
INFORMAL DESCRIPTION OF THE sec 6700

Butler W. Lampson

University of California, Berkeley

Document No. W-4l

Issued March 6, 1968
~

Contract SD-l85

Office of Secretary of Defense

A~vanced .Research Projects Agency

Washington, D. C. 20325

w-41

INFORMAL DESCRIPTION OF THE sec 6700

The Scientific Control Corporation 6700 is a large-scale general

purpose co~puter specifically designed fo~ time-sharing. It is

the product of a joint effort of Project Genie and SCC personnel.

One of these machines, together with accompanying drums, disks

and memory, has been ordered by the project. It is hoped that·

the system will be operational by the first quarter of 1969.
This document is an informal reference manual for the machine.

It describes the overall system organization, the CPU, the

memory system and the input/output at a level of detail which

is intended to be the maxtmum of what a systems programmer

might want to know and what is currently decided. It is not

to be taken as certain truth.

Overall design, Main memory

'~ne 6700 is a memory-centered system. It consists of a

large number of more or less independent devices which communicate

with each other primarily through memory. There are a few other

channe ls of communication: the ACT bus, the PRO bus and wakeup

lines.

The main memory of the system is 128K (expandable to 512K)

of core organized into 8 module s of 16K each. The cye le time

of the memory is 1000 ns; the read access time is 400 ns. The

, 'memory is 52 bits wide; there is room for 2 of the machine's

24-bit words and 4 parity bits.

Each module of the memory is connected to a fast memory

which consists of six address regi~ters and six double word

data registers, one for each address register. All communication

between the outside world and the core takes place through

the fast memory.

Each fast memory has four ports, i.e., four independent

mechanisms for presenting addresses to the memory and transmitting

- 2 -

~-bit words and control information. A device references the

memory by presenting an address and six control bits, which are

used in the following way:

One bit is a memory access priority bit. If it is

on, the request has high priority for access to the fast

memory. This means that if another fast memory request

is presented to the module in t~e same'cyc1e (100 ns)

Which does not have the memory access priority bit set,

'the request which does have the bit set will win. The

other request can be made again in the next 100 ns cycle.

If two requests have the same memory ~ccess priority,

the one is chosen which comes in at the port having the

highest priority. The priorities of the ports are fixed.

Two bits specify the core access priority 'as Low,

Warning, Medium or High. If the request requires a core,

access, these bits determine how it fares in competition

with other requests requiring core accesses. W 1s

- 'livalent to L except that it causes any pending W

, ltquests to be converted to H ; it is used by -the drum

transfer unit.

Three bits describe the nature of the request. They

are called Fetch, Store and Hold. Five combinations of

these bits are normally used:

F S H
o 0 1 Pre-store. Obtains a register in fast memory

tor the address and sets its hold bit. The

register will not be released, unless its hold

bit is cleared by another request with the same

address, until 10}-AS has elapsed. No core

reference is initiated by this request.

o 1 0 Store. Takes 24 bits from the data bus and puts

them into a fast memory register. The data will

be stored into core.as soon as the core access

priority gets it a core access. The hold bit

on the register is cleared.

- 3 -

o 1 1 Store and hold. Same as store except that the

hold bit is set •

. 1 0 1 Pre-fetch. Obtai~s a register in fast memory for

the address and sets its hold bit. The memory will

make a core access if necessary to make the data

portion 'of the register agree with the contents

ot core.

1 0 0 Fetch. If data is ready in the fast memory, it

is transferred to the bus. The hold bit is cleared .

. ' Each module of 'the memory listens to requests at its four

ports in every 100 ns cycle. It accepts at most one request; the

others are rejected within the same cycle~ It a request is

accepted, data and addresses are transferred in the follOwing

cycle. Thus, an accepted request takes 200 ns, a rejected one

100 ns. This is not a complete description of memory bus timing.

Tbe fast memory attempts to keep its contents in agreement

with core, doing fetches or stores from core as necessary. If
the ~(~ory is left alone for six cycles, it will be able to make

aU"ine core references it needs. "'lhere will then be 48 double

words in fast memory. They will stay there until displaced by

later requests. A program operating in a tight loop on a small

, .volume of data may be able to,approx~ate this sit~ation quite

closely.

The follOwing devices are attached to the main memory:

The CPU

The drum and dis~ transfer units

The drum and disk controller (AMC or auxiliary memory

controller)

The process control unit (pcu)

The character input/output controller (CHIOC)

Any other I/O devices which may be attached to the system.

There 1s an ACTivate bus which connects the CPU to the two

controllers, the FeU and any other I/O equipment which may be

attached. There is also a PRotect bus which connects the CPU,
. .

the FeU, the controllers and any other device which needs to set
. ,

the protect Signal.

- 4 -

The CPU

We will discuss the capabilities of the CPU under the

following headings:

addressing and mapping

instruction set

input/output

Because of the highly interdependent nature of the system it will

be necessary-to use certain terms which are not defined until

.later in the discussion.

Addressing

Each process has available to it a 2t19 word virtual memory

which is divided into 32 units of 16K words each called chunks.

A full address is therefore 19 bits, divided into a 5-bit chunk

number and a. l4-bit word address within the chunk. A 19-bit

field can be interpreted as a full address in the following

contexts:

1\ As part of an indirect address word.
~ t ¥~

2) As part of the X register during indirect ~ddressing

or in executing LFB or SFB.

3) As part of a word in a pop transfer vector.

4) As the operand of BRR or XCI or BSR.

Since case (1) is by far the most· important we will consider it

in detail and then point out the ways in which the other cases

differ.

An indirect address word has the following format:

o 1 2 3 4 5 23

w .. I I I X I Xp I TR I FA I full address I
The I bit specifies another lev~l of indirection. Tlie X bit

specifies indexing. The TR bit specifies that a tra.p should
-- . --

occur. The FA bit specifies that this level of indirection

provid~s a full address. The XP bit specifies that the X
.. -. - - ...

register is used -as a pointer, i.e., that it provides the chunk

number.

- 5 -

Indirection proceeds in the following manner. If W has

been retched as an indirect word from address Q:

Trap if' TR = 1 (see below)

Set,WA = W10- 23 if X = 0, W10-23 + X10_~3 if' X = 1

Set ~N = ~-9 if FA = 0

W5-9 if FA = 1 and XP = 0

15-9- if' FA = 1 and XP = 1

The effective address at this level is (CN, WA), by which we mea.n

the 24-bit quantity:

o 4 5

I eN

9 10

I WA

23

[0

If' I = 1, we use this word as the address or another indirect

word. Otherwise, we return it as the effective address.

The effect of all this is that if FA = 0 indirection

pro~p.e.s.~ exactly as in the 940, except for the different
'. ,. - -

arrangement of the bits and the presence of the tra.p bit. The

address ~roduced is in the same chunk as the indirect word.

If FA = 1, the address produced is in a different chunk, either

the one specified by the indirect word or the one specified

by X, depending on the setting of XP.

An instruction word has the format:

01234 9 10 23

ADDR

If P = 0, the OP field specifies one of 64 instructions to be

executed. Every instruction without exception generates

an effective a.ddres·s in the same way:

, '1) Let CN' = r,-9 (chunk number of the location counter)

'2) Let WA = ADDR if X = 0, ~DR+Xl0_23 if X = 1

3) Go indirect through the address (CN,WA) if I = 1.
- ,

Otherwise, take (CN,WA) as the effective address.

- .6 -

Note that this is equivalent to trea.ting the instruction word

with bits 2-9 cleared as .an indirect word •

. Once the effective address 'Q ha~ been generated, execution

of the instruction depends on the P and OP fields. This subject

1s discussed in the next section.

Addressing from one chunk to another is controlled by a

32 X'32 matrix called the inter-chunk protection (ICP) matrix.

An entry in this matrix contains two bits and determines the

legal.ity of an inter-chunk reference as follows:

o no access is allowed

1 read access only

2 read and indirect access

3 any kind of access

A ref'erence made to obtain a word used in indirection is an

indirect reference. A reference made to obtain an instruction

1s an execute reference. One made to fetch an operand is a

read reference, and one made to store a data word is a write

reference. The entry of the Iep matrix to be used in checking
, ~,~.

the "lee ~.ity of a reference is ~ ... terrr,ined by the chunk containing

the word which provide the address (source chunk) and the chunk.

containing the word addressed (target chunk). Thus, in the

sequence

{: LDA* N
chunk Kl.

IA.* 01, 02 this is an indirect address
directive. The operands
are chunk number and word
address respectively.

chunk O~ 0 IA Pl, P2

chunk PI P DATA 24
.execution of the instruction at M loads 24 into A provided

. Ml has indirect access to 01, or ICP[Ml,Ol] ~ 2

01 has read access to PI, or ICP[Ol,Pl] ~ 1

Note that the value of fCP[Ml, PI] is not i:ll question •

. A chunk is paged. The nominal ~ ~ of the chunk may

vary from. 128 words to 2048 words. Each virtua.l page may have

one or three values:

- 7 -

empty - no real memory corresponds to this virtual memory

a real page reference

an,indirect page table reference

If the value is a real page reference, it has "two parts: a drum

address which specifies the page and three protection bits:

W, X, P.

Wallows writing into the page if it is on.

X allows instruction words to be fetched from the page

if it is on.

P allows privileged instructions to be fetched if it is on.

Note that the protection bits are associated with the entry for . .
the page in the map and ~ with the physical page itself.

Converting a full address (CN,WA) into a physical address

requires the following steps:

Obtain the CNth entry from the chunk table for the process.

This tells where the page table for chunk CN is and what

its nominal page size is. Call the NPS P.

Obtain the (WA!P)th word from the page table.- If its value

1s a real page, this givo~ Ub a drum address for the l)8.$le.
. t:'"

Look up D in a hash table called J?HT. If it is there, the

associated information tells where the page is in core

and what state it is in.

This process is described in complete detail below.

If the value of a virtual page is an indirect page table

reference, it also has two parts: an actual page size < the NPS

and an address which tells where to find a small page table

containing real page pointers. If the NPS is 1024 and the APS

is 256, the small table contains four ~ntries for four 256 word

real pages which make up the 1024 word nominal page. Each of

these entries is 0 or a real page reference.

A precise understanding of how the map works can be obtained

trom the bit-by-bit description which follows. The above general

description should sufric~ for ~st purposes.

- 8 -

Each process has a 32-word chunk table; one word of this

table either contains 0,. indicating that no memory is assigned

to t~e chunk, or points to the pa.ge .table for the chunk. The

format of a page table pointer is

o 1 345 12 13

BPS . = nominal page size for this chunk. This number

determines the division of the word address into

page number and word in page. -The nominal page

size is 32 ~ 2NPS, and NPS ranges between 1

(64 words, not implemented) and 6 (2048 words).

BPS = 7 is-reserved.

23

A = absolute address bit. PrA is interpreted as an

absolute address if_this bit is set, as an address

in the context bloCk if it is clear •

. PI'L = length of page table (in words) -1.

PTA = address of page table, modified by A.

A page table starts with four words which contain one row

~~ the Iep matrix, packed eight entries per word, two bits

per entry in the bottom l~ bits. The interpretation of an entry

is:

00 - no access

01 - read only

10 - read and indirect

11 - free access

describing access ~ this

chunk to another one

The remainder of the page table, PTL words of it, contains

entries of three types: empty, real page reference, or indirect

page table reference. ~e pointer from the chunk table is to

the word following the four Iep words.

- 9 -

An empty entry is o. A real page reference has the form

o 1 3 4 6 7 23

I 0 I PPB SPN DRUM ADDRESS I
PPB = page protection bits

bit 1 = P: privileged instruction authorization

bit 2 = X: instruction fetch authorization·

bit 3 = W: write authorization

Reading is always allowed

S~ = sub-page number. See the discussion of real address

formation below.

An indirect page table reference has the form

0 1 3 4 5 12 13 23

1.1 1 APS I A I unused J PrA I
";I, " • ~4.

.
APS = actual page size

-
A, Pl'A have the meanings ascribed above

- This entry points to a small page table with page size specified

by APS. This table has only· empty or real '9age entries. It

contain NPS/AP~ words. We require APS < NPS.

There is a hash table called DHT which keeps track of

the. drum pages which are in core. The key is the drum address.

A linear collision doctrine is used. An entry in this table

occupies two words and has the form:

o 2 3 4 6 7 23 0 12 13 14

DRUM ADDRESS I ~ unused I D I CPA

PST = page status

o - on drum

- 10 -

1 - read scheduled

2 - read in progress

3 - read error

'4 - in core

" - write scheduled

6 - write in progress

7 - write error

Note ,that a page is in core and readable if and only if the

first bit of PST is on.

N ~ = no write. A write into this page will not be allowed

if this bit is set. The prima.ry purpose is to prevent

a swapper decision to write the page from being subverted.

D = dirty. Set if the page in core may differ fram the

drum version.

CPA = core page address. The top 10 bits of a 19 bit real

core address.

A reference to the map in core proceeds as follows: starting
•• ¥t- • -

with b 24-bit full address word A, use ~-9 to select a chur~

table en~ry. If it is 0, generate trap Ml. Otherwise, let

PS = NPS and P = A10-(18-PS). If P> LPT, generate trap M2.
Otherwise, examine the Pth entry in the page. table addressed by

~+4. If' the entry is empty, generate trap M3. If' it is an

indirect page table reference, let Q = A(18-NPS+l)-(l8-APS) and
PS = APS, and examine the Qth entry in small page table addressed

by the indirect reference.

When a real page reference is found, look up the drum

address in'DHT. If it is not found, generate trap M4. If the

first bit of PST i~ the entry found is 0, generate trap MD.
Otherwise, compute the real address as

CBA*2
9

+SPN*2
6

+A(18_PS+l)_23

.Note that the + signs may be taken as merge rather than add

because of the way in which these quantities are obtained.

A reference to the map must specify whether the address is

<, to be used for writing. If' so, D is turned on in the DHT entry

round unless N is set, in which case trap M5 is generated.

- 11 -

Since it is not acceptable to subject every memory reference

to this time-consuming process, the machine is equipped with

eight associative registers to hold information about the most

recently used core pages. One of these registers has the form:

023 78 14 15 27 28 30 31

I ps CN PN CPA

PS = page size. Same code as for NPS above.

CN = chunk number.

PH = page number.

PPB D I

CPA = core page address/64. Bit 27 is set to 0 permanently.

PPB = page protection bits

D = dirty bit from DHT

Wh~n an address is presented to the map unit, an association is

done on the eN and PN fields of each register. The bits of the

address used in this association are determined by the PS field.

If" the l.ssociation is successfl,;,~" tht:: real address is computed

l

as CPA*64 merged with the bits of the address not used for the

association. The PPB field is also returned so that the processor

can check the protection.

With the address must come a bit which specifies whether a

load or store is being done. If the latter, D must be set when

the association succeeds. othe~se, that register is cleared

and the map unit proceeds as though association had failed.
,

~is is t~ ensure that the D bit in DHT is set whenever a store

is done. The final state of D is returned.
- If the association fails, the core map is referenced using

the algorithm described above. If it is successful, an associative

register is· chosen and its former contents erased, and its

fields are ·set from the results of the reference to the core map:

PS +- PS computed during map reference

eN +-"'5-9
PN ~A10-(18-PS)

- 12 -

CPA +- CPA in the DHT entry * 8 + SPN

. PPB +- PPB in the page table entry

D +- D in the DHT entry

In parallel with the association for core address is one

tor lCP bits. There is another set of registers of the form:

o 4 5 6 7 9 11 13 15 17 19 21

·_I_S_C~~~ __ ~E~ol~El~I __ E2~I __ E_3~E_4'~_~~I_E6~I~E~71
SC = source chunk number

TC = top, two bits of target chunk number

Ei = lCP [SC,TC~+il

I.e., if association on SC and TC succeeds, the last three bits

of the target chunk number are used to select the proper Ei.

If association fails, a reference to the core map must

be made. The page table for chunk SC is found .as before, and

PTA+TC is fetched.

The overall function of the m~p 13 described-by the

following table:

Input Output

Source chunk se lep bits (2)

Target chunk TC PPB (3)

Target word address WA Real core address (19)

Load/store indication D bit (1)
..

There is an ACT instruction for the map-loader called

CVRA Convert VirtUal'to Real address

It accepts one argument, namely a 19 bit virtua1 address,

and returns either:
--a) A noskip if the page containing this address is not

in the map, or

- b) a skip and

1) The drum address of the page

2) The real address of its DHT entry, or 0 if it is not

-. 13 -

in DHT

3) 'The real ~ddress corresponding to the virtual

address if the page is in core, or 0 otherwise.

In other words, this instruction makes available most of the

results of the mapping operation, so that the processor does
. -

~ot have to duplicate the computation made by the map loader.

under no circumstances does it cause a trap.

- 14 -
Instructions

We will describe the 6700 instruction set in terms ot its

differences from that of the 940. Notation: L = 24-bit program

counter, Q = 24-bit effective address, (Z) means contents of

memory location addressed by Z. Needless to say, all addreSSing

is. mapped •. Assume L ~L+l in every instruction descri~tion unless

otherwise stated. Any add to L or Q is a 14-bit add; the chunk

number is unaffected.

General

1. The format of an instruction word is different. See

~ow.

2~ The effective address is computed in exactly the same

way for every instruction.

3. Indirect addressing is handled quite differently. See

above.

Symbols

L = 24 bit location (program) counter

: . A,3j X = A,B,X registers

Q = 24 bit effective address

OV = ~verflow bit

CO = carry bit from 24th bit of adder. Also used by

floating]Oint instructions.

CI = Carry into bit 0 of adder.

PRO = protect Signal

- 15 -

Loads and Store s

New instructions:

XMX Exchange memory and X

X ... (Q) , (Q) -+ X

STM Store masked

(Q)I\ B V AI\ B -+ (Q,)

I.e., store the bits of A selected by 1 bits in B.

LDD Load double

(Q) -+ A ; (Q,+l) -+ B

STD Store double

A -+ (Q,) ; B ... (Q.+l)

STZ Store zero

o -+ (Q)

- 16 -

Field Instructions

There are six new instructions used to load and store parts
. .

of :words in memory. They allow convenient ha.ndling of fields'

from zero to twenty-four bits in length arbitrarily positioned

in either a.. single word in memory or two adjacent words. These

instructions all make use of a common "field descriptor" or

pointer word to control the field to be loaded or stored.

The field instructions expect the word at the effective

address to be a. word of the following format:

o '4 5 9 10 23

I OFF 51 , --
ADR

This word is called a "field descriptor" or "FDIt and defines

. a contiguous field in memory from zero to twenty-four bits in

length.

~G - A five bit integer which defines the length of the

field. LNG must be equal to or less than 24 in the

sta.ndard case. Specifica.tion of a length greater

than this will cause a tra.p G4 whenever the FD is

referenced. An LNG value of 31 (37 octa.l) is a

specia.l case to be described later •

. OFF - A five bit integer which defines the offset of the

field from the left side of the word addressed. The

value of OFF must lie between 0 and 23 inclusive or

trap G4 will occur. Bit 0 is the left (high order)

bit of the word a.nd bit 23 is the righ~ (low order)

bit of" the word. An OFF value of 31 (37 octal) is

. a special case to be described later.

ADR - A fourteen bit integer which is the memory address

of the word containing the left most bit of the

defined field. The field is assumed to lie in the

same chunk as the FD, except in the LDFB and STFB

instructions.

- 17 -

Although these instructions will most frequently be used to

handle eight bit (or six bit) characters packed three (o~ four)

to a word, they are explicitly intended to handle arbitrary

fields which ma.y overlap word boundaries in any way.
,)

In order to avoid repetition in the following instruction

descriptions, the setup common to all six field handling

instructions will be described here.
. 1. (Q)~O-23 -+ ADR, (Q)5-9 -+ OFF, (Q)O~4 -+ LNG

2.
5-9 suppress this for LOFI and STFI

If OFF = 378, (X) -. OFF J .
3. If' LNG = 378, (X)O_4 -+ LNG -

4. If OFF > 23, generate trap G4
5. 'If LNG> 24, generate trap G4
6. OFF -+ I, OFF + LNG -1 -+ J, 23 - LNG+l -+ K

That is, the contents of the effective address are separated

into their component pieces. If either the offset or length

< 'is 31 (378), the value is taken from the correspon~ing part of

the in~ex register. The offset and length are then checked to

be sure they are within limits.

Finally, the left and right bit numbers of the field in

memory and the left bit number of the field in the A register

lU"e computed. In the following descriptions (ADR)I_J means

(ADR, ADRH)I_J if J> 23.

'LDF Load Field

o -.A, (ADR)I_J -+~-23

The field described is right aligned in the A register. The

remainder of the A register is cleared.
, . .

STF Store Field

.Ax-23 -+ (ADR) I-J

The field described by the FD at the effective address is replaced

by the right most LNG bits in the A register. A 1s not affected

by this instruction.

- 18 -

LDFB Load Field Based

ADR + X10-
23

-+ ADR

if X4 = 1 use ~-9 as chunk number for data

o -+ A, (ADR) I-J -+ ~-23

This instruction is the same as LDF except that the contents of

the address field of the index register are added to the F.D

address before the field is loaded, and the chunk number for

the field may be taken from X.

STFB Store Field Based

ADR + ~O-23 ~ ADR

if X4 = 1 use ~-9 as chunk number for data

This instruction is the same as STF except that the contents of

the address field of the index register are added to the FD

address before the field is stored, and the chunk number for the

field, may be taken from X.

LDFI Load Field and Increment

If [(Q+l)lO-23 - ADR] * 24 + (Q+l)5-9 - OFF < ING no
action,

otherwise (Q)5-9 + ING2 -+ (Q)5-9 (if ~ 23)

else .(Q)5-9 + LNG2 - 24 -4 (Q)5-9' (Q)lO-23 + 1 -} (Q)lO_23

IC+2-+IC

'.0 -+A, (ADR)I_J -+ ~-23
: - . "

.The contents of the effective address and contents of the next

location are both considered to be FDts. The second of these
. ___ oa._~~ _-

WOrds-is a limit. If there-is-insufficient space for the field

before the limit, no action occurs. Otherwise, the FD at the

- 19 -

effective address is adjusted by the length of the field defined,
, ,

the field is loaded into A and a skip occurs to signify that the

tie1d was loaded. This special test for LNG or OFF fields equal

to- 378 is suppressed.

STFI Store Field and Increment

If [Q+l)lO-23 - ADR] * 24 + (Q+l)'_9 - OFF < LNG, no

action

otherwise, (Q)5-9 + LNG2 ~ (Q)'-9 (if:5 23)

,else ~Q)'-9 + LNG2-24 -: (Q)5-9' (Q)lO-23 +1 ~ (Q)iO-23

LC+2~IC

Ax-23 ~ (ADR) I-J

The contents of the effective address and the contents of the

next location are both considered to be FD's. The second of

these words is a limit. If there is insufficient room for

the field, no action occurs. Otherwise, the FD'at the effective

address is adjusted by the length: of the field defined, the

'right most LNG bits in A are stored in the designated field,

and a. skip occurs to signify that the field was stored.

IFD Increment Field Descriptor

It [Q+l)lO-23 - ADR] * 24 + (Q+l)5-9 - OFF < LNG, no
action

Otherwise, (Q)5-9 + LNG2 ~ (Q)5-9 (if ~ 23)

e~e .(Q)5-9 + LNG2~24 -+ (Q)5-9' (Q)~O_23+1 -+ (Q)lO-23

IC + 2 -+ (ADR)I_J

This instruction works exactly like LDFI except that it does

Dot do the load.

- 20 -

Arithmetic

1. ADD and SUB do not affect XO. Instead there is a

carry bit CO which is 'set or reset by the carry from bit 24
of the adder on ADD or SUB. Both instructions take CI as a

carry into bit 0 and reset it. Cl is set only by the CCB

instruct ion in the perform group and by BTO. When CCB

is executed, CO is copied into Cl. Multiple-precision arithmetic

1s done by adding (or subtracting) the least significant words

and then doing CeB before adding the most significant words.

This causes the carry from the sum of the least significant

words to be added into the sum of the most significant ones.

Unless ceB is executed, cr will normally remain 0 and will not

disturb the operation of the machine.

2. MUL leaves the sign and most significant part in B,

the least significant part in A. I.e.

1eave~ 0 in A.

LDA ~ 2

MOL = 3

3. DIV takes the 48-bit AB register as an integer dividend,

(~) as an integer divisor. The integer quotient appears in A,

the remainder in B. On overflow (, (Q) r ~ I A I) OV is set and

AB are unchanged.

New instructions:

MDE Memory decrement

ADX

(Q) - 1..-. Q

X + (Q) -+ X

Overflow and carry unaffected

Overflow and carry unaffected

- 21 -

Floating Point Arithmetic

. Al1 these instructions are new. They take two-word floating

point numbers as arguments. The forma.t of So floating point

DUlllber is

o 38 39

I FRACTION EXP

FRACTION is a two's complement fraction with the bina.ry point

between bits 0 and 1.

EXP,is a ~wo's complement exponent in the range (-4008' 3778).

47

Al1 floating point instructions except UFAD and UFSB expect

normalized operands and produce normalized results. FAD and FSB
. .

will correctly post-normalize a result produced from unnormalized

operands. FMP and FDV will not work properly on unnormalized

operands.

lt an exponent overflow occurs in any floa.ting point

operation, trap Gl is generated. The result left in AB is

correct except that the sign bit of the exponent is wrong; the

correct sign bit is the complement of B15 e

If an exponent underflow occurs in any floating point

operation, trap G2 is generated. The result is correct with

the exception stated.

All floating point opera.tions in this section set the

carry bit CO. None sets the overflow bit.

All arithmetic is unrounded. The most significant fraction

bit not included in the result is saved" in CARRY. An instruction

is provided to do rounding.

In addition to the instructions listed here, FLT, FIX,
FRND, and FHA in the perform group opera.te on floating point

numberse

;. 22 -

FAD Floating add

AI? + (Q,Q+l)F ~ ABF

. .
The result is always normalized. Exponent overflow or

underflow may occur. Arithmetic 'is done in a 48-bit adder, and,

48 bits are kept until the result is packed, at which point the

first bit discarded is saved in CO for use in rounding.

FSB Floating subtract

ABF - (Q,Q+l)F ... ABF

See FAD

UFAD Uhnormalized floating add

(unnormalized)

Exactly as FAD except-that normalization is omitted.

Exponent underflow cannot occur.

UFSB Unnormalized floating subtract

ABF -' (Q,Q+l)F ... ABF

. See FSB and WAD

, FMP Floating multiply

ABF * (Q,Q+l)F ... ~

(unnormalized)

See FAD. Orily one bit 'of post-normalization will be done.

FDV Floating divide

If the divisor is 0 or unnormalized, trap G3 will be taken

with A and· 13 unchanged. See FAD.

- 23 -

Skips

1. SKD is a.bolished.

2. SKE, ~KG, SKA, and SKN have their inverse operations.

Rew instructions:

SKNE Skip on A unequal to memory

If' A F (Q), L+2 -+ L

SKNG Skip on A not ·greater than memory

It A S (Q), L+2 -+ L

SKNA Skip on A and memory no~ zero

It A " (Q) f 0, L+2 -+ L

SKP Skip if memory positive

If' (Q) ~ 0, L+2 -+ L

- 24 -

Bra.nches

1. BRM is abolished.

2. BRl is abolished.

3. BRX tests the sign bit of X, not bit 9.
4. BRR is completely redefined.

-New instructions:

, BDX Branch and decrement index.

X-l -+ X; if X ~ OJ Q -+ L

BSR Branch and save registers

Treat (Q)~ 3777777B a.s an indirect word ,and let Z be the

r~sulting effective address.

(L+l) ~ (Q)" 74B6) 1/ 2B6 -+ (Z) Save p-counter a.s full address
and register sa.ve bits

,If, (Q)O = 1, -+ ~J.; Z Q -+ (Z)

:i:~ (Q)l = 1, -NZ+l, Z A -+ (Z).

It (Q)2 = 1, -+ Z+l, Z B -+ (Z)

It (Q)3 = 1, -+ Z+J., Z X -+ (~)

Q+1 -+ L

This is the subroutine call instruction. It addresses the

~ address word of the subroutine, wbich has the form

o 1, 2 3 4 5 23
ADDRESS

FA = full address bit. This and the address determine where

to store the return link, which consists of the location

-counter +1 and LAWo-4.

'SQ = sa.ve effective address. If this bit is set, the effective

address of the BSR is saved following the return link.

It exists prfmarily for compatibility with traps and pops~

SA,SB,SX cause A,B and X to be saved in successive locations

following the return link if set.

- 25 -

All the 5 bits are saved in the return link so that BRR will

mow what to restore.

Thus 2000 BSR
• • •

3000 assume this is A in chunk 5

3000 DATA 3OO01000B

will cause locations 1000-1002 in chunk 5 to be set up as follows:

1000 32242001

1001 contents of A

1002 contents of B

Control will go to 3001

BRR " Branch and restore registe"rs

Let Z = (Q)

It' Zo = 1, Q+l -+ Q

If Zl = 1, Q+l ~ Q, (Q) ~ A

~ Z2 = 1, Q+l ~ Q, (Q) -+ B

- If Z = 1, Q+ 1 -+ Q, (Q) -+ X
, 3
Treat Z A 37777777B as an indirect word and transfer to the

. resUii.ling effective address.

" This instruction is designed to be used for exiting from

a routine called by BSR. It restores the registers saved by ~:hat

instruction and transfers control to the following location.

Tb continue the earlier example

BRR 1000

loads A and B from 1001 and 1002 respectively and transfers to

2001.

- 26 -

Shifts

'nle shift instructions on the 930 are abolished in favor

of one new instruction which proVides almost all the power

of the old ones and a number of new features. Its differences

are:

a) D~fferent arrangement of bits in the address field.

b) Effective address is computed the same as for all

other instructions.

c) Shirt is by -64 to -t-t>3 bits, not max of 48.
d) NOD is abolished. But .see LLT in the .perform group.

The bits of the effective address field are interpreted

in the f9l1owing way:

Where

10 11 12 13 14 15 16 17

v I

D Specifies the shift direction

o - Left .

1 - Right

c

S Specifies the type logical or arithmetic

23

o - Logical. The overflow indicator is unaffected

by this instruction.

1 - Arithmetic. On right shifts the Sign bit is not

shifted but is copied into vacated bit

positions. Bits shifted out of the

right bit of each active register are

. lost. Overflow is set if the Sign bit

of the A register changes during a

left shift.

R Specifies the active registers

o - A and B are taken as a single 48 bit register

1 - A only is specified

2 - B only is specified

3 - A and B are both shifted but are treated as two

independent 24 bit registers.

- 27 -

V Specifies t~e action to be taken on vacated bit

positions

c

p

o - Shift in O's

1 - Shift in l's

2 - Shift in bits shifted out from other end of

register (cycle). Extend the sign

bit on arithmetic right shirt.

3 - Shift in complement of bits shifted out from

other end of register. Shirt in the

complement of the sign bit on

arithmetic right shift.

Shift count. The shift count is a seven bit two's

complement number, -64 S c ~ 63. If C is nega.tive,

the direction of the shift indicated by the D field

is reversed.

(post-index). If th~S bit is set, X17- 23 is added

to C. The resulting signed 7-bit shirt count is

used to determine the direction and extent of the

shift exactly 'as C is when P = o.

- 28 -

Miscellaneous

1. EAX puts the 24-bit effective address + 2B6 (the FA bit)

into- x. X
O

_
3

will therefore always -be O.

New instruction:

XCI Execute indirect

Take «Q» as the instruction I to be executed. Before

executing it (Q)+l ~ (Q).

- If I causes a skip, L+2 -+ L. If it tries to cause e.

branch, L+3 -+L and the branch is suppressed. If it tries

to cause a trap, ~ -+L and the trap is suppressed.

Otherwise, L+l ~ L. /".Ily kind of pop is regarded as a

branch.

- 29 -

Non-addressable Instructions

,1. RCH is abolished. Some OPR instruction can do a.nything

an ReH can do provided it does not

a) use the E bit, or

b) use the N bit and specify any other operation, or

c) specify an or of two registers and same other operation.

2. The overflow test instructions are abolished, but see BTO.

New instructions:

OPR Operate

The effective address is computed according'to the ordinary

rules. ~en Q10-12 are used to select a sub~instruction

as follows:

~O-12
0

1

2

3
4

5
6

SWP

:mo
ARO

RIN
BTO

unused

unused

sub-instruction

swap registers

logical register operate

arithmetic register operate

l'egi·s~er increment

bit test and operate

7 Pm perform. (miscellaneous operations)

SWP Swap registers

],0 12 13 14 15 17 18 20 21 23

I '0 k><l TA I TB I TX I Effective
address

TA = 0 o ~A
1 A ~A

-·2 B ~A
3 X ~A
4 -1 ~A
5 A ~A
6 B ~A
7 X ~A

- 30 -

- TB, TX specify the final contents of B and X in the same way •

. To leave a register unchanged, it is necessary to speoify that
it should be transferred to itself.

LRO Iogica~ register opera.te

10 12 13 14 15 16 17 18 19 20 23

11 ~SlIS2IDI CTL 1
SI = source register 1: 0 = 0

l=A
2=B

3=X
82 = source register 2, same code

Effective address

. D = destination register, same code. 0 means discard

result. In this case the instruction is a NOP.
CTL = Control. These four bits specify how bits from the

- source registers determine corresponding bits in

the destination:

S1 bit 82 bit D bit
,

1- 1 CTLO

1 :0 CTL1
0 1 CTL2

0 0 CTL
3

Thus, 811\ 82 is specified by CTL = 1000, S1v S2 by eTL = 1110, etc.

ARO Arithmetic register operate

10 12 13 14 15 16 17 18 19 20 23

Effective address

If Z=O
.Z = 1

SI + S2 -+ D

S1-S2-+D

- 31 -

Skip causes the instruction to skip if any of the four conditions

Which may be tested are satisfied.

SKIPO skip if D < -1

SKIP
1

- skip if D = -1

skip if D = 0

skipifD>O

Sample Skip conditions

lio skip 0000

_ Skip on 0 result 0010

Skip on positive resu1t 0011

Skip on result ~ 0 1110

Skip on mixed ones and 1001
zeroes

This instruction can also be used, for example, to double X.

O'I~r.r,J)YfS and carries a.re igno~ ~J..

BIN Register increment

This instruction is identical to ARO except that S2 is
" interpreted as a constant which may be 0, 1, 2 or 3.

Thus, to decrement X by 2 and skip if the result is

negative, use an OPR address

'O'11"'0l1l100

BTO Bit test and opera~e

10 12 13 17 18 19 20 23

1~ __ 4 __ ~I _____ O ___ ~F~I_s~I __ c_~_~1 Em~~~~
If T = 0:

8=0

1

selects overflow (Ov)
selects carry (CO) _

- 32 -

The bits of CTL select four operations:

. CTLO

CTL
l

CTL
2

CTL
3

If' T = 1:

S = 0

1

skip if bit is 0

skip if bit is 1

set bit to 1 if it is 0

set bit to 0 if it is 1

means copy OV, Cl, CO into A21_23

means copy A21-23 into OV, el, co

- 33 -

PFM Perform

10 12

.1' 7 I CTL

The control field selects one of 20 operations to be

performed. Its precise format is not yet specified. The

operations are
I

FLT Convert to floating point

The contents of the A and B registers are assumed to be a

48 bit integer which is converted to a normalized floating

point number. The resulting floating point number replaces

the contents of A and B. Overflow cannot occur. The most

significant of any discarded bits is saved in the carry

flip..rf1op.

FDC

Example:

A

Before Execution 00000345
After Execution 34576325

, Convert to fixed point

B

76325410
41000040

. The normalized floating point number in A and B is converted to

,a 48 bit integer in A and B. If the exponent of the floating

point number is less than or equal to .0, A a.nd B are cleared.

It the exponent is "greater than 47, the overflow indicator is

turned on and exit is made with A and B unchanged. The most

significant fraction bit is stored in the carry bit, CO.

- 34 -

Example:

A B co
Before Execution 24500000 000000cB X

After Execution 00000000 00000024 1

FRND Floating round

Add 1000B * (CO B14) to AB (integer ari tbmetic) . If

overflow, shift fraction right and add 1 to exponent. If

exponent overflow, generate trap Gl. This operation is intended

tor use after a floating point instruction which leaves the

first non-significant bit of the result in co. It rounds

the magnitude to the nearest even number. Thus, if .5 is the

first non-significant bit, we have the following results of

rounding according to this algorithm:

ORIGINAL NUMBER ROUNDED RESULT

lJ.t:'cimal Binary Binary Decimal

2·5 010.1 010.0 2.0

3·5 011.1 100.0 4.0

-2.0 110.0 1l0.0 -2.0

-2·5 101.1 1l0.0 -2.0

-3·0 10i.o 101.0 -3·0
-3·5 100.1 100.0 -4.0

- 35 -

!'NEG Floating negate

Normalize result one bit if necessary

Exponent overflow may occur if AB contain

40000000 00000377

In this case trap Gl occurs.

. Exponent underflow may occur if AB contain

20000000 00000400

In this case trap G2 occurs.

Convert field descriptor to bit count

~s instruction converts a field descriptor (Words + Offset)

into a bit count in A. It can be us:~ to convert a string

length pointer into the length of tne string in bits. The

length of the string in chara.cters may then be obtained by

shifting A right 3 bits (divide by 8).

- 36 -

CCFD Convert bit count to field descriptor

A/24 ~ A10-23' remainder ~ ,~-9

This instruction converts a bit count in A into a FD with zero

. length field in A. (i.e. 0 S. ~-9 S. 23)

Normalize field descriptor

1. If AO = 1, A + 01337777 8 ~ A

If ~5-9 > 308, A - 0133~777 8 ~ A -
2. If 0 ~ AO- 9 < 23, 0 ~ ov -

-Otherwise 1 ~ OV

This instruction is used-to restore a field descriptor in A to
I

normalized form after two descriptors with zero LNG fields are

added or subtracted. One normaliza.tion step is taken. If the

. result is normalized the o'verflow indicator is turned off. If
:., '. -

- the result is not normalized, the overflow indicator is turned on:

LLO Loca.te leading' one

The bit position of the first (left most) one bit in the A and B

registers is placed in the X register. The sign bit of the A

register is bit 0 and the least significant bit of the B register

1s bit 47. If there are no one bits in A or B, X is set to -1.

LLZ Loca.te leading zero

The bit position of the first (left most) zero bit in the A

and B registers is·placed in the X register. If no bits are

zero, X is set to -1.

LLT Locate leadin~ transition

The. hI, position of the first zero bit followed by a one, or the

first one bit followed by a zero, is placed in the X register.

If' all bits of both A and Bare 0, X is set to -1. Since bit 23

of B is a.1ways assumed to be followed by a. 0, all l's set to 47.

'- 37 -

em 'Count bits

The number of bits in A and B which are 1 is placed in the

X registe!. The result in X will therefore lie between 0 and

4S inclusive.
"

CCS' Copy carry bit

Copies CO into CI and resets OV. For the use of this

instruction see ADD and SUB.

Bce Read calendar. clock

The processor is equipped with a 4?=bit calendar clock

which is 'incremented once every lOO~ whenever power is on.

This instruction reads the current value of the clock into AB .

. The system will ensure that the clock reading when added to a

'number available from the system, reflects the amount of time

which has elapsed since January 1, 1969 to the nearest second,

and thA.t the difference of two readings of the clock will
, -

meas~c the real time which elaps~d tetween the two readings

with an accuracy of at least 200~~ provided no system crash

has intervened.

RIT Read interval timer

The process'or is also equipped with a 24-bit interval

timer which is incremented once every lO){s. This timer is

part of the state ~f a process and increments only when the

process is running. When the timer becomes 0 trap S1 is

generated. This instruction reads the current value of the

.timer into A. The system may reset the timer at any time, so

tha.t it cannot be used for measuring real time. There is a

privileged instruction to set the ttmer.

- 38 -

Protect

1 = 4, 8, 16, 32

This instruction causes the processor to obtain control

of the PRO bus. Once it does so it raises th~ PRO signal and

holds it up until:

a) The program has made i successful memory fetches. All

fetches, whether for instructions, indirect words or

data are counted.

b) or ~ floating point instruction or PFM or MUL or

DIV is executed.

c) . ,or ACT is executed. See the description of ACT for a

'. ~pecifica.tion of the action taken.

d) or a trap occurs.

,- 39 -

Privileged Instructions

1. EOM, SKS, BRI, POT and PIN are abolished.

2. Th~re is one privileged instruction, called ACT. Its

effective address is computed in the usual way. The

processor then attempts to gain control of the ACT bus.

When it does, it puts the 14 address bits on the bus

and raises the ACT line. It then hangs, looking at

the return lines on the ACT bus, which are:

AeON ACT considered. Raised when the "target

device accepts the ACT.

AACK ACT acknowledged. Raised when the target

device is willing to let the CPU proceed.

ASKP Raised if the target device wants the

, CPU to skip.

The processer holds up ACT and hangs until it sees ACON

.or until lO~ have elapsed. In the latter case it

lowers ACT and waits another .5)<B. If' ACON is still

not raised, the ACT in~"trqc "ion terminate,S with no skip.
"'" This exit should be interpreted by t~e program. as an

indication that the device has not accepted the signal.

Once ACON has been raised, the processor hangs

until it sees AACK. It then exits with L+2 ~L or

L+3 ~ L depending on whether ASKP is low or high. This

allows the device to signal success or failure, or some

.other piece of information, to the processor. If the

~ocessor has PRO raised when ACT is executed, the PRO

stays up until the third successful memory fetch after

the ACT is completed, regardless of how soon it would

normally have been terminated.

~o -

If the P field of an inst~uction word is non-zero, the

instruction is interpreted as a programmed operator. There

are three kinds:

-P = 1

P=2

P = 3

user pop

system pop

process pop

They differ only in the location of the transfer vector and in

the treatment of protection. For user pops the transfer vector

occupies 1008-1778 in the chunk in which the pop is located.

For system pops it occupies 10°8-1778 in chunk 31. For process

pops it ~esides in the context block in locations not yet

decided.

When a pop is executed, the machine performs a BSR* through

T+OP, where T is the origin of the transfer vector and OP is

the opcode field of the instruction. If the LAW of the BSR

specifies saving Q, the effective address of the pop is saved. . - -

If P> 1, the Iep mechanism is turned off. I.e., a user or

proc~'~~' pop may allow control to be transferred from any chunk

to any other.

- 41 -

Traps

The machine has a large variety of traps, or forced transfers

of control. Each trap has a core location in chunk 31 assigned

to it. When the condition for a trap arises, a BSR* through

this core loca~ion is performed. If the LAW of the BSR specifies

saving of Q, the quantity actually saved depends on the trap.

Note that traps have nothing to do with interrupts or wakeup

signals~ which are not handled by the CPU at all.

o The traps are classified as follows:

General traps

Condition

Gl Floating point overflow. The result

in AB is correct except that a 0 sign

bit must be supplied to the left of the

exponent.

G2 Floating point underflow. The result

in AB is correct except that a 1 sign

bi; must be supplied to th,- le:f'1, of

the exponent.

G3 Floating point divide check: 0 or

unnormalized divisor. AB are

unchanged.

G4 Field descriptor check: OFF or LNG

fie Ids > 23. AB are uncha.nged.

G5 Indirect a.ddress trap.

Memory traps

Ml Missing chunk (chunk table entry = 0)

M2 Page number > LPI'

M3 Missing page (page table entry = 0)

M4 Page not in DHT

. M5 Page in DHT, but PSTO = 0, or N = 1

on write.

Quantity saved as Q

o

o

o

o

Address of the indirect

word in which the trap bit

was set.

Virtual address causing trouble.

Virtual address causing trouble.

Virtual address causing trouble.

Virtual address causing trouble.

Virtual address causing trouble •

- 42 -

System traps

Sl Interval timer passes through 0

S2 undefined opcode

83 Parity error

54 Non-existent real memory

Protection traps

Iep violation Pl
P2

P3
P+

Write into page with PPBy not set

Execute from page with PPB not set
x

Privileged instruction from page with

PPB not set
p

o
o

Real address causing error

Real address causing error

o
o
o
o

- 43 -

Processes and the Context Block

A process is defined by a page of virtual memory called its

context block, which holds the entire state of ~he process while

it is not running. When the process starts 'to run, its state

is copied from the context block into the registers of the CPU.

When the process stops running, the current contents of the CPU

registers are copied back, into the context block. This can in

general happen between the execution of any two CPU instructions.

The device which controls which process is to run is-called

the process control unit (FeU) or the scheduler. Associated with

each processor is a fixed core location NP and a line from the

PCU called SWITCH. The processor also has a register which

contains the real address of the context block for the process

which is currently running. When SWITCH is raised, the processor

"stores its state into the context block of "the process it is

executing, picks up the contents of NP and treats it as the real

address of a'new context block, loads its state from this new

block and continues to execute. ~~s operation is called process
~ ,. --

switching. It takes place only 011 ~vl1lIIland from the PCU. It

", is inhibited by PRO.

The context block has the following format:

Word(s)

0-31

32

33

34
3.5
36

Bits

0

0

1

2

5-23

Contents

chunk table

OV

CI

CO

L

A

B

X

interval timer

Bote that the contents of the context block defines the map,

among other things. The remainder of the block holds page

tables and storage for the routines of the core monitor. The

context block will always appear in a fixed place in the map

,of every process.

- 44 -

The PCU is responsible for scheduling the executfon of processes

on whatever processors happen to be available. It does this by

maintaining tables in main memory which indicate what processes

are candidates to run and with what r'equirements' (priority,

memory,' deadlines, etc.). The formats of these tables and the

algorithms-to be used in scheduling have not been fully defined.

The PCU also accepts interrupt signals from the outside

-world. Associated with each interrupt line is a fixed area

in core which contains information about the process to be

activated when the line is raised. The PCU adds the process

to its tables in accordance with this information whenever it

sees the line raised.

As far as the PCU is concerned, a process can be in one

of three states:

blocked

ready

running

A blocked process is not a candidate to run. A process becomes
v

blcc!;.~a when some processor tells the PCU to block it. Of cO\..i.!"se-:

a process may block itself. Block, like all instructions to the

FeU from a processor, is a privileged instruction.

When a process receives a wakeup Signal, it becomes ready,

unless it is already ready or running. This means that it is

a candidate to run. A wakeup signal may be an interrupt line

(see above) or an instruction from a processor. The signal

carries assorted information about the process:

the drum addre ss of its context block

possibly priorities and deadlines

which allow the PCU to make a processor run it and, to decide

when it should run· in relation to other processes.

When the algorithms to be used by the PCU have been decided,

this section of the manual will be greatly expanded.

Summary of 6700 Instructions

Loads and stores:

LDA
LDB
LIOC
LDD
STA
STB
STX
STD
STM
STZ
XMA
XMX

Field instructions

LDF
STF
LDFB
~_1\'B

ll~'I
STFI
IFD

Arithmetic

ADD
SUB
MOL
DIY
Mm
MIlE
ADM
ADX

- 45 -

Load A
Load B
Load X
Load double
Store A
Store B
Store X
Store double
Store masked
Store zero
Exchange memory and A
Exchange memory and X

Load field
Store field
Load field based
Store field based
Load field and increment
Store field and increment
Increment field de~criptor

Add to A
Subtract from A
Multiply
Divide
Memory increment
~mory decrement
. Add to memory .
Add to X

Floating point

FAD
FSB
WAD
UFSB
FMP
FDV

Skips "

SKE
SRNE
SKG
SKNG
SKN
SKP
SKA
SKNA
SKB
sm

Branches

BRU
BRV
BIlX
BSR
BRR

Miscellaneous

"SHFT
EAX
EXU
XCI

- 46 -

Floa.ting add
Floating subtract
Unnormalized floating add
Unnormalized floating subtract
Floating ~ultiply
Floating divide

> Skip on A equal to memory
Skip on A not equal to memory
Skip on A greater than memory
Skip on A not greater than memory
Skip on lJ,egative
Skip on postive
Skip on A and memory zero
Skip on A and memory not zero
Skip on B and memory not zero
Decrement memory and sk~p if negative

. Branch
Branch and increment X
Branch and decrement X
Branch and save " registers
Branch and restore registers

Shift
Effective address to X
Execute
Excute indirect

, Operate

SWP
.LRD
ARD
Bm
MO
PFM
FLT
FIX
FRND
mEG
CFDC
CCFD
!mM
u.o
LLZ
LLT
eNT
,CCB
Rce
BIT
PRO

, 'P,ri "!.i..l\~ged
• _ ~w

·- 47 -

Swap registers '
LOgical register operate

'Arithmetic register operate
Register increment
Bit test and operate
Perform
Convert to floating point
Convert to fixed point
Floating round
Floating negate
Convert field descriptor to bit count

, Convert bit count to field descriptor',
Normalize field descriptor
Locate leading one
Locate leading zero
Locate leading transition
Count bits
Copy carry bit
Read calendar clock
Read interval timer
Protect

