

(

(

[

(

[

I'
[

(

I
(

I
··1

[

[

[

[

PROCEEDINGS OF 'fHE FIRST

SPACEBORNE COMPUTER SOFTWARE WORKSHOP

Sponsored by the

Air Force Space Systems Division

and

The Aerospace Corporation

Held at the

Aerospace Corporation

El Segundo, California

on

20-22 September 1966

Proceedings published by the

System Development Corporation

The views, conclusions, and recommendations expressed in this document do
not necessarily reflect the official views or policies of agencies of the
United States Government.

This document was produced by System Development Corporation in performance
of Contract Number AF 19(628)-5166. Permission to quote from this document
or to reproduce. it, wholly or in part, sho~ld be obtained in advance from
The Deputy For Technology, Space Systems Division,Air Force Systems Command.

i

(

[

r;
I
r
(,

r
I'
('.

I;
[

r
I~

[

I
[

(

I
I' :~ , .,

I;·

THEME

The United States Space Program is investing
an increasing proportion of its funds and reliance
on the digital computer~ both on the ground and on
board the spacecraft. In the on-board case, this
has been made possible by the rapid advances in
miniaturization which have led to the achievement
of the computing power of a medium-sized general
purpose ground computer within the physical dimen
sions of a. desk calculator. But what is the.
situation in the programming of these computers?
Has the software technology made a corresponding
advance to exploit the new hardware? What has
it done to minimize errors, effort, time and
cost? Is it helping to narrow the gap between
the application problem and the computer? What
potential has it acquired to influence the course
of future hardware development?

The objectives of this workshop are: first,
to encourage the exchange of experiences and
ideas among spaceborne software specialists;
second, to assess the state of spaceborne
software in the context of software technology
as a whole; and third, to initiate a search
for definitions and guidelines for application
in future spaceborne software development.

iii

··Jr'

[

[

[

I'
I
r ' ,

I;
[

[

(,

[

I:
(1

[

[

[

r
r

-,{

CONTENTS

PREFACE

SESSION I - OPENING SESSION

Session Summary

Major M. A. Ikezawa
Air Force Space Systems Division

Aerospace Software in Perspective

L. J. Andrews
Aerospace Corporation

Software State of Art

T. B. Steel, Jr.
System Development Corporation

Current Trends in Aerospace Computation

Dr. B. W. Boehm
RAND Corporation

SESSION 2 - THE.STATE OF SPACEBORNE SOFTWARE

Session Summary

Dr. Walter A. Sturm
Aerospace Corporation

The Gemini Computer Software System

P. P. Mooney
Federal Systems Division
Spac,e Sys tCUIS D1 vis ion

*Software Aspects of the Maneuvering Ballistic Re-Entry Vehicle

P. L. Phipps
UNIVAC'Defense System Division

,*This document was not available at the time of publication of the
proceedings. See note on referenced page.

v

iv

3

5

9

13

29

31

49

I.
I SESSION 4 - LANGUAGE AND PROCESSOR CONSIDERATIONS FOR SPACE BORNE SOFTWARE

('

r:
r

I'
I
[

[

.• ("
, ,

(

[

[

(

Session Summary

Ralph B. Conn
Aerospace Corporation
San Bernardino Operations

*Language Features of the Apollo Guidance Computer

T. J. Lawton and C. Muntz
MIT Instrumentation Laboratory

Application of NELIAC to Aerospace Programming

Dr. G. Graham Murray
General Precision, Inc.

Considerations in Selecting a Space borne Programming Language

T. C. Spillman
IBM Federal Systems Division

Standardize the System, Not the Language!

M. I. Halpern
Lockheed Miss"ile and Space Company

Phoenix Compiler Language and Software System

A. J. Stone
Hughes Aircraft Company

Effeciency Considerations of Problem-Oriented Processor Design

Vilas D. Henderson and E. L. Smith
Logicon, Inc.

Preliminary SDC Recommendations for a Common Space borne Programming
Language

L. J. Carey and W. E. Meyer
System Development Corporation

*This document was not available at the time of publication of the
proceedings. See note on referenced page.

vii

187

191

193

205

211

223

235

253

[

[

[SUMMARY OF SESS10N 1

by

Major M. A. Ikezawa
Air Force Space Systems Division

This session was intended to keynote the workshop with a set of

observations by computer personalities from three institutionR which

r have worked closely with Air Force problems. It was also intentional

that the three speakers represent different subsets of the comput,er world.

The first speaker, Ladimer J. Andrews of the Aerospace Corporation,

provided the original stimulus from which the idea of the workshop evolved.

[The comments he made were meant to be a re-creation of that original stimulus

which he provided about two years ago.

The second speaker, Thomas B. Steel, Jr., of the System'Development

(: Corporation, provided a provocative critique of space borne programming

from a broader software viewpoint. His well articulated observations eli.cited

r much comment during the workshop.

The last speaker, Dr. Barry W. Boehm of the RAND Corporation, brought

out some implications of aerospace computation in general.

(' The session was opened by Col. D. V. Miller, Vice-Commander of the

Air Force Space Systems Division.

(

(

(

I 3
(page 4 blank)

I
[

I
I'
I

,)

I:

(

r
r
[

[

['

INTRODUCTION

AERO/SPACE SOFTWARE IN PERSPECTIVE

by

L. J. ANDREWS

Aerospace Corporation

Several years ago it became apparent that the software costs associated with

aerospace equipment would soon approach the hardware costs. Order of magnitude

decreases in component costs coupled with more demanding and sophisticated

functional tasks has accelerated this tendency. What we would like to foresee

as an output from this workshop is an exposition of current software problems,

a dissemination of current practices, and inter-agency discussions leading to

the means and steps required to either effect a common usage of aerospace soft-

ware, or provide techniques for the expeditious generation and validation of

aerospace software. Whichever of these two approaches is favored certain

criteria of success are evident. Specifically, the actual cost of the generated

and validated program should be lower than present methods allow, the time to produce

the program and effect changes should be reduced, our confidence in the validity

of the flight program should be increased, the procedures or techniques used should

contribute to a growing body of knowledge, and the methods advocated should provide

a framework for orderly progress in keeping with state-of-the-art advances.

APPROACH

While it is not my intention to presuppose an outcome from this workshop, an

intriguing concept that satisfies the success criteria is that of an interservice

library of programs oriented toward the specialized needs of flight computers for

aircraft and space vehicles.

5

I
I
J
I'
1
r
I
l

I
~ ..

I

(

machine, with some difficulty, in a higher language that is very nearly machine

independent. This latter feature represents a formidable task especially when

the present specialization of aerospace computers is considered. But as in

vehicle and mission independence so also is progress being made toward machine

independence. Because of the tremendous strides being made in semiconductor

technology, the austere functional capability and the sparsity of parts formerly

required for reliability have been relaxed and near future flight machines are of

a much more general purpose nature. But beyond extending the sophistication of

airborne computers there are two trends in newer machine organizations that

considerably aid the cause. Paradoxically these trends are in opposite directions.

The first is a trend to effect airborne and commercial instruction set compatibility

and the second is a trend to provide a problem-oriented machine instructions.

Both of these trends closely couple to the business of this workshop; the former

for the near term and the latter trend becoming of importance as the software goals,

the possibilities, and the detailed paths of progress become better defined. For

this reason we would like to anticipate that the results of this workshop, and

others to follow, can have a profound influence on machine organizations of the

future. To view this influence more pragmatically, a constant problem of the

machine manufacturer is to define a spectrum of requirements upon which to base

his next generation of airborne computers. Because the requirements for military

systems are usually not well known to industry far in advance, are subject to

redirection, (and is some cases vanish) the computer supplier has ample opportunity

to make very costly mistakes.

The concept of a modular library of programs tends to desensitize the mission

requirements from the machine organization to the benefit of both the supplier

and the customer. The notion is that the excellent measure of machine

7

I
r
I
I

I
I
[

r
I-
i

I'
r
r
[

[

l

SOFTWARE STATE-OF-THE-ART

(A Summary of Mr. T. B. Steel's paper
by Mr. H. I1ger of the

System Development Corporation)

Software is more than just the computer program. It is the interfacing function

between hardware and skinware -- the latter, of course, being the man referred

to in man-machine relations. Software, then, means the programs, the procedures,

and the arrangement and format of input data.

The principal object of most software work is the object program. In this

respect, it is interesting to note a familiar comment that 85% of all NELIAC

code produced consists of the MELIAC compilers.

The language of software is the language used to communicate with the machine.

At first though, it would seem that our natural language would be ideal for

this. We are a long way from this stage at present.

The early languages used in programming were symbolic assembly languages with

a single, one-for-one representation of the binary machine code. This

permitted the user to defer or ignore details of assignment of locations.

As more automated techniques developed more clerical and bookkeeping tasks

were performed for the programmer.

Next, languages became more like mathematical notation, such as FORTRAN.

By 1958, compilers were available which produced somewhat poor code. Then

came ALGOL and its derivatives -- MAD, JOVIAL, NELIAC and others.

There have been many developments in the past ten years in procedure languages.

These are languages in which one describes the processing steps needed to solve

problems. That is, you solve the problem logically. That may change, and is

in the process of changing now, in a direction I will refer to a little later.

I would like to make some comments on language standardization. ALGOL has

generated many dialects, as have all the languages. There has not been

9

[

r
r
(

I
r
J
I
[

I
f
I
I
[

r
[

[

(
[

and guidance. Space will come to look more like ground-based systems.

In 5-10 years, we will have the equivalent of ground-based computers

in space.

In conclusion:

The main differences between ground and space are

reliability and validation.

The Information Processing community tolerates a wide

amount of unreliability.

The costs of getting all the errors out is so high,

we can and do risk it.

We need to get ways to check out systems.

We need to be able to describe what we want to do.

Automated checkout is needed.

We need to be aware of the implications of failure.

11
(page 12 blank)

(

I
I
J
I
I
I'
:r
r

(

r

CURRENT TRENDS IN AEROSPACE COMPUTATION

AND SOME IMPLICATIONS

* Barry Boehm

The RAND Corporation, Santa Monica, California

INTRODUCTION

In this talk, I will point out what appear to me to

be some salient trends in aerospace computation, and

indicate some possible windfalls or pitfalls which may

await the alert or unwary spaceborne software practitioner.

One trend which I wish I could guarantee is that

expressed·in a recent Los Angeles Times article [1],

citing salaries of $10,000 a year for beginning program

mers and $25,000 a year for experienced ones, and quoting

the president of Digitek: "The richest man on the earth
t in the year 2000 will be a programmer." Although the

figures appear to be somewhat inflated, there's a trend

we'd all like to participate in!

* Any views expressed in this Paper are those of the
author. They should not be interpreted as reflecting the
views of The RAND Corporation or the official opinion or
policy of any of its governmental or private research
sponsors. Papers are reproduced by The RAND Corporation
as a courtesy to members of its staff.

This Paper was presented at ,the SSD/Aerospace Work
shop on Spaceborne Computer Software at Aerospace Corpora
tion, El Segundo, California, 20 September 1966.

t In one sense, this quote may be true because almost
everyone, rich or poor, may be "programmers" by that time.
Even in its more straightforward interpretation, though,
the statement is worth a minute's thought: programmers are
often very close to fresh, critical information--a proximity
which has been the key to the development of many famous
fortunes.

13

~

.....
\J'I

~ ~ ~ ~ ~ ~

lOe

Ie

-~---+--
" i

.le

i
.Ole J-----+-- --, -

I
I

~

.OOI6~'----~----------~
1955 60 65 10 7S

COlT

~

CPU/Stor ... coot tn dollaro per .llltoo addition.

Figure 1

1,000,000 • J

100.000 '.
10.000

1.000

100

10~'----------------~
1955 60 6S 70 75

SPEED

aU/Storage speed in tho,,.&nds of additions

Figure 3

r--_ ~- -IJ ~ ~

KUllo ...
of

Addtt loa.

'U
s.coatl

1.000.000 r, --------,

lOO.oooJ ~

10,000 I ;

1,0001 I yJl"

100 ~'-J/'~-----~

10 I io!'

.1 ~'--~----~------~
1955 60 65 10 75

COICI'tlTlIlG rovn 111 TIll URIT&D STATIIS

Figure .2

1.000 ~~~~-------------------,
I

100 It-

1

,oojJ
-- I

i
.1 --i

.01 ~'---~--------~
1955 6~ 65 70 75

SIZE
CPU/Storage size in cubic feet

Figure 4

.....-, -

I
f
I
[

I
I
1_,

"

[

Ii
I' , !
, "

[

r
[

[

[:

[
[,

i[

[

of these devices with each other and with CPU memories.

New terminal devices employing electronic and photo

optical methods are being developed, providing an input

output capability which is not only faster and more

reliable than electromechanical devices, but often also,

as in the case of graphic input devices such as the light

pen and RAND Tablet, a more natural way to communicate.

Also, new methods of organizing CPUs are maturing,

particularly associative memories and multiprocessors.

The Westinghouse "Solomon" computer will be capable of

performing approximately 1000 operations Simultaneously;

Boeing's proposed Information Systems Simulator (ISS),

possibly 100,000 simultaneous operations.

RANGE OF APPLICATIONS

A fundamental law of human nature is that people

are insatiable: no matter how much they have, they al

ways need a little more. This law has many forms (e.g.,

Parkinson's Second Law: "Expenditure rises to meet

income"; Second law of Communications Economics: "Demand

eventually exceeds channel capacity") and is at least as

old as Eve and the Garden of Eden.

It is certainly true so far for computing power.

Every increase in computer capability is matched by an

increase in the number, size, and complexity of problems

people need to have solved. Today's computer is being

used to optimize processes, such as boost trajectories

and chemical reactions, which its predecessor of a few

years ago could barely simulate. And more complex pro

cesses in biology and meteorology which were .infeasible

17

I
I
r
I'
I
r
I
I
I
·'1·)

[

I
I
I
I
r
('

[

[:

software remains essentially a handicraft industry.

Programs are produced, one at a time and with great

personal care, like Harris tweeds or fine musical instru-

* ments; some indeed have considerable aesthetic appeal.

The concept of interchangeable parts is little used;

indeed, there are very few programming standards upon

which to base interchangeability. Some significant

progress has been made on assemblers and compilers, but

even here provisions for the inevitable debugging phase

are primitive. Conversion of programs from one machine

to another can be extremely dreary and time-consuming

work. Programming documentation is spotty: many programs

are useless if their author isn't around to explain them,

and most operating systems operate at a fraction of their

power because people can't penetrate the murky documenta

t~on that surrounds them. Is it any wonder that software

is scrambling to keep up?

IMPLICATIONS: PROGRAMMING STANDARDS

In the current software situation, then, it is

evident that the individual, firm, or country which finds

more efficient ways of producing software will be in a

position of considerable advantage. Thus, there is a

strong need for more natural problem-oriented languages,

programming languages and operating systems with more

helpful debugging features, acceptable programming stan

dards, and more understandable documentation.

* Save your old hand-coded computer programs. Some
connoisseur in the year 2066 will pay a fortune for them.

19

I
I

I

1
I
J
I:
I
I'
1
I
r
I:
('

(

and leave the earth at a distance of exactly one astro

nomical unit from the sun.

Some Guidelines

Here are some guidelines which I have found most

useful in the programming process [8J:

1) Wherever possible, use machine-independent
programming languages;

2) Encourage logical simplicity over slight gains
in program efficiency;

3) Develop programs in modular form;

4) Document with frequent examples;

5) Anticipate the direction of extensions to
programs, and provide a clean, well-defined
interface for incorporating them into a program.

Reference 9 contains a number of further useful guide

lines.

Documentation

Some automated aids to documentation are becoming

available, such as Raytheon's program analyzer and the

NOTS flowchart producer, but people are still the key

to good documentation. Anyone who has attempted to plow

through IBM's five-foot shelf of System 360 documentation

is aware that quantity is no substitute for quality. I

would like to suggest a rule which I have found fairly

successful. This is the

Golden Rule of Documentation: Document
unto others as you would have others
document unto you.

Think about it. How often do you use a double standard

for documentation?

21

[
[

I
·r
I
I
I
I
I
[

r
I
I
1-

r
r
[
[

('

decided to make the computer less accessible to engineers.

The management found a marked tendency for engineers to

use old designs and their extrapolations because computer

programs were available to analyze them, rather than

inventing new designs. The computer software system,

often in very subtle ways, can stimulate mediocrity rather

than creativity.

What Can We Do About It?

There are no panaceas, but there is one discipline

being developed which can shed light on such problems.

This is systems analysis, best described in Ref. 10, but

difficult to summarize because it is less a body of stan

dard techniques than a state of mind. The systems analysis

approach commits the analyst to a careful definition and

continuous re-examination of his project's goals, to en

sure that the problem he solves is the appropriate one.

It also involves him in a continuous confirmation of the

relevance of his efforts to the achievement of his goals,

to guarantee that his solutions solve the problems he wants

them to solve.

The key words are continuous and relevance. It is all

too easy to abrogate one's responsibility for maintaining

relevance, somewhere along the line, and to find brilliant

solutions to the wrong problems. It is especially easy

for computer software specialists to do so, and especially

dangerous, as the software system's limitations quickly

become project limitations--often in a way that the user,

who is taking a lot on faith, doesn't fully recognize.

23

[

I
I
I
1

:1

I
I'
r
I'
I
l

[

REFERENCES

1. Sederberg, Arelo, "Software: Hard Knock for Computer
Industry," Los Angeles Times, Sec. 1, pp. 1-3,
September 18, 1966.

2. Armer, Paul, "Computer Aspects of Technological Change,
Automation, a nd Economic Progress," in Techno logy
and the American Economy, Appendix Vol. I, The
Outlook for Technological Change and Employment,
U.S. Government Printing Office, February 1966,
pp. 1-205 through 1-232; also, The RAND Corporation,
P-3478, November 1966.

3. Ware, W. H., Future Computer Technology and Its Impact,
The RAND Corporation, P-3279, March 1966.

4. Raj chman, J. A., "New Trends in Computer Memor ies , "
Electronic Design, Vol. 12, No.1, January 6, 1964,
pp. 53-59.

5. Adams Associates, Inc., Computer Characteristics
Quarterly, July 1966.

6. Hobbs, L. C., "Impact of Hardware in the 1970's,"
Datamation, Vol. 12, No.3, March 1966, pp. 36-44.

7. Baker, R.M.L., and M. W. Makemson, An Introduction to
Astrodynamics, Academic Press, New York, 1960.

8. Boehm, B. W., "Development and Usage of the ROCKET
Trajectory Program," Proceedings, ICRPG Working
Group on Design Automation, Chemical Propulsion
Information Agency Publication No. 92, September
1965; also, The RAND Corporation, P-3l87, August
1965.

9. Berner, R. W., "Economics of Programming Production,"
Datamation, Vol. 12, No.9, September 1966,
pp. 32-39.

10. Quade, E. S. (ed.), Analysis for Military Decisions,
Rand McNally, Chicago, 1964.

25
(page 26 blank)

I
I
I
l
I
'I
1

SESSION 2

The State of Spaceborne Software

Chairman: Dr. Walter A. Sturm
Aerospace Corporation

27
(page 28 blank)

r
[

I

r
I
[

[

I
[

r
[
[

[
[

[

SUMMARY OF SESSION 2

by

Dr. Walter A. Sturm
Aerospace Corporation

The three case studies presented in this session included three basically

different types of digital computers, and different time periods as well.

All of the presentations were based on a general discussion of the systems'

organizations from the viewpoint of software development. The first paper

emphasized the development of the software itself, and the simulation tools;

the second paper stressed the application of the management tools which were

used to control the software development; the third paper described the

problems associated with validating the flight software.

The fourth paper summarized the data collected by SDC in the course of their

industry-wide survey. The main point was that spaceborne software develop

ment encompasses a striking assemblage of individual problems, each of which

is familiar to the experienced programmer in one application or another.

29
(page 30 blank)

I
I
[

I
r
I
I
I
I
I
[

I
(

(-

I

I'
[

[

[

INTRODUCTION

THE GEMINI COMPUTER SOFTWARE SYSTEM

by

P. P. MOONEY

IBM Federal Systems Division

In March of 1962, IBM was awarded a contract for development of the Gemini digital

computer and system integration of the Inertial Guidance System (IGS) which included

the computer, an inertial platform, a keyboard and display unit, and an incremental

velocity indicator. Sometime later in the program, an Auxiliary Tape Memory was

added to the system.

The computer developed by IBM performs guidance and navigation calculations, based

upon sensor inputs, for Ascent Guidance, Rendezvous, Orbit Navigation, Orbit

Determination, Orbit Prediction, Touchdown Predict and Re-entry. It also performs

calculations for astronaut display, receives telemetry commands from the ground

and sends IGS telemetry information to the ground.

All of these computations are done in real time and therefore, the programming of

the computer is a task which is complicated by the attendent problems associated

with a real-time system. The following sections in this paper will discuss the

Gemini computer briefly and the programming considerations emanating from the

resultant design. Then, some of the programming problems which were encountered

will be presented along with the solutions implemented to overcome them. Next,

will be a discussion of the Gemini software tools which were developed and used

very successfully in the course of developing the flight programs for 12 Gemini

flights.

THE GEMINI COMPUTER

The Gemini Computer is a general purpose,binary, fixed-point computer, designed

for missile or space vehicles. The memory is random access.

31

(

I

r

I
I

I
I~

[

(

[

[

There are basically two types of words in the computer. Namely, an instruction

word and a data word. Instructions are 13 bits in length as shown in the figure

below:

Instruction Word

4 bits 9 bits

I OP Code Operand Address

A data word is 26 bits long, occupying Syllables 0 and 1 of a word. All data is in

two's compliment so there is no real-sign bit.

Data Word

H L

26 bits

Since all 4 of the operation code bits of the instruction are used there are 16

operation codes in the computer. They are:

ARITHMETIC LOGICAL BRANCH I/O

CLA SHF (SHIFT) ROP CLD (CLEAR DIS-
CRETE)

ADD AND TRA PRO (PROCESS I/O)

SUB TMI

RSU (REVERSE TNZ

SUBTRACT)

MPY

DIV

SPQ (STORE
PRODUCT/
QUOTIENT)

STO

33

r
[
[

(

r
(

I
f
(
(

r
I
[
I'
[

[

(
(
[

In order to solve this problem, the ATM was developed. It is a magnetic tape with

the following characteristics:

length

speed

capacity

525 feet

1~ inches/second

approximately 100,000 13-bit words

Since the ATM was incorporated in the middle of the project, the basic ground rule

for interfacing with the computer was minimum hardware changes to the computer.

This placed the burden of reading from the tape upon the program. The tape and

computer run asynchronously so that the critical timing was accomplished within

the program. It was required to sense the information coming from the tape, and

perform the necessary logic to store the data and return to look for more data be

fore it passes under the read heads.

Since there are no record markers on the tape, programs on the tape are identified

by a program word which proceeds each program. Again, it is up to the tape read

subroutine to recognize the proper program number in order to begin reading in

formation from the tape into memory.

The design of the ATM has significant influence on the programming of the Gemini

Computer. Since Syllable 2 of the memory is Read Only, and cannot be written into

with data from the tape, it was necessary to make the best use of this part of mem

ory by putting a Hardcore program in this area. That is, it is necessary to define

a set of fixed subroutines which do not change for the remainder of the project.

The reason for this will be shown later. Therefore, all subroutines such as trigon

ometric, log, tape read, telemetry, and keyboard were judiciously chosen to be

placed in the Hardcore. These are all subroutines which are non-mission dependent

and will never change.

35

r
r These instructions will be in various subroutines which will naturally be in several

different sectors. Therefore, the Residual sector becomes full quite fast. In the

f following section, is a discussion on how the Assembly Program greatly helps to

I
overcome the problem of sectorized memory, and how to effectively use the feature

of the Residual sector. But, it also requires work on the programmer to make maxi-

mum use of the Residual memory. This is done by time sharing many of the loca-

tions in that sector. That is, by use of the Psuedo Operation, SYN, a core location

I in Residual sector can be used by several different modes or subroutines. It is up

I
to the programmer to know which variables to time share. But, by very judicious

choices and thorough testing of the program, this concept has been successfully

J
employed and helped to maximize the use of available memory.

Also, relative to data access is a consideration of how to allot data and instructions

in each sector. A typical sector layout is shown in the figure below:

~ ~
Inst Inst

Inst

Data

Sector I
I

1
Syl 0 Syl I Syl 2

r
Since Syllable 2 is a Read Only portion of memory, it almost always contains in-

I structions. Only through use of a special mode (Halfword Mode) data can be read

[
from Syllable 2. Syllable 0 and 1 can be either instructions or data as can be seen.

. By observing this typical layout, one can see that there are two considerations that

[the programmer must be concerned with. First, how many locations to allow for

data. Unfortunately, this process could not be automated in the assembler because

the sequential execution of instructions is within a syllable until a HOP instruction is

encountered (otherwise the instruction address register will count up to 256 and reset

[
37

(

I
I
I
[

I
I
I
I
I
[)

I
J
I
I
I
('

I
I;
r

but allows absolute coding when desired by the programmer. In addition, it also pro

vides the capability for several psuedo operations which significantly ease the task

for the programmer.

It is designed such that the programmer give minimum attention to the problems in

herent in a sectorized memory. In addition, extensive post-processor and pre-proces

sor information is provided on the printout to aid in optimizing the source program

as well as preventing unnecessary delays in searching through the listing during

critical test and simulation periods. Another of the very useful features of the

assembler is an Edit pass, which precedes each assembly. This allows the programmer

to make changes to the source program through correction cards, and makes effective

use of tape operation.

The unique feature of the Gemini assembly program that is the key to optimum mem

ory usage, is the Automatic Storage Allocator which is accomplished between pass

one and pass two of the assembly process. The design of this concept relieves the

programmer from specifying which variables and constants must be put in the Resi

dual sector, and which ones should be in the other sectors. It operates on a

priority scheme which arrives at the most optimum use of the Residual memory.

CAPABILITIES OF THE ASSEMBLER

In order to give a deeper appreciation of the Gemini Assembler, it is well to present

a more detailed discussion of the various capabilities which the assembler provides

to the programmer. The capabilities which are in the resultant assembler were

arrived at by implementing, where possible, as many of the useful features found in

FMS, by creative thinking on the part of the assembler designers, and by requests

and suggestions from the application programmers. Several of the ideas have been

carried over into the design of the assembly programs for the IBM Saturn V computer.

Similarly, it lacks some useful features such as MACRO's which would be very useful,

39

[

(

I
I
I
J
!I

f
r
I
r
I
I,
I'
I
I'
I:

[

I"

A bit table by sector showing the locations in memory used by

the program.

PSUEDO OPERATIONS

The Gemini Assembler provides several psuedo operations for the programmer.

•

•

ID Card Printed on each page of the printout

Comments Cards - Information to be printed out at the place

in the listing indicated by the sequence number. For instance:

ARC TANGENT SUBROUTINE

Origin (ORG) - This code causes the succeeding instructions to

begin at the sector, syllable and word coded in the location field

of the card. (Similar to FMS.)

Reserve (RES) - By use of this psuedo operation, the assembler

is told how many locations within a syllable it may use for in

structions before starting in the next syllable.

Block Started by Symbol (BSS) - This specifies a block of storage

which has the left-hand symbol of the BSS card as the symbolic

name of the first word in the block. The location fielj of the

BSS card tells how many locations to be reserved (similar to FMS).

Equate (EQU) - This psuedo operation specifies the sector syllable

and word to which the left-hand symbol of the psuedo operation is

to be assigned. (Similar to FMS.)

Decimal (DEC) and Octal (OCT) - These psuedo operations

define the value to assigned to left-hand symbol. (Similar to

FMS.",)

Synonomous (SYN) - The card specifies the names of variables

and constants in the location field which are to be assigned the

same memory location as the left-hand symbol of the card.

(Similar to FMS.,)

Pointer (PTR) - This psuedo operation generates a 13-bit word

containing the Gemini memory address of the variable given in

the location field. This is very useful in setting up modified

address instructions symbolically.

41

r
I
I
I
I
I
I
f
f
I
r
I
[

I
I
[

r
I
[

The next items to be assigned locations are those HOP constants which the program

mer has defined. (Normally the assembler generates HOP constants. But the pro

grammer can define his own for performing address modification.)

Then, the constant and literal lists are searched to assess their usage as deter

mined during pass one. If they are used in more than one sector, they must be

duplicated and assigned locations for the appropriate sectors. If a sector over

flows an attempt is made to place the remaining constants or literals in Residual.

Otherwise, the symbol becomes undefined. The variables that are time shared (SYN)

are also processed in the ASA phase. It should be noted here, that this phase of

the assembly process is done while tapes are being rewound from pass one, and

therefore, adds no time to the assembly process.

Pass two of the assembly follows immediately behind the ASA phase. It performs

the following tasks:

Generates the necessary HOP instruction and HOP constants

from program continuity. (These were identified in pass one.)

Completes the core map for each instruction

Encodes and writes out listing with error conditions

Computes values for constants, HOP constants, literals,

and places them in core map

writes out on tape the core map, the variable, left-hand symbol

and constant names, and assigned address for use by the simulator.

SYSTEM DESCRIPTION AND OPERATION

The Gemini assembler system is a tape-oriented system, requiring two channels

on the 7094 II. A self-loading system tape containing the assembler and punch

program is the heart of the system. The output of the assembler is an eight-file

tape, which is used as input to the simulator and punch programs.

43

(

I
I
I
I
I
1
I
f
I
I
I
I
I
I
I
1-

[

I'

resulting from that operation. It also checks for any violations of programming

ground rules and overflow conditions. This gives the programmer diagnostic-

type information not available if the program were to be debugged on the Gemini

computer. The Simulator Program provides an accurate simulation of the functional

operation of the Gemini computer and associated I/O equipment.

To greatly enhance the debugging and analysis task, the Gemini Simulator will

also output any or all the following information for a given simulation run made

on the 7090:

Full trace - provides a printout of every executed instruction,

the contents of the accumulator resulting from that operation,

and any diagnostic-type information.

Flow trace - prints out every executed TRA type instruction,

thereby providing a program flow debugging feature with mini

mum printout.

Store trace - prints out every executed STO instruction.

Spot trace - gives a full trace over selected areas of the program

thereby providing a selective debugging feature with minimum

printout.

Core dump - this gives an octal dump of all core locations at

any given instant of execution selected by control cards.

Symbolic dump - this prints out all memory locations which

have been assigned a symbolic name together with the decimal

value of the contents of that location.

The simulator is used in one of two ways. Either as a static simulator or as a

dynamic simulator. As a static simulator it receives inputs on cards and computes

the outputs for a test case. these results are then printed out for analysis.

45

I
I
I
I
I
I
I
I
f
I

f
I-

I
r
I
r
[

[

r

REFERENCES

A flexible system capable of providing good turn around time

from mission planning to program validation.

Timely and effective documentation.

1. Description of Gemini Digital Computer, IBM Technical Report No. 65-554-

0089, 22 November 1965.

2. IBM 7090 DPS Gemini Assembler and Punch Program Reference Manual,

IBM Technical Report No. 66-538-01, 4 January 1966.

3. The Gemini Simulator Reference Manual, IBM Technical Report No. 64-

542-0llB, 15 March 1965.

47
(page 48 blank)

I
1

1
1
J

J

I

1

I
I

I

Maneuvering Ballistic

Re-Entry Vehicle

by

P. L. Phipps

UNIVAC Corporation

(This paper was not available at
the time of publication of the
proceedings.)

49
(page 50 blank)

if
:1
'I
11
j
't

SOFTWARE ASPECTS OF THE TITAN III PROGRAM

by

FRANK R. TROEGER

Logicon, Inc.

A number of related launch vehicles go under the general

designation of Titan-III. The particular program to which this paper

refers is the inertially guided version of Titan-III, the Titan-lIIC. This

vehicle consists of a two stage core adapted from the Titan-II ICBM, to

which are strapped two large solid rocket motors, each capable of 1.2

million pounds of thrust. Atop the core is the third stage body, the

50-called transtage, whose special features include two restartable

l1lain engines and a separate attitude control system for use during

coasting periods.

Development of the Titan-IIlC was begun approximately four years

ago. The objective of the program. was to develop quickly and at reasonable

cost a capability to inject into earth orbit a variety of military payloads.

The key words of the program were to be versatility and quick reaction

capability.

Early studies of likely T-III missions had determined that a

sel£-cqntained inertial system was better suited to the guidance problem

than a ground-based radio system. As key components of such a system

and to be compatible with the broad objectives of the program, an all

attitude inertial measurement unit and an easily programmed random-access

computer were indicated. However, when it was shown that the already

existing Titan-II guidance system could be adapted to be technically adequate

for the Titan-III nlissions, its lower developmental costs and smaller

schedule risks prevailed.

Exc ept for the incorporation of an environmental control system

and for some minor modifications to the logic of the computer, the Titan-III

guidance system is es sentially the same as that used in Titan-II. Its

principal subsystems are a three-gimbal inertial measurement unit (IMU)

built by the AC Electronic s Division of General Motor s, and a digital

computer built by the Federal Systen1S Division of IBM.

51

r
I
r
(

l
I
1
I
I
,I

r
I
I
[

1
I
(

[

11

analog or bilevel data. This implies that the programmer must ensure

that words required to be telemetered appear in the accumulator at

specified word times. The problem is aggravated in certain missions

because of the need to compress bandwidth at altitudes in excess of

3000 miles, bringing with it a further 4 to 1 data reduction and telemetering

of only 8 words of every 64 appearing in the accumulator.

4) In multiplication, the least bit of both operands is truncated off

prior to initiation, thereby introducing a small bias in the product.

Furthermore, because of the algorithm used, there is the characteristic

that a multiplicand of zero may either form a product of zero or a LSB =1

depending upon the presence of a one in a particular bit of the multiplier.

There are a number of other hardware-imposed restrictions, that

together with those that have been listed place a premium upon the

programmer having had prior experience with this machine. As a rough

estimate, it probably takes six m.onths to break in a new programmer for

this machine -- and it might be said that prior programming experience

on large general purpose machines does not significantly alter this

estimate.

It might be suggested that such an environment forms the ideal

justification for a compiler. This possibility 'was looked into more than

five year s ago on the Titan-II program by both IBM and TRW. While it

was difficult to prove, at that time it was estimated that the efficiency

of compiled code would be less than 80% that of good hand coding. This

factor plus the uncertain costs of developing such a compiler caused the

idea to be dropped. On Titan-III the idea has from time to time been

renewed, but the conclusion has been the same. The fact that much of

the time even with hand coding there has been a shortage of storage has

not added to the attractiveness of a compiler development.

There are a number of other hardware features which when coupled

with operational requirements tend to make the programmer's job a little

53

I
I"

l
I
1
J
f
1
I
I"

I
r
I~

I
I
r
I
[

[

•
•

•

•

SERIAL, BINARY, COMPLETE-VALUE, FIXED POINT

6000 RPM DRUM MEMORY

51 tracks - 9792 instructions

12 tracks - 768 fixed constants

3 tracks - 192 target constants

3 tracks - 192 words data storage

1 track - 8 word A revolver

1 track - 3 word F revolver

1 track - 2 word revolver - accumulator

3 tracks - M, P, Q revolvers

1 track - Accelerometer processor

CONCURRENT ARITHMETIC - 25 BIT DATA WORD

add, subtract, transfer

multiply (24 bit accuracy)

divide

INSTRUCTION REPERTOIRE

6400 per second

533 1/3 per sec ond

128 per second

5 arithmetic: +, -, x, .;-, A

17 airborne output: 14 discr.etes, 3 dc analogs

3 conditional branch

7 transfer

1 attitude data processor

3 miscellaneous

1 instruction modify

TABLE I

TITAN-III MGC CAPABILITIES

55

I
I$SP £)(HlfJlT 62-1~1 I PHlM! pAYLOAfJ
PIiOGRMf 6<¥A 5TI' I?E~/REM[NTS

1 ".
~ ~ ~ T-/~ A 2WKS

62- 127 mlflt:A INfOlMlllfIf fl'llELIM fLT I'LAN r I
1 I .I.

;;><. ::>< A :.;x;. T-14.5IMMC 2W~ ">< A -- AC5'I'IMMCIACC IJ~

1/60& IDMTS DOC (TOE!iJrt- (VEH PATA BOOK (f PIIWM 1KAJECTOKY 't j ;/~t/,.!7:':io'i~:rtL---.fPflA1"P fIR TfST PLA--!I

• f I
- ..

I >< Ell? >< '-14 A ZWTIr .-.f PfTAII(f) MISSION 3IfC. \I'IIOG. ftIfI'OKT PlAN(

. T-" M~C ~1lI:l T-Ia A 14m
_I~ lIEf TfWEC!OI1'I I'RW/.I PiSCKErEl" If3'
- ~

T-12 A 3fjIllYS
lVAlIIJATION·K£f. TA'AJEer-, .,

T-If' ACSI' 3QPA'IS

I
I
I
I

(PETAllED E/I/IOK ANAL. I J.
T-I/ A I5PAYS~

flllVI.l'EP /.Ins ION 3nd--

I '-fO A " 18A3f lfNE PfXllflYlfU
('-9 A([ff.Jll.lIl C5!'(FI.lIlI../l) "

I
8A~E LINE GIJIPANCE Et;IJATIONS" -

.I.
1-8.8 AUI' I WK

~. "_AM$P£e" ~I I. M~ M08. MCfnCATJO/V

T-8.5 MMe 60PA'IS
,I!.1tRfF{/lIfOFIUIFl.f.EWATI!Wi

' . .$r.OfIJilKfAl!f1ICl'/l~#lHf.f

f -.,nvcrUKAL ~IWA(
1-6.5 MMe 8WK3

(:k~/GA,,~~/r'

~ 1 VEHICLE_I I,YEN PftuLIAIt

'-55 MMC 5WA:lj PA1A tJOOI(
(JArA FtPOM

~~l Cf)NT"A('~

I
I ~A:':'':'':fs~= I '-5 ItJM 3.tJ

1 r~:~::'~J'1!" 1
~

T-4 A~CSI' 5 '-4 A 2Wft$

,[
fiNAL GIIIP EQUATIONS rVEH PISI'f~ION PArA 1

• '-3.B ACSp I Wf(-------, fiNAl PIIOGIIAM SI'f~ ., I

'-3 MMC9WKS T- ~.O "Mesp I. 0
I

I All' fAM/CATION (I
fiNAL CONsTANTs I

~ I

'-2.8 MMe IJllf(I

IIIICKI Will' All' TO HI? 1 I

J. T-E.S A EWf(S

1
T-2.2 "MC$P 1.8 VE;{pJjlME£r'
fiNAL f'AKAMET[I?S"

.I.

I
r

T-2.0 IBM / WK T-Z.O A,S,. .Z T-eo A I r'-2~ MMC I6!lPAYSL
P£lIVEK pKOG. TAP! lf~i~~/;:~~;rr fm'TlM Tm OliJlCTIVES] 1/6 ~AfETY TKNEe.

~
[1-Z.OJMMCT 2 1
liANG! 1AfETY II[POIITI

T-/.$ MMC IPAY T-I.5 ACSP JWKS I I (fmTAIL M' (fTK)j fLIGHT 31M TAl'f

1 I I 1 1 T-I.O MMe 3PAYS T-I.O MMC 2WKS I I'6NCIIN.FCS' USTS' 1 2H"13 ZC~/3 PIINEST TIIAJECTOfIr
T-.~ ACSl'/11J.II2~ T-. 3IAI,,,,_ 1.7 T-.8 ACSf' !.7
~OAO /.IGC PIIIIM, VElilfY] fPllO<>fAM VAIiPATIOm PIIOGIiAM YAI//JATION I

J. ~
T-./ A (V30JI G /JAYS

f {VAl • flECOMMENPA7tON.
.l

T-./ SSP
IPA/::;,£~~o;;;;~r/!·I/""c

T-O MMC:4CP
COIINTPOWN TESTS" (
'-0 ETR

FliGHT

I ., 1 , •. 5 ErR I5/JAYS
(WI.CK lOOf(ANAiY$SI T.2.5 AC$PIA 60g,rs

(fiNE GIIAIN ANALYSIS l

(
FIGURE 1. MISSION PROGRAMMING

57

I
I
I
I
f
I
I
r
I"
]

[

I
r
I
I
I
(

[

I'

In an attempt to minimize the impact of such changes the plan calls for

the delivery of a "check and balance" program package, thereby permitting

the equation-writer to assess the alternatives himself. This package also

permits a check on the general progress of programming and is an oppor

tunity to call out misunder standings if any exist.

59

1-

r
I
I
r
I
I
I
J
I
r
il
I_

I
(

I'
I
I'
(

Validation

Validation is really the answer to the question: is the MGC

software ready to fly? This prime question can be broken down into

three distinct criteria which can then be tested separately:

1) Are all mission and systems requirements accurately reflected

in the programming specification?

2) Are the requirements of the programming specification met

by the MGC coding?

3) Are all mission and systems requirements satisfied by the

MGC coding?

It should be noted that only the third criterion c·onstitut~s a completely

necessary and sufficient basis upon which to fly. While unlikely, there

may be subtle effects of MGC program mechanization which prevent criteria

1) and 2) from implying 3). The question might then be asked. why test to

anything but criterion 3)? This is the "black box" approach to validation.

In certain applications it may have merit; on T-III we have not use.d it.

There are several rea sons:

1) In its pure state nothing is known about the innards of the

program. Consequently it is necessary to devise tests to

uncover all possible failure modes. For missions of the

duration and complexity of T-III, this would be a horrendous

task.

2) A lesson learned by our hardware brothers years ago is that

you can learn much more about how something will work - and

how it will fail - by opening it up than you can by probing it

from the outside. Double,..whiskered diodes, solder balls,

gl'aphite particles are all good examples.

On T-III a two pronged approach is taken to validation. Both AC

Electronics and Aerospace/Logicon have independent votes. Thus far there

has not been disagreement in their final recommendation to SSD. The methods

61

I
I
I
(

I-

I
I
I
I'
r
I
r
I
I'
Ii
[:

l:
[
(:

of the equation is checked automatically. These programs are valuable

tools in that they can handle relatively coarse coding. They are also relatively

inexpensive to run.

Both approaches are valuable, and it is intere sting to note that they

tend to complement, not comp,ete with one another. At any given point in a

validation,about the same number of errors have been found by each. It is as

though they were starting at opposite ends of the program, both working

toward the middle.

At both AC Electronics and Aerospace/Logicon, closed-loop

interpretive simulations form the test of criterion 3). By the time these

tests are run, the progralll is well shaken down, and these runs constitute

merely final confidence tests.

The ground programs are handled in a somewhat different manner.

Simulations of the green-light countdown procedures are run by Aerospace/

Logicon to test the accuracy of the conlpensation for accelerometer and

gyro terms and to test the proper use of these values after the transition

into the flight program. AC Electronics relies primarily on lab te sts of

the programs on an MGC and its related ground equipment. Again, it has

been found that the methods tend to complement each other.

63

I
I
l
I
I
I
:I
I
I'
:I

I
I
r
I
I'
I
('

[

[

If the flight be unsuccessful, the cause mayor may not be tracked

down. Regardless, the chances are that the failure will have software

impact. There may be the attem.pt to build in a capability to detect and

correct the failure. Or there may be the attempt to have the software

better adapt to the particular failure condition so that for a given mission

even if the prime objectives cannot be completely satisfied, there is the

opportunity to accomplish certain secondary objectives.

I cannot stress too strongly this particular facet of spacecraft

software design. In es sence, this ability to apply some intelligence in

adapting to the conditions encountered is something relatively new to

unmanned systems. Credit for its incorporation into the T-III program

goes largely to R. V. Erilane of Aerospace. Certainly there was little

such capability applied to missile systems, derived rate for radar systems

having both range and range-rate is one of the few instances of adaption

in the face of malfunction.

Some people will argue that a set of guidance equations need only

perform adequately in the presence of parameter deviations less than + 3 cr

from nominal. Academically and statistically, this is a reasonable position.

But, talk to a propulsion engineer about the standard deviation in differential

thrust buildup of two engines, fired after some" time in orbit. He may describe

what he hopes will happen, but he may also interject that once in a while one

engine may burp in coming on - but that really isn It a propulsion malfunction.

After a couple of thousand in-orbit firings of at least a couple of hundred

engines, he will have better data or maybe a better engine. Meanwhile though,

it sure would help if guidance could tolerate engine burps. And yes, it would

be nice if the engines do fail to come on, that we go through say, one more

cycle; if that is unsucces sful, then try something else.

Note that here I am speaking of an adaptive ability that is quite

different from that which has been more generally studied in the computer

field, viz.

65

I
I
r
1
If

'I
1

Case History

In the Titan-III program thus far there have been a number of flights

for which software development and software validation have been the major

elements in the critical path. Flight Plan II-1 was one such instance. Pre

paring for an early February launch, a series of short-multiply errors was

found in the minor loop just a few days before Christlllas. The balance of

the airborne coding pivots on the coding of the lllinor loop. Thus a relatively

minor error resulted in more than 900 instruction changes. These changes

were coded within 10 days, and by resorting to validation running concurrent

with debugging, the flight date was met.

A somewhat different problem arose in the case of Flight Plan VII A.

Because of

a) the plane change (s) involved,

b) the high ternrlnal accuracy required

c) the presence of IMU gimbal stops and

d) the need to point the telemetry antenna back at earth

this flight plan had always been considered quite complex. Difficulty in

yeezin~ mission and payload requirements plus the desire to minimize

storage requirements led to late definition of the equations. Table III lists

the dates on which equation changes were incorporated into the program

specification. These dates are to be compared against the milestone dates

listed in the mission programllling. For a1l intents and purposes, change 3

formed the baseline equations; this at T-6 months compared to the T-9 date

in the missi~n programming, chart. The addition of a requirement to toast

the solar cells of the payload (to keep them from being too cold to operate

when the payload was released into orbit) was the largest single change from

that point. Gwen a normal-sized program, even that change would not have

been large, but IBM was already approaching 90% of total instruction capacity.

Past this point coding efficiency generally drops off so badly that this last 10%

is considered unusable space. Nonetheless IBM did manage to squeeze in the

67

I
I
I
[

DATE

I 15Feb65

24Mar65

I 5Apr65

9Apr65

I 11May65

8Jun65

I 16Jun65

21Jun65

I: 12Ju165

20Ju165

:I 5Aug65

II
17Aug65

27Aug65

II
2Sep65

7Sep65

I
290ct65

4Nov65

r 16Nov65

7Dec65

[:
9Dec65

14Dec65

[
21Dec65

[
[I

[

CHANGE NUMBER

PRELIMINARY ISSUE OF BLK 1-4,20

BL -·INCOMPLETE

1 - MINOR ADDITIONS

2 - MODIFIED FIXED POINT NA VIGA TION

3 - COMPLETE ISSUE OF BASE LINE

4 - NEW DRIFT MATRIX

5 - MODIFIED B LK 16, 7, 9, 1 8 .
6 - REISSUE OF FIG. 1

7 - CORRECTED BLK 7, ADDED INITIALIZATIONS

8 - REVISED TOASTING LOGIC

9 - REVISED FIG. 1, BLK 5, 6, 8, 19

10 - REISSUE OF COMPLETE DOCUMENT

11 - IBM LOGIC CHANGES

12 - IBM SCALING CHANGES

13 - REVISED BLOCK 9

14 - FINAL CONSTANTS, PARAMETERS

15 - CHANGED 13 PARAMETERS, 1 CONSTANT

16 - CHANGED 34 PARAMETERS

17 - CHANGED 35 PARAMETERS, 4 CONSTANTS

18 - MODIFY BLK 9, FIG. 1, 4 PARAMETERS

19 - CHANGED 9 PARAMETERS

LAUNCH

TABLE III

FLIGHT PLAN VI I

69

I

(

r
I
I

I
r
I
r
I'
[

[

[

[

•
e

0

•
•
•
•
•
•
•
•
•
•
•

Mode Sort and Idle

Sequence Check

Trouble Test

Common Routine

GGE Routine

Titning Margin

Punch

Count-down Steering

Ready

Target Track Sum Check

Data ~oad

Flight Equation Test

Vehicle Simulation Test

Hold

* Deleted for Flight Plan VII (1433)

** Modified to fit for Flight Plan VII

TABLE V

INSTRUCTION COUNT
GROUND PROGRAM

71

118

62

82

20

,27

24

208 *
57

733

130 *
338 *
118 **
130 **

12

2059

I
I
I
(

I
I'

I
I
I
r
I
I
[

[

(

I:

solenoid valves. Further plans are being made to incorporate the function

of Stage 0 thrust vector control within the computer. Being new, the re

quirements of such innovations are likely to be difficult to pin down. Not

only airborne requirements have to be established, but also the method of

pre-launch checkout. Until such requirements can mature, they are going

to be subject to change.

In addition to the problems of the ~ software functions, there is

likely to be a new problem with the old functions, namely there will likely

be a greater sense of freedom in requesting changes. Heretofore, the

nature of the computer tended to inhibit requests for all but essential

changes. In jest, it has frequently been said that what every mission planner

really wants is the capability to write up his mission requirements immediately

before launch and to have the computer convert these requirements into a

flight program on the spot. The fact of the matter is that as we begin to

develop both hardware and software capable of satisfying such desires, it

becomes increasingly difficult to convince people that we are not already

there.

~n summary, it is not at all clear, that the change to a new computer

will necessarily bring with it any marked improvements in software schedules,

cost, or quality. These improvements could ,be achieved by cutting back on

the new functional requirements imposed on the MGC, but only.at the expense

of optimal system design, and only at the expense of the versatility and

flexibility that are 'key to the Titan-III program.

73

I
r
(
(

(

I
r
I
I
I
J
I
[

I
r
[
[

[

INTRODUCTION

A SUMMARY OF CURRENT SPACEBORNE SOFTWARE SYSTEMS

by

A. E. Tucker
System Development Corporation

Santa Monica, California

This summary of current spaceborne software systems is based upon a state-of

the-art survey conducted by the System Development Corporation (SDC) between

September of 1965 and March of 1966. This survey included a search of current

literature plus personal contacts with 19 different organizations which were

actively engaged in the spaceborne software field. The objectives of the

survey were to determine the nature of the products being produced, how these

products were being produced, and the problems being experienced in their

production.

Preliminary results and conclusions from the survey were published as Volume IV

of the worki.ng papers for this Workshop. Final results and conclusions are

expected to be published in December and will include material from this Workshop

where applicable.

The missile and space programs, for which software information was collected

during the survey, are listed in Figure 1. The level of detail of the data

collected on the software aspects of each of the programs listed was not the

same. Time limitations did not allow a detailed study of every program. However,

based upon the availability of information, specific missile and space programs

were selected as baseline systems against which the data from other systems could

be compared. The principal baseline system for the survey was the Titan III

program.

Figure 2 presents the definition of a spaceborne software system used by SDC

in conducting the survey. Qualifying statements concerning this definition

are discussed in the working paper previously referenced and will not be presented

here.

75

A SPACE BORNE SOFTWARE SYSTEM INCLUDES ALL ACTIVITIES

INVOLVED IN PLANNING, DESIGNING, DEVELOPING, TESTING,

VALIDATING, AND DOCUMENTING THE DIGITAL COMPUTER

PROGRAMS THAT WILL BE USED BY THE DIGITAL COMPUTER ON

BOARD THE SPACE VEHICLE.

---------------, .. __ .. __ •...... _-.--. - ---.•.. -

Figure 2. Definition of a Spaceborne Software System

77

I
I
I
[

r
I
J

A simple explanation of this software system concept is as follows: From an

environment which defines requirements, capabilities and resources, a develop

ment process is established to produce an end item. In producing the end item,

problem areas exist due to both the environment and the production process.

The preliminary survey results and conclusions I will present today will be

discussed in respect to the four basic areas of the conceptual software system.

The order in which they will be presented will be: . (1) the development process;

(2) the end item; (3) the environment; and (4) problem areas.

THE DEVELOPMENT PROCESS

A. THE SIX DEVELOPMENT PHASES

Survey results indicated that the current spaceborne software development

process is composed of six distinct phases. Figure 4 presents these six

phases in their sequential order of performance. The activities performed

in each phase can be briefly summarized as follows:

1. Mission Planning

I Mission planning is the phase in which the mission requirements for

the on-board data management system are established. In general,

r
I
,[

:r
[

'.[.
J

:r

these requirements are for a total missile or space project

irrespective of the number of flights within the project. Flight

specific mission specifications for the on-board data management

system are established on the basis of a project's general mission

requirements and the flight specific objectives. Flight specific

data management mission specifications normally include:

a. The objectives to be achieved;

b. The functions to be performed;

c. Data inputs--sources, rates and nature;

d. Outputs--rates and accuracy;

e. Descriptions of the nominal flight path and mission phases;

f. Allowable tolerances from nominal conditions.

79

r
I
1
f
I
f
J
1
I
J

" J

I

I
I
I
[
(

r

Mission specifications are generally first published as preliminary

documents in order to accommodate review by interfacing contractors.

Final mission specifications may be issued as new documents or as

modifications to the preliminary documents.

2. Formulation of Computer Program Requirements

3.

The objective of this development phase is to define the digital

computer program specifications. These specifications generally

include the following:

a. All mathematical equations;

b. Functional units or blocks;

c. Operational sequence;

d. Initializing process;

e. I/O operations;

f. Timing operations;

g. Precision and scaling of all variables and constants;

h. Symbol definition;

i. A description of the total program.

Computer program specifications include both the flight program

and all supporting ground programs.

Computer Program Design and Development

This development phase includes the activities of computer program

design and design verification, coding, debugging and testing of

written code and the establishment of performance and acceptance

criteria for the written programs. The output of this activity

is a set of digital computer programs which constitute the total

software package necessary to achieve the on-board data processing

requirements of a specific flight. The total set of programs

include those necessary for in-flight functions plus those required

for pre-launch functions such as calibration, self-checking, etc.

81

(

I
I
J

I
]

I

I

[

and Checkout is apparently considered by some organizations to be a

continuation of the validation phase or as an implementation phase

which follows the development.

The organizational structures employed in the development of space

borne software were found to range from a single contractor having

total responsibility for all phases, to a set of four different

contractors each responsible for a specific phase, or phases, of the

process. Survey results did not appear to be affected by the

organizational structure being employed. No specific pro~lem area

or characteristic of the development process could be directly

related to the organizational structure.

Figure 5 presents a composite view of the distribution of effort;

i.e., time and resources, expended in the spaceborne software develop

ment and implementation process.

PHASE

1. MISSION PLANNING

2. FORMULATION OF COMPUTER REQUIREMENTS

3. COMPUTER PROGRAM DESIGN AND DEVELOPMENT

4. COMPUTER PROGRAM VALIDATION

5. & 6. PRE-LAUNCH CHECKOUT

POST-LAUNCH EVALUATION

PER CENT OF EFFORT
(TIME AND RESOURCES)

10%

30%

45%

13%

2%

Figure 5. Distribution of Effort in the Development
and Implementation Process

The values given are averages from the survey data and do not represent

anyone specific system. These average values are in good agreement

with estimated and predicted values that were available prior to

conducting the survey.

83

(

:r

"·'1 ' . , ,

'.1·' i'

;;

;,'(' ",t

'(
,

:,)
".'
"

, 'I'
,

'I

type simulations employed. Digital simulation programs for

the following items were generally found to exist for every

missile or space program surveyed:

a. The flight vehicle and its dynamics;

b. A space operating environment including an earth model;

c. Flight vehicle hardware and systems which interface with the

on-board data system;

d. The on-board computer.

The detail to which simulation programs were written appeared

to be a function of the software development phase in which

they were employed. In general, simulations utilized in the

Mission Planning phase are less detailed than those used in the

validation phase. It was evident during the survey that each

contractor or subcontractor engaged in spaceborne software

activities has developed his own particular set of simulation

programs to meet his specific needs. This observation leads

to the conclusion that considerable duplication of effort exists

in the total process. This apparent duplication of effort

results from the fact that the simulation tools produced, by

anyone contractor, are tailored for operation in that

contractors large-scale data processing facility. In general

these simulation programs will not operate in another facility

without considerable modification. Thus, even though simulations

of the same type are performed by various contractors (or

different groups within a single contractor organization), each

is usually independently developed. The duplication of effort

is advantageous from a point of view providing a cross check on

results, but also leads to problems when variations in results

are due to differences in the simulation programs used.

85

(

r
1
I
J
1
I

I
I
r
I
I
r
I-

. ,

[

[

which will affect software development are being followed in the

development of these advanced machines. The first is that of

compatability in which the instruction set of the flight computer

will be identical to a sub-set of ground-based machines. Thus,

the software support tools available for the large ground-based

computers will, in general, be applicable for the spaceborne

computers. The second concept is that of micro-programmed computers

such as the Instruction Computer, currently under development by

the RCA Corporation. Both of these concepts will be discussed in

papers to be presented later in this Workshop.

3. Interleaved Activities

The third distinctive feature of the spaceborne software develop

ment process is that of interleaved or concurrent activities. This

feature was very prominent throughout the survey. Concurrency in

activities is required to meet imposed schedules and in order to

incorporate changes which are constantly being introduced. To

allow the interleaving of activities within the total development

process. spaceborne software development is subjected to considerable

subdivision in terms of functional blocks and units.

The three distinctive features of the development process just discussed

represent areas for which substantial survey data was obtained and indicate

areas where significant problems are encountered. These problems will be

discussed later.

THE END ITEM

Figure 7 presents a listing of the distinctive features of the end item produced

by the development process.

87

(

r
[
(

I
I
J
I
I
I

I
I

C. SCIENTIFIC DATA PROCESSING AND COMPUTATION

In general, most of the functions currently being assigned to the on

board computer, particularly for systems in the early state of development,

are engineering type computations. The extent to which this type of

data processing and computation exists was found to be directly related

to the evolutionary state of the particular missile or space program.

Following the initial development stage, the type of functions assigned

to the on-board computer continuously progress toward more purely data

processing functions while retaining the initial scientific type functions.

Examples of this are system and subsystem monitoring, signal conditioning,

operational mode options, etc. The point to be made here is that while

most current spaceborne software is initially oriented toward scientific

type processing, the mix between this type of processing and pure data

processing changes as more experience with the missile or space program

is obtained.

D. MACHINE LANGUAGE

This characteristic relates to the code by which the end product is written.

With few exceptions, the language in which today's spaceborne software is

written is the actual machine language or a symbolic language which is very

close to machine language and is assembled into machine code on a one-for-one

instruction basis.

E. SINGLE PERFORMANCE

I While most of those involved in spaceborne software planning and development

stated that the on-board software for a particular missile or space program

r
[

[
[
(

was originally to be developed to meet all operational requirements with only

minor modifications and changes in constants, these same individuals stated

that this objective is rarely met and that a new end item is required for each

vehicle flight. While portions of a specific flight software package are used

on subsequent flights, significant changes or new requirements demand a flight

89

[

I
I
(

f
I
I
I
r
I
r
r
I
[

r
[
[

[
[

1. SYSTEM ALIGNMENT, CALIBRATION

2. TARGET INSERTION, VERIFICATION (WEAPONS)

3. LAUNCH STATUS (GO -- NO GO)

4. NAVIGATION AND GUIDANCE

S. FLIGHT CONTROL

6. ARMING AND FUSING (WEAPONS)

7. SEPARATION ERROR CORRECTION

8. UPPER STAGE BURN

9. VEHICLE STATUS AND MISSION CONTROL

10. SENSOR CONTROL

11. POSITION PREDICTION

12. MAN-MACHINE COMMUNICATION

13. DE-BOOST SEQUENCING

14. LANDING POINT PREDICTION

Figure 8. Current Spaceborne Computer Functions

The environmental sources for on-board computer functions are the original

project objectives, uncertainties in hardware design, and new requirements

established on the basis of previous experience. Figure 9 presents a

composite of the survey data percentages of the flight computer program

which is used to perform specific functions.

91

(

(

r
[

r
I
I
I
I
I"

I
r
I
[

r
('

[

('

(

1. THE ON-BOARD COMPUTER

2. THE GROUND-BASED COMPUTER

3. OTHER FLIGHT HARDWARE

Figure 10. Hardware Capabilities and Limitations

1. The On-Board Computer

The first of these is the on-board computer. Operational speed,

methods of timing, memory size, and instruction sets were identified

as the major on-board computer capabilities in respect to software.

While the operating speeds and timing capabilities of most currently

used on-board computers were reported as adequate to meet initial

project requirements, these same factors were identified as the

limiting factors in allowing the programmer to accommodate new

requirements.

It is apparent that the operational speeds of on-board computers

continue to increase with time. Sequentially addressed machines

are the slower of the systems currently in existence with randomly

addressed machines having speeds approaching those of ground-based

systems. Sequentially addressed machines contain an inherent timing

ability which in most cases is available to the programmer. The

newer randomly addressed type computers, although containing a clock

for operational use, do not generally provide the programmer with a

capability to establish timed program cycles. The inability to

establish adequate timing cycles is becoming a problem area as new

functions are required to be packed within a given time span.

The size of the available on-board memory and its relationship to

spaceborne software development is self-evident. The size of the

memories being carried into space today has substantially increased

93

r

I

I
I
I
I

r
I
r
r
I:

[
[

[

[

3. Other Flight Hardware

As indicated previously, many times the flight hardware with which

the on-board data management system must interface is not completely

defined at the time software development must start. When this

condition exists, the software is developed on the basis of estimated

constants and variable ranges. In many cases, substantial changes

in the software are required when the actual hardware characteristics

are established.

C. ENVIRONMENTAL RESOURCES

Environmental resources constitute the third area of the spaceborne software

system environment. Resources can be divided into three types. These are

shown in Figure 11.

1. DOLLARS

2. TIME

3. MANPOWER

Figure 11. Environmental Resources

Dollar information per se was not collected during the survey. However,

dollar values can be inferred from the time and manpower information

collected.

Figure 12 presents time and manpower examples of specific end items produced

for the missile or space programs named. The figure presents the calendar

time versus the man months of effort used in the design, production, checkout,

and validation of the end item. These activities account for approximately

58% of the total time and effort required in spaceborne software development.

95

(
(

I
(

I
I
I
[

I
r
I
I
I
r
[

r
[

r

Keeping clearly in mind that the values indicated by the figure are for

a particular flight specific end item, an indication that the state of

development of a missile or space program affects the software development

can be seen. The Gemini and Titan III programs must be considered to be

in a substantially different state of development than the LEM and Saturn V

programs.

The availability of manpower to perform the programming for spaceborne

software was indicated as becoming a problem area. The shortage of avail

able personnel is evident from the number of classified advertisements

requesting people for this type of activity. Those surveyed stated that

even an experienced programmer requires six months of training before he

is qualified for expert work. In addition, such an individual normally

performs this type of programming for only a two-year period.

PROBLEM AREAS

Having discussed current spaceborne software systems in respect to the development

process, the end item and the environment, let us turn our attention to the subject

of problem areas.

Figure 13 presents seven significant problem areas which were identified on the

basis of the survey results. All seven of the items listed should be recognized

as related to one or more of the points previously discussed. However, I would

like to briefly discuss them as they are listed.

1. CHANGING SPECIFICATIONS

2. AVAILABLE LEAD TIME

3. INSUFFICIENT MEMORY

4. PROGRAMMING INNOVATION REQUIRED TO ACCOMMODATE
REQUIREMENTS

5. INCOMPLETE SPECIFICATIONS

6. LACK OF PROCESS DEFINITIONS AND CONTROLS

7. COMMUNICATIONS BETWEEN INTERFACING GROUPS

Figure 13. Spaceborne Software System Problem Areas

97

(

r
I
(

I
I
I
I
r
I
I"

I
I
I
[

r
(-

[

r

It appears that currently spaceborne software program specifications are

established primarily by those oriented toward the functional hardware

systems. Such specifications require considerable modification to be

adequate for the design of the software.

F. LACK OF PROCESS DEFINITIONS AND CONTROLS

G.

This problem area is concerned primarily with the management aspects of

the process. The starting and end points of the six phases of the

development process discussed are inadequately defined for managerial and

contractual purposes. Considerable effort is currently being devoted to

this problem area by attempting to define milestone procedures and activity

definitions for all of the major tasks involved.

COMMUNICATIONS BETWEEN INTERFACING GROUPS

This problem area is one which is common to all development processes

involving different groups. For current spaceborne software systems this

problem area is considered to result primarily from the lack of appropriate

documentation. In general, the documentation produced for those missile

and space programs which are in their early stages of development is meager,

sketchy, and incomplete. This situation does improve in the later stages

of development, but still constitutes a major problem area.

CONCLUSION

An unspecified objective of the SDC survey of spaceborne software systems was to

determine to what degree, if any, spaceborne software systems were unique. I

believe you will agree that the individual items I have presented concerning the

environment, the development process, the end item and problem areas are not unique

and exist in one form or another in most software systems. However, it appears

that the combination of the elements and problem areas of current spaceborne

software systems, coupled with the limited physical constraints of the hardware

for which it is developed, does represent a degree of uniqueness.

99

I
I-

I
I
I
(

I
I
I
I
I
I
I
r
r
(

I
(

I

SESSION 3

Hardware/Software Interaction

Chairman: Leon S. Levy
IBM Federal Systems

Division

101
(page 102 blank)

r
[

I
I

(
I

[

f
r
I
I

(
[

I
I
[

SUMMARY OF SESSION 3

by

L. S. Levy
IBM, Owego, N. Y.

The objectives of the hardware/software interactions session were twofold:

1. Assess the SOA of hardware/software interaction;

2. Evaluate current computer trends as a basis for new software
formulation.

The consensus was that in the past, constraints of weight and power were
severe and resulted in the design of machines which were difficult to
program. A major measure of relief for the programmer is provided by
the elimination of sequential access memories from the central processor
due to availability of random access memories with airborne physical
characteristics. Sequential bulk memories will still have system applica
tion.

Environmental constraints which are still expected to influence
component selection and machine architecture include reliability and
radiation resistance. However, the dominant architectural factor in
the future will be ease of software implementation.

Since machine designs will be much more strongly influenced by software
characteristics, programm~sand system analysts must assist in formulating
these characteristics. Projected features of the next generation space
borne computers are extensive multiprogramming, use of higher order
programming languages, and on-line real time control.

In the future much more direct guidance of computer architectural require
ments should proceed from computer programmers. However, it appears that
programmers will have to be motivated to provide this guidance. A
continuing, and more extensive, dialogue of hardware/software is needed
with more emphasis on programming desiderata and hardware potentialities.

103
(page 104 blank)

I
(

(

(

"HISTORIC PERSPECTIVE: MACHINES AND PROGRAMMING CHARACTERISTICS"

By

D. B. Brosius
Data Systems Division

AUTONETICS

105

'·f
(

I
I
I
I

I

I
I
I
(

r

(

I

processing or computational center and to treat the otner elements of the system

as periph8ral equipment which are adapted to the computer interface. Thus, the

digital computer in the sp8ceborne system has been progressing from a nignly

specialized functional element designed toward its unique functions in a specific

application toward a highly flexible processing center adaptable to a variety of

applications. Progress along these lines has been mainly limited by the tech

nolo5Y required to meet system constraints on physical size, weight, power

consumption, relia'oili ty, and cost.

Guidance computers provide a clear illustration of the early phases of this

trend. The Autonetics developed D17 computer had approximately 2,700 words of

stora6'e and functioned almost entirely as an element of the guidance and control

system. For the D37 computer, the memory was expanded to approximately 8,000

words, the increased storage being largely required to accomodate expanded

pre-launch functions particularly in the areas of communications, ground equip

ment monitoring and control, and generally expanded system flexibility.

Until rather recently, the vast majority of computers developed for space

borne applications were characterized by serial logic, fixed point, two's

complement arithmetic, rotating memories, and a rather limited instruction set.

The most significant trend in the design of later machines has been the use of

random access core memories and high speed parallel logic. And in keepin t ; wi th

the general trend of expanding capabilities, instruction sets have been expanded

and features such as indexing and indirect addressing nave become cocrnon.

Input/Output has remained rather specialized altnough features such as wired

interrupts allow a flexibility not previously available.

The following discussion of programming Characteristics will be mainly

addressed to tne former class of computers but in general the imvar.t of the

more recent trenus in com~uter uesign, while very significant to software

tecnniques, is lar6ely a mutter of degree.

Pf(OOhAlvlMIN~ CrililiAC'l'iliIJTIGS

Programs for spaceoorne applications typically involve several distinct

classes of program functions. In tne area of ground, or pre-launch functions,

tne following broad categories are involved.

107

r
r

I

f
I
I
I

I
I
I
I
(

I
(

I

2)

functions require special concern for program timing, but in

general all program routines must be placed in a real-time

framework. In many cases real-time requirements on particular

functions may be severe enough to require particular sopnisti

cation on the pro.;rammers part in order to satisfy tnem. 'l'his

is particularly true of the 6"Uidance and control functions wnere

timing requirements are directly related to system accuracy and

stability.

The program computations are tightly constrained by accuracy

requirements. Accuracy constraints typically express themselves

in terms of th€'! necessity for careful consideration of fixed

point scaling in pro6'ram computations and the possible need for

double precision accuracy in some computations. Additionally,

tne effect of truncation and round-off errors innerent in the

particular mechanizations being used must be evaluated. Jverall

system accuracy constraints of course also generate prOt7!'am time

constraints, Le. t iteration or solution rate requirements.

'3) The programs are very closely tied to tLe electrical interf&.ce

between the compkter and other sub-systems. Because of the

speci.alized ciesib'11 of space borne systems, the digital computer

furms an integral part of tHe total system hardware. l"or this

reason, the computer pr06Tams are typically concerned witn such

things as tne required pulse width of in~ut/output si~nals,

control of external r/o multiplexors, rise time of r/o sib'Tlals,

etc. A portion of tnis concern is expressed merely in terms of

further timing constraints, much of it flowever results in con

train ts on overall program struc ture; L e., the order in wt.ich

functions are performed or the rate of function execution.

4) A further program characteristic arises from the specia li7.ed

nature of the spaceborne system; namely, while tile general nature

of prog'rams for different applications may be quite similar

functionally, the specific programming techniques and organization

109

r
I
I
I

I
I
r
J

I
I-

I
I
f

Coupled with the storage optimization problem are the critical timing

contraints indicated earlier. Generally speaking, one optimizes storage

requirements at the expense of program executions time and vice versa. rlence,

in many cases the programmer is faced with the dilemma of resolving simult

aneously a time optimization and a storage optimization program.

This type of concern is particularly great on rotating memory machines

because of the intimate relationship between storage allocation and program

timing.

Two examples of more specific constraints on program structure and

organization resulting from requirements of a particular system are transient

recovery and program anti-skip requirements.

A transient recovery constraint is required for sdme weapon system

applications. This type of consideration requires program structuring to adjust

program timing for time whiCh is "lost" during transient conditions; more

specifically it requires a time compensation factor in the guidance computations

which is a function of computer down time due to transient conditions.

"Anti-skip" requirements refer to a requirement for insuring that critical

program events, such as launch, or warhead arming do not occur unless the pre

requesite sequence of prior events has been executed correctly. This type of

requirement is an extension of the considerations generally classed as flight

safety checks, the distinction mainly being that "anti-skip" is particularly

designed to protect against a computer failure which would cause jump or skip

in the program execution sequence.

SOFTWARE DEVELOPMENT

Having indicated the general characteristics of the machines and the

programming problems one further area remains for discussion. This area

involves the techniques concerned with the actual development of the software.

Generally speaking, there are four distinct functions involved in tne

development of a program:

1. Program Definition - the study and analysis involved in deter

mining the progr~m's functions and overan strl1c+-11re.

III

I
(

I
I
I

I
I

I
I
I
I

I
(

Assembly, as indicated in the preceding discussion, largely refers to a

machine level assembler. In many cases, the assembly process may be restricted

to a strict translation requiring absolute memory allocation by the programmer.

Consistent witn the other elements of the system, the assembler is quite often

of a highly special purpose nature, producing data listings which are of unique

value for the particular system and programming problem.

In addition to language translation, a certain amount of program error

checking is done during the assembly process. This is generally limited to

detection of formatting and coding errors although many assemblers provide

partial program execution time tracing.

Checkout and verification of the program is accomplished using various

combinations of simulation tools and operational hardware. Initial checkout

is usually accomplished using a functional simulation at the computer level.

Various open and closed loop SUb-system simulation levels may then be utilized

for particular sub-pro6Tams. The total ground ~hase of tne application is

generally verified using operational hardware and exercising the entire range

of operational functions. The airborne phase is typically verified using digital

or digital/analog closed loop simulation. This type of simulation may range

from a fully software implemented digital simulation to a hybrid simulation

utilizing a specially desi.gned hardware sHe.

The need for a high degree of program confidence, particularly in the

flight phase, dictates a rather detailed, meticulous verification process which

adds significantly to prog-ram development time especially for proi.;ram revision..c;

which in themselves may represent rather minor changes.

SUMMARY

In conclusion, both tne macnines and the programs developed in the past

have been highly special purpose in nature and rlighly specialized in aesi.gn. The

software development has therefore r~presented a particularly specialized effort.

rlowever. tne distinct trend toward more capi:ible. general purpose com;uters for

spaceborne applications promises to pertially generalize the standardize the

pro~7amming effort in addition to making possible the use of higher level soft

ware development aids. And, in fact, it is becoming necessary that the trend

toward more advanced s0ftwa~e te~rilliques be accelorated in oruer to meet thp

113
(page 114 blank)

(

J
I
I
I
1
I
I
I
J
I
I
I
I
I
(

I
r
(1

SELECTION OF AN ORDER CODE

DURING MACHINE DESIGN

by

R. K. Draving

UNIVAC Defense Systems Division

115

(

I
I
(

I
I
I
I
I
I
r
I
I
(

I
(

I

There are other unique constraints that compound the design problems of an aerospace
computer. These occur from the necessity for having a 'taU-safe" device. One of
these constraints is often a possible requirement for redundancy, based purely upon the
limited MTBF of a nonredundant unit. Also, 'tau- safe" presents a requirement for
nondestructive readout memory systems to protect a machine program and critical
constants from transients. This is obviously important because a transient which
changes a single bit within a several thousand-word program can destroy the performance
of the computer and possibly the system which it controls.

2. THEORETICAL DESIGN PLAN

Although rare in actual practice, one can construct a procedure based upon empirical
evidence which will formalize a design plan for a computer.1 The basic elements of such
a plan are illustrated in Figure 1. Each functional requirement of a space system can
be translated into a series of operational requirements for the controlling computer. In
the case illustrated the functional requirements may be those of a typical booster and
satellite guidance system. It is the puxpose of the design analysis to translate these re
quirementsinto actual hardware characteristics and to determine what hardware trade
off s may be made while satisfying the operational requirements. One can take each of
the functional specifications and, by using a postulated and relatively unlimited general
purpose computer vocabulary and utilizing indexing as needed, assign to each function
a sequence of instructions. By knowing certain characteristics of each function certain
probabilities can be associated with decision functions as they arise and a set of quantities
can be determined which represents the required operational characteristics of the com
puter. These are:

1. Number of instructions executed
2. Instruction distribution
3. Input/ output utilization
4. Storage requirements

A multitude of design tradeoffs may be taken at this stage of the design. Each approach
must be evaluated on the basis of practical implementation. However, they aU lead to
a number of computer parameters. One very important parameter is the order code to
be implemented. The order code is dependent in some measure upon other computer
parameters. It is the purpose of this paper to illustrate some of the factors and some
of the findings that have been associated with the order code itself.

117

(

I
I
I
I
r
I
I
I'
I
I'
I
r
I~

r
(

[

[

(

3. TAILORffiG A REPERTOIRE

Order code selection requires a consideration of many factors. Some of these are pre
sented in the following listings:

Instl'l:lction W~rd- Length

Perhaps one of the most important single factors in determining the instruction word
length is the type of addressing to be utilized. There may be full addressing capability,
extension registers, and indexing. The operand word-length is also an important con
sideration since there is a need for a modular relationship between the instructions and
operands to obtain efficient use of memory. The modularity of operands and instructions
assumes a random access electrically-alterable memory.

Operand Word- Length

Operand word-length is greatly affected by the problem to be solved. In general, an
operand word-length is more than sufficient for a typical instruction word. There are,
however, factors which can influence an order code. For example, it is not usually
efficient to design the operand word-length of a computer about the worst-case precision
requirements. Often it is more efficient to provide for double operand instructions to
provide greater precision.

Memory Size and Type

An important tradeoff can usually be made relating memory cost to the cost of providing
more capable instructions within the central processor. This is of particular importance
for complex electrically-alterable memories such as NDRO thin-film. It is important to
have a relatively extensive general-purpose central processor to obtain the greatest bit
efficiency within the memory. On the other hand, use of a low cost memory (e. g., a
fixed core rope) can provide an excellent tradeoff in terms of increased memory size
while reducing the complexity of the central processor. It should be noted, however,
that there are software implications inherent in the latter tradeoff.

System Application

Obviously the application of the order code to the system or problem to be solved is of
key importance. This, in fact, is the primary reason for tailOring. Implicit, however,

119

(

(

I
I
I

I
I
I
f

I
I
I
(

[

I

second assumes a basic set of instructions which is a subset of the total population set

which could just solve the given problem. Figure 2 shows the perturbation to a control

system problem typical of a ballistic missile in which the basic set of instructions is

perturbed by additional commands from the total population set. When an instruction

from the total population is used, a finite program savings resulted. Three system

cases were considered; one computer per program, 10 computers per program, and
100 computers per program. It can be seen that the greater the number of computers

per program the less cost savings that accrue. Jf the savings of bits of memory are

taken into account we get a different result. (See Figure 3.) For the above comparisons
some relatively simple cost parameters were assumed as shown. The reader is

cautioned not to use the figures as any absolute approach. However, the techniques

employed combined with an appropriate criterion can be used as a tool in assessing the

value of a particular instruction. The precise vocabularies employed as a basic set
and as the total population, as well as the other assumptions, are presented in

reference 2.

4. INDEXING

The use of index registers can have a startling effect upon the efficiency of memory

storage. 3 Table 1 tabulates the size and running time of common matrix and vector
manipulations utilized for typical space missions. A general-purpose vocabulary was

used; however, in one case three index registers were assumed and in the other case
no index registers were assumed. Although these subroutines are highly iterative in

nature they do show an amazing change of total storage requirements made possible
by the simple capability of indexing as shown in the summary given in Table 2. It

should be noted, however, that in nonparallel computing systems such as a serial

by-bit machine in which the indexing of operand and operand addresses requires times

comparable with short arithmetic operations, the additional time required for indexing
becomes a very significant factor in the design tradeoff.

5. SUBROUTINE CAPABILITY

Table 3 presents the program storage requirements that would be necessary if no sub

routine capability were available to perform typical vector and matrix operations of a
control problem. Again, this illustrates typical mathematical subroutines characteristic
of space missions.

121

I
I
I
I
I
I

I
I
I
I
r
I
I
[

(

(

[

I

INSTRUCTION IS

If Il) - (Y) > 0 SKIP &

MEMORY
SAVINGS

1011

102&0

TABLE 2

EFFECTIVE
HARDWARE
COST 10/1

-nl0

IND

HC

255

EST

FU

95

TOTAL
SAVINGS

10/1

105&8

FU·IS FU·IS·IC

510 2850

MEMORY
SAVINGS

100/1

102&00

MEMORY
SAVINGS

III

102&

EFFECTIVE
HARDWARE
COST 100/1

-11100

EFFECTIVE TOTAL
HOWE COST SAVINGS

III

-111

1 1

3&21

TOTAL
SAVINGS

100/1

19950

-

-- ---,--.-r----,---r- ").-r:: "5:-)- ·:-i~::::r.~r::--:-:/r;:"::c:-.,-O-;;tC";-::.,,,..~_,-:.,-. --,-~""7.:);--. """:~ :-:,-:,-'-,,:--T',-:,-: .. ",--,-

If (A) • (V)o ~ S~~F-

Y -Jo A

(Al I (v) ... ;.

(A) - (Yl.-.."

IQI • (YI-.Q

IQI - IYI-Q

y-+~~ I hO, 1,2.3

y , 'PI, (3) f-

(Ql-+ Q 2"1 (o-:.p.

(Q I • 0 Se\ fh,

.' h ,"~ .' ..

~:l ~~~r> 'Sf
'U

~ii;·ir.,;' :~~~"'i~~ t~~lr-;' i~/(i' C'~~~"Eii it/ir~~ l~~i~~; CO\l __ :11 i~~;~';~

, .. ., l02e. -771 301

so 2':) -l{_3_--+_a __ ;<_+_;_'-~"r -:C

___ ~~,~_~_~'u~o-+~,c~o-+~~_r~'~"+_I ____ I ___ ~_"_C,~---+ __
4'1:: .Ie.:) .;:!:;J lice -!e..:::.. 13>

J~: c :.

]tC 3tOC

200 200 IceD 3ie ltC'

20 20 leo 3t 3t~

20 20 1CO 36 -122 822 Jt(·1220 1920

.ce,
"" "" ,"" .0

200 t.eo 3~C') lC.l',:J

ISO -3bO 2~lO J17~

180 1010 31"" -ll'!.D

20 120 tOO ,16 661 21l~ 1210 21tOO -oeo
170 100 400 2000 720 7!100 72CCG ·~:r.:co ~7C-;O

70 40 120 f>CC 216 2Jt~C -~::o

4!a 90 .!aO 16' -127 16'" -1270 1720 !ll~O

11' 2~ 100 ~o 180, leeo ·6~,) 11"" lauo -6~ 7;:0:0

1 ~ 2':10

>0 100 !lCO 180 ... lOCO 19~O l~:C:'

60$ l'~ 60 300 10e n42 -1442

.. 220 nco)9t

u. 297 -1201)97< -12010 16~0

29X:

19fC:

-613 NY

,--
.110 -

~. :,' '. ,., ,~.'

Figure 3. 36 Bit (Memory Savings Included)

123

I
I
(

(

J
I
I
I
I
I
I
I
I
I
('

(

(

(

I

Table 2. Trade-off Memory storage for Indexing
In Matrix and Vector Operations

STORAGE

• NO INDEXING OR INSTRUCTION MODIFICATION

SETUP AND EXIT INSTRUCTIONS

SUBROUTINE INSTRUCTIONS

• INDEXING (EFFECTIVE OPERAND ADDRESSING
MODIFICATION)

SETUP (CALLING SEQUENCES ONLY)
INSTRUCTIONS

SUBROUTINE INSTRUCTIONS

MEMORY SAVINGS THROUGH USE OF INDEXING

125

TOTAL

TOTAL

14,580

49&

15,01&

2,lOl

32&

3,033

12,043

(

I

I
I
I
'I

I

I
I

r
I
['

(

(,

[

(

6. WORD LENGTH VERSUS BIT EFFICIENCY

A sample study was conducted by UNIVAC in programming a guidance simulation problem 4

for representative computers having different word-lengths. 5 The following machines
were used:

18-bits - UNIVAC 1218 Computer

24-bits - A 24-bit general-purpose computer

30-bits - UNIVAC 1206 Computer

36-bits - UNIVAC 1108 Computer

Although several options were available for writing the program on each machine (com
piler versus assembler, fixed-point versus floating), the one chosen for comparison
presents each machine in its most favorable application. Figure 4 compares the number
of computational instructions needed to program a problem for various machines. There
is a continual reduction in the number of instructions as the more capable machine is
employed.

Figure 4 shows the bits required for the program by each computer. This graph is an
interesting demonstration of the efficiency of memory storage based upon the instruction
word-length. In contrast to Figure 4, Figure 5 shows an increasing number of bits
required for the larger instruction word-length computers for accomplishing the same
problem. Thus, the shorter word-length has a tendency for more efficient bit usage.
It is noted that the 1108 tends to reverse this trend, due somewhat to its large instruction
vocabulary and multiple accumulators. The trend, however, is reversed primarily
because of the powerful floating-pOint commands employed.

7. DESIGN TRENDS

The discussion to this point has been to show some design techniques utilized in the past
and to demonstrate the basic power of such fundamental concepts as indexing, sub
routine capability and floating-point arithmetic. We have, however, recently observed
a significant trend in new computer designs. Two major aerospace computer manu
facturers (viz., UNIVAC and IDM) are developing functional copies of proven surface
computers for airborne applications. The newest UNIVAC computer for avionics
applications (similar to those of complex spaceborne missions) is the UNIVAC 1830A.
This machine is a direct derivative of the UNIVAC 1206/1230 series of ruggedized
ground computers. We are also aware that IDM is developing functional copies of their

127

I
I
r
I
I
11

I
I
I
J
'I
I
I
I
I
(

I
11

('

en ...
ID

....
0
a:
LLI
III
:IE
:::t
Z

9000

8000

7000

6000

5000

4000

3000

2000

1000

o
18-BIT

1218/1219
24-81T
GPDC

3D-BIT
1206/1230

WORD LENGTH/COMPUTER

(FIXED POINT>

~ (FLOATING POINT)

36-BIT
1108

Figure 5. Comparison of Bits Required

129

(

(

I

I
:1

I

I
:1

I
(

(

('

[

[

Reference 1

Reference 2

Reference 3

Reference 4

Reference 5

REFERENCES

Design Teclmiques for a Real-Time Digital Control Computer,
by R. K. Draving, A. Kaplan, UNIVAC Division Sperry Rand
Corporation, and L. G. King, Bendix Systems Division,
National Electronics Convention, Dayton, Ohio; 1962.

Report for Subtask 15.1 of CCM 23 to Contract No. 64(694)-621,
dated 16 June 1966, by D. A. Jacobson, UNIVAC Division Sperry
Rand Corporation.

Detailed Organization Characteristics for Standardized Space
Guidance System Study (SSGS), STL Subcontract 3780S-SC,
13 April 1964, by B. J. Jansen, C. L. Firm, UNIVAC Division
Sperry Rand Corporation.

A Simplified Guidance Simulation SpeCification, G. A. Champine
dated 10 March 1965, UNIVAC internal document.

Computer Comparison using a Benchmark Program, 14 September
1965, by W. L. Smith, UNIVAC Division Sperry Rand Corporation.

131
(page 132 blank)

(

I
I

FACTORS OF THE MACHINE DESIGN

[THAT INFLUENCE PRCGRAMMING

r
I ,
I by

I
Lindley S. Wilson

Aerospace Corporation
El Segundo, California

I
J
I
I
I"

(

[

I
r
I 133

(

I

[

I

I
I
I
I

I
r
I

(

[

(

can be thought of as composed of three minor channels corresponding

to the three segments of each instruction cell in the channel.

The channel then is specifically indicated but selection of one

of the 64 peripheral positions is a function of time and is

determined by which one happens to be under the active read head

at the time the instruction is given.

Two constant channels are accessible to all instruction

locations, but others are each accessible only to the instructions

in one or two bands. To make the constants more accessible tiroe

wise but complicating the programmer I s task again, each "data

track" . channel has multiple read heads and their spacing is not

the same on each channel. Frequently used constants are often

stored in many places to make them more accessible. Even so,

all too frequently, delay instructions must be used to hold the

machine idle until a desired constant swings round under an

available read head. To ease the access problem, but complicating

addressing still further, there are 5 two-word, 1 three-word, and

* 1 eight-word revolvers or buffer registers. Some of these also

have multiple read heads accessing the long portion of the channel

out'side the buffer proper. Thus, a piece of information may be

accessed by any one of several. instructions in a channel. Note

that an instruct10n referencing a given word on the three-word

(or F) revolver on one drum revolution will reference the following

F revolver word on the next drum revolution. I might also mention

that the accumulator or S revolver is two words long so that the

primary read head references one accumulator word at even word

times and the other at odd word times. To make things functionally

easier but complicating them also, there are two auxiliary read

he~ picking up accumulator words nine and sixteen word times

* A simple revolver consists of a complete channel on the drum
with a write head, and a read head which normally reads infor
mation coming under it and transfers it to the write head a
few words upstream forming a cycle. The cycle can be interrupted
at any word time to enter new information through the write
head after which the cycling operation resumes. The old infor
mation remains available as it passes across auxiliary read
heads on the long trip around to replacement under the write
head.

135

.(

I
(

('

r
I
f
I
I
I
I'
I
I
(

I
I,
[

I
(

indexed command may be slower than an unindexed command. Thus,

there is a tradeoff between time lost and space saved to be con

sidered. For example, if storage considerations were paramount,

a matrix multiplication might use double indexing, whereas, if time

were more important, single indexing or no indexing might be used.

In other applications, like table look up where the argument and

its relative address can be made identical, indexing is very

effective in saving running time, storage and programming effort.

I'll mention one more addressing problem that of setting the

return 1 ink for an interrupt or from a subroutine. Nearly all

machines under consideration make automatic prOVision for this

but in different degrees of sophistication. The drum computer

mentioned earlier has no automatic link back provision and

subroutine returns have to be preset each time before subroutine

entry. This is probably because the design of this machine is

so inimical to closed subroutines. Many machines automatically

set the return link in temporary storage whence the subroutines

must immediately store it in a safe place for reentry. Others

automatically store the link in a register and link back by an

indirect jump. Another scheme requiring more storage but avoid

ing conflict in the case of nested subroutines automatically stores

the link in the ,destination address and sends control to the next

sequential address and so on; there are many variations.

Timing Constraints

I call them timing problems though some of them might also

be classed as addressing, storage or speed constraints.

First there are timing constraints imposed by certain instru~

tions. Several machines have come out with a scheme which allows

multiplication and division which often require several add times

for execution to be shared with shorter instructions. In one

version, the multiplier (or dividend) is initially in the ac

cumulator which then becomes available for short instructions.

Several add times later, the string of short instructions must

137

[

r
I
I
I
I
I
I
I
I
I
I
[

(

(

I

enough so that no signals are lost represent another real time

constraint. With a slow machine, this could mean a large portion

of running time. Auxiliary hardware which automatically samples

and accumulates sensor outputs can greatly increase machine

capacity.

Eccentric Instructions

Incomplete instructions or instructions with operating ex

ceptions can also increase the programming burden and bring about

storage and/or time penalties. Divison sometimes occurs with the

quotient automatically rounded and no remainder. If it is desired

to know when a quotient exceeds a certain limi~this .lack could

force an additional multiplication and comparison. This would also

be true When the remainder rather than the quotient was desired

as is occasionally the case • Multiplication yielding only the

most significant half of the product, is open to the same criticism.

These deficiencies also become important when double precision

arithmetic is required. The shift operation can be performed by

mul,tiplication or division, and thus, is sometimes omitted. This

occurs more often in machines where multiplication or division

can be time shared (as mentioned above) so that the time penalty

involved depends' upon tqe application. On one computer, which has

time sharing, there is also a shift command which is limited to 1

or 2 shifts. On a test routine involving only arithmetic operations

with tight scaling requirements, 54 out of the total required 283

instructions would have been eliminated by a more adequate shift

command. This storage could also have been saved by us ing multiply

commands but only by taking a severe time penalty, since that

particular routine was not amenable to time sharing. A drum com

puter in current use has no shift commands -- division by zero or

mul tiplication being used. A dangerous feature was introduced

here in that multiplication on this computer is in error by one

bit if (considering the multiplier an integer) the 24 bit, of the

139

(

(

(

I
I
l
I
I

I
I
('

I
(

I

inhibit its execution by a bit in the instruction code. Key

registers may be automatically stored and a return link unique to

the interrupt set up. Other special instruction might be floating

point operations, square root, trig functions and radix conversion.

If large amounts of data are to be handled, block instructions and

list search oriented instructions might be useful.

Reliability

If reliability is insufficient, part of the running time may

be used up in diagnostic tests. When power is lost, discretes

and temporary storage may have to be restored when power comes on

and if possible,the program must be patched. Special programs

may be required to provide for all contingencies during input and

output.

Compatible Backup Hardware

One of the most important hardware constraints is lack of a

large compatible computer to do simulation, checkout, assembly

and.compiling operations. If the instruction set of the space

borne computer is a subset of the large computer, simulation

should be very easy and the running speeds should be very much

faster than if interpretive simulation is necessary.

SUMMARY AND CONCLUSIONS

Hardware constraints are very real and can cause an appreciable

penal ty in programming effort. However, they must be cons idered in

the light of intended applications and compensating software. With

a large backup computer system and compensating software, most of

the constraints can be eliminated.

However, if storage and/or running time is tight, it may be

necessary to do very elegant and complicated coding which is beyond

the capability of present software languages. At this point,

hardware constraints on programming can be Significant.

141
(page 142 blank)

[

I
I
I
I
f
I
I
I
I

I
I
I
(

(

[

I

ADVANCED HARDWARE CHARACTERISTICS

OF

AEROSPACE COMPUTERS*

By

D. L. Meginnity
Manager

Data Processing Systems Department
TRW Systems

*This is not a formal definitive paper on the subject matter but
an approximate recreation of the brief talk given by the author
to stimulate discussion at the "Hardware/Software Interaction"
session of the "Spaceborne Computer Software Workshop" sponsored
by AFSSD and Aerospace Corporation, 20 - 22 September 1966.

143

(

r

[

r
I
J
I

f
I
I
I
I
(
(

I
(

(

of the basic scientific (data gathering) nature of the probes in this

category, some form of degraded performance of subsystems will probably

be tolerated. Therefore the concept of graceful degradation of performance

will also become a computer requirement as a partial substitute or

complement of extreme MTBF requirements. Sophisticated applications

of redundancy and self-repair techniques will undoubtedly be used to

obtain the needed MTBF's.

EXTREME ENVIRONMENTS

There are two extreme environments worth noting for future aero

space computers. The first is nuclear radiation hardening; resistance

to both high- radiation rates and high integrated doses are important.

The requirements are generated by both military applications and general

scientific space probes. The other extreme environment will be for space

hardware to operate over extreme temperature environments (e.g., -lSaoC

to 2aaOC). In large part, of course, these temperature extremes would

be conditioned by other subsystems. However, there will be increasing

requirements for all spacecraft subsystems to operate over substantially

larger temperature ranges.

PHYSICAL CONSTRAINTS

There are no new physical constraints for aerospace computers but

size, weight, and power consumption will continue to be critical

factors in the feasibility of applying computers to future missions.

Significant reduction in these physical parameters will be required

before complex computers may be used for unmanned spacecraft.

FUNCTIONAL CHARACTERISTICS

The functional characteristics of future aerospace computers will

continue to span the spectrum from the very simple special purpose

processor to machines which in capability are only constrained by other

parameters (size, cost, reliability, etc.). This latter end of the

spectrum will continue to expand until computers equivalent to the

145

........... ~ ____ ... - IiIiiiiiit _ ~

FEATURE

I RADIATION I FUNCTIONAL
SIZE!WEIGHT POWER RESISTANCE RELIABILITY CAPABILITY I LOW COST

GP BOOSTER
GUIDANCE X X

UNMANNED
SPACECRAFT XX XX X XX X

~ MANNED +:'-
-...]

SPACECRAFT X X XX XX

STRATEGIC
MISSILE X XX X X X

TACTICAL
MISSILE XX XX

AIRCRAFT XX XX

X = SOMEWHAT IMPORTANT

X X = EXTREMELY IMPORTANT

TABLE I

IMPORTANCE OF FEATURES TO DIFFERENT MISSIONS

(

I

[

I
J
I
J
I

r
I
I
I-

('

I
I
I

Thin film hybrid circuits using bi-polar semiconductors are large and

considerably more expensive than any of the above alternatives but the

better controlled passive elements facilitate design of high efficiency -

high output power circuits in a class impractical for monolithic contruc

tion. Examples where hybrid circuits may be required are in the memory

electronics and for computer input-output applications. These techniques

are readily available for current design applications.

Thin film active circuits are in a relatively early stage of development

at a few research centers. The primary advantages expected of circuits

employing this technology are unusually favorable ratios of power to

speed and size. The current development problems are inability to con

sistently produce films of sufficient uniformity and a poor under

standing of experienced failure modes. This technology will most

probably not be sufficiently advanced to allow system application for

3 to 5 years.

Several companies are currently expending considerable research and

development efforts in the area of magnetic logic. This logic circuit

family is being developed specifically to yield immunity to radiation

several orders of magnitude more intense than can be tolerated by the

best semiconductor circuits currently available. Because of the elimina

tion of transistors from these circuits, significant reliability

advantages are also predicted. The primary disadvantage is the relatively

slow speed of these devices, less than 1/10 the speed of standard DTL.

Further, these circuits are not readily available today and require some

further development. However, because of the unusually high interest

for military applications, magnetic logic circuits will probably be

available in the next few years.

MEMORY SYSTEMS

At the present moment Ferrite-cores still represent the major

storage element used in high-speed direct access storage systems. In

spaceborne computer applications, conventional 3-D organized coincident

current memories are being designed presently for 2~s cycle time operation

and capacities of 250K bits per module. This type of memory system

149

(

I
I
r
J"

I
J
J
I
I
r
J
I
I
I
[

(

I
I

as noted. It should be noted that the basic component technology

will afford a wide variety of computer designs for various missions;

the computers presented in Figures I through IV were chosen to illustrate

some approximate limits of the possible design parameters.

151

..... ~ ... ~ ____ JIiiiiiiIiII ~ .. _ ~

• TYPE: FLEXIBLE MODULAR GP WITH HIGH INPUT/OUTPUT CAPABILITY
FOR ELlNT, FIRE CONTROL ETC., DATA PROCESSING

• SPEED: 4 I-LSEC ADD, 20 ~EC MUL TlPL Y

..... • MEMORY: 8K - 32K MODULAR PLUS BULK STORAGE V1
w

• WEIGHT: 30 - 50 LB

• POWER: 100 W

• MTBF: 1 YEAR

• COST: $20K - $30K

• AVAILABILITY: 1970

FIGURE II

AIRCRAFT LOW COST COMPUTER

... -----~ • ~~~ tIIIiiIOoIIiIII

• TYPE: FLEXIBLE MODULAR GP MULTIPROCESSOR WITH EXTREMELY
CAPABLE INPUT/OUTPUT FOR DATA MANAGEMENT AND

,-...
MISSION MANAGEMENT '0

III
Qq

CD

...... • SPEED: 0.5 tJ.SEC ADD, 3 tJ.SEC MULTIPLY
Ul
0\

Ul
cTUl

50K - lOOK MODULAR PLUS BULK STORAGE • MEMORY: III ::s
~
~

• WEIGHT: 70 - 90 LB

• POWER: 200W

• MTBF: 10 YEARS (DEGRADED TO 1/4 MAXIMUM CAPACITY)

• COST: $400K - $SOOK

• A VA ILAB ILiTY : 1975

FIGURE IV

MANNED SPACECRAFT COMPUTER

- ~~·"""'==zuwa-EtiR -·Fe-~tc

r
I
I
I
I
I
I
I
I
I
r
J
I
[

[

[

[

[

[

,
~)

A COMPATIBILITY SOLUTION - 4PI
By R. B. Talmadge

IBM

Apart from their intended usage, spaceborne systems are distinguished

from ground systems by the fact that the operational environment,

that is, the environment in which the mission programs are executed,

is implemented on a computer which is physically distinct from the

computer upon which the support functions are implemented. The

physical separation has created special difficulties in system communication

and has somewhat retarded the use of sophisticated programming

techniques commonly found in other systems. There is therefore now a

strong movement to try to simplify the job of system design by specifying

use of spaceborne computers which are compatible with standard

commercial systems. This movement has resulted, for example, in a

spaceborne computer for the MOL program (an IBM 4 PI computer) which

is compatible to a System/360 machine. At least one other manufacturer

has produced a spaceborne computer which is compatible to a ground based

machine.

What is to be discussed here today is not the 4 PI computer itself, but some

of the rationale for compatibility, its use in overall system design now (as

exemplified by MOL), and v.h at role it might play in the future. But first,

since compatibility is a relative term, let us be more specific: what we

are talking about is a spaceborne computer which is in all essential

programming aspects identical to a standard commercial computer. That is,

word sizes, data formats, and instruction formats are identical; and

instruction set variation, if it occurs, is strictly non-conflicting. The word

commercial is important here, for one purpose of compatibility is to permit

utilization of as much as possible of a standard, commercially supplied

system. The standard system represents a considerable investment in time

157

[

I
r
(

I
I
I
J
1
J
I
1
I
I
I
I'
('

[

(

7. A Simulation environment in which programs can be run

under conditions as nearly identical as possible to the operational

environm ent.

8. An Executive supervisor which co-ordinates activity between,

and exercises control over, the total set of functions.

These parts are not all distinguishable in existing systems. For almost

invariably the designers have made the tacit assumption that the operational

environment is identical to that in which the system processors work.

The system processors therefore not only produce code for operation in the

given computer, but the code uses linkages and communication conventions

designed for the executive supervisor. Hence, the distinction between

simulation environment, operational environment, and the executive

supervisor disappears.

Current systems in which the executive controls the first five functions

(which are support functions in any system) are generally not able to

support program execution within the time constraints required for

spaceborne applications. Recovery of an existing system therefore

dictates two possible courses of action. First, one could re-design the

executive supervisor to support spaceborne applications, and then modify

the existing system to conform to this design. Second, one could design

a spaceborne specific operational environment, implement it, and also

insert routines under the existing executive to provide the facilities necessary

to integrate this environment within the system. Compatibility makes the

first course possible, but it is neither practical nor palatable. It is not

practical because modification of the entire system is required; it is not

palatable because it defeats the purpose of recovering a standard system.

Clearly, such action would be distinctly inferior to an all new system

design in which the support computer was the same as the spaceborne computer.

159

(

I
[

r

I
I
I
I
I
1
I
J

I
r
I'
I'
('

[

J

For these purposes compatibility is a mixed blessing. On the one hand,

the fact that the programs can execute directly is almost sufficient

reason to let them do so, thereby speeding up the process of simulation.

However, this requires that the simulation programs be written in such

a way as to overlay portions of the executive {and the spaceborne programs}

in order to gain control at the proper time. The simulation routines are

therefore sensitive to changes of program location. If, on the other hand,

the spaceborne computer were not compatible, then a full interpretive

routine would have to be implemented in order to carry out instruction

execution. Such an interpretive program is not location sensitive, and in

many other ways actually simplifies implementation of the tasks involved.

Furthermore, in such a 'soft' simulation environment, the additional

execution time is of little consequence. In this area, therefore, compatibility

affects the possible course of action, but it is far from obvious in what

manner it should best be used, or if the effect is beneficial or detrimental.

It is in the area of program preparation that the effect of compatibility is

directly felt. If we consider only languages concerned with computation,

together with their associated language processors, then compatibility

should enable us to start with the output of these processors in preparing

programs for execution in the operational environment. The objective here is to

use the existing language processors, as well as al1 existing system functions,

in conjunction with a new preparation processor. The new processor wil1

accept as input program modules generated by the language processors,

together with statements by the programmer specifying operational

environment information, and wil1 produce as output programs in the form

required for spaceborne operation. If this can be done, then the amount

of effort required is certainly smaller than that which would be required if one

had to modify the language processors. But more important, improvements

to the processors, or the development of additional processors, can be fitted

into the system without the necessity for any additional effort.

161

(
(

r
(

I
~
,[...

r
I
I
I

I
(

I

('

..)

[
[

The crucial question for the operational environment is whether it

should be distinguished from the support environment. The simplest

answer (as we have seen, the usual answer) to this question is no.

But consider some characteristics of only a few examples of usage.

1. The Spaceborne System: data acquisition and real-time

control, absolute response times, many special devices.

2. Program preparation: large volumes of data accessed from

files, user oriented, no special response required.

3. Conversational Mode: user oriented in strictest sense,

moderate file access, variable response times.

4. Partial differential equations: almost no external communication,

raw computing power all important.

To suppose a single operational environment suitable for all these is

analogous to supposing a single structure is suitable as suspension

bridge, hotel and family residence. It can be done, but the structure is

not likely to be satisfactory in any function.

It is a measure of the immaturity of the computing world that so much

time (and money) is spent in seeking a single solution to problems which

can only have many solutions. Standardization is confused with uniqueness,

and use of a general purpose computer with general purpose usage. With a

slight change in attitude it would be possible to produce what is perhaps

the most important unwritten book on computing, call it "The Programming

System Design Handbook." One cannot predict its contents, but if we follow

our previous analogy it will function much like the Structural Engineer's

Handbook in making standardized techniques, conventions, and materials

available for design of a specific system. Compatibility can then be

achieved at the functional level, where its effect is significant, rather

than at the instruction set level, where its advantage is localized or its

effect actually detrimental •

163

(

I
[

(

I
[

!
r
I
[

r
I
I
r
(

('

('

[

[

A MACHINE ORGANIZATION SOLUTION

THE VARIABLE INSTRUCTION COMPUTER

By

A. L. SPENCE

Radio Corporation of America

165

[

[

[

[

f
{'

r
:1

I
I
r
r
I
(

['

('

[
.I

(

r

As a result of the variable instruction concept and its implementation

we have achieved varying degrees of versatility, emulation and reliability.

VIC's Physical Characteristics

The Variable Instruction Computer consists of two physical units. Fi~lre 1

shows a sketch of the Central Processor Unit which occupies a volume of 1.6 cu.

ft. and weighs 65 Ibs. Figure 2 is a sketch of the Hain Memory Unit which

occupies a volume 1.4 cu. ft. and wei~hs 55 Ibs. with 8196 36 bit words of core.

VIC Organization

Fir,ure 3 ShovlS the VIC organization which is a s follows:

The main memory contains two memory modules of 4096 38 bit words of

coincident current maGnetic cores. It is expandable to a total of 32768 words

with four 4096 modules per box. The cycle time of the main memory is 3 usee

and an access time of 600 nsec. The main memory dissipates 160 watts for the

two modules and increases in increments of 20 watts for each memory module

added. There is a separate power supply for each memory module.

The high speed memory consists of two modules, each containing 256 38 bit

words. The memory element consists of two magnetic cores per bit, linear select.

A high speed memory address register, a high speed memory local register for

data and local control logic are present in each module.

The control module is made up of two Order P.egisters, two Variable Refisters

and a Controller to sequence, code and direct the actions specified by these

registers. Yne order re~ister contains the macro instruction being processed.

The operation code portion of the macro instruction addresses the location in

high speed memory where the appropriate micro instructions are located. The

contents of the specified high speed memory locati,on, which consists of three

micro instructions, are transferred into the variable register Vihere a sequence

counter steps through the processing of the three micros unless instructed to

jump or terminate by an end bit.

The arithmetic and logic module consists of a shift control device, a

functjon control device, an iteration counter, a one step shifter, the arith

meMc and logic circuitry, and six registers "J, X, Y, Wi' Xi' Yi • The function

control device controls the process of the arithmetic and logic circuitry. The

iteration counter is generally used in the iterative mode in which it is desired

to repeat an algorithm formed in an iterative instruction such as MULTIPLY. The

one step shifter performs up to a 36 bit shift as specified by the shift control

device. The six registers provide temporary storage data during

167

("

(

r
(

I
r
I

I
I
I
I
I
I'
[

[

[

(

are called the Cl field which specifies the arithmetic funetion to be

performed by the micro subroutine. It is this field which allows the

individual to vary the function of the micro subroutine to perform for

example, one's complement or two's complement addition. The C2 field

contains the address of the scratch pad location which the micro ~ubroutine

wj,ll use during the execution of the macro function, i.e., accumulator or

index registers. The last fifteen bits of the Program Word contain the

main memory address field. In our future development of VIC we are examining

the possibilities of providing a variable Program Word format which would

provide us with capability to perform emulation at binary object program

level. The Variable Hord - this is the word stored in control memory -

contains three twelve bit micro instructions which with one or more variable

word form a micro subroutine.

VIC Instruction Flow

The instruction flow for VIC is shown in Figure 6. The macro instruc

tions are stored in main memory locations and brought into the Order Register

where the decoder takes the operation code field of the macro instructions

and extracts from control memory the first variable of the micro subroutine

addressed by the operation code. This first variable, consisting of three

micro instruct:ons, is transferred into the Variable Register where the

decoder picks out the first micro instruction and performs the logic sequence

or arithmetic operation which the micro instruction represents. The decodi.ng

of the Fdcro instructions is continued until an end bit is encountered. At

this time the next macro instruction is brought into the Order Register and

the whole cycle is repeated.

169

(

(

I
I
I
I
I
I
I
I
I
I
I
I
I
(:

I
(

[

Example of Hacro Instructions Nicro Programmed

The programming activity to date has been concentrated on micro pro

gramming the macro functions of the IBM 7090 computer. Figure 8 demonstrates

the high degree of success we have had in programming one micro subroutine to

perform the functions of several macro instructions. For example, the three

micro instruction subroutines which perform the ADD macro instruction can

also perform the IBH 7090 functions of

SUBTRACT (SUB)

CLEAR AND ADD (CLA)

LOAD QUOTIENT (LDQ)

AND ACC~lroLATOR (ANA)

OR ACCm-ruLA:rOR (ORA)

Other' functions which can be obtained from this micro subroutine by simply

modifyinp, the Cl function field of the macro instruction are

Set accumulator to zero

Set all ones in the accumulator

Add one to the accumulator

Subtract one from the accumulator

The ability to utilize one micro subroutine to perform several macro functions

maximizes the use of control memory locations thereby providing a more powerful

instruction repetoire with a smaller high speed memory.

Summary

~'lith the present VIC we are able to emulate the functions of non I/O

instruction of fixed word length machines. In our continuing development of

the variable instruction concept we are striving to achieve higher degrees of

emulation.

In the area of versatility we are endeavoring to incorporate the necessary

logic in VIC which 'torill allow us to perform variable length vlOrd arithmetic

operations.

In the area of reliability via microprogramming, and here is meant the

avoidance of computer malfunctioning components via micro subroutine substitution,

171

(

(

I
(

r

I
I
I
I
I
I
I
I
I
(

(

(

I
173

~
It)
CD

...
LL.

•
:)
(J

CD • -

I-

Z
:::>
0:::
o
VI
VI
W

U

~
a..

~
I-
Z
w
U

I
i

IIIIIIIIJ

I-'
-..J
lJ1

,.... ~ --- ;.-.

(2-8)

ADR MAIN INFO

REG MEMORY REG

4096

1 •
28 VDC OR

POWER

liS V 400 CPS
SUPPL Y

-

ADR

REG

t
1

(2)

HIGH

SPEED
MEMORY

256

ADDRESS BUS

DC
POWER

INFO

REG

Fi~ure 3 -

DATA BUS

(2) (2)

ORDER VAR
t--

REG REG

• I , ,

ORGANIZATION

jjiiiiiiI ~ ~ ~ ~ JJiiiiiiIiIIII

INPUT

r L FN SHIFT & INPUT/

CONT. ARITH
OUTPUT

r-- A
UNIT

• L- • I

OUTPUT

~~""~-~"""'''IIiIiifiIiII!~'''''~

I-'
"-J
"-J

FIXED
POINT
DATA

flOATING
POINT DATA

PROGRAM

VARIABLE

I P I 0 I sI 35 - DATA

t P I 0 I S I 8 - EXPONENT 27 - MANTISSA

IpI-T;ll-~-I-~~pcCDJ 6-C1 6-C2 3-B 12-ADDRESS

- • 12 - MICROORDER NO.1 12 - MICROORDER NO.2 12 - MOCROORDER NO.3

Figure 5 - WORD FORMATS

~ ~ ~ __ ~ .---~ ~ IiiIiiiIiIt Ill' iliI! -

~
-...J
\0

CON:r.ROL MEMOR¥ .

141
1~2: :6312; 5243 ~5111

--
~.,.

M:biIN MEMORV X BUFFER SCRATCH P~D

20 I 142. 100
--_. 1

W BURFER

•
1·00 213 -]

"10 .··--___ .~_I.I

~

Figure 7 - MICRO SUBROUTING EXAMPLE

'.'

~ ~ ,... ~ ~ IIiIiiiiiI j-" ~ ~ .~--__ ~ ~

~

20 I 142

100

~

2:13

CONTROL MEMORY·

141
142

I

X BUF.F.ER

Figure 9 - MICRO SUBROUTINE EXAMPLE

SCRATOH PAD

.~ ~ ~ _ __ ti~ *If ~ J~~iI! ~ ~

I-'
o:l
VJ

100:

CONTROL MEMORY

X BUFfFER SCRATCH AlD

W BU.FFER

213
[~-- .,

10

--
Figure 11-· MICRO SUBROUTINE EXAMPLE·

I
I
I
I
I
I
I
I

f
I
I
r

(

11

(

SESSION 4

Language and Processor Considerations

for Spaceborne Software

Chairman: Ralph B. Conn
Aerospace Corporation
San Bernardino Operations

185
(page 186 blank)

(

I
I
I
r

I

f
J
I
1

I:
(

I

SUMMARY OF SESSION 4

Ralph B. Conn, A erospace Corporation, San Bernardino Operations

The session on Language and Processor Considerations for Spa,ceborne
Software was particularly succe ssful in generating discussion. One hour
and fifteen minutes were allotted to discussion during the session. This
time was too short, so a,dditiona.l time was allocated resulting in a, total
discussion time of over two hour s. The following text presents in sum
mary form the discussion pertinent to each of the papers plus the chair
man' 5 summa,ry of the general conclusions. * Individual questions a,nd
answers are not presented since the discussions were not recorded
verbatim.

NELIAC was selected because of the familiarity of General Precision
programmers with this language. The amount of NELIAC-generated
code in the final program was decreased because an increase in storage
efficiency was required. Hand coding is estimated to be about 20%
more efficient in utilization of storage space, and about 10% more
efficient in execution time. The NELIAC compiler was produced very
inexpensively using a, boot-strap technique. Code efficiency was not
considered an important consideration. NELIA C programs were pre
pared using a specially selected set of 48 characters.

An auxiliary tape memory is in the 'porposal stage for the Apollo com
puter. Half of the Apollo computer memory can handle interpretive
programs, the rest being devoted to utility programs, subroutines,
input/ output, etc. The interpretive method used in the Apollo computer
minimizes the need for support tools. Both in-house program valida
tion and validation as required by NASA are performed. The proposed
automatic documentation is expected to help NA SA by eliminating un
needed material. The astronaut cannot alter the progra,m in flight.
There is about a four-month lead time to build and install an Apollo
computer program memory. Three months are devoted to the building
of the memory and one month to installation. Changes may be made
during the three-month manufacturing period if the memory portion to
be changed has not been assembled.

* Use of discussion notes taken by M. 1. Halpern a,nd H. J. Ilger is
gratefully acknowledged. However, the session chairman assumes
the responsibility for the veracity of the discussion summary.

187

r
I
I
I
r

I
J

I
I
(

I

(

I~

enough information a.bout the status of development and acceptance of
PL-I in the software community to ma.ke it an acceptable choice. The
opinion was expressed several times (by industry members of the
audience) that the necessity for the use of a common language should
be approached very carefully. It wa.s suggested that the decision to use
or not to use be left to the project manager. There seemed to be
fairly genera.! agreement that use of a standard language to state equa
tions, algorithms, a.nd program logic would be a desirable first step.

The specification of a common language is only a part of the tota.l spa.ce
borne softWare development problem. The opinion was expressed that
the coding of the equations is only a. very small part of the spaceborne
softWare problem. Another very important part concerns the managing
of the development of spa.ceborne software systems. The common
language aspect of the problem is perhaps the most tractable and has
received the most emphasis by the SDC study. Technical direction by
the A ir Force / A erospace was a big factor in approaching the language
aspect first.

A ir Force representative s said tha.t a standardized spaceborne pro
gramming language is desirable for a.pplication to a.erospace problems,
one has been needed for a long time, and work should start immediately
on the development of a standard language. There did not seem to be
general agreement among those present as to whether or not one stand
ard language could cover all problems.

The existence of a syntax-directed, semantic-directed translator,
written in a widely accepted language, would be a strong step toward
making implementation of a common language practical.

189
(page 190 blank)

I
I
(

I
[

I
I

r
I
]

1
I
I
I
I
I
(

I

Language Features of the Apollo

Guidance Computer

by

T. L. Lawton

MIT Instrumentation Lab.

(Although this paper has been received,
it has not been cleared for open
publication and, therefore, could not
be included in the proceedings. Open
publication of this paper has been
requested.)

191
(page 192 blank)

(

I

I

I
1

I
I
I
I
I

Application of NELIAC to Aerospace Programming

Dr. G. Graham Murray
Kearfott Products - San Marcos Division

General Precision, Inc.

This is a brief report on the experience of the Kearfott Products Division
in applying the NELIAC compiler to an inertial navigation problem. The
culmination of this effort was a series of system flight tests at Holloman
Air Force Base, under the USAF's Mark II Comparative Evaluation, the
purpose of which was to gather data on various inertial navigation sets.
It was stipulated that the test program would be on a "first corne --
first served" basis with a deadline of 1 May 1965, after which no system
would be allowed to enter the test program.

In December of 1964, Bell Aerosystems selected the Kearfott L 90-1
integrated circuit computer for integration with the Hipernas III plat
form. Both companies desired that the combined system be entered
in the Holloman evaluation. But only four short months - - January
through April -- were available for the development of interface hard
ware, ground support equipment, checkout, and delivery. The deadline
of 1 May was to be absolute. So far one particular in this narrative has
be.en omitted: It was also required that a complete operational computer
program be prepared and delivered with the hardware.

On December 21, the Kearfott part of the project was initiated at a
kick-off meeting at the San Marcos facility in San Diego County. As
subcontractor to Bell, Kearfott was to refurbish the L 90-1 because
of wear and tear due to an extensive cross-country tour by truck and
trailer, to build an input/ output unit, to modify the existing ground
support equipment, and to prepare the computer programs.

It was first necessary to halt the tour, which had reached Cleveland
in a heavy snow storm, and give instructions to have the computer
brought back. The truck and trailer, containing the ground support
equipment, spare parts, and other specialized test gear, were driven
day and night. By early evening on December 24, the truck and trailer,
with their contents intact, arrived at San Marcos. Everything required
was now at hand for the extensive hardware modifications and new
equipment design.

Such sudden events and changes in project direction are not unique,
but rather typical in the aerospace industry. There is no need to

193

I
r
I
r

I
I

I
I

(

(

(

(I

[

Figure 3 shows the block diagram of the computer. Because of
the black-and-white reproduction it is impos sible to trace the red
lines which represent parallel transfer of data. However, a general
statement can be made: All data in and out of the memory is in
parallel. Other parallel paths are between the addres s register
and the instruction counter, from the F (Field) Register to the
Address Register, arid from the Instruction Register to the I/O
Address Register.

A unique feature of the L 90-1 is the Sigmator. represented by the
Rand S glass delay line registers. The Sigmator may be regardec1
as a separate input/output incremental machine functioning indepen
dently of and simultaneously with the central arithmetic unit. The
Sigmator contains its own program furnished from the main memory.
This program may be changed to fit a particular mission and can be
altered on order of the central arithmetic unit. The central computer
communicates with the Sigmator in much the same way it communicates
with main memory.

The following paragraphs briefly describe the functions of the Sigmator:

Asynchronous Pulse Inputs: Positive and negative pulses may be
summed by the Sigmator without intervention by the central computer.
This type of operation has been used in the past with such diverse
system.s as star tracker, camera control, Doppler, etc. Maximum
pulse rate is 11 Kc (higher with dpecial logic). The number of
channels accommodated is dependent on system requirements.

Pulse Outputs: Pulse rates from 0-11 Kc (higher with special logic)
may be generated by the Sigmator for use in such equipment as in
ertial platforms (pulse torquing). The central computer is involved
onl y to the extent of furnishing one word of information to the Sigmator
when a rate change is required. The number of channels is dependent
on system requirements.

Integration: Real time integration is performed "off-line" by the
Sigmator with no intervention by the central computer. For example,
the velocity in a particular channel (computed by summing velocity
pulse inputs) may be integrated to determine position. Also integra
tions may be initiated by the main computer by furnishing two words,
integrand and initial value, to the Sigmator. The number of individ
ual integrations performed is dependent on system requirements.

195

I
(

[

[

r
I
I
II

I

[

[

In Figure 5 some of the important features of the language are
presented. The ability to use machine coding when desired proved
very valuable on the project under discussion. Also worthy of
note are the Boolean tests and nesting of comparisons pos sible in
NELIAC. A short example in the NELIAC language, illustrating
these points is given in Figure 5.

As can be seen from Figure 6, the Guidance Program required
approximately 7, 000 words. Before these programs could be pre
pared, it was neces sary to com.pletel y redo the m.athem.atical for
m.ulation, which had been prepared for a DDA type com.puter. Hence,
the m.agnitude of the program.m.ing task was considerable. The
Laboratory Calibration Program., loaded only as required, uses
auto-collim.ator inputs to com.pensate for bias, scale-factor, and
m.isalignm.ent in the inertial instrum.ents. This program. alone
was 3, 000 words. On the other hand, the Operational Program.
was nearly 4, 000 words in length.

The first part of the Operational Program., called Vertical Gyro
Alignm.ent and Calibration, consists of coarse level, coarse align
(gyrocom.passing) and torque set. Upon com.pletion of the latter,
data is gathered to perm.it com.putation of the vertical gyro mass
unbalance. This routine requires 300 words and is called upon
perhaps once a week.

In the 2100 - word Platform. Alignm.ent Mode coarse leveling at
m.axim.um. slew rates is followed by fine leveling based upon earth
rate and velocity m.eter inputs. Com.pensation for accelerom.eter
errors and gravitational anom.alies are applied to the velocity m.eter
inputs. Torque signals are corrected for gyro errors. Finally,
gyrocom.passing and torque-set takes place.

1500 words are reserved for the Navigation routine. In this m.ode
the platform is kept level with respect to the ellipsoidal earth m.odel.
To m.aintain the level condition, the com.puter will provide continual
torque signals at earth-rate and, as the aircraft m.oves over the sur
face of the earth, the required rotation rate. This rate is com.puted
from. horizontal velocity com.ponents obtained by applying com.pensation
for accelerorneter errors and gravitational anom.alies to the velocity
m.eter inputs. Finally, latitude and longitude are com.puted using
the navigational m.atrix, whose elem.ents are updated by differential
equations.

197

I
I
(-

I'
(

(

I
I
I
I
I
I
[

[

[

[

I
I
(

-I
o
C)

....J

". '" ~

199

.............. ~~~~ .. ~...,-iIiII~~.---.. ~

N
o
I-'

L 90-1 Slr~'tPL!~:~~!) BLOCK D:IAGRAM

PRlORnY
INTERRUPT

FULL-WORD
PARALLEL I

MEMORY 4--t--- .
OUTPUT I

.... SERIAL TQAN~r£Q
-+ IWWlEL Tlb\NSF'£Q _

4

DISCRETE
OUTPUTS

I11III _ .. _ IiJiiiiIII __ lIIiIi~"- ~ ~

N
o
w

NELIAC COMPILER
COMPILES RAPIDLY

MACHINE CODING POSSIBLE
BOOLEAN TESTS

NESTING OF COUPARISONS

EXAMPLE:

IF X LSS .3 THEN.I =vt
IF .3 LEQ X LSS • 7 T~~N

.24 =y $.36 =vtl

I
I
I

I
f
I
r

(

I
I
I
(

(

I
[

I

CONSIDERATIONS IN SELECTING A SPACEBORNE PROGRAMMING LANGUAGE

T. C. Spillman, IBM Federal Systems Division

1 .0 INTRODUCTION

This paper discusses some of the language features that will serve as
the basic tools necessary to help solve the spaceborne computer soft
ware problem. This discussion is limited to features that enhance the
problem-solving capability of the language, and does not include con
sideration of peripheral features, such as debugging aids. Although the
peripheral features are important in considering a language from the actual
programming point of view, they are not important in considering the
capability of the language to solve application problems.

The results of this discussion indicate that no existing programming
language offers a satisfactory solution to the spaceborne software problem.
Although languages such as PL/1 and JOVIAL solve portions of the problem,
neither language encompasses the total problem.

2.0 THE SPACEBORNE COMPUTER SOF'IWARE PROBLEM

A point mentioned by the SDC Spaceborne Software Systems Study was
that if the spaceborne software problem were sufficiently well defined,
a problem-oriented language could be designed to attain a solution.
However, the study also points out that the spaceborne software problem
is not well defined. Therefore, a very flexible prooedure -oriented language
is necessary to help solve the problem in its present form; this language
could eventually serve <;1S the basis for future problem-oriented languages.
This suggests that a spaceborne programming language should be capable
of creating its own compiler. Although compiler writing is not necessarily
a spaceborne-language application problem, there are obvious advantages
to the spaceborne community to having the spaceborne language compiler
written in that language. Also, any language that is not capable of
creating a compiler is probably not sufficiently flexible or efficient for
the spaceborne software problem.

Although the spaceborne software problem cannot be defined precisely,
an attempt can be made to characterize it sufficiently so as to determine
some of the language features needed to solve the problem. The follow
ing areas should be considered when selecting a spaceborne programming
language:

a. The language should have a powerful scientific computational
capability .

205

:~
i,{
:,1

II
II

I

I
(

I
I
I
1
J
I
I

1
I
I
I
I
I
(

I

3.2.1 RANDOM ACCESS DEVICES. When creating a random-access
file, the programmer needs a means of requesting a specified amount of
space on a particular type of device. This space should optionally be
assigned in contiguous blocks on one device, or in noncontiguous blocks
on one or more devices of the same device type. The positioning among
the noncontiguous blocks introducss some problems when writing files in
a nonsequential manner. However, the noncontiguous block concept is
very valuable in certain environments, since it removes the necessity to
reorder the data on the device as device space becomes fragmented.
Permanent files that use randomizing techniques to transform key fields
into the location of records within the file are probably best stored in a
contiguous area. Temporary files that are accessed sequentially and all
files whose records are chained together should be stored in system
assigned noncontiguous areas.

The I/o statements that reference the files must allow the programmer to
access the file directly, thus specifying the location of the record within
the file; they must allow the programmer to access the file sequentially,
thus effectively referencing the device as if it were a tape file; and they
must allow the programmer to chain records of a file together and to
search through this chain to retrieve a particular record. The language
notation used to accomplish these facilities should be symbolic, con
sistent with the philo~ophy' of reducing system overhead and maximizing
the flexibility of device usage.

3 .3 Maximizing Hardware Usage

Maximizing the use of the hardware can be very critical in the spaceborne
environment, since hardware minimization is often an application require
ment. The language should be able to efficiently manipulate the contents
of main memory I to specify asynchronous program execution, and to
control hardware and software interrupts, including unsolicited external
interrupts.

3.3.1 DYNAMIC DATA STORAGE ALLOCAT,ION. The language should
contain statements that allow the programmer to allocate and free data
storage areas. Multiple allocations of the same area should optionally
be mechanized by a push-down stack or association of an indirect address
(pointer) with each of the multiple areas. A minimal number of restrictions
should be placed upon references to these areas or contents of these areas.
A contiguous space situation similar to that previously mentioned for I/O
exists when core space is allocated dynamically. Although the control
system may contain routines that reorder programs in core, the language
should allow data storage allocation to be both contiguous with the
allocating program and noncontiguous. Again, noncontiguous allocations
may allow the system to operate more efficiently.

207

(

I
I
(

I
I
I
I
I
I
I
I
I
I
I
I
('

I:
I

3 .3 .4 .1 Compiler-Oriented Interrupt Conditions. A compiler-oriented
interrupt condition is characterized by its method of detection. It is not
associated with a hardware interrupt condition; rather it is detected by
compiler-generated code. The interrupt action specification must be
associated with the compilation of the statements that cause the interrupt.
Thus, the specification must be on a statement by statement basis, or in
logical statement groupings if more than one statement is to be affected.

3 .3 .4 .2 Solicited I/o Interrupt Conditions. A solicited I/O interrupt
may occur during or upon 'completion of an I/O 0 per at ion. The
action specification for such a condition should be associated with the
I/o statement itself. Programmer control over this type of condition is
important in that it allows the programmer to logically remove I/O from
other processing, thus maximizing overlap.

3 .3 .4 .3 Program Completion Interrupt Condition. The program completion
interrupt condition is similar to the I/o completion condition and would be
used with asynchronous program execution. The interrupt action specifi
cation should be associated with the statement that initiated the completed
program. The initiating program will be interrupted, and the interrupt
action will be taken.

3.3.4.4 Arithmetic Interrupt Conditions. An arithmetic interrupt condi
tion is associated with the execution of an arithmetic operation. Detec
tion of these conditions is effected by hardware interrupt and can be
enabled or disabled under program control. The interrupt action specifi
cation should be associated with the enabling statem ents .

3.3.4.5 Unsolicited External Interrupt Conditions. Unsolicited interrupt
conditions are associated with the occurrence of an external signal speci
fying that current program execution is to be suspended while other pro
cessing takes place. The programmer needs a method of specifying that
a statement or group of statements will process the external signal. The
programmer must also be able to enable and disable the external interrupt.

3.4 Object Code Optimization

Although the problem of object code optimization is mostly a compiler
problem, it does have an influence on the language. The language should
not cause "worst-case" code to be generated, e.g., if the language does
not distinguish between input and output parameters in a subroutine linkage,
some unnecessary or "worst-case" code may have to be generated. How
ever, the language may contain features that cause large amounts of code
to be generated if these features add problem-solving capability to the

209

[

(

r
I
I
1
I

I
I
I
I
r
(

[

(

[

STANDARDIZE THE SYSTEM, NOT THE LANGUAGE!

M. I. Halpern

Lockheed Palo Alto Research Laboratory,
Lockheed Missiles & Space Company

The spaceborne software problem, as the four-volume Preliminary Results of the

Spaceborne Software System Study acknowledges (I, 19), contains no unique

element; it is simply a collection of all the standard software problems, all

presented simultaneously and at their most critical. What is novel in the

situation before us is that the solution space within which we may move has

not yet been cluttered up with faulty and fragmentary answers that we cannot

afford to abandon. There are as yet in the spaceborne software picture few

or none of the arbitrary constraints that make the general software problem

so discouraging to contemplate; we have here in this special situation the

precious gift of starting afresh. It is a little disturbing, therefore, to

see how similar the current debates. about spaceborne software are to those held

in past years on the subject of command and control programming systems. 3

There is some reason to fear that we are moving toward a duplication of the

situation that prevails in C&C programming: so heavy a commitment to a

permaturely chosen standard language that no new one, however clearly superior,

can hope to displace it. The C&C situation represents an honest and perhaps

unavoidable mistake; to recreate that situation in spaceborne software, despite

the lesson of that earlier experience, would be unforgivable.

What we have learned in the last few years is not that we chose the wrong

language for C&C - JOVIAL may well be the best of those proposed - but that

any such decision was needless, and that the debate leading to it was concerned

with the wrong subject at the wrong time. We know now that

(1) A programming language, and the processor that translates and other

wise supports it, are two distinct and separable things

211

I
I

[

I
I
I

that would follow from the strictest standardization on a single language

and compiler:

(1) There would be but one translator to design, construct, maintain,

and document

(2) Programmers and program packages would be as freely interchangeable

J- among various space-vehicle programming projects

I
I
[

I
I
(
[

r
[

(

I

(3) The creators of the processor would be free to concentrate their

energies on what is properly their business, the internal improve

ment and extension of the processor itself

(4) Continuity would be established across machine varieties and genera

tions, with upward compatibility assured.

How long will it be before we see a system of this description? About minus

2 years; it was in 1964 that the first specimen of this new genus processor

assumed operational status,4,5 and substantial experience has since been

acquired in using it to implement various 1anguages7 and to run on and compile

for a variety of machines. There were, it turns out, only one or two wholly

new developments needed to implement this processor; for the most part it in

volved merely the putting together of a number of known features, so organized

that their full exploitation was possible for the first time. It will be

necessary in explaining this to review some fundamentals.

We are considering a processor that is to be capable of being introduced some

how to an indefinite number and variety of programming languages, all of which

it must be able to translate from then on. What is required in the design of

such a translator is made clear if we think of a programming language as

having three dimensions or aspects:

213

I
I
I
I:

I
I
J

I
I

I
1['

I
I
[
(

[

I

defining a programming language. The macro instruction is not properly just

another item in the machine-language coder's bag of tricks; it is a way - the

best way, we contend - for the higher-level language designer to implement

his language. It is in this role and only in it that macros are recommended

in this and the writer's other papers on the subject. More will be said of

their use after the other two programming-language dimensions have been dealt

with briefly.

The notational dimension has been the subject of much rearch in the past few

years; it is this aspect of language that the various meta1anguages, meta

assemblers, metacompi1ers, and the like have been concerned with. It might

have been expected, therefore, that this dimension, like the functional, would

be suitably provided for by existing techniques. In fact, not one existing

higher-level programming language can be described in its entirety by any form

alism so far described, and it is just in this heavily worked-over field that

original work has had to be done by the writer and his associates in order to

realize a generalized processor. For the reader curious about this point, we

suggest that the reason why the meta1inguistic formalisms so far proposed

have been of little practical consequence is that they have placed too high a

premimum on mathematical elegance and linguistic suggestiveness. (Since this

thesis is part of a lengthy argument that is to be published elsewhere, and is

not essential to the present discussion, no support for it will be offered

here.) If such considerations are renounced, and all our energies are given

to the development of simple, explicit devices for describing real programming

languages like FORTRAN and COBOL (as opposed to nonrea1 ones like arbitrary

subsets of ALGOL), there results a notation-describing technique capable not

only of describing them straight-forwardly, but even of describing a nontrivial

subset of the natural language. Detailed exposition and illustration of this

technique has been published,S

21S

I
I
I
I
I
I-
)-

I
I
I
r
J
I
I
I
(

[
(

I

That group would continue in existence (perhaps not full time) as a maintenance

and revision committee; their chief task would be to poll users of their

language at reasonable intervals for comments and suggestions. They would

not merely invite and await such feedback; they would go to the working

programmer and actively solicit it. The user would be encouraged to devote

some thought to the improvement of his language by his knowledge that, being

a mere collection of macros, it could be quickly modified. (If the processor

in use were a conventional compiler, few programmers would be naive enough

to e~ect any results from their suggestions until long after the occasion

that prompted them had vanished, and their suggestions would accordingly be

few and half-hearted.) In this fashion, advantage would be taken of the

experience of all programmers using the language, but not by giving each of

them access to a macro-defining capability, and a vague charter to write his

own language. It would be a guiding rule, of course, that no operational

program could be rendered incorrect by any proposed change. This means that

any modification of an existing operator would have to include the older version

as a special case, or else some slight burden-a new operator name to remember,

for example - would have to be imposed on users of the new version in order

to protect older programs.

The very different way in which the SAGE project leaders tried to use macros

was due to their committing, in common with most of the programming community,

the genetic fallacy - the fallacy of supposing that to know the origin of a

thing is to understand it. Macro-instructions did first appear as adjuncts

to assembly-language programming, and for most software technicians have

never succeeded in rising above these disgraceful antecedents. One of the

many misapprehensions that follows from this view of the macro-instruction

as merely a tiny step upward from the machine language is the notion that it

is necessarily wasteful of space [Preliminary Results (III, 133)] and

generally conducive to inefficient coding. In particular, the charge is

217

I

I
1

1
I
r

I

I
I
(

I
I'
(

I

expand into coding that would, at excution time, compute the effective

address of each such instruction in the program before permitting its excution.

If the effective address turned out to be within the bounds set by the pro

grammer, execution would be permited; if not, it would be ignored, and transfer

would be made instead to an error routine specified by the user. The result

would be the trapping of the first transfer instruction that attempted to

pass control outside the range correct for it, and before it could wipe out

the evidence permitting exact identification of the bug.

In memory protection, a very similar trick permits a great deal more selec

tiveness than any hardware scheme so far proposed. By redefining as macros

all machine-language instructions destructive of memory, for example, a pro

grammer can make any segment of memory "read only" for his program's purposes.

He can be extremely precise in saying just what can be done, and what cannot,

to any unit of memory. He can specify by this means, for example, that

address fields alone between (say) locations 4025 and 4712 may not be touched;

he is not forced to choose between leaving a memory segment totally unprotected

and making it totally unalterable, and he is not forced to treat memory in

fixed segments of 1024 words each.

Further extensions of this technique promise to give the user close control

over timing problems as well: for this purpose, each machine-language

instruction would be redefined as a macro that would expand, when used, into

coding that would compute its execution time. The programmer would be able

at any point to order the recording of the exact execution time elapsed since

some specified datum point, either for the built-in "worst case" condition

or for such data as he provided. 2 All these techniques for dealing with bugs,

with memory protection, and with the timing problem are available only to the

macro-user, and they are available to him on a very easy, informal basis.

Provided he knows machine language, he can implement them himself, can insert

219

I
I-

I
[

I
I
I
I
I
I
I
r
I
I
(

(

I
[

('

3.

4.

5.

6.

7.

edition, Automatic Programming Information Bulletin No. 23 (October 1964),

ed. R. H. Goodman, Brighton College of Technology, Brighton, England

-----,"XPOP: A Command and Control Programming System," Datamation

(December 1964), 39 - 48

"XPOP: A Metalanguage Without Metaphysics," Proceddings of the

[1964] Fall Joint Computer Conference, pp. 57 - 68

-----, A Manual of the XPOP Programming System, 2nd ed., Lockheed

Missiles & Space Company, Palo Alto Research Laboratory, Palo Alto,

California

, "Computer Programming: The Debugging Epoch Opens," Computers

and Automation (November 1965), 28 -31

M. Roger Stark, ALTEXT Multiple Purpose Language Manual, Lockheed

Palo Alto Research Laboratory, Lockheed Missiles & Space Company,

Palo Alto, California (revision of 27 September 1965)

221
(page 222 blank)

(

I
I
(

I
I
1
I
I
I
I
J
1
I
I
[
(i

(

(

A. J. Stone

aJghes Aircraft COJII)aD7
Culver City, Calitornia

Presented at

SPACEB>BIE C<ICPU'l'ER SOFTWARE WOBKSJl)P
Sponsored by the Air Force Space System.
D1 vision and The Aerospace Corporation

Septeaber 20-22, l~

223

I
r
I
I

I
I
I
I
I
I
I
I
I
(

(

[

I:

PROGRAM
DEVELOPMENT

COMPILATION

PROGRAM
CHECKOUT

PROGRAM
MODIFICATION

FUNCTIONAL
REQUIREMENTS

DESIGN

AWG-9 SYSTEM
DESIGN

REQUIREMENTS

REOUIREMENTS ...-.l---''---1----'_-'---,

a REDESIGN I-____ ..-:=r--r---.....J

OPERATIONAL
CHECKOUT

IDC'S a VERBAL
COM MUN ICATION

CLARIFICATION a
REDEFINITION

INTERFACE - 110 SPEC.

CD~~~6~R L---"';':::::=:::;:"=::':"_-J

COMPUTER LANGUAGE
REOUIREMENTS

COMPUTER SPEC.

INTERFACE - I/O SPEC.

AWG - 9 SYSTEM SPEC.

SSE SPEC.

SIMULATION MODIFICATION
a REFI NEMENT

Figure 1 PHOENIX COMPUTER PROGRAM PROCESS

225

I
I

I
I
I
I
1
I
I
1
I
I
I
I
(

[

I

In one computer ~, the integrated system of programs can perform any
of the following processing functions upon any or all of the flight
programs in the system files:

S;ym.bol1c editing (including adding a new program or changing
existing ones) ..

Compilation
Assembly
Static Simulation
Dynamic Simulation
Generation of a fill-tape

In addition, control cards may contain symbolic references to program
variables. For example, this allows one to specify simulation
parameters s;ym.bolically without first inspecting the results of an
assembly.

The entire software package is a dual system in the sense that it
will handle either the UNIVAC or CDC PHOENIX computers, depending on
control card option. The software will also deal appropriately with
programs Which reside in BDRO memory as well as programs Which reside
on an airborne magnetiC tape and are executed from DRO memory.

A brief description of each software system element is presented
below:

Control Program - Acts as a monitor and operating system for the rest
of the software system, processes all control. cards and calls the
appropriate software programs into memory. (However the entire system
itself operates under IBSYS in a multi-level overlay structure.)

Update-Edit - Permits s;ym.bolic changes and editing of the master
program file stored on magnetiC tape and creates a new updated master
file.

Compiler - Translates programs written in a procedure-oriented,
machine independent programming language (METAPLAN) into s;ym.bolic
assembly code for either of the two PHOENIX object computers.

Meta~ssembler - Translates symbolic assembly language programs into
binary (absolute or relocatable) code by h converting mnemonic
operation codes to their binary equivalent, ~ generating and
aSSigning binary addresses to symbolic locations, ~ allocating
storage for instructions and data, and h converting decimal or octal
constants into binary. Two versions of the Meta-Assembler process code
for the two PHOENIX object computers.

227

I
I

I
I
I
I
I
I

I
I
I
I
I
(

I

MEn'APLAN LANGUAGE

METAPLAN is a procedure-oriented language with features designed
for real-time and system programming. It is quite open-ended and
easily tailored for specific requirements. The nucleus of the language
was originally used by Programmatics Inc. for systems programming.
Hughes and Programmatics designed a considerable body of language
modifications and extensions for the requirements of the PHOENIX
real-time application and jointly developed the entire software system.

Some properties of interest are:

1-

2.

3·

4.

Flexible address expressions.

Distinction between the name of a memory location, its
contents, or its indirect contents. Numeric addresses
can be used as well as symbolic.

Data Description features for describing "ITEMS and FIELOO"
including attributes such as signedness, fixed-point
fractional scaling, and field position and length within a
computer word. This allows quite complex data structures to
be described and operated upon, as well as bit and field
manipulation.

Facilities for dealing with time constraints.

5. Automatic generation by the compiler of any necessary
masking, shifting etc. to line up fields and/or binary
points.

6. High object code ef'ticiency in terms of both storage and
execution time.

7. More programmer control over factors affecting generated code
than in conventional languages.

8. Symbolic assembly language is a subset of METAPLAN and can
be freely intermixed with it.

Other properties and characteristics of the language are as follows:

A METAPLAN program consists of a series of statements. A statement
in general contains a command and argument and may be labeled. The
complete set of METAPLAN commands is shown in Figure 3.

There are two types of statements: declarati ve and imperative.

Declarative statements describe data and parameters. Object computer
differences are accomodated in the declarative portions of a program
(e.g., a "word-length" parameter can be defined and used in the imperative
code where appropriate). To change a METAPLAN program from one PHOENIX
computer to the other, only the declarative, data description portion of
the source program is changed.

229

I'
(I

II

I
[ITERATION FOR {ARG.} FROM {ARG.} TBRU {ARG.} BY {ARG.}

1 STEP {ARG. J

1
1

SEARCH [ARG.} FROM {ARG. J THRU [ARG.}

I IF STATEMENT

J
[

Figure 3 METAPLAN C<MWm3 (continued)

I
I
l
I
I
('

I
I
I. 231

[:

('

r
r
I
I

(

(

(

(

I

METAPLA.N COMPILER

A few propert1es of 1nterest are worth noting regarding the
implementation of the METAPLA.N compiler. The compiler can be
considered both syntax and semantics directed. The syntax of the
source language is specified by syntax equations wi thin the compiler.
The semantics of each command or construct are defined by PROCedures.
These are written in terms of a meta-language consisting of primitive
PROCedures and directives. Changes to the source language and/or
generated object code are accomplished by appropriately changing the
syntax equat10ns or the PROCedures.

While the PROCedures themselves could be compiled each time al.ong
with a source program, it is more efficient if they are compiled
separately into binary and subsequently used in their binary for.m.
However, it is conceivable that a user might define some special
ME'l'APLAN cOJllDSllds for his own use and compile these PROCedures along
wi th his program.

CONCmJSIONS

The principal objectives which influenced the design of the
PHOENIX Software have been met success:t'uJ.ly'.

1. Efficiency The compiler-generated object code is better
than 9010 efficient when compared to hand-generated machine code. This
efficiency holds for both PHOENIX object computers and for both the
number of memory locations used as well as execution time on the
object machines. A 9010 efficiency min:1mum was one of the primary'
design goals, since conventional. compiler efficiencies would be
entirely inadequate for the t1me and memory 11m.1tations of the
application. The effic1encies were quite rigorously measured, based
on the weighted average of three representative sample problems.

2. Flexibility The requirements of an airborne, real-time
application demand language features and an inherent adaptability not
found in most existing compiler-level programming languages. This type
of application is characterized by changing and/or incomplete
specifications of both the airborne hardware and flight program.
Consequently, many of the detailed software requirements may not be
evident in the early stages of such a project. Considerable tailoring
and modification of ~LAN and other parts of the software system
took place without disrupting either the flight programming effort
or the software development itself.

3. Machine Independence Except for differences in data
description, only a single flight program has been written even though
this program must operate on two dissimilar computers. The task of
providing this dual object machine capability has been left to the
software.

233
(page 234 blank)

r
I
r

I
I
I
r
I
r
I
I
I
[

[

[

[

(

EFFICIENCY CONSIDERATIONS IN
PROBLEM-ORIENTED PROCESSOR DESIGN

Vilas D. Henderson and E L Smith
Logicon Inc.

ABSTRACT

The approach is taken that efficiency of anyone com
ponent of the total spaceborne software system is af
fected by the efficiencies of all other components
and that of the composite system. The functional re
quirements of current and future spaceborne software
systems are reviewed, and a problem-oriented pro
cessor design concept is advanced to establish a basis
for the formulation of software system efficiency
criteria. These criteria are then developed for the
composite software system, for the processor, and
for the object programs it generates. Finally, trade
offs are suggested between software system efficiency
and cost.

1. INTRODUCTION

The theme of this paper centers on the problem of developing an effi
cient spaceborne software system. We firmly believe that a really
good software system for spaceborne applications can only be created
through a total systems approach. The viewpoint is taken that effi
ciency in the source language, the problem-oriented processor, and
resultant object code are all interdependent. This viewpoint makes it
difficult to discuss the efficiency of any part of the software system
intelligently without some insight into the entire system. We have
therefore gone to some length to present a processor concept upon
which meaningful processor efficiency discussions can be made in
the context of a total spaceborne software system.

Although little progress has been made in developing problem-oriented
processors as aids for the development of spaceborne software, con
siderable attention is now focusing on this subject. Background and
experience point to the difficulties to be encountered in attempting
to design problem-oriented processors that will generate satisfactory
spaceborne object code. Experience with present-generation proces
sors for classes of advanced computers has caused a great deal of

235

(

[

r

I
I

r

I

I
(

[

(

I
I

complicated flight programs and a consequent increase in the amount of
object code that must be validated. The increase in inflight computing
capability is making it possible to absorb additional flight functions,
such as those performed by digital autopilots, into the onboard com
puter, and this may require additional computational frequencies. Ma
jor additional peripheral processing functions will place greater de
mands on the computer's interrupt capability and its methodology for
parallel data processing. It is not difficult to foresee a requirement
for a significant multiprogramming capability to handle the need for
multiple computational frequencies and both real-time and non-real
time computational problems.

Among the significant new requirements expected to confront the space
borne software community, one that stands out is that for inflight pro
grammability. This new requirement may introduce all kinds of factors
heretofore of no concern: assuring the sacredness of permanent memo
ry; providing an inflight programming language and an inflight proces
sor; performing inflight validation; and incorporating auxiliary memory
capabilities. A second foreseeable new requirement, for a real-time
onboard malfunction detection and correction capability, will increase
the complexity of onboard software because of extended communications
with other subsystems, as well as greater onboard data-handling and
decision-making needs. With man in the loop, the nature of any mal
function detection and correction software may be appreciably different
from that necessary to support unmanned mis sions. We also anticipate
that major non-real-time computational functions will be superimposed
upon real-time functions. Some that are already apparent are trend
analysis; inflight simulation and prediction; self-checking and self
validation; inflight compilation; and targeting.

The addition of these computational requirements can be of great con
sequence in the design of the problem-oriented processor and the
specification of efficiency requirements. A thorough analysis will un
veil many others of importance; we have just brought forth a few here
to show the projected change in the character of preflight and inflight
computing to be performed by the onboard computer.

We hope that this introductory discussion has served to point out the
importance of deeply understanding the significance of a total space
borne software system, especially in a functional sense, prior to
language and processor design and standardization; in other words, of
taking a total systems approach. In subsequent sections we discuss the
nature of a problem-oriented processor which produces object code in
accordance with efficiency criteria and system and environmental
constraints. A particular processor design concept is presented for

237

.... ~~- ~ ~ ... ioiIiII! __ ~

IV
W
\.0

SOURCE

LANGUAGE

SOURCE LANGUAGE

PROCESSOR

PROCESSOR

FRONT SIDE

I
I

1 INTER~EDIATE

LANG UAGE

OPTIM

1
I
I

IZING

~TION

POST-PROCESSOR

PROCESSOR

BACK SIDE

FIGURE 1. THE PROBLEM-ORIENTED PROCESSOR

OBJECT CODE
~

LANGUAGE

(

(

[

I
f

(

r

I

(

(

(

I,

I
I

is lost through translation to a machine-independent language yet is
absolutely necessary for the generation of efficient object code? As it
turns out, answer s to the question are relatively independent of source
language. The types of information required include:

1) Actual required size of any given variable, array, or table.

2) Data organization in an array or table and even dependency
of a variable on its assigned arrangement in a word -
packed bits, ones or twos complement form, fixed-point
scaling, etc.

3) Distinctions between address and normal arithmetic.

4) Bounds on coding sequences which may be considered as
a single unit with respect to optimization.

S) Areas of code that may permit extended optimization
operations because of external language restrictions.

6) Isolation of calling sequences so that they may be adapted
to target machine capabilities.

7) Identification of operations on indices so that machine
facilities of index registers and indirect modes may
be utilized.

8) Identification of bit and decision sequences so that efficient
hardware methods may be used.

It is clear that the ways of obtaining the information from the source
language are dependent on the language, but the fact that the informa
tion generally ~ be determined regardless of the particular language
is the important thing. This suggests that the development of an inter
mediate language augmented with an explicit set of optimization infor
mation would allow the convenience of simple translation and also would
provide a direct source of information for optimization procedures.

Development of generalized specifications for a processor would then
require several steps:

1) Definition of an intermediate low-level language through
which translation passes.

2) Identification of information items which are useful in
code optimization and which are normally available.

3) Definition of a data format which can easily be used by
data collection and optimizing routines.

241

1111115~~"'~~"""""""IiiiiiilI""'"

INTERMEDIATE LANGUAGE

AND

OPTIMIZING INFORMATION

.......... ~ tiiIiiiiiiiiili

(2) TRANSLATOR I

N
./::"
W 0

MAPPINGS -

0

-....

~

TRANSLATOR

--
COMPUTER

INDEPENDENT

TRANSLATOR

OPTIMIZER
--

COMPUTER
DEPENDENT

ROUGH
OPTIMIZER

--
OBJECT CODE COMPUTER

DEPENDENT

INTERPRETIVE
ROUGH OPTIMIZER

~"''-iiIi!I _

OPTIMIZED

OBJECT

CODE

-- -- ---COMPUTER OBJECT C?D~ I COMPUTER

INDEPENDENT INDEPENDENT

'- OPTIMIZER LOGIC AND
CONTROL LANGUAGE

FIGURE 2. POST-PROCESSOR DESIGN CHOICES

I
r

I
f

I

I
J
I

r
I
I
I

I:

I:

version might have no improvements at all but simply be a direct trans
lation. Observation of poor code would allow specification of algorithms
to improve that particular type of coding stream. Each time another bad
stream was observed, it would be possible to see what caused it and
introduce another optimization algorithm. Further, such a procedure
would allow direct control over the investment in optimization since
each improvement would be a small project and would be useful without
completion of others. Optimization effort could be terminated as soon
as generated programs were running and satisfying operational
constraints.

3. EFFICIENCY CRITERIA

Whether the spaceborne software system and it components are con
sidered efficient obviously depends upon the criteria selected for stating
and measuring their efficiency. In this paper we are concerned with
the efficiency of the overall spaceborne software system; the efficiency
of the target computer object programs as generated by the post
processor; and the efficiency of the problem-oriented processor's own
internal workings, particularly the post-proces sor' s.

3. 1 Spaceborne Software System Efficiency

Let us again state the need to consider efficiency of the total spaceborne
software system. Then in this context our subsequent discussion con
cerning particular efficiency criteria, and their influence upon the
problem-oriented processor, becomes meaningful.

We define an efficient spaceborne software system as one that possesses
a structure, organization, and content which permit change, growth,
and adjustment to new requirements and constraints without unreason
able compromises in constituent efficiency criteria such as those dis
cussed in Sections 3.2 and 3.3. Now, how does one quantitatively state
or measure such characteristics in the system, and how does the speci
fication of overall system efficiency affect the design of the language
and the processor?

The answer to the first question must be given in terms of incremental
costs and response time relative to some set of software performance
standards that are achievable and generally accepted by the spaceborne
community. Once these have been selected, improvement in the effi
ciency of program design can be compared against actual performance .
of individuals and companies engaged in the development and validation
of spaceborne software.

245

r
I

I
r

I
J
J

I
I
f
I
I

(

I

The closely knit relationship among the object program efficiency
criteria makes it difficult to treat each criterion (and its fulfillment) as
though it were completely separate from the others. In this section we
discuss the efficiency criteria from the point of various problem areas
and the probable impact on the post-processor that will do the necessary
optimization.

3.2. 1 Execution Time of DeSignated Object Program Segments

The multilevel computational frequencies required in most spaceborne
applications make spaceborne programs similar in character to those
operating in the environment of a multiprograrn.rn.ing system. A dis
tinct and demanding difference, though, is that the various subprograms
executing at different computational frequencies must corn.rn.unicate with
each other, and there is an absolute interrupt sequencing requirement.
Further, multiprograrn.rn.ing operating systems are usually designed to
sequence and execute programs in a way that most efficiently uses the
total computer system, retaining control over priorities and memory,
whereas the real-time constraints of a spaceborne software system do
not permit such flexibility.

Any interrupt system for multilevel program execution has a certain
amount of overhead associated with it. Depending upon the computer
hardware, this overhead can be minimal or of real significance. We
assume that, for the problem which this paper addresses, it is not
possible to select the ideal computer for a given set of operational
requirements - - although this is the best way to guarantee a high mea
sure of efficiency. So the necessity of dealing with a large class of
interrupt systems can affect the language, and certainly it affects the
post-processor design, not only to meet timing requirements but also
to achieve memory and register utilization efficiency.

Suppose a particular multicycle program exists in which there are
three real-time computational cycles having frequencies of 100, 10,
and 1 cycle per second and respective computing durations of nl, n2'
and n3 seconds. Obviously, the computation duration required for each
of the 100 high-frequency cycles is critical. The condition

100 n 1 + 10 n 2 + n3 + (interrupt overhead) < 1 second

must be satisfied. There must be a reasonable relationship among nl'
n2' and n 3 ; and in those cases where there is a marginal relationship,
i. e., the computational requirements of one loop are very demanding

247

I

,-
I

r
I
I
J
1
I

I
I
I
I

('

[

provided throu.gh either the front or the back side. A language such as
FOR TRAN may be inadequate as the front side source language, just
because of the data compaction requirement. Hence it can be seen that
the design decision whether to deal with this problem from the front
side or the back side of the processor may have considerable impact
upon the selection of a source language and the design of the total
processor.

Register utilization normally is of no consequence to the programmer
when using high-level languages. However, the manner in which reg
isters are assigned by a processor affects the efficiency of the object
code, in terms of both the number of instructions employed and the time
required for execution. So the question arises whether the control and
allocation of machine registers should be retained by the programmer
or performed by the processor. Certainly the answer to this question
affects the language and processor design.

Another important consideration when dealing with spaceborne COITlput
er s concerns the allocation of code on the basis of whether a particular
segITlent of meITlory is classified as nondestructive or destructive. The
programmer must be able to control the allocation of code in ITleITlory,
and for the ITlost part be able to retain control over ITlemory allocation
directly or be able to specify the ITlemory characteristics to the pro
ces sor. Processor design can be greatly affected by this requireITlent,
particularly the post-processor.

3.3 Post- Processor Efficiency

Although our primary eITlphasis is placed upon the efficiency aspects of
the object prograITl produced by the post-processor, some discussion
is relevant concerning the efficiency of the post-processor software
itself. The criteria we have selected for measuring and stating post
processor efficiency are total operating speed, total ITleITlory require
ITlents, and growth potential.

3.3. 1 Operating Speed

To require a post-processor to produce optiITlum object code is contra
dictory to any requirement for cOITlpiling object code rapidly. As long
as the post-processor operates in a ground- based computer,' we con
sider post-proces sor operating speed irrel evant. However, a future
requirement for inflight programITlability ITlay cause a need for placing
emphasis on the inflight processor's operating speed. Of course it is

249

r
I
I
r
r
I
I

J
I

I

I
I
(

(

(

(

generated with varying degrees of sophistication. On the one hand, a
simple-minded straightforward translation to an operable code on the
target computer could be made with no regard for efficiency in the
object code. Alternatively ,a very complex optimization process
could be undertaken to produce object code as efficient as that produced
by the most proficient programmer doing machine-language coding.

The simple extreme is only of academic interest in this discussion be
cause the only pertinent efficiency consideration is that it result in an
operable code obtained with the least effort, the least cost, and the
smallest investment in a post-processor. Thus this extreme is effi
cient in the sense that there is no optimizing cost. For the most part,
however, such code will be unacceptable for use operationally on the
target computer. Nevertheless, there may be real advantages to using
such code for program design, development, and checkout.

The real question pertinent to the other extreme is: What price should
be paid to achieve satisfactory optimization? The cost can always be
measured in dollars, but it is also appropriate to equate it to such
things as manpower, schedules, and technology advance.

Intuitively it is difficult to see the practicality or even the feasibility of
designing and implementing general algorithms for the generation of
optimum object code for a variety of computers and for a variety of
efficiency criteria. Certainly there is a need to study optimization
techniques for clas ses of computers and to generate practical pro
cedures for optimization covering classes of computers; but this is
far out of the scope of this paper. Here we can only assess the optimi
zation problems for various efficiency criteria in a nonanalytic way,
paying particular attention to practical constraints and tradeoffs.

Another point to consider is that the definition and acceptance of a
space borne software system which includes a problem-oriented lan
guage and processor mean that spaceborne computers must be sized
accordingly. It is safe to say that !!.2 problem-oriented processor can
produce object code as efficient as that produced by a good programmer
in machine language. Up to now, computer sizing has generally as
sumed machine coding without a factor for inefficient processor
compiled code. The very selection of a computer for a particular appli
cation, then, must take processor efficiency into account. However,
the efficiency of a processor is not fully known until it has been de
veloped. So great care must be exercised in computer sizing to allow
for object code generated by a problem-oriented processor which in all
probability doesn't exist when the sizing takes place.

251

I
I
• I

r
I
I
I
I
I
I
I
I
I
I
[

(

I
I

I. INTRODUCTION

PRELIMINARY SDCRECOMMENDATIONS FOR A

COMMON SPACE BORNE PROGRAMMING LANGUAGE

by

L. J. Carey and W. E. Meyer
System Development Corporation

A recommendation for the adoption ofa common, higher-order programming

language for spaceborne software was made to the Air Force Systems Command,

Space Systems Division in July 1966. This recommendation was based on a study

of space borne software systems conducted by SDC in the fall of 1965 and the

spring of 1966. This paper is an overview of work done to this date, August

1966, by the SDC Space borne Software Systems Study team to identify and specify

the characteristics and capabilities of a space borne programming language.

The language study was initiated in July 1966. Personnel working on this

project include: H. Ilger, A. Tucker, S. Manus, W. Meyer, and L. Carey. As

I indicated previously this document is an overview of our investigations to

date. We intend to describe:

The goals for a Space Programming Language.

The computer programming requirements in the

spaceborne area for a programming language.

A review of existing languages to determine if

they can be utilized as is or as a base for a

Space Programming Language.

Our present conception of a Space Programming Language

253

I
I
I-

I-

f
I
I
I
1
I
I
1
I
I
I
(

I
(

I

The goals we have identified for the language are classical. They are

particularly appropriate however to the spaceborne community because of the

number of contractors, the program production methods, and the computers

utilized in the spaceborne software development process.

A.

B.

REDUCED LEAD TIME

In order to facilitate reduced lead time, we expect to be able to provide

better interface communications between the specification writer and the

programmer for the operational computer program, between the engineer and

the programmer on a single project, and also between the contractors on

various projects, by adopting the higher-order language. We expect to

be able to facilitate faster coding and program production by reducing

the amount of scripting required by programmers, reducing the amount of

attention to detail, and by providing a language which is conceptually

closer to the problem statement.

REDUCED COST

We hope to be able to reduce the cost of spaceborne software development

by facilitating the transferability of programs, especially support programs

which would be useful to other contractors working on the same project,

or similar projects. A common set of programming tools such as simulation

tools, support tools, documentation tools, debug tools, etc., should be

available in the common language. The language will facilitate the reuse

of programs developed in the early stages of mission planning. Some of

these programs can be used directly or with little modification in the

operational computer. Lastly, through reduced production time, speedier

preparation of programs and reduced manpower requirements the cost of

computer program development is reduced.

255

I
I
I
(

I
1
1
I
J
r
I
I
I
I
r
[

I
[

I

2.

3.

4.

in implementing language processors to produce code for an operational

computer utilizing a compatible general purpose machine.

Data Processing Functions

The number of data processing functions, in the time period

identified, is going to increase drastically. Information processing

is just beginning to be developed in spaceborne application areas.

New functions will largely be of the data manipulation type usually

in support of space experiments and military missions.

Programming Personnel

We project the same types of personnel, engineers, and data processors

will be programming the space applications in the future. There will

be a larger number of professional data processors in spaceborne

work. Engineers -- or engineers turned programmers -- will continue

to dominate the problem formulation stages of spaceborne computer

program development. Professional programmers will perform the bulk

of the support and operational computer programming. We also

foresee in the time period we have identified, some on-board computer

programming by astronauts, largely mathematical calculations.

Opportune Time

We feel this is a particularly opportune time to review and to

recommend a programming language. The factors which make this an

opportune time are:

A third generation of general-purpose computers are now

available.

A second generation of spaceborne computers are being

developed.

An increased number of data processing functions are being

scheduled for spaceborne computers.

, 257

(

I
r
I
(

I
I
I
J
I
I
I
I

[

[

[

I

MISSION DEVELOPMENT
PROGRAMMING

TASKS

Mission Profile
Development

Equation Formulation
Scientific
Simulations

PERSONNEL

Scientists,
Engineers

COMPUTER

Large, General
Purpose, Ground

SUPPORT PROGRAMMING

Computer Simulator
Vehicle Simulator
Programmer Support

Tool

Programmers

Large, General
Purpose, Ground

SPACE COMPUTER
PROGRAMMING

Prelaunch Checking
Keyboard, Display

Instruments
Navigation, Guidance

and Control
Data Transmission
Surveillance,

Reconnaissance
Weapons
Reliability and
Failure Support

Programmers

Small, Special
Purpose, Spaceborne

Figure 1. Programming Areas

First of all, there is a programming area which we will refer to as "mission

development programming" in the mission planning stage of the project. The

programming tasks in this stage of the project consist largely of the

development of a mission profile, equation formulation, and scientific

simulations. Personnel utilizating data processing for these tasks are

usually mathematicians, engineers and scientists. The computer used is a

ground-based, large, general-purpose machine.

259

I
I
I
[

r
I-

I
I-

I
f
I-

I
I
1-

[

r
[

[

(

D.

Decision making consists of choosing alternate formulas and/or selecting

of optimum values or actions. This type of programming is not a large

portion of spaceborne data processing, but it is found in all three areas

of spaceborne programming.

Data manipulation is used here to designate the type of information

processing required for sorting, searching, merging, or selecting data.

This type of programming is required in the operational program to some

extent, these functions will probably increase. Data manipulation is

utilized to a large extent in support programming.

Symbol manipulation is used here to mean the manipulation of hollerith

or encoded data. This is primarily required in support programming.

Program control is largely in the operational program for control of

hardware actions. Programming of this type is also utilized in support

programming for control of programs and/or input/output.

LANGUAGE ATTRIBUTES REQUIRED FOR PROGRAMMING

The following discussion deals with the identification of the language

elements required in the various programming areas of the spaceborne

software effort. The lists presented are preliminary ones and will be

modified as the on-going work indicates additions to, or subtractions

from, the lists. The language elements identified will form the basis

for the selection criteria for choosing a common spaceborne programming

language. The lists will not be discussed in detail but in general terms.

The language elements for the required programming tasks have been

organized in three general areas--mission development, spaceborne computer

programming, and support programming. Mission development as indicated

earlier, refers to the programming required to develop the equations which

261

I
(

I

I

I
I
I
I
J
I
I
('

I'
(

[

I

2. Spaceborne Computer Programming

Figure 4 shows the language elements required for spaceborne

computer programming. These include most of the requirements of

mission development plus extra elements required for the more

special requirements of the spaceborne computer programming. These

include fixed-point arithmetic, the ability to manipulate bits and

strings of bits, the ability to program in machine language, positive

programmer control of memory allocation, and a strong capability to

state optimizing information with respect to both space and time.

Floating-Point Arithmetic

Fixed-Point Arithmetic

Full Relational Set

Vector or Array Capabilities

Logical And, Or, Not

Function Subroutines

Procedure Subroutines

Built-In Subroutines

Flexible Loop - Do, While, 11

Machine Language

Bit Manipulation

Flexible Manipulation

Flexible I/O

Optimization

Better Data Storage Control

Segmentation

Overlay

Multi-processing

Timing

Figure 4. Language Elements Required - Spaceborne Computer Programming

3. Support Programming

Figure 5 lists the language elements required for support programming.

As can be seen, these include all elements required for mission

development and spaceborne computer programming plus the ability to

manipulate characters and strings of characters, F~ist processing

facilities, and the capability of specifying recursive subroutines.

263

I
r
r
I-

f
I
I
I
I
1
Jr

I-

I
I
[
(
(
(
(

1. Problem or Procedure Oriented

2. Oriented to Engineering Calculations

3. Useful for Writing Compilers, Simulators, etc.

4. Well known and Implemented Widely

5. General Purpose Capabilities

6. No Dialects or Preprocessors

~igure 6. Criteria for Review of Existing Languages

The first indicates that assembly languages, oriented to a specific machine,

will not be considered. Only higher-order problem or procedure-oriented

languages will be included.

The next two criteria are self-explanatory. The fourth is intended to insure

that a reasonably large pool of programmers exist who know the language and

further, through implementation, its difficulities have come to light and,

perhaps, have been corrected.

The fifth criterion is intended to eliminate languages which are intended for

so special an application that they are difficult to use for general purpose

programming.

A. CANDIDATE LANGUAGES

On the basis of these criteria, an initial set of seven languages has

been chosen for consideration and comparison. The list is not

necessarily final; it may be expanded as additional information is

obtained. The list is shown in Figure 7.

265

(

(

r
I
I
I
1
I
I

The latest available descripticin of PLIl, "PL/I Language Specifications, II

IBM Systems Reference Library, Form C28, 6571-3, July 1966.

Not all of the languages on the list satisfy all of the criteria;

however, if a language is deficient in one area, it should excel in

others, and this is true of all of the languages on the list. The basis

for the evaluation of these languages are the language specifications

in the references indicated.

B. LANGUAGE REQUIREMENTS AND CAPABILITIES

We have identified seven candidate progrannning languages as meeting

our criteria for programming languages. We have reviewed these

languages and attempted to compare their capabilities against our

requirements. In referring to Figure 8, the candidate languages are

listed across the top of the page. Language capabilities required

for our application area are listed along the left-hand side in order

of importance. The most important attribute appearing first. The

capabilities are graded alphabetically from "A" to "F." "A" being the

most superior grade and indicating the language contains substantially

all of the capabilities we desire.

267

I
I

(

1

I
I

I

I
(

(

[

(

I

The ability of a language to express iterative operations to state

"why," "do," and "if," looping capabilities. PL/l appears to have all

that is required. I might state that the other languages lack some

dynamic looping control capability.

For code optimization, PL/l is superior, however, none of the lanuages,

including PL/l, do a very good job in this area. We will place special

emphasis on this in our spaceborne language.

For decision making, sufficient logical and relational operators are

available in all of the languages. We would hope to be able to provide

considerable more flexibility of input/output language control in this

area for the spaceborne programming language.

Multi-task and interrupt capabilities are relatively new features and as

one might suspect, PL/l has some innovations to facilitate usage of these

features.

The readability of a language is largely dependent upon what kind of

characters are available to that language and the allowable length of any

labels or literal descriptions. PL/l, COBOL, and JOVIAL are all fairly

good.

A cursory analysis of the technical considerations would lead one to the

conclusion that PL/l followed by JOVIAL are the superior technical

languages. One other observation needs to be made regarding PL/l. PL/l

as specified in the SRL document has not been implemented as yet. There

may be attractive features in the language which might be very expensive to

implement and thus are not cost effective. Further, there are a number of

PL/l language capabilities which are not needed for an optimum Space

Programming Language.

269

(

I
[
[

r
I
f
I~

I
I

I
I
r
[
(
[
[

I

FORTRAN, primarily lacks data structuring capability, fixed point arith

metic capabilities, and some capability to manipulate symbolic data.

JOVIAL lacks capabilities to handle some data structures. It also

lacks language features to facilitate code optimization, input/output is

weak, formatting and multi-processing capabilities don't exist. PL/1 lacks

machine language, some VECTOR and matrix arithmetic capabilities, control

of data packing, etc. None of the languages have some of the capabilities

we would like to emphasize, such as code optimization and function oriented

arithmetic and algebraic capabilities.

This is as far as we have gone in our present study. We have resolved

the review of existing languages to two basic conclusions: l)that none

of the existing languages will fulfill our requirements satisfactorily,

2) that the FORTRAN, JOVIAL and PL/1 languages appear to be the best

candidates for a base language for the Space Programming Language.

V. OUR PRESENT CONCEPTION OF A SPACEBORNE PROGRAMMING LANGUAGE

Implementation of the Space Programming Language should produce the following

kinds of capabilities.

For problem formulation, we will have a subset of the SPL language which is

easily learned and which can be compiled in a very short amount of time and has

high utility for mathematical calculations. This language should be implemented

on the general-purpose computer. Further, this subset is one which could also

be used for on-board programming. This subset should also be highly useable in

an interactive or time-sharing mode.

For support programming, we should have the full language including all

capabilities of the problem formulation subset and the operational space

programming subset. The support programming language should have capabilities

271

I
I
r

l
I
I
I

(
(-.

('

[

I:
I

SUMMARY

Is a common POL for spaceborne programming worth implementing? We think we can

give an unqualified "yes" to this question. A common POL should reduce lead

time through better communication and program production techniques. It should

reduce costs through the transferability of programs, reuse of programs, and

communication of programming information. It should provide manpower flexibility

through reduced amounts of training and in reduced lead time in the learning

of a programming language.

How much do space borne programming requirements resemble general-purpose POL

requirements? The difference is largely one of emphasis. There is greater

emphasis made upon program quality and computer storage for space borne software

Further, the development of the operational program in a simulated environme

occurs considerably more often.

Is an application specific language like SPL(Space Programming Language) worth

implementing? We certainly feel that it would be. We feel that a language

largely based upon an existing, widely-implemented language, and having

capabilities which are tailored to the problem area, would certainly be appro

priate. We believe it would be useful in a large majority of the applications

in the spaceborne areas. We also believe that it should evolve and continually

be improved so that it remains a highly effective language.

Thank you.

273
(page 274 blank

I
I
I
(

:J

I
I
I
r
:1

I
I
I
(

I
(

(,

SESSION 5

Spaceborne Software System

Management

Chairman: Ron D. Knight
System Development

Corporation

275
(page 276 blank)

I
I

I

I

I

I

(

I
I
(

(

(

I

SUMMARY OF SESSION 5

Ron D. Knight

System Development Corporation

The papers presented in this session covered the range of management

techniques applied to software development, with emphasis on the process

of specifying software, controlling necessary changes, and documenting

products. The topic of estimating software costs was given attention

in the paper by Mr. LaBo1le. A thorough description of the management

of Project Gemini software provided an indication of the strict controls

necessary to adhere to a rigid schedule and thereby help to assure a

successful program.

The SDC study showed that the problems of spaceborne software development

are different in degree, in some instances, but not in kind from those

found in other application areas of the industry. This view was shared

by most of the speakers. There was not, however, such unanimity with

respect to the application of, for example, AFSCM 375 series across

the board for spaceborne software. Objections included anticipated

excessive costs, loss of management prerogatives, and possible jeopardy

of schedules. There were many proponents of better management processes,

but no general agreement on a particular system or technique was

reached.

To summarize, the consensus is that good management practices are an

obvious requirement to ensure timely software as well as hardware

development. The extent to which the Air Force should impose a uniform

system of management tools for software system definition, development,

and acquisition was a subject of wide disagreement.

277
(page 278 blank)

r
I
I
I
r
I
)

I
J
1
I
I
I
I
I
(
(

I

AN OVERVIEW OF CONFIGURATION MANAGEMENT
IN THE AIR FORCE SATELLITE CONTROL FACILITY

by

J. B. Munson
System Development Corporation

When I was asked to speak on the SCF's method of configuration management
I was not sure how to approach the topic .•••

The term configuration management seems to be very ambiguous in our culture
despite many efforts to give it a very precise definition.

When I use the term I mean it to encompass the management procedures and
the process involved in the development of any complex system and the main
tenance of that system's integrity during evolutionary modification. That
is how I define the term, if you ask me what the term connotes, I know
most people immediately call to mind visions of paperwork, red tape, proper
channels and lengthy delays. --This is unfortunate because procedures are
supposed to serve a beneficial and enabling function--not interfere with
the job. We feel we have achieved this enabling function in the SCF. We
have been developing and tailoring our procedures constantly during the
last six years. And, in fact, are currently undergoing a transition from
our system to the AFSCM 375 concept. This will not be as big a job as it
might otherwise have been since, as you will see, there are many similarities
between our system and 375. We also share another feature with 375 - the
concept that you use only those portions of the procedure needed to ensure
adequate management control, or more simply put: the more complex the function
being developed, the more extensive the control procedures.

For the purpose of this presentation, I will restrict my discussion to the
means by which the Satellite Control Facility manages the process of
computer program development.

For those of you who may be unfamiliar with the Satellite Control Facility
(Figure 1) let me describe it in very broad terms as a general purpose,
computer based, command control system. The nerve center of the facility
is a central computer complex, and the associated command functions, which
is located at the Satellite Test Center in Sunnyvale, California. This
center is connected by an elaborate communications network to a number of
tracking stations located throughout the world. The general purpose portions
of the system provide acquisition data to the various stations, acquire the
satellite as it passes over the station, collect telemetry data from the
satellite (which is passed back and displayed in Sunnyvale in real time),
transmits commands to the satellite and provides tracking data used to
update the ephemeris for future acquisitions.

279

I

I

r
r

1

I
I

I
('

(

(

I

The computer complex which provides this capability is depicted in
Figure 2.

Edch tracking station has two Control Data l60A computers, one for
handling the tracking and commanding data and the other for processing
the raw telemetry data. These, in turn, are connected to a CDC l60A
computer in Sunnyvale called a bird (or satellite) buffer, which can
be automatically switched from station to station, enabling it to
follow its "bird" as it orbits the earth. The ephemeris computation,
acquisition prediction, command generation and other associated
functions are performed on CDC 3600 computers in an off-line fashion.
They use data fed them by the bird buffers and transmit acquisition
and command data through the buffers to the stations.

I realize that this is a very cursory examination of our system;
however, if I've gotten the point across that it is a very large,
highly complex, interactive system I've succeeded in my purpose of
setting the stage for the description of our software development
activity.

One other point, though, before I begin that discussion. The SCF,
due to its size and complexity, employs a number of separate
software firms, approximately ten, in the development of the computer
programs which make up the system. This gives rise to a fairly unique
concept (for software) used by the SCF to aid in the development
process. This is the existence of the role of computer program
Integration Contractor, a responsibility of the System Development
Corporation.

Figure 3 details the responsibility of the Integrating Contractor.
In essence this chart says that he is responsible for quality control -
he must see that the pieces being developed will work together; he
puts them together and he validates that the software components work
as a system.

This takes us, finally, to the process involved in the SCF computer
program development cycle. As an aid in developing this discussion
I've chosen to jump into the center of the cycle and start with the
smallest discrete unit, the individual computer program (Figure 4).

The deliverable product consists of the discrete computer program
and associated materials.

Each program is reviewed for the Air Force by the Integration Contractor
to see that it conforms to its specification.

The design specification had been previously prepared by the
Programming Contractor and reviewed for the Air Force by the general
system engineer, the Aerospace Corporation, and the Integration
Contractor. It contained both the detailed coding specifications
and an acceptance test plan which had to be approved prior to the commence
ment of the coding itself.

281

'~
I,
['ii

11

II

I

............ ---- ~ .. ~~~

N
00
w

COMPUTER PROGRAM INTEGRATION CONTRACTOR ROLE

• CONCEPTUALIZATION AND PLANNING

• INTERF.ACE ASSURANCE

• ASSOCIATE CONTRACTOR SU PPORT

• GENERAL PURPOSE PROGRAM DEVELOPMENT

• COMPONENT VERIFICATION

• SYSTEM VALIDATION

• CHANGE CONTROL

~

- --~- .. -" - < -:-~i:;";:.,-::: ~-__ -~ 'h ,~~""'> """'"'

I
I

1

'. I·
'

1
1

I
I

(

(

[

I

Obviously, in a system as large as ours many such programs are being
developed at any given time and the dynamic and expanding nature of
our environment has required the consolidation of changes into
packages or models. Each model contains a well structured set of
modifications to provide a step function increase in system
capabilities. To give you an idea of the pace of our system -

Model. 7 is operational
Model 8 is in installation
Model 9 is in system test
Model 10 is in development
Model 11 is in design
And the collection of requirements for Model 12 is in progress.

This may not seem quite as exciting as it is unless I further explain
that the total system consists of approximately 1.5 million
instructions for the various computers and from 10% to 50% of them
may be changed in any given model.

How, then, is this process controlled?

First, requirements for changes to the system (Figure 5) are constantly
being evaluated by the engineering side of the SCF These requirements
come from many sources - to name a few:

A. Satellite Program offices who have flight requirements.
B. The Satellite Control Facility operations people who have

been using the system and require changes.
C. And the engineering area itself which wants to anticipate

general purpose needs of their expanding support mission.

Next, these requirements are sorted and scheduled by Aerospace and
the Air Force with the help of the Integrating Contractor - in
meetings of a configuration control board.

For complex or large changes and new procurements, Aerospace will
prepare design criteria for transmission of the statement of the
requirement to the programming contractor. For most modifications to
the system, though, this step is by-passed and requirements or
changes are relayed to the appropriate contractor through contractual
change channels. In any event, the Programming Contractor responds to
the requirement with a document referred to as the implementation
concept - which provides his formulation of the design required for the
functional change. This document may imply changes in many discrete
computer programs; however, it is written at the system level and is
used to evaluate the contractor's plan of attack. This document is
reviewed by Aerospace and the Air Force and must be approved prior to
any further effort.

285

i
'i

"

'\
Ii'

ii,
1 ~,
1\

I I,
"

I
I
I
I

I
l
r

I
I'
(

I
I
I

Following review and approval of the implementation plan - and
there may be many of these, from many contractors, for a given model -
the Integration Contractor must integrate these plans into the current
system configuration and provide. for the programming contractors an
interface specification which supplies him with the details of how
his area must be organized to fit into the system. This includes such
items as central data definitions, allocations of core storage,
standards and conventions for interfacing with the executive system,
communication conventions for interfacing with other functions,
computers or special purpose digital equipment and utilization of
system constants or tables. Upon receipt of the approved interface
specification the contractor can finish the detailed program design
and proceed with program production.

To illustrate the magnitude of this delivery and review process
SDC received, for Model 8.0, in excess of 60 new or modified computer
programs -- and this was for the 3600 general purpose system only,
the 160A portions had been virtually re-written.

To show how we accomplish this mammoth integration and validation job
I have to add a couple of boxes to the flow chart (Figure 6). These
two products are prepared by the Integrating Contractor during the
development process. The first - the validation plan - provides in
precise detail the Integrating Contractor's plan for testing the
software system to validate and demonstrate that it meets the system
requirements. This document is closely reviewed by the requirements
and engineering personnel to see that in fact it validates that the
system provides the intended capabilities and by the operations
people to see that it demonstrates the system's operability to meet
their satellite support mission.

The system is then exercised by the Integrating Contractor, in
accordance with this plan, until all agencies are convinced that
their requirements have been met and demonstrated.

Additionally, the Integrating Contractor prepares system operating
procedures which tell the operations people how to use the system
to accomplish their mission and conducts training sessions for
each new model.

Figure 7 shows how the development procedures provide for a
feedback loop and provide for change control during the development
cycle.

As indicated, two types of change are recognized. These are,
basically, the correction of errors, which is when the system does not
perform as specified, and the change of the specifications and
associated programs to accommodate new or modified requirements.
Although the results of either type of change are similar in the
way they are received into the system - octals or new program mods -
the control process is entirely different.

287

,
1'1;

.......... ~ ____ ~~IIiiiIiiiiiIiIr,~~ __

N
00
\0

SCF COMPUTER PROGRAM DEVELOPMENT

IMPLE
MENTATION
CONCEPT

INTERFACE
SPECIFICATION

PROGRAM
DESIGN
SPECIFICATION

COMPUTER PROGRAM
SUBSYSTEM
VALIDATION PLAN

COMPUTER PROGRAM
SUBSYSTEM
OPERATING
INSTRUCTIONS

DESIGN CHANGES

DISCRCPENCY REPORTS

PROGRAM
PRODUCTS

~

I
I
l
I
i
1
I
1
1

THE ADAPTATION OF SYSTEMS MANAGEMENT CONCEPTS

TO COMPUTER PROGRAM ACQUISITION

Milton V. Ratynski
Electronic Systems Division, AFSC

Lloyd V. Searle
System Development Corporation

The work we are reporting here results from an on-going project

at the Electronic Systems Division to develop technical standards

pertaining to the acquisition of computer programs. Because of ESD's

extensive interest in the L-Systems, and because computer programs

are becoming increasingly important to Air Force systems in general,

the project is emphasizing requirements which exist within the

context of a system program. Thus, the work is closely concerned with

the precepts of "Systems Management" as set forth in the 375-series

of Air Force regulations and Systems Command manuals.

Our presentation is being divided into two parts. The second

part, to be presented next by Mr. Neil and Mr. Piligian, will emphasize

the special topic of Configuration Management. In this first part,

our purpose is to review certain general ways in which computer pro

gramming relates to the systems management framework, to provide

perspective for the subsequent discussion.

The concept of "Systems Management", as a structured way of

acquiring new military capabilities, is by no means a new, or very

recent, invention. Although the present series of AFSC manuals is

comparatively recent--and steadily changing in particulars--the

process now has a substantial history, in the Air Force, of about

15 years.

291

I
I
(

(

I
I
1
I
I
I
f
I
I
I
I
(

I
(

I

In some part, this may have been a function of its relative

independence from the engineering disciplines. Traditionally,

military systems are built around a basic core of operational

hardware; and the concepts of systems management reflect this fact.

The "pacing items", to which the. ,other associated and supporting

items must be related, have typically been the major items of opera

tional equipment. Hence, many of the terms, concepts, and procedures

have been influenced by their established connotations in the world

of hardware engineering.

Unfortunately, our "common English" language has already supplied

too many terms which have acquired special--and different--meanings

in the hardware and software fields. One purpose in this session is

to discuss a few of these terms as they are now being used in the

language of systems. Where many people from different organizations

and varied technical specialties are involved in a Joint enterprise-

as they are, in building a large system--semantics can become a

critical matter.

•• *

As a starting point, we might expand briefly on the meaning

of "Systems Management". This refers to the general process of

planning, organizing, and directing the multitude of activities

which are required to bring a new system into being and put it

into operation. In the Air Force, it is accomplished by a

centralized SPO (System Program Office), located in one of the

four Systems Divisions of the Systems Command. TYpically, it

encompasses the five sub-areas of management which are illustrated

in Figure 1.

293

I
I
(

(

J
r
r
il

I
I
I
I
I
(

[

('

(

(

I

consideration and responsibility. They pertain, most directly, to

the major system elements of equipment, facilities, and computer programs.

Since we are speaking of terms, it must be observed that "Software"

is one which has proved to be increasingly difficult to use in this

context. With so many different, but firmly established, definitions,

its principal virtue with a mixed audience seems to be in keeping people

from being quite sure what we are really talking about! While the

troubles m~ not be so apparent when one really means to refer Just

to computer programs, or to a limited class of computer programs, they

become more evident when it is intended to refer to the activities of

designing and developing, or to computer programs plus something--e.g.,

plus the specifications, user documentation, testing, system analysis,

or even associated human factors considerations. It is true that

some such variety of things is (or should be) normally associated with

computer programming, particularly in the context of a military or

space system program. --But it is just as true that a similar variety

of things is also associated with the engineering development of

equipment.

In system programs, it has been found necessary to "break out"

different elements into a variety of classifications and groupings,

because they have different implications for both technical work and

managing contracts. The rules which apply to a piece of equipment,

for example, are not the same as those which apply to handbooks and

manuals, or reports. And sometimes, certain elements cannot be

adequately specified at all in terms of identified and deliverable

products.

We find it useful to note that essentially all of the elements--

or "things"--which can be bought via contract can be grouped into

three very broad categories, namely; Manufactured Products, Data, and

Services. For the purpose of defining the role of "Software" in systems,

295

I
I
I
(

I

II
'I

I

research, design, development, testing, operation, or

maintenance.

Now, if we confine our attention for the moment to a Computer

program -- and further, disregarding development and documentation, to

the resulting item itself in the form of a magnetic tape or card deck--,

the question arises: "Should we treat it as a Data Item, or as a

Manufactured Product?" The question is by no means academic. In

the case of any given computer program which is designated as deliver

able under contract, a forced choice must be made among three possible

alternatives: It is either (1) a Data Item, (2) a part of another

item which is classified as a Manufactured Product--namely, a computer,

or (3) a Manufactured Product in its own right.

DATA ITEM

PART OF A CEI (Computer Eqpt.)

~ SEPARATE CEl

Figure 3. Possible Classifications for a Computer Program

Considering its intrinsic properties, one might easily be led

to state categorically that it is an item of Data. And that position

is highly defensible.

However, both the Air Force and NASA are now insisting that most

computer programs for military and space systems be treated as Manu

factured Products (and classified as Contract End Items) for the

reason that certain requirements have much more in common with equip

ment than with Data.

297

I
I

I ,
I
I
I
,I

:1

I
I
I
I
I
I

Thus, certain management techniques which are suitable to

equipment development are also indicated for computer programs.

These include:

Contractor-developed specifications, at both the per
formance and design levels;

Design reviews & inspections, to monitor design, coding,
and documentation;

A formal test program, to verify compliance with approved
performance requirements, including specified functional
interfaces.

Now--this may sound like we are sqing that:'Software is Hardware!

However, although many of the same management principles might

apply, in the broad sense, computer programs are definitely ~ like

equipment in many significant ways. For example:

Unlike hardware, computer program instructions do not "wear out".

And, we don't have to build and maintain an elaborate special production

facility to produce each: computer program in quantity--since, regardless

of its configuration (if we happen to !!!!1 copies), any number can be

duplicated on a standard machine, at small cost.

Thus, we essentially eliminate a whole host of such concepts as:

Reliability, Maintenance & Repair Cycles; Useful life;
Provisioning, Interchangeability, & Substitution of Spare Parts;
Production; Quality Control; Acceptance Testing; Logistics •••

--that is, in the sense of the established connotations of these

concepts for hardware.

By the same token, the management procedures which have been

established for equipment have to be revised extensively, and carefully

tailored for realistic application to computer programs.

299

I
I

[

!
I
I
r
I
I
r
I
[

I
(

I:
I
I
I

SYSTEM
4XXL

~------------------~----------~--------r--------------------'-- ---

COMPt1l'ER
PROGRAM

CEI(s)
DATA

SERVICES

l

COMPUTER
EQUIPMENT

CEI(s}
DATA

SERVICES

I

COMMUNICATIONS

CEI(s)
DATA

SERVICES

Figure 5. Major System Segments (L-Systems)

I

FACILITY
CEI(s)

DATA
SERVICES

That whole package, incidentally, is also often·· known to carry

the label of "Sonware". And, it is the total package with which our

project is concerned:

Figure 6 is a very gross-level illustration of the major activities

and events (mainly for the computer programming System Segment) which

could be expected to occur during the Conceptual, Definition, Acquisi

tion, and Operational phases of a typical system life-cycle.

Contractor activities associated with this and other System

Segments occur mostly during the Definition and Acquisition phases-

following certain system-level events which provide necessary starting

points:

301

..... IIIIIIIIJ ~~ ~ ~...... tIiiiioooiiiiIt IiliT'i! .---~ .,~ Ii' .__ II\oiiIiIiiiIIt ____

w
o
w

COt{CEPTUJ\LI DEF\N \T\ON ACQUI~\T\ON ops.

CONF.
M&M.T

1 ISYSTEMt==j PT. I I I PT. Ilj I FsDATE""""-SPEC CEI CEI FACI SPECS
-----+-11 I SPECS - - SPEC ~

LrRE~ '----___t_ p "R. ~ ~ ~fC.B~

ALYSIS ANALYSIS PERS ESIGN PDR CDR S'l~TE.M ~SYSTEM ~ eEl ~ PROC RELIM !lETA IIESIGN~
E. ~G-R. EFINITIO DEFINITIO TRNG DESIG moo

TE~T 1
3YSTE}iiH CAT

_____ +--1_ TEST I
PLAN PLAN

CAT
I

TEST

Figure 6. Information Processing Events During a System Life-Cycle

CAT ~ CA'l'
II III

TEST TEST

I
I
I
I
I
1
1
I
I
f
f~

I
I
I
I
(
(

I
(

which have been completed and issued are the following:

(1) A set of procedures and requirements for computer program

configuration management, which is presently being

incorporated into the forthcoming revision of AFSCM 375-1,
and has been issued separately for interim use as ESD

Exhibit EST-l.

(2) A supplement for electronic systems to AFSCM 375-4, which

has been issued as ESD Exhibit EST-2.

(3) A number of AFLC/AFSC Forms 9 for items of deliverable

data associated with the computer program process,

prepared for incorporation into Vol. II of the joint

AFSC/AFLC Manual 310-1.

305
(page 306 blank)

I
r
I
I

I

(

r
(
(
[
(

CONFIGURATION MANAGEMENT OF COMPUTER
PROGRAM CONTRACT END ITEMS

by

M.S. Philigian, Air Force Electronic Systems Division
and

G. Neil, System Development Corporation

The procedures being described here have been published in Electronic

Systems Division (ESD) Exhibit EST-I. The purpose of this exhibit is

to augment AFSCM 375-1, "Configuration Management During Definition

and Acquisition Phases," dated 1 June 1964. The exhibit is intended

for use in conjunction with the parent manual prior to its incorpora-

tion in the revised version of AFSCM 375-1, which is expected to be

available early in 1967.

In developing these procedures we found it necessary to examine all

facets of systems management to determine the relationship of the

computer program to a total system. The procedures, as documented in

the exhibit, have been coordinated extensively with Systems Command

and industry and to a limited extent with NASA. The procedures are

currently being used on several system programs at ESD and have been

found to operate quite successfully.

The computer program configuration management procedures relate to:

(a) Configuration Identification

(b) Configuration Control

(c) Configuration Accounting

307

(
(

I
(

r
I
I
I'
I
r
I
I
I
r
I
I
I
I
I

•

CONFIGURATION IDENTIFICATION

EST-l contains a complete and separate exhibit to provide contractors

with instructions for the preparation of the detailed specification

for computer program contract end items. This exhibit is equivalent

to Exhibit II for prime equipment CEls in the present manual. The

computer program specification is in line with the Uniform Specifica

tion Program, as introduced in AFSCM 375-1, where we have a format

whiCh is established at the system specification level and is followed

through to the Part II specifications for all CEls within a system.

Part I - Contains the Performance and DeSign Requirements.

This part of the specification is needed to specif,y'

requirements peculiar to the design, development, test,

and qualification of the CEI.

Part II - Contains a Detailed TeChnical Description of the CEI.

This part of the specification is used to describe, in

detail, the exact configuration of the computer program CEI.

Now having computer program CEI specifications in line with the

uniform specification program, the concept of baseline management can

be applied in the same manner as for the other CEls. The Part I of

the specification teChnically defines the Design Requirements Baseline

and the Part II of the specification technically defines the Product

Configuration Baseline.

309

I
I
I
r
I
I-

I
I-

I
I
I
I
I
I
(

I
[

I
I

The contents of the Part I specification are as follows:

Perfor.mance Requirements

This section defines the performance requirements for each function

within the CEI. It is written in mathematical, logical, and operational

ter.ms.

Interface Requirements

This section specifies the requirements imposed on the design of the

computer program in order to satisfY the requirement to interface with the

other elements of the system, e.g., message formats, card formats,

displ~ formats, etc.

Design Requirements

This section specifies any design requirements for the computer program.

These may include specific language to be used, requirements for

expansion or design modifications, programming standards, etc.

Test Requirements

This section will specifY the requirements for formal verification of

the performance of the CEI in accordance with the performance require

ments.

PART II CEI SPECIFICATION (COMPUTER PROORAM)

The Part II specification for computer program CEls contains a

technical description of the computer programs. Unlike the prime

311

(

I
I
I
(

I
I
I
I
I
I
I
~I

I
I
I
[

I
I

duplicate those contained in Exhibit lX, this addendum is intended to be

complete and self-sufficient in its coverage of procedures pertaining

to changes to computer programs. While the procedures conform with

the format and intent of ANA Bulletin No. 445, they are tailored to

reflect the absence of many special requirements to equipment production,

retrofit, and supply and they provide additional information for pro

cessing and evaluating changes to computer program. CEL

At the outset of the Acquisition Phase the contractor-prepared Part I

CEI specification is approved by the procuring agency. This approval

establishes the DeSign ReqUirements Baseline as a defined point of

departure for configuration control. Once the Part I CEI specifica

tions have been baselined, any changes to the Part I will be submitted,

on an ECP form, as a design requirements change. The ECP will be for

mally approved by the Configuration Control Board (CCB) prior to the

implementation of the change.

During the Acquisition Phase as the CEI is being developed, the Part II

CEI specification is being prepared to describe the exact configuration

of the CEI. Immediately prior to Category II testing a First Article

Configuration Inspection (FACI) is conducted on the computer program

CEI. At FACI the Part II CEI specification is accepted as an audited

and approved document. At the successful completion of FAC! the second

computer program baseline may be established, i.e., Product Configuration

313

I
I
I
r
(
I-

f
r
I
I
r
I
I
I
(
(

I
I
I

End Item Configuration Chart

Spec. Change Notice (SCN)

Spec. Change Log

Configuration Index

Change Status Report

Version Description Document

FIGURE 3
SPEC. MAINTENANCE & ACCOUNTING DOCS.

The End Item Configuration Chart is a summary record which identifies

approved changes (ECPs) to the end item specification.

315

I
I
I
I
I
I
I
J

I
1-

I
I
I
(

(

I
I

PART I
SPEC.

CAT I
TEST
PLAN

MANUALS

CONFIGURATION
INDEX

FIGURE 5
CONFIGURATION INDEX

PART II
SPEC.

VERSION
DESCRIPTION

DOCUMENT

HANDBOOKS

The Configuration Index provides an official listing of the specifica-

tions, and significant support documents. It also reflects all approved

changes to these documents.

317

(

(

(

I
I
I
r
I
r

I
I
(

(

[

I
I

RELATED
DOCS

&
SPECS.

VERSION
DESCRIPrION

DOCUMENT

ECPs
STALLED

INSTALLATION

INSTRUCTIONS

FIGURE 7

PROORAM VERSIONS
&

OCTAL CORRECTORS

VERSION DESCRIPrION DOCUMENT CONTENTS

The Version Description Document shall be used to accompany the

release of a computer program CEI, either as a whole or in part.

Its purpose is to identity the elements of the computer programs

delivered and to record pertinent additional data relating to status

and usage.

319

I
r
r
(

I
I
I
r
I
I
(

I
(
(
(
(

I
I
I

the integrity of the computer program design prior to coding and testing.

While the exhibit defines the CDR for a computer program as basically

a flow chart-level review, it also provides for flexible application in

the case of a complex computer program CEI which is scheduled to

reach any given stage of the design in increments of individual computer

programs, or blocks of programs. In these cases the CDR may also be

scheduled in increments.

The First Article Configuration Inspection (FACI) is a formal technical

review which establishes the adequacy of the Part II specification as

an accurate and complete description of the computer program CEI. The

primary product of the FACI is formal acceptance, by the procuring

agency, of (1) Part II of the end item specification as an audited

and approved document and (2) the first unit of the computer program

CEI.

321
(page 322 blank)

I
(

I
I
I
I

J
1
J
I
I
I
I
I
(

I
I
I

DEVELOPMENT OF AIDS FOR THE

MANAGEMENT OF COMPUTER PROGRAMMING*

by

V. LaBolle

System Development Corporation

*Reprinted from the November 1966 issue of the Journal of Industrial
Engineering, official publication of the American Institute of
Industrial Engineers, Inc., 345 E. 47th St., New York, N. Y. 10017.

323

I
(

r
I

I

J
1

I
I
I
(

I
I
I
I

intangible nature of the operational product slows the development of such

standards. A complete computer programming job may yield a variety of

tangible products--documents for users, operators, and maintenance staff,

as well as tapes, listings and card decks--but these merely represent the

actual computer program that directs data processing operations within the

computer. Another obstacle in establishing standards is the rapid technological

change that is coupled to the growth in computer application and techniques

for using them. The technology won't sit still long enough to allow us to

appraise it.

In planning computer programming efforts, the tendency has been to under

estimate both cost and development time. Some experts who help make estimates

forget to discount the fact that they, the experts, won't be on the job, but

rather, people with less experience and proficiency will be involved. Also,

in planning there is a tendency to neglect some of the many tasks that are

needed to complete a computer programming job. In the absence of quantitative

guidelines based upon experience, such oversights lead to underestimates

Recently, the decision-making problems that face managers in computer

programming and the buyers of the resulting products have been identified

more clearly (9). A landmark in this area, Brandon's Management Standards for

Data Processing, describes techniques for establishing standards for methods,

and subsequently, performance standards for the men and machines used in

computer program development (2). Such standards are aimed at improved mange

ment control, cost estimation, and cost control, particularly in the field of

business data processing. Also, the Federal Government has been addressing

questions on how to plan, control, and evaluate computer programming efforts.

For example:

The Bureau of the Budget, the General Services Administration, and

the National Bureau of Standards, starting with the formulation of

policies on computer acquisition and use, have now become interested

in standards for computer programming (14).

325

I r .

I
(
(

r
r
I

I
]
(

1
I
(
(

I
I
I
I

planning by first-level supervisors, the guide is designed to stimulate more

complete consideration of the entire computer programming process. Within the

guide a set of prescribed planning and management tasks are applied to the

computer program development process. The process is described in terms of

eight phases: (1) (Information) Systems AnalYSis, (2) (Information) System

Design, (3) (Computer) Program Development, (4) (Computer) Program Coding,

(5) (Computer) Program Development, (4) (Computer) Program Coding, (5) (Computer)

Program Checkout, (6) User Documentation, (7) User Training and Assistance, and

(8) Turnover. Each of these phases is further divided into tasks-- a total of

36 for all eight phases. Each task is then described on a two-page format

that includes inputs, outputs, subtasks, cost factors, and the characteristic

task environment. Comprising more than half the l70-page document, these

detailed task descriptions provide checklists for more accurate and complete

planning. The sequence of planning steps together with some guidelines for

estimation, help the manager plan, schedule, and cost these tasks in the develop

ment process. Various forms (e.g., .see Figure 1) are supplied to record the

planning results and to serve as abbreviated checklists for the required work.

The forms and procedures also provide a basis for control of computer programming

projects and for collection of experience data that may be used to improve

future estimates.

The guide has been in use for more than a year as a reference for planning

computer programming projects at NAVCOSSACT. In addition, the Air Force has

requested more than 100 copies to distribute to organizations responsible for

computer programming. At least one programming staff in a large corporation

has planned to adopt a modified form of the guide as a standard for planning

and control. In other words, the feedback to date indicates that the planning

guide has approached the goal of supplying a useful aid for managers of

computer programming.

ANALYSIS OF COST DATA

To help managers make better estimates of costs for computer programming, Project

members began exploratory work in 1964 to derive estimating equations using

actual experience data as inputs to the analysis (4). This work is being

done under contract with the Air Force Electronic Systems Division, Deputy

327

I
I
I
(

I

r
I

I

I
(

I
(

I
I
I

for Engineering and Technology, Directorate of Computers. It is a pioneer

task since efforts to gather and analyze numerical data on computer programming

costs are still unique. The equations being derived are rules for using

numerical values for cost factors that characterize the requirements, resources,

and environment for a computer programming effort to calculate estimates for

cost such as manpower, measured in man months, and computer time, measured in

hours. These estimating relationships are intended to help the manager plan a

program production effort in the early stages of computer programming, e.g.,

before program design begins. However, the results may also be used to

evaluate completed efforts by comparing actual costs with estimates in a

framework provided by the derived equations.

The analysis work has been conducted in cycles, each marked by collection

and analysis of new data to improve upon earlier results. A cycle of analysis

consists of the following:

Design (or redesign) of the questionnaire used to collect the data.

Collection of data that characterize completed programming efforts.

Validation of these data by identifying anomalies and gaps and then

coordinating with the original respondents to clarify and complete

the questionnaire.

Repeated application of statistical techniques, e.g., multivariate

regression, coupled with intuition and experience. These techniques

are used first to reduce the total number of cost factors to be

considered as independent variables, and then to derive the equations

that relate the remaining cost factors (independent variables) to the

cost measures (dependent variables).

A first cycle, which used data on 27 programming efforts completed at SDC,

was conducted in 1964 (5). For the second cycle more data were collected

at SDC, increasing the sample to 74, and analyzed in 1965 (11, 8). A third

cycle, using additional data on 104 programs completed by computer programming

organizations in the Air Force and in industry, is now under way.

329

I
r
I
I
I
I~

r
I
r
I
r
I
I c.

(
(
(

I
I
I

Programming Personnel. Characteristics of the personnel needed

to develop the computer program, e.g., number of programmers

classified as coder, programmer, senior programmer, system

programmer; years of experience for each category of programmer

with language used, computer used, and specific application.

Utility Computer Programs. Characteristics of the computer

programs used as tools to produce the subject computer program,

e.g., programming language used in coding, number of free support

programs available.

ENVIRONMENT

• Management Procedures. Factors associated ·with the plans, policies,

practices, and review techniques used in the administration of

all phases of program development, e.g., existence of a documented

management plan for processing of program design changes and standards

for coding and flow charting.

Development Environment. Factors describing relationships with

external organizations, including customers and other contractors,

e.g., number of agencies concurring on design specifications and

computer facility operated on the basis of open shop, closed

shop, time-sharing.

The analyses to derive estimating equations are restricted to costs

of computer program production, i.e., the computer program design, code,

and test activities including associated documentation and design

and development work on the data base. Chosen because these activities

are common to almost all computer programming work, this set does not

include work that may be in a more general model of computer programming

for large information processing systems with men, machines, and computer

programs as components, such as information processing system design

and analysis.

331

II
(

I
(
(

r
I~

I
I
I-

I'
I
[
(

I
[

I
I
I

The Second Cycle--An Analysis of 74 Data Points

In a second cycle, more data were gathered to conduct similar analyses aimed

at obtaining estimating equations with increased precision, and with cost

factors used as predictors that are relatively easy to estimate before a

programming job begins. Differences in the second cycle are discussed below:

The Data Collection Questionnaire. The initial questionnaire was

revised as a result of feedback and the experience gained in the

first cycle. For example, questions were amplified to gather more

detailed information and to remove ambiguous terms (e.g., the five

levels of system complexity were briefly described).

The Sample. In the second, as in the first cycle, no deliberate

sample design was used; more managers throughout SDC were asked to

complete questionnaires for representative programming activities.

After a check of the collected questionnaires for accuracy, a total

of 74 data points., including 24 points from the first cycle, remained,

representing a variety of programming applications--command and

control, compilers, information retrieval, management information,

and utility programs.

This larger sample included more small jobs, resulting in a larger

range for the cost measures (number of man months, computer hours,

new machine language instructions, and months elapsed) as well as

many of the cost factors. (For example, 36 data points with less

than 20 man months of effort were added in the second cycle.) So

their frequency distributions showed clusters of data at the low and

medium values and few values at the high end.

The very high values from such exponential distributions dominate the

equations derived by multivariate regression techniques, and estimates

for low values have poor precision. In analyzing the data in the

entire sample, the logarithmic transformation was applied to all the

cost measures and to some cost factors, to compress the range for a

variable, thus drawing in the large values toward the origin.

333

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
(

I
I
I

TABU: I

:REDUCED SET OF COST FACTORS

USED AS INPUTS FOR FINAL REGRESSION ANAtrSIS

3elieved ~o Increase Costs

I~"lo\"at.ion in system

Co::rplexi ty ot overa.ll system

LoglO number ot subprograms

Lo(l:J.O number ot words in dAta base

Lob:l.O number ot classes of items in dAta base

LoglO numb.u- of words in tables and conatants
not in data base

Loglo number of input message types

Lo~O number of output message typea

Complexity of program design

Percent math instructions

Percent logical control instructiOns

Percent generation to produce desired output

Insufficient memory capacity

Insufficient I/O capacity

Stringent t~ng requirements

:First' progra.mzn1ng ettort on computer

Lo~O average turnaround. time With the computer

Computer operated by agency other than developer

Believed to Decrease Costs

Percent clerical instructions

Percent self-checking-rix instructions

Percent information storage and retrieval

Estimated customer experience

Time-sba.ring

Management index--the ratio of "yes" answers
to the total set below:

Existence of a dOcumented management plan tor:

processing of system deSign changes

proceSSing of program design changes

dissemination of error-detection and
error-correction information

use of computer facility.

c~ntin6cncy tor computer unavailability

communication with other agencies

design specification concurrence
procedures

cost control

management information control

document control

standards for coding, flow charting

Percent programmers partiCipating in deSign

Lo~O production rate--instructions/~"l month

Pro::;ram e.eveloped away from operational. location Percent senior programmers

C=:;?u.ter at operational site d1:Uerent than
at development site

Progra:Q developed at more than one location

Lo010 number of reused instructions*

Pe::,c .. nt error rate--100 x "scrap" inatructions/
~o~c:.:.. ir.s.'tl'"' .. cJ .. ior.s coC.Qd*

Perce::; operat1onEIJ. d1scards--lOO x "scrap"
inz~~c~i~r.s ~~~ ~o c:~es/total instruction
ccdeci*

Factors with Neither HypotheSiS

Percent I/O instructions

Open/closed shop

*:I.easured. in nu:nbcr ot: machine J.a.nguaae instructions

335

(

(

I
I
I
(

I
I
r
I
I
I
I
I
I
(

I
I
I

Cost

TABLE II

DEFINITIONS A~lD CODING FOR VARIABLES USED IN TEE EQUATIONS

V!:l.'!'"i~blcs

~o~nl ~\~~c~ of ~~~ ~onths including first linc s~pcrvisior. ~o procram design, code, ~~d
test ar.~ doc~~~nt this program not incl~dinG the cost of any ~ssociated executive or utility
~ro~!"~~.

Y2 - Total n~~bar of com~uter hours used by all develo~~cntal computers.

Y3 - N\.:::1"oer of new machine language instructions written for this program (system) not includ1ng
rcused subroutines, logical blocks, ~~d subproerams.

Y4 - l.!.::mths elOlpscd--completion data for proera:n delivery J:linus start date for proera."Il desien.
At the tima of program delivery the program is ready to be installed in the operational
computer to begin system test. The proera.'ll design activity uses the operating systCl:1
description and operational specifications as inputs to develop program design speCifications
and. flow charts.

Predictor V~riables

Xl - l.~OL versus POL, coded POL. 1; MOL· O. POL uses procadure-oriented or compiler lang'J.a.ge for
source statement--MOL uses machine-oriented assembly symbolic language source statements.

~ - S::::::.~- versus lare;e-scale developmental computer systems~ coded small • 0; lar~e • 1.
Machines with less than or equal to 16,000 words of core memory are small--those with more
than 16,000 are large.

X4 - Strin~ent timing as a constraint on progr~~ng deSign, coded yes • li no • O.

X5 - Firs~ ?rogr~~nB effort on computer, coded yes ,. 1; no • O.

X6 - Prograr. developed at more than one location, coded yes • 1; no • O.

x.., - N~':lber of sub:orogra."Ils in this program (system)--divisions in the program design for logical
reasons and/or division of programming labor.

Xs - Total n~ber of classes of items in the data base. Classes means categories of types of
items such as names of people, salaries, cities, states or any characteristics of information
for ~hich there are many items or entries.

~O - Estimate of customer knowledge or experience with the development of automatic data processing
systems, coded eA~ensive • 3; limited a 2; vaGUe ~ 1.

'P t . ~""i i ti i d i Number proer3.!l',r:1Crs participating in :iezign • ereen 'Oro~a.".J:lers pa.n. c pa ne n es €i!l • ". • r • .~.:l.XJ.mum nu.'lloer 0 program:llers
coded in decimal. Design may include both requirements analysis conducted to specity in
:let;;:.il the perforca.~ce requirements of this information processing system, a.. ... d t~e opera
tiona! design activity to translate these requirements into operational design specifications
tha~ indicate how the needs will be satisfied..

x.. - ??::'~'-"-:-; clerical instructions, coded in decimoJ.--bookkceping, sorting, cearchine, a.nd 1'il<:
J..2 ::~: ", :.·_<:n:::..~ce ::'n:>tr-u.ctions as canpa.red with m.a.thcmAtico.l input/output, loeical control a.rod

je~~-chec~ine instructions.

P'':l'c~n~ generc.tio:l !\lr.ctions to produce desired outputs, coded in deci::lll.l, as compc.re.i \11"':1
other !Unctic~s s~ch ~ ir.!ormation storage and retrieval, data acquisit.ion and display,
control Or re~tion, deCision makina, Gnd transformation.

337

I
I
I

I
I
I
I

,

I
I
I
I
I
I
I
I

Evaluation of the Results

The equations derived to date have large standard errors of estimate--the

differences expected between actual and estimate may be 100 percent or larger

of the actual. The Programming Management Project members recommend that the

present equations only be used as an aid to support estimation by providing a

basis for comparison with other techniques. Because of the tendency to under

estimate costs, the general reconnnendation is to use the "most conservative"

estimate when several are available.

In the search for more accurate results from the statistical analysis,

potential errors in both the methods and in the data used to date have

been identified, for example:

The Model discussed earlier contains some gross assumptions that

probably need refinement.

The feedback .suggests that a separate set of questions should be

used to gather data for each cost measure. For example, to deve,lop

the equation for the cost measure, months elapsed, questions could

be added to indicate how manpower was applied over the actual elapsed

time by identifying intermediate milestones in computer program

production.

Not all of the factors solicited by the questionnaire are strictly

appropriate for all types of programs.

The accuracy of many individual answers depends upon the effort

that the individual respondent devoted to completing the questionnaire

and the availability of the data.

Many of the responses showed the need to do more work to define terms

more precisely.

Even if the data were accurate, how representative the same is is

unknown. The data are probably not a truly random sample over the

range of values for cost factors and cost variables. Defining a good

statistical sample that can serve as a basis for generalizing the

analytical results to the population of computer programming jobs is

339

(

I
I
r
r
I
I
I
I

I
(

I
(
(

I

CONCLUSION

Use of personal interview to obtain more reliable data rather than

indirect mail and phone contacts.

Improvement in the definition of a data point to differentiate as

needed among runs, subprograms, programs, and program systems.

This research and development work in the Programming Management Project is

one attach on one problem area in the industry. It represents a beginning;

more work is needed. The long-range goals of such work should extend beyond

the problems of improved cost estimation and planning for computer programming.

Aids and standards are urgently needed to make decisions or trade-offs between

cost versus value for planning (before), control (duri~g), and evaluation

(after) of computer programming projects.

Such standards are also needed to make decisions on directions for work to

develop new tools such as utility computer programs for computer programming.

Although most work to improve the tools for doing computer programming actually

has an economic foundation, little has been done to define the requirements

for these developments in terms of cost and value and then to collect the

appropriate numerical data for analyses--analyses that would improve the

ways in which management decisions are made in selecting, guiding, and

evaluating new developments.

Although scientific approaches can only help alleviate parts of complex

management problems in the computer programming industry, the gap between

what could be done and what has been done is large. Improvements in

understanding and in creating usable aids can be achieved by taking a

more scientific approach--defining, comparing, measuring, and analyzing.

Such an approach could lead to standards or benchmarks. In turn, these

can serve as a coordinate system against which performance and costs can

be measured. Only when such standards or benchmarks exist can high

confidence assessments be made in whether change really represents progress.

341

I~

I
I

I
I

I
I
f
(

(

I
I
I

computer Program Development

Procedure for Gemini

by

R. R. Carley

Manned Spacecraft Center NASA

(This paper was not available at the
time of publication of the proceedings.)

343
(page 344 blank)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
(

I
[

I
I

SDC RECOMMENDATIONS FOR SPACEBORNE SOFTWARE MANAGEMENT

by

S. D. Manus
System Development Corporation

Everyone concerned admits to problems in spaceborne software development.

Each has his own version of what these problems are. Assuming that each

of these problems is truly legitimate, a need arises to put them into some

sort of perspective that allows the development of means for their solution.

Management has the responsibility to obtain and dispense resources necessary

to implement solutions. In order to accomplish this, management must be

presented with an accurate picture of how things are. The purpose of this

paper is to present a cohesive view, based on valid information, 1 of those

aspects of spaceborne software development upon which management may have a

positive impact.

For ease of presentation, this paper is divided into the following areas:

1. The Nature of the Spaceborne Software Development Cycle

2. Common Problems That Have Been Isolated

3. Recommended Solutions to These Problems

4. Recommended Means to Implement These Solutions

I. THE NATURE OF THE SPACEBORNE SOFTWARE DEVELOPMENT CYCLE

In a paper by A. Tucker2 titled Summary of Current Spaceborne Software Systems

it was stated that the sequence of major activities that make up spaceborne

software development were basically the same regardless of projects and

1. All information in this paper appears either directly or indirectly in
the System Development Corporation Spaceborne Software Systems Study
reports: TM-(L)-3067/00l/00, TM-(L)-3067/002/00, TM-(L)-3067/003/00,
TM-(L)-3067/004/00.

2. Summary of Current Spaceborne Software System, by A. Tucker, presented
at Spaceborne Computer Software Workshop, 20 September 1966.

345

I
I
I
I
I
I
I
I
I
I
r
I
I

I
I
(

(

I

Life Cycle phases. In a sense the collected data represents a cross section

of various projects over various phases of their respective Life Cycles

(see Figure 1) 0

Future

Immediate future • • .. • MOL

Now

I • • .- • I APOLLO
+J

~ , I

QJ

I
.c:
+J • • • .II MRBV I
4-l
0
I

QJ
+J I IV
+J

I
U) • • • • III TITAN III ,...,
IV
tJ

or-f
co
0 ,...,

IV GEMINI, X-IS 0
Q .c:
tJ
QJ
H

Past Present Future

Time

Figure 1. Life Cycles of Space Projects

347

I
(

I
I
I
I
I
I
I
I
I
I'
I
I
I
(

I

250

200

150
{/l

'fi
s:::
0
a
I
s:::

~
100

50

0

Class
Maximum

Saturn v. ___ -+---...

Saturn LV---~~----7~'

I

Class
Average

Class

LEM AG

Sabre
Sabre

Figure 3.

Flight Test ,
SG Navigation

20 30 40
Months

Total Time Vs. Total Man-Months for Programming
Phase (Excluding Validation)

349

50

Ii
i'!
i ~
11
Ii
I'
i
I
I

I
I
I
I
f
I
I
I
I
r
I-

I
I
[

I
r
(

I
I

Examples of extremes are the LEM support computer program, in Phase 1, a

4K program utilizing 96 man months, and the Gemini computer program, in

Phase IV, an 18K program utilizing 8 man months of effort, the difference

being in the degree of hardness of the hardware, software, and problem

statement.

It becomes apparent (see Figure 3) that resources may be considerably reduced

over a Total Life Cycle, perhaps by an order of magnitude. Now, having

related one spaceborne software development cycle to another, it remains to

relate spaceborne software development to that of all software development.

Farr, LaBolle, and Willmorth investigated four large systems, some results

of which are shown in Figure 5. Similarly breaking out spaceborne software

development systems and comparing, it will be noticed that the Phase IV

data closely reflects the general systems. That is, by Phase IV, the problems

in spaceborne have the same impact on resource utilization as any other system.

This is further amplified by the results in Figure 6, showing comparative

programming rates.

In short, the first three phases of the Total Life Cycle demand extensive,

but decreasing resources, due to the softness of hardware, software and

problem statement, but by Phase IV when all of these areas are hardened,

spaceborne software development reduces to resource utilization comparable

to that utilized in general ground systems.

II. COMMON PROBLEMS THAT HAVE BEEN ISOLATED

The seven most cammon problems in order of severity are:

1. Changing specifications

2. Inadequate specifications

3. Short lead time

4. Inadequate communications

5. Lack of manpower

6. Minimal support tools

7. Obsolescent hardware

351

I
I
(

I
I
I
I
J

I

I
I
I
I
f
I
(

I

I S illlp 1,' Pn,Juc t ion
Prop-amming (POL)

Inst~-uct i,ms Per Man Month

C,ll11pi ler
Devl'lopm('nt (POL)

Simple Production
I:'r,)~.,rallunil1g (NOL)

Lilr~l' S \'s t ems
Prop-ams (POL)

Lll-i~l.' Systems
Programs (MOL)

Ml.'nn GrounJ Pro
gramming H.ate -
All lan~u;lgcs

lltility and _"'>
Supp,'rt (NOL)

Initial FORTRAN I
\

L,n-gc Systems (HOL)

Grl.."'und n.::ltes

IbOO

14()0

·1200

1000

bOO

Figure 6.

I II

1 2

Phase of Life Cycle

III

/

3 4 5 6

IV ______ . __ _.,.

7

,/ Prp.'It.'l'ted j\lL

[rt i I i:.:ati,)[1

Rt'l'~n-d\..'(!

NOTE:
MOL = Machine oriented

Language

POL Procedure Oriented
Language

8 9 lO

Mission in Life Cycle (EstimatnJ)

Comparative Programming Rates

353

I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I

D. INADEQUATE COMMUNICATIONS

Inadequate communications means unwanted redundancy, which leads to

excessive utilization of resources. If insufficient information is passed

forward to succeeding steps in a development cycle, then work must be

repeated since the cycle cannot continue without sufficient information.

Sometimes this is due to a contractual structure, allowing poor inter

facing. Other times, this is due to poor procedures. Still other times,

it is due to short lead times. In fact, redundancy of this sort seems to

be the order of the day in the spaceborne software development environment.

The irony of it all is that almost all necessary information for any step

is available at an earlier step but is not gathered and sent forward. Even

more ironic is the fact that a lot of it exists on the computer, but is not

collected, and passed on.

E. LACK OF MANPOWER

Lack of manpower, on the surface, seems a minor problem, since programs are

being created within allowable time spans. However, indications are that our

present available spaceborne programming manpower is actually marginal. For

instance, almost every organization interviewed indicated that they have

sufficient manpower to create their given spaceborne software. However, when

pressed with their capability to handle two or three or more such software

developments concurrently, their remarks were of the sort that indicated that

programmers are hard to come by. There are no effective programmer reserves

for spaceborne programming! If spaceborne programs become very large, or the

number of launches is increased markedly, or if lead times are to be shortened,

or any combination of these, there will be insufficient manpower, at least

as utilized in the present mode of spaceborne software development.

F. MINIMAL SUPPORT TOOLS

Minimal support tools impede programming and checkout. Aside from some

necessary simulation programs, the only other support tools generally avail

able to the spaceborne programmer are those tools usually supplied wi thin his

in-house general purpose operating system, tools of general usage for all the

programmers in the organization, whether involved in the spaceborne area or

not. Also, the spaceborne programmer must stand in line for checkout and

355

(

I
(

I
I
I
I
I
I
I
I
r
I
I
I
I
I
I
I

mission fulfillment. It is not meant to be a paper mill where most of the

time is spent in filling out forms and obtaining permission through channels

before each minor step is taken. In fact, most of the management information

itself, could come as output of the various computer program utilized in the

software development.

Second, the total time span for formulation and programming should be divided

a bit differently. Formulation time should be expanded at the expense of

programming time, about 25 percent more. This would allow a firmer specifi

cation before programming starts, hence less changing and redundancy. Since

specifications are open ended at the beginning of the cycle, the closer the

specification can be brought to the end of the cycle, the less changes or

additions will occur during programming.

Third, more programming aids should be developed. If the programming time

span is shortened, a new problem area is created, since this is the one area

where things seem somewhat under control. But as noted earlier, this situation

is marginal today, and is due for trouble tomorrow, what with more and larger

missions planned. Such aids reduce the programmer requirement, and in fact,

may reduce the actual amount of programming created by reutilizing pro

gramming from other or earlier efforts. Given decent problem formulation and

a better computer configuration, the programming effort tends to diminish.

Given a way of programming that seems computer independent, such as the utili

zation of a problem or procedure-oriented language, tends to harden the

parameter of software mentioned in the Total Life Cycle, which would tend to

eliminate Phase II. Evidence gathered already indicates the manning may be

reduced threefold by utilization of an appropriate POL (see Figure 6).

Finally, inclusion of the programmer in problem formulation will lessen the

chance of redundancy. This, in fact, is done by at least the Gemini project,

with notable results. Since so much of the specifications are tied to com

puter configuration and past knowledge of programming implementation, as well

as the internal logic of the programs, the programmer is in a position to

supply valuable input to problem formulation.

357

I
I
I
I
(

I
(

I
[

I
(

I
I
I
I
(

I
I
I

If a common spaceborne software development system is to be implemented out

of funds originally allocated for programming in the respective projects,

then it would seem prudent to have each project make its needs known. This

means that representatives of all interested organizations must get together

in some sort of organization to determine the total needs, the mode of

system implementation, the costs, and the direction of evolution of such a

system, etc.

However, if such steps are not taken, it is perfectly likely that some other

authoritative group will estimate the needs, system, etc., and enforce its

usage upon the spaceborne community. If their estimates are incorrect, then

a penalty is taken. As a point of fact, this vertical stance is historically

more common than the horizontal, cooperative stance.. This is due to the

fact that most organizations attempt local optimization, and disregard any

interface into the broader picture. Examples of such enforced systems are

PERT III and 375-1. It is not clear that either of the examples are systems

that do a really good job.

Consequently, SDC has recommended the horizontal stance and has formulated

guidelines that would allow the development of a user-oriented management

system (see footnote 1). It now remains to describe the relationship of

each project relative to such a system when developed.

Go slow! Mission first, software second! This is the basic criteria for

climbing aboard. If the development of a common spaceborne software develop

ment system is handled properly, there is no reason for any mission to be

scrubbed because such a system interfered with mission requir~ents. Elements

of the system should be picked up at a reasonable rate by each project and

in such a way that currently used elements are superseded on an effective

basis, until the total system is utilized.

For instance, the degree of implementation of the software management elements

might depend on which phase of the Total Life Cycle the project is in. In

Phase I, a high level system would seem sufficient, with emphasis on tracking

and controlling change in hardware, software, and problem statement. By

359

I
I
I
I
I
I
I
I
I
I: WORKSHOP ATTENDEES

I 1. Attendees by name

2. Attendees by Company

I'
I
I
I
I
I
I
I 361

(page 362 blank)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SSD/AEROSPACE SPACEBORNE COMPUTER

SOFTWARE WORKSHOP

Name

Norman F. Ab1ett

Marvin E. A1berda

L. J. Andrews

George Arnovick

Dr. A1girdas Avizienis

E. J. Barlow

Capt. Jesse J. Bass, Jr.

Morris L. Bernstein

Peter Biche

Stanley Blumenstein

Barry W. Boehm

Edward L. Braun

Edward R. Brooks

Coleman T. Brown, Jr.

Norman K. Burnett

T. J. Burns

William R. Bush

David Caplan

Levi J. Carey

R. R. Carley

James W. Chapman

William H. Cheever

Leonard G. Chesler

Charles A. Clark

William T. Clary

J. M. Coggeshall

Paul Colen

Col. James Collier

Ann T. Collins

Robert E. Conklin

20-22 SEPTEMBER 1966

ATTENDEES

363

Company

Douglas Aircraft

Aerospace, San Bernardino

Aerospace Corporation

Informatics, Inc.

UCLA and JPL

Aerospace Corporation

USAF, (AFSC)

Nortronics

Logicon, Inc.

Aerospace Corporation

RAND Corporation

Aerospace Corporation

Aerospace Corporation, SBO

Honeywell, Inc.

UNIVAC

Hughes Aircraft Co.

Douglas Aircraft

Raytheon

System Development Corporation

MSC - NASA

Control Data Corporation

General Electric Company

RAND Corporation

Raytheon

Autonetics, Division of NAA

IBM

Aerospace Corporation, SBO

USAF (AFRST)

Aerospace Corporation

USAF Wright-Patterson AFB

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Name

G. A. Hirschfield

Larence HirschI

Gerhard L. Hollander

Helen A. Holman

Gary R. Howard

Keith H. Howes

Henry J. Ilger

Leo F. Jarzomb

T. R. Jefferies

C. Walter Johnson

Harold Johnson

V. Josephson

R. R. Joslyn

G. J. Kacek, Jr.

H. A. Keit

G. W. King

K. Kirkpatrick

Ronald D. Knight

Michael Kowalsky

Bal Krishan

Victor LaBolle

Dick Lanham

Louis I. Lat'son

Norbert D. LaVally

T. J. Lawton

Carl M. Lekven

Leon S. Levy

S. Herbert Lewis

Michael W. Lodato

Frank Long

Douglas T. Loughmiller

Glen P. Love

365

Company

System Development Corporation

Aerospace Corporation

Hollander Associates

Douglas Aircraft

Douglas Aircraft

Control Data Corporation

System Development Corporation

Aerospace Corporation

Honeywell, Inc.

AC Electronics Div. General Motors

IBM Corporation

Aerospace Corporation

Douglas Aircraft

General Electric Company

Universal Data Systems

Aerospace Corporation

AC Electronics Div. General Motors

System Development Corporation

Aerospace Corporation

Aerospace Corporation

System Development Corporation

System Development Corporation

Douglas Aircraft Company

Universal Data Systems, Inc.

MIT

Aerospace Corporation

IBM

Aerospace Corporation

Douglas Aircraft

System Development Corporation

Douglas Aircraft

Douglas Aircraft

I
I
I
I
·1
I'
I
I
I'
I'
I
I
I
I'
I
I
I
I
I

Name

. Car 1 ReInS tad

T. E. Rodgers

Capt. George L. Roeder

Donald E. Root

Capt. Robert M. Russ

Joseph E. Santa

Philip H. Sayre

w. E. Schopman

P. R. Schultz

Col. G. W. Scott

Lloyd V. Searle

Donald L. Segel

Herbert R. Seiden

Gilbert Siege I

Ronald R. Sikes

Gerard Sillman

Jack H. Simpson

E. L. Smi'th

Flint H. Smith

Lucile F. Solberg

Edward J. Solheim

Paul Soulier

R. N. Southworth

A. L. Spence

Thomas C. Spi llman

Dean G. Stark

Duane Starner

Thomas B. Steel, Jr.

Robert Steinert

Allan J. Stone

Everett S. Stone

367

Company

IBM

Douglas Aircraft

USAF Academy

General Precision, Kearfott Division

USAF

Douglas Aircraft

Planning Research Corporation

Douglas Aircraft

Aerospace Corporation

USAF (SSTD)

System Development Corporation

Douglas Aircraft

System Development Corporation

Douglas Aircraft

Hollander Associates

System Development Corporation

Douglas Aircraft

Logicon, Inc.

Douglas Aircraft

Aerospace Corporation

UNIVAC

Computer Sciences Corporation

Logicon, Inc.

RCA

IBM

IBM Corporation

Martin Company

System Development Corporation

System Development Corporation

Hughes Aircraft Company

System Development Corporation

I
I
I
I,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SSD/AEROSPACE SPACEBORNE COMPUTER

SOFTWARE WORKSHOP

20-22 SEPTEMBER 1966

ATTENDEES

~C Electronics Dive General Motors

C. Walter Johnson
K. Kirkpatrick

Aerospace Corporation

L. J. Andrews
E. J. Barlow
Stanley Blumenstein
Edward L. Braun
Ann T. Collins
R. G. DeBiase
Lewis E. Dorough
James W. Edmundson
Robert V. Erilane
David G. Frostad
J. W. Gibson
Frank H. Harrison
Li:\rence HirschI
Leo F. Jarzomb
v. Josephson
G. W. King
Michael Kowalsky
Bal Krishan
Carl M. Lekven
S. Herbert Lewis
Ralph Muriello
David McColl
R. J. Mercer
A. J. Osborn
P. R. Schultz
Lucile F. Solberg
Lindley S. Wilson

Aerospace. San Bernardino

Marvin E. Alberda
Edward R. Brooks
Paul Colen
Ralph B. Conn
James Eliades
Don Farr
William J. Swartwood

369

Autonetics, Division of NAA

WilHam T. Clary
W. B. Herr
Henry H. Megrund
Victor Strand

Comput~r Sciences Corporation

Phillip D. Nelson
Paul Soulier

Control Data Corporation

James W. Chapman
Keith H. Howes

Douglas Aircraft

Norman F. Ablett
William R. Bush
M. H. Culp
D. E. French
H. C. Hagins
Helen A. Holman
Gary R. Howard
R. R. Joslyn
Louis 1. Larson
Michael W. Lodato
Douglas T. Loughiniller
Glen P. Love

·David L. Mootchnik
W. D. Nason
T. E. Rodgers
Joseph E. Santa
W. E. Schoppman
Donald L. Segel
Gilbert Siegel
Jack H. Simpson
Flint H. Smith
L. J. Surfas
Brian Robert Williams

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

·Raytheon

David Caplan
Charles A. Clark
H. H. Nishino
A. W. YondA

RCA

E. H. Miller
A. L. Spence

System Development Corporation

Levi J. Carey
Gerard A. Hirschfield
Henry J. Ilger
Ronald D. Knight
Victor LaBolle
Dick Lanham
Frank Long
Stan D. Manus
\-Jarren E. Meyer
John B. Munson
George Neil
Lloyd V. Searle
Herbert R. Seiden
Gerard I. Sillman
Thomas B. Steel, Jr.
Robert Steinert
Everett S. Stone
Alfred E. Tucker

TR\v Systems

Hmvard Grossman
David L. Meginnity
W. V. Neisius

UCLA and JPL

Dr. Algirdas Avizienis

UNIVAC ----
Normun K. Burnett
Robert K. Drnving
Walter G. Habenltroh
PhIlip L. Phipps
Curt W. Rangen
Edward J. Solheim

371

Universal Data Systems

Richard A. Hill
H. A. Keit
Norbert D. LaVally

U. S. AIR FORCE

U. S. Air Force Headquar~£

Colonel James CoJ.lit~r (AFRST)
Captain Philip F. Gehring (AFADO)

Air Force Systems COllllUanu llead.!Luarters

Major Dwight F. Rehberg (SCSEC)
Captain Jesse J. Bass, Jr.

,.oM):: Force Academy

Captain George L. Roeder

.Electronics Systems Division

Lt. George E. Uranesh
Murad S. Piligian
M. Ratynski

Res earch _~1 ec; h1:1.0 J:..CJJiY._J.~.,t_~i ":3iE_ll

Major William .1. Wilsoll (RT'l'H)
Robert .E. ConkLin (Wr 19bt

Patterson Air Furce Hase)
Dan T. Reed (Avionics Lab.)

Space Systems Division

Colonel G. W. Scott (SSTD)
Liet/Col. Charles D. Orrison (SST)
Major M. A. Ikezawa (SSTDG)
Captain Charles Osinski (SSUJ)
Captain Robert M. Russ (SSUJ)

