereto.
The low-order digit is rounded. The position of the decimal point relative to the beginning of
the string is stored indirectly through deept (negative means to the left of the returned digits).
The decimal point is not included in the returned string. If the sign of the result is negative,
the word pointed to by sign is non-zero, otherwise it is zero.

Fevt is identical to eevt, except that the correct digit has been rounded for Fortran F-format out­
put of the n,umber of digits specified by ndigit.

Gevt convertS the value to a null-terminated string in the array pointed to by bu! and returns
bu!. It attempts to produce ndigit significant digits in Fortran F-format if possible, otherwise
E-format, ready for printing. A minus sign, if there is one, or a decimal point will be included
as part of the returned string. Trailing zeros are suppressed.

SEE ALSO
print!(3S).

BUGS
The return values point to static data whose content is overwritten by each call.

Pagel (90IO-E)

END(3C) (UNIX 5.0) END(3C)

NAME
end, etext, edata - last locations in program

SYNTAX
extern end;
extern etext;
extern edat&.;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address
of etext is the first address above the program text, edata above the initialized data region, and
end above the uninitialized data region.

When execution begins, the program break (the first location beyond the data) coincides with
end, but the program break. may be reset by the routines of brk(2), malloc(3C), standard
input/output (stdio(3S», the profile (- p) option of cc(1), and so on. Thus, the current value
of the program break. should be determined by sbrk(O) (see brk(2».

SEE ALSO
brk(2), malloc(3C).

Pagel (9010-E)

FREXP(3C) (UNIX 5.0) FREXP(3C)

NAME
frexp, ldexp, modf - manipulate parts of floating-point numbers

SYNTAX
double frexp (value, eptr)
double value;
int *eptr;

double ldexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, *iptr;

DESCRIPTION
Every non-zero number can be written uniquely as x * 2 n, where the "mantissa" (fraction) x is
in the range 0.5 ~ Ix I < 1.0, and the "exponent" n is an integer. Frexp returns the mantissa
of a double value, and stores the exponent indirectly in the location pointed to by eptr.

Ldexp returns the quantity value * 2 ezp
•

M odJ returns the signed fractional part of value and stores the integral part indirectly in the
location pointed to by "'-ptr.

DIAGNOSTICS
If ldexp would cause overflow, HUGE is returned and ermo is set to ERANGE.

Page 1 (9010-E)

FTW(3C) (UNIX 5.0) FTW(3C)

NAME
ftw - walk a file tree

SYNTAX

#include <ftw.h>

int ftw (path, fn, depth)
char *path;
int (*fIl) ();
int depth;

DESCRIPTION
Ftw recursively descends the directory hierarchy rooted in path. For each object in the hierar­
chy, ftw calls fn, passing it a pointer to a null-terminated character string containing the name
of the object, a pointer to a stat structure (see stat(2» containg information about the object,
and an integer. Possible values of the integer, defined in the <ftw.h> header file, are FTWJi'
for a file, FTWJ) for a directory, FTWJ)NR for a directory that cannot be read, and FTW-fiS

for an object for which stat could not successfully be executed. If the integer is FTWJ)NR,
descendants of that directory will not be processed. If the integer is FTW -fiS, the stat structure
will contain garbage. An example of an object that would cause FTW-fiS to be passed to fn
would be a file in a directory with read but without execute (search) permission.

Ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn returns a nonzero
value, or some error is detected within ftw (such as an I/O error). If the tree is exhausted, ftw
returns zero. If fn returns a nonzero value, ftw stops its tree traversal and returns whatever
value was returned by fn. If ftw detects an error, it returns - 1, and sets the error type in
emto.

Ftw uses one file descriptor for each level in the tree. The depth argument limits the number
of file descriptors so used. If depth is zero or negative, the effect is the same as if it were 1.

Depth must not be greater than the number of file descriptors currently available for use. Ftw
will run more quickly if depth is at least as large as the number of levels in the tree.

SEE ALSO

BUGS

Pagel

stat(2), malloc(3C).

Because ftw is recursive, it is possible for it to terminate with a memory fault when applied to
very deep file structures.
It could be made to run faster and use less storage on deep structures at the cost of consider­
able complexity.
Ftw uses malloc(3C) to allocate dynamic storage during its operation. If ftw is forcibly ter­
minated, such as by longjmp being executed by fn or an interrupt routine, ftw will not have a
chance to free that storage, so it will remain permanently allocated. A safe way to handle inter­
rupts is to store the fact that an interrupt has occurred, and arrange to have fn return a nonzero
value at its next invocation.

(90IO-E)

GETCWD(3C) (UNIX 5.0) GETCWD(3C)

NAME
getcwd - get path-name of current working directory

SYNTAX
char *getcwd (bur, size)
char *buf;
int size;

DESCRIPTION
Getcwd returns a pointer to the current directory path-name. The value of size must be at least
two greater than the length of the path-name to be returned.

If bufis a NULL pointer, getewd will obtain size bytes of space using mal/oe(3C). In this case,
the pointer returned by getcwd may be used as the argument in a subsequent call to free.

EXAMPLE
char *cwd, *getcwd();

if «cwd = getcwd«char *)NULL, 64» == NULL) {
perror("pwd");
exit(1);

}
printf("o/cS\n", cwd);

SEE ALSO
pwd(I), malloc(3C) .

DIAGNOSTICS

Pagel

Returns NULL with e1Tno set if size is not large enough, or if an error ocurrs in a lower-level
function.

(90IO-E)

GETENV(3C) (UNIX 5.0) GETENV(3C)

NAME
getenv - return value for environment name

SYNTAX
char *getenv (name) char *name;

DESCRIPTION
Getenv searches the environment list (see environ (5) for a string of the form name=value, and
returns a pointer to the value in the current environment if such a string is present, otherwise a
NULL pointer.

SEE ALSO
environ(5) .

Pagel (9010-E)

GETGRENT{ 3C) (UNIX 5.0) GETGRENT{ 3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry

SYNTAX
#include <grp.h>

struct group *getgrent ()

struct group *getgrgid (gid)
int gid;

struct group *getgrnam (name)
char *name;

void setgrent ()

void endgrent ()

DESCRIPTION

FILES

Getgrent, getgrgid and getgmam each return pointers to an object with the following structure
containing the broken-out fields of a line in the /ek/group file. Each line contains a "group"
structure, defined in the < grp.h> header file.

struct group {

};

char *gr_name;
char *grJ>asswd;
int gr,J;id;
char

/* the name of the group */
/* the encrypted group password * /
/* the numerical group ID */
/* vector of pointers to member names */

When first called, Getgrent returns a pointer to the first group structure in the file; the·reafter, it
returns a pointer to the next group structure in the file; so, successive calls may be used to
search the entire file. Getgrgid searches from the beginning of the file until a numerical group
id matching gid is found and returns a pointer to the particular structure in which it was found.
Getgrnam searches from the beginning of the file until a group name matching name is found
and returns a pointer to the particular structure in which it was found. If an end-of-file or an
error is encountered on reading, these functions return a NULL pointer.

A call to setgrent has the effect of rewinding the group file to allow repeated searches. Endgrent
may be called to close the group file when processing is complete.

/etc/group

SEE ALSO
getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING

BUGS

Page 1

The above routines use < stdio.h > , which causes them to increase the size of programs, not
otherwise using standard I/O, more than might be expected.

All information is contained in a static area, so it must be copied if it is to be saved.

(9010-E)

GETLOGIN(3C) (UNIX 5.0) GE1LOGIN(3C)

NAME
getlogin - get login name

SYNTAX
char *getlogin ();

DESCRIPTION

FILES

Getlogin returns a pointer to the login name as found in /etA:/utmp. It may be used in conjunc­
tion with getpwnam to locate the correct password file entry when the same user ID is shared by
several login names.

If getlogt"n is called within a process that is not attached to a terminal, it returns a NULL pointer.
The correct procedure for determining the login name is to call cU8erid, or to call getlogin and if
it fails to call getpwuid.

/etc/utmp

SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), utmp(4).

DIAGNOSTICS

Returns the NULL pointer if name not found.

BUGS

The return values point to static data whose content is overwritten by each call.

Pagel (9010-E)

GETOPT(3C) (UNIX 5.0) GETOPT(3C)

NAME
getopt - get option letter from argument vector

SYNTAX
int getopt (argc, argv, optstring)
int argc;
char **argv;
char *optstring;

extern char *optarg;
extern int optind;

DESCRIPTION
Getopt returns the next option letter in argv that matches a letter in optstring. Optstring is a
string of recognized option letters; if a letter is followeq by a colon, the option is expected to
have an argument that mayor may not be separated from it by white space. Optarg is set to
point to the start of the option argument on return from getopt.

Getopt places in opti11.d the argv index of the next argument to be processed. Because optind is
external, it is normally initialized to zero automatically before the first call to getopt.

When all options have been processed (Le., up to the first non-option argument), getopt returns
EOF. The special option - - may be used to delimit the end of the options; EOF will be
returned, and - - will be skipped.

DIAGNOSTICS
Getopt prints an error message on 8tde" and returns a question mark (?) when it encounters an
option letter not included in optstnng.

WARNING
The above routine uses <stdio.h>, which causes it to increase the size of programs, not oth­
erwise using standard I/O, more than might be expected.

EXAMPLE

Pagel

The following code fragment shows how one might process the arguments for a command that
can take the mutually exclusive options a and b, and the options f and 0, both of which require
arguments:

main (argc, argy)
int argc;
char **argv;
{

int c;
extern int optind;
extern char *optarg;

while « c = getopt (arge, argy, "abf:o:"» != EOF)
switch (e) {
case 'a':

if (bfig)
errfig+ + ;

else
aflg+ +;

break;
case 'b':

if (afig)
errfig+ +;

else

(90IO-E)

GETOPT(3C)

}
SEE ALSO

getopt(l) .

(90lO-E)

case 'f':

case '0':

case '1':

}

(UNIX 5.0)

bproc();
break;

HUe = optarg;
break;

oflle =optarg;
bufsiza =;:: 512;
break;

errflg+ +;

if (errflg) {

}

fprintf (stderr, "usage: ... ");
exit 2);

for (optind < argc; optind+ +) {
if (access (argv[oPtind], 4» {

GETOPT(3C)

Page 2

GETP ASS(30)

NAME
getpass - read a password

SYNTAX

char *getpass (prompt)
char *prompt;

DESCRIPTION

GETPASS(30)

Getpa88 reads up to a newline or EOF from the file /dev /tty, after prompting on the standard
error output with the null-terminated string prompt and disabling echoing. A pointer is
returned to a null-terminated string of at most 8 characters. If /dev /tty cannot be opened, a
NULL pointer is returned. An interrupt will terminate input and send an interrupt signal to the
calling program before returning.

FILES

/dev/tty

SEE ALSO
crypt(3C).

WARNING

The above routine uses <stdio.h>, which causes it to increase the size of programs, not oth­
erwise using standard I/O, more than might be expected.

BUGS
The return value points to static data

Pagel (gOlD-E)

GETPW(3C)

NAME
getpw - get name from UID

SYNTAX
int getpw (uid, bur)
int uid;
char *buf;

DESCRIPTION

(UNIX 5.0) GETPW(3C)

Getpw searches the password HIe for a user id number that equals uid, copies the line of the
password file in which uid was found into the array pointed to by bu/, and returns o. Getpw
returns non-zero if uid cannot be found.

FILES

This routine is included only for compatibility with prior systems and should not be used; see
getpwent(3C) for routines to use instead.

/etc/passwd

SEE ALSO
getpwent(3C), passwd(4) .

DIAGNOSTICS
Getpw returns non-zero on error.

WARNING

Pagel

The above routine uses <stdio.h>, which causes it to increase the size of programs, not oth­
erwise using standard I/O, more than might be expected.

(9010-E)

GETPWENT(3C) (UNIX 5.0) GETPWENT{ 3C)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent - get password file entry

SYNTAX
#include <pwcLh>

struct passwd *getpwent ()

struct passwd *getpwuid (uid)
int uid;

struct passwd .*getpwnam (name)
char *name;

void setpwent ()

void endpwent ()

DESCRIPTION

FILES

Pagel

Getpwent, getpw'Uid and getpwnam e&:h returns a pointer to an object with the following struc­
ture containing the broken-out fields of a line in the /ete/passwd file. Each line in the file con­
tains a "passwd" structure, declared in the <pwd.h> header file:

struct passwd {
char *pw_name;

*pw -passwd;
pw_uid;
pw...,gid;

};

char
int
int
char
char
char
char
char

*pw_age;
*pw_comment;
*pw...,gecos;
*pw_dir;
*pw_shell;

struct comment {
char *c_dept;
char *c_name;
char *c_&:ct;
.char *c_bin;

};

This structure is declared in <pwd.h> so it is not necessary to redeclare it.

The pw_comment field is unused; the others have meanings described in passwd(4).

Getpwent when first called returns a pointer to the first passwd structure in the file; thereafter, it
returns a pointer to the next passwd structure in the file; so successive calls can be used to

search the entire file. Getpw'Uid searches from the beginning of the file until a numerical user id
matching 'Uid is found and returns a pointer to the particular structure in which it was found.
Getpwnam searches from the beginning of the file until a login name matching name is found,
and returns a pointer to the particular structure in which it was found. If an end-or-file or an
error is encountered on reading, these functions return a NULL pointer.

A call to setpwent has the effect of rewinding the password file to allow repeated searches.
Endpwent may be called to close the password file when processing is complete.

/etc/passwd

(9010-E)

GETPWENT(30) (UNIX 5.0) GETPWENT(30)

SEE ALSO
getlogin(3C), getgrent(3C), passwd(4).

DIAGNOSTICS

A NULL pointer is returned on EOF or error.

WARNING
The above routines use <stdio.h>, which causes them to increase the size of programs, not
otherwise using standard I/O, more than might be expected.

BUGS

All information is contained in a static area, so it must be copied if it is to be saved.

qf

f

(9010-E) Page 2

GETUT{3C) (UNIX 5.0) GETUT(3C)

NAME
getutent, getutid, getutline, pututline, setutent. endutent, utmpname - access utmp file entry

SYNTAX
#include <utmp.h>

struct utmp *getutent ()

struct utmp *getutid (id)
struct utmp *id;

struct utmp *getutline (line)
struct utmp *line;

voidpututline (utmp)
siruct utmp *utmp;

void setutent ()

void endutent ()

void utmpname (file)
char *file;

DESCRIPTION

Pagel

Getutent, getutid and getutline each return a pointer to a structure of the following type:

struct utmp {

};

char ut_user[S];
char ut_id[4];
char ut_line[12];
short int utJ>id;
short int ut_type;
struct exit_status {

/* User login name */
/* /etc/inittab id (usually line #) */
/* device name (console, lnxx) */
/* process id * /
/* type of entry */

short e_termination; /* Process termination status * /
short e_exit; /* Process exit status */

} ut_exit; /* The exit status of a process
* marked as DEAD..,.PROCESS. */

/* time entry was made */

Getutent reads in the next entry from a utmp-like file. If the file is not already open, it opens it.
If it reaches the end of the file, it fails.

Getutid searches forward from the current point in the utmp file until it finds an entry with a
uCtype matching id- >uCtype if the type specified is RUN-LVL, BOOT_TIME, OLD_TIME or
NEW_TIME. If the type specified in id is INIT..,.pROCESS, LOGIN..,.pROCESS, USER..,.pROCESS or
DEAD..,.pROCESS, then getutid will return a pointer to the first entry whose type is one of these
four and whose uCid field matches id- > uLid. If the end of file is reached without a match, it
fails.

Getut/ine searches forward from the current point in the' utmp file until it finds an entry of the
type LOGIN..,.pROCESS or USER..,.pROCESS which also has a uC/ine string matching the
line- > uLline string. If the end of file is reached without a match, it fails.

Pututiz'ne writes out the supplied utmp structure into the utmp file. It uses getutid to search for­
ward for the proper place if it finds that it is not already at the proper place. It is expected that
normally the user of pututiine will have searched for the proper entry using one of the getut
routines. If so, pututline will not search. If pututUne does not find a matching slot for the new
entry, it will add a new entry to the end of the file.

(9010-E)

GETUT(3C) (UNIX 5.0) GETUT(3C)

FILES

Setutent resets the input stream to the beginning of the file. This should be done before each
search for a new entry if it is desired that the entire file be examined.

Endutent closes the currently open file.

Utmpname allows the user to change the name of the file examined, from /etA:/uttnp to any
other file. It is most often expected that this other file will be /etA:/wtmp. If the file doesn't
exist, this will not be apparent until the first attempt to reference the file is made. Utmpname
does not open the file. It just closes the old file if it is currently open and saves the new file
name.

/etc/utmp
/etc/wtmp

SEE ALSO
ttyslot(3C), utmp(4) .

DIAGNOSTICS
A NULL pointer is returned upon failure to read, whether for permissions or having reached
the end of file, or upon failure to write.

COMMENTS
The most current entry is saved in a static structure. Multiple accesses require that it be copied
before further accesses are made. Each call to either getutid or getut/ine sees the routine exam­
ine the static structure before performing more I/O. If the contents of the static structure
match what it is searching for, it looks no further. For this reason to use getut/ine to search for
multiple occurences, it would be necessary to zero out the static after each success, or getut/ine
would just return the same pointer over and over again. There is one exception to the rule
about removing the structure before further reads are done. The implicit read done by putut/ine
if it finds that it isn't already at the correct place in the file will not hurt the contents of the
static structure returned by the getutent, getutid or getut/ine routines, if the user has just
modified those contents and passed the pointer back to pututJine.

These routines use buffered standard I/O for input, but putut/ine uses an unbuffered non­
standard write to avoid race conditions between processes trying to modify the utmp and wtmp
files.

eq f

(9010-E) Page 2

H SEARCH (30) (UNIX 5.0) HSEARCH(30)

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNTAX
#include <search.h>

EN'IRY *hsearch (item, action)
EN'IRY item;
AarION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION

NOTES

Hsearch is a hash-table search routine generalized from Knuth (6.4) Algorithm D. It returns a
pointer into a hash table indicating the location at which an entry can be found. Item is a. struc­
ture of type ENTRY (defined in the <search.h> header file) containing two pointers: item.key
points to the comparison key, and 'item. data points to any other data to be associated with that
key. (Pointers to types other than character should be cast to pointer-to-character.) Actz"on is a
member of an enumeration type ACTION indicating the disposition of the entry if it cannot be
found in the table. EN1ER indicates that the item should be inserted in the table at an
appropriate point. FIND indicates that no entry should be made. Unsuccessful resolution is
indicated by the return of a NULL pointer.

H create allocates sufficient space for the table, and must be called before hsearch is used. nel is
an estimate of the maximum number of entries that the table will contain. This number may
be adjusted upward. by the algorithm in order to obtain certain mathematically favorable cir­
cumstances.

H destroy destroys the search table, and may be followed by another call to hcreate.

Hsearch uses open addressing with a multiplicative hash function. However, its source code has
many other options available which the user may select by compil~ng the hsearch source with
the following symbols defined to the preprocessor:

DIV Use the remainder modulo table size as the hash function instead of the mul­
tiplicative algorithm.

USCR Use a User Supplied Comparison Routine for ascertaining table member­
ship. The routine should be named hcompar and should behave in a
mannner similar to strcmp (see string (3C».

CHAINED Use a linked list to resolve collisions. If this option is selected, the follow-
ing other options become available.

START

SORTUP

Place new en tries at the beginning of the linked list (default is
at the end).

Keep the linked list sorted by key in ascending order.

SORIDOWN Keep the linked list sorted by key in descending order.

Additionally, there are preprocessor fiags for obtaining debugging printout (- DDEBUG) and
for including a test driver in the calling routine (- DDRIVER). The source code should be con­
sulted for further details.

SEE ALSO
bsearch(3C), lsearch(3C), string(3C), tsearch(3C).

Pagel (90I0-E)

HSEARCH(30) (UNIX 5.0) HSEARCH(30)

DIAGNOSTICS
Hsearch returns a NULL pointer if either the action is FIND and the item could not be found or
the action is ENTER and the table is full.

H create returns zero if it cannot allocate sufficient space for the table.

BUGS
Only one hash search table may be active at any given time.

eq f

eq f

(90IO-E) Page 2

L3TOL(3C) (UNIX 5.0) L3TOL(3C)

NAME
13tol, lto13 - convert between 3-byte integers and long integers

SYNTAX

void l3tol (lp, cp, n)
long *lp;
char *cp;
intn;

void ltol3 (cp, Ip, n)
char *cp;
long *lp;
intn;

DESCRIPTION

L3tol converts a list of n three-byte integers packed into a character string pointed to by cp into
a list of long integers pointed to by lp.

Ltol3 performs the reverse conversion from long integers (lp) to three-byte integers (cp).

These functions are useful for file-system maintenance where the block numbers are three
bytes long.

SEE ALSO

fs(4).

BUGS

Page 1

Because of possible differences in byte ordering, the numerical values of the long integers are
machine-dependent.

(9010-E)

LSEARCH{ 3C) (UNIX 5.2) LsEARCH{ 3C)

NAME
lsearch, lflnd - linear search and update

SYNTAX
#include <stdio.h>
#include <search.h>

char *lsearch «char *)key, (char *)base, nelp, sizeoi'(*key), compar)
unsigned *nelp;
int (*compar){);

char *lfind « char *)key, (char *)base, nelp, sizeof{*key), compar)
unsigned *nelp;
int (*compar)();

DESCRIPTION

NOTES

Lsearch is a linear search routine generalized from Knuth (6.1) Algorithm S. It returns a
pointer into a table indicating where a datum may be found. If the datum does not occur, it is
added at the end of the table. Key points to the datum to be sought in the table. Base points
to the first element in the table. Nelp points to an integer containing the current number of
elements in the table. The integer is incremented if the datum is added to the table. Compar
is the name of the comparison function which the user must supply (strcmp, for example). It is
called with two arguments that point to the elements being compared. The function must
return zero if the elements are equal and non-zero otherwise.

Lfind is the same as /search except that if the datum is not found, it is not added to the table.
Instead, a NULL pointer is returned.

The pointers to the key and the element at the base of the table should be of type pointer-to­
element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be cast into type
po in ter-to-e Ie m en t.

EXAMPLE
This fragment will read in ~ TABSIZE strings of length ~ ELSIZE and store them in a table,
eliminating duplicates.

#include <stdio.h>
#include <search.h>

#deftne TABSIZE 50
#define ELSIZE 120

char line[ELSIZE], tab[TABSIZE][ELSIZE], *lsearch();
unsigned nel = 0;
int strcmp();

while (fgets(line, ELSIZE, stdin) != NULL &&
nel < TABSIZE)

(void) lsearch(line, (char *)tab,· &nel,
ELSIZE, strcmp);

SEE ALSO
bsearch(3C), hsearch(3C), tsearch(3C).

Page 1 (9010-E)

LSEARCH(3C) (UNIX 5.2) LSEARCH (3C)

DIAGNOSTICS
Ie the searched for da.tum is found, both l8earch and lfind return a pointer to it. Otherwise,
lfind returns NULL and 18earch returns a pointer to the newly added element.

BUGS
Undefined results can occur if there is not enough room in the table to add a new item.

(9010-E) Page 2

MALLOC(3C), (UNIX 5.0) MALLOC(3C)

NAME
malloc, free, realloc, calloc - main memory allocator

SYNTAX
char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *ealloc (nelem, elsize)
unsigned nelem, elsize;

D ESCRIPTI ON
Mal/oe and free provide a simple general-purpose memory allocation package. Malloe returns a
pointer to a block of at least size bytes suitably aligned for any use. On the Ridge 32, blocks
obtained from malloe are aligned on even 8-byte boundaries.

The argument to free is a pointer to a block previously allocated by malloe; after free is per­
formed this space is made available for further allocation, but its contents are left undisturbed.

Undefined results will occur if the space assigned by malloe is overrun or if some random
number is handed to free.

M al/oe allocates the first big enough contiguous reach of free space found in a circular search
from the last block allocated or freed, coalescing adjacent free blocks as it searches. It calls sbrk
(see brk(2» to get more memory from the system when there is no suitable space already free.

Realloc changes the size of the block pointed to by ptr to size bytes and returns a pointer to the
(possibly moved) block. The contents will be unchanged up to the lesser of the new and old
sizes. If no free block of size bytes is available in the storage arena, then realloe will ask mal­
loc! to enlarge the arena by size bytes and will then move the data to the new space.

Realloe also works if ptr points to a block freed since the last call of maUoe, realloe, or ealloe;
thus sequences of free, malloe and realloe can exploit the search strategy of mal/oe to do storage
compaction.

Gal/oc allocates space for an array of nelem elements ,of size elsize. The space is initialized to

zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer
coercion) for storage of any type of object.

DIAGNOSTICS

NOTE

Page I

M alloc, realloc and ealloc return a NULL pointer if there is no available memory or if the arena
has been detectably corrupted by storing outside the bounds of a block. When this happens the
block pointed to by ptr may be destroyed.

Search time increases when many objects have been allocated; that is, if a program allocates but
never frees, then each successive allocation takes longer.

(90IO-E)

MErv.lORY(30) (UNIX 5.0) MEM:ORY(30)

NAME
memccpy, memchr, memcmp, memcpy, memset - memory operations

SYNTAX
#include < memory.h>

char *memccpy (sl, s2, e, n)
char *sl, *s2;
int c, n;

char *memchr (s, c, n)
char *s;
int e, n;

int memcmp (sl, s2, n)
char *sl, *s2;
intn;

char *memcpy (sl, s2, n)
char *sl, *s2;
intn;

char *memset (s, c, n)
char *s;
int c, n;

DESCRIPTION

NOTE

BUGS

Pagel

These functions opera.te efficiently on memory areas (arrays of characters bounded by a. count,
not terminated by a null character). They do not check for the overflow of any receiving
memory area.

M emccplI copies characters from memory area 82 inoo d, stopping a.fter the first occurrence of
character c has been copied, or after n characters have been copied, whichever comes first. It
returns a pointer 00 the character after the copy of c in 81, or a NULL pointer if c was not
found in the first n characters of 82.

M emchr returns a pOinter. to the first occurrence of character c in the first n characters of
memory area 8, or a NULL pointer if c does not occur.

M emcmp compares its arguments, looking at the first n characters only, and returns an integer
less than, equal 00, or greater than 0, according as 81 is lexicographically less than, equal to, or
greater than 82.

M emcpll copies n characters from memory area 82 00 d. It returns d.

M emset sets the first n characters in memory area 8 00 the value of character c. It returns 8 •

For user convenience, all these functions are declared in the optional < memory.h> header file.

Memcmp uses native character comparison, which is signed on PDP-lIs, unsigned on other
machines.

Character movement is performed differently in different implementations. Thus overlapping
moves may yield surprises.

(9010-E)

MKTEM:P(3C)

NAME
mktemp - make a unique file name

SYNTAX
char *mktemp (template)
char *template;

DESCRIPTION

(UNIX 5.0) MKTEMP(3C)

Mktemp replaces the contents of the string pointed to by template by a unique file name, and
returns the address of temp/ate. The string in template should look like a file name with six
trailing Xs; mktemp will replace the Xs with a letter and the current process ID. The letter will
be chosen so that the resulting name does not duplicate an existing file.

SEE ALSO
getpid(2), tmpflle(3S), tmpnam(3S).

BUGS
It is possible to run out of letters.

xeq r

Pagel (90IO-E)

NLIST(3C)

NAME
nlist - get entries from name list

SYNTAX

#include <nlist.h>

nlist(filename, nl)
char *filename;
strudi nIist nl [] ;

DESCRIPTION

(bsd 4.2) NLIST(3C)

Nlist examines the name list in the given executable output file and selectively extracts a list of
values. The name list consists of an array of structures containing names, types and values.
The list is terminated with a null name. Each name is looked up in the name list of the file. If
the name is found, the type and value of the name are inserted in the next two fields. If the
name is not found, both entries are set 00 O. See a.o'Ut(4) for the structure declaration.

SEE ALSO
a.out(4)

DIAGNOSTICS

All type entries are set 00 0 if the file cannot be found or if it is not a valid namelist.

Pagel (9010-E)

PERROR(3C) (UNIX 5.0) PERROR(3C)

NAME
perror, errno, sys_errlist, sys_nerr - system error messages

SYNTAX
void perror (8)
char *8;

extern int ermo;

extern char *SyB_errli8t[];

extern int syB_nerr;

DESCRIPTION
Pen-or produces a message on the standard error output, describing the last error encountered
during a call to a system or library function. The argument string 8 is printed first, then a colon
and a blank, then the message and a new-line. To be of most use, the argument string should
include the name of the program that incurred the error. The error number is taken from the
external variable ermo, which is set when errors occur but not cleared when non-erroneous
calls are made~

To simplify variant formatting of messages, the array of' message strings 8118_errlist is provided;
ermo can be used as an index in this table to get the message string without the new-line.
Sys_nerr is the largest message number provided for in the table; it should be checked because
new error codes may be added to the system before they are added to the table.

SEE ALSO
intro(2).

Pagel (9010-E)

PUTPWENT(3C) (UNIX 5.0) PUTPWENT(3C)

NAME
pu tpwent - write password file entry

SYNTAX

#include <pwdh>

int putpwent (p, I)
struct p8Sswd *p;
FILE *1;

DESCRIPTION
Putpwent is the inverse of getpwent(3C). Given a pointer to a pa88wd structure created by

. getpwent (or getpwuid or getpwnam), putpwuid writes a line on the stream / which matches the
format of /etJ!/passwd

DIAGNOSTICS
Putpwent returns non-zero if an error was detected during its operation, otherwise zero.

WARNING

Pagel

The above routine uses < stdio.h > , which causes it to increase the size of programs, not oth­
erwise using standard I/O, more than might be expected.

(90IO-E)

QSORT(3C) (UNIX 5.0) QSORT(3C)

NAME
qsort - quicker sort

SYNTAX
void qsort « char *) base, nel, sizeof' (*base), compar)
unsigned int nel;
int (*eampar)();

DESCRIPTION

NOTES

Qsort is an implementation of the quicker-sort algorithm. It sorts a table of data in place.

Base points to the element at the base of the table. Nel is the number of elements in the table.
Oompar is the name of the comparison function, which is called with two arguments that point
to the elements being compared. The function must return an integer less than, equal to, or
greater than zero according as the first argument is to be considered less than, equal to, or
greater than the second.

The pointer to the base of the table should be of type pointer-to-element, and cast to type
pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.
Although declared as type pointe r-to-characte r, the value returned should be cast into type
poin ter-to-ele men t.

SEE ALSO
sort(1), bsearch(3C), lsearch(3C), string(3C).

Page 1 (90I0-E)

RAND(3C) (UNIX 5.0) RAND(3C)

NAME
rand, srand - simple random-number generator

SYNTAX
int rand ()

void srand (seed)
unsigned seed;

DESCRIPTION

NOTES

Rand uses a multiplicative congruential random-number generator with period 2**32 that
returns successive pseudo-random numbers in the range 0 to 2**15-1.

Srand can be called at any time to reset the random-number generator to a random starting
point. The generator is initially seeded with a. value of 1.

The spectral properties of rand leave a great deal to be desired. Drand48 (3C) provides a much
better, though more elaborate, random-number generator.

SEE ALSO
drand48 (3C)

Page 1 (90IO-E)

SETJMP(3C) (UNIX 5.0) SETJMP(3C)

NAME
setjmp, longjmp - non-local goto

SYNTAX
#include <setJmp.h>

int setJmp (env)
jmp_but env;

void longjmp (env, val)
jmp_buf env;
int val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in a low-level
subroutine of a program.

Setjmp saves its stack environment in env (whose type, jmp_hu/, is defined in the <8etjmp.h>
header file), for later use by longjmp. It returns the, value O.

Longjmp restores the environment saved by the last call of 8etjmp with the corresponding env
argument. After longjmp is completed program execution continues as if the corresponding call
of 8etjmp (which must not itself have returned in the interim) had just returned the value val.
Longjmp cannot cause 8etjmp to return the value O. If longjmp is invoked with a second argu­
ment of 0, 8etjmp will return 1. All accessible data have values as of the time longjmp was
called.

SEE ALSO
signal(2B) .

WARNING

Pagel

If longjmp is called when env was never primed by a call to 8etjmp, or when the last such call is
in a function which has since returned, absolute chaos is guaranteed.

(90IO-E)

SLEEP(3C) (UNIX 5.0) SLEEP(3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended trom execution for the number of 8econd8 specified by the
argument. The actual suspension time may be less than that requested for two reasons: (1)
Because scheduled wakeups occur at fixed I-second intervals, (on the second, according to an
internal clock) and (2) because any caught signal will terminate the 8leep following execution of
that signal's catching routine. A:lso, the suspension time may be longer than requested by an
arbitrary amount due to the scheduling ot other activity in the system. The value returned by
8leep will be the "unslept" amount (the requested time minus the time actually slept) in case
the caller had an alarm set to go off earlier than the end of the requested 8leep time, or prema­
ture arousal due to another caugh~ signal.

The routine is implemented by settlng an alarm signal and pausing until it (or some other sig­
nal) occurs., The previous state of ,the alarm signal is saved and restored. The calling program
may have set up an alarm signal before calling 8leep; if the 8leep time exceeds the time till such
alarm signal, the, process sleeps only until the alarm signal would have occurred, and the caller·s
alarm catch routine is executed just before the sleep routine returns, but if the 81eep time is less
than the time till such alarm, the prior alarm time is reset to go off at the same time it would
have without the Intervening 8leep.

SEE ALSO
alarm (2B), pause (2B), slgnal(2B).

Pagel (gOlD-E)

SSIGNAL(30) (UNIX 5.0) SSIGNAL(30)

NAME
ssignal, gsignal - software signals

SYNTAX
=l/=inelude <signal.h>

int (*ssignal (sig, a.etlon»()
int sig, (*aetion)();

int pignal (sig)
int sig;

DESCRIPTION

NOTES

Pagel

Ssignal and gsignal implement a software facility similar to signal(2B}. This facility is used by
the Standard C Library to enable users to indicate the disposition of error conditions, and is
also made available to users for their own purposes.

Software signals made available to users are associated with integers in the inclusive range 1
through 15. A call to ssignal associates a procedure, action, with the software signal sig; the
software signal, sig, is raised by a call to gsignal. Raising a software signal causes the action
established for that signal to be taken.

The first argument to ssignal is a number identifying the type of signal for which an action is to
be established. The second argument defines the action; it is either the name of a (user
defined) action f'Unction or one of the manifest constants SIG.J)FL (default) or SIGJGN
(ignore). Ssignal returns the action previously established for that signal type; if no action has
been established or the signal number is illegal, ssignal returns SIG.J)FL.

Gsignal raises the Signal identified by its argument, sig:

If an action function has been established for sig, then that action is reset to SIG.J)FL and
the action function is entered with argument sig. Gsignal returns the value returned to it
by the action function.

If the action for sig is SIGJGN, gsignal returns the value 1 and takes no other action.

If the action for sig is SIG.J)FL, gsignal returns the value 0 and takes no other action.

If sig has an illegal value or no action was ever specified for sig, gsignal returns the value
o and takes no other action.

There are some additional signals with numbers outside the range 1 through 15 which are used
by the Standard C Library to indicate error conditions. Thus, some signal numbers outside the
range 1 through 15 are legal, although their use may interfere with the operation of the Stan­
dard C Library.

eq f

(90lO-E)

STRING(3C) (UNIX 5.0) STRING{3C)

NAME
s trc at, strn c at, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strcspn,
strtok - string operation

SYNTAX

#include < string.h>

char *strcat (sl, s2)
char *sl, *s2;

char *stmcat (sl, s2, n)
char *sl, *s2;
intn;

int strcmp (sl, s2)
char *sl, *s2;

int strncmp (sl, s2, n)
char *sl, *s2;
intn;

char *strcpy (sl, s2)
char *sl, *s2;

char *stmcpy (sl, s2, n)
char *sl, *s2;
intn;

int strlen (s)
char *s;

char *strchr (s, c)
char *s, c;

char *strrc.hr (s, c)
char *s, c;

char *strpbrk (sl, 82)
char *sl, *s2;

int strspn (sl, s2)
char *sl, *s2;

int strcspn (sl, s2)
char *sl, *s2;

char *strlok (sl, s2)
char *sl, *s2;

DESCRIPTION

Pagel

The arguments 81, 82 and 8 point to strings (arrays of characters terminated by a null charac­
ter). The functions strcat, stmcat, strcP1I and 8tmCP1I all alter 81. These functions do not check
for overflow of the array pointed to by 81.

Strcat appends a copy of string 82 to the end of string 81. Strncat appends at most n characters.
Each returns a pointer to the null-terminated result.

Strcmp compares its arguments and returns an integer less than, equal to, or greater than 0,
according as 81 Is lexicographically less than, equal to, or greater than 82. Stmcmp makes the
same comparison but looks at at most n characters.

StrcP1I copies string 82 to 81, stopping after the null character has been copied. StrncP1I coples
exactly n characters, truncating 82 or adding null characters to 81 if necessary. The result will

(90I0-E)

STRING(3C) (UNIX 5.0) STRING(3C)

NOTE

BUGS

not be null-terminated if the length of s2 is n or more. Each function returns 81.

Str/en returns the number of characters in 8, not including the terminating null character.

Strchr (8trrchr) returns a pointer to the first (last) occurrence of character c in string 8, or a
NULL pointer if c does not occur in the string. The null character terminating a string is con­
sidered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string sl of any character from string 82, or a
NULL pointer if no character from s2 exists in 81.

Strspn (strcspn) returns the length of the iIiitial segment of string 81 which consists entirely of
characters from (not from) string s2.

Strtok considers the string sl to consist of a sequence of zero or more text tokens separated by
spans of one or more characters from the separator string 82. The first call (with pointer 81
specified) returns a pointer to the first character of the first token, and will have written a null
character into 81 immediately following the returned token. The function keeps track of its
position in the string between separate calls, so that on subsequent calls (which must be made
with the first argument a NULL pointer) will work through the string 81 immediately following
that token. In this way subsequent calls will work through the string 81 until no tokens remain.
The separator string 82 may be different from call to call. When no token remains in 81, a
NULL pointer is returned.

For user convenience, all these functions are declared in ·the optional <8tring.h> header file.

Strcmp and stmcmp use native character comparison, which is signed on PDP-lIs, unsigned on
other machines.

Character movement is performed differently in different implementations. Thus overlapping
moves may yield surprises.

(9010-E) Page 2

STRTOL(3C) (UNIX 5.0) STRTOL(3C)

NAME
strtol, atol, atoi - convert string to integer

SYNTAX
long strtol (stz, ptz, base)
char*str;
char **ptr;
int base;

long atol (stz)
char *str;

int atoi (str)
char *str;

DESCRIPTION
Strtol returns as a long integer the value represented by the character string Btr. The string is
scanned up to the first character inconsistent with the base. Leading "white-space" characters
are ignored.

If the value of ptr is not (char **)NULL, a pointer to the character terminating the scan is
returned in *ptr. If no integer can be formed, *ptr is set to Btr, and zero is returned.

If base is positive (and not greater than 36), it is used as the base for conversion. After an
optional leading sign, leading zeros are ignored, and "Ox" or "OX" is ignored if baBe is 16.

Ir baBe is zero, the string itself determines the base thus: After an optional leading sign, a lead­
ing zero indicates octal conversion, and a leading "Ox" or "OX" hexadecimal conversion. Oth­
erwise, decimal conversion is used.

Truncation from long to int can, of course, take place upon assignment, or by an explicit cast.

Atol{str} is equivalent to Btrto/{str, {char**}NULL, 10}.

Atoi{str} is equivalent to {int} Btrto/{8tr, (char **)NULL, 10).

SEE ALSO
atof(3C), scanf(3S) .

BUGS
Overflow conditions are ignored.

Pagel (9010-E)

SWAB(3C) (UNIX 5.0) SWAB(3C)

NAME
swab - swap bytes

SYNTAX

void swab (from, w, nbytes)
char *from, *w;
int nbytes;

DESCRIPTION

Pagel

Swab copies nbytes bytes pointed to by from to the array pointed to by to. exchanging adjacent
even and odd bytes. It is useful for carrying binary data between PDP-lls and other machines.
Mytes should be even and non-negative. If nbytes is odd and positive swab uses nbytes- 1
instead. If nbyte8 is negative 8wab does nothing.

(90lO-E)

TSEARCH{ 3C) (UNIX 5.0) TSEARCH{ 3C)

NAME
tsearch, tdelete, twalk - manage binary search trees

SYNTAX
#include <search.h>

char *tBearch « char *) key, (char **) 1'OOtp, com par)
int (*compar) ();

char *tdelete « char *) key, (char **) 1'OOtp, compar)
int (*compar) ();

void twalk « char *) root, action)
void (*action)();

DESCRIPTION

NOTES

Tsearch is a binary tree search routine generalized from Knuth (6.2.2) Algorithm T. It returns
a pointer into a tree indicating where a datum may be found. If the datum does not occur, it is
added at an appropriate point in the tree. Key points to the datum to be sought in the tree.
Rootp points to a variable that points to the root of the tree. A NULL pointer value for the
variable denotes an empty tree; in this case, the variable will be set to point to the datum at the
root of the new tree. Compar is the name of the comparison function. It is called with two
arguments that point to the elements being compared. The function must return an integer less
than, equal to, or greater than zero according as the first argument is to be considered less than, .
equal to, or greater than the second.

Tdelete deletes a node from a binary search tree. It is generalized from Knuth (6.2.2) algorithm
D. The arguments are the same as for tsearch. The variable pointed to by rootp will be
changed if the deleted node was the root of the tree. Tdelete returns a pointer to the parent of
the deleted node, or a NULL pointer if the node is not found.

Twalk traverses a binary search tree. Root is the root of the tree to be traversed. (Any node in
a tree may be used as the root for a walk below that node.) Action is the name of a routine to
be invoked at each node. This routine is, in turn, called with three arguments. The first argu­
ment is the address of the node being visited. The second argument is a value from an
enumeration data type typedef en'llm { preorder, postorder, endorder, leaf} VISIT; (defined in the
<search.h> header file), depending on whether this is the first, second or third time that the
node has been visited (during a depth-first, left-to-right traversal of the tree), or whether the
node is a leaf. The third argument is the level of the node in the tree, with the root being level
zero.

The pointers to the key and the root of the tree should be of type pointer-to-element, and cast
to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.
Although declared as type pointe r-to-characte r, the value returned should be cast into type
pointer-to-e Ie men t.
Warning: the root argument to twalk is one level of indirection less than the rootp arguments to
t1Jearch and tdelete.

DIAGNOSTICS
A NULL pointer is returned by tsearch if there is not enough space available to create a new
node.
A NULL pointer is returned by t1Jearch and tdelete if rootp is NULL on entry.

SEE ALSO
bsearch{ 3C), hsearch(3C), lsearch{ 3C).

Pagel (90lO-E)

'TSEARCH(30) (UNIX 5.0) TSEARCH(30)

BUGS

Awful things can happen it the calling function alters the pointer to the root.

(9010-E) Page 2

TI'YNAME(3C) (UNIX 5.0) TI'YNAME{ 3C)

NAME
ttyname, isatty - find name of a terminal

SYNTAX
char *ttyname (tildes)
int :BIdes;

int isatty (tildes)
int :BIdes;

DESCRIPTION
Ttyname returns a pointer to a string containing the null-terminated path name of the terminal
device associated with file descriptor fildes.

I8atty returns 1 if fildes is associated with a terminal device, 0 otherwise.

FILES

/dev/*

D lAG NOSTICS
Ttyname returns a NULL pointer ie fildes does not describe a terminal device in directory /dev.

BUGS

The return value points to static data whose content is overwritten by each call.

Pagel (9010-E)

TTYSLOT(30) (UNIX 5.0)

NAME
ttyslot - find the slot in the utmp file of the current user

SYNTAX
int ttyslot ()

DESCRIPTION

TTYSLOT(30)

Ttyslot returns the index of the current user's entry in the /ek./uttnp file. This is accomplished
by actually scanning the file /ek./inittab for the name of the terminal associated with the stan­
dard input, the standard output, or the error output (0, I or 2).

FILES
/etc/inittab
/etc/utmp'

SEE ALSO
getut(3C), ttyname(3C) .

DIAGNOSTICS

Pagel

A value of 0 is returned if an error was encountered while searching for the terminal name or if
none of the above file descriptors is associated with a terminal device.

(gOlD-E)

BLANK

BESSEL(3M) (UNIX 5.0) BESSEL(3M)

NAME
jO, jl, jn, yO, yl, yn - Bessel functions

SYNTAX
#include <math.h>

double jO (x)
double x;

double jl (x)
double X;

double jn {n, x}
intn;
double X;

double yO {x}
double X;

double yl (x)
double X;

double yn (n, x)
intn;
double x;

DESCRIPTION
JO and j1. return Bessel functions of :& of the first kind of orders 0 and I respectively. In
returns the Bessel function of :& of the first kind of order n.

YO and yl return the Bessel functions of :& of the second kind of orders 0 and 1 respectively.
Yn returns the Bessel function of :& of the second kind of order n. The value of :& must be
positive.

DIAGNOSTICS
Non-positive arguments cause yO, 1/1 and 1/n to return the value HUGE and to set ermo to
EDOM. They also cause a message indicating DOMAIN error to be printed on the standard
error output; the process will continue.

These error-handling procedures may be changed with the function ma th err(3M).

SEE ALSO
matherr(3M).

Pagel (9010-E)

ERF(3M) (UNIX 5.0)

NAME
erf, erfc - error function and complementary error function

SYNTAX
#include <math.h>

double ert (x)
double x;

double erte (x)
double x;

DESCRIPTION

ERF('3M)

Erl returns the error functloD·"of %, defined as {2 over sqrt pi} int from 0 to x e sup {- t sup 2}
dt.

ErIc, which returns 1.0 - erl{%} t Is provided because of the extreme loss of relative accuracy if
erl{%} is called for large % and the result subtracted from 1.0 (e.g. for % = 5, 12 places are lost).

SEE ALSO
exp(3M).

Pagel (90l0-E)

EXP(3M) EXP(3M)

NAME
exp, log, loglO, pow, sqrt - exponential, logarithm, power, square root functions

SYNTAX
#include <math.h>

double exp (x)
double X;

double log (x)
double x;

double log10 (x)
double x;

double paw (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
Exp returns eZ

•

Log returns the natural logarithm of x. The value of x must be positive.

Logl0 returns the logarithm base ten of x. The value of x must be positive.

Pow returns xII. The values of x and 11 may not both be zero. If x is non-positive, 11 must be
an integer.

Sqrt returns the square root of x. The value of x may not be negative.

DIAGNOSTICS
Exp returns HUGE when the correct value would overflow, and sets ermo to ERANGE.

Log and /og10 return 0 and set ermo to EDaM when x is non-positive. An error message is
printed on the standard error output.

Pow returns 0 and sets errno to EDaM when x is non-positive and 11 is not an integer, or when
x and 11 are both zero. In these cases a message indicating DOMAIN error is printed on the
standard error output. When the correct value for pow would overflow, pow returns HUGE and
sets ermo to ERANGE.

Sqrt returns 0 and sets ermo to EDOM when x is negative. A message indicating DOMAIN
error is printed on the standard error output.

These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
hypot(3M), matherr(3M),

Pagel (9010-E)

FLOOR(3M) (UNIX 5.0)

NAME
floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value functions

SYNTAX

#include < math.h >
double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)
double x;

DESCRIPTION

FLOOR(3M)

Floor returns the largest integer (as a double-precision number) not greater than x.

Ceil returns the smallest integer not less than x.

Fmod returns x if 1/ is zero, otherwise the number I with the same sign as x, such that x = £1/
+ Ifor some integer i, and VI < 111 I.
Fab8 returns Ix I.

SEE ALSO
abs(3C).

Page I (90IO-E)

GAMMA(3M) (UNIX'S.O) GAMMA(3M)

NAME
gamma - log gamma function

SYNTAX
#include < math.h>

extern int signgam;

double gamma (x)
double x;

DESCRIPTION
dellm $$ Gamma returns $ln (I GAMMA (A X) 1)$, where $GAMMA (.. x)$ is defined as
$int from 0 to inf e sup { - t } t sup {x - I } dt$.· The sign or GAMMA (.. x) is returned in
the external integer signgam. The argument x may not be a non-positive integer.

The following C program fragment might be used to calculate r:
if «y = gamma(x» > LOGHUGE}

error(};
y = signgam * exp(y);

where LOGHUGE is the least value that causes exp(3M) to return a range error.

DIAGNOSTICS
For non-negative integer arguments HUGE Is returned, and ermo Is set to ED OM. A message
indicating DOMAIN error is printed on the standard error output.

If the correct value would overftow, gamma returns HUGE and sets t1T'nO to ERANGE.

These error-handling procedures may be changed with the runction matherr(3M).

SEE ALSO
exp(3M), matherr(3M).

Pagel (90IO-E)

HYPOT(3M)

NAME
hypot - Euclidean distance function

SYNTAX
=/I=include < math.h>

double hypot (x, y)
double x, y;

DESCRIPTION
H ypot returns

sqrt(x * x + y * y),

(UNIX 5.0)

taking precautions against unwarranted overftows~

DIAGNOSTICS

HYPOT(3M)

When the correct value would overflow, hypot returns HUGE and sets e1Tno to ERANGE.

These error-handling procedures may be changed with the function math err(3M).

SEE ALSO
matherr(3M), sqrt(3F).

Pagel (9010-E)

MATHERR(3M) (UNIX 5.0) MATHERR(3M)

NAME
matherr - error-handling function

SYNTAX
#include <math.h>

int matherr (x)
struct exception *x;

DESCRIPTION
Mathe" is invoked by functions in the Math Library when errors are detected. Users may
define their own procedures for handling errors by including a function named mathe" in their
programs. Mathe" must be of the form described above. A pointer to the exception structure
z will be passed to the user-supplied matherr function when an error occurs. This structure,
which is defined in the < math.h> header file, is as follows:

struct exception {
int type;
char *name;
double argl, arg2, retval;

};

The element type is an integer describing the type of error that has occurred, from the follow­
ing list of constants (defined in the header file) :

DOMAIN
SING

domain error
singularity

OVERFLOW overflow
UND ERFLOW underflow
TLOSS
PLOSS

total loss of significance
partial loss oC significance

The element name points to a string containing the name of the Cunction that had the error.
The variables arg1 and arg2 are the arguments to the Cunction that had the error. Retval is a
double that is returned by the Cunction having the error. If it supplies a return value, the
user's mathe" must return non-zero. If the default error value is to be returned, the user's
mathe" must return o.
If mathe" is not supplied by the user, the deCault error-handling procedures, described with the
math Cunctions involved, will be invoked upon error. These procedures are also summarized in
the table below. In every case, ermo is set to non-zero and the program continues.

EXAMPLE

matherr(x)

Pagel

register struct exception *x;
{

switch (x- >type) {
case DOMAIN:
case SING: /* print message and abort */

CprintC(stderr, "domain error in %3\n", x- >name);
abort();

case OVERFLOW:
iC (!strcmp("exp", x- >name» {

/* if exp, print message, return the argument */
CprintC(stderr, "exp of 9rf\n", x- >argl);
x- >retval = x- >argl;

} else if (!strcmp("sinh", x- >name» {
/* if sinh, set errno, return 0 */

(9010-E)

MATHERR(3M) (UNIX 5.0) MATHERR(3M)

} else

break;

errno = ERANGE;
x- >retval = 0;

/* otherwise, return HU GE * /
x- >retval = HUGE;

case UNDERFLOW:
return (0); /* execute default procedure */

case TLOSS:
case PLOSS:

/* print message and return 0 */
fprintf(stderr, "loss of significance in %;\n", x- >name);
x- >retval = 0;
break;

}
return (1);

}

DEFAULT ERROR HANDLING PROCEDURES
Type8 of ErrOT8

DOMAIN SING OVERFLOW UNDERFLOW

BESSEL: - - H 0
yO, y1, yn M,- H - - -
(neg. no.)

EXP: - - H 0

POW: - - H 0
(neg.)**(non- M,O - - -
int.), 0**0

LOG:
loge 0): - M,-H - -
log(neg.) : M,- H - - -
SQRT: M,O - - -

GAMMA: - M,H - -

HYPOT: - - H -
SINH, COSH: - - H -
SIN, COS: - - - -
TAN: - - H -
ACOS, ASIN: M,O - - -

ABBREVIA'I10NS
* As much as possible of the value is returned.

M Message is printed.
H HUGE is returned.

- H - HU GE is returned.
o 0 is returned.

TLOSS PLOSS

- *
- -

-
- -
- -

- -

- -

- -

- -

- -
- -

M,O M, *

0 *

- -

(9010-E) Page 2

SINH(3M) (UNIX 5.0)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNTAX
#inelude <math.h>

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION

SINH(3M)

Sinh, cosh and tanh return respectively the hyberboUc sine, cosine ap.4 ;tangent of their argu­
ment.

DIAGNOSTICS
Sinh and cosh return HUGE when the correct value would overflow, and set e7TnO to ERANGE.

These error-handling procedures may be changed with the functiQfl math err(3M).

SEE ALSO
matherr(3M).

Page 1 (9010-E)

TRIG(3M) (UNIX 5.0) TRIG{3M)

NAME
sin, cos, tan, asln, acos, atan, atan2 - trigonometric functions

SYNTAX
#include <math.h>

double sin (x)
double x;

double cos (x)
double x;

double tan (x)
double x;

double asin (x)
double X;

double &cos (x)
double x;

double atan (xl
double x; .

double atan2 (y, x)
double x, y;

DESCRIPTION
Sin, C08 and tan return respectively the sine, cosine and tangent of their argument, which is in
radians.

Asin returns the arcsine of z, In the range - 11' /2 to 11' /2.

AC08 returns the arccosine of z, in the range 0 to 11'.

Atan returns the arctangent of z, in the range - 11' /2 to 11' /2.

Atan2 returns the arctangent of 1I/z, in the range - 11' to 11', using the signs of both arguments
to determine the quadrant of the return value.

DIAGNOSTICS
Sin, C08 and tan lose accuracy when their argument is far from zero. For arguments sufficiently
large, these functions return 0 when there would otherwise be a complete loss of significance.
In this case a message indicating TLOSS error is printed on the standard error output. For less
extreme arguments, a PLOSS error is generated but no message is printed. In both cases, errno
is set to ERANGE.

Tan returns HUGE for an argument which is near an odd multiple of 11' /2 when the correct
value would overfiow, and sets ermo to ERANGE.

Arguments of magnitude greater than 1.0 cause asin and aC08 to return 0 and to set ermo to

EDOM. In addition, a message indicating DOMAIN error is printed on the standard error outr
put.

These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
matherr(3M).

Pagel (9010-E)

CTERMID(3S) (UNIX 5.0) CTERMID(3S)

NAME
ctermid - generate file name for terminal

SYNTAX

#include <stdio.h>

char *ctermid{ s)
char *s;

DESCRIPTION

NOTES

Ctermid generates the path name of the controlling terminal for the current process, and stores
it in a string.

If 8 is a NULL pointer, the string is stored in an internal static area, the contents of which are
overwritten at the next call to ctennid, and the address of which is returned. Otherwise, 8 is
assumed to point to a character array of at least L_clennid elements; the path name is placed in
this array and the value of 8 is returned. The constant L_clermid is defined in the < stdio.h >
header file.

The difference between ctennid and ttyname(3C) is that ttyname must be handed a file descrip­
tor and returns the actual name of the terminal associated with that file descriptor, while ctennid
returns a string (/dev /tty) that will refer to the terminal if used as a file name. Thus ttyname is
useful only if the process already has at least one file open to a terminal.

SEE ALSO
ttyname(3C).

Pagel (90IO-E)

CUSERID(3S) (UNIX 5.0) CUSERID(3S)

NAME
cuserid - get character login name of the user

SYNTAX
#include <stdio.h>

char *cuserid (s)
char *s;

DESCRIPTION
Cuserid generates a character-string representation of the login name of the owner of the
current process. If s is a NULL pointer, this representation is generated in an internal static
area, the address of which Is returned. Otherwise, s is assumed to point to an array of at least
L_cuserid characters; the representation is left in this array. The constant L_cuserid is defined
in the <stdio.h> header file.

DIAGNOSTICS
If the login name cannot be found, cuserid returns a NULL pointer; if s is not a NULL pointer,
a null character (\0) will be placed at s!D}.

SEE ALSO
getlogin(3C), getpwent(3C).

Page 1 (9010-E)

FCLOSE(3S) (UNIX 5.0) FCLOSE(3S)

NAME
fclose, mush - close or flush a stream

SYNTAX

#include <stdio.h>

int fclose (stream)
FILE *stream;

int mush (stream)
FILE *stream;

DESCRIPTION
Fclose causes any buffered data for the named stream to be written out, and the stream to be
closed.

Fclose is performed automatically for all open flIes upon calling exit(2).

FfI:ush causes any buffered data for the named 8tream to be written to that file. The stream
remains open.

DIAGNOSTICS
These functions return 0 for success, and EOF if any error (such as trying to write to a flle that
has not been opened for writing) was detected.

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3S).

qf

Pagel (90IO-E)

FERROR(3S) (UNIX 5.0) FERROR(3S)

NAME
ferror, feof, clearerr, Dleno - stream status inquiries

SYNTAX

#include <stdio.h>

int feaf (stream)
FILE
*sizeaIIl;

int ferror (sizeam)
FILE
*stream;

void ele~ (stream)
FILE
*stream;

int fileno(stream)
FILE
*stream;

DESCRIPTION

NOTE

Feo! returns non-zero when EOF has previously been detected reading the named input stream,
otherwise zero.

Ferror returns non-zero when an I/O error has previous.ly occurred reading from or writing to
the named stream, otherwise zero.

Clearerr rese~ the error indicator and EOF indicator to zero on the named stream.

Fileno returns the integer DIe descriptor associated with the named stream; see open(2).

All these functions are implemented as mru:ros; they cannot be declared or redeclared.

SEE ALSO
open(2), fopen(3S).

Page I . (90IO-E)

FOPEN(3S) (UNIX 5.0) FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNTAX
#include <stdio.h>

FILE *fopen (file-name, type)
char *file-name, *type;

FILE *freopen (me-name, type, stream)
char *file-name, *type;
FILE *stream;

FILE *fclopen (fildes, type)
int fildes;
char *type;

DESCRIPTION
Fopen opens the file named by file-name and associates a stream with it. Fopen returns a
pointer to the FILE structure associated with the stream.

File-name points to a character string that contains the name of the file to be opened.

Type is a character string having one of the following values:

"r"

"w"

"a"

"r+"

"w+"

"a+"

open for reading

truncate or create for writing

append; open for writing at end of file, or create for writing

open for update (reading and writing)

truncate or create for update

append; open or create for update at end-of-file

Freopen substitutes the named file in place of the open stream. The original stream is closed,
regardless of whether the open ultimately succeeds. Freopen returns a pointer to the FILE
structure associated with stream.

Freopen is typically used to attach the preopened streams associated with stdin, stclout and
stdelT to other files.

Fdopen associates a stream with a file descriptor obtained from open, dup, or creat(2) , which will
open files but not return pointers to a FILE structure stream which are necessary input for many
of the section 3S library routines. The type of stream must agree with the mode of the open
file.

When a file is opened for update, both input and output may be done on the resulting stream.
However, output may not be directly followed by input without an intervening fseek or rewind,
and input may not be directly followed by output without an intervening fseek, rewind, or an
input operation which encounters end-of-file.

When a file is opened for append (i.e., when type is "a" or "a+ "), it is impossible to overwrite
information already in the file. Fseek may be used to reposition the file pointer to any position
in the file, but when output is written to the file the current file pointer is disregarded. All out­
put is written at the end of the file and causes the file pointer to be repositioned at the end of
the output. If two separate processes open the same file for append, each process may write
freely to the file without fear of destroying output being written by the other. The output from
the two processes will be intermLxed in the file in the order in which it is written.

SEE ALSO
open(2), fclose(3S).

Pagel (90IO-E)

FOPEN(3S) (UNIX 5.0) FOPEN(3S)

DIAGNOSTICS
Fopen and Jreopen return a NULL pointer on failure.

(90IO-E) Page· 2

FREAD(3S) (UNIX 5.0) FREAD(3S)

NAME
fread, fwrite - binary input/output

SYNTAX
#include <stdio.h>

int fread (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

int fwrite (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *streaIn;

DESCRIPTION
Fread copies, into an array beginning at ptr, nitems items of data from the named input stream,
where an item of data is a sequence of bytes (not necessarily terminated by a null byte) of
length size. Fread stops appending bytes if an end-of-tHe or error condition is encountered
while reading stream, or if nitems items have been read. Fread leaves the file pointer in stream,
if defined, pointing to the byte following the last byte read if there is one. Fread does not
change the contents of stream.

Fwrz'te appends at most nz'tems items of data from the the array pointed to by ptr to the named
output stream. Fwrite stops appending when it has appended nitems items of data or if an error
condition is encountered on .stream. Fwrite does not change the contents of the array pointed to
by ptr.

The variable size is typically sizeo/(*ptrj where the pseudo-function sazeof specifies the length of
an item pointed to by ptr. If pt?· points to a data type other than char it should be cast into a
pointer to char.

SEE ALSO

read(2), write (2), fopen(3S), getc(3S), gets(3S), printf(3S), putc(3S), puts(3S), scanf(3S).

DIAGNOSTICS

Page I

Fread and /write return the number of items read or written. If nitems is non-positive, no char­
acters are read or written and 0 is returned by both /read and /write.

(gOlD-E)

FSEEK(3S) (UNIX 5.0) FSEEK(3S)

NAME
fseek, rewind, ftell - reposition a file pointer in a stream

SYNTAX

#include <stdio.h>

int fseek (stream, offset, ptrnam.e)
FILE *stream;
long offset;
int ptrname;

void rewind (stream)
FILE *stream;

long ftell (stream)
FILE *stream;

DESCRIPTION
Fseek sets the position of the next input or output operation on the stream. The new position
is at the signed distance offset bytes from the beginning, from the current position, or from the
end of the file, according as ptrname has the value 0, 1, or 2.

Rewind(stream) is equivalent to fseek(stream, OL, 0), except that no value is returned.

Fseek and rewind undo any effects of ungetc(3S).

After fseek or rewind, the next operation on a file opened for update may be either input or
output.

Ftell returns the offset of the current byte relative to the beginning of the file associated with
the named stream.

SEE ALSO
lseek(2), fopen(3S).

DIAGNOSTICS
Fseek returns non-zero for improper seeks, otherwise zero. An improper seek can be, for
example, an fseek done on a file that has not been opened via fopen; in particular, fseek may
not be used on a terminal.

WARNING

Pagel

Although on the UNIX System an offset returned by ftell is measured in bytes, and it is permis­
sible to seek to positions relative to that offset, portability to non-UNIX Systems requires that
an offset be used by fseek directly. Arithmetic may not meaningfully be performed on such a
offset, which is not necessarily measured in bytes.

(90I0-E)

GETC(3S) (UNIX 5.0) GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or word from stream

SYNTAX
#include <stdio.h>

int getc (stream)
FILE *stream;

int getchar ()

int fgetc (stream)
FILE *stream;

int getw (stream)
FILE *stream;

DESCRIPTION
Gelc returns the next character (Le. byte) from the named input stream. It also moves the file
pointer, if defined, ahead one character in stream. Getc is a macro and so cannot be used if a
function is necessary; for example one cannot have a function pointer point to it.

Getchar returns the next character from the standard input stream, stdin. As in the case of getc,
getchar is a macro.

Fgetc performs the same function as getc, but is a genuine function. Fgetc runs more slowly
than getc, but takes less space per invocation.

Getw returns the next word (Le. integer) from the named input stream. The size of a word
varies from machine to machine. It returns the constant EOF upon end-of-file or error, but as
that is a valid integer value, leo! and !error(38) should be used to check the success of getw.
Getw increments the associated file pointer, if defined, to point to the next word. Getw
assumes no special alignment in the file.

SEE ALSO
fclose(38), ferror(38), fopen(38), fread(38), gets(3S), putc(38), scanf(38).

DIAGNOSTICS

BUGS

Pagel

These functions return the integer constant EOF at end-of-file or upon an error.

Because it is implemented as a macro, getc treats incorrectly a stream argument with side
effects. In particular, getc{*f++) doesn't work sensibly. Fgetc should be used instead.
Because of possible differences in word length and byte ordering, files written using putw are
machine-dependent, and may not be read using getw on a different processor.

(90IO-E)

GETS(3S) (UNIX 5.0) GETS(3S)

NAME
gets, fgets - get a string from a stream

SYNTAX

#include <stdio.h>

char *gets (s)
char *s;

char *fgets (s, n, stream)
char *s;
intn;
FILE *stream;

DESCRIPTION

Gets reads characters from the standard input stream, std£n, into the array pointed to by 8, until
a new-line character is read or an end-of-file condition is encountered. The new-line character
is discarded and the string is terminated with a null character.

Fgets reads characters from the stream into the array pointed to by s, until n- I characters are
read, or a new-line chaJ.'acter is read and transferred to s, or an end-of-file condition is encoun­
tered. The string is then terminated with a null character.

SEE ALSO

ferror(38), fopen(38), fread(38), getc(38), scanf(38).

DIAGNOSTICS

Pagel

If end-of-file is encountered and no characters have been read, no characters are transferred to
8 aJ.ld a NULL pointer is returned. If a read error occurs, such as trying to use these functions
on a file that has not been opened for reading, a NULL pointer is returned. Otherwise s is
returned.

(9010-E)

POPEN(3S) (UNIX 5.0) POPEN(3S)

NAME
popen, pclose - initiate pipe to/from a process

SYNTAX

#include <stdio.h>

FILE *popen (command, type)
char *command, *type;

int pclose (stream)
FILE *stream;

DESCRIPTION

The arguments to popen are pointers to null-terminated strings containing, respectively, a shell
command line and an I/O mode, either r for reading or w for writing. Popen creates a pipe
between the calling program and the command to be executed. The value returned is a stream
pointer such that one can write to the standard input of the command, if the I/O mode is w, by
writing to the file stream; and one can read from the standard output of the command, if the
I/O mode is r, by reading from the file stream.

A stream opened by popen should be closed by pc/ose, which waits for the associated process to
terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter and a type w as
an output filter.

SEE ALSO

wait(2B), fclose(38), fopen(38), system(38).

DIAGNOSTICS

BUGS

Page 1

Popen returns a NULL pointer if files or processes cannot be created, or if the shell cannot be
accessed.

Pclose returns - 1 if stream is not associated with a "popened" command.

If the original and "popen ed" processes concurrently read or write a common file, neither
should use buffered I/O, because the buffering gets all mixed up. Problems with an output
filter may be forestalled by careful buffer fiushing, e.g. with fflush; see fc/ose(38).

(9010-E)

PRINTF(3S) (UNIX 5.0) PRINTF(3S)

NAME
printf, fprintf, sprintf - print formatted output

SYNTAX
#include <stdio.h>

int printf (format [, arg] ...)
char *format;

int fprintf (stream, format [, arg] ...)
FILE *stream;
char *format;

int sprintf (s, format [, arg 1 ...)
char *s, format;

DESCRIPTION

Page I

Printf places output on the standard output stream stdout. Fprintf places output on the named
output stream .. Sprintf places "output", followed by the null character (\0) in consecutive bytes
starting at *s; it is the user's responsibility to ensure that enough storage is available. Each
function returns the number of characters transmitted (not including the \0 in the case of
spr":ntf) ,or a negative value if an output error was encountered.

Each of these functions converts, formats, and prints its args under control of the format. The
format is a character string that contains two types of objects: plain characters, which are simply
copied to the output stream, and conversion specifications, each of which results in fetching of
zero or more args. The results are undefined if there are insufficient args for the format. If
the format is exhausted while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character % After the % the following
appear in sequence:

Zero or more flags, which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width. If the converted
value has fewer characters than the field width, it will be padded on the left (or right, if
the left-adjustment fiag (see below) has been given) to the field width;

A predsion that gives the minimum number of digits to appear for the d, 0, U, x, or X
conversions, the number of digits to appear after the decimal point for the e and f
conversions, the maximum number of significant digits for the g conversion, or the
maximum number of characters to be printed from a string in s conversion. The preci-:­
sion takes the form of a period (.) followed by a decimal digit string: a null digit string
is treated as zero.

An optional 1 specifying that a following d. 0, u, x, or X conversion character applies to
a long integer arg.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit string. In this
case, an integer arg supplies the field width or precision. The arg that is actually converted is
not fetched until the conversion letter is seen, so the args specifying field width or precision
must appear before the a1·g (if any) to be converted.

The flag characters and their meanings are:

+
blank

The result of the conversion will be left-justified within the field.
The result of a signed conversion will always begin with a sign (+ or -).
If the first character of a signed conversion is not a sign, a blank will be prefixed to
the result. This implies that if the blank and + flags both appear, the blank flag will
be ignored.

(90IO-E)

PRINTF(3S) (UNIX 5.0) PRINTF(3S)

This flag specifies that the value is to be converted to an "alternate form."For e, d,
S, and u conversions, the flag has no effect. For ° conversion, it increases the preci­

. sion to force the first digit of the result to be a zero. For x (X) conversion, a non­
zero result will have Ox (OX) prefixed to it. For e, E, f, g, and G conversions, the
result will always contain a decimal point, even if no digits follow the point (nor-

i mally, a decimal point appears in the result of these conversions only if a digit fol­
lows it). For g and G conversions, trailing zeroes will not be removed from the
result (which they normally are) .

The conversion characters and their meanings are:

d,o, u,x,X The integer arg is converted to signed decimal, unsigned octal, decimal, or hexade­
cimal notation (x and X), respectively; the letters abedef are used for x conversion
and the letters ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be represented in fewer
digits, it will be expanded with leading zeroes. The default precision is 1. The
result of converting a zero value with a precision of zero is a null string.

f The float or double arg is converted to decimal notation in the style" [-] ddd.ddd",
where the number of digits after the decimal point is equal to the precision
specification. If the precision is missing, 6 digits are output; if the precision is expli­
citly 0, no decimal point appears.

e,E The fioat or double arg is converted in the style" [-] d.ddde± dd", where there is
one digit before the decimal point and the number of digits after it is equal to the
precision; when the precision is missing, 6 digits are produced; if the precision is
zero, no decimal point appears. The E format code will produce a number with E
instead of e introducing the exponent. The exponent always contains at least two
digits.

g, G The float or double arg is printed in style for e (or in style E in the case of a G for­
mat code), with the precision specifying the number of significant digits. The style
used depends on the value converted: style e will be used only if the exponent
resulting from the conversion is less than - 4 or greater than the precision. Trailing
zeroes are removed from the result; a decimal point appears only if it is followed by
a digit.

e The character arg is printed.
s The arg is taken to be a string (character pointer) and characters from the string are

printed until a null character (\0) is encountered or the number of characters indi­
cated by the precision specification is reached. If the precision is missing, it is taken
to be infinite, so all characters up to the first null character are printed. If the string
pointer arg has the value zero, the result is undefined. A null arg will yield
undefined results.

% Print a % no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is simply expanded to contain the conversion
result. Characters generated by prt'nfj and jprz'ntj are printed as if putc(3S) had been called.

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02", where weekday and month are
pointers to nun-terminated strings:

printf{ "<?[s, o/eS o/cd, %2d:%2d", weekday, month, day, hour, min);

To print 7r to 5 decimal places:

printf{"pi = %5f", 4*atan{l.0»;

(90l0-E) Page 2

PRINTF(3S) (UNIX 5.0) PRINTF(3S)

SEE ALSO
ecvt(3C), putc(38), scanf(38). stdio(38).

Page 3 (90IO-E)

PUTC(3S) (UNIX 5.0) PUTC(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNTAX
#include < stdio.h>

int putc (c, stream)
char c;
FILE *stream;

int putchar (c)
char c;

int fputc (c, stream)
char c;
FILE *stream;

int putw (w, stream)
intw;
FILE *stream;

DESCRIPTION
Pulc writes the character e onto the output stream (at the position where the file pointer, if
defined, is pointing). Putchar(c) is defined as pute(c, stdout). Putc and putchar are macros.

Fputc behaves like pute, but is a function rather than a macro. Fputc runs more slowly than
pute, but takes less space per invocation.

Putw writes the word (Le. integer) w to the output stream (at the position at which the file
pointer, if defined, is pointing). The size of a word is the size of an integer and varies from
machine to machine. Putw neither assumes nor causes special alignment in the file.

Output streams, with the exception of the standard error stream stderr, are by default buffered
if the output refers to a file and line-buffered if the output refers to a terminal. The standard
error output stream stderr is by default unbuffered, but use of freopen(see fopen(3S» will cause
it to become buffered or line-buffered. When an output stream is unbuffered information is
queued for writing on the destination file or terminal as soon as written; when it is buffered
many characters are saved up and written as a block; when it is line-buffered each line of out­
pu t is queued for writing on the destination terminal as soon as the line is completed (that is,
as soon as a new-line character is written or terminal input is requested). Setbuf(3S) may be
used to change the stream's buffering strategy.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3S), puts(3S), setbuf(3S).

DIAGNOSTICS

BUGS

Pagel

On success, these functions each return the value they have written. On failure, they return
the constant EOF. This will occur if the file stream is not open for writing, or if the output file
cannot be grown. Because EOF is a valid integer, Jerror(3S) should be used to detect putw
errors.

Because it is implemented as a macro, putc treats incorrectly a stream argument with side
effects. In particular, putc(c, *f+ +); doesn't work sensibly. Fputc should be used instead.
Because of possible differences in word length and byte ordering, files written using putw are
machine-dependent, and may not be read using getw on a different processor. For this reason
the use of putw should be avoided.

(9010-E)

PU'rS(3S) (UNI~ 5.0) PUTS(3S)

NAME
puts, fputs - put a string on a stream

SYNTAX
#include <stdio.h>

int puts (s)
char *s;

int fputs (s,. stream)
char *s;
FILE *stream;

DESCRIPTION
Puts writes the null-terminated string pointed to by s; followed by a new-line character, to the
standard output stream stdout.

Fputs writes the null-terminated string pointed to by s to the named output stream.

Neither function writes the terminating null character.

DIAGNOSTICS
Both routines return EOF on error. This will happen if the routines try to write on a file that
has not been opened for writing.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), printf(3S), putc(3S).

NOTES
Puts appends a new':"Une character while Iputs does not.

Pagel (9010-E)

SCANF(3S) (UNIX 5.0) SCANF(3S)

NAME
scanf, fscanf, sscanf - convert formatted input

SYNTAX

#include <stdio.h>

int seanf (fonnat [, pointer] ...)
char *format;

int fscanf (stream, fonnat [, pointer) ...)
FILE *stream; .
char *format;

int sseanf (s, fonnat [, pointer] ...)
ehar *s, *fonnat;

DESCRIPTION

Pagel

Scanf reads from the standard input stream 8tdin. F8can/ reads from the named input 8tream.
S8canf reads from the character string 8. Each function reads characters, interprets them
according to a format, and stores the results in its arguments. Each expects, as arguments, a
control string format described below, and a set of pointer arguments indicating where the con-
verted input should be stored. .

The control string usually contains conversion specifications, which are used to direct interpre­
tation of input sequences. The control string may contain:

1. \Vhite-space characters (blanks, tabs, new-lines, or form-feeds) which, except in two cases
described below, cause input to be read up to the next non-white-space character.

2. An ordinary character {not ~, which must match the next character of the input stream.
3. Conversion specifications, consisting of the character % an optional assignment suppressing

character *, an optional numerical maximum field width, an optional I or h indicating the
size of the receiving variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the result is placed in
the variable pointed to by the corresponding argument, unless assignment suppression was indi­
cated by *. The suppression of assignment provides a way of describing an input field which is
to be skipped. An input field is defined as a string of non-space characters; it extends to the
next inappropriate character or until the field width, if specified, is exhausted.

The conversion code indicates the interpretation of the input field; the corresponding pointer
argument must usually be of a restricted type. For a suppressed field, no pointer argument
should be given. The following conversion codes are legal:

% a single %is expected in the input at this point; no assignment is done.
d a decimal integer is expected; the corresponding argument should be an integer pointer.
u an unsigned decimal integer is expected; the corresponding argument should be an

unsigned integer pointer.
o an octal integer is expected; the corresponding argument should be an integer pointer.
x a hexadecimal integer is expected; the corresponding argument should be an integer

pointer.
e,f,g a fioating point number is expected; the next field is converted accordingly and stored

through the corresponding argument, which sho.uld be a pointer to a float. The input
format for fioating point numbers is an optionally signed string of digits, possibly con­
taining a decimal point, followed by an optional exponent field consisting of an E or an
e, followed by an optionally signed integer.

s a character string is expected; the corresponding argument should be a character pointer
pointing to an array of characters large enough to accept the string and a terminating
\0, which will be added automatically. The input field is terminated by a white-space
character.

(90IO-E)

SCANF(3S) (UNIX 5.0) SCANF(3S)

e a character is expected; the corresponding argument should be a character pointer. The
normal skip over white space is suppressed in this case; to read the next non-space
character, use ~s. If a field width is given, the corresponding argument should refer
to a character array; the indicated number of characters is read.
indicates string data and the normal skip over leading white space is suppressed. The
left bracket is followed by a set of characters, which we will call the scanse4 and a right
bracket; the input field is the maximal sequence of input characters consisting entirely
of characters in the scanset. The circumflex, ("), when it appears as the first character
in the scanset, serves as a complement operator and redefines the scanset as the set of
all characters not contained in the remainder of the scanset string. There are some con­
ventions used in the construction of the scanset. A range of characters ma.y be
represented by the construct first-last, thus [0123456789] may be expressed [0-9].
Using this convention, first must be lexically less than or equal to last, or else the dash
will stand for itself. The dash will also stand for itself whenever it is the first or the last
character in the scanset. To include the right square bracket as an element of the scan­
set, it must appear as the first character (possibly preceded by a circumflex) of the scan­
set, and in this case it will not be syntactically interpreted as the closing bracket. The
corresponding argument must point to a character array large enough to hold the data
field and the terminating \0, which will be added autom"atically.

The conversion characters d. u, 0, and x may be preceded by 1 or h to indicate that a pointer to
long or to short rather than to int is in the argument list. Similarly, the conversion characters e
, f , and g may be preceded by I to indicate that a pointer to double rather than to float is in the
argument list.

Scan! conversion termina.tes at EOF, at the end of the control string, or when an input character
conflicts with the control string. In the latter case, the offending character is left unread in the
input stream.

Scan! returns the number of successfully matched and assigned input items; this number can be
zero in the event of an early confiict between an input character and the control string. If the
input ends before the first conflict or conversion, EOF is returned.

EXAMPLES

The call:

int i; float x; char name[50];
scanf ("o/~~%3", &i, &x, name);

with the inpu t line:

25 54.32E- 1 thompson

will assign to i the value 25, to x the value 5.432, and name will contain thomlSon\O. Or:

int i; float x; char name [50] ;
scanf ("o/02d%fO/O*d %[0-9]", &i, &x, name);

with illPU t:

56789 0123 56a72

will assign 66 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to
getchar (see getc(3S» will return a.

SEE ALSO

atof(3C), getc(3S), printf(3S), strtol(3C).

NOTE

Trailing white space (including a new-line) is left unread unless matched in the control string.

(9010-E) Page 2

SCANF(3S) (UNIX 5.0) SCANF(3S)

DIAGNOSTICS

These functions return EOF on end of input and a short count for missing or illegal data items.

BUGS

The success of literal matches and suppressed assignments is not directly determinable.

Page 3 (90IO-E)

SETBUF(3S) (UNIX 5.2) SETBUF(3S)

NAME
setbuf, setvbuf - assign buffering to a stream

SYNTAX
=/I=include <stdio.h>

void setbuf (stream, buf)
FILE *stream;
char *buf;

int setvbuf (stream, buf, type, size)
FILE *stream;
char *buf;
int type, size;

DESCRIPTION
Setbu/ may be used after a stream has been opened but before it is read or written. It causes
the array pointed to by bu/ to be used instead of an automatically allocated buffer. If buj is the
NULL pointer input/output will be completely unbuffered.

A constant BUFSIZ, defined in the <stdio.h> header file, tells how big an array is needed:

char buf[BUFSIZ];

Setvbu/ may be used after a stream has been opened but before it is read or written. Type
determines how stream will be buffered. Legal values for type (defined in stdio.h) are:

_IONBF

causes input/output to be fully buffered.

causes output to be line buffered; the buffer will be fiushed when a newline is
written, the buffer is full, or input is requested.

causes input/output to be completely unbuffered.

If buj is not the NULL pointer, the array it points to will be used for buffering, instead of an
automatically allocated buffer. Size specifies the size of the buffer to be used. The constant
BUFSIZ in <stdio.h> is suggested as a good buffer size. If input/output is unbuffered, buj
and size are ignored.

By default, output to a terminal is line buffered and all other input/output is fully buffered.

SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S), stdio(3S).

DIAGNOSTICS

NOTE

Pagel

If an illegal value for type or size is provided, setvbuj returns a non-zero value. Otherwise, the
value returned will be zero.

A common source of error is allocating buffer space as an "automatic" variable in a code block,
and then failing to close the stream in the same block.

(90IO-E)

STDIO(3S) (UNIX 5.0) STDIO(3S)

NAME
stdio - standard butTered input/output package

SYNTAX

#include <stdio.h>

FILE *stdin, *stdout, *stderr;

DESCRIPTION
The functions described in the entries of sub-class 3S of this manual constitute an efficient,
user-level I/O butTering scheme. The in-line macros getc(3S) and putc(3S) handle characters
quickly. The macros getchar, putchar, and the higher-level routines Igetc, Igets, Iprintl, Iputc,
Iputs, Iread. Iscanj, fwrite, gets, getw, pn'ntl, puts, putw, and scanl all use getc and putc; they can
be freely intermixed.

A file with associated buffering is called a stream and is declared to be a pointer to a defined
type FILE. Fopen(3S) creates certain descriptive data for a stream and returns a pointer to

designate the stream in all further transactions. Normally, there are three open streams with
constant pointers declared in the <stdio.h> header file and associated with the standard open
files:

stdin
stdout
stderr

standard input file
standard output file
standard error file.

A constant NULL (0) deSignates a nonexistent pointer.

An integer constant EOF (- 1) is returned upon end-of-file or error by most integer functions
that deal wit,h streams (see the individual descriptions for details).

Any program that uses this package must include the header file of pertinent macro definitions,
as follows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub-class 3S of this manual are
declared in that header file and need no further declaration. The constants and the following
"functions" are implemented as macros (redeclaration of these names is perilous): gete,
getchar, pule, puteitar, feof, fen'or, clearerr, and fileno.

SEE ALSO
open(2B), close(2B), lseek(2B), read(2B), write (2B), ctermid(3S), cuserid(3S), fclose(3S),
ferror(3S), fopen(3S). fread(3S), fseek(3S), getc(3S), gets(3S), popen(3S), printf(3S),
putc(3S), puts(3S), scanf(3S), setbuf(3S), system (3S), tropfile(3S), tmpnam(3S), ungetc(3S).

DIAGNOSTICS

Pagel

Invalid sl"eam pointers will usually cause grave disorder, possibly including program termina­
tion. Individual function descriptions describe the possible error conditions.

(90IO-E)

SYSTEM(3S)

NAME
system - issue a shell command

SYNTAX

#include <stdio.h>

int system (string)
char *string;

DESCRIPTION

(UNIX 5.0) SYSTEM(3S)

System causes the string to be given to sh(1) as input, as if the string had been typed as a com­
mand at a terminal. The current process waits until the shell has completed, then returns the
exit status of the shell.

FILES

/bin/sh

SEE ALSO
sh(1), exec(2B).

DIAGNOSTICS
System forks to create a child process that in turn exec's Jbin/sh in order to execute stnng. If
the fork or exec fa.ils, system returns - 1 and sets erma.

Page 1 (9010-E)

TMPFILE(3S) (UNIX 5.0) TMPFILE{ 3S)

NAME
tmpfile - create a temporary file

SYNTAX
#include < stdio.h>

FILE *tmpfile ()

D ESCRIPTI ON
Ttnp[ue creates a temporary file and returns a corresponding FILE pointer. The file will
automatically be deleted when the process using it terminates. The file is opened for update.

SEE ALSO
creat(2B), ul1link(2B), mktemp(3C), tmpnam(3S).

Page I (90IO-E)

TMPNAM(3S) (UNIX 5.0) TMPNAM(3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNTAX

#include <stdio.h>

char *tmpnam (s)
char *s;

char *tempnam (dir, pfx)
char *dir, *pfx;

DESCRIPTION

NOTES

These functions generate file names that can safely be us~d for a temporary file.

Tmpnanl always generates a file name using the path-name defined as P _tm.pdir in the
<stdio.h> header file. If s is NULL, tmpnanl, leaves its result in an internal static area and
returns a pointer to that area. The next call to tmpnam will destroy the contents of the area. If
s is not NULL, it is assumed to be the address of an array of at least L_oopnam bytes, where
L_tmpnam is a constant defined in <stdio.h>; tmpnam places its result in that array and
returns 8.

Tempnam allows the user to control the choice of a directory. The argument dir points to the
path-name of the directory in which the file is to be created. If dir is NULL or points to a string
which is not a path-name for an appropriate directory, the path-name defined as P _tm.pdir in
the <std£o.h> header file is used. If that path-name is not accessible, /tm.p will be used as a
last resort. This entire sequence can be up-staged by providing an environment variable
TMPDIR in the user's environment, whose value is a path-name for the desired temporary-file
directory.

Many applications prefer their temporary files to have certain favorite initial letter sequences in
their names. Use the pix argument for this. This argument may be NULL or point to a string
of up to five characters to be used as the first few characters of the temporary-file name.

Tempnam uses mal/oc(3C) to get space for the constructed file name, and returns a pointer to
this area. Thus, any pointer value returned from tempnam may serve as an argument to free
(see malloc(3C)). If tempnam cannot return the expected result for any reason, Le. maUoc
failed, or none of the above mentioned attempts to find an appropriate directory was successful,
a NULL pointer will be returned.

These functions generate a different file name each time they are called.

Files created using these functions and either lopen or creat are temporary only in the sense
that they reside in a directory intended for temporary use, and their names are unique. It is the
user~s responsibility to use unlink (2B) to remove the file when its use is ended.

SEE ALSO

BUGS

Pagel

creat(2B), unlink(2B), malloc(3C), mktemp(3C), tmpfile(3S).

If called more t.han 17,576 times in a single process, these functions will start recycling previ­
ously used names.
Between the time a file name is created and the file is opened, it is possible for some other pro­
cess to create a file with the same name. This can never happen if that other process is using
these functions or mklentp, and the file names are chosen so as to render duplication by other
means unlikely.

(90lO-E)

UNGETC(3S) (UNIX 5.0) UNGETC(3S)

NAME
ungetc - push character back into input stream

SYNTAX

#include < s"tdio.h>

int ungetc (c, stream)
char c;
FILE *stream;

DESCRIPTION
Ungetc inserts the character c into the buffer associated with an input stream. That character, c,
will be returned by the next getc call on that stream. Ungetc returns c, and leaves the file
stream unchanged.

One character of pushback is guaranteed provided something has been read from the stream
and the stream is actually buffered.

If c equals EOF, ungetc does nothing to the buffer and returns EOF.

Fseek(3S) erases all memory of inserted characters.

SEE ALSO
fseek(3S), getc(3S), setbur(3S).

DIAGNOSTICS

Pagel

In order that ungetc perform correctly, a read statement must have been performed prior to the
call of the 'ltngetc function. Ungetc returns EOF if it can't insert the character. In the case that
stream is std£n, ungetc will allow exactly one character to be pushed back onto the buffer
without a previous read statement.

(90IO-E)

BLANK

ASSERT(3X) (UNIX 5.0) ASSERT(3X)

NAME
assert - verify program assertion

SYNTAX

#include <assert.h>

assert (expression)
int expression;

DESCRIPTION
This macro is useful for putting diagnostics into programs. When it is executed, if expression is
false (zero), a8sert prints

"Assertion failed: expression, file xyz, line nnn"

on the standard error output and aborts. In the error message, xyz is the name of the source
file and nnn the source line number of the assert statement.

Compiling with the preprocessor option - DNDEBUG (see cpp(1», or with the preprocessor
control statement "#deflne NDEBUG" ahead of the "#include <assert.h>" statement, will
stop assertions from being compiled into the program.

SEE ALSO
cpp(1), abort(3C) .

Page 1 (9010-E)

COPYBITS(3X) (Ridge) COPYBITS(3X)

NAME
CopyBits - bit-oriented block transfer (BitBlt)

SYNTAX
#include <sys/graf.h>

CopyBits (rOp)
strnct RasterOp *rOp;

DESCRIPTION

Pagel

The OopyBits fuction provides pixel-level graphics operations for the Ridge Monochrome
Display. It is used to create bitmap images in the calling process' own address space, a part of
which is mapped to the display screen as described in the Ridge Multi- Wa"ndow Display M anage­
ment GuZ"de.

Rectangular areas of arbitrary size can be filled with black, white, and halftone patterns. Text.
in various typefaces or fonts, can be copied from stored images of the individual characters.
Line-drawing and arbitrary graphics are created by repeated calls of the basic functions.

The OopyBits operation is modelled after the BitBlt (bit-oriented block transfer) operation found
in Smalltalk (Goldberg and Robson, Smalltalk-80: The Language and its Implementation,
Addison-Wesley, 1983).

A two-dimensional pixel image is represented by a data structure called a Fomt, whose
definition is given in the include file as:

struct Form {

};

int width;
int height;
unsigned int *bits;

A Form has height and width, measured in bits, and a pointer to an array of 32-bit words that
contains a bitmap. The bitmap is a pattern of ones and zeros that indicate the black and white
pixels of the image being represented. The height and width impose two-dimensional ordering
on the otherwise unstructured bitmap data.

A new Form is usually created by allocating an integral number of words to contain the bits
needed for the desired height and width, and placing a pointer to those words in the structure.
A Form might also be initialized with the width and height of the display screen, and contain
the starting address in virtual memory of the display bitmap. There is no difference between
manipulating images internally and manipulating images that are mapped to the display screen.

Bitmaps are allocated with an integral number of 32-bit words for each row of pixels. This row
size is referred to as the "raster" width. The integral word constraint on the raster size is
related to the hardware organization of memory and the efficiency of processing 32 bits at a
time. This facilitates movement from one row to the next, both during the hardware scanning
of the display screen memory and during the. operation of the OopyBits function. While this
organization is significant for allocation purposes, it is encapsulated so that none of the higher­
level callers of OopyBits need be concerned with the issue of word size.

Locations within a Form are designated using a two-dimensional coordinate system relative to
the top left corner of the image rectangle. X increases to the right and Y increases down, con­
sisten t with the display device raster scanning, and with the layout of text on a page.

Two structures, defined in the include file, are often used when dealing with bitmap images:

struct Point {
int x;
int y;

};

(9010-E)

COPYBITS(3X)

struct Rectangle {

};

struct Point origin;
struct Point extent;

(Ridge) COPYBITS(3X)

A Point contains x and y coordinate values that refer to a pixel location with a Form. A Rec­
tangle contains two Points (the origin is the. top left corner and the extent is the width and
height) that define a rectangular area within a Form.

The OopyBits operation involves a source Form and a destination Form. For example, the
source may be a set of character glyphs packed together horizontally as in a bit-matrix font(4).
The destination might be the display bitmap. Pixels are copied out of the source and stored
into the destination. The width and height of the transfer correspond to the character size.
The source coordinates give the character's location in the font, and the destination coordinates
specify the position on the display where the copy will appear.

A clipping rectangle is specified which limits the region of the destination that can be affected
by the operation, independent from the other destination parameters. Often it is desirable to
display a partial view of a larger image, and the clipping rectangle ensures that all picture ele­
ments fall inside the bounds of the view. Pixels that would have been placed outside the clip­
ping rectangle are not transferred.

Occasionally it is desirable to fill areas with a regular pattern that gives the effect of a gray
halftone or texture. The OopyBit8 operation allows a third Form to be specified containing the
desired pattern, and is referred to as the mask. The mask Form must have a width and height
of exactly 32 bits. When half toning is specified, this pattern is replicated every 32 bits horizon­
tally and vertically over the entire destination.

There are four possible ways to supply pixels from the source and mask Forms, depending on
which Forms are used in the operation. To exclude use of a Form parameter, set the bits field
within the Form to a pointer value 0:

1) no source, no mask- supplies solid black
2) source only - supplies source pixels
3) mask only - supplies halftone pattern
4) source AND mask - supplies source pixels logically masked by halftone pattern

There are 16 possible rules for combining each source element S (taken as the result of any
halftone masking) with the corresponding destination element D to produce the new destination
element D'. Each rule must specify a white (0) or black (1) result bit for each of the four
cases of the source being white or black, and the destination being white or black. The follow­
ing list gives the integer rule, the name from the include file, and the Boolean operation:

0 WHITing D' =0
1 ANDing D' =SAND D
2 SANDNOTDing D' = SAND NOTD
3 STORing D' =S
4 NOTSANDDing D' = NOT SAND D
5 NoOPing D'=D
6 XORing D' = SXOR D
7 ORing D' = S OR D
8 NORing D' = NOT S AND NOT D
9 NXORing D' = NOT S XOR D

10 NOTing D'=NOTD
11 SORNOTDing D' = S OR NOTD
12 NOTSing D'=NOTS
13 NOTSORDing D' = NOTSORD

(9010-E) Page 2

COPYBITS(3X) (Ridge) COPYBITS(3X)

FILES

14 NANDing
15 BLACKing

D' = NOT S OR NOTD
D' =1

The CopyBits function is called with a pointer to a RasterOp structure which contains the
parameters to the operation, as defined in the include file:

struct RasterOp {

};

struct Form destForm;
struct Form sourceForm;
struct Form maskForm;
int rule;

int destX;
int destY;
int width;
int height;
int clipX;
int clipY;
int ClipWidth;
int clipHeight;
int sourceX;
int sourceY;

/* destination Form into which bits will be stored */
/* a Form from which bits will be copies */
/* a Form containing a halftone pattern */
/* (least significant 4 bits used) specifies the

Boolean rule for combining corresponding bits of
the source and desti,nation */

/* X and Y coordinates of top left corner of rect- */
angular subregion to be filled in destination form */

/* width and height of rectangular subregion in
destination form to be filled */

/* Top left corner, width, and height of a
rectangular area which restricts
the affected region
of the destination form */

/* Top left corner of the rectangular subregion
to be copied from the source form */

Parameter-passing efficiency is gained by using only a single pointer to a structure containing
the needed parameters for each CopyBits operation. In addition, the state held in the RasterOp
structure allows multiple operations in a related context to be performed without having to
repeat all the initialIzation of parameters. For example, when displaying many lines of text, the
destination Form and clipping rectangle will not change from one character operation to
another.

/usr /lib /libgra!.a

SEE ALSO
gra!(3X), Ridge Multi- Window Display Management Guide

Page 3 (9010-E)

CURSES(3X) (UNIX 5.2) CURSES(3X)

NAME
curses - CRT screen handling and optimization package

SYNTAX
#inelude <curses.h>
cc [fiags] files - icurses [libraries]

DESCRIPTION
These routines give the user a method of updating screens with reasonable optimization. In
order to initialize the routines, the routine £n£~cr{) must be called before any of the other rou­
tines that deal with windows and screens are used. The routine endwin{) should be called
before exiting. To get character-at-ar-time input without echoing, (most interactive, screen
oriented-programs want this) after calling in itscr{) you should call "nonl{),. cbreak{); noecho{);"

The full curses interface permits manipulation of data structures called windows which can be
thought of as two dimensional arrays of characters representing all or part of a CRT screen. A
default window called stdscr is supplied, and others can be created with newwin. Windows are
referred to by variables declared "WIND OW *", the type WIND OW is defined in curses.h to be
a C structure. These data structures are manipulated with functions described below, among
which the most basic are move, and addch. (More general versions of these functions are
included with names beginning with 'w', allowing you to specify a window. The routines not
beginning with 'w' affect stdscr.) Then refresh {) is called. telling the routines to make the users
CRT screen look like stdscr.

If the environment variable TERM INFO is defined. any program using curses will check for a
local terminal definition before checking in the standard place. For example, if the standard
place is /usr/lib/tenninfo. and TERM is set to "vt100", then normally the compiled file is
found in /usr/lib/terminfo/v/vtlOO. (The "v" is copied from the first letter of "vt100" to
avoid creation of huge directories.) However, if TERMINFO is set to /usr/mark/myterms.
curses will first check /opusr/mark/myterms/v/vtlOO, and if that fails, will then check
/usr/lib/tenninfo/v/vtlOO. This is useful for developing experimental definitions or when
write permission in /usr/lib/tenninfo is not available.

SEE ALSO
terminfo(4) .

FUNCTIONS
Routines listed here may be called when using the full curses.

Pagel

addch(ch)

addstr(str)
attroff(attrs)
attron(attrs)
attrset(attrs)
baudrate()
beep()
box(win, vert, hor)

clear()
clearok(win, bf)
clrtobot()
clrtoeol()
cbreak()
delay_output(ms)

add a character to stdscr
(like putchar) (wraps to next
line at end of line)
calls addch with each character in str
turn off attributes named
turn on attributes named
set current attributes to attrs
current terminal speed
sound beep on terminal
draw a box around edges of win
vert and hor are chars to use for vert.
and hor. edges of box
clear stdscr
clear screen before next redraw of win
clear to bottom of stdscr
clear to end of line on stdscr
set cbreak mode
insert ms millisecond pause in output

(9010-E)

CURSES(3X)

deleh()
deleteln()
delwin(win)
doupdate()
echo()
endwin()
erase()
erasechar()
fixterm()
flash()
flushinp()
getch()
getstr(str)
gettmode()
getyx(win, y, x)
has_ic()
has-.il()
idlok(win, bf)
inch()
initscr()
insch(c)
insertln()
intrflush(win, bf)
keypad(win, bf)
killchar()
leaveok(win, flag)

longname()
meta(win, flag)
move(y, x)
mvaddch(y, x, eh)
mvaddstr(y, x, str)
mvcur(oldrow, oldcol, newrow, newcol)

mvdelch(y, x)
mvgetch(y, x)
mvgetstr(y, x)
mvinch(y, x)
mvlnsch(y, x, c)
mvprintw(y, x, fmt, args)
mvscanw(y, x, fmt, args)
mvwaddch(win, y, x, ch)
mvwaddstr(win, y, x, str)
mvwdelch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr(win, y, x)
mvwin(win, by, bx)
mvwinch(win, y, x)
mvwinsch(win, y, x, c)
mvwprintw(win, y, x, fmt, args)
mvwscanw(win, y, x, fmt, args)

(9010-E)

(UNIX 5.2) CURSES (3X)

delete a character
delete a line
delete win
update screen from all wnooutrefresh
set echo mode
end window modes
erase stdscr
return user's erase character
restore tty to "in curses" state
flash screen or beep
throwaway any typeahead
get a char from tty
get a string through stdscr
establish current tty modes
get (y, x) co-ordinates
true if terminal can do insert character
true if terminal can do insert line
use terminal's insert/delete line if bf != 0
get char at current (y, x) co-ordinates
initialize screens
insert a char
insert a line
interrupts flush output if bf is TRUE
enable keypad input
return current user's kill character
OK to leave cursor anywhere after refresh if
fiag!=O for win, otherwise cursor must be left
at current position.
return verbose name of terminal
allow meta characters on input if flag != 0
move to (y, x) on stdscr
move(y, x) then addch(eh)
similar ...

low level cursor motion
like delch, but move(y, x) first
etc.

Page 2

CURSES(3X) (UNIX 5.2) CURSES(3X)

Page 3

newpad(nlines, nco Is)
newterm(type, fd)
newwin(lines, cols, begin"y, 'begin_x)

nl()
nocbreak()
nodelay(win, bf)
noecho()
nonl()
noraw()
overlay(winl, win2)

create a new pad with given dimensions
set up new terminal of given type to output on fd

create a new window
set newline mapping
unset cbreak mode
enable node lay input mode through getch
unset echo mode
unset newline mapping
unset raw mode
overlay winl on win2

overwrite(winl, win2) overwrite winl on top of win2
pnoutrefresh(pad, pminrow, pmincol, sminrow,
smincol, smaxrow, smaxcol)

like prefresh but with no output until doupdate called
prefresh(pad, pminrow, pmincol, sminrow,
smincol, smaxrow, smaxcol)

prin tw(fm t, arg l, arg2, ...)

raw()
refresh()
resetterm()
resetty()
saveterm()
savetty()
scanw(fmt, argl, arg2, ...)

scroll(win)
scrollok(win, flag)
set_term(new)
setscrreg(t, b)
se tterm (type)
setupterm(term, filenum, errret)
standend()
standout()
subwin(win, lines, cols, begin"y, beginJ)

touchwin(win)
traceoft"()
traceon()
typeahead(f d)
unctrl(ch)
waddch(win, ch)
waddstr(win, str)
wattroft"(win, attrs)
wattron(win, attrs)
wattrset(win, attrs)
wclear(win)
wclrtobot(win)

refresh from pad starting with given upper left
corner of pad with output to given
portion of screen

printt on stdscr
set raw mode
make current screen look like stdscr
set tty modes to "out of curses" state
reset tty flags to stored value
save current modes as "in curses" state
store current tty Hags

scant through stdscr
scroll win one line
allow terminal to scroll if flag != 0
now talk to terminal new
set user scrolling region to lines t through b
establish terminal with given type

clear standout mode attribute
set standout mode attribute

create a subwindow
change all of win
turn oft" debugging trace output
turn on debugging trace output
use file descriptor fd to check typeahead
printable version of ch
add char to win
add string to win
turn oft" attrs in win
turn on attrs in win
set attrs in win to attrs
clear win
clear to bottom of win

(9010-E)

CURSES(3X) (UNIX 5.2) CURSES(3X)

wclrtoeol(win)
wdelch(win, c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win, str)
winch(win)
winsch(win, c)
winsertln(win)
wmove(win, y, x)
wnoutrefresh(win)
wprintw(win, fmt, argl, arg2, ...)

wrefresh(win)
wscanw(win, fmt, argl, arg2, ...)

wsetscrreg(win, t, b)
wstandend(win)
wstandout(win)

TERMINFO LEVEL ROUTINES

clear to end of line on win
delete char from win
delete line from win
erase win
get a char through win
get a string through win
get char at current (y, x) in win
insert char into win
insert line into win
set current (y, x) co-ordinates on win
refresh but no screen output

prin tf on win
make screen look like win

scanf through win
set scrolling region of win
clear standout attribute in win
set standout attribute in win

These routines should be called by programs wishing to deal directly with the terminfo data­
base. Due to the low level of this interface, it is discouraged. Initially, setupterm should be
called. This will define the set of terminal dependent variables deflned in terminfo(4). The
include flIes <curses.h> and <term.h> should be included to get the deflnitions for these
strings, numbers, and flags. Parmeterized strings should be passed through tparm to instantiate
them. All terminfo strings (including the output of tparm) should be printed with Ipu.t8 or pulp
. Before exiting, re8etterm should be called to restore the tty modes. (Programs desiring shell
escapes or suspending with control Z can call re8etterm before the shell is called and fixterm after
returning from the shell.)
fixterm() restore tty modes for terminfo use

(called by setupterm)
resetterm()
setupterm(term, fd, rc)

tparm(str, pI, p2, ... , p9)

tputs(str, aifcnt, putc)

putp(str)

vidputs(attrs, putc)

(90IO-E)

reset tty modes to state before program entry
read in database. Terminal type is the
character string term, all output is to UNIX
System file descriptor fd. A status value is
returned in the integer pointed to by rc: 1
is normal. The simplest call would b~
setu.pterm(O, 1, 0) which uses all defaults.

instan tiate string str with parms Pi.
apply padding info to string str.
affcnt is the number of lines affected,
or 1 if not applicable. Putc is a
putchar-like function to which the characters
are passed, one at a time.
handy function that calls tputs
(str, 1, putchar)
output the string to put terminal in video
attribute mode attrs, which is any
combination of the attributes listed below.
Chars are passed to putchar-like
function putc.

Page 4

CURSES(3X) (UNIX 5.2) CURSES(3X)

vidattr(attrs) Like vidputs but outputs through
putchar

TERMCAP COMPATIBILITY ROUTINES
These routines were included as a conversion aid for programs that use termcap. Their parame­
ters are the same as for termcap. They are emulated using the termz"nJo database. They may go
away at a later date.
tgetent(bp, name)
tgetflag(id)
tgetnum(id)
tgetstr(id, area)
tgo to (cap, col, row)
tputs(cap, affcnt, fn)

look up termcap entry for name
get boolean entry for id
get numeric entry for id
get string entry for id
apply parms to given cap
apply padding to 'cap calling fn as putchar

ATTRIBUTES
The following video attributes can be passed to the functions attron, attroff, attrset.
A_STANDOUT Terminars best highlighting mode
A_UNDERLINE
A_REVERSE
A_BLINK
A_DIM
A_BOLD
A_BLANK
A_PROTECT
A_ALTCHARSET

Underlining
Reverse video
Blinking
Half bright
Extra bright or bold
Blanking (in visible)
Protected
Alternate character set

FUNCTION KEYS

Page 5

The following function keys might be returned by getch if keypad has been enabled. Note that
not all of these are currently supported, due to lack of definitions in tenn£nJo or the terminal not
transmitting a unique code when the key is pressed.
Name Value Key name
KEYJ3REAK 0401 break key (unreliable)
I<EYJ) OWN
KEY_UP
KEY_LEFT

I<EY..RIGHT
KEYJIOME
KEY J3ACKSPACE
KEYYO
KEYY(n)
I<EYJ)L
KEY_IL
KEY_DC
KEY_IC
KEY_EIC
KEY_CLEAR
KEY_EOS
I<EY_EOL
I<EY_SF
lillY_SR

KEY_NPAGE
KEYYPAGE
KEY_STAB

IffiY_CTAB

0402
0403
0404
0405
0406
0407

The four arrow keys ...

Home key (upward+ left arrow)
backspace (unreliable)

0410 Function keys. Space for 64 is reserved.

(I<EYYO+ (n» Formula for fn.
0510 Delete line
0511 Insert line
0512 Delete character
0513 Insert char or enter insert mode
0514 Exit insert char mode
0515 Clear screen
0516 Clear to end of screen
0517 Clear to end of line
0520 Scroll 1 line forward
0521 Scroll 1 line backwards (reverse)
0522 Next page
0523 Previous page
0524 Set tab
0525 Clear tab

(9010-E)

CURSES(3X) (UNIX 5.2) CURSES(3X)

KEY_CATAB 0526 Cle ar all tabs
KEY-.ENTER 0527 Enter or send (unreliable)
lillY _SRESET 0530 soft (partial) reset (unreliable)
KEY_RESET 0531 reset or hard reset (unreliable)
I<EYYRINT 0532 print or copy
KEYJ.L 0533 home down or bottom (lower left)

WARNING
The plotting library plot(3X) and the curses library curses(3X) both use the names erase() and
move(). The curses versions, are macros. If you need both libraries, put the plot(3X) code in
a different source file than the curses(3X) code, and/or #undef move() and erase() in the
plot(3X) code.

(90IO-E) Page 6

GRAF(3X) (Ridge) GRAF(3X)

NAME
gra! - low-level graphics library for Ridge Monochrome .D isplay

SYNTAX

#include <sys/graf.h>

int gJnit (screenForm)
struct Form *sereenForm;

int g.J'eadpixel (x, y)
int x, y;

Lwritepixel (x, y, color)
int x, y, color;

Ldrawline (xO, yO, xl, yl)
int xO, yO, xl, yl;

Lflush 0
LclbmO

Lclsereen 0
&...,peneolor (color)
int color;

&.J>enwidth (width)
intwidth;

DESCRIPTION

Page 1

The graf library allows low-level graphics access to the Ridge Monochrome Display disp(7).
These functions are used to create graphic images in the calling process' own address space, a
part of which is mapped to the display screen as described in the Ridge Multi- Window Display
Management Guide.

These functions operate directly on the display bitmap of the process, and provide no synchron­
ization with other processes which may also be updating the display screen, and thus may inter­
fere with manipulations of the screen by the multi-window display management software.

The g_init function must be called once before the other functions to allow internal data struc­
tures to be initialized. An ioctl(2) system call is made using the open file descriptor 2 (stderr)
to determine the size of the screen and the starting address of the display bitmap. These values
are returned in the structure pointed to by 8creenForm, as defined in the include file:

struct Form {

};

int width;
int height;
unsigned int *bits;

The height and width of the screen are measured in pixels, and the address in virtual memory of
the display bitmap is placed in the bits field. A non-zero value returned by g_init indicates an
error, such as not having file descriptor 2 bound to a Ridge monochrome display.

The value returned by g_Teadpixel is the content of the bit found at the location specified by x
andy. The address is relative to the top left corner of . the screen, which is addressed as 0,0.

The value returned is either Black or White, as defined in the include file; the value -1 is
returned if the address is out of range for the screen.

The content of the bit found at the location specified by x and '11 is set to the given color by
g_writepixel. The colors Black and White set the bit to the value as defined in the include file,
while any other color value will cause the bit to be complemented.

(9010-E)

GRAF(3X) (Ridge) GRAF(3X)

FILES

G_drawUne draws the pixels that correspond to a straight line segment from the point specified
as xO,yO to the point specified as xl,y1. Display device coordinates are used, and the line is
clipped to the edges of the screen. The default color of lines is Black, and the width is one
pixel, but either of these attributes may be changed as described below. For efflciency, special­
ized algorithms are used for the common cases of horizontal or vertical lines, or lines that are
one pixel wide.

The function gJlush is called to fiush the display bitmap in main memory to the display con­
troller refresh memory. Any pages in the display bitmap that have been modified will be writ­
ten to the refresh memory, causing the screen image to be updated.

No change to the screen image occurs until the bitmap is fiushed, so this function may be used
to get the effect of "double-buffering", where the screen displays the previous image while a
new image is being created in the bitmap. G_clbm clears the display bitmap to White, in
preparation for further draWing. G_clscreen clears the screen by calling g_clbm followed by
gJlush.

GJencolor sets the color to be used for line-drawing according to color. The color value deter­
mines whether black or white pixels are used by g_drawline. The values Black (the initial color)
and White are defined in the include file, while any other value will cause subsequent lines to
be drawn using pixels which are the complement of the c.urrent background.

GJenwidth sets the width in pixels of lines according to width. The initial width is one, but any
value greater than zero may be specified, and will be used for all subsequent lines drawn by
g_drawline.

/usr /lib /libgraf.a

SEE ALSO
Ridge Mult£ .. Window Display Management GuMe
CopyBits(aX)

(9010-E) Page 2

LOGNAME{ ax) (UNIX 5.0) LOGNAME(ax)

NAME
logname - return login name of user

SYNTAX

char *logname()

DESCRIPTION
Logname returns a pointer to the null-terminated login name; it extracts the $LOGNAME vari­
able from the user's environment.

This routine is kept in /lib/libPW.a.

FILES
j etc jprofile

SEE ALSO

BUGS

Page 1

env(1), login(1), profile(4), environ(5).

The return values point to static data whose content is overwritten by each call.

This method of determining a login name is subject to forgery.

(90IO-E)

PLOT(3X) (UNIX 5.0) PLOT(3X)

NAME
plot - graphics interface subroutines

SYNTAX
openpl ()

erase ()

label (s)
char *s;

line (xl, yl, x2, y2)
int xl, yl, x2, y2;

circle (x, y, r)
int x, y, r;

arc (x, y, xO, yO, xl, yl)
int x, y, xO, yO, xl, yl;

move (x, y)
int x, y;

cont (x, y)
int x, y;

point (x, y)
intx, y;

linemod (s)
char *8;

space (xO, yO, xl, yl)
int xO, yO, xl, yl;

closepl ()

DESCRIPTION

FILES

These subroutines generate graphic output in a relatively device-independent manner. Space
must be used before any of these functions to declare the amount of space necessary. See
plot(4). Openpl must be used before any of the others to open the device for writing. Closepl
flushes the output.

Circle draws a circle of radius r whose center is (x,y).

Arc draws an arc of the circle whose center is (x, y); the arc is drawn clockwise from (:cO, yO) to
(xl, yl).

String arguments to label and linemod are terminated by nulls and do not contain new-lines.

See plot(4) for a description of the effect of the remaining functions.

The library files listed below provide several flavors of these routines.

jusr jlib jlibplot.a
jusr jlib jlib300.a
jusr jlib jlib300s.a
jusr jUb jlib450.a
jusrjlibjlib4014.a
jusr jlib jlibr15.a

produces output for tplot(lG) filters
for DASI 300
for DASI 300s
for DASI·450
for Tektronix 4014
for Ridge 1v10nochrome Display

WARNINGS

Pagel

In order to compile a program containing these functions in file.c it is necessary to use "cc file.c
- lplot".

(90l0-E)

PLOT(3X) (UNIX p.D) PLOT(3X)

In order to execute it, it Is necessary to use" a.out I tplot".

The above routines use <stdio.h>, which causes them to increase the size of programs, not
otherwise using standard I/O, more than might be expected.

SEE ALSO
graph(IG), stat(IG), tplot(IG), plot(4).

(gOlD-E) Page 2

REGCMP(3X) (UNIX 5.0) REGCMP(3X)

NAME
regcmp, regex - compile and execute regular expression

SYNTAX
char *regcmp{stringl [, string2, •••], 0)
char *stringl, *string2, ••• ;

char *regex(re, subject[, retD, ••• J)
char *re, *subject, *retD, ••• ;

extern char *Iocl;

DESCRIPTION
Regcmp compiles a regular expression and returns a pointer to the compiled form. M a/loc(3C)
is used to create space for the vector. It is the user's responsibility to free unneeded space so
allocated. A NULL return from regcmp indicates an incorrect argument. R egcmp(1) has been
written to generally preclude the need for this routine at execution time.

Regex executes a compiled pattern against the subject string. Additional arguments are passed
to receive values back. Regex returns NULL on failure or a pointer to the next unmatched
character on success. A global character pointer lod points to where the match began. Regcmp
and regex were mostly borrowed from the editor, ed(1); however, the syntax and semantics
have been changed slightly. The following are the valid symbols and their associated meanings.

These symbols retain their current meaning.

Matches the end of the string, \n matches the new-line.

Within brackets the min us means through. For example, [a- z] is equivalent to
[abed ••• xyz]. The - can appear as itself only if used as the last or first character.
For example, the character class expression []-] matches the characters] and - .

+ A regular expression followed by + means one or more tt"mes. For example, [0- 9]+
is equivalent to [0- 9][0- 9]*.

{m} {m,} {m,u}
Integer values enclosed in {} indicate the number of times the preceding regular
expression is to be applied. m is the minimum number and u is a number~ less than
256, which is the maximum. If only m is present (e.g., {m}), it indicates the exact
number of times the regular expression is to be applied. {m,} is analogous to
{m,infinity}. The plus (+) and star (*) operations are equivalent to {I,} and {O,}
respectively.

(•••)$n The value of the enclosed regular expression is to be returned. The value will be
stored in the (n+ l)th argument following the subject argument. At present, at most
ten enclosed regular expressions are allowed. Regex makes its assignments uncondi­
tionally.

(•••) Parentheses are used for grouping. An operator, e.g. *, +, {}, can work on a single
character or a regular expression enclosed in parenthesis. For example,
(a*(cb+) *) $0.

By necessity, all the above defined symbols are special. They must, therefore, be escaped to be
used as themselves.

EXAMPLES
Example 1:

Page 1

char *cursor, *newcursor, *ptr;

newcursor = regex«ptr = regcmp("~\n", 0»), cursor);
free(ptr) ;

(9010-E)

REGCMP(3X) (UNIX 5.0) REGCMP(3X)

This example will mareh a leading new-line in the subject string pointed at by cursor.

Example 2:
char retO[9];
char *newcursor, *name;

name = regcmp("([A- Za- z][A- za- zo- 9J{O,7})$0", 0);
newcursor = regex(name, "123Testing321", retO);

This example will match through the string "Testing3" and will return the address of the char­
acter after the last marehed character (cursor+ 11). The string "Testing3 H will be copied to the
character array retO.

Example 3:
#include "ftle.i"
char *string, *newcursor;

newcursor = regex(name, string);

This example applies a precompiled regular expression in file.i (see regcmp(1» against string.

This routine is kept in /lib/libPW.a.

SEE ALSO

BUGS

ed(1), regcmp(1), malloc(3C).

The user program may run out of memory if regcmp is called iteratively without freeing the
vectors no longer required. The following user-supplied replacement for malloc(3C) reuses the
same vector saving time and space:

/* user's program * /

malloc(n) {
static int rebuf[256];
return re buf;

}

(9010-E) Page 2

WGRAF(3X) (Ridge) WGRAF(3X)

NAME
wgraf - graphics library for Ridge Tek4014 windows

SYNTAX
#include <sys/graf.h>

int Drawlnit (winclowForm)
struct Form *winclowForm;

DrawLine (xO, yO, xl, yl)
int xO, yO, xl, yl;

WriteScreen 0
QearScreen ()

QearBitmap 0
SetPenColor (newColor)
int newColor;

SetPen "Width (width)
intwidth;

DESCRIPTION

Page 1

The wgraf library provides a simple interface for drawing lines in a window on the Ridge
Monochrome Display. The calling process' control window must be in Tektronix: 4014tm

mode; these functions generate the appropriate Tektronix 4014 compatible graphics character
sequences. Some of the functions interface directly to the display management software and
allow control over several graphical attributes of the window.

The coordinate system used for specifying lines has 4096 points in the X direction, and 3120
points in the Y direction, with the origin in the lower left corner. This corresponds to the visi­
ble area on a Tektronix 4014 graphics terminal, which is then scaled to the actual size o,f the
window measured in Ridge display device coordinates.

Draw!n£t must be called once before the other functions. A new file descriptor is opened using
the name /dev/tty, which is used by the other functions to interact with the window. The
actual size of the window is returned in the structure pointed to by wt"ndowForm. The width
and height of the window are measured in Ridge display device coordinates, and the bits field is
set to O. A non-zero value returned by Draw!nt"t indicates an error, such as using a control ter­
minal that is not a window on the Ridge display.

DrawLine is used to draw a line from the point specified as xO,yO to the point specified as xl,yl.
The line is clipped to the Tektronix 4014 visible display area coordinate system, and the proper
character sequence for graphics mode output is generated. The output is buffered by DrawLine,
and not actually written until either the buffer fills, or one of the other functions described
below is called.

WriteScreen flushes the graphics output buffer to the window, and causes the display manage­
ment software to update the display screen.

ClearScreen sends the ESC FF sequence, which causes the window to be cleared and the graph­
ics cursor placed at the home position.

ClearBitmap clears the bitmap for the window, but does not cause the screen image to be
updated. This allows a new image to be generated in the bitmap for the window while the pre­
vious image is still being displayed on the screen.

SetPenColor sets the color to be used for line-drawing in the window according to newColor.
The color value determines whether black or white pixels are used to draw all lines for the win­
dow on the Ridge monochrome display. The values Black (the default) and White are defined

(9010-E)

i

WGRAF(3X) (Ridge) WGRAF(3X)

FILES

in the include file, while any other value will cause subsequent lines to be drawn using pixels
which are the complement of the current window background. The color is a window attribute,
and remains in effect until explicitly changed by this function.

SetPen Width sets the width in pixels of lines drawn in the window according to width. The
default value is one, but any value greater than zero may be specified, and will be used for all
subsequent lines drawn in the window. The line width is a window attribute, and remains in
effect until explicitly changed by this function.

/usr /lib /libwgraf.a

SEE ALSO
Ridge Multi- Window Display Management Guide
settek(1), graf(ax), windows(aX}, disp(7}, mouse(7}

(90IO-E) Page 2

WINDOWS(3X)

NAME
windows - window function library

SYNTAX

Pagel

#include <sys/graf.h>
#include <sys/winctrl.h>

int GetWindowNumber (fileDesc)
int fileDesc;

int GetCurrent Window ()

int GetNextWindow (wID)
intwID;

GetWlndowFrame (wID, frame)
intwID;
struct Rectangle *frame;

SetWindowFrame (wID, frame)
int wID;
struct Rectangle *frame;

int FindWindow (at)
struct Point *at;

char *GetTItle (wID)
int wID;

SetTItle (wID, name)
intwID;
char *name;

int GetWFlags (wID)
intwID;

SetWFlags (wID, flags)
intwID;
int flags;

ShowWindow (wID)
intwID;

EraseWindow (wID)
intwID;

SelectWindow (wID)
intwID;

UnderWindow (wID)
intwID;

SetCtrlWlndow (wID)
intwID;

KillWlndow (wID)
intwID;

int DefineFont (name)
char *name;

char *GetFontName (fontlD)
int fontlD;

(Ridge) WIND OWS (3X)

(90IO-E)

WINDOWS(3X)

int GetFontID (wID)
intwID;

SetFont (wID, fontID)
intwID;
int fontID;

GetWCharSize (wID, charSize)
intwID;
struct Point *charSize;

SetCursorLocation (wID, at)
intwID;
struct Point *at;

int PopupMenu (text, button)
char *text;
int button;

CompFrame (frame)
struct Rectangle *fram.e;

DESCRIPTION

(Ridge) WIND OWS (3X)

The windows subroutine library allows access to the various window attributes and operations
supported by the Ridge display management software. These functions perform the appropriate
ioctl{2} call for each operation, using file descriptor 2 {stderr} which should be bound to a win­
dow on the Ridge display. Functions that return an integer use the value -1 to indicate an
error.

GetWindowNumber returns the window ID of the window associated with the open file descrip­
tor filedesc. Each window is assigned a window ID when it is created; this integer is used to
identify the window in all subsequent control operations applied to it. A value of -1 indicates
that the file descriptor is not associated with a window on the display. GetCurrentWindow
returns the window ID of the currently selected active input window, which is always at the
front of the depth-sorted window list. GetNextWindow returns the window ID of the window

C which is next on the window list behind wID. The value -1 is returned if there are no more
windows farther back in the list.

GetWindowFrame returns the current location and size of the rectangular frame for wID, while
SetWindowFrame allows the location to be moved on the screen, or the size to be changed. The
frame argument is defined as a pointer to a Rectangle structure, whose origin is the upper left
corner, and extent is the width and height. The Point structure is a two-dimensional location
specifie.d in terms of display device coordinates. The < sys/graf.h> header file contains these
definitions:

struct Point {
int x;
int y;

};

struct Rectangle {

};

struct Point origin;
struct Point extent;

FindWindow returns the window ID of the frontmost window that contains the point at, which is
specified using display device coordinates. If a window can be found that contains the point
either within its frame or title tab, then its window ID .is returned; otherwise, the value -1 is
returned.

(90I0-E) Page 2

WIND OWS (3X) (Ridge) WIND OWS (3X)

Page 3

GetT£tle returns a pointer to a static area containing a null-terminated string, which should be
copied elsewhere by the caller. This string is used as the text for displaying the title tab for the
window wID, and is initialized to the window part of the pathname that was used to create the
window. SetT£tle changes the title string of the window wID to the null-terminated string
pointed to by name. Changing the title string does not change the name the window is accessed
by; the pathname of the window remains the same as when it was created. Changing a title to
the null string will cause the title tab to disappear.

GetWFlags returns the window tlags associated with the window wID, while SetWFlags sets the
window tlags for wID to the bit values specified in flags . . The flag bits control various attributes
of the window, as defined in the <sysjw£nctrl.h> header file:

WFMode mode bit field
WF ASCII ASCII mode
WFANSIX3_64 ANSI X3.64 (VT-100) mode
WFTek4014 Tektronix 4014 mode
WFAwake window is "awake" allowing I/O
WFCurson text input cursor is shown
WFRetainGraf window retains graphics

EMQueueKB queue keyboard events
EMSigIOKB signal I/O from keyboard
EMQueueLoc queue locator (mouse) events
EMLocCoords window or screen relative locator coords
EMLocMotion only button changes, or any motion
EMButtonMask button bits
EMRightButtonright button
EMMiddleButton middle button
EMLeftButton, left button
EMOtherButtons other buttons
EMSigIOLoc signal I/O from locator

Show W£ndow causes the window identified by wID to be redrawn on the screen, while Erase Win­
dow causes the window wID to be erased by repainting its area and title tab using the gray back­
ground pattern. These two functions are not normally used since window updates are per­
formed automatically by the display management software when windows are created, modified,
or destroyed.

SelectWindow causes the window identitled by wID to become the currently active input win­
dow, moving it to the front of the depth-sorted window list. The selected window is displayed
in front of all other windows, and its title tab is highlighted. All keyboard and mouse input
events are directed to the currently selected window. UnderWindow moves the window wID
behind all awake windows in the depth-sorted window list. This causes the new frontmost win­
dow in the list to become the currently selected window.

SetGtrlW£ndow changes the window which acts as the control terminal for the calling process to
become wID. The control window for a process is inherited from its parent process when it is
created. The signal SIGHUP is sent to all processes which have wID as their control window by
the fUnction Kill Window.

DefineFont makes the font file specified as the full pathname name known to the display
management software. The value returned is a font ID that is used in further operations on
that font; the value -1 is returned if the file cannot be read, or if it does not contain valid font
information. GetFontName returns a pointer to a null-terminated string that is the pathname
corresponding to fontlD. The string is placed in a static area which should be copied to another
area by the caller.

(9010-E)

WINDOWS(ax) (Ridge) WIND OWS (3X)

FILES

GetFontID returns the current font ID associated with the window wID, while SetFont sets the
window font for wID to the font specified as fontID. GetWGharSize returns the size of a single
character in the current bit-matrix font associated with window wID. The size is returned in the
Point structure pointed to by charSize, and is measured in pixels. This may be used to calculate
the number of lines and columns of text that can be displayed based on the window's size.

SetOursorLocation sets the current cursor location relative to the window wID. The coordinate
system used for the X,Y position pointed to by at depends on the emulation mode of the win- .
dow, and its event mode bits in the flags word

If the EMLocCoords bit is set, then display device coordinates are used, and the location can be
set to any value. If the EMLocCoords bit is not set, then the coordinate system is translated
relative to the location of the window on the display surface, and may be scaled depending on
the current mode of the window.

If the window is emulating a Tektronix 4014 terminal, then the X coordinates range from 0 to
1024, and the Y coordinates range from 0 to 780, with the origin in the lower left corner of the
window. The display device coordinates of the cursor are appropriately scaled based on the size
of the window.

If the window is not in Tektronix 4014 mode, then display device coordinates are used, but are
first translated relative to the origin of the window. The X coordinates range from 0 to one less
than the width of the window, and the Y coordinates range from 0 to one less than the height
of the window, with the origin in the upper left corner of the window.

PopupMenu invokes a pop-up menu at the current location of the cursor. The null-terminated
string of text pointed to by text contains several short lines separated by Newline characters.
The button parameter contains a bit mask in the lowest three bits, with the least significant bit
representing the right button, the middle bit the middle button, and the most significant bit the
left button. The text is shown on the screen, and selection is allowed, while a button is
depressed which has the corresponding bit set to 1. When the button is released, the selected
line's index (counting from one) is returned. If the button is released outside of the menu, the
value zero is returned.

GompFrame outlines the Rectangle pointed to by frame, drawing the outline once using the
complement of the background, updating the screen, and then drawing the outline again using
the complement, effectively restoring the original bitmap. The non-destructive outline is typi­
cally used repeatedly to draw a rectangle that tracks the cursor. The location and size are
specified using displ33' device coordinates.

/usr/lib/libwindows.a

SEE ALSO
Ridge Multi- Window Display Management Guide
setfont(l), settek(l), setx9.64(l), wgraf(8X), font(4), disp(7), mouse(7)

(90IO-E) Page 4

BLANK

Ci

INTRO(4) (UNIX 5.0) INTRO(4)

NAME
intro - introduction to file formats

DESCRIPTION

Pagel

This section outlines the formats of various files. The C struct declarations for the file formats
are given where applicable. Usually, these structures can be found in the directories
/usr/include or /usr/include/sys.

(90IO-E)

A.OUT(4) (bsd 4.2) A.OUT(4)

NAME
a.out - assembler and link editor output

SYNTAX
#inelude <a.out.h>

DESCRIPTION
A.out is the output file of the assembler as(I) and the link editor ld(l). Both programs make
a.out executable if there were no errors and no unresolved external references. Layout infor­
mation as given in the include file for the Ridge is:

/*
* Header prepended to each a.out file.

*/
struct exec {

};

unsigned long a_magic;
unsigned short r_brofsett;
unsigned short a_type;
unsigned long a_version;
unsigned long a_text;
unsigned long a_data;
unsigned long a_bss;
unsigned long a_syms;
unsigned long a_entry;
unsigned long a_trsize;
unsigned long a_drsize;

#define RMAGIC Ox9bOOOOOO
#define RMAG ICI Ox9bOl0000

/* magic number */
/* offset for previous magic */
/* type field */
/* version field */
/* size of text segment */
/* size of initialized data */
/* size of uninitialized data */
/* size of symbol table */
/* entry point */
/* size of text relocation */
/* size of data relocation */

/* Ridge magic */

#deflne NEWHDR (sizeof (struct exec»
/ * Ridge magic - shared code & data */
/* header size */

/*
* Macros which take exec structures as arguments and tell whether
* the flle has a reasonable magic number or offsets to text, symbols, or strings.
* A check has been added to make sure that the header is an exec struct.
*/

#deflne N_BADMAG(x) .
««x) .aJIlagic & OxffOOOOOO) != RMAGIC)
«x).r_brofsett!= NEWHDR) I
«x).a_type == 0) I
«x) .a_version == 0»

#deflne N_TXTOFF(x)
#deflne N-1'YMOFF(x)

#deflne N_S'IROFF(x)

(sizeof (struct exec»
(N_TXTOFF(x) + (x) .a_text+ (x) .a_data + (x) .a_trsize+ (x) . a_drsiz e)

(N_SYMOFF(x) + (x) .a_syms)

Pagel

The flle has flve sections: a header, the program text and data, relocation information, a symbol
table and a string table (in that ·order). The last three may be omitted if the program was
loaded with the '- s' option of ld or if the symbols and relocation have been removed by
strip(l) .

In the header the sizes of each section are given in bytes. The size of the header is not
included in any of the other sizes.

(9010-E)

A.OUT(4) (bsd4.2) A.OUT(4)

When an a.out DIe is executed, two physical segments are set up: the code and data segments.

The code segment begins at location 0, and consists of the program header and the text seg­
ment from the a.out DIe. This is the executable code of the program.

The data segment consists of initialized data, unisitialized data (bss), and a runtime stack. Nor­
mally, initialized data begins at location 0 of the data segment, and is copied from the a.out DIe
to the -data segment when the program begins execution. The initialized data is immediately
followed by uninitialized data (bss). Uninitialized data starts out as all zeros. The runtime stack
begins at the highest possible location and grows downward.

The stack will occupy the highest possible locations in the data segment: growing downwards.
The stack is automatically extended as required. The data/bss area is only extended as
requested by brk(2).

After the header in the DIe follow the text, data, text relocation data relocation, symbol table
and string table in that order. The text begins immediately after the header. The N_TXTOFF
macro returns this absolute DIe position when given the name of an exec structure as argument.
Initialized data is contiguous with the text and immediately followed by the text relocation and
then the data relocation information. The symbol table follows all this; its position is computed
by the N_SYMOFF macro. Finally, the string table immediately follows the symbol table at a
position which can be gotten easily using N_S TR OFF . The Drst 4 bytes of the string table are
not used for string storage, but rather contain the size of the string table; this size INCLUDES
the 4 bytes, the minimum string table size is thus 4.

The layout of a symbol table entry and the principal flag values that distinguish symbol types
are given in the include DIe /usr/include/a.out.h as follows:

/*
* Format of a symbol table entry; this DIe is included by <a.out.h>
* and should be used if you aren't interested the a.out header
* or relocation information.

*/
struct nUst {

union {
char
long

} n_un;

*n_name;
n_strx;

/* for use when in-core */
/* index into DIe string table */

unsigned char n_type; /* type Dag, i.e. N_'IEXT etc; see below */
/* unused */ char n_other;

short n_desc;
unsigned long
};
#deDne

/* see <stab.h> */
/* value of this symbol (or dbx offset) */

* Simple values for n_type.

*/
#deDne N_UND F
#deDne N_ABS
#deDne N_TEXT
#deDne N_D A TA
#deDne N_BSS Ox8
#deDne N_COMM
#deDne N_FN Oxlf

(9010-E)

OxO /* undefined */
Ox2 /* absolute */
Ox4 /* text */
Ox6 /* data */
/* bss */
Oxl2 /* common (internal to Id) */
/* file name symbol */

Page 2

A.OUT(4) (bsd4.2) A.OUT(4)

#define N.ftXT
#define N_TYPE

01 /* external bit, or'ed in */
Oxle /* mask for all the type bits */

/*
* Dbx entries have some of the N_STAB bits set.
* These are given in <stab.h>

*/
#define N_STAB OxeO /* if any of these bits set, aD bx entry */

/*
* Format for namelist values.

*/
#define N_FORMAT "o/c08x"

In the a.out file a symbol's n_un.n_strx field gives an index into the string table. A n_strx
value of 0 indicates that no name is associated with a particular symbol table entry. The field
n_un.n_name can be used to refer to the symbol name only if the program sets this up using
n_strx and appropriate data from the string table.

If a symbol's type is undefined external, and the value field· is non-zero, the symbol is inter­
preted by the loader /d as the name of a common region whose size is indicated by the value of
the symbol.

The value of a byte in the text or data which is not a portion of a reference to an undefined
external symbol is exactly that value which will appear in memory when the file is executed. If
a byte in the text or data involves a reference to an undefined external symbol, as indicated by
the relocation information, then the value stored in the file is an offset from the associated
external symbol. When the file is processed by the link editor and the external symbol
becomes defined," the value of the symbol will be added to the bytes in the file.

If relocation information is present, it amounts to eight bytes per relocatable datum as in the
following structure:

/*
* Format of a relocation datum.

*/
struct relocation_info {

int r_address; /* address which is relocated */
unsigned int r_symbolnum:24, /* local symbol ordinal */

rJ)crel:l, /* was relocated pc relative already */
r_length:2, /* O=byte, l=word, 2=long */
r_extern:l, /* does not include value of sym referenced */
r_relocate:4; /* 1 => ridge specific load or lad dr, fixup */

};

There is no relocation information if a_trsize+ a_drsize==O. If r_extern is 0, then
r_symbolnum is actually a n_type for the relocation (i.e. N_'IEXT meaning relative to segment
text origin.)

SEE ALSO
as(1), Id(1), nm(1), dbx(1), stab(4), strip(1), map(1)

Page 3 (9010-E)

AR(4) (bsd 4.2) AR(4)

NAME
ar - archive (library) file format

SYNTAX

#include < ar.h>

DESCRIPTION
The archive command ar combines several. files into one. Archives are used mainly as libraries
to be searched by the link-editorld.

A file produced by ar has a magic string at the start, followed by the constituent files, each pre­
ceded by a file header. The magic number and header layout as described in the include file
are:

#define ARMAG "!<arch>\n"
#define SARMAG S
#define ARFMAG "'\n"
struct arf_hdr { /* archive file member header */

char arf_name[16] ;/* file member name */
char arf_date[12] ;/* file member date */
char arf_uid[6] ;/* file member user ident,ification */
char arfJid[6] ;/* file member group identification */
char arf_mode[s] ;/* file member mode */
char arf_size[10] ;/* file member size */
char arf_fmag[2] ;/* */

} . . ,

The name is a blank-padded string. The arJmag field contains ARFMAG to help verify the
presence of a header. The other fields are Ie ftradjusted, blank-padded numbers. They are
decimal. except for ar_mode, which is octal.. The date is the modification date of the file at the
time of its insertion into the archive.

Each file begins on an even (0 mod 2) boundary; a new-line is inserted between files if neces­
sary. Nevertheless, the size given refiects the actual size of the file exclusive of padding.
There is no provision for empty areas in an archive file.

The encoding of the header is the same on UNIX System V release 2, bsd 4.1, and bsd 4.2. If
an archive contains printable files, the archive itself is printable.

SEE ALSO

BUGS

Pagel

ar(1), ld(1), nm(1)

File names lose trailing blanks. Most software dealing with archives takes even an included
blank as a name terminator.

(90l0-E)

BADBLOCKS(4) (Ridge) BAD BL0 CKS(4)

NAME
badblocks - media defect list for hard discs

DESCRIPTION

Pagel

Badblocks is the only file on the "badblocks" floppy disc shipped with each 445-Mb disc.

Winchester-type hard discs (including all Ridge discs), come from the factory with a list of their
own manufacturing defects. For the 60- or 142-Mb disc in the Ridge 32C cabinet, the bad block
table is permanently encoded on the disc and printed on paper in a plastic pocket that stays with
the unit. For the 445-Mb disc unit in the companion cabinet, and the 80- or 180-Mb disc in
the Ridge 32S, the bad block information is distributed on a separate floppy disc.

The badblocks file on the badblocks floppy disc describes the cylinder, surface (or head), byte
offset from the disc .index mark, and length in bits of each defect.

On ROS 3.1 and subsequent releases, the defect list is kept on the floppy in the following for­
mat:

cyl-num head-num byte-offset bit-length

example:

12 4 2359 16
104 7 12304 3
66 5 3412 2

In the sad event that the system must be rebuilt, the the 445-Mb badblocks floppy must be
available.

(9010-E)

CONF(4) (Ridge) CONF(4)

NAME
Conf - Device Configuration File

DESCRIPTION
/ros/com is the device configuration file which is read. at system startup time to automatically
configure the device boards.

Each board in the system is assigned a unique physical identifier; each type of board has a
unique type identifier. For example, the tape drive has a device type equal to 32 (20 hex).

At system initialization time, all the device types are found by reading all the boards in the sys­
tem.

Entries in the configuration file contain a device type name and an associated device driver
program file name. Each field is delimited by a ':' and each entry appears on a separate line.

device type: file name

For example: :l:/drivers/fdlp

When the system is started, the system detects the installed boards and searches the com file
for an entry of its type. If found, the associated file is assumed to be a device driver and as
loaded and started. There is a one-to-one relationship between the boards and the conf entries.
If there are multiple boards of the same type, there must exist multiple entries to start a driver
for each board.

EXAMPLE

Pagel

The following device boards are present in the system:

board qty type
FDLP 2 1
Tape
Ether

1
1

32
48

file: :l:/drivers/fdlp
:32:/drivers/td
:48:/drivers/ether
:49:/drivers/colordisp

Files corresponding to device type 1, 32, 48 are loaded. Even though there are two FDLP
boards, only one is started. No driver is started for device type 49 (Ridge color display)
because the board is not present in the system.

With the load enable switch set (warm-boot, cold-boot) the device types for each device in the
system is listed.

A complete list of the devices types is presented below:

Ridge I/O Device assigments:

Device Type
decimal hex Dev'':ce Description

(9010-E)

CONF(4) (Ridge) CONF(4)

0 0
1 1 Floppy Disk
2 2 ANSI Disk controller
3 3 SMD disk controller
4 4 Ridge Monochrome Display
5 5 Ridge Monochrome D isp Keyboard
6 6 }

. } -- > Ridge Devices (reserved)
31 IF}

32 20 Tape controller
21 2F Ridge devices (reserved)
48 30 DRll to ethernet
49 31 DRll keyboard
50 32 D Rl1 to Color Display
51 33-3B Ridge DR11 devices (reserved)
51 3C-3F Customer D Rll devices (available)
51 40-DF Ridge devices (reserved)
51 EO-EF Customer devices (aVailable)
51 FO-FF Ridge devices (reserved)

(9010-E) Page 2

CPIO(4) (UNIX 5.0) CPIO(4)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the - c option of cpio(1) is not used, is:

I I 1. struct { short h_magic, h_dev;
h_mode,

short h_nlink,
h_namesize,

char h_name [h_namesize rounded to word]; } Hdr;

When the - c option is used, the header information is described by:

ssc anf(Ch dr, "o/c6oo/c6oo/c6oo/c6oo/c6oo/c6oo/c6oo/c6oo/o111oo/c6oo/o111o%3",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.hJid, &Hdr.h_nlink, &Hdr.h_rdev,
&Longtime, &Hdr.h_namesize,&Longfile,Hdr.h_name);

ushort h_ino,
hJid;

h_mtime[2] ,
h_filesize[2] ;

Longtime and Longfile are equivalent to H dr.h_mtime and H dr.hJile8ize, respectively. The con­
tents of each file are recorded in an element of the array of varying length structures, archive,
together with other items describing the file. Every instance of h_magic contains the constant
070707 (octal). The items h_dev through h_mtime have meanings explained in 8tat(2). The
length of the null-terminated path name h_name, including the null byte, is given by
h_na mesize . .

The last record of the archive always contains the name TRAILER!!!. Special files, directories,
and the trailer are recorded with hJilesize equal to zero.

SEE ALSO

NOTES

Page 1

cpio(1), find(1), stat(2B) .

For reasons of compatibility, the inode (file designator), device, and rdevice fields are kept as
short integers. These fields are actually kept as 32-bit integers within the ROS system.

(90IO-E)

DIR(4) (UNIX S.O) DIR(4)

NAME
dir - format of directories

SYNTAX

#include <sys/dir.h>

DESCRIPTION

FILES

A directory is like an ordinary file, except that no user may write into a one. A directory is dis­
tinguished from a file by a bit in the fiag word of its file table entry (see f8(4». The structure
of a directory entry (as given in /usr/include/sys/dir.h) is:

#ifndef D IRSIZ
#define DIRSIZ 16

#endif
struct direct
{

};

vers_t d_vers;
ino_t d_ino;
char d_name[DIRSIZ];

By convention, the first two entries in each directory are ... " for the directory itself, and " •• "
for the parent directory. Because the root directory (.. j") has no parent, " has the same
meaning as "." in that case.

The 18(1} command with the -al option lists the ... " file.

jusr jinclude jsysj dir.h

SEE ALSO
fs(4).

Pagel (90l0-E)

FONT(4) (Ridge) FONT(4)

NAME
font - format of Ridge bit-matrix fonts

SYNTAX
#include <sys/font.h>

DESCRIPTION

Page I

A Ridge bit-matrix font file contains a header and a sequence of pixel patterns or "glyphs"
corresponding to the images of individual characters. The file also has a table of indices into
the bit-matrix patterns for each character in the font.

The structure of a font file is given in the include file, where the last two fields are actually
variable length arrays of 32-bit words:

struct Font {

};

int format;
int min;
int max;
int maxWidth;
int length;
int ascent;
int descent;
int xOffset;
int formWidth;
int glyphs[l]; /* variable length */
int x Table [I] ; /* variable length */

The format field contains a magic number which identifies the file as containing bit-matrix font
information. The value for this field is given by the following define in the include file:

#defIne FontMagic OxABCDDCBA

The min field contains the smallest legal ASCII value for this font. Characters less than this
value will be displayed using the glyph for the illegal character (indexed by max+ 1). The max
field contains the largest legal ASCII value for this font. There should always be a glyph for
each character from min to max+ 1, where the extra glyph is used for displaying characters that
fall outside the range.

The max Width field contains the width in bits of the widest character in the font. The height in
bits above (and including) the baseline is kept in ascent, while the height in bits below the base­
line is kept in descent. All characters in a font have the same bit-matrix height (ascent + des­
cent), but may vary in width. The bit-matrix for each character should include appropriate
white space around each character so that bit-matrices may be placed side-by-side in both the
horizontal and vertical directions. The xOffset field is normally zero, but can be negative for a
font with ligatures. The offset value is added to the normal width of each character before
advancing to the next character in a string being printed horizontally.

The glyphs array of 32-bit words contains the actual bits for all the characters in a form suitable
for the GopyBits(3) operation. The array is of variable length, composed of a number of rasters
equal to the font's height, with each raster measuring form Width bits long (rounded up to the
next integral 32-bit word). Each raster corresponds to a row slice through the bit-matrices of all
the characters packed together horizontally. Thus, formWidth is the sum of all the characters'
widths in bits.

The xTable array of words is of variable length and is indexed by a character's ASCII value,
justified to index from min through max+ 2. The contents of each entry is the left X (meas­
ured in bits) within the glyphs for the selected character. The entries are ordered in increasing
value, and thus the difference between two adjacent entries represents the width of the

(9010-E)

FONT(4) (Ridge) FONT(4)

FILES

character indexed by the smaller indice. The max+ 1 entry is the left X for the "illegal" char­
acter glyph, and the max+ 2 entry contains the value one greater than the right X of the "ille­
gal" character glyph.

The length field contains the number of 32-bit words in the font following this field. This value
can be computed as:

7 + (max - min) +
«(formWidth + 31) / 32) * (ascent + descent»

/usr/include/sys/font.h

SEE ALSO
setfon t(1), windows(3X), disp(7)

(9010-E) Page 2

FSPEC(4) (UNIX 5.0) FSPEC(4)

NAME
fspec - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on the UNIX System with non-standard tabs,
(I.e., tabs which are not set at every eighth cOlumn). Such files must generally be converted to
a standard format, frequently by replacing all tabs with the appropriate number of spaces,
before they can be processed by UNIX System commands. A format specification occurring in
the first line of a text file specifies how tabs are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks and surrounded
by the brackets <: and : >. Each parameter consists of a keyletter, possibly followed immedi­
ately by a value. The following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file. The value of tabs must be
one of the following:

1. a list of column numbers separated by commas, indicating tabs set at the
specified columns;

2. a - followed immediately by an integer n, indicating tabs at intervals of n
columns;

3. a - followed by the name of a "canned" tab specification.

Standard tabs are specified by t- 8, or equivalently, tl,9,17,25,etc. The canned
tabs which are recognized are defined by the tabs(1) command.

ssize The s parameter specifies a maximum line. size. The value of size must be an
integer. Size checking is performed after tabs have been expanded, but before the
margin is prepended.

mmargin The m parameter specifies a number of spaces to be prepended to each line. The
value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the iine containing the
format specification is to be deleted from the converted file.

e The e parameter takes no value. Its presence indicates that the current format is to
prevail only until another format specification is encountered in the file.

Default values, which are assumed for parameters not supplied, are t- 8 and mO. If the s
parameter is not specified, no size checking is performed. If the first line of a file does not con­
tain a format specification, the above defaults are assumed for the entire file. The following is
an example of a line containing a format specification:

* <:t5,lO,15 s72:> *
If a format specification can be disguised as a comment, it is not necessary to code the d param­
eter.

Several UNIX System commands correctly interpret the format specification for a file. Among
them is gath (see send(lC» which may be used to convert files to a standard format acceptable
to other UNIX System commands.

SEE ALSO

ed(1), newform(1), send(lC), tabs(1).

Pagel (90l0-E)

GE'ITYDEFS(4) (UNIX 5.0) GETIYDEFS(4)

NAME
gettydefs - speed and terminal settings used by getty

D ESCRIPTI ON

FILES

Page 1

The /ete/gettydefs file contains information used by getty{l} to set up the speed and terminal
settings for a line. It supplies information on what the login prompt should look like. It also
supplies the speed to try next if the user indicates the current speed is not correct by typing a
< break> character.

Each entry in /ete/getJ;ydefs has the following format:

label# initial-flags # flnal-flags # login-prompt #next-Iabel

Lines that begin with # are ignored and may be used to comment on the flle. Each entry,
including comment entries, must be followed by a blank line. The various flelds can contain
quoted characters of the form \b, \n, \c" etc., as well as \nnn, where nnn is the octal value of
the desired character. The various flelds are:

label This is the string to which getty tries to match its second argument. It is often the
speed, such as 1200, at which the terminal is supposed to run, but it needn't be
(see below).

initial-flags
These flags are the initial ioctl (2) settings to which the terminal is to be set if a ter­
minal type is not specified to getty. Getty understands the symbolic names specified
in /usr/inclucle/sys/termio.h (see termio (7». Normally, only the speed flag is
requried in the initial-flags. Getty automatically sets the terminal to raw input mode
and takes care of most of the other flags. The initial-flag settings remain in effect
until getty executes login(1).

final-flags These fiags assume the values of initial flags and are set just before getty executes
logt,"n. The speed flag is again required. The composite flag SANE takes care of most
of the other flags that need to be set so that the processor and terminal are com­
municating in a rational fashion. The other two commonly specified final-flags are
TAB3, so that tabs are sent to the terminal as spaces, and HUPCL, so that the line
is hung up on the final close.

logan-prompt
This entire field is printed as the login-prompt. Unlike the above fields where white
space is ignored (a space, tab, or neW-line), they are included in the login-prompt
field.

next-label This indicates the next label of the entry in the table that getty should use if the
user types a < break> or the input cannot be react. Usually, a series of speeds are
linked together in this fashion, into a closed set. For instance, 2400 linked to 1200,
which in turn is linked to 300, which finally is linked to 2400.

If getty is called without a second argument, then the first entry of /ete/gettyclefs is used, thus
making the first entry of /ete/getJ;ydefs the default entry. It is also used if getty can't find the
specified label. If /efu/gettyclefs itself is missing, there is one entry built into the command
which will bring up a terminal at 9600 baud.

It is strongly recommended that after making or modifying /fB/etc/gettydefs, it be run through
getty with the check option to be sure there are no errors.

/etc/gettydefs

(90lO-E)

GROUP(4) (UNIX 5.0) GROUP(4)

NAME
group - group file

DESCRIPTION
jere/group allows a password to be associated with user groups, and records which users are
allowed to execute newgrp(1) to gain access to each group. (Groups are established by assign­
ing group numbers to users in the /ere/passwd file.) fete/group is an ascii file for associating
passwords with groups. It contains the following information for each group:

name: encrypted-password: group-ID-num : list-oj-users

The fields are separated by colons. Additional group entries appear on separate lines.

Name is the group-name used in newgrp(1) and chgrp(1).

Encrypted-password should not be used. If the password field is null, no password is demanded.

Group-ID-num corresponds to the field of the same name in the /ere/passwd file.

List-oj-users is a list of user ID names, separated by commas, who are allowed to use newgrp(1)
to enter this group.

This file has general read permission so that the encrypted passwords can be read. It can be
used, for example, to map numerical group ID's to names.

EXAMPLE

FILES

root::O:root
other::l:
bin ::2 :root, bin, daemon
sys::3 :root, bin,sys, adm
adm::4 :root, adm, daemon
mail::6:root
rje::8:rje,shqer
daemon::12:root,daemon
cad::13:biU,ron,kevin
cam::14:glenn,dan
aok::15:bruce ,carol, cheryl

jete/group
/ ete /passwd

SEE ALSO

chgrp(1), newgrp(1), passwd(1), passwd(4)

Page 1 (9010-E)

HOSTS(4) (bsd4.2) HOSTS(4)

NAME
hosts - host name data base

DESCRIPTION
The hosts file contains information regarding the known hosts on the DARPA Internet. For
each host a single line should be present with the following information:

official host name
Internet address
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the
beginning of a comment; characters up to the end of the line are not interpreted by routines
which search the file. This file is normally created from the official host data base maintained at
the Network Information Control Center (NIC), though local changes may be required to bring
it up to date regarding unofficial aliases and/or unknown hosts.

Network addresses are specified in the conventional "." notation using the ineLaddr() routine
from the Internet address manipulation library, inet(3N). Host names may contain any print­
able character other than a field delimiter, newline, or comment character.

EXAMPLE

FILES

Pagel

local hosts database

126.1 machine1 manufacturing mailroom
126.2 machine2 marketing guardhouse
126.3 machine3 gardencenter

jete/hosts

(9010-E)

INI'ITAB(4) (UNIX 5.0) INITTAB(4)

NAME
inittab - script for the startup process

DESCRIPTION

Page 1

The inittab file supplies the script to startup's role as a general process dispatcher. The process
that constitutes the majority of startup process dispatching activities is the line process fetefgetty
that initiates individual terminal lines. Other processes typically dispatched by startup are dae­
mons and the shell.

The inittab file is composed of entries that are position dependent and have the following for­
mat:

id:rstate : action :process

Each entry appears on a separate line. Backslash \ in the first character position indicates a con­
tinuation line. Up to 512 characters per entry are permitted. Comments may be inserted in the
process field using the sh (1) convention for comments. Comments for lines that spawn gettys
are displayed by the who (1) command. It is expected that they will contain some information
about the line such as the location. There are no limits (other than maximum entry size)
imposed on the number of entries within the inittab file. The entry fields are:

id This is one to four characters used to uniquely identify an entry.

rstate
THIS FIELD IS CURRENTLY IGNORED. For process scheduling, this field defines
the run-level at which this entry is to be processed. Each process spawned by startup is
assigned one or more run-levels, ranging from 0 to 6, which determine the the machine
states under which that process can run. If the system is operating in run-levell, for
example, only the processes having a "1" in the rstate field will be processed. When
startup is requested to change run-levels, all processes wich do not have an entry in the
rstate field for the target run-level will be sent the warning signel (SIG1ERM) and
allowed a 20 second grace period before being forcibly terminated by a kill signal (SIG­
KILL). The rstate field can define multiple run-levels for a process by selecting more
than one run-level in any combination from 0-6. If no run-level is specified, then aetz'on
will be taken on this process for all run-levels 0-6. The state field can also contain &, b, or
e. Entries with these characters are processed only when the telstartup process requests
them to be run, regardless of the current system run-level. They differ from run-levels
in that the system is only in these states for as long as it takes to execute all the entries
associated with the states. A process started by an a, b, or e command is not killed
when startup changes levels. They are only killed when startup changes levels. They are
only killed if their line in /etc/inittab is marked off in the action field, their line is
deleted entirely from /ete/inittab, or startup goes into the SINGLE USER state.

action Keywords in this field tell startup how to treat the process specified in the process
field. The actions recognized by startup are currently limited to the following:

respawn

orf

If the process does not exist, start the process, do not wait for its termination
(continue scanning the inittab file), and when it dies restart the process. If the
process currently exists then do nothing and continue scanning the 'inittab file.

If the process associated with this entry i.s currently running, send the warning
signal (SIG'IERM) and wait 20 seconds before forcibly terminating the process
via the fill signal (SIGKILL). If the process is nonexistent, ignore the entry.

(9010-E)

INITrAB(4) (UNIX 5.0) INI'I'TAB(4)

FILES

proceS8
This is a sh command to be executed. The entire process field is prefixed with exec and
passed to a forked sh as sh -c 'exec command'. For this reason, any legal sh syntax can
appear in the process field. Comments can be inserted with the ;#comment syntax. Only
entries with /ek/getty or /ek/mount in this field are currently recognized.

/ etc /inittab

SEE ALSO
getty(1), sh(1), who(1), exec(2B), open(2B), signal(2B)

(90I0-E) Page 2

ISSUE(4) (UNIX 5.0) ISSUE(4)

NAME
issue - issue identification file

DESCRIPTION

FILES

The file /ek/issue contains the issue or project identification to be printed as a login prompt.
This is an ASCII file which is read by program getty and then written to any terminal spawned
or respawned from the inittab file.

jete/issue
/ete/inittab

SEE ALSO
login(1).

Pagel (gOlD-E)

MN'ITAB(4) (UNIX 5.0) MNTrAB(4)

NAME
mnttab - mounted file system table

SYNTAX
#include <mnttab.h>

DESCRIPTION
Mnttab resides in directory feu: and contains a table of devices, mounted by the mo'Unt(1) com­
mand. in the following structure as defined by <mnttab.h>:

struct mnttab {

};

char mt_dev[10];
char mt_ftlsys[10];
short mt_ro_flg;
time_t mt_time;

Each entry is 26 bytes in length; the first 10 bytes are the null-padded name of the place
where the speciai file is mounted; the next 10 bytes represent the null-padded root name of
the mounted special file; the remaining 6 bytes contain the mounted spec,,·al file'S read/write
permissions and the date on which it was mounted.

The maximum number of entries in mnttab is based on the system parameter NMOUNT
located in /usr/sre/uts/cf/conf.e. which defines the number of allowable mounted special
files.

SEE ALSO
mount(1), setmnt(1).

Page 1 (9010-E)

.NETRC(4) (Ridge) .NETRC(4)

NAME
.netrc - login profile for network users

DESCRIPTION

FILES

.neue is a login profile for users of ftP(I) .

• neue is located in the user's home directory ($HOME), similar to • profile. .neue is normally
read upon using the ftp "open" command, in conjunction with the ftp automatic login feature.

The file consists of one or more entries, formatted as follows:

machine machinename login loginname [password password]

A user may have one such entry for each machine on which he wants automatic login. If the
password password fields exist in the entry, the .netrc file must not have "read access" for the
group and other users. The access mode must be -rw-------.

If the user has no .netrc file, he will be prompted for a login name and password upon
attempting to connect to a remote system (via the ftp "open" command).

$HOMEj.netrc

SEE ALSO

ftp(1), hOsts(4)

Page 1 (90I0-E)

NETWORKS (4) (bsd 4.2) NETWORKS(4)

NAME
networks - network name data base

DESCRIPTION
The networks file contains information regarding the known networks which comprise the
DARPA Internet. For each network a single line should"be present with the following informa­
tion:

official network name
network number
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates a com­
ment line. This file is normally created from the official network data base maintained at the
Network Information Control Center (NIC), though local changes may be required to bring it
up to date regarding unofficial aliases and/or unknown networks.

Network number may be specified in the conventional"." notation using the ineCnetworkO
routine from the Internet address manipulation library, ~'net(3N). Network names may contain
any printable character other than a field delimiter, newline, or comment character.

EXAMPLE

network table

mynet 126 ours

FILES
/ etc /networks

Page 1 (90IO-E)

PASSWD(4) (UNIX 5.0) PASSWD(4)

NAME
passwd - password file

DESCRIPTION

FILES

Pa88wd contains for each user the following information:

login-name
encrypte d-password
user-ID-num
group-ID-num
optional field
initial working directory
program to use as Shell

This is an ASCII file. Each field within each user's entry is separated from the next by a colon.
Only the first eight characters of the login-name are significant. The optional field typically con­
tains the user's full name, but may contain any information, or be empty. The GCOS field is
used only when communicating with that system, and in other installations can contain any
desired information. Each user is separated from the next by a neW-line. If the password field
is null, no password is demanded; if the Shell field is null, the Shell itself is used.

This file resides in directory leU!. Because of the encrypted passwords, it can and does have
general read permission and can be used, for example, to map numerical user ID numbers to
names.

The encrypted password consists of 13 characters chosen from a 64 character alphabet (., I,
0- 9, A- Z, a- z), except when the password is null in which case the encrypted password is
also nUll. Password aging is effected for a particular user if his encrypted password in the pass­
word file is followed by a comma and a non-null string of characters from the above alphabet.
(Such a string must be introduced in the first instance by the super-user.)

The first character of the age, M say, denotes the maximum number of weeks for which a pass­
word is valid. A user who attempts to login after his password has expired will be forced to
supply a new one. The next character, m say, denotes the minimum period in weeks which
must expire before the password may be changed. The remaining characters define the week
(counted from the beginning of 1970) when the password was last changed. (A null string is
equivalent to zero.) M and m have numerical values in the range 0- 63 that correspond to the
64 character alphabet shown above (i.e. I = 1 week; z = 63 weeks). If m = M = 0 (derived
from the string • or ••) the user will be forced to change his password the next time he logs in
(and the "age" will disappear from his entry in the password file). If m > M (signified, e.g.,
by the string ./) oniy the super-user will be able to change the password.

/ etc /passwd

SEE ALSO
login(1), passwd(1), a641(3C), crypt(3C), getpwent(3C), group(4).

Pagel (9010-E)

PLOT(4) (UNIX 5.0) PLOT(4)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in plot(3X) and are interpreted for vari­
ous devices by commands described in tplot(lG). A graphics file is a stream of plotting instruc­
tions. Each instruction consists of an ASCII letter usually followed by bytes of pinary informa­
tion. The instructions are executed in order. A point is designated by four bytes representing
the x and y values; each value is a signed integer. The last designated point in an I, m, n, or p
instruction becomes the "current point" for the next instruction.

Each of the following descriptions begins with the name of the corresponding routine in
plot(3X) .

m move: The next four bytes give a new current point.

n cont: Draw a line from the current point to the point given by the next four bytes. See
tplot(lG).

P point: Plot the point given by the next four bytes.

1 line: Draw a line from the point given by the next four bytes to the point given by the fol­
lowing four bytes.

t label: Place the following ASCII string so that its first character falls on the current point.
The string is terminated by a new-line.

e erase: Start another frame of output.

f linemod: Take the following string, up to a new-line, as the style for drawing further lines.
The styles are "dotted", "solid", "longdashed", "shortdashed", and "dotdashed".
Effective only for the - T4014 and - 'I'ver options of tplot(lG) (Tektronix 4014 terminal
and Versatec plotter).

s space: The next four bytes give the lower left corner of the plotting area; the following four
give the upper right corner. The plot will be magnified or reduced to fit the device as
closely as possible.

Space settings that exactly fill the plotting area with unity scaling appear below for devices sup­
ported by the filters of tplot(lG). The upper limit is just outside· the plotting area. In every
case the plotting area is taken to be square; points outside may be displayable on devices whose
face is not square.

DASI300
DASI300s
DASI450
Tektronix 4014
Versatec plotter
Monochrome disp

space(0, 0, 4096, 4096);
space(0, 0, 4096, 4096);
space(o, 0, 4096, 4096);
space(0, 0, 3120, 3120);
space(0, 0, 2048, 2048);
space(0, 0, 1024, 800);

SEE ALSO

graph(1 G), tplot(1 G), plot(3X), term(5).

Pagel (90l0-E)

PROFILE(4) (UNIX 5.0) PROFILE(4)

NAME
profile - setting up an environment at login time

DESCRIPTION

FILES

If your login directory contains a file named • profile, that file will be executed (via the shell's
exec .profile) before your session begins; .profiles are handy for setting exported environment
variables and terminal modes. If the file jete/profile exists, it will be executed for every user
before the • profile. The following example is typical (except for the comments):

#= Make some environment variables global
export MAIL PATH TERM
#= Set file creation mask
umask 22
#= Tell me when new mail comes in
MAIL= /usr /mail/myname
#= Add my /bin directory to the shell search sequence
PA TH=$PA TH:$HOME/bin
#= Set terminal type
echo "terminal: \c"
read TERM
case $TERM in

esac

300)
300S)
450)
hp)
7451735)
43)
40141 tek)
*)

$HOME/.profile
jete/profile

stty cr2 nlO tabs; tabs;;
stty cr2 nlO tabs; tabs;;
stty cr2 niO tabs; tabs;;
stty crO niO tabs; tabs;;
stty crl nIl - tabs; TERM =7 45;;
stty crl nlO - tabs;;
stty crO nlO - tabs ff1; TERM=40l4; echo "\33;";;
echo "$TERM unknown";;

SEE ALSO
env(l), login(l), mail(l), sh(l), stty(l), sU(l), environ(5), term(5).

Page 1 (90l0-E)

PROTOCOLS (4) (bsd4.2) PROTOCOLS (4)

NAME
protocols - protocol name data base

DESCRIPTION
The protocols file contains information regarding the known protocols used in the DARPA
Internet. For each protocol a single line should be present with the following information:

official protocol name
protocol number
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates a com­
ment line.

Protocol names may contain any printable character other than a field delimiter, newline, or
comment character.

EXAMPLE

FILES

BUGS

Pagel

Internet protocols

ip 0 IP
icmp 1 ICMP
tep 6 TCP
udp 17 UDP

jete/protocols

A name server should be used instead of a static file. A binary indexed file format should be
available for fast access.

(9010-E)

SCCSFILE{ 4) (UNIX 5.0) SCCSFILE(4)

NAME
sccsfile - format of sees file

DESCRIPTION

Pagel

An sees file is an AseII file. It consists of six logical parts: the checksum, the delta table (con­
tains information about each delta), user names (contains login names and/or numerical group
IDs of users who may add deltas), flags (contains definitions of internal keywords), comments
(contains arbitrary descriptive information about the file), and the body (contains the actual text
lines intermixed with control lines) .

Throughout an sees file there are lines which begin with the ASCII SOH (start of heading)
character (octal 001). This character is hereafter referred to as the control character and will be
represented graphically as @. Any line described below which is not depicted as beginning with
the control character is prevented from beginning with the control character.

Entries of the form DDDDD represent a five digit string (a number between 00000 and 99999).

Each logical part of an sees file is described in detail below.

Checksum
The checksum is the first line of an sees file. The form of the line is:

@hDDDDD

The value of the checksum is the sum of all characters, except those of the first line.
The @ h provides a magic number of (octal) 064001.

Delta table
The delta table consists of a variable number of entries of the form:

@s DDDDD/DDDDDjDDDDD
@ d <type> <S(XJS ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@i DDDDD •••
@x DDDDD •••
@gDDDDD •••
@ m <MR number>

@ e <comments> •••

@e

The first line (@ s) contains the number of lines inserted/deleted/unchanged respec­
tively. The second line (@ d) contains the type of the delta (currently, normal: D, and
removed: R), the sees ID of the delta, the date and time of creation of the delta, the
login name corresponding to the real user ID at the time the delta was created, and the
serial numbers of the delta and its predecessor, respectively.

The @ i, @ x, and @ g lines contain the serial numbers of deltas included, excluded, and
ignored, respectively. These lines are optional.

The @ m lines (optional) each contain one MR number associated with the delta; the
@ e lines contain comments associated with the delta.

(9010-E)

SCCSFILE(4) (UNIX 5.0) SCCSFILE(4)

The @ e line ends the delta table entry.

User names

Flags

The list of login names and/or numerical group IDs of users who may add deltas to the
file, separated by new-lines. The lines containing these login names and/or numerical
group IDs are surrounded by the bracketing lines @ u and @ U. An empty list allows
anyone to make a delta.

Keywords used internally (see admin(1) for more information on their use). Each flag
line takes the form:

@f <flag> <optional text>

The following fiags are defined:
@ft <type of program>
@fv <program name>
@fi
@fb
@fm
@ff
@fc
@fd
@fn
@fj
@fl
@fq
@fz

<module name>
<fioor>
<ceiling>
<default-sid>

<lock-releases>
<user defined>
<reserved for use in interfaces>

The t fiag defines the replacement for the ~identification keyword. The v fiag con­
trols prompting for MR numbers in addition to comments; if the optional text is present
it defines an MR number validity checking program. The i flag controls the
warning/error aspect of the "No id keywords" message. When the i fiag is not present,
this message is only a warning; when the i flag is present, this message will cause a
"fatal" error (the flle will not be gotten, or the delta will not be made). When the b
flag is present the - b keyletter may be used on the get command to cause a branch in
the delta tree. The m flag deflnes the flrst choice for the replacement text of the CJi(M%
identiflcation keyword. The f flag defines the "floor"release; the release below which
no deltas may be added. The c flag deflnes the "ceiling" release; the release above
which no deltas may be added. The d flag defines the default SID to be used when
none is specified on a get command. The n fiag causes delta to insert a "null" delta (a
delta that applies no changes) in those releases that are skipped when a delta is made in
a new release (e.g., when delta 5.1 is made after delta 2.7, releases 3 and 4 are
skipped) . The absence of the n flag causes skipped releases to be completely empty.
The j fiag causes get to allow concurrent edits of the same base SID. The 1 flag defines
a li8t of releases that are locked against editing (get(1) with the - e keyletter). The q
flag deflnes the replacement for the ~%identification keyword. z flag is used in cer­
tain specialized interface programs.

Comments

Body

(90IO-E)

Arbitrary text surrounded by the bracketing lines @ t and @ T. The comments section
typically will contain a description of the flle's purpose.

The body consists of text lines and control lines. Text lines don't begin with the

Page 2

SCCSFILE(4) (UNIX 5.0) SCCSFILE(4)

control character, control lines do. There are three kinds of control lines: 'insert, delete,
and end, represented by:

@IDDDDD
@DDDDDD
@EDDDDD

respectively. The digit string is the serial number corresponding to the delta for the
control line.

SEE ALSO

admin(1), delta(1), get(1), prs(1).
Source Code Control System U8er'8 Guide in the Interactive Acce8s to ROS manual.

Page 3 (90IO-E)

SERVICES (4) (bsd 4.2) SERVICES (4)

NAME
services - service name data base

DESCRIPTION
The services file contains information regarding the known services available in the DARPA
Internet. For each service a single line should be present with the foilowing information:

official service name
port number
protocol name
aliases

Items are separated by any number of blanks and/or tab characters. The port number and pro­
tocol name are considered a single item; a "/" is used to separate the port and protocol (e.g.
"512/tcp"). A "#" indicates a comment line.

Service names may contain any printable character other than a field delimiter, newline, or
comment character.

EXAMPLE

FILES

Pagel

services table: map service names to ports/protocol

telnet
ftp

23/tcp TELNET
21/tcp F'IP

/ etc /services

(9010-E)

STAB(4) (bsd4.2) STAB(4)

NAME
stab - symbol table types

SYNTAX

#include <stab.h>

DESCRIPTION

Page 1

Stab.h defines some values of the n_type field of the symbol table of a.out files. These are the
types for permanent symbols (Le. not local labels, etc.) used by the dbx debugger. Symbol
table entries can be produced by the stabs assembler directive. This allows one to specify a
double-quote delimited name, a symbol type, one char and one short of information about the
symbol, and an unsigned long (usually an address). To avoid having to produce an explicit
label for the address field, the stabd directive can be used to impliCitly address the current loca­
tion. If no name is needed, symbol table entries can be generated using the stabn directive.
The loader promises to preserve the order of symbol table entries produced by stab directives.
As described in a.out(4), an element of the symbol table consists of the following structure:

/*
* Format of a symbol table entry.

*/
struct nlist {

};

union {
char *n_name; /* for use when in-core */
long n_strx; /* index into file string table */

} n_un;
unsigned char n_type;
char n_other;
short n_desc;
unsigned n_value;

/* type fiag */
/* unused */
/* see struct desc, below */
/* address or offset or line */

The low bits of the n_type field are used to place a symbol into at most one segment, according
to the following masks, defined in < a. out.h >. A symbol can be in none of these segments by
having none of these segment bits set.

* Simple values for n_type.

*/
#define N_VND F oxO
#define N_ABS ox2
#define N_TEXT Ox 4
#define N_D A TA ox6
#define N_BSS OX8

01

/* undefined */
/* absolute */
/* text */
/* data */
/* bss */

/* external bit, or'ed in */
The n_value field of a symbol is relocated by the linker, ld(1) as an address within the appropri­
ate segment. N_value fields of symbols not in any segment are unchanged by the linker. In
addition, the linker will discard certain symbols, according to rules of its own, unless the n_type
field has one of the following bits set:

/*
* Other permanent symbol table entries have some of the N_STAB bits set.
* These are given in <stab.h>

*/
#deftne N_STAB OxeO/* if any of these bits set, don't discard */

(90IO-E)

STAB(4) (bsd 4.2) STAB(4)

This allows up to 112 (7 * 16) symbol types, split between the various segments. Some of
these have already been claimed. The dbx. symbolic debugger uses the following n_type values:

/* This file gives definitions supplementing <a.out.h>
* for permanent symbol table entries.
* These must have one of the N_STAB bits on,
* and are subject to relocation according to the masks in <a.out.h>.

* * for symbolic de bugger, dbx(1) :

*/
#define N_GSYM
#define N_FNAME
#deflne N_FUN
#define N_STSYM
#define N_LCSYM
#define N_RSYM
#define N_SLINE
#define N_SSYM
#define N_SO
#define N_LSYM
#define N_SOL
#define N_PSYM
#define N_ENTRY
#defineN_LBRAC
#defineN_RBRAC
#define N_BCOMM
#define N_ECOMM
#define N_ECOML
#define N_LENG

/*

Ox20
Ox22
Ox24
Ox26
Ox28
Ox40
Ox44
Ox60
Ox64
Ox80
Ox84
oxao
Oxa4
OxcO
OxeO
Oxe2
Oxe4
Oxe8
Oxfe

/* global symbol: name ,,0 ,type ,0 */
/* procedure name (f77 kludge): name"O */
/* procedure: name"O,linenumber,address */
/* static symbol: name"O,type,address */
/* .lcomm symbol: name"O,type,address */
/* register sym: name"O,type,register */
/* src line: O"O,linenumber,address */
/* structure eIt: name"O,type,struct_oifset */
/* source file name: name"O,O,address */
/* local sym: name"O,type,offset */
/* #included file name: name"O,O,address */
/* parameter: name"O,type,oifset */
/* alternate entry: name,linenumber,address */
/* left bracket: O"O,nesting level,address */
/* right bracket: O"O,nesting level,address */
/* begin common: name" */
/* end common: name" */
/* end common (local name): "address */
/* second stab entry with length information */

* for the berkeley pascal compiler, pc(1):

*/
#define N_PC Ox30 /* global pascal symbol: name"O,subtype,line */

Dbx uses the n_desc field to hold a type specifier in the form used by the Portable C Compiler,
cc(1), in which a base type Is qualified in the following st,ructure:

struet dese {

};

short q6:2,
q5:2,
q4:2,
q3:2,
q2:2,
ql:2,
basie:4;

There are four qualifications, with ql the most significant and q6 the least significant:

° none
I pointer
2 function
3 array

The sixteen basic types are assigned as follows:

° undefined

(9010-E) Page 2

STAB(4) (bsd 4.2) STAB(4)

1 function argument
2 character
3 short
4 int
5 long
6 float
7 double
8 structure
9 union
10 enumeration
11 member of enumeration
12 unsigned character
13 unsigned short
14 unsigned int
15 unsigned long

SEE ALSO

as(1), ld(1), dbx(1), a.out(4)

Page 3 (9010-E)

BLANK

TERM(4) TERM(4)

NAME
term - format of compiled term file.

SYNTAX

term

DESCRIPTION

Page 1

Compiled terminfo descriptions are placed under the directory /usr/lib/terminfo. In order to
avoid a linear search of a huge UNIX system directory, a two-level scheme is used:
/usr/lib/terminfo/c/name where name is the name of the terminal, and c is the first character
of name. Thus, act4 can be found in the file /usr/lib/terminfo/a/actA. Synonyms for the
same terminal are implemented by multiple links to the same compiled file.

The format has been chosen so that it will be the same on all hardware. An 8 or more bit byte
is assumed, but no assumptions about byte ordering or sign extension are made.

The compiled file is created with the compile program, and read by the routine .setupterm. Both
of these pieces of software are part of cur.se.s(3X). The file is divided into six parts: the header,
terminal names, boolean flags, numbers, strings, and string table.

The header section begins the file. This section contains six short integers in the format
described below. These integers are (1) the magic number (octal 0432); (2) the size, in bytes,
of the names section; (3) the number of bytes in the boolean section; (4) the number of short
integers in the numbers section; (5) the number of offsets (Short integers) in the strings sec­
tion; (6) the size, in bytes, of the string table.

Short integers are stored in two 8-bit bytes. The first byte contains the least significant 8 bits of
the value, and the second byte contains the most significant 8 bits. (Thus, the value
represented is 256*second+ first.) The value - 1 is represented by 0377, 0377, other negative
value are illegal. The - 1 generally means that a capability is missing from this terminal. Note
that this format corresponds to the hardware of the VAX and PDP-II. Machines where this
does not correspond to the hardware read the integers as two bytes and compute the result.

The terminal names section comes next. It contains the first line of the terminfo description,
listing the various names for the terminal, separated by the ,t character. The section is ter­
minated with an ASCII NUL character.

The boolean flags have one byte for each flag. This byte is either 0 or 1 as the flag is present or
absent. The capabilities are in the same order as the file <term.h>.

Between the boolean section and the number section, a null byte will be inserted, if necessary,
to ensure that the number section begins on an even byte. All short integers are aligned on a
short word boundary.

The numbers section is similar to the flags section. Each capability takes up two bytes, and is
stored as a short integer. If the value represented is - 1, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short integer, in the format
above. A value of - 1 means the capability is missing. Otherwise, the value is taken as an
offset from the beginning of the string table. Special characters in AX or \c notation are stored
in their interpreted form, not the printing representation. Padding information $ <nn > and
parameter information o/cK are stored intact in uninterpreted form.

The final section is the string table. It contains all the values of string capabilities referenced in
the string section. Each string is null terminated.

Note that it is possible for setupterrn to expect a different set of capabilities than are actually
present in the file. Either the database may have been updated since setupterm has been recom­
piled (resulting in extra unrecognized entries in the file) or the program may have been recom­
piled more recently than the database was updated (resulting in missing entries). The routine
setupterm must be prepared for both possibilities - this is why the numbers and sizes are

(9010-E)

TERM(4) TERM(4)

FILES

included. Also, new capabilities must always be added at the end of the lists of boolean,
number, and string capabilities.

As an example, an octal dump of the description for the Microterm ACT 4 is included:

microterm jlct4 ~icroterm act iv,
cr=AM, cudl=A J, ind=A J, bel=AG, am, cubl=AH,
ed=A-, el=AA, clear=AL, cup=A'I'o/oPl o/c(:o/oP2~,
cols#80, lines#24, cuf1=AX, cuul=AZ, home=A],

000032001 \0 025 \0 \b \0 212 \0 .. \0 m i c r

020 0 t e r m I act 4 I m 1 c r 0

040 t e r mac t 1 v \0 \0 001 \0 \0

060 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

100 \0 \0 P \0 377 377 030 \0 377 377 377 377 377 377 377 377

120377 377 377 377 \0 \0002 \0 377 377 377 377 004 \0006 \0

140 \b \0 377 377 377377 \n \0 026 \0 030 \0 377 377 032 \0

160377 377 377 377 034 \0 377 377 036 \0377377377377 377 377

200 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

*
520 377 377 377 377 \0 377 377 377 377 377 377 377 377 377 377

540 377 377 377 377 377 377 007 \0 \r \0 \f \0 036 \0 037 \0

560 024 % p 1 % c % p 2 % c \0 \n \0 035 \0

600 \b \0 030 \0 032 \0 \n \0

Some limitations: total compiled entries cannot exceed 4096 bytes. The name field cannot
exceed 128 bytes.

/usr/lib/terminfo/*/* compiled terminal capability data base

SEE ALSO

curses(3X), terminfo(4).

(90l0-E) Page 2

TERMINFO(4) (UNIX 5.2) TERMINFO(4)

NAME
terminfo - terminal capability data base

SYNTAX

/usr/lib/terminfo/*/*

DESCRIPTION
Terminfo is a directory of files that describe terminal capabilities. The capabilities are read by
programs like vie 1) and curses(3X). The files list the capabilities and how operations are per­
formed, and the padding requirements and initialization sequences of various terminal devices.

Terminfo entries consist of fields separated by ','. White space after each',' is ignored.

The first entry for a terminal contains the names by which the device is known, each separated
by a' t character. The first name in the first entry is the most most common abbreviation for
the terminal; the next names are synonyms for the terminal name; the last name fully identifies
the terminal. All names but the last should be in lowercase and contain no blanks; the last
name may contain uppercase and blanks.

Terminal names (except for the last, verbose name) are selected using the following conven­
tions: The particular piece of hardware making up the terminal should have a root name
chosen, thus "hp2621". This name should not contain hyphens, except that synonyms may be
chosen that do not confiict with other names. Modes that the hardware can be in, or user
preferences, should be indicated by appending a hyphen and an indicator of the mode. Thus, a
vt100 in 132 column mode would be vt100-w. The following suffixes should be used where
possible:

Suffix Meaning Example
-w Wide mode (more than 80 columns) vt100-w
-am With auto. margins (usually default) vt100-am
-nam Without automatic margins vt100-nam
-n Number of lines on the screen aaa-60
-na No arrow keys (leave them in local) c100-na
-np Number of pages of memory c100-4p
-rv Reverse video c100-rv

CAPABILITIES

Page 1

The variable is the name by which the programmer (at the terminfo level) accesses the capabil­
ity. The capname is the short name used in the text of the database, and is used by a person
updating the database. The Lcode is the two-letter internal code used in the compiled database,
and always corresponds to the old term.cap capability name.

Capability names have no hard length limit, but an informal limit of 5 characters has been
adopted to keep them short and to allow the tabs in the source file caps to line up nicely.
Whenever possible, names are chosen to be the same as or similar to the ANSI X3.64-1979
standard. Semantics are also intended to match those of the specification.

(P)

(G)

(*)

(#~~

indicates that padding may be specified

indicates that the string is passed through tparm, with parms as given (#t).

indicates that padding may be based on the number of lines affected

. d' h th In lcates t e z parameter.

(9010-E)

TERMINFO(4) (UNIX 5.2) TERMINFO(4)

Variable Cap- I. Description
Booleans n8.IIl.e Code

auto_left_margin, bw bw cub1 wraps from column 0 to last column
autoJight_margin, am am Terminal has automatic margins
be ehive...,glitch , xsb xb Beehive (f1=escape, f2=ctrl C)
ceo I_stan do ut...,glitch, xhp xs Standout not erased by overwriting (hp)
e atJl ew lin e...,gli tch, xenl xn newline ignored after 80 cols (Concept)
erase_overstrike, eo eo Can erase overstrikes with a blank
generic_type, gn gn Generic line type (e.g." dialup, SWitch).
hard_copy, hc hc Hardcopy terminal
hasJIl etaJcey, km km Has a meta key (shift, sets parity bit)
has..fltatus_line, hs hs Has extra "status line"
insertJlult.glitch, in in Insert mode distinguishes nulls
memory_above, da da Display may be retained above the screen
memory_below, db db Display may be retained below the screen
move_insertJIlode, mir mi Safe to move while in insert mode
move..fltandou tJIlode, msgr ms Safe to move in standout modes
over..fltrike, os os Terminal overstrikes
status_line_esc_ok, eslok es Escape can be used on the status line
te leray...,glitch, xt xt Tabs ruin, magic so char (Teleray 1061)
tilde...,glitch, hz hz Hazeltine; can not print -'s
transparen t_underline, ul ul underline character overstrikes
xon_xo1f, xon xo Terminal uses xon/xo1f handshaking

Numbers:
columns, co Is co Number of columns in a line
in it_tabs , it it Tabs initially every # spaces
lines, lines Ii Number of lines on screen or page
lines_ofJIl emory, 1m 1m Lines of memory if > lines. o means varies
magic_cookie...,glitch, xmc sg Num ber of blank chars left by smso or

rmso
paddinLbaudJate , pb pb Lowest baud where cr/nl padding is needed
Virtual_terminal, vt vt Virtual terminal number (UNIX system)
width_status_line, wsl ws No. columns in status line

Strings:
back_tab, cbt bt Back tab (P)
bell, bel bl A udible signal (bell) (P)
carriageJeturn, cr cr Carriage return (P*)
change..flcroIlJegion, csr cs change to lines #1 through #2 (vt100)

(PG)
clear_all_tabs, tbc ct Clear all tab stops (P)
clear..flcreen, clear cl Clear screen and home cursor (P*)
clr_eol, el ce Clear to end of line (P)
clr_eos, ed cd Clear to end of display (P*)
column_address, hpa ch Set cursor column (PG)
command_character, cmdch CC Term. settable cmd char in prototype
cursor_address, cup cm Screen reI. cursor motion row #1

col #2 (PG)
cursor_down, cud1 do Down one line
cursor_home, home ho Home cursor (if no cup)
cursor_invisible, civis vi Make cursor invisible

(9010-E) Page 2

TERMINFO(4) (UNIX 5.2) TERMINFO(4)

cursor_left, cubl Ie Move cursor left one space
cursor_m em_address, mrcup CM Memory relative cursor addressing

cursor-.normal, cnorm ve Make cursor appear normal (undo vs/vi)
cursorJight, cufl nd Non-destructive space (cursor right)
cursor_to_11, 11 11 Last line, first column (if no cup)
cursor_up, cuul up Upline (cursor up)
cursor_visible, cvvis vs Make cursor very visible
delete_character, dchl dc Delete character (P*)
deleteJine, dll dl Delete line (P*)
dis-1)tatusJine, dsl ds Disable status line
downJlalf_line, hd hd Half-line down (forward 1/2 linefeed)
enter_alt_charse tJIlode , smacs as Start alternate character set (P)
enter_blinkJIlode, blink mb Turn on blinking
enter_boldJIlode, bold md Turn on bold (extra bright) mode
enter_caJIlode, smcup ti String to begin programs that use cup
enter_delete_mode, smdc dm Delete mode (enter)
enter_dimJIlode, dim mh Turn on half-bright mode
enter_insertJllode, smir im Insert mode (enter);
en ter.,J)rotectedJIlode, prot mp Turn on protected mode
en terJeverse_mode, rev mr Turn on reverse video mode
enter_secure_mode, invis mk Turn on blank mode (chars invisible)
enter_standou t_mode, smso so Begin stand out mode
enter_underlineJllode, smul us Start underscore mode
erase_chars ech ec Erase #1 characters (PG)
exit_alt_charset_mode, rmacs ae End alternate character set (P)
ex it_attributeJllode , sgrO me Turn off all attributes
ex it_caJllo de , rmcup te String to end programs that use cup
exit_deleteJIlode, rmdc ed End delete mode
exit_inse rtJllo de , rmir ei End insert mode
exit-1)tandout_mode, rmso se End stand out mode
exit_underline_mode, rmul ue End underscore mode
flash_screen, flash vb Visible bell (may not move cursor)
form_feed, tI tI Hardcopy terminal page eject (P*)
from_status_line, fsl fs Return from status line
in it_l string, isl i1 Terminal initialization string
init_2string, is2 i2 Terminal initialization string
init_3string, is3 i3 Terminal initialization string
initJile, if if Name of file containing is
inse rt_ch aracte r, ichl ic Insert character (P)
insert_line, ill al Add new blank line (P*)
insert.,J)adding, ip ip Insert pad after character inserted (p*)
key_backspace, kbs kb Sent by backspace key
key_catab, ktbc ka Sent by clear-aIl-tabs key
key_clear, kclr kC Sent by clear screen or erase key
key_ctab, kctab kt Sent by clear-tab key
key_dc, kdchl kD Sent by delete character key
key_dl, kdll kL Sent by delete line key
key_down, kcudl kd Sent by terminal down arrow key
key_eic, krmir kM Sent by rmir or smir in insert mode
key_eol, kel kE Sent by clear-to-end-of-line key
key_eos, ked kS Sent by clear-to-end-of-screen key
key_to, kfO kO Sent by function key fO

Page 3 (9010-E)

TERMINFO(4) (UNIX 5.2) TERMINFO(4)

key_fl, kfl kl Sent by function key fl

key_flO, kflO ka Sent by function key flO

key_f2, kf2 k2 Sent by function key f2

key_f3, kf3 k3 Sent by function key f3

key_f4, kf4 k4 Sent by function key f4

key_f5, kf5 k5 Sent by function key f5

key_f6, kf6 k6 Sent by function key f6

key_f7, kf7 k7 Sent by function key f7

key_fS, kfS kS Sent by function key fS

key_f9, kf9 k9 Sent by function key f9

key_home, khome kh Sent by home key
key_ic, kichl kI Sent by ins char/enter ins mode key

key_il, kill kA Sent by insert line

key_left, kcubl kl Sent by terminal left arrow key

key_II, kll kH Sent by home-down key
key_npage, knp kN Sent by next-page key
key-ppage, kpp kP Sent by previous-page key

keYJight, kcufl kr Sent by terminal right arrow key
key_sf, kind kF Sent by scroll-forward/down key
key-.sr, kri kR Sent by scroll-backward/up key
key-.stab, khts kT Sent by set-tab key
key_up, kcuul ku Sent by terminal up arrow key
keypad_local, rmkx ke Out of "keypad transmit" mode
keypad...xm it, smkx ks Put terminal in "keypad transmit" mode
I ab_f 0 , ItO 10 Labels on function key to if not fO
lab_fl, Ifl 11 Labels on function key fl if not f1

lab_flO, Itl0 la Labels on function key flO if not flO
lab_f2, It2 12 Labels on function key f2 if not f2
lab_f3, It3 13 Labels on function key f3 if not f3
labJ4, It4 14 Labels on function key f4 if not f4
labJ5, It5 15 Labels on function key f5 if not f5
lab_f6, lf6 16 Labels on function key f6 if not f6
labJ7, lf7 17 Labels on function key f7 if not f7
labJS, ItS IS Labels on function key fS if not fS
1 ab_f 9 , lf9 19 Labels on function key f9 if not f9
meta_on, smm mm Turn on "meta mode" (Sth bit)
meta_off, rmm mo Turn off "meta mode"
newline, nel nw Newline (behaves like cr followed by If)
pad_char, pad pc Pad character (rather than nUll)
parm_dch, dch DC Delete #1 chars (PG*)
parm_delete_line, dl DL Delete #1 lines (PG*)
parm_down3ursor, cud DO Move cursor down #1 lines (PG*)
parmJch, ich Ie Insert #1 blank chars (PG *)
parmJndex, indn SF Scroll forward #1 lines (PG)
parmJnsert.)ine, il AL Add #1 new blank lines (PG*)
parm_left_cursor, cub LE Move cursor left #1 spaces (PG)
parmJigh t_cursor, cuf RI Move cursor right #1 spaces (PG*)
parmJindex, rin SR Scroll backward #1 lines (PG)
parm_up_cursor, cuu UP Move cursor up #1 lines (PG*)
pkeyjey, pfkey pk Prog funct key #1 to type string #2
pkey _local, pfloc pI Prog funct key #1 to execute string #2
pkey_xmit, pfx px Prog funct key #1 to xmit string #2

(90IO-E) Page 4

TERMINFO(4) (UNIX 5.2) TERMINFO(4)

prin t_screen, mcO ps Print contents of the screen

prtr_off, mc4 pf Turn off the printer

prtr_on, mc5 po Turn on the printer

repeat_char, rep rp Repeat char #1 #2 times. (PG*)

reset_1string, rsi r1 Reset terminal completely to sane modes.

reset_2string, rs2 r2 Reset terminal completely to sane modes.

reset_3string, rs3 r3 Reset terminal completely to sane modes.

reset_file, rf rf Name of file containing reset string

restore_cursor, rc rc Restore cursor to position of last sc

row_address, vpa cv Vertical position absolute (set row) (PG)

save_cursor, sc sc Save cursor position (P)

scroll_forward, ind sf Scroll text up (P)

scro llJev e rse, ri sr Scroll text down (P)

set_attributes, sgr sa Define the video attributes (PG9)

set_tab, hts st Set a tab in all rows, current column

set_window, wind wi Current window is lines #1-#2 cols #3-#4

tab, ht ta Tab to next 8 space hardware tab stop

to...status_line, tsl ts Go to status line, column #1

underline_char, uc uc Underscore one char and move past it

upJlalf_line, hu hu Half-line up (reverse 1/2 linefeed)
initJ)rog, iprog iP Path name of program for in it

key_a1, ka1 K1 Upper left of keypad

key_a3, ka3 K3 Upper right of keypad

key_b2, kb2 K2 Center of keypad
key_c1, kcl K4 Lower left of keypad
key_c3, kc3 K5 Lower right of keypad

prtrJlon, mc5p pO Turn on the printer for #1 bytes

A Sample Entry

The following entry, which describes the Concept- 100, is among the more complex entries in
the terminfo file as of this writing.

conce ptlOO !ClOO! concept !CI04!CIOO-4p !concept 100,

Page 5

am, bel=AG, blank=\EH, bHnk=\EC, clear=AL$<2*>, cnorm=\Ew,

cols#SO, cr=AM$<9>, cubl=AH, cudl=AJ, CUf1=\E=,

cup=\Ea%pl%' '0/0+ %:%p2%' '0/0+ o/oe,

CUUl=\E;, cvvls=\EW, db, dchl=\EAA$<16*>, dlm:o=\EE, dl1=\EAB$<3*>,

ed=\EAC$<16*>, el=\EAU$<16>, eo, ftash=\Ek$<20>\EK, ht=\t$<S>,

Ul=\EAR$<3*>. In, ind=AJ, .lnd=A.J$<9>, Ip=$<16*>,

IS2=\EU\EC\E7\E5\ES\El\ENH\EK\E\200\Eo&\200\Eo\47\E,

kbs=Ah, kcubl=\E>, kcudl=\E<, kcuCl=\E=, kCUUl=\E;,

kf1=\E5, kC2=\E6, kC3=\E7, khome=\E!,

llnes#24, mlr, pb#9600, prot=\EI, rep=\Er%Pl%c%p2%' '0/0+ o/oe$<.2*>,

rev=\ED, rmcup=\Ev $<6>\Ep\r\n, rmlr=\E\200, rmkx=\Ex,

rmso=\Ed\Ee, rmul=\Eg, rmul=\Eg, sgro=\EN\200,

smcup=\EU\Ev Sp\Ep\r, smlr=\EAP, smkx=\EX, smso=\EE\ED,

smul=\EG, tabs, ul, vt#S, xenl,

Entries may continue onto multiple lines by placing white space at the beginning of each line
except the first. Comments may be included on lines beginning with "#". Capabilities in ter­
m";nfo are of three types: Boolean capabilities which indicate that the terminal has some particu­
lar feature, numeric capabilities giving the size of the terminal or the size of particular delays,
and string capabilities, which give a sequence which can be used to perform particular terminal
operations.

(9010-E)

TERMINFO(4) (UNIX 5.2) TERMINFO(4)

'J.Ypes of Capabilities

All capabilities have mnemonic names. The automatic margin feature of the Concept is called
am. Numeric capabilities, such as column-width, are indicated by a mnemonic, then the '#'
character, then the numeric value, like col#80 to indicate 80 columns.

String-valued capabilities, such as the character string to achieve a function, are indicated by a
mnemonic, then the '=' character, then the string value, like el=Ay (control-y clears display to
end of line). A delay in milliseconds may appear anywhere in such a capability, enclosed in
$< .. > brackets, as in el=\EK$<3>, and padding characters are supplied by tputs to provide
this delay. The delay can be either a number like '20', or a number followed by an '*' like '3*'.

A '*' indicates that the padding required is proportional to the number of lines affected by the
operation, and the amount given is the per-affected-unit padding required. (In the case of
insert character, the factor is still the number of lines affected. This is always one unless the
terminal has xenl and the software uses it.) When a '*' is specified, it is sometimes useful to
give a delay of the form '3.5' to specify a delay per unit to tenths of milliseconds. (Only one
decimal place is allowed.)

A number of escape sequences are provided in the string-valued capabilities for easy encoding
of characters there. Both \E and \e map to an ESCAPE character, AX maps to a control-x,
where x is any character, and the sequences \n \1 \r \t \b \f \s give a newline, linefeed, return,
tab, backspace, formfeed, and space. Other escapes include \ A for A, \ \ for \. \. for comma, \:
for :, and \0 for null. (\0 will produce \200, which does not terminate a string but behaves as a
null character on most terminals.) Finally, characters may be given as three octal digits after a
\.
Sometimes individual capabilities must be commented out. To do this, put a period before the
capability name. For example, see the second ind in the example above.

Preparing Descriptions

To write your own description file, copy a similar terminfo file. Build the file piece by piece,
testing it with vie 1) as you go. (A very unusual terminal may expose deficiencies in the ability
of the terminfo file to describe it, or bugs in vie 1)).

To test a new terminal description, set the environment variable TERMINFO to a pathname of
a directory containing the compiled description you are working on. With TERMINFO set, pro­
grams like vie 1) will look there rather than in /usr;f£b/terminfo. To get the padding for insert­
line correct (if the terminal manufacturer did not document it) a severe test is to edit
/etc/passwd at 9600 baud, delete about 16 lines from the middle of the screen, then hit the 'u'
key several times quickly. If the terminal craps out, more padding is usually needed. A similar
test can be used for insert-character.

Basic Capabilities

The number of columns on each line for the terminal is given by the cols numeric capability.
If the terminal is a CRT, then the number of lines on the screen is given by the lines capability.
If the terminal wraps around to the beginning of the next line when it reaches the right margin,
then it should have the am capability. If the terminal can clear its screen, leaving the cursor in
the home position, then this is given by the clear string capability. If the terminal overstrikes
(rather than clearing a position when a character is struck over) then it should have the os
capability. If the terminal is a printing terminal, with no soft copy unit, give it both he and os.
(os applies to storage scope terminals, such as TEKTRONIX 4010 series, as well as hard copy
and APL terminals.) If there is a code to move the cursor to the left edge of the current row,
give this as cr. (Normally this will be carriage return, control M.) If there is a code to produce
an audible signal (bell, beep, etc) give this as bel.

If there is a code to move the cursor one position to the left (such as backspace) that capability
should be given as cub!. Similarly, codes to move to the right, up, and down should be given

(9010-E) Page 6

TERMINFO(4) (UNIX 5.2) TERMINFO(4)

Page 7

as cufl, cuul, and cud!. These local cursor motions should not alter the text they pass over,
for example, you would not normally use 'cufl= ' because the space would erase the character
moved over.

A very important point here is that the local cursor motions encoded in terminfo are undefined
at the left and top edges of a CRT terminal. Programs should never attempt to backspace
around the left edge, unless bw is given, and never attempt to go up locally off the top. In
order to scroll text up, a program will go to the bottom left corner of the screen and send the
ind (index) string.

To scroll text down, a program goes to the top left corner of the screen and sends the ri
(reverse index) string. The strings ind and ri are undefined when not on their respective
corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin which have the same
semantics as ind and ri except that they take one parameter, and scroll that many lines. They
are also undefined except at the appropriate edge of the screen.

The &Ill capability tells whether the cursor sticks at the right edge of the screen when text is
output, but this does not necessarily apply to a cufl from the last column. The only local
motion which is defined from the left edge is if bw is given, then a cubl from the left edge will
move to the right edge of the previous row. If bw is not given, the effect is undefined. This is
useful for drawing a box around the edge of the screen, for example. If the terminal has switch
selectable automatic margins, the terminfo file usually assumes that this is on; i.e., am. If the
terminal has a command which moves to the first column of the next line, that command can
be given as nel (newline). It does not matter if the command clears the remainder of the
current line, so if the terminal has no cr and If it may still be possible to craft a working nel out
of one or both of them.

These capabilities suffice to describe teletypestyle and screen-type terminals. Thus, the model
33 teletype is described as

33 Itty33 1 tty Imodel 33 teletype,
bel=-G, cols#72, cr=-M, cudl=-J, he, ind=-J, os,

while the Lear Siegler ADM- 3 is described as

adm3 13 Iisi adm3,
am, bel=-G, clear=-Z, cols#80, cr=-M, cubl=-H, cudl=AJ,
ind=-J, Hnes#24,

Par&Illeterized Strings

Cursor addressing and other strings requIrmg parameters in the terminal are described by a
parameterized string capability, with printf(3S)-like escapes %x in it. For example, to address
the cursor, the cup capability is given, using two parameters: the row and column to address to.
(RoWS and columns are numbered from zero and refer to the physical screen visible to the
user, not to any unseen memory.) If the terminal has memory relative cursor addressing, that
can be indicated by mrcup.

The parameter mechanism uses a stack and special % codes to manipulate it. Typically a
sequence will push one of the parameters onto the stack and then print it in some format.
Often more complex operations are necessary.

The %encodings have the following meanings:

%%
o/od
%2d
o/03d
o/&>2d

outputs '%'
print popO as in printf
prin t pop() like %2d
print popO like o/03d

(9010-E)

TERMINFO(4) (UNIX 5.2) TERMINFO(4)

o/c03d
o/ce
%>

%p[I-9]
%P[a-z]
o/cg[a-z]
%'c'

%{nn}

as in printf
prin t pop() gives o/ce
prin t pop() gives %>

push i th parm
set variable [a-z] to pop()
get variable [a-z] and push it
char constant c
integer constant nn

%+ % 0/0* %/ o/om

0/0& %I%~

0/0= %> %<

arithmetic (o/om is mod): push(pop() op pop(»
bit operations: push(pop() op poP())
logical operations: push(po pO op poP())
unary operations push(op pop())
add 1 to first two parms (for ANSI terminals)

%1 expr %t thenpart o/ce else part %;
if-then-else, %e elsepart is optional.
else-if's are possible ala Algol 68:
%1 c1 %t b i o/oe c2 %t b2 o/oe c3 %t b3 %e c4 %t b4 %e %;
ci are conditions, bi are bodies.

Binary operations are in postfix form with the operands in the usual order. That is, to get x-5
one would use "o/cgXo/o{5}% -".

Consider the HP2645, which, to get to row 3 and column 12, needs to be sent \E&a12c03Y
padded for 6 milliseconds. Note that the order of the rows and columns is inverted here, and
that the row and column are printed as two digits. Thus its cup capability is
cup=--6 \E& o/cP 2 0/02 dc o/'cP1 o/02dY.

The Microterm ACT-IV needs the current row and column sent preceded by a AT, with the row
and column simply encoded in binary, cup=ATo/cP1%,co/cP2%,c. Terminals which use o/~ need to

be able to backspace the cursor (cub!), and to move the cursor up one line on the screen
(cuu!) . This is necessary because it is not always safe to transmit \n AD and \r, as the system
may change or discard them. (The library routines dealing with terminfo set tty modes so that
tabs are never expanded, so \t is safe to send. This turns out to be essential for the Ann Arbor
4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a blank character,
thus cup=\E=o/cPI %' '0/0+ %co/oP2%' '0/0+ %C. After sending '\E=', this pushes the first
parameter, pushes the ASCII value for a space (32), adds them (pushing the sum on the stack
in place of the two previous values) and outputs that value as a character. Then the same is
done for the second parameter. More complex arithmetic is possible using the stack.

If the terminal has row or column absolute cursor addressing, these can be given as single
parameter capabilities hpa (horizontal position absolute) and vpa (vertical position absolute).
Sometimes these are shorter than the more general two parameter sequence (as with the
hp2645) and can be used in preference to cup. If there are parameterized local motions (e.g.,
move n spaces to the right) these can be given as cud, cub, cui, and cuu with a single parame­
ter indicating how many spaces to move. These are primarily useful if the terminal does not
have cup, such as the TEKTRONIX 4025.

Cursor Motions

If the terminal has a fast way to home the cursor (to very upper left corner of screen) then this
can be given as home; similarly a fast way of getting to the lower left-hand corner can be given

(9010-E) Page 8

TERMINFO(4) (UNIX 5.2) TERMINFO(4)

Page 9

as II; this may involve going up with cuul from the home position, but a program should never
do this itself (unless II does) because it can make no assumption about the effect of moving up
from the home position. Note that the home position is the same as addressing to (0,0): to the
top left corner of the screen, not of memory. (Thus, the \EH sequence on HP terminals can­
not be used for home.)

Area Clears

If the terminal can clear from the current position to the end of the line, leaving the cursor
where it is, this should be given as el. If the terminal can clear from the current position to the
end of the display, then this should be given as ed Ed is only defined from the first column of
a line. (Thus, it can be simulated by a request to delete a large number of lines, if a true ed is
not available.)

Insert/delete line

If the terminal can open a new blank line before the line where the cursor is, this should be
given as ill; this is done only from the first position of a line. The cursor must then appear on
the newly blank line. If the terminal can delete the line which the cursor is on, then this
should be given as dll; this is done only from the first position on the line to be deleted. Ver­
sions of ill and dll which take a single parameter and insert or delete that many lines can be
given as il and cII. If the terminal has a settable scrolling region (like the vt100) the command
to set this can be described with the car capability, which takes two parameters: the top and bot,.
tom lines of the scrolling region. The cursor position is, alas, undefined after using this com­
mand. It is possible to get the effect of insert or delete line using this command - the sc and
rc (save and restore cursor) commands are also useful. Inserting lines at the top or bottom of
the screen can also be done using ri or ind on many terminals without a true insert/delete line,
and is often faster even on terminals with those features.

If the terminal has the ability to define a window as part of memory, which all commands
affect, it should be given as the parameterized string wind The four parameters are the start,.
ing and ending lines in memory and the starting and ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should be given; if
display memory can be retained below, then db should be given. These indicate that deleting a
line or scrolling may bring non-blank lines up from below or that scrolling back with ri may
bring down non-blank lines.

Insert/Delete Character

There are two basic kinds of intelligent terminals with respect to insert/delete character which
can be described using terminJo. The most common insert/delete character operations affect
only the characters on the current line and shift characters off the end of the line rigidly. Other
terminals, such as the Concept 100 and the Perkin Elmer Owl, make a distinction between
typed and untyped blanks on the screen, shifting upon an insert or delete only to an untyped
blank on the screen which is either eliminated, or expanded to two untyped blanks. You can
determine the kind of terminal you have by clearing the screen and then typing text separated
by cursor motions. Type abc def using local cursor motions (not spaces) between the abc and
the def. Then position the cursor before the abc and put the terminal in insert mode. ~f typing
characters causes the rest of the line to shift rigidly and characters to fall off the end, then your
terminal does not distinguish between blanks and untyped positions. If the abc shifts over to
the def which then move together around the end of the current line and onto the next as you
insert, you have the second type of terminal, and should give the capability in, which stands for
insert null. While these are two logically separate attributes (one line vs. multiline insert mode,
and special treatment of untyped spaces) we have seen no terminals whose insert mode cannot
be described with the single attribute.

(9010-E)

'IERMINFO(4) (UNIX 5.2) TERMINF'O(4)

Terminfo can describe both terminals which have an insert mode, and terminals which send a
simple sequence to open a blank position on the current line. Give as smir the sequence to get
into insert mode. Give as rmir the sequence to leave insert mode. Now give as iehl any
sequence needed to be sent just before sending the character to be inserted. Most terminals
with a true insert mode will not give iehl; terminals which send a sequence to open a screen
position should give it here. (If your terminal has both, insert mode is usually preferable to
ichl. Do not give both unless the terminal actually requires both to be used in combination.)
If post insert padding is needed, give this as a number of milliseconds in ip (a string option).
Any other sequence which may need to be sent after an insert of a single character may also be
given in ip. If your terminal needs both to be placed into an 'insert mode' and a special code
to precede each inserted character, then both smir/rmir and ichl can be given, and both will
be used. The ich capability, with one parameter, n, will repeat the effects of ichl n times.

It is occasionally necessary to move around while in insert mode to delete characters on the
same line (e.g., if there is a tab after the insertion position). If your terminal allows motion
while in insert mode you can give the capability mir to speed up inserting in this case. Omit­
ting mir will affect only speed. Some terminals (notably Datamedia's) must not have mir
because of the way their insert mode works.

Finally, you can specify dehl to delete a single character, deh with one parameter, n, to delete
n characters, and delete mode by giving smde and rmdc to enter and exit delete mode (any
mode the terminal needs to be placed in for dehl to work).

A command to erase n characters (equivalent to outputting n blanks without moving the cur­
sor) can be given as ech with one parameter.

Highlighting, Underlining, and Visible Bells

If your terminal has one or more kinds of display attributes, these can be represented in a
number of different ways. You should choose one display form as standout mode, representing
a good, high contrast, easy-on-the-eyes, format for highlighting error messages and other atten­
tion getters. (If you have a choice, reverse video plus half-bright is good, or reverse video
alone.) The sequences to enter and exit standout mode are given as smso and rmso, respec­
tively. If the code to change into or out of standout mode leaves one or even two blank spaces
on the screen, as the TVI 912 and Teleray 1061 do, then xme should be given to tell how many
spaces are left.

Codes to begin underlining and end underlining can be given as smul and rmul respectively. If
the terminal has a code to underline the current character and move the cursor one space to the
right, such as the Microterm Mime, this can be given as uc.

Other capabilities to enter various highlighting modes include blink (blinking) bold (bold or
extra bright) dim (dim or half-bright) invis (blanking or invisible text) prot (protected) rev
(reverse video) sgrO (turn off all attribute modes) smacs (enter alternate character set mode)
and rmacs (exit alternate character set mode). Turning on any of these modes singly may or
may not turn off other modes.

If there is a sequence to set arbitrary combinations of modes, this should be given as sgr (set
attributes), taking 9 parameters. Each parameter is either 0 or 1, as the corresponding attribute
is on or off. The 9 parameters are, in order: standout, underline, reverse, blink, dim, bold,
blank, protect, alternate character set. Not all modes need be supported by sgr, only those for
which corresponding separate attribute commands exist.

Terminals with the "magic cookie" glitch (xme) deposit special "cookies" when they receive
mode-setting sequences, which affect the display algorithm rather than having extra bits for
each character. Some terminals, such as the HP 2621, automatically leave standout mode when
they move to a new line or the cursor is addressed. Programs using standout mode should exit
standout mode before moving the cursor or sending a newline, unless the msgr capability,

(9010-E) Page 10

TERMINFO(4) (UNIX 5.2) TERMINFO(4)

Page 11

asserting that it is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement)
then this can be given as flash; it must not move the cursor.

If the cursor needs to be made more visible than normal when it is not on the bottom line (to
make, for example, a non-blinking underline into an easier to find block or blinking underline)
give this sequence as evvis. If there is a way to make the cursor completely invisible, give that
as civis. The capability enorm. should be given which undoes the effects of both of these
modes.

If the terminal needs to be in a special mode when running a program that uses these capabili­
ties, the codes to enter and exit this mode can be given as smeup and rmcup. This arises, for
example, from terminals like the Concept with more than one page of memory. If the terminal
has only memory relative cursor addressing and not screen relative cursor addressing, a one
screen-sized window must be fixed into the terminal for cursor addressing to work properly.
This is also used for the TEKTRONIX 4025, where smeup sets the command character to be the
one used by terminfo.

If your terminal correctly generates underlined characters (with no special codes needed) even
though it does not overstrike, then you should give the capability ul. If overstrikes are erasable
with a blank, then this should be indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed, this information
can be given. Note that it is not possible to handle terminals where the keypad only works in
local (this applies, for example, to the unshifted HP 2621 keys). If the keypad can be set to
transmit or not transmit, give these codes as smkx and rmkx. Otherwise the keypad is
assumed to always transmit. The codes sent by the left arrow, right arrow, up arrow, down
arrow, and home keys can be given as keubl, kcufl, keuul, keudl, and khome respectively. If
there are function keys such as fO, fl, ... , flO, the codes they send can be given as kfO, kfl, ••• ,
kflO. If these keys have labels other than the default fO through flO, the labels can be given as
lfO, Ifl, ••• , IflO. The codes transmitted by certain other special keys can be given: kll (home
down), kbs (backspace), ktbc (clear all tabs), kctab (clear the tab stop in this column), kclr
(clear screen or erase key), kdehl (delete character), kdll (delete line), krmir (exit insert
mode), kel (clear to end of line), ked (clear to end of screen), kiehl (insert character or enter
insert mode), kill (insert line), knp (next page), kpp (previous page), kind (scroll
forward/down), kri (scroll backward/up), khts (set a tab stop in this column). In addition, if
the keypad has a 3 by 3 array of keys including the four arrow keys, the other five keys can be
given as kal, ka3, kb2, kel, and keg. These keys are useful when the effects of a 3 by 3
directional pad are needed.

Tabs and Initialization

If the terminal has hardware tabs, the command to advance to the next tab stop can be given as
ht (usually control I). A "backtab" command which moves leftward to the next tab stop can
be given as ebt. By convention, if the teletype modes indicate that tabs are being expanded by
the computer rather than being sent to the terminal, programs should not use ht or ebt even if
they are present, since the user may not have the tab stops properly set. If the terminal has
hardware tabs which are initially set every n spaces when the terminal is powered up, the
numeric parameter it is given, showing the number of spaces the tabs are set to. This is nor­
mally used by the 18el command to determine whether to set the mode for hardware tab expan­
sion, and whether to set the tab stops. If the terminal has tab stops that can be saved in nonvo­
latile memory, the terminfo description can assume that they are properly set.

Other capabilities include isl, is2, and is3, initialization strings for the terminal, iprog, the path
name of a program to be run to initialize the terminal, and if, the name of a file containing

(9010-E)

TERMINFO(4) (UNIX 5.2) TERMINFO(4)

long initialization strings. These strings are expected to set the terminal into modes consistent
with the rest of the terminfo description. They are normally sent to the terminal, by the tset
program, each time the user logs in. They will be printed in the following order: isl; is2; set­
ting tabs using the and hta; if; running the program iprog; and finally is3. Most initialization is
done with is2. Special terminal modes can be set up without duplicating strings by putting the
common sequences in is2 and special cases in isl and is3. A pair of sequences that does a
harder reset from a totally unknown state can be analogously given as rsI, 1'82, rf, and 1'83,
analogous to is2 and if. These strings are output by the reBet program, which is used when the
terminal gets into a wedged state. Commands are normally placed in 1'82 and rf only if they
produce annoying effects on the screen and are not necessary when logging in. For example,
the command to set the vt100 into 80-column mode would normally be part of is2, but it
causes an annoying glitch of the screen and is not normally needed since the terminal is usually
already in 80 column mode.

If there are commands to set and clear tab stops, they can be given as the (clear all tab stops)
and hts (set a tab stop in the current column of every row). If a more complex sequence is
needed to set the tabs than can be described by this, the sequence can be placed in is2 or if.

Delays

Certain capabilities control padding in the teletype driver. These are primarily needed by hard
copy terminals, and are used by the tset program to set teletype modes appropriately. Delays
embedded in the capabilities cr, ind, cubl, fI, and tab will cause the appropriate delay bits to be
set in the teletype driver. If pb (padding baud rate) is given, these values can be ignored at
baud rates below the value of pb.

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this can be given as
pad. Only the first character of the pad string is used.

If the terminal has an extra "status line" that is not normally used by software, this fact can be
indicated. If the status line is viewed as an extra line below the bottom line, into which one
can cursor address normally (such as the Heathkit hl9's 25th line, or the 24th line of a vt100
which is set to a 23-line scrolling region), the capability hs should be given. Special strings to
go to the beginning of the status line and to return from the status line can be given as tsl and
fsi. (fsl must leave the cursor position in the same place it was before tal. If necessary, the se
and re strings can be included in tal and fsl to get this effect.) The parameter tsl takes one
parameter, which is the column number of the status line the cursor is to be moved to. If
escape sequences and other special commands, such as tab, work while in the status line, the
fiag eslok can be given. A string which turns off the status line (or otherwise erases its con­
tents) should be given as dsi. If the terminal has commands to save and restore the position of
the cursor, give them as se and re. The status line is normally assumed to be the same width
as the rest of the screen, e.g., eols. If the status line is a different width (possibly because the
terminal does not allow an entire line to be loaded) the width, in columns, can be indicated
with the numeric parameter wsl.

If the terminal can move up or down half a line, this can be indicated with hu (half-line up)
and hd (half-line down). This is primarily useful for superscripts and subscripts on hardcopy
terminals. If a hardcopy terminal can eject to the next page (form feed), give this as fI (usually
control L).

If there is a command to repeat a given character a given number of times {to save time
transmitting a large number of identical characters) this can be indicated with the parameterized
string rep. The first parameter is the character to be repeated and the second is the number of
times to repeat it. Thus, tparm{repeat_char, 'x', 10) is the same as 'xxxxxxxxxx'.

(9010-E) Page 12

TERMINFO(4) (UNIX 5.2) TERMINFO(4)

If the terminal has a settable command character, such as the TEKTRONIX 4025, this can be
indicated with emdeh. A prototype command character is chosen which is used in all capabili­
ties. This character is given in the emdeh capability to identify it. The following convention is
supported on some UNIX systems: The environment is to be searched for a <XJ variable, and if
found, all occurrences of the prototype character are replaced with the character in the environ­
ment variable.

Terminal descriptions that do not represent a specific kind of known terminal, such as switch,
dialup, patch, and network, should include the gn (generic) capability so that programs can com­
plain that they do not know how to talk to the terminal. (This capability does not apply to vir­
tual terminal descriptions for which the escape sequences are known.)

If the terminal uses xon/xoff handshaking for fiow control, give xon. Padding information
should still be included so that routines can make better decisions about costs, but actual pad
characters will not be transmitted.

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of any character
transmitted, this fact can be indicated with km. Otherwise, software will assume that the 8th
bit is parity and it will usually be cleared. If strings exist to turn this "meta mode" on and off,
they can be given as smm and rIIUn.

If the terminal has more lines of memory than will fit on the screen at once, the number of
lines of memory can be indicated with 1m. A value of Im#o indicates that the number of lines
is not fixed, but that there is still more memory than fits on the screen.

If the terminal is one of those supported by the UNIX virtual terminal protocol, the terminal
number can be given as vt.

Media copy strings which control an auxiliary printer connected to the terminal can be given as
meO: print the contents of the screen, me4: turn off the printer, and me5: turn on the printer.
When the printer is on, all text sent to the terminal will be sent to the printer. It is undefined
whether the text is also displayed on the terminal screen when the printer is on. A variation
me5p takes one parameter, and leaves the printer on for as many characters as the value of the
parameter, then turns the printer off. The parameter should not exceed 255. All text, includ­
ing me4, is transparently passed to the printer while an me5p is in effect:

Page 13

Strings to program function keys can be given as pfkey, pfioc, and pfx. Each of these strings
takes two parameters: the function key number to program (from 0 to 10) and the string to
program it with. Function key numbers out of this range may program undefined keys in a ter­
minal dependent manner. The difference between the capabilities is that pfkey causes pressing
the given key to be the same as the use·r typing the given string; pfioc causes the string to be
executed by the terminal in local; and pfx causes the string to be transmitted to the computer.

Glitches and Braindamage

Hazeltine terminals, which do not allow' -, characters to be displayed should indicate hz.

Terminals which ignore a linefeed immediately after an am wrap, such as the Concept and
vt100, should indicate xenl.

If el is required to get rid of standout (instead of merely writing normal text on top of it), xhp
should be given.

Teleray terminals, where tabs turn all characters moved over to blanks, should indicate xt (des­
tructive tabs). This glitch is also taken to mean that it is not possible to position the cursor on
top of a "magic cookie", that to erase standout mode it is instead necessary to use delete and
insert line.

The Beehive Superbee, which is unable to correctly transmit the escape or control C characters,
has xsb, indicating that the f1 key is used for escape and f2 for control C. (Only certain Super­
bees have this problem, depending on the ROM.)

(9010-E)

TERMINFO(4) (UNIX.5.2) TERMINFO(4)

FILES

Other specific terminal problems may be corrected by adding more capabilities of the form xx.

Similar Terminals

If there are two very similar terminals, one can be defined as being just like the other with cer­
tain exceptions. The string capability use can be given with the name of the similar terminal.
The capabilities given before use override those in the terminal type invoked by use. A capa­
bility can be cancelled by placing xx@ to the left of the capability definition, where xx is the
capability. For example, the entry

2621-nl, smkx@ , rmkx@ , use=2621,

defines a 2621-nl that does not have the smkx or rmkx capabilities, and hence does not turn
on the function key labels when in visual mode. This is useful for different modes for a termi­
nal, or for different user preferences.

jusrjlibjterminfoj? j* files containing terminal descriptions

SEE ALSO
tic(1), curses(3X), printf(3S), term(4), term(5).

(9010-E) Page 14

UTMP(4) (UNIX 5.0)

NAME
utmp, wtmp - utmp and wtmp entry formats

SYNTAX

#include <sys/types.h>
#include <utmp.h>

DESCRIPTION

UTMP(4)

These flIes, which hold user and accounting information for such commands as who(1),
write(l}, and login(l), have the following structure as defined by <utmp.h>:

FILES

Pagel

#deflne
#deflne
#deflne

UTMP_FILE "/etc/utmp"
WTMPYILE "/etc/wtmp"

struct utmp {
char ut_user[S];
char ut_id[4] ;
char utJine[12];
short utJ>id;
short ut_type;
struct exit_status {

/* User login name */
/* /etc/inittab id (usually line#) */
/* Device name (console, lnxx) */

/* Process id */
/* Type of entry */

short e_termination; /* Process termination status */
short e_exit; /* Process exit status */

} ut_exit; /* The exit status of a process
/* marked DEAD _PROCESS. */

/* Time entry was made */
};

/* Deflnitions for ut_type */
#deflne EMPTY 0
#deflne RUN_L VL 1
#deflne BOOT_TIME 2
#deflne OLD_TIME 3

#deflne NEW_TIME 4

#deflne INIT_PROCESS 5

#deflne LOGIN_PROCESS 6

#deflne USER_PROCESS 7

#deflne DEAD "'pROCESS S
#deflne ACCOUNTING 9

/* Process spawned by "init" */
/* A "getty" process waiting for login */
/* A user process */

#deflne UTMAXTYPE ACCOUNTING /* Largest legal value of ut_type */

/* Special strings or formats used in the "ut_line" field when */
/* accounting for something other than a process. */
/* No string for the ut_line fleld can be more than 11 chars + */
/* a NULL in length. */
#deflne RUNL VL_MSG "run-level o/ct:"
#deflne BOOT_MSG "system boot"
#deflne OTIME_MSG "old time"
#deflne NTIME_MSG "new time"

/usr /include /u tmp.h

(9010-E)

UTMP(4)

/etc/utmp
/etc/wtmp

SEE ALSO

login(l), who(l), wrire(l), getut(3C).

(9010-E)

(UNIX 5.0) UTMP(4)

Page 2

UUENCODE{ 4) (bsd4.2) UUENCODE(4)

NAME
uuencode - format of an encoded uuencode file

DESCRIPTION
Files output by uuencode{l} consist of a header line, followed by a number of body lines, and a
trailer line. Uudecode{l} will ignore any lines preceding the header or following the trailer.
Lines preceding a header must not, of course, look like a header.

The header line is distinguished by having the first 6 characters begin. The word begin is fol­
lowed by a mode (in octal), and a string which names the remote file. A space separates the
three items in the header line.

The body consists of a number of lines, each at most 62 characters long (including the trailing
newline). These consist of a character count, followed by encoded characters, followed by a
newline. The character count is a single printing character, and represents an integer, the
number of bytes the rest of the line represents. Such integers are always in the range from 0 to
63 and can be determined by subtracting the character space (octal 40) from the character.

Groups of 3 bytes are stored in 4 characters, 6 bits per character. All are offset by a space to
make the characters printing. The last line may be shorter than the normal 45 bytes. If the
size is not a multiple of 3, this fact can be determined by the value of the count on the last
line. Extra garbage will be included to make the character count a multiple of 4. The body is
terminated by a line with a count of zero. This line consists of one ASCII space.

The trailer line consists of end on a line by itself.

SEE ALSO
uuencode(l), uudecode(l), uusend(l), uucp(l), mail(l)

Pagel (9010-E)

BLANK

INTRO(S) INTRO(S)

NAME
intro - introduction to miscellany

DESCRIPTION
This section describes miscellaneous facilities such as macro packages, character set tables, etc.

Pagel (90IO-E)

ASCII(5)

NAME

ascii - map of ASCII character set

SYNTAX

eat /usr/pub/aseii

DESCRIPTION

(UNIX 5.0) ASCII(5)

Ascii is a map of the ASCII character set, giving both octal and hexadecimal equivalents of each
character, to be printed as needed. It contains:

FILES

Pagel

1000 nul 1001

1010 bs 1011

1020 dIe 1021

1030 can 1031

1040 sp 1041

soh 1002 s tx 1003 e tx 1004 eo t 1005 enq /006 ack /007 be I I
ht 1012 nl 1013 vt /014 np /015 cr /016 so 1017 si I
dc 1 1022 dc2 1023 dc3 1024 dc4 1025 nak 1026 syn 1027 e tb I
em 1032 sub /033 esc 1034 fs 1035 gs 1036 rs /037 us /

/042" /043 # /044 $ /045 % /046 & 1047 '
1050 (1051 /052 * /053 + /054, 1055 - /056. /057 I
1060 0 1061 1 1062 2 /063 3 /064 4 1065 5 /066 6 1067 7
1070 8 1071 9 1072 1073; /074 < 1075 = 1076 > 1077?
1100 @ 1101 A 1102 B 1103 C /104 D 1105 E /106 F 1107 G
1110 H 1111 I 1112 J /113 K /114 L 1115 M; 1116 N 1117 0
1120 P 1121 Q 1122 R /123 S 1124 T 1125 U 1126 V 1127 W
1130 X 1131 Y 1132 Z 1133 [/134 \ 1135] 1136 A 1137_
1140'" 1141 a 1142 b 1143 c /144 d 1145 e 1146 f 1147 g

1150 h /151 1152 1153 k 1154 I 1155 m 1156 n 1157 0

1160 P 1161 q 1162 r 1163 s /164 t 1165 u 1166 v 1167 W

1170 X 1171 Y 1172 Z 1173 { 1174 I 1175} 1176 - 1177 del

00 nul

08 bs

10 dIe

18 can

20 sp

28 (

30 0

38 8
40 @

48 H
50 P
58 X
60 ...

68 h

70 P

78 x

01 soh I 02 s tx 1

09 h t I Oa n I I
11 de 1 / 12 de2 I
19 em I 1a sub I
21 I 22" I
29 I 2a * I
31 1 I 32 2 I
39 9 / 3a: I
41 A I 42 B I
49 I / 4a J /
51 Q I 52 R I
59 Y I 5a Z I
61 a I 62 b I
69 I 6a I
71 q I 72 r I
79 Y I 7a Z I

/usr/pub/ascii

03 e tx I 04 eo t I
Ob vt I Oc np I
13 dc3 I 14 de4 I

05 enq

Od cr

15 nak

Id gs Ib esc 1c fs I
23 # 24 $ I 25 %
2b +
33 3
3b ;

43 C
4b K
53 S

5b [

63 c
6b k

73 s
7b {

2c I 2d-

34 4 1 35 5

3c < I 3d =
44 D I 45 E
4c L

54 T
5c \
64 d

I 4d M
I 55 U
I 5d J

I 65 e
6c I 6d m
74 t I 75 u

7c I I 7d }

06 ack /

Oe so I
16 syn /

Ie rs I
26 & I
2e. I
36 6 I
3e > I
46 F /

4e N I
56 V /
5e A I
66 f I
6e n I
76 v I
7e - I

07 be I /

Of s i I
17 e tb I
1 f us I
27 ' I
2f I I
37 7 I
3f? I
47 G I
4f 0 I
57 W I
5f I
67 g I
6f 0 I
77 W I
7f de I I

(90lO-E)

ENVIRON(5) (UNIX 5.0) ENVIRON(5)

NAME
environ - user environment

DESCRIPTION
An array of strings called the "environment" is made available by exec(2B) when a process
begins. By convention, these strings have the form "name=value". The following names are
used by various commands:

PA'lH The sequence of direcoory prefixes that sh(1), hme(1), nice(1), nohup(1), etc., apply in
searching for a file known by an incomplete path name. The prefixes are separated by
colons (:). Logan(l) sets PA'lH=:/bin:/usrfbin.

HOME Name of the user's login direcoory, set by login(1) from the password file passwd(4).
TERM The kind of terminal for which output is 00 be prepared. This information is used by

commands, such as mm(l} or tplot(IG}, which may exploit special capabilities of that
terminal.

TZ Time zone information. The format is xxxnzzz where xxx is standard local time zone
abbreviation, n is the difference in hours from GMT, and zzz is the abbreviation for the
daylight-saving local time zone, if any; for example, ESTSEDT.

Further names may be placed in the environment by the export command and "name=value"
arguments in sh(I}, or by exec(2B). It is unwise 00 confiict with certain shell variables that are
frequently exported by .profile files: MAIL, PSI, PS2, IFS.

SEE ALSO

env(I}, login(I}, sh(I), exec(2B), getenv(3C}, proflle(4), term(5).

gsize 10

Page 1· (9010-E)

FCNTL(S)

NAME
fcn tl - file control options

SYNTAX
#include <fcntI.h>

DESCRIPTION

(UNIX 5.0) FCNTL(S)

The fcntl(2B) function provides for control over open flIes. This include file describes requests
and arguments to fcntl and open(2B).

1* Flag values accessible to open(2B) and fcntl(2B) *1
1* (The first three can only be set by open) *1
#define O_RDONLY 0
#define 0_ WRONL Y 1
#define O_RDWR 2
#define O_NDELAY 04 1* Non-blocking 1/0*1
#define O_APPEND 010 1* append (writes guaranteed at the end) *1

1* Flag values accessible only to open(2B) *1
#define O_CREA T 00400 1* open with file create (uses*1

1* third open arg) *1
#define O_TRUNC 01000 1* open with truncation *1
#define O_EXCL 02000 1* exclusive open *1

1* fcntl(2B) requests *1
#define F _D UPFD 0 1* Duplicate fildes *1
#define F _GETFD 1 /* Get fildes fiags *1
#define F _SETFD 2 1* Set fildes fiags *1
#define F _GETFL 3 1* Get file flags *1
#define F _SETFL 4 1* Set file flags *1

SEE ALSO
fcn tl(2B), open(2B) .

Pagel (9010-E)

MATH(5) (UNIX 5.2) MATH(5)

NAME
math - math functions and constants

SYNTAX

#include <math.h>

DESCRIPTION

FILES

This file contains declarations of all the functions in the Math Library (described in Section
3M), as well as various functions in the C Library (Section 3C) that return fioating-point
values.

It defines the structure and constants used by the matherr(3M) error-handling mechanisms,
including the following constant used as an error-return value:

HUGE The maximum value of a single-precision fioating-point number.

The following mathematical constants are defined for user convenience:

M.-E

MJ.OG2E

MJ.OGIOE

MJ.N2

MJ.NIO

MYI

The base of natural logarithms (e) .

The base-2 logarithm of e.

The base-lO logarithm of e.

The natural logarithm of 2.

The natural logarithm of 10.

The ratio of the circumference of a circle to its diameter. (There are also
several fractions of its reciprocal and its square root.)

The positive square root of 2.

The positive square root of 1/2.

For the definitions of various machine-dependent "constants," see the description of the
< val'Ues.h> header file.

/usr /include /math.h

SEE ALSO

intro(3), matherr(3M), values(5).

Page 1 (9010-E)

RC(5) RC(5)

NAME
rc - command script for demons

SYNTAX

/etc/rc
DESCRIPTION

Pagel

Rc is a script of commands executed when the system is booted or rebooted. It can start all
system demons, preserve editor files, and/or clear the scratch directory /tmp. On a re boot, rc
executes before login procedures take place.

The first command in the /etc/rc file often defines the machine's name, using hostname(l).
Other commands typically invoke the cron demon, then the network demons like ftpd(1).

(901O-E)

REGEXP(5) (UNIX 5.0) REGEXP(5)

NAME
regexp - regular expression compile and match routines

SYNTAX
#define INIT <declarations>
#define G:ET<:X) < getc code>
#define PEEKc() <peekc code>
#defme UNGETc(c) < ungetc code>
#define RE'IURN(pointer) <return code>
#define ERROR(val) <error code>

#include < regexp.h >
char *compile(instring, expbuf, endbuf, eor)
char *instring, *expbut, *endbuf;

int step(string, expbut)
char*string, *expbuf;

DESCRIPTION

Pagel

This page describes general purpose regular expression matching routines in the form of ed(1),
defined in /usr/include/regexp.h. Programs such as ed(1),. 8ed(1), grep(1), b8(1), expr(1),
etc., which perform regular expression matching use this source file. In this way, only this file
need be changed to maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs that include this file must have the
following five macros declared before the "#include <regexp.h>" statement. These macros
are used by the compile routine.

GETC()

PEEKC()

UNGETC(C)

RETURN(po£nter)

ERROR(val)

Return the value of the next character in the regular expression pattern.
Successive calls to GETC() should return successive characters of the
regular expression.

Return the next character in the regular expression. Successive calls to
PEEKC() should return the same character (which should also be the
next character returned by GETC()).

Cause the argument c to be returned by the next call to GETC() (and
PEEKC()). No more that one character of pushback is ever needed and
this character is guaranteed to be the last character read by GETC(). The
value of the macro UNGETC(c) is always ignored.

This macro is used on normal exit of the compile routine. The value of
the argument po£nter is a pointer to the character after the last character
of the compiled regular expression. This is useful to programs which
have memory allocation to manage.

This is the abnormal return from the compile routine. The argument val
is an error number (see table below for meanings). This call should
never return.

(9010-E)

REGEXP(5)

ERROR
11
16

25
36
41
42
43

44
45

46
49

50

(UNIX 5.0)

MEANING
Range endpoint too large.
Bad number.
"\digit" out of range.
Illegal or missing delimiter.
No remembered search string.
\(\) imbalance.
Too many \(.
More than 2 numbers given in \{ \}.
} expected after \.
First number exceeds second in \{ \}.
[] imbalance.
Regular expression overflow.

The syntax of the compile routine is as follows:

compile (instring, expbuf, endbuf, eof)

REGEXP(5)

The first parameter instring is never used explicitly by the compile routine but is useful for pro­
grams that pass down different pointers to input characters. It is sometimes used in the INIT
declaration (see below). Programs which call functions to input characters or have characters in
an external array can pass down a value of « char *) 0) for this parameter.

The next parameter expb'Uj is a character pointer. It points to the place where the compiled reg­
ular expression will be placed.

The parameter endb'Uj is one more than the highest address where the compiled regular expres­
sion may be placed. If the compiled depression cannot fit in (endb'Uj- expb'Uf) bytes, a call to
ERROR(50) is made.

The parameter eoj is the character which marks the end of the regular expression. For exam­
ple, in ed(1), this character is usually a j.
Each program that includes this file must have a #deftne statement for INIT. This definition
will be placed right after the deClaration for the function compile and the opening curly brace
({) . It is used for dependent declarations and initializations. Most often it is used to set a
register variable to .point the beginning of the regular expression so that this register variable
can be used in the declarations for GETC(), PEEKC() and UNGETC(). Otherwise it can be
used to declare external variables that might be used by GETC(), PEEKC() and UNGETC().
See the example below of the declarations taken from grep(1).

There are other functions in this file which perform act~al regular expression matching, one of
which is the function step. The call to step is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to be checked for a match. This
string should be null terminated.

The second parameter expb'Uf is the compiled regular expression which was obtained by a call of
the function compile.

The function step returns one, if the given string matches the regular expression, and zero if
the expressions do not match. If there is a match, two external character pointers are set as a
side effect to the call to step. The variable set in step is lod. This is a pointer to the first char­
acter that matched the regular expression. The variable loc2, which is set by the function
advance, points the character after the last character that matches the regular expression. Thus
if the regular expression matches the entire line, locI will point to the first character of string
and loc2 will point to the null at the end of stnng.

(9010-E) Page 2

REGEXP(5) (UNIX 5.0) REGEXP(5)

Step uses the external variable circ! which is set by compile if the regular expression begins with
A. If this is set then step will only try to match the regular expression to the beginning of the
string. If more than one regular expression is to be compiled before the first is executed the
value of circ! should be saved for each compiled expression and circ! should be set to that saved
value before each call to step.

The function advance is called from step with the same arguments as step. The purpose of step
is to step through the string argument and call advance until advance returns a one indicating a
match or until the end of string is reached. If one wants to constrain string to the beginning of
the line in all cases, step need not be called, simply call advance.

When advance encounters a * or \{ \} sequence in the regular expression it will advance its
pointer to the string to be matched as far as possible and will recursively call itself trying to
match the rest of the string to the rest of the regular expression. As long as there is no match,
advance will back up along the string until it finds a match or reaches the point in the string
that initially matched the * or \{ \}. It is sometimes desirable to stop this backing up before
the initial point in the string is reached. If the external character pointer locs is equal to the
point in the string at sometime during the backing up process, advance will break out of the
loop that backs up and will return zero. This is used be ed(1) and sed(1) for substitutions done
globally (not just the first occurrence, but the whole line) so, for example, expressions like
s/y* / /g do not loop forever.

The routines ecmp and getrange are trivial and are called by the routines previo:usly mentioned.

EXAMPLES

FILES

The following is an example of how the regular expression macros and calls look from grep(1):

#define INIT register char *sp = instring;
#define GETC() (*sp+ +)
#define PEEKC() (*sp)
#define UNGETC(c) (- - sp)
#define RETURN(c) return;
#define ERROR(c) regerr()

#include <regexp.h>

compile(*argv, expbuf, &expbuf[ESIZE], '\0');

if(step(linebuf, expbuf»
succeed();

/usr/include/regexp.h

SEE ALSO·

BUGS

Page 3

ed(1), grep(1), sed(1).

The handling of cire! is kludgy.
The routine ecmp is equivalent to the Standard I/O routine stmcmp and should be replaced by
that routine.
The actual code is probably easier to understand than this manual page.

(90I0-E)

STAT(S) (UNIX 5.0)

NAME
stat - data returned by stat system call

SYNTAX

#include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION

STAT(S)

The system calls stat and !stat return data whose structure is defined by this include file. The
encoding of the field sLmode is defined in this file also.

FILES

/* Structure of the result of stat */

struct
{

};

stat

dev_t st_dev;
vert_t st_vers;

ino_t
ushort
short
ushort
ushort
dev_t
off_t
time_t
time_t
time_t

st_ino;
st_mode;
st_nlink;
st_uid;
stJdd;
st_rdev;
st_size;
st_atime;
st_mtime;
st_ctime;

0170000
0040000
0020000
0060000
0100000
0010000

/* type of file * /
/* directory * /
/* character special */
/* block special * /
/* regular * /
/* fifo */

#define S_IFMT
#define S_IFD IR
#define S_IFCHR
#define S_IFBLK
#define S_IFREG
#define S_IFIFO
#define S_ISUID
#define S_ISG ID
#define S_ISVTX
#define S_IREAD
#define S_IWRlTE
#define SJEXEC

04000 /* set user id on execution * /
02000 /* set group id on execution */
01000 /* save swapped text even after use * /
00400 /* read permission, owner */
00200 /* write permission, owner * /
00100 /* execute/search permission, owner */

/usr/include/sys/types.h
/usr /include /sys/stat.h

SEE ALSO
stat(2B), types(5), fs(4) .

Page 1 (9010-E)

SYSRC(5)

NAME
sysrc - command script for drivers

SYNTAX

/etA!/sysre

DESCRIPTION

(Ridge) SYSRC(5)

Sysre is a script of commands executed when the system is booted or rebooted. It can start all
system drivers; it is not intended to start demons.

SEE ALSO
rc(5)

Pagel (90l0-E)

TERM(5) (UNIX 5.0) TERM(5)

NAME
term - conventional names for terminals

DESCRIPTION

Pagel

These names are used by certain commands (e.g., nroff, mm(l), man(l), tabs(I» and are
maintained as part of the shell environment (see sh(1), profile (4), and environ(5» in the vari­
able $TER.M:

1520
1620
1620- 12
2621
2631
2631- c
2631- e
2640
2645
300
300- 12
300s
382
300s- 12
3045
33
37
40- 2
40- 4
4540
3270
4000a
4014
43
450
450- 12
735
745
dumb

D atamedia 1520
Diablo 1620 and others using the HyType II printer
same, in 12-pitch mode
Hewlett-Packard HP2621 series
Hewlett-Packard 2631 line printer
Hewlett-Packard 2631 line printer - compressed mode
Hewlett-Packard 2631 line printer - expanded mode
Hewlett-Packard HP2640 series
Hewlett-Packard HP264n series (other than the 2640 series)
DASI/DTC/GSI 300 and others using the HyType I printer
same, in 12-pitch mode
DASI/DTC/GSI 300s
DTC 382
same, in 12-pitch mode
D atamedia 3045
TELETYPE Terminal Model 33 KSR
TELETYPE Terminal Model 37 KSR
TELETYPE Terminal Model 40/2
TELETYPE Terminal Model 40/4
TELETYPE Terminal Model 4540
IBM Model 3270
Trendata 4000a
Tektronix 4014
TELETYPE Model 43 KSR
DASI 450 (same as Diablo 1620)
same, in 12-pitch mode
Texas Instruments TI735 and TI725
Texas Instruments TI745
generic name for terminals that lack reverse
line-feed and other special escape sequences

sync generic name for synchronous TELETYPE
4540-compatible terminals

hp Hewlett-Packard (same as 2645)
lp generic name for a line printer
tn1200 General Electric TermiNet 1200
tn300 General Electric TermiNet 300
ridge- 10 Ridge Monochrome Display in portrait

ridge- 12
ridge- 14
ridge- 16
ridge- 18
ridge- 20
ridge- 24

orientation with 10- point font
same, with 12- point font
same, with 14- point font
same, with 16- point font
same, with 18- point font
same, with 20- point font
same, with 24- point font

(9010-E)

TERM(S) (UNIX 5.0) TERM(S)

Up to 8 characters, chosen from [- a- zO- 9], make up a basic terminal name. Terminal sub­
models and operational modes are distinguished by suffixes beginning with a - . Names should
generally be based on original vendors, rather than local distributors. A terminal acquired from
one vendor should not have more than one distinct basic name.

Commands whose behavior depends on the type of terminal should accept arguments of the
form - Ttenn where term is one of the names given above; if no such argument is present,
such commands should obtain the terminal type from the environment variable $TERM, which,
in turn, should contain tenn.

SEE ALSO

BUGS

mm{l), nroff{l)' tplot(lG), sh(l), sttY(l), tabs(l), proflle(4), environ(5).

This is a small candle trying to illuminate a large, dark problem. Programs that ought to adhere
to this nomenclature do so somewhat fitfully.

(9010-E) Page 2

TERMCAP(5) (UNIX 5.0) TERMCAP(5)

NAME

term cap - terminal capability data base

SYNTAX

/etc/termcap

DESCRIPTION

Termcap is a data base describing terminals, used, e.g., by vie 1). Terminals are described in
termcap by giving a set of capabilities which they have, and by describing how operations are
performed. Padding requirements and initialization sequences are included in termcap.

Entries in termcap consist of a number of ':' separated fields. The first entry for each terminal
gives the names which are known for the terminal, separated by ,t characters. The first name is
always 2 characters long and is used by older version 6 systems which store the terminal type in
a 16 bit word in a systemwide data base. The second name given is the most common abbrevi­
ation for the terminal, and the last name given should be a long name fully identifying the ter­
minal. The second name should contain no blanks; the last name may well contain blanks for
readability.

CAPABILITIES

(P) indicates padding may be specified
(P*) indicates that padding may be based on no. lines affected

Name "J.Ype Pad? Description
ae str (P) End alternate character set
al str (P*) Add new blank line
am bool Terminal has automatic margins
as str (P) Start alternate character set
bc str Backspace if not AH
bs bool Terminal can backspace with AH
bt str (P) Back tab
bw bool Backspace wraps from column 0 to last column
CC str Command character in prototype if terminal settable
cd str (P*) Clear to end of display
ce str (P) Clear to end of line
ch str (P) Like cm but horizontal motion only, line stays same
cl str (P*) Clear screen
em str (P) Cursor motion
co num Number of columns in a line
cr str (P*) Carriage return, (default AM)
cs str (P) Change scrolling region (vt100), like cm
cv str (P) Like ch but vertical only.
da bool Display may be retained above
dB num Number of millisec of bs delay needed
db bool Display may be retained below
dC num Number of millisec of cr delay needed
dc str (P*) Delete character
dF num Number of millisec of fI delay needed
dl str (P*) Delete line
dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
do str Down one line
dT num Number of millisec of tab delay needed
ed str End delete mode
ei str End insert mode; give :ei=: if ie

Page 1 (90IO-E)

TERMCAP(5) (UNIX 5.0) TERMCAP(5)

eo str Can erase overstrikes with a blank
ff str (P*) Hardcopy terminal page eject (default AL)
hc bool Hardcopy terminal
hd str Half-line down (forward 1/2 linefeed)
ho str Home cursor (if no em)
hu str Half-line up (reverse 1/2 Iinefeed)
hz str Hazeltine; can't print -'s
ic str (P) Insert character
if str Name of file containing is
im bool Insert mode (enter); give :im=: if ie
in bool Insert mode distinguishes nulls on display
ip str (P*) Insert pad after character inserted
is str Terminal initialization string
kO-k9 str Sent by other function keys 0-9
kb str Sen t by backspace key
kd str Sen t by terminal down arrow key
ke str Out of keypad transmit mode
kh str Sent by home key
kl str Sent by terminal left arrow key
kn num Number of other keys
ko str Termcap entries for other non-function keys
kr str Sent by terminal right arrow key
ks str Put terminal in keypad transmit mode
ku str Sen t by terminal up arrow key
10-19 str Labels on other function keys
Ii num Number of lines on screen or page
11 str Last line, first column (if no em)
rna str Arrow key map, used by vi version 2 only
mi bool Safe to move while in insert mode
ml str Memory lock on above cursor.
ms bool Safe to move while in standout and underline mode
mu str Memory unlock (turn off memory lock) .
nc bool No correctly working carriage return (DM2500,H2000)
nd str Non-destructive space (cursor right)
nl str (P*) Newline character (default \n)
ns bool Terminal is a CRT but doesn't scroll.
os bool Terminal overstrikes
pc str Pad character (rather than nUll)
pt bool Has hardware tabs (may need to be set with is)
se str End stand out mode
sf str (P) Scroll forwards
sg num Number of blank chars left by so or se
so str Begin stand out mode
sr str (P) Scroll reverse (backwards)
ta str (P) Tab (other than AI or with padding)
tc str Entry of similar terminal - must be last
te str String to end programs that use em
ti str String to begin programs that use em
uc str Underscore one char and move past it
ue str End underscore mode
ug num Num ber of blank chars left by us or ue
ul bool Terminal underlines but does not overstrike

(9010-E) Page 2

TERMCAP(5) (UNIX 5.0) TERMCAP(5)

up
us
vb
ve
vs
xb
xn
xr

str
str
str
str
str
bool
bool
bool

Upline (cursor up)
Start underscore mode
Visible bell (may not move cursor)
Sequence to end open/visual mode
Sequence to start open/visual mode
Beehive (fl=escape, f2=ctrl C)
A newline is ignored after a wrap (Concept)
Return acts like ee \r \n (D elta Data)

--- xs bool Standout not erased by writing over it (HP 2641)
Tabs are destructive, magic so char (Teleray 1061)

Page 3

xt bool

A Sample Entry

The following entry, which describes the Concept- 100, is among the more complex entries in
the termcap file as of this writing. (This particular concept entry is outdated, and is used as an
example only.)

cl IClOO IconceptlOO:is=\EU\Ef\E7\E5\E8\EI\ENH\EK\E\200\Eo&\200:\
:al=3*\E A R:am:bs:cd=16*\E A C:ce=16\EAS:cl=2*AL:cm=\Eao/o+ 0/0+ :CO#80:\
:dc=16\EAA:dl=3*\E A B:ei=\E\200:eo:im=\EAP:in:ip=16*:li#24:mi:nd=\E=:\
:se=\Ed\Ee:so=\ED\EE:ta=8\t:ul:uP=\E;:vb=\Ek\EK:xn:

Entries may continue onto multiple lines by giving a \ as the last character of a line, and: that
empty fields may be included for readability (here between the last field on a line and the first
field on the next). Capabilities in termcap are of three types: Boolean capabilities which indicate
that the terminal has some particular feature, numeric capabilities giving the size of the termi­
nal or the size of particular delays, and string capabilities, which give a sequence which can be
used to perform particular terminal operations.

Types of Capabilities

All capabilities have two letter codes. For instance, the fact that the Concept has automatic
margins (Le. an automatic return and linefeed when the end of a line is reached) is indicated by
the capability am. Hence the description of the Concept includes am. Numeric capabilities are
followed by the character '#' and then the value. Thus eo which indicates the number of
columns the terminal has gives the value '80' for the Concept.

Finally, string valued capabilities, such as ee (clear to end of line sequence) are given by the
two character code, an '=', and then a string ending at the next following ':'. A delay in mil­
liseconds may appear after the '=' in such a capability, and padding characters are supplied by
the editor after the remainder of the string is sent to provide this delay. The delay can be
either a integer, e.g. '20', or an integer followed by an '*', Le. '3*'. A '*' indicates that the
padding required is proportional to the number of lines affected by the operation, and the
amount given is the per-affected-unit padding required. When a '*' is specified, it is sometimes
useful to give a delay of the form '3.5' specify a delay per unit to tenths of milliseconds.

A number of escape sequences are provided in the string valued capabilities for easy encoding
of characters there. A \E maps to an ESCAPE character, AX maps to a control-x for any
appropriate x, and the sequences \n \r \t \b \1 give a newline, return, tab, backspace and
formfeed. Finally, characters may be given as three octal digits after a \. and the characters A

and \ may be given as \ A and \ \. If it is necessary to place a : in a capability it must be escaped
in octal as \072. If it is necessary to place a null character in a string capability it must be
encoded as \200. The routines which deal with termcap use C strings, and strip the high bits of
the output very late so that a \200 comes out as a \000 WOUld.

(90l0-E)

TERMCAP(5) (UNIX 5.0) TERMCAP(5)

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most effective way to prepare a
terminal description is by imitating the description of a similar terminal in tenncap and to build
up a description gradually, using partial descriptions with ex to check that they are correct. Be
aware that a very unusual terminal may expose deficiencies in the ability of the tenncap file to
describe it or bugs in ex. To easily test a new terminal description you can set the environment
variable TERMCAP to a pathname of a file containing the description you are working on and
the editor will look there ra~er than in /etcjtenncap. TERMCAP can also be set to the termcap
entry itself to avoid reading the file when starting up the editor. (This only works on version 7
systems.)

Basic capabilities

The number of columns on each line for the terminal is given by the eo numeric capability. If
the terminal is a CRT, then the number of lines on the screen is given by the Ii capability. If
the terminal wraps around to the beginning of the next line when it reaches the right margin,
then it should have the am capability. If the terminal can clear its screen, then this is given by
the el string capability. If the terminal can backspace, then it should have the be capability,
unless a backspace is accomplished by a character other than AH (ugh) in which case you
should give this character as the be string capability. If it overstrikes (rather than clearing a
position when a character is struck over) then it should have the 08 capability.

A very important point here is that the local cursor motions encoded in tenncap are undefined
at the left and top edges of a CRT terminal. The editor will never attempt to backspace around
the left edge, nor will it attempt to go up locally off the top. The editor assumes that feeding
off the bottom of the screen will cause the screen to scroll up, and the am capability tells
whether the cursor sticks at the right edge of the screen. If the terminal has switch selectable
automatic margins, the tenncap file usually assumes that this is on, i.e. am.

These capabilities suffice to describe hardcopy and glass-tty terminals. Thus the model 33 tele­
type is described as

t3 133 Itty33:co#72:oS

while the Lear Siegler ADM- 3 is described as

clladm3~~i adm3:am:bs:cl=AZ:li#24:CO#80

Cursor addressing

Cursor addressing in the terminal is described by a em. string capability, with printf(3s) like
escapes ~ in it. These substitute to encodings of the current line or column position, while
other characters are passed through unchanged. If the em string is thought of as being a func­
tion, then its arguments are the line and then the column to which motion is desired, and the
%encodings have the following meanings:

(9010-E)

o/(J!
0/02
0/03
%.
0/0+ x

as in print/, 0 origin
like o/o2d
like o/03d
like %,c
adds x to value, then %.

%>xy if value> x adds y, no output.
%- reverses order of line and column, no output
% increments line/column (for 1 origin)
%% gives a single %
o/cn exclusive or row and column with 0140 (DM2500)
9tB BCD (16*(x/lO» + (xo/olO), no output.
9tD Reverse coding (x-2*(x%!6», no output. (Delta Data).

Page 4

TERMCAP(5) (UNIX 5.0) TERMCAP(5)

Page 5

Consider the HP2645, which, to get to row 3 and column 12, needs to be sent \E&a12c03Y
padded for 6 milliseconds. Note that the order of the rows and columns is inverted here, and
that the row and column are printed as two digits. Thus its em capability is
cm=6\E&0/c:r0/c:2co/c:2Y. The Microterm ACT-IV needs the current row and column sent preceded
by a AT, with the row and column simply encoded in binary, cm=A'!% %. Terminals which
use % need to be able to backspace the cursor (b; or be), and to move the cursor up one line
on the screen (up introduced below). This is necessary because it is not always safe to transmit
\t, \n AD and \r, as the system may change or discard them.

A final example is the LSI ADM-3a, which uses row and column offset by a blank character, thus
cm=\E=o/O+ 0/0+

Cursor motions

If the terminal can move the cursor one position to the right, leaving the character at the
current position unchanged, then this sequence should be given as nd (non-destructive space).
If it can move the cursor up a line on the screen in the same column, this should be given as
up. If the terminal has no cursor addressing capability, but can home the cursor (to very upper
left corner of screen) then this can be given as ho; similarly a fast way of getting to the lower
left hand corner can be .given as 11; this may involve going up with up from the home position,
but the editor will never do this itself (unless 11 does) because it makes no assumption about
the effect of moving up from the home position.

Area clears

If the terminal can clear from the current position to the end of the line, leaving the cursor
where it is, this should be given as ce. If the terminal can clear from the current position to
the end of the display, then this should be given as cd .The editor only uses cd from the first
column of a line.

Insert/delete line

If the terminal can open a new blank line before the line where the cursor is, this should be
given as aI; this is done only from the first position of a line. The cursor must then appear on
the newly blank line. If the terminal can delete the line which the cursor is on, then this
should be given as dl; this is done only from the first position on the line to be deleted. If the
terminal can scroll the screen backwards, then this can be given as sb, but just aI suffices. If
the terminal can retain display memory above then the cia capability should be given; if display
memory can be retained below then db should be given. These let the editor understand that
deleting a line on the screen may bring non-blank lines up from below or that scrolling back
with sb may bring down non-blank lines.

Insert/delete character

There are two basic kinds of intelligent terminals with respect to insert/delete character which
can be described using termcap. The most common insert/delete character operations affect only
the characters on the current line and shift characters off the end of the line rigidly. Other ter­
minals, such as the Concept 100 and the Perkin Elmer Owl, make a distinction between typed
and untyped blanks on the screen, shifting upon an insert or delete only to an untyped blank on
the screen which is either eliminated, or expanded to two untyped blanks. You can find out
which kind of terminal you have by clearing the screen and then typing text separated by cursor
motions. Type abc def using local cursor motions (not spaces) between the abc and the def.
Then position the cursor before the abc and put the terminal in insert mode. If typing charac­
ters causes the rest of the line to shift rigidly and characters to falloff the end, then your termi­
nal does not distinguish between blanks and untyped positions. If the abc shifts over to the def
which then move together around the end of the current line and onto the next as you insert,
you have the second type of terminal, and should give the capability in, which stands for insert
null. If your terminal does something different and unusual then you may have to modify the

(90l0-E)

TERMCAP(5) (UNIX 5.0) TERMCAP(5)

editor to get it to use the insert mode your terminal defines. We have seen no terminals which
have an insert mode not not falling into one of these two classes.

The editor can handle both terminals which have an insert mode, and terminals which send a
simple sequence to open a blank position on the current line. Give as im the sequence to get
into insert mode, or give it an empty value if your terminal uses a sequence to insert a blank
position. Give as ei the sequence to leave insert mode (give this, with an empty value also if
you gave im so). Now give as ie any sequence needed to be sent just before sending the char­
acter to be inserted. Most terminals with a true insert mode will not give ie, terminals which
send a sequence to open a screen position should give it here. (Insert mode is preferable to the
sequence to open a position on the screen if your terminal has both.) If post insert padding is
needed, give this as a number of milliseconds in ip (a string option). Any other sequence
which may need to be sent after an insert of a single character may also be given in ip.

It is occasionally necessary to move around while in insert mode to delete characters on the
same line (e.g. if there is a tab after the insertion position). If your terminal allows motion
while in insert mode you can give the capability mi to speed up inserting in this case. Omitting
mi will affect only speed. Some terminals (notably Datamedia's) must not have mi because of
the way their insert mode works.

Finally, you can specify delete mode by giving dm and ed to enter and exit delete mode, and de
to delete a single character while in delete mode.

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout mode these can be given as so and se
respectively. If there are several flavors of standout mode (such as inverse video, blinking, or
underlining - half bright is not usually an acceptable standout mode unless the terminal is in
inverse video mode constantly) the preferred mode is inverse video by itself. If the code to
change into or out of standout mode leaves one or even two blank spaces on the screen, as the
TVI 912 and Teleray 1061 do, then ug should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as us and ue respectively. If the
terminal has a code to underline the current character and move the cursor one space to the
right, such as the Microterm Mime, this can be given as uc. (If the underline code does not
move the cursor to the right, give the code followed by a nondestructive space.)

Many terminals, such as the HP 2621, automatically leave standout mode when they move to a
new line or the cursor is addressed. Programs using standout mode should exit standout mode
before moving the cursor or sending a newline.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement)
then this can be given as vb; it must not move the cursor. If the terminal should be placed in a
different mode during open and visual modes of ex, this can be given as VB and ve, sent at the
start and end of these modes respectively. These can be used to change, e.g., from a underline
to a block cursor and back.

If the terminal needs to be in a special mode when running a program that addresses the cur­
sor, the codes to enter and exit this mode can be given as ti and teo This arises, for example,
from terminals like the Concept with more than one page of memory. If the terminal has only
memory relative cursor addressing and not screen relative cursor addressing, a one screen-sized
window must be fixed into the terminal for cursor addressing to work properly.

If your terminal correctly generates underlined characters (with no special codes needed) even
though it does not overstrike, then you should give the capability ul. If overstrikes are erasable
with a blank, then this should be indicated by giving eo.

Keypad

(9010-E) Page 6

TERMCAP(5) (UNIX 5.0) TERMCAP(5)

Page 7

If the terminal has a keypad that transmits codes when the keys are pressed, this information
can be given. Note that it is not possible to handle terminals where the keypad only works in
local (this applies, for example, to the unshifted HP 2621 keys). If the keypad can be set to
transmit or not transmit, give these codes as ks and ke. Otherwise the keypad is assumed to
always transmit. The codes sent by the left arrow, right arrow, up arrow, down arrow, and
home keys can be given as kl, kr, ku, kd, and kh respectively. If there are function keys such
as fO, fl, ... , f9, the codes they send can be given as kO, kl, ••• , kg. If these keys have labels
other than the default fO through f9, the labels can be given as 10, 11, ••• , 19. If there are other
keys that transmit the same code as the terminal expects for the corresponding function, such
as clear screen, the termcap 2 letter codes can be given in the ko capability, for example,
:ko=cl,ll,sf,sb:, which says that the terminal has clear, home down, scroll down, and scroll up
keys that transmit the same thing as the cl, 11, sf, and sb entries.

The ma entry is also used to indicate arrow keys on terminals which have single character arrow
keys. It is obsolete but still in use in version 2 of vi, which must be run on some minicomput­
ers due to memory limitations. This field is redundant with kl, kr, ku, kd, and kh. It consists
of groups of two characters. In each group, the first character is what an arrow key sends, the
second character is the corresponding vi command. These commands are h for kl, j for kd, k
for ku, I for kr, and H for kh. For example, the mime would be :ma=AKjAZkAXI: indicating
arrow keys left (AH), down CK), up CZ), and right (AX). (There is no home key on the
mime.)

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this can be given as pe.

If tabs on the terminal require padding, or if the terminal uses a character other than AI to tab,
then this can be given as ta.

Hazeltine terminals, which don't allow ,-, characters to be printed should indicate hz.
D atamedia terminals, which echo carriage-return linefeed for carriage return and then ignore a
following linefeed should indicate nc. Early Concept terminals, which ignore a linefeed
immediately after an &.Ill wrap, should indicate xn. If an erase-eol is required to get rid of stan­
dout (instead of merely writing on top of it), xs should be given. Teleray terminals, where tabs
turn all characters moved over to blanks, should indicate xt. Other specific terminal problems
may be corrected by adding more capabilities of the form xx.

Other capabilities include is, an initialization string for the terminal, and if, the name of a file
containing long initialization strings. These strings are expected to properly clear and then set
the tabs on the terminal, if the terminal has settable tabs. If both are given, is will be printed
before if. This is useful where if is /'Usr;1z'b/tabset/std but is clears the tabs first.

Similar Terminals

If there are two very similar terminals, one can be defined as being just like the other with cer­
tain exceptions. The string capability te can be given with the name of the similar terminal.
This capability must be last and the combined length of the two entries must not exceed 1024.
Since termlib routines search the entry from left to right, and since the tc capability is replaced
by the corresponding entry, the capabilities given at the left override the ones in the similar ter­
minal. A capability can be cancelled with xx@ where xx is the capability. For example, the
entry

hn 12621nl:ks@ :ke@ :tc=2621:

defines a 2621nl that does not have the ks or ke capabilities, and hence does not turn on the
function key labels when in visual mode. This is useful for different modes for a terminal, or
for different user preferences.

(9010-E)

TERMCAP(5) (UNIX 5.0) TERMCAP(5)

FILES
/etc/termcap file containing terminal descriptions

SEE ALSO . \
ex(I), termcap(3), vi(l) , IE'Vvk (4) I ,ev~'/A ~ ~1 -to (If)

AUTHOR

BUGS

University of California at Berkeley

Ex allows only 256 characters for string capabilities, and the routines in termcap(3) do not check
for overflow of this buffer. The total length of a single entry (excluding only escaped newlines)
may not exceed 1024.

The ma, vs, and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that are not supported by any program.

(9010-E) Page 8

TYPES(S) (UNIX 5.2) TYPES(S)

NAME
types - primitive system data types

SYNTAX

#include <sys/types.h>

DESCRIPTION
The data types defined in the include file are used in UNIX system code; some data of these
types are accessible to user code:

typedef struct { int r[I]; } * physadr;
typedef long daddr_t;
typedef char * caddr_t;
typedef unsigned int uint;
typedef unsigned short ushort;
typedef unsigned int vers_t;
typedef unsigned int ino_t;
typedef short cnt_t;
typedef long time_t;
typedef int label_t[IO] ;
typedef unsigned int dev_t;
typedef long off_t;
typedef long paddr_t;
typedef long key_t;

The form daddr_t is used for disk addresses. Times are encoded in seconds since 00:00:00
GMT, January 1, 1970. The major and minor parts of a device code specify kind and unit
number of a device and are installation-dependent. Offsets are measured in bytes from the
beginning of a file. The labeCt variables are used to save the processor state while another pro­
cess is running.

SEE ALSO

fs(4).

Page 1 (90IO-E)

VALUES(5) (UNIX 5.2) VALUES(5)

NAME
values - machine-dependent values

SYNTAX
#include <values.h>

DESCRIPTION

FILES

This flle contains a set of manifest constants, conditionally deflned for particular processor
architectures.

The model assumed for integers is binary representation (one's or two's complement), where
the sign is represented by the value of the high-order bit.

BITS(type)

HIBITS

HIBITL

HIBITI

MAXSHORT

MAXLONG

MAXINT

The number of bits in a specifled type (e.g., int).

The value of a short integer with only the high-order bit set (OX8000).

The value of a long integer with only the high-order bit set
(Ox80000000) .

The value of a regular integer with only the high-order bit set (the same
as HIBITS or HIBITL).

The maximum value of a signed short integer (Ox7FFF == 32767).

The maximum value of a signed long integer (Ox7FFFFFFF _
2147483647) .

The maximum value of a signed regular integer (the same as MAX­
SHORT orMAXLONG).

MAXFLOAT, LN-MAXFLOAT The maximum value of a single-precision floating-point
number, and its natural logarithm (6.805646932770577e30,
and 89.3).

MAXDOUBLE, LN_MAXDOUBLE
The maximum value of a double-precision floating-point
number. and its natural logarithm (3 .59538626972462ge308.
and 709).

MINFLOA T, LN_MINFLOA T The minimum positive value of a single-precision floating­
point number, and its natural logarithm
(5.877472454760670ge-39, and -88).

MINDOUBLE, LN-MINDOUBLE The minimum positive value of a double-precision floating-

FSIGNIF

DSIGNIF

point number. and its natural logarithm
(1.1125369292536015e-308, and -709).

The number of signiflcant bits in the mantissa of a single-precision
·floating-point number (24).

The number of signiflcant bits in the mantissa of a double-precision
floating-point number (56).

/usr/include/values.h

SEE ALSO
intro(3). math(5).

Pagel (9010-E)

VARARGS(5) (UNIX 5.2) VARARGS(5)

NAME
varargs - handle variable argument list

SYNTAX

#include <var8.lWl.h>

va_alist

va_del

void va_start(pvar)
va_listpvar;

type va_arg(pvar, type)
va_listpvar;

void va_end(pvar)
va_listpvar;

DESCRIPTION

Pagel

This set of macros allows portable procedures that accept variable argument lists to be written.
Routines that have variable argument lists (such as printf(3S» but do not use varargs are
inherently nonportable, as different machines use different argument-passing conventions.

va_alist is used as the parameter list in a function header.

va_del is a declaration for va_aIUlt. No semicolon should follow va_del.

va_list is a type defined for the variable used to traverse the list.

va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argument in the list pointed to by pvar. Type is the type the argu­
ment is expected to be. Different types can be mixed, but it is up to the routine to know what
type of argument is expected, as it cannot be determined at runtime.

va_end is used to clean up.

(90IO-E)

VARARGS(5) (UNIX 5.2) VARARGS(5)

Multiple traversals, each bracketed by va_start ... va_end, are possible.

EXAMPLE
This example is a possible implementation of execl(2).

#include <varargs.h>
#deflne MAXARGS 100

/* execl is called by
execl(flle, arg1, arg2, ... , (char *)0);

*/
execl(v a_alist)

{

}

va_list ap;
char *file;
char *args[MAXARGS];
int argno = 0;

va_s tart(ap) ;
file = va_arg(ap, char *);
while «args[argno+ +] = va_arg(ap, char *» != (char *)0)

va_end(ap) ;
return execv(flle, args);

SEE ALSO

BUGS

exec(2), printf(3S).

It is up to the calling routine to specify how many arguments there are, since it is not always
possible to determine this from the stack frame. For example, execl is passed a zero pointer to
signal the end. of the list. Printf can tell how many arguments are there by the format.
It is non-portable to specify a second argument of char, short, or float to va_arg, since argu­
ments seen by the called function are not char, short, or float. C converts char and short argu-,
ments to int and converts float arguments to double before passing them to a function.

(9010-E) Page 2

BLANK

INTRO(6) INTRO(6)

NAME
intro - introduction to games

DESCRIPTION

Pagel

Section six describes the recreational and educational programs found in the /usr/games direc­
tory. To run any game, type /usr/games/gamename.

(90IO-E)

ARITHMETI C(6) (bsd 4.2) ARITHMETIC(6)

NAME
arithmetic - provide drill in number facts

SYNTAX

lusr/games/arithmetie [+- x/][range]

DESCRIPTION

Pagel

Arithmet-ic types out simple arithmetic problems, and waits for an answer to be typed in. If the
answer is correct, it types back "Right!", and a new problem. If the answer is wrong, it replies
"What? .. , and walts for another answer. Every twenty problems, it publishes statistics on
correctness and the time required to answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem to be generated; +, - , x, and I
respectively cause addition, subtraction, multiplication, and division problems to be generated.
One or more characters can be given; if more than one is given, the different types of problems
will be mixed in random order; default is +- .
Range is a decimal number; all addends, subtrahends, differences, multiplicands, divisors, and
quotients will be less than or equal to the value of range. Default range is 10.

At the start, all numbers less than or equal to range are equally likely to appear. If the respon­
dent makes a mistake, the numbers in the problem which was missed become more likely to
reappear.

As a matter of educational philosophy, the program will not give correct answers, since the
learner should, in principle, be able to calculate them. Thus the program is intended to provide
drill for someone just past the first learning stage, not to teach number facts de novo. For
almost all users, the relevant statistic should be time per problem, not percent correct.

(9010-E)

BACKGAMMON(6) (bsd 4.2) BACKGAMMON(6)

NAME
backgammon - another game of backgammon

SYNTAX

/usr / games /backgammon

DESCRIPTION
Backgammon asks whether you need instructions, then plays backgammon.

Pagel (9010-E)

BALLS(6)

NAME

balls - demonstrate rubber balls

SYNTAX

/usr/gaDBes~ls

DESCRIPTION

(Ridge) BALLS(6)

Balls demonstrates five bouncing rubber balls. It must be run on the Ridge graphics display.

Page 1 (9010-E)

BCD(6)

NAME
bcd - convert to antique media

SYNTAX

/usr/gamesfbcd text

DESCRIPTION

(bsd 4.2)

Bcd converts the literal text into a form familiar to old-timers.

SEE ALSO
dd(l)

Pagel

BCD(6)

(9010-E)

BJ(6) (UNIX 5.2) BJ(6)

NAME
bj - the game of black jack

SYNTAX

/usr / games /bj
DESCRIPTION

Pagel

Bj simulates the dealer in the game of black jack (or twenty-one). The following rules apply:

The bet is $2 every hand.

A player "natural" (black jack) pays $3. A dealer natural loses $2. Both dealer and
player naturals is a "push" (no money exchange).

If the dealer has an ace up, the player is allowed to make an "insurance" bet against the
chance of a dealer natural. If this bet is not taken, play resumes as normal. If the bet is
taken, it is a side bet where the player wins $2 if the dealer has a natural and loses $1 if
the dealer does not.

If the player is dealt two cards of the same value, he is allowed to "double". He is
allowed to play two hands, each with one of these cards. (The bet is doubled also; $2 on
each hand.)

If a dealt hand has a total of ten or eleven, the player may "double down". He may dou­
ble the bet ($2 to $4) and receive exactly one more card on that hand.

Under normal play, the player may "hit" (draw a card) as long as his total is not over
twenty-one. If the player "busts" (goes over twenty-one), the dealer wins the bet.

When the player "stands" (decides not to hit), the dealer hits until he attains a total of
seventeen or more. If the dealer busts, the player wins the bet.

If both player and dealer stand, the one with the largest total wins. A tie is a push.

The machine deals and keeps score. The following questions will be asked at appropriate times.
Each question is answered by y followed by a new-line for "yes", or just neW-line for "no".

? (means, "do you want a hit? ")
Insurance?
Double down?

Every time the deck is shufHed, the dealer so states and the "action" (total bet) and "stand­
ing" (total won or lost) is printed. To exit, hit the interrupt key (DEL) and the action and
standing will be printed.

(90l0-E)

BOGGLE(6) (bsd 4.2) BOGGLE(6)

NAME
boggle - play the game of boggle

SYNTAX

/usr/gamesfboggle [+] [+ +]
DESCRIPTION

Pagel

This program is intended for people wishing to sharpen their skills at Boggle (TM Parker
Bros.). If you invoke the program with 4 arguments of 4 letters each, (e.g. boggle appl epie
moth erhd) the program forms the obvious Boggle grid and lists . all the words from
/usr/met/words found therein. If you invoke the program without arguments, it will generate a
board for you, let you enter words for 3 minutes, and then tell you how well you did relative to

/usr / met/words.

The object of Boggle is to find, within 3 minutes, as many words as possible in a 4 by 4 grid of
letters. Words may be formed from any sequence of 3 or more adjacent letters in the grid. The
letters may join horizontally, vertically, or diagonally. However, no position in the grid may be
used more than once within anyone word. In competitive play amongst humans, each player is
given credit for those of his words which no other player has found.

In interactive play, enter your words separated by spaces, tabs, or newlines. A bell will ring
when there is 2:00, 1:00, 0:10, 0:02, 0:01, and 0:00 time left. You may complete any word
started before the expiration of time. You can surrender before time is up by hitting 'break'.
While entering words, your erase character is only effective within the current word and your
line kill character is ignored.

Advanced players may wish to invoke the program with 1 or 2 + 's as the first argument. The
first + removes the restriction that positions can only be used once in each word. The second
+ causes a position to be considered adjacent to itself as well as its (up to) 8 neighbors.

(9010-E)

BTLGAMMON(6) (UNIX 5.2) BTLGAMMON(6)

NAME
BTLGAMMON - the game of backgammon

SYNTAX

/usr /gamesjbtJgammon

DESCRIPTION

FILES

BUGS

Pagel

Btlgammon is a program which provides a partner for the game of backgammon. It is designed
to play at three different levels of skill, one of which you must select. In addition to selecting
the opponent's level, you may also indicate that you would like to roll your own dice during
your turns (for the superstitious players). You will also be given the opportunity to move first.
The practice of each player rolling one die for the first move is not incorporated.

The points are numbered 1- 24, with 1 being white's extreme inner table, 24 being brown's
inner table, 0 being the bar for removed white pieces and 25 the bar for brown. For details on
how moves are expressed, type y when btlgammon asks "Instructions?" at the beginning of the
game. When btlgammon first asks "Move?", type! to see a list of move options other than
entering your numerical move.

When the game is finished, btlgammon will ask you if you want the log. If you respond with y,
btlgammon will attempt to append to or create a file back.log in the current directory.

/usr/games/lib/backrules
/tmp/b*
back.log

rules file
log temp file
log file

The only level really worth playing Is "expert", and it only plays the forward game.
Btlgammon will complain loudly if you attempt to make too many moves in a turn, but will
become very silent if you make too few.
Doubling is not implemented.

(90IO-E)

CANFIELD(6) (bsd4.2) CANFIELD (6)

NAME
canfield, cfscores - the solitaire card game canfield

SYNTAX

/usr/gar.nes/eaEdleld
/usr / gar.nes / cfscores

DESCRIPTION

FILES

BUGS

Pagel

If you have never played solitaire before, it is recommended that you consult a solitaire instruc­
tion book. In Canfield, tableau cards may be built on each other downward in alternate colors.
An entire pile must be moved as a unit in building. Top cards of the piles are available to be
able to be played on foundations, but never into empty spaces.

Spaces must be filled from the stock. The top card of the stock also is available to be played on
foundations or built on tableau piles. After the stock is exhausted, tableau spaces may be filled
from the talon and the player may keep them open until he wishes to use them.

Cards are dealt from the hand to the talon by threes and this repeats until there are no more
cards in the hand or the player quits. To have cards dealt' onto the talon the player types 'ht' for
his move. Foundation base cards are also automatically moved to the foundation when they
become available.

The command 'c' causes canfield to maintain card counting statistics on the bottom of the
screen. When properly used this can greatly increase ones chances of winning.

The rules for betting are somewhat less strict than those used in the official version of the
game. The initial deal costs $13. You may quit at this point or inspect the game. Inspection
costs $13 and allows you to make as many moves as is possible without moving any cards from
your hand to the talon. (the initial deal places three cards on the talon; if all these cards are
used, three more are made available.) Finally, if the game seems interesting, you must pay the
final installment of $26. At this point you are credited at the rate of $5 for each card on the
foundation; as the game progresses you are credited with $5 for each card that is moved to the
foundation. Each run through the hand after the first costs $5. The card counting feature costs
$1 for each unknown card that is identified. If the information is toggled on, you are only
charged for cards that became visible since it was last turned on. Thus the maximum cost of
information is $34. Playing time is charged at a rate of $1 per minute.

With no arguments, the program c/scores prints out the current status of your canfield account.
If a user name is specified, it prints out the status of their canfield account. If the - a fiag is
specified, it prints out the canfield accounts for all users that have played the game since the
database was set up.

/usr/games/canfield the game itself
/usr/games/cfscores the database printer
/usr/games/lib/cfscores the database of scores

It is impossible to cheat.

(9010-E)

CRAPS(6) (UNIX 5.2) CRAPS(6)

NAME
craps - the game of craps

SYNTAX
/usr / games / craps

DESCRIPTION

Pagel

Oraps is a form of the game of craps that is played in Las Vegas. The program simulates the
roller, while the user (the player) places bets. The player may choose, at any time, to bet with
the roller or with the Hou8t. A bet of a negative amount is taken as a bet with the House, any
other bet is a bet with the roller.

The player starts off with a "bankroll" of $2,000.

The program prompts with:

bet?

The bet can be all or part of the player's bankroll. Any bet over the total bankroll is rejected
and the program prompts with bet? until a proper bet is made.

Once the bet is accepted, the roller throws the dice. The following rules apply (the player wins
or loses depending on whether the bet is placed with the roller or with the House; the odds are
even). The fir8t roll is the roll immediately following a bet:

1. On the first roll:

7 or 11 wins for the roller;
2, 3, or 12 wins for the House;
any other number is the point, roll again (Rule 2 applies).

2. On subsequent rolls:
point roller wins;
7 House wins;
any other number roll again.

If a player loses the entire bankroll, the House will offer to lend the player an additional $2,000.
The program will prompt:

marker?

A yes (or y) consummates the loan. Any other reply terminates the game.

If a player owes the House money, the House reminds the player, before a bet is placed, how
many markers are outstanding.

If, at any time, the bankroll of a player who has outstanding markers exceeds $2,000, the
House asks:

Repay marker?

A reply of yes (or y) indicates the player's willingness to repay the loan. If only 1 marker is
outstanding, it is immediately repaid. However, if more than 1 marker are outstanding, the
House asks:

How many?

markers the player would like to repay. If an invalid number is entered (or just a carriage
return), an appropriate message is printed and the program will prompt with How many? until
a valid number is entered.

If a player accumulates 10 markers (a total of $20,000 borrowed from the House). the program
informs the player of the situation and exits.

Should the bankroll of a player who has outstanding markers exceed $50,000, the total amount
of money borrowed will be automatically repaid to the House.

(90l0-E)

CRAPS(6) (UNIX 5.2) CRAPS(6)

Any player who accumulates $100,000 or more breaks the bank. The program then prompts:

New game?

to give the House a chance to win back its money.

Any reply other than yes is considered to be a no (except in the case of bet? or How many?).
To exit, send an interrupt (break), DEL, or control-D. ·The program will indicate whether the
player won, lost, or broke even.

MISCELLANEOUS
The random number generator for the die numbers uses the seconds from the time of day.
Depending on system usage, these numbers, at times, may seem strange but occurrences of
this type in a real dice situation are not uncommon.

(90l0-E) Page 2

CRIBBAGE(6) (bsd 4.2) CRIBBAGE(6)

NAME
cribbage - the card game cribbage

SYNTAX
/usr/games/cribbage [- req] name ...

DESCRIPTION

Page 1

Cribbage plays the card game cribbage, with the program playing one hand and the user the
other. The program will initially ask the user if the rules of the game are needed - if so, it
will print out the appropriate section from According to Hoyle with more (I).

Cribbage options include:

- e When the player makes a mistakes scoring his hand or crib, provide an explanation of
the correct score. (This is especially useful for beginning players.)

- q Print a shorter form of all messages - this is only recommended for users who have
played the game without specifying this option.

- r Instead of asking the player to cut the deck, the program will randomly cut the deck.

Cribbage first asks the player whether he wishes to playa short game (once around, to 61) or a
long game (twice around, to 121). A response of's' will result in a short game, any other
response will playa long game.

At the start of the first game, the program asks the player to cut the deck to determine who
gets the first crib. The user should respond with a number between 0 and 51, indicating how
many cards down the deck is to be cut. The player who cuts the lower ranked card gets the first
crib. If more than one game is played, the loser of the previous game gets the first crib in the
current game.

For each hand, the program first prints the player's hand, whose crib it is, and then asks the
player to discard two cards into the crib. The cards are prompted for one per line, and are
typed as explained below.

After discarding, the program cuts the deck (if it is the player's crib) or asks the player to cut
the deck (if it's its crib); in the later case, the appropriate response is a number from 0 to 39
indicating how far down the remaining 40 cards are to be cut.

After cutting the deck, play starts with the non-dealer (the person who doesn't have the crib)
leading the first card. Play continues, as per cribbage, until all cards are exhausted. The pro­
gram keeps track of the scoring of all points and the total of the cards on the table.

After play, the hands are scored. The program requests the player to score his hand (and the
crib, if it is his) by printing out the appropriate cards (and the cut card enclosed in brackets).
Play continues until one player reaches the game limit (61 or 121).

A carriage return when a numeric input is expected is equivalent to typing the lowest legal
value; when cutting the deck this is equivalent to choosing the top card.

Cards are specified as rank followed by suit. The ranks may be specified as one of: 'a', '2', '3',
'4', '5', '6', '7', '8', '9', 't', 'j', 'q', and 'k', or alternatively, 0ne of: ace, two, three, four, five,
six, seven, eight, nine, ten, jack, queen, and king. Suits may be specified as: 's'. 'h', 'd', and
'c', or alternatively as: spades, hearts, diamonds, and clubs. A ~ard may be specified as:
<rank> <suit>, or: <rank> of <suit>. If the single letter rank and suit designations
are used, the space separating the suit and rank may be left out. Also, if only one card of the
desired rank is playable, typing the rank is sufficient. For example, if your hand was 2H, 4D,
5C, 6H, JC, KD and it was desired to discard the king of diamonds, any of the following could
be typed: k, king, kd, k d, k of d, king d, king of d, k diamonds, k of diamonds, king dia­
monds, or king of diamonds.

(9010-E)

FISH(6) (bsd 4.2) FISH(6)

NAME
fish - play" Go Fish"

SYNTAX

/usr /games /fish

DESCRIPTION

Page 1

Fish plays the game of Go Fish, a children's card game. The object is to accumulate 'books' of
4 cards with the same face value. The players alternate turns; each turn begins with one player
selecting a card from his hand, and asking the other player for all cards of that face value. If
the other player has one or more cards of that face value in his hand, he gives them to the first
player, and the first player makes another request. Eventually, the first player asks for a card
which is not in the second player's hand: he replies 'GO FISH!' The first player then draws a
card from the 'pool' of undealt cards. If this is the card he had last requested, he draws again.
When a book is made, either through drawing or requesting, the cards are laid down and no
further action takes place with that face value.

To play the computer, simply make guesses by typing a, 2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, or k
when asked. Hitting return gives you information about the size of my hand and the pool, and
tells you about my books. Saying 'p' as a first guess puts you into 'pro' level; the default is
quite unsophisticated.

(9010-E)

FORTUNE(6) (bsd 4.2) FORTUNE(6)

NAME
fortune - print a random, hopefully interesting, adage

SYNTYAX

/usr/games/forbme [-] [- wslao]

DESCRIPTION

FILES

Pagel

Fort'Unewith no arguments prints out a random adage. The Hags mean:

- w Waits before termination for an amount of time calculated from the number of characters
in the message. This is useful if it is executed as part of the logout procedure to guaran­
tee that the message can be read before the screen is cleared.

- s Short messages only.

- 1 Long messages only.

- 0 Choose from an alternate list of adages, often used for potentially offensive ones.

- a Choose from either list of adages.

/usr /games/lib /fortunes.dat

(9010-E)

HANGMAN(6) (bsd 4.2)

NAME
hangman - Computer version of the game hangman

SYNTAX

/usr/games/hangman

DESCRIPTION

HANGMAN(6)

In hangman, the computer picks a word from the on-line word list and you must try to guess it.
The computer keeps track of which letters have been guessed and how many wrong guesses
you have made on the screen in a graphic fashion.

FILES
/usr / dict/words On-line word list

Pagel (90IO-E)

LIFE(6)

NAME
life - the John Conway game of life

SYNTAX

/usr/games/life

DESCRIPTION

(Ridge) LlFE(6)

Life demonstrates the birth and death of individuals in a population. As areas of the screen get
overcrowded. individuals die. If the population is suitable for growth. individuals multiply.

Life requires a Ridge graphics display.

Life runs until the user presses the DEL key.

Page I (90IO-E)

MASTER(6) (UNIX 5.2) MASTER(6)

NAME
master - the game of mastermind

SYNTAX

/usr/games/master

DESCRIPTION

Pagel

The playing field is a number of slots, in which a number of colored pegs can be placed. I will
start by placing a peg in each slot, and you will then have to guess what color peg I have in
each slot. You will then place a peg in each slot, and I will have to guess what color peg is in
each slot. You get one point for each guess I have to make, and I get one point for each guess
you have to make.

A guess consists of a possible sequence of colored pegs. The guesser's opponent then answers
with two numbers: the number of pegs in the guess that exactly match the corresponding pegs
in the configuration, and the number of pegs in the guess that match in color but not in posi­
tion. For example, let's say we are playing with five slots, and the following situation occurs:

my configuration:
your guess: blue

red
red

red
green

yellow blue brown
red red

The two numbers would then be I and 2. The I is because we each have a red peg in the
second slot. In addition, your blue matches my blue, though the position is wrong, and one of
your reds matches my red in the first slot. Only two of your reds match because I only have two
reds in my configuration.

You will have a chance to decide before we start on how many slots and how many colors you
want to use.

When you enter a guess, type the names of the colors, separated by spaces. When I make a
guess, answer me with two digits, possibly separated by spaces.

Any time it is your turn to enter a guess, you can ask me what happened by typing "review"
instead of your guess.

(9010-E)

MAZE(6)

NAME
maze - generate a maze

SYNTAX

/usr/games/maze

DESCRIPTION

(UNIX 5.2)

Maze asks a few questions and then prints a maze.

BUGS
Some mazes (especially small ones) have no solutions.

Pagel

MAZE(6)

(9010-E)

MILLE(6) (bsd 4.2) MILLE(6)

NAME
mille - play Mille Bournes

SYNTAX

/usr/games/mille [file]

DESCRIPTION
Mille plays a two-handed game like the Parker Brother's game of Mille Bournes. The rules are
described below. If a file name is given on the command line, the game saved in that file is
started.

When a game is started up, the bottom of the score window will contain a list of commands.
They are:

P Pick a card from the deck. This card is placed in the 'P' slot in your hand.

D Discard a card from your hand. To indicate which card, type the number of the card in
the hand (or P for the just-picked card) followed by a <RETURN> or <SPACE>.
The <RETURN or <SPACE> is required to allow recovery from typos which can be
very expensive, like discarding safeties.

U Use a card. The card is again indicated by its number, followed by a <RETURN> or
<SPACE>.

o Toggle ordering the hand. By default otT, if turned on it will sort the cards in your
hand appropriately. This is not recommended for the impatient on slow terminals.

Q Quit the game. This will ask for confirmation, just to be sure. Hitting <DELETE>
(or <RUBOUT» is equivalent.

S Save the game in a file. If the game was started from a file, you will be given an oppor­
tunity to save it on the same file. If you don't wish to, or you did not start from a file,
you will be asked for the file name. If you typ~ a <RETURN> without a name, the
save will be terminated and the game resumed.

R Redraw the screen from scratch. The command AL (control 'L') will also work.

W Toggle window type. This switches the score window between the startup window (with
all the command names) and the end-of-game window. Using the end-of-game window
saves time by eliminating the switch at the end of the game to show the final score.
Recommended for hackers and other miscreants.

If you make a mistake, an error message will be printed on the last line of the score window,
and a bell will beep.

At the end of each hand or game, you will be asked if you wish to play another. If not, it will
ask you if you want to save the game. If you do, and the save is unsuccessful, play will be
resumed as if you had said you wanted to play another hand/game. This allows you to use the
S command to reattempt the save.

AUTHOR
Ken Arnold
(The game itself is a product of Parker Brothers, Inc.)

SEE ALSO

CARDS

curses(ax), Screen Updating and Cursor Movement Optimization: A Library Package, Ken Arnold

Here is some useful information. The number in parentheses after the card name is the
number of that card in the deck:

Page 1 (9010-E)

MILLE(6) (bsd4.2) MILLE(6)

RULES

Hazard

Out of Gas (2)
Flat Tire (2)
Accident (2)
Stop (4)
Speed Limit (3)

Repair

Gasoline (6)
Spare Tire (6)
Repairs (6)
Go (14)
End of Limit (6)

Safety

Extra Tank (1)
Puncture Proof (1)
Driving Ace (1)
Right of Way (1)

25 - (10),50 - (10), 75 - (10),100 - (12), 200 - (4)

Object: The point of game is to get a total of 5000 points in several hands. Each hand is a race
to put down exactly 700 miles before your opponent does. Beyond the points gained by putting
down milestones, there are several other ways of making points.

Overview: The game is played with a deck of 101 cards. Di8tance cards represent a number of
miles traveled. They come in denominations of 25, 50, 75, 100, and 200. When one is played,
it adds that many miles to the player'S trip so far this hand. Hazard cards are used to prevent
your opponent from putting down Distance cards. They can only be played if your opponent
has a Go card on top of the Battle pile. The cards are Out of Gas, Accident, Flat TIre, Speed
L~'mit, and Stop. Remedy cards fix problems caused by Hazard cards played on you by your
opponent. The cards are Gasoline, Repairs, Spare Tire, End of Limit, and Go. Safety cards
prevent your opponent from putting specific Hazard cards on you in the first place. They are
Extra Tank, Driving Ace, Puncture Proof, and Right of Way, and there are only one of each in
the deck.

Board Layout: The board is split into several areas. From top to bottom, they are: SAFETY
AREA (unlabeled): This is where the safeties will be placed as they are played. HAND: These
are the cards in your hand. BATTLE: This is the Battle pile. All the Hazard and Remedy
Cards are played here, except the Speed Limit and End of Limit cards. Only the top card is
displayed, as it is the only effective one. SPEED: The Speed pile. The Speed Limit and End of
Limit cards are played here to control the speed at which the player is allowed to put down
miles. MILEAGE: Miles are placed here. The total of the numbers shown here is the distance
traveled so far.

Play: The first pick alternates between the two players. Each turn usually starts with a pick
from the deck. The player then plays a card, or if this is not possible or desirable, discards one.
Normally, a play or discard of a single card constitutes a turn. If the card played is a safety,
however, the same player takes another turn immediately.

This repeats until one of the players reaches 700 points or the deck runs out. If someone
reaces 700, they have the option of going for an Extension, which means that the play continues
until someone reaches 1000 miles.

Hazard and Remedy Cards: Hazard Cards are played on your opponent's Battle and Speed
piles. Remedy Cards are used for undoing the effects of your opponent's nastyness.

Go (Green Light) must be the top card on your B~ttle pile for you to play any mileage,
unless you have played the Right of Way card (see below).

Stop is played on your opponent's Go card to prevent them from playing mileage until they
playa Go card.

Speed Limit is played on your opponent's Speed pile. Until they play an End of Limit they
can only play 25 or 50 mile cards, presuming their Go card allows them to do even that.

End of Limit is played on your Speed pile to nullify a Speed Limit played by your opponent.
Out of Gas is played on your opponent's Go card. They must then playa GasoHne card, and

then a Go card before they can play any more mileage.

(9010-E) Page 2

MILLE(6) (bsd 4.2) MILLE(6)

Page 3

Flat TIre is played on your opponent's Go card. They must then playa Spare Tire card, and
then a Go card before they can play any more mileage.

Accident is played on your opponent's Go card. They must then playa Repairs card, and
then a Go card before they can play any more mileage.

Safety Cards: Safety cards prevent your opponent from playing the corresponding Hazard cards
on you for the rest of the hand. It cancels an attack in progress, and always entitles the player to
an extra turn.

Right or Way prevents your opponent from playing both Stop and Speed Limit cards on you.
It also acts as a permanent Go card for the rest of the hand, so you can play mileage as long as
there is not a Hazard card on top of your Battle pile. In this case only, your opponent can play
Hazard cards directly on a Remedy card besides a Go card.

Extra Tank When played, your opponent cannot play an Out 01 Gas on your Battle Pile.
Puncture Proof When played, your opponent cannot playa Flat Tire on your Battle Pile.
Driving Ace When played, your opponent cannot play an Accident on your Battle Pile.

Distance Cards: Distance cards are played when you have a Go card on your Battle pile, or a
Right of Way in your Safety area and are not stopped by a Hazard Card. They can be played in
any combination that totals exactly 700 miles, except that you cannot play more than two 200
mile cards in one hand. A hand ends whenever one player gets exactly 700 miles or the deck
runs out. In that case, play continues until neither someone reaches 700, or neither player can
use any cards in their hand. If the trip is completed after the deck runs out, this is called
Delayed Action.

Coup Fourre: This is a French fencing term for a counter-thrust move as part of a parry to an
opponents attack. In Mille Bournes, it is used as follows: If an opponent plays a Hazard card,
and you have the corresponding Safety in your hand, you play it immediately, even b elore you
draw. This immediately removes the Hazard card from your Battle pile, and protects you from
that card for the rest of the game. This gives you more points (see Scoring below) .

Scoring: Scores are totaled at the end of each hand, whether or not anyone completed the trip.
The terms used in the Score window have the following, meanings:

Milestones Played: Each player scores as many miles as they played before the trip ended.
Each Safety: 100 points for each safety in the Safety area.
All 4 Safeties: 300 points if all four safeties are played.
Each Coup Foure: 300 points for each Coup Foure accomplished.

The following bonus scores can apply only to the winning player.
'Iiip Completed: 400 points bonus for completing the trip to 700 or 1000.

Safe Thip: 300 points bonus for completing the trip without using any 200 mile cards.
Delayed Action: 300 points bonus for finishing after the deck was exhausted.
Extension: 200 points bonus for completing a 1000 mile trip.
Shut-Out: 500 points bonus for completing the trip before your opponent played any

mileage cards.

Running totals are also kept for the current score for each player for the hand (Hand Total),
the game (Overall Total), and number of games won (Games).

(9010-E)

MONOP(6) (bsd 4.2) MONOP(6)

NAME
monop - Monopoly game

SYNTAX

/usr/games/monop [file]

DESCRIPTION

Page 1

M onop is like the Parker Brother's game Monopoly, and monitors a game between 1 to 9 users.
It is assumed that the rules of Monopoly are known. The game follows the standard rules, with
the exception that, if a property would go up for auction and there are only two solvent players,
no auction is held and the property remains unowned.

The game, in effect, lends the player money, so it is possible to buy something which you can­
not afford. However, as soon as a person goes into debt, he must fix the problem, i. e., make
himself solvent, before play can continue. If this is not possible, the player's property revertB
to his debtee, either a player or the bank. A player can resign at any time to any person or the
bank, which puts the property back on the board, unowned.

Any time that the response to a question is a 8tring, e.g., a name, place or person, you can type
'?' to get a list of valid answers. It is not possible to input a negative number, nor is it ever
necessary.

A Summary of Command8:

quit:

print:

where:

quit game: This allows you to quit the game. It asks you if you're sure.

print board: This printB out the current board. The columns have the following
meanings (column headings are the same for the where, own holdin~, and hold­
in~ commands):

Name The first ten characters of the name of the square

Own The number of the owner of the property.

Price The cost of the property (if any)

Mg This field has a '*' in it if the property is mortgaged

If the property is a Utility or Railroad, this is the number of such owned by
the owner. If the property is land, this is the number of houses on it.

Rent Current rent on the property. If it is not owned, there is no rent.

where players are: Tells you where all the players are. A '*' indicates the current
player.

own holdin~:
List your own holdings, ,·.e., money, get-out-of-jail-free cards, and property.

holdin~: holdings list: Look at anyone's holdings. It will ask you whose holdings you wish to
look at. When you are finished, type done.

shell: shell escape: Escape to a shell. When the shell dies, the program continues where
you left off.

mortgage: mortgage property: SetB up a list of mortgageable property, and asks which you wish
to mortgage.

unmortgage:
unmortgage property: Unmortgage mortgaged property.

(9010-E)

MONOP(6) (bsd 4.2) MONOP(6)

FILES

BUGS

buy: buy houses: Sets up a list of monopolies on which you can buy houses. If there is
more than one, it asks you which you want to buy for. It then asks you how many
for each piece of property, giving the current amount in parentheses after the pro­
perty name. If you build in an unbalanced manner (a disparity of more than one
house within the same monopoly), it asks you to re-input things.

sell:

card:

sell houses: Sets up a list of monopolies from which you can sell houses. it operates
in an analogous manner to buy

card for jail: Use a get-out-of-jail-free card to get out of jail. If you're not in jail, or
you don't have one, it tells you so.

pay: pay for jail: Pay $50 to get out of jail, from whence you are put on Just Visiting.

trade:

resign:

save:

restore:

roll:

Difficult to do if you're not there.

This allows you to trade with another player. It asks you whom you wish to trade
with, and then asks you what each wishes to give up. You can get a summary at the
end, and, in all cases, it asks for confirmation of the trade before doing it.

Resign to another player or the bank. If you resign to the bank, all property reverts
to its virgin state, and get-out-of-jail free cards revert to the deck.

save game: Save the current game in a file for later play. You can continue play
after saving, either by adding the file in which you saved the game after the monop
command, or by using the restore command (see below). It will ask you which file
you wish to save it in, and, if the file exists, confirm that you wish to overwrite it.

restore game: Read in a previously saved game from a file. It leaves the file intact.

Roll the dice and move forward to your new location. If you simply hit the
<RETURN> key instead of a command, it is the same as typing roll.

/usr/games/lib/cards.pck Chance and Community Chest cards

No command can be given an argument instead of a response to a query.

(9010-E) Page 2

MOO(6)

NAME
moo - guessing game

SYNTAX
jusrjgamesjmoo

DESCRIPTION

(UNIX 1.2) MOO(6)

Moo is a guessing game. The compurer picks a number consisting of four distinct decimal
digits. The player guesses four distinct digits, and the compurer gives a bovine kind of answer
for each guess:

cow is a correct digit in an incorrect position.

bull is a correct digit in a correct padtion.

The game continues until the player guesses the number (a score of four bulls).

Pagel (9010-E)

NUMBER(6) (bsd 4.2)

NAME
number - convert Arabic numerals to English

SYNTAX

/usr/gar.nes/n~

DESCRIPTION

NUMBER(6)

Number copies the standard input to the standard output, changing each decimal number to
fully spelled-out words.

Pagel (9010-E)

PSYCH(6) (Ridge)

NAME
psych - draw lines on Tektronix terminal

SYNTAX

/usr/g~es/spaoe

DESCRIPTION

PSYCH(6)

Psych draws some mildly psychotic lines on the screen. To run psych on the Ridge graphics
display. first use the settek(1) command.

Page I (90IO-E)

QUIZ(6) (bsd 4.2) QUIZ(6)

NAME
quiz - test your knowledge

SYNTAX
/usr/gam.es/~z [- i file] [- t] [categoryl category2]

DESCRIPTION

FILES

BUGS

Pagel

Quiz gives associative knowledge tests on various subjects .. It asks items chosen from categoryl
and expects answers from category2. If no categories are specified, quiz gives instructions and
lists the available categories.

Quiz tells a correct answer whenever you type a bare newline. At the end of input, upon inter­
rupt, or when questions run out, quiz reports a score and terminates.

The - t flag specifies 'tutorial' mode, where missed questions are repeated later, and material is
gradually introduced as you learn.

The - i flag causes the named file to be substituted for the default index file. The lines of
these files have the syntax:

line = category newline I category':' line
category = alternate I category' t alternate
alternate = empty I alternate primary
primary = character I '[' category ']' I option
option = '{' category ,},

The first category on each line of an index file names an information file. The remaining
categories specify the order and contents of the data in each line of the information file. Infor­
mation files have the same syntax. Backslash '\' is used as with sh(1) to quote syntactically
significant characters or to insert transparent new lines into a line. When either a question or its
answer is empty, quiz will refrain from asking it.

/usr/games/quiz.k/*

The construct' a lab' doesn't work in an information file. Use 'a{b}'.

(9010-E)

RAIN(6)

NAME
rain - animated raindrops

SYNTAX
jusrjgamesjrain

DESCRIPTION

(bsd 4.2) RAIN(6)

Rain's display is modeled after the VAX/VMS program of the same name. The terminal has to
be set for 9600 baud to obtain the proper effect.

FILES

Page 1

As with all programs that use termcap, the TERM environment variable must be set (and
exported) to the type of the terminal being used.

j etc jtermcap

(9010-E)

SNAKE(6) (bsd4.2) SNAKE(6)

NAME
snake, snscore - display chase game

SYNTAX
/usr/games/snake [- wn] [- In]
/usr/games/snsoore

DESCRIPTION

FILES

BUGS

Pagel

The object of the game is to make as much money as possible without getting eaten by the
snake. Snake is a display-based game which must be played on terminal. that supports vi(l).
The - I and - w options allow you to specify the length and width of the fIeld. By default the
entire screen (except for the last column) is used.

You are represented on the screen by an I. The snake is 6 squares long and is represented by
S's. The money is $, and an exit is #. Your score is posted in the upper left hand corner.

You can move around using the same conventions as vi(1), the h, j, k, and 1 keys work, as do
the arrow keys. Other possibilities include:

sefc These keys are like hjkl but form a directed pad around the d key.

HJKL These keys move you all the way in the indicated direction to the same row or column
as the money. This does not let you jump away from the snake, but rather saves you
from having to type a key repeatedly. The snake still gets all his turns.

SEFC Likewise for the upper case versions on the left.

A TPB These keys move you to the four edges of the screen. Their position on the keyboard
is the mnemonic, e.g. P is at the far right of the keyboard.

x This lets you quit the game at any time.

p Points in a direction you might want to go.

w Space warp to get out of tight squeezes, at a price.

Shell escape

AZ Suspend the snake game, on systems which support it. Otherwise an interactive shell is
started up.

To earn money, move to the same square the money is on. A new $ will appear when you earn
the current one. As you get richer, the snake gets hungrier. To leave the game, move to the
exit (#).

A record is kept of the personal best score of each player. Scores are only counted if you leave
at the exit, getting eaten by the snake is worth nothing.

As in pinball, matching the last digit of your score to the number which appears after the game
is worth a bonus.

To see who wastes time playing snake, run jusr/games/snscore .

/usr/games/lib/snakerawscores database of personal bests
/usr/games/lib/snake.log log of games played
/usr/games/busy program to determine if system too busy

When playing on a small screen, it's hard to tell when you hit the edge of the screen.

The scoring function takes into account the size of the screen. A perfect function to do this
equitably has not been devised.

(90lO-E)

SPACE(6) (Ridge) SPACE(6)

NAME
space - intra-celestial missile wars with gravitational effects

SYNTAX

/usr/g~es/space

DESCRIPTION

Pagel

Space is two-person game of firing missiles at each other. In turn, each player enters a missile
launch angle (in the range 0 to 360), and a launch velocity (in the range 0 to 10).

Each trajectory is plotted on the display. With each turn, the players fine-tune their angles and
velocities until one player blows up the other's spaceship.

With each prompt for a trajectory or velocity, the system prints the player's previous input as a
reminder. To re-confirm that previous value, without re-entering the number by hand, just
press [RETURN].

Velocities and angles may contain decimal fractions, such as 34.6. Both spaceships use the
same method of calculating angles. Zero degrees is the the right, 90 degrees is straight up, 180
degrees is to the left, and 270 degrees is straight down.

(90IO-E)

TRK(6) (UNIX 5.2) TRK(6)

NAME
trk - star trek

SYNTAX

/usr/games/txk [+- x/] [range]

DESCRIPTION
The Federation of Planets is at war with the Klingon Empire, and as captain of the USS Enter­
prise, you must destroy the invasion fieet. In the game, the galaxy is divided into 64 quadrants
on an eight-by-eight grid, with quadrant 0,0 in the upver left hand comer. Each quadrant is
divided into 100 sectors on a ten-by-ten grid. Each sector contains one object (e.g., the Enter­
prise, a Klingon, or a star). Navigation is handled in degrees, with zero being straight up and
ninty being to the right. Distances are measured in quadrants. One tenth quadrant is one sec­
tor. The galaxy contains starbases, at which you can dock to refuel, repair damages, etc. The
galaxy also contains stars. Stars usually have a knack for getting in your way, but they can be
triggered into going nova by shooting a photon torpedo at one, thereby (hopefully) destroying
any adjacent Klingons. This is not a good practice however, because you are penalized for des­
troying stars. Also, a star will sometimes go supernova, which obliterates an entire quadrant.
You must never stop in a supernova quadrant, although you may "jump over" one. Some star­
systems have inhabited planets. Klingons can attack inhabited planets and enslave the popu­
lace, which they then put to work building more Klingon battle cruisers.

STARTING THE GAME
To start the game:

$ /usr/garnes/txk [- a] filename

If a filename is stated, a log of the game is written onto that file. If omitted, the file is not writ­
ten. -a specifies the log file is to be appended to, not created anew. The game will ask you
what length game you would like. Valid responses are "short", "medium", and "long". Ideally,
the length of the game does not affect the difficulty, but currently the shorter games tend to be
harder than the longer ones. You may also type "restart", which restarts a previously saved
game. You will then be prompted for the skill, to which you must respond "novice", "fair",
"good", "expert", "commadore", or "impossible". You should start out with a novice and work
up, but if you really want to see how fast you can be slaughtered, start out with an impossible
game. In general, throughout the game, if you forget what is appropriate the game will tell you
what it expects if you just enter a question mark.

ISSUING COMMANDS

Pagel

If the game expects you to enter a command, it will say "Command: " and wait for your
response. Most commands can be abbreviated. At almost any time you can type more than
one· thing on a line. For example, to move straight up one quadrant, you can type

move 0 1
or you could just type

move
and the game would prompt you with

Course:
to which you could type

o 1

The "1" is the distance, which could be put 011 still another line. Also, the "move" command
could have been abbreviated "mov", "mo", or just "m". If you are partway through a command
and you change your mind, you can usually type "-1" to cancel the command. Klingons gen­
erally cannot hit you if you don't consume anything (e .g., time or energy), so some commands
are considered "free". As soon as you consume anything though -- POW!

(9010-E)

TRK(6)

THE COMMAND S

===== Short Range Scan =====
Mnemonic: srscan
Shortest Appreviation: s
Full Commands: srscan

srscan yes/no
Consumes: nothing

(UNIX 5.2) TRK(6)

The short range scan gives you a picture of the quadrant you are in, and (if you say "yes") a
status report which tells you a whole bunch of interesting stuff. You can get a status report
alone by using the 8tattt8 command. An example follows:

Short range sensor scan
o 123 456 789

0 • • • • • • • * • * 0
1 • • E • • • • • • • 1
2 • • • • • • • • • * 2
3 * • • • • i • 3 • • •
4 • • • • • • • • • • 4
5 • • * • * • • • • • 5
6 • • • @ • • • • • 6
7 • • • • • • • • • • 7
8 • • • K • • • • • • 8

stardate 3702.16
condition RED
position 0,3/1,2
warp factor 5.0
total energy 4376
torpedoes 9
shields down, 78%
K1ingons left 3
time left 6.43

9 • • • • • • * • • • 9 life support damaged,
o 1 2 3 456 7 8 9

Distressed Starsystem Marcus VII

The cast of characters is as follows:

E the hero
K the villain
the starbase
* stars
@ inhabited starsystem

empty space
a black hole

reserves = 2.4

The name of the starsystem is listed underneath the short range scan. The word "distressed", if
present, means that the starsystem is under attack. Short range scans are absolutely free. They
use no time, no energy, and they don't give the Kltngons another chance to hit you.

===== Status Report =====
Mnemonic: status
Shortest Abbreviation: st
Consumes: nothing

This command gives you information about the current status of the game and your ship, as
follows:

S tard ate
The current stardate.

(90lO-E) Page 2

TRK(6) (UNIX 5.2) TRK(6)

Page 3

Condition
as follows:

Position

RED -- in battle
YELLOW -- low on energy
GREEN -- normal state
DOCKED -- docked at starbase
CLOAKED -- the cloaking device is activated

Your current quadrant and sector.

Warp Factor
The speed you will move at when you move under warp power (with the move com­
mand).

Total Energy
Your energy reserves. If they drop to zero, you die. Energy regenerates, but the
higher the skill of the game, the slower it regenerates.

Torpedoes
How many photon torpedoes you have left.

Shields Whether your shields are up or down, and how effective they are if up (what percen­
tage of a hit they will absorb).

Klingons Left
Num ber of Klingons left.

Time Left
How long the Federation can hold out if you sit on your tush and do nothing. If you
kill Klingons quickly, this number goes up, otherwise, it goes down. If it hits zero, the
Federation is conquered.

Life Support
If "active", everything is fine. If "damaged", your reserv~s tell you how long you have
to repair your life support or get to a starbase before you starve, suffocate, or some­
thing equally unpleasant.

Current Crew
The number of crew members left. This figures does not include omcers.

Brig Space
The space left in your brig for Klingon captives.

Klingon Power
The number of units needed to kill a Klingon. Remember, as Klingons fire at you they
use up their own energy, so you probably need somewhat less than this.

Skill, Length
The skill and length of the game' you are playing.

Status information is absolutely free.

(90l0-E)

TRK(6)

===== Long Range Scan =====
Mnemonic: lrscan
Shortest Abbreviation: I
Consumes: nothing

(UNIX 5.2) TRK(6)

Long range scan gives you information about the eight quadrants that surround the quadrant
you're in. A sample long range scan follows:

Long range scan for quadrant 0,3

2 3 4

1 * 1 * 1 * 1

--~----------~-----a ! 108 1 6 ! 19 1

1 9 1 III! 8 !

-----~-------------

The three digit numbers tell the number of objects in the quadrants. The units digit tells the
number of stars, the tens digit the number of starbases, and the hundreds digit is the number
of Klingons. "*" indicates the negative energy barrier at the edge of the galaxy, which you can­
not enter. "/ / /" means that that is a supernova quadrant and must not be entered.

===== Damage Report =====
Mnemonic: damages
Shortest Abbreviation: da
Consumes: nothing

A damage report tells you what devices are damaged and how long it will take to repair them.
Repairs proceed faster when you are docked at a starbase.

===== Set Warp Factor =====
Mnemonic: warp
Shortest Abbreviation: w
Full Command: warp factor
Consumes: nothing

The warp factor tells the speed of your starship when you move under warp power (with the
move command). The higher the warp factor, the faster you go, and the more energy you use.
The minimum warp factor is 1.0 and the maximum is 10.0. At speeds above warp 6 there is
danger of the warp engines being damaged. The probability of this increases at higher warp
speeds. Above warp 9.0 there is a chance of entering a time warp.

===== Move Under Warp Power =====
Mnemonic: move
Shortest Abbreviation: m
Full Command: move course distance
Consumes: time and energy

This is the usual way of moving. The course is in degrees and the distance is in quadrants. To

(9010-E) Page 4

TRK(6) (UNIX 5.2) TRK(6)

move one sector specify a distance of 0.1. Time is consumed proportionately to the inverse of
the warp factor squared, and directly to the distance. Energy is consumed as the warp factor
cubed, and directly to the distance. If you move with your shields up it doubles the amount of
energy consumed. When you move in a quadrant containing Klingons, they get a chance to
attack you. The computer detects navigation errors. If the computer is out, you run the risk of
running into things. The course is determined by the Space Inertial Navigation System [SINS].
As described in Star Fleet Technical Order TO:02:06:l2, the SINS is calibrated, after which it
becomes the base for navigation. If damaged, navigation becomes inaccurate. When it is fixed,
Spock recalibrates it, however, it cannot be calibrated extremely accurately until you dock at
starbase.

===== Move Under Impulse Power =====
Mnemonic: impulse
Shortest Abbreviation: i
Full Command: impulse course distance
Consumes: time and energy

The impulse engines give you a chance to maneuver when your warp engines are damaged;
however, they are incredibly slow (0.095 quadrants/stardate). They require 20 units of energy
to engage, and ten units per sector to move. The same comments about the computer and the
SINS apply as above. There is no penalty to move under impulse power with shields up.

===== Deflector Shields =====
Mnemonic: shields
Shortest Abbreviation: sh
Full Command: shields up/down
Consumes: energy

Shields protect you from Klingon attack and nearby novas. As they protect you, they weaken.
A shield which is 78% effective will absorb 78% of a hit and let 22% in to hurt you. The
Klingons have a chance to attack you every time you raise or lower shields. Shields do not rise
and lower instantaneously, so the hit you receive will be computed with the shields at an inter­
mediate effectiveness. It takes energy to raise shields, but not to drop them.

===== Cloaking Device =====
Mnemonic: cloak

Page 5

Shortest Abbreviation: cl
Full Command: cloak up/down
Consumes: energy

When you are cloaked, Klingons cannot see you, and hence they do not fire at you. They are
useful for entering a quadrant and selecting a good position, however, weapons cannot be fired
through the cloak due to the huge energy drain that it requires. The cloak up command only
starts the cloaking process; Klingons will continue to fire at you until you do something which
consumes time.

(90l0-E)

TRK(6)

===== Fire Phasers =====
Mnmemonic: phasers
Shortest Abbreviation: p

(UNIX 5.2)

Full Commands: phasers automatic amount
phasers manual amtl coursel spreadl

Consumes: energy

TRK(6)

Phasers are energy weapons; the energy comes from your ship's reserves ("total energy" on a
srscan). It takes about 250 units of hits to kill a Klingon. Hits are cumulative as long as you
stay in the quadrant. Phasers become less effective the further from a Klingon you are. Adja­
cent Klingons receive about 90% of what you fire, at five sectors about 60% and at ten sectors
about 35%. They have no effect outside of the quadrant. Phasers cannot be fired while shields
are up; to do so would fry you. They have no effect on starbases or stars. In automatic mode
the computer decides how to divide up the energy among the Klingons present; in manual
mode you do that yourself. In manual mode firing you specify a direction, amount (number of
units to fire) and spread (0 - > 1.0) for each of the six phaser banks. A zero amount ter­
minates the manual input.

===== Fire Photon Torpedoes =====
Mnemonic: torpedo
Shortest Abbreviation: t
Full Command: torpedo course [yes/no] [burst angle]
Consumes: torpedoes

Photon torpedoes are projectile weapons. Torpedoes don't cause partial damage; you either hit
and destroy the target, or you miss. A hit on a Klingon (or a starbase) destroys the target.
Hitting a star usually causes it to go nova, and occasionally supernova. Photon torpedoes can­
not be aimed precisely. They can be fired with shields up, but they get even more random as
they pass through the shields. Torpedoes may be fired in bursts of three. If this is desired, the
burst angle is the angle between the three shots, which may vary from one to fifteen. The
word "no" says that a burst is not wanted; the word "yes" (which may be omitted if stated on
the same line as the course) says that a burst is wanted. Photon torpedoes have no effect out­
side the quadrant.

===== On board Computer Request =====
Mnemonic: computer
Shortest Abbreviation: c
Full Command: computer request; request; ...
Consumes: nothing

The computer command gives you access to the facilities of the onboard computer, which
allows you to do all sorts of fascinating stuff. Computer requests are:

score Shows your current score.

course quad/sect
Computes the course and distance from whereever you are to the given location. If
you type "course /x,y" you will be given the course to sector X,y in the current qua­
drant.

move quad/sect
Identical to the course request, except that the m·ove is executed.

(90IO-E) Page 6

TRK(6) (UNIX 5.2) TRK(6)

chart prints a chart of the known galaxy, i.e., everything that you have seen with a long range
scan. The format is the same as on a long range scan, except that means that you
don't yet know what is there, and ".1." means that you know that a starbase exists, but
you don't know anything else. "$$$" mans the quadrant that you are currently in.

trajectory
prints the course and distance to all the Klingons in the quadrant.

warpcost dist warp_factor
computes the cost in time and energy to move 'dist' quadrants at warp 'warp_factor'.

impcost dist
same as warpcost for impulse engines.

pheff range
tells how effective your phasers are at a given range.

distresslist
gives a list of currently distressed starbases and starsystems. More than one request
may be stated on a line by seperating them with semicolons.

===== Dock at Starbase =====
Mnemonic: dock
Shortest Abbreviation: do
Consumes: nothing

You may dock at a starbase when you are in one of the eight adjacent sectors. When you dock
you are resupplied with energy, photon torpedoes, and life support reserves. Repairs are also
done faster at starbase. Any prisoners you have taken are unloaded. You do not recieve points
for taking prisoners until this time. Starbases have their own deflector shields, so you are safe
from attack while docked.

===== Undock from Starbase =====
Mnemonic: undock
Shortest Abbreviation: u
Consumes: nothing

This just allows you to leave starbase so that you may proceed on your way.

===== Rest =====

Page 7

Mnemonic: rest
Shortest Abbreviation: r
Full Command: rest time
Consumes: time

This command allows you to rest to repair damages. It is not advisable to rest while under
attack.

(9010-E)

TRK(6)

===== Call Starbase For Help =====
Mnemonic: help
Shortest Abbreviation: help
Consumes: nothing

(UNIX 5.2) TRK(6)

You may call Starbase for help via your subspace radio. The Starbase has long-range tran­
sporter beams to get you, but they cannot always rematerialize you. You should avoid using
this command unless absolutely necessary, for the above reason and because it counts heavily
against you in the scoring.

===== Visual Scan =====
Mnemonic: visual
Shortest Abbreviation: v
Full Command: visual course
Consumes: time

When your short range scanners are out, you can still see what is out "there" by doing a visual
scan. Unfortunately, you can only see three sectors at one time, and it takes 0.005 stardates to
perform. The three sectors in the general direction of the course specified are examined and
displayed.

===== Abandon Ship =====
Mnemonic: abandon
Shortest Abbreviation: abandon
Consumes: nothing

The officers escape the Enterprise in the shuttJecraft. If the transporter is working and there is
an inhabitable starsystem in the area, the crew beams down, otherwise you leave them to die.
You are given an old but still usable ship, the Faire Queene.

===== Ram =====
Mnemonic: ram
Shortest Abbreviation: ram
Full Command: ram course distance
Consumes: time and energy

This command is identical to "move", except that the computer doesn't stop you from making
navigation errors. You get very nearly slaughtered if you ram anything.

===== Self Destruct =====
Mnemonic: destruct
Shortest Abbreviation: destruct
Consumes: everything

Your starship is self-destructed. Chances are you will destroy any Klingons (and stars, and star­
bases) left in your quadrant.

===== Terminate the Game =====
Mnemonic: terminate
Shortest Abbreviation: terminate
Full Command: terminate yes/no

(9010-E) Page 8

TRK(6) (UNIX 5.2) TRK(6)

Cancels the current game. No score is computed. If you answer yes, a new game will be
started, otherwise trek exits.

===== Call the Shell =====
Mnemonic: !
Shortest Abbreviation: !

Temporarily escapes to the shell. When you log out of the shell you will return to the game.
Kirk never used the Shell, but you can do it.

SCORING

Page 9

The scoring algorithm is rather complicated. Basically, you get points for each Klingon you kill,
for your Klingon per stardate kill rate, and a bonus if you win the game. You lose points for
the number of Klingons left in the galaxy at the end of the game, for getting killed, for each
star, starbase, or inhabited starsystem you destroy, for calling for help, and for each casualty
you incur. You will be promoted if you play very well. You will never get a promotion if you
call for help, abandon the Enterprise, get killed, destroy a starbase or inhabited starsystem, or
destroy too many stars.

(9010-E)

TRK(6) (UNIX 5.2)

REFERENCE PAGE
Command

ABANDON

CLoak Up/Down
Computer request; request; ...
DAmages
DESTRUCT
DOck
HELP
Impulse course distance

Lrscan
Move course distance

Phasers Automatic amount
Phasers Manual amtl coursel spreadl ...
Torpedo course [Yes] angle/No
RAM course distance

Rest time

SHields Up/Down
Srscan [Yes/No]
STatus
'lERMINA'IE Yes/No
Undock
Visual course
Warp warp_factor

(gOlD-E)

Uses

sh u ttle craft,
transporter

cloaking device
computer

computer

subspace radio
impulse engines,
computer, SINS

L.R. sensors
warp engines,

computer, SINS
phasers, computer
phasers
torpedo tubes
warp engines,

computer, SINS

shields
S.R. sensors

TRK(6)

Consumes

energy

time, energy

time, energy

energy
energy
torpedoes
time, energy

time

energy

time

Page 10

TTT(6) (UNIX 5.2) . 'ITT(6)

NAME
ttt, cubic - tic-tac-toe

SYNTAX

/usr/games/tif.
/usr /games / cubic

DESCRIPTION

FILES

Pagel

Ttt is the X and 0 game popular in the first grade. This is a learning program that never makes
the same mistake twice.

Although it learns, it learns slowly. It must lose nearly 80 games to completely know the game.

Cub,'c plays three-dimensional tic-tac-toe on a 4X4X4 board. Moves are specified as a sequence
of three coordinate numbers in the range 1-4.

/usr/games/ttt.k learning file

(90lo-E)

WORM(6) (bsd 4.2) WORM(6)

NAME
worm - the growing worm game

SYNTAX

/usr/games/worm [size]

DESCRIPTION

Pagel

In worm, you are a little worm, your body is the "o'''s on the screen and your head is the "@".

You move with the hjkl keys (as in the game snake). If you don't press any keys, you continue
in the direction you last moved. The upper case HJK.L keys move you as if you had pressed
several (9 for HL and 5 for JK.) of the corresponding lower case key (unless you run into a
digit, then it stops) .

On the screen you will see a digit. If your worm eats the digit, it will grow longer. The amount
of growth depends on the digit. The object of the game is to eat a lot a digits and make the
worm really long.

The game ends when the worm runs into either the sides of the screen, or itself. The current
score (how much the worm has grown) is kept in the upper left corner of the screen.

size is the optional argument that sets the initial length of the worm. Size must be an
integer in the range 1 to 75, inclusive.

(90l0-E)

WORMS(6) (bsd 4.2) WORMS(6)

NAME
worms - animated worms

SYNTAX
/usr/games/worms [- field] [- length #] [- number #] [- trail]

DESCRIPTION
Worms shows some creepy stuff on the screen.

- field makes a "field" for the worm(s) to eat.

- trail causes each worm to leave a trail behind it.

Figure the rest out yourself.

FILES

/etc/termcap

BUGS

The lower-right-hand character position will not be updated properly on a terminal that wraps at
the right margin.

Terminal initialization is not performed.

Pagel (90IO-E)

WUMP(6)

NAME
wump - hunt-the-wumpus

SYNTAX

/usr/games/wurnp

DESCRIPTION

(bsd 4.2) WUMP(6)

A wumpus is a creature that lives in a cave with several rooms connected by tunnels. In
wurnp, the player wanders among the rooms, tries to shoot the wumpus with an arrow, and
tries to avoid being eaten by the wumpus or falling into a .bottomless pit. While hunting
wumpi, a super-bat might pick you up and drop you in another room.

Wump offers on-line instructions.

Pagel (9010-E)

INTRO(7) INTRO(7)

NAME
intro - introduction to special files

DESCRIPTION
This section describes various special files that refer to specific hardware peripherals and ROS
System device drivers. The names of the entries are generally derived from names for the
hardware, as opposed to the names of the special files themselves. Characteristics of both the
hardware device and the corresponding ROS System device driver ~e discussed where applica­
ble.

DEVICE CODE

BUGS

Pagel

Each device in section (7) has a major device number, minor device number, a block- or
character-type, and a standard file name. This paragraph gives those details.

While the names of the entries generally refer to vendor hardware names, in certain cases these
names are seemingly arbitrary for various historical. reasons.

(9010-E)

CDISP(7) (Ridge) CDISP(7)

NAME
cdisp - Ridge color display

DESCRIPTION
/dev/cdisp refers to a Ridge color display controller connected to a Ridge color display monitor.

The device file must be opened for use; only one user may access it at a time. Bytes written to
the controller are passed to the" display immediately. If the user writes an odd number of bytes,
the driver automatically appends a pad-byte of zero.

A write that requests input from the device must precede a read.

On a read, pending output finishes, then the device returns the number of bytes requested, or
the number of bytes actually read, whichever is less.

DEVICE CODE

. FILES

device type

Ridge color display

/dev/cdisp
/drivers/drllm

block-type or
major minor character-type

7 0 .. 3 char

standard
file name

/dev/cdisp

SEE ALSO

BUGS

Pagel

See the Metheus Omega 400 manuals for details on the byte sequences to control the color
monitor.

Only an even number of bytes should be requested from the device. (If an odd number is
requested, the device will reduce the returned bytes by one to return an even number. The
odd byte in question becomes a "pending byte", and is the first byte returned on the next
request.)

(9010-E)

CLP(7) (Ridge) CLP(7)

NAME
clp - Centronics line printer

DESCRIPTION
/dev/clp refers to a Centronics-type printer connected to the DP/Centronics connector on the
Ridge 32 back panel.

When it is closed, bytes written are printed and a page is ejected.

The driver interprets carriage return (ODH), newline (OAH), tab(09H), and form-feed (OCH)
characters.

Two ioctl(2) system calls are available:

#include <sys/lprio.h>
ioctl (fildes, command, arg)
struct lprio *arg;

The commands are:

LPRGET Get the current printer parameters and store in the Iprio structure referenced
byarg.

LPRSET Set the current printer parameters from the structure referenced by argo

This allows an external program to control tab expansion, tab size, carriage return expansion,
and newline expansion.

DEVICE CODE

FILES

Pagel

device type

Centronics lp

/dev/clp
/drivers/fdlp

block-type or
major mtnor character-type

4 16 char

standard
file name

/dev/clp

(9010-E)

DISC(7) (Ridge) DISC(7)

NAME
disc - disc device

DESCRIPTION

/dev/dise refers to the boot device. The system automatically creates an entry called /dev/dise
for the system boot device.

disec'U refers to a Ridge disc device. By convention, c is a controller number in the range 0 .. 3,
and 'U is a unit number on the controller in the range 0 .. 3.

DEVICE CODE

FILES

Page 1

block-type or 8tandard
dev~'ce type major minor character-type file name

boot disc 8 0 block /dev/disc
(system makes this)

Disc device 8 U block /dev/discU
(mknod(1) makes this)

The minor number U is derived from a combination of the binary bits that represent the con­
troller number and the unit number. It is calculated by:

(binary
controller* 'Unit device-name minor) minor

0 0 /dev /discOO 00-00 0
0 1 /dev /discOI 00-01 1
0 2 /dev/disc02 00-10 2
0 3 / dey / disc03 00-11 3
1 0 /dev /disCl0 01-00 4
1 1 /dev /disC11 01-01 5
1 2 /dev /disC12 01-10 6
1 3 /dev /disCI3 01-11 7

By convention, controller 0 is the device with "2" encoded on its address DIP-switches.

The boot disc can be determined by checking the major and minor numbers of /dev/dise.

/dev/disc

/dev /discOO /dev /discOl /dev /disc02 /dev /disc03

/dev /disc10 /dev /disCll /dev /disc12 /dev /disc13

(9010-E)

DISP(7) (Ridge) DISP(7)

NAME
disp - Ridge Monochrome Display

DESCRIPTION
/dev/disrIJ through /dev/disp3 refer to Ridge Monochrome displays attached to '"Display" ports
1 through 4 on the Ridge 32 back panel.

Input/output control is described in termio(7). There are two ioctl(2) calls that apply to the
Ridge Monochrome Display only:

ioctl (fildes, BOOURSON, arg)
int arg;

If arg is 0, the cursor will not be shown. If arg is 1, the cursor will be shown when a read
request is outstanding.

ioctl (fildes, BCGETSZ, are)
struct D isplayInfo *arg;

struct DisplayInfo {
int width;
int height;
int *bitmap;

}

Get the parameters associated with the display and store them in the DisplayInfo structure
referenced by argo

The width and height of the display are measured in bits. The base address in virtual memory
of the display is given in bitmap.

DEVICE CODE

FILES

device type

monochrome disp

block-type or
major manor character-type

6 0 .. 3 block

/dev /dispO, /dev /displ, /dev /disp2, /dev /disp3,
/drivers/disp,

SEE ALSO

standard
file name

/dev /dispO .. disp3

Ridge Muit'i- Window Display Management in the ROS Utility Guide (9053).

Pagel (90l0-E)

DRIIM(7) (Ridge) DRI1M(7)

NAME
drllm - Ridge color display

DESCRIPTION
jdevjdrllm refers to a Ridge color display controller connected to a Ridge color display monitor.

The device file must be opened for use; only one user may access it at a time. Bytes written
are buffered by the driver and written to the device.

A write that requests input from the device must precede a read.

A read is satisfied by flushing any pending output, then by returning to the user a value that is
the lesser of the amount read and the amount requested.

DEVICE CODE

device type

drll

FILES
jdevjdrllm

SEE ALSO

block-type or
major m£nor character-type

7 0 character

standard
file name

jdevjdrllm

See the Metheus Omega 400 manuals for details on the byte sequences to control the color
monitor.

Page I (9010-E)

FL(7) (Ridge) FL(7)

NAME
fl - floppy disc device driver

DESCRIPTION

FILES

/dev/fl refers to the floppy disc drive in the Ridge 32 cabinet. A flle on the floppy disc is
referred to by the device name, plus the / character, plus its own name. /dev/fi/dog refers to
flle dog on the floppy disc.

The floppy disc file name consists of 1 to 15 characters from the set [A to Z, a to z, 0 to 9, and
.....]. When specifying a pathname, upper- and lowercase characters are considered equivalent.
The floppy disc directory stores names in uppercase only.

The floppy disc can be either single- or doubled-sided, with either single- or double-density for­
matting following the IBM 3740 soft-sectored standard. A floppy disc is normally formatted by
ROS utilities as double-sided, double-density with 512 bytes of data per block.

The directory and file structure maintained on a floppy disc is compatible with the University of
California, San Diego (UCSD) Pascal system format. This structure allows up to 77 flIes per
volume, with a single directory for the entire volume.

Files on a floppy disc m3¥ be read or written a block of ~ytes at a time, with no transformation
or interpretation of the data performed by the device driver. ROS utilities are available to for­
mat a new floppy disc (zero(1», to list the directory (dir(1», and to duplicate the contents of
the floppy (copyfloppy(1». To compact the space allocation of a floppy disc, use copyfloppy(1).

/dev/fl
/drivers/fdlp

DEVICE CODE

device type

floppy disc

SEE ALSO

block-type or
major minor character-type

3 0 block

copyfloppY{l), dir{l), zero{l}

Pagel

standard
file name

/dev/fl

(9010-E)

LP(7) (Ridge) LP(7)

NAME
lp - line printer

DESCRIPTION
/dev/lp refers to a DataProducts printer on the DP/Centronics connector. When it is closed. a
page eject is generated. Bytes written are printed.

The driver interprets carriage return (ODH). newline (OAH). tab(09H). and form-feed (OCH)
char~ters.

Two ioctl(2) system calls are available:

#1nclude <sys/lprio.h>
ioctl (fildes. command. arg)
struct lprio *arg;

The comma nds are:

LPRGET Get the current printer parameters and store in the Iprio structure referenced
byarg.

LPRSET Set the current printer parameters from the structure referenced by argo

This allows an external program to control tab expansion, tab size , carriage return expansion,
and newline expansion.

DEVICE CODE

FILES

Pagel

device type

D ataProducts lp

/dev/lp
/drivers/fdlp

block-type or
major minor character-type

4 0 char

standard
file name

/dev/lp

(9010-E)

MOUSE(7) (Ridge) MOUSE(7)

NAME
mouse - pointing device

DESCRIPTION

Pagel

mouse refers to the pointing or locator device associated with a Ridge monochrome display.
Each window in a multi-window environment has an event queue for locator device events
(motion and/or button changes), which may be read via the mouse device associated with that
window.

The input device data is encoded as a sequence of bytes that are placed into the mouse event
queue for the currently selected active input window. Each mouse event is translated into 5

bytes, which are queued according to the selected window's flag bits, as described below. The
entire event queue is flushed first if there is not enough room left for all 5 bytes, thus insuring
that only the most recent events are queued.

The first byte contains the state of the buttons. Bit 0 (least significant) is the right button, bit 1
is the middle button, and bit 2 (more significant) is the left button. The other bits are nor­
mally zero, but may contain more button bits if a nonstandard locator device is being used. A
bit value of 1 indicates the corresponding button is depressed, and a bit value of 0 indicates the
button is released.

The second and third bytes contain the X coordinate, in two's complement representation,
high-order byte first. The fourth and fifth bytes contain the Y coordinate in the same format.
The coordinate system used for the X,Y position depends on the mode of the currently selected
window and the event mode bits in the wFlags word for the window.

If the EMLocCoords bit is set, then display device coordinates are used, and the location can be
anywhere on the display surface. The X coordinates range from 0 to 1023, and the Y coordi­
nates range from 0 to 799, with the origin in the upper left corner of the Ridge monochrome
display disp(7).

If the EMLocCoords bit is not set, then only mouse positions within the currently active win­
dow are queued. The coordinate system used in this case is translated relative to the location
of the window on the display surface, and may be scaled depending on the current mode of the
window.

If the window is emulating a Tektronix 4014 terminal, then the X coordinates range from 0 to
. 1024, and the Y coordinates range from 0 to 780, with the origin in the lower left corner of the
window. The display device coordinates of the mouse are appropriately scaled based on the size
of the window.

If the window is not in Tektronix 4014 mode, then display device coordinates are used, but are
first translated relative to the origin of the window. The X coordinates range from 0 to one less
than the width of the window, and the Y coordinates range from 0 to one less than the height
of the window, with the origin in the upper left corner of the window.

The mouse input for a window is accessed using the open(2) system call, providing the name
mouse appended to the window pathname, separated from it by a slash "/". For example, to
open the mouse input associated with window window2 on display device number "0", the
pathname would be /dev/dis-pJ/winoow2/mouse.

Alternatively, the special name /dev/mouse can be used by a process to specify the mouse
input from the window which corresponds to its control terminal. This special name is mapped
by ROS to the actual pathname of the window plus the string /mouse. Thus, processes may
easily refer to the mouse input from their control window without having to know the actual
window pathname.

A process uses the standard read(2) system call to access the mouse input from the window
associated with an open file descriptor. Each read will return as many bytes from the event

(9010-E)

MOUSE(7) (Ridge) MOUSE(7)

queue as are requested, although it is recommended that 5 bytes be read at a time, to maintain
synchronization with the queuing of the mouse event bytes.

Normally, a process will block when it attempts to read from a window that has no mouse input
queued for it, or if the window is not the active input window. A non-blocking read(2) may be
used to determine if there is any mouse input queued for a particular window. If the
O_NDELAY bit is set either by open(2) or Jcnfl(2) on a file descriptor bound to the mouse
input for a window, then a read will return immediately with a value of 0 when there are no
mouse input bytes queued for the window.

Several. of the bits in the wFlags word associated with each window provide control over the
queueing of input events from the mouse.

Mouse pointing device (locator) input is placed in the mouse event queue for the currently
selected active input window according to the following bits, as defined in the
<sys/winetrl.h> header file. If the bits for the currently selected window do not allow queue­
ing of a mouse event, then the window associated with the Window Manager process is tested
according to its bits. This allows a process in the currently selected window to filter some or all
mouse events, passing unwanted events to the Window Manager, which may choose to handle
the mouse event or have it discarded.

(9010-E)

EMQueueLoc
Bit that determines if mouse input is to be queued for the window. The initial
value of this bit is 0, causing all mouse events for the window to be ignored. If
this bit is set to I, then mouse events which satisfy the conditions specified by
the other control bits will be queued.

EMLocCoords
Bit that determines the allowable coordinates of the mouse which will be
queued for the window. The initial value of this bit is 0, allowing only mouse
events whose coordinates are inside the window's boundaries to be queued. If
this bit is set to 1, then mouse events located anywhere on the screen which
satisfy the other conditions will be queued.

EMLocMotion
Bit that allows queueing of mouse events resulting from motion or button
changes. The initial value of this bit is 0, allowing only mouse events that indi­
cate a button change to be queued, thus ignoring events resulting only from
motion. If this bit is set to 1, then mouse events will be queued which satisfy
the other conditions, regardless of button changes.

EM ButronMask
Bit field that determines which button changes will cause a mouse input event
to be queued for the window. The field is composed of the logical OR of the
following four fields, and is initialized to the value O.

EMRightButron
Bit that corresponds to the right button on the mouse. A bit value of 1 indi­
cates that a mouse event which has a different state for the right button from
the previous event is to be queued. A bit value of 0 indicates that right button
changes are to be ignored.

EMMiddleButton
Bit that corresponds to the middle button on the mouse. A bit value of 1 indi­
cates that a mouse event which has a different state for the middle button from
the previous event is to be queued. A bit value of 0 indicates that middle butr
ton changes are to be ignored.

Page 2

MOUSE(7) (Ridge) MOUSE(7)

FILES

EMLeftButton
Bit that corresponds to the left button on the mouse. A bit value of 1 indicates
that a mouse event which has a different state for the left button from the pre­
vious event is to be queued. A bit value of 0 indicates that left button changes
are to be ignored.

EM OtherBu trons
Bit that corresponds to all other buttons on a nonstandard mouse or other
pointing device. A bit value of 1 indicates that a mouse event which has a
different state for at least one of the other buttons from the previous event is
to be queued. A bit value of 0 indicates that all other button changes are to be
ignored.

EMSigIOLoc
Bit that determines if mouse input events cause a SIGIO signal(2) to be sent to
the ,process or process group waiting for mouse input from the window. The
initial value of this bit is 0, causing no signals to be sent. If this bit is set to 1,
then each mouse event (not each byte) for the window generates a signal to the
processes associated by fcntl(2) with the window.

The wF/ags bits that control mouse input events may be accessed by making an ioctl(2) system
call using a file descriptor associated with a window.

#include <termio.h>

ioctl (filedesc, command, arg)
int *arg;

The command argument using this form is:

MOUSEGET Get the flag bits associated with the mouse input into the integer
pointed to by argo All other bits are cleared to zero.

ioctl (filedesc, command, arg)
int arg;

The command argument using this form is:

MOUSESET Set the Hag bits associated with the mouse input from argo All other bits
are ignored.

/dev/mouse

SEE ALSO

Page 3

Ridge Multi- Window Display Management Guide
windows(3X), wgraf(3X), disp(7)

(90IO-E)

MT(7) (Ridge) MT(7)

NAME

mt - magnetic tape interface files

DESCRIPTION

Pagel

MtO through mt31, and rmtO through rmt31 refer to the magnetic tape drive in non-raw and raw
modes, respectively.

When opened for reading or writing, the tape is assumed to be positioned as desired. When a
file is closed, a double end-of-file (double tape mark) is written if the file was opened for writ­
ing. If the file was normal-rewind, the tape is rewound. If it is no-rewind and the file was open
for writing, the tape is positioned before the second EOF just written. If the file was no-rewind
and opened read-only, the tape is positioned after the EOF following the data just read. Once
opened, reading is restricted to between the position when opened and the next EOF or the last
write. The EOF is returned as a zero-length read. By judiciously choosing mt files, it is possible
to read and write multi-file tapes.

A standard tape consists of a series of 4096- byte records terminated by an EOF. To the extent
possible, the system makes it possible, if inefficient, to treat the tape like any other file. Seeks
have their usual meaning and it is possible to read or write a byte at a time (although very
inadvisable) .

The mt files discussed above are useful when it is desired to access the tape in a way compati­
ble with ordinary files. When foreign tapes are to be dealt with, and especially when long
records are to be read or written, the "raw" interface is appropriate. The associated files are
named rm:tO, ••• , 1'Illt31. Each read or write call reads or writes the next record on the tape. In
the write case the record has the same length as the buffer given. During a read, the record
size is passed back as the number of bytes read, up to the buffer size specified. Seeks are
ignored. An EOF is returned as a zero-length read, with the tape positioned after the EOF, so
that the next read will return the next record.

The following definitions of ioctl operations are from sys/muo.h:

/* structure for mag tape op command */

struct mtop{
int mt_op; /* operations defined below */
daddr_t mt_count; /* how many of them */
};

/* IOCTL operations */

#deftne MTWEOF 0 /* write an end of file record */
#deflne MTFSF I /* forward space file */
#define M'IBSF 2 /* backward space file */
#define MTFSR 3 /* forward space record */
#define M'IBSR 4 /* backward spac~ record */
#define MTREW 5 /* rewind */
#define MTOFFL 6 /* rewind and put the drive offiine */
#define MTNOP 7 /* no operation, sets status only */
#define MTHSPD 8 /* set high speed */
#define MTLSPD 9 /* set low speed */

/* structure for mag tape get status command */

(9010-E)

MT(7) (Ridge)

struct mtget{
int mt_type;
int mt_dsreg;

/* type of magtape device */
/* drive status register */

int mt_erreg; /* error register */
int mt_resid; /* residual count */
daddr_t mt_fileno;
daddr_t mt_blkno;
};

/* file number of current position */
/* block number of current position */

/*
* bits of the drive status register

* * 0-7
* 8-11

* 12

* 13
* 14
* 15
* 16
* 17
* 18

* 19

* 20
* 21

* 22
* 23
* 24
* 25
* 26
* 27
* 28

* 29

* 30
* 31

*

- D rive Identification
- (undefined)

BCO = - Byte Count Overflow
TPE = - Tape Parity Error
DMAE = - DMA Error
OUR = - Over/Under Run
CIP - Command In Progress
FMK - Filemark
HER = - Hard Error
CER = - Corrected Error
IDENT= - PE Identification
P4/26 - Undefined Signal Connected To P4-26
P3/44 - Undefined Signal Connected To P3-14
HISP - High Speed
RWD - Rewind
EOT - End Of Tape
LPT
FPT
ONL
RDY
FBSY
DBSY

- Load Point
- File Protect
- On Line
- Ready
- Formatter Ready
- Data Busy

* = Cleared with next command. */

/*
* constants for mt_type byte */

OxOl
Ox02
Ox03
Ox04
Ox05
Ox06
Ox07

}
}
} for compatibility with 4.2 bsd.
} only; not available on Ridge
}
}

}

#deflne MT_ISTS
#define MT_ISHT
#deflne MT_ISTM
#deflne MT_ISMT
#deflne MT_ISUT
#deflne MT_ISCPC
#deflne MT_ISAR
#deflne MT_ISCY Ox08 /* Cipher streaming tape drive */

/* structure of IOCTL call for magnetic tape operations */

ioctl (fildes, opcode, opstruct)

(9010-E)

MT(7)

Page 2

MT(7)

DEVICE CODE

FILES

Page 3

64 device files per controller
major device number: 9
minor device number is calculated by:

(unsigned character byte)
bits 0 1 2 3 14 5 6 7

------------------t----------
o 0 0 0 1 0 buffered (non-raw) device

con- 0 0 0 1 1 1 raw device
trol- 0 0 1 0 I 0 no rewind on close
er #1 0 0 1 1 1 1 rewind on close

o 1 0 0 10 0 density 800 bpi
o 1 0 1 10 1 density 1600 bpi
o 1 1 0 11 0 density 3200 bpi
o 1 1 1 11 1 density 6250 bpi (not supported)
1 0 0 0 I 0 buffered (non-raw) device
1 0 0 1 I 1 raw device

con- 1 0 1 0 I 0 no rewind on close
trol- 1 0 1 1 I 1 rewind on close
ler #2 1 1 0 0 10 0 density 800 bpi

1 1 0 1 10 1 density 1600 bpi
1 1 1 0 11 0 density 3200 bpi
1 1 1 1 11 1 density 6250 bpi (not supported)

/dev/mt??
/dev /rmt??
/usr/include/sys/mtio.h

32 files for raw mode 32 files for non-raw mode

minor bytes re- unit minor bytes re- unit
no. linch wind no. name no. linch wind no. name

5 1600 n 0 rmW 4 1600 n 0 mW
7 1600 Y 0 rmtl 6 1600 Y 0 mtl
9 3200 n 0 rmtl6 8 3200 n 0 mt16
11 3200 Y 0 rmt17 10 3200 Y 0 mtl7
21 1600 n 1 rmt2 20 1600 n 1 mt2
23 1600 Y 1 rmt3 22 1600 Y 1 mt3
25 3200 n 1 rmtl8 24 3200 n 1 mtl8
27 3200 y 1 rmt19 26 3200 y 1 mt19
37 1600 n 2 rmt4 36 1600 n 2 mt4
39 1600 Y 2 rmt5 48 1600 Y 2 mt5
41 3200 n 2 rmt20 40 3200 n 2 mt20

MT(7)

(9010-E)

MT(7) (Ridge) MT(7)

43 3200 Y 2 rmt21 42 3200 Y 2 mt21
53 1600 n 3 rmt6 52 1600 n 3 mt6
55 1600 Y 3 rmt7 54 1600 Y 3 mt7
57 3200 n 3 rmt22 56 3200 n 3 mt22
59 3200 y 3 rmt23 58 3200 y 3 mt23
69 1600 n 4 rmtS 68 1600 n 4 mts
71 1600 Y 4 rmt9 70 1600 Y 4 mt9
73 3200 n 4 rmt24 72 3200 n 4 mt24
75 3200 Y 4 rmt25 74 3200 Y 4 mt25
85 1600 n 5 rmtlO 84 1600 n 5 mtlO
87 1600 Y 5 rmt11 86 1600 Y 5 mtl1
89 3200 n 5 rmt26 88 3200 n 5 mt26
91 3200 Y 5 rmt27 90 3200 y 5 mt27
101 1600 n 6 rmtl2 100 1600 n 6 mt12
103 1600 Y 6 rmt13 102 1600 Y 6 mtl3
105 3200 n 6 rmt28 104 3200 n 6 mt28
107 3200 Y 6 rmt29 106 3200 Y 6 mt29
117 1600 n 7 rmtl4 116 1600 n 7 mt14
119 1600 Y 7 rmtl5 118 1600 y 7 mt15
121 3200 n 7 rmt30 120 3200 n 7 mtaO
123 3200 Y 7 rmt31 122 3200 y 7 mt31

(9010-E) Page 4

NULL(7) (UNIX 5.0) NULL(7)

NAME
null - the null device

DESCRIPTION
/dev/null refers to the null device. Data written to the null device is discarded. If the null dev­
ice is read, end-of-file status is returned (but no data).

DEVICE CODE
block-type or 8tandard

device type malor minor character-type file name

null device I 2 char jdev jnull

FILES
jdevjnull

Pagel (9010-E)

TERMIO(7) (UNIX 5.0) TERMIO(7)

NAME
termio - general terminal interface

TERMIO(7) IS NOT A FILE. THIS EXPLAINS TERMINAL I/O CHARACTERISTICS.

DESCRIPTION

Page I

When a terminal flle is opened, it normally causes the process to wait until a connection is esta..­
blished. In practice, users' programs seldom open these flIes; they are opened by getty and
become a user's standard input, output, and error files. The very flrst terminal flle opened by
the process group leader of a terminal flle not already associated with a process group becomes
the con1rol terminal for that process group. The control terminal plays a special role in han­
dling quit and interrupt signals, as discussed below. The control terminal is inherited by a child
process during a fork(2). A process can break this association by changing its process group
using setpgrp(2).

A terminal associated with one of these flIes ordinarily operates in full-duplex mode. Characters
may be typed at any time, even while output is occurring, and are only lost when the system's
character input buffer reaches 4352 characters, which is rare, or when the user has accumulated
4352 input characters that have not yet been read by some program. When the input limit is
reached, the oldest character is thrown away without notice.

Normally, terminal input is processed in units of lines. A line is delimited by a neW-line
(ASCII LF) character, an end-of-flle (ASCII EOT) character, or a user-define able end-of-line
character. This means that a program attempting to read will be suspended until an entire line
has been typed. Also, no matter how many characters are requested in the read call, at most
one line will be returned. It is not necessary, however, to read a whole line at once; any
number of characters may be requested in a read, even one, without losing information.

During input, erase and kill processing is normally done. By default, eontrol-h erases the last
character typed, except that it will not erase beyond the beginning of the line. By default,
control-x kills (deletes) the entire input line. Both these characters operate on a key-stroke
basis, independently of any backspacing or tabbing that may have been done. The erase and kill
characters may be changed.

-Certain characters have special functions on input:

INTR (Rubout or ASCII DEL) generates an interrupt signal which is sent to all processes
associated with the control terminal. Normally, each such process is forced to ter­
minate, but arrangements may be made either to ignore the signal or to receive a trap
to an agreed-upon location; see 8ignal(ej.

QUIT (Control-lor ASCII FS) generates a quit signal. Its treatment is identical to the inter­
rupt signal except that, unless a receiving process has made other arrangements, it
will be placed under control of the debugger.

ERASE (Control-h) erases the preceding character. It will not erase beyond the start of a line,
as delimited by a NL, EOF, or EOL character.

KILL (Control-x) deletes the entire line, as delimited by a NL, EOF, or EOL character.

EOF (Control-d or ASCII EOT) may be used to generate an end-of-file from a terminal.
When received, all the characters waiting to be read are immediately passed to the
program, without waiting for a new-line, and the EOF is processed on the next read
request. Thus, if there are no characters waiting, which is to say the EOF occurred at
the beginning of a line, zero characters will be passed back, which is the standard
end-of-file indication.

(90IO-E)

TERMIO(7) (UNIX 5.0) TERMIO(7)

NL (ASCII LF) is the normal line delimiter. It can not be changed or escaped.

EOL (ASCII NUL) is an additional line delimiter, like NL. It is not normally used.

STOP (Control-s or ASCII DC3) can be used to temporarily suspend output. It is useful with
CRT terminals to prevent output from disappearing before it can be read. While out­
put is suspended, STOP characters are ignored and not read.

START (Control-Q or ASCII DCl) is used to resume output which has been suspended by a
STOP character. While output is not suspended, START characters are ignored and
not read. The start/stop characters can not be changed or escaped.

The character values for INTR, QUIT, ERASE, KILL, EOF, and EOL may be changed to suit indi­
vidual tastes.

When one or more characters are written, they are transmitted to the terminal as soon as
previously-written characters have finished typing. Input characters are echoed by putting them
in the output queue when input is requested by a read on the terminal file. If a process pro­
duces characters more rapidly than they can be typed, it will be suspended when its output
queue exceeds some limit. When the queue has drained down to some threshold, the program
is resumed.

Several ioctJ(e) system calls apply to terminal files. The primary calls use the following struc­
ture, defined in <termio.h>:

#deflne NeC 8
struct termio {

int c_version; /* termio structure version */
int cJflag; /* input modes */
int c_oflag; /* output modes */
int c_cflag; /* control modes */
int cJflag; /* line discipline modes */
int cJine; /* line discipline */
int c_Dumchr; /* number of control chars following */
unsigned char c_cc[NCC]; /* control chars */

};

The special control characters are defined by the arr8¥ c_cc.. The relative positions and initial
values for each function are as follows:

o INTR DEL
1 QUIT FS
2 ERASE control-h
3 KILL
4 EOF
5 EOL
6 JOB
7 reserved

control-x
EOT
NUL
contro1-z

The c_iftag field describes the basic terminal input control:

IGNBRK 0000001 Ignore break condition.
BRKINT 0000002 Signal interrupt on break.
IGNPAR 0000004 Ignore characters with parity errors.
PARMRK 0000010 Mark parity errors.
INPCK 0000020 Enable input parity check.
ISTRIP 0000040 Strip character.
INLCR 0000100 Map NL to CR on input.
IGNCR 0000200 Ignore CR.

(9010-E) Page 2

TERMIO(7) (UNIX 5.0) TERMIO(7)

Page 3

ICRNL 0000400 Map CR to NL on input.
IUCLC 0001000 Map upper-case to lower-case on input.
IX ON 0002000 Enable start/stop output control.
lXANY 0004000 Enable any character to restart output.
IXOFF 0010000 Enable start/stop input control.

If IGNBRK is set, the break condition (a character framing error with data all zeros) is ignored,
that is, not put on the input queue and therefore not read by any process. Otherwise if BRKINT
is set, the break condition will generate an interrupt signal and flush both the input and output
queues. If IGNPAR is set, characters with other framing and parity errors are ignored.

If PARMRK is set, a character with a framing or parity error which is not ignored is read as the
three character sequence: 0377, 0, X, where X is the data of the character received in error. To
avoid ambiguity in this case, if ISTRIP is not set, a valid character of 0377 is read as 0377, 0377.
If PARMRK is not set, a framing or parity error which is not ignored is read as the character
NUL (0).

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity checking is
disabled. This allows output parity generation without input parity errors.

If ISTRIP is set, valid input characters are flrst stripped to 7-bits, otherwise all 8-bits are pro­
cessed.

If INLCR is set, a received NL character is translated into a CR character. If IGNCR is set, a
received CR character is ignored (not read). Otherwise if ICRNL is set, a received CR character
is translated into a NL character.

If IUCLC is set, a received upper-case alphabetic character is translated into the corresponding
lower-case character.

If IXON is set, start/stop output control is enabled. A received STOP character will suspend out­
put and a received START character will restart output. All start/stop characters are ignored and
not read.

If lXANY is set, any input character, will restart output which has been suspended. IXANY is
NOT implemented.

If IXOFF is set, the system will transmit START/STOP characters when the input queue is nearly
empty/full.

The initial input control value is all bits clear.

The c_oftag field specifies the system treatment of output:

OPOST 0000001 Postprocess output.
OLCUC 0000002 Map lower case to upper on output.
ONLCR 0000004 Map NL to CR-NL on output.
OCRNL 0000010 Map CR to NL on output.
ONOCR 0000020 No CR output at column O.

ONLRET 0000040 NL performs CR function.

(9010-E)

TERMIO(7) ,(UNIX 5.0)

OFILL 0000100 Use fill characters for delay.
OFDEL 0000200 Fill is DEL, else NUL.

NLDL Y 0000400 Select new-line delays:
NLO 0
NLI 0000400
CRDLY 0003000 Select carriage-return delays:
CRO 0
CRl 0001000
CR2 0002000
CR3 0003000
TABDLY 0014000 Select horizontal-tab delays:
TABO 0
TAB 1 0004000
TAB2 0010000
TABa 0014000 Expand tabs to spaces.
BSDLY 0020000 Select backspace delays:
BSO 0
BSI 0020000
VTDLY 0040000 Select vertical-tab delays:
VTO 0
VTl 0040000
FFDLY 0100000 Select form-feed delays:
FFO 0

FFI 0100000

ONL Y THE FOLLOWING ARE IMPLEMEN'IED:
OPOS~OLCUC,ONLCR,OCRNL,ONLRET,ONOCR,TAB3

TERMIO(7)

If OPOST is set, output characters are post-processed as indicated by the remaining ft.ags, other­
wise characters are transmitted without change.

If OLCUC is set, a lower-case alphabetic character is transmitted as the corresponding upper­
case character. This function is often used in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If OCRNL is set,
the CR character is transmitted as the NL character. If ONOCR is set, no CR character is
transmitted when at column 0 (first position).

If ONLRET is set, the NL character is assumed to do the carriage-return function; the column
pointer will be set to 0 and the delays specified for CR will be used. Otherwise the NL character
is assumed to do just the line-feed function; the column pointer will remain unchanged. The
column pointer is also set to 0 if the CR character is actually transmitted.

Horizontal-tab delay type 3, the only delay bit implemented, specifies that tabs are to be
expanded into spaces.

The initial output control value is all bits clear.

The c_cflag field (WHICH IS IGNORED BY THE RIDGE DISPLAY) describes the hardware
control of the terminal:

CBAUD 0000037 Bau d rate:
B75 0000002 75 baud
BllO 0000003 110 baud
B134 0000004 134.5 baud
B150 0000005 150 baud
B200 0000006 200 baud

(9010-E) Page 4

TERMIO(7) (UNIX 5.0) TERMIO(7)

PageS

saoo
B600
B1200
B1800
B2400
B4800
B9600

EXTA

EXTB
B19200
CSIZE

CS5
CS6
CS7
CS8

CSTOPB
CREAD
PARENB
PARODD
HUPCL
CLOCAL
CAUTO

0000007 300 baud
0000010 600 baud
0000011 1200 baud
0000012 1800 baud
0000013 2400 baud
0000014 4800 baud
0000015 9600 baud
0000016 External A
0000017 External B
0000020 19200 baud
0000140 Character size:
o 5 bits
0000040 6 bits
0000100 7 bits
0000140 8 bits

0000100 Send two stop bits, else one.
0000400 Enable receiver.
0001000 Parity enable.
0002000 Odd parity, else even.

0004000 Hang up on last close.
0010000 Local line, else dial-up.
0020000 Enable RS-232 hardware flow-control.

The CBAUD bits specify the baud rate. For any particular hardware, impossible speed changes
are ignored.

The CSIZE bits specify the character size in bits for both transmission and reception. This size
does not include the parity bit, if any. If CSTOPB is set, two stop bits are used, otherwise one
stop bit. For example, at 110 baud, two stops bits are required.

If PARENB is set, parity generation and detection is enabled and a parity bit is added to each
character. If parity is enabled, the PARODD fiag specifies. odd parity if set, otherwise even parity
is used.

If CREAD is set, the receiver is enabled. Otherwise no characters will be received.

If HUPCL is set, the line will be disconnected when the last process with the line open closes it
or terminates. That is, the data-terminal-ready signal will not be asserted.

If CLOCAL is set, the line is assumed to be a local, direct connection with no modem control.
Otherwise modem control is assumed.

If CAUTO is set, hardware flow-control for RS-232 terminals is enabled. This feature prevents
too-rapid input/output with a peripheral device. If enabled, the RS-232 receiver and
transmitter are switched on and off by the "carrier detect" (DCD) and the "clear to send" (CTS)
lines, respectively. No data will be received unless DCD (pin 8) is true, and no data will be
transmitted until CTS (pin 5) is true.

The initial hardware control value after open is B9600, CS7 CREAD, PARENB. CLOCAL.

The c_lflag field of the argument structure is used by the line discipline to control terminal
functions. The basic line discipline (0) provides the following:

ISIG 0000001 Enable signals.
ICANON 0000002 Canonical input (erase and kill processing).

(9010-E)

TERMIO(7) (UNIX S.O) TERMIO(7)

XCASE 0000004 *Canonical upper/lower presentation.
ECHO 0000010 Enable echo.
ECHOE 0000020 Echo erase character as BS-SP-BS.

ECHOK 0000040 Echo NL after kill character.
NOFLSH 0000200 Disable fiush after interrupt or quit.
LINTRUP 0000400 Generate signal SIGIO when data is available.

* IGNORED BY RIDGE DISPLAY

If ISIG is set, each input character is checked against the special control characters INTR, JOB,
and QUIT. If an input character matches one of these control characters, the function associ­
ated with that character is performed. If ISIG is not set, no checking is done. Thus these special
input functions are possible only if ISIG is set. These functions may be disabled individually by
changing the value of the control character to an unlikely or impossible value (e.g. 0377).

If ICANON is set, canonical processing is enabled. This enables the erase and kill edit functions,
and the assembly of input characters into lines delimited by NL, EOF, and EOL. If [CANON is
not set, read requests are satisfied directly from the input queue. A read will not be satisfied
until at least MIN characters have been received. This allows fast bursts of input to be read
efficiently while still allowing single character input. The MIN value is 'stored in the position for
the EOF character. The time value represents tenths of seconds.

If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible. If ECHO and ECHOE are set,
the erase character is echoed as ASCII BS SF BS, which will clear the last character from a CRT
screen. If ECHOE is set and ECHO is not set, the erase character is echoed as ASCII SP BS. If
ECHOK is set, the NL character will be echoed after the kill character to emphasize that the line
will be deleted, otherwise a series of backspace- space- backspace sequences are output to cause
the line to be erased. Note that an escape character preceding the erase or kill character
re~oves any special function. Unless escaped, the EOF character is not echoed. Because EOT is
the default EOF character, this prevents terminals that respond to EOT from hanging up.

If NOFLSH is set, the normal fiush of the input and output queues associated with the quit and
interrupt characters will not be done.

The initial line-discipline control value is all bits clear.

The primary iocf1{2} system calls have the form:

ioctl (fildes, command, arg)
struct termio *arg;

The commands using this form are:

TCGETA Get the parameters associated with the terminal and store in the termio
structure referenced by argo

TCSETA Set the parameters associated with the terminal from the structure refer­
enced by argo The change is immediate.

TCSETA W Wait for the output to drain before setting the new parameters. This form
should be used when changing parameters that will affect output.

TCSETAF Wait for the output to drain, then flush the input queue and set the new
param e ters.

Additional ioctl{2} calls have the form:

(90l0-E) Page 6

TERMIO(7) (UNIX 5.0) TERMIO(7)

ioctl (flldes, command, arg)
int arg;

The commands using this form are:

TCXONC

TCFLSH

Start/stop control. If arg is 0, suspend output; if 1, restart suspended out­
put.

If arg is 0, flush the input queue; if 1, flush the output queue; if 2, flush
both the input and output queues.

SEE ALSO
stty(1), ioctl(2).

Page 7 (9010-E)

TIY(7) (Ridge) TIY(7)

NAME
tty - controlling terminal interface

DESCRIPTION

/dev/ttyO through /dev/tty7 refer to RS-232 terminals attached to the J connectors on the
Ridge 32 back panel.

/dev/tty refers to the current user's terminal in use, which may be ttyO through tty7, or mspO
through msp3. It is useful for programs or shell sequences that wish to be sure of writing mes­
sages on the terminal no matter how output has been redirected. It can also be used for pro­
grams that demand the name of a ftle for output, when typed output is desired and it is tire­
some to find out what terminal is currently in use.

DEVICE CODE

FILES

Pagel

dev£ce type

current u~er terminal
RS-232 ports
monochrome disp

1 1

2 0 .. 7

6 0 .. 3

/dev/tty
/dev/ttyo
/dev/ttyl
/dev /tty2
/dev /tty3
/dev/tty4
/dev/tty5
/dev/tty6
/dev /tty7

this terminal

/dev/dispO
/dev/displ
/dev/disp2
/dev/disp3

/drivers/disp
/drivers/fdlp

(JI on Ridge back panel)
(J2 on Ridge back panel)
(J3 on RIdge back panel)
(J4 on Ridge back panel)

device driver for disp's
device driver for tty's

block-type or
ch a ra cter- type

char
char
block

standard
file name

/dev/tty
/dev /ttyO .. tty7
/dev /dispO .. disp3

(9010-E)

VP(7) (Ridge) VP(7)

NAME
vp - Versatec printer/plotter in print mode

DESCRIPTION
/dev/vp refers to Versatec printer/plotter in print mode on the Versatec printer/plotter connec­
tor.

When it is closed, a page eject is generated. Bytes written are printed.

The driver interprets carriage return (ODH), newline (OAH), tab (09H), and form-feed (OCH)
characters.

Two toctl(2) system calls are available:

#include <sys/lprio.h>
toctl (fildes, command, arg)
struct lprio *arg;

The comma nd8 are:

LPRGET Get the current printer parameters and store in the lprio structure referenced
byarg.

LPRSET Set the current printer parameters from the structure referenced by argo

This allows an external program to control tab expansion, tab size, carriage return expansion,
and newline expansion.

DEVICE CODE

FILES

Pagel

device type

Versatec printer

/dev/vp
/dev /fdlp

block-type or
maior manor character-type

4 32 character

Btandard
file name

/dev/vp

(9010-E)

VPLOT(7) (Ridge)

NAME
vplot - Versatec printer/plotter in plot mode

DESCRIPTION

VPLOT(7)

/dev/vplot refers to Versatec printer/plotter in plot mode on the Versatec printer/plotter con­
nector.

When it is closed, bits written are printed and a page-eject is generated.

Two ioctl(2) system callS axe available:

#include <sys/vprio.h>
ioctl (HIdes, command, arg)
struct vprio *axg;

The command8 axe:

VPPRINT Put the Versatec into print mode.

VPPLOT Put the Versatec into plot mode.

DEVICE CODE

FILES

Pagel

device type
block-type or

major minor character-type

Versatec in plot mode 5 o character

jdev /vplot
jdrivers/fdlp

8tandard
file name

/dev /vplot

(9010-E)

•

Ridge Computers
Corporate Headquarters

2451 Mission College Blvd.
Santa Clara, California 95054
Phone: (408) 986-8500
Telex: 176956

	000
	02_001_intro
	02_002
	02_003
	02_004
	02_005_access
	02_006_alarm
	02_007_brk
	02_008_chdir
	02_009_chmod
	02_010_chown
	02_011_close
	02_012_creat
	02_013_dup
	02_014_exec
	02_015
	02_016_exit
	02_017_fcntl
	02_018_fork
	02_019_getpid
	02_020_getuid
	02_021_ioctl
	02_022_kill
	02_023_link
	02_024_lseek
	02_025_mkdir
	02_026_mknod
	02_027_mount
	02_028_nice
	02_029_open
	02_030
	02_031_pause
	02_032_pipe
	02_033_ptrace
	02_034
	02_035_read
	02_036_rename
	02_037_rmdir
	02_038_setuid
	02_039_setregid
	02_040_setreuid
	02_041_signal
	02_042
	02_043
	02_044_spawn
	02_045
	02_046
	02_047_stat
	02_048
	02_049_time
	02_050_times
	02_051_truncate
	02_052_umask
	02_053_umount
	02_054_unlink
	02_055_utime
	02_056_wait
	02_057_write
	03_001_intro
	03_002
	03_003_AbortCommand
	03_004_Access
	03_005_ChangeDir
	03_006_ChangeFileSize
	03_007_ChangeMode
	03_007_Close
	03_008_CloseFile
	03_009_ConcatString
	03_010_CopyOfString
	03_011_CopySubString
	03_012_Create
	03_013_CreateEquate
	03_014_CreateSpecial
	03_015_DecodeTime
	03_016_Delete
	03_017_DeleteEquate
	03_018_Dispose
	03_019_EncodeTime
	03_020_EqualString
	03_021_FileStatus
	03_022_FillString
	03_023_GetArgs
	03_024_GetCurrentDir
	03_025_LoadCodeAndData
	03_026_LoadCommand
	03_027_LookupName
	03_028_NewString
	03_029_Open
	03_030_OpenFile
	03_031_OverlayString
	03_032_PositionFile
	03_033_ReadBlock
	03_034_ReadChar
	03_035_ReadDirectory
	03_036
	03_037_ReadLabel
	03_038_SearchString
	03_038_SetFileSize
	03_039_SetDataBounds
	03_040_StartCommand
	03_041_SubString
	03_042_SysExit
	03_043_WriteBlock
	03_044_WriteChar
	03_045_A64L
	03_045_Abort
	03_046_Abs
	03_047_Atof
	03_048_Bsearch
	03_049_Clock
	03_050_Conv
	03_051_Crypt
	03_052_Ctime
	03_053
	03_054_Ctype
	03_055_Drand48
	03_056
	03_057_Ecvt
	03_058_End
	03_059_Frexp
	03_060_Ftw
	03_061_Getcwd
	03_062_Getenv
	03_063_Getgrent
	03_064_Getlogin
	03_065_Getopt
	03_066
	03_067_Getpass
	03_068_Getpw
	03_069_Getpwent
	03_070
	03_071_Getut
	03_072
	03_073_Hsearch
	03_074
	03_075_L3toL
	03_076_Lsearch
	03_077
	03_078_Malloc
	03_079_Memory
	03_080_Mktemp
	03_081_Nlist
	03_082_Perror
	03_083_Putpwent
	03_084_Qsort
	03_085_Rand
	03_086_Setjmp
	03_087_Sleep
	03_088_Ssignal
	03_089_String
	03_090
	03_091_Strtol
	03_092_Swab
	03_093_Tsearch
	03_094
	03_095_Ttyname
	03_096_Ttyslot
	03_097
	03_098_Bessel
	03_099_Erf
	03_100_Exp
	03_101_Floor
	03_102_Gamma
	03_103_Hypot
	03_104_Matherr
	03_105
	03_106_Sinh
	03_107_Trig
	03_108_Ctermid
	03_109_Cuserid
	03_110_Fclose
	03_111_Ferror
	03_112_Fopen
	03_113
	03_114_Fread
	03_115_Fseek
	03_116_Getc
	03_117_Gets
	03_118_Popen
	03_119_Printf
	03_120
	03_121
	03_122_Putc
	03_123_Puts
	03_124_Scanf
	03_125
	03_126
	03_127_Setbuf
	03_128_Stdio
	03_129_System
	03_130_Tmpfile
	03_131_Tmpnam
	03_132_Ungetc
	03_133
	03_134_Assert
	03_135_Copybits
	03_136
	03_137
	03_138_Curses
	03_139
	03_140
	03_141
	03_142
	03_143
	03_144_Graf
	03_145
	03_146_Logname
	03_147_Plot
	03_148
	03_149_Regcmp
	03_150
	03_151_Wgraf
	03_152
	03_153_Windows
	03_154
	03_155
	03_156
	03_157
	04_001_Intro
	04_002_a.out
	04_003
	04_004
	04_005
	04_006_badblocks
	04_007_conf
	04_008
	04_009_cpio
	04_010_dir
	04_011_font
	04_012
	04_013_fspec
	04_014_gettydefs
	04_015_group
	04_016_hosts
	04_017_inittab
	04_018
	04_019_issue
	04_020_mnttab
	04_021_netrc
	04_022_networks
	04_023_passwd
	04_024_plot
	04_025_profile
	04_026_protocols
	04_027_sccsfile
	04_028
	04_029
	04_030_services
	04_031_stab
	04_032
	04_033
	04_034
	04_035_term
	04_036
	04_037_terminfo
	04_038
	04_039
	04_040
	04_041
	04_042
	04_043
	04_044
	04_045
	04_046
	04_047
	04_048
	04_049
	04_050
	04_051_utmp
	04_052
	04_053_uuencode
	04_054
	05_001_intro
	05_002_ascii
	05_003_environ
	05_004_fcntl
	05_005_math
	05_006_rc
	05_007_regexp
	05_008
	05_009
	05_010_stat
	05_011_sysrc
	05_012_term
	05_013
	05_014_termcap
	05_015
	05_016
	05_017
	05_018
	05_019
	05_020
	05_021
	05_022_types
	05_023_values
	05_024_varargs
	05_025
	05_026
	06_001_intro
	06_002_arithmetic
	06_003_backgammon
	06_004_balls
	06_005_bcd
	06_006_bj
	06_007_boggle
	06_008_bltgammon
	06_009_canfield
	06_010_craps
	06_011
	06_012_cribbage
	06_013_fish
	06_014_fortune
	06_015_hangman
	06_016_life
	06_017_master
	06_018_maze
	06_019_mille
	06_020
	06_021
	06_022_monop
	06_023
	06_024_moo
	06_025_number
	06_026_psych
	06_027_quiz
	06_028_rain
	06_029_snake
	06_030_space
	06_031_trk
	06_032
	06_033
	06_034
	06_035
	06_036
	06_037
	06_038
	06_039
	06_040
	06_041_ttt
	06_042_worm
	06_043_worms
	06_044_wump
	07_001_intro
	07_002_cdisp
	07_003_clp
	07_004_disc
	07_005_disp
	07_006_dr11m
	07_007_fl
	07_008_lp
	07_009_mouse
	07_010
	07_011
	07_012_mt
	07_013
	07_014
	07_015
	07_016_null
	07_017_termio
	07_018
	07_019
	07_020
	07_021
	07_022
	07_023
	07_024_tty
	07_025_vp
	07_026_vplot
	xBack

