
SCIENTLFIC DATA SYSTEMS

J
{

CAL
REFERENCE MANUAL

for

Price: $1.50

SOS 940 TIME-SHARING COMPUTER SYSTEMS

June 1967

90 11 14A

SJDlS
SCIENTIFIC DATA SYSTEMS/1649 Seventeenth Street/Santa Monica, California

©1967. Scientific Data Systems. Inc. Printed in U.S.A.

ii

RELATED PUBLICATIONS

Title

SOS 940 Computer Reference Manual

SOS 940 Time-Sharing System Reference Manual

SOS 940 Terminal User's Guide

ALL SPEPFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Publication Number

900640

90 11 16

90 11 18

CONTENTS

l. INTRODUCTION 4. SPECIAL STATEMENTS {INCLUDING FILE
CONSTRUCTION} AND SUBPROGRAMS 23

Operating Procedures 1
Log In 1 Special Statements 23
Escape 1 Special Direct Statements 23
Exit and Continue 2 Special Indirect Statements 25
Log Out 2 Subprograms 26

One-Step Subprograms 26
2. BASIC CONCEPTS 2 Multiple-Step Subprograms 27

Program Fi I es 28
Number Representati on 2
Variables 3 5. INPUT/OUTPUT - DATA FILE

Arrays and Array Elements 3 CONSTRUCTION 29
Vectors and Vector Elements 3
The Concept of a T wo- or Three- The IIDEMANDII Statement 29

Dimensional Array 4 IIDEMANDII Statements with Modifiers __ 29
Expression 5 The IIFORM II Statement for Input 29

Arithmetic Operations 5 Data Input from Paper Tape 30
Interpreti ng the Order of Computati on The'IiFORM Ii Statement for Output 30

{Precedence} 6 Input from Fil es 32
Parentheses in CAL Expressi ons 6

Executing Single Commands 6
APPENDIX The IITYPE II Command 6

Errors 8
Error Diagnostics 8 CAL SUMMARY 33
The "SET II Command 8

Mathematical Functions 9 Numbers 33
Variables 33

3. CAL PROGRAMS 11 Arithmetic Operators 33
Logi cal Operators 33

Steps and Parts 11 Mathematical Functions 33
Adding or Deleting Steps 11 Commands {Direct or Indirect Statements} 33

Control Characters 12 Commands {Direct Statements Only} 33
The II EDIT II Command 14 Modifiers 34

IIFOR II and IIDO II 14 Edit Characters 34
The IIFOR II Clause 14
The IIDO II Command 15 FIGURES Exampl e of a Hypotenuse Program

Using the liDO Stepll Command 16
Decision Commands and Comparison Operators __ 16 l. Exampl es of CAL Treatment of Numbers 2

The IIIFIl Clause 16 2. Legal and Illegal CAL Variables 3
Compari son Operators 17 3. Column and Row Vector Notation in CAL 4

Bool ean (Logical) Operators 18 4. Hypothetical Major City Food-Price Matrix __ 4
Precedence in the Boolean Operators 18 5. P Array and CAL Notation in Two Dimensions_ 5
Negative Numbers with Bool ean Operators- 18 6. III ustrations of the Mathemati cal Operator

The IITO II Command 20 Precedence Sequence 7
Modifying Clauses Other than IIIFII and IIFOR II __ 20 7. CAL Expression Using Parentheses and

Use of the IIUNLESS II Clause 20 Mathematical Operator Precedence 7
Use of the IIWHILE II Clause 20 8. Example of a CAL Program 11
Use of the IIUNTIL II Clause 21 9. Hypotenuse Probl em 12

Mul ti pi e Clauses 21 10. Truth Table for Steel Grading 19
Conditionals as Expressions 21 11. Sample Assembly Parts Bill of Material list __ 21

The IIWHERE II Modifier 22 12. Value of A as a Function of X 22

iii

PREFACE

This manual is intended to serve as a tutorial guide for the new CAL user and as a reference source for the experi
enced user. For clarity, several typographic conventions are used throughout the manual.

1. Underscored copy in an example represents that produced by the system in control of the computer. Unless
otherwise indicated nonunderscored copy in an example is that typed by the user.

2. The notation ® signifies a carriage return and @ signifies a line feed. The user signals the end of a CAL
command by striking the RETURN key, and the system confirms the command with an automatic line feed. If
either or both of these functions are initiated by the system, no notation is used (in most of the examples given).

v

1. INTRODUCTION

The SDS 940 Conversational Algebraic Language (CAL)
permits the user to solve mathematical problems while con
nected to the computer via Tel etype.

Typical problems that can be solved with CAL include nu-
• _.L I I L ____ .•. __ ~ _______ .L_I ___ I _c __ . _____ L_L! __

merte une~ IIIUI au nUl 1t::\.jUIIt:: U ~1t::UI UCUI VI \..VIIII-'UIUIIVII

and many kinds of problems involving non-numeric process
ing. In many cases, CAL will identify errors made by the user
and will provide examples to illustrate the required format.

A CAL program consists of a series of statements referred to
as "steps". Each step is a component part of the problem
solution. All the steps combined constitute the programmed
problem solution. Once a program has been written, it
can be saved and re-executed indefinitely.

The salient capabilities of the CAL language are:

1. Basic arithmetic operations (i. e., addition, subtrac-
tion, mul tipl ication, division, and exponentiation).

2. Relational operators (i. e., =, #, >, and <).

3. Logical operators (i.e., AND, NOT, and OR).

4. Conditional expressions (e. g. , IF, THEN, WHILE,
UNTIL, and UNLESS).

5. Mathematical function subroutines (e.g., trigonometric
functions, logarithms, and square root).

6. Editing by character, word, or line.

7. Data file manipulation instructions allowing the user
to create, save, read, write, and delete data files.

8. Simple I/O instructions.

9. Language diagnostics.

OPERATING PROCEDURES

The standard procedure for gaining access to an SDS 940
time-sharing computer center from a remote Teletype ter
minal is described in the SDS 940 Terminal User's Guide,
Publ ication No. 90 11 18. The following paragraphs sum
marize the standard procedures as they apply to CAL users.

LOGIN

To gain access to the computer, the following operating
sequence is performed:

1. If the FD-HD (Full Duplex-Half Duplex) switch is
present, turn the switch to FD. This is a toggle switch
with two locking positions. When the Teletype is not
connected to the computer (sometimes called the Local
Mode), this switch must be in the HD position. When
ever the Teletype is connected to the computer, this
switch must be in the FD position.

2. Press the ORIG (originate) key, which is usually
located at the lower right corner of the console directly
under the telephone dial, to obtain a dial tone before
dial ing the computer center.

3. Dial the computer center number. When the computer
accepts your call, the ringing will change to a high
pitched tone. Then, a request that the user log in will
appear on the Teletype.

01 C A CC I r"\ r" Tt... I I
I LL"""""L L'-' \"J 11 :

4. The user must then type his account number, password,
and name in the following format:

number passwordiname

Only persons who know all three elements (the account
number, password, and name) may log in under that
particular combination. The following examples all
illustrate acceptable practice:

PLEASE LO G IN!
PLEASE LOG IN!
PLEASE LOG IN!

A7PASSiJONES
C8WORDiBROWN
F5PWiPSEUDO

If the account number, password, and name are not
recognized by the computer, it will print INVALID
USER. The password is not printed. The log-in pro
cedure must then be repeated. If the user does not
type his account number, password, and name within
a minute and a half, a message is transmitted instructing
him to call the computer center for assistance. The
computer wi II then disconnect the user and the dial and
log-in procedure will have to be repeated.

5. If the account number, password, and name are accepted
by the computer, it wi II print READY, the date, and
the time on the next I ine. The user must then depress
the carriage return key, after which the' computer
responds by printing a dash at the beginning of the
following line:

READY date, time

The dash indicates that the 940 Executive is ready
to accept a command. t

In response to the dash, the user types

CAL

When ready to accept commands, CAL responds with a
carriage return and I ine feed, and then prints CAl.

ESCAPE

The ESCAPE €) keytt may be used at almost any time. It
causes the subsystem to abort the current operation and ask
for a new command. Striking the § key before termina
ting a command with (§ aborts the command.

tIn some 940 time-sharing systems the commercial"at" sign,
@, is used to indicate that the 940 Executive is ready to
accept a command.

ttln some 940 time-sharing system configurations the RUB
OUT or AL T MODE key is used instead of the ESCAPE
key. Where €) appears in this manual, RUBOUT or ALT
MODE may be substituted.

Introduction

EXIT AND CONTINUE

Striking the (§ key twice in succession causes computer
control to return to the Executive. The user may reenter
CAL with program and execution status intact by typing

-CONTINUE @)

The system then prints a "CAL ", to confirm the action, and
returns control to CAL.

LOG OUT

When the user wants to disconnect, he types two consecu
tive escapes (to return control to the Executive) and then
types

LOGOUT

The computer will respond by printing the amount of com
puter and hook-up (line) time charged to the user's account
since the previous log-in procedure was completed.

2. BASIC CONCEPTS

NUMBER REPRESENTATION

There are three ways to represent numbers in CAL. First,
numbers may be expressed as integers; i.e., whole numbers.
This means that they have no fractional part, e. g., 1, 5,
22. Next, numbers may be expressed in floating point form,
e. g., 1. 5, 3.0, 99.9. The third way of expressing a num
ber is by scientific notation. For example, the number
62,000,000,000,000,000,000,000,000,000,000 is equal
to 62E30 in scientific notation. The "E" in this notation
means that the number to the left of the E {which may be in
integer or floating point form} is multiplied by ten raised to
the power specified by the number to the right of the E
{which may be either a positive or a negative number}.

CAL will accept as input all three types of numbers, but
with limitations of size. Integers will be accepted as long
as they have less than eight digits t. If the integer has more
than seven digits; it must be expressed in scientific nota
tion. Floating point numbers may be input if they have no
more than seven digits total. A floating point number with
more than seven digits must be expressed in scientific
notation.

Inall the cases, numbers in CAL may be thought of as being
in floating point form. {An integer is always assumed to
have a decimal point, even if it is not specified, e. g., 5 is
assumed to be 5.0}. This makes it possible for the computer
to perform arithmetic operations {add, subtract, multiply,
and divide} and position the decimal point automatically.
Thus it is unnecessary for the user to scale and rescale as
a problem progresses. The CAL compiler does not need to
know what type of number the user is thinking about.

After calculation; CAL will print out numbers in one of the
three forms. Examples are given in Figure 1. CAL prints

t The eighth position is always reserved for the decimal
point, present or not.

2 Basi c Concepts

Operator Input CAL Output

TYPE .0123 1.2300000-02

TYPE 26.3421 26.342100

TYPE 987654321 9.8765432 08

TYPE 300000000 3.0000000 08

TYPE 3000000 3000000

TYPE 3000000. 3000000

TYPE 30E6 30000000

TYPE 362E-2 3.6200000

TYPE 362E-10 3.6200000-08

TYPE 1234.00 1234

TYPE .0023E-6 2.3000000-09

TYPE .1234567E-20 1.2345670-21

TYPE 246 t12 4.9115807 28

Figure 1. Examples of CAL Treatment of Numbers

out numbers as integers if they have no fractional parts and
are smaller than 9,999,999. If an integer has more than
seven digits, it is printed out in scientific notation. CAL
prints out numbers with fractional parts in floating point
form. If the floating point number has more than 7 signifi
cant digits, it will be rounded off.

Note in the examples given in Figure 1 that CAL does not
print an E in the numbers expressed in scientific notation.
If a number has a blank preceding the last two digits, the
number formed by the last two digits is understood to be a
positive power. Negative exponents are preceded by a
minus sign. The student is encouraged to try other combi
nations and sizes of numbers after reading this chapter.

The computer automatically determines the form in which
the number is printed out, unless otherwise directed by the
user. The commands which make it possible for the user to
designate the kind of output he desires are discussed in
Chapter 5.

VARIABLES
A • I I • r A I· 1_1...._1 &_ ... __ 11.·· ... ·J,"o ... 1""\1'" \/,,1110

M. vurluult: iii '-r'\L. is Ci 5'IIIU"". 1""1 IIVIII_'-'" -- _._-.

Associated with the variable is a place in the computer
memory where the number or value is stored. There are
260 distinct, named variables in CAL, one for each letter
of the alphabet, optionally followed by a single digit
(0-9). Since some problems may require more than 260
variables a variable may be subscripted. The subscript
is enclos~d in parentheses. In most cases, subscripting will
extend the number of available variables to considerably
more than are ordinarily required to write a program. Ex
amples of legal and illegal variables and subscripts are
shown in Figure 2.

Legal B, C, A, A(1), A(N), A(N+l), A(N+M),
Variables

A(1,2), A(N, M), A(N+1,2), A(N+1, M+l),

X(23, 65, -147.3), X(A(1, 3)), A 1, B2,

X(A(N)+ 13, A(M+ 1))

Illegal
Variables AB, AN, 1 B, 2B

Figure 2. Legal and Illegal CAL Variables

A subscript may be any arbitrary expression. It is trunca
ted to the nearest, smallest integer before use (e. g., 4.65
would be taken as 4.0). A variable may have any number
of subscripts, and it need not have the same number each
time it is referenced. For example, "A" refers to a differ
ent number than A(O) or A(1). Consider the following ex
ample of a program to compute the amount to invoice for a
number of items. The formu la is assumed to be

(Quantity) • (Cost) . 1.20 = Invoice Amount

In CAL, the variables could be designated as

Quantity = Q

Cost = C

Invoi ce Amount

The CAL Statement wou Id be

SET I = Q*C*1.20 (* means multiply in CAL)

Or, the variables could be designated as

A(1) = Quantity

A(2) = Cost

A = Invoi ce Amount

The CAL Statement would then be

SET A = A(1)*A(2)*1. 20

Subscripted variables in CAL may also be used to construct
arrays and to denote specific array elements rather then
uniquely different and unrelated items in a program.

ARRAYS AND ARRAY ELEMENTS

In constructing a program, it is frequently convenient to
deal with a group of variables which form or belong to a
single class or collection. When the variables form an
ordered set, they can be related to one another by subscript
notation. Such a collection is referred to as an array and
the variables belonging to this array as array el~nts.
Sometimes the synonym matrix is used for arrays, and the
elements are then called matrix elements.

For example, the set of numbers shown below would be a
two dimensional array.

2

3

8

4

2

2

3

This array could also be termed a 3-by-3 matrix.

VECTORS AND VECTOR ELEMENTS

A string of numbers that can be arranged in a single row or
column is thought of as a one dimensional array. Such an
array may be called a vector. t In most textbooks an ele
ment of a vector is generally written as a lower case letter
with a subscript, e.g., ai, bk, Xj. The subscript denotes
which element in the vector is indicated, the sequence being
from left to right if written in a row, or from top to bottom
if written in a column. To denote the entire vector, a lower
case letter with a bar over the top is generally used, e. g.,
a, b, or x. Rowand column vectors in CAL are shown in
Figure 3.

Each element in the vector is in itself a variable. Note
that in expanding the variable name base by the use of sub
scripts, the user should be careful not to overlap an array
using the same letter of the alphabet.

tAs used here, vector does not necessarily imply a directed
I ine segment such as that encountered in elementary mechan
ics. The term is borrowed from elementary mechanics and
broadened to mean simply an ordered set of quantities.

Variables 3

Customary Notation

Column Vector

a.
I

a
n

Row Vector Customary Notation

Row Vector CAL Notation

CAL Notation

Column Vector

A{l)

A(2)

A(I)

A(N)

A(1), A(2), ••• , A(J), ••• , A(M)

Figure 3. Column and Row Vector Notation in CAL

As an example of an array, consider the price of steak in
severa I ci ti es.

Implied Steak Price
City Subscript per Pound

New York $1.29

Detroit 2 $1.32

Pittsburgh 3 $1. 18

Denver 4 $1.05

San Francisco 5 $1.35

It the vector were ca i i ed p, the variab i es conta i n i ng the
price of steak in New York, Detroit, Pittsburgh, Denver,
and San Francisco would be P(l), P(2), P(3), P(4), and P(5)
respectively, in CAL notation. The same variable base
name, P, may be used for more than one related or unrelated
it~m. Thus the price of butter in the same five cities could
be designated by P(6) through P{10}. If there were an over
lap and the price of butter were to be entered in P(4}, the
price of steak in Denver, would be lost. To avoid confusion
and such possible losses, the integrity of each individual
variable must be maintained by the programmer in his book
keepi ng of the subscri pt numbers.

THE CONCEPT OF A TWO - OR THREE

DIMENSIONAL ARRAY

If two subscripts are used to identify the elements of an
array, the collection is referred to as a two-dimensional
array or matrix. The pattern of squares on a checkerboard
is an example of a two-dimensional array. In, its most

4 Variables

common usage a matrix is a rectangular array of quantities
in which the rows {or columns} are related vectors. Alter
nately, we may say that a matrix is an ordered set of re
lated vectors. A matrix is usually denoted by a capital
letter with a bar over it, e.g., A, B, C. An element of a
matrix is usually represented by a lower case letter with a
double subscript. Therefore, elements of the matrix A are

represented by a1'l' a1'2' a2'l' ai'j' etc. The first sub
script denotes the row that contains the element, while
the second subscript denotes the column.

Using the previous example of the price of steak in several
cities, we can add vectors indicating the price of bread,
butter, and potatoes. A matrix made up of an ordered set
of column vectors would then be as shown in Figure 4.

City Steak Butter Bread Potatoes

New York $1.29 .84 .42 .08

Detroit 1. 32 .86 .40 .07

Pittsburgh 1. 18 .82 .39 .06

Denver 1. 05 .79 .35 .05

San Francisco 1. 35 .90 .44 • 10

Figure 4. Hypothetical Major City Food-Price Matrix

If this matrix is called P, the price of steak in Denver would
be the element P4 1i the price of potatoes in Pittsburgh
would be the elem~nt P3 4; etc. (For corresponding CAL
matrix notation, see Figu're 5.) The matrix above could be
said to be made up of ordered sets of row vectors, where
each vector contains the food prices for a particular city.

Another common example is what is known as a coefficient
matrix. Consider the following linear equation.

Many times problems arise where a number of equations
equal to the number of variables can be written {in this
case, Xl' x2' x3 = 3 variables}. It is then desirable to
solve the set simultaneously for the values of Xl' x2' and
x3 that satisfy all the equations. This process is known as
solving simultaneous linear equations.

Such a set of equations might appear as

2x1 + 4x2 + 3x3 = 8

10x1 + 2x2 + 4x3 = 19

Xl + 3x2 - 5x3 = 11

The digits directly to the left of each variable are known
as coefficients. Most methods of solution require testing
and manipulation of a matrix called the coefficient matrix.
The coefficient matrix for the set of equations shown above
would be .

2
10
1

4
2
3

3
4

-5

In this example, the row vectors contain the coefficients
associated with a particular equation. The column vector
making up the matrix contains the coefficients associated
with a particular variable. (For example, column one con
tains the coefficients associated with xl.)

A matrix having m rows and n columns is said to be of the
order m by n (m x n). The number of rows is the row order,
while the number of columns is the column order. In
Figure 5, the matrix P is of the order ~ by 5.

Customary CAL
1 2 3 4 5 Notation Notation

1 X
Pl,2 P(l,2}

2 X P2,3 P(2,3}

3

4

5 X P5,5 P(5,5}

Figure 5. 15 Array and CAL Notation in Two Dimensions

In principle, there is no limit to the number of dimensions
which an array may have, provided that each array element
is consistently supplied with one identifying subscript for
each dimension of the array. In practice, many languages
limit the number of subscripts to three, depending on the
computer or processor used. Since CAL variables may have
any number of subscripts, the number of dimensions an array
may have is unlimited in the CAL language.

The following example will illustrate how subscripts com
posed of constants, variables, and arithmetic expressions are
evaluated in CAL. We begin by letting the following vari
ables contain the value indicated.

I
J
K
L
M

3
4
2
-3
5

R(l)
R(2)
R(3)
R(4)
R(5)

2
3
6
7
8

Then, the subscripted variable P, in the two cases that
follow, would be evaluated as shown below.

Exampl e 1: P(R(I) - R(K), 2*R(K) + 2*L)

Substituting the values of the variables specified above, the
fi rst variable is eval uated as

R(I) - R(K) = R(3) - R(2) = 6 - 3 = 3

Followi ng the same procedure for the second variable

2R(K) +2L =2R(2) +2(-3) =2(3) + (-6) =6 - 6 = °
Thus, the evaluated variable is P(3,O).

Example 2: P(R(J + L), R(R(J) - J), R(M) - I)

The three subscripts are evaluated as

R(J + L) = R(4 + (-3» = R(4 - 3) = R(l) = 2

R(R(J) - J) = R(R(4) - 4) = R(7 - 4) = R(3) = 6

R(M) - I = R(5) - 3 = 8 - 3 = 5

Thus, the evaluated variable is P(2, 6, 5). Graphically,
th e su bscri pt P(2, 6, 5) wou I d be

Subscript 3 Subscript 2

5

2 Subscript 1

EXPRESSIONS

Expressions are formed by combining operands with opera
tors. Operands may be variables, functions, or constants.
The operators may be arithmetic Boolean (logical), or con
ditional. The following are examples of expressions.

A + B-2

A + B < C*D

A < B or C > D

LOG (A) = X*y

Xt2 > SQRT (A t 3)

ARITHMETIC OPERATIONS

Five arithmetic operations involving two operands (argu
ments) are used in CAL. The arithmetic operator symbols
are given below.

Symbol Operation

+ Addition

- Subtraction

* Multipl ication

/ Division

t Exponentiation
(the process of raising
a number to a power)

Expressions 5

For example:

A+B means A plus B

A-C means A minus C

A*Q means A multiplied by Q

C/D means C divided by D

YtX means Y to the X power, yX

At2 means A2

In a I imited sense, unary arithmetic operations, (i .e., oper
ations involving only one argument or operand) are also
possible in CAL. For example, the unary "minus" is avail
able, but the quantity and its unary operator must normally
be enclosed in parentheses, e.g., A + (-B), but not A + -B.
If, however, the unary operator applies to the leading term
of an expression, parentheses are unnecessary. For exam
ple, -A means the negative of A, +A means A, -At2 means
the negative of A2.

INTERPRETING THE ORDER OF COMPUTATION

(PRECEDENCE)

The sequence in which the individual termsofan expression
are to be evaluated and collected is unique. A precedence
value is assigned for each of the arithmetic operations in
CAL. The operations are listed below in descending order
of precedence.

Symbol Operation

t Exponentiation

- Negation (unary)

* / Multiplication, Division ,

+, - Addition, Subtraction
(binary operations)

PRECEDENCE RULE - The precedence rule may be stated as
follows: When unaltered by parentheses, the order ofarith
metic operations performed within one expression is in de
scending order of precedence. Note, however, that the *
and the / have the same level of precedence, as do the +
and the -. When two or more operations of the same level
of precedence appear in an expression, these operations
are performed in order from left to right. Figure 6 shows
several CAL expressions and their equivalent mathematical
operations.

PARENTHESES IN CAL EXPRESSIONS

As used in the usual algebraic sense, parentheses may be
introduced to override the rules of precedence for a given
expression. This is frequently done for the purpose of sim
plifying mathematical expressions. In genera!, 'Nhen a
portion of an expression is enclosed in parentheses, the
effect is to form a subexpression. The parentheses rule
states that any subexpression must be evaluated before it
can be employed in the rest of the main expression. Within

6 Executing Single Commands

any subexpression, the precedence rules given above apply.
Examples of CAL expressions using parentheses are given in
Figure 7. As a further example, consider the statement
Q = A *(B+C*D), which is interpreted step by step as
follows:

SET Q = A *(B +C*D)

A*R
2 -----

Q = R
3

Form R1 as C • D

EXECUTING SINGLE COMMANDS

CAL, in combination with a remote terminal, can be used
as an extermely powerful desk calculator to evaluate com
plicated mathematical expressions and to reduce data that
requires involved calculations.

THE "TYPE" COMMAND

To use the terminal and CAL as a desk calculator, simply
type the word TYPE, followed by the desired arithmetic
expression. Then press the carriage return. CAL evaluates
the expression and prints out the answer, observing all the
rules of subscription, operator precedence, and parentheses
stated above. Two examples are given below.

> TY PE 2. 2543t 2*8.73 @
2. 2543t2*8. 73 = 44.364712

> TYPE 2+3*9/2. 25+2t4 @
2+3*9/2. 25+2t4 = 30

Several expressions can be evaluated by one TYPE command,
by separating the expiessions with commas. If the series of
expressions requires more than one line on the teletype
paper, depress the line feed key at the end of each line
for a continuation I ine. An example is given below.

> TYPE 2 +3, 4-2, 2*3t2, 3*2t3/40
2t5, 3*6*2, @)
2+3=5
4-2=2
2*3t2=18
3*2t3/4=6
2t5=32
3*6*2=36

In typing a CAL command, spaces can be used quite freely.
The only exceptions are that no spaces can appear within
C "lord, a number, Oi a vCiiiabla name. Thus the expre~
sions TYPE 2 + 3, 2 - 3, 2 * 3, and 2 t 3, are val id, but
TYPE 1 000 000 is not. Note that commas are never
used in typing numbers. For example, 1,000,000 must be
typed as 1000000.

CA L Expression Mathematical Expression

SET Q = A+(B/C t F) Q=A+..!.
C

F

SET Q =A/B*C
A A Q=-·C not Q =--
B B • C

SET Q = A+B/C+Dt E*F-G Q = A + ~ + DE * F-G

SET Q = A *B/C*D/E*F Q = (AB{C)D). F Q= A·B·D·F
or

2
SET Q = A*Xt3+B*Xt2/C Q = AX3 + BX

C

A
3

* B.
SET Q = C(K)+(At 3)*B(J)/(9. 7+3. 5*P) Q =C + J

K 9.7+3.5P

Figure 6. Illustrations of the Mathematical Operator Precedence Sequence

CA L Express i on

SET Q = A+(B+C-(D*E+F))

SET Q =A*B-C/D+E*F

SET Q = A*(B-C)/(D+E)*F

SET Q = (C(K)+A(3)*B(J))/9. 7+3. 5*P

SET Q = A *B*C/(D*E*F)

SET Q = (A*B*C)/(D*E*F)

SET Q = «A*B*C)/(D*E*F))

SET Q = C + (A*X +B)*X

SET Q = l/SQRT (M-4.5*N)

Mathematical Expression

Q = A+(B+C-(D. E+F)

C
Q = A· B- - + E· F

D

Q = (A(B-C))'F
, D+E .

A· B·C Q=--
D·E·F

Q =A. B·C
D.E.F

A·B·C Q=--
D.E.F

Q =AX
2

+ BX + C

1
Q =-;:====

/M-4.5N

Figure 7. CAL Expressions Using Parentheses and Mathematical
Operator Precedence

C·E

Executing Single Commands 7

The TYPE command may also be used to insert text by en
closing the text to be printed out in quotes: "XXXX", where
xxxx is any text. Remember that continuation of I ines may
be accompl ished by typing a line feed (i. e., the (0 key)
at the end of each line. Th is causes CAL to generate a
carriage return and is otherwise completely ignored, except
by the QC operation. An example is given below.

>TYPE "LINE FEED (LF) - IS THE CONTINUATION (0
CHARACTER WHICH CAUSES CAL TO GENERATE A 8
CARRIAGE RETURN AND PLACES THE TEXT @
FOLLOWING EACH (LF) ON THE NEXT LINE II @

LINE FEED (LF}-IS THE CONTINUATION
CHARACTER WHICH CAUSES CAL TO GENERA TE A
CARRIAGE RETURN AND PLACES THE TEXT
FOLLOWING EACH (LF) ON THE NEXT LINE

ERRORS

The user may occasionally make typographical errors while
typing a CAL command. CAL provides three ways of deal ing
immediately with such errors. Whenever CAL is accepting
a statement, it will recognize the control characters AC,
WC, and QC as editing characters. The notation of super
script c, as exampled above in AC, WC, and QC means that
the user depressed the indicated alphabetic key (in this case
A, W, or Q) and the control key simul taneously.

Control A prints a t and deletes the immediately preceding
character. It may be repeated to delete more than one
character at a time. The correct character(s} may then be
typed, as in the example given below.

> TYP 2+tttE 2+3
2+3=5

The command was interpreted correctly as TYPE 2+3. Note
that there were three characters deleted (AC, AC, AC) to
remove the +, and 2, and the blank, in that order.

Control W prints a \ and causes the last word typed to be
deleted. More precisely, it causes all immediately preced
ing blanks tobe deleted, then the word, and then all blanks
before the word up to the last word (variable, expression, or
number) typed. The correct word may then be typed, as in
the example below.

> TIPA \ TYPE 2-3 \ 2+3
2+3 = 5

It is important to remember that spaces are important in this
edit, since by deleting 2-3 the spaces preceding and fol
lowing it are also deleted. In retyping the correct word,
the user would have to type the appropriate space.

Control Q prints an - and causes the entire typed I ine to
be deleted. It must be typed before a carriage return and
line feed are performed. It then deletes all the characters
on the current I ine, back to the beginning of the I ine. In

8 Executing Single Commands

the case of a continuation text line, it deletes back to the
line feed only, not back to thebeginning of the actual line.
The correct line may then be typed. For example

> TYPE "IN XANADU DID KUBLAI KHAN (0
A STATELY PLEASURE DOME DECREE (0
WHERE ALPH, THE SACRED RIVER, RAN (0
THROUGH CAVERNS MEASURELESS TO MAN 8
NOW IS THE TIME FOR ALL GOOD MEN- (0
DOWN TO A SUNLESS SEA. II

At execution, this will read

IN XANADU DID KUBLAI KHAN
A STATELY PLEASURE DOME DECREE
WHERE ALPH, THE SACRED RIVER, RAN
THROUGH CAVERNS MEASURELESS TO MAN
DOWN TO A SUNLESS SEA.

CAL accepts a number of other control characters. Thei r
function is described in Chapter 3.

ERROR DIAGNOSTICS

A second type of error occurs when the user gives an incor
rect command orfails to detect a typographical error. When
CAL detects an error of this sort, it types out a comment
intended to help the user locate the problem, as in the
exampl e given below.

> TYPE (5+A+6)/(8+8) e
ERROR ABOVE: A NEVER SET

> TYPE (5+5+6)*(6-2+3 e
CHECK ()

(Note that the error is in the omission of a right parenthesis.)

>TYPE (5+5+6}*(6-2+3}) e
JUNK ON END

(The error is in the superfluous parenthesis at the end of the
expression.)

> TIPE 6 + 5 §
?

When commands are misspelled, all that appears is a ques
tion mark.

These comments from the computer are quite useful for the
beginner who is learning to use CAL. They provide ameans
of I earn ing by doing.

THE "SET" COMMAND

CAL utilizes the command SET to perform arithmetic assign
ments. Arithmetic assignment statements employ the re
placement operator, =, to define numerical auantities. For
~xample, c~nsider -the expressions: .

> SET A(J) = 2
> SET J = J + 1
> SET CO) = A(I)*2+B(I) t 2

The assignment operator "=" assigns numerical values to
A(J), J and C(I) respectively by eval uating the numerical
value of the expressions to the right of the signs. The 11=11
means "the variable on the left is replaced by the value of
the variable or expression to the right. II The CAL command
for performing arithmetic assignment is the SET command,
but the word uSET II may be omitted. Thus, SET Z = A(J)
means that value of Z is replaced by the value of A(J). The
general form of the SET command is

SET v = e or v = e

which means replace the current value of any variable, v,
with the current value of an arithmetic expression, e.

> SET A = 2+3+4
> SET A(l} = 7.95 t 10.66*3.47/2*6.8 t 4.23 @)

Once a variable has been defined, it can be used to define
subsequent variabl es, or its va I ue can be pri nted out by
using the TY PE command.

> SET A=2+3+4
> SET A(l}=7.95t10.66*3.47/2*6.8t4.23
> SET X=2+3
> SET A(2)=2 t 4
> SET B=3*5
> SET C=A+B
> SE T D=(X/ A (l}+3) t 2
> TYPE A, A(l), X, A(2), B, C, D

The computer prints out

A=2
A (1) = 2. 2841 561
A(2) = 16
A(l) = 2.2841561

X=2
A(2) = 16

B = 15
C = 24
D=2

>

13

13

In the above exampl e, note that the first portion of the
TYPE command to be executed was TYPE A. If A is a sub
scripted variable, all values of A that have been set prior
to the issuance of the command wi II be typed. This accounts
for the order and duplication above. If a subscripted value
is included such as A(1) or A(2), only that array value will
be typed. Summarizing, in the above example, TYPE A
produced

A = 9
A (1) = 2 . 2841 56 1 1 3
A(2) = 16

TYPE ,A(l) produced

A (l) = 2. 2841 561 1 3

TYPE X, produced

X = 5

No other X elements such as X(l), X(2), etc., existed.
The same is true for B, C and D.

TYPE , A(2), produced

A(2) = 16

The value ofa variable may be changed at any time by giving
it a new value with a new SET command.

> TYPE A
A =9
> SET A = 2+5 @
> TYPE A @
A = 7

When a variable has been given a new value, CAL IIforgets"
the original value. Occasionally, it is desirable to elimi
nate a variable altogether without giving it a new value.
This is accomplished by using the DELETE command.

> DELETE A@)
> TYPE A @)

ERROR ABOVE: A IS UNDEFINED
(an error comment by CAL)

Further use of the DELETE command is discussed in
Chapter 3.

MATHEMATICAL FUNCTIONS

In addition to the five arithmetic operators described pre
viously, a number of mathematical functions are also avail
able in CAL. These are listed be low.

ABS(A)

SIN (A)

COS (A)

TAN (A)

ATAN (X, Y)

EXP(A)

LOG (A)

LOG10 (A)

SQRT (A)

IP (B)

FP (B)

SUM (A, B, C, D, •.•)

PROD (A, B, C, •••)

MAX (A, B, C, • a •)

MIN (X, Y, Z, A, B, ••.)

Absolute value of At

Sine of At

Cosine of A

Tangent of A

Arc Tangent (X/Y)
(11" > R > - 11")

E to the power A

Natural logarithm

Base 10 logarithm

Positive square root of A

Integer part of B
(If B = 246.25, IP = 246)

Fractional part of B
(If B = 246.25, FP = .25)

Sums the list

Finds the product of the list

Finds the maximum in the list

Finds the minimum in the list

tThe trigonometric functions take their arguments in
radians or return results in radians.

Mathematical Functions 9

The arguments of these functions may be any of the expres
sions defined previously, including the functions themselves.
The rules of precedence for the arithmetic operators and
parentheses wi" be observed in evaluating the arguments.
Any meani ngful combination of these functions and the oper
ators described earlier can be used.

> TYPE SIN(2) + COS (0)*SQRT(4)/LOG(10)@)
SIN(2) + COS(0)*SQRT(4)/LOG(10) = 17778864

> TYPE LOG (20)+MAX(A, B, C, D, E) @)

(Note: Assuming A, B, C, D, and E have been
defined)

LOG(20)+MAX(A, B, C, D, E) = 25. 30103

> TYPE LOG(3+(4t. 76)) @)
LOG(3+4t.76)) = 1.7694896

> TYPE LOG(COS(SIN(SQRT(900)* PI/180))) @)
LOG(COS(SIN(SQRT(900)*PI/180))) = -0.13058484

Since trigonometric functions in CAL require that angles be
expressed in radians, the numerical constant 7r is frequently
useful in working with these functions. CAL has a special
variable called PI which contains the value of 7r to 7 places
(3. 1415927). This may be called at any time.

> TYPE SIN (PI/2), SIN(2*PI) @)

SIN(PI/2) = 1

SIN(2*PI) = O. 9280387-07

Note: 27T radians = 360 degrees. Therefore, if the sine of
30 degrees is desired, the statement is

> TYPE SIN(30*PI/180) @)
SIN(30*PI/180) = .5000000

10 Mathemati ca I Functions

Additional examples of the CAL functions are included in
the chapters that follow.

Also available in CAL is the MOD function, which is written
in the format

e MOD m

where e is any expression and m is any number.

MOD stands for MODULO ARITHMETIC. Without giving
lengthy explanations, the "result" of a modulo problem is
the remainder of a division operation.

For example, to calculate 254 MODULO 8, divide 254 by
8. The remainder is the answer. This can be expressed in
CAL by

> TYPE 254 MOD 8

254 MOD 8 = 6

Other examples are

> SET X = 5

> TYPE X MOD 2

X MOD 2 = 1

> TYPE 3 + 3 MOD 2

3 + 3 MOD 2 = 4

Note that by using MOD 2, a" odd numbers result in a 1
and a" even numbers result in a O.

> TYPE (3 + 3) MOD 2

(3 + 3) MOD 2 = 0

3. CAL PROGRAMS

In addition to executing statements one at a time, as dis
cussed in Chapter 2, CAL can be used to store commands for
future execution. This is done through a CAL program com
posed of a series of statements called steps, each of which
begins with a step number and includes a specific command
to the computer. (A few direct commands never require a
step number. These are discussed in a later section.)

To write a CAL program, the user wi II need to know how to
write, add, delete, and edit steps, how to use the commands
that are available, and how to use the logical operators and
special clauses. The purpose of this chapter is to explain
these things in detail, with appropriate examples.

STEPS AND PARTS

As stated above, each statement in a program begins with a
number which has the form LJ. The allowable range of
numbers for CAL statements is from .0001 to 999999.99999.
The integer number formed by the digits to the left of (pre
ceding) the dot is called the part number of the step. The
entire number, i. j, is called the step number. There can
be several steps in a part but each statement has its own
unique step number. Steps may be referred to singularly
by their individual numbers, or collectively by the part
number. For example, consider the collection of state
ments below.

> 4.0 SET X = Y
> 4.1 SET X = X+1
> 4.2 SET Z = X*y
> 4. 3 DONE IF X -Y<O
> 4.5 TYPE X,Y

The command liDO STEP 4.2" would cause execution of
STE P 4.2 only and return to the original point of the DO
command. The command liDO PART 4.0" would cause exe
cution of all the steps whose integer part (that number pre
ceding the dot) is 4, in this case 4.0, 4.1, 4.2, 4.3, and
4.5. The DO command in the statements above is used at
this time only to illustrate the idea of step numbers; the DO
command is explained fully later in this chapter.

A I inear ordering of statement numbers is defined by taking
them as ordinary decimal numbers. Thus, 1 < 1. 01 < 1. 1
= 1 .10 < 1. 2 < 2 = 2.0 < 10. O. The ordering of statements
in the program is determined by their statement numbers and
not by the order in which they are typed. If several state
ments with the same number are input, the last one typed
will be kept.

Before going into a detailed discussion of programming
in CAL, a sample program is illustrated in Figure 8 be
low. The example, which begins with a log in, com
putes the hypotenuse of a right triangle by the Pythagorean
theorem.

PLEASE LOG IN! E4 SDS; BEN @

READY 11/28 18:41

-CAL@

CAL

NUMBER OF STATEMENTS NEEDED = 10 8

HEADING, PLEASE

HYPOTENUSE @

(seven lines will be skipped)

HYPOTENUSE PAGE 1 @

> 3. 1 DEMAND X, Y @

> 3.2 SET Z = SQRT(Xt2+Yt2}@)

>3.3 TYPEX,Y,Z@

>3.5 TOSTEP3.1@)

>TOSTEP3.1@ {This statement, without
a I ine number, is one way
to activate the program.}

(At execution, the following occurs.)

X = 3

Y = 4

X = 3, Y = 4, Z = 5

X = (The values are again demanded. The program
will continue until the ESC key on the Teletype
is depressed.)

Figure 8. Example of a CAL Program

This example is typical of a short CAL program. Note that
the integer part (the part left of the decimal) of all thE
steps is 3, indicating that all the steps belong to the same
part. For example, step 3.3 is one of the steps in part 3.
The five steps have now been stored by CAL. Together
they form a program having one part (part 3.0) and four
steps (steps 3. 1, 3.2, 3.3 and 3.5). The step without a
statement number (TO STEP 3. 1) will actuate the program
once. This step will not, however, be stored. One way
of re-executing the program is to retype the statement
TO STEP 3.1, without a step number. In this example,
the program continuously executes because of step 3.5.

ADDING OR DELETING STEPS

Suppose that in the example above, the desired result at
the end of part 3 is to compute C, as shown in Figure 9.

CAL Programs 11

Known:
X, Y, R

R~Z

R

Figure 9. Hypotenuse Problem

The program may then be expanded by adding the following
i nstruc ti ons.

> 3. 12
> 3.25
> 3.40

DEMAND R @
SET C = SQRT(R t2+Z t2) @
TYPE R @)

Thus, atexecution or on a relisting, the program will appear
and execute as follows:

> 3. 1
> 3. 12
> 3.2
> 3.25
> 3.3
> 3.40

DEMA ND X, Y (§
DEMAND R @)
SET Z = SQRT(X t 2+Y t 2) §
SET C = SQRT(R t 2+Z t 2) @)
TYPE X, Y, Z @)
TYPE R @)

A second way of accompl ishing the same thing is to take
advantage of the fact that if a step is retyped with the
same statement number, the last one entered will be saved.
Therefore, type

> 3. 1
> 3.25
> 3.30

DEMAND X, Y, R @
SET C = SQRT(R t2+Z t2) @)
TYPE X, Y, Z, R @)

Then, at execution or relisting, the program would appear
as follows.

> 3. 1
> 3.2
> 3.25
> 3.30

DEMAND X, Y, R @
SET Z = SQRT(X t2+Yt 2) @
SET C = SQRT(R t 2+Z t 2) @)
TYPE X, Y, Z, R @

If the user wished to restore the program to its original form,
this would be accomplished by the DELETE command.

> DELETE STEP 3. 12 @)
> DELETE STEP 3.25 @
> DELETE STEP 3.40 @

At execution or rei isting, the program would be restored to
its original form.

12 Control Characters

CONTROL CHARACTERS

Although steps may be completely retyped to correct errors,
there are easier ways to edit programs. If the error is con
tained in the line last typed and is immediately discerned
by the user, he has the option of using several control char
acters to edit the line by deleting, changing, adding, or
inserting characters. Although he may ignore these edit
characters in favor of retypi ng I ines, the user wi II fi nd them
very useful in editing a program once he understands their
operation. Essentially, the control characters allow the
user to edit a line without retyping whatever portion of the
line is correct.

The control characters and their functions are explained
below and examples given of each. For the purposes of this
discussion, "original I ine" means the I ine last typed, i. e.,
the line being edited. The term "new line" means the line
the computer prints out as the editing process progresses.
At the end, the new line replaces the original line.

Control C causes a single character of the original line to
be printed out on the new line. In itself, this operation
does not change any character in the new line. It simply
locates the user at the point on the I ine where he wishes to
delete, add, etc. If the REPEAT key is depressed at the
same time, the computer wi II repeat, character by charac
ter, until the REPEAT key is released. For example, con
sider the following I ine as typed by the user:

> 3. 1 TYPE A = I FOR I = 1 BY 200 TO N @)
>

On reading this I ine over, the user realizes that it contains
an error: that is, the integer 200 should be 2.

To edit immediately, the user presses the Control C and the
RE PEAT key simultaneously, stopping when he reaches the
digit 2 in the integer 200. The computer then prints out the
line, character by character, up to and including the 2.

> 3. 1 TYPE A = I FOR I = 1 BY 2

The user is now in a position to delete the two zeros. This
operation is explained below in the discussion of control X.

Control Z performs the same function as C
C

, but it prints
out more than one character at a time. This is accompl ished
as follows: The user selects any letter, number, punctuation,
or operator symbol (as indicated by thex in ZCx) thatappears
in the original line; he then types the ZC followed by the
character selected. This causes the original line to be printed
out, up to and including that character. If the selected
character does not appear in the original line, CAL rings a
bell and takes no other action. Thus, the user in the above
example could have typed a ZC2 to effect a printout of the

line through the 2. The choice of which control character
to use will usually depend on the location of the error to
be corrected. In either case, the computer will print out
the original line to the designated character and await
further editing.

Control S is used to delete characters. Each use of the
control character causes a single character of the original
I ine to be deleted and a % to be printed in its place. (The
% does not appear in the final version.) Thus, in the exam
ple cited, the user would strike the SC twice to delete the
two zeros, once he had arrived at their location by using
the CC or Zc. The new I ine as it would then be printed out
on the Teletype is:

>3. 1 TYPE A = I FOR I = 1 BY 2%%

XCx

Control X is also used to delete characters, but it wi II cause
more than one character at a time to be deleted. The user
in the example above might decide to simply eliminate the
remainder of the line. In this case, he would type the Xc
and an N (the last character in the line). The computer
would then print out a % for each character and space in
the remainder of the original line upto and including the N.

> 3. 1 TYPE A = I FOR I = 1 BY 2%%%%%%%

Note that five additional symbols are printed out (the first
two having been printed out by the SC), because two blanks
were in the remainder of the line, in addition to TO N, and
the computer treats the blanks as characters. Having fin
ished the editing of the I ine, the user could type a carriage
return, which would cause the original carriage return and
line feed to be deleted while signaling the computer that
the program is to continue.

Any time the carriage return is typed, the remainder of the
original line will be deleted and a line feed will be gener
ated by the computer to continue the program. That is, the
user will be out of the edit mode. To re-enter it, it is
necessary to type the EDIT command (discussed later in this
chapter).

EC

Control E is used to insert new text in the original line. At
the first use of the EC, a "<" sign is printed, at which point
the user types in his insertion. He then types a second EC,
which prints a ">" sign and tells the computer that he has
completed inserting text. He may then go on with his
editing.

As an example of the operation of control E, consider the
following example.

> SET X = Y/Z

The user has erroneously indicated that Y should be divided
by Z, whereas he wished to specify that Y should be multi
piied by Z. His first step is to type ZcY (to arrive at the

point of deletion); he then types a control S to del ete the
sign in error. He is now ready to insert a multiplication
sign (*). He types an EC, an *, and a second EC, in that
order. The new line would appear as

> SET X = Y% < * >

The user may then go on with his editing. Note that, upon
relisting, the symbols "%", "<", and ">" would not appear
in the iine.

Control R is used to permit recovery in cases where the user
wishes to verify the edit thus far or where he has become
uncertain concerning the state of the edit and wants to see
his results printed out. RC causes CAL to perform a line
feed and a carriage return and then to reprint the remainder
of the original line, after which it reprints on the next line the
edited portion of the line. For example, the user has typed
the first I ine below (the original I ine) and edited a portion
of it (the new line). After deleting the 14*H", he strikes
RC, which results in a print out (third and fourth lines).

> SET E=5*G+4*H+3*1+2* J+K

> SET %<M>=5*G+%%% <§
+3*1+2* J+K

SET M=5*G+

Control T operates the same as control R, except that
the original I ine is correctly al igned with the new one
(although still on two lines). This operation takes longer
for the computer to accompl ish.

Control D prints the remainder of the original line onto
the new line and then causes the new line to replace the
original one in the program. The user may then continue
writing his next step. For example, assume that the user
has typed a statement with an error in it and has corrected
that error (by inserting A (2) to A(3», using the control
techniques previously explained.

> 3.2 TYPE A(l), A(2}, A(4), A(5} @
> 3.2 TYPE A(l), A (2), <A(3), >

Typing a control D at this point causes the remainder of
the original line to be printed on a new line, a carriage
return and a line feed to be generated, and the edit mode
to be discontinued.

>3.2 TYPE A(l}, A(2}, <A(3), >A(4), A(5)@

The user then is ready to go on with his next step.

Control F performs exactly the same function as control D,
except that it copies the remainder of the original line to
the new one without printing it for the user to view.

Control Characters 13

Again, the edit mode is ended by this control character
and the user conti nues on to his next step.

Both control D and control F may be used to execute the
same direct statement more than once in a program. For
example, assume that the original statement is

> TYPE LOG{A}, A, SIN{B*PI!180} @)

If control Dis typed by the operator the statement wi II
reappear

> TYPE LOG {A}, . A, SIN{B*PI!180)

and be executed. This procedure could be repeated any
number of times. If control F is used, the statement wi II
not be reprinted, but it will be executed again.

Conti"O; Y also copies and prints the remainder of the origi- .
nal line to the new one, but it does not end the edit mode.
The user may continue to add to the line. Thus, in the
example given for control D, the user might wish to add
A{6} to the new line. He would then simply type in A(6}
directly. Once he has compieted editing the line, he types
a carriage return to signal the computer that he wishes to
continue with his program.

THE "EDIT" COMMAND

If a statement is to be edited at a time later than directly
after it was typed, it must first be recalled by the EDIT
command. The user types:

EDIT STEP i.j @> {where i.j is the step number}

The specified step is then printed out by the computer and,
in effect, becomes the original line for the edit operations
using the control characters presented abOVe. The state
ment is not deleted or altered by the EDIT command but is
simply printed out ready for editing. All of the EDIT con
trol characters may be used once the EDIT command is
invoked. The following variations to the command are also
possible:

EDIT FORM e {where e may be any expression}
EDIT f (where f may be a function only)

HFOR" AND ''~O''

It has been shown that some rather complex numerical eval
uations can be performed with CAL on a remote terminal.
It should be apparent, however, that extensive typing may
be required to get a single answer. In the example given
in Figure 8, it is often desirable to calculate Z for several
values of X and Y without re-cycling or re-initiating the
program. This can be accompl ished by using the FOR
clause and DO command.

14 FOR and DO

THE "FOR" CLAUSE

Single commands or simple programs can be augmented for
modification with a FOR clause. Briefly, a FOR clause
causes the command in question to be executed repeatedly
for a specified set of values of some variable. In the fol
lowing example

> TYPE LOG{A) FOR A=l, 5, 10 @)

LOG{A)

LOG(A)

LOG(A)

o
1.6094379

2.3025851

the FOR clause first causes A to be set to 1 and then causes
the TYPE command to be executed. Next it repeats the
same procedure, setting A to 5 and then to 10. In the exam
ple above, each value to which the FOR variable was to be
set was specified. The user can also specify that the vari
able be set to some beginning value and increased or de
creased repeatedly by a specified amount until some final
value is reached.

> TY PE 2 t A FOR A =2 TO 5 @)

2 t A 4
2 t A 8
2 t A 16
2 t A 32

Here, A was SET to the first number after the FOR (2), after
which the TYPE command was executed. Next, A was
increased by one and TYPE was executed again. This pro
cedure was repeated until the final value (5) was reached.
If incrementation is other than by the number one, it must
be specified as follows.

> TYPE 2 t A FOR A=2 BY 2 TO 10 ®

2tA 4
2 tA 16
2tA 64
2 tA 256
2 t A 1024

Whenever the BY is omitted from the FOR clause, CAL
increments by one.

Both ways of specifying FOR values can be combined in a
single FOR clause.

> TYPE 2*A FOR A=l, 10, 19 BY .5 TO 20, 25 @)

2*A 2
2*A 20
2*A 38
2*A 39
2*A 40
2*A 50

The FOR clause provides a conveinent way of calculating
tables of numerical values. For example, the following
command proovces a tabl e of squares, cubes, square roots,
and cube roots.

TYPE A, At 2, At 3, SQRT(A), At (1/3) FOR A=l TO 3 @)

A
At2
At3

SQRT (A)
At (1/3)

A
At2
At 3

SQRT (A)
At (1/3)

A
At 2
At 3

SQRT (A)
At (1/3)

1
1
1
1
1
2
4
.§.
1. 4142136
1. 2599210
3

.2
27

1.7320508
1. 4422496

In the examples above, the values to which the FOR vari
ables were to be set were specified by numbers. These val
ues can also be specified by expressions, provided CAL is
able to calculate the values of the expressions used. For
example, one could type

> TYPE A FOR A=l BY LOG(8. 7*10.1/2+3) TO 22.13 €V

A ::.c

A = 4. 8487637
A = 8.6975273
A = 12.546291
A = 16. 395055
A = 20.243818

Note that if the FOR variable never precisely equals the
fi na I val ue spec i fied, the FOR clause termi nates at the
last value before the final value was exceeded.

Finally, two or more FOR clauses may be used to modify a
single command. For example, to calculate the area of
a set of ellipses (where A and B are the semi-axes) one
could type

> TYPE A, B, PI*A *B FOR B=l TO 4 FOR A=l TO 3@)

A = 1
B = 1

PI*A *B 3.1415927

A = 1
B = 2

PI*A *B 6.2831853

A =

B = 3
PI*A *B 9.4247780

A = 1 -
B = 4

PI*A*B 12.566371

PI*A *B

PI*A *B

PI*A*B

PI*A*B

PI*A*B

PI*A*B

PI*A*B

PI*A*B

A =
B =

A =
B =

A =

B =

A =

B =

2
1
6. 2831853

2
2"

12.566371

2
3

18.849556

2
4

25. 132741

A = 3
B = 1

9.4247780

A =

B =

A =
B =

A =
B =

3
2

18.849556

3
3

28.274334

3
4

37.699112

In this case, CAL sets the rightmost FOR variable to its ini
tial value, and then steps through all values of the next left
FOR variable. Next, the rightmost FOR variable is incre
mented, and agai n CAL steps through all values of the next
left FOR variable. This procedure is repeated until the
rightmost FOR variable has been stepped through all its
values.

THE "DO" COMMAND

Toapply the same principle to the example given in Figure 9
(i.e., to execute part 3 for several values of X and Y), the
DO command is used, as shown below.

> 2.0 DO PART 3 FOR 1=1 TO N @)
> 2. 1 PAUSE @)
> 3.2 SET Z(I) = SQRT(X(I)t2 + Y(I)t2) @l
> 3.3 TYPE X(I), Y(I), Z(I) €V

In executing the DO command, CAL "did II (executed) each
step in numerical order in the part referred to by DO. In
the example just given, the DO command is combined with
a FOR clause. In this case, each step is performed in
numeric order for each value of I, in increments of one
until I exceeds N. CAL then returns to the next highest
step in part 2. Step 2. 1 in the example above causes the
program to stop for new instructions from the operator. If
several DO commands are executed according to sequential
parts of the program, powerful programming techniques can
be built from the 'combinations of DO commands appended
by FOR clauses.

In computer programming terminology, the DO command
allows CAL to execute a part of a program as a subprogram

Control Characters 15

t

within the main program. In a long program, a single part
could be executed repeatedly at different points in the
program by referring to it repeatedly with separate DO
commands. An example of using the DO command as a
subprogram is shown in Chapter 4.

DO commands can refer to steps as well as parts in a pro
gram. In this case, the step in question is executed and
then CAL returns to the command following the DO. For
example, the program to compute several values of the
hypotenuse of a right triangle could be written as follows.

EXAMPLE OF A HYPOTENUSE PROGRAM

USING THE "DO STEP" COMMAND

> 1.0 DO STEP 1.2 FOR 1=1 TO N e
> 1. 1 TO STE P 1. 3 e
> 1.2 SET Z(I) = SQRT (X(I)t2 +Y(I)t2) e
> 1. 3 DO STE P 1. 5 FOR 1=1 TO N e
> 1. 4 PAUSE @)
> 1. 5 TYPE I, Z(I) @)

Note that when a DO STE P is used instead of a DO PART,
a transfer statement (step 1. 1) must be inserted after the
DO command. After the DO command is executed for 1=1
in increments of one (1) to I=N, the program will execute
the next sequential step in the program. If the transfer step
were omitted, step 1.2 would be executed one additional
time for I=N+ 1. t The transfer step carries execution around
step 1. 2 when the FOR clause is satisfied. Although part
numbers are denoted by integers, a DO command can refer
to a part number having a fractional part, e. g., part 5.61
or part 4.8. In this case, CAL will execute steps in the
part in question, beginning at the step indicated by the
number in question. For example, DO PART 4.56 would
cause CAL to do all steps in part 4 from step 4.56 on. If
there were no step 4.56, the next step greater than 4.56 in
part 4 would be executed first.

Another example that illustrates the use of the DO and
FOR commands is a program that calculates mean and stand
ard deviations, given N numbers. The formulas used are

I:x.
Mean

= __ 1

Standard deviation

> 0.5 DEMAND N @>
> 1. 0 SET S = 0 @>
> 2.0 SET Q = 0 S

N

l:(x.)2 _ (:tx.)2
1 1

N
N - 1

> 3.0 DO PART 5.0 FOR I = 1 TO N S
> 4.0 TO STE P 6.0 @>
> 5.0 DEMAND A(I) @)
> 5.2 SET S = S + A (I) @l
> 5.4 SET Q = Q + A(I) * A(I) e

In the FOR clause, the test is for I > N, so that I is incre-
mented and then tested. Transfer out of the DO command
would occur at I = N + 1.

16 Decision Commands and Comparison Operators

> 6. 0 TYPE SIN E0
> 7.0 SET D = SQRT (Q - «S *S)/N) IN -1) e
>8.0 TYPED@)

Note that all the steps of part 5 are executed N times, and
that step 4.0 prevents another pass through part 5.

DECISION COMMANDS AND
COMPARISON OPERATORS

THE" IF" CLAUSE

In executing a program, CAL can make decisions as to what
action to take depending on the current values of variables
or expressions within the program. Decisions are specified
with the IF clause. Like the FOR clause, an IF clause modi
fies a CAL command such as TYPE, SET, DO, or TO STEP.

For example,

1 DO PART 2 FOR 1=1 BY 7 TO 15

2 SET A=I
2. 1 TY PE A I F A < 10

will produce

A = 1
A = 8

or any other value for A less than 10. If A is 10 or greater,
execution wi II not take place.

Note that the command

>TYPE liTHE VALUE OF IAI IS LESS THAN 10" IF A < 10

is an illegal instruction, because a TYPE literal may not
be qualified.

An example using the SET command would appear as
follows.

> 1. 0 DO PART 2.0 FOR A = 1 TO 10 e
> 2. 0 SE T C = 0 I FAt 2 < 50 e
> 2. 1 SET C = 99 IF At 2 > 50 @I
>2.2 TYPE A,Ce
> TO S TE P 1. 0 S

At execution

A = 1 C = 0

A = 2 C = 0

A = 3 C = 0

A = 4 C = 0

A = 5 C = 0

A = 6 C = 0

A = 7 C = 0

A = 8 C 99

A = 9 C 99

A = 10 C 99

Exampl e of a Graph of Y = f{x)

As a more comprehensive example, consider a program to
compute Y, whose graph is shown below.

:r

> 1. 0 DEMAND X @)
> 1. 1 SET Y = X-3 IF X > = 3 §
> 1. 2 SET Y = 3-X IF X > 2 AND X < 3 @)
> 1. 4 SET Y = X-l IF X < = 2 §
> 1. 5 TY PE Y @)
> TO STEP 1. 0

At execution the computer wi II print, as a result of step 1. 0,
X = -2 (user enters the value of -2).

For X = -2, the IF clause in step 1.1 cannot be satisfied
since X is less than 3. Execution then passes to step 1.2
which again cannot be satisfied because of the IF clause.
Therefore, execution passes to step 1.4. Since -2 is less
than 2, the IF clause is satisfied and Y is set to (-2 -1) = -3.
Note that in each IF clause a comparison operator was
needed. The comparison operators are discussed immedi
ately preceeding the examples in the next section.

Example of a Test for the Qual ity of Steel

Consider, as a further example, a test for the quality of
steel. Steel is considered Grade 1 if Test One exceeds
.95 and Test Two exceeds. 75; Grade 2 if Test One ex
ceeds .95 but Test Two does not exceed. 75; and Grade 3
i f Test One does not exceed. 95. The tlow diagram and
program would be as shown below.

yes

G = 2 G = 1

> 1. 0 DEMAND T(l), T(2) @)
> 1. 1 TO S TE P 1. 7 1FT (1) < • 95 @)
> 1. 2 TO STE P 1. 5 IF T(2) <.75 @)
> 1.3 SET G = 1 @
> 1. 4 TO STE P 1. 8 @)
> 1. 5 SET G = 2 @)
> 1. 6 TO S TE P 1. 8 @)
> 1. 7 SET G = 3 @)
> 1. 8 TY PE G @)

COMPARISON OPERkTORS

In general, the decision in an IF clause is based on a com
parison between two expressions, variables, or numbers, an
expression and a number or variable, etc. In the preceding
examples, an input variable was compared with a number
by means of the "greater than", the "greater than or equal
to", and the "Iess than or equal to" comparison operators.
In CAL there are six comparison operators as follows:

equals
not equal
< less than
> greater than
< = less than or equals
> = greater than or equals

Note that when the "=" sign is used as a comparison opera
tor it has the same meaning we understand in mathematics
(as opposed to its use with SET where it denoted replace
ment). For example:

SET Y = 5 IF X = 3

means replace the current value of Y with 5 if the current
value of X is equal to 3. The first "=" sign is a replace
ment, the second is a comparison operator.

Example of a Sales Tax ProSlem

The following program to compute the sales tax for a par
ticular purchase is a further example of the use of the IF
clause, comparison operators, and a CAL subroutine to find
the integer and floating point portions of numbers. For
amounts over one dollar, the tax is the tax on the dollar
amount pi us the rate shown for the fractiona I part of a dollar.

Assumed tax rates

0-15 ¢
16-37 ¢
38-62 ¢
63-84 ¢
85-100 ¢

O¢
1 ¢
2 ¢
3¢
4¢

> 1. 0 DEMAND C@)
> 2.0 SET T = .04 * I P (C)@
>2.1 SETT=T+.Ol IF FP (C».15@)
>2.2 SET T = T+ .01 IF FP (C) > .37@)
> 2. 3 SET T = T+ .01 IF FP (C) >.62 @
>2.4 SET T = T+ .01 IF FP (C) > .84 @
> 3.0 TYPE T, T+C @)
>4.0 TOSTEP1.0@)

Decision Commands and Comparison Operators 17

BOOLEAN (lOGICAL) OPERATORS

In most of the foregoing examples, the general structure of
the IF clause was "IF" followed by a comparison sub-clause
based on a comparison operator. The power of the IF clause
can be expanded by using another kind of operator, the
Boolean operator, to modify or link together comparison
sub-clauses. The Boolean operators available in CAL are
"AND", IIOR II and "NOT".

> DO PART 4 I F (A = BAND C = D) OR e
(E = F) NOT (G > H) @

PART 4 can be executed under either of the following
conditions:

(1) A = B, C D, G < H

(2) E = F, G < H

> DO PA RT 4 I F A = BAND NO T (E = FAN D G > H)

PART 4 will be executed if

(1) A = B

(2) E;r F

(3) G s H

Note that, in the examples above, parentheses were used
to indicate the scope of the Boolean operators in the same
way as in an algebraic expression and that Boolean opera
tors can be combined (e. g., AND NOT).

The following will illustrate the use of IF clauses with com
parison and Boolean operators.

PRECEDENCE IN THE BOOLEAN OPERATORS

In the general scheme of computational precedence, the
Boolean operators have the lowest precedence. The total
order of precedence is:

The five arithmetic operators

The six comparison operators

The three Boolean operators whose relative prece
dence is NOT, AND, OR

The proper use of precedence permits the user to eliminate
some steps in writing an expression. For example

A AND B = C+D*EtF

means the same as

A AN D (B = (C+(D*E t F)))

NEGATIVE NUMBERS WITH BOOLEAN OPERATORS

Since negative numbers in Boolean operators are always con
sidered true, care must be taken in using them. Otherwise,

18 Boolean (Logical) Operators

illogical results may be produced. As an example, consider
the following program step.

> 3. 1 SET A = 3 IF X OR Y = Z

If X = -1, Y = 2, and Z = 1, then at execution the logical
test Y = Z would yield a zero (i. e., Y does not equal Z).
The OR operator then adds the expression preceding it to
the expression follcwing it. The result is -1 +0 = -1,
which indicates that the condition is true. This means that
A would then be set to 3. However, this result is obviously
undesirable since neither X nor Y = Z in this case. A flow
diagram of this clause would be as follows:

IF X OR Y Z

X Y Z
-1 2 1

\ /
\ /

-1 + 0 -1 (indicates true)

To obtain the correct result, the step should be written as

> 3. 1 SET A = 3 IF X = Z OR Y = Z

Then the clause would be executed correctly, as shown in
the flow diagram below.

IF X = Z OR Y Z

-1 1 2 1
X Z Y, Z

" / /
\ / ,

/
\ / +

, / o (indicates false)
0 0

The same kind of illogical results can occur if negative
numbers are used in conjunction with the AND operator.
The expression preceding the A ND is multipl ied by the
expression following it. Consider the program step

> 3.2 SET B = Z IF X AND Y = Z

If Z = 1, Y = 1, and X = -1, the test Y = Z is true (-1).
The AND execution causes multiplication of -1 x 1, which
tests true (-1). Therefore, B is set equal to Z, an unde
sired result. The step should be

> 3.2 SET B = Z IF X = Z AND Y = Z

Example of a Steel Test Program

A certain steel is graded according to the results of three
tests which are to determine whether it satisfies the follow
ing specifications:

Carbon content below. 7
Rockwell hardness greater than 50
Tensile strength greater than 80,000 psi.

The steel is graded 10 if it passes all three tests, 9 if it
passes only tests 1 and 2, 8 if it passes test 1 but fails test
2, and 7 if it fails test 1. The flow diagram is shown on
the following page.

G C~ 10

DEMAND C, R, T @)
SET G = O@)

G = 7

G = 8

G = 9

>1.0
> 1.05
>1.1 SETG= 10 IF T >=80000AND R >50 G

AND C <.7 @)
>1.2

>1.3
>1.4
> 1. 44
> 1.45
>1.5

SET G = 9 IF NOT (T > = 80000) AND R > 50@
ANDC<.7@)
SET G = 8 IF NOT (R > 50) AND C < .7 €V
SET G = 7 IF NOT (C < .7) @)
LINE @)
LINE @)
TYPE IN FORM 1: G @)

>FORM 1: (0
THE GRADE OF STEE LIS: %% @)

Then at execution:

> TO S TE P 1. 0 @)

C = .6
R = 55
T = 85000

THE GRADE OF STEEL IS: 10
>TOSTEP1.0@>

C = .6
R = 55
T =-= 75000

THE GRADE OF STEEL IS: 9
>TOSTEP1.0@)

C =.6
R = 45
T = 85000

THE GRADE OF STEEL IS: 8
> TO STEP 1. 0 @)

C = .8
R = 55
T = 85000

THE GRADE OF STEEL IS: 7

__ • I . I. .• I I I tqulvalenT alTernaTives woula oe

(a) 1. 0 DEMAND C, R, T
1. 1 SE T G = 1 0 1FT > 80000 AND R > 50 AND C < .7
1. 2 SET G = 9 IF T < 80000 AND R > 50 AND C < .7
1. 3 SE T G = 8 IF R < = 50 AND C < . 7
1.4 SETG=7IFC>=.7
1. 5 TYPE G

(b) > 1. 0
> 1. 1

> 1. 2

> 1. 3
> 1. 4
> 1. 5

DEMAND C, R. T
SE T G = 1 0 IF C < . 7 AND R > 50 AND
T > = 80000
SET G = 9 IF C < .7 AND R > 50 AND NOT
T > = 80000
SE T G = 8 IF C < . 7 AND NO T R > 50
SET G = 7 IF C > = .7
TYPE G

In the above example, the individual steps are tested as
follows. The IF and AND operators as used in statement 1.1
above are written so that all conditions must test true. The
computer checks by testing the left most conditiona I for
true (1) or false (O), then proceeds to the right and tests
the next conditional, etc. The resul t of each test (i.e., 0 or
1) is multiplied times the result of the next test, etc. If
any part of the statement if false (O), it follows that the
overall result is false (0). An example is given below.

T > = 80000 R > 50 C < • 7
85000 55 .6

True (1) True (1) True (1) = (1) True=GRADE 10

To avoid confusion in determining how many conditions
must be accounted for in writing logic programs, a truth
table is constructed. A truth table shows a 1 if the con
dition is true, and a zero if the specified condition is false.
A truth table for the grading of steel according to what
combination of the three test condi tions tests true or false
is shown in Figure 10.

C <.7 R > 50 T > = 80000 GRADE

1 1 1 10
1 1 0 9
1 0 0 8
1 0 1 8
0 0 0 7
0 1 1 7
0 1 0 7
0 0 1 7

Figure 10. Truth Table for Steel Grading

Boolean (Logical) Operators 19

THE "TO" COMMAND

In general, CAL executes the steps in a program in numeri
cal order. TO is a command that alters the order in which
CAL executes steps. TO provides a means for transferring
control from one part of a program to another. When CAL
obeys a TO command it goes to the part or step referred
to by the TO, and executes successive steps unti lit
encounters some other control change or the end of the
program. The TO command permits the programmer to
alter arbitrarily the sequence in which the program state
ments are execu ted.

The TO command may be thought of as a forward transfer
or as a return transfer to cause repetition of certain steps
in the program, as shown in the following example.

> 1. 0
> 1. 1
> 1. 2
> 1. 3
> 1.4
> 1. 5
> 1. 6
> 1. 7
> 1. 8

DEMAND N e
SET I = 1 @)
DEMAND X(I), Y(I) e
SET Z(I) = X(I) * Y(I) e
TYPE Z(I) @)
SET I = I + 1 e
TO S TE P 1. 8 I F I > N @)
TO STEP 1. 2 @)
PAUSE e

Step 1.6 above is an example ofa forward transfer. Forward
transfers are almost always accompanied by a modifying
conditional clause. Step 1.7 is an example of a backward
transfer. Backward transfers are one way of getting repeat
execution of a series of program steps.

MODIFYING CLAUSES OTHER THAN "IF" AND "FOR"

So far, commands such as DO and TO have been either
unmodified or else were modified by either an IF or FOR
clause. For example:

> 1. 0 DO PART 20 FOR I = 1 BY 2 TO 50
> 2.0 TO STE P 23 IF J < = 5

Three other modifiers which add to ease of programming
are also available in CAL. They are

UNLESS which allows the associated step to be execu-
ted if the logical evaluation of the modifying
clause is zero.

WHILE which causes the associated step to be executed
repeatedly if the logical evaluation of the modi
fying clause is zero.

UNTIL which causes the associated step to execute
repeatedly if the logical evaluation of the modi
fying clause is zero.

USE OF THE "UNLESS" CLAUSE

The UNLESS clause is most often used for an iterative
series of calculations where certain random exceptions
exist. For example: An array called b contains mileages

to certain cities from a point of origin and an array called
r contains freight rates per Ib per mile. It is desired to
calculate the cost of moving 100 Ibs to each of the cities
from the point of origin and to place the results in a vector
called c, unless a mileage or rate does not exist (the pro
gram is to type a message to that effect). Such a program
would appear as follows.

Assume the vectors band r and the number of entries "N"
in each are already loaded in the computer by part 1.0
which is omitted:

> 2.0
> 2. 1
> 2.2
> 4.0
> 4.1

DO PART 4.0 FOR I = 1 TO N e
TYPE C(I) FOR I = 1 TO N e
PAUSE @)
TO STEP 4.4 UNLESS B(I) < = 0 e
TYPE "MILEAGE FOR THE FOLLOWING (0
ENTRY IS ZERO OR NEGATIVE" @)

> 4.2 TYPE I, B(I) @)
> 4.3 SET C(I) = -88 @)
> 4.35 DONE e
> 4.4 SET C(I) = B(I) * R(I) * 100 UNLESS R(I) < = 0 @l
> 4.5 TO STEP 4.7 IF R(I) < = 0 e
> 4. 6 DO NE @) ,
> 4.7 TYPE "RATE FOR THE FOLLOWING Ef\..N IS C0

ZERO OR NEGATIVE"@)
> 4.8 TYPE I, R(I) @)
> 4.9 SET C(I) = -99 @)

At execution, the program will type a message each time
a mileage is missing, as a result of step 4.0, otherwise
execution will transfer to step 4.4. Again, a message
will be typed each time a rate is missing, as a result of
the UNLESS clause testing true in step 4.4. Otherwise
C(I) will be set to the correct cost to ship 100 Ibs and the
control subscript I will be incremented.

After the DO PART 4.0 has been evaluated for each value
of I, the results typed out in step 2. 1 are

(1) All cost successfully computed, and
(2) A code entry for a!! costs not successfully

computed.

The values -88 or -99 are codes indicating the reason why
the cost was not calculated (i. e., -88 means no mileage,
-99 means no rate).

Note the way in which this program is written. If both
mileage and rate are missing, only the fact that the mile
age is missing will be recorded. In the next section, an
alternate program having the additional feature to correct
this flaw will be shown.

USE OF THE "WHILE" CLAUSE

By using the WHILE clause, a program may be written for
recording the fact that both mileage and rate are missing
(per the example above). The program (omitting the indi
vidual messages) would be as follows.

2.0 DO PART 4.0 FOR I = 1 TO N
2. 1 TYPE C(I) FOR I = 1 TO N
2.2 PAUSE

20 The TO Command/Modifying Clauses Other Than IF and FOR

4.0 SETC(I) =B(I)"" R(I) * 100 WHILE B(I) >0
AND R(I) > 0

4.1 TO STEP4.9 IF B(I) < =OAND R(I) < =0
4.2 TO STEP 4.7 IF R(I) < = 0
4.3 TO STEP 4.5 IF B(I) < = 0
4.4 DONE
4.5 SETC(I) =-88
4.6 DONE
4.7 SET C(I) = -99
4.8 uUNE
4.9 SET C(1) = -77

USE OF THE "UNTIL" CLAUSE

The most common use of the UNTIL expression is in con
junction with a FOR clause. For example, the step

1. 0 DO PART 4.0 FOR I = 1 TO N

can be written

1. 0 DO PART 4.0 FOR I = 1 BY 1 UNTIL I > N

which is exactly equivalent.

A more useful utilization of UNTIL is in the case of a back
ward iteration through a loop. For example, if I were
initially set equal to N and decreased in increments of
1 until I equaled 1, the step would be

1. 0 DO PART 4.0 FOR I = N BY -1 UNTIL I = 1

The UNTIL clause is particularly useful when the length of
a current vector is unknown or needs to be calculated.
Consider the followi ng example.

A manufacturer makes severa I assembl ies whi ch consist of
two or more parts. The assembly listing is ordered from
top to bottom, by assembly number, for indexing purposes.
It contains the part number of each part required for each
assembly, ordered from left to right. A segment of this
list would be as shown in the two dimensional array, P,
in Figure 11.

Assembly # (Part # of Parts Making Up the Assembly)

100 1 2 5 8 20 -1

101 3 4 7 12 14 18 19 -1

102 6 2 -1

103 1 6 7 -1

104 13 16 18 21 -1
r--~-----~- -

105 10 11 12 -1

106 8 4 3 12 22 23 -1

N I
Figure 11. Sample Assembly Parts Bill of Material List

Note that the horizontal dimension (J) in the array is
different for each line entry and is terminated by a -1.
A program to print a portion of the list from Assembly
#100 to Assembly #120 (vertical dimension, (1)) would be
as follows.

> 1. 0 DO PART 4.0 FOR I = N BY 1 UNTIL 0
P(1, 1) > 120 @)

> 1. 1 PAUSE @)
> 4.0

> 4.1
> 4.2

DO STEP4.2 FOR j = I BY I UhiTiLG
P(I, J) < 1 @>
DONE @)
TY PE P(I, J) @)

MULTIPLE CLAUSES

Finally, IF, AND, FOR, WHILE, UNTIL, and UNLESS
clauses can be combined in modifying a CAL command.
Any combination can be used. For example, a program
to calculate integral right triangles could be written as
a single, direct CAL command.

> TYPE A, B, C IF FP(C) = 0 FOR C = SQRT(A t2 + B t 2)0
FOR B = 1 TO A FOR A = 1 TO 12

In executing this rather massive command, CAL would take
the following action: The right-hand (last) FOR variable,
A, would be stepped through the values indicated. Then,
for each value of A, B would be stepped through values up
to A. For each value of B, C would, in turn, be SET to the
value SQRT(At2 + Bt2). Finally, each time C was SET the
IF clause would be tested, and if true, A, B, and C would be
printed out. Note that the left-hand (first) FOR clause was
used to SET a variable (C) to a single value rather than to
generate a repeated operation. --

Note that CAL reads the arguments of a command from left
to right, but it reads the clauses that modify the command
from right to left. In the example

> 3.7 DO PART 10 FOR A = 1 TO N IF C > D @
IFM<=l@>

CAL would first check to see if M is less than or equal to 1.
Then, if that were true, it would next check to see if C is
greater than D. If either clause were false, CAL would go
on to the next step. Otherwise, part 10 would be executed
for the indicated values of A.

CONDITIONALS AS EXPRESSIONS

In the CAL step below, the variable A on the left is set
equa I to the value of the expression on the right

1. 0 SET A = SQ R T (C t 2 - B t 2)

This type of replacement statement has often been used
throughout the test examples so far. In this case, A is set
to a specific value for each unique setofvalues assigned to
Band C. Many times in programming it is desired to set A
to a specific value that depends on a set of existing condi
tions. For example, suppose that if the following conditions
of X exist, A is to be set to the value indicated.

Multiple Clauses/Conditionals as Expressions 21

X Value to be SE T in A

X < = 0 0
0<X<=10 1
10<X<=15 2

15 < X < = 30 3
30 < X < = 100 4
X> 100 5

Figure 12. Value of A as a Function of X

One way of writing this program would be

> 1.0 SE T A = 0 I F X < 0: 0 @)
> 1. 1 SET A = 1 IF X > 0 AND X < = 10 @
>1.2SETA=2IFX>lOANDX<=15@l
> 1.3 SET A:- 3 IF X > 15 AND X <:.:; 30@l
> 1. 4 SE T A = 4 I F X > 30 AND X < = 100 €V
> 1. 5 SE T A = 5 IF X > 100 €V
> 1. 6 TY PE A, X @)

CAL has a powerful feature that makes conditional expres
sions possible in the example above. Using a conditional
expression, the foregoing can be achi eved in a single step.

1. 0 SET A=IF X <=0 THEN 0 ELSE IF X>O
AND X <= 10 THEN 1 ELSE IF X>10 and X <=15
THEN 2 ELSE IF X> 15 AND X <=30 THEN 3 ELSE
IF X >30 AND X <=100 THEN 4 ELSE 5

Conditional expressions take the general form

SET v=IF e
p1

THEN e
v1

ELSE IF e
p2

THEN e v2 ••• ELSE e vn

When a conditional expression is evaluated, e p l is first
evaluated. If it is non-zero, evl is evaluated and its
value becomes the value of the expression. If epl is zero,
e v l is ignored and ep2 is evaluated. If the expression ends
with ELSE evn' then the value of evn will be the value of
the expression if all the epi are O. The expression may,
however, end with

IF e pn THEN evn

In this event, the value of the expression is 0 if all the
epi equal O. Note that the only expressions actually eval
uated are those whose values are required in determining
the value of the expression. As another example, consider
the statement

>SET B=IF X MOD 2=OTHEN-l ELSE IF X> 100
THEN 0 ELSE 1 @)

This statement will set B to -1 if X is an even integer,
to 0 if X is not an even integer and is greater than 10, and
to 1 if X is not an even integer and is less than 10.

THE "WHERE" MODIFIER

A WHERE modifier can be appended to an expression in order
to set the value of a variable to the value of a specified
expression. The general form is

SET V = e WHERE Vl = e1

22 The WHERE Modifier

The modifier, which is evaluated first, sets the value of v
to the value of v

1
= el. For example, the step

1. 0 SET A = 51 N(Z)/COS(Z) WHERE Z = A TAN(X, Y)

has the value

SIN(A TAN(X, Y))/COS(ATAN(X, V))

In the above example, Z will be continuously evaluated.
However, it is possible to have the WHERE modifier evalu
ated only once, by placing a comma before the WHERE.
This is particularly useful in the iteration. For example:

>SET X = N(I)/Q FOR I == 1 TO 10, WHERE @)
Q = SQRT(64) @)

The WHERE modifier may be followed by more than one ex
pression; each must be separated by an ampersand sign (&)
(See the last example in this section for an example of its
use).

In a previous example, a program was written to find C
according to the following figure.

> 1. 0 DEMAND X, Y, R €V
> 2.0 SET C = SQRT(R t 2+Z t 2) WHERE @

Z = SQ R T (X t 2 + Y t 2) @l
>3.0 TYPE X, Y, R, Z, C @)

As an additional example of the use of WHERE, consider
a program to evaluate

x
e

n
x

+
N!

Given X and the number of terms, N, the program without
a WHERE clause could be written as

> 1. 1 DEMAND X, N @l
> 1.2 SET T = 1 e
> 1. 3 SE T S = 1 ®
> 1.4 DO PART 4 FOR I = 1 UNTIL T < lOE-8 e
> 4. 2 SE T T = T*X/I @)
> 4. 3 SE T S = 5+ T €V
> 5.43 TYPE 5, T, X, N e
> 5.7 TO 5 TE P 1. 1 e

x -8
A program to compute e with accuracy better than 10
utilizing WHERE clauses can be written in one step as

>1.0 SET E=l+SUM(I=l BY 1 UNTIL T<10E-8: <0
T WHERE T=XtI/F WHERE F=I*F) @)

where T=l and F= 1.

4. SPECIAL STATEMENTS (INCLUDING FILE CONSTRUCTION) AND SUBPROGRAMS

SPECIAL STATEMENTS DELETE FORM i where i is any form number or

The discussion thus far has covered statements wh ich may be
either direct or indirect. t Remember that a direct statement
is one that does not have a step number and therefore results
in a one-time execution (i.e., the statement is not saved in
a program). An indirect statement does have a step number
and is saved in a program. Execution of an indirect state
ment does not occur unti I the program is executed. The
most common two-way (direct and indirect) statements use
the TYPE and SET commands; Used as direct statements,
for example, these commands would appear as

>SETC =48
> SET B = 38
> TYPE A = SQRT(Bt2+Ct2)8

The computer would immediately execute the commands and
print

A = SQRT(Bt2+Ct2) = 5

In program form, the same commands would appear in indi
rect statements as

> 1. 1 SE T C = 4 @
> 1. 2 SE T B = 38
> 1. 3 TYPE A = SQRT(Bt2+Ct2) 8

Then, to initiate a single execution ofthe program, the user
would type a direct statement such as TO STEP 1. 1.

In addition to statements which may be either direct or indi
rect, CAL has certain statements which may be either direct
only or indirect only. The purpose of this section is to
define and illustrate the use of these special statements.

SPECIAL DIRECT STATEMENTS

The following commands may be used in direct statements
only.

DELETE STEP i. j where i.j is any statement number.

This command causes the specified statement to be
deleted.

DELETE PART i
number.

where i is any expression or part

This command causes the specified part (with all
its steps) to be deleted. In the case of expressions,
it causes the expression to be evaluated and the
part equal to the integer portion to be deleted
(this latter point 'Ni!! become clear in the exam
ples to follov0.

tIn examples given in previous chapters, statements were
used that did not meet this criteria. These statements,
used to compl ete a program or program segment, wi II be
fully discussed in this chapter.

expression

This command causes the specified form number
to be deleted; in the case of expressions, it causes
thp pxprf'ssion to hf' f'valuated and the form equal

to the integer porti on to be deleted.

DELETE i where i is any variable

This command causes the value of the indicated
variable to be deleted without changing the
program.

DELETE ALL

This command causes the entire program in process
to be destroyed and returns the user to the CAL
beginning sequence o

As an example of thE' DELETE statement, consider the fl")lIow
ing program segment.

> 1. 70 DOPA R T 1 0 FOR I = 1 TON @)
> 1. 75 TO S TE P 1. 0 8
> 1. 80 TYPE "EQUA nONS ARE SINGULAR" 8
> 1. 85 TO STEP 1. 0 @)

>2.00 TYPE IN FORM 2:1 @)
>2.10 DEMAND A(I, J) FOR J=l TO N @)

>3.00
>3.10
>3.20
>3.3
>3.4
>3.5

>4.0
>4.1
>4.2
>4.3
>4.35
>4.4

>5.0
>5.1
>5.2
>5.3
>5.4

>6.0
>6.1

>7.0
>7.1

SET L=O @)

SET G=O e
DO PART 4.0 FOR I=J
SET R(G)=R(J) @)
SET R(J)=G @)
DO PART 5 FOR K=J+1

TO N@)

TO N@)

TO SETP 4.2 IF ABS(A(R(I), J» > L @)
TO STEP 4. 4@)
SET L=A(R(I), J)@)
SET G=R(I)@)
TYPE L, G, R, A, J @)
SET 1=1 @)

TO STE P 5.4 IF ABS(A(R(K), J» < 1 E-5 @)
SET M=A(R(K),)/ A(R(J), J) @)
DO PART 6.0 FOR L=J TO N @)
SE T B(R(K» =B(R(K» =M*B(R(J» @)
SET K=K €V

SET A(R(K), L)=A(R(K), L)=M*A(R(J), L) @)
SET A(R(K), L)=O IF ABS(A(R(K), L» <.000001 @l

TO STEP 1. 8 IF ABS(A(R(I), I) < 1E-5 @
DONE@)

Special Statements (Including File Construction) and Subprograms
23

The following DELETE commands are now executed.

DELETE STEP 1. 75 @)
DELETE STEP 1. 85 @)
DELETE STEP 2 §
DELETE STEP 4.4 @

A relisting of the program would now appear as

1. 70 DO PART 10 FOR 1=1 TO N
1.80 TYPE "EQUA nONS ARE SINGULAR"

2. 10 DEMAND A(I, J) FOR J=l TO N

3.00
3. 10
3.20
3.3
3.4
3.5

4.0
4. 1
4.2
4.3
4.35

5.0
5. 1
5.2
5.3
5.4

SET L=O
SET G=O
DO PART 4.0 FOR I=J TO N
SET R(G)=R(J)
SET R(J)=G
DO PART 5 FOR K=J+l TO N

TO STE P 4.2 IF ABS(A(R(I), J» > L
TO STEP 4.4
SET L=A(R(I), J)
SET G=R(I)
TYPE L, G, R, A, J

TO STEP 5.4 IF ABS(A(R(K), J» < 1 E-5
SET M=A(R(K), J)/ A(R(J), J)
DO PART 6.0 FOR L=J TO N
SET B(R(K»=B(R(K»=M*B(R(J»
SET K=K

6.0 SET A(R(K), L)=A(R(K), L)=M*A(R(J), L)
6. 1 SET A(R(K), L)=O IF ABS(A(R(K), L» < . 000001

7.0 TO STEP 1.8 IF ABS(A(R(I), I» < 1 E-5
7.1 DONE

The DELETE PART command is now executed as shown.

DELETE PART 4.0 €l
DELETE PART 7.0 @>

The program would now appear as

1. 70 DO PART 10 for 1=1 TO N
1.80 TYPE "EQUA nONS ARE SINGULAR"

2. 10 DEMAND A(I, J) FOR J-l TO N

3.00 SET L=O
3. 10 SET G=O
3.20 DO PART 4.0 FOR I=J TO N
3.3 SET R(G)=R(J)
3.4 SET R(J)=G
3.5 DO PART 5 FOR K=J+l TO N

5.0 TO STE P 5.4 IF ABS(A(R(K), J» < 1 E-5
5. 1 SET M=A(R(K), J)/ A(R(J), J)
5.2 DO PART 6.0 FOR L=J TO N
5.3 SET B(R(K»=B(R(K»=M*B(R(J»
5.4 SET K=K

24 Special Statements

6.0 SET A(R(K), L)=A(R(K), L)=M*A(R(J), L)
6. 1 SET A(R(K), L)=O IF ABS (A(R(K), L» < . 000001

If the DELETE PART command had specified an expression
such as A*B+2.5, where A=l and B=2, the command would
be

DELETE PART A*B+2. 5

This would be interpreted as

(a) DELETE PART lx2+2. 5
(b) DELETE PART 4.5

which would be equivalent to the integer portion of 4. 5, or

DE LE TE PART 4. 0

If the command DELETE ALL is executed, the whole program
segment is completely destroyed so that the storage is com
pletely free for reuse. At execution of the DELETE ALL
command, the computer prints

CAL

NUMBER OF STATEMENTS NEEDED =

HEADING, PLEASE

Note that this is the same result as when CAL is initiated
after LOG IN.

The DELETE ALL command is especially useful to correct a
type of error common to i nexperi enced programmers. For
example, a program to calculate the square roots of a series
of numbers is written and appears as

> 1. 0 DEMAND N@>
> 1.2 DO PART 2 FOR 1=1 TO N @)
> 1. 3 TO STE P 3. 0 @

> 2.0 DEMAND A(I), B(I) @>
> 2.2" SET C(I)=SQRT(B(I) t2+A(I) t 2) @)
> 2.4 TYPE B(I), A (I), C(I)@)

> 3.0 DONES

This program is executed successfully. Now without exe
cuting the DELETE ALL command, the programmer proceeds
to write another program to find the average of a series
of numbers.

>1.0 DEMAND N@)
> 1. 1 DO PART 2 FOR 1=1 TO N @
> 1.3 SET F=O @)
> 1.4 SET V=F/M@)

> 2. 0 DEMAND A(I), B(I) @>
> 2. 1 SET C(I)=A(I)*B(I) @)
> 2. 3 SET F=F+C(I)@)
> 2.4 TYPE B(I), A(I), C(I) @>

At execution, the program would appear to CAL as

1.0 DEMAND N
1. 1 DO PART 2 FOR 1=1 TO N
1.2 DO PART 2 FOR 1=1 TO N
1. 3 SET F=O
1. 4 SET V =F/M

2.0 DEMAN D A(I), B(I)
2. 1 SET C(I)=A(I)*B(I)
2.2 SET C(I)=SQRT(B(I) t 2+A(I) t 2)
2.3 SET F=F+C(I)
2.4 TYPE B(I), A(I), C(I)

Notice that every place in which the second program had
a number exactly the same as the first program, that step
was replaced. However, wherever the second program had
a gap in its numbering (i.e., 2.1, -, 2.3) and this number
gap was equivalent to a number in the first program, the
first program remained intact. To clarify, 2.0 of the sec
ond program replaced 2.0 of the first (the fact that they
were the same statement is coincidental). 2.1 is from the
second program, whereas 2.2 is from program one. The end
result is that program two finds the average of

C(I)=SQRT(A(I) t 2+B(I) t 2) FOR 1=1 TO N,

but the programmer's intent was to find the average of

C(I)=A(I)*B(I) FOR J=l TO N

This overlay feature has several editing advantages which
will be discussed later. In this case, however, if program
one is to be saved, the procedure should be

(1) Load program one to the di sc fi I e.

(2) DELETE ALL (this is necessary as the program is
still in core).

(3) Then proceed to write program two.

Other direct statements include those which utilize the GO
and STE P commands.

GO

This command permits continuation of execution after an
interrupt, an executor's error, or after a PAUSE statement
is executed (the PAUSE statement is explained below in
the section on indirect statements, which also includes an
example of how the GO command works).

STEP

This command causes the next statement of the program to
be executed, after wh ich control returns to CAL (as though
a PAUSE had been executed). For example, the user has
typed the foil owi ng sequence of statements.

> 1.0 PAUSE@
> 1. 1 SET A=SIN(A+SIN A) (§
> 1. 2 SET B=SIN(A+SIN B)@
> 1.3 SET D=SIN(B+SIN D)@

The following would then be useful for debugging these
statements by executing them step by step and observing
the variables. A, Band D must have values.

> TOSTE P 1. 0 e
PAUSE IN STATEMENT 1.0
> STEP @) (Step 1. 1 would be executed)
> TYPE A@
A=9.7
> STE P @ (Step 1. 2 is executed)
> TYPE B @ (request value of B)
B=O.9

Thus, by direct interaction, the user may correct his pro
gram a step at a time if he so desires.

SPECIAL INDIRECT STATEMENTS

The commands discussed in this section (PAUSE and DONE)
may be used in indirect statements only; i. e., those which
require a statement number and are stored in program form.

PAUSE

This command causes a message to be printed out and pro
gram execution to stop. During the pause, the user may
make corrections, etc. The command may be made con
ditional by utilizing modifiers. As an example of the use
of PAUSE, consider the following program to read in a two
dimensional array of numbers whose dimensions are Nand M.

1.1 DO PART 2 FOR 1=1 TO N
1.1 TYPE "AT PAUSE MAKE CORRECTIONS AND TYPE IGOIII
1.2 PAUSE
1.3 TO STEP 3.0

If N=2 and M=3, the following would occur at execution.

A(l,1)=2
A(l,2)=4
A(l,3)=3
A(2,1)=5
A(2,2)=6
A(2,3)=2

A T PAUSE MAKE CORRECTIONS AND TYPE 'GO I

PAUSE AT STEP 1.2
>

Suppose that the values of A(2, 1) and A(2, 2) were sup
posed to be 6 and 5, respectively, instead of 5 and 6. The
> sign directly below the PAUSE statement indicates that
CAL will accept a direct command. Thus, at this point the
user may type

> SET A(2, 1}= 6 @
> SET A(2, 2)=5 @)

By typing GO at this point, execution will begin again at
step 1.3, which indicates that the program should transfer
to step 3. O. The corrected values have now replaced the
original entries.

The PAUSE statement is also useful in terminating a program.
For example, the last two statements in a program might be

> 20. 0 TYPE "IF RE-EXECUTION IS DESIRED TYPE 0)
ITO STEP 1. 0 1 OTHERWISE HIT THE ESCAPE 0)
KEY ONCE TO RETURN TO CAL, TWICE TO 0)
RETURN TO THE EXECUTIVE MONITOR" @>

> 20. 1 PAUSE @)

At the execution of steps 20.0 and 20. 1 the message would
be printed, plus

PAUSE AT STE P 20. 1

>

Special Statements 25

The program wi II re-execute if the user then types

> TO S TE P 1. 0 @)

If the user wished to terminate the program he would follow
the instructions given in the message.

DONE

This statement is ignored unless a DO PART statement is in
force, in which case the DO PART is terminated. Since
DO PARTS are used many times in iterative loops, the
DONE command is frequently used to terminate a loop.
For example, an array (q) contains quantities of parts ship
ped to customers and a corresponding array (15) contains the
unit price (customer identity has a one to one correspon
dence with the subscript value; i.e., when the subscript is
"i" this corresponds to a code "i" for that customer1s name).
If a zero value occurs in either the q array or the 15 array,
the calculation is to move to the next set of values. The
program segment to perform this, assuming the arrays q and
15 have already been input to the program, would be

> 3.0 DO PART 4 FOR I = 1 TO Nt @)
> 4.0 DONE IF Q(I) = 0 OR P(I) = 0 @)
> 4. 1 SET C(I) = A(I)*P(I) @)
> 4.2 TYPE I, C(I)@)

At execution, whenever Q(I) or P(I) are zero, the DONE
command will return execution to the DO command in
step 3. O. The DO command causes an incrementation of
I and then re-execution of part 4. O.

SUBPROGRAMS

Mathematical functions such as SQRT, EXP, etc., are pre
defined functions and, as such, are always available in
CAL. However, there are often functions or special pro
cedures that are not predefined but would be useful for a
program being written. It is then up to the user to define
his own functions. This is possible in CAL and can be done
in severa! ways. The most common way is to construct and
use CAL "subprograms". Each subprogram, when supplied
to the computer along with the main program, will then
serve as if it were a predefined function.

Subprograms are somewhat independent and can thus be
tested separately in many cases. Groups of tested sub
programs forming progressively larger subsystems can be
tested separately until finally the entire system of programs
may be proven as a working unit. This independence of
parts means that several programmers may work effectively
under one supervi sor on separate subsections of a large
project, depending on the nature of the project.

Another useful property of subprograms is that they may
always be added to the "library" of a computer system
when they prove useful enough. Thus they become pre
defined functions for all programs written in the future.

t N equals total entries in the array.

26 Subprograms

Statements of the type previously discussed can be combined
to form a subprogram. Consider the following program which
calculates the product of N*(N-1)*(N-2} ••. 1. The product
is call ed the factorial of N.

> 1.0 SET N = 10 @)
> 2.0 DO PART 5.0 (§
> 2. 1 TY PE P (§

> 5.0 SET P = PROD (1=1 TO N:I)@)

In this example, Step 5.0 is called the subprogram, Step 2.0
is the call to the subprogram, N is the argument, and P is
the result of the subprogram.

This type of subprogram has a definite limitation, in
that only the factorial of N can be calculated by step 5.0.
It would be more convenient to have a subprogram that
could calculate the factorial of any variable. It is possible
to construct such subprograms in CAL by using DEFINE
statements (which are always written without step numbers).
In this way, CAL lets the user define a step or many steps
in a general sense so that any variable or variables can be
acted upon.

ONE-STEP SUBPROGRAMS

To define the subprogram that consists of one step only, the
user uses the following form of the DEFINE statement.

DEFINE f [v
1
, v2, ••• ,v n] = e

where f is any variable name, v is any variable and e is
any expression. For exampl e

DEFINE F [A, B, C] = A*B+C

The call to a subprogram is the appearance of the function
name in a statement, which initiates the execution of the
subprogram. Either of the following statements, for example,
would call the subprogram for execution:

1. 0 SET X = Y + Z + F [1, 2, 3]

or

TYPE F[X, Y, z+51

The arguments of the subprogram are included in brackets in
the call. They may be variables, constants, or expressions.
The variables in brackets in the original definition are called
local variables or dummy arguments. There must always be
the same number of arguments as local variables.

Note that while the DEFINE statement is always a direct
statement, the call to the subprogram may appear in either
a direct or indirect statement.

Consider again the factorial example, N*(N-l)*(N-2) ... 1.
Using the DEFINE statement, the subprogram could be
written as

DEFINE F [N] PROD(I FOR I = 1 TO N)

To execute the subprogram for N = 10, the user cou Id type

TYPE F [10]

We can consider another example.

DEFINE F [X, Y, Z, W] = XtW +Y/Z

The call

TYPE F [3, 4, 2, 2]

would cause the computer to evaluate X t W + Y /Z, using
the values 3, 4, 2, and 2 for X, Y, Z, and W, respectively,
and to print the result. Thus F = 3 t2 + 4/2 = 11, and 11
would be printed as the result of subprogram F.

Using the same subprogram definition, the following steps
could also be used to cause the computer to print the same
result.

> SET A = 3 @l

> SET B = 4 @l

> SET C = 2 <§

> SET D = 2 @l

> TYPE F [A, B, C, D] @)

The effect of this call is that the value of A has been
assigned to X, B to Y, C to Z, and D to W. In this case,
the arguments are A, B, C, and D, while the local vari
ables are X, Y, Z, and W.

The local variables in a subprogram are not related to any
variables in the main program, even if they have the same
name. Local variables are assigned no location in memory.
Their function is only to serve as placeholders. This point
can be made clear with another example.

>DEFINE E [I, J, K, L, M] = (I+J+K)/(L+M) E"i9

>1.0 SETI=10@)

>2.0 TYPE E [1, 2, 3, 4, 5] @)

>5.0 TYPE I @)

Note that I appears as a variable in the main program and
a~ a dummy variable in the definition statement. The value
of I in the main program is set to 10 before the subprogram
is executed. Thus, the main variable I will have the value
of 10 when step 5.0 is executed, even though the dummy
variable I is given the value of 1 in step 2. O. When the
subprogram is executed by the call in step 2.0, I will have
the value of 1 but this will not affect the I of step 5.0. This
characteristic is true only in the case of local variables.

MULTIPLE-STEP SUBPROGRAMS

To write subprograms longer than one step, another form of
the DEFINE statement is available.

DEFINE f [v
1
, v

2
, ••. ,v

n
]: statement

where f !S C!11' vcdcb!e !1a~e a!"!d v !s a!"!y vadab!e. For
example

DEFINE X [A, B, C] TO PART 5

or

DEFINE W [M, N] : TO STEP 4.2

Again, the DEFINE statement is always a direct one. When
used in this form, the call must always be an indirect state
ment. The following is an example of a valid call to a
multi-step subprogram.

1.0 SET F =W [M, N]

The local variables have the values of the arguments, as
described above. However, to terminate the subprogram
the user must include a RETURN statement, which will also
assign the value of e to the variable name, f. The form of
the statement is

RETURN e

where e is any expression.

As an example of subprograms with more than one step, con
sider the sales tax program in chapter 3. This would appear
as a subprogram as follows.

>DEFINE S [C]: TO STEP 10.0 <3
> 1. 0 DEMAND X @)

>2.0 TYPE S [X] <§

> 10.0 SET T = • 04*IP(C) @

>10.1 SET T = T+.Ol IF FP(C) >.15 <§

>10.2 SET T = T+.Ol IF FP(C) >.37 <§

>10.3 SET T = T+.01 IF FP(C) > .62@)

>10.4 SET T = T+.Ol IF FP(C) >.84 @l

> 10.5 RETURN T @)

All of part 10 is executed with the value of the argument X
assigned to local variable C. Step 10.5 assigns the value T
to S and returns control to step 2. O.

In terminating a subprogram with the RETURN statement, the
user must take care that the range of any DO or FOR com
mands are complete before the RETURN appears. Otherwise,

Program Fi I es 27

the part will not be completed. The following example
illustrates the correct placement of a RETURN statement.

>DEFINE Z [N]: TO STEP 10.0 @

>1.0 SETX = Z [30] @

> 10. 0 SET S = 0 €V

> 11. 0 SET Q = O@

>12.0 DO PART 14 FOR I 1 TO N@

> 13.0 TO STEP 15.0 @)

> 14.0 DEMAND A(I) @

> 14. 1 SE T S = S + A (I) @)

> 14. 2 SET Q = Q + A(I)*A(I) (§

>15.0 TYPE S/N @

> 16.0 TYPE SQRT (Q - «S*S)/N)/N-l) @

> 17. 0 RETURN S @)

This subprogram reads N numbers, and calculates and prints
the mean and standard deviation. Execution begins with
step 10.0 and continues to step 12.0 which sends it to
part 14. Part 14 is completed before execution is returned
to step 13.0. Execution ends with steps 15,16, and 17.
If the RETURN had been included in part 14, within the
range of the DO command, CAL would reject the program
for syntax error.

A RETURN is never used when the subprogram is defined
with a DO statement. The reason for this is that DO PART
or DO STEP is not finished until the whole subprogram has
been completely executed. Thus, the RETURN statement is
unnecessary. Consider the following example:

>DEFINE S [C]: DO PART 10.0 @

>1.0

>2.0

DEMAND X@>

SET P = S [X] ~

28 Program Files

>3.0 TYPE T @)

>10.0 SET T = .04*IP(C)8

>10.1 SET T = T + .01 IF FP(C) >. 15@>

>10.2 SET T = T + .01 IF FP(C) > .37@>

> 10.3 SET T = T + .01 IF FP(C) > .62 @l

>10.4 SET T = T + .01 IF FP(C) >.84 @>

Note that in this example, the purpose of step 2.0 is to ini
tiate the program. P and S, after execution, have the value
of zero. Therefore, step 3. 0 was necessary to pri nt the
"resu It II of the subprogram.

This section has presented the basic rules for constructing
subprograms. Increasing familiarlity with the DEFINE
statement wi II suggest other usefu I possibi I ities for subpro
grams. For example, the following subprogram definition
allows the user to choose, at execution time, which sections
of statements to execute.

DEFINE F [I]: TO STE P I

PROGRAM FILES

Programs may be saved in the form of files. Each user may
have a number of his own files which are private to him.
The command to save a program written in CAL is

>DUMP @)
TO/file/ (§
NEW (old) FILE e

This command takes all the steps and forms in memory and
writes them onto the specified file. To bring the steps back
from the file into CAL, the user types

> LOAD e
FROM /file/ @)

For more information about program files, see the Terminal
User's Guide.

5. INPUT jOUTPUT - DATA FILE CONSTRUCTION

One of the most powerful features of CAL is that it allows
the user to input numerical information while the program
is in the execution mode. CAL also provides instructions
for formatting both teletype input and output information
and, finally, has the capability of reading and writing data
fi les.

THE "DEMAND" STATEMENT

The DEMAND statement is the executable command which
allows numerical input by the user during program exe
cution. The general form of the expression is

DEMAND (variable), (variable), .•• , (variable) @>

The command causes each variable name to be typed out
one at a time. As each variable on the list comes up, CAL
waits for the user to input a value for that variable. The
variable request I ist generated by CAL is in the order that
the variables appeared in the DEMAND statement.

> DEMAND X, Y, Z, A, R @>

At execution, CAL causes the computer to print

X = (user enters numeric value) @>
Y = (user enters numeric value) e
Z = (user enters numeric value) @>
A = (user enters numeric value) @>
R = (user enters numeric value) @)

When numerical data is being typed in response to the
DEMAND statement, any non-numeric characters typed
before the number will be ignored. For example

> DEMAND X, ye
X =A3
Y = LM4

would assign 3 to X, and 4 to Y.

If a mistake is made during the typing of a number, the
entry may be deleted by striking QC, which deletes all
characters typed so far and allows the number to be retyped.
To terminate a unique entry, the character following the
number must be a carriage return, space, comma, or semi
colon. If a carriage return is used as a terminator, the next
data request will occur on the next I ine. When a space is
typed, the next data request will appear on the same line
if addi tional data requests are yet to be satisfied in the par
ticular demand statement being executed.

"DEMAND" STATEMENTS WITH MODIFIERS

The DEMAND statement may be used in combination with
modifier clauses, such as FOR, IF, WHERE, UNTIL and
WHILE.

For example, the DEMAND statement used with a FOR clause
wou Id look and execute as follows.

4. 1 DEMAND A(I) FOR I = 1 TO 4 @)

At execution the computer wi ii print

A(l) = (Operator enters number plus e)

A(2) = (Operator enters number plus@»)

A(3) = (Operator enters number plus @»)

A(4) = (Operator enters number plus @»)

A two dimensional matrix, A, with dimensions of m rows
and n columns may be input by a DEMAND statement as
follows.

1.0 DO PART 2.0 FOR I = 1 TO M@>
2.0 DEMAND A(I, J) FOR J = I TO N @)

At execution, the computer will start with "1" set equal to
one and will request the elements in the first row for
J = 1 TO J = N, then "1" wi II be set to the value 2 and
the sequence in J repeated, e. g.,

A(l,l) =

A(l, N) =

A (2, 1) =

A(2, N)

A(M,l)

A(M, N) =
Another example would be

5.2 DEMAND X(I) FOR I = 1 TO 100 WHILE @
X(I-l)#0, WHERE X(O) = 1

X(l)
X(2)
X(3)

(this will continue until I = 100 or the input is zero)

THE "FORM" STATEMENT FOR INPUT

CAL allows the user to control the form of his input by using
the command

DEMAND IN FORM e: vl, v2' ••. ' vn (where e is
any expression and v any variable)

and its corresponding

FORM n: G (where n is a constant, the numeri-
/I # # cal evaluation of the expression e)

Input/Output - Data File Construction 29

Often programs are written by one person and used by many.
When this is the case, the type of input required must be
carefully explained to the user, so he knows when and what
to type. This can be accomplished by using the FORM and
DEMAND IN FORM commands.

The form and demand in form commands work by eval
uating the expression e. The corresponding form state
ment defines what will be printed and how many numbers
will be accepted. All text (including blanks) in the form
statement is printed. One number (in either decimal or
scientific notation) is accepted for each "III sign. The
"#11 sign is not printed.

As an example, three variables to be input represent a unit
cost (C), a quantity (Q), and a discount (D). The CAL
statements are

1. 1 DEMAND IN FORM 1: C, Q, D@

FORM 1: @

UNIT COST = II QUANTITY = II DISCOUNT = II

At execution, the computer would print the first portion of
the text and then wait for the user to type the fi rst number.
Then the computer prints the second portion of text and
waits for the second number to be typed, and so on.

UNIT COST = 9.65 QUANTITY = 500 DISCOUNT = .05

The user terminates each number with a comma, semicolon,
or blank. (Note that the user types a I ine feed (not a
carriage return) after FORM 1 :).

The same example could also appear as

>1.1 DEMAND IN FORM 1: C,Q,DE>
>FORM 1: @)

UNIT COST = II @
QUANTITY = 1/ @
DISCOUNT = , 0

Similarly, at execution the computer would type the first
portion of text and wait for a number.

UNIT COST = 9.659
QUANTITY = 5008
DISCOUNT = .05 ®

However, in this example, when a space, comma, or semi
colon following the number is typed by the user, the com
puter will print a carriage return, I ine feed and the next
porti on of text.

Note that the FORM statement never has a line number.

One "I" sign should appear in the FORM statement for each
variable in the demand list.

The FORM statement is also used by those who want no
printing at all before input. This is particularly useful
when the data to be typed is on a paper tape. Consider the
following example.

30 Data Input from Paper Tape/rhe Form Statement for Output

The A matrix used in one of the previous examples could be
read, one row at a time, across the paper by using the
following.

>1.0 DO PART 2.0 FOR I = 1 TO M@
>2.0 DEMAND IN FORM 1: A(I,J) FOR J = 1 TO N@)

FORM 1: (0
1/ II II II II II II II II

In this case, the variable name is not printed. The com
puter wi II expect a number (i n any form) for each II. The
user might type

9.1,8.3,7.2, ••••••.•••••.•••••...••.• 6.0 @
3.2, •••.••....•.•••......••.••.......• 4.2@

3.2, •••••••.••••••••••••••••••.•.••.•• 3.1@

As before, each number may be terminated by a space,
comma, or semicolon.

DATA INPUT FROM PAPER TAPE

This data could have been typed directly or typed off line
onto a paper tape. The latter method is often used to reduce
typing time. The procedure to follow for this example is:
(1) prepare an off-line tape by punching the value ofal' 1
(comma, semicolon or blank) al' 2 (comma, semicolon or
blank) to a 1, n (carriage return, etc., and (2) press the tape
reader button, turn the TD switch on and the program will
accept the tape at full teletype speed. The computer is
unable to distinguish between input from paper tape and
di rect typing.

THE "FORM" STATEMENT FOR OUTPUT

The TYPE statement may also be used with the FORM
statement.

TYPE IN FORM 1:

FORM 1: (0
%%%% • % % % %% . % %

Note again that the user types a line feed and the computer
supplies the carriage return.

The significance of the percent sign is to tell the computer
in what form the number should be printed.

For example

%%%.% tells the computer to print a sign, two
digits, a decimal point, and then one digit.

-42.3
(+)21.9
49.0
-1.5

(plus signs are not printed)

(no leading zeros are printed)

Text to be printed may also appear in a FORM statement.

For example

>FORM 2 ®

VOL = %%%%.% AREA = %%%%.%9

When the following command is executed (where V = 452.1
and A = 205.9)

> TYPE IN FO!U'l\ 2 : V, .A. e
the computer wi II type

VOL = 452.1 AREA = 205.9

The percent sign will always produce a number in decimal
notation. To produce a number in scientific notation, the
11#11 sign is used.

The syntax of the FORM statement for numbers in scientific
notation is

>FORM 1: 0)
######, #11####, ••• , ###### @

A minimum of SIX 11#11 symbols is required to denote a scien
tific notation field. The six 11#11 symbols are required to
provide space for the sign, the decimal point, at least one
significant digit, the "EII denoting a power of ten, the sign
of the exponent, and the exponent itsel f. For example, to
output the number 1. 1 E -3, 30. 13+ 12, and 50. 265E -5, the
form statement would be

>FORM 1:@
######, ########, ######### @

Note that the fields in either decimal or scientific notation
used in the FORM statements, are del imited by a blank. If
commas appear, as in the example above, they will be
printed.

As described, a FORM statement is uniquely identified by
a number appearing directly after the word II FORM" • The
syntax rules for FORM statements for output are

• The identification number must be immediately
preceded by a space and followed by a colon.

• The colon is always followed by a I ine feed ®
carriage return @) and then the field designation.

• Two types of field designators are available:
decimal number (the % symbol) and scientific
notation (the # symbol).

• A form statement may have several field linesi
each intermediate line must be terminated by line
feed-carriage return, and the last I ine by a car
riage return-I ine feed.

• Text may appear in the numerical fields.

Another example is given below.

>29 TYPE IN FORM 1: C, Q, D e
>FORM 1:@

UNIT COST = %%.%%, QUANTITY=%%%%.,®
DISCOUNT =%.%%8

At execution the format would appear as

UNIT COST = 1.25
DISCOUNT =.05

QU AN TITY 235

If column form instead of row were desired the FORM state
ment would have to be written as

>FORM 1: ®
UNIT COST = %%.%% (0
QUANTITY = %%%.0)
DISCOUNT = %.%% 9

If there are more numbers in the TYPE statement than fields
in the form, the form is reused as often as necessary. If a
FOR modifier is used immediately after the I ist of expres
sions, the form will not be initialized each time around for
FOR. Instead, output will take place as though all the
expressions generated by the FOR had been written in the
TYPE statement. Thus

>FORM 1:®
%%%% %%%% %%%% %%%% %%%% %%%% @l

>TYPE IN FORM 1: It2 FOR I = 1 TO 14@)

will resu I tin

1
49

169

4
64

196

9
81

16
100

25
121

36
144

If there are fewer numbers to be printed than indicated by
the FORM statement, an extra line feed is used in the FORM
command.

For example, the desired result is to print a lower triangular
matrix which would appear as

where the dimensions are N by N and the maximum element
size may be ±99.99.

The output sequence in the program would be

>4.0 DO'STEP 20 for 1= 1 TO N @)
>20.0 TYPE IN FORM 5: A(I, J) FOR J = I UNTIL ®

J > N OR J > I @

>FORM 5: 0)
0)

%%%. %% %%%. %% •••• %%%. %% %%%. %% ®

Data Input from Paper T ape/fhe Form Statement for Output 31

In addition, there must be N+ 1 fields specified by the
FORM statement. At execution, the resul t would be

INPUT FROM FILES

The CAL language has the facility to accept input data from
data files. A data file is one that has been created and
defined previously by use of the executive mode, another
subsystem, or by CAL itself. A data file differs from a pro
gram file, in that the program file contains the steps of a
program, and a data file contains numbers to be read by a
program.

To open a data file to read in CAL, the instruction is

OPEN "Name" FOR INPUT AS FILE (expression)

For example, assume a matrix A with row dimension M and
column dimension N has been stored previously in a file
named II MATRIX. II The CAL statement to input this to a
program might appear as

>1.0 OPEN "MATRIX" FOR INPUT AS FILE 999<§
> 1. 1 DO PART 2.0 FOR I = 1 TO M e
> 1. 2 CLOSE 999 e

>2.0 DO PART 3.0 FOR J = 1 TO N E9
>3.0 READ FROM 999: A(I, J)@)

The general form of the READ statement is

READ FROM (expression): v l' V 2' ••• , v n

In the example above, STEP 1.2 will close the file. The
command is

CLOSE (expression)

At execution, this command will close the file; i. e., it is
transferred from memory to the disc. The fi Ie then is
unavailable for input until it is reopened.

Similarly, a file may be written on by using the "WRITE
ON" statement. Consider the following example.

> 1. 0 OPEN "DATA" FOR OUTPUT AS FILE 1 @>
>2.0 DO PART3FORI=1 TO 100@)
>2.5 TO STEP 4.0@
>3.0 WRITE ON 1: I @
>4.0 CLOSE 1 @)

The general form for the WRITE ON command is

WRITE ON (expression): e
3

• •• e
2

, ••• , en

After execution, the file called DATA would appear as

i = i
I = 2
I = 3

32 Input from Files

If this file is subsequently read by a CAL program, the non
numeric characters would be ignored so that it would seem
as though the file contained only 1, 2, 3, etc. However
in the case of subscripted variables, the numerical value
of each subscript is written on the file, so that if the file
were to be read by a CAL program the subscripts would be
mistakenly read as data. Consider the following program.

>1.0 OPEN "DATA" FOR OUTPUT AS FILE 18
>2.0 DO PART 20 FOR 1=1 TO 5@)
>3.0 TO STEP 22 @)
>20.0 DO PART 21 FOR J = 1 TO 5 @)
>21.0 DEMAND A(I, J) @>
>21. 1 WRITE ON 1: A(I, J) @)
> 22.0 CLOSE 1 @)

This program causes CAL to write the following on the file
called DATA.

A(1, 1) = 1
A(1, 2) = 2
A(l,3)=3
A(l,4)=4
A(1,5)=5
A(2,1) = 6
A(2, 2) = 7
A(2,3) = 8
A(2,4) = 9
A(2,5) = 10
A(3, 1) = 11
A(3,2) = 12
A(3,3) = 13
A(3,4) = 14
A(3, 5) = 15
A(4, 1) = 16
A(4, 2) = 1
A(4,3) = 18
A(4,4) = 19
A(4, 5) = 2
A(5, 1) = 21
A(5, 2) = 22
A(5, 3) = 23
A(5,4) = 24
A(5, 5) = 25

To a CAL program, the fi Ie DATA would incorrectly appear
as

1, 1, 1, 1, 2, 2, 1, 3, 3, etc.

To avoid this confusion, the user should use the WRITE ON
statement with a form statement.

WRITE ON (expression) IN FORM (expression):e1···, en

Thus, if statement 21. 1 in the preceding program were
changed to

>21. 1 WRITE ON 1 IN FORM 1: A(I, J) @

>FORM 1: e
%%%%%% (§

the resulting file DATA would correctly appear to a CAL
program as

1, 2, 3, 4, 5, 6, 7, ••• ,25

APPENDIX. CAL SUMMARY

NUMBERS

Integer (no decimal), e. g., 30000

Floating point (has a decimal part), e. g., 30000.00

Scientific notation, e. g., 30E3 (where E3 means 3 to the
power of 10)

Numbers may be input as integers if they have less than
8 digits; otherwise, they must be in scientific notation.

VARIABLES

Examples of legal variables: A, B, C, ••• ,Z; A(1), A(2), ••• ,
A{N); B{l), B(2), ••• B{N), etc.; A{l, 2), A{N, M);
A{{X{N)+3, A{M+l).

Examples of illegal variables: A1, B1, AB, etc.

ARITHMETIC OPERATORS

In order of precedence:

Exponentiation

Unary minus (e. g., -A t 2 = negative of A2)

*, / Multipl ication, division

+, - Addition, subtraction

LOGICAL OPERATORS

In order of precedence:

Equal to

Not equal to

> Greater than

< Less than

NOT

AND OR

Replacement

ABS(A)

SIN(A)

COS(A)

TAN(A)

ATAN(X,Y)

MATHEMATICAL FUNCTIONS

Absol ute val ue of A

Sine of A

Cosine A

Tangent of A

Arctangent (X/Y) (71" > R > - 71")
(the trigonometric functions take their
arguments in radians or return results in
radians)

EXP(A)

LOG{A)

LOG10{A)

IP(B)

FP(B)

SUM{A, B, C, D, ..•)

PROD(A, B,C •••)

MAX(A, B,C, •••)

MIN(X,Y,Z,A,B, •••)

e MOD n

E to the power A

Natural logarithm

Base 10 logarithm

Pnc:itivp c:nllnrp root of A . - - .. - - - - -I - - - - - - - - -

Integer part of B (If B=246. 25,
IP=246)

Fractional part of B (If B=246. 25,
FP=.25)

Sums the list

Finds the product of the list

Finds the maximum in the list

Finds the minimum in the list

Modular arithmetic

COMMANDS (Direct or Indirect Statements)
Direct {with statement number} or indirect {without state
ment number}:

SET V = e

TYPE STEP n. n

TYPE PART e

TYPE ALL STE PS

TYPE ALL VALUES

TYPE ALL

TYPE IN FORM e: e
l
, e

2
, ••• ,e

n

TYPE FORM e

TYPE ALL FORMS

TYPE "string"

TO STEP n. n

TO PART e

DO PART n. n

DO PART e

PAGE

LINE

(Causes CAL to ski p a page)

(Causes CAL to skip a line)

COMMANDS (Direct Statements Only)

RETURN e

PAUSE

DONE

(Used with multiple-step subprograms,
i.e., function statements)

(Hal ts program and waits for instructions)

(Stops a DO PART)

Appendix 33

DELETE v (v = any variable)

DELETE STEP n. n

DELETE PART e

DELETE ALL

INPUT FROM

OUTPUT TO

DUMP @)

TO/File Name/

LOAD@)

FROM/File Name/

EDIT STE P n. n

EDIT FORM e

DE FI NE f [v l' v 2' v 3" •• J =e

(f is any variabl e name
v is any variable
e is any expression)

DEFINE f [v1, v2' ••• , v n]: statement

GO
STEP
CANCEL

IF e
UNLESS e
FOR v = e

WHERE e

BYe

IF e THEN e

34 Appendix

MODIFIERS

TO e
WHILE e
UNTIL e

ELSE e

EDIT CHARACTERS

Prints t and deletes preceding character

Prints \ and deletes preceding word

Prints - and deletes preceding line

Throws away the rest of the old I ine and ends
the edit.

Copies a character

Skips a character and prints %.

Copies up to character C, inclusive

Skips up to character C, inclusive

Retypes

Retypes and al igns

Copies rest of old.1 ine but does not end
the edit.

Copies and prints out rest of old I ine and
ends the edi t.

Copies rest of old line but does not print it
out; end the edit.

Allows characters to be inserted between
two points; first EC prints a < while the
second prints a > and returns user to edit
mode.

505 SCIENTIFIC DATA SYSTEMS · 1649 Seventeenth Street · Santa Monica. California 90404

Ul
o
Ul

CD
~ o
(")
}>
r
:0
IT1

~
:::n
IT1
Z
(")
IT1

~
}>
Z
C
}>
r

	0001
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	xBack

