RAPID ACCESS DISC FILE (RAD) MODELS 9367B AND C TRAINING DOCUMENT

OCTOBER 1967

FOR TRAINING PURPOSES ONLY

SECTION 1

GENERAL DESCRIPTION

GENERAL
The SDS Rapid Access Disc File Model 9367C (RAD) is manufactured by Scientific Data Systems 1649 Seventeenth Street Santa Monica California. The contents of this manual describe the electrical and mechanical characteristics of the SDS 9376C its operation and basic programming requirements, theory of operation and installation.

PURPOSE OF EQUIPMENT

The SDS Rapid Access Disc File Model 9367C system provides on-1ine, rapid access, auxiliary data storage for the $\operatorname{SDS} 92,925,930$ and 9300 Computers. Storage capacity is modular, ranging from 524, 288 characters to 1,048576 characters per unit. As many as four storage units may be accomodated in the system. The average transfer rate is approximately 485,000 alphanumeric characters a second.

The SDS Disc File Mode1 9367 is implemented through an Input/Output buffer with Interlace and 12-bit character extension features as prerequisites.

EQUIPMENT FUNCTIONS
Each SDS 9367C RAD sytem consists of four basic functional parts:
a) one disc file coupler (controller)
b) one to four disc storage units
c) one to four disc selection units
d) one power protection panel

The disc file coupler acts as a controller and intermediary between the data disc units and the Input/Output channel. Data is assembled or disassembled and transferred between these units under control of the coupler

1. COUPLER
2. POWER FAIL SAFE GHASSIS
3. BASIC DISC SELECTION UNIT
4. SELECTION UNIT LOGIC
5. DISC STORAGE UNIT
6. Power supply PXI3/PXI4
7. DISC EXTENDER UNIT
8. WRITE PROTECT SWITCH PANEL

FIGure 1-1 MODEL 9367C RAPID ACCESS DISC FILE

The disc storage units contain mass data in digital form stored under control of the Input/Output channel and the disc file coupler which is randomly retrievable in blocks of 256 alphanumberic characters. POWER PROIIECTION PANEL

The Power Protection Panel is mounted near the Coupler Unit in the existing computer. I'wo transformers step down the 115 vac primary voltage to 10 vac signals. These signal voltages are connected to detector modules in the Coupler Unit.

The selection units contain the selection and comparison circuits required for accesing the addressed data as well as the read/write circuits and basic timing and registration circuits. かsc

The modular characteristics of the SDS 9367 C RAD system permit expansion of the disc storage units and selection units from one to four. Figure 1-2 desoribes a Sis 9367C RAD System with maximum storage capabilities.
SYTEM CONFIGURATIONS

Two different basic disc memory sizes available with the SDS 9367C Rapid Access File system are listed in Table 1-1.

Mode1 9367C-01 131,072 word capacity, 2discs (524,288 alphanumeric characters)
Mode1 9367C-02 262,144 word capacity, 4 discs
($1,048,576$ alphanumeric characters)
Table 1-1, Basic Storage Unit Models
Additional memory is available by adding from one to three extenders to the basic Star age Unit. The available supplemental memory options are listed in Table 1-2.

Table 1-2, Storage Extender Models

MECHANICAL CHARACTERISTICS

Each storage unft or extender comprises two or four discs, a motor control circuit, a shroud for mounting read/write heads, a dust cover and front panel, and support for mounting the unit to the cabinet. It has head mounting boards and mounting fixtures for 16 , or 32 head boards depending upon the memory size. In addition, it has head mounts for two special timing tracks. The cables from the basic storage unit to the selection unit are hardwired to the selection unit.

One selection unit is required for each disc storage unit. The basic disc file and its selection unit are located in a separate cabinet and are connected to the coupler via a thirty foot cable.

The basic selection unit comprises three module chassis. Additional extender cablnets are located adjacent to the first, and are connected by 6-foot cables from one unit to the next in a serial manner.

The coupler consists of four module chassis and comprises the interface betwee the selection units and the computer input-output channel. The cables from the coupler to the channel are part of the coupler measures 19 inches and mounts in the input-output cabinet. Where space in the input-output cabinet is insufficient, the coupler may be mounted in a separate cabinet.

POWER REQUIREMENTS

In model 92, 930 and 9300 computer systems using the PX12 power supplies, and ac input of 1.9 amp unregulated is required for coupler operation. In models 92, 925, 930 or 9300 computer systems using PX22/PX23 power supplies, the regulated ac input requirement is 1.74 amp .

Each disc file configuration has a different total power requirement. The basic storage and selection unit requires an ac input of 7.2 amperes. The requirement is increased by 1.25 amperes for each extender unit added to the system. The extender units have an ac input power requirement of 6 amp each. DISC ORGANIZATION AND TIMING CHARACTERISTICS

The disc storage units are organized by discs, disc surfaces, bands, tracks, sectors and words. Storage unit organization is described in tables 1-3.

Table 1-4 describes the mechanical and timing characteristics of the disc units. MODULE COMPLEMENT

The 9367C coupler consists of four module chassis. The coupler module complement is listed in table 1-5. The selection unit consists of three module chassis. Its module complement is given in table 1-6.

GENERAL INFORMATION FLOW

The general information flow from the computer to the disc storage unit during write operations, and the flow from the disc storage unit to the computer during read operations, is shown in figure 1-3. A 15-bit address register is loaded from the computer memory through the C register with data that designates the selection and storage unit, the disc, the band, and the sector address of the information to be transferred. A 12-bit character register buffers the data between the coupler and the I/O channel during both read and write operations. The 12-bit character is assembled (for reading) of disassembled (for writing) by the l2-bit assembler disassembler which acts as a 3×4 serial-parallel register.

Information flow from one of four selection units is controlled by a unit selection register in the coupler. Each selection unit has the capability of protecting memory areas in groups of 32,768 words under manual switch control. If a memory protect switch is in the "up" position, any attempt to write in an area of disc memory corresponding to the switch address will be aborted. The memory protection switches do not inhibit reading from any memory area.

Figure 1-3
936.7C DISC FILE SYSTEM - GENERAL DATA FLOW DIAGRAM

Discs per Storage Unit	2 or 4
Heads per Disc	64
Heads per Disc Surface	32
Heads per Band	4
Bands per Disc	16
Sectors per Band	64
Words per Sector	64
Timing tracks per Unit	2

Table 1-3 Storage Disc Organization

Disc Rotational Speed
Maximum Recording Diameter
Minimum Recording Diameter
Tracks per Radial Inch
Track Width
Track Pitch
Sector Time
Gap Time Between Sectors
Sector plus Gap Time
Bit Rate
Bit Density
Word Transfer Rate
Character Transfer Rate

1782 rpm
11.0 in.
8.9 in.

30
0.02 in.
0.033 in.

487 usec
$\{40$ usec
527 usec ;hanine fore)
$820 \mathrm{KHZ}^{+}$
980 b/i max
133 kwds/sec
266,000 12-bit ch/s

Table 1-4 Storage Disc Mechanical and Timing
Characteristics

Number of Modules	Type of Modules	Mane of Module
5	AH10	Signal Amplifier
5	AX14	Cable Driver
2	AX16	Cable Driver
10	RH10	Buffer Amplifier
5	FH19	DC F1ip-Flop
13	Fli 20	Basic Flip-F1op
1	FL21	Basic Flip-Flop
19	OK51	Diode Cate
2	Ili10	And/or Inverter
8	MX14	Inverter Amplifier
1	OX12	Relay Module
1	SKo0	One-Shot Multivibrater
2		Primary Power Detector

Table 1-5 Coupler Module Complement

Number of Modules	Type of Module	Name of Module
1	AK61	Read Input Control
2	AK62	Y-Select
16	AK63	Write Driver
1	AK64	Index/Sector Amp1ifier
3	AX14	Cable Driver
1	AK65	Write Clock Amplifier
1	BH10	Buffer Amplifier
4	FL21	Basic Flip-F1op
1	GH14	Gate Expander
4	HK73	Read Amplifier
4	HK74	Limiter
4	HK76	Data Decoder
4	HK75	Clock Discriminator
1	HK77	Index/Sector Decoder
1	IH14	Inverter
1	IL12	Inverter
4	NK59	Read-Write Decoder
1	OX12	One-Shot Multivibrator
1	SX69	Primary Power Detector

Table 1-6, Selection Unit Module Complement

SECTION II

PROGRAMMING

Page 10c

SECTION II

GENERAL

The following discussion of basic programming for the Rapid Access Disc File Model 9376 system applies primarily to the SDS 925/930/9300 computers. The relatively minor difference in programming methods required by the SDS 92 computer will be found in the SDS Reference Manual, 900505B. In general, however, the basic techniques of progranming for the RAD system apply to all SDS 900 Series computers including the SDS 92.

INSTRUCTION CLASSIFICATION

Four classes of input-output instructions are required to operate the RAD System and its associated buffer. These instruction classes are:

```
EOM
SKS
POT
PIN
```

The assigned EOM and SKS address to direct all RAD operations is 26 octal. Thus, the two least significatint octal digits of any EOM instruction addressing the RAD is 26 for imput operations (reading), or 66 for output operations (writing).
EOM INSTRUCTIONS
ALERT TO PIN

The Alert to PIN instruction takes the form EOM 1N226. This instruction operates in the I / O mode and alerts the addressed storage unit that a PIN instruction if to follow. Octal digit " N " addresses one of the four disc storage units, where $\mathrm{N}=0$ addresses storage unit 1 ; $\mathrm{N}=2$ addresses storage unit 2; $N=4$ addresses storage unit 3; and $N=6$ addresses storage unit 4.

ALERT TO POT
The Alert to POT instruction takes the form EOM 10026. This EOM instruction operates in the I / O mode and alerts the disc coupler that a POT instruction is to follow.

This EOM is always followed by a POT that will always be processed, and the band selection matrix will always be set up to the new address at the next sector mark. Gaps can be detected by the Disc Ready SKS 10026 after an operation has been initiated.

NON-INCREMENT MODE

No incrementing of band will follow Alert to POri EOM 11026. This EOM or EOM 11066 is used in the special case that a full band is being transferred, starting at an arbitrary sector, and band incrementing is not desired after sector 778 . The computer will be programmed to disconnect at sector 778 , but only reconnecting and resetting of interlace is required to complete the band transfer, as the A register retains the address of the previously transferred sector +1 , and another alert EOM POT is not required.

CONINECT DISC MEMORY, READ
The Connect Disc Memory, Read instruction takes the format EOMO2226. This EOM instruction operates in the buffer mode and establishes the character packing format of two 12 -bit characters per word, and initiates the read operation when the sector corresponsidng to the contents of the sector address register comes under the read head. Two 12-bit characters are transferred for each interlace memory access.

Proper programming practiœ dictates that this instruction be preceded by an ALC, EOM (IOC), POT sequence. The ALC and POT are needed to set up the interlace and the IOC type EOM is used to specify the IOSD termination mode.

CONNECT DISC MEMORY, WRITE
The Connect Disc Memory, Write instruction takes the form EOMO2266. This EOM instruction operates in the buffer mode and establishes the character packing format of the two 12 -bit characters per word, and initiates the write operation when the sector correpponding to the contents of the sector address register comes under the write head. Two 12-bit characters are transferred for each interlace memory access.

Like the Connect Disc Memory, Ridad command, this instruction must also be preceded by the same ALC,

SKS INSTRUCTIONS

SKIP IF DISC READY

The Skip if Disc Ready instruction takes the form SKS 10026. This instruction will cause the computer to skip the next normally sequenced instruction if the coupler is not currently engaged in a read or write operation.

SKIP IF NO DISC ERROR

The Skip If No Disc Error instruction takes the form SKS 11026. This instruction will cause the computer to skip the next normally sequenced instruction if no error condition exists. An error condition can exist for any of the following reasons: hiell send a whs signal
A.) An attempt has been made to write into a protected area of disc memory
B) A POT instruction addressing the RAD system was executed while the unit was in the process of reading or writing
C) An attempt was made to contitlue operation after the final sector of a storage unit had been written or read.

SKIP IF SAND NOT WRITE PROTECTED
This instruction takes the form SKS 13026. The program skips the next normally sequenced instruction if the being addressed is not write protected by the memory protection switches. The program does not skip if the is write protected. The status of the memory protection switches can be tested by executing an Alert to POT, followed by a POT instruction addressing the memory area under question, programming a delay of microseconds, and then followed with SKS 13026. The delay is required because the register which is tested with the switch logic is not filled until the sector mark following the POT instruction.

POT INSTRUCTION

The execution of a POT instruction following an Alert to POT fills the coupler address register with the contents of the specified memory word. At the next sector pulse the band field of the coupler address register is transferred to the matrix register in the Selection unit, replacing the band address from the previous operation.

PIN INSTRUCTION

The execution of a PIN instruction following an Alert to PIN results in the transfer of the contents of the sector counter (which contain the address of the current sector) of the disc unit specified in the Alert to PIN EOM to the specified memory location. The sector address appears in bit 18 through 23 of the memory word; the contents of bits 0 through 17 are not significant.

Page 13

The information contained in the memory word includes the address of the disc storage unit, the disc, the band, and the sector

LOCASION	INSTRUCTION		ACTION
01202	SKS	10026	Skip if disc ready
01203	ERU	01202	Loop until ready
01204	EOM	10026	Alert to POT
01205	POT	01213	POT address to coup1er Urit
01206	EOM	50000	Alert channel interlace
01207	EOM	17200	IOSD Termination mode Also arms end of record and word count zero interrupt
01210	POT	01214	POT to interlace register
01211	EOM	02226	Connect disc memory, read
01212	BRU		Exit and wait for interrupt
01213	0000	0773	
01214	3001	2707	Word count and starting core address

SAMPLE READ PROGRAM

The 1 isting shown in Table $2-1$ is a simplified programming example intended to clarify some of the steps required to read information from the disc file into the core memory of the computer. It does not demonstrate sophisticated programming techniques.

The ${ }_{2}$ sample program reads sectors 00773 through 01000 (384 words) into core locations 13506 . Each step of this listed program is explained in detail in the following paragraphs.

The SKS instruction located in 01202 tests the RAD coupler for a ready status. If the coupler is busy in either a read or write operation, the program takes its next instruction from location 01203 which causes the computer to branch back to 01202 forming a two word loop until the disc coupler is no longer busy. When the coupler is ready the program sequences to location 01204 for its next instruction.

The EOM instruction located at 01204 operates in the $I / 0$ mode, and alerts the disc coupler that a POT instruction is to follow. The POT instruction at 01205 transfers the contents of memory location 01212 to the address register of the coupler. Whe contents of the word transferred (00000773) represents the address of the first sector to be read and transferred to computer memory. (Unit 0, Band 07, Sector 73)

The EOM instruction located at 01206 operates in the input output control mode and selects the I / O channels (the W buffer in this example) and alerts its interlace: that an EOM (IOC) and POT are to follow.

The EPM instruction located at 01207 operates in the $I / 0$ mode and establishes the IOSD extended mode operation (mandatory for Reading. or writing), and arms both the zero word count (I1W) and end of record interrupts (I2w) If only one interrupt is to be used. it should be I2w which will always occur. If I1w only were used and the operation were aborted due to an error condition occurring prior to a zero word count condition, the Ilw interrupt would not occur.

The POT instruction located at 01210 transfers the contents of core memory location 01204 to the I / O channel interlace. The interlace word contains in bit 0 through 9 a binary number equal to the number of words to be transferred. Bits 10 through 23 of the interlace word contain the address of the first of 384 core memory locations into which the disc data are to be transferred.

If the interlace word count exceeded the 10 bit field the most significant 5 bits would be held in bit 19-23 of the IOSD EOM located in location 01207. Likewise if the starting core memory address required the most significant bit it would be in bit 18 of the same EOM.

The EOM instruction located at 01211 operates in the buffer control mode and selects the I / O channel (W in this example) and connects the coupler to operate in the two character per word mode without leader. The read operation starts 16 microseconds after the sector mark of the addressed sector. The connect instruction is progeamed : last in order to avoid a computer hang-up condition. If the I/0 channel is connected and the Ecw signal (device clock) is sent before the interlace is set up, the computer does not receive the proper signal (Rt) from the channel in response to the interlace POT. This signal is needed the release the computer from the wait phase of the POT command. Thus the safe procedure is to set up the interlace first.

The parameters required to initiate a disc to core transfer have been established. The branch instruction located in 01212 returns program control back to the main program. When the interlace word count reaches zero the interrupt subroutine should then test for any errors that may have occured during the reading and transfer of the data. If the end of record interrupt occurs first, an error obviously occurred and appropriate actions should be taken.

PARTIAL SECTOR READ OR WRITE

It is not necessary that entire sectots of 64 words be written or read. However, certain restructions are placed upon the program if less than a complete sector is to be transferred. For example, if in the sample read program the programmer wanted to read only 32 words of sector 773 , he would change the contents of the interlace word 12.14 to 02012707 octal. When the buffer word counter reaches a count of zero, the buffer initiates a disconnect and will accept no more data from the disc coupler unit.

If less than a complete sector is written or read, the word boundary ranges from the first word. It is not possible, for example, to read or write the last 32 words of a sector without reading or writing the first 32 words of the sector. If less than 64 words are to be written into a sector, the data in all words following the final data word written will be changed to zeros. If, for example, data is written into only the first 20 words of a sector, the remaining 44 words will be written with all zeros.

IMMEDIATE MODE ACCESSING

Whenever one complete band (64 sectors) is to be transferred, access time can be reduced to a minimum by special programming techniques. If the program addresses the disc file system at random (i.e., without determining where sector 00 happens to be at the time of initiating the transfer) the access time could be as long as 33 milliseconds. For example, if the program is written to read sector 00 through 77 , and sector 13 is under the read/write heads at the time the transfer is initiated, about 30 milliseconds will be spent before sector 00 comes under the heads and the transfer can begin. During these 30 milliseconds the I / O channel cannot be used for other input-output purposes. This delay can be eliminated if the program is written in such a manner that the complete 64 sector band can be read in two separate passes; the first pass to read sector n through 77 , and the second pass to read sectors 00 through $n-1$, where n equals the first sector available to the disc storage unit. The starting address in in the immediate mode is obtained by executing a PIN instruction to determine the current sector address, and by adding two to this address. For example, if the PIN instruction indicates that sector 23 is about to come under the read/write heads, the first pass should indicate a transfer of sector 25 through 77, and the second pass should indicate a transfer of sector 00 through 24.

Normally, if 64 sectors are to be transferred and the starting address n does not equal 00 , the band address will count up as the sector address changes from 77 to 00 . This must be prevented by placing a one in bit position 14 of the alert to POT instruction.

When issuing the first transfer (current sector 2 to sector 77), the word count and the starting addresses must be properly adjusted. When using the immediate access mode it is necessary to arm the End-of-Record interrupt so that when sector 77 has been read the interrupt signal will cause the computer to enter the interrupt subroutine. This interrupt subroutine must supply the new address paramaters and word count for the core memory locations for the transfer of sectors 00 through $n-1$. This set up of the second portion of the transfer must occur during the gap time between sector 77 and 00 .

PRIORITY INTERRUPT OPTION

Access time can also be reduced by use of the priority interrupt option. This option allows the program to set up initial transfer conditions without connecting the buffer. This permits the selection unit and coupler to search for the first disc address to be transferred without tying up the I/O channel. About 28 microseconds before the addressed sector becomes available to the selection unit, the interrupt occurs. The interrupt subroutine connects the coupler with a Connect to Read or a Connect to Write instruction.

SECTION III

THEORY OF OPERATION

INTRODUCTION

This section of the manual provides theory of operations for the SDS Rapid Access Disc File Model 9367C. The theory of operation is divided into two main sections in the following order:
a. General Theory of Operations
b. Logic Description

The General Theory of Operations describes in non-specific terms the component parts of the coupler, the selection unit, and the disc storage unit, as well as the general timing and data flow for each of the system operations.

The Logic Description describes in more specific terms those subjects covered under the general theory, and provides the logical timing, control, and flow equations as will as detailed flow charts and timing diagrams. Special circuit considerations are also discussed in this section.

GENERAL THEORY OF OPERATIONS
DISC FILE STORAGE UNIT
Each disc file storage unit consists of four discs that rotate on a common shaft. The discs are made of a non-ferrous metal, plated with a nickel-cobalt coating having magnetic properties. Disc drive is provided by a $115 \mathrm{vac}, 60 \mathrm{cps}$, single phase, induction motor directly connected to a common drive shaft. The motor requires 120 seconds maximum to come up to operational speed of 1780 rpm after power is first applied. No interlock exists to prevent reading or writing during this acceleration time.

The read/write heads are mounted on head boards, eight heads to each board, and are arranged at 90° intervals around the top and bottom surfaces of each disc. Rotation of the disc creates an air flow in close proximity to the disc surface and the dimensionally controlled flying surface of the heads uses this air flow to maintain an air slider bearing that sustains the heads out of physical contact with the disc surface at a uniform spacing of less than . 00002 inches. This spacing is not affected by disc runout or by thermal shock. When the unit is at rest, the heads, which are suspended by two pivot bearings on an adjustable flexible reed, make contact with the disc surface.

Page 18

Each disc mounts 64 heads, 32 on the top surface and 32 on the bottom surface. Data is written four bits in parallel on the disc, and therefore, four heads must be selected for both read and write operations. Each of the four heads reads or writes a track; four tracks make up one band. One band of four tracks extends for 360°, or for the entire disc circumference. Discs are addressed octally as $0,1,2$ and 3 , but are usually referred to as discs 1 , 2, 3 and 4 respectively. Eight heads composing two bands are mounted on each head board. The four outer heads on each head board are identified as heads $1,2,3$ and 4 , and are connected by a common center tap, CT14. The four inner heads on each head board are identified as heads 5, 6, 7 and 8, and are connected by a common center tap, CT58. Start and finish windings of the corresponding inner and outer heads are wired in parallel and are identified as S15, S26, F26, S37, F37, and S48, F48. See Figure 3-1. Heads are selected on an $X-Y$ coordinate; the center taps selected by Y select modules and the start and finish windings by the Read/Write Decoder modules through X selection gates. Eight head boards, all mounted on each disc, four on the upper surface, and four on the lower surface. Figure 3-2 shows the head placement on each of the four discs. Note that the top disc, Disc 1, also mounts three special read heads for timing and registration purposes. One reads the sector and index marks and the others read two identical clock tracks. These heads are not selectable through the $X-Y$ matrix. Note that all odd numbered head boards service the upper disc surfaces while all even numbered head boards service the lower disc surfaces.

All head boards are dimensionally identical with each other. The eight heads on each of the head boards would lie on a circular line equidistant from the center of the disc if some provision was not made to prevent this overlapping. Head boards HB5 and HB6 are mounted on a common head board assembly fixture. A single shim is inserted between this head board assembly fixture and the disc housing, displacing the tracks of HB5 and HB2 which are not shimmed. Two shims are used for HB9 and HB10 assembly fixture, and three shims are used for HB13 and HB14 assembly fixture. In this manner, the tracks of all head boards are interlaced with each other.

Table 3-1 shows the head board selection method as the addressed bands (bits 12 through 17 of the address register) progresses from 00 through 77.

LEGEND
CT 14 - CENTER TAP, HEADS 1 THROUGH 4
CT 58 - CENTER TAP, HEADS 5 THRRUGH 8
S 15 - START WINDING, HEADS 1 AND 5
F 48 - FINISH WINDING, HEADS 4 AND 8

Figure 3-1 head board connections
full is 4 mene sets
DISC 1

$$
1 / 2 \cos .
$$

$$
=5 \mathrm{mms}
$$

DISC 2

DISC 3

DISC 4
figure 3-2 head board placement

Table 3-1 Band Address and Head Board Relationship

Disc Data Format

Sector Format
Each band, which is composed of four tracks, contains 64 sectors spaced equidistant around the disc, dividing the disc circumference into 64 equal parts. At a rotational speed of 1780 rpm each sector requires 527 us to pass under the read/write heads. These 527 us are divided into five major parts; gap, preamble, parity, postamble, and data. Each sector is sequentially composed of a 13 clock time leading gap, a 10 bit/track preamble, 64 words of data, a 1 bit/track parity, a 11 bit/track postamble, and a trailing gap. See Figure 3-3. Each sector starts when the sector index pulse counts up the sector counter (D register), and ends when the next sector index pulse arrives. See Figure 3-4.

Word Format
Four bits of each word are written simultaneously on the four tracks that make up a band. Consider the computer word to be 8 octal digits, the most significant called 0 and the least significant called 7 . See figure 3-3. The binary information contained in a word is extracted in such a manner that the octal digits 0 and 4 are written on track 1 , octal digits 1 and 5 on track 2, octal digits 2 and 6 on track 3, and octal digits 3 and 7 on track 4. The placement of the binary digits of the word in relation to the tracks is shown in figure 3-3.

FIGURE $3-3$ WORD AND SECTOR FORMAT AND DISC FORMAT

Figure 3-4 Sector Format and Timing

Disc File

Selection Unit

One selection is used with each disc storage unit, and is mounted in the same cabinet with the storage unit. One incoming control cable from the Coupler Unit (mounted in the computer) is used to control the Selection Unit. An output cable is connected between the Basic Storage Unit and the Extender Storage Unit (if used). The power supplies in the Basic Disc Storage Unit have sufficient capacity for one Extender Storage Unit. If additional storage capacity is required, connect a second Basic Storage Unit to the system to provide dc operating voltages for the third storage unit, and the fourth storage unit (if used).
'The Selection Unit contains the read/write selection matrix, the write drivers, the read input control moudle, and four read-write decoders, read preamplifiers, and limiters. Table 1-6 lists the modules used in the Selection Unit. Figure 4-7 shows the location all modules used, including interconnecting cable plug modules. The clock and timing circuit modules are included in the Selection Unit. See Figure 3-7. Storage capacity determines the quantity of Y Select Modules in use. One module is required for each 64 heads, or 2 modules for each 128 heads in the storage unit. Storage capacity may be increased in the field by increasing the capacity of the smaller discs, but additional Y Select Modules must also be installed at the same time.

Selection Matrix

The selection matrix in the Selection Unit, for a 256 head disc memory storage unit (64 bands), consists of four Y-Select circuits on each of four Y Select Modules AK 62 and four read/write coupler circuits on each of four Read-Write Decoder Modules NK59 to provide a 16 x $16 \mathrm{X}-\mathrm{Y}$ coordinate matrix to select the 256 possible head combinations in one storage unit.

The X and Y selection circuits receive their information in gated form from the address register (A) located in the Coupler unit and from the matrix register (A) in the Selection unit. This matrix register is a duplication of bits All through Al5 of the coupler address register. The address register, in turn, receives the initial address from the C register in the computer, bits 9 through 23, during the POT instruction.

Bits A18 through A23 represent the address of the sector; bits A9 and A10 address one of the possible four storage units, and bit All is always a zero in the 9367C. It is used only in the larger capacity 9367B. Bits All through A17 are used to select the proper read/write heads. Each address in bits A11 through Al7 activates one of the 16 Y Selectors and four of the X selectors so that four $X-Y$ coordinates exist to select the four read/write heads of the addressed band. See Figure 3-5.

Write Drivers and Write Flip Flops

The Selection Unit contains 16 Write Driver Modules AK63 and a Write F1ip Flop Module FL21 containing four write data flip flops. For any given band address the data bits in the four write flip flops must be gated to one group of four of the 16 write drivers. This write driver group is selected by address register bits 16 and 17. Thus the write drivers and their associated gates constitute the X selection circuits used during writing.

The write : Elip flops are varied in such a manner that they unconditionally change their state every 1.2 microseconds and at the clock pulse which occurs between these toggle changes, the flip flop will sample the data bit and either set or reset accordingly. See Figure 3-6. The recording scheme is a phase recording type sometimes called Manchester, Ferranti, Frequency Modulation, Modified Non Return to Zero, or Double Transition. Flux changes may occur as often as every 600 ns although some may be omitted. When reading back the flux changes are sampled for polarity only every 1.2 microseconds at the clock time. The polarity determines the bit significance.

Read Input Control

The Read Input Control module AK61 uses the two least significant bits of the address, Al6 and A17, to select the four heads to read. The center taps to select the four heads to read. The center taps of the heads are still

9367 C HFAN SFIFRTIMN
Flgure $2-5$
selected by the Y selection circuits. The Read Input control circuits select the proper heads by enabling the proper four read Transformers. Thus the four Read-d Input control circuits and the 16 associated read transformers constitute the X selection circuits used during the read operation.

Read Modules

The read modules consist of four Read-Write Decoder Modules NK59, which contain the read transformers and which are used to separate the write and read circuits from the common head; the four Read Preamplifier Modules HK73 which amplify and square the read signal to square-wave pulses of approximately 2 volts; the four Limiter Modules HK74, which limit the read pulses to essentially this same level; and the four Data Decoder Modules HK76 which decode the recorded data and set the four Read flip flops accordingly. This data is then sent to the Character Assembler register in the coupler where it is assembled into a 12 bit computer half word.

Timing Circuits

The basic timing (clocks) for the read function is taken from the data by the four Clock Discriminator Modules HK75. The timing (clocks) for the write function is taken from the timing track located on the outer edge of the top disc of each storage unit. These pulses from the prerecorded timing marks from the timing head (WCH) are counted down by two in a flop-flop to produce a clock pulse every 1.2 microseconds called WCK. The amplified timing head signal (WCA.) and the half-frequency signal (WCK) are used during the write function to provide internal timing and to provide a source of clock signal to generate the Manchester type of recording pulse. Note the delay between writing and reading of the same bit as shown on Figure 3-6. This delay between the read and write functions is caused by the requirement to wait at least one pulse before mixing the Manchester code, and the necessity to wait at least one pulse for the read clock, derived from the data itself. These two separate timing circuits are required to eliminate any skew which might exist.
Another timing pulse amplifier reads the pulses from the other timing track located on disc 1 of each disc storage unit. This timing track contains 64 pulses distributed equally around the circumference of the disc. The purpose of this pulse is to clock the sector counter to allow it to count in

step with correspondingly numbered sectors on the discs as they pass under the read/write heads.
One of these 64 sector pulses is a double doublet rather than a single doublet. This is decoded in the Index/Sector Decoder module HK77 and is called the Index pulse (IDX), thus leaving only 63 sector pulses (SEC). The purpose of this index pulse is to establish the location of sector 00 on each disc unit, and to reset the contents of the sector counter register (D) to zero.

Sector Counter

The sector counter (D register) is composed of six flip-flops designated as D01 through D06. This register is set initially to zeros by the index mark when power is first applied to the disc storage unit, and is counted up by one each time a sector pulse is detected. Thus, this register counts octally from 00 to 77 and contains the address of the sector under the read/write heads.
The contents of the D register are gated into the computer C register, bits C18 through C23, during a PIN instruction.

Sector Comparison Gates

The six bits of the address register making up the sector address (Al8 through A23) are continually being compared with the six bits of the sector counter register. When the sector addresses of these two registers are equal, a sector comparision term (SAC) comes true. When SAC is true, the next sector about to come under the read/write heads is the sector specified by the address register.

Write Protection Switches

The 16 write protect switches mounted on the selection unit panel guard portions of disc memory. If one of these switches is in the "up" position, that portion of memory associated with the switch cannot be altered by a write operation. An attempt to write on a guarded portion of memory sets the error flip-flop and disconnects the buffer. Write protect switches do not affect reading from any portion of memory.

The panel switches, their logical names, and their associated protected memory areas are listed in Table 3-2. The write protect switches provide true or false logic levels which are used in logic gates to abort any attempt to write into memory locations corresponding to the switch. These switches
are not "hard-wired" into the selection matrix; therefore, it is possible that a malfunctioning gate could allow "protected" data to be destroyed or converseley, to "protect" an unprotected area of memory.

Swit:ch	Logical Name	Bands	Affected Addresses
$0-0$	SW01	$00-07$	$00000-00777$
$0-1$	SW02	$10-17$	$01000-01777$
$0-2$	SW03	$20-27$	$02000-02777$
$0-3$	SW04	$30-37$	$03000-03777$
$1-0$	SW05	$40-47$	
$1-1$	SW06	$50-57$	$04000-04777$
$1-2$	SW07	$60-67$	$05000-05777$
$1-3$		$70-77$	$06000-06777$
$2-0$			$07000-07777$
$2-1$			
$2-2$			
$2-3$			
$3-0$			
$3-1$			

Table 3-2 Write Protect Switches and Affected Adresses.

DISC FILE COUPLER

The 9367C Disc File Coupler is located in the Input/Output cabinet and is connected to the basic selection unit via a 20 -foot cable. The Coupler Unit may control as many as four Selection units, each having as many as 256 Tracks. The coupler buffers and controls the data flow between the TMCC (orDACC) and the selection unit. Power for the coupler is provided by the Input/Output unit. The coupler contains registers and flip-flops for control and timing purposes as well as for data handiing. The following paragraphs describe the data and control registers that compose the coupler unit. See Figure 3-7.

Character Buffer Register (V01 - V12)

The character buffer register comprises 12 flip-flops, V01 through V12. During write operations the V register is filled in parallel from the $12-b i t$ extended $S C R$ register of the computer I / O buffer. During read operations the V register is filled in parallel from the Z register in the Coupler Unit.

Character Storage Register (Z01 - Z12)

The character storage register consists of 12 flip flops. During write operations the Z register is filled in parallel from the 12 bit V register. During read operations the Z register is filled in parallel from the S register. See Figure 3-7.

Character Assembler/Disassembler Register (S01-S12)

The S register, made up of 12 flip-flops S 01 through S 12 , assembles each 12bit character as it is read off the disc in a serial-parallel manner from the four read amplifiers. When the S register contains the complete 12-bit character, its outputs are gated to the Z register. At the same time this new character enters the Z register, the previous character in the Z register is loaded into the V register.
During write operations the S register receives the 12 -bit character from the Z register in parallel. The character is then disassembled four bits at a time and is gated into the four write amplifiers to be recorded on the disc.

Track Parity Flip-Flops (P01-P04)
Longtitudinal odd parity is recorded on each of the four tracks of each band such that for each sector recorded there is an odd number of data one bits on each track. The four flip-flops, P01, P02, P03 and P04, generate this
parity bit when writing, and check for odd parity correspondence when reading. Address Register (A09-A23)

The address reigster (A), consisting of 15 flip-flops, A09 through A23, is located in the coupler, and addresses the unit, the disc, the band, and the sector. The A register receives its address data from the computer C register during a POT instruction. A read or write operation cannot begin until and unless equality exists between the contents of the sector counter register (i)) in the selection unit and the contents of the address register bits A18-A23. Whenever equality exists between the contents of the D register and the six least significant bits of the A register the read or write operation will be. gin, provided, of course, that one of these operations has been initiated by the program.

Module-3 Counter (M01-M02)

The module-3 counter consists of two flip-flops, M01 and M02. This counter is triggered by the gated clock pulse (CNT) and counts from 0 to 2. During read operations the 0 -count signifies that one 12 -bit character is being loaded into the character storage register (Z), and during write operations the Z-count signifies that one 12-bit character is being taken from the character storage register. As the modulo-3 counter reverts from a count of two to a count of zero, it provides a clock pulse to toggle the character counter register (K).

Character Counter Register (K)

The character counter consists of seven f1ip-flops, K01-K07, and counts the number of 12 -bit characters in each sector being either read or recorded. Since each sector contains 128 12-bit characters (6424 -bit words), when the character counter is full $(K=177)$ one sector has been read or recorded. The count relationship between the M and K register is shown in Table 3-3.

M01	M02	K01	K02	K03	K 04	K05	K06	$\underline{\mathrm{K07}}$
0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1
0	1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1	0
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
1	0	1	1	1	i	i	i	0
0	0	1	1	1	1	1	1	
0	1	1	1	1	1	1	,	1
1	0	1	1	1	1	1	,	1

Table 3-3, M and K Character Counter Relationships

Phase Counter (F01-F02)
The coupler operates in one of three phases under control of a phase counter comprising the two flip-flops, F01 and F02. Table 3-4 describes the three phases, and their uses, and provides the logical expression of each of the states or sequences.

| F01 | F02 | Phase | Condition | Logical
 Expression |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | Standby | $00 F$ |
| 0 | 1 | 1 | Write | $01 F$ |
| 1 | 0 | 2 | Read | $02 F$ |

Table 3-4, Phase Counter
Subphase Counter (U01-U03)
Phase one and phase two contain substates or sequences under control of the subphase counter which consists of the three flip-flops, U01, U02, and U03. The functions of this subphase counter will be discussed in greater detail under read and write operations.

Flip Flop U04

Flip flop $U 04$ is the termination of write, and initiation of read flip flop. The termination is accomplished by setting U04 at the clock time before the next to last Z to S transfer. The initiation is accomplished by setting U04 at the first 0 -count after the preamble end is detected.

Flip Flop U05

Flip flop $U 05$ is the read enable flip flop. This signal is used in the selection unit to enable the input gates to the read amplifiers 3.6 to 4.8 microseconds after the last possible address change.

Flip F1op U06

The DC flip flop U06 is set by an alert to POT EOM from the computer and reset by a POT command. This flip flop allows a POT to occur during the postamble of a read or write phase.

F1ip-F1ops X01 and X02

F1ip-flops X01 and X02 are used primarily for PIN and POT operations. These functions will be discussed in greater detail when these operations are described.

Flip-Flop X03

Flip-flop X03 is used to designate that the I/O channe1 is either connected or disconnected to the disc file system.

Flip F1op X04

Flip flop $X 04$ is the rate error flip flop. If the condition exists that a transfer from R to V has not occurred when it should, an error condition exists, and the channel error indicator is set (Write operation). During a read operation, X04 may be set by failure of the previous contents of Z to be transferred when the next character must be transferred out of the S register.

Flip Flop X05

F1ip-flop X05, when true, allows the sector portion (A18-A23) of the address register to count each sector, but inhibits the generation of a carry into the band portion after the sector exceeds its count of modulo 64.

F1ip F1ops X06 through X09 are used to control the shift of data between the $S, 2$, and V registers in both the write and read phases. This control is necessary because of the asynchronous slip between the memory computer cycle and the character data rate of the Disc Memory System. This slip can be as great as two memory cycles.

F1ip-Flop E01
The error detection flip-flop, EOI, is set true by the following error condit:ions:
a) the address register is full (A12 through A23 all ONES), the coupler is not in the non-increment mode, and the read/write operation has not been terminated.
b) An attempt is made to write into a switch-protected area of the disc.
c) An attempt is made to POT data into the coupler while it is not in the standby phase (00F $\overline{\mathrm{XO3}}$) or the read or write postamble.

Unit Select Register (G01-G02)
The unit select register is made up of two flip-flops, G01 and G02. These two flip-flops are used during PIN operations only and are controlled by bits 12 and 13 of the "Alert to PIN" EOM instruction. The configuration of G01 and GO2 determine which of the four disc units the PIN instruction addresses.

Timing and Data Flow

The remaining paragraphs of this general theory of operations treats the coupler, the selection unit and the disc storage unit as an entity rather than each unit separately in order to present a continuity in the explanation of the read/write timing and data flow operations.

GENERAL READ/WRITE TIMLNG
In general the timing characteristics for both read and write operations are similar. A read or write operation must be initiated while the disc file unit is in phase zero standby state - that is, in phase zero with the buffer and coupler not connected. Figure 3-8 shows the general timing for either reading or writing the two sectors, 45 and 46 . Note that the standby condition exists only while the buffer is disconnected (X03) in phase zero. If
the buffer is connected (X03) in phase zero, the standby condition no longer exists.

If, after the buffer has been connected, the sector addressed by the address register is not immediately available to the read/write heads, the coupler remains in phase zero until the sector portion of the address register (Al8 through A23) and the contents of the sector counter (D01 through D06) do become equal to each other. This comparison is made immediately after the sector counter has been incremented by the Sector Pulse. Equality is determined by the sector compare gate SAC. When SAC is true, the address register and the sector counter register contents are equal, signifying that the next sector about to pass under the read/write heads is the addressed sector.

The contents of the D register are counted up by one each time a sector pulse appears. The address register is counted up by one each time the coupler leaves a read or write phase, unless the address is 7777 which is the highest address of a particular unit. The coupler remains in either phase one for writing or in phase two for reading only long enough to write or read the preamble, the data, the parity bits and the postamble. The read and write operations treat the postamble portion in a slightly different manner which will be made clear when these operations are covered in the detailed theory of operations.

During the leading and trailing gaps the coupler returns to phase zero (with the buffer still connected) until the next sector is located. Because the entire operation has not been completed and the buffer is still connected, this condition of phase zero is referred to as the continuation mode. After the final sector has been written or read, the coupler returns to phase zero until the next read/write operation is initiated. The buffer does not disconnect until after the coupler returns to phase zero following the final sector read/write operation.

Figure $3-8$ is a timing diagram showing both the phase zero standby and continuation modes.

Figure 3-8 general r/w timing and phase zeroo

WRITE DATA FLOW

During write operations the $24-b i t$ word is taken from memory and placed into the buffer 24 -bit word assembly register $W A R$. The 12 most significant bits of the 24 -bit word are then shifted into the 12 -bit single character register SCR of the buffer and then transferred in parallel on lines Rwl through Rwl2 to the character buffer register (V01 through V12) of the coupler. See Figure 3-9. If the character storage register ($Z 01$ through 2722)itscompty, the character is transferred into it in parallel from the V register. The 12 bits in the Z register are next transferred in parallel to the S register (S01 through S12) for disassembly.

The S register, which is mechanized in a $3 x 4$ configuration, shifts left one place and the data from S01, S04, S07 and S10 (bits 0, 3, 6 and 9) are transferred in parallel through WD1-WD4 amplifiers and the cable drivers to the write driver circuits, and finally to the four heads selected by the $X-Y$ matrix in the selection unit.

At the next clock pulse the S register again shifts left one place and the data in S01, S04, S07 and S10 (bits $1,4,7$ and 10) are written in the same manner as described above. This serial-parallel shifting of the S register continues until the entire 12 -bit character has been written. Three clock pulses are required to empty the S register of its 12 -bit character. As bits 2, 5, 8 and 11 are clocked out of the S register the next 12-bit character (bits 12-23) of the original word is already waiting in the Z register to be transferred in parallel to the S register and the process described above is repeated until the complete sector has been written. The coupler has the ability to store two 12 bit characters while the S register is disassembling a character, provided that the I/O channel was able to access them from the computer memory. After the final character of each sector is recorded, one parity bit is written one each of the four tracks. Each track must contain an odd number of one bits, including the parity bit; therefore, one complete sector will contain an even number of one bits on all four tracks.

FIGURE 3-9 WRITE FLOW DIAGRAM

During read operations the information is read four bits in parallel from the disc, is decoded, amplified, and transferred to the S register in a serialparallel manner. Refer to Figure 3-10, Read Flow Diagram. As each four bits are transferred into the S register, the S register shifts left one place. After three clock pulses the S register is filled with one 12 -bit character. At the next clock pulse, the 12 -bit character in the S register is transferred to the Z register, and the next four binary digits are read from the disc and transferred to the S register via the input gates to S03, S06, S09 and S12. Also if the V register is empty, this same 12 bit character will pass through the Z in parallel into the V register. As each bit is read from each of the four tracks, parity flip-flops P01 through P04 keep track of parity. After the entire sector has been read these parity flip-flops compare their present states with the odd parity bit previously written on the corresponding tracks. If they do not compare, the error signal WES is sent to the I / O channel. The contents of the Z register are transferred to the buffer on lines $\overline{\mathrm{Zw} 1} \overline{\mathrm{Zw} 12}$

Figure 3-10 READ FLOW DIAGRAM

* deleted on later models

DETAILED

LOGIC DESCRIPTION

The remaining portions of this section treat in greater detail the read and write operations of the Rapid Access Disc File Model 9367C. Logic equations and timing charts are used to implement the text to give a clear picture of each operation or status of the RAD system.

For purposes of simplicity in expressing logic equations in the text, all flip-flop input logic terms use the following symbols: y and z for direct set and direct reset, s and r for dc true and false inputs, and t for toggle flipflop inputs.

A logic list with appropriate symbols and gate terminology will be found in Section V of this manual.

A glossary of logic terms and input/output signals is also furnished in Section V. Frequent reference to this glossary will be of value in clarifying the RAD operations described in the following text.

Power Failure Detection

The basic power failure detection scheme is shown in Figure 3-11, Power Failure Detection Circuitry. The two SK60 Power Detectors are located in the 9367C coupler chassis. One SK60 detects ac power failure in the I/O buffer which supplies the dc power to the coupler; the other SK60 detects ac power failure in the selection unit. The SK60 Primary Power Detectors require an ac input of approximately 10 volts RMS, therefore, step-down transformers are required at their inputs.

Under normal operating conditions the SK60 outputs are at ground level, the relays are energized, and the PWR term is high. If primary power fails, the filtered dc power supplies in the I/O buffer or in the basic selection unit will maintain usuable dc voltages for several milliseconds to satisfy normal operation for that length of time.

If ac power fails, or drops below a level established by a threshold adjustment on the SK60, the output of the detector goes to +25 volts which deenergizes the relay and drops the PWR term to ground level.

As PWR drops to zero volts the output drivers of the write amplifiers are inhibited from further writing, the coupler sequences to phase zero, the buffer disconnects, the address register is cleared to zeros, and flip-flops U01, through U03 and X0.L through X04 are reset.

$$
\begin{aligned}
& \mathrm{zG01-G02}=\mathrm{PWR} \\
& \mathrm{zF} 01-\mathrm{F} 02=\overline{\mathrm{DRA}} \\
& \mathrm{zX01-X04}=\mathrm{PWR} \\
& \mathrm{zU} 01-\mathrm{U} 03=\overline{\mathrm{DRA}} \\
& \mathrm{zA} 09-\mathrm{A} 23=\overline{\mathrm{DRA}} \\
& \overline{\mathrm{DRA}}=\overline{\mathrm{ACT}} \mathrm{PWR} \\
& \mathrm{zU04-U06}=\mathrm{PWR}
\end{aligned}
$$

The STO term from the Start button on the computer control panel is effectively "anded" with the PWR term. When the Start button is depressed PWR is grounced and the same action occurs as described for power failure.

Unit Selection Circuitry

If there are two, three, or four disc storage units connected to a disc filf: system, some means must be provided for enabling the addressed unit and disabling the remaining units. Figure 3-12, Unit Select Gates for Read/Write Operations, shows the method of generating and distributing the unit select terms USL ard $\overline{\mathrm{USL}}$. Note the precession of pins 40 through 43 within the cables P168 and P169. This permits the proper address signal to be taken from the same pin (pin 43) of each selection unit without changing address selection gates since the gates are originated in the coupler and not in the selection units. This scheme allows any selection unit to be substituted for any other without rewiring address gate circuits.

The selection gate USL is part of the input gating to the write flip flops and x selection circuits.

If USL is not true, no data can be impressed into the write heads by the write drivers. During read operations the unit select term is inverted (USL) and is used at the disable input of the AX14 cable drivers (RD1-RD4) in the selection unit. The $\overline{U S L}$ term enables the cable drivers of the selected unit, and disables the cable drivers of the non-selected units.

Bits A09 and A10 of the address register determine the address of the selected unit for reading and writing.

Figure 3-1z UNit SElect FLR REAd/Write operations

Head Selection Circuitry

Head selection within each of the selection units is similar for both reading and writing. The $X-Y$ matrix in each selection unit is made up of 16 Y -Selector circuits and 16 X -Selector circuits. Because data must be read or written onto the four separate tracks of a band concurrently, one Y-Selector and four XSelectors are gated in such a manner that four X-Y coordinates exist - one for each of the heads of the selected band.

The 16 Y-Selectors are Y01 through Y16. Input gates to the Y-Selectors are controlled by the status of A11, A12, A13, A14, and A15 of the address register. The output of each Y-Selector is connected to the center tap windings of 16 read/write heads.
There are actually 20 X-Selector circuits that are divided into two groups; sixteen X-Selectors in one group, and four in the other groups. One group is used only for writing, the other group for reading. In the group used for writing, are four sets of four identical circuits, so in effect there are only four X selectors. Thus the matrix is actually 4 x 16 , thus selecting only one band out of 64. Each write X select circuit enables one Write Driver circuit. Four are always enabled at one true, one for each bit. The other X selector group is used only for reading and comprises only 4 selector circuits. Each of these X selectors enable four of the 16 read transformers. The address register terms that enable both the read and write X selectors are A16 and A17. See figure 3-13.

Figure 3-13 9367 C " X " SELECTION CIRCUITS

Logic for both X and Y selection is given below. Table $3-5$ presents the $X-Y$ coordinates by band address (bits A12 through A17) for both read and write.

Y-Selector Logic

17	Y01	$=$	A11	$\overline{\mathrm{A} 12}$	$\overline{\mathrm{A} 13}$	$\overline{\text { A14 }}$	$\overline{\mathrm{A} 15}$
is	Y02	$=$	"	"	"	"	A15
19	Y03	$=$	"	"	"	A14	$\overline{\text { A15 }}$
\cdots	Y04	$=$	"	"	"	A14	A15
\because	Y05	$=$	"	"	A13	$\overline{\text { A14 }}$	$\overline{\text { A15 }}$
\%	Y06	$=$	"	"	"	A14	A15
\because	Y07	$=$	"	"	1	A14	$\overline{\text { A15 }}$
4	Y08	$=$	"	"	"	A14	A15
2	Y09	$=$	"	A12	A13	A14	A15
\cdots	Y10	$=$	"	1	"	$\overline{\text { A14 }}$	A15
3	Y11	=	"	"		A14	A15
28	Y12	$=$	11	"	"	A14	A15
$2{ }^{n}$	Y13	$=$	"	"	A13	$\overline{\text { A14 }}$	A15
3	Y14	$=$	"	"	"	$\overline{\text { A14 }}$	A15
9	Y15		"	"	"	A14	A15
\%	Y16	$=$	A11	A12	A13	A14	A15

X Selector Logic

> Read

Write

$\overline{\mathrm{DSI}}=$ REN $\overline{\mathrm{A} 16}$	$\overline{\mathrm{~A} 17}$		X01-08, 41-48 $=$ PWR	WEN	USL	$\overline{\mathrm{A} 16}$	$\overline{\mathrm{~A} 17}$
$\overline{\mathrm{DS} 2}=$	$"$	A16	$\overline{\mathrm{A} 17}$		X11-18, 51-58 $="$	$"$	$"$
$\overline{\mathrm{DS} 3}=$	$"$	$\overline{\mathrm{~A} 16}$	A17		X21-28, $61-68="$	$\overline{\mathrm{~A} 17}$	
$\overline{\mathrm{DS4}}=$	$"$	A16	A17		X31-38, 71-78 $="$	$"$	$"$
A16	A17						

Table 3-5 X-Y Selection coordinates by band addresses.

	Write	Write	Read X	Read X
Band	Y	X	Selector	Selector
Address	Selection	Selection	Outputs	Gate
44	Y10	X41-X48	RX01-RX08	DS 1
45	Y10	X61-X68	RX21-RX28	DS 3
46	Y10	X51-X58	RX11-RX18	DS 2
47	Y10	X71-X78	RX31-RX38	DS4
50	Y11	X41-X48	RX01-RX08	DS1
51	Y11	X61-X68	RX21-RX28	DS3
52	Y11	X51-X58	RX11-RX18	DS 2
53	Y11	X71-X78	RX31-RX38	DS4
54	Y12	X41-X48	RX01-RX08	DS 1
55	Y12	X61-X68	RX21-RX28	DS3
56	Y12	X51-X58	RX11-RX18	DS2
57	Y12	X71-X78	RX31-RX38	DS4
60	Y13	X41-X48	RX01-RX08	DS 1
61	Y13	X61-X68	RX21-RX28	DS3
62	Y13	X51-X58	RX11-RX18	DS2
63	Y13	X71-X76	RX31-RX38	DS4
64	Y14	X41-X48	RX01-RX08	DS1
65	Y14	X61-X68	RX21-RX28	DS 3
66	Y14	X51-X58	RX11-RX18	DS2
67	Y14	X71-X78	RX31-RX38	DS4
70	Y15	X41-X48	RX01-RX08	DS 1
71	Y15	X61-X68	RX21-RX28	DS 3
72	Y15	X51-X58	RX11-RX18	DS2
73	Y15	X71-X78	RX31-RX38	DS4
74	Y16	X41-X48	RX01-RX08	DS1
75	Y16	X61-X68	RX21-RX28	DS3
76	Y16	X51-X58	RX11-RX18	DS2
77	Y16	X71-X78	RX31-RX38	DS4

Table 3-5 (Continued)

OPERATIONAL STATES

The 9367C Disc File system operates in one of three separate phases or sequences which are controlled by flip-flops F01 and F02. These three phases are listed in Table 3-6. Phase Counter.

F1ip-Flops	Phase	$\begin{gathered} \text { Logical } \\ \text { Name } \\ \hline \end{gathered}$	Condition
F01 F02			
00	Phase Zero	00F	Standby/GAP
01	Phase One	01F	Write
10	Phase Two	02F	Read

Table 3-6, Phase Counter

Phase Zero
If the buffer connect flip-flop, X 03 , is false in phase zero ($00 \mathrm{~F} \overline{\mathrm{X} 03}$), the coupler is in a standby or ready state. A read/write operation should be initiated only when the coupler is in this standby condition. When the coupler is in phase zero with the connect flip-flop X03 true (00F X03), either a read/ write operation has been initiated, or one is in progress and has not been completed.

Phase One
All write operations occur while the coupler is in phase one. Phase one begins with the preamble and ends eleven clock pulses after the parity bit has been written.

Phase Two

All read operations occur while the coupler is in phase two. Phase two begins with the preamble and ends after the last character has been accepted by the channel.

C1ock

When power is initially turned on the coupler assumes the condition representing phase 0 .

$$
00 F=\overline{F 01} \overline{F 02}
$$

The clock pulses in phase 0 and phase 1 are derived from a write clock track consisting of 27,712 bits permanently recorded around the circumference of the recording surface. The nominal bit frequency in 800 K bits/sec. at a 2% slip
of the device motor. The wave form of this clock is a . 5 usec. pulse inverted by the line driver and called $\overline{C L K}$ and occurs every 1.2 usec. The clock for the read phase is derived from the data being read.

The signal $\overline{\operatorname{RCN}}=\overline{02 \mathrm{~F}}$
is used in the selection Unit to select the write clock.
SNITIATING A READ/WRITE OPERATION
The timing considerations in $00 F$ (phase zero) to initiate either a read operation or a write operation are identical. The only difference is whether the coupler enters 01F (phase one) or 02F (phase two) when leaving 00F. This, in turn, depends on the status of $W 9$ in the I / O buffer. If $W 9$ is true, the coupler sequences from $00 F$ to $01 F$ for writing; if $W 9$ is false, the coupler
 To initiate either a read or write operation, the program normally presents six instructions in the following order:
a) EOM, I/O mode (Alert to POT)
b) POT (Load coupler address register)
c) EOM, ALC (Alert channel interlace)
d) EOM, I/O mode (Establishes termination mode)
e) POT (Load interlace word)
f) EOM Buffer mode (Connect RAD to channe1)

The generalized timing diagram of Figure 3-17 will aid in clarifying the following logical explanation of these instructions and how they affect the disc file coupler and selection unit.

Response to an EOM - Alert to POT
An EOM to POT an address from the computer always sets U06, a de flip flop.
Dold abstopet \longrightarrow SUO $6=$ IDT
IDT $=$ DMA $\overline{C 16}$ IOC ${ }^{\text {EOM }}$
Red addas in C ry, $\rightarrow \mathrm{DMA}=\overline{\mathrm{C} 17}$ C19 $\overline{\mathrm{C} 20} \mathrm{C} 21 \mathrm{C} 22 \overline{\mathrm{C} 23}$
J.f the coupler is in $\emptyset 0$ or in any but the postamble of $\emptyset 1$ or $\emptyset 2, X 01$ is set on the first PTQ (POT I from computer) that occurs due to the execution of the POT instruction, which must follow the EOM Alert to POT which initially caused U06 to set. The PTQ is derived from a delta gate on the cable plug module for the POT cable.

$$
\begin{gathered}
\mathrm{NP} \text { in } \phi 2 \\
\mathrm{PTQ}=\mathrm{POT} 1 \mathrm{Q} 2
\end{gathered}
$$

If the coupler is in the postamble of $\emptyset 1$ or $\emptyset 2$, X01 will not be set until the first PTQ to occur after the coupler enters phase 0 immediately after the postamble. The true level of the next PTQ in $\varnothing 0$ also resets U06.

$$
\mathrm{rU06}=\mathrm{X} 01 \mathrm{PTQ}
$$

The flip flop, $\mathrm{XO2}$, is set at the same time as XOL provided that the POT was given at a legitimate time; that is, during $\emptyset 0$ or infoostamble time and the channel is not connected to the eoupler. If the POT occurs while still in the postamble, X02 will set as soon as the phase counter enters phase 0.

$$
\mathrm{yX} 02=00 \mathrm{~F} \overline{\mathrm{X} 03} \mathrm{X} 01 \text { iolle cordition }
$$

The RTO is the response signal to the CPU telling it to leave $\emptyset 2$ of the POT command. This is generated by X01. The RTO is sent to the CPU any time that X01 is set.

$$
\begin{aligned}
& \text { RTO }=\mathrm{X} 01 \mathrm{PT1} \\
& \text { rX01 }=\mathrm{NUF} \text { PT1 }
\end{aligned}
$$

The RTO is disabled at the driver whenever $\overline{\mathrm{X} 01} \overline{\mathrm{XO}}$ is true. Normally X02 would be in the set state at this time, and the address register loading takes place after the clearing of the A register by ACT.
where

$$
\begin{aligned}
z(\mathrm{~A} 09-\mathrm{A} 23) & =\mathrm{DRA} \rightarrow \text { duect her } \\
\mathrm{DRA} & =\mathrm{ACT}+\overline{\mathrm{PWR}} \\
\mathrm{ACT} & =00 \mathrm{~F} \overline{\mathrm{X} 03} \mathrm{U} 06=\varnothing \text {. NOT CONN }
\end{aligned}
$$

$\overline{P W R}=$ Power detection circuit indicated that the voltage is going off or that the Start button on the CPU console is depressed.

where

If the POT was given at an pillegitimate time, the A register will not be cleared due to the $00 F$ and the $\overline{\mathrm{X03}}$ in the ACT equation. If either of these are missing it would signify that the coupler was in some state other than standby and disconnected. Also at this illegitimate time, no setting of a new address into the A register would occur because X02 is false. The error flip flop would then be set upon issuance of the POT command if X01 was set
and X 02 reset.

Figure 3-14 shows the timing relationships of the signals used during an Alert to POT and POT sequence executed while the RAD coupler was in $\emptyset 0$ standby mode. Figure $3-15$ shows the same signals occurring while the coupler is in a $\emptyset 1$ or $\emptyset 2$ postamble. Note that in this figure that the end of postamble (00F) occurs during PTQ resulting in a shorter ACT. If 00F occured slightly later X01 would have to wait until the following PTQ to set. Thus U06 would have to wait an additional machine cycle before it could reset thus keeping ACT up almost 1.75 us. longer.
Flip flops X01 and X02 are both reset by the end of PT1.

$$
\begin{aligned}
& \mathrm{rX01}=\mathrm{NUF} \mathrm{PT1} \\
& \mathrm{rX02}=\mathrm{PT1}+\ldots .
\end{aligned}
$$

Flip flop U01 indicates that the coupler has accepted a new address.

$$
\text { yU01 = LDA } \quad \text { sets as soon os ot is loaded }
$$

Flip-flop X05 follows the output of C14 and determines the non-increment mode status.

$$
\begin{aligned}
\mathrm{sX05} & =\mathrm{C} 14 \mathrm{TNI} \\
\mathrm{rX05} & =\overline{\mathrm{C} 14} \mathrm{TNI} \\
\mathrm{TNI} & =\overline{\mathrm{X} 03} \text { DDT }(\overline{\mathrm{NUF}}+00 \mathrm{~F})
\end{aligned}
$$

KOS = NON INCREMENT HOMIE

The setting of $X 05$ signifies that in the read or write operation that is to follow, the address register cannot alter its current band address as the sector portion (A18-A23) counts from 00 to 77 . TNI is a term that specifies the time to set $X 05$, which is during an alert to POT command if given at a proper time.

Figure 3-14 pot address to a register. WHEN IN STANDBY MODE

 as a result of the POT command being executed during various conditions of the coupler.

Initiation of a Read/Write Operation

If a new address has been loaded into the A register (U01 = 1) and the POT action is complete $(X 01=0)$, the next sector pulse, SIP, triggers a 4.0 usec. one shot, BSC.

$$
B S C=4 \mu \mathrm{Aec}
$$

$$
\begin{aligned}
\mathrm{sBSC} & =00 \mathrm{~F} \frac{\mathrm{HSD} \text { SIP }}{} \\
\mathrm{HSD} & =\mathrm{U} 01 \overline{\mathrm{X} 01}+\ldots . . \quad S I P \rightarrow S I D \rightarrow S E C \rightarrow S I M
\end{aligned}
$$

This sector pulse SIP, is derived from the pulses recorded on the sector track in the following manner. The pulses are read from the disc and amplified (SID) and decoded so as to distinguish the 63 sector pulses (SEC) from the one index pulse (IDX) per revolution of the disc.
The sector and index pulses generate a term, SIM which is used to reset a flip flop YSC, during the sector/index pulse time. This flip flop generates the SIP pulse used in the coupler and also allows setting the band address flip flops in the selection unit at the sector pulse time. These band flip flops, All-A15, contain the same band address bits that are in the coupler address register (A reg.) These are used so that the head selection matrix will not be changed during the Data time, even though a POT command may be issued at any time. See Figure 3-16.

$$
\begin{aligned}
& S I P=\overline{Y S C} \text { SECTOR INCRENENT PULSE } \\
& \mathrm{sYSC}=\overline{\mathrm{SIM}} \mathrm{WCK} \text { SETT IN THE BAND ADDRESS } \\
& \text { rYSC }=\text { SEC WCA } \\
& \text { where SIM = SEC+IDX SECTOR OR INDEX PULSE } \\
& \text { SWCK }=\overline{S I M} \text { WCA NOT SIP AND CLOCKED } \\
& \text { rWCK }=\underline{W C A}+10 X \text { CLOCK OR INDEX PULSE } \\
& \text { WCA is output of clock pulse read amplifier. }
\end{aligned}
$$

FIGURE 3-16 SECTOR POLSE TIMING

The D register in the selection unit is also incremented by the sector pulse SEC.

$$
\begin{aligned}
\text { tD06 } & =\underline{\mathrm{SEC}} \\
\text { tD05 } & =\underline{\mathrm{D} 06} \\
\text { tD01 } & =\underline{\mathrm{D} 02} \\
\text { zD01-D06 } & =\overline{\mathrm{IDX}}
\end{aligned}
$$

The one shot BSC defines the time that a comparison between the D register and the sector portion of the A register is made. Therefore both of these registers must not change during the time that BSC is true. To insure this SIP is true for at least 1.2 usec . This is the time that the D register is incrementing. The A register is filled by the POT command or the AIN term and it will be stable for at least 1 usec. before BSC starts. This is insured by the fact that $B S C$ cannot set until $X 01$ is reset and $X 01$ cannot be reset until the end of PT1. During the time that BSC is true the current sector address is compared with the sector address in the A register, and if they are equal the flip flop U02 is direct set by the sector compare gate. SAC.

$$
\text { yU02 }=00 \mathrm{~F} \text { BC SAC BSD }=20 \text { tan Cermpde art are in leocleng crag }
$$

where $\quad S A C=$ CUB LH

$$
\begin{aligned}
\mathrm{CUH} & =\frac{\overline{\mathrm{A} 18 \mathrm{CD1}+\overline{\mathrm{A} 18} \mathrm{CD} 1+\mathrm{A} 19 \mathrm{CD} 2}+\overline{\mathrm{A} 19} \mathrm{CD} 2}{+\mathrm{A} 20 \overline{\mathrm{CD} 3}+\overline{\mathrm{A} 20} \mathrm{CD} 3} \\
\mathrm{CLH} & =\frac{\overline{\mathrm{A} 21 \overline{\mathrm{CD} 4}+\overline{\mathrm{A} 21} \mathrm{CD} 4+\mathrm{A} 22 \mathrm{CD5}+\overline{\mathrm{A} 22 \mathrm{CD} 5}}}{\frac{\mathrm{~A} 23 \overline{\mathrm{CD}}+\overline{\mathrm{A} 23} \mathrm{CD} 6}{}}
\end{aligned}
$$

If the buffer has not been connected by this time, a signal is generated which may be used as an input to the priority interrupt chassis. This signal indicates that the search for desired sector has ended and that there is about 15 usec. before the preamble bits are available to be read or written. This gives the computer time to set up the interlace registers in the Input/ Output channel and connect the RAD to the channel with a BUC type EOM.

Figure 3-17 shows the most important timing relationships starting from the Alert to POT command to the preamble time.

$$
\begin{array}{ccc}
1 & 2 & 3 \\
00,01,10,00, d
\end{array}
$$

Operation of the Counters

This counter is actually made up of two separate counters. One is a two stage modulo 3 counter, that steps through 3 distinct counts. The other is a normal seven bit binary counter with 128 different configurations. Every third state $=40 R U$ of the modulo 3 counter steps the character counter portion by one. The character counter is re-clocked at about the middle position, K04.

$$
\begin{aligned}
& \text { SMO2 }=\overline{\text { MO1 CNT }} \overline{M 02} \quad \text { CNT }=\text { CLK VO2 } \\
& \text { rMO2 }=\text { CNT MO2 } \quad O O M=\text { MO1 MOJ : } \\
& \text { sM01 }=\text { MO2 CNT } \overline{M O 1} \quad O \searrow M=M O 1 \\
& \text { rM̂O1 = CNT MOI } \\
& \text { sK07 }=\overline{(01 F ~ U 01 ~ K 06) ~ M 01 ~ K O 7 ~} \\
& \text { rK07 }=\text { M01 KO7 } \\
& \text { sK06 }=\underline{K 07} \overline{\text { KOG }} \\
& 420 \mathrm{in} \quad \mathrm{rK06}=\mathrm{U} 01 \mathrm{01F} \mathrm{M01}+\mathrm{K07} \\
& \text { sK05 }=(\overline{01 F ~ U 01 ~ K 06) ~ K 06 ~} \\
& \text { rK05 : }=\underline{K 06} \\
& \text { tK04 }=\text { K05 K06 LSC CNT } \\
& \text { tK03 }=\underline{K 04} \\
& \mathrm{tK} 02=\underline{\mathrm{K} 03} \\
& \begin{aligned}
\text { Packety } \\
\text { where }
\end{aligned} \quad \begin{aligned}
\text { tK01 } & =\frac{\mathrm{K02}}{} \\
\text { LSC } & =\mathrm{M01} \text { K07 (every } 6 \text { th count) } 24 \text { BITS }
\end{aligned}
\end{aligned}
$$

The term CNT is a gated clock pulse to the counters. It is only enabled during. leading gap, preamble, data and postamble time.
The counters are reset by the logic term DRK. The timing relationships of these counter stages can be seen in Fig. 3-18.

Two amplified outputs of the modulo 3 counter are provided. These are count 0 and count 2.

$$
\begin{aligned}
\text { Count } 0=00 \mathrm{M} & =\overline{\mathrm{M} 01} \overline{\mathrm{M} 02} \\
\text { Count } 1 & =\mathrm{M} 02 \\
\text { Count } 2=02 \mathrm{M} & =\mathrm{M} 01
\end{aligned}
$$

The logic term NXL signifies the last two counts of the character counter portion.

$$
\text { NXL }=\text { K01 K02 K03 K04 K05 K06 }
$$

$$
\text { piope } 98 \text { equiden }
$$

Leading Gap

Once the proper sector has been located it is then necessary to count the 13 clock pulses which define the leading gap. This is done with the M and K counters. These counters are initially reset by $\overline{\mathrm{DRK}}$.

$$
\begin{aligned}
\mathrm{zK02} & -\mathrm{K} 07=\overline{\mathrm{DRK}} \quad \text { dc reset } \\
\mathrm{zMO1} & -\mathrm{MO} 2=\overline{\mathrm{DRK}} \\
\text { where } \quad \mathrm{DRK} & =00 \mathrm{~F} \overline{\mathrm{U} 02}+\ldots \ldots .
\end{aligned}
$$

The K01 flip flop is also reset by $\overline{\mathrm{DRK}}$, but it is accomplished in a different way. $\overline{\mathrm{DRK}}$ is tied to true output of $\mathrm{KO1}$ (through a buffer amplifier) and when $\overline{\mathrm{DRK}}$ goes to OV it resets the flip flop by pulling its true output down to ground. The counter will start to count the clock pulses (CNT) as soon as these are enabled by U02.

$$
\text { CNT }=\text { CLK UO2 }+\ldots \ldots
$$

At the third clock pulse to occur in the leading gap the dc flip flop U05 is set. U05 is the Read Enable signal which is used in the Selection Unit to enable the input gates to the read amplifiers 3.6 to 4.8 usec . After the last possible address change.

$$
\begin{aligned}
\text { SU05 } & =\text { OOF U02 K07 OOM READ CNAECE } \\
\text { REN } & =\text { OOF U05 }
\end{aligned}
$$

The counting of the leading gap proceeds for 13 clock counts to generate a 15.6 usec. delay period. This delay period is used to insure stabilization of the read amps and the head selection matrix and to allow time to program the required instructions before the data read/write time.
If the BUC wasn't previously issued, it must be done during the leading gap time. When the coupler becomes connected to the I/O channel the X03 flip flop is set and the error flip flop is reset.

$$
\begin{aligned}
\text { sX03 } & =00 \mathrm{~F} \text { BUC DMA CLK } \\
\text { DMA } & =\text { C17 C19 C20 C21 C22 } \overline{\mathrm{C} 23} \text { Rod adeless } \\
\text { rE01 } & =00 \mathrm{~F} \text { DMA BUC }
\end{aligned}
$$

On the 13 th count, $U 02$ is reset thus stopping the count and ending the leading gap.

$$
\text { rU02 }=00 \mathrm{~F} \text { K05 CLK }
$$

At this time the coupler enters the read or write phase if the buffer is ready (X03 set), and the channel has the RAD address in W10-W14. W2 is used to control the phase counter as we leave $\emptyset 0$.

$$
\begin{aligned}
& \text { sF01 = ERW DMW } \overline{\mathrm{W} 90} \text { CLK } \quad \text { (Read) } \\
& \text { sF02 = ERW DMV W90 CLK (Write) } \\
& \text { where } \quad D M W=W 10 \overline{W 11} \mathrm{~W} 12 \mathrm{~W} 13 \overline{\mathrm{~W} 14} \leftarrow \text { RAD ADDPESS on } \omega \text { lines } \\
& \text { ERW }=\text { 00F K05 X03 (13th count) }
\end{aligned}
$$

If the operation is a write, the read enable flip flop, which was set on the 3rd clock of the leading gap, is reset as the coupler exits phase zero.

$$
\text { rU05 }=\text { ERW DMW W90 CLK }
$$

If for some reason the channel is disconnected ($\overline{\mathrm{DMW}}$) from the RAD at any time except during the leading gap or preamble, the coupler connected flip flop is reset.

$$
\mathrm{rX03}=\overline{\mathrm{DMN}} \overline{\mathrm{U} 01} \underline{\mathrm{CLK}}+\ldots \ldots
$$

The flip flops U02, U03, U04 and U05 are initialized at the end of the leading gap, for their roles in the ensuing read or write phase.

Figure 3-18 shows the timing relationships between the various signals used during the leading gap time.
 Page 53a

Phase 1 Write

Phase one is defined by:

$$
01 \mathrm{~F}=\overline{\mathrm{F} 01} \mathrm{F0} 2
$$

This phase begins at the 13 th clock count (15.6 us) after SIP and lasts for a period of 406 clock pulses. (487 usec). However, if the band address selected is write protected, this phase lasts only one clock period during which the error flip flop, EO1, is set and the connected flip flop, X03, is reset.

$$
\begin{aligned}
& \text { sE01 }=01 \mathrm{~F} \text { WLK } \underline{\text { CLK }}+\ldots \ldots \\
& \text { rX03 }=01 \mathrm{~F} \text { WLK } \underline{\mathrm{CLK}}+\ldots \ldots . \\
& \text { rF02 }=01 \mathrm{~F} \text { WLK } \underline{\text { CLK }}+\ldots \ldots \\
& \text { rU01 }=01 \mathrm{~F} \text { WLK } \underline{\text { CLK }}
\end{aligned}
$$

where WLK is a signal from the selection unit that the band addressed is also protected by the switches.

Write Preamble

A ten bit preamble, 0101010100 , is written on each of the four tracks in parallel. The data bits are sent to the selection unit on four lines, WD1-4. It is mixed with the clock signals WCA and WCK, and sets the Write flip flops WDE1-4. It is then amplified and sent to the proper heads. See Figure 3-6.

$$
\begin{aligned}
& \text { sWDE1 }=\overline{\text { WDE1 WCA }}\left(\begin{array}{l}
\text { WCK }+\overline{\text { WCK }} \text { WD1 }) \\
\text { rWDE1 }=\text { WDE1 WCA }
\end{array}(\mathrm{WCK}+\overline{\mathrm{WCK}} \overline{\mathrm{WD1})}\right.
\end{aligned}
$$

Figure 3-19 shows a more detailed data flow and clock generations. The flip flop U03 as toggled with every other count thus generating the pattern used for the preamble. The first clock after entering phase one sets the flip flop U02 which enables the counter (CNT).

$$
\begin{aligned}
\mathrm{SU} 02 & =01 \mathrm{~F} \text { U01 } \overline{\mathrm{WLK}} \underline{\mathrm{CLK}} \\
\mathrm{CNT} & =\mathrm{U} 02 \mathrm{CLK}+01 \mathrm{~F} \overline{\mathrm{U} 01} \mathrm{CLK}
\end{aligned}
$$

At the end of the preamble U01 is reset by the counter.

$$
\begin{aligned}
\text { rU01 } & =01 \mathrm{~F} \text { WPC CLK } \\
\text { where } \quad \text { WPC } & =\text { U01 K06 M01 }
\end{aligned}
$$

WPC is true during a count of 9 but since the counter didn't start counting until the second clock pulse in the preamble, because U02 was reset, the preamble is 10 bits in length.

Also at the end of the preamble the counter must be returned to zero so it can then be used to count the 128 characters of data to be written. This is accomphished by inhibiting the setting of $K 07$ and $K 05$ at the end of the preamble by JK57 being false.

$$
\begin{aligned}
\text { sK07 } & =\underline{\text { M01 JK57 }} \text { UK } \\
\text { sK05 } & =\underline{\text { K06 JK57 }} \\
\text { JK57 } & =\overline{01 F ~ K 06 ~ U 01 ~}
\end{aligned}
$$

Request of Data Characters

At the first clock pulse after the preamble the first four data bits are written. Therefore during the preamble they were requested from the CPU and shifted through the appropriate registers in time to be transferred to the write flip flops.

$$
\begin{aligned}
& \text { WD - } 4=01 \mathrm{~F} 23 \mathrm{U} \text { S01-4 } \\
& 23 \mathrm{U}=\overline{\mathrm{UO1}} \mathrm{U} 02 \quad \text { (data time) }
\end{aligned}
$$

where

```
VO1 VO2 (-ck
    \(1 \quad 1 \rightarrow\) preamble \(_{(-1 c t)}\) leading gap
    i) \(1 \rightarrow\) Data time
    \(\because \quad\) O Potamble Hap
    \(1 \quad O \rightarrow\) each fin sexier - often le rad \(A\)
```

9367 C SELECTION UNIT

Figure 3-20 is a timing diagram showing all the important signals used during the write preamble and write data time. The first data character is requested from the CPU by setting $X 08$ as phase one is entered.

$$
\mathrm{sX08}=\mathrm{ERW} \text { DMW W90 CLK } \quad \mathrm{Y} \quad \mathrm{OO8}=E \hat{\mathrm{R}} \mathrm{C}
$$

The Z and V registers are 12 bit buffer registers used to hold data for up to 2 memory cycles during the asynchronous slip between the memory computer cycle and the character data rate to the $R A D$. If the V register can accept a character from the channel as specified by $X 08$ being true, the ECW signal is generated.

$$
E C W=01 F \times 08 \overline{W 50} \overline{W 60} \times 03
$$

W50 (W5) and W60 (W6) are included to permit transfer of data at near maximum rate. (286 K char/sec). X03 stops data requests if a partial sector is called for in the interlace count register and the interlace count goes to zero, thus disconnecting both the channel and the disc.

$$
\mathrm{rX03}=\overline{\mathrm{U} 01} \overline{\mathrm{DMW}} \text { CLK }+\ldots \ldots
$$

At the leading edge of the first clock after $W 60$ is set in response to the ECW, the \mathbb{R} lines ready flip flop, $X 06$ is set and the V empty flip flop, X08, is reset at the falling edge of the same clock, becuase the data was transferred into V at that time. $X 06$ is reset on the leading edge of the next clock.

$$
\text { sX06 }=01 \mathrm{~F} \text { W56 } \overline{\mathrm{CLK}^{2}} \text { tine of clete pulac }
$$

$$
\begin{aligned}
& \text { rX08 }=01 \mathrm{~F} \times 06 \underline{\mathrm{CLK}} \\
& \text { rX06 }=01 \mathrm{~F} \overline{\mathrm{CLK}} \\
& \omega_{5} 6=\omega 6 \mathrm{~W}=5 \\
& 1 Q y=0.56 \times 06
\end{aligned}
$$

To allow the data transfer by only the true R lines from the $I / 0$ channel, the \bar{V} register is cleared before loading

$$
\begin{aligned}
& \mathrm{zV1-12}=\overline{\mathrm{DRV}} \\
& \text { DRV }=\mathrm{W} 56 \overline{\mathrm{X} 06} \overline{\mathrm{CLK}} \mathrm{~F} 02 \\
& \text { where W56 }=\overline{\mathrm{W} 5} \mathrm{~W} 6 \\
& \text { then } \mathrm{sV} 01=\mathrm{LDV} \text { R01 } \\
& \vdots \\
& \text { sV12 }=\mathrm{L} \mathrm{LDV} \text { Rí2 } \\
& \text { Where LDV }=01 \mathrm{~F} \text { X03 X06 W } 0 \text { STV CLK } \\
& \text { and STV is a } 250 \mathrm{~ns} \text { strobe pulse initiated } \overline{\text { CLK }}
\end{aligned}
$$

On the next clock leading edge after X08 is reset, that X09 is also true (indicating that Z register is clear), $X 07$ is set and the contents of V are transferred to Z; and also on the leading edge of the same clock pulse, X08 is set again indicating that V is now clear and ready to receive another character from the $I / 0$ channel. LDZ is the logic tarm that enables the data transfer from V to Z.

$$
\begin{aligned}
& \mathrm{sX07}=01 \mathrm{~F} \times 09 \overline{\mathrm{X} 08} \overline{\overline{\mathrm{CLK}}} \\
& \mathrm{sX08}=01 \mathrm{~F} \overline{\mathrm{U} 04} \mathrm{X} 09 \overline{\overline{\mathrm{CLK}}}
\end{aligned}
$$

Again to transfer the data using only the trur. lines the Z register must first be cleared.

$$
\mathrm{zZ1}-12=\overline{\mathrm{DRZ}}
$$

where $\mathrm{DRZ}=01 \mathrm{~F} \overline{\mathrm{X08}} \mathrm{X09} \overline{\mathrm{CLK}}$
the data then is set into the Z register

Where LDZ $=01 F$ X07 CLK
On the next clock leading edge X 07 is reset

$$
\mathrm{rX07}=\overline{\mathrm{CLK}}
$$

Since the Z register now contains data the Z empty flip flop $X 09$ is now reset. (It was initially set at the beginning of the preamble).

$$
\begin{aligned}
& \mathrm{yX09}=\overline{\mathrm{U} 02} \mathrm{U01} \\
& \mathrm{rX09}=01 \mathrm{~F} \text { X07 U01 CLK }
\end{aligned}
$$

Although during other than the preamble time ($\overline{\mathrm{UOL}}$) the Z may transfer its data to the S register at the same time at V to Z transfer takes place. In this case $X 09$ would not reset. This is the reason for the different gating during data write time.

$$
\mathrm{rX09}=01 \mathrm{~F} \times 07 \overline{\mathrm{M01}} \mathrm{CLK}
$$

This double transfer can only occur at the clock which occurs when the counter is in its 02 M configuration. The Z to S transfer always occurs at this time.
s SOL = LDS Z01 CEK
r SOL = LDS $\overline{201} \mathbf{~ C L K}$
Similarly for S04, S07 and S10
y $\mathrm{y} 02=\mathrm{LDS}=2$
Similarly for S03,S05, S00, S08, S09, S11 and S12
where $\mathrm{LDS}=01 \mathrm{~F}$ 02M CLK
During most of the preamble X09 is reset because the first 12 bit character or dati is meld in the Z register. At the last clock of the preamble this character is transferred to the S register and then $X 09$ is set.
$\pm \mathbf{x 0 9}=01 \mathrm{~F}$ WPC CLK
where WPC= U01 K06 M01 (end of preaniole)
During the data transfer time, X09 also sets each time a character is transferred into the S register.
sX09 $=$ 01F M01 U01 CLK
If the condition exists that a transfer from R to η has not occurred, as snown by X0\% being true, at the time that a transfer from to 4 to S occurs (02M Xor), a rate error condition exists and the channel error indicator is set.

WES $=\mathrm{X} 04^{\text {verply }} z_{\text {errpty }}^{\prime} \angle D S$
The parity flip flops P01 through $P 04$ are set during the preamble in preparation for the longitudinal parity generation.
y P01-4 = SPR
where $S F R \neq 01 \mathrm{~N} 01$

WたITE DATA

Each clock time except 02 M clock, the S register data is shifted one position in

order to write the aucceeding 4 wita on the disc.

$\mathbf{s S 0 1}=\mathbf{s} 02$ SHS CLK
similarly for S04, S07, and S10
$\mathrm{sS} 02=\mathrm{SO3}, \mathrm{SH} \mathrm{S}$
similarly for S03, S05, S06, S08, S09, S11 and S12
where $\mathrm{SHS}=01 \mathrm{~F} \overline{02 \mathrm{M}} \mathrm{CLK}$
Since LR1-4 are false in the write phase, zeroes are shifted in $\operatorname{So2,3,5,0,8,5,~}$

when transferring an new character into S.
384 bits of data are written on each of the four tracks during phase one.
WD1 = S01 23U
$\mathrm{WD} 2=\mathrm{S} 0423 \mathrm{U}$
$\mathrm{WD} 3=\mathrm{S} 0723 \mathrm{U}$
WD $4=\mathrm{S} 1023 \mathrm{U}$
where $23 \mathrm{U}=\overline{\mathrm{U} 01} \mathrm{U} 02$ (data time)
The termination is accomplished by setting $U 04$ at the clock time prior to the next to last Z to S transfer and inhibiting further setting of X08

$$
\begin{gathered}
\text { sU04 }=01 \mathrm{~F} \text { NNL K07 02M CLK } \\
\text { where NNL }=\text { K01 K02 K03 K. } 04 \mathrm{~K} 05
\end{gathered}
$$

LONGITUDINAL PARITY GENERATION

At the end of the write preamble time the four parity flip flops are all set to thbit true state.. These flip flops, P01-P04 are used for generating the longitudinàl parity bits written at the end of the data time, and they are also used for checking parity on a read operation.

$$
\begin{aligned}
\text { y P01 - P04 } & =\text { SPR } \\
\text { where SPR } & =01 F \mathrm{U} 01+\ldots . .
\end{aligned}
$$

During phase one data time each of these P flip flops is toggled with the data bits being written on that particular track. POl correspads to track one etc.
t P01 $=01 \mathrm{~F}$ WD1 CLK
t P02 = 01F WD2 CLK
t P03 $=01 \mathrm{~F}$ WD3 CLK
t P04 $=01 \mathrm{~F}$ WD4 CLK
When the writing of the data is completed, $\mathbf{U} 02$ is reset.
r U02 $=01 F$ NXL LSC CLK
where LSC $=$ M01 K07 (every 6th count)

$$
\text { NXL }=\text { K01 K02 K03 K04 K05 K06 (last word time of sector) }
$$

WRITE PARITY AND POSTAMBLE

Albegttudiall parity bit and 11 additional zeros eopprisethel22,bitpperctaack postamble. The additional 11 zeros written are used to insure proper read back for the final data and parity bits when in phase two. It is not desirable to shut off the read amplifiers immediately with the final bit. The parity bits are written by gating the contents of the P flip flops into the write circuits.

```
    WD1 = 01U P01 + ....
    WD2 = 01U P02 + ...
    WD3 = 01U P03 + . ...
    WD4 = 01U P04 + ....
    where 01U = \overline{U01 }}\overline{\textrm{U}02
    As the parity is written WD1-4 signals again toggle the parity flip flops as
    peeviously described, thus resetting any that were on. The WD gates above then will
be all false thus writing zeroes in each track until the coupler goes to phase zero
after the counter has counted 11 of these postamble zero bits. See figure?3-11.
```


Now the address register is checked for an overflow condition. If the A register contains all ones in bits 12 through 23 , U03 is set, and an error is indicated in phase zero if the buffer is not disconnected by SIP time.

$$
s: 03=01 F \overline{U 02} \mathrm{LSC} A F L \mathrm{LK}
$$

where $\mathrm{AFL}_{1}=\mathrm{A} 12 \mathrm{~A} 13 \mathrm{~A} 14 \ldots . . \mathrm{A}_{23}$
If the A register is not full (band 77 sector 77) at the beginning of the postand it will then be incremented by one at the time that the eleventh potamble zero is ser to the write circuits.

```
                    AIN = 01F \overline{E01}}\overline{U02 LSC K06}\frac{16}{AFL
```

 tA23 \(=\mathrm{Al}\)
 \(\mathrm{tA} 22=\underline{\mathrm{A} 23}\)
 \(\mathrm{tA} 18=\mathrm{A} 19\)
 tA17 \(=\) AFC AIN
 tA15 \(=\) A17
 tA15 \(=\underline{A 16}\)
 tA14 \(=\underline{\text { A15 }}\)
 \(\mathrm{tA13}=\mathrm{AF} \mathrm{AFC}\) AIN
 \(\mathrm{tA} 12=\frac{\mathrm{A} 13}{1}\)
 tA'09 \(=\) A10
 where $\mathrm{AFB}=\mathrm{A} 14 \mathrm{~A} 15 \mathrm{~A} 16 \mathrm{~A} 17$

$$
\mathrm{AFG}=\mathrm{A} 18 \mathrm{~A} 19 \mathrm{~A} 20 \mathrm{~A} 21 \mathrm{~A} 22 \mathrm{~A} 23 \quad \overline{\mathrm{X} 05}
$$

This concludes the write phase and the coupler returns to phase zero at the end of the postamble.

$$
\mathbf{r F 0 2}=01 \mathrm{~F} \overline{\mathrm{U} 02} \mathrm{LSC} \mathrm{~K} 06 \mathrm{CLK}
$$

When writing is is necessary to disable the 2 lines to the I / O channel. This is done by disabling the $c a b l e d r i v e r s$ with $\overline{\mathrm{FO1}}$. The enable term is a voltrue logic. The Z lines therefore are only active during the read phase ($\varnothing 2$).

Another term $X 12$ is generated in the coupler and sent to the I/O Charel. Tinis: signifies to the channel that the RAD is using the 12 bit extended single character register.

$$
\mathrm{X} 12=\mathrm{DMW}
$$

SECTOR GAP FOLLOWING A READ/WRITE OPERATION

At the end of each sector read or write, the coupler returns to phase zero in both single and multisector operation, and if appropriate, re-enters the read or write phase by the same procedure as previously described in the initiate Read or write operation. The only difference is that the triggering of BSC will be gated by KSD of a different origin. If the previous sector written was not aborted by an attempt to write in a protected disc area, or an attempt was made to increment the A register across a unit boundary, HSD will be true.

$$
\text { unit boundary, HSD will be true. }=x 03 \overline{i 003}+\ldots \text {. }
$$

At the following SIP, $5 S \mathrm{~S}$ is triggerred in the same manner as in the initial gap. The conclusion of data transfer is semeded by the disconnection of the device by thechanel at the end of the interlace count.

$$
\mathrm{r} \mathrm{X} 03=\overline{\mathrm{DMW}} \overline{\mathrm{U} 01} \mathrm{CLK}
$$

With X03 reset and the coupler in phase zero or postamble time, the coupler is ready and can receive another EOM, Alert to POI.

The following chart shows the incidence of various timing signals occurting at the end of a write operation.

The Il interrupt occurs at the time the last word is transferred from memory to the channel buffer register, due to the fact that the interlace count reached zero. Il will not occur if the channel disconnects the device prior to the interlace count equal to zero, due to a Whs signal sent to the channel by the coupler.

The following conditions cause the end if record signal Whs, to be sent to the I/O channel.

1. An attempt was made to increment accross a unit address boundary
2. An attempt was made to write in a write protected area

At point A on the chart, 13 u sec. after I , the last data bit is recorded on the recording medium and the coupler becomes ready. From point A to point B, the parity bit and eleven postamble bits (zeroes) are recorded. At \bar{B} the coupler enters phase zero, and responds to any POT that is pending. A POT must occur within 15 usec. if it is to find sector equivalence with the value that the D register will
attain when it is incremented at SIP time in this particular gap. This is point $:$ on the chart. $2 \mathrm{u} s e c$. later, at point D, the sector pulse $8 \mathbf{I}$ trailing edge occurs and the coupler tests for equality between the A register sector and the sector courter of the addressed selection unit. At point $E, 15.6 \mathrm{u} \mathrm{sec}$. later, the coupler enters the read or write phase.

If the EOM (BUC) instruction is the last of the RAD instructions to be programad in the gap, it must be executed by E time or an entire device revolution will be lost. (EßK will not occur because X03 is false)

AATD NUN-INCREMENT YODE

This mode of operation is indicated by $X 05$ being set. In this mode, address incrementation is limited to the sector portion only. Thus a full band transfer all be programmed with minimum instructions in the gap at sector $\boldsymbol{0}_{\boldsymbol{1}}$ if the transfer starts at an arbitrary sector. In this mode, triggering of $B S C$ is gated by $H S D$ of a different source.

$$
\mathrm{HSD}=\overline{\mathrm{U01}} \times 05 \overline{\mathrm{E01}}
$$

That is, the qualification that an EOM POT sequence must occur before an operatior. can occur, is waived for the non-increment mode. ERROR PROCESSIN:

Thes following errors cause a coupler error by setting flip flop E01.
A. Write Error:

When an attempt is made to write on a writeprotected band, a writecerror resufts. The coupler enters the write phase for one clock period during which EO1 is set, X03 is reset, and the coupler returns to phase zero.
R. Address overflow error:

At the end of any sector read or write, if the address bits A12-A23 are all ones, the address incrementation (AIN) is inhibited. The coupler returns to phase zero with U03 set if the coupler is not in the band non-increment mode. If U03 is set an address overflow results if a new address has not been potted by the time the next SIP appears.

$$
\begin{aligned}
\text { s E01 } & =00 \mathrm{~F} 03 \text { SIP } \\
\mathrm{r} \mathrm{U03} & =\mathrm{RF} 1 \mathrm{AFL} \text { CLK } \\
\text { where } \mathrm{RFI} & =\text { Last character read } \\
\mathrm{s} \text { U03 } & =01 \mathrm{~F} \overline{\mathrm{U} 02} \text { LSC EFL CLK } \\
\text { and AFL } & =\mathrm{A} 12 \mathrm{~A} 13 \ldots \text { (write) }
\end{aligned}
$$

C. POT error:

A POT issued at other than idle or postamble will also indicate an error, regardless of whether a read or write operation is taking place. Even under these conditions the address POT is responded to by sending an RTO signal to the computer, but the contents of the A register are not changed.

$$
\mathrm{yE} 01=\mathrm{X} 01 \overline{\mathrm{X} 02} \mathrm{PT} 2
$$

In the first two error types, the operation is terminated before the interlace count is zero. Therefore 11 will not occur but I2 will, because hs is sent to the channel based on X03 being false or U03 being true at SIP time.

WiS $=00 \mathrm{~F}(\overline{\mathrm{XO}} \overline{\mathrm{BUC}}+\mathrm{U} 03 \mathrm{SIP})$ DAW
Flip Flop U03 will be reset when the buffer is disconnected.
r U03 $=00 \mathrm{~F} \overline{\mathrm{X} 03} \mathrm{CLK}$
The following error cause a channel error to be indicated by sending the WES signal to the I/O channel.
A. Read Error: will kep reading until $\omega c=0$

When reading the longitudinal parity bitsthe parity
mismatch signal $\overline{\mathrm{PCP}}$ will cause WES to be true.
WESt F $02 \mathrm{~F}_{\overline{\mathrm{U} 01}}^{\mathrm{U} 02} 00 \mathrm{M} \overline{\mathrm{K} 06} \overline{\mathrm{~K} 07} \overline{\mathrm{PCP}}$ ELK
B. Rate Error:

If during the transfer of the data in a read or write operalion, characters are missed due to infering time shares or the
 and a Whys will be sent at the end of the sector.
LES $=\mathrm{X} 04$ P
where $\mathbf{x 0 4}$: 02 F PST $\overline{\mathrm{X09}} \overline{\mathrm{U01}} 00 \mathrm{M}$ DM W CLK +01 F X08 X09 02M U01 $\overline{\mathrm{CLK}}$
Whys $=00 \mathrm{~F}$ DAW $\overline{\mathrm{BUC}} \overline{\mathrm{XO}}$
and r X03 00 F XX iLK
In the case of the read error, the operation is allowed to continue until the interlace counts is zero, Thus Il is always generated. In the case of the rate error

I2 is always generated at the next gap after the error occurred.
The flip flop $X 03$ is reset by detecting that $W 10$ through $W 14$ no longer contain the RAD address, 26.
PHASE TWO-READ
Phase two is defined by
$02 \mathrm{~F}=\mathrm{FO} \overline{\mathrm{FO}}$
The read phase begins at the 13 th clock count (15.6 us) after SIP and lasts until the last character is accepted from the coupler. The clock used in this phase is derived from the data by the read decoder module. The four clocks (one from each track) are "ored" together at the input to the one shot RCK which generates clock pulses of .5 usec width. The switching from the write clock, used in phase 0, to the read clock in phase two, is done in each Selection unit under control of $R C N$, which is generated in the coupler.
$\mathrm{RCN}=02 \mathrm{~F}$
The count registers $K 02$ through K 07 , and M01 and M02 are reset by $\overline{\mathrm{DRK}}$ at two places during the preamble. One is at the beginning of the read phase, until the first clock is detected and the other occurs after six clocks are counted, until the first double zero is detected.

$$
\mathrm{DRK}=\mathrm{CK} \text { U01 U02 }
$$

The clock pulses are counted in the count register by the CNT pulses.
$\mathrm{CNT}=\mathrm{U} 02 \mathrm{CLK}+02 \mathrm{~F} \overline{\mathrm{UO1}} \mathrm{CLK}$
Once the read phase is entered, a complete sector will be read and the longitudinal parity will be checked even though the buffer may disconnect earlier after reading only a part of the sector.
The read phase will be described in three parts in the order of their occurrence. The detection of the preamble, reading of data and transfer of characters, and checking of longitudinal parity.

DETECTION OF PREAMBLE

The first clock detected after entering the read phase sets U02.
sU02 $=02 \mathrm{~F}$ U01 $\overline{\mathrm{U} 03}$ 00M CLK
where U01 was set in $\emptyset 0$ by the LDA
$00 \mathrm{M}=\overline{\mathrm{MO1}} \overline{\mathrm{MO2}}$
Six clock times later, U02 is reset and U03 is set and the search for the preamble double zero begins.
rU02 $=02 \mathrm{~F}$ U01 02M K07 CLK
sU03 $=02 \mathrm{~F}$ U01 U02 02M K07 CLK
Flip flop U02 is set again when the first zero read is in S 03 and the second
to check he a zens, we check only I track
zero is in RD1. On the basis that U03 ts set (search for end of preamble) and U02 is set (found end of preamble), U 01 and U 03 are reset on the next clock.

$$
\begin{aligned}
& \mathrm{sU02}=02 \mathrm{~F} \text { U01 U03 } \overline{\mathrm{SO3}} \overline{\mathrm{RD1}} \mathrm{CLK} \rightarrow 2 \text { zeno are } \rightarrow \text { and } \\
& \text { rU01 }=02 \mathrm{~F} \text { U02 U03 } \mathrm{CLK} \\
& \text { rU03 }=02 \mathrm{~F} \text { U01 U02 OM CLK }
\end{aligned}
$$

The parity flip flop P01 through P 04 are set prior to reading data so that the longitudinal parity may be checked at the end of the data read time.

$$
\begin{aligned}
& y P 01=S P R \\
& y P 04=S P R
\end{aligned}
$$

$$
\text { where } \quad S P R=02 F \text { JOT } \overline{\mathrm{U} 02}
$$

READGDATA
Figure 3-22 shows the timing relationships used in reading the preamble and data, and also how the h aracter is transferred to the Input/output Channel. Each track Will read 384 bits of data which will set into the S register and be shifted twice. Then it will then contain one 12 bit character.

$$
\begin{aligned}
& \mathrm{sS} 03=\mathrm{LR1} \mathrm{CLK} \\
& \mathrm{rS} 03=\overline{\mathrm{LR} 1} \mathrm{CLK} \\
& \mathrm{sS} 06=\mathrm{LR} 2 \mathrm{CLK} \\
& \mathrm{rS} 06=\overline{\mathrm{LR} 2} \mathrm{CLK} \\
& \mathrm{sS09}=\overline{\mathrm{LR} 3} \mathrm{CLK} \\
& \mathrm{rS} 09=\overline{\mathrm{LR} 3} \mathrm{CLK} \\
& \mathrm{sS} 12=\mathrm{LR4} \mathrm{CLK} \\
& \mathrm{rS} 12=\mathrm{LR4} \mathrm{CLK}
\end{aligned}
$$

Where LR1-4 is the output of the read circuits gated by 02 F .
P01 through P04 are toggled whenever a one is read in from the corresponding track.

$$
\begin{aligned}
& \mathrm{tP} 01=\mathrm{LR} 1 \mathrm{U} 02 \mathrm{CLK} \\
& \mathrm{tP02}=\mathrm{LR} 2 \mathrm{U} 02 \mathrm{CLK} \\
& \mathrm{tP03}=\mathrm{LR} 3 \mathrm{U} 02 \mathrm{CLK} \\
& \text { tP04 }=\text { LR 4 U02 CLK }
\end{aligned}
$$

Two 12 bit buffer registers are supplied to provide the buffering required to operate with the 92 computer as well as with the 930,940 and 9300 computers. These two buffer registers also allow sufficient time for lower priority time; share operations to occur when using a TMCC. These two registers are called the Z and V registers. At each $00 M$ clock, a $12 b i t$ character is transferred from the S register: to the Z register. $D C$ flip flops are used in the Z register and the information is thus transferred at the beginning of the clock pulse, CLK.

where LRC is the term which allows this transfer LRC $=02 F$ OOM CLK
The X 09 flip flop is used to record the fact that the Z register is full by being reset every $O O M$ time during the data transfer portion of a sector.
rX09 $=00 \mathrm{M} \overline{\mathrm{UO1}} 02 \mathrm{~F}$ CLK
The transfer of data from the Z register to the V register occurs under control of the X07 flip flop in every case except when the response to the ECW (signified by flip flop X06) is so late that X08 flip flop must be used on the other clock phase as describedilater intthis section.
sV01 = LVR Z01
rVOI $=$ LVR $\overline{Z 01}$
$\begin{array}{ccc}\vdots & \vdots & \vdots \\ \operatorname{sV1} \angle & = & \text { LVR } \\ Z 12\end{array}$
Where LVR enables this transfer $\mathrm{LVR}=02 \mathrm{~F} \mathrm{X} 07 \overline{\mathrm{X08}} \mathrm{CLK}+\ldots$
Except at the beginning \boldsymbol{A} the sequence of events is initiated by the first clock, CLK, to occur during $\overrightarrow{\mathrm{W} 5} \mathrm{~W} 6$ time, which indicates that the previous information on the Zw lines (from to V-register to the I/O channel) has been accepted by the I/O chann 1 . Thus X06 is set to indicate this condition.

$$
\mathrm{sX06}=02 \mathrm{~F} \overline{\mathrm{~W} 5} \mathrm{~W} 6 \mathrm{U} 04 \overline{\mathrm{CLK}}
$$

On the next clock leading edge the X 07 flip flop is set if the data presently in the V register had not arrived directly from S (as indicated by X09 being reset) or if it had, it would be at some clock time other than 02M.

$$
\begin{aligned}
& s \times 07=02 \mathrm{~F} \text { X06 } \overline{\mathrm{X09}} \overline{\mathrm{CLK}} \\
& \mathbf{s X 0 7}=02 \mathrm{~F} \text { X06 } \overline{\mathrm{M01}} \overline{\overline{\mathrm{CLK}}} \quad \text { (Z to } \mathrm{V}) \\
& (\mathrm{S} \text { to } \mathrm{z} \text { to } \mathrm{V})
\end{aligned}
$$

If the clock time is 02 M and X 09 is set, V should not be loaded, for the same character would be transferred twice to the I / O channel. The character is then
allowed to be sent to the V register only while X 07 is true. On the following
clock leading edge X 07 is reset.

$$
r X 07=\overline{C L K} \quad \text {, twee says } V \text { empty }
$$

The same terms which set X 07 also reset X 06 if not in the preamble and if the terminate: flip Flop U03 has not been set.

$$
\mathrm{rX06}=02 \mathrm{~F} \overline{\mathrm{U} 03} \overline{\mathrm{U} 01} \overline{\mathrm{CLK}}(\overline{\mathrm{M01}}+\overline{\mathrm{X09}})
$$

The ECW clocks to the channel are based on $\overline{X 0} \overline{6}$, which indicates that the previous character has been accepted by the I/O channel .t. The 170 chanhearterms: $\overline{W 5}$ and W6 are

Yheluated in: the: mew logic r to allowidata transfer rates close to the maximum of 286 K bytes/sec.

ECK $=02 \mathrm{~F}$ U04 $\overline{\mathrm{W} 5} \overline{\mathrm{~V} 6}$ DAW $(\overline{\mathrm{X} 06}+\overline{\mathrm{U} 03} \overline{\mathrm{X} 09})$
U04 is included for initialization as described later.
If an interfering time share operation occurs at a time that the I/O channel wants to access memory, the process will be delayed and W5 will stay on for an extra memory cycle ($\overline{\mathrm{W} 6} \mathrm{~W} 5 \overline{\mathrm{~W}}$) and the channel. cannot accept another character. In this case, X07 will not become true at 00M clock time and the character transferred from S to Z will not be transferred to V until a later clock. In the case of a second interfering time share, the transfer to V must take place later than the second clock past OOM, but before OOM SLK, in order to prevent the transfer of the next $\because \mathrm{A}$ aster into Z. This case, which is defined by X08 being true, is clocked differently.

$$
\text { LVR }=02 \mathrm{~F} \text { X08 DOM ELK }
$$

If the X 07 is not set on the leading edge of the clock in 02 M , X 08 is used to transfer the data, if it becomes available before the fall of CLK in 02M. This only occurs with interfering time shares by another device on another I/O channel operation simultaneously.

$$
\text { EX08 }=02 \mathrm{~F} \overline{\mathrm{X09}} 02 \mathrm{M} \mathrm{X06} \mathrm{CLK} \quad \because \mathrm{~A}
$$

It is reset at the following clock leading edge.

$$
\mathrm{rX08}=02 \mathrm{~F} \overline{\mathrm{CLK}} 02 \mathrm{M}
$$

A rate error is declared if the data is not transferred out of the Z register, as indicated by X09 still being reset by OOM CLK time.

$$
\begin{array}{ll}
\text { sX04 } & =02 \mathrm{~F} \overline{\mathrm{X09}} \overline{\mathrm{U01}} 00 \mathrm{M} \text { CK } \quad \text { DAW PST } \\
\text { Wes }=\mathrm{X} 04
\end{array}
$$

Flip flop X09 will be set when Z is transferred to as determined by X 07 or X 08

$$
\begin{aligned}
s X 09= & 02 \mathrm{~F} \times 07 \overline{\overline{\mathrm{CLK}}} \\
& +02 \mathrm{~F} \times 08 \overline{\mathrm{CLK}}
\end{aligned}
$$

To initialize this sequence it is necessary to delay the sending of ECW clocks tc to the I / O channel until the leading edge of the second 00 M in the read data portion of $\varnothing 2$ when the first 12 bit character has been read. This accomplished by having

U04 in the ECW logic and not setting U04 until the proper time.

$$
\text { sU04 }=\overline{\mathrm{U} 01} 00 \mathrm{M} 02 \mathrm{~F}
$$

This initial setting of X06 should occur at the leading eddeeof:CLK in the first 02 M so that the first S to Z to V transfer occurs on the second OOM CLK to occur in the read data portion of $\emptyset 2$.

$$
\mathrm{sX06}=02 \mathrm{~F} \quad 02 \mathrm{M} \overline{\mathrm{U} 01} \overline{\mathrm{U} 04} \overline{\mathrm{CLK}}
$$

Termination of the ECW pulses for a sector must occur on the 12.8 th ECW.
Flip flop $U 03$ is set to indicate that $X 06$ should not be reset after its setting for the 128 th time.

$$
\operatorname{sU0} 3=02 \mathrm{~F} \overline{\mathrm{U} 01} \overline{\mathrm{U02} \mathrm{X} 07} \overline{\mathrm{X} 08} \mathrm{CLK}
$$

The condition of $\overline{U 01} \overline{U 02}$ ヘ indicates the clock at which S is transferred to Z (CAST) for the 128th time.

$$
\begin{aligned}
\text { rU02 } & =02 \mathrm{~F} \text { NXL LSC ELK } \\
\text { where LSC } & =\mathrm{K} 07 \mathrm{M} 01 \\
\text { and NXL } & =\mathrm{K} 01 \mathrm{~K} 02 \mathrm{~K} 03 \mathrm{~K} 04 \mathrm{~K} 05 \mathrm{~K} 06
\end{aligned} \quad \text { (every sixth count) }
$$

In the case in which the next to last character is transferred to V in the fir:; part of the same $O O M$ that the last character is transferred from S to Z, there will be two ECW's required to transfer out all of the data. $\ddot{B} y$ including $X 07 \overline{\mathrm{X} 08}$ in the set U03 equation, U03 does not get set until the last character is transferred to te V register.

LONGITUDINAL PARITY CHECK

The longitudinal parity bit which immediately follows the last data bit of tie sector is compared against that which has been formed in the P flip flops while readies the Data. If they fail to compare, the error signal, WES, is generated.

$$
\text { WES }=02 \mathrm{~F} \frac{\mathrm{U} 01}{\mathrm{U} 02} \mathrm{OOM} \overline{\mathrm{K06}} \overline{\mathrm{K07}} \overline{\mathrm{PCP}} \text { CLK }
$$

 the gate in which the comparison is done. the data line P is on attatotrut

$$
\begin{aligned}
& \text { True } y=\overline{\mathrm{PCP}}(\mathrm{LR1}+\mathrm{P} 01 \overline{\mathrm{RD1}}) \\
&+\overline{\mathrm{P} 02} \mathrm{LR} 2+\mathrm{P} 02 \overline{\mathrm{RD} 2} \\
& \text { Sough } \\
&+\overline{\mathrm{P} 03} \mathrm{LR} 3+\mathrm{P} 03 \overline{\mathrm{RD} 3} \\
&+\overline{\mathrm{P} 04} \mathrm{LR} 4+\mathrm{P} 04 \overline{\mathrm{RD} 4}
\end{aligned}
$$

When the last character is accepted, if an address overflow condition does not exist (not band 77 sector 77), the address increment signal AIN is generated, which adds one to the address in the A register. It's generated if in the non-increment mode due to the X 05 term in the AFL.

The read phase ends when the last character is accepted by the I / O channel, and the coupler returns to phase 0.

$$
\mathrm{rF01}=\mathrm{RF} 1 \mathrm{CLK}
$$

where RF1 $=02 \mathrm{~F} \overline{\mathrm{U} 01} \overline{\mathrm{U} 02} 02 \mathrm{M} \mathrm{K06}$

$$
\mathrm{AFL}=\mathrm{A} 12 \mathrm{~A} 13 \ldots \mathrm{~A} 23 \overline{\mathrm{XO}} \overline{5}
$$

The flip flop U03 is reset unless AFL is true in the non-increment mode. rU03 $=$ RF 1 AFL CLK
If $U 03$ fails to reset, it will then be on at the time that the next SIP pulse occurs, thus indicating an address overflow error by setting EO1. sE01 $=$ OOF U03 SIP
Flip flop U05, the read enable signal, is reset at the time the last character is accepted by the channel, in order to prevent any transitions into the read circuits at the time that the A register increments.

```
    rU05 =RF1
```

Flip flop U04, which signifies the time for read ECW's, is also reset by RFI

FiGuRE 322 READ PPEAATBE AND DATA

```
\(x 01\)
\(x 02\)
    \(2 \ldots 0\)
```



```
\(: \quad, \rightarrow\) rent to Pot
```

If a rate error has occured in phase one or two the flip flop X04 is in the set condition. To prevent any further reading or writing beyond that sector in which the error occurred, the connected flip flop X03 is reset in the next $\varnothing 0$ and the operaLion terminates.

$$
\begin{aligned}
& \mathrm{rX03}=00 \mathrm{~F} 04 \mathrm{CLK} \\
& \mathrm{X} 04 \text { is also reset at the same time } \\
& \mathrm{rX04}=00 \mathrm{~F} \mathrm{CLK}
\end{aligned}
$$

PIN OPERATIONS
A PIN instruction transfers the contents of the D register (current sector address) to the specified core memory location. The contents of D01-D06 are transferred to memory word bits 18 through 23 respectively by the computer C register C18-C23 See Figure 3-23, Sector Counter PIN F1 ow.

The PIN instruction does not affect the current status of the addressed selection unit or the coupler, and may be executed during any phase or operation of these units. ALERT TO PIN
An EOM, Alert to PIN instruction must preceded the PIN Operation. This EOM alerts the coupler that a PIN is to follow by setting flip-flop X02 true.

```
sX02 \(=\) ID
```


X02 will remain true until $\overline{\mathrm{Rti}}$ from the computer signals that the PIN instruction has terminated.

$$
\text { rX02 }=\text { RTI }+\ldots .
$$

The Alert to PIN EOM instruction also selects the addressed selection unit by setting the address code into the unit address regiser, G01-G02.
sG01 $=$ ID C12
rG01 $=$ ID $\overline{\mathrm{C12}}$
sG02 $=$ ID C13
rGO2 $=$ ID $\overline{\mathrm{CL} 3}$
The outputs of G01 and G02 are gated to be used as cable drive inhibit terms in each of the selection units.

$$
\begin{array}{ll}
\text { GS1 }: \overline{G 01} \overline{\text { G02 }} & \text { Selection Unit } 1 \\
\text { GS2 }:=\overline{G 01} \text { GO2 } & \text { Selection Unit } 2 \\
\text { GS3 }=\text { GO1 } \overline{\text { G02 }} & \text { Selection Unit } 3 \\
\text { GS4 }=\text { GO1 G02 } & \text { Selection Unit } 4
\end{array}
$$

In each selection unit the $G S$ address term unique to the unit becomes the tern $\overline{\text { PSL }}$. See Figure 3-24, Unit Select for PIN Operations. The $\overline{\text { PSL }}$ term is precessed on the cable connector modules in the sane way as they are for unit selection durina read and write selection. See Figure 3-12, Unit Select for Read/Write Operations.

If the contents of the D register happened to be transferred into the wifier at the instant the register is counting up, an erroneous sector address could be: obtained. To prevent this possiblity, the RTO signal will be delayed by the YSC flip flop to allow the D register to settle. The term YSC cones from the filse output of the sector increment flip flop which is triggered by the sector pulse SEC. Normally the false output of YSC is low. When the sector pulse SEC appears, YSC goes to Ov for 1.2 microseconds which causes the signal ENP to delay $\overline{R T O}$.

$$
\mathrm{RTO}=\overline{\mathrm{X01}} \mathrm{X} 02 \overline{\mathrm{ENP}}
$$

$\overline{\mathrm{ENP}}=\mathrm{YSC}+\overline{\mathrm{PSL}}$
PSL $=$ GS $1+$ GS $2+$ GS3 + GS4
If the Sector increment pulse is not present during a PIN operation, the ZSC flip flop will be in its normally true state and $\overline{R T O}$ will not be del.ayed.

The current secotr address in the D register is transferred $t r_{\text {t }}$ e C resister on 1 ines Cd18-Cd23.

Figure 3-23 Segtor counter (d register) PIN flow diagram

FIGURE 3-24 UNIT SELECTION FOR PIN OPERATION

FIgURE $3-25$ TIMING DIAGRAM, NORMAL PIN OPERATION

FIGURE 3-26 TIMING DIAGRAM, PIN OPERATION DURING SECTOR INCREMENT.

$$
\begin{array}{ccc}
\mathrm{Cd} 18 & =\mathrm{DO1} & \overline{\mathrm{DAP}} \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\overline{\mathrm{CdPP}}= & =\mathrm{XO1}+\mathrm{XO} 23 & \overline{\mathrm{DAP}}
\end{array}
$$

Nownal PIN Operation timing is shown in the timing diagram of Figure 3-25. Figure 3-26 timing diagram shows the timing when a PIN operation occurs as the D register is incrementing.

SKS INSTRUCTIONS

The SKS instructions do not affect the current operation of the coupler in any way; thus, and SKS instruction may be executed while the disc file is reading, writing, or while it is in the standby condition. Each of the SKS instructions tests the status of the $\overline{\mathbf{S I O}}$ line for a true or false condition. The logic levels of the $\overline{S I O}$ term are inverted. If $\overline{S I O}$ is at ground level, the computer skips the next sequential instruction; if the $\overline{S I O}$ signal is at a positive level, the computer executes the next sequential instruction.

When $\overline{S I O}$ is not being tested it is positive. It can go to ground level only when it is being sensed and the condition being tested exists. The conditions tested and the corresponding control terms are:

Skip if Disc Ready $\quad 00 \mathrm{~F} \overline{\mathrm{X} 03}+\overline{00 \mathrm{~F}} \overline{\mathrm{U} 01} \overline{\mathrm{U} 02} \overline{\mathrm{X} 03}$
Skip if No Disc Error $\overline{\text { E01 }}$
Skip if Track Not Protected $\overline{\text { WLK }}$
SKS Operations

$$
\begin{aligned}
\mathrm{SIO} & =\text { DNA } \overline{\mathrm{I} 13} \overline{\mathrm{C14}} \text { PUE } \overline{\mathrm{X03}} \text { PWK } \\
& + \text { DMA } \overline{\overline{C 13}} \mathrm{C14} \overline{\mathrm{EO1}} \\
& + \text { DMA } \mathrm{C13} \mathrm{C14} \overline{\mathrm{WLK}}
\end{aligned}
$$

where $\mathrm{PUF}=00 \mathrm{~F}+\overline{00 \mathrm{~F}} \overline{\mathrm{U01}} \overline{\mathrm{002}}$
and WLK $=$ (3and Protected by switch). USL
USL $=$ US1 $=\overline{\mathrm{A} 09} \overline{\mathrm{~A} 10} \quad$ Selection Unit 1

+ IS2 $=$ A09 $\overline{\text { A10 }} \quad$ Selection Unit 2 $+\mathrm{U53}=\overline{\mathrm{A} 09} \mathrm{Al0} \quad$ Selection Unit 3 + US4 $=$ A09 A10 Selection Unit 4

SECTION IV
INSTALLATION AND MAINTENANCE

SECTION IV INSTALLATION AND MAINTENANCE

The 9367 RAD is provided with a comprehensive diagnostic program (594003) that provides an extremely useful and versatile tool for testing and troubleshooting the RAD system. However, to effectively use this tool, it is first necessary to determine that the RAD can perform the basic functions outlined below:

1. Respond properly to computer tests.
2. Accept an address correctly.
3. Communicate with a TMCC or DACC.

This section is intended to provide guidance in testing these functions. It should be remembered that total testing of the RAD requires the use of the RAD apocalyptic Diagnostic and that the procedures herein will test on1y basic operation.

The following instructions control the 9367 RAD operation and are configured for operation through the E channel of the DACC. Operation through channels other than E require instruction modification for channel selection.

SKS 50026 Skip if RAD ready
This SKS instruction shall cause the program to skip if the RAD error Flip-Flop is not set. The RAD Error Flip-Flop is set by the following conditions:

1. An attempt is made to POT new address and the controller is not ready.
2. An attempt is made to write in a write protected area.
3. The address register increments across a unit boundary.

SKS 53026 Skip if band not write protected.
This SKS instruction shall cause the program to skip if the currently addressed band is not located in a write protected area. A minimum of 0.6 milliseconds must elapse between the potting of a new RAD address and the write-protect SKS for the SKS response to be valid.

EOD 10026 Alert to POT
EOD 11026 Alert to POT, inhibit band incrementing.
Either instruction shall enable the controller to accept a potted addresss provided the instruction is performed when the controller is in the ready
state. The address is located in C09 to C 23 of the potted word.

| Unit | Band | Sector |
| :---: | :---: | :---: | :---: |
| $\mathrm{C} 09, \mathrm{C} 10$, | $\mathrm{C} 11, \mathrm{C} 12, \mathrm{C} 13, \mathrm{C} 14, \mathrm{C} 15, \mathrm{C} 16, \mathrm{C} 17$, | $\mathrm{C} 18, \mathrm{C} 19, \mathrm{C} 20, \mathrm{C} 21, \mathrm{C} 22, \mathrm{C} 23$ |

Should the alert to POT instruction be performed when the controller is not ready the subsequent $P O T$ shall not alter the address but will set the RAD Error Flip-Flop.

When the alert to POT, inhibit band incrementing is used to alert the coupler, band incrementing is inhibited during the subsequent write or read operations.

EOD 1N226 Alert to PIN

This instruction enables the controller to gate the contents of the sector counter located in unit " N " to the computer by a PIN instruction.

N	Unit
0 or 1	\emptyset
2 or 3	1
4 or 5	2
6 or 7	3
Contents o $\emptyset^{\prime} s$	ctive PIN address Sector
CO-----------C17	C18------------C23

EOD 02266 Connect RAD memory write.
This instruction shall cause the RAD to connect to the channel and write a consecutive number of words as defined by the contents of the interlace registers. Operations involving less than a multiple of 64 words result in the unused portion of the last sector being filled with all zeros. An attempt to write on a write protected band shall cause the RAD to disconnect from the channel and shall set the RAD Error Flip-Flop.

EOD 02226 Connect RAD memory, Read.
This instruction shall cause the RAD to connect to the channel and read a consecutive number of words as defined by the contents of the interlace registers. Parity is tested at the end of each sector. A parity failure will result in the Channel Error indication.

The following test loops may be used to test basic RAD functions: SKS 50026 Skip of RAD ready test.

This loop tests the RAD response to the Ready Test.
Insert Program

100	04050026	SKS test ready
101	00100100	BRU return, not ready
102	00100100	BRU return, ready

Step through the program. The program shall skip from 100 to 102.
Ground $37 A 03$ in the coupler. The RAD shal1 now test busy and the program sha11 step through 100 and 101.

SKS 51026 Skip of no RAD error test.
This loop tests the RAD response to the Error test.
Insert program

100	04051026	SKS, test no error
101	00100100	BRU, return, error
102	00100100	BRU, return, no error

Step through the program. The program shall skip from 100 to 102.
Ground 31D23 in the controller. The RAD shall now test errors and the program shal1 step through 100 and 101.

SKS 53026 Skip if band not write protected test.
This loop tests the RAD response to the write protect test.
Insert program
$100 \quad 04053026$ SKS, test not write protected
10100100100 BRU, return, write protected
10200100100 BRU, return, not write protected
Push start. Check that the write protect switches are down. Step through the program. The program shall skip from 100 to 102.

Set the first write protect switch. The program shall now step through 100 and 101.

EOD 10026 Alert to POT test.
This loop tests the ability of the RAD to accept ones and zeros into its' address register.

Insert Program

100	00610026	EOD, alert to POT
101	01300105	POT, zeros
102	00610026	EOD, alert to POT
103	01300106	POT, ones
104	00100100	BRU, return
105	00000000	Constant, zeros
106	77777777	Constant, ones

Step through the program and observe the contents of the Address Register following each POT.

EOD 10226 Alert to PIN and PIN test.
This test verifies that the RAD releases the computer from the PIN operation and displays the result of the PIN in the A register. The validity of the P][N data is not tested.

Insert Program

100	00610226	EOD, alert to PIN
101	03300104	PIN, input sector address
102	07600104	LDA, display result
103	00100100	BRU, return
104		PIN, data area

Display the A register. Step through the program. The data displayed in the A register shall vary between 0_{8} and 778 .

EOD 02266 and EOD 02226 Connect to Write or read test.
This program loop can be used to write or read from any location in the RAD units. The starting RAD address can be changed by altering the contents of location 130. Locations 131 and 132 respectively contain the write and read interlace values that may be modified to test multiple sector transfers. BF1 reset enables the write operation, BP1 set enables read.

Insert Program

100	04050026	SKS, test busy
101	00100100	BRU, return, busy
102	00610026	EOD, slert RAD for POT
103	01300130	POT, RAD address
104	04020400	BPT1, test breakpoint 1
105	00100113	BRU, branch to read
106	00650000	EOD, alert interlace
107	00614200	EOD, set conditions
110	01300131	POT, load interlace
111	00602266	EOD, connect to write
112	00100100	BRU, return to start
113	00650000	EOD, alert interlace
114	00614200	EOD, set conditions
115	01300132	POT, load interlace
116	00602226	EOD, connect to read
117	00100100	BRU, return to start
130	00000000	Constant, disc address
131	04001000	Constant, interlace data, write
132	04002000	Constant, interlace data, read

1000-1777
Data area, write
Data area, read
Run this loop with various record lengths and patterns, first by loading the write area with a known pattern then writing in on the disc and calling it back. When the RAD can be operated without error, using this program, the RAD Apocalyptic Diagnostic should then be used to complete testing.

45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26
$F H$	$F H$	$F H$	$G K$	F	$F H$	$F H$	$F H$	$B H$	$G K$	$G K$	$F H$	$A X$	$A X$	$A X$	$A X$				
20	20	20	51	20	20	20	20	10	51	51	20	20	20	20	20	14	14	14	14

B

45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26
$B H$	$1 H$	$G K$	$A H$	$A H$	$A H$	$B H$	$I H$	$I H$	$G K$	$G K$	$G K$	$B H$	$A X$	$A X$	$A X$				
10	14	51	51	51	51	51	10	10	10	10	14	14	51	51	51	10	14	16	16

45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26
$G K$	$G K$	$G K$	$F H$	$I H$	$B H$	$I H$	$B H$	$B H$	$G K$	$G K$	$G K$	$I H$	$B H$	$G K$	$G K$	$5 K$	$5 K$	$K X$	
51	51	51	20	10	10	10	10	10	51	51	51	14	10	51	51	60	60	12	

FIG H-z COUPLER MODULE COMPLEMENT

SECTION $\overline{\mathbf{V}}$

LOGIC EQUATIONS

GENERAL

This section contains a listing of all the logic equations that apply to the operation of the 9367 C RAD coupler and selection units. This section is divided into the following three parts:
a) Logic Symbol Convention. A brief explanation of input gating structure, mechanization and terminology.
b) Logic Equations. Input equations for all register and control flip-flops, and output equations of unbuffered gates or gates buffered by logic amplifiers or inverters.
c) Glossary of terms.

LOGIC SYMBOL CONVENTION

A complete logic term is made up of three parts: a one-digit polarity or function identifier; a three-digit mnemonic; and a one-digit source tag. These three parts are described in the following paragraphs.

First Digit.

The first digit, when numeric, serves to identify the signal with its polarity and the type of connection it is making within the system. An odd number is assigned to a false or negated signa1 (true when at Ov). An even number is assigned to a true or assertive signal (true at +8 v). The numbers " 0 " and "1" are reserved for flip-flop outputs only, " 0 " being reserved for the set and " 1 " being reserved for the reset side. The numbers " 2 " through " 5 " are used for buffer amplifier and inverter outputs; "4" and "5" being the second stage outputs, "6" and "7" for diode gate outputs, and "8" and "9" for cable signals.

A letter instead of a number is used when a signal is generated or gated for the sole purpose of connecting to one of the inputs shown in figure 5-1. The first digit is left blank for signals whose polarity is either undefinable or insignificant such as write driver outputs and ground jumpers.

Middle Three Digits
Three alphabetic characters from the basic mnemonic of the signal. Signals of external origin, such as those from the computer buffer, retain their
identity as much as possible with the addition of zeros when necessary to make up the three digits.

Last Digit
The last digit is a letter, or source tag, that defines the unit in which the signal is originally generated. The letters are assigned as follows:

The last digit is a numeric for a ground or jumper wire where the above convention is not used.

FIg. 5-1 circuit input/output convention

LOGIC EQUATIONS
9367 D
SELECTION UNIT

$$
\begin{aligned}
& \text { 2SIPS }=2 \text { SECS } \\
& \text { YREVS = OREVS } \\
& \text { SREVS }=2 \text { IDXS } \\
& \text { תREVS }=2 I D X S \\
& \text { ZIDXS }=\overline{9 I D \times S} \\
& \text { 2SECS }=\overline{\text { 9SECS }} \\
& 3 \text { RDYS }=\overline{8 R D Y S} \\
& \text { ZWENS }=\overline{\text { GWENA }} \overline{\text { GUSLA }} \overline{3 \text { RDYS }} \overline{2 W L K S} \\
& 8 \text { WENS }=2 \text { WENS } \\
& 2 \text { CLIS }=\overline{3 C L I S} \overline{2 U S L A} \\
& 2 C L 2 S=\overline{3 C L 2 S} \overline{2 U S L A} \\
& 3 \text { CLIS }=8 \text { CLIS } \\
& 3 C L 2 S=\overline{8 C L 2 S} \\
& 2 \text { USLA }=\overline{9 U S L A} \\
& \text { 2CLKS }=1 \text { MCES 2CLIS } \\
& S M C C=2 C L 2 S \\
& \text { 几MCC }=2 C L 2 S \\
& \text { LMCC }=\text { 9SECS } \\
& \text { 2SFTS }=\text { ZWENS OMCCS } \\
& 2 \text { LDWS }=2 W E N S \text { IMCCS } \\
& \text { ЗDRDS }=\text { OREVS } 2 \text { IDXS } \\
& 3 A \| S=\overline{8 A \| A} \overline{9 U S L A} \\
& 3 A 12 S=\overline{8 A 12 A} 9 U S L A \\
& 3 A 13 S=\overline{8 A 13 A} 9 \text { GULA } \\
& 3 A 14 S=8 A 14 A \text { 9USLA } \\
& 3 A 15 S=8 \text { 8A15A } \frac{9 U S L A}{8 A 16 A} \\
& 3 A 165=\overline{8 A 16 A} \overline{9 U S L A} \\
& 3 A 175=\overline{8 A 17 A} \overline{9 U S L A} \\
& 3 \text { A18S }=\overline{O D O 1 S} \overline{9 U S L A}
\end{aligned}
$$

(SHIFT)
(lCAD)

$$
\begin{aligned}
& 4 \text { Alls }=\overline{3 A \| S} \text { 9USLA } \\
& 4 A 12 S=\overline{3 A 12 S} \overline{9 U S L A} \\
& 4 A 13 S=\overline{3 A 13 S} \text { 9USLA } \\
& 4 A 14 S=\overline{3 A 14 S} 9 \overline{9 S L A} \\
& 4 A 15 S=\overline{3 A 15 S} \overline{9 U S 2 A} \\
& 4 A 16 S=\overline{3 A 16 S} \overline{9 U S L A} \\
& 4 A 175=\overline{3 A 175} \overline{9 U S L A} \\
& 4 A 8 S=\overline{1 D O 1 S} \overline{9 U S L A} \\
& 5 \text { A115 }=8 \text { A11A } \\
& 5 A 125=\overline{8 A 12 A} \\
& 5 A 13 S=\overline{8 A 13 A} \\
& 5 \text { A145 }=\overline{8 A 14 A} \\
& \overline{2 D S 1 S}=4 A 11 S+4 A 12 S \\
& \text { 2DSES }=4 A 11 S+5 A 12 S \\
& 6 \text { WP1S }=\text { SOIS 2GP1S } \\
& +5025 \text { ZGPZS } \\
& +503 S \text { ZGP3S } \\
& +5045 \text { ZGP4S } \\
& + \text { So5s zGP1S } \\
& +506 S \text { ZGPZS } \\
& +507 \mathrm{~S} \text { 2GP35 } \\
& +50852 \text { GP4S } \\
& 3 \text { WPIS }=6 \text { WPIS } \\
& \overline{2 D S 3 S}=5 A \| S+4 A 12 S \\
& \overline{2 D S 4 S}=5 \text { AllS }+5 \text { A12S } \\
& 6 \mathrm{WP} 2 \mathrm{~S}=509 \mathrm{~S} \text { ZGPIS } \\
& +5105 \text { ZGPES } \\
& \text { + Sils zGP3S } \\
& + \text { SIZS 2GP4S } \\
& +513 S \text { 2GPIS } \\
& +5145 \text { 2GP2S } \\
& +515 S \text { 2GP3S } \\
& +5165 \quad 2 G P 45
\end{aligned}
$$

$$
\begin{aligned}
& 3 \text { WPZS }=6 W P Z S \\
& \text { ZWLKS = 3WP1S 3WP2S } \\
& \overline{Z G P 15}=4 A 145+4 A 13 S \\
& \text { ZGPZS }=5 \text { A14S }+4 \text { A13S } \\
& \overline{Z G P 3 S}=4 A 14 S+5 A 13 S \\
& \text { ZGPUS }=5 \text { A14S }+5 \text { A13S } \\
& S D O 1=0 D O 2 S \\
& \text { ~DOI }=\text { ODOZS } \\
& t D O 1=\overline{3 D R D S} \\
& \text { SDOZ }=0 \text { ODOS } \\
& \text { 2DOZ }=\text { ODO3S } \\
& \text { tDOZ }=\overline{3 D R D S} \\
& S D 03=0 \text { DO4S } \\
& \Omega D 03=00045 \\
& \text { tDO3 }=\overline{3 D R D S} \\
& \text { SDOH }=0 \text { DOSS } \\
& \text { ~D04 }=\text { ODOSS } \\
& t D 04=\overline{3 D R D S} \\
& \text { SD05 = OD06S } \\
& \text { 2DO5 }=0 \text { ODOGS } \\
& t D 05=\frac{3 D R D S}{} \\
& \text { SDOG }=2 \text { SECS } \\
& \text { MDOG }=2 \text { SECS } \\
& t D 0 G=\overline{3 D R D S} \\
& \text { 9CDIS = ODOIS 9USLA } \\
& \text { 9CD2S }=0 \text { DO2S 9USLA } \\
& \text { 9CD3S }=00035 \text { GUSLA } \\
& 9 C D 45=00045 \text { 9USLA } \\
& \text { GCD5S }=0005 \text { GUSLA } \\
& \text { GCDGS }=\text { ODOGS GUSLA } \\
& \text { 9SIPS }=2 \text { SIPS 9USLA }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
9 D 015=0 \text { DO1S } \\
9 \text { BPSLS } \\
9 D 02 S=0 D 02 S \\
9 D 03 S=0 D 03 S \\
9 \text { PSLLS }
\end{array}\right\} \begin{array}{l}
\\
\text { PIN } \\
\text { SECT }
\end{array} \\
& \text { 9D04S }=000045 \text { 3PSLS } \\
& \text { SECTOR } \\
& \text { COUNTER } \\
& \text { 9D05S }=0005 \text { 3PSLS } \\
& 9 D 06 S=00065 \text { 3PSLS } \\
& \text { GENPS }=2 \text { SIPS 3PSLS } \\
& \text { 3PSLS }=\overline{8 P S L A} \\
& \text { STCI = 2LDWS 2WD3S 2CLIS } \\
& \text { + 3WENS 2RLIS 2CLIS } \\
& \Omega T C 1=2 L D W S \text { 9WD3A ZCLIS } \\
& +3 \text { WENS 3RLIS 2CLIS } \\
& +2 \text { SFTS 2CLIS } \\
& \text { STCZ }=2 \text { LDWS 2WDIS 2CLIS } \\
& +3 W E N S \text { OTC1S 2CLIS } \\
& + \text { ISFTS OTC1S 2CL1S } \\
& \text { ~TCZ }=2 \text { LDWS 9WD1A 2CLIS } \\
& +3 \text { WENS } 1 \text { TCIS ZCLIS } \\
& +2 \text { SFTS } 1 \text { TCIS } 2 C L 1 S \\
& S T C 3=2 L D W S \text { 2WD4S 2CLIS } \\
& +3 W E N S \text { ZRLZS ZCLIS } \\
& \Omega \text { TC3 } 3 \text { 2LDWS } 9 \text { WDHA 2CLIS } \\
& +3 \text { WENS 3RLES 2CLIS } \\
& +2 S F T S \text { ZCLS } \\
& 5 T C 4=2 \text { LDWS 2WDOS 2CLIS } \\
& +3 \text { WENS OTC3S 2CLIS } \\
& +2 S F T S \text { OTC3S 2CLIS } \\
& \Omega T C 4=2 \text { LDWS 9WDZA 2CLIS } \\
& +3 \text { WENS } 1 T C 3 \mathrm{~S} \text { 2CLIS } \\
& +2 S F T S \text { 1TC3S 2CLIS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SPCI }=\text { OPCZS } \\
& \Omega P C_{1}=O P C Z S \\
& t P C 1=\overline{9 S E C S} \\
& 5 P C Z=O P C 3 S \\
& \text { ^PCZ }=\text { OPC } 35 \\
& t \mathrm{PC} 2=\overline{\text { 9SECS }} \\
& S P_{C} 3=1 P C 1 S \text { 2WD1S } \\
& \text { תPC3 }=1 \text { PC1S 2WD1S } \\
& t \text { PC } 3=\overline{9 S E C S} \\
& \overline{2 R L I S}=3 \text { RLIS BWENS } \\
& \text { उRLIS }=8 \text { RLIS 3WENS } \\
& \overline{Z R L Z S}=3 \text { RLZS } 3 \text { WENS } \\
& \overline{3 R L Z S}=8 R L 2 S \text { 3WENS } \\
& 2 \text { WDIS }=9 W D 1 A \\
& \text { 2WD2S = 9wD2A } \\
& 2 W D 3 S=9 \omega D 3 A \\
& \text { 2WD4S }=9 W D 4 A \\
& \overline{8 W L I S}=1 \text { TCZS }+ \text { OPCIS } \\
& \overline{8 W L Z S}=1 T C 4 S+O P C 1 S \\
& \text { GRDIS }=0 \text { TCZS qUSLA } \\
& \text { 9RDZS }=\text { OTC4S GUSLA } \\
& \text { 9RD3S = OTCIS GUSLA } \\
& \text { GRDUS = OTC3S GUSLA } \\
& \text { GCLKS }=2 C L K S \text { GUSLA } \\
& 9 \text { WLKS }=2 W L K S \text { GUSLA }
\end{aligned}
$$

preamble converter

LOGIC EQUATIONS $936>B, C$ Selection Unit.

GCDnS $=\overline{O D O n S}$ (enable term on cable driver is qUSLA, low true logic)

$$
\begin{aligned}
\text { GCLKS } & =9 R C N A \cdot 2 W C O S \\
& +2 R C N S \cdot 2 R C K S
\end{aligned}
$$

aciks $=$ 6CLKS (enable term on cuble driver is qus LA, low true logic)

$$
\begin{aligned}
& t D 01 \mathrm{~s}=0 D 02 \mathrm{~s} \\
& t D 02 \mathrm{~s}=0 D 03 \mathrm{~s} \\
& t D 03 \mathrm{~s}=0.04 \mathrm{~s} \\
& t D 04 \mathrm{~s}=0.05 \mathrm{~s} \\
& t D 05 \mathrm{~s}=0 D 06 \mathrm{~s} \\
& t D 06 \mathrm{~s}=25 E C \mathrm{~s}
\end{aligned}
$$

ZDO1S-DO6S = 3IDXS (low true log.c)

$$
\begin{aligned}
& \text { QENPS }=\overline{1 Y S C S} \\
& \text { 9DOnS }=\overline{O D O n S} \\
& n=1 \text { through } 6 \\
& S R C K={ }^{n}=2 R C S S \\
& \text { } R \text { RCKS }=0.55 \mu \mathrm{~S} \\
& S \text { RDIS }=\text { ORDDI } \cdot R C S I \\
& r R D / S=1 R D D 1 \cdot R C S \mid \\
& 5 \text { RD25 }=0 \text { RDD2 } 2 \text { RCS } 2 \\
& \text { RRD2S }=1 \text { RDD2 } 2 \cdot R C S 2 \\
& S R D 35=0 \text { RDD } 3 \cdot R C S 3 \\
& r R D 3 S=1 R D D 3 \cdot R C S 3 \\
& \text { SRD4S }=0 \text { RDD } 4 \cdot R C S 4 \\
& \text { rRD4S }=1 \text { RDD } 4 \cdot R C S 4
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
9 R D 1 S=\overline{0 D 015} \\
9 R D 2 S=\overline{O D 02 S}
\end{array}\right\} \begin{array}{l}
\text { cable driver enabled by } \\
\text { quSLA (low true logic) }
\end{array} \\
& \text { 9RD3S }=0 \text { D03S } \\
& 9 R D 4 S=0.04 S \\
& \text { 9SIPS }=\overline{2 S E C S+2 I D X S}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { SWCOS } \\
r W C O S \\
=1 \\
\hline
\end{array} \\
& \text { S WDE } 1=2 \omega D I S \cdot 1 \omega C K S \cdot 2 \omega C A S \\
& \text { + owcks. 2wCAS } \\
& r W D E 1=9 \omega D I S \cdot 1 \omega C K S \cdot 2 W C A S \\
& \text { To woks. } 2 \text { wcAs } \\
& \text { SWDE } 2 \text { = } 2 W D 2 S \cdot 1 \text { WCKS. } 2 W C A S \\
& \text { + O WCRS ' } 2 \text { WCAS } \\
& r W D E 2=9 W D 2 S \cdot 1 \omega C / K S \cdot 2 W C A S \\
& \text { + DWCKS. } 2 \omega 0 A S \\
& S W D E 3=2 \omega D 3 S \cdot 1 W C K S \cdot 2 \omega C A S \\
& \text { + } 0 \text { wCks } 2 \text { wCAS } \\
& r W D E 3=9 \omega D 3 S \cdot 1 \omega C K S \cdot 2 \omega C A S \\
& \text { +OWCKS. } 2 \omega C A S \\
& \text { SWDE } 4=2 \omega D 4 S \cdot 1 W C K S \text {. } 2 \omega C A S \\
& \text { + O WCKS:2WCAS } \\
& \text { rWDE } 4=9 \omega D 4 S \cdot 1 \omega C R S \cdot 2 \omega C A S \\
& \text { + OWCKS. 2WCAS }
\end{aligned}
$$

bwLks = Or combination of the $4-u p l e s$ of A11, A12, A13, and A14, eech pullen over by the switch sw-n where.

$$
\begin{array}{rl}
n & A \operatorname{comb} \\
1 & =\overline{A 4} \cdot \overline{A 12} \cdot \overline{A 12} \cdot \overline{A 14} \\
2 & =\overline{A 11} \cdot \overline{A 12} \cdot \overline{A 13} \cdot A 14 \\
\vdots & \\
16 & =A 11 \cdot A 12 \cdot A 13 \cdot A 14
\end{array}
$$

awLKS $=$ buLRES (cable driver enabled by 94 b quSLA, low true logic)

LOGIC EQJATION

$$
\begin{aligned}
& 2 A C T A=200 F A \cdot 0406 A \cdot 1 \times 03 A \\
& 2 A F L A=2 A F A A \cdot 2 A F B A=2 A F C A \\
& 2 A F A A=O A 12 A \cdot O A 13 A \\
& 2 A F B A=O A 14 A \cdot O A 15 A \cdot O A 16 A \cdot O A 17 A \\
& \text { 2. } H \cdot C=O A 19 A \cdot 0 A 20 A \cdot O A 2 / A \cdot O A 22 A \cdot O A 23 A \cdot O A 18 A \cdot 1 \times 05 A \\
& 2 A I N A=201 F A \cdot 2014 A \cdot 2 \angle S C A \cdot O K 06 A \cdot 3 A F L A \cdot 2 C L K A \\
& \text { +2RFIA } 2 C L K A 3 A F L A \\
& t A \cup 9 A=O A / 0 A \\
& \text { YAO9A }=2 \angle D A A \cdot 8 C 09 C \\
& t A 1 O A=O A \| A \\
& y A 10 A=2 L D A A \cdot 8 \mathrm{C} 10 \mathrm{C} \\
& t A / / A=0 A / 2 A \\
& y A\|A=2 \angle D A A \cdot 8 C\| C \\
& t A 12 A=0 A 13 A \\
& 4 A 12 A=2 L D A A \quad 8 C 12 C \\
& +A 13 A=2 A F B A \cdot 2 A F C A \cdot 2 A I N A \\
& y A 13 A=2 L D A A \cdot 8013 C \\
& t A 14 A=0 A 15 A \\
& 4 A 14 A=2 L D A A \cdot 8 C 14 C \\
& t A 15 A=0 A 16 A \\
& \text { 4A15A=2LDAA 8C15C } \\
& +A 16 A=0 A 17 A \\
& 4 A 16 A=2 \angle D A A \cdot 8 C 16 C \\
& \text { tA17A }=2 A F C A \cdot 2 A I N A \text { A trggle } \\
& 4 A 17 A=2 \angle D A A \cdot 8 C 17 C \\
& t A 15 A=0 A 19 A \\
& \text { 4 } A 18 A=2 \angle D A A \cdot 8 \mathrm{C} 18 \mathrm{C} \\
& t A 19 A=0 A 20 A \\
& 4 A 19 A=2 L D A A 8 C 19 C \\
& t A 20 A=0 A 21 A \\
& 4 A 20 A=2 \angle D A A 8 C 20 C
\end{aligned}
$$

$$
\begin{aligned}
& \text { tA214 }=0 A 22 A \\
& \text { YAな } A=2 \angle L A A \cdot \& C 21 C \\
& \text { t } A 22 A=0 A 23 A \\
& { }_{1} A 22 A \because=L D A A=C 22 C \\
& +A こ \Xi A \because 2 A I N A \\
& 4 A 234=\because L D A A 8 C 23 C \\
& 5 B S C A=200 F A \cdot 2 H S D A \cdot 2 S I P A \\
& 2 C N+A=201 F A \cdot 3 \cup 01 A \cdot 2 C L K A \\
& +202 F A \quad 3401 A \cdot 2 C L K A \\
& +2402 \mathrm{~A} 2 \text { CLK } \mathrm{A} \\
& \text { 2LMFA = 9C17w.8c/9w.3こ20A.8さ2/w.8c22w.3623A } \\
& 2 D M W A=8 \omega 13 \omega \cdot 3 \omega 14 A \cdot 8 \omega 10 \omega \cdot 3 \omega \| A 8 \omega / 2 \omega \\
& 6 D K K A=200 F A \cdot 3402 A+2401 A \cdot 3402 A \cdot 2 C L K D \\
& =D R 1 A=\overline{I F O 2 A}(2 \omega 56 A \cdot 1 \times 06 A \cdot 3 C L K A+1 \times 03 A) \\
& \text { EDRZA }=201 F A \cdot 1 \times 08 \mathrm{~A} \cdot 0 \times 09 A \cdot 5 C L K D \\
& 6 E C W A=201 F A \cdot 0 \times 08 A \cdot 2 \times 03 A \cdot 3 \omega 50 A 3 W 60 A \\
& \text { +202FA } 0404 A \cdot 3 W 50 A \cdot 3 W 00 A \cdot 2 D 4 W A(1 \times 06 A+1403 A \cdot 1 \times 00 A) \\
& 2 E R W A=200 F A \text { OK05A } 2 \times 03 A
\end{aligned}
$$

$$
\begin{aligned}
& \text { SEEIA = 201FA. } 2 W L K A, ~ H C L K A \\
& +200 \text { FA } 2403 \mathrm{~A} \cdot 2 \text { SIPA: 4CLKA addua reflan anmanhe } \\
& 4 E 014=2 \times 01 A 1 \times 02 A \cdot 8+T 2 C \\
& \text {-ED: } A=200 \mathrm{FA} \cdot 2 \mathrm{BUCA} \text { - DMAA } \\
& \text { SFO|A =2EFWA } 2 D M W A \cdot 3 W 40 A \cdot 4 C L K A \\
& r \text { FOIA }=2 \text { RFIA } 4 C L K A \\
& \text { SFO2 } A=2 E R W A=D M W A \& W 9014 C L K A \\
& \text { rFo2 } A=201 F A \cdot 2 L 5 C A \cdot 3402 A \cdot 2 K 06 A \cdot 4 C L K A \\
& +201 F A \cdot 2 \omega L K A \text { 4CLKA }
\end{aligned}
$$

ic

KOIA flip flop is pulled false by 7 DRKA buttered and tied to OKOIA

$$
t K 02 A=0 K 03 \mathrm{~A}
$$

$$
t K 03 A=0 K 04 A
$$

$$
t K 04 A=0 K 05 A \cdot 2 K 06 A \cdot 2 \angle S C A \cdot 2 C N T A
$$

$$
S K 05 A=0 K 06 A \cdot J K 57 A
$$

$$
\text { KKOSA }=0 K 06 A
$$

$$
5 K 06 A=0 K 07 A
$$

$$
r K 06 A=2 K 07 A+201 F A \cdot 0 M O 1 A \cdot 2401 A
$$

$$
S K O 7 A=O M O 1 A, J K 57 A
$$

$$
r K 07 A=0 M O 1 A
$$

$$
J K 57 A=\overline{201 F A \cdot 2 K 06 A \cdot 2401 A}
$$

$$
\begin{aligned}
2 L D A A & =0 \times 01 A \cdot 0 \times 02 A \cdot \\
2 L D S A & =201 F A \cdot 202 M A \cdot 2 C L K D \\
2 L D V A & =201 F A \cdot 2 \times 03 A O X 06 A \cdot 2 L 60 A \cdot 2 C L K A \cdot O S T V A \\
2 L D Z A & =201 F A \cdot 0 \times 07 A \cdot 2 C L K A \\
2 L R C A & =202 F A \cdot 200 M A \cdot 2 C L K A \\
2 L S C A & =0 M 01 A \cdot 2 K 07 A \\
2 L V R A & =202 F A \cdot 0 \times 07 A \cdot 1 \times 08 A \cdot 2 C L K D \\
& +202 F A \cdot 0 \times 08 A \cdot 200 M A \cdot 3 C L K A
\end{aligned}
$$

$$
\begin{aligned}
& \text { SGOIA }=2 \text { IDNA. } 2 C 12 A \\
& \text { rGOIA }=2 \operatorname{IDNA} 3 C 12 A \\
& 5 G 02 A=2 I D N A \cdot 2 C 13 A \\
& \text { rGO2A }=2 \text { IDNA } 3 \text { C13A } \\
& 7 G S 1 A=O G O 1 A+O G O 2 A \\
& 7 G S 2 A=0 G 01 A+1 G 02 A \\
& 7 G 53 A=1 G O 1 A+0 G 02 A \\
& 7 G 53 A=1 G 01 A+1 G 02 A \\
& 2 H S D A=1401 A \cdot O \times 05 A \cdot 1 E O / A \\
& +2401 \mathrm{~A} 1 \times 0 / \mathrm{A}+0 \times 03 \mathrm{~A} \cdot 1403 \mathrm{~A} \\
& \text { 2IDN } A=2 D M A A \cdot 8 c 16 \omega \cdot 8 I \theta c \omega \\
& 2 I D T A=2 D M A A \cdot 3 C 16 A \cdot 8 I \theta C W \\
& 8 \text { INTA }=200 \mathrm{FA} \cdot 2 S A C A \cdot O B S C A \cdot 2401 A \cdot 1 \times 03 A \cdot 1 X 01 A \\
& t K 01 A=0 K 02 A
\end{aligned}
$$

$$
\begin{aligned}
& \text { SMOIA }=\text { OMOZA. 2CNTA } \\
& \text { } \text { MOIA }=2 C N T A \\
& \text { SMO2A }=1 \text { MOIA. 2CNTA } \\
& \text { } \mathrm{CMO2A}=2 \mathrm{CNTA} \\
& \text { (mat Merde 2NNLA }=\text { OKOIA.OK02A.OK03A.OKO4A OKO5A } \\
& \text { lost wend } 2 N X L A=\overline{3 N N L A+1 K 06 A} \\
& \text { NUFA }=\overline{300 F A \cdot 2014 A} \\
& \text { NUF }=\varnothing \text { O NOT POSTABLE } \\
& \text { PUFA }=\overline{300 F A \cdot N U F A} \\
& 2 \text { 2PSTA }=1402 A 12 K 06 A \\
& 3 P C P A=3 P O I A \cdot 2 L R I A+2 P O I A \cdot 9 R D I S \\
& +3 P 02 A \text { 2LR2A }+2 \text { PO2A.9RD2S } \\
& +3 \text { P03A } 2 L R 3 A+2 \text { PO3A } \cdot 9 R D 3 S \\
& +3 \text { PO4A.2LR4A }+2 \text { PO4A.9RO } 4 S \\
& 8 \text { BWRA }=8 \text { 8STOC + leval from powerprotection cct which } \\
& \text { is true if ac voltages are with in normal range } \\
& t P O 1 A=201 F A \cdot 4 \omega D / A 14 C L K A \\
& +2 L R 1 A \text { 2U02A.4CLKA } \\
& \text { YPOIA }=2 S P R A \\
& t P 02 A=201 F A \cdot 4 \omega D 2 A \cdot 4 C L K A \\
& +2 L R 2 A \cdot 2402 A \cdot 4 C L K A \\
& y \text { PO2A }=2 \text { SPRA } \\
& \text { TPO3A }=201 F A \cdot 4 W D 3 A \cdot 4 C L K A \\
& +2 L R 3 A \cdot 2402 A \cdot+C L K A \\
& \text { पPO3A }=2 S P R A \\
& t P 04 A=201 F A \cdot 4 W D 4 A \cdot 4 C L K A \\
& \text { +2LR4A. } 2402 A \cdot 4 C L K A \\
& Y P O 4 A=2 S P R A
\end{aligned}
$$

$$
\begin{aligned}
2 R F I A & =202 F A \cdot 34 O 1 / A \cdot 3402 A \cdot 202 M A \cdot 2 K 06 A \\
\text { PNCA } & =300 M A \cdot 2 K 06 A \\
2 P T Q A & =8 P T 1 C \cdot 8920 \mathrm{C} \\
9 R E N A & =\frac{0405 A}{}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 9RCNA }=\overline{202 F A} \\
& \text { GRTOA }=1 \text { XO/A.OXOZA. GENPS } \\
& +O X O / A \cdot 2 \text { PT/A } \\
& 2 S A C A=2 C U H A \cdot 2 C L H A \\
& 2 C U H A=0 A 18 A \cdot 9 C D 15+1 A 18 A \cdot 2 C D 1 A \\
& \text { FOA19A.9CD2S71A19A 2CD2A } \\
& \text { 干OA20A, वCD } 3 S+1 A 20 A \text { 2CD3A } \\
& 2 C L H A=0 A 21 A \cdot 9 C D 4 S+1 A 21 A \cdot 2 C D 4 A \\
& 70 A 22 A \text { 9CD55 + A A22A 2CD5A }
\end{aligned}
$$

$$
\begin{aligned}
& 2 \text { SHSA }=201 F A \cdot 302 M A 12 C L K A \\
& +202 \mathrm{FA} \cdot 2 \mathrm{CLK} A \\
& 6 S I O A=2 D M A A \cdot 1 \times 03 A \cdot 3 C 14 A \cdot 3 C 13 A \cdot P U F A \\
& +2 D M A A \cdot 3 C 14 A \cdot 2 C 14 A \cdot 1 E 01 A \\
& +2 D M A A 2 C 13 A \cdot 2 C 14 A \cdot 9 \omega L K S \\
& 25 P R A=201 F A \cdot 2 U 01 A \\
& \text { +202FA } 2401 \mathrm{~A} .3402 \mathrm{~A} \\
& \text { SSTVA }=5 C L K D \\
& \text { VSTVA }=250 \mathrm{~ns} \\
& \text { sSOIA }=2 \text { SHSA. OSO2A. } 4 \text { CLKA } \\
& +2 \angle D S A \text { OZO/A 4CLKA } \\
& r \text { SOIA }=25 H S A \cdot 1 S O 2 A, 4 C L K A \\
& +2 \angle D S A \cdot / Z O 1 A \cdot 4 C L K A \\
& 5502 A=0503 A \cdot 25 H S A \\
& y 502 A=2 L D S A \cdot O Z 02 A \\
& \text { rSO2A }=25 H S A \text { (OSO3A on inhibit rest) } \\
& \text { SSO3A }-2 L R I A \text { 2SHSA } \\
& y 503 A=0 Z 03 A \cdot 2 L D S A \\
& r S 03 A=2 L R 1 A \text { (2LRIA on inhibit reset) } \\
& \text { S } 504 A=0505 A \cdot 25 H S A \cdot 4 C L K A \\
& \text { to ZO4A } 2 \text { LDSA'4CLKA } \\
& r 504 A=1505 A \cdot 25 H 5 A \cdot 4 C L K A \\
& +1 Z 04 A \cdot 2 \operatorname{LS} A \cdot 4 C L K A \\
& \text { SSO5A }=0506 A \cdot 2 S H S A \\
& \text { y SO5A }=0 Z 05 A \cdot 2 L D S A \\
& \text { rSO5A }=25 H S A \text { (OSO6A on inhibit resct) }
\end{aligned}
$$

$$
\begin{aligned}
& 5506 A=2 L K 2 A \cdot 2 S H S A \\
& y 506 A=0 Z 06 A \cdot 2 L D S A \\
& r S 06 A=2 S H S A \text { (2LR2A on reset inhibit) } \\
& 5507 A=0508 A \cdot 2 S H S A \cdot 4 C L K A \\
& +0 Z 07 A \cdot 2 L D S A \cdot 4 C L K A \\
& r 507 \mathrm{~A}=1508 \mathrm{~A} \cdot 25 \mathrm{HSA} \cdot 4 \text { CLKA } \\
& +1 Z 07 A \cdot 2 L D S A \cdot 4 C L K A \\
& 5508 A=0509 A \quad 25 H S A \\
& 4508 A=0 Z 08 A \text { 2LDSA } \\
& r 508 A=25 H S A \text { (OS09A on resct inhibit) } \\
& 5509 A=2 \angle R 3 A \cdot 25 H S A \\
& 4509 A=0 Z 09 A \cdot 2 \angle D S A \\
& \text { rSO9 } A=25 H S A(2 L R 3 \text { on resat inhibit) } \\
& 5510 \mathrm{~A}=0511 \mathrm{~A} \cdot 25 \mathrm{H} 5 \mathrm{~A} \cdot 4 \mathrm{CLKA} \\
& \text { +OZIOA 2LDSA. } 4 \text { CLKA } \\
& r S 10 A=15 / 1 A \text { 2SHSA } 4 C L K A \\
& +1 Z I O A 2 L D S A \cdot 4 C L K A \\
& S S \| A=O S 12 A \cdot 2 S H S A \\
& 4 S / 1 A=0 Z \| A \cdot 2 L D S A \\
& \text { r.SIIA }=2 S H S A \text { (OS12A on reset inhibit) } \\
& S S 12 A=2 L R 4 A \cdot 2 S H S A \\
& 4 S 12 A=0 Z 12 A \cdot 2 L D S A \\
& \text { rs } 12 A=2545 A \text { (2LR4A on reset inhibit) } \\
& 9 \cup 5 / A=\overline{1 A 09 A \cdot 1 A 10 A} \\
& 9452 A=\overparen{A} 109 A \cdot 0 A 10 A \\
& 9453 \mathrm{~A}=0 \mathrm{OA} 09 \mathrm{~A} \cdot 1 \mathrm{~A} 10 \mathrm{~A} \\
& 9454 \mathrm{~A}=\overline{O A O 9 A \cdot O A 10 A} \\
& \text { SUO/A }=2 \text { ERWA. 2CLKA } \\
& 4401 A=2 L D A A \\
& \text { rU01A }=201 F A \cdot 2 W P C A \cdot 4 C L K A \\
& +201 F A \cdot 2 \omega L K A \cdot 4 C L K A \\
& +202 F A 2402 A \cdot 2403 A \cdot 4 C L K A \\
& 2 T N I A=1 \times 03 A \cdot P U F A \cdot 2 I D T A
\end{aligned}
$$

$$
\begin{aligned}
r 403 \mathrm{~A} & =201 \mathrm{FA} \cdot 0401 \mathrm{~A} \cdot P \mathrm{NCA} \cdot 4 C L K A \\
& +200 \mathrm{FA} \cdot 1 \times 3 \mathrm{~A} \cdot 4 \mathrm{CLKA} \\
& +26 R W A \cdot 4 C L K A \cdot \\
& +202 F A \cdot 2401 A \cdot 2402 A \cdot 200 \mathrm{MA} \cdot 4 C L K A \\
& +2 R F / A \cdot 3 A F L A \cdot 4 C L K A
\end{aligned}
$$

dc
$d c$
de
. OK07A. 200MA
$d c$
$d c$
$d c$

$$
S 406 A=2 I D T A
$$

$$
r U O G A=2 P T Q A \cdot O X O I A
$$

9 VOPA $=0$ POGA $2 \omega 60 \mathrm{~A}$. (Enableaby $302 \mathrm{FA}($ low true lugic $)$)
$9 V_{n} A=0 V_{n} A \cdot 2 \omega 60 A$. (Enablel by 302 FA (Row true iog:) $n=01$ to 12
$d c$

$$
\begin{aligned}
& 5 V n A=8 R_{n} W \cdot 2 L D V A \\
&+0 Z n A \cdot 2 L V R A \\
& r V n A=1 Z n A \cdot 2 L V R A \\
& n=01 T 012 \\
& 9 W E N A=\overline{201 F A} \\
& 9 W D 1 A=201 F A(2401 A \cdot 2403 A+2014 A \cdot 0 P O 1 A+2234 A \cdot 0501 A) \\
& 9 \omega D 2 A=201 F A(2401 A \cdot 2403 A+2014 A \cdot 0 P 02 A+2234 A \cdot 0504 A) \\
& 9 W D 3 A=201 F A(2401 A \cdot 2403 A+2014 A \cdot 0 P 03 A+2234 A \cdot 0507 A) \\
& 9 W D 4 A=201 F A(2401 A \cdot 2403 A+2014 A \cdot 0 P 04 A+2234 A \cdot 0 S 10 A) \\
& 99 C
\end{aligned}
$$

$$
d c \quad r \vee n A=1 Z n A \cdot 2 L V R A
$$

$$
\begin{aligned}
& 5402 A=202 F A \cdot 2401 A \cdot 1403 A \cdot 200 M A \cdot 2 C L K A \\
& +202 \mathrm{FA} 2401 \mathrm{~A} \cdot 2403 \mathrm{~A} \cdot 1503 \mathrm{~A} \cdot 9 \mathrm{RD} / \mathrm{S} \cdot 2 \mathrm{LLKA} \\
& +201 \mathrm{FA} \cdot 2401 \mathrm{~A} \cdot 9 \omega L K S \cdot 2 C L K A \\
& 4402 A=200 \mathrm{FA} \cdot 2 S A C A \cdot 2 H S D A \cdot O B S C A \\
& \text { rU02A }=200 \mathrm{FA} \cdot 0 K 05 \mathrm{~A} \cdot 2 \mathrm{CLKA} \\
& +201 F A \cdot 2 N X \angle A \cdot 2 \angle S C A \cdot 2 C L K A \\
& +202 F A \cdot 2 N X L A \cdot 2 \angle S C A \cdot 2 C L K A \\
& +202 \mathrm{FA} \cdot 2401 \mathrm{~A} \cdot 202 \mathrm{MA} \cdot 0 K 07 \mathrm{~A} \cdot 2 \mathrm{CL} K \mathrm{KA} \\
& S U O 3 A=201 F A \cdot O U O R A \cdot \text { PNCA: 4CLKA } \\
& +201 F A \cdot 3402 A \cdot 2 L S C A \cdot 2 A F L A \cdot 4 C L K A \\
& +202 F A \text { OU01A - OUO2A. } 202 M A \text { OKU7A. } 4 C L K A \\
& \text { +202FA } 1401 \mathrm{~A}, 402 \mathrm{~A}, 0 \times 07 \mathrm{~A}, \text { XOPA, YCLKA }
\end{aligned}
$$

$$
\begin{aligned}
& 6 \omega \in S A=202 \mathrm{FA} \cdot 3401 \mathrm{~A} \cdot 3402 \mathrm{~A} 200 \mathrm{MA} \cdot 1 \mathrm{KO6A} \cdot 1 K 07 \mathrm{~A} \cdot 3 \mathrm{PCPA} \cdot 2 C L \mathrm{BD} \\
& +0 \times 04 A=\text { TATE ERROR WRITE PROTECT } \\
& 6 \omega H S A=200 F F A \cdot 2 D M W A T(1 \times D 3 A \cdot 3 B \cup C A \\
& \text { Acdarss Boun oary ERROR } \\
& +2403 \text { A } 2 \text { SIFA } \\
& 7 \omega 56 A=2 \omega 50 A+3 W 60 A \\
& 2 W P C A=2401 A \cdot 2 K 06 A \cdot 202 M A \\
& S \times O 1 A=N U F A \cdot 0406 A \cdot 2 P T Q A \\
& \text { } \times \times O I A=N U F A \cdot 2 P T I A \\
& 5 \times 02 A=2 I D N A \\
& 4 \times 02 A=200 \mathrm{FA} \cdot 0 \times 01 \mathrm{~A} \cdot 1 \times 03 \mathrm{~A} \\
& r \times 02 A=2 R T I A+2 P T I A \\
& S X 03 A=200 \mathrm{FA} \cdot 2 \mathrm{BUCA} \cdot 2 D M A A \\
& r \times 03 A=200 \mathrm{FA} \cdot 0 \times 04 \mathrm{~A} \cdot 2 \mathrm{CLKA} \\
& +201 \text { FA. } 2 \omega L K A \cdot 2 C L K A \\
& +(2 D M W A-9 E D S W) \cdot 2 C L K A \cdot 3401 A \\
& \begin{aligned}
S \times 04 A & =202 \mathrm{FA} \cdot 2 P S T A \cdot 1 \times 09 A \cdot 3401 A \cdot 200 M A \cdot 2 C L K B \\
& +201 F A \cdot 0 \times 08 A \cdot 0 \times 09 A \cdot 202 M A 5 C L K D \cdot 5 U 01 A
\end{aligned} \\
& \text { - X04A }=00 F A \text { 2CLKA } \\
& 5 \times 05 A=2 C 14 A \cdot 2 T N I A \\
& r \times 05 A=2 \text { TNIA (} 2 \text { C14A applied to reset inhibit) } \\
& 5 \times 06 A=201 F A 2 W 56 A \cdot 3 C L K A+201 F A \cdot 3 W 50 A \cdot 1 \text { XO3A.3CLKA } \\
& \text { +202FA } 3401 A \cdot 1 U 04 A \cdot 202 \mathrm{MA} \cdot 3 \mathrm{CLKA} \\
& \text { +202FA } 2 \text { W56A.0404A.3CLKA } \\
& r \times 06 A=2 E R W A \quad 2 C L K A \\
& +201 F A \cdot 3 C L K A \\
& \text { +202FA } 5 \text { SU01A } 1403 A 3 C L K A(1 M O 1 A+1 \times 09 A) \\
& 5 \times 07 \mathrm{~A}=201 \mathrm{FA} \cdot 0 \times 09 \mathrm{~A} \cdot 1 \times 08 \mathrm{~A}-3 \mathrm{CLKA} \\
& +202 \text { FA. } 2 \times 06 \text { A.1MOIA. } 3 \text { CLKA } \\
& +202 \text { FA } 2 \times 06 \text { A. } 1 \text { X09 A. 3CLKKA } \\
& r \times 07 A=3 \text { CLKA } \\
& s \times 08 \mathrm{~A}=201 \mathrm{FA} \cdot 1404 \mathrm{~A} \cdot 0 \times 09 \mathrm{~A} \cdot 3 \mathrm{CLKA} \\
& +202 \mathrm{FA} \cdot 2 \times 06 \mathrm{~A} \cdot \times 09 \mathrm{~A} \cdot 202 \mathrm{MA} \cdot 2 \mathrm{CLKA} \\
& r \times 08 A=201 F A \cdot 0 \times 06 A \cdot 2 C L K A \\
& \text { +202FA. 202MA.3CLKA } \\
& y \times 08 A=2 E R W A \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& 5 X 09 A=201 F A \cdot 2 W P C A \cdot 2 C L K A \\
& +201 F A \cdot 202 \mathrm{MA} \cdot 3401 A \cdot 2 C L K A \\
& +202 \mathrm{FA} \cdot 0 \times 07 \mathrm{~A} \cdot 3 \mathrm{CLKA} \\
& +202 \mathrm{FA} 0 \times 08 \mathrm{~A} \text { 3CLKA } \\
& 4 \times 09 \mathrm{~A}=2401 \mathrm{~A} \cdot 3402 \mathrm{~A} \\
& r \times 09 A=201 F A \cdot 0 \times 07 A \cdot 2 C L K A(\overline{202 M A} \cdot \overline{Z U O 1 A}) \\
& \text { T20.FA } 3 \text { UOLA } 200 H \text { 2CLKA } \\
& 9 \times 12 A=\overline{D M W A} \\
& \operatorname{sZn} A=O V n A \cdot 2 L D Z A \\
& +0 \operatorname{sn} A \cdot 2 L R C A \\
& r Z n A=1 \operatorname{Sn} A \cdot 2 L R C A \\
& n=01 \text { to } 12 \\
& 200 F A=1 F O 1 A \text { IFO2A } \\
& 200 M A=1 M 01 A \cdot 1 M 02 A \\
& 201 F A=1 F 01 A \cdot 0 F 02 A \\
& 2014 A=1401 A \cdot 1402 A \\
& 202 F A=0 \text { FO1A } 1 F 02 A \\
& 202 \mathrm{MA}=0 \mathrm{MO} A \\
& 2234 A=1401 A \cdot 0402 A
\end{aligned}
$$

$D C$

DC

OUT UF SEQUENCG

$$
\begin{aligned}
& 3 D R A A=3 A C T A \cdot 8 P W R A \\
& 2 \angle R 1 A=9 R D 15 \\
& 2 \angle R 2 A=\overline{4 R D 2 S} \\
& 2 \angle R 3 A=\overline{9 R D 3 S} \\
& 2 \angle R 4 A=9 R D 4 S \\
& 6 D A P A=1 \times 01 A \cdot 1 \times 02 A
\end{aligned}
$$

DAPA enables cable drivers for 9DOIA-9D06A

```
9367 C
RAD
Glossary of Logic Terms
```

A09-A23	Address Register
ACT	Clear the A register on Alert to POT
AFA	Address bits $1 ?$ and 13 both truc
AFB	Address bits 14 through 17 all true
AFC	Address bits 18 through 23 all true AFLAl1 bits true in A register (1.2 through 23) (Band 77 sector 77)\quadIncrement the address in the A register

B

Beginning of sector pulse triggered by trailing edge of SIP A signal from the computer that is true iuring an EOM buffer control mode instruction.

C

C09-C23 Computer C register terms.
CD1-CD6 Current sector address from the selected unit to be compared against the sector bits in the address register.

Lower half of sector address compare.
Basic clock. Derived from clock track in phase zero and one. In phase two it comes from the read data signal from disc.

Write enable signal inverted to center taps of read transformers.
A signal that allows the M and K registers to count.
Upper half of sector address compare

DO1-D06	Current sector address register.
DAP	Enables DO1-DO6 cable drivers for PIN
DMA	RAD address contained in C register.
DMW	RAD address contained in Unit Address register.
DRA	Direct reset to A register.
DRK	Reset count registers M and K
DRV	Direct Reset V register
DRZ	Direct Reset Z register

E
Error flip flop
Data character transfer clock to I/O channe1.
A signal from DACC when word count $=4$, used for an early EARLYDISCONNECT SIGNAL interrupt on a scatter read operation.

ENP
ERW
True while D register is incrementing at sector pulse time.
Enter read or write phase from phase zero.

F
F01-F02

G01-G02
GSI-4
G
Selection unit address register used for PIN operation.
Selection unit address gates. These four lines are used to select the addressed storage unit whose sector address is required for the PIN operation.

HSD

IDL

IDN

INT

K01-07 Character counter register.

L
LDA

LDZ pulse, SIP.

I

 time that the A register is incrementing.An Alert to PIN command is in progress.
An alert to POT command is in progress. the current sector location.

J

 the end of the mreelpreamble. from the I/O channel.A conditional signal level required in phase zero to trigger the beginning of sector one shot, BSC, with the sector increment

Address increment period. This one shot is true during the

Index pulse from disc, which is used to reset thet bector coanter adeseach revodutione tripe of cead \because int:

The interrupt signal generated when the sector address equals

A signal from the computer denoting that an EOM command in the Input/Output control mode is being executed.

A signal that enables the resetting of the character counter at

A signal to load the address register on a POT command.
A signal to load the S register with data from the Z register.
A signal to load the V register with data from the Rn lines

LR1-4 Data lines from the controller cable receivers. These four bits of data from the selection unit are placed into the S register during phase two.

A signal to load the Z register with data from the S register. A signal that denotes two 12 bit characters have been written or read. It is true every six pulse times. A signal to load the V register with data from the Z register.

M

M01-M02

NNL

NXL

NUF

A signal which denotes that the character (K) counter has a counted 12510 characters. (K01-K05 are all true)

A signal that marks the last (64th) word time of a sector. Phase zero or not postamble time.

P

Parity checking and generating register for each of the four tracks. parity compare signal used in checking longitudinal parities of all four tracks at the end of a sector read.

A signal derived from the character and modulo 3 counter which inhibits setting of $U 03$ after the 8 th preamble character is written, thus causing the last two preamble bits to be zeros.

PSL

R

RC01-4 The 600 ns one shot output of the clock discriminators. RCC1-4 The unused clock compensator flip flop in each of the four read circuits.

RCD1-4 The 600 ns one shot output of the clock discriminators after it has passed through a 200 ns delay.

RCK

RCL 1-4

RCN

RCS1-4

RCS

RD1-4

RDA1-4

RDD1-4

RDL $1-4$

REN

RF1

RTO

RTI

The read clock pulse one shot. This generates the clock pulses used on in phase two.

The outputs from the read limiter cicuits which feed the clock dicriminators.

The signal that is true only during phase two which selects the read clock signal for CLK.

The read clock signal out of each of the four read circuits. The first of these to occur geheratest the coupler slockacuringroit.

The ORed output of the four track read clocks, RCS1-4
The data output flip flops of each of the four read circuits.
The outputs of the read preamps.
The outputs of the read data differential amps which feed the inputs to the read data flip Elops.

The outputs from the read limiter circuits which feed into the read data differential amps.

Read enable signal to the selection unit which enables the portion of the X selection circuits that allows the read transformers to be used.

A signal which is true only at the end of the read^phase when the last character has been accepted by the channel.

The RT signal to the computer that gets a POT or PIN command out of the wait phase.

S01-12

SAC

SEC

SIH
SIM

SIO

STV

The 12 bit character assembler/disassembler register. Sector address compare gate which is true when the contents of the sector portion of the address register is equal the sector address (D) register.

Sector timing pulse out of the Index Sector Decoder.
The signal that causes the S register to shift.
The output of the Index Sector amplifier.
The output of the Index Sector read head.
A signal that is true during either the sector or index pulse time.

The response signal to the computer during an SKS instruction. When this signal is true to computer skips the next instruction. Sector increment pulse. The pulse starts at the leading edge of SEC and lasts about $1.2 \mu \mathrm{~s}$. This delays the start of BSC to allow the D register sufficiently settling time after incrmenting.

Initialize the Parity flip flops at the beginning of the read or write phase.

The signal from the START button on the CPU
250 one shot which is a strobe pulse to load the V register with the LDV signal.

TNI

USL
Unit select signal in selection unit.
v

V01-12 V register (character buffer register).

W01-38	Write driver outputs
W9-W14	Signals from the I/O channel unit address register
W50	Signal from W5 flip flop in I/O channel
W60	Signal from W6 flip flop in I/O channel
W90	A signal true when W6 is set and W5 is reset (Data transfer time)
WCA	Signal from W9 flip flop in I/O channe1. True on outputs from
WCK	Output of clock read amplifier
WCH	A clock signal used in the selection unit during phase zero and one.
WC0	Outputs from the clock read head
WDl-4	Output of phase zero and one one shot which generates CLK.
WDE1-4	The four write data lines from the controller to the selection: unit.
WEN	The four write data flip flops
WES	Write enable signal to the X selection gates.
WHS	The error line to set the I/O channel error flip flop.

X

X04

X (Cont ${ }^{\text {' } d) ~}$

01 U

Non-increment mode indicator. This inhibits the incrementing of the band address with the index pulse.

The R lines from $I / 0$ channel are ready with data on a disc write operation or the character on the Z lines to $\mathrm{I} / 0$ channe 1 has been accepted by the channel on a disc read operation.

Time to transfer V register to Z register on a disc write operation or time to transfer Z register to V register on a disc read operation. Allows a late Z to V transfer on read if the I / O channel was temporarily delayed in accepting a character.
Z register empty indicator.
12 bit Single Character Register selection line to $\mathrm{I} / 0$ channel.

Y

The inverse of this signal allows setting the band address in the controller to the band address register in the selection unit during sector increment pulse time.

Z

Character Storage Register (Z Register).

Phase zero signal
Module 3 counter flip flops both reset
Phase one signal
U01 and U02 flip flops both reset which is phase 0 or postamble time of phase one or two

```
02F
    Phase two signal
02M
223U
F1ip flop MO1 is set
Flip flop UO1 is reset and UO2 is set which signifies data read or
write time.
```


Appendix A
 9367 B Differences

The Model 9367 B utilizes a drum memory rather than a disc. The 9367 B is available in three different capacities.

9367B-01	131,072 word capacity (524,288 alphanumeric characters)
9367B-02	262,144 word capacity (1,048,576 alphanumeric characters)
9367B-04	524,288 word capacity ($2,097,152$ alphanumeric characters)

Additional memory is available by adding from one to three extender units. These have the same capacities as above but are called:

9367B-11, 9367B-12 and 9367B-14

Mechanical Characteristics

A standard Bryant Auto-Lift drum consists of a drum and spindle assembly, a high-performance plated magnetic medium on the drum surface, an induction motor, a housing, dust-tight removable panels, and magnetic read/write UniJust data heads which can be adjusted radially.

The drum is 10 inches in diameter and vertically mounted and comes with a maximum of 512 data heads plus 6 pre-recorded timing tracks. It utilizes a 3 phase induction motor and rotates at approximately 1730 RPM There is actually room to mount 640 data heads.

Recording Media

Surfaces of standard Auto-Lift drums are coated with Bryant's super-finished magnetic plating. This plating has a tough, abrasive-resistant surface, and gives extremely uniform playback and resolution characteristics over large drum surfaces with a low noise level.

Magnetic Heads

Uni-Just aerodynamic data heads are used to optimize drum performance through a broad range of operating frequencies and recording densities. These heads can be adjusted for proper playback and the heads can be replaced, if required, without taking the unit out of operation.

Electrical and mechanical specifications are given in Table 1.

TABLE A-1 SPECIFICATIONS

Pole Piece Gap Length	0.00025 inch
Pole Piece Frequency Range	Up to 2 MC
Inductance-half-coil (at 140 KC)	$\begin{aligned} & 17-22 \\ & \text { microhenries } \end{aligned}$
D-C Resistance	1 ohm
Drive Current	to fit application (Up to 250 ma)
Balance-half-coil to half-coil	10\%
Resonant Frequency	3.8 megacyc1es (minimum)
Track Width	0.020 inch
Track-to-track Spacing	0.035 inch
Surface Speed Limits	1,000 to 3,500 inches per second

The drum heads are mounted on head bars around the outer surface of the drum. These head bars are mounted in a vertical position and each can hold 20 heads. There are 16 of these head bars mounted around the upper half of the drum and 16 more head bars around the lower portion of the drum. These bars are numbered from 1 to 32 starting in the back of the drum on the top row and coming around the left side to the right side. There are four upper and four lower head bars in each quadrant.

Each bar has the capacity of holding 20 heads but only 16 are mounted. Eight are at the top with a space for two under these; then eight more are mounted with two more spaces at the bottom of the head bar. The 6 pre-recorded timing tracks and their heads are located at the bottom position of head bars 26 , $27,28,30,31$ and 32.

The clock and sector data is brought out on a separate cable than the data. The spare timing tracks are wired to separate connectors. Thus, changing from one set of timing tracks to another is accomplished by moving one cable plug to a different connector.

$$
A-2
$$

Auto Lift Copacapt

Magnetic drum memory design dictates that a magnetic pickup be maintained at a relatively fixed distance from a recording media and in extremely close proximity to it under all conditions of system environment as dictated by the particular circumstances. These conditions include shook, vibration, thermal changes and extremesteady-state conditions, and different atmospheric densities and humidity levels. Eryant has successfully achieved this goal with the Auto-1: Lift Series of flying head drums.

Auto-Lift drums feature a simple, automatic head-drum spacing mechanism which wworks together with an adjustable flying head to assure reliable operation Wholly different in concept and design, these devices have been operationally integrated with the drum to assure the ultimate in fail-safe performance by completely eliminating the prime cause of drum failure - inadvertent head-to-drum contact.

Flying heads were devised to maximize temperature performance capability as well as to expand the ata storage density of the drum The major temperature problem with drums is the rapid shrinking of the housing when the drum is turned off because then the heads are moved closer to or in contact with the drum surface. This condition results in head-to-drum contact if the drum is restarted before the drum shrinkage has caught up with the housing shrinkage and has restored the proper head-to-drum spacing.

Some types of flying heads used with conventional drums can "fly" only when drum speed is sufficient to produce a laminar film of air capable of supporting them. Therefore, the heads rub on the drum surface during stop/ start cycles and remain in contact throughout down periods. Obviously, the tension of the heads against the surface and the resultant friction varies with temperature. The former condition leads to wear and eventual failure of the drum coating and/or the head polepieces; the latter provides an opportunity for the heads to freeze to the drum surface under operating conditions where frost might be produced - a condition that almost always leads to motor failures and coating damage.

The Auto-Lift drum-head spacing mechanism overcomes these disadvantages by bringing the recording surface into close proximity of the heads only when the drum has reached a speed high enough to provide an adequate laminar air film (or "air bearing" support).

An essential design feature of the Auto-Lift drum is its tapered recording surface design, a proprietary Bryant structural arrangement which has long permitted technicians to adjust fixed heads by manually positioning the drum rather than the heads. In the case of Auto-Lift Drums, however, flying heads are used and the drum is automatically moved up and down by the self-regulating drum-head spacing mechanism which is contained entirely within the drum itself.

Operation of the Auto-Lift Mechanism

The mechanism for moving the drum axially comprises a pair of simple scissor links which are straightened out by centrifugal force as the drum accelerates to approximately 75% of its operating speed. Straightening of the links raises the drum against a precision stop which defines its operating position. Thus, repeatability of the track location is exact. Spring tension is used to collapse the links and lower the drum as it slows down to approximately 65% of operating speed.

In the static, or down position, the drum surface is 0.010 inch or more from the heads. By the time the drum rises to the up position, the heads have gone into a flying attitude approximately 0.0002 inch from the surface.

Logic Differences

The $9367 B$ uses the same coupler and selection unit as the 9367C. The only difference in logic would occur on the largest capacity drum, 9367-04. This drum thus contains 512 heads which utilize 128 bands. (Addresses 00-177) therefore the head selection matrix must be larger. This is accomplished by the addition of 16 more Y selection circuits.

See page 43 for the equations for the first 16 Y selection circuits. The additional logic required is given on the following page.

4-4,

```
Y17 = A11 \overline{A12 \}\=\overline{\textrm{A}3}\overline{\textrm{A}14}\overline{\textrm{A}15}
```



```
    :
Y32 = A11 A12 A13 A14 A15
```

The following table may be used for finding the X and Y selection circuits utilized for any given band address in the RAD Model 9367B.

Table A-2
X \& Y Driver Selection Chart

For Bryant Drum (9367B)

