

XEROX

Xerox Control Program-Five (CP-V) Xerox 560 and Sigma 6/7/9 Computers

Data Base
Technical Manual

9019 95D

FEBRUARY 1976

This publication documents the D00 version of Control Program-Five $(C P-V)$. Pages dated $2 / 10 / 76$ denote changes that reflect the $D 00$ version.

TABLEOFONTENTS

Section
Page
JIT - Job Information Table VA 1
Usage 1
Description 2
JIT 3
JIT Usage by Processors VA. 01 19
Scheduler VC 20
Scheduler Queues VC 20
Event Transity Lon Tables VC 20
Resource Sub-Queues VC 20
Situational Priority Increments VC 20
Scheduler States VC 21
Scheduler Events. 21
Scheduler/Swapper Tables 22
Scheduler/State Tables/Queues VC 22
Scheduler Priority and Real-Time Data VC 23
User Tables VD 24
Common Multiprocessor Control Tables VD. 01 27
Shared Processor Tables VE 35
Tables Displaced by Processor Number VE 35
Processor Table Layout VE 36
Ghost Job Tables VE 37
Memory Allocation VF 38
On-Line Memory Pointers VF. 01 38
Batch Memory Fointers VF. 01 38
Physical Memory Allocation VF. 01 39
CP-V Buffer Linking VF. 01 40
Swap Storage Layout VF. 02 41
Swapping RAD Granule Table VF. 02 42
Input/Output Tables VG 45
DCT - Device Control VG. 01 45
RAD/PACK Characteristics VG. 01 48
IOQ - I/O Enqueueing VG. 02 49
DOT - Devoce Operations VG. 02 50
CIT - Channel Information VG. 02 50
DTT - Device Type - Class Tables VG. 03 51
AVR Tables VG. 04 57
AVR Table Bit Definitions VG. 04 58
Table Contents and Bit Settings VG. 04 59
COC Tables VG. 05 62
Section
File Tables VH 66
Master Index Format for Level 0 VH. 01 66
Master Index Format for a Higher Level Index VH. 01 69
Account Directory VH. 02 70
Master Index Format for the Public File Account Directory. VH. 02 70
Master Index Format for a Private Volume Set Account Directory VH. 02 71
File Directory VH. 03 72
Master Index Format for Public and Private File Directories VH. 03 73
Free Granule Pool (FSP) Format VH. 03 75
File Information Table (FIT) Format VH. 04 76
Private Volume Set Tables VH. 06 80
VTOC - Volume Table of Contents VH. 06 81
HGP - Allocation Tables VH. 07 83
CFU - Current File Usage Tables VH. 08 85
ACNCFU - Account Directory CFU VH. 08 86
FILCFU - File Directory CFU. VH. 08 89
User File CFU VH. 08 91
File DCB VH. 0993
Labeled Tape DCB VH. 10104
ANS Labeled Tape DCB VH. 11 112
Device DCB VH. 12 119
CP-V Labeled Tape VH. 16.01 126
General Format of Sentinels VH. 16.01 127
Record Format VH. 16.01 129
ANS Labeled Tape VH. 16.02 132
General Format and Sentinels VH. 16.02 132
Generalized Disk Address VH. 17135
Consecutive File Format VH. 18136
Schema for Locating and Referencing Public Files VH. 19139
Schema for Locating and Referencing Private Files VH. 20140
Read-Ahead Tables VH. 21141
Symbionts and Cooperatives VI. 01144
Symbiont/Cooperative File Block VI. 01 144
Symbiont Tables VI. 01146
Linkage Between Logical Device Tables VI. 01 149
Input Symbiont Context Block. VI. 01152
Cooperative Context Block. VI. 01153
Output Symbiont Context Block VI. 01154
Symbiont/Cooperative Context Block Displacement Symbols VI. 01 156
RBBAT Communication Buffers VI. 01161
Multi-Batch Scheduler Tables VI. 02 171
MBS Tables in RBBAT VI. 02171
Priority Tables VI. 02
VI. 02172
Symbiont File TablesVI. 02173
MBS Tables in Core VI. 02 174
Resource Allocation Tables VI. 02 174
Serial Number Tables for Running Jobs VI. 02 175
Partition Tables VI. 02 176
Partition Table Layout VI. 02 178
GI Tables VI. 02 179
Service Limit Tables VI. 02 180
Peripheral Authorization Tables VI. 02 181
Error Log VK 182
Error Log Format 182
Eile Control Pointers 183
Error Log Core Structure 18't
Overview 185
Glossary 190
Error Log Codes 200
Error Log Entry Formats 208
CSE STOP Tables VK. 01 236
Assign/Merge Table VL 238
Function 238
Structure 238
Format of Assign/Merge Table 238
Format of RUN Table VL. 01 241
Error Codes and Error Messages 247
Error Message File Format 247
Error Messages 249
:USERS - Logon File VN. 01 261
Structure VN. 01 262
Contents VN. 01 264
:ACCTLG - Accounting Log Format VN. 02 268
Structure VN. 02 269
Contents VN. 02 270
RATE Record VN. 03 273
Structure VN. 03 273
: RBLOG - Remote Batch Logon File VN. 04 274
Purpose VN. 04 274
Contents VN. 04 275
Structure of the RBID Record VN. 04280
: PROCS - Restricted Processor List. VN. 05 281
Section Page
Loader Tables 283
Task Control Block (TCB) 283
DCB Name Table (DCBTAB) 283
Load Module Layout 284
HEAD Record 285
TREE Record 287
Segment Components 288
Libraries 289
REF/BREF Tables 291
REF/DEF and Expression Stack 292
Relocation Dictionary 294
LOCCT Table 297
Real Time 299
Interrupt Control Block Formats 299
ICB for User Task 299
ICB for Ghost Job 300
ICB for CLOCK3 301
ICB Field Descriptions 302
ICB Chain Headers 306
DO List Block Formats 306
WAIT List Block Format 308
M:FRGD Module 309
M: IMC Modifications 311
ENQ/DEQ VQ 313
Description 313
Queue Head Entries 313
SQ Entries 315
QECB Entries 316
QNAME Entries 316
Remote Processing 318
Remote Processing Tables in Core 318
Remote Processing Tables in RBBAT 319
RB:FLAG Structure 320
IRBT and 2780 Context 321
Remote Processing Handler Structure 324
Screech Codes VS 325
Transaction Processing VT 347
Physical Work Pages (PWPTABLE) VT
TTP Resident Table - Queue Management. VT' 348347
Recovery Tables VU 351
Core Dump Format VU 351
Dump Tape Format VU 351
Recovery Buffer VU 352
Power Fail-Safe Interrupt Status VU 353
Index 354

SECTION VA
Page 1
2/18/76
100JIT
*** CPV 「00 JIT ***

NAME: JIT JIT
UBACE: THE IARELS OF TMF ITEMS IA JIT ARE COUSTRURTED jIT
USING THE FOLLONING CONVENTIOMS. THESE CONVENTIONS JIT
ALLON TAE USEK TO DETERMINE FKOM THE LABEL ITSELF JIT
NMETHER IT IS AN ADORFSS OR \triangle DISQLACEMENT NITHIN JIT
JIT ANO THETHER IT MAS BYTE, HALFNONO OR MORD JIT
RESOLUTION. ITEMS IA JIT SHOULD AINAYS PE JIT
REFERENCED HY LAAEL RATHER THAN ABSOLITELY JIT
because the internal stinucture of Jit nay cmange. JIT
JIT LABELING CUNVEMTITAS: ALL TME LARELS DEFINFE IN JIT ARE COASTRUCTED USING THE FOLLOWING JITCONVENTIONS. TMESE CONVENTIONS ALLOM TME USERJIT
TU DETERMIVE VHETHER TME LAHFL IS AF $\triangle O D R E S S$ JIT JI
OH A DISPLACENENT FROM JBJIT $A N O$ ITS EESOLUTION FRON.
The label itstlf.

1.) A COLON (:) INDICATES THAT THE LABEL IS QH
1.) A COLON (:) INOICATES THAT THE LABEL IS QM JIT
ADORESS. JIT
EXAMPLE: J:TCB, JW:PC, JKiVLH JIT
2.) NO COLOH INDICATES THAT TME LABEL IS A JIT
DISPLACFNENT FROM JIJIT. JIT
EXAMPLE: JTCB, PRDCRM, JRVLH JIT
3.) IF THE LABEL STAFTS MITH JH:, JH OR WA, IT HAS JIT
JB JR MA. IT MAS BYTE RESKLITIUN. IF IT STAKTS JIT
WIIH JX: DN JX, IT MAY RE EITHER RYTE OR WALFE JIT
AOAD, OEPENOING UN VALIIF ASSIGNED BY IBIG DURYNG JIT
SYSGEA. ANY OTHER CHAFACTERS INDTCATE WORO JIT
WFSOLITTIV. JIT
EXAMPLES: ROWN - JiUNAME, I!NAME, UMAME JIT
HALPMOLD - JMIPC, JMDA JIT
EYIE - JKiVLm, JBVLA, HAABC JIF
4.) IN SOMF (ASES SFVFGAL LARELS MIII FFFFFENCE THF JIT
SAME ITFH GIVING \triangle ODRFSS ATUN DISHLACEMENT AITM JITOTFFERE IT HESOLITTICV FOR THF SAME ITFM.JIT

SECTION VA
Page 2
2/10/76
*** CPV DOO JIT ***
EXAMPLE: THE I/U ABORT CODE WORD I7. BYTE O. JIT
JIABC, JABC, $A B C$ AND BAABC JIT
DESCRIPTION: EAGH USER RECEIVES AN INITIALIZED JIT NHEN THE JIT
JOB OR TERMINAL SESSION BEGINS. PHIS JIT STAYS WITM JIT
TME JOB UNTIL IT IS LOGGED OFF. THE JIT IS TME FIRST JIT PAGE OF A JOB THAT IS SNAPPED IN AND THE LAST TO BE JIT
SWAPPED OUT.
JIT
A USER'S JIT CONTAINS HIS ACCOUNTING DATA, RESOURCE JITJITUSAGE LIMITATIONS, VARIOUB FLAGS DESCRIBING THE STATUS
OF HIS JOB, SOME LOADER DATA, THE MIUC AND MIXX DCBS,JIT
MEMORY MANAGENENT DATA. A TEMP STACK FOR MONITOR USE. JIT
POINTERS AND ADORESSES OF DATA IN HIS CONTEXT BLOCK, JIT
HIS MAP AND ACCESS CODE IMAGES AND SWAPPER DATA, AS JIT
WELL AS MANY OTHER ITEMS TOO NUMEROUS TO MENTION. J17
THE JIT IS 512 NORDS LONG (I PAGE) AND IS AGWAYS 517
LOADED AT . BCOO (VIRTUAL). JIT
THE SEEK ADDRESSES (JHIDA) AND THE COMMAND LIST (JICL)
USED GY THE SWAPPER TO SWAP USER IN OR OUT ARE JITJIT
CONTAINED IN JIT. THERE IS ENOUGH SPACE IN JIT TO JIT
CONTAIN THIS DATA FOR A UEER WHOSE SIZE IS NO GREATER JIT
THAN 20 PAGES ON SIGMA 9 AND SMALG MEMORY SIGMA $9 / 560$ JIT
SYSTEMS, IF A UEER'S SIZE EXCEEDS 20 PAGES, HE IS JIT
ALLOCATED AN AJIT, "ADOITIONAL JIT", AND THE SWAPPER J17
COMMAND LIST IS MOVED INTO AJIT. THE SPACE IN JIT JIT
PHAT WAS FORMERLY USED FOR THE COMMAND LIST IS THEN JIT
USED FOR THE SEEK ADDRESSES. I.E.. JHIDA SPILLS OVER JIT
INTO JICL. ON LARGE MEMORY SYSTEMS CGREATER JIT
THAN (28K), ALL USERS RECEIVE AN AJIT AT THE TIME J!
THEY RECEIVE THE JIT. THE AJIT CONTAINS BOTH THE JIT
SWAPPER COMMAND LI8T AND THE SEEK ADDRESS TABLE,
SWAPPER COMMAND LI8T AND THE SEEK ADDRESS TABLE, JIT JIT
JHIDA.

CP-V TECHNICAL MANEAL

SECTION VA
Page 3
2/10/76

JIT	BCOO
JIT	8000
JIT	8 COO
JIT	8 COO
JIT	8600
JIT	8600
JIT	800
JIT	8600
JIT	8 COO
JIT	8 COO
JIT	8000
JIT	8 COS
SIT	8 COL
JIT	8 COL
JIT	2×01
JIT	8 COS
JIT	8 CO 3
JIT	8 CO
JIT	$8 \mathrm{COS}^{2}$
JIT	8 CO 3
JIT	$\triangle \mathrm{COS}$
S1T	$8 \mathrm{COS}^{2}$
JIT	CCO_{3}
JIT	8 COO
JIT	8 CO
JIT	8 CO 6
JIT	8 CO
JIT	8 CO 07
JIT	HCO_{7}
JIT	8COB
JIT	8 CO
JIT	AC

SECTION VA
Page 5
2/10/76

SECTION VA
Page 6
2/10/76

DOOSIT	BC16 *** CPVDOO JIT ***		6	
			JIT	8C16
	\ MAX PUNCH LIMIT \ ABNORMAL ADDRES8 \|	MPO,ABO	J】	8C16
			JIT	8C16
			JIT	8C17
J\&CPPO	\GURRENT PROCESSOR \ FILE EXTENSION BITS \}	CPPO	JIT	8 Cl 17
	\PAGE OUT COUNT \ \|	JCPPO	JIT	OC17
			JIT	8C17
			JIT	OC18
JITRAP	\ MAX PROC PAGES \ CC OF LA8T \ LA8T TRAP\	MPPO	JIT	8C18
	\ OUT \ TRAP \EXECUTED \}		JIT	8 Cl 18
			JIT	8 c18
			JIT	S19
	\UBER PAGE COUNT \ADURESS OF CCI'S LOADER\	ALOCCT	JIT	8 C19
	\ \COMMAND TABLE \}	CUPO	JIT	8c19
			JIT	8C19
			JIT	8CIA
JiJIP	\MAX USER LP PAGES \ JOB IN PROGRESS FLAG \}	MUPO	JIT	-6IA
			JIT	8C1A
			JIT	OC18
JIINTER	\OIAGNOSTIC PAGE CNT \# OF INTERACTIONS \|	CDPO	JIT	-Cib
			JIT	8Cis
			JIT	OCIC
J/RWECB	\ MAX DO PAGES OUT \ ECB ADDRESS \	MOPO	JIT	8c1c
			JIT	8CIC
			JIT	8C10
JB:STEP	\ OF STEPS\JOB ORIGIN\ TAPE READ \& WRITES \}	TPACCESS	JIT	$8 C 10$
JBIORG	$\ \$ \ \ & & JIT & 88^{810}			
			J19	OC10
			JIT	BCIE
JIASPIN	\ ACTIVE SPINOLES \}		JIT	8 Cl
			JIT	SCIE
	\(
		JIT	OCIE	
			JIT	SCIE

CP-V TECHNICAL MANUAL

SECTION VA.
Page 7
2/10/76
\mathbf{x}

JIT	$8 C 20$
$J I T$	$8 C 20$
JIT	$8 C 20$
$J I T$	$8 C 21$
$J I T$	$8 C 21$
$J I T$	$8 C 21$
$J I T$	$8 C 21$
$J I T$	$8 C 22$
$J I T$	$8 C 22$
$J I T$	$8 C 22$
$J I T$	$8 C 22$
$J I T$	$8 C 22$
$J I T$	$8 C 23$
$J I T$	$8 C 23$
$J I T$	$8 C 23$
$J I T$	$8 C 23$
$J I T$	$8 C 23$
$J I T$	$8 C 23$
$J I T$	$8 C 23$
$J I T$	$8 C 24$
$J I T$	$8 C 24$
$J I T$	$8 C 24$
$J I T$	$8 C 24$
$J I T$	$8 C 25$
$J I T$	$8 C 25$
$J I T$	$8 C 25$
$J I T$	$8 C 26$
$J I T$	$8 C 26$
$J I T$	$8 C 26$
$J I T$	$8 C 26$
$J I T$	$8 C 26$
$J I T$	$8 C 26$
$J I T$	$8 C 26$
$J I T$	$8 C 26$
$J I T$	$8 C 26$
$J I T$	$8 C 26$
$J I T$	$8 C 26$

OOOJIT	8C26 *** CPV DOO JIT ***			8	
	\ \ - -0-0-0.0.STACK TRAP CONTROL			JIT	8 C 26
	\ \ - - - - -me-o-UNIMPLEMENTED INSTR TRAP C	ONTROL		JIT	8C26
		CNTRL		JIT	$8 C 26$
				JIT	8C26
				JIT	8 C 27
J19CB		TCBADR		JIT	8 C27
				JIT	8C27
				JIT	8C28
Jitree		JITREE		JIT	8C28
				JIT	8C28
				JIT	$8 \mathrm{C29}$
	$\$ MIN TEMP PACK SPACE REMAINING \| & TMPDPPK & & JIT & 8629 \hline & & & & JIT & 8 C29 \hline & & & & JIT & 8C2A \hline \multirow[t]{4}{*}{JiUSCDX} & & & & JIT & BC2A \hline & $\$ \ BUFFER CHAIN \} & & & J17 & 8C2A \hline & & & & JIT & 8C2A \hline & & & & JIT & -628 \hline \multirow[t]{3}{*}{JIDCBLINK} & & DCBLINK & & J! & -628 \hline & & & & JIT & 8C2B \hline & & & & J】 ${ }^{\text {J }}$	8C2C			
	$\$ \} 0 0 C \text { OPTIONS IN MaUC\%B \} & & & JIT & - ${ }^{\text {AC2C }}$				
	1 COC OPTIONS IN M:UC $\downarrow 8$ (x	JIT	$8 C 2 C$
				JIT	8C2C
				JIT	AC2C
JITITLE	\IF BATCH, JOE TITLE IN TEXTC (21 WORDS) ,	ATITLE		J17	AC2C
	\IF ONLINE, MIUC (22 WORDS)			J17	- C2C
	\ IF SUB TABK, CONTROL INFO(SEE DEF)(RSRVD) \		x	JIT	- C2C
				J79	8 C 2 C
	0 31		x	JIT	$8 \mathrm{C42}$
			x	JIT	$8 \mathrm{C42}$
JIUPRIV	\ USER PRIVILEGE FLAGS \|		x	JIT	8 Caz
			x	JIT	8 Caz
				JIT	$8 \mathrm{C42}$
$\mathrm{J} \times \mathrm{x}$	\DEFAULT FILE EXPIRE, \ MAX FILE EXPIRATION \}			JIT	$8 \mathrm{C42}$
				JIT	$8 \mathrm{C42}$

CP-V TECHNICAL MANUAL
SECTION VA
Page 9
2/10/76

D00JIT	8Ca3 *** CPV 000 JIT ***	9	
	0 O 16 H 24	JIT	8 C 43
		JIT	8C43
JEAPRIV	\JJOB \ CULectal \ RESERVED \ NFPOCL \ JANFPOUL	JIT	$8 \mathrm{C4}$
J\%ANFOUL	\PRIVILEGE \ ¢Ėj i	Jit	8C43
	$\$ \ IN PAGES\ \ \ & JIT & $8 \mathrm{C4} 3$		
		JIT	$8 \mathrm{C4} 3$
	015	JIT	8C44
		JIT	$8 \mathrm{C4} 4$
JiAbuf		JIT	8 C 44
		JIT	8 C 44
	0 \% 1n 34	JIT	$8 \mathrm{C45}$
JBiccaks		JIT	8C45
Jbsoisp	\RECOFD 32 \OISPLACE. \ CURRENT \SPEC SHRD \	JIT	$8 \mathrm{C45}$
Jb:CUn		JIT	8045
JR:OTEL		JIT	$6 \mathrm{C45}$
JE:LPP		JIT	$8 \mathrm{C46}$
Jt:LC			
% OF LINES\EURRENT \# \ PLATEN \ PRUMPT \	JIT	8C46	
$J B: P C W$	\PER PAGE \OF LINES \MIDTK \ RYTE \}	JIT	SC46
Jt:PROMPT	\DEF=54 \DEFa49 \ DEFE72 \ DFFE'> \	JIT	$8 \mathrm{C4} 4$
		JIT	8C46
		JIT	$8 \mathrm{C4} 7$
Jitdeltat	\ INITIAL VALUE Of Jideltat	JIT	$8 \mathrm{C47}$
		JIT	8C47
	01234567415	JIT	8C48
		JIT	8C48
JEEXENT		JIT	8C48
		JIT	8C48
	111119	JIT	$8 \mathrm{C48}$
®OLAST* OP ON EXIT CNTRL	JIT	3С48	
	$\backslash \ \ \ \ \ \$-mestep comoition code & JIT & $8 \mathrm{C4B}$		
	$\ \ \$ \ \ - -Eme-EXIT CNYRLIC-Y AND QUIT & JIT & 8C48 \hline & \-*-**-*-UNLISFD & JIT & $8 \mathrm{C48}$		
- -memeremmilirk ok mildire FxIT CONDITIUR:	JIT	$8 \mathrm{C4} 4$	
		JIT	8 CL 8
	\ \ - - - - - - - - -m-motXIT CNTML IN PROCKESS	JIT	8C48
E		JIT	$B C A$
E		JIT	$8 \mathrm{C48}$

SECTION VA
Page 13
2/10/76

DOOSIT	8020 *** CPVDOO JIT ***	
JB:FBUL	VFILE MNGT \FILY NNGT* COOP \ COOP	JBFAFP
	ISPARE BUF \FKEE HUF \SPARE BIIF ISPARE HUF	JPCRLL
JEICBUC	\UPPER LIM \POOL HEAD ILOW LIMIT VISE PAT	Jacellc
	* INTEfRLIPT ALTERED	
		JBTOP
JE:TDP	\PG * TOP \PG: FOTTN\FINAL RUA INEXT AVAIL	JBBCP
JBEBCP	\DYMN DATA \(
) COMMEN \(
) STATUS ISECTOR POS	JBNASP	
JiUster	12 WORDS FOR INSTALLATION USE.	
	1	
Jicls	- Close statlis info	
	I NUMBER OF PACK FELADS AND WRITES	DPACCESS
	1 NUMEER UF disc reads and whites	ncaccess
	0 O 16	
Jb:MAX	\ MAXIMUM PESOURCES ALLONED TO USEF	BMAPA
JEIMNPA		
	1	

JIT	8020
JIT	8020
JIT	8021
JIT	8022
JIT	6022
JIT	8024
JIT	8024
JIT	8024
JIT	8025
JIT	8025
JIT	8025
JIT	8026
JIT	8026
JIT	8026
JIT	8027
IIT	8027
JIT	8027
JIT	8027
JIT	8027

SECTION VA
Page 14
2/10/76

DOOJIT	8028 *** CPV DOO JIT ***				14
	016 31			JIT	8028
				JIT	8028
	\backslash PHYSICAL PAGE \ UNUSED	JXPPH	X	J】T	8028
$J X: P P_{H}$	$\$ CHAIN HEAD \ & JPPH & & JIT & 8028 \hline & & & & JIT & 8028 \hline & $\begin{array}{lllll}0 & 16 & 24 & 31\end{array}$			JIT	802 C
				J】T	802C
	$\$ PHYSICAL PAGE \ SLNK \ XLNK & JPPT & & JIT & 802C \hline JB:SLNK & \ CHAIN TAIL \ \ & JXPPT & & JIT & 802C \hline \multirow[t]{3}{*}{JB:XLNK} & & & & JIT & 802C \hline & $\begin{array}{lllll}0 & 8 & 16 & 24 & 31\end{array}$			JIT	6020
				JIT	8020
JB\&PPC	\PHYS PAGE \PARTITION				
% REMAIN \UNUSED \}	JPPC	x	JIT	8020	
JBINRG	\CHAIN CNT \ \GRANULES \	JBPPC		JIT	8020
JEIPNR		JBNRG		JIT	8020
				JIT	-02E
JBIVLH	\VIRT. PG \PEAK CORE \ ONmLINE PAGE \}	JBVLH	x	JIT	802E
JB:PEAK	ILINK HEAD \ COUNT \	JVLH	x	JIT	OO2E
JHIPC				JIT	602E
JHistepcc				JIT	602F
JBIVLT	IVIRTPG \STEP COND. I* OISC * TAPES \}	JVLT		JIT	802 F
JB:PMTS	ILINK TAIL I CODES \PACK MOUNT\ MOUNTS \}			JIT	$802 F$
JEITMTS				JIT	802F
				JIT	8030
	\(
	PRDCRM		JIF	0030	
				JIT	8030
				JIT	8031
	\ PERMANENT PACK gPaCE REMAINING \|	PRDPRM		JIT	8031
				JIT	6031
				JIT	8032
	\ TEMPORARY RAD SPACE REMAINING \|	TMDCRM		JIT	0032
				JIT	0032

014

SECTION VA
Page 15
2/10/76

$\mathrm{CP}-\mathrm{V}$ TECHNICAL MANUAL
SECTION VA
Page 16
2/10/76

DOOJIT	8048 *** CPV DOO JIT ***		16
		JIT	8048
Jistar	$\ F D A$ OF 1 (JIT	8048
		JIT	8048
	\ \$0 \}	JIT	8048
		JIT	8048
	$\ 0$ \ \}	JIT	8048
		J】T	8048
	$\$ \L \} & JIT & 8048 \hline & & JIT & 8048 \hline & $\$ *T \} & JIT & 8048 \hline & & JTT & 8048 \hline & $\$ *N (LNKTRC) \} & JIT & 8048 \hline & & JIT & 8048 \hline & & JIT & 804E \hline JIBASE & \ SPILL BUFFER FOR INDEX BUFFERS. \} & JIT & 604E \hline & 1 ALSO USED BY OTHER MONITOR ROUTINES & JIT & 604E \hline & 1 AS TEMPORARY STORAGE. 12 WORDS I & JIT & $804 E$		
		JIT	804E
	016	JIT	605A
		JIT	805A
Jitic	\RESPONSE TIME, $2 M 8$ OR OITURNAROUND TIME OR O\	JIT	805A
		JI7	805A
		JIT	805B
JiAmR	\ DISC ADORESS OF ASSIGNAMERGE RECORD \	JIT	6058
		SIT	6058
	015 31	JIT	803C
		JIT	805 C
JIICBHDR	\(
)			
\HEAD OF ACTIVEICB CHAIN	JIT	-05C	
		JIT	805C
	11	JIT	805 C
	1-®MEIOEX CAL ISSUED	JIT	805 C
	- - REAL TIME CAL ISSUED	JIT	805C

SECTION VA
Page 17
Page 17
$2 / 10 / 76$

x		17
	JIT	8050
x	JIT	8050
x	JIT	8050
	JIT	805E
	JIT	805t
	JIT	805E
x	JIT	80SE
	JIT	805E
x	JIT	8063
x	J1T	8063
x	JIT	8063
x	JIT	8063
x	JIT	8063
	JIT	8093
	JIT	8093
	JIT	8093
	JIT	81393
x	JIT	8093
	JIT	8093
x	JIT	8093
x	JIT	8093
\times	JIT	8093
\times	JIT	8093
	JIT	AD93
	JIT	8093

CP-V TECHNICAL MANUAL
SECTION VA
Page 18
2/10/76

		APL	BASIC	EASY	FLAG	FORIV	GPDS	LIB	META	SL/ 1	TEXT	SORT	EDMS	EDMS Restructuring	IDP	MANAGE	COBOL	RPG	MERGE
ABSOLUTE	X'28'	X				X						X	X				1		
ADDRESSES	$\mathrm{X}^{\prime} \mathrm{F}^{\prime}$		x		X	X	X		X	X		X	X						
	JOPT								X										
	CCBUF				X														
	J:ACCN	X		X							X								
	J:CTIME																		
	J:DELTAT	X																	
	J:JTT	X		X							X								
E	J:OPT					X										X			
	J:PTIME	X		X															
	J:UTIME	X																	
	J:UNAME										X								
	J:UTIME	X		X															
	JB:LC																		
	JCPPO				X								X						
	M:UC			X		X													
	MRT				X														
	J:CPROCS													x					
	J:IDELTAT	X																	
	J:OVHTIME			X															
	J:RNST			X															
	J:TCB			X															
	J:TELFLGS			X															

Chains for sub-states in SQR/SQRO are linked using U:MISC and UB:PRIO as shown.

SB:IOTA - Cell containing I/O time allowance. Remaining quantum is decremented by this vatue for each I/O.
SL:OPC - Word containing monitor overlay protection counter value.
S:OPC - Word containing working value for overlay protection counter, decremented when unsuccessful at swap scheduling. Refreshed by SL:OPC when successful swap schedule.

SCHEDULER STATES

STATE	"	MEANING
SRT	1	Real Time Compute
SCO	2	Background Compute $\mathrm{X}^{\prime} \mathrm{C} 0^{\prime} \leq \mathrm{IB}: \mathrm{PRIOB} \leq \mathrm{X}^{\prime} 5^{\prime}$
SCl	3	Background Compute Priority $=$ X'F $^{\prime}{ }^{\prime}$
SC2	4	" " X'F7'
SC3	5	X'F8'
SC4	6	X'F9'
SC5	7	X'FA'
SC6	8	X'FB'
SC7	9	$X^{\prime} \mathrm{FC}^{\prime}$
SC8	A	X'FD'
SC9	B	X'FE'
SC 10	C	X'FF'
SCU	D	Current User
STOB	E	Terminal Output Blocked
STOBO	F	Terminal Output Blocked Out of Core
SIOW	10	I/O Wait
SIOMF	11	Master I/O Function Count Too High
SW	12	Wait (Asleep)
SQA	13	Queved for Access (To RBBAT)
SQR	14	Queved for Dynamic Resource
SQRO	15	Queued for Dynamic Resource Out of Core
STI	16	Terminal Inputting
STIO	17	Terminal Inputting Out of Core
SQFI	18	Queued for Real Time Interrupt
SNULL	19	Empty User Slot

SCHEDULER EVENTS

STATE	\#	MEANING
E:IIP	0	I/O in Progress
E:QMF, E:IP	1	Queue for Master Function Count Too High
E:CRD	2	Terminal Read
E:CIC	3	Terminal Input Complete
E:CBL	5	Terminal Output Block
E:CUB	6	Terminal Output Unblock
E:CBK	8	User Hit Break
E:CEC	A	User Hit Control-Y
E:ERR	C	User to be Errored
E:ABRT, E:OFF	E	User to be Aborted
E:WU	10	Wake Up Sleeping User
E:SL	12	Begin Wait (Sleep)
E:QA	13	Queve for Access to RBBAT
E:ART	14	Activate Real Time User
E:UQA	16	Unqueue for Access
E:KO	18	Kick Out of Core
E:AP, E:NC	IA	Associate Shared Processor, Need Core Page
E:QE	1 B	Quantum End
E:IC	1 C	I/O Complete
E:QFI	1 D	Queve for Real Time Interrupt
E:NSYMF	1E	No Symbiont File Entries OR RBBAT comm. Buffers
E:SYMF	IF	Symbiont File Entries or RBBAT Comm. Buffers Available
E:NSYMD	20	No Symbiont Disc Space
E:SYMD	21	Symbiont Disc Space Available
E:OCR	22	Open/Close Request
E:NOCR	23	Open/Close Available
E:CFB	24	Need COC Buffer
E:CBA	25	COC Buffer Available
E:ND	26	Need Swapper Page
E:DPA	27	Swapper Page Available
E:QFAC	28	Queve for ALLOCAT
E:UQFAC	29	Unqueve for ALLOCAT
E:NQW	30	ENQ Wait
E:NQR	31	ENQ Release

SCHEDULER/SWAPPER TABLES

SB:OSUL	SB:FPL	SH:EDA
Out-Swap user Numbers	Processor Numbers of ERETO Processors	Ending Disc Addresses for Swopout
0	07	0 15
First BYTE Contains number of Users in List length SMAXOUT	First BYTE Contains number of Procs in List Length - 2 *SMAXOUT	Length - SMAXOUT

S:BCL

Length Smaxout S:ECL

Length Smaxout S:SCL

SCHEDULER/STATE TABLES/QUEUES

SB:PNL
In-Swop Processor Number
0
Length 4
First BYTE contains number of
Processors in List

Length 2 *PPROCS

S:BADFLG is a one-word cell designed to indicate if any real-time activity has occurred. This will be displayed permanently by ANLZ.

S:IRPINC Cell containing I/O complete priority increment. Default $=4$.
S:IOPINC Cell containing $1 / O$ complete priority increment. Default $=3$.
S:CPINC Cell containing special compute priority increment. Default $=1$.
SB:RQ

S:CUT
S:PRIODEC

S:RTIR
$\mathrm{SB}: \mathrm{HQ} / \mathrm{SB}: \mathrm{TQ} \quad$ Initialized to have SNULL point to chain of empty user slots.
UB:DB
$\left.\begin{array}{|c|}\hline \text { Proc. } \begin{array}{c}\text { of Debugger } \\ \text { if any } \\ \text { (indexed by user }\end{array} \\ \hline 0\end{array} \quad \begin{array}{l}\text { LENGTH SMUIS }+1\end{array}\right]$

[P:OV	
	Proc. 1 of Mon. Overlay Required by user (indexed by user")
0	LENGTH SMUIS ${ }^{+1}$

UB:US	
	User State (indexed by user ")
0	LENGTH SMUIS +

UB:FL

FLINK in state queve (0 TOP) (indexed by user
LENGTH SMUIS +1

UB:BL
Blink in stote queue 0 0 if Bottom) (indexed by user 0LENGTH SMUIS +1

UX: JIT	
	Physical Page of JIT (if in Core) (indexed by user ${ }^{1}$)
0	LENGTH SMUIS+1

UB:MF
Outstanding I/o operations
LENGTH SMUIS+1 7

UB:ASP
PROC of special processor except TEL or CCI cessor except TEL or CC
(indexed by user 0 LENGTH SMUIS+ 7

UB :PRIO-*IA

Current user Execution priority
0
Length $S M U I S+17$

UB:NECB

Totall of ECB's yet
to be posted
Length SMUIS+

Length SMUISPT 7

UB:PRIOB-*IA

UH:WL-*IA

UB:PCT

	User Poge Count (by user ${ }^{\text {f }}$)
	LENGTH SMUIS+1 7

UB: ACP
Proc. \# of
Command Processor
0 LENGTH SNJIS+1 7

MAXG + MAXB + MAXOL
specified by user in

PASS2
NOTE: SMUIS =
UB:SWAPI

Index to Swap device for user
Length SMUIS+1 7

(by user ${ }^{\text {A }}$)
LENGTH SMUIS+1 7

[^0]Added User Tables

UB:MPFLG - exist:s only if NSCPU >0

UB:CALR - exists only if NSCPU >0

Average compute/cal during recent quantum

U:CALC - exists if NSCPU > 0

UH:FLG

2nd Halfword of Users Flogs
0 Length SMUIS+1

Bit	Meaning if Set
0	Unused
1	Command processor break
2	Lock in core for RMA (Gentle)
3	COC event for transaction processing
4	Real time lock in core (absolute)
5	System ghost locked out (real time lock in core)
6	Interrupted during a CAL
7	Transaction processing function
8	Concurrent output mode (keyin) - Special Systems
9	Suspended for reconnection - Special Systems
10	COC line hang-up
11	Just swapped in
12	Swap Quantum not satisfied
13	User swap error
14	Context swap error
15	JIT swap error

UH:D.L - *IA

DO List Pointer and Flags
Length SMUIS+1
15

Bit	Meaning if Set
0	Job is to be aborted
1	Job is to be errored
2	Control-Y received
3	Break received
4-15	Doubleword address of DO list

3B:InIT - presceved over recovery

Started (sot by keyin or sysgen) Stop (bet by koyin)

EB:MINT *

SB:MPSW

0
MURTI-PROC.
TABLE SWITCH

SB:PFLG

SB: RCVA

SB:RCVR

SB:SFLC

SB: STATE

SH:MINQ

8H:MAXQ

0 - not active a eltopped

1. INIT+IDLE

2 - user in progress

SX:SPP

S:ADP.

Byte if : BIC=0.

S:Claty

8:PCUN

* MPIPI - value def epecifying presenco of interprocessor interrupt pair. Concruls interpretation of $\mathrm{SB}: \mathrm{MINT}$.

SSCPU - value def declaring number of CPUs which exist other than master.

1. All tables are NSCPU+1 long.
2. Entry 0 is master CPU.
3. Index by processor no. (software).

7n:rit

13:010

TH:SCRCH

Y:ZADDR

Rasl address of error log buffer for
Elave CPU fayle

Special Multi-Procesaing Cells

8L:BSTRT

$0->$ permit auto start at boot/reboot.
1 -) Inhibit auto start at boot/roboot.

8ssscrch

-

Non-zero M) SCREECH

8 mphys

8:MPDISP

| FLAG SET BY KEYIN TO TRIGGER |
| :--- | :--- |

s:stour

Special Cells - Processor Private

XPSD receivers for the following traps and interrupts are contained In each processors' private page:

NOPPSD	Trap $\mathrm{X}^{\prime} 40^{\prime}$, non-allowed operation	CALAPSD	Trap X'4B', Call 4
UNIMPSD	Trap X ${ }^{\prime} 41^{\prime}$, undmplemented instruction	1 1PT47	Trap $\mathrm{X}^{\prime} 47^{\prime}$, Interprocessor trap ($\times 560$)
STKLIPSD	Trap $X^{\prime \prime} 42^{\prime}$, stack 1 lmit trap	PSD\$T46	Irap X'46', watchdog timer
FIXOVPSD	Trap X'43', fixed point arithmetic	PSDST4C	Trap $X^{\prime} 4 C^{\prime}$. parity orror
FLTF PSD	Trap $\mathrm{X}^{\prime} 44^{\prime}$, Eloating point arithmetic	PSDST4D	Trap $X^{\prime} 4 D^{\prime}$, inatruction exception
DECPSD	Trap $\mathrm{X}^{\prime} 45^{\prime}$, decimal fault	PSDS 157	Interrupt $\mathrm{X'}^{\mathbf{5 7}}{ }^{\prime}$
CALIPSD	Trap X'48', Call 1	PFSR46PSD	Trap X'46', receiver during power fail eafe
CAL2PSD	Trup X'49', Call 2	POWROFY	Interrupt/Trap X's ' ${ }^{\prime \prime}$ power off
CAL3PSD	Trap $\mathrm{X}^{\prime} 4 \mathrm{~A}^{\prime}$, Call 3		

The following XPSD receivers for miscellancous purposes are also located in the private page:

CTRAPSD	Transfer to central trap handler
RCVPSD	Entry to recovery/T:SCREECHS
BLKPSD	Block uscr on slave CPU

8:PNO

This cell exists in VPXPSDT, the CPU private page, and hence 1s unique for each processor. Master is processor 0 . Slave numbers are set by MOOSE.

8:CLOCK4

Clock 4 , the subjactive counter, will tick indirect this coll.
specs

Trap handier temp for register avo

rusel

Doubleword teap for T: PUhiE and entry. TEMPSBREG

Temp cell for use while acquiring last branch rogister.

TEAP
TEPPI
TTMP2

Doubloword aligned temp block for goneral miscellaneoue use.

H8nsu

Sonse awitch settings at povor fail saic.
malance

Balanco counter for powor fall safo.

offcrter

Count of power off interrupts:

ONCNTER

Cornt of power on interrupts.

NRSST

Fiag for multiple power off interrupte. .
pD:psp

PSD at time of slava CPU fault.

Tirecs
srecl

Register block one at PFSR or registers at CPU fault.

FI:CF

Condition codes and floating mode bits at hardware fault.

FB:END

Ind action deiver for CPU fault handler.

Fault hadier temp cell.

Fault handier temp cell.

reserved

Error los buffer for slave faule handers.

Multi-Processing Performance Monitor Celle
 C:SIDLE

SLAVE 1 IDLE

C:Suser

sLAve 1 coipute
sLAve 2 compute
sLAve 3 cotipute

C: SCHED

- of schedules for master
- of sciedules for slave 1
slave 2
slave 3

Multiprocessing Sysgen Built Tables

If no :SCFU comand is detected, PASS2 builds a dumay comend.
Froa thia comand the load module STABLES is built. This module
contain the following tablee and absolute DEFs.

Abeolute DPTII

$$
\begin{aligned}
\text { HSCPU } & \text { of slave CPUe (froe NSCPU) } \\
\text { HPIPI } & \text { - } 1 \text { If MPIPI specified } \\
& =0 \text { If MPIPI not epecified }
\end{aligned}
$$

- These are the only atries in STABLES if a non-multi-processins cyster, 1.e., NSCPU = O, MPIPI = 0, 8:ADR is a vord long.

Tablea

nema	entry eise	lensth	eontents
s:rcus	wd	mscrutl	0
S3:MPSW	byte	MSCPU+1	0
83: PTLC	byte	NSCPU+1	0
8X: SPP	byte/hw	MSCPU+1	0
SB:ETATE	byte	MSCPutl	0
SE:INIT	byte	uscrut1	bit 7 - 1 if auto epecified for ontry
s:crama	vord	WSCPU+1	0
SB:MINT	byte	HSCPU+1	ENTS value apacified for entry
SH:MINQ	bsm	nscrutl	Munq/2 for entry
SH:MAXQ	In	MSCPU+1	Maxq/2 for entry
8:ADR	word	RSCPU+1	0
8B:SFLC	byte	MSCPU+1	0
ss:RCVR	byte	NSCPU+1	0
83:RCVA	byte	MSCPU+1	0
SL:BETRT	wd	1	1 If NOAUTO apecified
8:MPKYM	wd	1	0
8:MPDISP	wd	1	0
8L:MPCALR	vd	1	10
8:Stour	wd	1	3000
FB:FLT	byte	Wecrutl	0
T:EADDR	word	mSCPU+1	0
TB:EFLC	byte	MSCPut1	0
T:PFSR	word	1	0
FH:SCRCH	halfword	MSCPUT1	0

Tables Displaced by Processor Number (Located in M:SPROCS)

** Zero if not in core.
**k Disk Pack Swapping Systems only.

P:AC

| Access codes for top 16 virtual pages (special processor area) | $P: A C$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 31 | 63 |

PBT: LOCK

PBT:LOCK
Processor locked in core bit table - length $=($ PNAMEND +31$) / 32$ words
1 bit/processor - indexed (from left) by processor number.

${ }^{ \pm}$T - Teletype Command Processor
B - Batch Command Processor
G - Ghost Command Processor

MAXOLVY number of monitor overlays plus one (plus one because entry 0 in processor tables is not used)
SPSIZE total number of spare pages required for one shared processor (a PASS2 parameter)

PNAMEND
PPROCS
index number plus one of last shared processor root entry index number plus one of last shared processor overlay entry

GHOST JOB TABLES-Interrupt Altered

MAXG - Maximum number of Ghost Jobs

S:GJOBACN
$\left[\begin{array}{c}\text { Account for Ghost (Indexed by } \\ \text { Ghost Job Number) }\end{array}\right]$ Length = MAXG-

ON-LINE MEMORY POINTERS

CP-V TECHNICAL MANUAL

PYHSICAL MEMORY ALLOCATION

SECTION VF. 01
PAGE 2
4/1/74

SYSTEM LAYOUT ON RAD

BSA
BOOT, ABSOLUTE COPY OF MONITOR, MONITOR OVERLAYS, AND SHARED PROCESSORS

SWAP STORAGE

PER
PERIPHERAL STORAGE AREA (SYMBIONT)

PEA
FILE STORAGE AREA

The disc address of JIT is always maintained in core. The JIT page contains the disc address of the remaining portions of the user's program. The shaded area represents a sufficient number of sector times to allow for initializing the command chains.

SWAPPING RAD GRANULE TABLE

M: SGP is a word table containing pointers to the swapping granule table for each RAD swap device.

There are four types of granule tables:

Type	7212		0	PSA	(Hex)
0	7232		0	PSA	40
1	7232		81	PSA	100
2	7232		101	PSA	200
3	3214		0	PSA	80
4	3214	81	PSA	100	

Vertical words are granule positions. Horizontal is track or band number. In each word tracks go from R to L. If bit is set, this granule is available.

Swapping Granule Table
PSA RAD TYPE 0

PSA RAD TYPE 1

Type 1

PSD RAD TYPE 2

Type 2

PSA RAD TYPE 3

Type 3

PSA RAD TYPE 4

Type 4

PSA RAD TYPE 5

Type 5

Name	Value				Description			
	PSA Type	0	1	2	3	4	5	
MB:GAM1	63	7	7	7	7	7	Granule address mask.	
MB:GAM2	1	3	7	15	3	7	Mask to extract \#SGP words/granule.	
MB:GAM3	-1	-2	-3	-4	-2	-3	Shift count to convert SGP index to granule	

Note: 1. Swapper related tables contain an entry for each swap device. The total number of entries is defined by LSWAP+1.
2. The user table, UB:SWAPI, contains the index into the swap tables.

$M: C L B G N$	Beginning of swap command list.
$M: F R E E$ \#GRAN	Number of available granules.
$M: H L T I C$	TIC to be inserted at end of command list.
$M: J I T P A G E$	Granule position for next JIT.
$M: S G P$	Address of SGP table.
$M: S N S D A$	Buffer for sense information.
$M: S W A P D$	Device address.
$M: S W P E N D$	Highest possible PSA seek address.
$M: W C K B C L$	Beginning of command list for write check.
$M: W C K E C L$	End of command list for write check.
$M B: S D I$	Swapper DCT index.
$M B: S F C$	Swapper function code.
$M B: \# R T R Y$	Number of remaining retries.
$M H: C L E N D$	End of swap command list.


```
DCT Tables
```

DCT15 - *IA

Channel BLINK in IOQ Tables - see DCT14 -
0

it DCT5 does not indicate "DEVICE BUSY"

0 implies monitor I / O permissible
$\neq 0$ implies this is the user number of real-time user who may issue M :IOEX requests
DCT12 - *IA


```
DCT24 - *IA - RMA TABLE
    - Byte table
    - Parallel to DCTI
    - Entry contains:
```


$$
\text { If } \mathrm{Bit}=1 \text {, }
$$

NOPARTD - Device not partitionable PERDWND - Device does not exist (perm. down)

PERDWNC - Controller does not exist
01 = Primary
$10=$ Alternate
$11=$ Both
NOPARTC - Controller not partitionable DOWN - Device is down as used in previous CP-V (UTS), only then it was in DCT3 as "Down" flag STOP allocation

DCT25

The following tables are idexed by DCT22
Disclims
0 31 Largest valid SECTOR ADDRESS + 1
NCYL

NTPC

NSPT

CYL $\$$ SHFT

TRK \$SHFT

SEC\$SHFT

Number of tracks/cylinder. For RAD, 1 cylinder assumed.

Shift instruction to position CYL portion of seek address of the form SLS, 9 XX or NOP if not present

Same as above except for track SLS, 8 XX
Number of cylinders on device. 0 for RADs.

Number of sectors/track

Same as above except for SEC SLS, 7

Device Type-Class Tables (DTT)
The directing label table exists in three parts.
The first part consists of the device type or mnemonic table, the parallel assignment tables, $O B:\left\{\begin{array}{l}B \\ O \\ G\end{array}\right\} T X$, and the descriptor tables. If the device appears in the Resource Allocation Table (SH:RNM), then, $O B:\left\{\begin{array}{l}O \\ G\end{array}\right\} T X$ contains the index into SH:RNM.
If not, the entries will contain either the appropriate DCT index or the logical stream index i SH:LNM. The TB:SZ, TB:MAX, TB:FLGS, and TB:FLGSI tables contain descriptors of the physical device attributes. The information is developed from the :DEVICE card in SYSGEN.

The second part consists of operational labels and the assignment table. This information is developed from the :OPLBLT card in SYSGEN.

The third part consists of logical stream names and the default device type to which they apply. This information comes from :LDEV in SYSGEN.

4

Standard Defaults for these Resource Tables

	$\begin{aligned} & \mathrm{CO} \\ & \text { (core) } \end{aligned}$	$\begin{aligned} & 9 \mathrm{~T} \\ & \text { (tapes) } \end{aligned}$	$\begin{gathered} 7 \mathrm{~T} \\ \text { (tapes) } \end{gathered}$	SP (privare disk packs)	MC
SH:RTOT	X'7FFF'	$\# 1$	\#	"	1
SH:RBSUM	X'7FFF'	\#	\#	\#	1
SB:RBMX	X ${ }^{10}$	*	\#	\#	1
SB:RBDF	$\mathrm{X}^{\prime} \mathrm{C}^{\prime}$	0	0	0	0
SH:RBCU	0	0	0	0	0
SH:ROSUM	X'7FFF'	*	*	\#	1
SB:ROMX	$X^{\prime} 10^{\prime}$	$4-1{ }^{2}$	\#-1	\#-1	1
SB:RODF	$X^{\prime} C^{\prime}$	0	0	0	0
SH:ROCU	0	0	0	0	0
SH:RGSUM	X'7FFF'	\#	\#	\#	1
S8:RGMX	X'FF'	$\#-1{ }^{2}$	*-1	\#-1	1
SB:RBDF	X'FF'	$\#-1{ }^{2}$	\#-1	\#-1	1
SH:RCU	0	0	0	0	0

[^1]

* A DCT index appears as the DCT index into the DCT tables.

A RAT index appears as \#DEVICES+l+RAT index; RAT index = index into SH:RNM
An LDEV index appears as \#DEVICES+1+SV:RSIZ+1+LDEV index; LDEV index = index into SH:LNM; \#DEVICES = DCTSIZE

If TB:FLGS Type $=10$ (TAPE), then

TB:FLGS 1

where
DD is the Dual Density indicator
$0=$ device does not have dual density capability
1 = device has dual density capability
CC is the Code Conversion indicator
$0=$ device does not have code conversion capability
1 = device has code conversion capability
POTT is the Potter tape drive indicator
$1=9 \mathrm{~T}$ device for which sense and set correction orders are invalid

SV:LSIZ Value definition defining the number of logical devices defined, 15 maximum.
SV:LSIZP Value definition determined as follows:

\#LDEV	SV:LSIZP
$0-3$	2
$4-5$	3
6	4
$7-8$	5
$9-10$	6
11	7
$12-13$	8
$14-15$	9

SV:LSIZPA Value definition equal to SV:LSIZP*9.

OV:NMSZ
SH:LNM
SB:LTY

Value definition equal to TYPMNSZ+OV:SIZ+1+SV:LSIZ+1.
TEXT of label as specified on :LDEV at SYSGEN time.
Default device type.

The following logical device filenames will always be present:

Cl - Input stream (card)
L1 - Output stream (printer)
P1 - Output stream (punch)
-required to be device type $C R$
-default device type LP
-default device type CP or LP (if no punch on system)

AVR TABLES

AVR Table Bit Definitions

AVRTBL (AVRTBLSIZ=number of tapes, $A V R T B L N E=$ tapes + private packs, BATAPE=first tape DCT index) (EQUed in PASS2)

Entry Format for Labeled Tapes


```
Serial Number Four-byte EBCDIC serial number of volume mounted.
PUB Device public (1) or private (0).
POS Tape at beginning (1) yes (0) no.
AVR Volume serial number verified, yes (1) or no (0).
SCR Scratch tape mounted, yes (1) or no (0).
HLD Volume can be dismounted, yest (1) or no (0).
PTL PTL option specified in last M:CLOSE, yes (1) or no (0).
UPL Labeled tape, out or outin.
OPN Tape position known by system, yes (1) or no (0).
NOU Number of DCBs open to files on the volume.
TPOS Number of tape marks between load point and present position
of tape.
in use Set when drive is allocated.
```

Entry Format for Direct Access Devices

Serial Number

PUB Device public (1) or private (0).

PRIM

NOU
HGPDISP

AVR Volume serial verified and cylinder BIT MAPS moved to allocation table, yes (1) or no (0).
INIT Private volume being initialized, yes (1) or no (0).
VER Verification in progress (1) or not active (0).
MTD Mount requested (pending), yes (1) or no (0).
EBCDIC serial of current volume. This field and all other flags are reset to zero when system dismounts volume.

Volume mounted is primary volume in a private volume set, yes (1) or no (0).
Number of DCBs open to files on this volume.
Word displacement from HGP to FWA of allocation table for device.

CP-V TECHNICAL MANUAL

Table Content and Bit Settings

TAPE OR PACK STATUS	PUB	SERIAL	AVR NOU	AVR	AVR ID	SOLICIT	VER	SCR
Premount Public	1	$\#$	1	0	0	0	0	0
Premount	0	$\#$	0	0	$\#$	0	0	0
Available (Empty)	0	0	0	0	0	0	0	0
Solicited	1	0	$\#$	$\#$	0	$\#$	1	0
Being Verified	$1-0$	$\#$	1	0	$\#$	0	1	0
Dismount (lock)	1	$\#$	$\#$	1	-1	0	0	0
Private non	0	$\#$	$\#$	1	$\#$	0	0	0
Shareable PRIVATE	0	$\#$	$\#$	1	0	0	0	0
Public (operator)	1	$\#$	$\#$	1	0	0	0	0
System	1	0	0	0	0	0	0	0
Scratch	0	$\#$	0	1	$\#$	0	0	1
Premount SCRATCH	0	$\#$	0	0	$0, \#$	0	0	1
Solicited SCRATCH	0	-1	0	0	$\#$	1	0	0

7		16	
TYC		RBC	

Used between end-action and user M:CHECK (or equiv.) for M: PRECORD operations.
\(\left.\begin{array}{l}TYC - I/O completion type

RBC - Remaining record count\end{array}\right\} \quad\)| from register 12 |
| :--- |
| on user end action |

AVRFINMT - Six Words

FILENAME name of the first file on the tape volume (TEXTC).
VSN volume sequence number (binary)
EXPIRATION Julian expiration date (five bytes representing YYDDD in EBCDIC.

ANSFLG5 - One Byte

0	1	2	3	4	5	6	7
A	T	$E_{R_{R}}$		A	R	B_{1}	M
T	C	${ }_{R}$	K	O	L_{P}	S	

AT \quad tape is ANS ($0=$ no, $1=$ yes $)$.
TO type of DCB ($0=$ NON-ANS, $1=A N S$)
ERR error flags $(00=$ no error, $01=$ NOTANS, $10=$ NOT EXPIRED, $11=$ ANS VOL).
AK ANSSCRATCH key-in processed ($0=$ no, $1=y e s$).
RO Access protection ($0=$ unrestricted, $1=$ read only).
BLP BLP option specifiéd ($0=$ no, $1=$ yes $)$. If CPV labeled tape bit set implies no un-blocked records can be written.

MS \quad MOUNT OR SCRATCH ($0=$ Mount, $1=$ Scratch $)$

where DDS is the Dual Density Status indicator
$0=$ density is 1600 bpi (PE)
1 = density is 800 bpi (NRZI)
DDS is only meaningful for output tapes where DD in TB:FLGS1 is 1.
CCS is the Code Conversion Status indicator
$0=$ no code conversion is performed
1 = code conversion is performed between EBCDIC (in core) and ASCII (on tape).
CCS is only meaningful for tapes where CC in TB:FLGS1 is 1.
REW is the rewinding bit, indicating a REW was initiated but the end action has not yet occurred.
$0=$ not rewinding
1 = rewinding - no other operations may start on this drive.
ATO is the Asynchronous Tape Operation flag.
$1=$ a tape spacing operation is in progress and data transfers are not to be initiated - AVRNOU contains the number of operations in progress.
$0=$ data transfers are OK.
RDK is the READ keyin flag.
1 = a READ keyin has previously been received for this user for this tape.

TIE*
LINE $\#$ COUPLED TO

A valuc of 8000 indicates no tabs in effect for the read.
If no read pending, the input buffer aidrest where activation took place.

* Significant only if COUPLE option specified in PASS2

Byte pointer to the current zemoval
point from the output strean for the 1 ine.
$0=$ no bufferz.

Byte pointer to current insertion point into the input strean for the 1 lac. $0=$ no buffers.

[^2]CP-V TECHNICAL MANUAL
SECTION VG. 05
PAGE 2
2/10/76

TRANSLATION TABLES

TTYIN	ASCII to EBCDIC	For TTY
TTYOUT	EBCDIC TO ASCII	
EAFLLC	EAPL Lower Case to EBCDIC	For 2741
EAFLUC	EAPL Upper Case to EBCDIC	Wi th EBCD
EAPL	EBCDIC to EAPL	APL type-ball
ESTDLC	ESTD Lower Case to EBCDIC	For 2741
ESTDUC	ESTD Upper Case to EBCDIC	Wi th EBCD standard
ESTD	EBCDIC to ESTD	Type-ball
SAPLLC	SAPL Lower Case to EBCDIC	For 274l
SAPLUC	SAFL Upper Case to EBCDIC	With selectric
SAPL	EECDIC to SAPL	APL type-ball
SSTDLC	SSTD Lower Case to EBCDIC	For 274l
SSTDUC	SSTD Upper Case to EBCDIC	With selectric
SSTD	EBCDIC to SSTD	Standard type-ball

DOUELELORD TABLES INDEXED BY COC NUMBER

COD: LPC Word 0 contains the logical line number that
corresponds to physical line number 0 on the COC.
Word 1 contains the logical line number that
corresponds to the last physical line on that COC.

63

CP-V TECHNICAL NiNNUAL
SECTION VG. 05
Page 4
2/10/76

READ/WRITE DIRECT INSTRUCTIONS INDEXED BY COC NUMBER

Table Instruction Description ($\mathrm{d}=\mathrm{DIO}$ address)

CO:OUTRS	WD, 7	.30 d 0	Output response
CO:STAT	WD, 10	.30 d 0	Sense receiver status
CO:RCVOFF	WD, 7	.30 d 2	Turn receiver off
CO:RCVON	WD, 7	.30 d 1	Turn receiver on
CO:RCVDOFF	WD,7	.30 d 3	Turn receiver data set off
CO:XDATA	WD,6	.30 d 5	Transmit data
CO:TSTAT	WD,7	.30 d 4	Sense transmitter status
CO:XSTOP	WD, 7	.30 dE	Stop transmit

COC BUFFER LINKAGES

Free Chain: \quad COCHPB is the head pointer. FLINKs occupy word 0 of: the buffer, and are word displacements from COCBUF to the next buffer.

Input, Output, and Tab Buffer Chains: COCIR, COCOR, and TL are the respective head pointers. FLINKs occupy halfword 0 of the buffer, and are the byte displacement from COCBUF to byte 2 of the next buffer in the chain.

The level 0 index granule format is detailed below followed by the level 0 key entry

Master Index Format

where:
$S=\quad 1$ if full-granule size; 0 if half-granule size
BLINK contains the disk address of the preceding index granule, or zero, if none.

FLINK contains the disk address of the next index granule, or zero, if none.

NAV contains the number of significant bytes in the index granule (i.e., points to the next available byte in the index granule).

LEVEL contains the level of the index entries (i.e., contains 0).
A is the added flag and indicates whether or not this index half-granule has been added since the current higher level index structure was created (0 means no, 1 means yes).

KEY is the key entry, shown below
SCR $\quad 1+$ KEYM (see description on 14-38)
$F=\quad 1$ if FIT is in this granule; 0 , otherwise. The FIT will occupy the final 80 words, if present.

KEY ENTRY

Byte

KL contains the number of bytes in the key
KEY contains the character string that indentifies the record
BLDISP contains the byte displacement of the record segment associated with this key entry within the data granule pointed to by DABLK.

Section
 VH. 01
 Page 3
 4/1/74

BLKSIZ contains the byte count of the initial size of the record segment associated with this key entry. BLK SIZ is never updated.

DABLK contains the disk address of the data granule that contains the record segment associated with this key entry.

BLK contains the count of the number of bytes of data currently in the record segment associated with this key entry (BLK \leq BLKSIZ).

FAK indicates whether or not this entry is the first appearance of this key (0 means no, 1 means yes).

EOF indicates whether or not this entry is the last undeleted entry in the file (0 means no, 1 means yes).

C indicates whether or not this record segment is the final segment of the record (0 means yes, 1 means no).

The farmats of the higher-level granule and the higher-level key entry are detailed below.
Master Index

Key Entry

where

KL contains the number of bytes in the key. If the key entry in the level 0 half granule pointed to by DABLK is not the first appearance of that key at level 0 , the high order bit of KL (at level 1) is set.
KEY contains the key from the first key entry in an index granule on the lower level.
SCR is a field in the DCB and equals the maximum key length +1 .
DABLK contains the disk address of the index granule on the lower level.
BLINK contains the disk address of the preceding index.granule at this level, or zero, if none.
FLINK contains the disk address of the next index granule at this level or zero, if none.
NAV contains the number of significant bytes in the index granule.
LEVEL contains the level of the index entries (the lowest is level 0 , the next is level 1 , and so forth).
A only meaningful at level 0 i always C on higher levels.

ACCOUNT DIRECTORY

An account directory consists of a master index. An account directory index granule consists of entries that contain an account number and the disk addresses of the file directory associated with the account. There is one account directory for all public files in the system. Each private volume set has its own account directory and, for CP-V, only one account is allowed per volume set. The permanent information about the public file account directory is contained in the ACNCFU. ACNCFU is not used for private account directoriss. A private account directory is always located on Granule 1 of the primary volume in the set.

FORMAT FOR THE PUBLIC FILE ACCOUNT DIRECTORY
Master Index
Word 0 ELINK

Entry Format

4

where

S
ACN
DABLK
DUBLK
FAK
EOF

C $\quad=0$; has no meaning for an account directory.
BLINK, FLINK, and NAV

DUAL
DFLINK, DBLINK same as FLINK and BLINK except that these disk addresses apply to the dual structure for the directory.

FORMAT FOR A PRIVATE VOLUME SET ACCOUNT DIRECTORY

FILE DIRECTORY

A file directory consists of a Master Index (MI) and a set of File Information Tables (FITs). A file directory index granule consists of key entries that contain the name of a file in the associated account and the disk address of the file's FIT. A FIT is located on a granule allocated to the file and contains all the information necessary to open a file. Information about the file directory itself (its mini-FIT) is contained in the last three words of the first block of its master index. The information from the mini-FIT is maintained in the FILCFU when the file directory is being updated. Public and private file directories have the same formats. However, since there is only one account per private volume set, there is also only one file directory. The file directory always begins on granule 2 of the primary volume in the set.

CP-V TECHNICAL MANUAT

SECTION VH. 03
PAGE 2
10/31/74

FORMAT FOR PUBLIC AND PRIVATE FILE DIRECTORIES
Granule Format
Word 0 (

Koy Entry Format

[^3]
CP-V TECHNICAL MANUAL

Section VH. 03
Page 3
2/10/76
E set if directory is empty.
FSP disk address of free granule pool (only in first directory granule).

where:

$S=1 \quad$ for full-granule size; $=0$, for half-granule size .
KL contains the number of bytes in the key.
FNE contains an EBCDIC file name.
DABLK contains the disk address of the file's FIT.
BLK Descriptors.
dynamic descriptors
bit 0 is 1
bit 1 is 0 in file directory; but set to 1 in DCB field if we are creating a new synonymous file.
bit 2 is 0 in file directory; but set to 1 in DCB field if a synonymous file is being processed
bit 3 is unused
bit 4 is 1 if the file has been modified since it was backed up by FILL
bit 5 is 1 if the file ahs been modified since it was last backed up by an Increment
bit 6 is 1 if the file has been modified since it was last backed up by a Saveall
bit 7 is 1 if the file has been modified since the last Fill
static descriptors
bit 0 is 1 if the file has a password
bit 1 is 1 if the file is a SYNON file
bit 2 is 1 if the file organization is random
bit 3 is reserved for expansion
bit 4 if 1 if the file is not to be automatically backed up
bit 5 is 1 if the access date is not to be updated
bit 6 is 1 if the file is not to be semi-automatically deleted
bit 7 is unassigned, but see the X'11' VLP, below
entry descriptors (unchanged)
bits $0-4$ are not used
bit 5 is 1 (FAK)
bit 6 is 1 if this is the last FD entry for the account (EOF)
bit 7 is 0 (C)
FAK $=1$; indicates that this entry is the first appearance of this key.
EOF indicates whether or not this key entry is the last in the file (0 means no, 1 means yes).
$C=\quad 0$; has no meaning for a file directory.
DBLINK, DFLINK, BLINK, FLINK, and NAV have the same meaning as is previous Account Directory formats. NGVAL, GAVAL, have the same meanings as in the FILCFU (see File Directory CFU (FILCFU) later in this chapter).

Words 509 and 510 as specified only for the initial granule of a directory; otherwise, they contain the same dual information as does an account directory granule.

FREE

GRANULE POOL (FSP) ${ }^{\dagger}$ FORMAT

A Free granule Pool (FSP) is a collection of granules chained together with backward and forward links. An FSP granule contains the disk address of available granules that have been previously used by the File or Account Directory to which the FSP belongs. The chained granules that contain the disk addresses are also available. When the cissociated File or Account Directory requires more space, granules will be allocated from the FSP.

where

BLINK contains either the disk address of the preceding granule in the FSP or zero, if none

FLINK contains either the disk address of the next granule in the FSP or zero, if none

NAV contains the word length of the significant data on the granule (i.e., points to the next available word).

DA contains the disk caddress of a free
granule allocated to the directory.

[^4]FILE INFORMATION TABLE (FIT) FORMAT FOR AN ORIGINAL FILE

These coded entries are optional; presence of the entry is indicated by the byte 0 hex code.

See CFU format for meaning of fields

See DCB for meaning of fields.

The maximum size of the FI'L is 80 words. The only limit on the number of read, write, execute accounts and execute vehicles is the 80 word maximum FIT size.
*The FIT starts in word 4 for consecutive files and in the 80 th word from the end for keyed or random files.

Description
ACN is an account number. Each ACN is an cight-byte fiontc entry with trailing blanks. Ii there is no kead AON entry, and ACN can read the file. If there is no wite ACN, no one can write in the file except the ACN that created the file
contains, for keyed tiles, either the byte displacement to the next available byte in the last data granule of the file (SREC), which means that the blocking buffer was truncated; or 0 , which means that the last data granule in the file (SREC) contains 512 words.
specifies whether the file assigned to the DC8 is to be allocated by granules or cylinders ($0=$ granule allocation, $1=$ cylinder allocation). It is only meaningful for public files.
is of the form MMDDHHYY, where
$M M$ is numerical month
DD is day of month
HH is hour of day
$Y Y$ is last two digits of the year, all in EBCDIC bytes
Expiration date may contain the word NEVER followed by three blanks, which indicates that the file does not have an expiration date.
The modification date contains three words. The third word is of the form HHMM, where

HH is a repeat of the hour MM is the minute
file contains no record
contains the disk address of the file's first index granule at level 0.
contains the current number of index and data granules allocated to keyed and consecutive files; or the number of data granules allocated for random files.
is the EBCDIC name of the file in TEXTC format.
contains the disk address of the next available granule in the last cylinder allocated to the file; zero if none.
has meaning only if a multilevel index exists and contains

1. the limiting number of index granules that can be allocated in level 0 and not be reflected in level 1 before the flag, which signals CLOSE to reconstruct the higher level index structure, is set.
2. the value 255, which means that once a higher level index structure exists, it is not to be reconstructed.

LSLIDES is only used for keyed files.
is the number of available words in the entry (not including the control word).
is the number of significant data words in the entry (not including the control word).

ngaval	is the number of avallable pramules in the Last cylinder allocated to the file
noser	specifles whether or not granules are to be allocated on a specific device type. This flag has no meaning for private or randum filles.
NSF	is the number of files synonymous with this file.
0	is a level 1 tlag indicating whether or not a level 1 indox exists in a keyed file ($0=$ no, $1=$ yes).
ORG	is the file organization indicator ($0=$ non specified and is treated as consecutive, $1=$ consecutive, $2=$ keyed, $3=$ random).
PASSWORD	is an eight-byte EBCDIC entry with trailing blanks.
Slides	contains, for keyed files, either
	1. a tally of the number of index granules allocated at level 0 since the current multilevel index structure was created, or if non exists, since the file was first opened.
	2. a tally of the number of index granules allocated at the current level while the multilevel index structure is being (re) created.
	3. the value 255 , which means that a new multilevel index structure should be built when the file is closed (unless LSLIDES in the DCB equals 255 and a level -1 index exists).
Field	Description
LE	is the last entry flag and indicates whether or not this parameter is the last entry in the FIT (0 means no, 1 means yes).
SPARE	contains the number of spare byte positions to be left unused in the end of the current index granule in the event: that the key to be added is the last key in the file.
	SPARE is only used for keyed files.
SREC	contains the disk address of the last data granule in the file. It is only used in the output mode.
TDA	contains, for keyed files, either
	1. the disk address of the first index granule at the top of the multilevel structure, if one exists.
	2. the disk address of the middle index granule, if there are three level-0 index granules and the file is keyed.
	3. 0 , which means that either the file is consecutive, or that the file is keyed and there are at the most two index half-granules.
	For consecutive files, TDA contains the number of records in the file.
$S_{0}=1$	if file has a password, $=0$ otherwise
$S_{1}=0$	
$S_{2}=1$	if file organization is random
$\mathrm{S}_{3}=0$	
$S_{4}=1$	If file is not to be automatically backed up
$\mathrm{S}_{5}=1$	if access date is not to be updated
$\begin{aligned} & s_{6}=1 \\ & s_{7}=0 \end{aligned}$	if file is not to be semi-automatically deleted

> Section VH. 04
> Page 4
> $4 / 1 / 74$

FILE INFORMATION TABLE (FIT) FORMAT FOR A SYNONYMOUS FILE

A synonymous file does not have a FIT, but if a synonymous file is accessed on a NXTF open with FPARAM, an X'08' error return is made with the above information passed as the FPARAM.

* This entry replaces the optional entries on the original file.

$$
i: 1
$$

SECTION VH. 06
PAGE 1
4/1/74

PRIVATE VOLUME SET TABLES

A private volume set is a collection of disk pack volumes that the user has grouped together, containing any number of files with any type of organization. All files on a private volume set belong to the same account. A private volume set is a self-contained entity and contains its own account directory (with one entry) and file directory (which contains information about all files on the private volume set). The account directory for a private volume set is located on granule 1 of the primary volume, and the file directory begins on granule 2. Because volumes can be mounted serially for consecutive files, the file directory cannot extend beyond the primary volume. The formats for the private account and file directories are the same as for the public directories. Every private volume has a Volume Table of Contents (VTOC) which is built by the VOLINIT processor and is located on granule 0 of the volume. The format of the VOTC is shown on the following page.

CP-V TECHNICAL MANUAL	SECTION VH. 06
	$10 / 13 / 74$

VOLUME TABLE OF CONTENTS (VTOC) FORMAT

VOTC Fields

Field
Name Word Meaning

Bit Map

First Sector 6
Number
MAPWD

MAPWL
NSN
NGC

6

4
4
contains the number of words in the bit map.
contains the number of serial numbers in the Serial Number Table.
contains the number of granules per logical cylinder.

SECTION VH. 06
PAGE 3
4/1/74

Field Name	Word	Meaning
NVAT	5	contains the next volume's cylinder 0 allocation table. Each bit represents a granule. If the bit is set, the granule is unallocated. If the bit is reset, the granule is allocated. The first bit, which represents granule 0 is always set allocated. NVAT is only used when a consecutive file extends beyond volume boundaries.
SNT		contains the serial numbers of all the volumes in the private volume set for the primary volume. The position of a serial number represents its volume number. (The primary volume is always volume 1.) The order of the serial numbers never changes, but new volumes can be added to the set, and will be added at the end. For other volumes, this table contains only the serial number of the primary volume. Only the first four bytes of the serial number are carried in the serial number table.
SNTD	3	contains the word displacement from the start of the VTOC to the start of the Serial Number Table.
VSN	(182)	contains the volume serial number (left-iustified and blank-filled to eight by

allocation tables (hgi)

SYSGEN creates an allocation table (called HGP - Heading Granule Pool for each disk device (RAD or disk pack) defined at SYSGEN time. The HGPs are located in ALLOCAT's data (See Section GB) - ALLOCAT) and in CORE starting at the location HGP. (The bit maps for public devices are not in the CORE HGP Tables.) Allocation tables are used to allocate and release granule/cylinder units from symbiont storage areas of a device and the file. An allocation table contains (1) information about the file and symbiont storage areas of a device, (2) the relationship between the device's physical (sector and track) and logical (granule or cylinder) units, and (3) the maps which control the allocation of the granule/cylinder units in the file and in the symbiont storage areas of the device. The system device's allocation table is always the first one and begins at the location HGP. The allocation table format (HGP) is shown below.

Allocation Table Format (HGP)

where

CYL indicates whether the device is allocated by cylinder or granule (0 means granule, 1 means cylinder). All private devices are allocated by cylinder. Disks can only be allocated by granule. Symbiont storage only exists on devices allocated by granule.

$$
4
$$

DCT	5
E	if set, indicates that this portion of the bit map (PER or PFA) is all zeroes (ALLOCAT data).
FLINK	contains the address of the next allocation table, or zero if none. HGP equals the address of the first allocation table in the chain.
LBP, LBO	contains the bit position and word displacement of the last single granule allocated from the bit map (ALLOCAT data only).
NGC	contains the number of granules per cylinder, but only has meaning if CYL is set.
NSG	contains the number of sectors per 512 - word granule for this device (CORE headers only).
NST	contains the number of sectors per track for the device (CORE headers only).
NVAT	contains the next volume's cylinder 0 allocation table (if PRIV is set). Each bit represents a granule. If the bit is set, the granule is unallocated. If the bit is reset, the granule is allocated.
PER bit map	is a map in which each bit represents a granule in the symbiont storage area. (Symbionts are only allocated on devices with granule allocation units). The bits are ordered left to right within a word so that bit 0 of the first word represents the first granule in the symbiont storage area, bit 0 of the second word represents the 32nd granule in the storage area, and so forth. If the bit is set, the granule is unallocated, if the bit is reset, the granule is allocated.
PER MAPWD	contains the word d splacement from the start of this allocation table to the first word of the bit map for the symbiont storage area.
PER MAPWL	contains the number of words in the bit map for the symbiont storage area.
PER first sector	number contains the sector number of the first track in the symbiont storage area. (Sectors are numbered starting with 0.)
PFA bit map	is a map in which each bit represents a granule or cylinder (depending upon the CYL flag) in the file storage area. The bits are ordered left to right within a word so that bit 0 of the first word represents the first granule/cylinder in the file storage area, but 0 of the second word represents the 32 nd granule/cylinder in the storage area, and so forth. If the bit is set, the granule/cylinder is unallocated/if the bit is reset, the granule/cylinder is allocated.
PER MAPWD	contains the word displacement from the start of this allocation table to the first word of the bit map for the symbiont storage area.
PER MAPWL	contains the number of words in the bit map for the symbiont storage area.
PER first sector number contains the sector number of the first track in the symbiont storage area. (Sectors are numbered starting with 0.)	
PFA bit map	is a map in which each bit represents a granule or cylinder (depending upon the CYL flag) in the file storage area: The bits are ordered left to right within a word so that bit 0 of the first word represents the first granule/cylinder in the file storage area, but 0 of the second word represents the 32 nd granule/cylinder in the storage.area, and so forth. If the bit is set, the granule/cylinder is unallocated; if the bit is reset, the granule/cylinder is allocated.
PFA MAPWD	contains the word displacement from the start of this allocation table to the first word of the bit map for the file storage area.
PFA MAPWL	contains the number of words in the bit map for the file storage area.
PFA first sector number contains the sector number of the first track in the file storage area. (Sectors are numbered starting with 0).	
PRIV	indicates whether the device is public or private (0 means public, 1 means private).
SFLNK	contains the address of the next allocation table in the circular chain of similar usage devices (ALLOCAT data only).
TYPE	contains the device type (7 means disk; B means disk pack).

CURRENT FILE USAGE (CFU) TABLES

The CFU tables contain information about the currently open disk files. Each open file, whether public or private, has a CFU table. In the case where an old version of a file exists and a new version is being created, the two versions are considered as different files until the new version is closed, at which time it replaces the old version. If the old version is opened in the input mode at the same time the new version is opened in the OUT or OUTIN mode, each will have a different CFU, but the CFUs are linked together and each is called the secondary CFU of the other. SYSGEN creates a pool of user CFU buffers from the number specified in the CFU option of the Monitor's command. In addition, SYSGEN creates two SYSGEN CFUs called ACNCFU and FILCFU, which immediately precede the user CFU pool. ACNCFU contains information about the public file account directory. FILCFU contains information about the currently referenced public or private file directory. The CFU tables are core-resident in the data area of the Monitor's root. The constants ACNCFU and FILCFU equal the addresses of the account and file directory CFUs respectively. The constant BGRCFU equals the address of the first user CFU buffer, and the constant LASTCFU equals the address of the last user CFU buffer.

The Account CFU (ACNCFU)

Word/Bit

FIELD	WORD	MEANING
ACCTTBL	13	is the word address of the start of the account name entries in the user CFU area.
ACCTCNT	14	is a count of the number of account name entries currently in the user CFU area.
CDAM	2	disc address of the granule of the account directory currently beilig processed.
DCDAM	4	disc address of the dual of the granule of the account directory curi ently being processed.
DBUFF3	10	disc address of the dual of the granule currently being processad in BUFF3 in the INST routines in WRTF.
DFDA	8	disc address of the dual of the FDA (see below).
DIGRAN	9	disc address of the dual supplied by the GETIGRAN routine in WRTF.
DRDA	7	disc address of the dual of the RDA (see below).
E	1	is the empty directory flag and is only one for a short period at the start of a cold boot of a PO tape.
CC1	11	set by a STCF in the FINDFIL routines in $O P N$ and CLS after determiting whether (equal) or not (not equal) the FILCFU is set up for the directory required.
CC1	12	set by a STCF in the FINDFIL routines in OPN and CLS indicating whrther (equal) or not (not equal) the directory to be processed is that of :SYS.
FDA	1	disc address of the start (1st granule) in the account direc ory.
GAVAL	3	disc address of the next granule available from the cylinder most recentiy allocated to the account directory. Unless the system contains public cylinder devices, this ffeid and NGAVAI are always zero.
FREECFU	17	address of the last 8 -word block set up by CLOSE. Whenever a disk file is closed, the address in FREECFU is decremented by 8. If the CFU to which it now points is not active, the CFU for the file being closed is moved to this CFU and the original CFU is clobbered. If the CFU being pointed to is active, FREECFU is reset to the address of the last 8 -word block.

NGAVAL

NAMTBL

NAMTBLE

NEWFD

RDA

REDFLGS

SIGCLS

TDA

WORD
3

15

16

0

6

18

12

5

MEANING

the number of granules still unallocated from the cylinder most recently allocated to the account directory.
word address of the start of the file name entries in the user CFU area.
word address of the next avallable word in the user CFU area into which a file name can be placed.
is a flag used in CLS to indicate whether or not a new file directory is being created.
disc address of the granule requested to be read by the REDSEC routines in RDF.
control flags used by the REDSEC routines in RDF.
flag indicating whether (not zero) or not (zero) a CFU with a name has been released since the last restructuring of the user CFU area.
always zero indicating that no multi-level structure exists.

The File CFU (FILCFU)

where:

FIELD	WORD	MEANING
ACN	9,10	the eight characters of the account name of the current file directory.
CBLINK	16	the blink of the granule indicaced by CDAM.
CDAM	2	disc address of the granule of the file directory currently being processed.
CMD	0	displacenent in the appropriate account directory granule of the entry for the current file directory. This field is only used when a new file directory is belng created.
DCDAM	4	dual disk address of the granule pointed to by CDAM.
DFDA	3	disc address of the dual of the fina (see below).
FDA	1	disc additess of the start (1st granule) of the file directory.
GAVAL	3	disc address of the next granule available from the cylinder most: recently allocated to the file directory. This field contains zeros if there are none left from the last cylinder or if the directory is being allocated on a granule device.
NGAVAL	3	the number of granules still unallocated from the cylinder most recentiy allocated to the file directory.
FITDA	6	disc address of the file information table during OPN and CLS.
FSP	7	disc address of the start of the free sector pool or zero.
NFD	17	number of granules in the file directory.
NFIT	17	number of random files in the current account.
NFSP	18	number of granuies in the free sector pool.
P	0	is the private flag indicating whether (one) or not (rero) the curaent file directory is from a puivate pack set.
TDA	5	always zero indicating that no multi-level structure axist

012345678910111213141516171819202122232425262728293031

Field

Name	Word	Meaning
A	0	Active flag, indicating whether or not a DCB is associated with this CFU (0 means no, 1 yes).
ACCT	2	For non-star public files, this is a doubleword index to a table of account names. The base address of the table is in ACNCFU+13.
CCBD	4	For keyed files only, either the byte displacement to the next available byte in the last data granule (SREC) which means that the blocking buffer was truncated, or 0 .
D	0	Indicating whether $(=1)$ or not $(=0)$ to release the granules of the file during close.
DCTX	2	For private pack files, the DCT index of the primary volume as mounted.
E	1	For keyed and consecutive files, $=1$ if file contains no records, 0, otherwise.
FDA	1	For keyed files, the disk address of the first level 0 Master index granule. For random and consecutive files, the disk address of the first granule of the file.

FNE	2	For non-star files, this is a word address to a table of file names in TEXTC form.
FITLOC	6	For random files, the disk address of the file information table (FIT).
FUN	0	The function of the DCBs associated with this CFU $(1=\operatorname{In}, 2=$ OUT, $4=$ INOUT, $8=$ OUTIN).
G	3	For random files, if set indicates a newly allocated file being cleaned.
GAVAL	3	The disk address of the next available granule in the cylinder most recently allocated to this file or zero.
GZAP	3	For random files, the address of the monitor buffer in which the cleaning data is kept. Only meaningful if G is set.
LDA	7	For keyed files, the disk address of the final level zero master index granule. For consecutive files, the disk address of the final granule of the file.
NGAVAL	3	Tally of the number of available granules in the cylinder most recently allocared to this file.
NOU	0	Tally of the number of DCBs currently associated with this CFU.
\bigcirc	0	For keyed files, a flag indicating whether $(=1)$ or not $(=0)$ a level above the level 0 master index exists.
P	0	Private flag, indicating whether $(=1)$ or not $(=0)$ the file associated with this CFU is on a private pack.
R	0	Random flag, indicating whether $(=1)$ or not $(=0)$ the file associated with this CFU has random organization.
RD	0	Read has occurred flag, indicating whether $(=1$) or not $(=0)$ a read CAL has been executed for the file associated with this CFU during this open.
S	0	Shared flag, indicating whether $(=1)$ or not $(=0)$ the DCB (s) associated with this CFU have the share specification.
SCFU	4	Word address of the secondary CFU (if any) associated with the current CFU.
SIZE	5	For consecutive files, a tally of the number of records currently existing in the file. For random files, a tally of the number of granules in the file.
SLIDES	0	For keyed files only, a tally of the number of master index granules at level 0 which are not reflected in a higher level index. If this value is 255, it indicates that a threshold has been exceeded which indicates that the upper level indices should be (re) built.
SREC	6	For keyed files only, the disk address of the final data granule in the file.
SW	0	Shared write flag, indicating whether $(=1)$ or not $(=0)$ a modification to the file is currently in progress.
TDA	5	For keyed files only either the disk address of the top of the upper level index structure if the upper exists, or zero.
W	0	Write flag, indicating whether (=1) or not $(=0)$ the file contents have been modified during this open.

This appendix contains the formats for the three kinds of DCBs created by the monitor: files, devices, and labeled tape. Following each format, the parameter fields of the DCB are described in alphabetical sequence by their mnemonic. All referenced addresses have word resol tion unless otherwise specified.

FILE DCB

Figure A-1 shows the format of the DCB for consecutive, keyed, and random files. All single fields are applicable to the three kinds of files. Fields shown with a heavy border depict differences between consecutive, keyed, and random. Shaded fields are not used by the DC.B.

Figure A-1. Format of File DCB

Section VH. 09
CP-V TECHNICAL MANUAL
4/1/74

Figure A-1. Format of File $D C B$ (cont.)

Word 19

Words $22 \rightarrow n$ are used for variable length parameters.

Field	Description	Word
ABA	Contains the address of the user's routine that will handle abnormal conditions resulting from insufficient or conflicting information. (The monitor returns to ABA in the FPT if the abnormal condition is the result of a device abnormality.)	4
$A C D$	contains the word displacement to the user's account number in the $D C B$ relative to the start of the variable length parameters. (FLP + ACD $=$ FWA of the EBCDIC account number.)	21
ACS	is the file access indicator $(0=$ none specified and is treated as sequential, $1=$ sequential, 2 = direct). ACS is only meaningful when a file is first written in the OUT or OUTIN mode. If a file has consecutive organization, OPEN always sets ACS to sequential (regardless of the access specified). If a file has keyed organization and access is not specified, OPEN leaves $A C S$ unchanged and the residual $A C S$ value applies. If a file has keyed organization and sequential access is specified, the keys written must be in ascending order. However, if the organization is keyed and direct access is specified, the keys can be written in any order (the monitor sorts them into ascending order). ACS is not used by random files.	5
ADDER	contains the size of a single entry in the master index structure or directory for operations on keyed files or directories.	14
AGE	is used to measure the most recent activity on the $D C B$ so that buffer truncation can be made more efficiently.	9
ARS	contains	4
	1. the actual number of data bytes transferred to or from the user following a read or write. 2. the number of records remaining to be skipped following a PRECORD operation that has terminated due to an end-of-file or a beginning-of-file condition.	
ASN	indicates the assignment type currently in effect for the $D C B(0=$ null, $1=$ file, $2=$ Xerox labeled tape, 3 = device, $X^{\prime} A^{\prime}=A N S$ labeled tape).	0
BBUD	indicates whether or not the blocking buffer (BUF1) has been changed since it was last read or initialized ($0=$ unchanged, $1=$ changed $)$. This flag is used to determine whether or not BUFI needs to be written out to the data granule specified in BCDA before truncating the buffer.	16
	BBUD is not used by random files.	
BCDA	contains the disk address of the data granule currently in the blocking buffer (BUF1).	15
	BCDA is not used by random files.	
BLK	contains	6
	1. the byte count of the record segment pointed to by either CBD or PBD, depending upon the point in time. Not applicable to random files.	6
	2. the number of bytes to be transferred by the $1 / O$ routines whenever called.	
BRS	indicates whether or not the record segment pointed to be CBD or PBD, depending upon the point in time, is blocked ($0=$ unblocked, $1=$ blocked).	16
	BRS is not used by random files.	

During an open BRS, indicates whether the 'TEST' option was indicated in the open FPT

 ($0=$ not test, $1=$ test).Field
BUF
BUFX

CMD
contains

1. the byte displacement to the current key entry in the Master Index Buffer (BUF2) for keyed files. CMD, along with TRN and DCBCDAM, points to the current position in the file. For consecutive files, CMD contains a word position in the granule pointed to by DCBCDAM. None of this is applicable to random files.
2. the byte displacement to the current entry in the Account Directory or File Directory index buffer (BUF2) when the file is being opened or closed.

CRECNO contains the current record number. It is set to

1. 0 if at the beginning of the file.
2. the number of records in the file (obtained from TDA in the CFU) if at the end of the file.
3. the sequential record number of the record most recently read or written.

CRECNO is only used for consecutive files.

CYL

Field	Description	Word
DCBCDAM	is used when CFUA points to a user CFU for keyed or random files and contains the disk address of the current index half-granule in the Master Index Buffer (BUF2). If CFUA points to the Account or File Directory CFU, CDAM in FILCFU or ACNCFU contains the disk address of the current index half-granule in BUF2. For consecutive files, DCBCDAM contains a disk address of a granule, reflecting (in conjunction with CMD) the location in the file at which the most recent data transfer operation took place.	21
DESC	is used as temporary storage for file descriptors during open and close. For private files, DESC resides in bits 8-14.	17
DIR	indicates the direction of the read operation ($0=$ forward, $1=$ reverse $)$.	0
	DIR is not used by random files.	
EGV	is the event-given flag and indicates whether or not the completion code posted in the TYC field has been communicated to the user's program by the CHECK routine ($0=n o, 1=$ yes).	0
	The CHECK routine is called either directly by the user or indirectly by the monitor, depending upon the WAIT, ERR, and ABN options in the FPT.	
EOP	is the ending operation indicator ($0=$ other, e.g., rewind, $1=$ read. $2=$ write). Specifies the type of I/O operation currently or last performed.	0
	EOP is not used by random files.	
ERA	contains the address of the user's routine that will handle error conditions resulting from insufficient or conflicting information. (The monitor returns to the ERA in the FPT if the error condition is the result of a device failure.)	3
EXT	is the file extension flag and indicates whether OPEN is to position to the beginning or end of a specified file ($0=$ beginning-of-file, $1=$ end-of-file).	0
EXTRND	is set to one if the NLR field is to be logically appended to the RSTORE field (NLR being the most significant field) for a random file. Otherwise, it is set to zero.	5
FCD	indicates whether the DCB is opened or closed ($0=$ closed, $1=$ opened).	0
FCl	indicates whether the DCB has ever been closed. This flag is set when the DCB is first closed and then never reset ($0=\mathrm{DCB}$ has never been closed, $1=\mathrm{DCB}$ has been previously opened and closed).	0
FCN	indicates the current number of $1 / O$ operations that have been initiated but not completed, for this DCB.	7
FILI	indicates the file option last specified ($0=$ none specified and is treated as release, $1=$ release, 2 save).	5
FLD	contains the word displacement to the file name in the DCB relative to the start of the variable length parameters (FLD + FLP $=$ FWA of the EBCDIC file name).	21
FLP	contains the address of the start of the variable length parameters in the $D C B$ (called the file list-pointer).	6
FPARAM	contains the receiving address of the user's 90 -word buffer to which the variable length parameters from the file's FIT are to be passed.	11
FUN	indicates the file mode function ($0=$ null, $1=1 \mathrm{~N}, 2=$ OUT, $4=$ INOUT, $8=$ OUTIN). Since the monitor does not distinguish between INOUT and OUTIN on random files, OUTIN is set the same as INOUT for random files.	1
HBTD	is the I / O handler's byte displacement indicator and is used whenever the I / O routines are called to specify the byte displacement within QBUF into which the data transfer is to begin.	0

Field

IMT is the image-type flag and indicates the type of key entry in BUF2 (0 - Account or File Directory key, $4=$ user's file key).
contains the limiting number of contiguous index half-granules that can be allocated in level 0 and not be reflected in level 1 before the flag, which signals CLOSE to reconstruct the higher level index structure, is set (i.e., before SLIDES in the CFU is set equal to 255).

LRDLO is only used for keyed files.
only has meaning if a multilevel index exists and contains

1. the limiting number of index half granules that can be allocated in level 0 and not be reflected in level 1 before the flag, which signals CLOSE to reconstruct the higher level index structure, is set.
2. the value 255, which means that once a higher level index structure exists, it is not to be reconstructed.

LSLIDES is only used for keyed files.

MIUD indicates whether or not the Master Index Buffer (BUF2) has been changed since it was last read or initialized ($0=$ unchanged, $1=$ changed). This flag is used to determine whether or not BUF2 needs to be written out to the sector specified in either DCBCDAM or CDAM in FILCFU or ACNCFU before truncating the buffer.

NACUP indicates whether the file's descriptors indicate that the last access date is not to be updated ($0=$ may be updated, 1 = may not be updated).

NLR indicates whether or not the record segment pointed to by CBD is the first record in a conis only meaningful during a WRITE operation.DescriptionNormally, index granules are allocated on DP. However, if all the devices of the normallyallocated type are saturated, the system attempts to allocate on an alternate device. Theorder of allocation for data granules is DP and RAD regardless of the NOSEP flag. The orderof allocation for index granules also is DP and RAD if the NOSEP flag is reser. If the NOSEPflag is set, index granules are allocated like data granules. This flag has no meaning for pri-vate files.
NOSEP is not used by random files.
NRA indicates the number of recovery tries that may be attempted before a device error message is to be logged.
NRT indicates the number of recovery tries remaining before a device error message is to be logged.
NWK indicates whether or not NEWKEY was specified in the M:WRITE FPT ($0=$ replace an existing key, if the key does not exist, take an abnormal return; $1=$ write a new key, if the key already exists, take an abnormal return). If ONWK is set, the NWK flag is ignored.
NWK is only used for keyed files.
NXTA . is the next account indicator and specifies whether this account (i.e., the account number in the $\mathrm{DCB} / \mathrm{JIT}$) or the next account in the Account Directory (i.e., the one following the account named in the DCB is to be assigned to the DCB at OPEN $(0=$ this account, $1=$ the next account). If an account number is not specified in the DCB and the NXTA indicator is set, the first account in the Account Directory is put in the DCB and nothing more is done unless NXTF is also set. The previous is not applicable for private volumes. After a file is open, the bit is set to 1 if the $D C B$ is open to a star file (see Glossary); otherwise, it is set to 0 .
NXTF is the next file indicator and specifies whether this file (i.e., the file named in the DCB/FPT) or the next file in the File Directory (i.e., the one following the file named in the $D C B$) is to be assigned to the $D C B$ at OPEN. If a file name is not specified (in either the DCB or FPT), the first name in the File Directory is put in the DCB and assigned ($0=$ this file, 1 = next file).
ONWK indicates whether or not ONEKEY was specified in the M:WRITE FPT ($0=$ check NWK flag, $1=$ if the key already exists, replace the corresponding record, otherwise write a new record).
ONWK is only used for keyed files.
ORG is the file organization indicator ($0=$ none specified and is treated as consecutive, $1=$ consecutive, 2 = keyed, 3 = random).
OVC is the open volume count and only has meaning for private files.

1. for consecutive private files, OVC indicates whether or not the volume pointed to by VNO is opened or not ($0=n o, 1=$ yes $)$.
2. for keyed or randon private files, OVC contains a count of the numbers of volumes that have been opened.

Field	Description	Word
PBD	is the previous buffer displacement indicator, specifying at which byte in the blocking buffer (BUFI) the previous record segment begins.	20
	PBD is not used by random files.	
PRECNO	contains the direction (t or -) and the n mber of records that must be skipped from the position indicated in CRECNO prior to a dat transfer operation (read, write, or delete).	19
	PRECNO is only used for consecutive fi.	
PRIV	indicates whether the file assigned to the $D C B$ is public or private ($0:=$ public, $1=$ private $)$. Public files reside on public devices and private files reside on private volume sets.	0
QBUF	contains	7
	1. the buffer address to be used by the $1 / O$ routines whenever called.	
	2. the address within the user's buffer where the next record segment begins.	
	QBUF, 2 is not applicable to random files.	
RAX	controls read ahead. If set to $X^{\prime} F F^{\prime}$, no read ahead is possible. If set to zero, no read ahead is in progress. Otherwise, RAX contains an index into read ahead tables.	5
RBBI	is the release blocking buffer inhibit flag and indicates whether or not the blocking buffer (BUF1) should be released during end-action after the data granule has been read into (BUFI) and the record segment has been transferred to the user's buffer. ($0=$ release BUF1, $1=$ do not release BUF1.)	16
	RBBI is not used by random files.	
RDLO	contains a tally (up to 255) of the number of index half-granules that are read or inserted at level 0 to locate the position of a user-specified key entry at level 0 . If RDLO is greater than LRDLO, the flag, which signals CLOSE to reconstruct the higher level index structure, is set.	19
	RDLO is only used for keyed files.	
RLIM	temporarily contains the number of granules specified in the RSTORE option on the ASSIGN control command during the ASSIGN/DCB merge. The first halfword contains $X^{\prime} 6 E 4 C^{\prime}$ which is used as a flag to indicate that RSTORE was specified.	21
	RLIM is used by random files only.	
RNDEV	contains the type of device requested for file allocation ($0=$ none specified and for private files gets changed to $X^{\prime} B^{\prime}, 7=R A D$, and $X^{\prime} B^{\prime}=D P$).	5
RSTORE	contains the number of granules to be allocated to the file.	20
	RSTORE is used by random files only. If RSTORE value is zero when a random file is created, an abnormal return is made with a code of $X^{\prime} 14^{\prime}$. Bits $8-15$ of word 5 are used by random files as a high order extension of this field if the EXTRAND bit is set.	
RSZ	indicates the default record size, in bytes.	3
RWS	indicates	13
	1. the requested number of bytes to be read or written from the user's buffer (BUF). During the I/O operation, RWS is decremented by the value in BLK each time that a record segment is either output or blocked. At the termination of the I/O operation, RWS is set equal to ARS. Applicable to keyed and consecutive files.	
	2. the requested number of bytes to be read or written from the user's buffer (BUF). At the termination of the I/O operation, RWS is set equal to ARS. Applicable to random files.	

CP-V TECHNICAL MANUAL
Field

S

Description
contains the value of the S field from the mode specification in the Open Cal FPT. $S=1$ means SHARE; $S=0$ means EXCLUSIVE.
indicates

1. the byte length of the key portion of the entries in the Master Index currently referenced by the DCB. This can be the Master Index for the Account Directory, the File Directory, or the user's file.
2. this field is used to temporarily contain the contents of KEYM field. Applicable to random files only.
contains the number of spare byte positions to be left unused in the end of the current index half-granule in the event that the key to be added is the last key in the file.

SPARE is only used for keyed files.
is the switch volume flag and indicates whether or not the current volume is to be switched to the next volume after all updated buffers have been output to the current volume ($0=$ no, $1=$ yes). Only used for consecutive private files.
not meaningfully used for files; however, the flag does get set and reset.
contains the address of the user CFU during CLOSE.
indicates, for keyed files, whether the file is positioned before or after the data record whose key entry is pointed to by CMD ($0=$ after, $1=$ before $)$. For consecutive files, this bit is set only if the most recently executed operation on the file was a read backwards.
indicates the type of completion of an 1/O operation.

$\underline{\text { TYC Code } \quad$| Corresponding Error/ |
| :---: |
| Abnormal Code |$\quad \text { Meaning }}$

0	0	normal without device I/O transfer
1	0	normal with a device 1/O transfer
2	7	lost data
3	10	beginning-of-tape
4	4	beginning-of-file
5	1 C	end-of-reel
6	5	end-of-data
7	6	end-of-file
8	41	read error
9	45	write error
A	57	public devices/private volume-set saturated
B	0	SLIDES is 255
C	0	partial higher level index built

Field	Descriplion	Word
USK	indicates whether the $J O B$ account number is the same as the account number specified in the $D C B(0=$ yes, $1=n o)$.	0
VDCT	contains the DCT index of the device on which the volume (in a private volume set) pointed to by VNO is mounted. Only meaningful for private files.	10
VNO	contains the volume number of the private volume currently being referenced via the DCB. Volume number is the position (starting with one) of a volume within the DCB's SN list. The SN list in the DCB has a fixed order and comes from the serial number table on the primary volume of a private volume set. Only meaningful for private files.	11
VSND	contains the word displacement to the serial number table of the private volume set (i.e., the SN list) in the DCB relative to the start of the Variable Length Parameters (FLP + VSND $=$ the control word of the SN list).	9
WAT	is the wait flag and indicates whether or not WAIT was specified in the FPT ($0=$ no, $1=$ yes $)$.	0
XUP	indicates whether or not a higher level index structure is in the process of being reconstructed or constructed ($0=$ either that there is no higher level index or that the higher level index is complete, $1=$ that the higher level index is being built). Only meaningful for keyed files.	0

VARIABLE LENGTH PARAMETERS

Each variable length parameter entry is preceded by a control word of the following form:
Byte $0=a$ code number (see Table A-1) identifying the parameter which follows.
Byte 1 = code for the entry position ($00=$ more parameter entries to follow, 01 = last parameter entry).
Byte 2 = number of significant data words in the parameter entry.
Byte 3 = total number of words reserved for the entry, not including the control word (that is, maximum entry length).

Table A-1. Variable Length Parameter Codes

Code	Parameter Type
01	File name (the first byte of which contains the number of characters in the name).
02	Account number.
03	Password.
04	Expiration date.
05	READ account numbers.
06	WRITE account numbers.
07	SN/INSN serial numbers.
08	OUTSN serial numbers.
09	File information (see Fighure A-2).
OA	Modification date.
OB	SYNON name.
OC	File information (see Figure A-2).
OD	File size.
OE	Creation date.
OF	Last access date.
10	Backup date.
11	Descriptors.
12	Search open mask.
13	Reserved for later use.
14	Execute account numbers.
15	Execute vehicle
16	Account list
17	Permission bits corresponding to 16 above.
18	For use by installation.
19	For inclusion of device open prime PLIST.

Section VH. 10
4/1/74

Word 7

Figure A-4. Format of Xerox Labeled Tape DCB

Figure A-4. Format of Xerox Labeled Tape DCB (cont.)

Word 15

- Word 16

Word 17

Word 21

Words $22 \rightarrow n$ are used for variable length parameters.

Field	Description	Word
ABA	contains the address of the usel's routine that will handle abnormal conditions resulting from insufficient or conflicting information. (The monitor returns to ABA in the FPT if the abnormal condition is the result of a device abnormality.)	4
ACD	contains the word displacement to the users account number in the $D C B$ relative to the start of the variable length parameters. (FLP $+A C D=F W A$ of the EBCDIC account number.)	21
ACS	is the file access indicator ($0=$ none specified and is treated as sequential, $1=$ sequential, 2 = direct). If a file has keyed organization, the keys written must be in ascending order regordless of the access specified.	5
AGE	is used to measure the most recent activity on the $D C B$ so that buffer truncation can be made more efficiently.	9
ARS	contains	4
	1. the actual number of data bytes transferred to or from the user following a read or write. 2. the number of records remaining to be skipped following a PRECORD operation that has terminated due to an end-of-file or a beginning-of-file condition.	
ASN	indicates the assignment type currently in effect for the $D C B(0=n u l l, 1=$ file, $2=$ Xerox labeled tape, $3=$ device, $X^{\prime} A^{\prime}=A N S$ labeled tape).	0
BBUD	indicates whether or not the blocking buffer (BUFI) has been changed since it was last read or initialized ($0=$ unchanged, $1=$ changed). The monitor uses this flag to determine whether or not BUFI needs to be written out to the data granule specified in BCDA before truncating the buffer.	16
BCDA	contains the number of either the current or last accessed entry in the blocking buffer (BUFI), depending upon the point in time. An entry in a Labeled Tape block consists of a key, control information, and the associated record segment. Entries are numbered from 1 to n.	15
BLK	contains	6
	1. the byte count of the record segment pointed to by either CBD or PBD, depending upon the point in time.	
	2. the number of bytes to be transferred by the $1 / O$ routines whenever called.	
BUF	contains the address of the user's buffer where the data record is to be read or written, or where user trailer labels are to be read.	2
BUFX	contains the index of the blocking buffer.	9
CIS	contains the relative position of the serial number (in the SN list) of the magnetic tape reel used for current file input.	11
CMD	contains the byte displacement to the curtent entry in the blocking buffer (BUF1). An entry in a Labeled Tape block consists of a key, control information, and the associated record segment.	20
cos	contains the relative position of the serial number (in the $S N$ list) of the magnetic tape reel used for current file output.	11

Field	Description	Word
CVI	indicates the relative volume number of the current input tape within the current file. CVI is taken from the beginning-of-file sentinel, which appears at the beginning of file and at the beginning of each reel, if the file is continued on more than one reel.	9
cvo	indicates the relative volume number of the current output tape with respect to the current file. CVO is recorded in the beginning-of-file sentinel which is written at the beginning of the file and at the beginning of each reel, if the file is continued on more than one reel.	9
DEV	contains the DCT index of the device assigned to the DCT. DEV is only meaningful if $D E V F=1$. When $D E V F=0$, the field is defined as OPLB.	1
DEVF	indicates whether the $D C B$ is assigned to a device or an operational label. (0) operational label, 1 = device.)	1
DEVICE	contains the EBCDIC name specified on the DEVICE option in the M:OPEN call. This use is only transient, and the field is later overlaid by SND.	12
DIR	indicates the direction of the read operations ($0=$ forward, $1=$ reverse $)$.	0
EGV	is the event-given flag and indicates whether or not the completion code posted in the TYC field has been communicated to the user's program by the CHECK routine ($0=$ no, $1=$ yes). The CHECK routine is called either directly by the user or indirectly by the monitor, depending upon the WAIT, ERR, and ABN options in the FPT.	0
EIC	indicates whether or not the last block read from a consecutive file was in error and that a validity check on the control information revealed inconsistencies ($0=n 0$, $1=$ yes).	5
EOP	is the ending operation indicator ($0=$ other, e.g., rewind, $1=$ read, $2=$ write $)$. Specifies the type of I/O operation currently or last performed.	0
EOT	indicates whether or not the physical end-of-tape mark has been encountered ($0=$ no, $1=$ yes).	16
ERA	contains the address of the user's routine that will handle error conditions resulting from insufficient or conflicting information. (The monitor returns to the ERA in the FPT if the error condition is the result of the device failure.)	3
EVC	indicates whether or not the last block read from a consecutive file was in error but a validity check on control information revealed no inconsistencies ($0=$ no, $1=$ yes).	5
EXT	is the file extension flag and indicates whether OPEN is to position a tape at the beginning or end of a specified file ($0=$ beginning-of-file, $1=$ end-of-file).	0
FCD	indicates whether the DCB is opened or closed ($0=$ closed, $1=$ opened).	0
FCl	indicates whether the $D C B$ has ever been closed. This flag is set when the $D C B$ is first closed and then never reset ($0=\mathrm{DCB}$ has never been closed, $1=\mathrm{DCB}$ has been previously open and closed).	0
FCN	indicates the current number of $1 / O$ operations that have been initiated but not completed, for this DCB.	7
FILI	indicates the file option specified when the DCB was last opened ($0=$ none specified, 1 = release, 2 = save).	5
FLD	contains the word displacement to the file name in the $D C B$ relative to the start of the variable length parameters (FLD + FLP $=$ FWA of the EBCDIC file name).	21

FLP contains the address of the variable length parameters in the DCB (called the file list-pointer).

FPARAM contains the receiving address of the user's 90 -word buffer to which the variable length parameters from the file's FIT are to be passed.

FUN indicates the file mode function ($0=$ null, $1=I N, 2=$ OUT, $4=I N O U T, 8=$ OUTIN $)$.

HBTD is the I/O handler's byte indicator and is used whenever the $1 / O$ routines are called to specify the byte displacement within QBUF into which the data transfer is to begin.

KAD contains the address of the key specified by the user in the read or write FPT. If a consecutive file is being written, KAD points to the dummy key. If a consecutive file is being read, KAD contains 0 .

KBUF contains the address of the buffer containing the key associated with the data record last accessed in the blocking buffer.

KEYM contains the maximum length, in bytes, of the keys in the file pointed to by the DCB. Only meaningful for keyed files. Maximum value is 31 .

NLR indicates whether or not the record segment pointed to by CMD is the first record in a continued data record ($0=$ second or nth record segment, $1=$ first or only record segment). NLR is only meaningful during a write and is reset to zero when the first record segment is output.

NRA indicates the number of recovery tries that may be attempted before a device error message is to be logged.

NRT indicates the number of recovery tries remaining before a device error message is to be logged.

NXTF | is the next file indicator and specifies whether this file (i.e., the file named in the |
| :--- |
| DCB/FPT) or the next file in the Fite Directory (i.e., the one following the file named |
| in the DCB) is to be assigned to the DCB at OPEN. If a file name is not specified (in |
| either the DCB or FPT), the first name in the File Directory is put in the DCB and as- |
| signed $(0=$ this file, $1=$ next file). |

NVA | contains a counter indicating the number of records to skip. It is also used as an indicator. |
| :--- |
| If NVA is negative, the last operation performed was a rewind. |

ORG \quad| is the file organization indicator $(0=$ none specified, and is treated as consecutive, $1=$ con- |
| :--- |
| secutive $2=$ keyed $).$ |

Field
indicates whether or not the Labeled Tape blocking buffer has been truncated ($0=$ no, $1=$ yes). Truncation means that monitor has taken the blocking buffer and, if necessary, written the block on tape.
contains the address of a user's label that is to be written on a tape file when the file is output.
indicates whether or not the blocking buffer should be released at end-action ($0=$ release blocking buffer, $1=$ do not release blocking buffer because the buffer will be reused to read in the next block). RBBI is set during a read operation when a data record is continued and more than one read request will be initiated.
indicates whether the Labeled Tape block currently in the blocking buffer (BUF1) was read in the forward or reverse direction ($0=$ forward, $1=$ reverse $)$.
contains the type of device specified $\left(0=\right.$ nane specified, $\left.8=9 T, 9=7 T, X^{\prime} A^{\prime}=M T\right)$.
is a transient flag used by the system to defer error reporting for a tape block read by the monitor in anticipation of a read not yet requested by the user ($0=$ user requested read, $1=$ user read not requested).
indicates the default record size, in bytes.
indicates the requested number of bytes to be read or written from the user's buffer (BUF). At the termination of the I/O operation, RWS is set equal to ARS.
indicates the byte fength of the key portion of the entries in the Labeled Tape block.
contains the word displacement to the tape serial number (SN list) in the DCB relative to the start of the variable length parameters (FLP + SND = FWA of the EBCDIC serial numbers).
indicates whether the file is positioned before or after the data record whose key entry is

1. the buffer address to be used by the $1 / O$ routines whenever called.
2. the address within the user's buffer where the next record segment begins. pointed to by CMD ($0=$ after, 1 - before).

TYC Code	Corresponding Error/ Abnormal Code	Meaning
0	0	normal without device 1/O transfer
1	0	normal with a device 1/O transfer
2	7	lost data
3	1D	beginning-of-tape
4	4	beginning-of-file
5	1 C	end-of-reel
6	5	end-of-data
7	6	end-of-file
8	41	read error
9	45	write error

TYPE contains the device-type code for the tape assigned to this DCB.

UBTD is the byte displacement indicator, specifying at which byte in the user's buffer (BUF) the data record begins.

ULBL indicates whether or not the ULBL option was specified in the FPT of M:READ ($0=$ no, 1 = yes).

USR ${ }^{n} \quad$ indiciates whether or not the job account number is the same as the account number specified 0 in the DCB ($0=$ yes, $1=$ no $)$.

WAT is the wait flag and indicates whether or not WAIT was specified in the FPT $(0=$ no, 1 = yes).

Each variable length parameter entry is preceded by a control word of the form shown for File DCB and in Table A-1.

CP-V TECHNICAL MANUAL

Figure A-5. Format of ANS Labeled Tape DCB

Section VH. 11
Page 2
CP-V TECHNICAL MANUAL

Word 12

Word 13

Word 14

Figure A-5. Format of ANS Labeled Tape DCB (cont.)

Figure A-5. Format of ANS Labeled Tape DCB (cont.)

Field	Description	Word
ABA	contains the address of the user's routine that will handle abnormal conditions resulting from insufficient or conflicing information. (The monitor relurns to ABA in the FPT if the obnormal condition is the result of a device abnormality.)	4
ABCERR	indicates whether or not block count errors are to be accepted; i.e., whether or not processing is to continue in the case of inconsistency between the tape-specified and systemaccumulated block counts ($0=$ no, 1 - yes).	0
APF	contains the ANS post flag. If set to 1 , it indicates that ANS post-processing of an $1 / 0$ operation has not yet been done.	16
ARS	contains	4
	1. the actual number of data bytes transferred to or from the user following a read or write.	
	2. the number of records remaining to be skipped following a PRECORD operation that has terminated due to an end-of-file or a beginning-of-file condition.	
ASN	indicates the assignment type currently in effect for the $D C B(0=$ null, $1=$ file, $2=$ Xerox labeled tape, $3=$ device, $X^{\prime} A^{\prime}=$ ANS labeled tape).	0
BCERR	indicates whether or not a block count error has been detected during EOF/EOT processing ($0=$ no, $1=$ yes). Always cleared before returning to user.	0
BLK	contains	6
	1. the byte count of the record segment pointed to by either CBD or PBD, depending upon the point in time.	
	2. the number of bytes to be transferred by the $1 / O$ routines whenever called.	
BLKCNT	specifies the number of blocks in the file.	17
BLKSZ	specifies the block size in bytes.	3
BUF	contains the address of the user's buffer where the data record is to be read or written, or where user trailer labels are to be read.	2
CIS	contains the relative position of the serial number (in the SN list) of the magnetic tape reel used for current file input.	11
CMD	contains the number of tape marks that may be passed during an OPEN while searching the last tape of a set.	20
CONCAT	specifies the number of identically named files that are to be read as one logical file (concatenation).	14
cos	contains the relative position of the serial number (in the SN list) of the magnetic tape reel used for current file output.	11

CVI indicates the relative volume number of the current input tape within the current file
CVI is taken from the beginning-of-file sentinel, which appears at the beginning of
indicates the relative volume number of the current output tape with respect to the current file. CVO is recorded in the beginning-of-file sentinel which is written at the beginning of the file and at the beginning of each reel, if the file is continued on more than one reel.

DEV contains the DCT index of the device assigned to the DCT. DEV is only meaningful if $D E V F=1$. When DEVF $=0$, the field is defined as OPLB.

DEVF indicates whether the $D C B$ is assigned to a device or an operational label. $\quad(0=$ operational label, 1 = device.)

DEVICE contains the EBCDIC name specified on the DEVICE option in the M:OPEN call. This use is only transient, and the field is later overlaid by SND.
indicates the direction of the read operations ($0=$ forward, $1=$ reverse).

EGV is the event-given flag and indicates whether or not the completion code posted in the TYC field has been communicated to the user's program by the CHECK routine ($0=$ no, $1=$ yes). The CHECK routine is called either directly by the user or indirectly by the monitor, depending upon the WAIT, ERR, and ABN options in the FPT.

EOP is the ending operation indicator $(0=$ other, e.g., rewind, $1=$ read, $2=$ write $)$. Specifies the type of $1 / O$ operation currently or last performed.

EOT indicates whether or not the physical end-of-tape mark has been encountered $0=$ no,
$1=$ yes).

ERA contains the address of the user's routine that will handle error conditions resulting from insufficient or conflicting information. (The monitor returns to the ERA in the FPT if the error condition is the result of the device failure.)

FCD \quad indicates whether the $D C B$ is opened or closed $(0=$ closed, $1=$ opened $)$.

FCl indicates whether the $D C B$ has ever been closed. This flag is set when the $D C B$ is first closed and then never reset $(0=D C B$ has never been closed, $1=D C B$ has been previously open and closed).

FCN indicates the current number of I / O operations that have been initiated but not completed,
for this DCB.

FILI indicates the file option specified when the $D C B$ was last opened ($0=$ none specified, 1 = release, 2 = save).

FLD contains the word displacement to the file name in the $D C B$ relative to the start of the 21 variable length parameters (FLD + FLP $=$ FWA of the EBCDIC file name).
contains the type of device specified ($0=$ none specified, $8=9 T, 9=7 T, X^{\prime} A^{\prime}=M T$).
RWS indicates the requested number of bytes to be read or written from the user's buffer (BUF). At the termination of the I/O operation, RWS is set equal to ARS.

SETID.

SND contains the word displacement to the tape serial number (SN list) in the DCB relative to the start of the variable length parameters (FLP + SND $=$ FWA of the EBCDIC serial numbers).

SNFN

Description

contains the address of the variable length parameters in the DCB (called the file list-pointer).
indicates the record format, where
I=F(fixed length)
$2=D$ (variable, expressed in decimal)
$3=V$ (variable, expressed in binary)
$4=U$ (undefined)
specifies the file sequence number.
indicates the file mode function ($0:=$ null, $1=I N, 2=$ OUT, $4=$ INOUT, $8=$ OUTIN).
is the 1/O handler's byte indicator and is used whenever the I/O routines are called to specify the byte displacement within QBUF into which the data transfer is to begin.
specifies the logical record size in bytes.
indicates the number of recovery tries that may be attempted before a device error message is to be logged.
indicates the number of recovery tries remaining before a device error message is to be logged.
contains

1. a counter used by M : OPEN to determine how many volumes remain to be searched for the specified file.
2. the number of bytes in the previous labeled tape block. PBD is only meaningful on a read operation and is taken from the PBS field of a labeled block.
contains
3. the buffer address to be used by the I/O routines whenever called.
4. the address within the user's buffer where the next record segment begins.
specifies the file set identification.
indicates the access method ($0=$ serial number, $1=$ filename $)$.

Word

TLB contains the address of a user's label that is to be written on a tape file when the file is output. 14

Description		
indicates the type of completion of an 1/O operation.		
TYC Code	Corresponding Error/ Abnormal Code	Meaning
0	0	normal without device 1/O transfer
1	0	normal with a device I/O transfer
2	7	lost data
3	1 D	beginning-of-tape
4	4	beginning-of-file
5	1 C	end-of-reel
6	5	end-of-data
7	6	end-of-file
8	41	read error
9	45	write error

TYPE contains the device-type code for the tape assigned to this DCB. 1
UBTD is the byte displacement indicator, specifying at which byte in the user's buffer (BUF) the 0 data record begins.

ULBL indicates whether or not the ULBL option was specified in the FPT of M:READ ($0=n 0,1=$ yes $)$. 5
WAT is the wait flag and indicates whether or not WAIT was specified in the FPT ($0=n o, 1=y e s)$. 0

VARIABLE LENGTH PARAMETERS

Each variable length parameter entry for ANS labeled tapes is preceded by a control word of the following form:
Byte $0=a$ code number (see Table A-2) identifying the parameter which follows.
Byte $1=$ code for the entry position ($00=$ more parameter entries to follow, $01=$ last parameter entry).
Byte $2=$ number of significant data words in the parameter entry.
Byte $3=$ total number of words reserved for the entry, not including the control word (that is, maximum entry length).

Table A-2. Variable Length Parameter Codes for ANS Labeled Tapes

Code	Parameter Type
01	File name (the first byte of which contains the number of characters in the name).
04	Expiration date.
07	SN/INSN serial numbers. (ANS serial numbers are encoded to fit in 32 bits.)
08	OUTSN serial numbers. (ANS serial numbers are encoded to fit in 32 bits.)

Figure A-3. Format of Device DCB

Figure A-3. Format of Device DCB (cont.)

Section VH. 12

Figure A-3. Format of Device DCB (cont.)

CSC indicates the number of the column at which the page count is to begin (for printer or typewriter). The most significant digit of the count will be printed in this column on the page.
n
CVA
contains the EBCDIC name specified on the DEVICE option in the M:OPEN call. This use is only transient, and the field is later overlaid by CLK.

DIR
IR indicates the direction of the read operation ($0=$ forward, $1=$ reverse $)$.

Word
contains the address of the user's routine that will handle abnormal conditions resulting from insufficient or conflicting information. (The monitor returns to ABA in the FPT if the abnormal condition is the result of a device abnormality.)
is the abnormal given flag and indicates wether or not an end-of-file completion code has been returned to the user because a contro zommand was encountered when reading from the C device, ($0=$ no, $1=$ yes).
contains the actual number of data bytes transferred to or from the user in the $1 / O$ operation.
indicates the assignment type currently in effect for the $D C B(0=$ null, $1=$ file, $2=$ Xerox labeled tape, $3=$ device, $X^{\prime} A^{\prime}=$ ANS labeled tape).
contains the number of bytes to be transferred by the 1/O routines whenever called.
contains the address of the user's buffer where the data record is to be read or written.
contains the relative position of the serial number (in the SN list) of the magnetic tape reel used for current file input.
for anonsymbiont device, contains 0 . For a symbiont device, contains the accounting type in bits 20-23 ($0=$ none, $1=D O, 2=P O, 3=U O, 4=L O)$ and the logical device index in bits 24-31.
contains the relative position of the serial number (in the SN list) of the magnetic tape reel used for current file output.
indicates the current value of the page count (for printer or typewriter).
contains the DCT index of the device assigned to the DCB. DEV is only meaningful if DEVF equals 1 .
indicates whether the DCB is assigned to a device or an operational label ($0=$ operational label, 1 = device).

DSC indicates the column number at which the output record is to begin (tor a card punch, typewriter, or printer).
is the event-given flag and indicates whether or not the completion code posted in the TYC field has been communicated to the user's program by M:CHECK $(1=y e s, 0=n o)$. M:CHECK is called either directly by the user or indirectly by monitor, depending upon the WAIT, ERR, and ABN options in the FPT.
indicates the current number of I/O operations that have been initiated but not completed, for this DCB.

FLP contains the address of the variable length parameters in the DCB (called the file list-pointer).
contains the file mode function $(0=$ null, $1=I N, 2=O U T, 3=I N$ and OUT, $4=I N O U T, 8=O U T I N) .1$
EUN

FVA

HBTD

HLC contains the address of the user's page header that is to be output at the beginning of each listing page (the first byte of the page header contains the byte count).

HSC indicates the column number at which the user's page header is to begin (for printer or typewriter).

KBUF
not used for devices but because of common program logic, the field contains a meaningless address.
indicates whether or not the user specified that the DCB was assigned to a listing type device. 1
$(0=$ no, $1=$ yes. $)$ This flag is only used by the FORTRAN $1 / O$ routines. The monitor auto-
matically sets this flag when the $D C B$ is assigned to a listing type device (such as the line printer).
LN
is the ending operation indicator $(0=$ other, e.g., rewind, $1=$ read, $2=$ write $)$. Specifies
Word the type of $1 / O$ operation currently or last performed.
contains the address of the user's routine that will handle error conditions resulting from insufficient or conflicting information. (The monitor returns to the ERA in the FPT if the error condition is the result of a device failure.)
is the FORTRAN BCD flag and indicates whether or not BCD is to be converted to EBCDIC on input, or EBCDIC is to be converted to $B C D$ on output. ($0=$ no conversion, $1=$ conversion.)
indicates whether the $D C B$ is opened or closed $(0=$ closed, $1=$ opened $)$. 0

0 then never reset ($0=D C B$ has never been closed, $1=D C B$ has been previously opened and closed).
indicates the first line on which printing is to begin (for printer or typewriter).
is the I/O handler's byte indicator and is used whenever the $1 / O$ routines are called to 0 specify the byte displacement within QBUF into which the data transfer is to begin.

Transaction Processing slave line DCB.

CP-V TECHNICAL MANUAL

Field \quad\begin{tabular}{l}
Description

SVA

indicates the number of lines to be spaced between printed lines (for typewriter or printer).
A 0 means SPACE was not specified; the output will be single spaced.

TABI-16 indicates the column numbers for the tab-stop settings (for output devices).

TOLF if 1, bits $16-31$ of DCB are TEXT OPLABEL. If 0, DEVF is meaningful.

TYC

\quad

indicates the type of completion of an $1 / O$ operation.
\end{tabular}

TYC Code	Corresponding Error/ Abnormal Code	Meaning
0	0	normal without device I/O transfer
1	0	normal with device 1/O transfer
2	7	lost data
3	1 D	beginning-of-tape
4	4	beginning-of-file
5	1 C	end-of-reel
6	5	end-of-data
7	6	end-of-file
8	41	read error
9	45	write error

TYPE contains the devicemtype code assigned to the DCB. This field is set whether the DCB is assigned directly to a device or indirectly through an operational label.

UBTD is the type displacement indicator, specifying at which byte in the user's buffer (BUF) the data record begins.

VFC is the vertical format control-flag and indicates whether or not the first byte of the output is a format control character ($0=$ no, $1=y e s$). This flag is only used for printer output.

WAT is the wait flag and indicates whether or not WAIT was specified in the FPT ($0=n 0,1=y e s)$.

Each variable length parameter entry is preceded by a control word of the form shown for File DCB and in Table A-1.

LABELED TAPE, GENERAL FORMAT AND SENTINELS

Shown below are two labeled tapes containing two volumes of file A, having a total of four records, and the one-record file B. The various sentinels are explained following the tape format sketches. All sentinels begin on a word boundary.

Tape 1

Label Sentinel (:LBL)
Identification Sentinel (:ACN)
Tape Mark
Beginning of File A (:BOF)
User's Label (optional)
Tape Mark
Record I of File A
Record 2 of File A
Record 3 of File A
Tape Mark
End of Volume (:EOV)
Trailer Label (optional)
Tape Mark
End of Reel (:EOR)
Tape Mark
Tape Mark

Tape 2

Label Sentinel (:LBL)
Identification Sentinel (:ACN)
Tape Mark
Beginning of File A (:BOF)
User's Label (optional)
Tape Mark
Record 4 of File A
Tape Mark
End of File A (:EOF)
Tape Mark
Reginning of File B (:BOF)
Tape Mark
Record I of File B
Tape Mark
End of File B (:EOF)
Trailer Label (optional)
Tape Mark
Tape Mark Reel (:EOR)
Tape Mark

where
:LBL identifies the reel number of the tape (SN). Reel number are four alphanumeric characters in length. Sentinel length is 12 bytes, including four padding bytes. The format is shown below.

$:$	L	B	L	
X	X	X	X	
4 PADDING BYTES				

Label Sentinel
:ACN identifies the owner of the tape (ACCNT "), the expiration date, and the creation date, in that order.

The account number is eight alphanumeric characters in length, left-justified and in EBCDIC code. The dates are of the form $m_{1} m_{2} d_{1} d_{2} b / y_{1} y_{2}$, where $m_{1} m_{2}$ is the numerical representation of the month, $d_{1} d_{2}$, the day, blb are blanks, and $y_{1} y_{2}$ are the last two digits of the year. The digits are in EBCDIC
and the blanks must appear. Sentinel length is $\mathbf{2 8}$ bytes followed by a physical end-of-file (tape mark record). The format of the ACN Sentinel, also referred to as the identification sentinel, is shown below.

$:$	A	C	N
a_{1}	a_{2}	a_{3}	a_{4}
a_{5}	a_{6}	a_{7}	a_{8}
m_{1}	m_{2}	d_{1}	d_{2}
b	6	y_{1}	y_{2}
m_{1}	m_{2}	d_{1}	d_{2}
b	6	y_{1}	y_{2}
Inter-record Gap			
Tap Mark Record			

:BOF is the beginning-of-file sentinel consisting of the file-information record, the user's label (if specified), and a physical end of file (tape mark record). The format of the :BOF Sentinel is shown below.

The file-information record, as shown, contains several control words and the information associated with each of these. The control words have the following form:

Code	LEI	Length

where
Code identifies the type of information following the control word. The codes are:
01 - file name. The file name may be a maximum of 31 characters. An additional byte is used to state the length of the file name.

03 - password (2 words, left-justified).
05 - Read account numbers.

06 - Write account numbers.

Each account number is left-iustified, blank-filled, and two words long. The total number of Read and Write accounts must not exceed 16. Read accounts identify those who may have only read access to the file. Write accounts identify those who may read and write the file. None or All are also allowed.

09 - miscellaneous information, such as:

ORG - gives file organization, i.e., keyed or consecutive.

KEYM - specifies maximum length of the keys. Keys may not be greater than 31 bytes. An additional byte is used to specify the length of the key. On consecutive files, the length of the dummy key is assumed to be three; therefore, KEYM is ignored. On keyed files, if KEYM $=0$, maximum length is assumed to be 11 .

VOL - on multi-reel files, this entry specifies the position of this tape in the file. For example, $\mathrm{VOL}=2$ implies this is the second tape of the multi-reel file. VOL=1 indicates the beginning of the file. Every file begins with $\mathrm{VOL}=1$ (including single-reel files).

HDL - specifies the length of user's label. If $H D L=0$, then no user's label exists and the following record must be a physical end-of-file.

LEI is the last-entry indicator; this entry in the control word indicates the end of the file information. The control words, along with the information they define, do not have to be in a particular order, but LEI must equal 0 if the file information entry is not the last one and must equal 1 if the entry is the last.

Length specifies the length, in words, of the information associated with a particular entry (i.e., following the code word).
:EOV is the End-of-Volume sentinel:

$:$	E	O	V
PBS			
Inter-record Gap			
Tape Mark Record			

:EOR is the End-of-Reel sentinel:

is the End-of-File sentinel:

Tape Mark Record			
Inter-record Gap			
$:$	E	O	F
Inter-record Gap			
PBS			
Tape Mark Record			

where
PBS is the previous block size, in bytes.

RECORD FORMAT

The labeled-tape record format for blocked records is shown below. The truth table following the diagram shows the possible combinations, of blocked/unblocked continued/not continued records. Figure 16-1 shows a number of examples of various types of records.

where
NKY is number of entries in block.
PBS is previous block size.

[^5]

Notes: 1. All numbers are decimal.
2. A new record will not be started in a block unless there is room for at least one full dato word.
3. PBS --1 whenever prior block is unblocked.
4. All keys are assumed to be three bytes long.

Figure 16.1 Examples of Different Types of Records

SKEY is size of key.

RWS is size of record in block.
F_{3} is 1 if record is unblocked, 0 if blocked.
$P_{2} \quad$ is 1 if record is continued into next block, 0 if record is not continued.
P_{1} is 1 if this is first part of record, 0 if it is not first part.

Truth Table. Combinations of Record Types

Unblocked P3	Continued P2	1st. Segment PI	Meaning of Contol Bits
0	0	1	Record is wholly contained within this 512 word block.
0	1	1	1st record segment of N segments. Continued next block.
0	1	0	Not possible.
0	0	0	Nth record segment ($N>1$) of N. If $N>2, \therefore N-1$ was unblocked.
1	0	0	Physical record following is N th segment of $N(N>1)$.
1	0	1	Physical record following is complete.
1	1	1	Physical record following is not complete. Size $=8 \mathrm{~K}$ words.
1	1	0	Physicat record following is not complete. Size $=8 \mathrm{~K}$ words. This is i th segment of $N(1>i<N)$.

ANS TAPE, GENERAL FORMAT AND SENTINELS

The overall structure for ANS tapes cind the sentind format are shown bel ow.

Single file, single volume

```
VOL1 - HDR1 - HDR2 - UHLI * file A * EOF1 - EOF2 - UTL1**
```

Single file, multi-volume
VOLI-HDR1-HDR2 - UHLI * file A * EOV1-EDV2 **
VOLI - HDR1 - HDR2 - UHLI * file A * EOF1 - EOF2 - UTLI **

Multi-file, single volume
VOLI-HDRI-HDR2 - UHLI * file A * EOF1-EQF2-UTLI * HDRI - HDR2 - UHLI * file B * EOF1-EOF̌- UTLI **

Multi-file, multi-volume
\because OLI - HiDRi - HiDR2 - UliLl * file A * EOVI - EOV2 **
VOLI - HDR1-HDR2 - UHL1 * file A * EOF1-EQF2 - UTLI * HDR1 - HDR2 - UHLI * file B *ECF1-EOF2-UTLI **

Note: An asterisk denotes a physical tape mark. A dash denotes an inter-record gap.

ANS TAPES - Block counts, file and volume sequense numbers
Single file, single volume

VOLI - \begin{tabular}{|l|l|l|}
\hline HDRI \& 1 \& 0

\hline

 file A -

\hline file A

\hline file A

\hline
\end{tabular}

Single file, multi-volume

VOL1 - HDRI 1 110 * $A-A-A *$ EOVIDIDI **

Multi-file, single volume

Multi-file, multi volume

NOTE:

An asterisk denotes a physical tape mark.
A dash denotes an inter-record gap.
The three numbers in HDRI/EOVI/EOFI represent volume sequence number, File sequence number and block count respectively.

ANS TAPE LABELS FORMAT

HEADER	CHARACTER POSITION	DESCRIPTION	SOURCENALUE
VOLI	1-4	VOLI	
	5-10	Volume serial number	AVRTBL
	11	Security	0
	12-80	Not used	Blanks
:HDRI/EOVI/EOFI	1-4	HDRI/EOF 1/EOVI	
	5-21	Filename	DCB:FN (VLP=01)
	22-27	Serial number first	
		volume	AVRSID
	28-31	Volume sequence number	DCB:CVO
	32-35	File sequence number	DCB:FSN
	36-4 1	Not used	Blank
	42-47	Julian creation date	date
	48-53	Julian expiration date	DCB : $E X P R$ ($\mathrm{VLP}=04$)
	54	Security	0
	55-60	Block count	DCB:BLKCNT
	61-73	$\mathrm{CP}-\mathrm{V}$ version number	Core address $X^{\prime} \mathbf{2 B}^{\prime}$
	74-80	Not used	Blanks
HDR2/EOF2/EOV2.	1-4	HDR2/EOF2/EOV2	
	5	Format	DCB:FMT
	6-10	Block size	DCB:BLKSZ
	11-15	Logical record size	DCB:LRCSZ
	16	Recording density	2(800 BPI)
	17	System use	0
	18-50	Not used	Blanks
	51-52	Buffer offset	O(4 if Format $=\mathrm{V}$)
	53-80	Not used	Blanks

GENERALIZED DISK ADDRESS

File Management routines work with generalized disk addresses which are the addresses of granules on disk or DP. IOQ is responsible for correctly converting the disk address to seek address for the specific device.

GENERALIIZED DISK ADDRESS FORMAT

0	$7,8,16$	23,24	
0	SX	DCT or VNO	Sector Number

where
DCT is the DCT index of the device (DCT indexes start with 1). Used for public files at all times, but for private files only when IOQ is called.

VNO the volume number within a private volume set, if the file is private. VNO is converted to a DCT index immediately before IOQ is called.

Sector number is the relative sector number (starting with 0) of the sector on the device. SX is the sector extension field. Bit 9 is the most significant bit of the sector number, and bit 8 is the next most significant bit.

CP-V TECHNICAL MANUAL

Consecutive File Format

All information in the consecutive file format is contained in full granule sized records. There are no master index half granules used. Many files consist only of control granules which are flinked and blinked and contain all record data and control information. Each record is broken into segments with length less than or equal to 2048 bytes. Record segments which are shorter than 2033 bytes are blocked into the control granules in monitor blocking buffers for input or output: but record segments of greater length are written from, or read to, the user's buffer directly.

Zero length records are treated as no record on output. Records which are less than 2049 bytes long appear as one segment, unless the record is shorter than 2033 bytes but longer than the amount of space available in the final granule of the file at the time it was written. If such is the case, the record is broken into two segments, the first filling out the current granule and the second starting a new final granule. Records with length greater than 2048 bytes are broken into a sufficient number of 2048 byte segments to reduce the remainder to less than 2049 bytes. This remainder is treated as described above.

Record Segments - Each record is broken into segments ≤ 2048 bytes.
Case 1. Record Segment < 2033 bytes
Control Word:
$\begin{aligned} & \text { bit } 0=0 \text { (for blocked) } \\ & \text { bit } 1=\text { FAK = } 1 \text { for initial segment of record, } 0 \text { if not initial. } \\ & \text { bit } 2=C=0 \text { for last segment of record, } 1 \text { if otherwise } \\ & \text { bit } 3=0 \\ & \text { bit } 4-15=\text { \# of data bytes in segment (call it } m \text {) } \\ & \text { bit } 16-31= \text { word position of previous record segment control word in this granule; } \\ & \text { or if this is the first segment in the granule, } 0 .\end{aligned}$
The next $\cdot\left|\frac{m+3}{4}\right|$ words contain the data of the segment.
Case 2. 2033 bytes \leq Record Segment ≤ 2048 bytes

Control Word:
bit $0=1$ (for unblocked)
bit $1=$ FAK
bit $2=C$
bit $3=1$ if preceding word in the granule is a backspace control word (see below).
$=0$ if this is the first record segment of the granule or if the preceding record segment in the granule is also unblocked.
bits 4-7 $=$ " of data bytes in the segment less 2033.
bits 8-31 = generalized disk address of the granule containing the data starting at byte 0 .

Case 3. Backspace Control Word. (This word is used only when a granule contains a blocked segment followed by an unblocked segment whose control word is in the same granule. The word is inserted following the data of the blocked segment and preceding the control word of the unblocked segment.)
bits $0-15=0$
bits 16-31 = word position of previous record segment control word in this granule.

Control Information for Control Granules

Word 0 Blink
Word 1 Flink
Word 2
bit $0 \quad=0$ if no case entries appear in the granule, 1 otherwise.
bit $1=0$ for granule not full, 1 otherwise.
bits $2-15=0$
bits 16-31 = lf bit $1=0$, the word position of the next available word in the granule.
If bit $1=1$, the word position of the last segment control word in the granule.

The initial granule of a file contains the FIT for that file in words 4-83 of the granule. Word 3 contains a dummy segment control word of type described in Case 1 above with FAK $=0, C=0$, and $M=320$. If a record is deleted from a consecutive file, the FAK bit in the first (or only) segment control word for the record is reset to 0 .

The following statements apply to the use of granules for consecutive files:

1. If the remainder fo a record to be written is at least 2033 bytes long, up to 2048 bytes will be written unblocked except in one very rare circumstance (see paragraph 4 below).
2. If the remainder of a record to be written is at least 2033 bytes long, it will be written as one or two blocked segments. If the remainder will not fit entirely in the appropriate granule, as much as will fit is placed in that granule, and the remainder is placed in the succeeding granule as a continuation record segment.
3. All bytes of each granule are used except:
a. some number of bytes in the final granule of the file beyond the end of file;
b. up to fifteen bytes at the end of a data granule for an unblocked segment;
c. the final four bytes of a control granule will contain a backspace control word if a blocked segment would have othervise started there;
d. up to three bytes per blocked final segment of a record will be unused if the record length is not congurent to zero modulo 4.
4. If the data granule of an unblocked record segment would fall into a different volume of a private volume set from the volume containing the control word for that segment, as many bytes from the start of the segment as will fit into the control granule are written in a blocked fashion to fill out the control granule.
The following changes to the CFU (FIT) and DCB are made:
5. TDA in the CFU (FIT) contains the number of records in the file.
6. FDA and LDA in the CFU (FIT) now contain the appropriate granule addresses as opposed to halfgranule addresses.
7. The TRN bit in word 5 of the DCB is 1 only if the most recently executed operation on the file was a read backwards.
8. The fourteenth word of the DCB (W14) contains one of the following:
a. 0 if at $B O F$
b. the contents of TDA, if at EOF
c. the sequential record number of the record most recently read or written.
9. The nineteenth word of the DCB (W14) contains the direction (+ or -) and the number of records that must be skipped from the position indicated in W14 pripr to a data transfer operation (read, write, or delete).
10. The CMD halfword in word 20 of the DCB contains a word position in the granule pointed to by DCBCDAM (see below).
11. DCBCDAM in word 21 of the XCB contains a disk address of a granule reflecting (in conjunction with CMD and W14) the location in the file at which the most recent data transfer operation took place.
It should be noted that all positioning operations for consecutive files will be done with no I/O. Positioning operations are PRECORD, PFIL, and OPEN with extension. When these operations are encountered, the appropriate modification is made to W19 of the DCB. Only when a data transfer operation is about to take place will the positioning be effected; and at that time, there will be three known points in the file which can be used as a starting point (beginning-of-file, end-of-file, and the position chosen will be the one which requires the fewest record skips to be made.

On a delete forward operation on a consecutive file, all vacated granules will be returned to the availability pool at that time rather than when the file is released.

VH. 19. Schema for Locating and Referencing Public Files
Obt

CP-V TECHNICAL MANUAL
SECTION VH. 21
PAGE 1
10/31/74

READ-AHEAD TABLES

```
Parallel Tables - Length = RASIZE
```

RA: DA

RAH: CCB *

Most significant 16 bits of DCB address

RAH: TIME

Time at which this entry was gotten (32 msec units)

RAX: PAGE

Physical page address of buffer for this entry

RAB:USER *

User number of user associated with this ENTRY

RAB:FLINK

Index of next oldest active entry

RAB: BLINK

$\mathrm{CP}-\mathrm{V}$ TECHNICAL MANUAL

\[\)| SECTION VH. 21 |
| :--- |
| |
| PAGE 3 |
| number AIR entries successfully retrieved |

\]

maximum number simultaneous read-aneads allowed

SYMB IONT COOPERATIVE DATA BASES

Symbiont File Block Format - In CP-V both input and output symbiont file blocks have the same format. Each such block contains 256 words, and two blocks reside in a granule of file storage. Word 0 of the block is used for forward link address that is inserted by the system when the file is created. A value of zero implies no forward address (i.e., end of file). Word 255 is used for the backward link address again inserted when the file is created. A value of zero implies no backward address (i.e., beginning of file). Each record in the block is preceded by four bytes of control information. Neither the record nor the control information need start on a word boundary except the first control string. Each control string must immediately follow the preceding record. The first two bytes of a control string are the byte count (BC) of ${ }^{\wedge}$ he following record. BC must be greater than zero and less than 1008. No record may be split between blocks. If a block does not have space remaining for a block end control string, a record control string and a record, the next record must begin in a new block. The third byte of a control string is the record control character (RCC) which defines the record.

Other values for RCC are reserved for future enhancements and should not be used. The fourth byte of a control string is the skip byte (SK) defined for the convenience of the block encoder. SK may have the values 1 through 4 inclusive.

The next SK-1 bytes following the control sequence have no significance and are skipped before the start of data. The skipped bytes are provided to allow a byte aligned MBS instruction (the most efficient execution) to move the bytes into the symbiont block, or to allow placement of the record on a word boundary for record construction ease. The final control string of a block must have RCC $=x^{\prime} 40^{\prime} . \quad B C$ and $S K$ are not relevant in the final control string.

SYMBIONT. FILE BLOCK FORMAT
End of data this buffer. If forward link disk address $=0$, this is EOF.
If not, file is continued at forward link. Records are never split between blocks.

CP-V TECHNICAL MANUAL

SYMTAB - SYMBIONT TABLES

FORMAT OF SYMX ENTRY

IN $=1 \quad$ signifies input symbiont
OUT $=1 \quad$ signifies output symbiont
$N C=1 \quad$ signifies non-control mode if IN
signifies write EOF if OUT
IRBT device is on an IRBT
IN and OUT are mutually exclusive.
KEEP $=1 \quad$ signifies that granules are kept until done
$O C P=1 \quad$ signifies OCP device
LIST $=1 \quad$ signifies Listing type device
TERM = 1 signifies terminate on EOF
DEVICE DCB - WORD 12

where:
$A C C O=0, \quad$ no accounting
1, Do-type accounting
2, PO-type accounting
3, UO-type accounting
4, L.O-type accounting
LDVEX $=\quad$ index into SH:LNM

Section VI. 01
Page 5
10/31/74

SYMBIONT TABLES IN RBBAT

STW:FORM
Form Name Mounted on Device
$0=$ Standard Form

STH: CMDV
Concurrent output mode ID for device. $\sigma=$ not in concurrent mode.
bit \emptyset set $=$ device is printing last chunk of concurrent output

STH:NM

STB:DPD.

FORMAT OF STH:FLG ENTRY

\(\left.\left.$$
\begin{array}{ll}\text { IN } & \text { input } \\
\text { OC } & \text { Operator console } \\
\text { SRCBP } \\
\text { SRCPC }\end{array}
$$\right\} \quad \begin{array}{l}SRCB type of device

LOC

FLK

FMS\end{array}\right\} \quad\)| Device locked if set |
| :--- |
| CP-V to CP-V |
| Forms control |

BU	FCS device
BKS	
BUT	Suspend control
STP	Output ready
WFQ	Waiting for symbiont start
EOF	EOF pending
ALN	RBALIGN pending

Linkage between logical device tables

$\ldots 2$

	Section VI. 01	
CP-V TECHNICAL MANUAL	Page 7	
	$2 / 10 / 76$	

Notes on diagram "LINKAGE BETWEEN LOGICAL DEVICE TABLES"

1. Given a stream name in text, find index into SH:LNM (e.g., L1 has index 2).
2. Fetch J: USCDX which points to base of user's COOP table ($\mathrm{X}^{\prime} 9 \mathrm{CO} 0^{\prime}$ in example).
3. Use index from Step 1 to fetch context block pointer for this stream (e.g., L1 has context block CB2).
4. Fetch stream's data buffer address from context block using displacement symbol SCFBUF (e.g., Ll has data buffer SB1 as indicated in CB2).

Symbiont/Cooperative Context Block - The context block for symbiont/cooperative operations has been totally redefined for $C P-V$. The salient features of the new context block format include:

1. Definition of new displacement symbols, conforming to more rigorous conventions than previously (i.e., all start with "SC"; 'SCF" signifies a file-related value; "SCD" signifies a device-related value). All current symbols (e.g., SCBINFOX, SCJOBX) have been discarded.
2. Space is provided in the new context block for NEWQ arguments used in performing disc and device I/O operations (SCFQARGS, SCDQARGS). Notice that there is not a $D C B$ in the $C P-V$ context block.
3. Space is provided for "stream attribute" values which are modifiable by the user via the LDEV command (e.g., SCSEQ, SCFORM, SCMISC). A11 stream attribute fields are used in the cooperative context block; some of them are free for different use by INSYM and OUTSYM (since LDEV acts directly on the COOP's context block only).
4. Space is provided for values maintained internally by the symbiont/ cooperative system, including values related to symbiont file construction (SCBLDA, SCFLDA, SCSVDGI) and values used for accounting purposes (SCRCO, SCPCO, SCGCO).

CP-V TECHNICAL MANUAL

COOP CONTEXT BLOCK

Section VI. 01
Page 11 4/1/74

$$
\text { Flags - Word } 1 \text { of OUTSYM context block }
$$

10.

Symbiont/Cooperative Context Block Displacement Symbols

SCAIF

SCBESTDA

SCBLDA

SCBSIZ

SCBUDA

SCBUPP

SCBUPPTS

SCCDA

SCGUN

ADD input file flag Used by INSYM at Disc write end action to decide to read a card (SCAIF $=0$) or ADD input file (SCAIF $=1$).

Best Disk Address
File starting disk address used by INSYM to AIF, SYMFILS to delete partial input file, COOP to AOF, SYMFILS to add output, OUTSYM to AOFP. When OUTSYM is deleting or outputing with catchup delete this is the oldest notdeleted granule.

Backward Link Disc Address
Contains SCCDA's predecessor except while updating disk addresses.

Block Size
Used as the file side size argument to NEWQ and as the boundary during block construction.

Backup Disk Address
Is the Backup point for OUTSYM for the 'R' Keyin (and 'Q' in 'DELETE' mode).

Backup Point Used by OUTSYM when IRBT routines request symbiont to backup because of line block reconstruction. This 2 word area contains an appropriate SCDBI and SCCDA.

Backup Point Save
Used by OUTSYM to define point of last record output. When IRBT routines send a block down the line this 2 word area is copied over SCBUPPT.

Current Disk Address
NEWQ argument defining source or destination of current block on file; used by SYMFILS in output closing.

Current User Number
Used by COOP to pass to the end-action routine the number of the user whose I / O is completing so the event may be reported.

SCDALST	OUTSYM Backup Disk Address List Previously output disk addresses used by OUTSYM for the Syyndd, R Keyin.
SCDALSZ	Size of SCDALST Currently 14.
SCDBC	Device Byte Count Symbiont NEWQ argument for record transfer
SCDBI	Data Byte Index Byte displacement to the source or destination of the next record to be processed.
SCDCDA	Device CDA NEWQ argument slot used to pass symbiont SYMTABX to handler or HASPIO.
SCDEVTYP	Device type Byte 3 contains normal device type for operations on local peripherals but is only meaningful to HASPIO on remote operations. Bytes $0-2$ are flags.
SCDINFO	Device Information Defines the base of the module specific information. Used by INSYM as the start of a 4 -word save area.
SCDQARGS	Device IOQ Arguments Base of a 5-word NEWQ device calling sequence. Contains IO handler function code, IO request priority, number of retries and DCTX in bytes 0-3 respectively.
SCDQFC	Device IOQ Functions Codes Base of an 8-byte (2 word) translation table used to convert generalized system function codes into specific handler function codes.
SCFBUF	File Buffer Contains either a byte address or word address, physical or virtual (as appropriate and convenient to the routine using the context block) which indicates the blocking buffer currently being used.
SCFCO	File Count Used by OUTSYM as a count of files processed since initiation.

SCFFORM	Future Form
The name of the FORM to be used when the user issues an	
M:DEVICE (FORM) CAL without a form name.	
SCFINFLG	IFIN Flag
The high order bit is used by INSYM to remember to communicate	
to RBBAT that the current file was terminated by a IFIN control	
card.	
SCFLDA	
Forward Link DISC Address	
	Used in symbiont file linkage handling to hold the DISC
address of the next block.	
SCFORM	FORM Name
Used by COOP to contain the name of the paper or card stock	
to be associated with an output file or to identify the desired	
non-control input file.	

SCMINR	Minimum Record Size Used in output file creation to pad short records to an acceptable width. On a listing type device, this cell contains the number of lines per page.
SCMISC	Miscellaneous Contains miscellaneous output file attributes such as column of stream heading page count, default line spacing, job descriptor entry and number of copies.
SCMODE	Blocking Mode U.ed by INSYM to control file terminations. SCMODE $=1$ implies ! JOB or !IFIN terminates this file, SCMODE $=0$ implies !JOB or !IFIN or !RB terminates. Thus, SCMODE $=1$ while blocking RB CCs into a file.
SCNCBT	No Communication Buffer Temp. Defines a 4 -word area to hold RBBAT communication arguments while a symbiont is waiting in the activate queve for an RBBAT communication buffer.
SCPCO	Page Count Contains number of print pages processed for the current file.
SCRCO	Record Count Contains the number of records processed for the current file.
SCRCVLST	Recovery List A pointer to and control word for the list of prior disc addresses not released in catchup deletion mode in OUTSYM.
SCRPDA	Release Previous Disc Addresses If nonzero, contains a disc address not released by cooperative end-action because ALLOCATs core stacks were full.
SCSEQ	Sequence ID Contains the sequence ID to be used in stream card sequencing.
SCSVDGI	Saved Ghost Information Contains the file priority, RBID and SYSID of the current file to be used to ADD partial output in the event of a ' Q ' signal or system crash during OUTSYM processing.

CP-V TECHNICAL MANUAL

SCSYMX	SYMX Table Contents Contains for INSYM the contents of the appropriate entry in the SYMTAB table SYMX.
SCTOFDA	Top of Form Disc Address Disc address of the granule containing the record belonging on the tope of the current form.
SCTYC	Type of IO Completion Temporary holding place for TYC at OUTSYM end-action for later examinations.

SCXTRAB Extra Buffer List
A pointer to and control word for the list of buffers used by OUTSYM in multi-core buffer operation.

CP-V TEChiñ CAL MANUAL

SECTION VI.OI
PAGE 17
10/31/74

RBBAT COMMUNICATION BUFFERS

In the following descriptions, the numbers in the diagram below are used to describe the fields in a particular RBBAT communication buffer.

LINK	2	3	GFC
5	6	7	8
9	10	11	12
13	14	15	16

Byte 1 is always the link to the next buffer. The buffers are linked to SCCHD as in the diagram below.

Byte 4 is always the Ghost Function Code (GFC) which tells RBBAT what operation to perform.

161

CP-V TECHNICAL MANUAL

SECTION VI. 01
PAGE 18
10/31/74

162

SECTION VI. O1
PAGE 19
10/31/74

GFC:	NOPGFC
OPERATION:	None - release buffer only
Called by:	Those who use two (2) buffers
NOTE:	See the two-buffer-calls below.
GFC:	AIF
OPERATION:	Add Symbiont Control Input File
CALLED BY:	INSYM
Byte 2:	SYMBX
Byte 3: Bytes 5-8:	Starting disk address
Bytes 15-16:	Number of granules
GFC:	AIFJE
OPERATION:	Add JOBENT Control Input File
CALLED BY:	T: JOBENT
Bytes 5-8: Bytes 9-12:	Starting disc address SYSID
GFC:	AIFNC
OPERATION:	Add Symbiont Non-control Input File
CALLED BY:	INSYM
Bytes 5-8:	Starting disc address
Bytes 9-12:	Name from : : NCTL
Bytes 13-16:	Number of granules

SECTION VI. O1


```
GFC: AOF, AOFL, AOFNB
OPERATION: Add Output File (Last, Non-Batch)
CALLED BY: SUPCLS, T:JOBENT
Byte 2: Link to second buffer if any
Byte 3: Device type
Byte 5: Number of copies or lst byte of COMID (see SECOND BUFFER)
Bytes 6-8: Starting disc address
Byte 9: Priority
Byte 10: RBID
Bytes 11 - 12: SYSID
Bytes 13 - 16: Number of granules
SECOND BUFFER
Byte 3: 2nd byte of COMID
Byte 3 (bits 1 - 7): JDE, bit \emptyset of byte 3: if set, byte 5 of lst buffer is
    lst byte of COMID
Bytes 5 - 8: Form name
Bytes 9 - 12: Forms overlay name
Note: If a COMID is being passed and bit \emptyset of the first byte of
    the COMID is set, this indicates the last "chunk" of
    concurrent mode output.
GFC:
AOF P
OPERATION: Add Partial Output File
CALLED BY: OUTSYM
Byte 2: SYMBX
Byte 3: DCTX
Byte 5: Number of copies
Bytes 6 - 8: Starting disc address
Byte 9: RBSWITCHED, HASP, PARTIAL, Priority (1,1,1,5)
Byte 10: RBID
Bytes 11 - 12: SYSID
Bytes 13 - 16: Number of granules
GFC:
MBSGFC
OPERATION: Perform Multi-Batch Schedule
CALLED BY: CLOCK1
```

GFC:	GOF
OPERATION:	Get Output File
CALLED BY:	OUTSYM
Byte 2:	SYMBX
Byte 3:	DCTX
Bytes 5-8:	-1
ON RETURN	
Byte 5:	Number of copies
Bytes 6-8:	Starting disc address 10 = no filel
Byte 9:	RBSWITCHED, HASP, ZERO, Priority (1, $1,1,5)$
Byte 10:	RBID
Bytes 11-12:	SYSID
Bytes 13-16:	Number of granules
GFC:	GIFNC
OPERATION:	Get Non-Control Input File
CALLED BY:	OPNLD
Byte 3:	Device type
Byte 5:	User number
Byte 8:	RBID
Bytes 9-12:	Name
ON RETURN	
Bytes 5-8:	Starting disc address $10=$ no file found)
GFC:	PRIOGFC
OPERATION:	PRIO Keyin
CALLED BY:	KEYIN
Byte 5:	Device type $10=a l l$
Bytes 7-8:	SYSID
Bytes 9-12:	New PRIO

GFC:	KDELGFC
OPERATION:	DELE Keyin
CALLEED BY:	KEYIN
Byte 5: Butes 7-8:	Device type $0=$ all) SYSID
GFC:	KFRMGFC
OFEFATION:	(SYYndd, F'XXXX') Type Form Keyin
CFILLEU BY:	KEYIN
Eyte 2:	SYMBX of SYYndd
Byte 3:	JDE (-1 not changed)
Eytes 5-8:	Form name (-1 not changed)
Eytes 9-12:	Forms overlay name (-1 not changed)
GFC:	KFCGFC
OPERATION:	(Form 3B) Type Form Keyin
CALLED BY:	KEYIN
Byte 5: Butcs 7 - 8:	Device type SYSID
Bytes 9-12:	New form name
GFC:	KDISPGFC
OPERATICN:	Display Keyins
CALLEE EY:	KEYIN
Bytes 5-8:	A0 $=$ no option or OC 1 $=$ SYSID -1 $=$ NORUN -2 $=$ SYMB -3 $=$ output
Butes 9-12:	$\begin{array}{ll} A=1 & S Y S I D \\ A=0 & =0 \\ & \neq 0 \end{array} \text { on } \operatorname{\text {on}OC}$

GFC:	KCOMGFC, SNDGFC, BCSTGFC
OPERATION:	RBCOM, RBSEND, RBBCST Keyins
CALLED BY:	KEYIN
Byte 3: Bytes 5-8:	DCTX to send to MPOOL word address of TEXTC message
GFC:	JESTAT
OPERATION:	JOBENT Status Request
CALLED BY:	T: JOBENT
Byte 5: Bytes 7 - 8:	Requesting user number SYSID for status
ON RETURN	
Bytes 5-8:	1$2=$running 4 4 waiting to run 0$=$waiting to output completed
Bytes 9 - 12:	number waiting to run if bytes 5 through $8=2$
GFC:	SWITGFC
OPERATION:	RBSWITCH Keyin
CALLED BY:	KEYIN
Byte 2:	Link to second buffer
Byte 3:	Byte count of WSN
Bytes 7-8:	SYSID
Bytes 9 - 12:	Device type (TEXT)
SECOND BUFFER	
Bytes 5-8: Bytes 9 - 12:	'TO' workstation name, word 1 WSN, word 2

GFC: JEDEL
OPERATION: Cancel Command
CALLED BY: T: JOBENT
Byte 2: Link to second buffer
Bute 4: Requesting user numberBytos $7-8: \quad$ SYSID to delete
SECO: ND EUFFER
Bytes 5-8: Word 1 of account
Bytos 9-12: Word 2 of account
ON FETURIN (BUFF1)
Bytes 5-8: X'3A' no such file X'39' wrong account O AOK
GFC: DUP, HUP
OPERATIDIN: RB Dial Up, RB Hang Up
CALLED BY: BSCIO, RBSSS, DSCIO
Byte 3: DCTX
GFC: LORR
OPERATION: RB Logon Record Received
CALLED BY: BSCIO, DSCIO, RBSSS
Byte 3: DCTX
Bytes 9-12: MPOOL word address of logon record
GFC: DCMGFC
OPERAT ION: IRBT OC Input Message
CALLED BY: HASPIO
Byte 3: DCTXBytes 9-12: MPOOL word address of message16!

SECTION VI.OI
PAGE 25
10/31/74

GFC:	RCVRIGFC
OPERATION:	Marks Point of Recovery in COMBUFS
CALLED BY:	RECOVER
GFC:	RCVRGFC
OPERATION:	Perform RBBAT Recovery
CALLED BY:	RECOVER
Bytes 5-8: Bytes 9 Bytes 10-12:	Size of dynamic data (-1 says recovery doesn't know) S:CUN at time of crash
GFC:	KOSTOP
OPERATION:	OUTPUT STOP keyin
CALLED BY:	KEYIN
Byte 2:	SYMBX
GFC:	KFLUSH
OPERATION:	FLUSH keyin
CALLED BY:	KEYIN
Byte 2:	SYMBX
Byte 3:	Device Type
Bytes 7-8:	SYSID

Index
Name
OIPRI

- Both are halfword tables
- Displacements are hexidecimal

Table Name

(HW)

(WORD)

(BYTE)
-Heads of serial number chains are in BH:SLNK or BH:XLNK.
-Length $=(($ INFILE*AVGSER +3$) / 4)+1$

$$
17 \%
$$

```
Section VI. 02
Page 4
4/1/74
```

CP-V TECHNICAL MANUAL

MBS TABLES IN CORE:

Resource Allocation Tables (RAT)

	$\begin{aligned} & \sum_{\underset{\sim}{x}} \\ & \text { ت} \\ & \text { ت } \end{aligned}$	$\begin{aligned} & \underset{\sim}{i} \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{\stackrel{-}{O}}{\stackrel{\sim}{\sim}}$
\uparrow	$\frac{0}{O}$		
†			
N	$\stackrel{\circ}{E}$	®	\bigcirc
$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\square}$,	-
$\stackrel{\sim}{*}$	$\stackrel{\otimes}{\cup}$	$\stackrel{\text { ¢ }}{ }$	$\stackrel{\sim}{\sim}$
	3	- $\frac{0}{3}$	0
	呙	-	$\stackrel{\square}{\circ}$
	\pm		

$0^{\text {th }}$ entry not used

SH:RNM	Resource namet table in TEXT (halfword)
SB:RTY	Device type (Byte) (entries are unique)
SH:RTOT	Total system resource
SH:\{ $\left\{\begin{array}{l}B \\ O \\ G\end{array}\right\}$ SUM	Total resources available for the $\left\{\begin{array}{c}\text { batch } \\ \text { on-line } \\ \text { ghost }\end{array}\right\}$ load
SB:R $\left\{\begin{array}{l}\text { B } \\ 0 \\ G\end{array}\right\} M X$	Maximum allocation perbatch $\left.\begin{array}{c}\text { on-line } \\ \text { ghost }\end{array}\right\}$ user
SB:R $\left\{\begin{array}{l}\text { B } \\ O \\ G\end{array}\right\}$ DF	Default allocation per $\left\{\begin{array}{c}\text { batch } \\ \text { on-line } \\ \text { ghost }\end{array}\right\}$ user
$S H: R\left\{\begin{array}{ll}B \\ O \\ G\end{array}\right\} C U$	Currently allocated for the $\left\{\begin{array}{c}\text { batch } \\ \text { on-line } \\ \text { ghost }\end{array}\right\}$ load

Note: SH:RNM and the value definition SV:RSIZ < 15 are in the SYSGEN produced load module SG:RNT. (The value tables are monitor resident, having been initially incorporated into the monitor from the SYSGEN module SG:RCT.) The first four entries are CO, 9T, 7T, and SP.

Table Name

$$
\begin{aligned}
& \text {-Heads of serial number chains are in users JIT. } \\
& \text {-Length }=255 \text { or }(((16 * \text { AVGSER })+3) / 4)+1+16 \\
& \text { (whichever is less) }
\end{aligned}
$$

SYSTEM NAME	DEFINITION	ENTRY SIZE
PL: LK	Partition table lock control word set if tables currently being altered or used.	1 word
PL: CHG	Control - altered partition status word which flags an occurring change in partition tables and signals which partitions definition has been altered.	1 word
Each of the tables below is of length LPART (number of partitions defined).		
PLH:TL	Lower time limit of partition n.	halfword
PLH: TU	Upper time limit of partition n .	halfword
PLH: QN	Quantum time of partition n.	halfword
PLD: ACT	Current running account of partition n.	doubleword
PLH: CUR	Current number of jobs which have been selected under current partition definition.	halfword
PLH: TOL	Total number of jobs run under this partition.	halfword
PLB: USR	User number of user currently using partition.	byte
PLH: SID	SYSID of job currently using partition.	halfword
PLH: FLG	Partition control flags.	halfword
	PLH:FLG	
	012	

The following two tables of length LPART are (number of defined resources) bytes wide.

SYSTEM NAME

PLB: MAX

PLB:MIN

DEFINITION
Upper resource limits of 非 resources bytes partition n.

Lower resource limits of 非 resources byte: partition n.

ENTRY SIZE

Resource order corresponds to order in SH:RNM.
Byte 0 of PLB:MIN for a partition contains the head of the exclusive serial number chain into LSERIAL for the job running in that partition.

MBS TABLES IN CORE: PARTITION TABLE LAYOUT (PLD:ACT TO PLB:MAX)

GI Tables

These tables (assembled into the module COMBAT) are the communication path from the Multibatch Scheduler to CCI via the input cooperative through the routine GETI. Each table has three entries allowing the MBS to supply three jobs in one scheduling pass by finding three jobs and filling in the information from its internal tables (the Batch Tables) into the GI tables.

GETI, when called in response to a CCI read, finds the proper GI entry by matching the current user number, S:CUN, against the table GIB:UN. Information from other GI tables is moved to JIT as indicated in the table below, the file indicated in GI:SDA is read, and the GI table entry is freed by placing its entry number on the free list GI:FRE.

GIB:UN - User number
GIH:TIM - maximum run time minutes (stored in J:MRT
GI:ASPN - 3 words containing the shareable Drives/Spindles Bit Map (stored in J:ASPIN)

GI:RES - 4 word list of required resources (store in JB:MAX); paralles RAT.
GIB:SLN, GIB:XLN - shared and exclusive serial number table linkages (stored in JB:SLNK, JB:XLNK)
GIB:RID - remote identification (stored in JRBID)
GI:SDA - starting disk address, input file
GIB:PRT - partition number (stored in JB:PNR; SYSID from PLH:SID store in J:JIT)
GI:FRE - A word which lists the free GI entries.
GIB:PRI - PRIO from job card or PRIO keyin; stored in JIT+PRT

$$
17!
$$

SL:NAME Word table containing the first four characters of the limit name (left justified blank filled).

SL: $\left\{\begin{array}{l}B \\ O \\ G\end{array}\right\}$ DF Word tables containing the default limit values for any $\left\{\begin{array}{c}\text { batch } \\ \text { on-line } \\ \text { ghost }\end{array}\right\}$ job. $S L:\left\{\begin{array}{l}B \\ O \\ G\end{array}\right\} M \times$ Word tables containing the maximum limit values for any $\left\{\begin{array}{c}\text { batch } \\ \text { on-line } \\ \text { ghost }\end{array}\right\}$ iob.

SV:LIM Value definition defining the number of entries in the SL:NAME table.

SL:NAME and the value definition SV:LIM are in the SYSGEN produced load module SG:LNT. A value definition is produced for each limit name. The value definition is made up of SV: and the first two characters of the limit name. These value definitions are also included in the SYSGEN module SG:LNT. The value tables are monitor resident, having been initially incorporated into the monitor from the SYSGEN module SG:DLNT.

Section VI. 02
Page 11
4/1/74

Peripheral Authorization Tables (PAT)

SH:SYMT		A table in TEXT containing those device types to be associated with symbionts. The table consists of halfword entries in TEXT format left justified and blank filled. The bottom of the table contains FAUTH values as obove.
S:SYMD	$\left\{\begin{array}{l}B \\ 0 \\ G\end{array}\right\}$	Words containing Bit tables which are the default authorization flags. Bit 1 corresponds to the lst entry.
	SV:TYM	Is a value defining the table length, for SYMBIONT DEVICES.
	SV : FTYM	Is a value defining the table length including FAUTHs, 15 max.
Note;		T and the value definition SV:TYM and SV:FTYM are in the produced load module SG:PNT. S:SYMD B are core

CP-V TECHNICAL MANUAL

SECTION VK
PAGE 1
10/31/74

ERROR LOG FORMAT

The Error Log File is a special consecutive file on the RAD written by ERRLOG. The file is not accessed by name, but by a special pointer in memory which contains the disk address of the first record in the file. Each record is 64 words long and contains a backward and forward link. The backward link is the disk address of the previous record and the forward link is the disk address of the next record in the file. The backward link is never zero since the file is considered as open and the next record to be written is being constructed in a core buffer as the errors occur. The forward link in the last record written contains the disk address where the next record is to be written.

The record format in the file is as follows:

Backward Link	
10 Forward Link	
Number of Words in this Buffer	
Message 1	
Message 2	
\cdot	
	Message N

182
SECTIUN VK
PAGE 2
$10 / 31 / 74$

Each record may contain several unused words at the end of the record since messages may vary in size, from one to eighteen words each. Therefore, up to nine words may be unused. The maximum number of useful words in a record is 61. The format of the backward and forward link disk address is as follows:

Disk granules for writing the file are obtained by calling the GBG (Get Eackground Granule) routine. This routine gets one granule at a time. Each granule contains one record of the file.

FILE CONTROL POINTERS

Several pointers in memory provide the necessary control information for constructilig and accessing the file. The following is a list of pointers, all of word length, and their definitions:

SGRAN contains the disk address of the first record in the file.

BGFAN contains the disk address of the last record written.
CURGRAN contains the disk address of the next record to be written.

FGPAN1 contains the disk address of the record to be written following the current record.

CUREUF contains address of buffer which is currently being used to pack the messages.

Two 64-word buffers are used for packing the messages. The labels for the two buffers are BUF1 and BUF2. Each buffer is preceded by two control words. The first contral word contains the memory address of where the next message will be stored in the buffer. The second control word contains the number of words of space remaining in the buffer. The first three words of the buffer are the same as the first three words of the record on disk. The backward and forward link addresses are put in the buffer before any messages are packed in the buffer.

If one of the buffers is in the process of being written to the disk and tha second buffer fills up before the writing of the first is conipleted, then all error messages for the errors which occur while this condition exists will be lost. The error logging routine just exits when there is no space available in either of the buffers.

ERRLGTAB

CP-V TECHNICAL MANUAL

SECTION VK
PAGE 4 10/31/74

OVERVIEW

The system error log is a standard file of the operating system in question. It may be organized in any access method convenient to the individual operating system but must be accessible sequentially. The name of the file is to be ERRFILE and the account shall be :SYS. Logical records within the file are variable length but may be carried in a fixed length record if convenient. Logical records will never be longer than 20 words.

Each logical record of ERRFILE begins with a byte containing the error log entry code and a byte containing the total number of words in the record.

If a keyed file organization is used to facilitate analysis, the keys will be formatted as follows:

The key contains the Julian date in packed decimal, the time of the error in EBCDIC, and a sequence number for errors with the same time. This sequence number is reset to zero for each entry with a new time. The format of the key is

08	$y y$	od	dd
h	h	m	m
n			

where:

08
yyoddd
hhmm
n
is the number of bytes in the key.
is the Julian date in packed decimal.
is the time in hours and minutes (EBCDIC).
is the sequence number.

CP-V Error Log Mechanism
In CP-V, the mechansim for creating the error log utilizes a monitor resident recording routine ERRLOG which blocks individual error entries into 64 -word blocks using a standard double buffering technique. When full, these blocks may be written into a chain of sectors obtained from the permanent file area (PFA). Only the first 64 words of each 256-word sector is used in order to minimize the core requirement for buffering. Blocks are chained by links carried in the first words of each block and are not part of the standard file system. The core resident head of chain is carried across recoveries by the recovery routines.

Each time six errors are recorded by ERRLOG, the ghost job, ERR:FIL, is triggered. This program uses the privileged error log reading CAL to obtain the blocks of error log entries from the chained file. The read is destructive and secondary storage granules are returned to the system (PFA) as the information is read from them. ERR:FIL deblocks the individual entries, creates a key for the record indicating date and time of the entry, and writes the record into the file, ERRFILE, in account :SYS using the keyed file organization. Each time ERR:FIL is awakened, it continues copying until no more error log entries remain to be copied.

This process is outlined in Figure 1.

SFCTJ〇N VK
PPGF: 7
10/31/74


```
FIGURE 1 - CP-V ERROR LOGGING SCHEME
```

SUMMARY OF LRROR LOG ENTRIES

Error Codes

0 Null Entry

10 Copy Error (several subtypes)
11 SIO Failure
12 Device Time Out
13 Unexpected Interrupt
14 Reserved
15 Device Error
16 Secondary Device Error
2D Hardware Error
18 System Startup/Recovery
2E Watchdog Timer
1A File Inconsistency Entry
1B Software-detected Symbiont INconsistency
1C Reserved
2F Instruction Exception
1 E Lost Entries
1F Duplicate Entries
20 Power On
21 Configuration
22 System Identification
23 Time Stamp
24 Bad Granul*e Release
25 Reserved
26 Remote Processing Error Record
27 Operator Message
28 - I/O Activity Count
29-2F Reserved
30 PFI Primary Record
31 MFI Primary Record
32 Secondary Record for Poll Information
33-40 Reserved
41560 Processor Configuration
42560 Memory Parity Secondary Record
43 Sigma 9 Memory Parity Secondary Record
44 Sigma 5-7 Memory Parity Secondary Record
45-4F Reserved
50 ENQUEUE Table Overflow
51 Partitioned Resource
52 Returned Resource
Reserved for Future Enhancements

$53-5 F$	For CP-V
$60-6 F$	For CP-R
$70-B F$	New Features

GLOSSARY OF TERMS

The following pages detail the terms used in the error log formats for each operating system.

CP-R GLOSSARY OF TERMS

AIO CC	A 4-bit value (bits 0-3 of designated byte) representing the condition codes as returned by the hardware in response
to an AIO instruction.	

HIO CC
HIO Status
I/O Address
I/O Count
iulian Day
Memory Status Words
(only Sigma 9 and
560 series)
MFI
(Sigma 6 or 7 only)

Model Number

Number of Parity Errors

Poll CC

Poll Status
(identical to POLR Results)

A 4 -bit value (bits $0-3$ of designated byte) representing the condition codes as returned by the hardware in response to an HIO instruction.

A 16 -bit value representing the status as returned by the hardware in response to an HIO instruction.

A 16 -bit value representing the physical I/O address.

A 32-bit value representing the number of start input/output (SIO) instructions executed for a device. This value is reset at system boot time.

A 16 -bit value representing the julian day of year (e.g., March 1 would be represented as $\mathrm{X}^{\prime} 3 \mathrm{D}^{\prime}$).

Each word is a 32 -bit value representing data returned by the hardware in response to a LMS instruction.

A 4 -bit value representing the current state of the memory fault indicators returned by the hardware in response to a RD instruction. All memory fault indicators will be reset.

A 16-bit value representing the conversion of a number (assigned by Field Engineering to uniquely identify peripheral devices) to a binary value (e.g., 7242 would be represented as x'1C4A').

A 16 -bit value representing the number of bad locations causing memory parity errors (only the first 14 bad locations are entered in the log if the number of errors errors is greater than 14).

A 4 -bit value (bits 0-3 of designated byte) representing the condition codes as returned by the hardware in response to a POLP or POLR instruction.

A 16 -bit value representing the processor fault status as returned by the hardware in response to a POLP or POLR Instruction.

Primary I/O Address

PSD

Real Address

Real Time Resolution

Recovery Count
Relative Time

Retries Remaining

Retry Request

SIO CC

SIO Status

Site Identification

Startup Type

A 16-bit value representing the physical I/O address by which a devico can be referenced.

A 64-bit value representing the program status doubleword.

A 32-bit value representing the actual memory address. (In an unmapped system, this is the same as the address in the IA field of the PSD.)

An 8 -bit value, n, such that actual relative time resolution $=2$ milliseconds (e.g.. $N=1$ for a resolution of 500 Hz or 2 milliseconds).

Currently not applicable. Will be 0 .
A 32-bit value representing milliseconds since midnight. Resolution 182 milliseconds.

An 8-bit value representing Retry Request minus the number of retries attempted. The range is between Retry Request and -1. A value of -1 indicates the operation was terminated due to retry count rundown.

An 8 -bit value representing the maximum number of retries after which device error is returned to the requestor. This value is obtained from the requestor's DCB.

A 4-bit value (bits 0-3 of designated byte) representing the condition codes as returned by the hardware in response to a SIO instruction.

A 16 -bit value representing the status as returned by the hardware in response to a SIO instruction.

A 64-bit field. The first 32 bits will contain the EBCDIC representation of the SYSGEN input parameter for version. The second 32 bits will be blanks ($X^{\prime} 40^{\prime}$).

An 8-bit field indicating type of system initialization. Will be 3 for System device boot.

TDV CC	A 4-bit value (bits 0-3 of designated byte) representing the condition codes as returned by the hardware in response
to a TDV instruction.	

Account	The doubleword used to identify a user's collection of files.
AIO CC	A 4-bit field (bits 0-3 of designated byte) representing the condition codes as returned by the hardware in response to an AIO instruction.
AIO Status	A 16-bit field representing the status as returned by the hardware in response to an AIO instruction.
Alternate I/O Address	A 16-bit value representing an alternate physical I / O address by which a dualaccess device can be referenced.
Bytes Remaining	A 16-bit field representing the Remaining Byte Count (RBC) field as returned by the hardware in response to a TDV instruction.
Code	An 8-bit value in the first byte of the error log message indicating message type.
Consecutive, Keyed, Random	Methods of organizing user files in CP-V (refer to the CP-V Batch Reference Manual)
Core Size	An 8-bit value representing the number of 8K (8192) word blocks.
Count	An 8-bit value in the second byte of the error log message representing the number of useful 32-bit words contained in the error \log record. Includes the first word in the count.
Count of Entries	The number of error log records which are
Identical to Previous	identical to one previously logged for
Entry	identical reasons (excludes time records).
Count of Entries Lost	The number of error log records lost when logging becomes temporarily impossible for any reason.
Current Command Doubleword	A 64-bit value representing the command doubleword currently being processed for a device (indicated by the TDV status DW).
Caller's Address	The address or EBCDIC name of routine back to which the error logging routine will return when logging is complete; used in isolating software faults.

DCT Index	The 8-bit value indicating the order in which the device is configured into the system (at SYSGEN).
DCT Index of Symbiont Device	The 8 -bit value indicating the order in which the device associated with the symbiont is configured into the system (at SYSGEN).
Effective Address	A 32-bit value representing the final address computed for the instruction pointed to by the instruction address (IA) in the PSD.
Error Subcode	An 8-bit field indicating which of several types of file inconsistencies has occurred (see CP-V Batch Reference Manual).
File Name	The TEXTC name used to identify a collection of user data on secondary storage.
Granule	The unit of secondary storage allocation equal to 2048 bytes (usually 2 sectors).
Generalized Disk Address	See Section 6.0.
HIO ${ }^{\circ} \mathrm{CC}$	A 4-bit value (bits $0-3$ of designated byte) representing the condition codes as returned by the hardware in response to an HIO instruction.
HIO Status	A 16 -bit value representing the status as returned by the hardware in response to an HIO instruction.
I/O Address	A 16 -bit value representing the physical I/O address.
I/O Count	A 32-bit value representing the number of SIO instructions executed for a device. This field is reset at system boot and recovery time.
Julian Day	A 16 -bit value representing the julian day of the year (e.g., March 1 would be represented as $X^{\prime} 3 D^{\prime \prime}$) when the error was logged.

Memory Status Words
(only Sigma 9 and
560 Series)
MFI (Sigma 6 or 7
only)

Mode

Model Number

Number of Parity Errors

Poll CC

Poll Status
(identical to POLR Results)

Primary I/O Address

PSD

Real Address

Recovery Count

Each word is a 32-bit value rapresenting data returned by the hardware in response to a LMS instruction.

A 4-bit value representing the current state of the memory fault indicators returned by the hardware in response to a RD instruction. All memory fault indicators will be reset.

A 16-bit value representing the manner in which the file was last referenced (See CP-V Reference Manual).

A 16 -bit value representing the conversion of a number (assigned by field Engineering to uniquely identify peripheral devices) to a binary value (e.g., 7242 would be represented as $X^{\prime} 7242^{\circ}$) 。

A 16-bit value representing the number of bad locations causing memory parity errors (only the first 14 bad locations are entered in the $10 g$ if the number of errors is greater than 14).

A 4-bit value (bits 0-3 of designated byte) representing the condition codes as returned by the hardware in response to a POLP or POLR instruction.

A 16-bit value representing the processor fault status as returned by the hardware in response to a POLP or POLR instruction (for 560).

A 16-bit value representing the physical I/O address by which a device can be referenced (see Alternate I/O Address).

A 64 -bit value representing the program status doubleword.

A 32 -bit value representing the actual memory address (in an unmapped system, this is the same as the address in the field of the PSD).

An 8-bit value initialized to zero at system initialization and incremented by the value one for every system recovery.
Relative Time
Relative Time
Resolution
Retries Remaining

Retry Request

Screech Code

Screech Subcode

Seek Address

Sense Information

SIO CC

SIO Status

Site Identification

Startup Type

A 32 -bit value representing milleseconds since midnight. Resolution is 2 msec .

An 8 -bit value, n, such that actual relative time resolution $=2$ msec. (e.g.. $n=1$ for a resolution of 500 Hz or 2 msec.)

An 8-bit value representing Retry Request minus the number of entries attempted. The range is between Retry Request and -1. A value of -1 indicates the operation was terminated due to retry count rundown.

An 8 -bit value representing the maximum number of retries after which device error is returned to the requestor. This value is obtained from the requestor's DCB.

The code used by $C P-V$ to identify the system failure which has occurred.

An 8-bit field identifying which type of a specific and similar set of system failures has occurred (see CP-V Systems Management Reference Manual).

The physical disc address last used to access this device.

The diagnostic information returned from the device as a result of sending a "sense" order to the device.

A 4-bit value (bits 0-3 of designated (byte) representing the condition codes as returned by the hardware in response to a SIO instruction.

A 16 -bit value representing the status as returned by the hardware in response to a SIO instruction.

A 64 -bit field which contains the EBCDIC representation of the SYSGEN input parameter for site identification from the :MON command.

An 8-bit field indicating which of several types of system initialization was used.

Subchannel Status

Symbiont File

TDV CC

TDV Current Command DA

TDV Status Doubleword

TIO CC

TIO - Status

Trap CC

Trapped Instruction

Unit Address

The status of the I / O subchannel received from the hardware as a resuli of a TDV instruction.

A CP-V system special file for buffering data between the CPU and slower speed ine printers, card punchers, etc.

A 4-bit value (bits 0-3 of designated byte) representing the condition codes as returned by the hardware in response to a TDV instruction.

A 24-bit field representing the current command doubleword address used in obtaining the device status with a TDV instruction.

A 64-bit field representing the subchannel status, as current command doubleword, device status, and byte count as returned by the hardware in response to a TDV instruction.

A 4-bit value (bits 0-3 of designated byte) representing the condition codes as returned by the hardware in response to a TIO instruction.

A 16 -bit value representing the status as returned by the hardware in response to a TIO instruction.

A 4-bit value (bits 0-3 of designated byte) representing the condition codes $a s$ returned by the hardware when certain traps occur.

A 32-bit value representing the contents of the location pointed to by the instruction address (IA) in the PSD.

A 6-bit value (bits 2-7 of designated byte) representing the address by which a processor can be referenced. The value is composed of a 3-bit cluster number followed by a 3-bit unit number.

Unit Type	An 8-bit value specifying the type of processor. Bit 0 of the designated byte indicates the presence of the processor in the current operational configuration $(0=$ present, $1=$ not present).
User ID	A 16-bit value which is a unique number assigned by the system to the particular job or session.
User Number:	An B-bit value which is the index into internal system tables used to access user-specific information.
Version	The version identifier of the system running (i.e., AOO, BOO, etc.).
Volume Serial Number	A 4- or 6-byte field supplied by a user to identify either a tape or private pack.
Year	A 16-bit binary value representing the current year minus 1900 (e.g., 1973 will be represented as X'49').

ERROR LOG FORMATS

The following charts detail formats for the error log. Some of the entries will be followed by secondary entries.

All relative times are in milliseconds since midnight. The count is zeroed at midnight, initialized at system startup, and carried over recovery. An operator-initiated time change will also re-establish the correct count. For $C P-V$ and $C P-R_{\text {, }}$ the units are 1 millisecond, however, the clock resolution reduces the relative time resolution to 2 milliseconds.

Hachured fields are unused and may have arbitrary contents.
All condition code fields are the result of use of the STCF instruction, that is, a byte with the condition codes in bits $0-3$ and the floating controls in bits 5-7.

All error log entries have a code in byte 0 identifying the entry type, a word count in byte 1. The second word contains relative time. Error Log listing and analysis programs which encounter an illegal or unrecognized entry type must be prepared to display that entry in hexadecimal. The code of zero is reserved for null entries; error list and analysis programs are expected to skip these entries.

560 specific formats are noted on the formats involved and are logged only when $C P-V$ or $C P-R$ is running on the 560 machine. Basically, the 560 error reporting consists of two secondary detail records which record the status of each processor with valid status as reported by a POLR instruction and the status of each memory with a set error bit as reported by a LMS instruction. These records are produced by routine which are called from several places in the monitor following a primary error record:

```
PFI
MFI
I/O With Memory Fault
Watchdog Timer
Hardware Fault Trap (4C)
Instruction Exception
```

Details of the mechanism are given in Reference 6.

Error Log Code

Recorded when the condition codes returned by the SIO instruction are such that both CC1 and CC2 are true.

Recorded when the timeout value specified by DCT11 has been exceeded.

Recorded when no match can be found between I/O address returned in the status register by the AIO instruction and any DCT1 I/O address of a device known to be busy. AIO $C C=11 x x$ will not be logged.

Recorded when an I / O request is not successful upon one of the specified number of retries. May or may not have eventually been successful. Only the status of the last erroneous retry for a given request is logged, not all the retries.

Recorded to log specific information returned in response to a sense order issued to a device which has indicated an error.

Recorded when program execution traps to hex location 56 due to a memory parity condition.

Recorded when system is booted.
Recorded when program execution traps to hex location 46 due to a watchdog timer runout condition.

Recorded when program execution traps to location $X^{\prime \prime} 4 D^{\prime}$ on Sigma 9 or Xerox 560 due to an instruction exception condition.

Recorded when system is booted.
Recorded when system is booted.
Recorded whenever the value in $\mathrm{K}:$ TIME (seconds since midnight) is a multiple of 3600, i.e., once each hour).

27
Recorded when there is an unsolicited ERRSEND key-in by the operator.

Recorded when there is a processor fault interrupt (hex location 56).

Recorded when there is a memory fault interrupt (hex location 57).

Recorded for each nonzero poll status received by the processor poll subsystem.

Recorded when system is booted.
Recorded for each memory unit that has recorded an error as determined by the memory poll subsystem (i.e., bits 22-31 of status word zero are nonzero) for 560.

Recorded for each memory unit that has recorded an error as determined by the memory poll subsystem (i.e., bits 22-31 of status word zero are nonzero) for Sigma 9.

Recorded for each memory unit that has recorded an error as determined by a routine that loops through memory with errors causing an interrupt to hex location 56 for Sigma 7.

The following codes and causes are utilized by cP-V:

CODE	DESCRIPTION	CAUSE
10	Copy Error	Recorded as a result of several possible error conditions in the error logging mechanism. If the record subtypes as 03. 05, or 06, the record is followed by the 64-word buffer in which the error occurred.
11	SIO Failure	Recorded when condition codes returned by an SIO instruction are such that CC1 or CC2 are set.
12	Device Timeout	Recorded when the timeout value specified by DCT11 has been exceeded. The operating system monitors the length of time operations take for a device to perform. If the device exceeds this time, the operating system assumes faulty operation, records this entry and warns the operator.
13	Unexpected Interrupt	Recorded when no match can be found between the $1 / 0$ address returned in the status register by an AIO instruction and only DCT1 I/O address of a device known to be busy.
15	Device Error	Recorded as a result of examining the status returned in the status register by an AIO, TIO, or TDV instruction and finding an error condition. This record may be followed by 0 to n Memory Parity Secondary Records (42, 43, or 44), 0 to n Secondary Records for Poll Information (32), and Secondary Records for Pack, RAD, and Tape (16), depending on error and machine types.
16	Secondary Record for Pack, RAD, Tape	Recorded to log specific information returned in response to a sense order issued to a device which has indicated an error. This record is preceded (not necessarily contiguously) by the Device Error: record (15).

CODE	DESCRIPTION	CAUSE
1 F	Duplicate Entries	Recorded when the error logging mechanism detects identical consecutive errors. This prevents the error log from becoming saturated with redundant information.
20	Power On	Recorded when the hardware power monitor forces program execution to trap the location $X^{\prime} 51^{\prime}$ as a result of detecting a restoration of power condition. This normally occurs as a result of a power outage of 500 milliseconds or more in duration.
21	Configuration Recovery	Recorded when the system is booted and at every recovery as part of the set of secondary records associated with System Startup record (18) and as part of the set of secondary records associated with System Identification record (22).
22	System Identification	Recorded when the system is booted and at every recovery as part of the set of secondary records associated with System Startup record (18). It is also recorded when the error log file ERRFILE is empty and the first records transferred to the file were not system Startup (18) and System Identification (22). When this record is the first record in the ERRFILE file, it is followed by Time Stamp (23), 1 to n Configuration Records (21), 1 to n I/O Activity Count (28), or 1 to n Processor Configuration Records (41) depending on machine types.
23	Time Stamp	Recorded when the system is booted at every recovery as part of the set of secondary records associated with System Startup record (18) and part of the set of secondary records associated with System Identification (22). It is also recorded each and every hour on the hour.
2.4	Bad Granule Release	Recorded when either a bad disk address has been detected or when the granule to be released is already free (dual allocation).

CODE	DESCRIPTION	CAUSE
26	Remote Processing Error Record	Recorded when an error is detected in the transmission of data from a remote processing workstation.
27	Operator Message	Recorded when there is an unsolicited ERRSEND key-in made by the system operator.
28	I/O Activity Count	Recorded at every recovery and every hour on the hour following the Time Stamp (23) and as part of the set of secondary records associated with System Identification (28). I/O activity counts will be reset after this record is logged after recovery.
30	PFI Primary Record	Recorded when program execution is interrupted to location X'56' on the Xerox 560 due to a processor fault interrupt condition. This record may be followed by 0 to n Memory Parity Secondary Record (42), and 0 to n Secondary Records for Poll Information (32) depending on error type.
31	'MFI Primary - Record	Recorded when program execution is interrupted to location $X^{\prime} 56^{\prime}$ on the Sigma 9 or Xerox 560 due to a memory fault interrupt condition. This record may be followed by 0 to n Memory Parity Secondary Records (42 or 43), and 0 to n Secondary Records for Poll Information (32) depending on error and machine type.
32	Secondary Record for Poll Information	Recorded to \log information obtained by issuing a POLL instruction subsequent to a Device Error (15), Watchdog Timer (19) Hardware Error (17), Instruction Exception (1D). Processor Fault $\begin{array}{ll}\text { Exception (1D), Processor Fault } \\ \text { Interrupt } & \text { (30), and Memory Fault }\end{array}$ Interrupt (31), only if useful information has been received from the POLL instruction.

CODE	DESCRIPTION	CAUSE
41	Processor Configuration	Recorded when system is booted as part of the set of secondary records associated with System Startup Record (18), and as part of the set of secondary records associated with System Identification Record (22).
42	560 Memory Parity Secondary Record	Recorded to log specific information returned in response to an LMS instruction subsequent to a Device Error (15), Hardware Error (17), Watchdog Timer (19), Instruction Exception (1D), PFI (30), or MFI (31).
43	Sigma 9 Memory Parity Secondary Record	Recorded to log specific information returned in response to an LMS instruction subsequent to a Device Error (15), Hardware Error (17), Watchdog Timer (19). Instruction Exception (1D), or MFI (31).
44	Sigma 5-7 Memory Parity Secondary Record	Recorded to log specific information obtained by scanning memory to attempt to isolate locations which cannot sustain correct parity subsequent to a Device Error (15), Hardware Error (17), Watchdog Timer (19), or Instruction Exception (1D).
50	Enqueue rable Overflow	Recorded to log specific information after the operating system has detected an enqueue table overflow condition.
51	Partitioned Resource	Recorded when a resource has been partitioned from the system.
52	Returned Resource	Recorded when a resource, previously partitioned, has been returned to the system.

SECTION VK
PAGE 27
$10 / 31 / 74$

10 - COPY ERROR (Several Subtypes)

Read Error (CP-V)
\qquad10 02 Relative Time

Read Error End (CP-V)

Error Log Record Length Error (CP-V)

Incorrect Time (CP-V)

10	03
Relative Time	
Index to Bad Entry	

Illegal Entry Type (CP-V)

10	03
Relative Time	
Index to Bad Entry	

The above entries occur as a result of an error condition arising in the error log recording mechanism.

11-SIO FAILURE (CP-R/CP-V)

11	$\begin{aligned} & \text { COUNT } \\ & =6 \end{aligned}$	Model ${ }^{\text {\# }}$
Relative Time		
SIO STATUS		1/O Address
MFI if इ6 or $\Sigma 7$	$\begin{gathered} \mathrm{SIO} \\ \mathrm{CC} \end{gathered}$	TDV CC
subchan status		CURRENT MMAND DA
TDV Status		Byles Remaining

The SIO Failure is emitted when following SIO CC are returned

$\frac{5-7}{01 \times x}$	$\frac{8-9 \& 50}{010 x}$
$10 x x^{* *}$	
$11 \times x$	$100 x * *$
DCT21, DCT1	
-DCT19, DCT20	
DCT13	

$8-9 \& 50$ 010x
100x ** 110x

DCT21, DCT1
-DCT19, DCT20

DCT 13

The I/O sequence is STIO, TDV.
** The CC responses which indicate IOP busy may or may not be considered an error condition due to Operating System dependency.

12 - DEVICE TIMEOUT (CP-R/CP-V)•

211

212

16 - SECONDARY RECORD FOR PACK, RAD, TAPE (CP-R/CP-V)

Note: The I/O Address links the secondary record to the correspondin! device error entry.

17 - HARDWARE ERROR (CP-R/CP-V)

CODE XX1	COUNT $=0 \mathrm{~B}$	CPU ADDRES
TIME		
PSD1		
PSD2		
RESERVED		
RESERVED		
TRAP CC		$0 \quad 0 \quad 0$
REAL ADDRESS OF TRAPPED InStruction		
TRAP INSTRUCTION		
ANLZ CC	EFFECTIVE ADDRESS	
REAL EFFECTIVE ADDRESS		

Generated by interrupt 56 on Sigma 7 and trap 4C on Sigma 9 and 560.
where $X X 1=X^{\prime} 2 D^{\prime}, X^{\prime} 2 E^{\prime}, X^{\prime} 2 F^{\prime}$

FIP - When set indicates that a PE occurred while fetching the instruction (causing T4C) or this is an I56 on Sigma 7. In either case, words 4-9 will be zero.
IAP - When set indicates that a PE occurred due to an indirect address fetch. Words 8-9 will be zero.

RBP - When set indicates that a PE is present in the associated R-block registers (Xerox 560 only).

The Effective Address and the Real Effective Address will be of the addressing type indicated by the ANLZ CC. $(b, h w, w, d w, i)$.

If the instruction is an immediate type, these will be zero.

- Screech Code, subcode defined in CP-V Operations Reference Manual
- Recovery Count $=0$ for initial startup (values 1, 2, 3 below)
- Startup type codes:

Value Meaning
1 PO Boot, Initial
2 PO Boot, Under Files
3 System Device Boot,
(No Recovery)
4 System Recovery
5
Operator Recovery

- For Multiprocessing CP-V

6 Slave CPU Start Up 7 Slave CPU Shut Down

19 - WATCHDOG TIMER (CP-R/CP-V)

Generated by Trap 46

where $X X 1=X^{\prime} 2 D^{\prime}, X^{\prime} 2 E^{\prime}, X^{\prime} 2 F^{\prime}$

FIP - When set indicates that a PE occurred while fetching the instruction (causing T4C) or this is an I56 on Sigma 7. In either case, words 4-9 will be zero.

IAP - When set indicates that a PE occurred due to an indirect address fetch. Words 8-9 will be zero.

RBP - When set indicates that a PE is present in the associated R-block registers (Xerox 500 only).

The Effective Address and the Real Effective Address will be of the addressing type indicated by the ANLZ CC. $(b, h w, w, d w, i)$.

If the instruction is an immedicte type, these will be zero.

1A - FILE INCONSISTENCY ENTRY (CP-V)

1B - SOFTWARE--DETECTED SYMBIONT INCONSISTENCIES (CP-V)

Relative Time
Generalized Disk Address

21%

1D - INSTRUCTION EXCEPTION (CP-R/CP-V)(560 and SIGMA 9)

CODE XXI	COUNT $=0 \mathrm{~B}$	CPU ADDRES
TIME		
PSD1		
PSD2		
RESERVED		
RESERVED		
TRAP CC	R A	000
REAL ADDRESS OF TRAPPED INSTRUCTION		
TRAP INSTRUCTION		
ANLZ CC	EFFECTIVE ADDRESS	
REAL EFFECTIVE ADDRESS		

Cenerated by Trap 4D
where $X X I=X^{\prime} 2 D^{\prime}, X^{\prime} 2 E^{\prime}, X^{\prime} 2 F^{\prime}$

FIP - When set indicates that a PE occurred while fetching the instruction (causing T4C) or this is an 156 on Sigma 7. In either case, words $4-9$ will be zero.

IAP - When set indicates that a PE occurred due to an indirect address fetch. Words 8-9 will be zero.

RBP - When set indicates that a PE is present in the cssociated R-block registers (Xerox 500 only).

The Effective Address and the Real Effective Address will be of the addressing type indicated by the ANLZ CC. ($b, h w, w, d w, i$).

If the instruction is an immedicte type, these will be zero.

IE - LOST ENTRY INDICATOR (CP-V)

IE	COUNT $=2$	Count of entries lost
Relative time of last lost entry		

The above entry is logged when buffering constraints make error logging temporarily impossible. The newest entries are lost.

IF - DUPLICATE ENTRIES $(C P-V)$
\qquadIF COUNT $=2$ Count of entries identical to previous
Relative Time of last duplicate

Errorlog routine compares current entry with previous and maintains a count as long as entries are identical, except time. If current an previous are different and count is non-zero, then a duplicate entries entry is made.

219

CP-V TECHNICAL MANUAL

22-SYSTEM IDENTIFICATION (CP-R/CP-V)

22	COUNT = 5	Core size in $8 K$ word blocks	Relatiye Time Resolution
Relative Time			
system			
version			
Slags			

sFrmton vik
PAGE 39
10/31/74

One pair of words per device in DCT order; multiple records may occur -maximum 5 devices per record

Recorded at system STAR TUP and RECOVERY
Relative Time Resolution is expressed as a value of n such that actual relative time resolution $=2^{n}$ msec. The value of n for the most likely resolutions are
$n=0$
when the timing source is supplied by a frequency $\geq 1 \mathrm{KHZ}$
$n=1$ 500 HZ
$n=4$ 60 HZ

For $C P-V$ and $C P-R, n=1$.

System, Version, Flags
The format of system, version, flags and of site identification is operating system specific. System, version, and flags are formatted as location $X^{\prime} 2 B^{\prime}$.

2B

moniton	Param-	version			CPU	Param- eters
0	34	78	15	16	2122	2526

Location 2B contains three items:

1. Monitor - this field contains the code number of the Monitor. The codes are:

Code	Monitor
	None or indeterminate
1	BCM
2	RBM
3	RBM-2
4	BPM
5	BTM/BPM
6	UTS
7	CP-V
8	CP-R
$9-F$	Reserved for future use

2. Version r this is the version code of the Monitor and is coded to correspond to the common designation for versions. The alphabetic count of the version designatic is the high-order part of the code and the version number is the low-order part. For example, A00 is coded $X^{\prime} 10^{\prime}$ and D02 is coded $X^{\prime} 42^{\prime}$.
3. Parameters - the bits in this field are used to indicate suboptions of the Monitor. They are meaningful only in relation to a particular Monitor. However, the following assignments have been made for $B P M, B T M$, and $C P-V$.

23 - TIME STAMP (CP-R/CP-V)

| 23 | COUNT $=3$ |
| :---: | :---: | :---: |
| Relative Time | |
| Year - 1900 | Julian Day |

For $C P-V$, this record entered by ERR:FIL once each hour on the hour
as binary integers

24 - BAD GRANULE RELEASE ($(P-V)$

$24 \cdots$ TYPE CODE	
Relative Time	
Generalized Disk Address	
Address of Routine Calling ERRLOG or 'ACAT'	
COUNT $=4$.

or
Number of Granules
Being Released
'ACAT' is substituted for the address of routine calling ERRLOG when ALLYCAT detects the error.

26 - REMOTE PROCESSING ERROR RECORD (CP-V)

This record is logged when an error has occurred in the transmission of data from a remote processing workstation.

26	COUNT $=8$	I/O Address
Relative Time		
WB:FLAGS Workstation Name		
	Current Command Doubleword	
RPI	RP2	RP3

RP1, RP2, RP3, and RP4 have specific meaning for the type of remote workstation associated with the record as defined by the following tables. Refer to the Remote Processing Reference Manual for definition of terms and codes.

- Xerox 7670 Workstation

RPI	Definition	RP3	RP4
1	First character in record not SOH	Current character position	Offending character
2	Incorrect parity on SEL	"	
3	Incorrect block protect	n	"
4	Third character in record not STX	\cdots	"
5	RBBAT combuf or MPOOL unavailable for logon	Meaningless	Meaningless
6	Incorrect character parity	Current character position	Offending character
7	Record trailer character not ETX	"	"
8	Incorrect block check parity	"	"
9	Incorrect block check	"	"
A	Communication line time-out	Meaningless	Meaningless
B	NAK received	Response received reading	ACK
C	Garbled ACK or NAK	Response received reading	ACK

riP2 represents the current function code associated with the workstation.

RP2	Definition
0	Write card punch
1	Write line printer
2	Send ACK
3	Write TOF (Block protect =0)
4	Write TOF (Block protect = 1)
5	Write SPACE (Block protect = 0)
6	Write SPACE (Block protect $=1$)
7	Read card reader
8	Write TOF (logon)
9	Read card reader (special)
A	Read ACK card punch
B	Read ACK line printer
C	Read ACK TOF (Block protect $=0$)
D	Read ACK TOF (Block protect $=1$)
E	Read ACK SPACE (Block protect $=0$)
F	Read ACK SPACE (Block protect $=1$)
10	Write EOT
11	Write DC I
12	Write ACK (special)
13	Write NAK
14	Write NAK (special)
15	Write BEL (on error)

For Xerox 7670 workstations, the current command doubleword in the error log record contains the second command doubleword used to write the text of an output message and is meaningful only for $R P I=0,1, A$, or B.

Intelligent Remote Batch Terminal (IRBT)

RPI	Definition	RP4 Definition
0	Recoverable block check error	Expected BCB count (sign extended)
1	Catastrophic block check error (NAK sent in case of line error)	Expected BCB count (sign extended)
2	Communication line time-out	Same as RP2
3	Read for ENQ timed-out (logon)	Same as RP2
4	Received ACKO instead of SIGNON at logon	ACKO
5	Inappropriate line bid (not ENQ-master, not ACK O-slave)	Line bid received.
6	NAK received	NAK
7	Read timed out	Same as RP2
8	Incorrect CRC	Last character CRCed
9	Trailer character not ETB	Offending character
A	Leader character not STX	Offending character
B	Lost data	First character after DLE
C	Garbled ACKO-NAK	First character of message
FF	RP1 is 0 or 1 with RP4 $=\mathbf{- 1}$ (result appears as X'FFFFFFFF')	

For IRBT, RP2 is the current function code and RP3 is the calling function code. The following table defines RP2 and RP3.

Value	RP2	RP3
0	Disconnect	Software error - should not occur
1	Write block	Write block - read block
2	Write ACK	Write ACK - read block
3	Write block	Write block Wait-a-bit) - Read special
4	Write Wait-a-bit	Write Wait-a-bit - Read special
5	Read Block	Software error - should not occur
6	Send NAK	Software error - should not occur
7	Send ENQ	Logon as Slave
8	Read for ENQ	Logon as Master
9	ACKO to ENQ	Logon as Master after ENQ Read
A	Read Logon Record	Software error- should not occur
B	NAK Logon Record	Software error - should not occur

RPI	Definition	RP4 Definition
1	Disconnect due to;	
	a) EOT on read	
2	b) Use of 2780 on IRBT only system	EOT
3	Line timeout	SNQ
4	ENQ not received on logon read	Character received
5	a) EOT after EOF sent	Character received
	b) No ENQ text mode	c) ENQ answer to ACK of EOF
6	NAK received	Character received
8	CRC failed on input	Character received
9	Unknown response reading for ACK	Character received
A	Trailer character not ETB or ETX	Character received
C	Header character not STX	Character received

SECTION VK PAGE 46
11/31/7!

For IBM 2780, RP2 is the current function code and RP3 is the calling function code. The following table defines RP2 and RP3.

Value	RP2	RP3
0	Disconnect	Software error - should not occur
1	Write Dota	Write
2	Send ENQ	Send ENQ (Wait)
3	Send ACKO	Read
4	Send WACK	Send WACK Wait)
5	Write Dota	Write EOF
6	Send ENQ	Request to Output
7	Read for ACK, ENQ,	
8	EOT (depends on RP3)	POL for Input
9	Read for ENQ	Logon
A	Sead	Software error - should not occur
B NAK	Send ACK 1	Software error - should not occur
C	Send EOT	Software error - should not occur

225

27 - OPERATOR MESSAGE (CP-R/CP-V)

A facility wiil be provided to inject messages from the operator (or diagnostic program) into the error log. These messages might be used to describe unusual conditions surrounding a particular error. The operator may enter thissa massoges from the operutor console vida the keyin command 'ERKSENE'.

28-1/O ACTIVITY COUNT (CP-V)

28	COUNT as needed	DCT Index of First Device
Relative Time		
1/O Address,		DCT Index ${ }_{1}$
I/O COUNT		
$1 / \mathrm{O}^{\text {Address }} 2$		DCT Index 2
$1 / \mathrm{OCOUNT}_{2}$		
:		

Recorded once per hour and at recovery. ' Maximum of 10 entries per record. Counts are reset to zero after recording them at recovery.

30 - PFI PRIMARY RECORD (CP-R/CP-V) (560)

31 - MFI PRIMARY RECORD (CP-R/CP- V) ($560 /$ Sigma 9)

32 - SECONDARY RECORD FOR POLL INFORMATION (CP-R/CP-V) (560)

One record produced per valid poll status received.
41.-560 PROCESSOR CONFIGURATION (CP-R/CP-V) (560)

One record per cluster defined in sysgen.

$\begin{aligned} & \mathrm{CL}= \\ & \mathrm{UN}= \\ & \text { TYPE }= \end{aligned}$	cluster unit unit type, high bit set if unit does not respond during Initialization
TYPE CODE	UNIT NAME
1	CPU
2	MI
3	PI
4	MIOP
5	RMP
6	CT
7	SU

42- 560 Memoly Parity Secondary Record (CP-R/CP-V) (560)

Relative Time
Memory Status Word 0
Memory Status Word 1

43 - SIGMA 9 Memory Parity Secondary Record (CP-R/CP-V)

43	COUNT $=5$
Relative Time	
Memory Status Word 0	
Memory Status Word 1	
Memory Status Word 2	

44 - SIGMA 5-7 Memory Parity Secondary Record (C P-R $/$ /CP-V)

44	COUNT as needed	Number of Parity Errars
Relative Time		
ist Bad Location		
14th Bad Location		

50 - Enqueve Table Overflow (CP-V)

Entry count is the number of entries in the enqueue table belonging to the specified user at the time the error log entry was made.

51 - Partitioned Resource (CP-V)

51		COUNT $=3$	Model "
Relative Time			
F		---------0	1/O Address

01
$F=0$ for device entry
$F=1$ for controller entry
This entry will be logged when a resource has been partitioned.

52 - Retumed Resource (CP-V)

F = 0 for Device Entry
F = 1 for Controller entry
This entry will be logged when a resource is returned from beign partitioned.

GENERALIZED DISK ADDRESS

CP-V utilizes a special format for rotating memory disk addresses and specialized procedures for handing them. The format of the generalized disk address word follows.

RSE is the relative sector number extended bit which is set when relative sector numbers above 65,535 are addressed.

DCT is the DCT index of the device on which the sector addressed may be found.

VNO is the volume number within a private volume set of the devices on which the sector addressed may be found.

Relative Sector Number is the sector number, of the first sector in a granule which is to be accessed. Sector number progresses from zero through device end.

It is recommended that the following set of procedures be used when any of the above items are desired:
[LABEL] LDCTX,R [\#]ADDRESS,X Load DCT index
[LABEL] STDCTX,R [*]ADDRESS,X Store DCT index
[LABEL]
[LABEL]

LSECTA, RU1 STSECTA, RU1 [*]ADDRESS,X

Load sector number
Store sector number
where:
R register to be loaded or stored.
RU1 odd register to be loaded or stored.

ADDRESS word address of location containing (or to contain) the disk address.

X word alignment index register.

These procedures are available in the standard SYSTEM UTS file callable by including the following statement in the appropriate METASYMBOL program:

SECTION VK. 01
PAGE 1
10/31/74

CSE STOP Tables

In the event of a catastrophic hardware failure in the central system components (CPU, memory, IOPs, and data busses), the fault handling system attempts to log the faults in the in-core error log buffers at BUFI and BUF2, and in addition, collects additional information into tables in memory. These tables are collectively called the CSE STOP tables. In the event of a "CSE STOP" message being output on the OC, the operator should record the contents of these tables before attempting an operator recovery or turning the machine over to customer engineers.

The following items are contiguous in memory:

LABEL	SIZE	MEANING OF CONTENTS
CSED\$CF	1 word	High order byte contains trap condition code
CSED\$REGS	16 words	Registers at time of last CSE trap
CSED\$BREG	1 word	Meaningful only on Xerox 560 - contents of last branch register
CSED\$PSD	2 words	Current PSD at time of trap
CSED\$WHY	1 word	Internal code for cause of trap
CSED\$MSTAT\$ADR	1 word	0 for Sigma 6/7, address of CSED\$MSTAT table on Sigma 9 and Xerox 560
CSED\$PSTAT\$ADR	1 word	0 for Sigma 6/7/9, address of CSEDSPSTAT table on Xerox 560
CSED\$3STAT\$ADR	1 word	Address of memory content polling table
CSEDSMSG	7 words	Buffer containing CSE STOP message (reason for stopping)

The following items are contiguous in memory:

LABEL	SIZE	MEANING OF CONTENTS
3COUNT	1 word	Number of bad locations in memory
3ANDADD	1 word	Logical AND of addresses of bad locations
3ORADD	1 word	Logical OR of addresses of bad locations
3ANDCONT	1 word	Logical AND of contents of bad locations
30RCONT	1 word	Logical OR of contents of bad locations
3FIRST	1 word	Address of lowest cell with bad contents
3FIRSTC.	1 word	Contents of lowest cell with bad contents
3LAST	1 word	Address of highest cell with bad contents
3LASTC	1 word	Contents of highest cell with bad contents

CP--V TECINICAL MANUAL

SECTION VK.OI
PAGE 2
10/31/74
Optional Table for Sigma 9, Xerox 560 Only

CSEDSMSTAT table (Memory Fault Status Register Polling Table)
This table contains up to 5 entries of the form:

Internal Palling Flags	Real Address Causing Fault
Memory Fault Status Word 0	
Memory Fault Status Word 1	
Memory Faul t Status Word 2 (Sigma 9 On\|y)	

Word 0

Word 1

Word 2

Word 3 (Sigma 9 only)

Optional Table for Xerox 560 Only (ref. 560 DPS Manual)

CSEDSPSTAT table (Processor Fault Status Register Polling Table)
Each entry is one word long of the format:

$*$	Bit O, when set indicates presence of valid status
Proc Addr	Processor's cluster/unit address
POLR CC	Condition codes from POLR instruction
Type Code	Processor type: $1-B P, 2-M I, 3-P I, 4-M I O P$,
	$5-R M I, 6-C I, 7-S U$
Status	$16-b i t$ contents of fault status registers
	(result of POLR instruction)

SECTION VL
PAGE 1
10/31/74

ID

ASSIGN/MERCE Table

FLINCTION

An Assign/Merge Table is the place where information is kept which must be merged into the DCBs that go into the user's context at load or execute time.

An Assign/Merge Table is associated with each job in the system (whether batch or on-line) as a result of a :JOB command in batch or as a result of logging on.

Modifications to the user's Assign/Merge Table result from the ASSIGN command in batch and from the SET command and various other commands in TEL. The Assign/Merge Table is merged into the DCBs placed in the user's context when the user loads or executes a program. The merging results from the monitor calling on File Management to do the actual merging.

Assign/Merge Tables built by TEL are never modified by CCI and vice versa.

STRUCTURE

An Assign/Merge Table is one page long. It consists of a 22-word header, followed by a number of linked entries.

Assign/Merge Table

0	BATCH ON-LINE	
	Index to First Available Area	Index to First Available Area
	Index to First Entry or 0	Index to First Entry or 0
2	Unused	
3 4	Load Module Name for : RUN (3 words)	Unused (4 words)
6	Load Module Password for :RUN	Image of J:CPPO from User JIT
7	(2 words)	Image of J:ASSIGN from User JIT

SECTION VL
PAGE 2
10/31/74

8	DATE: YEAR Binary	DAY Julian
9	USER NAME 3 words	
10		
11		
12	LOCDN Time Minutes from Midnight	
13	Billing Rate	System ID
14	Extended Accounting Field	
15	Ewords	
16		
17		
18		
19		
20	Permanent Remaining RAD Space Allocated	
21	Permanent Remaining	k Space Alloc

Assign/Merge Table entries consist of a forward link to the next entry, the DCB name in TEXTC format, and an Adjust DCB (open prime) PLIST whose format is described in the CP-V BP Reference Manual.

DCB names are up to 3 words long for TEL and up to 8 words long for CCI. The Adjust DCB PLIST may be up to 100 words long. The PLIST length for TEL entries is constrained only by the buffer size reserved by TEL to construct the entry. For this reason, TEL entries for $C O O$ $C P-V$ may have:

- Maximum of 8 read accounts
- Maximum of 8 write accounts
- Maximum of 8 execute accounts
- Maximum of 3 SNs
word 1

FLINK or 0
TEXTC DCB Name (zero filled)
(Maximum 8 words for CCI)
Maximum 3 words for TEL
Adjust DCB PLIST
FLINK or 0

Format of RUN Table

where
N_{1} is number of SNAP, SNAPC, IF, AND, OR, and COUNT records in System Debug File.
N_{2} is number of MODIFY records in System Debug File.
XSL is value of XSL parameter.
BIAS is value of BIAS parameter.

Format of Modify Table

The Modify Table is written into the system debug file for the current job.

where
res $=0$ if byte resolution; $=1$ if halfword resolution; $=2$ if word resolution; $=3$ if doubleword resolution. The resolution applies to the name specified with the modify value.
value is value to be given to the location to be modified. It has the form value + res (name) name is the name of an external definition and value is a l-digit to 8 -digit hexadecimal number.

Format of PMD, PMDE, PMDI Table
The PMD, PMDE, PMDI Table is written into the system debug file for the current job.

where
Code is 3 for PMD command, 4 for PMDE command, and 5 for PMDI command.
$P_{1}=1 \quad$ for dump protection type 00.
$P_{2}=1 \quad$ for dump protection type 01.
$P_{3}=1 \quad$ for durnp protection type 10.
from location is beginning dump location to location is ending dump location

Format of the SNAP, SNAPC Table
The SNAP, SNAPC Table is written into the system debug file for the current job.

where

$$
\begin{array}{ll}
\text { Code } & \text { is } 6 \text { for SNAP command, } 7 \text { for SNAPC command } \\
\text { SNAP location } & \text { is location at which SNAP is to be done } \\
\text { from location } & \text { is beginning dump location } \\
\text { to location } & \text { is ending dump location }
\end{array}
$$

Format of IF, AND, OR Table
This table is written into the system debug file for the current job.

where
Code is 8 for IF command, 9 for AND command, 10 for OR command.
r is 0 for GT, 1 for LT, 2 for EQ, 3 for GE, 4 for LE, and 5 for NE.
b_{1}, b_{2} is 0 for byte, 1 for halfword, 2 for word, and 3 for doubleword.
$x_{1}, x_{2} \quad$ is 0 through 7 .

* specifies an indirect address (for L_{1} or L_{2}).

LOC specifies the location at which the test is to take place.
L_{1}, L_{2} specify the locations to be compared as specified by ' r '.

Format of Count Table

The Count Table is written into the system debug file for the current job.

1D

Error Codes and Error Messages

This section describes the error ceries and error message handling in CP-V Jubsequent subsections cover 1) the format $e^{\text {: }}$ the error message file, and the general assignment of codes, 2) the meanings of eac- of the currently assigned codes, and 3) a i isi or the messages on file in the current $\mathrm{CP}-\mathrm{V}$ system.

Codes for various detected error c =nditions are recorded in JIT. The error code is placed in J:ABC (high order byte, and the subcode in ERO (right-justified). When PMD, in the case of batch jobs, or TEL, in the case of on-line jobs is entered, a message is printed to correspond to the code and subcode. This message is obtained from the error file via a keyed read using a key =onstructed from the code and subcode. If either the file or the message record wirich corresponds to the code is missing, then a message including the error code itself is printed. Processors also use the error message file and are assigned "group codes" for their messages.

For $1 / O$ errors the user may gain control in error situations and handle the error himself, by specifying error or abnormal addresses either in the DCB via $M: S E T D C B$ or in the $M:$ READ or $M: W R I T E$ procs which is described in the UTS Reference Manual, Appendi». B.

ERROR MESSAGE FILE FORMAT

The file ERRMSG in the account :SYS contains the error messages of the system, both for Monitor and processor error conditions. The file contains kieyed records with keys in the form used by EDIT so that the file may be conveniently changed to suit the individual instaltation. The record contains the EBCDIC text of the error message.

Keys are one word long and have the form:

The first byte always contains 03, the count of bytes in the key, the second byte is the group code, the third, error code, and the fourth is the emor subcode.

Group codes presently assigned are:

0-Monitor	$4-$ RUNNER
1-PCL	$5-\mathrm{CCI}$
$2-$ LOADER	$6-$ DRSP
$3-$ TEL	$7-$ BATCH
	$8-$ ANLZ

Messages in the file with group codes other than zero are no handled in any way by the Monitor itself.

Error codes currently assigned within the Monitor group are:

$0-7 F$	-	$1 / O$ error and abnormal zodes
$80-9 F$	-	COBOL error codes
$\mathrm{AO}-\mathrm{BF}$	-	Monitor codes
$\mathrm{CO}-\mathrm{FF}$	-	Unused

Contents of the error message file for each of the assigned codes are given in the following pages. The codes follow the format indicated above (with leading zeros suppressed.)


```
NUMBEF of FLCUESTEL GRANU!ES NOT AVALLEEE
```



```
FILE DCES \(\because\) OT EXIST.
BEGINNIN O FILE REACHED.
END OF DATA REACHEO.
END OF FILE OR RNNITOR CONTROL CARD REACHED
DATA HAS EEET. LOST. I BECAUSE YOUF BUFFER IS TOO SMALL.,
'NEXT' FILE WON'T CFEN BECAUSE IT'S SYNONYMOUS TO SORE OTHER FIIE.
DIAGNOSTIC CLOSE EFROR
nonexistent device
DEVICE BUSY
symeiont pievice busy
NO CLIST IN DCE
COME:AND list destroied by swap
IOCD'S ExCfied Limit
invalid chamario lisi
invalid arrifess
BUFFER CLUH:T CFOSS FAGE BOUNDARY
AUTHORIZATIOT, NOT CRANTED OR < AO PRIVILEGE
INSUFFICIEMT CORE TA FERENIT OCK
CONTROLLEA HOT FAPT:TIONED
Convice remestid nit rart miond
oevice re uested not partitioned
invalid scafess
INSUFFICIERT SPACE TO PROCISS COMMAND LIST
THAT DCB IS ALREAD CLOSED
UNRECOGN: EED SEVTIIEL ON LABELED TAPE
illegal singe, oferation.
NOT ENOUGH RODFi in vLP OF dCE fOR private pack. Sh.
127 DCB'S GZEN TC FILE - ACCIS' DENIED.
YOU MUST SPECIFY NEWKEY WHEN WRITING A NEW RECORD.
FILE ACCESS DENIED-miSSING FILE NAME.ACCOUNT OR PASSWORD
FILE IS :USY.
break or gontrul.y duking bigint recuest. open not perfopmed.
interrupied m move of unclr Lid fandom file
INVALID OH I-ABEI I: OCB
CODE CON:EFSIGN SFECIEIED ON DEVICE A.OT HAVINE FEATUEE
CODE CON:EFIGN SFECIFIED ON DEVICE SOT HAVING FEAT
BOOEPI SECIFIED G:. DEVICE NTTHANG OUAL DENSITY
ILLEGAL CORE CONVEFSION CHANGE REQUESTED
EXECUTE ORLY FILE THF FILE IS :N OPEN STATUS
LuEGAL OFPATION COUNCE OH NOTE FIE
ILLEGAL OFERATION FOLENCE ON UDATE FILE
improper greration sedueice or. shafed update file
Can't sa. Nenkey because thi feloro exisis
RUST USE WE:KE, GR DTPUT FILES
kEys must ef given in ofder bhe: hriting keyed files seguentia
ILLEGAL OFERATION ON R:LE DCB.
no erpor of abncro:al aUurese sfecifies in novecal frt
SECOND Dré is rissil.e
ONE OR BJiat vies afe NOT OPEN
DCE1 NOT ! IEEN IN OR DCEZ OMI O!EN CUT
move cal !ot a!ioned for deyice or ano dcbs
SPECIFIED EUFFE: Lite NOT BELONG TO USE:
end of tafe reachio
END OF TAPE ON CONTON JOURisGL
beginning gif tafe feached
```

	GRP	ERr	sue	module
	00	1 F	00	WRT/IOD/IORT
	00	20	01	Read
	00	20	02	READ
	00	20	03	READ
	00	20	04	RDF
	00	20	05	PV
	00	21	00	OPEN/CLOSE
	00	22	00	OPEN
	00	2 E	00	OPEN
	00	30	01	LBLT
	00	30	03	LBLT
	00	30	04	Lblt
	00	30	C5	LBLT
	00	31	00	ENO. EnOO
	00	31	01	end enoo
	00	31	02	ENo, ENOO
	00	31	03	END: ENOO
	00	31	04	eno endo
	00	32	00	mOCIOP
	00	32	01	MOCIOP
	00	32	02	MDCIOP
	00	32	03	OFND
	00	32	04	OPND/MOCIOP
	00	32	05	OPND
	00	32	06	OPND
	00	32	07	MOCIOP
	00	32	08	mociop
	00	32	09	OPND
	00	32	70	MOCIOP
	00	33	00	IOCHEK
	00	3F	36	jubent
	00	3F	37	Jobent
	00	3 F	38	Jobent
N	00	3F	39	Jobent
	00	$3 F$	34	JOEEI.t
-	00	3 F	3B	JOBELT
\cdots	00	3F	3 C	JObent
	00	$3 F$	3 D	Jorent
	00	$3 F$	3 E	JoEent
	00	3 F	3F	Jobent
	00	40	00	Read
	00	41	00	read
	00	41	01	coup
	00	41	02	RCaD
	00	41	03	read
	00	41	0.4	Read
	00	42	00	READ/WRITE/RANDOM
	00	43	00	READ
	00	44	กo	White
	00	45	00	White
	00	45	01	write
	00	46	00	read
	00	46	01	fead
	00	46	03	reau
	00	46	14	READ

[^6]| GRP | ERR | SUB | MODULE |
| :---: | :---: | :---: | :---: |
| 00 | 46 | 21 | READ/WRITE |
| 00 | 46 | 22 | READ |
| 00 | 46 | 48 | READ |
| 00 | 47 | 00 | WRITE |
| 00 | 47 | 01 | WRITE |
| 00 | 47 | 03 | WRITE |
| 00 | 47 | 14 | WRITE |
| 00 | 47 | 2B | OFEN |
| 00 | 47 | 48 | WRIFE |
| 00 | 48 | 00 | OPNLD |
| 00 | 48 | 01 | OPEN |
| 00 | 49 | 00 | OPEN |
| 00 | 49 | 01 | OPEN |
| 00 | 49 | 02 | PV-OPNTP |
| 00 | 4A | 00 | READ/WRITE |
| 00 | 4A | 01 | IOCHEK |
| 00 | 4A | 02 | IOCHEK |
| 00 | 4.4 | 03 | IOCHEK |
| 00 | 4 A | 04 | IOCHEK |
| 00 | 4 A | 05 | IOCHEK |
| 00 | 48 | 00 | READ/WRITE |
| 00 | 4C | 00 | READ/WRITE |
| 00 | 4D | 00 | Close |
| 00 | 4E | 00 | ARDL |
| 00 | 4E | 05 | READ/CVOL |
| 00 | 4E | 07 | |
| 00 | $4 F$ | 00 | AGTAPE |
| 00 | 51 | 00 | OPEN |
| 00 | 54 | 00 | READ |
| 00 | 55 | 00 | OPEN |
| 00 | 56 | 00 | Close/cVol |
| 00 | 57 | 00 | READ/WRITE |
| 00 | 57 | 44 | RANDOM |
| 00 | 58 | 00 | ENO/ENOO |
| 00 | 58 | 01 | ENO/ENQO |
| 00 | 58 | 02 | ENO/ENQO |
| 00 | 58 | 03 | ENO/ENOO |
| 00 | 59 | 00 | IORT |
| 00 | 59 | C1 | MOCIOP |
| 00 | 59 | 02 | MOCIOP |
| 00 | 59 | 03 | MOCIOP |
| 00 | 59 | 04 | MOCIOP |
| 00 | 59 | 05 | MOCIOP |
| 00 | 59 | 06 | MOCIOP |
| 00 | 59 | 07 | MOCIOP |
| 00 | 59 | 08 | MOCIOP |
| 00 | 59 | 09 | MOCIOP |
| 00 | 59 | OA | MOCIOP |
| 00 | 59 | OB | MOCIOP |
| 00 | 59 | OC | MOCIOP |
| 00 | 59 | OD | MOCIOP |
| 00 | 59 | OE | MOCIOP |
| 00 | 59 | OF | MOCICP |
| 00 | 59 | 10 | MOCIOP |
| | | | |

ME SSAGE
PRIVATE FACK LOGIC INCONSISTENC.
PRIVATE TACK ERROR TRYING 10 OFEN EXISTING FILE.
ONLINE USEF CANAOT ACCESS CARD FEADER.
CAN'T OPEN FOR NRITE.
CAN'T OPEU FOR WRITE
CAN'T OPET: FOR WRITE: OCE HASH,T ENOUGH INFORTATION
CAN'T OPEN FOR WRITE: FILE DOESN'T EXIST
CAN'T OPEN FOR WRITE: PASSWORD. ACCOUNT RESTRICTION. OR ANOTHEP USER.
INVALID OP LABEL I!। DCB
SYMEIONT USE FLAG IOT SET FOR OULINE USER
PERIPHERAL USF fLAG NOT SET FOR THIS bEVICE
ONLINE USER CANNOT ACCESS CARD READER.
YOUR FILE IS WRITE PROTECTED
REQUESTED RERGOVABLE DEVICE IS fot available
USER DISHOUNTABLE RESOURCE LIMit EXCEEDED
SPECIFIE SUFFER DOES NOT BELOIC TO THE USER.
TIME PARATETER ON F: CHECKECE TMO BIG
ECB IN WEO:G STATE ON M:CHECKICB OR M:CHECK W/ECB
INFINITE WAET CONOIIION ON W. CHECKECB OR M:CHECK W/ECB
NO MONITOR GORK SPACE TO HONCR M:CHECKECB OR M:CHECK W,'ECB
WRONG ACCESS CODE FOR ECB AUURESS ON M:CHECKECE OR M:CHECK W/ECE
ATTEMPT TO OPEN A FILE THAT YOU HAVE OPEN ALREADY
ATTEMPT TO OPEN A FILE THAT GOCEONE ELSE HAS OPEN.
attempt to close aici release a file ihat someone else is readini,
ANS BLOCK COUNT ERFOR AND HO AE:CERR SPECIFIED.
ANS BLOCK COUNT ERRGR PLUS ENO OF TAFE.
ANS BLOCK COUNT ERROR PLUS END OF TAFE.
ANS BLOCK COUNT ERFOR PLUS END OF FILE. TAPE
UNRECOVERAELE ERROR AFTER RFFLECTOR ON TAPE.
YOU STILL HAVE THIS FILE OFEN IN THROUGH ANOTHER DCB
YOU MUST FOT READ MONITOR CONTROL CARDS MORE THAN ONCE.
TOO MANY FIIES OPEIj SIMULTANEGUSLY
THE RAD IS FULL OR NO NEXT PEEL NUMBER FOR THIS TAPE VOLUME
RAD SATURATED OR NO NEXT REEL HMMBLR FOR THIS TAPE VOLUME
NOT ENOUGH GRANULES FOR GRITE UR COU:T ON READ EXTENDS BEYOND EOF
endueue reuuest holld result in a deadlock
enoueue tables fuli
enqueue keouest for all with other elements already queued
UNAUTHOR:ZED USER ATTEMPTED AN SNQUEUE
ATTEMPTED READ ON BI-POINT LTNE WITH A READ OUTSTANDINR
INVALID FOL;SEL LIST INDEX VALUE
POL/SEL LIST INDEX VALUE POINTS TO EXCLUDED OR OUAMY COADONEPT
AUTO READ REQUEST CCNFLICTS WITH OUTSTANDING 1/O REOUESTS
MULTI-POINT LINE CONTROLLER DOWN
NO RESPONSE FPOA MULTI-POINT LINE TEPUINALIREAD
NO RESPONS LINE TERMINAL NOT IN TRANSNIT STATE
AULTI-PONT LINE TERMINAL NOT IN TRAF.SMIT STATE ON SIMGLE TERMINAL READ:
REQUEST OR HALT SFECIFIED GR ETVE OF. OPEN LIST HIT
BAD TRAILER RECORD ON MULTI-POINT TERMINAL READ
PARITY EFROR IN RECORD RECEIVED FROM MULTI-POINT LINE TERMINAL
BAD HEADER RECORD ON MULTI-PCIITT TERAIINAI READ
NO RESPONSE FROM MULTI-POINT LINE TEROINAL (WRITE)
ILLEGAL $1 S T$ CHARACTER IN WRITE GELECTIOi RESPONSE HEAOER fRON:
MULTI-POINT LINE TEEMINAL
MULTI-POINT I.NE TEFMINAL NOT IN PECEIVE STATE ON WRITE REQUES
INTERNAL TERMINAL ERROR ON HULTI-POINT READ
miUlti-pu!!!t line ierminal nak fecord iwrite data resporise
LOST DATA CN MULTI-pOINT LINE TERMINAL WRITE
ILLEGAL RESPONSE OV MULTI-RCINT LINE READ
no ecb apdress sufplied with slave line i/O request

	GRP	ERR	Sub	module	$\therefore \mathrm{F}$ fabr
	$\bigcirc 0$	5A	01	IOCHEK	
	00	58	00	IOCHEK	
	00	5	00	IOCHEK	
	00	75	00		
	00	75	01	read	data Recrecs last
	00	75	02	read	
	00	75	03	OPEN	ENTIRE FILE 'SCt.
	00	75	04	CLS/UPEN	
	01	75	05	OPEN	
	00	75	06	OPEN	
	00	75	07		ERROR IN EYEAES IEFA!DG ONL:
	00	75	40		
	00	75	41		7501 PlUS hantatis trar.
	00	75	42		
	00	75	43		
	00	75	44		
	00	75	45		
	00	75	45		
	00	75	47		
	00	7F	it	INITRCVR	
	00	7F	21	INITRCVR	
	00	7 F	22	INITRCVR	SINGLE J.E: LEMAT. SC 22.
\bigcirc	00	7 F	31	INITRCVR	
	00	7 F	32	INITRCVR	
0	00	7 F	49	INITKCVR	SIRELE U.V: $1.1: \square$
	00	7 F	61	inithcyr	
	00	7F	fiA	INITRCVR	Single Uer meft. SC ga.
	00	7 F	79	INITRCVR	SINGLE U ifi beome EC 70
	00	7 F	7 C	INITFCVR	single Ure ases ic ic.
r	00	7 F	7 E	INITECVR	Sthule U:ツ arset co -t.
	00	AO	00	STEP(ASP)	THATS in : Encorw
	00	A1	OC	STEP(ASP)	
	00	A1	01	StPNR	
	00	A2	00	STEP(ASP)	
	00	A2	01	StPdir	
	00	A2	02	StPrir	access tu frresmo. denied fir irstallation
	00	A3	00	thap	
	00	43	$0:$	trafc	
	00	A3	02	trapc	
	00	A4	00		you traf
	00	A4	01	traf	
	00	A4	02	trip	
	00	A4	03	trap	
	00	A4	04	trap	nemory pir 'fit vidition
	00	A4	05	trap	
	00	A4	Ois	trap	Stack onl 1 ¢
	00	A4	07	trap	Freve poldt Uniflea
	00	A 4	083	trap	
	00	A4	09	trap	
	00	A4	Os	trap	
	00	A4	ов	trad	TEAE 97
	00	$\Delta 4$	OC	CSEhand	
	00	44	OD	CSEhand	
	00	A4	Ct	csemand	Haflume
	00	$\Delta 4$	OF	csehiand	
	00	A5	00	Stank	
	00	A5	02	stpnr	

Ň

GRP	ERt	SUE	moduie
00	A5	04	STPNR
00	45	06	STPNR
00	$\Delta 5$	07	STPNR
00	45	08	STPINR
00	45	09	5 TPNR
00	A5	51	STPRIR
00	46	03	STPNR
00	46	30	STPNR
00	46	31	STPNR
00	A6	32	STPNR
00	46	3.3	STPNR
00	46	34	STPNR
00	A6	35	STPNR
00	46	36	STPNR
00	A6	37	STPNR
00	A6	38	STPNR
00	46	39	STPNR
00	46	34	STPNR
00	A6	3B	STPAR
00	4б	42	STFNR
00	A6	43	STPINR
00	46	46	STPNR
00	46	50	STPNR
00	${ }^{46}$	51	STPNR
00	47	00	TEL
00	48	co	STPNR
00	49	00	UCAL
00	AA	00	STPNR
00	AC	00	
00	AD	00	STPNR
00	ΔE	00	CALPROC/ALTCP
00	AF	00	CALPROC
00	30	00	DUMP
00	BO	01	Dump
00	80	02	DUMP
00	B0	03	Dump
00	B1	00	SEGLOAD
00	31	01	SEGLOAD
00	B1	02	SEGLOAD
00	B1	03	SEGLOAD
00	B1	Ca	SECLOAD
00	B1	C5	SEGIOAD
00	81	06	SEGLOAD
00	B1	07	SEGLOAD
00	B1	08	SEGLOAD
00	B2	$0 \mathrm{O})$	ENTRY
00	B3	vo	WRTD
00	83	01	WRTD
co	B3	02	WRTD
00	23	03	WRTD
00	83	04	WRTD
00	B3	08	WRTD
00	B4	๑0	STPNP.
00	B4	01	STPNR
00	B4	02	STPNR
00	B4	03	STPNR
00	84	04	STPNR

CURRENT GFFC IAL SHARED FROCE:SOQ ACORTED FOR TEL
PROGRAM OUFRIAFS CH:ENTLY ALICSATED CCRMOO. FASES
PHYSICAL CORE idT avaliAELE FO: SHARED PFOCESSOR
CORE NGT A:CTIABI: iOR CONTEMT RUFFER
CORE NATA EIAS FOH CCHF LIBEAFY
DAD MOD ET NOHS UEXIST
DAD NODN SOKS :NTEX
BAD DCES rir: LCB TAELE
BAD HEAD RECORD
LOAD MODULE BIAS NOT UV PAGE EUNVDARy
PURE PROC! DURE NOT IN FAGE FCUEDAFY
DCES NOT UH FAGF BCONDARY
HEAD RECHHD IS INCr OFIETE
tree recrifu is incriplete
No DfBljg, afi alioned with link-EUILD imNS
THE FROG:An? is TO: ZIG FOP THE ALLOWED USER AREA
file not keyrd. fríi a load fridule
YOUR DCB CHAIN IS MLINKED OR CiRCULAR
TCB ADCRESS 'OT W'THIN DATE AREA
THAT'S NG LOAD P:ODLIE
THAT'S N. LCIAD WGCHE
CAN'T F:ID FEQUEDI:D FRDGRAR
LOAD MOU:JLE IS FFE-ROO
SHAP MOD:FY. OT ALIGOLD WITH EXECLTTE ONLY LOAD NODULES
FINI
VOU ISSULE GI' ERLOF OR AROFT CAI
ERROR ON FEAD OR WIITE OF AMM FECORD
What pubilc llefait?
DON'T TRY TO PEAD IHE CARD READER
EXTENDED FRCCESSINT LIMITS VERE EXCEEDED
THAT CAL HiSS AN ILGGAL OP CCDE
YOUR Call peferencts a Non-ExIITTEN1 DCB.
NO M:DO LCE FOR SNA?SHOT
attempt To dump civ ifiaccessaele locaticn
INACCESS:ELE FLAG a!DPESS GIVE: ON CONDITIONAL LEBLG
ILLEGAL FAFATETEF I: UEBUG CAL
CAN'T FINL THAT BUKLAY SEGBENT
TREE REC:FH IS INr••-LETE
TREE RECOW IS CIF: ULAR
DATA AREA is larger than festeved by head
PP AREA IS LAPGEF THAN RESEFYES EY HEAD
BUFFER IS ERID IN THE SEGLD UCB
OUT GF PHITICAL FAISS SEGIU EDROR;
PAGE $A C O U 1 R E D B$ N CM: E:CCOHTERED

AGED LOID FODLLE CEEATEF iHSH 255 SEGNENTS
DON'T US! CALZ.CALZ.OR CALA INSTRUCTIONS
LIMIT EXC:LDED
PUNCH LIT:1T
PAGE LIRI: FOF FROCESSOR
PAGE LIM:T FOR LSEF
PAGE LIMIT FOR CFELSGING
EXECUTION TIUE LIG:
EXIT
YGU ISSUEE A M:EFR
YOU ISSUEZ; A M: XX
OPERATOR EPRORED YCU
JOB ABOR:: EY OEEFATITR DR USE

	GRP	ERR	SUB	module
	00	B5	00	STFNR
	00	B5	01	LDLNK
	00	B5	02	STEPTR
	00	B5	03	LDLNK
	00	B5	07	STFNR
	00	B5	08	STPNR
	00	B5	09	StPNR
	00	B5	14	LDLNK
	00	B5	46	LDLNK
	00	B5	50	STPNR
	00	B5	51	STPNR
	00	B5	61	LDLNK
	00	B5	62	LDLNK
	00	B5	63	LOLNK
	00	B5	64	LDLNK
	00	B5	65	LDLNK
	00	B5	66	LDLNK
	00	B5	67	LDLNK
	00	B5	68	LDLNK
	00	B5	69	LOLNK
ก	00	B5	6B	STPNRN
	00	B5	5C	STPNR
\cdots	00	B5	60	LNKTRC
0	00	B6	00	LDLNK
	00	BG	01	STPNR
	00	86	02	STPNR
	00	B6	03	STPNR
	00	B6	04	STPNR
	00	B6	05	STPNR
	00	B6	05	STPANR
	00	B6	0.7	STPNR
	00	B6	08	STFNR
	00	B6	09	STPNR
	00	E6	OA	STPNR
	00	B6	CB	STEP
	00	B6	OC	STEP
	00	B7	00	OPNLD
	00	B7	01	OPNLD
	00	B7	02	OFNLD
	00	B7	03	OPNLD
	00	B7	04	OPNLD
	00	B8	00	RTROO
	00	E8	01	RTROOT
	00	B8	02	RTROOT
	00	B8	03	RTROOT
	00	B8	04	RTNR
	00	B8	05	RTNF
	00	B8	06	RTNR
	00	B8	07	T : JOBENT/GRAN
	00	B9	00	RTROOT
	00	By	01	ALTCP/RTROOT
	00	B9	02	RTROOT

LOAD MOLULE SILE ExGEEDS LVE IMMT OR AVAILASIE CORE

VIRTUAL íse nUt A AILABLE : ri: SELIAL SHARED PFGCESSOR

PHYSICAL EGEE NOT AUA:CADLE r E SHARED PROCESSDP
CORE NOT AVAILABIE FCR CUMlift EUFYEF
LOAD AND LINK IS DEt:IED ACCE SS 10 YOUF FILE
LOAD AISD LINK HAS IMSUFFICIF:ST :NFORTATION TO OPEN YOUR FILE.
LOAD MOD:LE IS FrE fOO
BAD DATA D:SAS FOF GPE LIBEAFY
OAD AFD LiNh IS wUT PERDI:TiU WHILE RUNNIIG UROER A DEE:CGER

Than a Cofe ligaary is ajssi itiro
LOAD AND LINK IS PERGITTED OHLY HITH PROGRAMS CREATED EV RUERLA
LOADER.
LOAD AND LITK IS NOT FERE:ITTEO ON FROGRAMS NOT OWNING ALL VIRTUAL:
MEMORY FI: DA:A THEOUGH DYI.SRII: DATA.

INVALID LIECODT TO FEFIOAR L!AO ABJ LINK EXIT AT JOB STEF
LOAD AID D ilv, CFifition is iliti,A! AS SOECIFIED
OLNK CLI AIUF Wl THCUT FREVIUUS IDINK CIERATION.

LOAD AI.D LiNK TO SFiCIAL SHi,sef i, PFOCESSOR NOT LLLONED
PHYSICAL CGPE FCF i BRARY for A A AlLAELE FOLLOWING LNKTFC

THE DCB Ni:'E CHAIF IS NOT if THE DCE RECORD
THE DCB Natr ehalf "ay fot EE LItikED
THE DCB Ni:r EHAIN IS IRREGULAK
THE DCB HK., No NLI:E
USER HAS FיOFE THA:N E.NG DCES
THE DCB 1 O GUTSIDE IRE CUFS
THE DCB MiY Nrit CuG UiAGE E Uni:ARIES
THE DCB MIST EE LT ITASTT 22 wifD'S LONG
THE DUST 2 IE MTH THE OCU
KBuF Must 2 IE hror. THE DC
ELP OUS LE DC OCB

M:SEGLD E: $:$ LVEED if WORDS FOR VIDS
ULRECOG I F: STREAR :D
UTRECOG:I:Z CEV SFEIFICAT:Cid
FUNCTIG: Wit LEGAL PGR DEVI':

PERIFHERA: LSE FIA; :OOT SET OME THI: DEVICE

CFI ATtTESED MITH HO LCO', ASrCLATED
INTRTN ISNLED bHEN :O ICE'S BFff A! TINE
RESTRICTE: (ALI IS:EU FOL! ©AlC M:HOLD (ON)

ILLEGAL I:T OR U1...NG RECHIOI FAGAEIER

USER REQ iSTED A SVICE FFi: i, SYSTELi GHOST AFTER HAVING BLOC:!.
THAT GHOM VIA B HOLD IN,
THIS ERROU: CDE : FESERVEO FGP FEAL. TIRE PUEFOSTS
USER HAS IUSUFFICIE:T PFIVILF TO ISSLE THIS MAI 5
invalid de:ice aur device mit hee-emeted. or sfrcifire dCb
IS NOT OFERED PRO: ! ! Y M inex)

OUEUE SATVFATED IICEEX CORE JIAGE OR SECONDAPY STORACE UNAVAILA:I!
QUEUE LOCK. U'LOCK LAIGR DCf S :..iT HAVE THE REQUIRED FKIVILEGE
OCB NOT OFFN FOR A LOCKiUNHOCK PECUEST
SPACE IS ing avaliafie to defile a list
BAD MEMOK' $\operatorname{cDDRESS}$
QUEUF LOCKFO
oueve fh .ical page space is not avallable
ERROR IN FRESLNTED LIST FOH A EIJT. DEFINELIST. OR STATS
ENTRY NOT FUUND FOF A QUELIE REGHEST REUUIRING AN EXISTING F:ITRY
I/O ERROR DUFING CONTROL/INUEX TRANSFER FOR AN UNLOCK REOUEST
IO ERROR JUPING A DATA SLOCK TRANSFER
OUEUE BUEY
QUEUE GEi OR PIJRGE FEQUEST FOP A NON-EXISTENT GET LIST
ARGUMETV GFEATEF THIN 31 CHARACTERS
llegal ievice code
NVALID FEEL NUR:BEF SFECIF:CATIGN
ILLEGAL FIUE NABE SFECIFICATIOT.
ILLEGAL LECCUNT NU EER SPECIFICATION
ILLEGAL FA: Si:ORD SDFCIFICATION
TOO Mainy fieldo in a file iortit fication specification
INVALID FILE RANGE SFECIFICATIOH
ORE iHAN TF'. RS FIELDS FOR dil INPUT DEVICE
OVERFLON CN A RS VALUE
ERROR ON Y VALUE CF RS OPTIOR
S ID-FIELD GREATEf Than fCUR Characters
ERROR ON IV GR K VALUE OF CS OPTION
IMPROPER TERGINATION WITHIN RS. LN. OR CS OPIION
l) MUST TEMMINATE FS. LN. GR OS ODTION

I MUST TEGMINATE FS. LN. OR ES ORTION
SPECIAL ARGURENTS HUST HAVE, AF: TERMINATION CHARACTER
EH?
EH?
UNDEFITEEI CCRMAND
NO DEFINEE OUTPUT DEVICE
IL DEFINE: OUTPUT OLV
IlLEGAI CUTPUT DEVICE
REEL NUMEER SPECIFICATION WOT VALIO FOR THIS DEVICE
FILE SFELIFICATICN :OT VALID FOR THIS DEVICE
DATA COOF SPECIFICATION MVIT VAIID TOR THIS DEVICE
MODE SPEC:FICATI'S: NOT VALID FOR THIS DEVICE
SEOUENCE SEECIFICAT:ON NOT VILID FUR THIS DEVICE
record selection sfecificatich not valid for this device
Pr/BIN/7T CORBINATION NOT VALID
NULL ARGUPENT (THO DELIMITERS IN A ROW
MAPROPER TERTINATICN OF THE (OMRAM:O
ONE REEL NUMEER RUST EE SPECIFIED ON THIS COMPIAND
'TO' OR 'GVER' NOT SPECIFIEA
RECORD SIZE EXCEED' AVAILASLE AFMORY
NVALID OEVICE TYEE FOR TH:C CORMANO
NO MaNY REEL NUKEEFS SPECIFIED
OO Many RFEL NHAEEFFS SPECIFIED
VERFLON :T. UUMAER GF FILES ON SFF' COIMMAT.D
INVALID [!PECTION ITDICATCF UN SNF COMMALID
NPUT RECORD Siこ! LAHCER THAH: 32TET7 BYiES
NVALID DPTION FOf GOPYALL
ACCOLINT SDECIFICATION NDT VALID ON EPE COMMANO

GRP	ERR	sue	MO
01	10	04	PCL
01	10	68	PCL
01	10	CC	PCL
01	11	30	PCL
01	11	94	PCL
01	11	F8	PCL
01	12	5C	PCL
01	12	CO	PCL
01	13	24	PCL
01	13	88	PCL
01	13	EC	PCL
01	14	50	PCL
01	14	B4	PCL
01	15	18	PCL
01	15	7 C	PCL
01	15	EO	PCL
01	16	00	PCL
02	00	01	LOADFR
02	00	02	LOADER
02	00	03	LOADER
02	00	04	LOADER
02	00	05	LOADER
02	00	06	loaider
02	00	07	LOADER
02	00	08	LOADER
02	00	09	loader
02	00	OA	LOADER
02	00	GB	LOADER
02	00	OC	LOAOER
02	00	OD	loajer
02	00	OE	LOALER
02	00	OF	LOADER
02	00	10	loaver
02	00	11	LOADER
02	00	12	LOADER
02	00	13	loader
02	00	14	LOADER
02	00	15	loajir
02	00	16	LOADER
02	00	17	Loamer
02	00	18	LCAFER
02	00	19	LOADER
02	00	1 A	loader
02	00	1 B	LOLJER
02	00	1 C	LOADER
02	00	10	loaner
02	00	$1 E$	loader
02	00	1 F	LOADER
02	00	20	Lnajer
02	00	21	LOAUSR
02	00	22	LOADER
02	00	23	LOADER
02	00	$2{ }^{1}$	loajer
02	00	25	loader
02	00	26	LOAUER
02	00	27	loader
02	00	28	LCADER

RECORE SEIECT GN IM, OLID WITH C OPTIGN
INVALID - SPL CI IGATIU.
NERFLOW SH TI LIUE NU
OVERFLOW IN EDIT LINE NU.E! R
TX OPTION USED A! YHUUT TAES CRI:AND
TX OPTION USED A! HROT TAE
INVALID GNT! NN FOR COFYSTD
ODRE THA' 5 IGHT FEAD WRTIE OR EXECUTE ACCOUNTS
MORE THA: 16 TAC VA:UES
UNABLE TO JISROUNT
TOO MAINY GHAFACTIR IA THE COMRIAND
INVALID "ALUF FOR a:SS OPT!O:
ORMAT CTES intalle FGR COn:and
NVALIO CF:IR FOR ANS TO AH:, LOPY
TAPE DEN:ITY SFEC!F:CATIDN IS iti ERROR
UPEXPECTE: EOF
ILLEGAL Ff(GRD
SEQUEIUCE EPERR
I LLEGAL HiCRO SIJ
CHECKSU: IFFGR
ABNORAA: 1.0
ABNORLA: IO
STACK Cuifrro.
SIAC TO MaEG
blas por inge
HEL. RO. -...jace
BAD STA:M ADORES
UNEXPECIE:I FO!M ENO
REPEAT LいSD IS ZEF:
IMPROPEF ! OU:
ILLEGAL riro

SEV. LE: SYCEEDTD
ILL. LIE LOAJ •rこ

1LL. DS! (T
ROOT SE: : iT TOU laFGE TO La:

NO RGO: io pegal lifaby cribs IraGe EVL

NO RUOM TO AEGE LISRAFI FEI USF STACK
NO ROON ic LrGem : InNAEY

flleGul Lifanar i"au predu: iant
AEMGRIAL \quad i LiA OR REA ! U URL LIERARY


```
DRHSSAGE
ORSP M:EI ERFC.R (F!!M)
```



```
ILLEGAL Fr.|Ei,T:OH TYPE FOR fUE!IC LIERARY
LM MUST Ef &rOT rN&1. pROCRf:'RE ONLY
pRCiNa!aE i's Il&FuAL
MONITOR gMiglay ca.rot have oveflays
DRSP M:EI EPFOR (WLITESWAF,
PRONAME MOT FOUNO ON RAD
PFONAME FOHTID ON RAO
READ ERR:A TEAUING FIO (COEY,
WRITE ER:OR WRITINI: FID (COPY)
WRITE ER.jF WRIIINN,FID (COPY)
DRSP M:EE: +REOH ,FEG:M)
CAN'T MAKF FERM, WO RAD SLOTS
INCORRECT FID
INCORRECT FID WRITE RAO FILE I,O ERRORS
RAD OVERFLOM - DISK SFI.CE ALIGTTED FOR THE SHAFED PROCS IS EXHAI:IIS
I/O ERROR &HILE RISITING FFOGLSSOR TO THE SWAP DISK
    ILLEGAL IT: 'LOAD D:AS CHECK:
ILLEGAL LO:O OOULE - POSSIE:Y EAD BIAS OR CREATED BY LINK LOAD!:
    PROCESSO: CVERLAY SLOTS EXHAUSTED.
    BREAK 50
    BREAK 51
    BREAK 52
    EREAK 53
    BREAK 54
    SYNTAX E.Fr.f
    1.O SUCH CO.TAND
```



```
    TO SPECIFY ALT[RT.ATE ACCOUNT: CR 'FID' FROM 'ACCOUNT'
    ACCOUNT FIELD 1S,, & EYTES
    HIT BREAV ID ENTE.R DELTA
    HIT BREA' IO ENT
    OO ACTION: S:VEN
    PROCESSIIM TEEMHUATED
    PROCESS:l.
I:O EGOTF:
THAT'S N'i A FIOOTF:IE
LOCAL SY:-:O TABLE: NOT COFICD
LM NOT Cr:ITE IO EE
$. NO HESI EFCOPD
HO SUCH ', ,i ENT
$. NO GL":OL SYFBOL TABLE
$ IS NOT A Fu.
Mo EOUIF!!L
FiELD TOS IOIGG IB
BREAK AFIE: $
PROCESSI`\therefore TERLIINATED AFTERR ;
BAD CHARS! iEf 1. I IV FID
CANNOT O'E:&
CANNOT
BAD FID FINNT F
CANNOT FIN:S
F:LF $ : U!C!R:\ S
ERRUR * IT1HG % TO EF
$ SYNTAX EFFRR
RECORD [its 1.0T Exist
\begin{tabular}{|c|c|c|}
\hline ERR & SUB & MODULE \\
\hline 00 & 1 B & DRSP \\
\hline 00 & \({ }_{1} \mathrm{C}\) & DRSP \\
\hline 00 & 1 D & DRSP \\
\hline 00 & 1 E & DRSP \\
\hline 00 & 1 F & DRSP \\
\hline 00 & 20 & DRSP \\
\hline 00 & 21 & DRSP \\
\hline 00 & 22 & DRSP \\
\hline 00 & 23 & DRSP \\
\hline 00 & 24 & DRSP \\
\hline 00 & 25 & DRSP \\
\hline 00 & 26 & DRSP \\
\hline 00 & 28 & DRSP \\
\hline 00 & 29 & DRSP \\
\hline 00 & 2 A & DRSP \\
\hline 00 & 30 & DRSP \\
\hline 00 & 31 & DRSP \\
\hline 00 & 32 & DRSP \\
\hline 00 & 34 & DRSP \\
\hline 00 & 35 & DRSP \\
\hline 00 & 36 & DRSP \\
\hline 00 & 39 & DRSP \\
\hline 00 & 50 & DRSP \\
\hline 00 & 51 & DRSP \\
\hline 00 & 52 & DRSP \\
\hline 00 & 53 & DRSP \\
\hline 00 & 54 & DRSP \\
\hline 01 & 00 & DRSP \\
\hline 01 & 01 & DRSP \\
\hline 01 & 02 & DRSP \\
\hline 01 & 03 & DRS \({ }^{\text {P }}\) \\
\hline 01 & 04 & DRSP \\
\hline 01 & 05 & DRSP \\
\hline 01 & 06 & DRSP \\
\hline 01 & 07 & DRSP \\
\hline 01 & 08 & DRSD \\
\hline 02 & 00 & DRSP \\
\hline 02 & 01 & CRSF \\
\hline 02 & 02 & DRSP \\
\hline 02 & 03 & DRSP \\
\hline 02 & 04 & DRSP \\
\hline 02 & OG & DRSP \\
\hline 02 & 07 & DRSP \\
\hline 02 & 08 & DRSP \\
\hline 02 & 09 & DRS \({ }^{\text {D }}\) \\
\hline 03 & 00 & DRS \({ }^{\text {P }}\) \\
\hline 03 & 01 & DRSP \\
\hline 02 & 0 O & DRSP \\
\hline 02 & OB & DRSP \\
\hline 03 & 02 & DRSP \\
\hline 03 & 03 & DRSP \\
\hline 03 & C4 & DRSP \\
\hline 03 & 05 & DRSP \\
\hline 03 & 06 & DRSP \\
\hline 03 & 07 & DRSP \\
\hline 03 & OA & DRSP \\
\hline 03 & OB & DRSP \\
\hline
\end{tabular}
```

```
    ERROR - FOF FECCRO $
    ERROR FOF FECCED $
    CANNOT OHEN $ SFOUFNTIAL
    ERRGR: S IOEAL SYOTGL TASLE OHLETED
    LOST DATL INGS LOCLL SYMBOL TAELE
    ERFOR * AFTEF S
    NO LOCCT WITH ELENENT S
    ELEMENT & NOT IN LOCCT $
    ERROR - SELREHING FOR LOCCT
    ERROR - pFADING LCLCT
    MONFIX TAG!E OVERFLOW FOR S
    WHAT REEL NUT:EER:
    WHAT MODULE?
    REEL NUMPER > 4 CHARACTERS
    LOADER EFIOR FOR S
    OPERATOR IM:TIATEC PECOVERY
    OPERATOF INITIATED SHUTDOWN
USERS PAGE CHAIN INF:ISISTEIT
REPORTED EUENT INCO: SISTE:TT WITH USER'S CURRENT STATE
REPCODE IN SWAP COMNOMD LST IS INVALID
INCORRECT SRDER COCE IN SVIAR CNOGAND LIST
ATTEMPT MISE TO SHAD MONITOFGS NHEDORY
HALT FLAG, MISSING IN SWIAP COMRMADD LIST
I/O RECUEST WITH NULL COMSAND LIST
INPUT FINNTIO: CODE IS INVALID
    COC-BAD CT.C EUF FONL. OR EAU EUF ADR ON RELEASE REQUEST
    COC-INVALID INIERNAL CONTRCL COCE TRANSLATE REQUEST
    COC-bAD !NFUT buF l.iNMaGE ON RElEASE fEQUEST
    COC-OUTPUT EUF LINHACE OF CHARACTER COUNT BAD
COC ROUTINE WAS CALLED IN A :ON-COC SYSTEM
COCIO CLLIED IH A NOH-COC SYSTEM
COCOFF CALIED IN A LON-COC SYSIIS
COCSENDX CALIEG IN A NON-COC SYSTE:
ECHOCR2 CALLID IN A :ON-COC SYSTEM
INVALID DISG ADORESS !ASSED FGR AN 1/O GPERATION
INVALID PGIFER ADERESS FASSED FOR FELEASE
ACCOUNT D:OFCTORY IS INACCESSIEIE
ACCERS PACE CHAIN 'O INACCESSICLE COMPLETIONO
USERS PAGE CHAIN NOM-ZERO AT SKAF COMPLETION
REQUESTED OVEFLAY NIIIBER IS OHT OF RAI.GE
SYSTEM REBCOTED WITHOUT A PROFER SHUTDOWN
NOT ENOUGH PAGES TO FERFOFR:T THIS SWAP
ATTEMPT TO SET ACCESS ON AN NON-EXISTENT VIRTUAL PAGE
PRIVATE VOLUME ALLCCATION EFQO
    INVALID EH?PY TO COE HANOLEFS
    INSTRUCTION EXCEPTISN TRAP IN :ASTER WODE
    uNRECOVERAELE WATCHDOG TIMER TIAAF
    CSE TRAP DURING MFI. YFI HANULING
    PROCESSOR FAULT IHTERRUPT
MEMORY PARITY ERROR - MENORY ALTERED
TRAP 4C - EUS CHECY FAlJit
TRAP AC RAF PARITY EFFOOR
TRAP 4C - PEGISIER FLOCK pARITY ERROR
TRAP 4C - WRITE LOCK REGISTIR FARITY EFROR
TRAP 4C - WRITE LOCK REGISTLR FARITY EA
BATCH SCHEDULIN:C FROFR - WBS:LCI ERFO
COOPERAT IVE EUFFEF !NNLGEPEENT ERROR
SYMBIONT/CCOP FILE DEVICE I:NAC:ESSIBLE
USERS COOR CONTEXT ELOCK CHAIN LCST
COOP CONTEXT ELOCK POINTERS CLOEHEQEO
\begin{tabular}{|c|c|c|c|}
\hline GRP & ERR & SUS & MODULE \\
\hline 06 & 03 & OC & DRSP \\
\hline 06 & 03 & 09 & DRSP \\
\hline 06 & 03 & Of & DRSP \\
\hline 06 & 03 & 10 & DPSP \\
\hline 06 & 03 & 11 & DRSP \\
\hline 06 & 03 & 15 & DRSP \\
\hline 06 & 03 & 16 & DRSP \\
\hline 06 & 03 & 18 & DRSP \\
\hline 06 & 03 & 19 & DRSP \\
\hline 06 & 04 & 00 & DRSP \\
\hline 06 & 05 & 00 & DRSP \\
\hline 06 & 05 & 01 & DRSP \\
\hline 06 & 05 & 02 & DRSP \\
\hline 06 & 07 & 00 & DRSP \\
\hline 08 & FF & 00 & BOOTSUBR \\
\hline 08 & 04 & 04 & SCHED \\
\hline 08 & 01 & 00 & SCHED/BM \\
\hline 08 & 02 & 00 & SCHED \\
\hline 08 & OA & 00 & TSIO/DPSIO \\
\hline 08 & OB & 00 & TSIO/DESIO \\
\hline 08 & OC & 00 & TSIO/DPSIO \\
\hline 08 & 00 & 00 & TSIO \\
\hline 08 & OE & 00 & TSIO \\
\hline 08 & OF & 00 & TSIO/DPSIO \\
\hline 08 & 10 & 00 & COC \\
\hline 08 & 11 & co & COC \\
\hline 08 & 12 & 00 & COC \\
\hline 08 & 13 & 00 & COC \\
\hline 08 & 14 & 00 & THEUNCOC \\
\hline 08 & 14 & 01 & THEUNCOC \\
\hline 08 & 14 & 02 & THEU:COC \\
\hline 08 & 14 & 03 & THELSCOC \\
\hline 08 & 14 & 04 & THEU:COC \\
\hline 08 & 17 & 00 & 100 \\
\hline 08 & 19 & 00 & BUFF \\
\hline 08 & 14 & 00 & CLS \\
\hline 08 & 18 & 00 & SWAPPER \\
\hline 08 & 10 & co & T:OV \\
\hline 08 & IE & 00 & SCHED \\
\hline 08 & \(1 F\) & 00 & SWAPPER \\
\hline 08 & 21 & 00 & Min \\
\hline 08 & 22 & 00 & TYPR \\
\hline 08 & 23 & 00 & CSEHAND \\
\hline OB & 24 & 00 & CSEHAND \\
\hline 08 & 25 & 00 & CSEHAND \\
\hline OB & 26 & 10 & CSEHAND \\
\hline 08 & 27 & 00 & CSEHAND \\
\hline 08 & 28 & 00 & CSEHAND \\
\hline 08 & 29 & 00 & CSEHAND \\
\hline 08 & 29 & 01 & CSEHAND \\
\hline 08 & 29 & 02 & CSEHAND \\
\hline 08 & 29 & 03 & CSEHAND \\
\hline 09 & 2C & 00 & ADO \\
\hline 08 & 2 D & 00 & COOP \\
\hline 08 & 2D & 01 & COOP \\
\hline 08 & 2D & 02 & COOP \\
\hline 08 & 2D & 03 & SACT \\
\hline
\end{tabular}
```

[^7]| GRP | ERR | SUB MODULE | |
| :--- | :--- | :--- | :--- |
| 08 | $2 D$ | 04 | OUTSYM |
| 08 | $2 E$ | 00 | RDF |
| 08 | $2 E$ | 01 | RA |
| 08 | 30 | 00 | PFSR |
| 08 | 31 | 00 | IORT |
| 08 | 32 | 00 | IOO |
| 08 | 34 | 00 | TPQ1 |
| 08 | 41 | 01 | RTROOT |
| 08 | 41 | 10 | FTROOT |
| 08 | 41 | 11 | RTNR |
| 08 | 43 | 01 | CLOCK4 |
| 08 | 43 | 02 | CLOCK4 |
| 08 | 43 | 03 | CLOCK4/RTNR |
| 08 | 46 | 21 | RDF |
| C8 | 49 | 00 | TYPR |
| 08 | 56 | 00 | MOCIOP |
| 08 | 61 | 00 | INITRCVR |
| 08 | 61 | 40 | INITRCVR |
| 08 | 61 | 42 | INITRCVR |
| 08 | 62 | 00 | SCHED |
| 08 | 63 | 00 | DPSIO |
| 08 | $6 A$ | 00 | MM |
| 08 | 68 | 00 | SWAPPER |
| 08 | 79 | 00 | ENTRY |
| 08 | $7 C$ | 00 | ALTCP |
| 08 | $7 E$ | 00 | INITRCVR |
| 68 | $7 E$ | 40 | INITRCVR |
| 08 | $7 E$ | 41 | INITRCVR |
| 03 | 87 | 00 | ALLYCAT |
| 08 | 88 | 00 | SCHED |
| 08 | 89 | 00 | ALLYCAT |
| 08 | 93 | 00 | TSIO/OPSIO |
| 08 | 94 | 00 | TSIOIDPSIO |
| 08 | 95 | 00 | TSIO/DPSIO |
| 08 | 96 | 00 | TSIO/DPSIO |
| | | | END-OF-JOB |
| | | | |

[^8]
DATA BASES

:USER File Record Format

Earh 126 word record in the logon file, called :USERS, corresponds to an authorized user. Whenever an on-line or batch user attempts to use the system, the :USERS file is checked to determine if there is a corresponding record. If not, he is denied access to the system, if there is a record associated with that user and if he has logged on with the correct password (if any), he may access the system.

Each record in the :USERS file contains a profile of a user authorization for use of various system resources - such as number of spindles, tape drives, core space RAD and DISK space, etc. At log on time, these various items are placed into corresponding fields in JIT and/or Assign-Merge Table so that information about the user is readily accessible. Controls can then be duly exerted by the monitor. The :USERS file is accessed by SUPER, TEL, CCI, and LOGON.

Section VN. 01
Page 3
$4 / 1 / 74$

Contents of Users File Record

Name	Description
Account	EBCDIC. Account under which the user is authorized to log in. Value may be 1 to 8 characters in length and is left-justified with trailing blanks.
Name	EBCDIC. Name under which the user is authorized to log in. Value may be 1 to 12 characters in length and is left-justified with trailing blanks.
All	Bit 0 Default read access for user, 0 indicates ALL; 1 indicates NONE.
MC	Word 5, bit 27. Set if user has the MC (Maintenance Console) specified as a resource. Used for internal use by SUPER.
xo	Word 5, bit 28. Set if user may execute processors from :SYS account only. Default $=0$.
RP	Word 5, bit 29. Set if user has one or more entries in the :PROCS file specifying this user is allowed/ disallowed to execute.
SE	Word 5, bit 30. Set if security check of granule and core cleaning is required.
Password	EBCDIC. Password assigned to this name-account. The contents of the field is the latest value entered by the user himself with a TEL PASSWORD command, or by SUPER via the PASSWORD option of a CREATE or MODIFY command. Value may be 1 to 8 characters in length and is left-justified with trailing blanks. If no password has been specified, these words contain zeroes.

	CP-V TECHNICAL MANUAL	$\begin{aligned} & \text { Section VN. } 0 \\ & \text { Page } 5 \\ & 4 / 1 / 74 \end{aligned}$
Auto-Call	EBCDIC. Password of LMN to be automatically connected to the user's job when he logs on. Value may be 1 to 8 characters in length and is left-justified ${ }^{*}$ with trailing blanks. If no auto-call LMN has been specified, auto-call password contains zeroes.	
Auto-Call account	EBCDIC. Account in which resid automatically connected to the us logs in. Value may be 1 to 8 cha and is left-justified with trailing value for system processors is ":SY call LMN has been specified, the zeroes.	es the LMN to be ser's job when he aracters in length blanks. The YS". If no autoese words contain
Automcall name	EBCDIC. Name of LMN to be au connected to the user's job when value is in TEXTC format, may be in length, and is left-justified with the first byte contains a count. has been specified, these words	tomatically he logs in. The 1 to 11 characters th trailing blanks; f no auto-call L.MN ontain zeroes.
Billing	Binary. Charge class level refere class table in the RATE file which processing. The halfword value m $0 \leq \text { charge class }<\underline{7}$	ncing a charge is used in account must lie in the range:
Privilege	Binary. Privilege level granted the privilege codes include the lower range of the privilege codes is X^{\prime} currently meaningful codes are as	he user. The higher privilege. The 0^{\prime} to X'FF'. The follows: facilities allowed Issue M:SYS CAL Bypass file security checks. Access and change monitor Read and write error file; request devices; invoke diagnostics. Examine monitor Default privilege level

Maximum Retention	Binary. Hours of maximum retention period for files created by the user. A zero means the system defailt value and X'FFFF' means the files are to be retained indefinitely.
Accumulated Permanent DISK Space	Binary. Permanent DISK storage accumulated by the user. This fleld is not modified by SUPER.
Accumulated Permanent RAD Space	Binary. Permanent RAD storage accumulated by the user. This field is not modified by SUPER.
Extended Accounting Information	EBCDIC. This field specifies installation specific accounting information. A maximum of 24 characters is allowed. The character; is not allowed.
Service Limit	0-15 four character service limit names. This table gives the serivces for which the maximum values are given in the next three tables.
Batch, Online and	
Ghost Service Maximum	Three parallel tables of θ-15 full word binary values associated with the service limit names. One table each for batch, online and ghost operation in this account.
Ratch, Online and Ghost Resource Maximum	Three parallel tables of 0-15 byte binary values associated with the resource limit names. One table each for batch, online and ghost operation.
Names	

Default Retention Period	Binary. Hours of retention period for files created by the user. A zero means the system default value and X'FFFF' means the files are to be retained indefinitely.
Peripheral Limit Names	0-15 two character peripheral device limit names. This table contains the peripheral device names for which use authorization flags are given in the next table.
Peripheral Flags	A table of 0-15 bytes parallel to peripheral limit names each byte has the form: A bit value of one means that authorization to use the device is granted.

Job Accounting Record

The following Figure shows the additional structure of the job accounting record. Words $0-37$ remain unchanged with respect to previous versions except that the field marked "scratch tapes" in word 32 is now unused.

Four words have been appended to the record, words $38-41$ and contain the resource allocation values: the number allocated for batch jobs (regardless of whether or not they were actually used), and, for on-1ine and ghost jobs it is the number in use at time of logoff. Byte zero of word 38 contains flags which indicate the condition under which the accounting record was generated. The start and end time may be optionally expressed in seconds from midnight by the installation's setting of bits 31 of S:OPTION in the Monitor Root.

Name	Description
Account	Account number of the user as specified on the job card or log-on message.
Name	Name of the user as specified on the job card or log-on message.
Extended Accounting	Installation-defined accounting information as specified on the job card or log-on message.
Charge Units	Accumulated charge units calculated for the user through use of the rates table.
Line Number	Line number (Data Set Controller Subchannel) to which the user connected. Line Number is set to X'FF' if entry is for a batch job.
Priority	Priority specified on the job card. Unused if entry is for a terminal session.
Final Run Status	Run status at the completion of the job (an eight bit field).
	$X^{\prime} 00{ }^{\prime}$ - Job exited normally.
	X'01' - Job aborted, illegal trap.
	$\mathrm{X}^{\prime} 02{ }^{\prime}$ - Job aborted, 1/O error.
	$\mathrm{X}^{\prime} 04{ }^{\prime}$ - Job aborted, limit exceeded.
	X'08' - Reserved for CHKPT.
	X'10' - Job aborted, 'X' key-in.
	$\mathrm{X}^{\prime} 20^{\prime}$ - Last job step errored, 'E' key-in.
	$X^{\prime} 40^{\prime}$ - Job aborted, M:xxx.
	X'80' - Last job step errored, M:ERR.
Job Steps	Total number of job steps if batch; total number of subsystem operations if on-line.
Job Origin	Origin of batch job.
	0 - From local card reader
	1 - From on-line terminal
	2 - Reserved for remote batch
System Version	Version of operating system (from cell $X^{\prime} 2 B^{\prime}$) in EBCDIC.
Start Date	Date at job or terminal session start, where the left halfword is the year and the right halfword is the day. Year is a binary value; e. g., 1970 is represented as $X^{\prime} 782$ '. Day is the Julian day of the year represented in binary; e.g., September 14 is represented as $X^{\prime} 101$.
Start Time	Time of day at start of job of terminal sèssion in minutes from midnight. The value is expressed in binary.
End Time	Time of day at end of job or terminal session. Expressed in the same format as start time.
Console Interactions	Number of interactions during the course of a terminal session (zero for batch).

CP-V TECHETCAL MANUAL
 Contents of Accounting Record (cont.)
 SECTION VN. 02
 PAGE 4 4/1/74

Name	Description
Finish Date	Date at job or terminal session finish. The format is the same as for Start Date.
Sysid	ID assigned to user job or session.
Pack Mounts	Number of disk packs mounted.
Spindles	Maximum number of disk pack spindles allocated to batch or available to on-line.
Cards Read	Number of cards read, including the job card and any EOD cards, but no FIN cards.
Cards Punched	Number of cards punched, including ID card, JOB card, BIN aards and EOD cards, but not blank cards inserted by the punch symbiont between jobs. If no punched output is produced by the job, the ID and JOB cards are suppressed and the punched card count is reduced to zero.
Processor Pages	Number of pages of printed output generated by shared processors, plus two ID pages at the beginning of the job and the accounting page at the end.
User Pages	The number of pages of printed output generated by user programs only.
Diagnostic Pages	The number of pages of all output to a symbiont file through the $M: D O C C B$, including core clump snaps and debug output. However, output is not counted if it goes to a user file, even though it goes via M:DO.
Tape Mounts	Number of tapes mounted unless premounted by the operator.
Tape Drives	Maximum number of tape drives allocated to batch or avallable to on-line.
Tape Accesses RAD Accesses Disk Accesses	Number of read, write, and file positioning accesses on the specified device, but not seek accesses since these are considered part of a read or write. A charageable access is actually a request to a queue.
1/O CALs	Number of CALI, 1 operations performed.
Permanent RAD Granules	Net change in accumulated RAD storage. This is a signed binary value.
Permanent Disk Granules	Net change in accumulated public disk pack storoge. This is a signed binary value.
Core Usage	Product of CPU time times core size in pages (ticks ${ }^{\boldsymbol{t}} \times$ pages), includes all core usage by job.
Processor Execution Time	CPU time spent in shared processors in the slave mode, expressed in ticks. ${ }^{\text {t }}$
Maximum Core Size	Peak value of core reached, expressed as the number of pages. Does not include shared processors or context.
Partition	Partition number under which the job ran (zero if terminal session).
Save Tapes	Number of save tapes used.
User Execution Time	CPU time spent in other than shared processors expressed in ticks. ${ }^{\dagger}$
User Service Time	Monitor service time spent for other than shared processors expressed in ticks. ${ }^{\dagger}$
Peak Temporary RAD Granules	Peak value of temporary RAD granules used.
Peak Temporary Disk Granules	Peak value of temporary public disk pack granules used.
Billing Rate	Charge class used for accounting for this user. The value is obtained from the user's log-on record and is in the range 0 to 7.
${ }^{\dagger}$ One tick equals two milliseconds.	

Section VN. 02
Page 5
4/1/74

Contents of Accounting Record (cont.)

Name	Description
Flags	Indicate condition under which accounting record was generated
$0=$ Normal	
$1=$ Recovery condition	
$2=$ Assign-Merge record error	
$3=$ Recovery-but missing or bad A/M record	
Resource Allocation	15 byte table containing the number of resources of each type allocated. For batch jobs it is the number allocated (regardless of whether or not they were actu- ally used). For online or ghost jobs it is the number of resources in use at time of log off.

272

RATE RECORD FORMA.T

CP-V TECHNICAL MANUAL

ID
: RBLOG - Remote Batch Logon File

PURPOSE
Each record except the $I D$ record in the remote batch logon file, called : RBLOG, corresponds to an authorized work station. Whenever a user tries to log a work station onto the system via the 1 RBID command, or uses a work station name on a JOB card, the : RBLOG file is checked to determine if there is a corresponding record. If not, access to the system is denied; if there is a record associated with that work station name, the system may be accessed. The :RBLOG file is accessed by SUPER, RBBAT, and LDEV.
: RBLOG File Record Format

The remote batch $I D$ record ($R B I D$), which is written with the key '...', contains a chain of used RBIDs and a chain of free RBIDs.

The record written with a key of '///' contains the list of WSNs indexed by RBIDs.

The records keyed by WSN are described in three formats:

1. Record layout with associated SUPER internal labels.
2. Record elements keyed to the SUPER internal labels.
3. A bit by bit breakdown of the three flag word formats used in the : RBLOG record.

CP-V TECHNICAL MANUAL
Page 2
4/1/74

*These are nine parallel table of 16 elements each, indexed by device.
:RBLOG RECORD (80 WORDS LONG)

Internal Label	Min. Value	Max. Value	Default Value	Data Type	Associated Super Option	Nots
RH:Fl		.			$\begin{aligned} & \mathrm{CTL} / \mathrm{NCTL} \\ & \text { SRCB } \\ & \mathrm{IN} / \mathrm{OUT} \\ & \mathrm{CE} / \mathrm{Y}: \mathrm{CO} \\ & \hline \end{aligned}$	description of RH:Fl follows
RH:F2					$D E V=O C$ DIR/NDIR LIST SRCB IN/OUT BIN/NBIN	description of RH:F2 follows
RH:SUS	0	X'FFFF'	0	hex	SUS	
RB:MAX	1	255	80 *	decimal	MAX, CP2, LP2	
RB:MIN	1	255	1	decimal	MIN, LPP	
RB:PRIV	0	X'FF'	40	hex	PRIV	
RB:TYPX	0	TYPMNES2	0		DC	Only symb. device types legal
RD:GHOS			0	Text C	GHOST	

* For listing devices, defaults are: Nax 132

Min 38 (lines per page)

FLAG NAME	BIT NUMBEK $(0-31)$	SET	RESET
R:FLAG (word)	6	TYPE= IRBT	TYPE $=7670$ or 2780
	7	SIGMA is in SLA.VE mode	in MASTER mode
	$\begin{array}{r} 9 \\ 10 \\ 19 \end{array}$	X1 specified TYP $=2780$ SYS specified	$\begin{aligned} & \text { not XI } \\ & \text { TYPE }=\text { IRBT or } 7670 \\ & \text { NSYS } \end{aligned}$
	34 (remaining bits	$X 2$ specified EM specified unspecified)	$\begin{aligned} & \mathrm{Not} \times 2 \\ & \text { NEM } \end{aligned}$
$\mathrm{RH}: \mathrm{Fl}$	0 12	IN and NCTL or OUT and DEV $\neq O C$ SRCB $=C$	$\begin{aligned} & \text { IN and } C T \mathrm{~T} \\ & \text { or } O U T \\ & \text { and } D E V=O C \\ & \text { not } C \end{aligned}$
	13	SRCB $=\mathbf{P}$	not P
	14	$D E V=O C$	$D E V \neq O C$
	15	IN	OUT
RH:F2 (HW)	0	$D E V=O C$	$D E V \neq O C$
	1	DIR	NDIR
	2	LIST $=$ P	LIST \ddagger P
	3	LIST $=$ S	$\neq \mathrm{s}$
	5	SRCB $=\mathrm{U}$	$\neq u$
	$\begin{aligned} & 6 \\ & 7 \\ & 9 \end{aligned}$	SRCB $=C$ *	$\neq C \quad * C+P=x$
		SRCB $=\mathrm{P}$	$\neq \mathrm{P}$
		LIST $=\mathrm{Y}$	
		LIST $=$ S	
	10	IN	OUT
	11	OUT	IN
	12	BIN	NBIN
	15	LIST $=Y$	
		LIST $=$ S	

Note regarding bit values relative to LIST option in RH:F2

	BIT	2	3	9	15
LIST $=\mathrm{N}$		0	0	0	0
P		1	0	0	0
Y		0	0	1	1
S		0	1	1	1

Structure of the RBID Record

Word 0	HOF	0	TOU	HOU
1	1	2	3	4
2	5	6	7	8
3				
.				
64	253	254	255	0

HOF = Head of Free (initially 1)
TOU $=$ Tail of Used (initially 0)
$\mathrm{HOU}=$ Head of Used (initially 0)
Values in words 1-64 are changed as work stations are authorized or deleted.

:PROCS File

The setting of the RP bit in the :USERS record (word 5, bit 27) indicates the presence of a record for that user in the :PROCS file. The :PROCS file is a keyed file, keyed by the concatenated user account and name identically to the :USERS file.

The data record will be of variable size up to a full granule (512 words). The first word of the record is reserved for flag bits and a count. The count is in the high order halfword's bits 1-7. The low order halfword contains an index to the next free byte in the record.

Bit 0, called PM, indicates the mode of the processor list. $\mathrm{PM}=1$ indicates that the list is a list of processors which are not allowed for this user. All processors not listed are allowed. When the PM bit is reset, each entry indicates a processor which is allowed in the specified mode (s), all others being disallowed.
(NOTE: The effectiveness of the :PROCS restrictions on executing processors is dependent upon execute only access on these processors so that the user cannot copy them.)

The remainder of the :PROCS record contains variable length items of the form:
Word 0

The remainder of the :PROCS record contains variable length items of the form:

The minimum item size is 3 bytes, the maximum, 21 bytes. There is room in the record for 97 maximum size or 200 'ordinary' sized items.

282

Overlay Loader-Built Load Module Layout at Run Time

LINK-Built Load Module Layout at Run Time

*Allocated by Loader and initialized at run time by core library procedure routines.

Load Modules, Overall Format
A load module is a keyed file whose name was supplied to the Overlay Loader or LINK (default = idL). The keys and records are as follows:

Record

(Foofnotes are on next page.)

Footnotes to keys and records shown on previous page:

*Doubleword address

In byte 0, word 0

$$
\begin{aligned}
& X=0, \text { load module produced by Loader } \\
&=1, \text { load module produced by SYSGEN. } \\
&=2, \text { library load module produced by Loader. } \\
&=3, \text { load module produced by DEFCOM (con- } \\
& \text { sists of HEAD, TREE, and REF/DEF (Stack). } \\
&=4, \text { load module produced by LINK. } \\
&=5, \text { paged load module produced by Loader. }
\end{aligned}
$$

$\mathrm{n}=$ number of bytes in the HEAD record. For $\mathrm{CP}-\mathrm{V}, \mathrm{n}=\mathrm{X}^{\prime} 30^{\prime}$.
$\mathrm{A}=1$, abs module
B $=1$, NOTCB
SL=Final Severity Level
** Word 7
*** Word 8
**** Words 9, A, B

If DEFCOM output, this word = byte size of DATA area. If the LMN contains global symbol table (GST) information, Word 7 contains the size in words of the GST in bits 0-14 and location of the GST in bits 15-31. If the LMN internal symbol table (IST) information, Word 8 contains size in words of the IST in bits 0-14 and location of the IST in bits 15-31.

If the LMN is associated with a core library, these words are :Pnnn in TEXTC format. If the CORELIB option was specified for a loader-built load module and no core library was associated, bit 0 of word $9=1$.

Key $=$ TREE \quad Record is the Tree Tables

Tree Tables

Overall sicture for M segments (SO, ... SM)
$n=$ total size of the tables
TREE

Tree Table Format (one 11 -word Table per Segment)

Segment name is determined by the name of the first file in the segment. (If the load module has only one segment, i.e., the root, the keys begin with load module name. If no load module name was supplied, the name is idL.)

Words 5-10 of each Tree Table are computed by the Loader or LINK. Word 10 of the ROOT Tree Table is used by the Loader to monitor the size of the REF/BREF Tables.
*Doubleword address or \# of doublewords
** Displacements from TREE

Segment Components - Standard Load Module
For each segment, the following records are built:

Segment Components - Paged Load Module Built by the Overlay Loader
For each segment, the expression stack and REF/DEF stack records have the same format as those for the standard load module. Relocation dictionary records are not constructed.

[^9]** These records are output by Loader for a relocatable load module.

The core images are partitioned into records of at most 512 words in length with 3-byte keys of the following format:

SEG	00	PAGE

where SEG $=$ the TREE segment number of the segment containing the core image.
PAGE = the page number of the virtual page that will contain this record at execution time.

All core image records are one page in length except for the first record of an overlay segment"s 00, 01 , and 10 areas. The length of this record satisfies the following: at execution time, the record begins at the execution bias for this protection type and ends at the next page boundary.

Library Load Modules Built by the Overlay Loader

A library constructed by the Overlay Loader consists of two keyed files, :LIB and :DIC. The library load modules actually reside in one file (:LIB). :DIC is a dictionary whose keys are the text names of DEFs. The record associated with a dictionary key is the text name of the load module (within :LIB) in which that DEF is defined. Thus, in order to locate the unique group of records within :LIB which pertain to a given PREF, the Loader does a keyed READ to :DIC, the key being the PREF which is being satisfied. This keyed READ returns the library load module name within :LIB. With this information the Loader can then read the library load module records into core and merge them with the target load module.

The keys and records in :LIB are identical to those of non-library load modules (see above) except that the keys "HEAD" and "TREE" are concatenated with the TEXT load module name (to keep them unique). Each individual library load module name is "synonymous" (in a file serise) with the name :LIB.

A slight difference also exists in the REF/DEF and expression stack formats. The VALUE word of an entry in the REF/DEF stack is actually the head of a chain through the expression stack af all those entries which involve that REF/DEF. (This expedites subsequent merging of the stacks when the library is included in a user program.)

Tree Structure

TREE Table Linking - in Relation to the Overlay Structure

REF/BREF Tables Built by the Overlay Loader

REF Table

An entry is created for every load item involving a REF defined in a higher segment. The load item is replaced by a CALI, $8 \times$ where X is the REF Table entry address (a PLIST for the CAL).

$X \rightarrow$| 0 | 1 | 8 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | SEG | | | | |
| Replaced load item. | | | | | | |
| | | | | | | |
| | B | load item +1 | | | | |

$$
\begin{aligned}
& \text { SEG }= 17 \text { bit address of higher } \\
& \text { segment name in Tree Table. }
\end{aligned}
$$

BREF Table

An entry is created for every branch type instruction involving a REF to a higher segment. The branch type instruction is replaced by a branch (of the same type) to the BREF entry.

BAL, RO		
S:OVRLY		
$*$	SEG	\times

where: S:OVRLY is a system library routine
SEG $=$ segment number (Tree Table displacement/11)
ADDR $=$ address field of replaced instruction *, $x=$ indirect and index fields from replaced instruction

GENERAL REF/DEF STACK FORMAT
USED BY THE OVERLAY LOADER

where:
$n=$ number of words in this entry.
$E=1$, if the entry has a VAL UE
TYPE $=0$ or 8 DEF
1 SREF
2 PREF
3 or B Dummy Section
4 or 6 Control Section
5 or 7 Forward Reference
Cor E Page Boundary Control Section
VALUE $=$ constant or address if the load module is not a library or
head of a chain in the expression stack if the load module is a library
RESOLUTION = the resolution in which the VALUE is expressed. Resolution is of the form:

0	16		31
byte	half	word	double

If the VALUE is a constant, the RESOLUTION word is 0 .
If the VALUE is an address, one and only one byte of the RESOLUTION word is nonzero (viz., the appropriate byte $=X^{\prime} 0 l^{\prime}$).
If the RESOLUTION assumes a form different from either of the above, the VALUE is of mixed resolution. (In this case the load module cannot be relocated and is forced ABS.)

GENERAL EXPRESSION STACK ENTRY USED BY THE OVERLAY LOADER

where:
$\mathrm{n}=$ number of words in entry
$E=1$, this entry has been evaluated.
$=0$, this entry has not been evaluated.
$C=0$, this entry's Destination is a pointer to the REF/DEF stack.
$=1$, this entry's Destination is a core expression.
DISP $=$ number of words to Word 1 .
Destination: (where the value of the entry is to be deposited) $=$ one of the following forms, depending upon the value of C.

REF/DEF Pointer

If $C=0$

If $C=1$

REF/DEF Pointer
15
Segment's Displacement in Tree Table
Displacement within segment's REF/DEF stack

Core Expression

Resolution: Same as REF/DEF stack.
$C B_{i}=a$ control byte of the expression.
Word $_{i}=$
is referenced by a control byte and is a constant or pointer to the segment's REF/DEF stack (same form as Destination where $\mathrm{C}=0$).

CP-V TECHNICAL MANUAL

RELOCATION DICTIONARY

If ABS is not specified on the ILOAD card each segment of Loader-built load modules will have records of relocation dictionaries (one per protection type). One relocation digit is developed for each word in the protection area.

Relocation Dictionary Digits
Digit Type of Relocation
$0 \quad$ relocate the word at byte resolution.
1 relocate the word at halfword resolution.
2 relocate the word at word resolution.
3 relocate the word at doubleword resolution.
8
9
A
E relocate the left half of the word at doubleword resolution. relocate the right half of the word at doubleword resolution. relocate both halves of the word at doubleword resolution. absolute.

Notice that relocation digits exist only for items that terminate on halfword boundaries.
A load module which has an item not amenable to one of these digits is set to ABS. Example:

BOUND 4
ZAP EQU DA(\$)
GEN, 8, 16, 8 0, ZAP, 0
or

BOUND 4			
ZAP	EQU $\$$		
	GEN , 3, 17, $12 \quad 0$, ZAP, 0		

Either of these would cause the module to be set ABS since ZAP does not terminate on a halfword boundary.

Symbol Tables

Global Symbols:

A global symbol table is constructed by LINK or by SYMCON. This table is a list of correspondences between symbolic identifiers (labels) used in the original source program and the values of virtual core addresses which have been assigned to them at load time. The global symbols identify object (DEFs) within a module which may be referred to (REFed) in other modules. This table is available to DELTA, for use in debugging.

Internal Symbols:
An internal symbol table is a list of correspondences similar to the global but which applies solely within the module. It is built by LINK or the Loader for each input ROM which contains IST load items. Each internal symbol table is associated with that specific input file (ROM) and identified by its name. The internal as well as the global symbol tables are created for use by the debug processors, such as DELTA. The user has the ability under DELTA to define which set of internal symbols is to be used for specific debugging activities.

Symbol Table Format:

Both global and internal symbol tables consist of three word entries. Symbolic identifiers (labels) are limited to seven (7) characters plus count. Symbols originally longer than seven are truncated leaving the initial characters; although the original character count is retained. Symbols which are identical in their first seven characters and are of equal length occupy one position in the symbol table. The value or definition for such multiply defined symbols is the first one encountered during the linking process. Each symbol entered into the table has a type and internal resolution classification. The internal resolution types are: byte, halfword, word, doubleword, and constant. The following are the symbol types which are supplied by the object language and maintained in the symbol table: instruction, integer, EBCDIC text, short floating point, long floating point, decimal, packed decimal, and hexadecimal.

Location Symbol - code $=0 \mathrm{O}$

01	C	S_{1}	S_{2}	S_{3}
	T	S^{2}		
S_{4}	S_{5}	S_{6}	S_{7}	
t	res	value		

where:
CT . is a six-bit field containing the character count of the original symbol.
$\$$ are the first seven (7) characters of the symbol. Symbols with fewer than seven characters are zero filled.
t
is a five bit field where the values are:
00000 - instruction
00001 - integer
00111 - EBCDIC test (also for unpacked decimal)

00010 - short floating point
00011 - long floating point
00110 - hexadecimal (also for packed decimal)
01001 - integer array
01010 - short floating point array
01011 - long floating complex array
01000 - logical array
10000 - undefined symbol
res is a three-bit field representing the internal resolution. The values are: 000 - byte
001 - halfword
010 - word
011 - doubleword
value location symbols are always represented as a 19-bit byte resolution value.
Constants - code $=10$

10	$C T$	S_{1}	s_{2}	s_{3}
S_{4}	s_{5}	s_{6}	s_{7}	
value				

where:
$C T$ and S_{j} have the same meaning as above value is the 32-bit value of the constant.

CP-V TECHNICAL MANUAL

SECTION VO PAGE 15
2/10/76

Loader Control Comniand Table (LOCCT)


```
* NOTE: }\quadA=1,\mathrm{ UDEF specified
        B = 1, NOSYSLIB specified
        C = 1, REF specified
        D = 1, PERM specified
        E = 1, LIB specified
        F = 1, M10 specified
        G = 1, M100 specified
        H = 1, FCOM specified if BPM. If CP-V, the OSP specified.
        I = I, ABS specified
        J = 1, Assigns Read
        K = 1,GO specified
        L = 1, BI specified
        M=1,CSECl specified
        N = 1, NOTCB specified
        O = 1, XMEM in effect (set by the Loader in IN2), or PAGE specified
        P = 1, LDEF specified
        Q = 1, BREF specified
        R = 1, EF specified
        S = 1, CORELIB specified
        T = I, RDEF specified
        bits 10-11 0=no map
            l = map by NAME
            2 = map by VALUE
            3 = map by NAME and VALUE
        X = 1, Execute Vehicle specified
        Y = 1, MAPONLY specified
        SL = Severity Level (default = 4)
```

** BPM-CP-V differences in the LOCCT Tables:
$\frac{\text { Word }}{4}$

Background lower limit

CP-V
LOAD BIAS, Default = background lower limit WA

Number of Execute Accounts, Default = 1

Passed to the Loader in Register D4 (D4) $=$ FCOM size

REAL TIME

ICB TABLE FORMATS

Type I: ICB Connected to Interrupt
Associated with User Task

* doubleword boundary

* doubleword boundary

$$
\begin{aligned}
& \text { Section VP } \\
& \text { Page } 3 \\
& 4 / 1 / 74
\end{aligned}
$$

ICB Connected to CLOCK-3 Interrupt

* doubleword boundary

CP-V TECHNICAL MANUAL

$$
\begin{aligned}
& \text { Section VP } \\
& \text { Page } 4 \\
& 4 / 1 / 74
\end{aligned}
$$

ICB Field Descriptions

WORD NAME				DESCRIPTION
0	ICBSTAT	Status Flags:		
		BIT POSITION	NAME	DESCRIPTION
		0	ICBSTATA	set if ICB is active
		1	ICBSTATC	set if CLEAR was specified via M:CONNECT
		2	ICBSTATDL	set if ICBDL is already chained into UH:DL
		3	ICBSTATO	set if ONESHOT was specified via M:CLOCK
		4-6	ICBSTATINT	associated interrupt status:
				Bit Meaning if set
		4 5 6		if pseudo interrupt: trigger pending if real interrupt: has been triggered (interrupt is active) enabled armed
		7-8	ICBSTATYP	defines ICB type:
				00:: user task (Type I) 01:: ghost job (Type II) 10:: clock (Type III)
		9	ICBSTATSY	set if ICB is a SYSTEM ICB, in which case, the ICB is only five words in length.

Section VP
Page 4A
4/1/74

WORD	DAME	DESCRIPTION
1	ICBLNK	Chain link address (Types I and II only) this word contains an XPSD instruction; this location is the effective address of the new PSD at location ICBPSD2 which is loaded as a result of the hard- ware interrupt occurring (in the case of a real interrupt) or the result of an XPSD instruction (in the case of a pseudo-interrupt). This tectnique allows the interrupt handling routine to determine which ICB is associated with the interrupt that just occurred.
(Type III only) value (in two- millisecond units) from		
M:CLOCK CALI.		

2-3 ICBPSD 1 (Types I and II only) storage area for old (interrupted) PSD upon the occurrence of an interrupt; this location is the effective address of the XPSD instruction in the hardware interrupt location associated with the ICB.

2 ICBCLK (Type III only) number of clock ticks remaining before an interrupt will occur for the user associated with the ICB.

3 ICBSYSEP (Type III only) if the ICBSTA TSY bit of ICBSTAT is set, then this is a SYSTEM ICB and is only five words in length (0-4); ICBSYSEP contains the address of the system entry point which will be entered upon the expiration of the elapsed time specified in ICBTUN.

4 ICBBLNK (Type III only) Back link for ICBs currently chained into ICBCLKHDR.

4-5 ICBPSD2 (Types I and II only) contains the new PSD which will be loaded as a result of the execution of the XPSD instruction in the hardware interrupt location associated with the ICB; the instruction address of this PSD will cause the XPSD instruction at ICBXPSD to be executed.

6 ICBPRIO

6 ICBGJPRI (Type II only) contains the execution priority of the ghost job to be scheduled as the result of the interrupt associated with the ICB.

6 ICBINT Contains the hardware or pseudo-interrupt location associated with this ICB.

7 ICBUN The internal number of the user associated with this ICB (the owner).

7 ICBGUN (Type II only) the internal number of the ghost job itself (user number).

8 ICBPRI (Types I and III only) contains the execution priority of the task to be scheduled as a result of the interrupt associated with this ICB.

8 ICBDLFLG (Types I and III only) contains the value $X^{\prime} 82^{\prime}$ which is a code within the DO-LIST table which, in this case, is a subtable of the ICB.

8-9 ICBGJNME (Type II only) contains the TEXTC-formatted name of the ghost job to be placed into execution as a result of the interrupt associated with this ICB.

9 ICBENTPSDO (Types I and III only) contains an image of word 0 of the PSD to be loaded prior to going to the user upon the occurrence of the interrupt as follows:

0		8	9	10	15	31
0	0	S		0	0	entry address

where:
M reset if MASTER was specified via S 5 M:CONNECT/M:CLOCK.
address is the virtual address at which the user is to be given control upon the occurrence of the interrupt; specified via M:CONNECT/M:CLOCK.

10-11 ICBGJACN (Type II only) contains the TEXT-formatted name (leftjustified, trailing blanks) of the account in whose directory may be found the ghost job ta be placed into execution as a result of the interrupt assaciated with this ICB.

10 ICBDLDATA (Type I) contains the int errupt location associated with this ICB (i.e., same as ICBINT). (lype III) same as ICBTUN (i.e., requested elapsed time in twomillisecond units).

11 ICBICBADR (Types I and III) contains the address of word 0 of this ICB.

CP-V TECHNICAL MANUAL

Section VP Page 7 4/1/74

ICB Chain Headers

ICB Chain Headers are of the form

where address is the word address of word zero of an ICB which in turn points to the next ICB in the chain (ICBLNK). The last ICB in the chain has an ICBLNK of zero.

RTICBHDR

This header is built and DEFed by SYSGEN-PASS2 and contained in the M:FRGD module; if this is a real-time system, RTICBHDR will point to the first of a userspecified number of available ICBs. If this is a non-real-time system, RTICBHDR will be set to -1 .

RTICBCLKHDR

This header is assembled into and DEFed in the TABLES module; this chain header always points to the five-word SYSTEM ICB associated with the 1.2second time-of-day routine. RTICBCLKHDR also contains a back link which points to the last ICB chained into RTICBCLKHDR.

DO LIST BLOCK FORMATS

IREL Do not release block to free chain when done. Set when block is contained in an ICB.

[^10]Do List Format for Interrupt Entry

IREL \Longrightarrow Inhibit release of block. Set if block contained in ICB.

Do List Formar for Post-ECB Entry

*(unused)
$0=W O R D$
$1=D W$
$2=H W$
$3=B Y T E$
$F=$
F posted entry or wait list

Wait List Block Format

IREL
Inhibits release of block. Used when block is contained within a larger block.

Section VP
Page 10
10/31/74

M:FRGD MODULE

For a real-time system, one having a :FRGD command present, the following tables will be generated:

	DEF	RESDF, CRESDF, RESDFP, DYNRESDF, MDYNRESDF
RESDF	DATA	SIZE (number of RESDF pages)
CRESDF	DATA	SIZE (number of RESDF pages)
RESDFP	DATA	ADDRESS (RESDF address)
DYNRESDF	DATA	0
MDYNRESDF	DATA	PAGES (maximum number DYNRESDF pages)
	DEF	PPTABLE, PPTABLSZ
	EQU	$\$$
	DOI	$2+\left({ }^{\#}\right.$ SEGMENTS-1)
	DATA	0
PPTABLSZ	EQU	$\$-P P T A B L E$
	DEF	PP: UPPH, PP: UPPT, PP: UPPC
PP:UPPH	DATA	0
PP:UPPT	DATA	0
PP:UPPC	DATA	0
	DEF	PPTABDSK2
PPTABDSK2	DATA	0

INTLB 1	$\begin{gathered} \text { DATA, } 2 \\ \text { DATA, } 2 \\ \text { DATA, } 2 \\ \vdots \end{gathered}$	0 'LA' 'BB'	$\} \text { text interrupt labels }$
INTLBSIZ	EQU	HA (\$)	HA(INTLBI)
INTLB2	DATA, 2 DATA, 2 DATA, 2 :	$\begin{aligned} & 0 \\ & X^{\prime} 65^{\prime} \\ & X^{\prime} 1022^{\prime} \end{aligned}$	1 interrupt addresses I
INTLB3	$\begin{aligned} & \text { DATA, } 1 \\ & \text { DATA, } 1 \\ & \text { DATA, } 1 \end{aligned}$	$\begin{aligned} & 0 \\ & X^{\prime} 655^{\prime} \\ & X^{\prime} 82^{\prime} \end{aligned}$	default (SYSGEN-specified) execution priority

Defaults:

NINTS	$=0$	Address $=X^{\prime} 10000^{\prime}$	\#SEGMENTS $=1$
SIZE	$=0$	PAGES $=0$	

For a non-real-time system, the following subset will be generated:

RTICBHDR

DEF	RTICBADR
DATA	-1

M:IMC MODULE

a. Initialize all entries in UB:US to 31
b. Delete UH:TS.
c. ADD UH:DL, a halfword table parallel to other user tables and initiated to zero.
d. Add UH:WL, a hal fword table initialized to zero.
e. Add UP:PRIO, a byte table initialized to $X^{\prime} F^{\prime}$.
f. Add UB:PRIOB, a byte table initialized to zero.
g. Add UB:NECB, a byte table initialized to zero.

Section VP
Page 13
$10 / 31 / 74$
h. Generate the cells:

OPTION	DEF	DESCRIPTION	DEFAULT	
BPRIO	SL:BPRIO		Batch default priority	$X^{\prime} F^{\prime}$
OPRIO	SL:OPRIO	On-line default priority	X'FC' $^{\prime}$	$X^{\prime} \mathrm{FC}^{\prime}$

ENQ/DEQ TABLES

ENQ/DEG uses the new Queue Table (QT), U:MISC, and the JIT flag ENQ ($J: A B C$ bit 23). U:MISC is set with sleep time whenever a user is put into the sleep state, and JIT:ENQ is set when a user request ENQ and checked by STEP and SSS. The QT is a pool of double words that can be used to contain various kinds of data.

The hierarchy of the Queue Tables is as follows:
a. The first level of entries is the pool of empty entries.
b. The second level of entries is the names of all the queues (qnames) for resources. These are referred to as Q entries.
c. The third level of entries is the user numbers of all the users of a queve (qname). These are referred to as U entries, and the first one is Uhead.
d. The fourth level of entries is the names of all the sub-queves (snames) for elements. The order of the sub-queues is first, NULL, if present then ALL, if present, then those with regular names. These are referred to as S entries.
e. The fifth level is the queues of users for the various resource/ elements. These may be referred to as $S Q$ or user entries, depending on their context of an S chain or a U chain.

The third and fourth levels might be more appropriately thought of as two dimensions at the same level, i.e., a queue can be looked upon as the users of sub-queues or sub-queues of users. Both the third and fourth levels contain the heads of threads through the fifth level.

Double words, or contiguous blocks of double words, are also used as appendages to second and fourth level entries to contain names (qname or sname) that exceed three characters in length. Double words are also used as fifth level appendages to contain the ECB address for pending requests.

The formats of the various types of entries are as follows.

QHEAD ENTRIES

The Q, U, or S entries consist of three fields - the half-word AHVP and OHHP, and the full word QHNAME.

Section VQ

Page 2
4/1/74

1516		3132	
QHHP	QHVP	QHNAME	

QHHP

Queue Head Horizontal Pointer
Entry 0 contains the double word index in QT of the first empty entry. Other first level entries contain the double word index of the next empty entry (zero is terminator).

Level $2(Q)$ entries contain the double word index in the QT of the next qname (Q) entry (zero is terminator).

Level 3 (U) entries contain the double word index in the QT of the next user number (U) entry for this queue name (zero is terminator).

Level 4 (S) entries contain the double word index in QT of the next sub-queve name (sname) entry for this queve (zero is terminator).

QHVP

Queue Head Vertical Pointer
Entry 0 contains the double word index in QT of the first queue name (qname) entry, i.e., the first entry in level 2.

Level $2(Q)$ entries contain the double word index in QT of the first QHEAD level 3 (U) entry, that is, the head of the user lists for this queue (qname).

Level 3 (U) first entry contains the double wrod index in QT of the first sub-queue name (sname) entry. Other level 3 entries contain the double word index in QT of the first SQ entry for each user (user chain).

Level $4(S)$ entries contain the double word index in QT of the head of the sub-queue (S) entry (SQ chain).

SQ ENTRIES
The SQ entries consist of five fields - the one-byte QQUN and QQF, and the half-word QQHP, QUVP, and QUHP.

QQHP

QUHP

QQUN

QUVP

QQF

Queve Queue Horizontal Pointer
Contains the double word index in QT of the next entry in this sname queue (S chain).

Queue User Horizontal Pointer
Contains the double word index in QT of the next sname queue entry for this user (U chain). If QQF bit 6 is set, that next entry is an ECB address entry relating to the same sname queue.

Queue Queue User Number
Contains the user number of the user at this position in the sname queue.

Queue User Vertical Pointer

Contains the double word index in QT of the sname (S or level 4) entry for this queue. During a deadlock check, bit 0 is set to mark the path of checking.

Queue Queue Flags
Bit $0 \quad 1$ if request was for SHARE.
Bit 1 if access has been allowed for this user (allocated).
Bit 21 if the request was NOWAIT.
Bit 31 if a JOB entry.
Bit $4 \quad 1$ if this user is temporarily blocked from access because he was not a user of this queve (qname) when an EXCL or ALL user was denied immediate access.

CP-V TECHNICAL MANUAL
Section $V Q$
Page 4
$4 / 1 / 74$

Bit $5 \quad 1$ if the user is currently asleep pending receiving access in this sub-queue (sname).
Bit $6 \quad 1$ if the next entry for this user (object of QUHP) is an ECB address entry.
Bit $7 \quad 1$ is this is a SHARE entry and there is also an EXCL entry pending upgrade on this subqueue for this user.

NOTE: If bit 1 is set the queue entry is "allocated"; if bit 4 is set the queve entry is "blocked"; and if neither is set the queve entry is "pending".

QECB ENTRIES

The QECB entries consist of three fields, the half-word QUPP andQUHP, and the 17 bit QUEA.

15		16	3132	
QUPP	QUHP		46	

QUPP

QUHP

QUEA

Queue User's Primary Entry Pointer
Contains the double word index in Qt of the primary portion of this entry - points back to the entry whose QUHP points to it.

Queue User Horizontal Pointer
Same as under $S Q$ entries above.
Queve User ECB Address
Contains the ECB address for user QQUN for subqueue QUVP.

QNAME ENTRIES

The QNAME entries consist of a single, variable length field. One to four consecutive QT entries are used to contain queue (qname) or sub-queue (sname) names when the names do not fit in the QHNAME field of the Q or

S entry. One double word is used for names of four to seven characters, two double words for names of eight to fifteen characters, three double words for names of sixteen to twenty three characters, and four double words for names of twenty four to the maximum thirty one characters.

CP-V TECHNICAL MANUAL

Section VR
Page 1
2/10/76

REMOTE PROCESSING TABLES

All the Remote Processing Tables are named RB Most exist only for $R B$ device $D C T$ indices [D]
:xxxx and are indexed by DCT index. although a few (marked with * below) have one additional entry for LOCAL use indexed LCLX a value defined by SYSGEN. Note that this means that the tables usually do not start where their names are defined since the names and EQUed backwards from the tables to make DCT indexing possible. A doubleword, RBLIMS, is defined in the monitor by SYSGEN such that the following test determines whether a device is RB (and thus the tables are meaningful):

CLM, DCTX	RBLIMS
BCR,9	ITS\$REMOTE
BCS, 9	ITS $\$ L O C A L$

REMOTE PROCESSING TABLES IN CORE

RB:FLAG | A word table containing flag bits which control the basic flow |
| :--- |
| of Remote Processing. See the bit descriptions below, |

RB:BUF | A word table containing the address of the context area for |
| :--- |
| IRBT and 2780 . IRBTs have a page of context; 2780s one-half |
| page. For 7670, holds number of retries. |

A doubleword table containing the Workstation Name (WSN)
when the line is logged on or if it is set by SYSGEN (WSN
option) or KEYIN (IRBLOG).

RBB:LPZ, RBB:CPZ	Byte tables used in 7670 and 2780 to keep the current max printer and puch record length. Unused in IRBT.
RBB:SPC	A byte table used in 7670 to help keep track of the number of formats to be per formed before a print. Unused in 2780 and IRBT.
RBB:SFC	A byte table used in 7670 to preserve the current function when a warning BELL is being sent. Unused in 2780 and IRBT.

REMOTE PROCESSING TABLES IN RBBAT

*RB:MFAD	A word table containing the address of the current message file buffer. Zero if none.
*RB:SPMF	A word table containing the used byte count of space in the message file buffer.
*RBH:MFX	A halfword table containing the BH:LINK entry index for the message file under construction.
RBB : MXP	A byte table containing the maximum priority for jobs submitted from this WSN. Also used as the priority for any direct passed output.
RBB : DSM	A byte table containing the device selector mask for this WSN.
RBB : SMD	A byte table containing the symbiont index of the system message device for this WSN.

Bit	Name	7670	$\underline{2780}$	IRBT	Meaning
0	BPBIT	x	x		Block protect toggle
1	IGBIT	x	\times	x	Cards after IFIN were ignored
2	MORBIT	x			Waiting for next chunk of deck
3	HUBIT	x	\times	\times	Line hung up
4	PUNBIT	x			Punching is allowed
5	DCBIT	x	x	x	WSN specified at SYSGEN
6	HASPBIT	\times	x	x	IRBT line
7	SLVBIT			\times	We are slave
8	ALBIT	x	\times	x	RBLOG keyin done
9	XPIBIT			\times	X1 specified in SUPER
10	2780BIT	x	x	\times	2780 line (may be changed to IRBT at logon)
11	IBMBIT			x	N3 specified in SUPER
12	DIALBIT	x	x	x	Dial specified at SYSGEN
13	EDISBIT	x	x	x	ERROR MAX on line
14	OFFBIT	x	x	x	Do not connect line (BRX) - Set except at logon for IRBT
15	RBXBIT	\times	x	\times	Disconnect line now
16	DUPBIT	x	x	\times	1 = Full duplex
17	DISCBIT	\times	x	x	Disconnect when output done
18	LOFBIT	x	x	x	RBDISC sent (TEMP)
19	SYSBIT	x	x	x	:SYS jobs legal
20	HALBIT	\times	\times	x	HOLD all flag -
21	CLKBIT			x	Wait before ACKO-idle
22	ACTBIT	x	\times	\times	Line logged on
23	CRTBIT	x			RBBAT disables RBSSS
24	XP2BIT			x	X2 specified in SUPER
25	OADBIT	x	\times	x	Set OFFBIT after disconnect
26	FIABIT	\times	\times	\times	RBCC altered stream status
27	SSSBIT	x			Inputting with output suspended
28	LIPBIT	x	\times	\times	Logging on
29	FINBIT	\times			FIN has been read
30	EMBIT	\times	x		1 = NOEM specified
31	OBBIT			\times	Old BCB was read
31	FRBIT	x			Initial read of file

IRBT CONTEXT PAGE

2780 CONTEXT I/2 PAGE

321

LA．BT					
＊＊＊＊＊＊＊＊＊＊＊＊＊＊		ECHTE\％T	FOINTEFS	＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊	
OH5 9	ED： 1			n	FFEW IHETMQ FDF FIH FEAI
HFE	E01	1		HEAT FARSE FIUFFS	
HFE	EDJ	Ξ		HEAI E！IILI EUFFS	
HFE	ED	\exists		HEAD PEAD EUPF	
HINE	ED：	4		HEFII HFITE EUFFS	
CFE	EDu	5		OFFEAT ESEEFES EUFF	
EEE	ED： 1	\because		QUFFEHT ESETELI EUFF	
CFE	ED！	7		GFFERT FEAI EUIFF	
CWE	ED」	E		OFFEHT WFITE EIIFF	
FOF	En？	\exists		CDIHTEF DF ESEFFS	
$F \mathrm{FE}$	EDu	10		PGINTEF DF ESEELD	
FIF	EDu	11		FCTEFFS IH FFDGRESS	
EECE	三nis	1Ξ		GJE．DITFUT ECE	
DEFEE	EDI	$1 亏$		IHFUT FEE FDE Di：	
FET	Eb，	14		FENAJHING EYTE EDHAT \＆CUT	
CEFO	E日，	15		EJF．－EC COUT	
OUF\％	E5， 1	15		EIF．SEEF CDIT	
EIF	ED：	17		ESEELII IH FFDGFESS	
FEF	E日，	13		FOFEE EUFFEF FICL	
EIF	E0！	19		CUHTEDL IH FFOGEESS	
FISI	E日	E0		CDME I INFUIT FES	
二FE	ES－1	こ1		CuF Furtr TIMA TODE	
EUIT	ED：	Ξ		EALKUF TDGELE	
EITH	End	$こ ゙$		EIAFF＇FEC Fívo．	
EIEF	En	24		AAT FAILIHE USEF ©QUT？	
LTYE	EDi	Ξ		LI＊E TYK	
FST	ES！	Ξ		STEFHTIED JSEFS TO FESTAFT	
SAE	E0！	27		UリG\％تEDFTE EOSELD	
FCF	Ebi	こ\％		FIrti FEFM FOIMTSF	
EDF	EO：	\cdots		EDFES IN THTS ELEEK CDUT	
Cont	ES：	31			
COHTEK	Enil	31		－Dtt STME IHILES	
EDHTENT	E日：	$亏 こ$		CTHT EYTE SOUNT	
SEFC	E0．	3%		FUNT FEFM SFI	
HIF	EQ：1	34		HATH LIF IN FFDGEESS	
EKT	E日U	5		OTMEIDHT GITJALL＇Y EACKEI UF＇	
TTYF＇	ED：	35		$0=I F E T, \quad 1=2 \bigcirc \bigcirc 0$	
RTRY	EQU	37		NUMBER OF RETRIES	
SPB	EQU	38		SPECIAL BUFFER WHEN WAB SENT	

CP－V TECINICAL MANUAL

2780

－			GDHTEYT FUIHTEFS＊＊＊＊
FHEw	E0：	10	
HFE	E日，	1	HEAII FAESE EUIFES
HEE	E®！	E	HEFI EUIL I EUFFS
HFE：	Enic	3	HEFI FEAI EUIFES
Hill	E0．	4	HEAI WFITE EUFFS
EFE	Erd	5	UGFEHT FAFSE EUFF
CEE	Ent	\because	OSFFEHT EUILII ELIFF
CFE	EO！	7	－IFFEHT EEAD EUIFF
CuE	E0！	9	UFFEHT WFITE EUFF
OTF	ED	9	GOIHTEF OF FAFSE
FDE	EOU	111	EIIHTEF DF EUILI
EIF	Eil	$1!$	FHFSE IN CFDGFESS
EEF	EO！	$1 こ$	＊1r＋1SED IH ごEI＊
जEFE	E00	$1=$	－1t＋1SEI＊
FEC	ET！	14	CEMEIHIHG EGTE CDUHT ¢ DUT
SEC	EQ：	15	OLF EFE GDUT：
ClF\％	Em！	1%	
EIF	E0．1	17	E：ILII I FFOGFESE
FEF	E0．	1.2	FQFTE EUFFEF FIUL
EIF	End	17	］HTFOL IS FFDGFESS
FES	E！	E11	TEMF HCLI TOEMT MFE
CFE	E0．	$\Xi 1$	GuF．Funtion inde
Fill	E0］	ここ	－ITHEEL＊
EIH	Enj	23	－MrdyEED＊
ELEF	ESil	玉4	； AF FESE IH GUF ELK
LTYE	E61	≥ 5	LITE Tri
FST	E0，	Ξ	＊11415ED＊
SEE	E日！	ET	TUFHE DFF DUTFUT TIL FEAI＇\％
$=\mathrm{F}$	End	こ\％	
EJF	E9．1	ご	EJF IH EIF ELK GDIT
－GHT	E． 0	31	YYA JEEFATION JH FEDG
Cantek	E6．	31	
COHTCHT	501	＜	－1r4isel＊
SEC	E日	こう	－－$+10 \leq 5 \mathrm{C}$
HTF	E9，	37	HAPH
Etc	ES，	3 C	＊1415EI＊
TT＇Y＇F＇	E．i．	55	$\therefore 7 \mathrm{BO}=1 . \mathrm{IFET}=0$
RTRY	EQU	37	NUMBER OF RETRIES
SPB	EQU	38	＊UNUSED＊

323

Section VR
Page 7
4/1/74

REMOTE PROCESSING MODULE STRUCTURE

324

SCREECH CODE:	\#FF-00		CALLED FROM: BOOTSUBR
MESSAGE:	OPERATOR INITIATED RECOVERY		
REGISTERS:	R0	Sigma 6-7	11
		Sigma 9	15
	Rl	Sigma 6-7	Not changed - the contents are the same as when the recovery was initiated.
		Sigma 9	Either not changed or 0 .
	R2-R15 $=$ Not changed		
REMARKS:	Called switch	$\begin{aligned} & \text { m BOOTSUBR } \\ & \text { set. } \end{aligned}$	on a boot from disk when sense

SCREECH CODE: \#404 CALLED BY: SCHED
MESSAGE (ON OC): THAT'S ALL FOL.KS.':: OPERATOR INITIATED SHUTDOUN
REGISTERS: Not Displayed.
REMAFIKS:
Called by SSS after the system has quieted down following a ZAP key-in. Recovery then saves some system tables, but does not enter the system restoration phases. No recovery dump file is written.

Section VS
Page 2
10/31/74

SCREECH CODE: $\# 02$ CALLED FROM: SCHED

MESSAGE: REPORTED EVENT INCONSISTENT WITH USER'S CURRENT STATE
REGISTERS:

$* R 3=$	Previous state
$* R 4=$	User number (T:RE,T:RCE)
$* R 5=$ User number (T:RUE)	
$* R 6=$ Event number	
$* R 7=$ Line number (T:RCE)	
SR4 $=$ Rtn. Addr. for reschedule	

REMARKS: \quad :Contents dependent upon called entry point; if R4 $=$ S:CU, call was T:RE; if R7 is line number of user in R4, call was T:RCE; if R4 = RS, entry is T:RUE.

CP-V TECHNICAL MANUAL

Section VS
Page 4
10/31/74

Section VS
Page 5 10/31/74

	SCREECH CODE: \#10
MESSAGE:	BAD COC BUF POOL, OR BAD BUF ADR ON RELEASE REQUEST

MESSAGE: INVALID INTERNAL CONTROL CODE TRANSLATE REQUEST

[^11]	SCREECH CODE:	\#12
MESSAGE:	COC - BAD INPUT BUF LINKAGE ON RELEASE REQUEST	

SCREECH CODE:	\#14	CALLED FROM:	THEUNCOC
MESSAGE:	COC ROUTINE CALLED IN NON-COC SYSTEM		
REGISTERS:	SR2	BAL adr if 14-03	
	SR4	BAL adr if 14-01 or 14-02	
	D4	BAL adr if 14-04	
REMARKS:	The subcode indicates which routine was called:		
		14-01 COC10	
		14-02 COCOFF	
		14-03 COCSENDX	
		14-04 ECHOCR2	
SCREECH CODE:	\#17	CALLED FROM:	IOQ
MESSAGE:	INVALID DISK ADORESS PASSED FOR AN I/O OPERATION		
REGISTERS:		10Q7, $3=$ DCTX $=0$	
		DCB address	
	R3	Queue index	
	*SR1	Seek address from CDA, R2	
	SR4	$100+.175$	
REMARKS:	Caused by invalid DCT index. If on a RAD/disk, DSCVT will have been called indicating SRl setup.		
SCREECH CODE:	\#19 CALLED FROM:		BUFF
MESSAGE:	INVALID BUFFER ADORESS PASSED FOR RELEASE		
REGISTERS:	R1 $=$ Index to BUFLIMSR2 $=$ Head of respective buffer poolR5 $=$ JIT addressSR4 $=$ LINK Return addressD3 $=$ Buffer addressD4 $=X^{\prime} 19^{\prime}$		
REMARKS:	Occ mos	h on releasing and acquiring (CPOOL, SPOOL, and MPOOL).	buffers of

Section VS
Page 8
10/31/74

SCREECH CODE: H1F CALLED FROM: SWAPPER

MESSAGE: . NOT ENOUGH PAGES TO PERFORM THIS SWAP

REGISTERS: \quad| R3 |
| :--- |
| count |$=$ Page to release SRI $=$ Deficient page

$\mathrm{CP}-\mathrm{V}$ TECENTCAL MANUAL
Section VS Page 9 10/31/74

SCREECH CODE:	$\neq 24$
MESSAGE:	CALLED FROM: CSEHAND
REGISTERS:	All relevant information in in-core error log buffers.
REMARKS:	Trap X'4D' while in master mode. Slave mode trap causes normal user job step abort.

Section VS
Page 10
10/31/74

SCREECH CODE:	$\# 25$	CALLED FROM CSEHAND
MESSAGE:	UNRECOVERABLE WATCHOOG TIMER TRAP	

SCREECH CODE:	\#26
MESSAGE:	CSE TRAP DURING MFI,PFI HANDLING
REGISTERS:	All relevant information is in in-core error log buffers.
REMARKS:	On Sigma 9 during MFI handing, or on Xerox 560 during MFI or PFI handing, a CSE trap $\left(X^{\prime} 46^{\prime}, X^{\prime} 4 C^{\prime}\right.$,
	$\left.X^{\prime} 4 D^{\prime}\right)$ occurred.

SCREECH CODE:	$\# \underline{2}$		
MESSAGE:	PROCESSOR FAULT INTERRUPT	\quad	CALLED FROM: CSEHAND
:---			
REGISTERS:	\quad	All relevant information is in in-core error log buffers.	
:---			
REMARKS:		For Xerox 560 systems only, a processor fault	
:---			
interrupt occurred for which continued operation is			
unlikely.			

| SCREECH COOE: | \#28 |
| :--- | :--- | :--- |
| MESSAGE: | MEMORY PARITY ERROR - MEMORY ALTERED |

Section VS Page 11 10/31/74

SCREECH CODE:	$\# 29-00$		
MESSAGE:	TRAP $4 \mathrm{C}-$ BUS CHECK FAULT	\quad	All relevant information is in in-core error log buffers.
:---			
REGISTERS:			
REMARKS:	\quad	Sigma 9 bus check fault or Xerox 560 miscellaneous	
:---			
$X^{\prime} 4 C^{\prime}$ trap, while in master mode.			

SCREECH CODE:	\#29-01 CALLED FROM:	CSEHAND
MESSAGE:	TRAP 4C - MAP PARITY ERROR	
REGISTERS:	All relevant information is in in-core error log	buffers.
REMARKS:	Map register parity error on Sigma 9 or Xerox while in master mode.	560,

SCREECH CODE:	\#20-00	CALLED FROM:	COOP
MESSAGE:	COOPERATIVE BUFFER MANAGEMENT ERROR		
REGISTERS:	R1	BUFLIMS index for S/C 19	
	R2 $=$. BC11	
	R3 =	Context block	
	SR4 =	COOP + . 180	
	D3 =	0	
REMAFKS:	At context block initialization a buffer was allocated for the context block. This buffer has been lost through core clobbering or mismanagement of a buffer chain. The particular user cannot continue.		

[^12]

SCREECH COLE: \#2D-03 CALLED FROM: SACT
MESSAGE: COOP CONTEXT BLOCK POINTERS CLOBBERED
REGISTER: R3 \quad R 0
R6 $=$ User DCB addr
SR1 $=$ FCN,DCB $(8,24)$
SR4 = Exit from COOP
REMARKS: Either J:USCDX or context block 0 (special pointers) were clobbered.

CP-V TECHNICAL MANUAL
Section VS
Page 14
10/31/74

SCREECH CODE: \#2E-01 CALLED FROM: RA
MESSAGE: INCONSISTENCY IN READ-AHEAD TABLES
REGISTERS: R12 = Disc address
REMARKS: An attempt was made to add an AIR block to the tables when it was already there.

[^13]Section VS
Page 15
10/31/74

 BLCKD:MASK) .

Section VS
Page 16 10/31/74

SCREECH CODE: \#43-02 CALLED FROM: CLOCK4

MESSAGE: ICBCLK FIELD OF ICB NEGATIVE
REGISTERS: R2 \quad Address of bad ICB
$\begin{array}{ll} & \text { R10 }=\text { Current timer increment } \\ \text { REMARKS: } & \text { The ICBCLK field of an ICB should never go negative. }\end{array}$

SCREECH CODE:	\#43-03 CALLED FROM: RTNR, CLOCK4
MESSAGE:	NO BACK-LINK FOUND IN DE-CHAINED ICB
REGISTERS:	R2 = Current ICB (the one being de-chained) R4 = Forward link (next ICB in chain)
REMARKS:	A back-link of zero implies that the current ICB is SYSICBI (the 1 -second CLOCK3 ICB). This ICB should never be de-chained (i.e., de-activated).
SCREECH CODE:	\#46-21 CALLED FROM: RDF
MESSAGE:	PRIVATE VOLUME LOGIC INCONSISTENCY
REGISTERS:	SR4 = Address where error was detected.
REMARKS:	Numerous modules call PVERR.
SCREECH CODE:	\#49 CALLED FROM: TYPR
MESSAGE:	RESOURCE PREALLOCATION INCONSISTENT WITH REQUESTS
REGISTERS:	R2 $=0$ R3 $=$ Reel $^{\prime}$ number D4 $=X^{\prime} 49$
REMARKS:	Due usually to MBS failure to properly set/reset resource flags or resource (tape or private volume) not properly or fully released back to system.
SCREECH CODE:	\#56 CALLED FROM: MOCIOP
MESSAGE:	UNABLE TO RELEASE PHYSICAL WORK PAGE
REGISTERS:	Registers at time of trap.
REMARKS:	Originates in MOCIOP module when unable to release a physical work page locked in core during Transaction Processing I/O on a Message Oriented Controller (e.g., 7605).

Section VS
Page 18 10/31/74

SCREECH CODE:	\#EI - (TRAP Cell) CALLED FROM: INITRCVR
MESSAGE:	TEL OR CCI HAS TRAPPED
REGISTERS:	Registers at time of trap.
REMARKS:	Trap occurred while operating mapped, slave, and with \quadTEL-in-control set. Subcode is trap location.

SCREECH CODE:	\#62 \quad CALLED FROM: SCHED
MESSAGE:	USER PROGRAM TOO LARGE FOR PHYSICAL MEMORY

SCREECH CODE:	\#63
MESSAGE:	INSUFFICIENT INFORMATION AVAILABLE TO SWAP THIS USER
REGISTERS:	$R 2=10 C D$
	$R 6=$ Command list address
	R7 $=$ Function code
	$D 4=$ X'63'
REMARIKS:	Insufficient data to compute function, follow-on function code invalid, or flags not set properly; disk pack-only swappers.

Section VS Fage 19 10/31/74

SCREECH CODE: \#6B

CALLED FROM: MM
MESSAGES: ERROR IN SPARE BUFFER TABLES
REGISTERS: RIl = Address in buffer subroutine within MM (T:GBUF, T:RBUF, etc.) which detected the error.

REMARKS: Usually bad input from the calling routine.

SCREECH CODE: \#6B CALLED FROM: SWAPPER
MESSAGE: ERROR IN SPARE BUFFER TABLES
REGISTERS: \quad R6 $=B A$ (window page) Rl4 = Physical page assigned to window

REMARIKS: Page mapped into window is not contained in the spare buffer pool.

[^14]Section VS
Page 20
10/31/74

SCREECH CODE:	$\#$ TT9
MESSAGE:	MONITOR COMMITTED A STACK TRAP FROM: ENTRY
REGISTERS:	Registers at time of trap.
REMARKS:	Master bit on in PSD, overflow, underflow, or pointer to stack lost.

SCREECH CODE:	$\# 79-01$
MESSAGE:	MONITOR STACK TRAP
REGISTERS:	Registers at time of trap
REMARKS:	OSTACK overflow

SCREECH CODE: \#7E- (TRAP Cell) CALLED FROM: INITRCVR
MESSAGE: MONITOR HAS TRAPPED
REGISTERS: Registers at time of trap.
REMARIKS: Subcode is trap location. For traps that occur at locations less than X'8000' (JOVVPA), the 15 cells preceding the trap location and the trap location are stored in the monitor JIT AT X'8DFO'-X'8DFF'.

Section VS
Page 21
10/31/74

SCREECH CODE:	\#96	CALLED. FROM: DSPIO, TSIO
MESSAGE:		
	UNRECOVERABLE $1 / 0$ ERROR READING SHARED PROCESSOR	
REGISTERS:	R1	
	R7	
	SR1 $=$ Inswap user number (S: ISUN)	
	SR2 index	$=$ Command list address from TDV status

PWPTABLE - Physical Work Pages for TP

Page	Count or User	Flags	
0	1516	2324	31
Length $=$ PWPEND - PWPTABLE +1			

Bit
0-15 Physical page number (left-justified)
16-23 If bit 26 is 0 - assign count; if bit 26 is 1 - user number
24
25
26

27

28
29
30
31 Reserved
Reserved
Release is being accomplished by clock processing due
to unavailability of work space
Virtual window is being established in user in order to assign a page
Reserved
Page has been acquired by calling GPWP (Get Physical Work Page)
Page has been acquired by APWP (Assign Physical Work Page)
0 - this word in PWPTABLE is free for use
1 - this word in PWFTABLE is currently in use

SL: PLJP

Bit
0-31 Current limit of physical work pages

S:PWP\#

Bit
0-31 Current count of physical work pages

CP-V TECHNICAL MANUAL

SECTION VT
PAGE 2
10/31/74

TTP RESIDENT TABLE - QUEUE MANAGEMENT ELEMENTS

Item Name	(Bit/Byte) \qquad	Type	Description
Q: BACK	0 (6)	Bit	Backup option requested during unlock, $1=$ yes
Q: CC	1 (0)	Byte	$1 / 0$ completion code; set by end-action
Q:CFU	1	Address	Real address of the queue CFU table
Q:CONT 18-19 Word Chain header, queue control blocks			
Q: CONTTAIL			
Q: DATA			
	20-21	Word	Chain head/tail, queue data blocks
Q: DATATAIL			
Q: DEF	4	Doubleword	Chain head/tail, inactive criteria control points to U: QLIST)
Q: GET	6	Doubleword	Chain head/tail, active criteria control entries (points to U:QLIST)
Q: INXNAV	8 (3)	Byte	Maximum number of keys in an index block
Q: INX			
	11-12	Word	Chain header, queue index blocks
Q: INXTAIL			
Q: INXCONTROL	3	Address	Address of the index control block
Q:LID	8 (0)	Hal fw	ord Identification number to be assigned to the next GET list; initialized during queue unlock processing
Q: LOCK	0 (2)	Bit	Queue status, $1=$ unlocked

Item Name	(Bit/Byte) \qquad	Type	Description
Q:MAP	0	Address	Address of the Queue Allocation Map
Q:MAX	3 (0)	Byte	Maximum number of queue index blocks retained in core
Q:MIN	8 (2)	Byte	Minimum number of pages required for queue blocks
Q:MPBOL	13	Address	Monitor Buffer Address (MPOOL)
Q:NSN	$2(0)$	Byte	Number of volumes if queue is on private storage
Q:OWN	15 (3)	Byte	User number, queue owner
Q:PAUSE	22	Bit	Queue in lock, pause mode
Q:PAGES	$15 \quad$ (2)	Byte	Current number of physical pages allocated for queue usage
Q: QHEAD	9	Address	Word address, head of chain of users queued for access or space (U:QUES)
Q: QTAIL	10	Address	Word address, tail of chain of users queued for access or space (U:QUES)
Q: RCV	0 (7)	Bit	Recovery in progress, 1 = yes
Q: SAT	15 (1)	Byte	Queue saturation percentage to accept high priority PUTs only
Q:SN	2	Address	Address of the queue serial numbers for private storage
Q:TID	14	Word	Highest TID
Q: TPPP	16-17	Word	Chain header, queue physical pages
Q: TPPPTAIL			
Q:USR	15 (0)	Byte	User number, current queue I/O operation
350			

RECOVERY TABLES

Core Dump Format

CORE is converted to a page number and the space required is compared with the FAD space available (RCVRDSZ). If space needed exceeds space available, TAPDMP is called. Otherwise, RCVRAD +2 is entered into the RECOVERY buffer.

CORE is dumped with an SIO and command chain in RCVDMP.
Following system reboot and core initialization, but before swapping RAD initialization, the dump space on RAD is written as a keyed file on the file RAD.

The keys for core pages are	03	00	00	Page\#

The user JITs are added to the keyed file with keys of 103 user\#1 $00 \quad 1001$.

Dump Tape Format

The dump tape is a labeled tape and each logical record is one page of core memory.

The label sentinel is :LBL RCVT.
The identification sentinel is :ACN :SYSbbbb Date of the crash in format from DATE and DATE+l.

Tape mark
The beginning of the file sentinel is:

:BOF				
01	00	02	02	file name is TAPDUMP
7	T	A	P	
0	U	M	P	
09	01	00	02	ORG is conseq., VOL is 1
01	00	00	00	
00	00	00	00	
mark				
trol record				

Each data record is 512 words.

The tape mark record is:

Recovery Buffer

Each item of information within the Recovery buffer is followed by an identification word. The identification consists of an id code in byte 0 and the word count of the information item in bytes 2 and 3 . The items are not necessarily in the buffer in id order.

$\begin{gathered} 10 \\ \text { CODE } \end{gathered}$	PROBABLE COUNT	ITEM
01	$64+5+2$	SGRAN, BGRAN, CURGRAN, FGRANI, CURBUF and contents of CURBUF and 2 preceding words
02	16	Administrative message (COCMESS)
03	3	Initial and final RCVRAD from RCVDMP and RCVRCNT
04	size	Size of RECOVERY buffer
05	1	Dump tape identification
06	value	Down device number
07	value	Number of locked symbiont devices +1 , RCVRCNT, and SGB
08	logged on users	User \#, swap index, seek address (8, 8, 16)
09	149	Partition limits, system limits
OA		Unused
OB	0	HGP reconstruction required
OC		Unused
00	1	First disc address of granule stack for release
OE		Unused
OF	4	Write symbiont ghost recovery files
10	61 (SGCBUFSZ)	Symbiont ghost communication buffer
11	1	Symbiont ghost error word

SECTION VU
PAGE 3
10/31/74

BUFFER LAYOUT:

.... $\operatorname{LDATE} \mid$ DATE+1 \mid TIME $|$| | 02 | 3 | 04 |
| :--- | :--- | :--- | :--- |
| SIZE | | | |

DESCRIFTION:
The Recovery buffer is a RES of 1024 words in the data area of RECOVEFY. When RECOVERY processing is completed, the size of the Recovery buffer and its contents are moved to the first 2 granules of RCVRAD on the system RAD. Since the JITs are used by the second phase, any JITs occupying the area of the system swapping RAD where GHOSTI will be swapped must be moved to some other space on the RAD. MVEBUF accomplishes this by investigating the JIT addresses saved in the Recovery buffer and calling RDRADI and WRRADI.

The data (00 protection) and AJIT pages of the symbiont ghost job (RBBAT) also must not be in the area of the system swapping RAD where GHOSTI will be swapped. These pages are moved at the same time as user JITs.

Power Fail-Safe Interrupt Status Tables

PFSRARM - Arm flip-flop status PFSRTRIG - Trigger flip-flop status PFSRENAB - Enable flip-flop status

These are halfword tables with a halfword for each interrupt group, including the non-existent group one, SYSGENed in the system.

```
*RB:MFAD, VR-2
*RB:SPMF, VR-2
*RBH:MFX, VR-2
:ACCTLG, VN.02-1
:AMHED, VA.01-1
:LOGSZ, VA.01-1
:PROCS, VN.05-1
:RATES, VN.03-1
:RBLOG, VN.04-1
:UBML, VN.01-3
:UBMR, VN.01-3
:UGML, VN.01-3
:UGMR, VN.01-3
:UNML, VN.OI-3
:UNMP, VN.01-3
:UNMR, VN.01-3
:UOML, VN.O1-3
:UOMR, VN.OI-3
:UPFLGS, VN.01-3
:USER, VN.01-1
2780, VR-4,-7
3COUNT, VK.01-1
```

```
A
ABO, VA-4
ACCN, VA-3
ACCO, VI. 01-4
ACCOUNT DIRECTORY, VH.02-1
ACCOUNTING RECORD, VN.02-1
ACNCFU, VH.08-2
AlR, VH. 21-2
ALLOCATION, VH.07-1
ALOCCT, VA-5
ANS, VH. 16.01-2
ANS DCB, VH.11-1
ANSFLGS, VG.04-4
ARSZ, VG.05-1
ASSIGN/MERGE, VA-11,VL-1
ATITLE, VA-6
AVR, VG.04-1
AVRFLGS, VG.04-5
AVRFNMT, VG.04-4
AVRID, VG.04-1
AVRNOU, VG.04-I
AVRTBL, VG.04-1, -2
AVRTBLNE, VG.04-1
AVRTBLSIZ, VG.04-1
```


B

```
B4W:RES, VI. 02-2
BAABC, VA-4
BARNST, VA-4
```

BATAPE, VG.04-1,-2
BB:...VI.02-2
$B C P$, VF.01-1
BD:ACCT, VI. 02-2
BGRAN, VK-2
BH:..., VI.02-1,-2
BPRIO, VP-13
BREF, VO-9
BSCIO, VR-7
BUFCNT, VG.05-1
BUFFER, VF.OI-3
BUP, VF.01-1
BW:FORM, VI. 02-2
BW:SDA, VI.02-2

C

C1, VG.03-6
CBPOOL, VI.01-6
CCBEF, VA-4
CCLFLAGS, VA-5
CCLTFLAGS, VA-5
CDPO, VA-5
CEXT, VA-3
CFU, VH. 08-I
CFU, USER, VH. 08-7
CIC, VA-4
CIT, VG.01-1,VG.02-2
CLL, VF. 01-1
CO:. ..,VG.05-3, -4
COB:SIOS, VG. 05-3
COC, VG. 05
COCBUF, VG. 05-4
COCHPB, VG. 05-4
COCII, VG.05-1
COCIR, VG. 05-1, -4
COCO1, VG. 05-1
COCOC, VG. 05-1
COCOR, VG. 05-1, -4
COCTERM, VG. 05-1
COD:HWL, VG.05-2
COD:LPC, VG. 05-2
COH:..., VG.05-3
CONSECUTVE, VH. 18-1
CONTEXT BLOCK, VI.01-7A
CONTEXT BLOCK DISPLACEMENT SYMBOLS, VI. 02-12
COOP CONTEXT, VI. 01-9
COOPERATVE, VI.01-1
COPPGS, VI.01-6
CPE, VA-4
CPI, VG. 05-1
CPO, VA-4
CPOS, VG. 05-1
CPPO, VA-4

CRESDF, VP-11	EVENTS, VC-2
CSE STOP, VK. 01-1	EXPRESSION STACK, VO-11
CSED\$, VK.01-1	
CUL, VF.01-1	
CUPO, VA-5	
CURBUF, VK-2	F
CURGRAN, VK-2	
	FGRANI, VK-2
	FILCFU, VH. 08-5
	FILE DCB, VH.09-1
0	FILE DESCRIPTORS, VH. 03-3
	FILE DIRECTORY, VH. 03-1
DBMAX, VI. 01-6	FIT, VH. 04-1
DBPOOL, V1.01-6	FSP, VH. 03-4
DCACCESS, VA-9	
DCBLINK, VA-6	
DCBTAB, VO-1	
DCT, VG.01-1,VG.03-4	G
DCW, VG. 01-1	
DDLL, VF.01-1	GENERALIZED DISK ADD., VK-54
DDUL, VF. $01-1$	GFC, VI. 02-17
DEQ, VQ-1	GHOST, VE-3
DEVICE DCB, VH. 12-1	GI TABLES, VI. 02-9
DISK ADDRESS, VH. 17-1	GI:. . ., VI. 02-9
DLL, VF.01-1	GIB:. . ., V1. 02-9
DO, VA-5	GIH:IIM, VI. 02-9
DO LIST, VP-7	GLOBAL, VO-13
DOT, VG.02-2	GLOSSARY, VK-9
DPACCESS, VA-9	GPRIO, VP-13
DSCIO, VR-7	GROUP CODE, VM-1
DTT, VG.03-1	
DUL, VF.01-1	
DUMP, VU-1	
DYNRESDF, VP-11	H
E	HANSWAPS, VA-4 HASPIO, VR-7 HEAD, VO-3
E...., VC-2	HGP, VH.07-1
EAPL, VG. 05-2	HIGHER INDEX, VH. 01-4
EAPLLC, VG.05-2	
EAPLOC, VG. 05-2	
ECB, VA-5	
ENQ, VQ-1	1
EOMTIME, VG. 05-1	
ERLFLAGS, VA-5	IA, VD-1
ERO, VA-4	ICB, VP-1, -10
ERRLFLGS, VA-5	ICBSIZE, VP-10
ERROR CODE, VM-1	INSYM CONTEXT, VI. 01-8
ERROR LOG, VK-1	INTENT, VA-5
ERROR LOG CODES, VIK-20	INTERNAL SYMBOL, VO-13
ERROR LOG ENTRIES, VK-8	INTLB1, VP-12
ERROR MESSAGES, VM-1	INTLB2, VP-12
ERROR SUBCODE, VM-I	INTLB3, VP-12
ESTD, VG.05-2	INTLBSIZ, VP-12
ESTDLC, VG.05-2	10Q, VG. 02-1
ESTDUC, VG.05-2	IOTIME, VA-3
EUP, VF.01-1	IRBT, VR-4
EVENT TRANSITION, V'C-1	IREL, VP-7

EVENTS, VC-2
EXPRESSION STACK, VO-11

FGRANI, VK-2
FILCFU, VH. 08-5
FILE DCB, VH.09-1
FILE DESCRIPIORS, VH.03-3

FIT, VH. 04-1
FSP, VH. 03-4
FSP, VH. 03-4

G

GENERALIZED DISK ADD., VK-54
GFC, VI. 02-17
GI TABLES, VI. 02-9
GI:..., V1.02-9
G1B....' V1.02
GLOBAL, VO-13
GLOSSARY, VK-9
GPRIO, VP-13
GROUP CODE, VM-1

IA, VD-I
ICB, $\vee P-1,-10$
CBSIZE, VP-10
INTENT, VA-5
NTENAL SYMBOL, VO-13
NTIB2 VP-12
INTLB3, VP-12
INTLBSIZ, VP-12
OQ, VG.02-

IRBT, VR-4
IREL, VP-7

J

J:ABC, VA-4
J:ABUF, VA-6
J:ACCN, VA-3
J:AJ, VA-10
J:AJIT, VA-12
J:ALB, VA-5
J:AMR, VA-11
J:ASPIN, VA-5
J:ASSIGN, VA-4
J:BASE, VA-11
J:BUP, VA-8
J:CALCNT, VA-3
J:CASSIN, VA-5
J:CCBUF, VA-4
J:CCBUF, VA-8
J:CFLAGS, VA-7
J:CL, VA-12
J:CLE, VA-11
J:CLL, VA-9
J:CLM, VA-8
J:CLPA, VA-10
J:CIS, VA-9
J:CPPO, VA-4
J:CPROCS, VA-7
J:CTIME, VA-3
J:CUP, VA-9
J:DCBLINK, VA-6
J:DCBLINK, VO-1
J:DCBLL, VA-9
J:DCBUL, VA-9
J:DDLL, VA-8
J:DDUL, VA-8
J:DELTAT, VA-3, -7
J:DLL, VA-8
J:DUL, VA-8
J:DWSK, VA-8
J:EUP, VA-8
J:EXLY, VA-4
J:EXTENT, VA-7
J:FDDA, VA-11
J:ICBHDR, VA-11
J:IDELTAT, VA-7
J:INTENT, VA-5
J:INTER, VA-5
J:JAC, VA-11
J:JIP, V A-5
J:JIT, VA-3
J:LMN, VA-8
J:MRT, VA-3
J:NRS, VA-4
J:OVHTIM, VA-3
J:OVRLY, VA-7
J:PLL, VA-8
J:PTIME, VA-3
J:PUF, VA-7
J:PUL, VA-8
J:RNST, VA-4
J:RWECB, VA-5

JBCBUC, VA-9
JBFBFP, VA-9
JBFBUC, VA-9
JBLMAP, VA-11
JBMNPA, VA-9
JBNASPP, VA-9
JBNFPOOL, VA-6
JBNRG, VA-10
JBPCC, VA-9
JBPCDD, VA-9
JBPCP, \vee A-9
JBPPC, VA-10
JBTDP, VA-9
JBUP, VA-8
JBVLH, VA-10
JCL, VA-12
JCLE, VA-11
JCLP, VA-11
JCLPA, VA-10
JCLT, VA-11
JCMAP, VA-12
JCPPO, VA-4
JDA, VA-12
JDCBLL, VA-9
JDCBUL, VA-9
JDDLL, VA-8
JDDUL, VA-8
JDLL, VA-8
JDUL, VA-8
JEUP, VA-8
JH:DA, VA-12
JH:LDCF, VA-10
JH:PC, VA-6
JIT, VA-1, -3
JITREE, VA-6
JJAC, VA-11
JJITVP, VF.01-1
JLMAP, VA-11
JOPT, VA-8
JPCP, VA-9
JPLL, VA-8
JPPC, VA-10
JPPH, VA-10
JPPT, VA-10
JPUF, VA-7
JPUL, VA-8
JRBID, VA-5
JRESOPT, VA-8
JRNST, VA-4
JSPBFLG, VA-9
JSTDOPT, VA-8
JTELFLGS, VA-5
JUNAME, VA-3
JVLCS, VA-10
JVLH, VA-10
JVLT, VA-10
JX:, VA-1
JX:CMAP, VA-12
JX:PPH, VA-10
JX:PPT, VA-10

JXCMAP, VA-12
$J X P P H, \vee A-10$
JXPPT, VA-10

L.

LI, VG.03-6
LABELED TAPE DCB, VH. 10-1
LABELED TAPE RECORD FORMAT, VH. 16.01-4
LABELED TAPE SENTINELS, VH. 16.01-1
LASTICB, VP-10
LB:UN, VG. 05-1
LDEV, VG.03-4
LDEVCNT, VI.01-6
LDVCONST, VG.03-2
LDVEX, VI. 01-4
LIBRARY, VO-7
LINK, VO-2
LNOL, VG.05-1
LOAD, VO-2
LOCCT, VO-15
LP, VA-5
LPART, VI. 02-7
LSERIAL, VI. 02-5

M

M:FRGD, VP-10
M:IMC, VP-12
M:SGP, VF. 02-2
M:SPROCS, VE-1
M:UC, VA-6
M:XX, VA-8
MASTER INDEX, VH.01-1, -4
MAXG, VE-3
MAXOVLY, VE-2
MBS, VI. 02-1,-4
MDPO, VA-5
MDYNRESDF, VP-11
MEMORY, VF.01-1
MEMORY ALLOCATION, VF. 01-2
MJCFLG, VA-5
MODE, VG.05-1
MPO, VA-4
MPOOL, VF.01-3
MPPO, VA-4
MRT, VA-3
MUPO, VA-5
MXFPL, VA-8
MXSTRM, VI.01-3
N
NFPOOL, VA-6
NSWAPS, VA-4

OB:..., VG. 03-1
OB:BOPTX, VG.03-2, -4
OB:BTX, VG.03-2, -4
OB:GODTX, VG.03-4, -2
OB:GTX, VG. 03-2,-4
OB:OOPTX, VG.03-2,-4
OB:OTX, VG.03-2,-4
OH:NM, VG. 01-1,VG.03-2
OPRIO, VP-13
OV:NM, VG.03-4
OV:NMSZ, VG.03-2, -5
OV:SIZ, VG.03-2, -4
OVHTIME, VA-3

P

$P: A C, V E-2$
P:NAME, VE-1, -2
P:SA, VE-1,-2
P:TCB, VE-2
PI, VG.03-6
PACK, VG.04-3
PARTITION, VI.02-6
PAT, VI. 02-11
PB:..., VE-1, -2
PBT:LOCK, VE-2
PER, VF.01-3
PFA, VF.01-3
PFSRARM, VU-3
PFSRENAB, VU-3
PFSRTRIG, VU-3
PH:DDA, VE-2
PH:FRQ, VE-2
PH:PDA, VE-2
PL:..., VI. 02-6
PLB:...., V1.02-6
PLB:MAX, VI.02-7
PLB:MIN, VI. 02-7
PLD:ACT, VI.02-6
PLH:. . ., VI. 02-6
PLL, VF.01-1
PNAMEND, VE-2
POWER FAIL-SAFE, VU-3
PP:UPPC, VP-11
PP:UPPH, VP-11
PP:UPPT, VP-11
PPMD, VA-4
PPROCS, VE-2
PPTABDSK2, VP-11
PPTABLE, VP-11
PPTABLSZ, VP-11
PRDCRM, VA-10
PRDPRM, VA-10
PRNATE, VH. 06-1, VH. 20-1
PRT, VA-4
PSA, VF.01-3

PUBLIC, VH. 19-1
PUF, VA-4
PUL, VF. Ol-1
PWPENO, VT-I
PWPTABLE, VT-1
PX:..., VE-1
PX:HPP, VE-2
PX:TPP, VE-2

0

Q:..., VT-3
QECB, VQ-4
QFREE, VG.02-1
QHEAD, VQ-1
QHHP, VQ-2
QHNAME, VQ-2
QHVP, VQ-2
QQF, VQ-2
QQHP, VQ-2
QQUN, VQ-2
QT, VQ-2
QUEA, VQ-4
QUEUE, VQ-2, VT-2
QUEUE HEAD, VG.01-1
QUHP, VQ-2
QUPP, VQ-4
QUVP, VQ-2

R

R:..., VC-1
RA:. .., VH. 21-2
RA:DA, VH. 21-1
RA:SGET, VH. 21-3
RAB:BLINK, VH. 21-2
RAB:FLINK, VH. 21-1
RAB:USER, VH. 21-1
RAH:DCB, VH. 21-1
RAH:TIME, VH. 21-1
RASIZE, VH. 21-1
RAT, VG. 03-4, VI. 02-4
RATE VN. 03-1
RAX:PAGE, VH. 21-1
RB:BUF, VR-1
RB:FLAG, VR-1,-3
RBB:BCB, VR-1
RBB:CPZ, VR-2
RBB:DSM, VR-2
RBB:HFE, VR-1
RBB:HIN, VR-1
RBB:HOU, VR-1
RBB:ID, VR-1
RBB:LPZ, VR-2
RBB:MXP, VR-2
RBB:SFC, VR-2

RBB:SMD, VR-2
RBB:SPC, VR-2
RBBAT, VI. 01-5, VI. 02-1
RBBAT COMBUF, VI. 02-17
RBD:WSN, VR-1
RBH:ACK, VR-1
RBID, VN. 04-1
RBLIMS, VR-1
RBSSS, VR-7
RCVDMP, VU-1
READ-AHEAD, VH. 21-1
REAL TIME, VP-1
RECOVERY, VU-1
REF, VO-9
REF/DEF, VO-10
RELOCATION DICTIONARY, VO-12
REMOTE PROCESSING ERROR RECORD, VK-42
RESDF, VP-11
RESDFP, $\vee P-11$
RNST, VA-4
RPI, VK-42
RP2, VK-42
RP3, VK-42
RP4, VK-42
RJERIAL, VI. 02-5
RSZ, VG. 05-1
RT:GINTP, VP-10
RT:UINTP, VP-10
RTICBCLKHDR, VP-7
RTICBHDR, VP-10,-7
RUN STATUS, VA-4
RUNFLAG, VA-4

S

S:BADFLG, VC-4
S:BCL, VC-3
S:BDA, VC-3
S:CPINC, VC-4
S:CUT, VC-4
S:ECL, VC-3
S:GJOBACN, VE-3
S:GJOBTBL, VE-3
S:IOPINC, VC-4
S:IRPINC, VC-4
s:OPC, VC-1
S:PRIODEC, VC-4
S:PWP\#, VT-1
S:RTIR, VC-4
S:SCL, VC-3
S:SET, VC-1
S:SYMDB, VI. 02-11
S:SYMDG, VI. 02-11
S:SYMDO, VI. 02-11
S\#B:TYP, VI.02-3
S\#H:LNK, VI. 02-3
S\#W:SER, VI. 02-3
SAPL, VG.05-2

SAPLLC, VG.05-2
SAPLUC, VG. 05-2
SB:FPL, VC-3
SB:GJOBUN, VE-3
SB:HQ, VE-3,-4
SB:IOTA, VC-1
SB:LTY, VG.03-2, -5
SB:OSUL, VC-3
SB:PNL, VC-3
SB:RBDF, VG.03-3,VI. 02-4
SB:RBMX, VG. 03-3, VI. 02-4
SB:RGDF, VI.02-4
SB:RGMF, VI. 02-4
SB:RGMX, VG.03-3
SB:RODF, VG. 03-3,VI. 02-4
SB:ROMX, VG. 03-3, VI. 02-4
$S B: R Q, V C-1,-4$
SB:RTY, VG.03-3, V1.02-4
SB:SET, VC-1
SB:SWP, VC-1
SB:TQ, VC-3,-4
SCHEDULER QUEUES, VC-I
SCNTXT, VI. 01-3
SCO-10, VC-1, -2
SCREECH, VS-1
SCREECH CODE, VS-1
SCU, VC-2
SERVICE LIMIT, VI.02-10
SGCHD, VI. 02-18
SGRAN, VK-2
SH:RTOT, VI.02-4
SH:EDA, VC-3
SH:LNM, VG. 03-2, -5, VI. 01-6
SH:OPNM, VG.03-2,-4
SH:RBCU, VG.03-3,VI.02-4
SH:RBSUM, VG.03-3, VI. 02-4
SH:RGCU, VI.02-4
SH:RGSUM, VG.03-3,VI. 02-4
SH:RNM, VG. 03-3, VI. 02-4
SH:ROCU, VG.03-3, VI. 02-4
SH:ROSUM, VG. 03-3, VI. 02-4
SH:RTOT, VG.03-3
SH:SDA, VC-3
SH:SYMT, VI.02-11
SIO, VG. 01-1
SIOMF, VC-2
SIOW, VC-2
SL:AIRM, VH. 21-3
SL:AIRTO, VH. 21-3
SL:BDF, VI. 01-10
SL:BMX, VI. 01-10
SL:BPRIO, VP-13
SL:GDF, VI. 02-10
SL:GMX, VI. 02-10
SL:GPRIO, VP-13
SL:NAME, VI. 02-10
SL:ODF, VI. 02-10
SL:OMX, VI. 02-10
SL:OPC, VC-1
SL:OPRIO, VP-13

SL:PWP, VT-1	SYNONYMOUS, VH.04-4
SL:RAMF, VH. 21-3	SYSID, VA-3
SL:RAMR, VH. 21-3	
SL:RATOR, VH. 21-3	
SMAXOUT, VC-3	
SMUIS, VD-1	
SNDDX, VI. 01-3	
SNDDXSIZ, VI. 01-3	
SNULL, VC-2	T
SOFTWARE CHECK, VS-1	
SOLICIT, VG.04-1	TAPE, VG. 04-3
SPSIZE, VE-2	TB:FLGS, VG. 03-2, -4, -5
SQ, VQ-2	TB:FLGS1, VG.03-2
SQA, VC-1, -2	TB:MAX, VG. 03-2, -4
SQFI, VC-1, -2	TB:SZ, VG. 03-2,-4
SQHD, VI. 01-3	TCB, VA-6, VO-1
SQR, VC-1, -2	TCBADR, VA-6
SQRO, VC-1,-2	TDP, VF.01-1
SQTL, VI. 01-3	TDV, VG. 01-1
SQUE, VI.01-3	TIMENT, VA-5
SRET, VI. $01-3$	TIMTMP, VA-3
SRT, VC-1, -2	TIO, VG.01-1
SS, VA-4	TL, VG.05-1, -4
SSIG, VI.01-3	TMDCRM, VA-10
SSTAT, VI. 01-3	TMDPRM, VA-10
SSTD, VG.05-2	TMPDCPK, VA-7
SSTDLC, VG.05-2	TMPDPPK, VA-6
SSTDUC, VG.05-2	TP, VT-1
STAR FILES, VA-11	TPACCESS, VA-5
STATES, VC-2	TPEXT, VA-3
STB:DPD, VI. $01-5$	TPIOT, VA-3
STB:LNK, VI. 01-3	TPOVT, VA-3
STB:Q, VI, 01-3	TRANSLATION, VG. 05-2
STB:TYP, VI. 01-3	TREE, VO-5
STH:FLG, VI. O1-3,-5	TREE TABLES, VO-1
STH:NM, VI. O1-5	TRPFLAGS, VA-6
STH:SUS, VI. 01-3	TSERIAL, VI. 02-5
STI, VC-1, -2	TSTACK, VA-7
STIO, VC-2	TTP, VT-2
STOB, VC-1, -2	TTYIN, VG.05-2
STOBO, VC-2	TTYOUT, VG.05-2
STORAGE, VF.01-3	TUEXT, VA-3
STW:FORM, VI. 01-5	TUIOT, VA-3
SUPER, VN. $01-1$	TUOVT, VA-3
SV:FTYM, V1. 02-11	TYC, VH. 09-10, VH. 12-7
SV:LIM, VI. 02-10	TYPMNSZ, VG.03-4
SV:LSIZ, VG. 03-5	
SV:LSIZP, VG.03-5	
SV:LSIZPA, VG.03-5	
SV:RSIZ, VG.03-3	
SV:RSIZ, VI. 02-4	
SV:TYM, VI. 02-11	
SW, VC-1, -2	U
SWAP STORAGE, VF.02-1	
SWAPPER, VC-3	U:..., VD-1
SWAPPER LAYOUT, VF.02-2	UB:..., VD-1
SYMBIONT, VI. 01-1	UB:APO, VA. 01-2, VA-7
SYMBOL, VO-13	UB:APR, VA. 01-2, VA-7
SYMTAB, VI. 01-3	UB:ASP, VA. 01-2, VA-7
SYMX, VI. 01-3	UB:BL, VC-3

UB:DB, VA-7,VA. 01-2
UB:FL, VC-3
UB:PRIO, VC-1
UB:PRIOB, VC-I
UH:. .., VD-1
UH:DL, VD-2
UH:FLG, VA-7,VD-2
UH:FLGS, VD-2
UNAME, VA-3
USRENT, VA-6
UTIMER, VA-5
UTS, VA-7

V

VLP, VH. 09-11
VTOC, VH. 06-2

W
WORK-STATION, VA. OI-2
X
XSL, VA-4

XEROX

Reader Comment Form

Your other comments may be entered here. Please be specific and give page, column, and line number references where applicable. To report errors, please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

		Your name \& Return Address

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

NO POSTAGE NECESSARY
IF MAILED IN THE

BUSINESS REPLY MAIL
 FIRST CLASS PERMIT NO. 59153 LOS ANGELES,CA 90045

postage will be paid by addressee

HONEYWELL INFORMATION SYSTEMS
5250 W. CENTURY BOULEVARD
LOS ANGELES, CA 90045

ATTN: PROGRAMMING PUBLICATIONS

Honeywell Information Syatems
In the U.S.A.: 200 Smith Street, MS 486 , Waltham, Massachusetts 02154 In the U.S.A.: 200 Smith Street, MS 486, Wathnam, Massachusetis 02154

Inada: 2025 Sheppara Avenue East, Wilowdia, Ontario
In the
U.K. Great West Road, Brentford, Middlesex in Australla: 124 Walker Street, North Sydney, N.S.W. 2060 In Mexico: Avenida Nuovo Leon 250, Mexico 11, D.F.

[^0]: SMUIS = Maximum number of users in system (parameter).

[^1]: 1 " is the total number of this type of device specified on :DEVICE commands.
 2 If ${ }^{\#}-1=0$, then the value is set to 1 .

[^2]: Byte pointer to current remoral point
 from the
 0 - no infut strean for the line.
 0 - no buffers.

[^3]: 'The first entry in the file directory is a null entry for use with the NXTF option.

[^4]: ${ }^{\dagger}$ Prior to B00, FSP meant Free Sector Pool because master index blocks were contained in sector units instead of half-granule units.

[^5]: ${ }^{\dagger}$ Must start on word boundary.

[^6]: BIN IOR VF:J I.OT VAI:D FOR THIS EEVICE
 PRIVATE : AIK :S GOED OUT

 ONLINE UGE =EGUEST FER PAFTITIC:UED PRIV. PACN
 PACK SET HAS TMO FF:GARY VOUUOTS
 PRIVATE ThCY CROG!'STENCY CHECK FAILURE
 FRIVATE WACK EFFROR TRYING TO GFEN EXISTING FILE.
 THAT DCB IS ALFEADY OPEN:
 BAD USER LIEEL OR ASS TAFE
 invalid rile ináT ! : Nrith.
 CAN'T SPESIFY EXFIPE.NEVER
 ILLEGAL FTCRAT COCE
 DEQUEUE ATEGFTED rA A RESMBLE ELEMENT NOT GUEUED
 ENQUEUE ATHFAPTED OA A RESOUHGE.ELEMENT ALFEAGY QUEUEL
 ENQUEUE!SHARE, ATTi:OTED O. Fil ENT ALFEADY CUEUEDIEXCL

 POLLING, ILETICN ST ALFEA, ULSE
 BAD POL \because SELENTIN LIST
 BAD POLLIA SELECTT N LIST An? 35
 Un!AELE TO SA! SIAVE LINE ID
 ATTEMPTE: 1 G OFEN LCE TO UH: ITHD SLAVE LINE

 POOCIOP PNOLE OL CCC SIAVE iHTE CODE NOT IN THIS SYSTEM
 STATUS liG?EAD DF CATA IV UUFEG ON MULTI-POINT.
 LINE KEAI:
 fead or silie on bi-point line tepriliated :
 BY FURGE CAL
 JOB ENTR GISALLCWHD EY ODEFATGR
 USER NOT AlINWEO I: USE JCE fingy SERVICE.
 FUNCTION i :Cromisitecy.
 Invalid id fig leletion
 TOO LATE TO DEG:E OCE
 Mo mORE, ifidrat sface is avallable or the quele is full
 USER NOT LLLOERD IO USE ICS ENTEY SERVICE

 THE SPE - -

 CAN'T RE: A MUT P

 IRPUT Sr': Lifl ill LOS: EA! ing.

 PARTIAL FECIRO FAMGMTTED roll: WENG EHROR 4103
 BAD KEY I MOTH IS EEO OR GREAE: THAT: MAX.
 CAN'T FIHE FE! WO:TH THAB MEY.
 CAN'T WR!IE LA UG: F!LE.

 CAN'T OPEA IGR RLAO

 CAN'T OPEN FCR HEAO FILE LISSN'T EXIST
 CAN T OPEN FCR PEAD PASSWMO. ACCOENT FESTRICTION. Ci AFOT: A Fh

[^7]: : FSSAGE
 ERROR - FOF FECCED
 CANNOT OFEN $\$$ SEDUENTIAL
 ERRGR: S IOCAL SYCM TASLF UFLETED
 LOST DATE IN S LOCLL SYMBOL TAELE
 LOST DATL INF
 EFROR * AFTEF S
 ELEMENT S NOT IN LOCCT \$
 ERROR - SELALHING FOR LOCCT
 ERROR M.ADING LACCT
 NATX TAULE OVERFLOW FOR $\$$
 HAT REEL NUREER?
 REEL NUMPER > 4 CHARACTERS
 OADER EFFOR FOR S
 OPERATOR IIV:TIATEC RECOVERY
 USERS PAGE CHAIN INC: NSISTEIT
 REPORTED EVENT INCO:SISTE:AT WITH USER'S CURRENT STATE
 OPCODE IN SKAP COMHIG:D LIST IS INVALID
 INCORRECT SRDER COCE IN SWIF CRIVAND LIST
 ATTEMPT MADE TO SWAD MONITOFG MIGORY
 HALT FLAG, MISSING IN SWAP COMGRD LIST
 I/O RECUEST WITH NULL COMSAND LIST
 COC-BAD C CC EUF FORL. OF EAU EUF ADR ON RELEASE REQUEST
 COC-INVALID INIERNAL CONTHCL CULE TRANSLATE REQUEST
 COC-OUTPUI EUF LINHACE OF CHARACTER CCUNT BAD
 COC ROUTINE WAS CALLED IN A BGN-COC SYSTEM
 COCOFF CALIID IN A LON-COC SYSII
 COCSENDX CA:CED IN A NON-COC SYSTE:
 ECHOCP2 CALLID IN A :ON-COC SYSTEM
 INVALID D:SC ADORESS YASSED FGR AN I/O GPERATION
 mValid eillfer aderess fassed for felease
 USERS PAGE CHAIN NOA-ZERO AT SWAF COMPLETION
 REQUESTED OVEFLAY NIT:BER IS OIT OF RAT.GE
 SYSTEM RESCOTED WITHOUT A PROFER SHUTDO
 NOT ENOUGH PAGES TO DERFOFRH THIS SWAP
 NOT ENOUGH PAGES TO FERFOFH: THIS SWAP
 ATTEMPT TO SET ACCESS ON AN NON-EXISTENT VIRTUAL PAGE
 PRIVATE VOLUME ALLCGATICN EFQOF
 INVALID EH?RY TO CSE HANOLEFIS.
 INSTRUCTION EXCEPTISN TRAP IN : $\because 5$ TER HODE
 UNRECOVERAELE WATCHDCG TIMFR TIAF
 CRE TRAP JURING NFI. YFI HANJLIAGG
 MEMORY PARITY ERROR - MENORY ALTERED
 RAP AC GUS CHECY FAJLT
 TRAP 4C P PEGISIER ELOCK PARITY EFROR
 TRAP 4C - WRITE LOCK REOISTLR FARITY EFROR
 COOPERAT I VE EUFFEF : ANAGESENT EAROR
 SYMBIONT/CCOP FILE DEVICE ITGAC:ESSIBLE
 USERS COOR COHTEXT ELOCK CHAIN LCST
 COOP CONTEXT BLOCK POINTERS GLOEHEQEU

[^8]: RESTAGE
 COOP SENT (UTSYIM E:O IHATA
 POOL EUFFIES LOST - :UNE ALIO, AISD CUFAENTLY
 INCUNSIS:LCY IN PEAD-AHEAS TAJES
 UNBALANCEU FQER ON, ffF liNTERHUHT PAIFS
 INVALID RF ©OURCE TYFF
 DCB DOESN (GMADI! i VALID DCT liderx
 TRANSACTION FROCES:ING FAl! URE
 FAILED TO FI:E USER'S STATE IM: ll.ISTAT
 ERROR RETLA: F FROR N! :ORH ON f:MEX CALL
 UNABLE TO FF-STAFT SOSTEM I. O HIA RO:STLfTIO REOUEST
 NO ICES CFI: IVED INTO REICBCLKHUR
 ICBCLK FIE:L OF ILE :EGATIVE
 NO BACK-LIt!e FDUND IUS DE-CHAINEU ICB
 PRIVATE VOI URE LOGIC INCO:SISTEI.CY
 RESOURCE WRE-ALIOCAI O:N IICCHISISTENT WITH REQUESTS
 UNABLE TC RE!EASE ASSIGNED PHIS:CAI WORK FAGE
 TEL OR CCI HAS TRAFOFD
 TEL OR CCI HAS TRAFOFD
 TEL/CCI Sili!ERED A TRAD 40
 TEL/CCI Silitered a Trad 40
 USER PRCGFAN TOO LAFGE FOR PHYISICAL NESORY

 INGUFFICIENT INFOLFMYION AVAIGAELE 1O SWAP THIS USER
 ATTEMPT TO FELEASE UA M:CV: FFGM USER W/O PROPER PRIVILEDGE

 MRITIOR COMITTER A STACK TiA:
 ALTCP CALLES TO SFFilCE A CA: THAT DOESH'T EELONG TO ALTCF
 MONITOR HASS SUFFE =id A TRAT 40
 MONITOR HAS TFAPEED
 MONITCR HIS TFAFPEL
 ALLOCATIO'! BUFPFFES C(ITAIT. itwal:D WORD COUNT
 allycat ctoreerfo ror of the aliocation euffeis
 allycat's rce (haln Clorbefeis
 TDV ADDRESS DOESAT PGINT TO THE COMMAT.D LIST
 COMMAND L: ST ELOZEEFED CURIIGG WF!TE-CHECK
 UNRECOVERIRIE $1 / 0$ E! POF REAHING, USER'S JIT
 UNRECOVERAB:E $1 / 0$ EFROR PEADING SHARED PROCESSOR

[^9]: * Output by Loader

[^10]: *Header
 **Data Words dependent on code value

[^11]:

[^12]:

[^13]:

[^14]:

