
. '

Honeywell

CP-V

SOFTWARE

CONCEPTS AND FACILITIES MANUAL
PRELIMINARY EDITION

CONTROL PROGRAM-FIVE CONCEPTS AND FACILITIES

July I, 1976

Ed Bryan
Fran Farrand
Doug Heying

NOTICE

This manual describes the concepts and facilities of the Control
Program-Five operating system. The manual documents the 000
version of the system (with some modifications reflecting EOO).

ii July 1, 1976

TABLE OF CONTENTS

GLOSSARY .
1 •

2.

3.

4.

5.

INTRODUCTION .
Control Program-Five •• .

Modes of Operation ••••••••• CP-V Features •••••••••
Organization of the Manual .
THE OPERATING SYSTEM .
Overview ••••
The Monitor ••

.
SCHEDULING, SWAPPING, AND RELATED TOPICS
Scheduling and Swapping ••••••
Multiprocessing ••••••

. ..
Resource Management
Privilege, Protection, and Security
Shared Libraries •••••••.••••••
Shared Processor Facilities •••••.•••

.

.
..

USER-DEVELOPED PROGRAMS
Overview •..••.•••.••••••.•.
Program Load and Execution
Program Overlays
Libraries •••••••
Memory Protection

... . . .
• • •

.
Virtual Memory Layout •••••••••

FILES AND DEVICE INDEPENDENT I/O

. ..
.

Introduction .
Files ••••••••••••••••••••••••

File Identification ••••••••••
File Function and Disposition

.
File Organization

Keyed Files ••••••••••
Consecutive Files
Random Files •••••

.

.

July 1, 1976

ix

1-1

1-1
1-2
1-2
1-5

2-1

2-1
2-2

3-1

3-1
3-4
3-5
3-9
3-14
3-14

4-1

4-1
4-2
4-2
4-4
4-5
4-5

5-1

5-1
5-5
5-5
5-6
5-8
5-9
5-11
5-11

iii

6.

1 •.

8.

iv

File Access .•••••••••
Direct Access ...••
Sequential Access

Simultaneous File Usage
File Storage Devices

Disk Storage
Labeled Tape

Device Input/Output
Interactive Terminals •••••
Batch Type Devices
Unformatted Devices

Special Features of the I/O System
Related Processors ••••••••••••••••

Peripheral Conversion Language
Edit Processor ••••••••••••••••

USER PROGRAM SERVICES

System Procedures ••••••• ~
Monitor Error Messages

.

. .

.
DEBUGGING FACILITIES .
Time-sharing Mode Debugging ••••
Batch Processing Mode Debugging

Postmortem Dumps •••
Snapshot Dumps

System Debugging
Automatic Crash Analysis
Remote System Analysis
Executive Delta

.
Symbolic Patching ••••••••
GENMD Patching
Boot-User-The-Files . . .

.

TIME-SHARING .
Introduction ••••••••••••••••
Terminal Executive Language
Sample Time-sharing Session
Entry of Jobs to the Batch Job Stream •••
Communication with the Computer Operator
Automatic Processor Association
Automatic Save for Line Disconnect
Terminal Coupling
Paper Tape Input

. .
. ...

. . .

July 1 ,

5-12
5-12
5-14
5-15
5-16
5-17
5-19
5-21
5-21
5-22
5-22
5-23
5-23
5-23
5-26

6-1

6-1
6-9

7-1

7-1
7-8
7-8
7-9
7-10
7-10
7-11
7-11
7-11
7-11
7-12

8-1

8-1
8-2
8-7
8-9
8-9
8-10
8- 11
8- 11
8-12

1976

9. MULTIPROGRAMMED BATCH PROCESSING .
Overview ••
Monitor Control Commands •••••

Introduction •••••••••••••••
Monitor Control Command Examples

.
.

10. REMOTE PROCESSING .

11.

Introduction ••••••••••••••••••••••••••••••••
Remote Processing Terminals .•••••••••••••••••

Hardware Connection of Remote Terminals
Remote Processing Modes •••••••••••••• • ••••
Workstations •••••••••••••••••••••
Remote Processing User Facilities

Monitor Control Commands ••••••••
ISCL Processor •••• •;• •••••••••
LDEV and JOB Control Commands

.
. . .

REAL-TIME PROCESSING .
Real-time Programs ••••••••••••••
Real-time Procedures ••••••••••••••••
Dynamic Physical Page Allocation

. '
12. TRANSACTION PROCESSING .

Introduction •••••••••••••••••••••••••••••••••••
Terminal Interface Controller •••••••••••••• ••

Station Names and Report Delivery Files •••••• . . TFD File •••••••••••••
Operator Control ••••••••••••

Common Journal •••••••••••••
System Queue Manager •••.•••••
Transaction Processing Ghost •••
Transaction Processing Controller

Operator Control ••••••••••••
TPC Simulator •••••••••••••••

.
. . .

.
Extended Data Management System

Data Definition Language
Database Manager •••••••••••

Chronological Sequence of Events

.
.

System Integrity ••••••••••••••.••••.••
Recovery ••••••••.•••••••••••..•••.

. .

Abort of a Single Transaction
Abort of a System Component

.

July 1, 1976

. . .

. ..

9-1

9-1
9-1
9-1
9-5

10-1

10-1
10-2
10-3
10-5
10-6
10-7
10-7
10-8
10-9

11- 1

1 1- 1
11-3
11-8

12-1

12-1
12-3
12-3
12-4
12-4
12-4
12-5
12-5
12-6
12-6
12-6
12-7
12-7
12-7
12-8
12-8
12-8
12-13
12-13

v

System Crash••..•••.••••••.•.••• · ..••.......•. 12-13
Destruction of Critical Files •.........•.•.•••••• 12-13
Standard Recovery•....•.••..••....•• 12-14

Additional Features and Vari~tions in System Usage .•• 12-14
Protection and Control Features •••.••...••......• 12-14
System Queue Manager Variations ••.••.•••.•••.•••• 12-16
Spawned Transactions ••.•••.•.•..•••.•••..•••••••. 12-16
Operational Considerations •..•••.•••.•••••..••••• 12-17

Transaction Processing Terminals .••.•••••••••.••••••• 12-17

13. SYSTEM MANAGEMENT FACILITIES • • • • • . • . • . • • • . . • . • • • • • • • • 13-1

System Generation ••••.••••••••.••••.•.••••••••••..••• 13-1
User Authorization ..•.•..•.••••••••.••••••••.••.••••• 13-3
Use Accounting ••••••..•••.•...•.•..••••••.••.•••••••• 13-4
System Performance Control •..••.••••••.••••••.••••..• 13-7
Maintenance of the File System •.••••••••••••••••••••• 13-11

14. COMPUTER OPERATIONS ..••.•••.••• ~ •..••••••••••.••.•••• 14-1

System Start-up and Initialization ..•.•••••••••••••.• 14-1
Job and System Controls ..•••••••••.••••••••••••.••••• 14-4
Removable Storage Initialization •..•..•••••••••.••••• 14-7
Peripheral JJevice Error Procedures•.•.•.•.••.•••• 14-7
Letting the System Run Itself ••••••••..• , ••.• ~ •.••••• l4-10

15. RECOVERY . 15-1

16. HARDWARE MAINTENANCE AND THE DIAGNOSTIC SYSTEM •••.••• 16-1

System Error Log File .••••••..••••••.•....••.••••.••. 16-1
On-line Peripheral Diagnostic Facilities •..•••.•••••. 16-2

APPENDIX

A. CP-V PROCESSORS . A-1

INDEX .. I-1

vi Ju 1 y 1 , 197 6

2-1.

\

" \,

'
FIGURES

CP-V Operating System ••••••••••••••••••••••••••••.• 2-1

2-2. Operating System •••••••••••.••••••••••••••••••••••• 2-3

3-1. Establishing Limits for a Job •••••••••••••••••••••• 3-9

4-1. Sample Tree Structure

4-2. Virtual Memory Layout

.

.
4-3

4-6

4-3. User Virtual Memory Layout, Load and LYNX
Processors •••••••••••••••••••••••••.••••••••••• 4-7

Connections Established for Performing I/O ••••••••• 5-2 5-1.

5-2. Example of Multilevel Index Structure •••••••••••••• 5-10

5-3. Sample Edit Session •• ~ ••••••••••••••••••••••••••••• 5-27

8-1. Sample Time-sharing Session •••••••••.••.••.•••••••• 8-7

9-1.

9-2.

Assembly of a Meta-Symbol Source Deck

Assembly of a Meta-Symbol Source Deck
9-3. Submitting a Job to the Batch Stream From an

9-5

9-6

On-line Terminal ••••••••••••••••••••••••••••.•• 9-7

10-1. CP-V Remote Processing Hardware •••••••••••••••••••• 10-4

10-2. CP-V Remote Processing Network •••.••••••••.•••••..• 10-5

12-1. CP-V Transaction Processing •••••••.••••.••••••••••. 12-2

12-2. Chronological Sequence of Events ••••••••••••••••••• 12-9

12-3. Journalization Scheme . 12- 1 t

12-4. Functional Diagram of Recovery •••••••••••••.••••••• 12-15

TABLES

5-1. PCL Command Summary . 5-25

5-2. Edit Command Summary ••.••••..•.••••.••••••.•.••••.• 5-27

July 1, 1976 vii

6-1.

7-1.

7-2.

System Procedures

I

// .
Delta Command Summary .
FORTRAN Debug Package (FDP) Commands ••.•.•.••••••••

6-1

7-2

7-3

7-3. COBOL On-line Debugger Command Summary ••.•••••••••• 7-5

7-4. Snapshot Dump Control Commands and Procedures •••••• 7-9

8-1. TEL Command Summary •••••••••••••••••••••••••••••••• 8-2

9-1. Monitor Control Commands ••••••••••••••••.•••••••••• 9-1

10-1. Remote Processing Monitor Control Commands •.••••••• 10-7

11-1. Real-Time Procedures ••••••••••••••••••••••••••••••• 11-5

12-1. Chronological Sequence of Events ••••••••••••••••••• 12-10

12-2. Accounting Printout for Batch Jobs •••••••••.••••••• 13-6

14-1. Operator Key-ins ••••••••••••••••••••••••••••••••••• 14-4

viii Ju 1 y 1 , 197 6

GLOSSARY

ANS tape a tape that has labels written in American National
Standard (ANS) format.

bandwidth the maximum rate at which memory can deliver or accept
information.

batch job a job that is submitted to the batch job stream through
the central site card reader, through an on-line terminal (using
the Batch processor), or through a remote terminal.

batch job stream a set of jobs which are to be run in the batch mode.
These jobs are scheduled by CP-V in a manner that optimizes the
use of nonsharable resources.

bipoint line a line that c~nnects a single remote transaction
processing station to th• computer center. (See multipoint
line.)

CAL a CALl machine instruction and an associated parameter list which
describes the details of a request being made to the system.

CP-V libeled tape a tape that has labels written in a format
unique to CP-V.

data control block (DCB) a table in the user's program that contains
the information used by the monitor in the performance of an I/O
operation.

data set a device which converts data processing device signals to
telephone tones and telephone tones to device signals. (Also
referred to as "modem".)

data set controller a hardware interface between a remote processing
terminal and the central computer.

DCB see data control block.

File Information Table a table of information associated with each
file. It controls who may access the file and how it may be
accessed.

FIT see File Information Table.

FPT see function parameter table.

July 1, 1976 ix

function parameter table (FPT) a table through which a user's program
communicates with a monitor function (such as an I/O function).

ghost job a job that is neither a batch nor an on-line program.
It is initiated and logged on by the monitor, the operator, or
another job and consists of a single job step. When the ghost
program exits, the ghost terminates.

granule a block of disk sectors large enough to contain 512 words
(a page) of stored information.

JCL job control language consisting of control commands. See
monitor control commands.

JIT see job information table.

job a unit· of work. A batch job is preceded by a JOB control
command and consists of all'. the commands and information which
follow that command. An on-line job consists of the entire
terminal session. A ghost job consists of a single job step.

job information table (JIT) a table associated with each active job.
The table contains accounting, memory mapping, swapping, terminal
DCB, and temporary monitor information.

job step a subunit of job processing. such as compilation, assembly,
loading, or execution. Information from certain commands
(JOB, LIMIT, and ASSIGN) and all temporary files created during a
job step are carried from one job step to the next but the steps
are otherwise independent.

key a data item consisting of 1-31 characters that uniquely
identifies a record.

key-in information entered by the operator via a keyboard.

library a collection of frequently-used routines in a form that
expedites their inclusion into other programs.

load module (LM) an executable program formed by the Load or LYNX
loader, using relocatable object modules (ROMs) and/or load
modules (LMs) as input information.

logical device a peripheral device that is represented in a program
by an operational label (e.g., BI or PO) rather than by specific
physical device name.

logical device stream an information stream that may be used when
performing input from or output to a symbiont device. At

x July 1, 1976

SYSGEN, up to 15 logical device streams are defined. Each logical
device stream is given a name (e.g., Ll, Pl, Cl), each is
assigned to a default physical device, and each is given default
attributes. The user may perform 1/0 through a logical device
stream with the default physical device and attributes or he may
change the physical device and/or attributes to satisfy the
requirements of his job.

MAILBOX file a file with the name MAILBOX which contains
account-specific messages from the system. Each account may
have a MAILBOX file associated with it.

modem see data set.

monitor a program that supervises the processing, loading, and
execution of other programs.

monitor control commands commands that control the construction
and execution of programs and provide communication between
a program and its envirdnment.

multipoint line a line that connects two or more transaction processing
stations to the central computer. A line controlled by the
computer as though it were connected to two or more stations is
considered to be multipoint even though it connects only one
station to the computer. (See bipoint line.)

object module the series of records containing the load information
pertaining to a single program or subprogram (i.e., from the
beginning to the end). Object modules serve as input to the Load
or LYNX processor.

op label see operational label.

operational label
device.

a symbolic name used to identify a logical system

overlay loader a monitor routine that loads and links elements of
overlay programs.

overlay program a segmented program in which the element (i.e.,
segment) currently being executed may overlay the core
storage area occupied by a previously executed element.

prompt character a character that is sent to the terminal by an
on-line language processor to indicate that the next line of
input may be entered.

July 1, 1976 xi

protective mode a mode of tape protection in which only ANS expired
tapes may be written on through an ANS DCB; no unexpired ANS
tape may be written on through a non-ANS DCB; all ANS tapes must.be
initialized by the Label processor; no tape serial number
specification is allowed at the operator's console; specification
of an output serial number in an ANS DCB forces processing to be
done only on a tape already having that serial number; tapes
mounted as IN may not be written; and tapes mounted as other than
IN must have a write ring. (See "semiprotective mode".)

public library a set of library routines declared at SYSGEN to be
public (i.e., to be used in common by all concurrent users).

RAD a fast, auxiliary, fixed-head, random-access disk memory.
(RAD stands for Rapid Access Data.)

relocatable object module (ROM) a program or subprogram in object
language generated by a language processor such as Meta-Symbol
!Jr FORTRAN.

ROM see relocatable object module.

scheduler a monitor routine that controls the initiation and
termination of all jobs, job steps, and time slice quanta.

secondary storage any rapid-access storage medium other than
main memory (e.g., RAD storage).

semi-protective mode a mode of tape protection in which a
warning is posted to the operator when an ANS DCB attempts
output on a non-ANS tape or an unexpired ANS tape, when a
non-ANS DCB attempts output on an unexpired ANS tape, or
when a tape mounted as INOUT has no write ring. The operator
can authorize the overwriting of the tape or the override
of INOUT through a key-in (OVER and READ). ANS tapes may be
initialized by the Label processor or may be given labels
as the result of an operator key-in; tape serial number
specification is allowed at the operator's console; and
specification of an output serial number in an ANS DCB
forces processing to be done only on a tape already
having that serial number unless the operator authorizes an
overwrite. (See "protective mode".)

shared processor a program (e.g., FORTRAN) that is shared by
by all concurrent users. Shared processors must be
established during SYSGEN or via the DRSP processor.

xii Ju 1 y 1 , 19 7 6

CHAPTER 1. INTRODUCTION

CONTROL PROGRAM-FIVE

Control Program-Five (CP-V) is a comprehensive, multi-use virtual
memory operating system. Its name is derived from the following
five modes of operation:

o Time-sharing

o Multiprogrammed batch processing

o Remote processing

o Real-time processing

o Transaction processing

CP-V supports these modes of operation with balanced service.
There is no inherent emphasis on one mode of processing.

The five modes of operation are also designed so that they may
operate concurrently. That is, several programs utilizing
different modes may be simultaneously resident in main memory with
CP-V selecting the appropriate one for execution at a given time
or possibly selecting more than one if the hardware configuration
provides more than one CPU for a multiprocessing environment.

Modularity allows the user to select only the mode or modes
required by a given task. CP-V performs equally well whether a
single mode is used or multiple modes are combined. Common
services, file management and procesors facilitate an
exceptional degree of compatibility between all the modes of
operation. These common services and the fact that they are
provided in a rather uniform way to all users regardless of the
mode of use has been emphasized in the design of CP-V.

Of particular importance is the file centered nature of CP-V. A
comprehensive file system is integrated into CP-V. This means
that programs can communicate easily since files are managed in a
common way by a common set of programs.

July 1, 1976 1-1

MODES OF OPERATION

To give the reader a general overview of the system, the five
modes of operation will be described 'briefly in this introduction.

o The time-sharing mode allows more than 128 interactive
terminals to be connected to the central computer at one
time. Rapid access to and response from CP-V creates an
atmosphere in which each time-sharing user appears to
have the entire system dedicated to.his task.

o The batch processing mode is designed to maximize
utilization of the system's resources while preventing
conflicts in resource use. Batch jobs may be submitted
to the batch job stream through the central site card
reader, from an on-line terminal, or from a remote site
via the remote processing mode.

o The remote processing mode provides flexible
communication between CP-V and a variety of remote
terminals. Remote terminals can range from a simple card
reader and line printer combination to another large
scale computer system with an assortment of peripheral
devices.

o Real-time processing involves reacting to external··
events (including clock pulses) within microseconds.
Selected external events are allowed to interrupt the
real-time user's program so that they can be processed
at the time they occur. After an interrupt has been
processed, control may then return to the interrupted
program or may be directed elsewhere.

o Transaction processing facilities provide an environment
in which several users at remote terminals may enter
business transactions, simultaneously utilizing a common
database. The transactions are processed immediately,
as they are received, by application programs written
especially for the particular installation.

CP-V FEATURES

The list below outlines those features, facilities or principles
which give CP-V a special uniqueness among large-scale,
full-function operating systems.

1-2 Ju 1 y 1 , 197 6

1. Program compatability in all concurrent operating modes.
Programs may be run in any mode without modification
(subject to very minor restrictions).

2. Single, central file management facility within the
system. Files are completely compatibile across
operating modes and language processors, eliminating the
need for file conversions. The file system is easy to
use, provides access security, dynamically allocates
secondary storage file space, and is accessed compatibly
with devices such as card readers, line printers, tape
drives, and user terminals. Files may be updated
concurrently by separate programs.

3. Event driven, priority-adjustable scheduler integrated
with swapping and virtual memory management.

4. High interactive response at time-sharing terminals
which is nearly independent of system load.

5. Multiprocessing with up to four central processing units
per system.

6. An excellent remote processing system. It includes
dynamic workstation definition, concurrent master. and
slave operation, and network support. The system
supports any HASP-360/20 protocol IRBT as well as IBM
2780, IBM 3780, and DCT-2000 compatibile RBTs. The
remote processing system is integrated with symbiont
spooling as its buffering mechanism.

7. Ease and naturalness of use for the casual user in both
batch and time-sharing modes. Simple yet comprehensive
languages exist for control of time-sharing and batch
jobs.

8. System default conventions that simplify programming,
batch JCL setup, and terminal commands.

9. Time-sharing access to all devices. Devices are symbiont
spooled if appropriate.

10. Easy machine language level I/O permitting access to
special devices.

11. Time-sharing access to almost all programs.

12. High-power interactive debuggers with combined use of more
than one debugger being possible.

July 1, 1976 1-3

13. Terminal personality including typeahead, echoplex,
support of virtually any terminal -- all ASCII TTY
compatibles, CRT's IBM 2741's, IBM 5100, Memorex,
Execuport -- special handling for tabs, paper tape,
transparent (uncoverted) I/O, dynamic timing algorithms,
all setable for each individual terminal.

14. A terminal may carry the program control stream and/or
the program may control many terminals as passive
devices.

15. High CPU performance. CP-V has very low overhead for its
supplied services.

16. High I/O performance via treed file indexes and several
forms of I/O caches and program-disassociated buffering.

17. Efficient use of main memory through· a tightly coded and
carefully overlayed operating system, as well as
efficiently managed user memory.

18. Automatic, operator-free crash recovery with complete
preservation of current user file updates, retention of
batch jobs awaiting processing or waiting to print, and a
complete diagnostic analysis of the memory dump. The
seriousness of the recovery is determined and an
appropriate level of recovery is automatically chosen.

19. Hardware diagnostics available from time-sharing
terminals.

20. Remote access to hardware and software diagnostics.

21. IBM compatibility through ANS and OS labeled tape in
either ASCII or EBCDIC and the HASP communication
protocol.

22. Excellent protection and security of programs and files.

23. Shared reentrant system processors which may be
user-supplied and may be dynamically added or changed
during system operation. These include language
processors such as APL and BASIC, public libraries such
as that for FORTRAN, and user-written programs in FORTRAN
and other languages.

24. Command processors for on-line, batch and EASY (GE Mark
II) or for installation-specific, specialized processors.

1-4 July 1, 1976

25. A modern, extensive database management system, EDMS,
interfaced conveniently to APL, COBOL, FORTRAN, and
machine language programs.

26. Ghost jobs for a variety of system and user tasks.

27. A comprehensive accounting system including a dynamic
charge rate structure.

28. An integrated performance monitor for measuring and
tuning system performance.

29. Simple to use, high-speed system generation process.

30. Completely relocatable and symbolic system patching.

31. A consistent design philosophy yielding an easy-to-modify,
modular structure. ;

32. Small staff requirement for installation and system
support.

ORGANIZATION OF THE MANUAL

The remainder of this manual is organized as follows:

o Chapter 2 provides an overview of the operating system.

o Chapters 3 through 7 discuss elements of the system which
are common to all modes of operation.

o Chapters 8 through 12 each describe those features of
the system which deal exclusively with the time-sharing,
batch processing, remote processing, real-time, and
transaction processing modes of operation, respectively.

o Chapters 13 through 16 describe those features of the
system which are of interest to the system manager,
system programmer, and computer operator.

o Appendix A describes various CP-V processors.

July 1, 1976 1-5

CHAPTER 2. THE OPERATING SYSTEM

OVERVIEW

The CP-V operating system consists of a monitor and a number of
associated processors. The monitor provides two basic functions:

o Control of the entire system operation, making efficient
use of system resources and providing good system
response.

o Services to the user that enhance the hardware to
provide a virtual machine to each user which is easy to
use and is enclosed in an envelope of security.

The associated processors provide specific functions such as
compilation, execution, and debugging. All of the processors
available for a CP-V system are listed and categorized in Figure
2-1. Some of these processors will be mentioned in the remaining
chapters of this manual. A brief description of all of the
processors is given in Appendix A.

[Monitor]

r 1 T 1] J
!

Command System Language becution Service r Application User Processort I
Proceuon Mat1Ggement Proceaon ControJ ProceGOtS . Pl'OCeUOl'S

Procesacrs i'roceu<:in I Sort/Mer-.o LOGON/ ANS FORTRAN Edit
LOGO FF S:Jper Meta •Symbol Link PCL E!:>MS

TEL Control AP Lead LEMUR GPOS
EASY Rates BASIC LYNX SYSGeN Manoge
CCI Fll.L ANS C080L O.lto OEFCOM Ttamaction

FSAV! Apt, FOP SYMCON Proceuing
FRES RPG

I
coaoL ~NL?

Fix On-Line I a.•ch VOLIN IT O.bug;er ORSP
Lobel Ell.A
STATS I Show Summcrry
SYS CON
GAC
OEVOMP
ONLlST
PPS

Figure 2-1. CP-V Operating System

July 1, 1976 2-1

Work is performed by the CP-V system through a combination of the
CP-V processors and user-developed programs. Each unit of work is
packaged together as a "job". There are three different kinds of
jobs in CP-V to meet different user (and system) requirements.

o A batch iob is one in which the entire control stream
and resource requirements (e.g., tapes, spindles) are
known to the system before the job is put into
execution. Given this information, it is possible for
CP-V to schedule batch jobs to optimize the use of
non-sharable resources. Generally, batch jobs are
disconnected from any human interaction and output is
not delivered until completion of the job. Unexpected
occurrences in the job will cause the remainder of the
job to be eliminated. Batch jobs are submitted to the
batch job stream through the central site card reader,
through an on-line terminal (using the Batch processor),
or through a remote processing terminal.

o An on-line iob is one which is connected uniquely to a
time-sharing terminal and which receives its control
stream from the user at the terminal in an interactive
manner. Resource requirements are not made known to
CP-V in advance and thus must be acquired on a
contention basis. This is workable since a human· is in
the loop and can make decisions when resources are
unavailable. Also, unexpected occurrences need not
abort the job since the human is able to correct the
condition and continue the job. Other than being unable
to pre-allocate resources, an on-line job can do nearly
everything a batch job can do.

o A ghost job has no input control stream and is not
connected to any terminal. (Many system ghost jobs ask
the central site operator for "advice" however.) A
ghost job is usually providing some service to the
monitor. Its actions are controlled by communication
via a file or some other form of internal communication.

THE MONITOR

The CP-V monitor functions as the major control element in an
installation's operating system. In. general, the monitor governs
the order in which programs are executed and provides common
services to all of them (see Figure 2-2).

The number, types and versions of the programs in an operating
system vary, depending upon the exact requirements at a

2-2 Ju 1 y 1 , 19 7 6

Monitor .------ --- ------ ----,
Operator System Control I-

Job Input
Job Scheduler t

Job Output -----...ii ..
0

Processing Programs
r- - - - - - - - - - --,
I

' ,_...+- Langv.:zge
I Translator
I
I

!--+- Servi c:e
.,. __ _
~
l
:)

"'

Symbionts t-

•
L- ... --------- ------•---..!

~ Botch User

L..-:- Time-Sharing
Usen

Figure 2-2. Operating System

particular installation. Each operating system consists of a
selection of monitor routines and processing programs that are
closely integrated for a given range of applications.

The operating system required for a particular installation is
defined through use of the System Generation programs. System
generation (most frequently referred to as SYSGEN) is performed
by the installation's system manager.

As the requirements of an installation increase, the operating
system can easily be enlarged, modified, or updated. The ability
to adapt conveniently to new requirements is inherent in the
system design. Once a system is generated, it can be quickly
expanded to include user's programs, data, and system libraries.
User's programs and the standard system processors are equivalent
in that they are stored, cataloged, and referred to within the
system in the same way. They are also written using the same
conventions for communicating with the monitor.

The operating system is self-contained and requires operator
intervention only under exceptional conditions.

July 1, 1976 2-3

The monitor uses sophisticated techniques for efficient machine
operation in·a production environment. The ability to process a
continuous series of jobs with little or no operator intervention
is one of the most important features of the system. By reducing
the need for operator participation, the operating system ensures
faster throughput, and operations are less subject to error. For
the most part, the operator should only have to perform routine
tasks such as loading and unloading tape reels.

Complete and easy-to-use I/0 services are available to user
programs, thus relieving the programmer of many coding chores.
Device assignment is general and automatic, enabling the user's
program to exploit the complete flexibility of peripheral units.

I/O service is comprehensively organized to simplify programming
and make machine utilization efficient. I/O transfers are
automatically buffered, and I/0 peripherals are serviced on a
queue basis (by job). Jobs can thus be executed sequentially
even though they might normal~y be I/0-bound and delay use of the
CPU or other I/O devices.

The job scheduler permits selective job operation based on job
type or administrative priority to maximize throughput efficiency
or environmental needs. The computer operator maintains complete
cont r o 1 over the j ob stack on secondary st or a·g e .

Rapid access data (RAD) and disk pack (DP) storage devices are
used for secondary storage. Secondary storage management is
essential to efficient operation of the monitor, since such
storage is fully exploited in various ways. It is used for system
storage to overlay portions of the monitor, minimizing core
memory residency. Service processors (compilers, assemblers,
etc.) are contained on secondary storage for immediate access and
they, too, capitalize on rapid overlay techniques to minimize
core memory requirements at execution time. Scratch storage for
service processors and user programs is available on secondary
storage. Finally, the secondary storage accommodates permanent
and temporary user files.

User files may be stored on public RAD or disk packs or on
private disk packs or magnetic tape. Three file structures are
available: random (direct), consecutive, and key-indexed
(indexed-sequential). Access may be either direct (keyed) or
sequential. Programs coded to access the simpler consecutive
files may correctly access the more complex keyed files
sequentially without program change. Files are protected from
unauthorized use by passwords, by implicit lists of users
authorized to execute, to read, or to update them, and by
encryption of record keys.

2-4 Ju 1 y 1 , 197 6

User programs can avaii themselves of the secondary storage and
the overlay service of the monitor. With these facilities, user
programs that require more operating main memory storage than is
physically available can be easily segmented and controlled so
that only part occupies available main memory at any one time.
The monitor accepts the overlay structure of the user's program
and ensures proper sequencing and transferring of program
elements. It also detects inconsistencies in the logical overlay
structure and logs them with a diagnostic message to the user.

The monitor provides for complete accounting of user job activity
on the computer. Because of the system's multiusage capability,
the accounting information indicates both elapsed time and actual
machine facility utilization of each job.

The monitor provides job accounting and validation of each user's
job activity:

o Validity or authorization checks are made on the user's
name and account number combination. Jobs are aborted
when the name and account number are not previously
authorized by the installation manager.

o A discrete accounting record is written at the
termination of each batch job.

o Standard accounting can be supplemented by the user
supplying initiation and termination routines for a job.

The monitor's memory management function relocates user programs
into the currently available core memory space, satisfies all
library subroutine references, and links all program elements
called for by the user. In addition, run-time debugging calls are
recognized and established for the programs to be run.

The monitor responds to the moment-by-moment requirements of
controlling machine operation, switching between programs
requiring service, and providing services at the explicit request
of the user's program. The monitor processes that perform these
functions are listed below:

1. Basic Control.

2. Scheduling and Swapping.

3. Multiple Processor Scheduling.

4. Memory Management.

5. File Management

July 1, 1976 2-5

6. Multibatch Job Scheduling.

7. Job Step Control.

8. Terminal I/O Handling.

9. Symbionts and Cooperatives.

10. System Integrity.

11. Initialization and Start-Up.

12. Operator Communications.

13. Batch Debugging.

14. Load-and-Link.

15. System Debugging.

The basic control system is an I/0 interrupt service and handling
routine. It includes trap and interrupt handlers, routines-that
place requests for I/O in a queue, and basic device I/O handling
routines.

The scheduling and swapping modules make the decision to swap,
select the users to swap in and out, set up the I/O command
chains for swap transfers, and select the next user(s) for
execution. They also ensure that any associated, but not
currently resident, shared processors are brought in with each
user. Special algorithms control I/0 scheduling and the balance
of machine use between on-line and batch.

Multiple processor scheduling schedules tasks for idle secondary
processors after scheduling any possible swaps and prior to
scheduling a user for the primary processor. Since secondary
processors operate at their greatest efficiency when assigned
users with little immediate need for monitor service, a
short-term history of service requests is kept for each user.
This service rate history is compared against a threshold value
set by the installation manager so that only the most promising
candidates for secondary processors are selected.

The memory management module controls the use of core and disk
storage. Specifically, it controls the allocation of physical

2-6 July 1, 1976

core memory, maintains.the map and access images of each user,
services the "get" and "free". service calls for memory pages, and
manages the swapping disk space.

File management routines control the content and access to
physical files of information. These routines perform such
functions as indexing, blocking and deblocking, managing of pools
of granules on RADs and disk packs, labeling, label checking and
positioning of magnetic tape, formatting for printer and card
equipment, and controlling access to and simultaneous use of a
hierarchy of files.

The multi-batch job scheduling routines select jobs to be run
from the waiting input queue depending on priority, position in
queue, and resources available within partitions defined by the
installation.

Job step control routines are entered between major segments of a
job or an on-line session. They perform the monitor functions
required between job steps such as

1. Processing error, exit, and abort CALs.

2. Handling monitor aborts.

3. Processing interpretive exits to associate shared
processors or to load program modules.

4. Merging DCB assignments for execution.

Terminal I/O handling routines perform read-write buffering and
external interrupt handling for I/O directed to user terminals.
These routines also translate character codes, insert page
headers and vertical format control characters, simulate tabs,
and perform other formatting tasks.

Symbiont routines transfer data from the card reader to disk
storage and from disk storage to the card punch or line printer.
Input cooperatives intercept card read commands in user programs
and transfer data from disk storage where it has been stored by
the symbiont routines. Output cooperative routines intercept
output directed from a user program to a line printer or card
punch and transfer the data to disk storage.

July 1, 1976 2-7

System integrity facilities provide error detection and recovery
capabilities. This includes security to user files and automatic
high-speed restart in case of system failure. Sufficient
information is recorded to isolate errors and failures caused by
hardware or software.

Initialization and start-up routines are stored on tape and are
booted into core storage. After they are in core, they load the
monitor root into core and turn control over to the root. The
monitor root then completes the initialization of the monitor by
starting and running the program called GHOST1 which completes
the patching of the system and the initialization of the swapping
disk and hardware.

Operator communication routines provide for communication between
the monitor and the operator. They transmit messages to the
operator and process key-ins received from the operator.

Batch debugging routines provide batch programs with debugging
capability through the use of procedure calls. Any batch
program may take a snapshot dump of a specified segment of
memory, either on an unconditional or a conditional basis.

Load-and-link routines give batch programs two types of loading
and linking capability. Through the use of procedure calls, a
batch program may:

1. Store the calling program on disk storage, load the
called program into main memory, and transfer control
to the called program.

2. Load a program into main memory, transfer control to
the called program, and release the core area used by
the calling program.

System debugging routines provide debugging services to system
programmers.

2-8 July 1, 197 6

CHAPTER 3. SCHEDULING, SWAPPING, AND RELATED TOPICS

This chapter contains a discussion of several key CP-V features.
They are

o Scheduling and swapping

o Resource management

o Privilege, protection, and security

o Shared libraries

o Shared processor facilities

SCHEDULING AND SWAPPING

The most vital part of a multi-use operating system is the
scheduler, the module whose primary responsibility is allocating
the computer's resources. The scheduler is critical in providing
fast response to on-line users and rapid throughput for all jobs.
The degree of efficiency witn which the scheduler performs is the
key to optimum utilization of a computer system - and the value
of the computer to an organization.

The CP-V scheduler performs two major functions in achieving the
goal of high performance:

o Selecting the highest priority user whose program and
data are in memory for execution.

o Ensuring that remaining high priority users are in
memory ready to use the processing resource when it
becomes available.

The CP-V scheduler accomplishes this by

o Creating prioritized status queues into which every job
has a single entry.

o Assigning every job in the system a priority.

o Modifying a job priority as requirements for access to
the processing resource change during execution.

July 1 , 19 7 6 3-1

There are three fundamental classes into which the various status
queues may be segmented:

o Waiting to Execute - This group of queues contains those
jobs requirtng _the pr-o..eessing resource in order to
proceed.

o Executing - This queue consists of a single entry for
each central processor: the job currently using the
processing resource.

o Non-Executable - This group of queues contains jobs
waiting for an "event" to occur before requiring access
to the processing resource.

A primary benefit of the priority queue structure is that it
provides complete service to I/O users while concurrently keeping
the processing resource busy with compute-bound jobs, allowing
maximum utilization of both I/O devices and the basic processor.

Each job is assigned a base priority when first activated. The
base priority may be different depending upon the selected mode
of operation - for example, batch or on-line - thereby allowing
one class of jobs to gain preferential service. During normal
operation, the priority of a job changes frequently during·
processing. Conditions or events that cause the scheduler to
modify a job's priority include

o Completion of an I/O operation

o Opening or closing of a file

o Completion of a time quantum

o Addition of real-time task

o Completion o~ terminal input

Upon being notified of the occurrence of one of these events, the
scheduler changes the priority of the associated job. To
facilitate the changing of job priorities, the scheduler uses an
event-transition technique. This technique can be viewed as a
matrix where one coordinate represents all possible events that
can occur and the second represents the status queues. Any
intersection defined by the occurring event and the current state
of the associated job determines the new priority and the new
queue. Because the executing programs and the environment
continually apprise the scheduler of their requirements and
resources available, the scheduler can efficiently and

3-2 July 1, 1976

effectively optimize the entire system. Dynamic system tuning is
a major factor in making CP-V the most efficient multi-use
operating system available.

Another mechanism used by the CP-V scheduler to increase the
amount of time spent in processing user jobs is the use of
bounded time intervals. QUAN, QMIN, and SQUAN are three time
intervals which may be set to ensure that no user job receives
more than its share of the processing and memory resources, yet
still gets enough to satisfy the users' requirements.

o QUAN is the maximum time-slice allowed a compute-bound
user before another job is given control of the system.
This assures that no single compute-bound job of a given
priority can dominate the processor resource. The QUAN
value is separately specified for each batch partition
and all on-line users.

o QMIN is the amount bf processor time guaranteed a job
unless pre-empted by a critical real-time task. The
processor will still respond to I/O interrupts and
perform other system tasks, but the processor will not
be given to another user until the current user has
received the QMIN time.

o SQUAN is the minimum memory-resident processor time a
job is guaranteed once it has been brought into memory.
Th~ job will not be considered for out-swap until it has
received the SQUAN time.

The swap scheduler ensures that the highest priority jobs
currently requiring the execution resource are in memory. It
does this by moving other jobs to secondary storage and moving
the highest priority jobs into memory. Candidates for jobs to be
moved to secondary storage are located in the same prioritized
queues used by the task scheduler. when at the high end, they
have a high priority for swapping into memory and for execution;
when at the low end, they are prime candidates for removal to
secondary storage. This latter feature - that of having a
priority for removal of users to secondary storage - is an
important aid to efficient swap management. It avoids extraneous
swaps by making an intelligent choice about outgoing as well as
incoming users.

'
Another way of viewing the swap storage is as a "virtual"
extension of real memory. This virtual memory system allows for
total user memory space well in excess of 15 million bytes to be
satisfied by a real memory system as small as 256K bytes. And it
does this while maximizing the user productivity of the vital
execution resource. This results in extremely fast response to

July 1, 19 7 6 3-3

on-line users and fast throughput for all jobs.

The CP-V swapper is efficient because it takes advantage of other
CP-V modules as well as the capabilities of the hardware on which
it runs.

When a user requests service from the system, space is allocated
to him on a secondary storage device. As his memory requirements
grow during his session, additional area necessary to contain him
grows into adjacent sectors following his initial allocation, so
that the individual user's space is organized for swapping as
quickly as possible.

When multiple users are being swapped out the I/O commands for
each user are sorted and chained together, so that the end of one
user's area is the shortest possible distance from the beginning
of the next. After this chaining is accomplished, the current
position of the swapping device is sensed and the swap is begun
with the user closest to the current position. This procedure
effectively reduces latency well below the average access time
for the secondary storage device. Similar logic is applied to
the swapping in of multiple processors along with user programs.

The multi-unit, multi-ported memory of the 'Computers on which
CP-V runs allows true swap/compute overlap to be achieved: .
while one user's program utilizes the computing resource, other
programs migrate between primary and secondary storage. Because
these operations can occur simultaneously, the execution
processor spends a maximum amount of time performing productive
work. The execution processor does not have to remain idle while
a swap is in progress, and swaps can proceed without interfering
with computation.

Other swap efficiencies are gained through the reduction of
required swaps. Most of the CP-V processors are reentrant, which
means the same copy can be used by multiple users - eliminating a
requirement for additional primary memory which would otherwise
be necessary. Reentrant processors have another advantage:
because they are pure procedure, they do not have to be swapped
out, since an identical copy already exists on the secondary
storage device.

MULTIPROCESSING

The basis for a CP-V Multi-Processing system is the large memory
mono-processor system with one or more additional processors able
to access all of memory. This ability for all processors to

3-4 July 1, 1976

access all of physical·memory is fundamental since the majority
of communications between proqessors is through memory. Thus, all
processors are tightly coupled via shared main memory.

Only one of the processors, called the primary processor, executes
the entire body of code comprising the CP-V monitor; all other
processors, called secondary processors, operate as compute
peripherals for use by the primary processor. The secondary
processors are assigned slave mode, compute tasks as user units
by the primary processor. Once a task begins execution on a
secondary processor, it continues until either a quantum-end
condition occurs or a need arises to perform a monitor service
requiring interaction with stored central tables. When a
secondary processor is no longer able to continue execution of
its assigned user, the environment is saved and the primary
processor is signalled via flags and data in main memory. An
interrupt is directed to the primary processor by the secondary
only to hasten the detection of these flags by the primary. Upon
noticing the idle condition bf the secondary, the primary parks
the user previously assigned and attempts to find a new user for
the secondary. In the event that no suitable user is found,
additional attempts are made to schedule tasks for each idle
secondary procesor after scheduling any possible swaps and prior
td scheduling a user for "the primary.

RESOURCE MANAGEMENT

The term resource has a very specific meaning in the following
discussion. A resource is any portion of the CP-V installation
that is to be shared by the users in a manner such that each user
requiring the resource is allocated the resource for its
exclusive use. (An exception to this is private disk packs which
under some circumstances may be shared even though they have been
defined to be resources.) Peripheral devices and core are common
types of resources. Symbiont devices and public storage devices
can never be defined to be ~esources because they are
non-allocatable devices; that is, they are never reserved for the
exclusive use of one user.

There are special resource management routines within the
monitor. The specific task of these routines is to keep track of
the number of resources of each kind in use and the number of
resources of each kind that are available for use. For a batch
job, the requirement for resources is compared with the available
resources and the job is not started unless sufficient resources
are available. (The user specifies his resource requirements on
the LIMIT control command.) Further, the resources are reserved

July 1, 1976 3-5

for the exclusive use of the job so that it is guaranteed that
they will be available even if a long time elapses between job
startup and actual use of the resources.

CP-V does not require that an actual physical device correspond
to each of the resources it manages. When there is no
correspondence between a resource and an actual physical devices,
the resource is called a pseudo-resource. Pseudo-resources are
often used to achieve special job scheduling tasks requiring
access, for example, to a particular execution partition.

The system manager must define what the resources are for the
installation, establish system defaults and maximums for use of
the resources, and set limits on the use of the resources for the
individual users. He performs these tasks using the following
processors:

o SYSGEN PASS2

o Control

o Super

In the PASS2 phase of System Generation, the system manager uses
the :RES command to establish which portions of the installation
are to be resources. For each resource, he establishes the
amount of the resource that may be allocated to all concurrent
batch jobs, to all concurrent on-line jobs, and to all concurrent
ghost jobs. He also establishes the default amount that is to be
allocated to each batch, on-line, and ghost job in cases where
the amount is not otherwise specified and the maximum amount that
may be allocated to individual batch, on-line, and ghost jobs.

The following types of resources are always defined at SYSGEN -
if not explicitly, then by default:

CO - core (main memory)

MC - maintenance console

A maximum of 13 more resources may also be defined.

The Control prDcessor can be used to dynamically modify the
default and maximum values associated with each resource.
Resources must be defined at SYSGEN. New resources cannot be
added to the system via the Control processor. However, a
resource may be effectively removed from the system by
appropriate modification of the values associated with the
resource.

3-6 July 1, 1976

The Super processor is used to establish the maximum amount of
each resource that is to be available to each user when the user
runs in the batch or on-line 'modes. In special cases, an
individual may be authorized a resource maximum which is higher
than the system maximum to allow a special job to run when no
other user can acquire that amount of resource. For example, the
maximum for core could be set low during the day for pushing
through a lot of small jobs, but an individual critical job could
be run with a high core requirement.

In order to coordinate the sharing of a CP-V installation among
many users, it is necessary to impose limitations on the
execution of user programs. These limitations fall into two
categories:

1. Service limits which limit such things as:

0 Job execution time.

0 Pages of printer output.

0 Number of cards punched.

0 Amount of temporary public storage.

0 Amount of permanent public storage.

2. Resource limits which limit the number of resources of
each type that are available for the job (e.g., tape
drives, spindles, etc.).

Limits are established, changed, and collected from four sources:

1. SYSGEN PASS2 processor - for establishment of system
limit tables which define limits to be associated with
each batch, on-line, and ghost job. These limits are
established through use of the :RES, :BLIMIT, :OLIMIT,
and :GLIMIT commands.

2. Control processor - for dynamic modification of the
system limit tables.

3. Super processor - for establishment and dynamic
modification of the limits for each individual user.
The limits are recorded in the :USERS file, a file which
contains one record for each authorized user at the
installation.

4. LIMIT control command - for establishment of limits on

July 1 , 19 7 6 3-7

a particular instance of execution. (The LIMIT control
command is only applicable to the batch mode.)

The sequence by which the ultimate service and resource limits
are placed on an executing user program is depicted in Figure
3-1. When the job is started, limit values for the job are
initially set from the :USERS file record. Values which are not
given in that record are then set from the monitor limit tables.
For batch jobs, limit values are set to the value specified by
the LIMIT control command.

Finally, these composite values are compared to the maximum
values in the :USERS table or monitor limit tables and the job is
aborted if the limits are exceeded.

The process may be divided into two cases: first, when there is
no user maximum specified in the :USERS file record for the limit
in question, and second, when there is a user maximum specified.
The algorithm applies both to service limits and to resource
limits identically, except when noted.

Case 1: No User Maximum in :USERS file

The limit is set to the limit on the LIMIT control command· if
any. Otherwise, it is set to the system default. If the limit
is less than or equal to the system maximum, the job is run.
Otherwise, the job is aborted.

Case 2: User Maximum specified in :USERS file

If no LIMIT control command is included with the job, the limit
is set to the user maximum for all service limits and all on-line
resource limits. The limit is set to the user maximum or the
system default (whichever is smaller) for batch resource limits
and for job execution time.

If a LIMIT control command is included with the job, the limit is
set to the limit on the command if it is less than or equal to
the maximum specified in the :USERS file. Otherwise, the job is
aborted.

3-6 July 1, 1976

I

Super
processor

SYS GEN
PASS2 .
_e_rocessor

I
Control
processor

establish and modi_fr_ :USERS
file

establish

modify

System
limit
tables
and
defaults

1

2

I
3 I

I
_,;--- - - - - - - - , I

,,' LIMIT : I
(con tro I command Y
~lx:tc~ ~o~e _o~lr) _ _;

Figure 3-1. Establishing Limits for a Job

PRIVILEGE, PROTECTION, AND SECURITY

Limit
values
for
a
job

.~

Aside from reliability, one of the major advantages of the field
proven nature of CP-V is that it has evolved into a system that
stresses total security and preservation of user files with full
protection of the operating environment from malicious or
inadvertent destruction. Hardware security is provided through
the memory map, the map's associated memory access protection
scheme, and the memory write protection system of locks and keys.
These are discussed below.

1. Memory Map

User memory is logically divided into 256 pages of
512 words each, permitting any one user at any given
time to have a virtual memory of up to 128K words.
While many users of the same virtual addressing may be
resident at the same time, scattered over the real
memory available, the memory mapping system prevents any

July 1, 1976 3-9

one user from getting at the physical memory of other
users.

2. Access Protection

Memory access protection assures that a user or slave
program writes only to its own data area. No access is
granted to write over either its own executable code or
over any part of the monitor. A two bit access code is
associated with each page of a user's virtual memory.
The four possible combinations of the code mean:

11 - The program may not access this page.

10 - The user may read but neither execute nor
write over ~his page.

01 - The user may read or execute the data in the
page.

00 - The user may read, write or execute the data.

The hardware automatically prohibits any user from.·
violating this code, but allows the operating system and
its related routines to bypass the access protection.
The result is that the feature prevents a user program
from damaging itself, a shared library, or its context.

3. Memory Write Protection

This feature provides individual memory write protection
capabilities on a page basis for memory through a system
of memory keys and locks. It is used to protect monitor
procedure from itself as well as from any I/O
operations.

User authorization security is achieved in the following way.
Before any user can do any processing on CP-V, an account must be
created for him by the system manager. When the account is
created, the system manager must specify an account name and an
account number~ In addition to these items, the following
additional parameters may be supplied for each account:

3-10

1. The associated type and level of privilege granted the
user. The user may be allowed to

0 Utilize real-time services.

July 1, 1976

o Bypass security and account checks.

o Access and change the monitor.

o Read and write error file; request the devices;
invoke diagnostics; authorize enqueue/dequeue
automatically.

o Examine (but not change) the monitor.

2. The password that is to be associated with the account.
If specified, no one can do any processing unless the
password is provided.

3. Whether or not all files created under this account may
be read by other users. This is a general restriction
which, if not applied, can be invoked on an individual
file and/or user basis through another feature of CP-V.

4. Whether or not a security check is to be performed on
newly allocated core and disk storage to be used by this
account. If requested, all core and disk memory that
the user will access will be effectively erased b~fore
being accessed.

5. Whether or not the processors available to this account
should be restricted.

6. Whether or not to automatically connect a user of this
account to a given program.

Through these features an installation has numerous security
controls over each and every user. These controls may, with the
system manager's discretion, be applied to users on an individual
account basis.

With most systems, the integrity and security of the file system
is critical to ensure safe and reliable operation.

The CP-V file system uses three separate techniques to ensure its
reliability and to prevent unauthorized access.

July 1, 1976 3-11

1. Password

A user may assign a private password to a file. If
someone tries to access that file without using the
proper password, access is denied.

2. Access Lists

Each file ha.s three lists of account numbers associated
with it. The first list says what other accounts may
execute that file. It also identifies what processor
may be associated with the file. A primary use for this
feature, of course, is to control the reading of
proprietary programs. If a program is stored as an
execute-only file, users can execute the code but never
examine it. A second list specifies what users can read
or execute the file.: They cannot write to it, however.
This allows data to be shared without being destroyed.
The third list allows users to read, write, or execute
the file. This is the list of all users who have
complete access to the data or program. Instead of
specifying a series of accounts, the creator of the file
can say ALL or NONE in any list, which means everyone or
no one (but the creator) can access it. Low priority
users are restricted from reading all files cataloged
under an account other than their log-on account unless:

a. The log-on account is specifically mentioned in the
read access list.

b. The read access list consists of the single word
PUBL.

A significant option to this system consists of limiting
access to a given file only via a specific processor.
Thus users in other accounts may be permitted access to
such files but only under very special circumstances and
only through a system processor.

3. Data Encryption

Each record of a KEYED or CONSECUTIVE file can be
encrypted with a unique encryption key.

In addition to the above (which applies to disk storage), the
following are two modes of protection for ANS labeled tapes:

3-12 July 1, 1976

1. Protective Mode: A mode of tape protection in which
only ANS expired tapes may be written on through an ANS
data control block; no unexpired ANS tape may be written
on through a non-ANS data control block; all ANS tapes
must be initialized by the Label processor; no tape
serial number specification is allowed at the operator's
console; specification of an output serial number in an
ANS data control block forces processing to be done only
on a tape already having that serail number; tapes
mounted as input tapes may not be written; and tapes
mounted as other than input tapes must have a write
ring.

2. Semi-Protective Mode: A mode of tape protection in
which a warning is sent to the operator when an ANS data
control block attempts output on a non-ANS tape or an
unexpired ANS tape, when a non-ANS data control block
attempts output on an unexpired ANS tape, or when a tape
mounted as available for input and output has no write
ring. The operator can authorize the overwriting of the
tape or the override of the input and output
specification through a key-in. ANS tapes may be
initialized by the Label processor or may be given
labels as the result of an operator key-in; tape serial
number specification is allowed at the operator's.
console; and specification of an output serial number in
an ANS data control block forces processing to be done
only on a tape already having that serial number unless
the operator authorizes an overwrite.

Before closing the discussion of file security, a few words
should be said about security when the Extended Data Management
System (EDMS) is used. Security under EDMS necessarily goes
further than the standard file system. The reason for this is
that with EDMS the data base is by definition an integrated one
that will in all probability require multiple users in multiple
accounts to access all or part of the information. The advantage
of EDMS is that it permits this type of usage while providing
numerous security checks to prevent unauthorized access.

Some of these security checks include

o Ability to segment the definition of the entire data
base (schema) into logical sub-sections (sub-schemas).
This allows access permission to only limited areas of
the data base for certain users.

o EDMS requires separate passwords to authorize
modification of a schema, generation of a new

July 1, 1976 3-13

sub-schema, use of an ~xisting sub-schema, read access
to specific data groups or items and update access to
specific data groups or items.

o Data enciphering/deciphering logically combines a
user-selected bit pattern with data as it is entered into
the database. Each successive word in an EDMS page is
automatically modified by its predecessor before it is
stored. Secure data can therefore be protected even if
access to the group or item containing the data has been
achieved, since the key pattern must be supplied by all
users who access the area before the actual data can be
regenerated. Memory dumps of the database do not
contain the key pattern.

Thus the file systems supported under the CP-V system provide
numerous protection vehicles. While they can be used to
absolutely prevent access to files, they also have the
flexibility to permit access that is limited by any combination
of account, function and/or areas of files.

SHARED LIBRARIES

A shared (public) library is a collection of frequently used
subroutines which is treated by CP-V in such a way that multiple
programs may simultaneously use the same copy of the library.
This results in efficient use of main memory, swapper space,
and bandwidth. A number of public libraries are supplied with
CP-V (e.g., the FORTRAN Run-Time Package and the COBOL library).
User installations may create additional public libraries which
suit their specific requirements.

SHARED PROCESSOR FACILITIES

The shared processor facilities of CP-V permit the sharing of the
code for compilers, assemblers, command language processors,
debuggers, libraries, and other programs among all simultaneous
users. Each user of a shared processor has his own copy of only
the data and DCB portion of that program; the procedure (code)
portion is shared by all users associated with the shared
program. Furthermore, the shared processors are prepackaged for
immediate loading and their secondary storage disk address placed
in CP-V main memory tables. This makes for very fast access
through the swapping mechanism.

3-14 Ju 1 y 1 , 19 7 6

Shared processors are not limited to company-supplied programs.
The facilities may be effectively used whenever a program has a
high probability of common usage. Service bureaus, for example,
may use the mechanism for proprietary packages. Corporate
installations may use the mechanism for programs with a high use
frequency.

To qualify as a shared processor, a program must meet certain
requirements. Three of the more important of these requirements
are as follows:

1. Shared processors are allowed only one level of overlay.
There is no restriction on the number of overlays but
only one of them can be associated at a time.

2. Data cannot be included in overlays; it must be in the
processor root.

3. Shared processors are often written in assembly language
but may be written in FORTRAN or any processor providing
pure code output. Shared processors written in FORTRAN
must be initialized by some assembly language code that
associates the FORTRAN library and links to the FORTRAN
code.

These requirements are outlined in greater detail in the CP-V/SP
Reference Manual, 90 31 13.

July 1, 1976 3-15

CHAPTER.4. USER-DEVELOPED PROGRAMS

OVERVIEW

A user creates, compiles, loads, and executes a program in the
following manner:

1. Source language programs are created on punched cards
or via the Edit processor in the time-sharing mode.

2. The program is assembled or compiled by calling the
appropriate processors. .In the time-sharing mode, the
processor is called with a TEL command such as:

!ANSF THEIRPROG.1286A ON NEWFILE

In this example, the ANS FORTRAN source code resides in a
file named THEIRPROG in account 1286A. The object code
is to be stored in a file called NEWFILE in the user's
account. After the command has been entered, the
FORTRAN compiler prompts for compilation options. When
the user has entered the compilation options, the
compilation begins. This general approach is us~d by
all CP-V compilers and assemblers in the time-sharing
mode. Incremental compilers such as BASIC and
interpreters such as APL eliminate some or all of the
following processing steps, including them (or their
equivalents) automatically - i.e., without explicit user
command.

In the batch and remote processing modes of operation,
the program is assembled or compiled by calling the
appropriate processor with a system control command
such as

!ANSFORT LS,LO,PS

In this case, the compilation options are specified on
the command which calls the compiler. The whereabouts
of the source code and the disposition of the object
code are specified on ASSIGN commands which precede this
command.

The output of the assembly or compilation is a relocatable
object module (ROM).

July 1, 1976 4-1

3. The ROM or a set of associated ROMs is loaded by either
the Load or LYNX load processor. These processors
combine ROMs into a single entity called a load module
(LM).

4. Program execution is initiated by the RUN command. The
batch-mode RUN command has a different format than the
on-line RUN command. However, either RUN command may
be used to execute a load module formed by either of the
two load processors. The START command is also available
to on-line us~rs for execution of load modules.

Time-sharing users may execute a program under the control of a
debugging processor to facilitate the location and correction
of errors.

Some of the more specific details of user-developed programs are
given in the following sections.

PROGRAM LOAD AND EXECUTION

There are two processors that can be used to control loading and
execution of object programs: the Load processor and the LYNX
processor.

Load is a two-pass overlay loader. The first pass processes not
only ROMs but previously formed load modules or a combination
of both. (For example, Load processes dummy sections from library
load modules as well as from ROMs.) The first' pass also processes
expressions for definitions and references (primary, secondary, and
forward references). The second pass forms the actual core image
and its relocation dictionary. Load is available only in the
batch mode.

LYNX has all of the capabilities of the overlay loader, Load, and
also provides control over internal and global symbol table
construction. LYNX is in fact a preprocessor for the Load loader.
After it analyzes the user's commands, it constructs a table of
loader control information which it then passes to the Load
loader. It is Load which actually performs the loading process.
LYNX is available in both the batch and on-line modes.

PROGRAM OVERLAYS

An overlaid program is one that has only one segment resident in
main memory permanently. The other segments are called for by the

4-2 July 1 , 19 7 6

M:SEGLD procedure call and brought in as needed. They may reside
(at different times) in the same main memory area, thus reducing
the amount of main storage required to house the entire program.

If a program is to be overlaid, a TREE control command must be
the next control command following the command which called the
Load or LYNX processor. It must specify the overlay structure
of the load module to be formed, so that the logical segments
of the program will be loaded from secondary storage into main
memory as required. It is the user's responsibility to plan the
relationship of these segments.

The relationship of the segments that comprise an overlay program
can be represented graphically by means of a tree diagram, as in
the example shown below. The horizontal coordinate of the diagram

·denotes increasing main storage (address) allocation, from left
to right. The vertical coordinate denotes overlays. The
leftmost segment, or "root", is that portion of the program that
resides in main storage thro~gh program execution. A "path" of an
overlay consists of those segments that may occupy main storage
at the same time. The portion of a path that extends from the
start of the program (i.e., the root) to a given segment is termed
the "backward path" of that segment.

The example in Figure 4-1 consists of four paths, any one of which
may be present ip main storage at any given time. Segment A,
below, is the root of the program and is never overlaid bj another
segment. Any path may be loaded into main storage and overlaid as
many times as required by the program. All segments of the load
module are saved in disk storage and, when a segment that has been
overlaid is called again by the executing program, the original
copy is loaded from the disk. Therefore, any communication
between two overlay segments (e.g., D and E, below) must be done
in a part of the backward path common to both. Although the tree
below is singular, most actual overlaid programs consist of two
parallel trees, one for data and one for program. Both are
fetched by a single segment load call.

!TREE A-(C-(D,E),B-(G,F))

c

D

Figure 4-1. Sample Tree Structure

July 1, 1976 4-3

LIBRARIES

The purpose of a library is to collect frequently-used routines in
a form that expedites their inclusion into user programs. The
loader associates a library routine (with the program it is
contructing) on a conditional basis - :he condition being that the
library routine contain a DEF that satisfi~s an undefined PREF in
the main program. The loader accomplishes this task by performing
a search of the library to locate the DEF.

A library may contain modules of the following types:

o library load module - constructed by Load, LYNX, or
LEMUR.

o concatenated ROM module - constructed by LEMUR.

(A library may contain one or more of either or both types of
modules.)

The library load module is advantageous because the routines are
converted to a format approximating the final user program main
memory image. When the loader forms a user load module, these
library routines (already in load module format) are processed in
an expeditious manner. However, there are restrictions on library
load modules. In particular, all control sections within the
module must be of uniform protection type.

The ROM type of library load module presents no such restrictions.
Any ROM or set of ROMs may be entered into the library by the
LEMUR processor.

A library is a named, keyed file. The reason library routines are
placed in one file is to minimize the number of OPENs and CLOSEs
the loader must perform to include several library routines in a
user program. A library file is created and named by the Load,
LYNX, or LEMUR processor when appropriate options are specified
for the processor. There are virtually no restrictions on the
number of libraries which may reside in an account.

Internally, a library consists of two types of records
dictionary records and module records. A dictionary record has
the TEXT name of the DEF as its key. The dictionary record itself

·contains the TEXT name of the library module in which the DEF is
defined. A module record has as its key the module name appended
bY other information (depending on whether it is a library load
module or a concatenated ROM file). The module records are the
actual load module records or the ROM module records.

4-4 July 1, 1976

Library modules may be· individually deleted and copied. New
modules may be added and exis~ing modules may be replaced. These
functions are available through the LEMUR processor.

MEMORY PROTECTION

Monitor pages and unallocated virtual pages are protected against
access by user programs with the map access protection provided by
the CP-V hardware. The access protection types are

00 read, write, and execute access permitted (data).

01 read and execute access permitted (pure procedure).

10 read access permitted (static data).

11 no read or write permitted (no access).

Programs that either deliberately or inadvertently access the
monitor (by reading it or branching into it) will trap. The
same restriction also applies to other areas of the machine that were
not owned by the program (e.g., read access to unobtained common or
dynamic data pages). The first page of main memory is an exception
to these rules; its access is always set to read only. ·

VIRTUAL MEMORY LAYOUT

The user's 96K words of virtual space are divided as follows:

1. 8K words for monitor overlays and user context (JITs and
buffers).

2. 88K words for user procedure, DCBs, and data unless the
user program requires the use of a special shared processor
or a public library. In this case, the user area is 72K
words and the special processor area is 16K words.

With the exception of a fixed minimum requirement of six pages for
monitor overlays, one page for JIT, and three pages for the file
buffers, the 96K words of user area is demand allocated.

The LYNX and Load loaders place ROM data, including any data overlays,
in memory beginning at 40K then directly follow this with the DCBs,
procedure, and procedure overlays. When a BIAS is specified, the load
module is created at the specified location even though it may not be
possible to run the load module there.

July 1, 197 6 4-5

Load modules are constructed .from ROMs composed of control sections.
A control section is of type 00, 01, or 10. All control sections of
type 00 are gathered together by the loader and designated as DATA.
Similarly, all control sections of type 01 and type 10 are gathered
together and designated as PROCEDURE and STATIC DATA, respectively.

Except for DCBs, DSECTs or CSECTs with value 2 or 3 are changed to 1.
That is, no-access and read-only data are loaded with pure procedure.
Any DSECT that has a name beginning with M: or F: is assumed to be a
DCB and is removed to the DCB area and listed in the DCB table.

DCBs and the DCB name table are allocated in the user context area
(10 protection) rather than in the root procedure area (01 protection).

Internal symbol tables are generated for use by a debug processor (e.g.
Delta) if a program is assembled with the appropriate option. An
internal symbol table is built for each load module and is included
in the load module as a keyed record consisting of the element file
name appended with an X'10'. A symbol table can be loaded by a debug
processor for an overlay or a nonoverlay program by specifying its
element file name. If the element file contains more than one ROM
then only the symbol table for the last ROM is produced. A symbol
table that is generated during a load from the GO file cannot be
accessed by a debug processor. No internal symbol tables· ·are
generated for library load modules.

Figure 4-2 shows the layout of virtual memory for a program loaded
by Load or LYNX. Ordinary shared processors follow this layout.
Figure 4-3 shows the actual background memory layout at execution
time.

{) 32K 40K lood or Link llLK l28K

Public Special Shored
User Context: library

User data User program Dynamic Common Process.on:
Monitor JITs, buffers and root and User root and _..., 1--- TEL, LINK, Delta

monitor overl1Jys
context overlcys DCBs overlays Data Dato Public Library (if any)

FOP
(if required)

Figure 4-2. Virtual Memory Layout

4-6 July 1, 1976

Public: Library's Context Area.

alonk COMMON

TCB
Access protection of 00

Root Control Sections of type 00

Overlay Control ·Sections of type 00

..
unused

Control Sections of type 10

TREE Tables

REF/BREF Tables (1 po;:::)

Roof Control Sections of type 01

Access protection of 01

Overlay Control Sections of type 01

unused

Debug Tables (1 page)

tt Global and internal synabol tables

M:GP
t User's Dynamic: Oota

Access protection of 00
(may be changed by
M:SMPRT)

'
M:GCP

t Formed by monitor when load module is brought into core.

tt Acquired for symbol tables when associated Ylith Delta.

"'I
Beginning of user's

- virtual memory (X 1A000 1
)

Root

DATA (00)

I-'

_./Page Boundary

J DCB(TO)
,__fage Boundary

""'

> Root

PROCEDURE (01)

!

Page Boundary

J - Page Boundary

-End of user virtual
memory (X'l BFFF'
or X'lfFFF')

Figure 4-3. User Virtual Memory Layout, Load and LYNX Processors

July 1, 1976 4-7

CHAPTER 5. FILES AND DEVICE INDEPENDENT I/O

INTRODUCTION

CP-V provides all I/O services through a common set of services.
Programs may be written without the need for explicit knowledge of
the file or device to which I/O will actually take place.
Selection of the file or device can be done internally to the
program (M:OPEN) or externally via a control command (SET or
ASSIGN). In addition, a set of default device assignments are
provided which make appropriate device selections for batch or
on-line jobs.

All requests for I/O services specify a data control block (DCB)
name for use in performing the I/0. The DCB is the storage
for maintaining the actual I/O connection for the user as well as
as the repository of information concerning results of an I/O
operation, etc. Figure 5-1 illustrates the various connections
established for performing I/O. The following points are keyed to
the connections illustrated in the figure.

1. The ~ser program references a DCB via the CAL,FPT
mechanism ..

2. The DCB is connected to one of several types of I/O
facilities via M:DCB, !SET, !ASSIGN, or M:OPEN.

a. FILE - either a file in public storage or on a
private pack named as a resource.

b. CP-V or ANS labeled tape - a file on a labeled
tape named as a resource.

c. DEVICE, physical device type - causes connection to
a private device (foreign tape) mentioned as a
resource, a symbiont file (card reader, line
printer, etc.), or to the user terminal.

d. DEVICE, operational label - causes a "functional"
connection ("the place where all listings go")
assigned by management to the appropriate default
device: either symbiont file or user terminal as
established by the installation for on-line or
batch.

e. DEVICE, logical device stream - causes connection
to a symbiont file for the local or remote device
as established by the LDEV command.

July 1, 1976 5-1

'-.n
I
N

c....
c
~

'<

\.0
-..J

°'

FILES

CD

USER 1/0
PROCEDURE

DCB

ASSIGN, SET, M:DCB, M:OPEN directs the 1/0
j'""",_ ______ one of five ways shown below

I I

DEVICES

Content managed by CP-V

File (keyed,
consecutive, or

random)

Public file storage
or pri vote spindles
as resources (Disk

or RAD)

CP-V labeled and
ANS labe~ed tape

Physical device
type

Operational label
Logical device

stream

Tape drives as
resources

System
establishes
actual
physical
address

Interactive
terminal, local

symbiont device,
or device as

resource

figure 5-1. Connections Established for Performing 1/0

System-established
correspondence
(different for
on-line and
batch) I Workstation device

or local symbiont
device

For convenience, a number of DCBs are available with default
assignments to the operational label of the same name. These are
set up for common system usage, e.g., LO= listing output and SI=
symbolic input are the assignments of the M:LO and M:SI DCBs.

Each request for I/O service from the monitor is made by
inclusion of an I/O call in the user's program. This call
generates a Function Parameter Table (FPT), which in turn refers
to a Data Control Block (DCB). The combination of the I/O call,
the FPT and the DCB provides the information that the monitor
needs to perform the requested operation.

Generally, the DCB contains the kind of information that is
specific to a device (e.g., for output to a line printer,
number of lines per page is one value in the DCB). The FPT
contains a far smaller set of information that is specific to the
operation to be performed (e~g., the location and size of the
buffer that is to be output to the printer in this specific
operation). Separation of information into the DCB and the FPT
allows the user to create one DCB for a type of I/O and reference
that DCB throughout his program, whenever he requires that type
of I/O. Each time that he references that DCB, he generates an
FPT with the specific information required for that particular
I/O operation. ·

I/O procedures are provided for the following I/O functions:

1. File Maintenance

Create a Data Control Block

Open a Data Control Block

Close a Data Control Block

Set Error or Abnormal Address

Check I/O Completion

Declare Temporary File

2. Data Record Manipulation

Read a Data Record

Write a Data Record

July 1, 1976 5-3

5-4

Delete a Data Record

Truncate All Blocking Buffers

3. File Manipulation

Position n Records

Position File

Close Volume

Rewind

Write End-of-File

Insert or Delete a Symbiont File

4. Device Manipulation

Set Listing Tabs

Skip to Top of Form

Set Number of Printable Lines

Set Line Spacing

Specify Direct Formatting (Transparent, FBCD)

Specify Vertical Format Control

Specify Page Count

Change Output Form

Change Device Mode or Record Size (Binary, BCD, Packed,
Unpacked)

Specify Beginning Column

Specify Output Header

Specify Card Punch Sequencing

Determine Number of Lines Remaining

Check Correspondence of DCB Assignments

July 1, 1976

FILES

A general understanding of files and the way that the monitor
deals with them will help the user to obtain the high level of
performance available.

A file is an organized collection of information. This
collection of information may consist of one or more programs,
one or more sets of data, or some combination of programs and
data. Under CP-V, a user always accesses files through the
monitor - never directly. An option does exist, however, that
allows a user to deal with a file (e.g., a non-standard set of
data on an unlabeled magnetic tape) as though he were accessing
it directly.

The monitor maintains a directory of accounts having files
maintained between jobs. This is called an Account Directory,
and contains, with each account number, an address of a directory
of files (termed a File Directory) for that account. A File
Directory contains, with each file name, an address of a table
containing file attributes and disk locations for that file. The
table is called a File Information Table. To summarize, the
monitor has a single Account Directory, which in turn points to a
File Directory for each account. Each File Directory, in turn,
points to a File Information Table (FIT) for each file.

Each file has associated with it (in the FIT) information
controlling who may access the file and how it may be accessed.
This information can include both a password and a list of which
accounts may execute, read, or update the file. To access a
file, a user must be running under an account which is authorized
to access the file and provide the proper password (if one
exists). In addition, to access control information, the FIT
also contains the file's creation date, date of last modification,
date of last access, and expiration date.

FILE IDENTIFICATION

In CP-V, files are identified according to a standard format.
The identification is assigned to the file by the user when the
file is created. The format for a file identifier (fid) is one
of the following:

name
name.account
name .. password
name.account.password

July 1, 1976 5-5

where

name is the name of the file and may have a maximum of
31 characters. (Certain processors in CP-V have shorter
length restrictions.)

account is the account number of the file and may have a
maximum of eight characters. A user normally may not
create a file in any account other than the one under
which he is running. He may not execute, read, or
modify a file in another account unless he has been
given read or write access to that file.

password is the password for the file and may have a
maximum of eight characters. A password is useful in
preventing unauthorized users from accessing the file.

The various combinations for a file identifier are as follows:

name file in the user's account. The file does not have a
password associated.

name.account file in a specified account. (It could be
the user's account, but this format is required only if
the account is other than the user's account. The- file
does not have a password associated.) ·

name .• password file in the user's account with the
specified password.

name.account.password file in the specified account with
the specified password.

FILE FUNCTION AND DISPOSITION

A file may be opened with one of four functions: two of these,
IN or input and INOUT or update, are used to access a file which
had existed prior to this open; the other two, OUT or output and
OUTIN or scratch, are used to create a new data aggregate which
had not existed prior to this open. There are three possible
specifications for the file disposition option: REL or release,
SAVE, and JOB. Any one of the three may be specified at open
time and either REL or SAVE may be specified at close time. Now,
let us consider the impact of each of these options and the
several significant combinations of them.

It has been noted that to create a new file one must specify OUT
or OUTIN. If the REL dispostion option is used or implied (see

5-6 July 1, 1976

below) with such an open, it indicates that the file to be
created must be released when it is closed; thus, it is an
obvious error to combine OUT with REL, and such an open is
rejected. The other combination, OUTIN with REL, results in a
true scratch file which is never to be entered into the file
directory and thus has no identification other than the device
control block with which it is associated. Storage space
requirements for such a file are accounted for against the user's
temporary granule authorization.

If a file opened OUT or OUTIN is closed with an explicit
specification of SAVE, it will be entered into the file directory
unless the open process failed to explicitly specify SAVE or JOB,
in which case the file is unconditionally released at close time
and the file directory contents are not altered. If an explicit
SAVE specification is not made when an OUT or OUTIN file is
closed, again the file is released and the file directory
contents are not altered. Note that when a job step is
completed, all open device control blocks are closed with no
explicit disposition specification, and so all open output files
are released at that time. The only exception to this is M:DO
which is closed with explicit SAVE in order to ensure that
diagnostic output will be received.

Now, let us consider the cases of files opened OUT or OUTIN with
either SAVE or JOB disposition. All such combinations indicate
the intent to create a new file which will probably be entered
into the file directory. (See the above paragraph for a
discussion of how to overcome this intent.) Unless a job is
executing at a high privilege level of X'CO' or greater, it
cannot create a new file in an account other than the one under
which the job is logged on with one exception. If a file already
exists with the same identification as that desired for the new
file; if, further, ithe already existing file permits WRITE access
to the user in question; and if, finally, the already existing
file is not currently open, then the user may create a new copy
of such a file. When an OUT or OUTIN file with SAVE or JOB is
closed with explicit SAVE, the name is entered into the file
directory; and any previously existing file with the same
identification is released. In addition, if JOB has been
specified on the open, the file identification is given the same
treatment as though it had been mentioned in a M:TFILE procedure
call. All files which have had their identification mentioned in
such a procedure call are released when the creating user logs
off. A JOB file may only be accessed by the creating user or a
user with at least X'CO' privilege. Storage space requirements
for JOB files are again accounted for against the user's
temporary granule authorization. All storage space requirements
for files other than true scratch or JOB files are accounted for
against the user's permanent granule authorization.

July 1, 1976 5-7

The file disposition option at open time for input and update
opens is essentially insignificant and the disposition is
completely controlled by the specification on the close. (There
is a name substitution option available for locating JOB files
which is only operative in the event of explicit JOB
disposition specification at open time.) If the specification is
explicitly REL, the file is released and the identification is
erased from the file directory; otherwise, the file is retained
and no change is made to the file directory. When an existing
JOB file is reopened in the update mode, the disposition in the
device control block is forced to JOB so that granule accounting
may be correctly handled.

FILE ORGANIZATION

The information in a file may be structured in one of three ways.
It may be a keyed, consecutive, or random file. The type of
structure is called the organization of the file and is a file
attribute. The information in a file may be accessed in one of
two ways: direct (unique identifier of record supplied) or
sequential (using the ordering relationship of records). Thus
file access is simply the way in which a file is being acces·sed
at a particular instance of usage.

The following chart illustrates the allowable combinations of
organization and access:

Access Keyed Consecutive Random

Direct x x

Sequential x x x

Note that other devices behave much like consecutive files
(records have no names and are order dependent) and only
sequential access is allowed.

5-E Ju 1 y 1 , 19 7 6

KEYED FILES

Keyed files are those in which each record has an identifying key
associated with it. A key consists of a byte string, the first
byte of which states the number of bytes in the string. The
contents of each byte may be a binary number or a character. A
key may consist of up to 31 bytes plus a count byte.

As the file is being created, a master index is also created with
an entry for each keyed record in the file. The keys are sorted
into collating sequence so the file can subsequently be accessed
sequentially. The entry contains such information as the key,
disk address of the record, size of the record, and position of
the record within the blocking buffer.

The records are automatically packed into blocking buffers with
the last portion of the last record extending into another buffer
as necessary. If the record is large, it is written directly
from the user's area instead'. of being packed into a buffer.
Keyed files may be accessed by direct or sequential access.

Keyed files have a multilevel index structure to provide fast
direct access. A multilevel index sturcture is a collection of
hierarchical levels of index blocks, where the entries in a
higher level point to index blocks at the next lower level. and
the entries in the lowest level (called level 0) point to ·data
records. This is best illustrated by the hypothetical example
shown in Figure 5-2. Unless specified otherwise by the user, the
multilevel structure is initially built when the file is closed
if the file has more than three level 0 index blocks.

In the example shown in Figure 5-2, the keyed file has:

o 31,150 records and the keys at level 0 point to these
data records. Based on an 11-byte maximum key length,
there are 80 keys in each level 0 block and 127 keys in
each higher-level block.

o 390 index blocks at level O, four index blocks at level
1, and one index block at level 2. The next
higher-level is built if the last level has more than
three index blocks.

This example shows the data in the same sequence as the keys.
This need not be true and will not be true after random addition
of records.

Each entry in a higher-level index block contains the disk
address of an index block at the next lower level, and the key of
the first key in that block.

July 1, 1976 5-9

Level 0

390 Index Blocks

~ KEY 1

'KEY2 1---

Level 1
~

4 Index Blocks " Data Blocks

KEY 1 t--
KEY 80 Record 1

Key 81 r-----i ~ J FIT
~ Record 2

1 J u KEY 10081 ~ KEY 81
Record 3

1 KEY 82 1--
Record 4

!!!!!..!. ,--. KEY 10161 • u 1 Index Block
,

KEY 10241
KEY 1 ~ Record S

KEY 160

KEY 10161 ~

T KEY 20241
KEY 20161 KEY 161

KEY 30321 r--,

T
Record 81

KEY 162 ~ II
'---

f f KEY 20241

~
Record 82

KEY 20321

~ .
I

KEY 302.?1 I

T I Record 31120

KEY 30321
I ltec:ord 31121 --
I -- r . KEY 30401

I Record 31122

~ ..-- r---

~~~---:.~KEY~3-1_12_1___,~~--
~ KEY311:2 ~ 

Record 31123 

Figure 5-2. Example of Multilevel Index Structure 

5-10 Ju 1 y 1 , 19 7 6 



The multilevel index structure can considerably speed up the 
direct access of a large keyed file, at only a small cost of 
secondary storage space. Since the keys are ordered in ascending 
sequence, at most it would take three index block accesses to 
locate a data record as shown in the example. Wihtout the 
higher-level structure, it could take up to 390 index block 
accesses. 

The user has control over the initial creation of the multilevel 
index structure and he can specify when and if the higher-level 
structure should be rebuilt. This can be specified by using the 
NEWX option on the ASSIGN control command or the M:OPEN and M:DCB 
procedures. 

CONSECUTIVE FILES 

Consecutive files are files whose records are organized in a 
consecutive manner; i.e., the user is aware of no identifying 
keys associated with the records. The records may only be 
accessed sequentially. 

The principal benefit of consecutive files to system operation 
is a reduction in the amount of space required for the files on 
disk and RAD and a consequent reduction in the time required to 
traverse the files. Also, there is no need to identify each 
record. 

All position operations for consecutive files are done with user 
selected system procedures rather than with I/O operations. The 
positioning is only effected when a data transfer operation is 
about to take place. At that time, there will be three known 
points in the file that can be used as a starting point: 
beginning of file, end of file, and the position reflected by the 
DCB (see DCB in glossary). The starting position chosen will be 
the one that requires the fewest record skips to be made. 

RANDOM FILES 

Random files provide a basic organization for those users 
desiring to manage their own files. Random organization differs 
from keyed and consecutive organization as follows: 

1. A random file is simply a collection of contiguous 
granules on the specified device type. The number of 

July 1, 1976 5-11 



granules is specified at the time the file is created 
(and may not be expanded after it has been created). If 
the requested number of granules are not available 
contiguously, an abnormal code is returned to the user 
and the file is not opened. 

2. The user must specify a relative starting granule number 
with each read or write and a byte count (a default byte 
count may be used). 

3. Each write/read consumes the entire specified granule. 
The contents of the granule include no system 
information. Management of the user's data is· the 
responsibility of that user. 

Thus, the monitor provides allocation of granules, security 
checks and normal I/O queuing service and clean-up. The user is 
responsible for record management. 

FILE ACCESS 

Records may be accessed within a file by either of two means, 
direct or sequential access. The interaction of the type of 
access used for a given operation and the mode in which the file 
is opened results in some rules, or limitations. These rules are 
listed below for each type or access and each mode in which a 
file may be opened. 

DIRECT ACCESS 

For consecutive files, sequential access is assumed. For keyed 
files, the following rules apply. 

OUTPUT FILES (OUT) 

When a WRITE is given, a key must be specified. The keys do not 
need to be given in a sorted order. They will be ordered as they 
are stored on disk. 

Unlike sequential output files, a WRITE never causes forward 
information to be deleted. 

5-12 July 1, 1976 



Reading is not allowed. 

SCRATCH FILES (OUTIN) 

A scratch file is identical to an output file, except that 
reading is permitted before the file is closed. As for output 
files, a key must be specified on each WRITE. The keyed record 
is merged into the file. 

A READ may or may not specify a key. If a key is specified, a 
search is made of the file until the key is found and the record 
is then read. If the key is not found, an error return is 
executed. If a key is not specified, the next sequential record 
is read. 

The FWD and REV options apply on read operations not specifying a 
key. If a key is specified, these options are ignored. PRECORD 
(positioning) operations are performed in the same way as for 
sequential output files. A WRITE does not cause forward 
information to be deleted. A READ before the first WRITE returns 
an error code. 

INPUT FILES (IN) 

Records may only be read; writing is not allowed. The READ 
function is the same as that for scratch files. PRECORD 
operations are allowed. 

UPDATE FILES (INOUT) 

The READ function is the same as for scratch files. PRECORD 
operations are allowed. 

The WRITE function may or may not have a key specified. If a key 
is not specified, the WRITE function must have been preceded by a 
READ. If it is, the record just read is updated; if not, an 
abnormal code is signaled. 

Write operations may indicate whether the record is intended to 
be a new or replaced record. The absence of an option indicates 
replacement. NEWKEY indicates a new record. ONEWKEY indicates 
the record may be new or replaced. 

July 1, 1976 5-13 



The DELETE function may be used. If a key is specified, a search 
of the directory is made to find the specified key. The record 
is then deleted. If a key is not specified, the DELETE operation 
must have been preceded by a READ, and the key just read will 
then be deleted. 

SEQUENTIAL ACCESS 

Sequential access may be used when accessing records with keyed 
or consecutive organization. 

OUTPUT:FILES (OUT) 

When a file is opened in the OUT mode, records may only be 
written; reading is not allowed. If the file has been declared a 
keyed file, a key must be given with each write operation and 
this key must be a new key (i.e., it must not have been used 
before). If the key has already been used, no information .is 
written and an abnormal code is returned. The keys must be 
given in a sorted order. For example, if the user writes records 
with keys A, C, and D, respectively, and then writes a record 
with key B, the record will not be written and an error return 
will be executed. 

The PRECORD FWD (position record forward) and PRECORD REV 
(position record backward) operations are allowed on both keyed 
and consecutive files. A BOF code is given when the beginning-of
file is reached, and an EOF abnormal is given when the end-of-file 
is reached. Otherwise, for keyed files, the pointer to the 
current entry in the master index is decremented or incremented. 
For consecutive files, a directional count of records to skip from 
the current position is established. Positioning will not occur 
until the next read, write, or delete operation. A WRITE operation 
following PRECORD causes all forward records to be deleted. 

SCRATCH FILES (OUTIN) 

The same rules that apply to output files also apply to scratch 
files, except that reading is allowed, following a writi. 
Reading may be directional; either forward or reverse. A READ 
with REV implies that the record preceding the current position 

5-14 July 1, 1976 



is to be read. If no direction is specified, FWD is assumed. A 
READ order issued prior to the first WRITE will result in an 
abnormal return. 

When reading a keyed file, a key may or may not be specified. If 
a key is specified, a search is made for the specified key. The 
FWD and REV options are ignored when a key is specified. If a 
key is not specified, READ FWD implies that the next record 
in sequence is to be read. READ with REV implies that the record 
immediately preceding the current record is to be read. Whenever 
a keyed file is read, the KBUF field of the DCB contains the 
address at which the key of the record just read is stored. 

Reading a consecutive file is the same as reading a keyed file 
without specifying a key. 

A WRITE deletes all forward information. 

INPUT FILES (IN) 

This is the same as for direct access input files. 

UPDATE FILES (INOUT) 

For a keyed file, this is the same as for direct access update 
files. For a consecutive file, a WRITE deletes all forward 
information. 

SIMULTANEOUS FILE USAGE 

The SHARE mode feature extends the use of keyed and random files 
by permitting simultaneous access to a file by up to 127 updaters 
and up to 127 readers. Thus several user programs executing 
concurrently in separate jobs may be generating reports from a 
data file while other user programs are concurrently modifying 
data items within the file. 

Responsibility for coordinating concurrent update activity is 
divided into two parts, one controlled and provided by the 
operating system and the other by the application programs via 
the system's enqueue/dequeue service. The operating system 

July 1, 1976 5-15 



guarantees the physical integrity of the file so that it remains 
properly connected regardles of the update activity and also 
ensures that readers are provided with the most up-to-date 
information in response to their requests. 

Coordinating and guaranteeing logical integrity of the file 
(primarily the data content) is the responsibility of the 
application programs, since for the keyed file organization any 
connection of the data in one record of a file with that in 
another record of the same or another file is carried in the 
application program, not in the file itself. A single example 
will serve to illustrate this. 

Suppose that a file contains records recording a parts 
inventory - each containing the available number of bolts, 
washers, nuts, etc., in various sizes. Without any special 
coordination, the number of any given item can be determined by 
querying the file even in the face of additions and removals by a 
concurrent updater. If, however, the application needs to first 
determine the available number and then remove a quantity from 
stock, then the record must be locked between the read and the 
update to preclude the possiblity of the stock being taken by 
another updater. 

More elaborate record locking requirements may exist depending on 
the application. For example if a fastner must be made up of a 
bolt, a nut and a lock washer, then these three records must be 
acquired and locked prior to making the needed updates. 

Applications use the system's enqueue/dequeue facility to gain 
exclusive access to the records. Enqueue/dequeue is a 
generalized service and guarantees exclusive or shared access to 
named items as required and requested. It is the responsibility 
of all users of the service to agree on the meaning of the 
names - for example the names of the records containing inventory 
count of nuts, bolts, and washers. 

FILE STORAGE DEVICES 

The three general types of storage media available for user files 
are (1) disk, (2) labeled magnetic tape, and (3) other physical 
devices (e.g., cards, unlabeled magnetic tape, etc.). 

5-16 Ju 1 y 1 , 19 7 6 



DISK STORAGE 

Both RAD and disk pack devices are used for secondary storage. 
Any combination of these devices can be defined at SYSGEN time. 
A disk pack device has dismountable volumes and can be declared 
either a public or private device at SYSGEN time, while a RAD 
device, not having dismountable volumes, can only be declared a 
public device. 

A public disk pack device has only one volume that can be 
recognized by the monitor and that volume must be mounted at all 
times while the system is active. 

A private disk pack device has any number of dismountable volumes 
that can be recognized by the monitor. The operating system 
requires only that those volumes needed for execution of the 
user's job be made available and be mounted. 

STORAGE ALLOCATION UNITS 

For allocation purposes a disk pack device is partitioned .into 
logical units, either granule or cylinder. RADs are partitioned 
and allocated in granule units only. A granule unit equals 512 
words and is equivalent to two sectors. 

FILE ALLOCATION 

Keyed and consecutive file space is allocated on a demand basis 
as the file is being created or updated. Therefore the file does 
not necessarily exist in contiguous areas on a RAD or disk pack 
device and can exist on many different physical devices. Random 
file space is contiguous and is allocated when the file is 
opened. 

A public file resides on a public device (RAD and/or disk pack); 
a private file resides on private disk pack volumes. A public 
file can be allocated in granule or cylinder units; a private 
file is always allocated in cylinder units. 

Files on Public RAD and Disk Pack. Allocation of space for files 
on RAD and/or disk pack follows a set of rules that may be 

July 1 , 19 7 6 5-17 



altered and controlled by both the user for individual files and 
by the system manager on an account or system-wide basis. The 
scheme provides for best system performance, in absence of 
specification by the user or system manager, or for good 
performance of individual jobs by careful selection of disk pack 
or RAD to optimize the program's performance. 

) 

Although the rules stated below control the preferred allocation, 
the system will continue to look for space on other devices on 
request as long as the user-allowed limit is not exceeded and the 
space physically exists. 

In the absence of other specifications, the monitor uses the 
following rules to determine the placement of files on RAD or 
disk pack: 

1. All permanent files (opened OUT or OUTIN with SAVE or 
INOUT) prefer disk pack. 

2. All temporary files (opened OUT or OUTIN and RELease) 
and all job files prefer RAD. 

3. All account directories (AD) and file directories (FD) 
prefer RAD. 

4. All star files (system temporary files for ROMs, LMs, 
debuggers, etc.) prefer RAD. 

The system manager can control file space allocation. For 
example, the system manager may separately limit the amount of 
space on RAD or on disk pack available to an individual user. 

A user program or job may control the allocation of files to RAD 
or disk pack using either SET or ASSIGN control commands or the 
M:OPEN program procedure. 

Public Random Files. A public random file is allocated on a 
public device of the type specified, either RAD or disk pack. If 
disk pack was specified, the monitor attempts to allocate in 
cylinder units before allocating in granule units. 

Private Files. All the index and data blocks of a keyed or 
consecutive private file are allocated from one or more private 
disk pack volumes. A keyed, consecutive, or random file can 
extend beyond volume boundaries. 

5-18 - July 1 , 197 6 



RECORD BLOCKING 

The system will automatically block records for keyed and 
consecutive files in 512-word blocks to provide more efficient 
use of disk space. The user has no knowledge of this blocking 
and, when reading, will receive the appropriate record within 
the block and not the entire block. 

When updating a keyed file, the user may rewrite a record in a 
size larger or smaller than the original record size. If 
necessary, the monitor will allocate additional disk space to 
accommodate the larger size. 

A write with a 0 byte count to a keyed file will result in a 
master index entry for the record with fields in the entry 
pertaining to disk address, record size, and displacement into 
the blocking buffer all set to zero. A write with a 0 byte count 
to a consecutive or random file will be ignored. 

LABELED TAPE 

CP-V handles two types of labeled tape, CP-V labeled tape and ANS 
labeled tape. 

CP-V LABELED TAPE 

A CP-V labeled tape is given standard CP-V labels when I/O is 
first performed on the tape. No tape initialization is required. 

For labeled tapes, record blocking is performed similarly to 
blocking disk records. In BACKSPACE or FORESPACE operations, the 
correct tape positioning is accomplished by reading each block 
and determining the number of records within the block. All 
operations previously described for keyed or consecutive files 
apply except that all writes take place at the end of the file. 

ANS LABELED TAPE 

An ANS labeled tape is given standard ANS format labels either 
through the ANS tape initialization processor (Label) or as the 
result of an operator key-in. 

July 1, 1976 5-19 



Some of the important advantages attendant to the use of ANS 
labeled tapes are: 

o Minimization of main memory space requirements for 
processing multiple volume sets. 

o Extended protection features relative to stated 
expiration dates. 

o Concatenated file processing which is particularly 
advantageous when a logical file has been generated in 
multiple sections. 

The user should be aware, however, of the following restrictions 
on ANS labeled tape processing: 

o Tape cataloging is not available so Generation Data 
Groups are not applicable. 

o Blocking and deblocking are the responsibility of the 
user. (Standard COBOL library routines are available.) 

o Multiple tape sets are processed by serial number only. 

EXCLUSIVE USE OF TAPE FILES 

Single-File Tapes. Once a user has opened a file on a tape, no 
other user may access the tape until the original user closes and 
removes it. 

Multifile Taoes. Once a user has opened a file on a multifile 
tape, no other user may access the tape until the original user 
has closed and removed the tape. If the REW option is specified, 
the tape is rewound. Otherwise, the tape remains at the current 
position and, if a DCB is opened using tape, one of two actions 
occurs: 

1 • 

2. 

5-20 

On input or update, the tape is scanned forward for the 
desired file. 

On output, the tape is positioned to the end of the 
current file and the new file is written at that 
position. 

July 1, 1976 



DEVICE INPUT/OUTPUT 

Devices used for I/O other than file or labeled tape basically 
divide into three classes: 

1. Interactive Terminals 

2. Batch Type Devices {local or remote) 

3. Unformatted Devices 

A DCB used for I/O by a user program can become connected to 
these types of devices by assigning (ASSIGN, SET, M:OPEN) a DCB 
to a logical device or a physical device. If an assignment is 
made to a physical device, only the device type information is 
used. The actual device used is determined by the operating 
system. A logical device assignment can be to an operational 
label or a logical device stream. Operational labels are a set 
of convenient default assign~ents which are set up in a system 
basis with one set of assignments for on-line jobs and one set 
for batch jobs. A logical device stream is an input or output 
stream which can be connected to batch type devices with the 
LDEV command. 

INTERACTIVE TERMINALS 

Interactive terminals fall into two classes, master and slave, 
with a great deal of commonality between classes. Regardless of 
type, terminals are usable as I/O devices with a great deal of 
flexibility. Terminals can be operated in echoplex mode or with 
local printing. Sophisticated editing and tabbing features are 
provided on input. When operating in echoplex mode, type ahead 
is allowed with proper sequencing of input and output guaranteed. 
Tabbing, line breakup to fit device, pagination, and page headers 
are provided on output. A wide variety of timing algorithms and 
code sets are provided to fit the idiosyncracies of specific 
terminals. 

Slave terminals are acquired by programs as a contention resource 
(not pre-allocated) if not already acquired or logged on as a 
master terminal. The terminal may then be used as an I/O device 
by the program until released. Slave terminals are completely 
under control of the program. 

Master terminals are associated on a one-to-one basis with 
on-line jobs. In addition to being an available I/O device, the 
terminal is the control device for the on-line job. TEL reads 

July 1, 1976 5-2 1 



commands from the terminal. Break can be used as a program 
interrupt and Control Y causes an escape to the associated 
command processor (usually TEL). Thus the master terminal is in 
control of the program. A terminal becomes a master simply by 
logging on. 

BATCH TYPE DEVICES 

All I/O to batch type devices (card readers, card punches, line 
printers, plotters) is staged via symbiont files whether the 
device is local or remote. This simply means that the entire 
input job from a card reader is read onto disk before processing 
and all of the job's output to these devices is stored on disk, 
not being output until the job is complete. 

The processing of these devices symbiotically provides the 
following benefits: 

o Disconnects program execution from I/O devices 

o Smooths peaks and valleys in I/O demand 

o Allows multiple programs to output to the same device 
simultaneously 

o Allows grouping of output by form type 

o Allows a program to generate several 'streams' of output 
to one device 

o Allows several copies of output to be produced 

o Enables on-line use of batch peripherals 

o Allows natural submission of jobs from on-line terminals 

o Allows pre-scanning of job requirements for efficient 
resource allocation in batch scheduling 

UNFORMATTED DEVICES 

An unformatted device (primarily free-form tape) is handled as a 
resource which must be pre-allocated (contended for if on-line). 
When the device is allocated to the user he is responsible for 
the data read or written to the device. No blocking or 
formatting services are provided. 

5-22 July 1, 1976 



SPECIAL FEATURES OF THE I/O SYSTEM 

In addition to the facilities of the I/O system as outlined 
above, there are a number of special features which enhance the 
ease of use of CP-V. 

o File Extension - All system DCBs (M:operational label) 
will be provided file extension by the system. Thus the 
first use of an output DCB within a job will create a 
new file and subsequent uses will add to the end of the 
file without explicit action on the part of the using 
program. 

o JOB files which have :: as the second two bytes of the 
name will have the job id substituted, thus 
automatically preventing contention with another job in 
the same account. 

o A procedure is available for a program to declare a file 
temporary (which causes it to be deleted at end of the 
job). 

o Procedures are available to determine the next account 
in the account directory and the next file in a file 
directory. 

o Assignments to the M:SI (source input) DCB by on~line 
jobs are extant for one job step qnly. 

o A procedure (M:MOVE) is available to repetitively read 
and write records between two DCBs until an abnormal 
condition is reached. 

RELATED PROCESSORS 

In addition to the use of files for program I/O and in 
conjunction with the use of various language and application 
programs, two processors are supplied with CP-V to be 
particularly useful in the manipulation of files. 

PERIPHERAL CONVERSION LANGUAGE 

The Peripheral Conversion Language (PCL) is a utility processor 
designed for working with files in a batch or time-sharing 

July 1, 1976 5-23 



environment. It provides for information movement among card 
devices, line printers, on-line terminals, magnetic tape devices, 
and RAD or disk pack storage. 

The command language provides for single or multiple file 
transfers with options for selection, sequencing, formatting, and 
conversion of data records. Additional file maintenance and 
utility commands are provided. 

Some examples of PCL commands are given below. All of the PCL 
commands are summarized in Table 5-1. 

5-24 

1. COPY LT#83/TAXFILE TO LP(K) 

Copies the file called TAXFILE which is stored on 
labeled tape 83 to the line printer, printing the key 
(K) associated with each record. 

2. LIST 

Lists the names of all files in the user's file directory 
(i.e., all of the user's files which are stored on the 
system disk). 

3. COPYALL TO DP#A23 

Copies all files in the user's file directory to disk 
pack A23 

4. WEOF 

Writes an end-of-file on the user's current output 
device. 

5. REW LT 1112 3 4 

Rewinds labeled tape 1234. 

July 1, 1976 



Command 

COPY 

COPYALL 

COPY STD 

DELETE 

DELETEALL 

END 

LIST 

REMOVE 

REVIEW 

REW 

SPE LT 

SPF FT 

TABS 

lNEOF 

July 1, 1976 

Table 5-1. PCL Command Summary 

Function 

Copies file(s) between devices or between 
public storage and devices. 

Copies files from RAD, labeled tape, or 
disk pack to any output device. 

Copies a control file and all files named 
within the file. 

Deletes specified file(s). 

Deletes all files or a specified range of 
files in the job's account. 

Returns c9ntrol to the monitor. 

Lists files names and, optionally, 
attributes from the account directory, 
tape, or disk pack. 

Removes a magnetic tape or disk pack. 

Lists files in the job's account and waits 
for a user response after listing each file 
name to allow the option of deleting the 
file. 

Rewinds a tape reel. 

Spaces to the end of the last file on 
labeled tape. 

Positions free form tape forward or backward 
a designated number of files. 

Set tab values for tab expansion. 

Writes an end-of-file on the current output 
device. 

5-25 



EDIT PROCESSOR 

Edit is a line-at-a-time context editor for creation, 
modification, and manipulation of files of EBCDIC text. It is 
only available to time-sharing users. 

All Edit data is stored on disk in a keyed file structure of 
sequence-numbered variable-length records, which permits Edit to 
directly access each line or record of data. Edit functions are 
controlled via single-line commands from the user. The command 
language provides for the following: 

1. Creating a sequenced EBCDIC coded text file. 

2. Inserting, reordering, and replacing lines or groups of 
lines of text. 

3. Selective printing and renumbering. 

4. Reordering groups of records within a file. 

5. Merging part of one file into another. 

6. Context editing operations that allow matching, moving 
and substituting character strings within a specified 
range of text lines. 

7. Maintaining files (allowing the user to build, copy, and 
delete whole files of text lines). 

A user may edit files under his own account (i.e., the one under 
which he logged on) or under accounts to which he has been 
granted write access by the file creator. He may copy his own 
files or those to which he has read access. Under the rules of 
CP-V file access, a file may not be created (i.e., built or 
copied to) under an account number different than that used for 
log-on unless a very high privilege level is associated with the 
log-on account. 

An example of the use of the Edit processor to create a file is 
given in Figure 5-3. (Output from CP-V is underscored. User 
input is not underscored.) All of the Edit commands are 
summarized in Table 5-2. 

5-26 Ju 1 y 1 , 197 6 



lBUILD PRIME 

The user wants to create a file called PRIME. (Edit 
is called implicitly by the BUILD command.) 

1.000 10 REM GENERATE PRIMES GR THAN # 

2.000 
3.000 
4.000 
5.000 
6.000 
7.000 
8.000 
9.000 

10.000 
11.000 

Edit prompts for input by printing 1.000. The user 
types the first line, then types lines 2-10 in 
response to more prompts by Edit. 

20 P:1 
30 P:P+4,S:O 
40 FOR I = 5 TO SQR(P) + 1 STEP 2 
50 Q:INT(P/I) 
60 IF Q*I=P THEN 80 
70 PRINT P''TAB(O) 
80 IF S:1 THEN 30 
90 S:1, P=P+2 
100 GOTO 40 

The user types a carriage return immediately following 
the prompt for line 11.000 to indicate end-of-file, 
that is, that the last line of the file has been . 
entered. 

Figure 5-3. Sample Edit Session 

Table 5-2. Edit Command Summary 

Command Function 

BP 

BUILD 

CM 

COPY 

July 1, 1976 

Sets the blank preservation mode. When 
"on", all strings of blanks are preserved 
during intrarecord operations. When 
"off", blank strings are compressed to a 
single blank or expanded as required to 
retain column alignment of nonblank 
fields. The default mode is "off". 

Enables the user to create a new file. 

Causes Edit to insert commentary into 
specified columns of each successive 
record beginning at a specified record. 

Copies one file to another file. 

5-27 



Command 

CR 

CT 

D 

DE 

DELETE 

E 

EDIT 

END 

F 

FD 

5-28 

Table 5-2. Edit Command Summary (cont.) 

Function 

Controls the inclusion of the carriage 
return character (X'15') at the end of 
each record in the user's output file. 

Causes Edit to type the record up to a 
specified column and then to insert 
commentary (given by the user) into 
specified columns of each successive 
record beginning at the specified record. 

Locates a given occurrence of an indicated 
string, between columns specified by an 
SE, SS, or ST command, and deletes it. 

Deletes all records whose sequence 
numbers lie in a specified range. 

Deletes the file specified by fid from 
the log-on account. 

Starts at a column occupied by the first 
character of a given occurrence of a 
specified string or column and overwrites 
with another string. 

Opens a file to be edited and enters the 
record editing mode. 

Closes all active files and returns 
control to the terminal executive language 
(TEL). This command is equivalent to the 
X command. 

Starts after the last character of a given 
occurrence of a specified string or column 
and inserts another string, pushing 
everything from this column right as 
required to make room. 

Searches for the specified string between 
specified columns in a specified range of 
records. If the string is found, the 
record containing it is deleted from the 
file. 

July 1, 1976 



Command 

FS 

FT 

IN 

IS 

JU 

L 

MD 

MERGE 

MK 

NO 

July 1, 1976 

Table 5-2. Edit Command Summary (cont.) 

Function 

Searches for the specified string between 
specified columns in a spe6ified range of 
records. Each time the string is found, 
the sequence number of the record is 
printed. 

Searches for the specified string between 
specified columns in a specified range of 
records. Each time the string is found, 
the sequence number and the contents of 
the record are printed. 

Inserts new records into a file starting 
at a sp~cified record. Edit prompts the 
user with the sequence number of .each 
record to be inserted. 

Inserts new records into a file starting 
at a specified record. Edit does not 
prompt with sequence numbers of the 
records to be inserted. 

Causes the SS or ST command to jump to the 
specified record and then continues 
stepping from that point. 

Shifts portions of the record left the 
number of positions indicated. 

Moves records within a file from one range 
to another range. The original records 
are deleted. 

Merges records from one file into another 
file. 

MK is identical to MD except that the 
original records are not deleted as they 
are moved. 

Specifies that no editing is to be 
performed on the current active line. 

5-29 



Command 

0 

p 

R 

RF 

RN 

RP 

s 

SE 

SS 

ST 

5-3C 

Table 5-2. Edit Command Summary (cont.) 

Function 

Starts at the column occupied by the first 
character of a given occurrence of a 
specified string or column and overwrites 
with another string. 

Starts before the first character of a 
given occurrence of a specified string or 
column and inserts another string, pushing 
characters of the first string to the 
right as required to make room. 

Shifts portions of the record right the 
number of positions indicated. 

Causes the current setting of the blank 
preservation mode ("on" or "off") to be 
reversed temporarily (for the current line 
only). 

Renumbers a specified record. 

Sets the record size preservation mode. 
When ON, the size of the edited records is 
not changed. Trailing blanks are not 
deleted. When OFF, records are 
shortened or lengthened as necessary by 
the editing process. Trailing blanks are 
deleted. The default mode is OFF. 

Locates a specified string between columns 
specified by an SE, SS, or ST command and 
replaces it with another string. 

Causes Edit to accept successive lines of 
intrarecord commands to be applied to 
records beginning at a specified record. 

Causes Edit to start at a specified record 
and proceed to each record in succession, 
accepting one line of intrarecord commands 
to update the current record. 

Causes Edit to start at a specified record 
and proceed to each record in succession, 

Ju 1 y 1 , 197 6 



Table 5-2. Edit Command Summary (cont.) 

Command 

ST (cont.) 

TA 

TC 

TS 

TX 

TY 

x 

July 1, 1976 

Function 

accepting one line of intrarecord commands 
to update the current record. The 
sequence number and contents of each 
record are typed prior to accepting a 
command. 

Causes Edit to set or reset the terminal 
tab stops to settings appropriate for a 
specified language processor. 

Types the sequence numbers and the 
contents of specified columns of one or 
more records beginning at a specified 
record. Any nonblank strings within the 
columns typed are shifted to the left to 
compress each blank string to a single 
blank. 

Types the contents of the record currently 
open for editing under control of an SE, 
SS, or ST command or types the contents 
of specified columns of one or more 
records beginning at a specified record. 

Types the sequence number and contents 
of those records within the edit range 
(set by SE, SS, or ST commands) which 
have been changed by the preceding 
intrarecord command(s). 

Types the sequence number and contents of 
the record currently open for editing 
under control of an SE, SS, or ST command 
or types the sequence numbers and the 
contents of specified columns of one or 
more records beginning at a specified 
record. 

Closes all active files and returns 
control to the terminal executive 
language (TEL). This command is 
equivalent to the END command. 

5-31 





CHAPTER 6. USER PROGRAM SERVICES 

SYSTEM PROCEDURES 

System procedures (procs) are the single communication mechanism 
between user programs and the CP-V system during program 
execution. They form the command language by which program 
requests are communicated to the system. Each procedure consists 
of a CAL instruction and an associated parameter list describing 
the details of the request. A set of Meta-Symbol procedures 
(macros) may be used to generate the correct CAL instruction and 
parameter list. 

Procedures have several properties guaranteed by the system. All 
registers remain undisturbed by the execution of a proc (except 
for certain procs which return results in designated registers). 
The parameter lists.describing the requests are generated out of 
code sequence with the CAL. (Instead, they are placed together 
in a separately protected section of the program.) All 
parameters are checked for validity by the system before use. 
CP-V will not accept or use bad parameters. With certain obvious 
exceptions, all procedures act identically regardless of whether 
the program is executing in a batch or time-sharing mode. ·· After 
normal execution, the return from a procedure is to the point 
just following the CAL instruction which called the procedure. 

The CP-V system procedures are usually spoken of by their formal 
procedure name. Brief descriptions of all the procedures are 
given in Table 6-1. The procedures are listed in alphabetical 
order. 

Procedure 

M:AND 

M:BLIST 

M:BUFSTAT 

July 1, 1976 

Table 6-1. System Procedures 

Function 

Causes a specified test to be made at a 
specified location. Only if the condition 
is true and the specified test identifier 
is set does it remain set; otherwise, it is 
reset or remains reset (see M:SNAPC 
procedure) . 

Converts a virtual command list to a 
physical command list. 

Checks the buffer status of a slave 
character oriented time-sharing line. 

6-1 



Procedure 

M:CHECK 

M:CHECKECB 

M:CHKINT 

M:CLOCK 

M:CLOSE 

M:COC 

M:CONNECT 

M:COUNT 

M:CT 

M: CVM 

M:CVOL 

M:DCB 

6-2 

Table 6-1. System Procedures (cont.) 

Function 

Checks type of I/O completion. 

Checks for the completion of an event or a 
set of events. 

Checks an interrupt status. This procedure 
is for real-time processing. 

Enters a program at a particular location 
after a specified period of clock time has 
passed. 

Terminates: all I/O associated through a 
given Data Control Block (DCB). This can 
cause a variety of actions depending on 
assignment. 

Sends a character to a character oriented 
time-sharing terminal. This procedure ts 
for real-time processing. 

Connects a real-time program address to an 
interrupt. 

Specifies the range and the steps within the 
range where a specified test identifier is 
set (see M:SNAPC procedure). 

Changes terminal type, activation set, and 
other terminal attributes; examines current 
status; controls terminal coupling. 

Changes the Virtual Map by placing a given 
real page number in a designated virtual 
page map location. 

Causes the control program to advance to the 
next volume of a data set before the 
physical end of the current volume is 
detected. 

Defines and generates a Data Control Block. 
This procedure does not create any code for 
execution. 

July 1, 1976 



Procedure 

M:DCLOSE 

M:DDCB 

M:DELREC 

M:DEQ 

M:DEVICE 

M:DISCONNECT 

M:DISPLAY 

M:DOPEN 

M: DMODll 

M:ENQ 

M:ERR 

M:EXCP 

M:EXIT 

M:EXU 

July 1, 197 6 

Table 6-1. System Procedures (cont.) 

Function 

Closes a DCB that was opened to a device in 
the diagnostic mode. 

Creates a diagnostic DCB. This procedure 
does not creat~ any code for execution. 

Specifies that a data record is to be 
deleted from the file. 

Dequeues resources which were queued with 
M:ENQ. 

Allows the user to set special device 
parameters or invoke special procedures. 
There are 14 different procedures invoked by 
options of this procedure. 

Disconnects an interrupt from a program 
address. 

Reports system load parameters. 

Opens a DCB to a device in the diagnostic 
mode .. 

Obtains a device model number. 

Allows two or more programs to coordinate 
activities by'forming common queues. This 
is often used for coordinating access to 
shared file records. 

Causes a job exit with an error. A batch 
program continues as specified by the next 
STEP command. Any on-line program continues 
as directed by the user. 

Executes a channel program. This procedure 
is for real-time processing .. 

Returns control to the monitor which then 
continues with the next control command from 
batch stream or on-line user. 

Requests -that the monitor execute a 
privileged instruction for the user. 

6-3 



Procedure 

M:FP 

M:FCP 

M:FVP 

M:GCP 

M:GDDL 

M:GDG 

M:GET 

M:GETID 

M:GETLINE 

M:GJOB 

M:GJOBCON 

M:GL 

M:GP 

M:GVP 

M:HOLD 

M:IF 

M:INHIBIT 

6-~ 

Table 6-1. System Procedures (cont.) 

Function 

Frees pages of main storage owned by a given 
program. 

Frees common pages. 

Frees virtual pages. 

Gets common pages. 

Gets dynamic data limits on main storage. 

Gets a disk granule for a real-time program. 

Retrieves system parameters from the Job 
Information Table. 

Gets a Transaction Processing Queue 
identifier. 

Gets a slave character oriented time-sharing 
line. 

Initiates a ghost job. 

Associates a real-time ghost program with an 
interrupt. 

Gets common limits on main storage. 

Allocates pages of main storage to the 
requesting task. 

Gets virtual pages. 

Holds a real-time program in main memory 
(i.e., prevents swapping). 

Causes a specified test to be made at a 
specified location. Only if the specified 
test condition is true is the test 
identifier set; otherwise, it is reset or 
remains reset (see the M:SNAPC procedure). 

Inhibits a real-time interrupt. 

July 1, 1976 



Procedure 

M:INT 

M:INTCON 

M:INTRTN 

M:INTSTAT 

M:IOEX 

M:JOB 

M:KEYIN 

M:LDEV 

M:LDTRC 

M:LINK 

M:LOCK 

M:MAP 

July 1, 1976 

Table 6-1. System Procedures (cont.) 

Function 

Requests program control at a particular 
location when a console interrupt occurs. 

Controls a real-time interrupt status. 

Causes a return from a real-time interrupt 
processing routine. 

Querys the status of a real-time interrupt. 

Issues an I/O command list to a real-time 
device. 

Inserts a file into the symbiont files (for 
batch execution usually) or deletes an 
existing symbiont file. 

Writes the specified messages to the 
operator on the operator's console and 
returns the operator's reply to the program 
issuing the procedure. 

Attaches an information stream to a physical 
device (identified by a logical device name) 
and defines attributes of the physical 
device. 

Loads the specified program load module (if 
a shared copy is not available in memory), 
deletes the calling module, and transfers 
control to the loaded load module. 

Loads the specified program load module (if 
a shared copy is not available already in 
memory) and transfers to it after filing a 
copy of the calling program for possible 
return. That is, it uses the called module 
like a subroutine. COBOL programs call SORT 
this way. 

Either locks a diagnostic program in main 
memory or allows normal swapping to resume 
for it. 

Converts a virtual address to a physical 
main memory address. 

6-5 



Procedure 

M:MASTER 

M:MDFLST 

M:MERC 

M:MESSAGE 

M:MOVE 

M:NEWQ 

M:OPEN 

M:OR 

M:PC 

M:PT 

M:PFIL 

M:PRECORD 

M:PRINT 

6-6 

Table 6-1. System Procedures (cont.) 

Function 

Requests that the program be allowed to 
operate in the master mode. 

Modifies the terminal polling lists. 

Allows the user to have the monitor process 
any system abnormal or error code, 
overriding an ABN or ERR exit. 

Writes the specified message on the operator 
console. 

Copies an entire file, record by record. 

Requests I/O to be performed without a DCB 
and without a user-built channel program. 
This procedure is for real-time processing. 

Causes the specified file associated with 
the specified DCB to be opened for usej 
This procedure causes a wide variety of 
actions depending on the DCB assignment. 

Causes a specified test to be made at a 
specified location (if a specified test 
identifier is reset). If the condition is 
true, the specified test identifier is set; 
Otherwise, it remains unchanged (see the 
M:SNAPC procedure). 

Sets a prompt character. 

Allows the user to generate FPTs in either 
protected or unprotected storage. (This is 
an assembler directive, not a CAL.) 

Causes the specified tape to be positioned 
past the number of file marks specified and 
in the direction specified. 

Causes the tape specified by the DCB to be 
positioned in the direction specified by the 
specified number of records. 

Writes the specified message on the listing 
log output media. 

July 1, 1976 



Procedure 

M:PURGE 

M:QFI 

M:QUEUE 

M:RAMR 

M:RDG 

M:READ 

M:REW 

M:RLSLINE 

M:RRESOURCE 

M:RUE 

M:SAVE 

M:SEGLD 

M:SETDCB 

M:SLAVE 

M:SMPRT 

M:SNAP 

July 1, 1976 

Table 6-1. System Procedures (cont.) 

Function 

Purges I/O on a character oriented 
time-sharing line. 

Queues a real-time program pending an 
interrupt. 

Enters and retrieves transactions in the 
Transaction Processing Queue. 

Reads the assign/merge record. 

Releases disk granule for a real-time program. 

Causes a logical data record to be read into 
the location specified by the user from a 
device or file. 

Rewinds a tape specified by the DCB. 

Releases a slave character oriented 
time-sharing line. 

Releases resources (e.g., disks, tapes). 

Reports an event to the CP-V scheduler. 
This procedure is for real-time processing. 

Saves system parameters in the Job 
Information Table. 

Loads a specified program overlay segment 
into memory. 

Sets error or abnormal addresses in a 
specified DCB. 

Allows any master mode program to return to 
the slave mode. 

Sets memory protection. 

Causes a snapshot of the registers and 
memory specified to be printed. 

6-7 



Procedure 

M:SNAPC 

M:STARTIO 

M:STIMER 

M:STOPIO 

M:STRAP 

M:SUPCLS 

M:SYS 

M:TFILE 

M:TIME 

M:TRAP 

M:TRTN 

M:TRUNC 

M:TTIMER 

6-8 

Table 6-1. System Procedures (cont.) 

Function 

Causes a snapshot of the registers and 
memory specified to be printed if the 
specified test identifier is set. Whether 
the test identifier is set or not is 
dependent on the M:IF, M:AND, M:OR, and 
M:COUNT procedures. 

Returns a real-time device to the system. 

Sets the interval timer with a specified 
interval of program execution time. 

Stops I/O on the designated real-time 
device. 

Simulates a trap. 

Terminates current symbiont program output 
and initiates output to the designated 
device. 

Allows a program to use privileged services. 

Causes a specified DCB to be closed, on 
return to the user's program, and the 
associated file to be registered as a 
scratch file for deletion at the end of the 
job. 

Communicates the time of day and the current 
date to the executing program. 

Allows a program to take control at a 
particular location on occurence of a 
machine trap. 

Restores control to the executing program 
from a trap or timer routine. 

Causes the blocking buffer reserved for a 
specified DCB to be released (written if 
necessary). 

Gives the time remaining in the interval 
that was previously set by an M:STIMER 

July 1, 1976 



Procedure 

M:TTIMER 
(cont.) 

M:TYPE 

M:WAIT 

M:WAMR 

M:WEOF 

M:WRITE 

M:XCON 

M:XXX 

Table 6-1. System Procedures (cont.) 

Function 

procedure and optionally cancels the 
interval in effect. 

Writes the specified message to the operator 
on the operator's console. 

Suspends the program for a certain period of 
time. 

Writes the assign/merge record. 

Writes an end-of-file mark on an unlabeled 
tape specified by the DCB. 

Causes the contents of a specified buffer to 
be transmitted to an output device or file 
as a logical record. 

Allows a program to regain control after 
program termination. 

Causes the monitor to terminate the job and 
not honor any further commands ·c if the 
program is running in the batch mode). 

MONITOR ERROR MESSAGES 

Each monitor error message is associated with a two digit code 
and a two digit subcode. The code defines the general problem 
and the subcode categorizes the problem more specifically. There 
are two types of monitor codes - abnormal codes and error codes. 
Abnormal codes are those with numbers less than 40 and error 
codes are those with numbers of 40 or greater. This reflects the 
fact that error conditions are those considered to be of greater 
severity than abnormal conditions. In fact, if an abnormal 
condition occurs, the system will by default attempt to proceed. 
If an error condition occurs, however, the system will by default 
abort the job. In both cases, the user may override the system 
default and specify that the condition is to be handled by 
user-developed code. If the user asks for control, the error or 
abnormal code is returned in a specified location and no error 
message is printed. Otherwise, the monitor prints the message 
corresponding to the code and takes the default action. 

July I, 1976 6-9 





CHAPTER 7. DEBUGGING FACILITIES 

TIME-SHARING MODE DEBUGGING 

Errors that occur in a user program which is running in the 
time-sharing mode are reported directly at the terminal. This 
allows the user to take immediate action to correct the error. 
Thus, an important advantage of the time-sharing mode of 
operation is that it allows the user to debug programs (i.e., 
locate and correct errors) dynamically. Due to the intermode 
compatibility, programs created for the other modes of operation 
may be debugged in the time-sharing mode. 

There are three processors which were designed to facilitate 
on-line debugging. They are.: 

o Delta - for debugging programs written in assembly 
language. (However, Delta works at the machine language 
level and may be used to debug any program.) 

o FORTRAN Debug Package (FDP) - for debugging prog~ams 
written in FORTRAN. 

o COBOL On-line Debugger - for debugging programs written 
in COBOL. 

The general facilities provided by these debugging processors 
allow the user to: 

1. Examine, insert, and modify such program elements as 
instructions and data. 

2. Trace the flow of program execution. 

3. Control the flow of program execution. 

The Delta commands are summarized in Table 7-1, the FDP commands 
are summarized in Table 7-2, and the COBOL On-line Debugger 
commands are summarized in Table 7-3. 

July 1, 1976 7-1 



Table 7-1. 

Type of Commands 

Expression Evaluation 

Memory Cell Opening 
and Display 

Memory Modification 

Symbol Table Control 

Execution Control 

Snap Dump Control 
(Executive Delta only) 

Overlaid Program 
Control 

Breakpoints 

7-2 

Delta Command Summary 

Functions 

Evaluates expressions consisting 
of program symbols, special 
symbols, assembly language 
mnemonics, and certain operators. 

Displays the contents of a memory 
cell or a series of cells and 
opens it (or them - one at a time) 
for modification as described 
next. 

Assembles an expression and stores 
it in the currently open cell and 
qloses the cell. Commands exist 
that allow a user to conveniently 
modify a series of cells in this 
manner. 

Selects a particul~r symbol table 
for use in debugging; loads the 
global symbol table; displays.· 
undefined symbols; allows the 
user to define new symbols; and 
removes selected symbols. 

Begins execution at a specified 
location or continues execution 
from the point at which execution 
was interrupted. 

Produces hexadecimal dumps on the 
line printer or to disk. 

Allows Delta to break when an 
overlay is loaded. 

Requests that Delta break when a 
specified instruction is 
encountered, when a specified 
memory cell is modified, or when 
a branch instruction is executed 
(and branches). Several 
instruction break points may be 
set. Optionally, the user may 

July 1, 1976 



Table 7-1. Delta Command Summary (cont.) 

Type of Commands 

Breakpoint (cont.) 

Memory Search and 
Modification 

Memory Clearing and 
Setting 

Display Modes 

Printer Output 

Disk Dumps (Executive 
Delta only) 

Prompt Character 
Changing 

Program Termination 

Function 

trace execution by displaying 
information at designated points 
in the program. 

Searches the program and data for a 
specified element. Memory is only 
searched between user-specified 
bounds. 

Zeros memory between specified 
locations or sets memory between 
specified locations to a specified 

; value. 

Allows the user to control the 
mode of displays. For example, 
the user can set the display mode 
for memory addresses to symbol 
plus relative hexadecimal offset. 

Prints the contents of memory 
between specified locations. The 
output can go to the line printer 
or the user's terminal. 

Prints the contents of the disk 
from a specified area. 

Changes the prompt character for 
Delta to a user-specified 
character. 

Disassociates Delta and exits to 
TEL. 

Table 7-2. FORTRAN Debug Package (FDP) Commands 

Command Function 

GO Start or resume execution. 

single break Interrupt execution at next FORTRAN 
statement. 

double break Interrupt execution immediately. 

July 1, 1976 7-3 



Table 7-2. FORTRAN Debug Package (FDP) Commands (cont.) 

Command Function 

QUIT Quit the debugging run. 

stepping Resume execution and step to a subsequent 
FORTRAN statement (backtracking mode not 
set). 

backtracking 

RESTART 

REWIND 

ABORT LEVEL 

LOC 

PRINT, 
OUTPUT, or ? 

value change 

GOTO 

FLOW 

NOFLOW 

HISTORY 

7-14 

Display flow history transactions 
(backtracking mode set, see the HISTORY 
command) .. 

Restart at the beginning of the main program 
(no data or files are initiated) .. 

Rewind files .. 

Set the abort level. 

Display the location of a FORTRAN 
statement .. 

Display the value of variables, arguments, 
or positions.. The value of a position is 
the source line number for that position. 
The values of arguments (may only be 
displayed during calling sequence breaks) 
and variables depend on the type of the 
item, but hexadecimal or string values are 
optional .. 

Change the values of variables. During 
calling sequence breaks, the values of 
arguments (actually, the variables they 
represent) may be changed. 

Branch to a specified position .. 

Turn on flow tracing mode .. 

Turn off flow tracing mode. 

In on-line runs, set backtracking mode and, 
possibly, display the most recent flow 
history transactions (in reverse order) .. In 
batch runs, display the most recent flow 
history transactions (in flow order). 

July 1, 1976 



Table 7-2. FORTRAN Debug Package (FDP) Commands (cont.) 

Command Function 

RESET HISTORY Erase the current flow history transactions 
to avoid duplicate didsplays. 

USE FILE Send run-time debug output to a specified 
file for later analysis. 

USE ME Send run-time debug output to the terminal. 

KILL Revoke debug commands. 

SKIP Skip a FORTRAN statement or a series of 
FORTRAN statements. 

AT Set statement break. 

ON Set data break. 

ON CALL Set specific calling sequence break. 

ON CALLS Set to break on all calling sequences not 
covered by a specific ON CALL. 

Table 7-3. COBOL On-line Debugger Command Summary 

Command Function 

AT Establishes a breakpoint at a specific 
location in the program. 

WHEN Establishes a breakpoint that is effective 
whenever the contents of an identifier are 
changed. 

STOP Halts execution of the program at a 
breakpoint established by an AT or WHEN 
command. 

IF Provides conditional execution of debugger 
commands at a breakpoint established by an 
AT or WHEN command. 

OFF Removes a breakpoint that was established 
by an AT command. 

July 1, 1976 7-5 



Table 7-3. COBOL On-line Debugger Command Summary (cont.) 

Command Function 

OFFWN Removes a breakpoint that was established 
by a WHEN command. 

OFFS Removes all breakpoints that were 
established with an AT command and have a 
statement-id as their location. 

OFFP Removes all breakpoints that were 
established with an AT command and have a 
procedure-name as their location. 

LISTBRKS Lists all the breakpoints that are 
currently established. 

BREAK (key) Establishes a temporary breakpoint before 
the execution of the next COBOL statement. 

RUN Removes all breakpoints established by AT 
or WHEN commands and continues execution of 
the program. 

NEXT Executes a single statement of the program. 

NEXTP Resumes execution of the program until the 
next procedure-name is encountered. 

GO Begins execution of the program at a 
specified location or ae the current 
statement of the program. 

PRINT Causes the contents of an identifier to be 
displayed on the terminal in the natural 
mode of the identifier. 

PRINTX Displays the contents of an identifier in 
hexadecimal. 

SET Places a specified value in an identifier. 

EQUATE Enters an abbreviation for an identifier 
into the abbreviation table. 

DROP Removes an abbreviation from the 
abbreviation table. 

7 -6 Ju 1 y 1 , 19 7 6 



Table 7-3. COBOL On-line Debugger Command Summary (cont.) 

Command Function 

DUMP Provides a hexadecimal dump in the standard 
format for post mortem dumps. 

STRACE Controls statement execution trace mode. 

SLIST Displays the history of statement execution. 

PTRACE Controls the procedure-name execution trace 
mode. When the procedure trace mode is on, 
each procedure-name is printed out prior to 
execution of the procedure. 

PLIST Lists the contents of the procedure-name 
execution'.history table. 

SOURCE Prints one or more source lines on the 
programmer's terminal. 

REPLACE Allows the programmer to replace an existing 
source statement. 

INSERT Allows the programmer to add new lines to 
the source file. 

DELETE 

SETFILES 

LISTFILE 

HELP 

QUALIFY 

END 

July 1, 1976 

Deletes a line from the source file. 

Provides the programmer with a quick and 
easy method for ensuring that all his DCBs 
are correctly assigned. 

Displays the status of an FD in the 
program. 

Lists the debugger commands, with a short 
description of each. 

Changes the default value of the program-id, 
the name of the source-file to be used in 
source manipulation commands, or the debug 
file to be used. 

Terminates the debugging session and returns 
control to the monitor. 

7-7 



BATCH PROCESSING MODE DEBUGGING 

Batch program errors are reported via either a default mechanism 
or through explicit dump and snap commands supplied by the user 
in his JCL deck or internally within his program. 

Errors occurring during the execution of a batch user program are 
reported to the user via the error codes and subcodes as 
described in Chapter 6. If the user does not choose to handle 
these errors himself (i.e., does not use the debug commands), the 
monitor aborts the job and interprets the codes for him by 
accessing the error message file for an appropriate message. 
This message is printed together with the location of the error, 
the PSD, the general registers, and, if the error is DCB-related, 
the contents of the DCB. For example: 

4000 CAN'T READ AN OUTPUT. FILE 

AT C065 

ON DCB M:EO 

WHICH CONTAINS 

(contents of DCB) 

USER's PROGRAM STATUS DOUBLEWORD 

(contents of PSD) 

USER's GENERAL REGISTERS 

(contents of registers) 

The memory dumps performed by debug commands may be either 
conditional (dependent on whether errors occurred during program 
execution) or unconditional. All dumps are taken before the DCBs 
are clos·ed. 

POSTMORTEM DUMPS 

A postmortem dump control command requests the monitor to dump a 
selected area of memory. Such a dump is termed "postmortem" 
because it is performed after the program has been executed or 
terminated due to error (i.e., "errored"). If an error is 

7-8 July 1 , 19 76 



detected during program execution, the monitor lists an 
appropriate error message in addition to listing the dump output. 

Postmortem dumps are requested by various forms of the PMD system 
control command. The two forms PMD and PMDE cause various 
portions of the user's environment to be dumped if an error 
occurs. The form PMDI causes a dump to occur whether or not any 
errors have been detected. 

SNAPSHOT DUMPS 

A memory snapshot dump provides an instantaneous "picture" of 
program conditions existing at a particular point in time during 
program execution. Such a dump can be obtained just prior to the 
execution of any specified instruction in a user's program. Six 
control commands and six equivalent procedures are provided for 
specifying the circumstances that will produce a snapshot dump 
and the portion of memory that the dump will include. These are 
summarized in Table 7-4. 

Table 7-4. Snapshot Dump Control Commands and Procedures 

Control 
Command 

SNAP 

SN A PC 

IF 

AND 

July 1 , 19 7 6 

Procedure 

M:SNAP 

M:SNAPC 

M:IF 

M:AND 

Function 

Requests the monitor to take an 
unconditional memory snapshot. 

Requests the monitor to take a 
conditional memory snapshot. 

May be used in conjunction with 
conditional snapshots (SNAPC, 
M:SNAPC). It requests the monitor to 
make a specified test at a designated 
location and, if the condition rs 
found to be true, to set the flag bit 
associated with the conditional 
snapshot. 

May be used in conjunction with 
conditional snapshots (SNAPC, 
M:SNAPC). It requests the monitor to 
make a location, but only if the flag 
bit for the associated snapshot is in 

7-9 



Table 7-4. Snapshot Dump Control Commands and Procedures (cont.) 

Control 
Command 

AND 
(cont.) 

OR 

COUNT 

Procedure 

M:AND 

M:OR 

M:COUNT 

Function 

the set state when the test is to be 
made. 

May be used in conjunction with 
conditional snapshots · (SNAPC, 
M:SNAPC). It requests the monitor to 
make a location, but only if the flag 
bit for the associated snapshot is in 
the reset state when the test is to 
be made. 

Allows the user to specify an 
iteration range (and steps within 
that range) in which a flag for a 
snapshot dump is to be set if a 
user-specified count is within a 
user-specified range. 

SYSTEM DEBUGGING 

Extensive facilities are provided for debugging the CP-V system 
itself. Facilities of specific importance are described below. 

AUTOMATIC CRASH ANALYSIS 

Explicit internal tests detect most software and some hardware 
problems and activate the system recovery routines. A dump taken 
at this time is submitted to a ghost job (ANLZ) which provides an 
analysis of the problem, including the immediate symptoms and 
formatted presentations of system tables and job-dependent 
information. About 20 specially formatted tables are presented 
in terms of well-known system symbols, permitting fast and 
accurate isolation of the problem either by home office experts 
or by field analysts. The analysis and repair of problems is 
thus especially prompt. 

7-10 Ju 1 y 1 , 19 7 6 



REMOTE SYSTEM ANALYSIS 

The same routines used for automatic analysis may be used during 
system operation from any remote or local terminal to isolate 
system problems in a crash dump on file or in the running system 
itself. Further, the language Delta may be used to examine and 
repair the running monitor, again from a remote terminal. This 
facility has proven especially valuable as a fast, money-saving 
aid to solving problems at CP-V installations; it allows several 
home office experts to combine their various talents to solve a 
problem within hours rather than making long, expensive trips to 
the customer's site. They can log onto the customer's system, 
gather information, analyze it, and dynamically apply the 
correcting patch. 

EXECUTIVE DELTA 

For especially difficult problems which require hands-on control, 
the executive debugger, XDELTA, provides for complete total 
control of the operating system. Breakpoints may be set to stop 
the system for examination at crucial points using the symbols of 
the system for accurate, easy-to-read displays. 

SYMBOLIC PATCHING 

XDELTA is also used to patch the monitor at boot time. The same 
symbolic patch format is used for both debugging and for 
patching. Patches are generally relocatable so that patch decks 
may be applied without change to all system regardless of the 
SYSGEN configuration. 

GENMD PATCHING 

The GENMD processor permits on-line, batch, and ghost users to 
make permanent modifications to existing load modules, thereby 
reducing the number of compilations required to debug a program. 
GENMD patches are used to modify nonresident elements of the 
system. 

July 1 , 19 7 6 7-11 



BOOT-UNDER-THE FILES 

Both GENMD patches and XDELTA patches may be applied to the 
system at boot-time. CP-V also provides for rereading the patch 
deck without disturbing the permanent files of the system and its 
users, which avoids the necessity of saving and restoring an 
extensive file system in order to apply critically needed 
patches. 

7-12 Ju 1 y 1 , 19 7 6 



CHAPTER 8. TIME-SHARING 

INTRODUCTION 

For those activities best suited to an interactive environment, 
CP-V provides time-sharing service for remotely connected 
terminals. A variety of language and utility processors are 
provided to aid the user in accomplishing: 

0 Program development 

0 Program compilation 

0 Program execution 

0 Program debugging 

0 File maintenance 

0 Text creation and editing 

Programs to be executed in the other modes of operation m~y be 
completely or partially developed in the time-sharing mode. 

More than 128 terminals may be connected simultaneously depending 
on hardware configuration, activity at terminals, and desired 
response time. The following types of terminals may be used with 
CP-V: 

Xerox Model 7015 Keyboard/Printer. 

Xerox Model 3010 Keyboard/Printer. 

Teletype Models 33, 35, 37, and 38. 

IBM 2741 Terminals. 

Tektronix Models 4010 and 4013. 

Datapoint 3300. 

Any terminal compatible with any of the above. 

CP-V allows terminals to be permanently connected or to be 
temporarily connected via dial-up communication circuits. Local 
terminals may be connected permanently through Xerox-supplied line 

July 1, 1976 8-1 



interfaces. Remote terminals requiring permanent connections are 
provided through leased communication circuits. 

Regardless of how a terminal is physically connected to CP-V, 
terminal protocol is the same. After connection has been 
established, users identify themselves by entering their account, 
their name, and if required, a password. If the identification is 
valid and consistent wit~ information maintained by the monitor, 
the user's on-line session is initiated and the system prompts the 
user for commands. If the identification is invalid_, CP-V sends 
an error message and requests the user to resupply "log-on" data. 

An on-line session is terminated by entering a simple "log-off" 
command or by hanging up the telephone connnection. CP-V then 
transmits selected accounting information and offers the user the 
opportunity to log on again. Thus, separate accounting for 
separate functions may be achieved by a change of account number 
and/or name. 

Concepts that are relevant only to the time-sharing mode of 
operation are discussed in the remainder of this chapter. 

TERMINAL EXECUTIVE LANGUAGE 

The Terminal Executive Language (TEL) is the principal terminal 
language for the system. Most activities associated with COBOL, 
FORTRAN and assembly language programming can be carried out via 
TEL commands. A summary of the TEL commands is given in 
Table 8-1. 

Command 

ANSF 

BACKUP 

BATCH 

8-2 

Table 8-1. TEL Command Summary 

Description 

Compiles an ANS FORTRAN source program. 

Saves the specified file on a system 
tape. In case of a crash in which files 
are lost, files on the tape will be 
restored. 

Enters the specified file(s) in the 
batch job stream. 

July 1, 1976 



Table 8-1. TEL Command Summary (cont.) 

Command Description 

BUILD Allows a new file to be created from the 
terminal using the Edit processor. 

BYE 

CANCEL 

COBOL 

COMMENT 

COPY 

COUPLE 

COUPLE line number 

DECOUPLE 

DELETE 

DELTA 

DISPLAY 

DONT COMMENT 

DONT COUPLE 

DONT LIST 

DONT OUTPUT 

July 1, 1976 

Disconnects the terminal from the system 
and provides an accounting summary. 
This command is equivalent to the OFF 
command. 

Cancels previously submitted batch jobs. 

Compiles an ANS COBOL source program. 

Directs error commentary to the 
specified device or counteracts the 
preceding DONT COMMENT command. 

Copies a file or device input to the 
specified file or device. 

Allows other terminals to couple to this 
terminal. 

Establishes a link between the user's 
terminal and the terminal specified by 
line number. 

Releases the coupling between two 
terminals. 

Deletes the specified file(s). 

Calls the Delta debugging processor. 

Lists the current values of various 
system parameters. 

Stops error commentary output. 

Causes attempts to couple to the 
terminal to be rejected. 

Stops listing output. 

Stops object output. 

8-3 



Table 8-1. TEL Command Summary (cont.) 

Command Description 

DONT SEND Disallows messages from the machine 
operator to the user's terminal. Global 
broadcasts are deferred until TEL is in 
control. Also disallows the MESSAGE 
command. 

EDIT Calls Edit to modify a file. 

END Terminates the current job step. This 
command is equivalent to the STOP and 
QUIT commands. 

ERASE Deletes the accumulated output for the 
line pr.inter. 

EXTEND Sets the extended memory mode; i.e., 
appends the special processor area to 
the available user area. 

FORT4 Compiles an Extended FORTRAN IV source 
program. 

GET 

GO 

JOB 

L 

LDEV 

LIST 

8-4 

Restores the previously saved main 
memory image. This command is 
equivalent to the RESTORE command. 

Continues processing from the point of 
interruption. This command is 
equivalent to the CONTINUE and PROCEED 
commands. 

Requests the status of jobs that were 
submitted to the batch queue· via the
Ba tch processor. 

Lists file names and, optionally, 
attributes from the account directory, 
tape, or disk pack. 

Modifies a logical device definition; 
directs a stream of information. 

Directs the listipg output to the 
specified device, or counteracts the 
preceding DONT LIST command. 

July 1 , 197 6 



Table 8-1. TEL Command Summary (cont.) 

Command Description 

LYNX Forms the load modules as specified. 

MESSAGE Sends the specified message to the 
operator. 

META Assembles the specified Meta-Symbol 
source program. 

OFF Disconnects the terminal from the system 
and provides an accounting summary. 

OUTPUT 

PAGE 

PASSWORD 

PLATEN 

PRINT 

PROCEED 

Processor Calls 

July 1, 1976 

This command is equivalent to the BYE 
command. 

Directs object output to the specified 
file'., or counteracts the previous DONT 
OUTPUT command. 

Resets the terminal header page number 
to the value specified by n. 

Assigns, changes, or deletes a log-on 
password for the user. · 

Sets the value of the terminal platen 
width and/or page length or displays the 
terminal platen width and page length 
values. 

Sends accumulated symbiont output, such 
as output for the line printer or the 
card punch, to the output device. 

Continues processing from the point of 
interruption. This command is 
equivalent to the GO and CONTINUE 
commands. 

These calls are entered while TEL is in 
control of the terminal. They turn over 
control of the terminal to the processor. 
Examples are: 

APL 
FLAG 

BASIC 
LYNX 

PCL 

8-5 



Table 8-1. TEL Command Summary (cont.) 

Command Description 

program name Initiates execution of the specified 
program. 

QUIT 

RESET 

RESTORE 

RUN 

SAVE 

SEND 

SET 

SHOW 

START 

STATUS 

STOP 

SWITCH 

. 8-6 

Terminates the current job step. This 
command is equivalent to the STOP and 
END commands. 

Resets all DCBs back to their system 
default values. 

Restores the previously saved main 
memory image. This command is 
equivalent to the GET command. 

Loads the specified module and starts 
execution. 

Saves the current main memory image on 
the designated file. 

Allows messages from the machine 
operator to be printed on the user's 
terminal. 

Assigns file or device to a DCB or sets 
DCB parameter. 

Displays information about currently 
logged-on user. 

Loads a load module into main memory 
and starts execution of the program, 
either with or without an associated· 
debugger. 

Displays the current accounting values. 

Terminates the current job step. This 
command is equivalent to the END and 
QUIT commands. 

Controls setting and resetting of the 
user's pseudo sense switches. With no 
parameters, the command displays the 
pseudo sense switch settings . 

July 1, 1976 



Table 8-1. TEL Command Summary (cont.) 

Command Description 

TABS Sets simulated tab stops for the 
terminal or displays the simulated tab 
stop settings. 

TERMINAL Sets the terminal type for proper I/O 
translations. 

TERMINAL STATUS Lists the terminal type and the current 
values of parameters associated with its 
operation. 

TP Logs off a time-sharing terminal and 
makes it available as a slave 
Tran~action Processing terminal. 

U Causes the words UNDER DELTA to be 
inferred in the next command. 

WHERE Returns the line number of the specified 
user (if the user is logged on). 

XEQ Initiates processing of TEL commands 
from a command file. 

SAMPLE TIME-SHARING SESSION 

Figure 8-1 presents a sample time-sharing session. Output from 
CP-V is underscored. User input is not underscored. 

XEROX CP-V AT YOUR SERVICE 
ON AT 15:28 MAR 28, '76 
LOGON PLEASE: 2232,HALL 

ON AT 15:28 03/28/76 2232 B-7A 

lBASIC 

The user calls the BASIC processor, and begins to build 
a program, entering a BASIC statement in response to 
each prompt character. 

Figure 8-1. Program Building, Editing, and 
Execution Using Easic (cont.) 

July 1, 1976 8-7 



210 REM SAMPLE PROGRAM 
215 REM $A IN STMT 20 IS A STRING VARIABLE 
220 $A = "COMPUTE ARCSINE OF X, IN DEGREES" 
>30 PRINT $A 
>40 FOR I -~= 1 TO 5 

After typing the minus-sign (or dash) character by 
mistake - i.e., by forgetting to shift - he uses a 
Delete or Rubout character (echoed as \) to erase it 
and continues. 

>50 INPUT X 
>60 PRINT DEG (ASN(XX)) " = ARCSIN OF "X 
>70 NEXT I 
> 80 END 
2RUN 

He enters the final statement (step 80) and then 
requests compilation and execution with the RUN command. 

16:18 NOV 09 RUNIDAA •.• 
COMPUTE ARCSINE OF X, IN DEGREES 
1· 001 

5.72958E-02 = ARCSIN OF 1.00000E-03 
?.707 
-44.9913 = ARCSIN OF .707000 
?-0.707 
-44.9913 = ARCSIN OF -.707000 
13-246 

He now tries a value that is much too large. 

60 ASN-ACS ARG ERROR 

He gets an error message, and a return to editing/ 
command level (where he will enter additional program 
statements for detecting the out-of-range condition). 

255 IF ABS(X) > 1 THEN 90 
290 PRINT X; "VALUE OUT OF RANGE" 
295 GOTO 70 
2RUN 

After inserting steps 55, 90, and 95, he tests again. 

16:27 NOV 09 RUNIDAA •.• 
COMPUTE ARCSINE OF X, IN DEGREES 

Figure 8-1. Program Building, Editing, and 
Execution Using Basic (cont.) 

8-5 July 1, 1976 



? 1. 5 
1.50000 VALUE OUT OF RANGE 

1 2. 

lOFF 

He gets the desired result on the exception condition, 
and terminates execution. 

(accounting summary) 

Figure 8-1. Program Building, Editing, and 
Execution Using Basic (cont.) 

ENTRY OF JOBS TO THE BATCH JOB STREAM 

In those instances where the on-line user does not wish to sit at 
the terminal and attend the execution of a long process, he or she 
may convenLently employ the terminal batch entry facility of CP-V 
to enter the job into the batch job stream for execution in the 
batch processing mode. The user may then disconnect from· the 
system or start another time-sharing task. 

This service allows time-sharing users to create and edit a 
control command file which will direct the execution of their 
jobs. At any time after submitting a job control file, the user 
may request the status of the job. CP-V responds by telling 
users the number of jobs ahead of theirs in the queue, that the 
job is running or that the job is completed. The user may also 
cancel the job from the on-line terminal. 

Even if the batch mode is not operating concurrently with the 
time-sharing mode, jobs may be entered into the batch job stream 
for subsequent execution as soon as the batch mode is activated 
by the operations staff. 

COMMUNICATION WITH THE COMPUTER OPERATOR 

Communication of control instructions to the CP-V operating system 
is accomplished through a Terminal Executive Language (TEL) by 
time-sharing users. Since the on-line user is in direct control 

July 1 , 19 7 6 8-9 



of the computing task, the need for the vast majority of special 
instructions to the computer operator is eliminated. However, 
the need for some communication between the on-line user and the 
central operator still exists - for example, to request the 
mounting of tapes and disks or to request information. 

CP-V provides facilities for the on-line user to transmit 
messages to the central site operator. When the message appears 
on the operator's console, the transmitting terminal is 
identified with the incoming message. The central operator can 
then carry on a dialogue with the individual on-line user. 

For users not currently logged-on, the central operator may input 
a "greeting message". This message is stored by CP-V and is 
presented to the user immediately after logging on the system. 
Further information about the file management system is 
maintained automatically by CP-V. This information is placed in 
a "mailbox'' and provides the user with_current information on 
file disposition. 

AUTOMATIC PROCESSOR ASSOCIATION 

The time-sharing mode allows the user to work at a terminal, 
interacting "directly" with a CP-V processor or with a 
user-written program. The word "directly" has been put in quotes 
because there are monitor routines which do not make themselves 
apparent to the user but which facilitate the interaction taking 
place. 

In general, a time-sharing user may interact with a variety of 
processors during an on-line session. There is a feature of CP-V, 
however, which enables the system manager to restrict a user in 
such a manner that interaction may take place with only one 
selected processor. As soon as such a user logs onto the system, 
the user begins interacting with that one particular processor. 
The feature is particularly valuable when a user who is 
unfamiliar with CP-V is being introduced to the system or when a 
particular user requires only limited services. The basic 
purpose of this feature is to reduce the number of interactions 
at a terminal when only the one processor is going to be 
required. 

8-10 July 1, 1976 



AUTOMATIC SAVE FOR LINE DISCONNECT 

This feature of CP-V preserves a user's program when a line 
disconnect occurs before the user has logged off, and provides a 
method of reconnection of the preserved program when the user 
calls back. Files remain open and properly positioned so that 
the program may be continued as if it had never been interrupted. 

When a line disconnect occurs, the suspended program image is 
retained for a fixed length of time. This retention period is 
established as a system parameter and may be modified by the 
operator at any time. (The operator may also abort a user when 
the user is in the suspended state.) 

Suspended program images are retained and named by the user's 
log-on account/name identifier. Only one suspended image is 
retained for any given account/name. Thus, if two users are 
logged on under identical account/names and both hang up, only 
the image of the first to hang up will be retained. The 
second to hang up will simply be logged off. Further, the first 
to call back is given the option of reconnecting to saved image. 
Difficulty in this area can be avoided entirely by assigning 
unique account/names to each user. 

When the disconnected user logs back onto the system, the system 
recognizes that a program image exists for his account/name 
combination and issues the following message: 

PROGRAM HELD. RECONNECT? 

The user then responds with either Y or N. If Y, the user is 
reconnected to the suspended image and continues from the point 
of the disconnect. (However, I/O going to and from the terminal 
may have been lost.) If the response is N, the program image 
continues to be retained. (The retention time is not changed.) 

TERMINAL COUPLING 

This facility provides for coupling (linking) of indirect 
printing mode terminals (e.g., Teletypes but not IBM 2741s) in 
such a way that the input and output of one terminal is displayed 
on both. All typing at both terminal keyboards appears on the 
paper of both. If the two terminal users are typing 
concurrently, then mixed (but identical) lines of characters 
appear on the two terminals. However, a running program of a 
particular terminal "sees" only the input of that terminal. 

July 1, 1976 8-11 



Conversations may be carried on between linked terminals by 
terminating lines with a cancel key-in so as not to affect a 
reading program. Terminal page heading output is not coupled. 
The link is broken if either line is disconnected. 

This facility includes mechanisms for accepting, rejecting, 
creating, and terminating couplings. Both terminal commands 
and program procedures are provided so that the user may control 
coupling either using TEL commands typed at the terminal or 
through system procedures included within the program. 

PAPER TAPE INPUT 

Paper tape may be used for input at Teletype terminals. There 
are three ways that a paper tape may be created: 

1. 

2. 

3. 

8-12 

The paper tape may be punched while the user has the 
Teletype in the local mode (i.e., not connected to the 
system). 

The same characters that are keyed in during on-line 
input may be punched onto paper tape. 

An existing file may be copied from system storage to 
the terminal with the paper tape punch on. Thus, the 
information being typed at the terminal will also be 
punched onto the paper tape. 

Ju 1 y 1 , 197 6 



CHAPTER 9. MULTIPROGRAMMED BATCH PROCESSING 

OVERVIEW 

CP-V offers a comprehensive multiprogramming batch facility for. 
those jobs which do not need or do not benefit by on-line 
processing (time-sharing or transaction processing). The batch 
facility includes an easy to use, yet powerful, JCL structure. 
To increase throughput, up to 16 batch jobs may be run concurrently 
and a Multi-Batch Scheduler is provided that allows the 
installation manager to "tune" the system to meet the requirements 
of the installation. Also, a spooling facility (referred to as 
symbionts and cooperatives in CP-V) is provided to help eliminate 
bottlenecks associated with slow-speed peripherals. 

MONITOR CONTROL COMMANDS 

INTRODUCTION 

When a job is submitted to the batch job stream, the user directs 
the operating system by means of a job control language (JCL) 
consisting of monitor control commands. These commands control 
the construction and execution of programs and provide 
communication between a program and its environment. The 
environment includes the monitor and processors (such as 
Meta-Symbol, COBOL, and ANS FORTRAN), the operator, and the 
peripheral equipment. 

Most of the CP-V monitor control commands are briefly described in 
Table 9-1. There are additional monitor control commands which 
apply only to remote processing. They are discussed in 
Chapter 10. 

Command 

AND 

July 1, 1976 

Table 9-1. Monitor Control Commands 

Function 

Causes a specified test to be made at a 
specified location. Only if the condition is 
true and the specified test identifier is set 
does it remain set; otherwise, it is reset (see 
SNAPC control command). 

9-1 



Command 

ASSIGN 

BCD 

BIN 

COUNT 

DATA 

EOD 

FIN 

IF 

INCL 

JOB 

LDEV 

LIMIT 

9-2 

Table 9-1. Monitor Control Commands (cont.) 

Function 

Relates an operational label or a pseudo file 
name to a device. A pseudo file name may be 
assigned to an operational label. 

Serves as a terminator for a binary input 
source. 

Informs the monitor that the information~to 
follow is binary. 

Specifies the range and the steps within the 
range where the test identifier is set (see 
SNAPC control command). 

Informs the monitor that the information to 
follow is data. 

Causes an end-of-data abnormal return to the 
monitor, indicating the end of a series of data 
records. 

Specifies the end of a stack of jobs. 

Causes a specified test to be made at a 
specified location. The specified test 
identifier is set only if the condition is 
true; otherwise, the identifier is reset or 
remains reset (see SNAPC control command). 

Directs the overlay loader to allocate public 
library routines in a segment. 

Signals the completion of a previous job and 
the beginning of a new one. All jobs must have 
a JOB control command. 

Attaches an information stream to a physical 
device (identified by a logical device stream 
name) and defines attributes of the physical 
device. 

Estimates the system job parameters (i.e., 
number of pages of output, number of cards to 
be output, time job is to run, etc.) for the 
job. 

Ju 1 y 1 , 19 7 6 

l 



Table 9-1. Monitor Control Commands (cont.) 

Command 

LOAD 

LYNX 

MESSAGE 

MODIFY 

NCTL 

OLAY 

OR 

OVERLAY 

PFIL 

PMD 

PMDE 

PMDI 

July 1, 1976 

Function 

Directs the Load loader to form a relocatable 
load module and enters it in the user's 
element file if a load module name is 
specified. 

Calls the Load loader to form a relocatable 
load module using a syntax compatible with 
Link. 

Causes the specified message to be typed to the 
operator at the time that it is encountered by 
the system. 

Allows the user to insert a modification into a 
user program before execution. 

Allows noncontrol input files to be entered 
from the card reader. 

Equivalent to LOAD control command. 

Causes a specified test to be made at a 
specified location (if a specified test 
identifier is reset). If the condition is 
true, the specified test identifier is set; 
otherwise, it remains unchanged (see SNAPC 
control command). 

Equivalent to LOAD control command. 

Position n files on unlabeled magnetic tape. 

Causes the monitor to dump the selected area of 
memory, in hexadecimal form, if an error occurs 
during execution. 

Causes the monitor to dump (in addition to the 
information obtainable by PMD) the PSD, 
registers, etc. 

Causes the monitor to dump the selected area of 
memory, in hexadecimal form, regardless of 
whether errors have been detected. 

9-3 



Table 9-1. Monitor Control Commands (cont.) 

Command 

POOL 

processor 
name 

PT REE 

REW 

RUN 

SNAP 

SNAPC 

STEP 

SWITCH 

TITLE 

TREE 

WEOF 

XEQ 

9-4 

Function 

Tells the monitor the number of core pages to 
be allocated for buffers and tables associated 
with I/O operations. 

Tells the monitor which processor is to operate 
and what options the processor is to execute. 

Tells the monitor that a tree control command 
is to be read from the user's file. 

Rewinds the specified tape. 

Tells the monitor to transfer control to the 
user's program. 

Causes a snapshot of the specified memory and 
registers at the location specified to be 
performed. · 

Causes a snapshot of the specified memory and 
registers at the location specified to be 
performed only when the specified test 
identifier is set. · 

Provides conditional execution of job steps. 

Produces the initial settings of the pseudo 
sense switches. 

Causes the specified title to be output at the 
beginning of each logical page of output on the 
listing output device. 

Specifies the symbolic representation of the 
overlay structure. 

Writes a physical end-of-file on magnetic tape. 

Initiates processing of monitor control commands 
from a command file. 

July 1, 1976 



MONITOR CONTROL COMMAND EXAMPLES 

To give the reader a greater understanding of the purpose and 
usage of monitor control commands, three examples of batch jobs 
are presented below. 

In the first example of a batch job (Figure 9-1). a program 
written in Meta-Symbol assembly language is assembled and the 
object code is saved in a file called OBJECTCODE. 

Next card 

!LIMIT (TIME,2), (CORE, 12) 

!JOB 35275,SMITH,7 

Figure 9-1. Assembly of a Meta-Symbol Source Deck 

All cards beginning with an exclamation point are monitor control 
commands. In the example, 

o The JOB command identifies the user and specifies the 
priority at which the user is to run (7). 

o The LIMIT command specifies that the job is expected to 
require no more than two minutes of CPU time and 12 
pages of core. (If either limit is exceeded, the job 
will be aborted.) 

o The MESSAGE command requests the operator to mail the 
output from the job to Smith at location A-8. 

July 1, 1976 9-5 



o The ASSIGN command specifies that the object code is to 
be saved on a file called OBJECTCODE. 

o The METASYM command specifies that the Meta-Symbol 
assembler is to operate next and also specifies options 
that affect the operation of the assembler. For 
example, the SD option causes the assembler to produce 
symbolic debugging object code for use with the Delta 
debugging processor. 

o The Meta-Symbol source program is the program that is to 
be assembled. 

o The "Next card" could be any appropriate control command 
such as FIN or JOB. 

In Figure 9-1, the Meta-Symbol source program appeared in the 
deck of cards submitted to the·batch job stream. If the source 
program already resides in a file that is stored on some form of 
secondary storage, the Meta-Symbol assembler can be directed to 
access that file to obtain the source code. The example in 
Figure 9-2 is identical to that in Figure 9-1 except that the 
source program resides in a file called SOURCECODE (which, 
implicitly, is stored on system disk storage). Note that the 
entire job is defined by six monitor control commands. · 

Next card 

!METASYM SI,BO,LO,DC,SD 
!ASSIGN M:BO,(FILE,OBJECTCODE) 

!ASSIGN M:SI,(FILE,SOURCECODE) 

!MESSAGE MAIL OUTPUT - SMITH, LOC A-8 

!LIMIT (TIME,2),(CORE, 12) 

!JOB 35275,SMITH,7 

Figure 9-2. Assembly of a Meta-Symbol Source File 

9-6 July 1, 1976 



In the previous examples, the jobs have been prepared for entry 
into the batch job stream by punching them onto cards. If the 
user is at an on-line terminal, the job may be prepared through 
use of the Edit processor. Edit is used to build a file 
containing exactly the same information that would be punched 
onto cards. The file is then submitted to the batch job stream 
via a processor called Batch. Figure 9-3 shows the steps taken 
to prepare a job for the batch stream via this method. The 
reader should not be concerned with the details of the example, 
since the example is just intended to show the general process 
involved. When the BATCH JOBFILE command has been processed, the 
batch job stream will contain a job which is identical to that in 
Figure 9-2. 

!BUILD JOBFILE 
- 1.000 !JOB 35275,SMITH,7 

2.000 !LIMIT (TIME,2),(CORE,12) 
3.000 !MESSAGE MAIL OUTPUT - SMITH, LOC A-8 
4.000 !ASSIGN M:SI,(FILE,SOURCECODE) 
5.000 !ASSIGN M:BO,(FILE,OBJECTCODE) 
6.000 !METASYM SI,BO,LO,DC,SD 
1.000 

lBATCH JOBFILE 

Figure 9-3. Submitting a Job to the Batch Stream 
from an On-line Terminal 

July 1, 1976 9-7 





CHAPTER 10. REMOTE PROCESSING 

INTRODUCTION 

The purpose of the remote processing system is to provide for 
flexible communication between CP-V and a variety of remote sites. 
Terminals at remote sites should not be confused with the on-line 
terminals which provide the direct user-computer interaction of 
the time-sharing mode. Remote terminals can range from a simple 
card reader and line printer combination to another large-scale 
computer system with an assortment of peripheral devices. 
Important features of the remote processing system include 

o Support of a wide variety of peripherals at the remote 
site. Through monitor and user interfaces, virtually 
any type of device !e.g., tape, disk plotter) may be 
accessed with remote processing. 

o Computer-to-computer communication. A remote site may 
be another large-scale computer, and files of data may 
be transferred between user programs at the central and 
remote computers. 

o Slave/master status. A CP-V system may act as the 
central site to some remote terminals and as a remote 
terminal to other computers, simultaneously. This 
feature encourages the construction of communications 
networks. 

o Complete user interface. Any user (batch, on-line, 
ghost) of a CP-V system can communicate with any number 
of devices at one or several remote sites. When data is 
being sent by a user program to a remote site, the 
remote site need not be connected since CP-V 
automatically buffers on RAD or disk for deferred 
transmission. 

o Processing of jobs from remote sites at the central 
site. Jobs are sent from the remote site to the central 
site, are processed there, and may direct output to the 
originating remote site, a central site device, or 
another remote site as specified by the remote site 
user. 

o Dynamic definition of remote stations. Remote stations 
can be added, deleted, or modified during system 
operation. 

July 1, 1976 10-1 



Basically, CP-V remote processing is a machine-to-machine 
communication mechanism that allows output files for pseudo 
devices called streams to be combined into transmission blocks 
and transmitted over communications lines. Blocks received over 
these lines are deblocked into symbiont input files for logical 
device streams (or real devices) at the central or remote site~ 

A block is the physical unit of data, including control 
information, transmitted between CP-V and a remote site. The 
block may consist of one or more logical records. There are many 
factors that influence the size of a block, including the 
terminal type. Generally, terminals that are capable of handling 
multiple records per block make more efficient use of 
communication circuits. CP-V provides the interface to both 
types of terminals. When appropriate, CP-V collects multiple 
records and transmits them in one block to a terminal. When 
receiving data from a remote batch terminal, CP-V deblocks the 
records. Thus a user program: in CP-V sends or receives data in a 
common format regardless of the terminal being utilized. 

REMOTE PROCESSING TERMINALS 

Two basic types of remote terminals are supported by CP-V: 
Remote Batch Terminals (RBTs) and Intelligent Remote Terminals 
(IRBTs). 

An RBT is a card reader, and card punch, and line printer 
combination which is used primarily to allow batch processing I/O 
functions to be performed at remote sites. That is, a job is 
input to the system from the remote site card reader, the job is 
processed at the central site, and the output is sent to the 
remote site line printer or card punch. The output may 
optionally be directed to the central site or to another remote 
site. The Xerox 7670 RBT or any computer that exactly emulates 
it (Univac DCT 2000 compatible) is supported by CP-V. 

The IBM 2780 RBT or 3780 RBT, or any computer that exactly 
emulates them, is supported by CP-V given the following factors: 

0 

0 

0 

0 

10-2 

EBCDIC transmission code. 

Nontransparent line protocol. 

Single record blocks or multirecord blocks of 400 bytes 
for 2780 RBTs and 512 bytes for 3780 RBTs. 

Support for multidrop lines is not provided. 

July 1, 1976 



An IRBT can be either a mini-computer system for which the 
primary function is to control the operation of peripheral 
equipment (e.g., COPE 1200) or another large-scale computer 
system (e.g., another CP-V system). Any computer system that 
supports the IBM HASP Multileaving protocol may act as an IRBT to 
CP-V. (This and all other reference to "HASP" and "Multileaving" 
in this document refer to the HASP Multileaving protocol as 
described in HASP Version 2. 3 program docume·ntation and not to 
the IBM HASP operating system, except where IBM HASP is 
specifically noted.) Multileaving allows a single data block to 
contain records associated with different peripherals at the 
IRBT. In conjunction with a feedback mechanism that temporarily 
suspends transmission for a single peripheral, multileaving 
permits peripherals of different speeds to operate at their 
individual rates. 

The majority of records transmitted to and from any computing 
system contain many adjacent· characters that are identical. CP-V 
and supported IRBT systems increase throughput by contracting 
(compressing) strings of characters before transmission and 
expanding (decompressing) these character strings after receipt. 
Thus, while the compression/decompression process improves 
overall system efficiency, the user of transmitted data does not 
have to be aware of its source or format. 

HARDWARE CONNECTION OF REMOTE TERMINALS 

A remote terminal is connected to the central site over a 
communication line that is either a hardwired line or a switched 
line. 

If the connection is over a hardwired line, the remote site must 
be physically near the central site. 

If the connection is by switched line, two data sets (modems) are 
required. The data sets provide interfaces between the line and 
the remote terminal and between the line and a data set 
controller (described below) at the central site. The data sets 
convert device signals to telephone tones and telephone tones to 
device signals. 

All remote terminals require a data set controller (DSC) for 
interface with the central site. A virtually unlimited number of 
RBTs and IRBTs may be connected to the computer via a particular 
DSC, but only one may be connected at a time. Therefore the 
maximum number of remote sites that may be connected concurrently 

July 1, 1976 10-3 



is determined, not by the number of remote terminals, but by the 
number of DSCs at the central site. CP-V supports up to 30 DSCs 
of the following types: 

Xerox 7601, which may be used only with a Xerox 7670 RBT. 

Xerox 7605, which may be used with any RBT or IRBT. 

Options that may be added to either of the above DSCs are 

Xerox 7602, which provides full-duplex operations. 

Xerox 7604, which provides for local connection. 

Figure 10-1 depicts the relationship between the central site, 
remote sites, data sets, and data set controllers. 

7605 
DSC 

CP-V 

MIOP 
7605 
DSC 

~~ ~~ 
Set Set 

IRBT or RBT IRBT or RBT 

Peripheral Pe~ipheral 
Devices Devices 

Figure 10-1. CP-V Remote Processing Hardware 

10-4 July 1, 1976 



REMOTE PROCESSING MODES 

The remote processing system is designed so that the CP-V system 
may act as the central site to a set of remote terminals while 
simultaneously acting as a remote terminal to one or more other 
systems. A system that is acting as the central site is referred 
to as the "master" system and a system that is acting as a remote 
terminal is referred to a "slave" system. 

To the CP-V system, the role of master and slave manifests itself 
only at log-on time. After the data-set to data-set 
communication path is established, the slave logs onto the 
master. (The master cannot log onto the slave.) Once the log-on 
is complete, the communication path between the master and slave 
is symmetrical - streams of data flowing in both directions over 
the communication path. 

Four fundamental modes of remote processing are 

1. A CP-V master system connected to one or more slave 
Xerox 7670 and/or IBM 2780 RBTs. 

2. A CP-V master system connected to one or more slave 
mini-computer IRBTs. 

3. A CP-V system communicating with another CP-V sy~tem. 

4. A CP-V system acting as a slave IRBT connected to 
another computer system acting as the master computer. 

These four modes may be combined to provide a large variety of 
communications networks. An example of such a network is given 
in Figure 10-2. (The arrows point to the RBTs and slave IRBTs.) 

Figure 10-2. CP-V Remote Processing Network 

July 1, 1976 10-5 



WORKSTATIONS 

A workstation is a named entity used to represent a set of hardware 
characteristics at remote sites. (In sophisticated applications, 
a workstation definition may include the characteristics of 
pseudo-hardware.) The workstation may represent all of the 
hardware at a given remote site, the hardware available to a 
particular group of users at a given remote site, or the hardware 
available to a particular group of users at any site which has 
the requisite configuration. The definition of a workstation 
specifies such items as: 

o > Name of the workstation. 

o Type of terminal to be used (RBT or IRBT). 

o Maximum priority for jobs submitted from the 
workstation. 

o Whether the workstation will be a slave computer or the 
master computer (if the type is IRBT). 

o Remote peripheral devices to be associated as part of 
the workstation (if it is an IRBT). 

o Attributes of devices defined for the workstation~ 

Each workstation is given a workstation name (WSN) of one to eight 
alphanumeric characters. Local devices at a CP-V system have the 
workstation name LOCAL. 

A workstation is not limited to use at one physical location. A 
user may log on as a given workstation at any remote site that 
has the appropriate hardware characteristics. Each remote site 
may have several workstations defined for its use, but only one 
workstation may be active on a given line at a given time. If 
the remote site has more than one line, then more than one 
workstation may be logged on concurrently from that site. The 
workstations must have different WSNs, however, because a given 
WSN cannot be in concurrent use. 

A workstation definition may be created dynamically any time during 
system operation by the system manager. The attributes of 
workstations may also be changed and workstations may be deleted 
during system operation. 

10-6 Ju 1 y 1 , 197 6 



REMOTE PROCESSING USER FACILITIES 

MONITOR CONTROL COMMANDS 

There are several monitor control commands that pertain only to 
remote processing. These commands are summarized in Table 10-1. 
These control commands facilitate the ~ of remote processing 
terminals. The function of transferring files of data between 
machines is performed via the ISCL processor and two other 
monitor control commands, JOB and LDEV. 

Table 10-1. Remote Processing Monitor Control Commands 

Command Function 

RBID Logs a workstation onto the system. 

RBDISC Logs a workstation off the system. 

RBXXX Logs a workstation off the system and 
disconnects it immediately. 

RBMSG Transmits a message to the local operat6r. 

RBDEV Displays the status of all devices at the 
workstation and, where applicable, the name 
of the form mounted on each device. 

RB INFO 

RB PR IO 

Displays various CP-V statistics. 

Changes the priority of the workstation's 
files in the symbiont system to a specified 
priority. 

RB HOLD Prevents current output files and output 
files from other sources from being output, 
but does not affect input files (except that 
results from the execution of such files is 
held). 

RB RETRIEVE 

RB DELETE 

RBSTATUS 

July 1, 1976 

Releases files that were held with RBHOLD. 

Deletes input, output, or executing files 
from the symbiont system. 

Requests the status of files belonging to 
the workstation. 

10-7 



Table 10-1. Remote Processing Monitor Control Commands (cont.) 

Command Function 

RBSWITCH Changes the workstation assignment of output 
files. 

RBSUSPEND Suspends output on specified device(s). 

RBCONTINU& Specifies that suspended output is to be 
continued from where it stopped. 

RBREPRINT Restarts output at the symbiont retry p~int. 

ISCL PROCESSOR 

When the remote site· is another CP-V system, the Inter-System 
Command Language processor (ISCL) facilitates manipulation of 
CP-V managed files for both local and remote users. The ISCL 
processor provides the on-line or batch user with the ability to 
copy, create, list or delete files in another CP-V system via an 
IRBT connection. · 

The processor interprets the user ISCL command and packages the 
command and possibly a file for transmission to the remote CP-V 
system. A simple file transmission is carried out in three 
stages. First, the file is copied to the symbiont disk file, the 
staging area for all remote transmissions. Second, after 
establishing a communication channel to the remote site, all 
files of information destined for that site are blocked into 
transmission packages. At the receiving site, the packages are 
deblocked and each information file is recreated on disk. 
Finally, a ghost job is initiated at the remote site (as a 
consequence of the file's type) which copies the symbiont file to 
the proper, cataloged destination file as per the original 
instructions. When the file is built in the remote CP-V system, a 
message indicating addition of a file to the remote account is 
placed in the MAILBOX file of the remote account. 

To use the ISCL processor, the user must be authorized at the 
remote site as well as the local site. User requests may 

0 Copy a file from a file at a remote CP-V system. 

Send a file to a file at a remote CP-V system. 

10-8 July 1, 1976 



o Delete a file at a remote CP-V system. 

o List file(s) which are at a remote CP-V system. 

LDEV AND JOB CONTROL COMMANDS 

Two commands, LDEV and JOB, are the other primary methods that 
local and remote users use to take advantage of remote processing 
capabilities. 

These are the two CP-V commands that have options that allow a 
user at one site to direct a file to another site. The LDEV 
command allows users to direct a stream of information anywhere 
within the reaches of remote processing - to a symbiont device at 
the central site or to any device at a specific remote 
workstation. It also allows: users to direct files to other sites 
to be run as jobs in the batch processing mode. 

The JOB command, with a more limited application to remote 
processing, provides a means of directing the print and punch 
output of the job to a specified workstation or to the central 
site. 

It is important to note that the remote user may submit jobs to 
the central site that make full use of the LDEV and JOB command 
remote processing features provided that the central site is a 
CP-V system. Because of the on-line/batch compatibility of CP-V, 
the two commands may be used by both on-line and batch users. In 
cases where the master computer is a system other than CP-V, the 
remote user must be familiar with the remote processing commands 
and capabilities of the particular master system. 

July 1, 1976 10-9 





CHAPTER 11. REAL-TIME PROCESSING 

REAL-TIME PROGRAMS 

Real-time processing involves reacting to external events 
(including clock pulses) within microseconds. Selected external 
events are allowed to interrupt the real-time user's program so 
that they can be processed at the time they occur. After an 
interrupt has been processed, control may then return to the 
interrupted program or may be directed elsewhere. 

In CP-V real-time processing, there are three distinct types of 
interrupts: 

1. Real, hardware interrupts from devices wired to the CP-V 
computer. 

2. Multiple clock interval interrupts derived through 
software from a single hardware clock interrupt. 

3. User written pseudo-interrupts that are triggered by 
software rather than by hardware. This type of 
interrupt is quite useful for interprogram communication 
and synchronization. 

There are two major categories of CP-V real-time programs: 
unmapped and mapped. Basically the unmapped category provides 
fast, limited service facilities and the mapped category provides 
slower responding, full service facilities. 

Mapped real-time programs begin execution as normal on-line or 
batch programs or as a special type of program called ghost jobs. 
They are known to the CP-V execution scheduler and have their 
interrupt connected such that events causing an interrupt are 
reported to the CP-V execution scheduler. This is called central 
connection. Mapped programs are normally subject to swapping, 
but may lock themselves in memory if required. All monitor 
services are available to mapped real-time programs. Monitor 
services provided specifically for mapped real-time programs 
include the following functions: 

o Interrupt connection/disconnection, statusing, and 
control. 

o Program execution and priority control. 

July 1, 1976 11-1 



o Locking the program in memory (i.e., prevent it from 
being swapped). 

o Clock wake-up services. 

o Device preemption and return. 

o Direct I/O Services. 

o Changing the Master/Slave bit in the Program Status Word 
(PSW). (This bit controls whether the program can 
execute privileged hardware instructions or not.) 

o Changing the memory map by altering the correspondence 
of virtual addresses to physical memory addresses. 

Mapped real-time programs may be connected to either hardware 
interrupts or software simulated peudo-interrupts. Response time 
for these programs is approximately 1 millisecond. In a 
multi-processing system, mapped real-time programs can be 
executed on any available execution resource unless they execute 
in the master mode. Master mode programs can only be executed by 
the primary processor. (In a multi-processing system, one 
execution resource is designated the primary processor. The 
primary processor handles all interrupts, monitor services, and 
performs all monitor functions (e.g., execution scheduling, 
memory management). It can also execute user program code. (The 
remaining execution resources are called secondary processors 
and can only execute slave mode program code.) 

The second category, unmapped real-time programs, is considerably 
different. Such programs receive control directly from the 
interrupt without any intervention from CP-V; in fact, CP-V is 
unaware of the occurrence of the interrupt. This is called 
direct connection to an interrupt. These programs are loaded 
into special pages of real memory reserved by the operator. They 
do not use the memory map and essentially become extensions to 
CP-V. Maximum response to events, usually (98% of the time) less 
than 500 microseconds, is achieved using unmqpped real-time 
programs. Since these programs receive the interrupt directly, 
they cannot use monitor services. They can, however, branch 
directly into CP-V to make use of some monitor routines. This 
includes the facility to: 

0 Obtain/release real pages of memory. 

0 Obtain/~elease granules of secondary storage. 

0 Use the CP-V basic I/O routines. 

11-2 July 1, 1976 



o Send character(s) to a time-sharing user terminal. 

o Initiate a ghost job. 

o Report a user event to the execution scheduler. 

Unmapped real-time programs can only be connected to hardware 
interrupts. In a multi-processing system, unmapped real-time 
programs can only be executed by the primary processor. 

Most real-time programs require an orderly shut-down in the event 
of a system or power failure. To accommodate this need, CP-V 
passes control to installation-provided routines during the 
processing of failure conditions. Also, as part of the recovery 
process from any failure, CP-V automatically passes control to 
installation supplied routines so they can re-initialize the 
real-time activities as needed. 

REAL-TIME PROCEDURES 

Table 11-1 briefly summarizes the system procedures which .are 
designed specifically for real-time processing. The following 
terms appear in discussions of real-time services: 

Disarmed 

When an interrupt is in the disarmed state, no signal to that 
interrupt is admitted; that is, no record is retained of the 
existence of the signal, nor is any program interrupt caused by 
it at any time. 

Armed 

When an interrupt is in the armed state, it can accept and 
remember an interrupt signal. The receipt of such a signal 
advances the interrupt to the waiting state. 

Waiting 

When an interrupt in the armed state receives an interrupt 
signal, it advances to the waiting state, and remains in the 
waiting state until it is allowed to advance to the active state. 

July 1, 1976 11-3 



Enabled 

When an interrupt is in the enabled state, it is allowed to move 
to the active state when the interrupt signal is received 
provided that it is also in the armed state. If the interrupt is 
already in the waiting state, it moves to the active state when 
it becomes enabled, provided that no higher priority interrupt is 
currently active. 

An interrupt can undergo all state changes except that of moving 
from the waiting to the active state when it is in the disabled 
state. 

Active 

When an interrupt meets all of the conditions necessary to permit 
it to move from the waiting state to the active state, it is 
permitted to do so by being acknowledged by the computer, which 
then executes the contents of the assigned interrupt location as 
the next instruction. 

Cleared 

When an interrupt is changed from the active state to the cleared 
state, the interrupt states are reset so that the interrupt can 
be recognized again and the priority is reset to that of the job 
that was running when the interrupt occurred. 

Interrupt Control Blocks (ICBs) 

ICBs are areas of memory set aside for use by the monitor 
interrupt processing routines. ICBs are established by SYSGEN. 

Interrupt Label 

The two-character name of an interrupt. Interrupt labels are 
defined at SYSGEN. 

11-4 July 1, 1976 



Procedure 

M:GJOBCON 

M:CONNECT 

M:DISCONNECT 

M:INTCON 

M:INHIBIT 

M:INTRTN 

M: QFI 

M:INTSTAT 

July 1, 1976 

Table 11-1. Real-Time Procedures 

Function 

Associates an interrupt with a load module 
such that if the interrupt occurs, the 
designated load module will be put into 
execution as a ghost job. 

Establishes a connection to an interrupt 
such that the user program will be entered 
at a specified address when the interrupt 
occurs. This procedure is only available to 
mapped user programs. Interrupts connected 
in this way report events to the CP-V 
execution scheduler and therefore permit the 
entered program to use all monitor services. 

Releases the specified interrupt if it is 
associated with the user. 

Permits a program to control the states of 
interrupts. Interrupts may be armed, 
disarmed, enabled, disabled, or triggered. 

Permits a program to prevent itself from 
being interrupted by any higher priority 
real-time task. · · 

Allows a mapped, scheduled program entered 
as the results of a centrally connected 
interrupt or elapsed clock interval to 
return to the point of interruption. The 
actual return is to the environment that 
existed for this program or user when the 
interrupt occurred even if this user was not 
in control when the interrupt occurred. 

Permits the user to suspend execution while 
awaiting interrupts or elapsed clock 
intervals assigned a priority higher than 
the current execution priority. If there 
are no interrupts connected for this user 
that satisfy this condition, the user is 
aborted. 

Permits any user to query the status of any 
real or pseudo-interrupt location. 

11-5 



Procedure 

M:HOLD 

M:CLOCK 

M:STOPIO 

M:STARTIO 

M:IOEX 

M:EXU 

11-6 

Table 11-1. Real-Time Procedures (cont.) 

Function 

Prevents a program from being swapped. 

Permits a user with a sufficient privilege 
to request entry at a specified address when 
a specified time interval has elapsed. 

Obtains direct control over the I/O 
associated with a particular device and 
ensures that there will be no contention for 
a particular device during certain critical 
processing periods. This includes the 
ability to request I/O end action off of the 
I/O interrupt associated with the I/0 
opera ti on. : 

Returns an I/O device preempted via M:STOPIO 
to the system. 

Provides a means of enabling the real-time 
user to exercise direct control over I/0 
operations without having to run in the· 
master mode (see also the M:EXU service). 
The only requirements are that the device 
specified be preempted (either via the 
M:STOPIO service or the SYSCON processor), 
and that an end-action routine be provided 
(either via M:STOPIO or M:IOEX). The I/O 
functions that can be controlled via M:IOEX 
are: 

SIO - Start input/output. 

HIO - Halt input/output. 

TIO - Test input/output. 

TDV - Test device. 

Provides another way for the real-time user 
to execute I/O instructions and other 
privileged instructions without having to 
run in the master mode (see also the M:IOEX 
Service). The only requirement is that the 

July 1, 1976 



Table 11-1. Real-Time Procedures (cont.) 

Procedure 

M:EXU (cont.) 

M:MASTER 

M:SLAVE 

M:MAP 

M:GPP 

M:FPP 

M:GJOB 

July 1, 1976 

Function 

instruction op code to be executed be one of 
the following: 

Op Code Mneumonic 

X'4C' SIO 

X'4D' TIO 

X'4E' TDV 

X' 4F' HIO 

X'6C' RD 

X'6D' WD 

The SIO execution service is intended 
primarily for interfacing to devices not 
known to the operating system and which do 
not generate I/O interrupts. However, no 
validity checks are made and if the SIG will 
result in an I/O interrupt, it is assumed 
that the user will have provided an 
end-action receiver via the M:STOPIO 
service. 

Allows a user with sufficient privilege 
level to operate in the master mode 
(master-protected mode if running on a 
Sigma 9 or Xerox 560) with a write key of 1. 

Allows any master (and master-protected) 
mode program to return to the slave mode. 

Converts a specified virtual address to a 
physical address or a specified physical 
address to a virtual address. 

Acquires a physical page of memory. 

Releases a physical page of memory that was 
acquired by M:GPP. 

Activates (or awakens) a program as a ghost 
job. 

11-7 



Table 11-1. Real-Time Procedures (cont.) 

Procedure Function 

M:GDG 

M:RDG 

M:RUE 

Acquires a disk granule dynamically. 

Dynamically releases a disk granule acquired 
via M:GDG. 

Simulates that an event took place for the 
user (e.g., an error, wake-up, log-off). 

M:CHKINT Checks the status of an interrupt. 

M:EXCP 

M:NEWQ 

M:QUE 

M:COC 

Executes the user's own channel program. 
(This procedure results in a BAL linkage to 
the monitor's I/O supervisor module.) 

Requests I/O to be performed without a 
user-built channel program. (This procedure 
results in a BAL linkage to the monitor's 
I/O supervisor module.) 

Requests that I/O be performed through 
parameters supplied in a specified DCB. 
(This procedure results in a BAL linkage to 
the monitor's I/O supervisor modules.) 

Sends a character to the user's terminal. 

DYNAMIC PHYSICAL PAGE ALLOCATION 

Physical pages are made avalable for real-time processing in 
either of two ways: 

0 

0 

11-8 

Dedication of physical core pages at boot-time. These 
pages are known as the Resident Foreground (RESDF) 
pages. Parameters specified during system generation 
define the physical pages that are to be removed from 
the system and dedicated to real-time processing. 
These pages remain dedicated real-time pages until 
returned to the system via the Physical Page Stealer 
(PPS) Ghost. 

Dynamic acquisition and release of physical core pages 
during normal operations. These pages are known as the 

July 1, 1976 



Dynamic Resident Foreground (DYNRESDF) pages. The 
operator can acquire or release DYNRESDF pages by 
communicating with the Physical Page Stealer (PPS) 
ghost job. 

In both cases, foreground memory is allocated in 'memory 
segments'. A memory segment in this context is simply a set of 
contiguous physical pages. There is only one RESDF memory 
segment (i.e., that which may be allocated at boot-time). There 
may be several DYNRESDF memory segments, the maximum number of 
which is specified during system generation (SYSGEN). All 
real-time memory segments must be allocated in the area between 
64K and the end of physical main memory. 

The operator, by communicating with the Physical Page Stealer 
ghost job, has control over the allocation of both RESDF and 
DYNRESDF pages. The operator also has the ability to reset the 
SYSGEN defined RESDF size and maximum DYNRESDF size thus 
affecting the system's maximum user size. Increases to RESDF 
size or to maximum DYNRESDF size cause a decrease of the 
maximum user size; decreases to RESDF size or the DYNRESDF size 
cause the maximum user size to be increased. By setting the 
maximum number of real-time pages that may be allocated to a 
minimum, the operator is able to allow very large jobs to be 
scheduled. Decreases to the maximum real-time page values· may 
be effected at any time. Increases that would cause the maximum 
user size to be set.to less than 186 pages are limited to times 
when there are no users on the system other than system ghosts; 
i.e., the system must be quiescent except for certain system 
ghosts. Neither RESDF nor DYNRESDF maximum size may be increased 
to the point where the maximum user size is too small to allow 
the system ghosts to run. 

July 1, 1976 11-9 





CHAPTER 12. TRANSACTION PROCESSING 

INTRODUCTION 

Transaction processing (TP) is a recent innovation of the computer 
industry. It is a unique combination of hardware and software 
designed to satisfy the data processing requirements of business 
and the professions. Transaction processing combines the hardware 
field of teleprocessing with the software fields of operating 
systems, data management systems, and special transaction 
processing components. Critical to the entire operation is 
teleprocessing which allows information to be transmitted between 
a computer center and user stations located in the surrounding 
areas. 

In the software realm, transaction processing requires the 
standard operating system fu:nctions of job queuing, scheduling, 
and execution. It also requires the current sophisttcated data 
management systems that have evolved from the simple storage and 
retrieval of information. This generalized software is further 
enhanced with transaction processing components that interface 
with user stations and with software designed at an installation. 
The result of this hardware and software combination allows 
business and the professions to query a central database or to 
dynamically modify its contents as transactions occur throughout 
the organization. 

components of CP-V transaction processing appear in Figure 12-1. 
The shaded portions denote transaction processing software 
components and files which are part of the· CP-V system. The 
unshaded blocks are modules developed by applications programmers 
at the installation. The Extended Data Management System (EDMS) 
is part of the CP-V system but its use in transaction processing 
is optional. 

Because the Transaction Processing Controller and the utility 
processors that create the Station Names, Report Delivery, and 
TFD files execute as independent CP-V jobs, an installation may 
replace any component with its own general-purpose or 
specialized program, or it may use its own programs in addition to 
those provided with CP-V. 

All inputs to TP are transactions and all outputs are reports. 
While it is possible to enter a transaction that does not 
produce a report, it is not possible to obtain a report without 
a transaction to cause its creation. Hence, the entry of a single 

July 1, 1976 12- 1 



Multipoint Line 

LEGEND 

I 

r---..L----, 
I System I 
I Oueue I 
I Manager I 

L--,--1---..J 

~iiii[~ --~~d L1. 

[:':,/):':,:)Components of the Xerox Transaction Processing System 

- - - - Optional capabilities 

r-_t_--, 
I Journal L 
I Interface r 
L_T_..J 

I 

Module 
n 

A multiprogramming application may contain more than one load module. 

Bipoint Lines 

Module1, Module21 ••• , Modulen ore written by the applications prog~ommers at the installation. 

Figure 12-1. CP-V Transaction Processing 

12-2 Ju 1 y 1 , 19 7 6 



transaction may produce no reports, a single report, or several 
reports, depending on the design requirements for the software 
module that processes the given transaction type. 

TERMINAL INTERFACE CONTROLLER 

The Terminal Interface Controller is of particular interest to the 
system manager, whose decisions are relayed to this component, and 
to the central operator, who regulates it operationally using a 
group of commands. During its initialization phase, the Terminal 
Interface Controller reads the external control files - Station 
Names, Report Delivery, and TFD (described below) - and thereby 
establishes the current transaction processing environment. Once 
initialized, the Terminal Interface Controller acts as a complete 
system interface for all sta~ions in the communications network. 
For example, it logs user stations on and off, verifies passwords, 
accepts transactions and delivers reports, and acts on commands 
entered by station users. Thus, the Terminal Interface Controller 
accepts transactions in a multiplexed fashion from the stations it 
controls and routes the resulting reports back to the stations. 

STATION NAMES AND REPORT DELIVERY FILES 

The Terminal Interface Controller reads the Station Names File in 
order to identify stations that it may control during the course 
of transaction processing. This file associates logical names 
with physical stations, specifies any required passwords, and may 
restrict the types of transactions entered from certain stations. 
A logical name is one entered by a station user as he logs onto 
the system. A logical name may also identify a station to which 
a report is to be delivered, even though the transaction that 
produced the report did not originate at that station. The 
Station Names File is created by the Station Names Processor. 

A report may be sent back to the station that originated the 
transaction, or a report may be routed to the location of another 
station in the communications network. Whenever a report is to be 
delivered "to location", the Terminal Interface Controller 
requires the delivery instructions for the report. Delivery 
instructions are specified by using the Report Delivery Processor 
to create the Report Delivery File. 

July 1, 1976 12-3 



TFD FILE 

Transaction Format Descriptors, called TFDs, describe the form of 
transactions and reports. Although differences exist, a TFD is 
similar to a PICTURE clause in COBOL and to a FORMAT statement in 
FORTRAN. At least one TFD must be prepared for each transaction 
type and for each report type in the system. For transactions, 
TFDs are used to detect errors typically made by a station user, 
such as entering data in the wrong field and omitting required 
information. For reports, TFDs control the report layout (titles, 
columns, rows), meaning that applications programmers are not 
required to format reports. The TFD Processor, which generates 
this file, permits TFDs to be inserted, modified, or deleted as 
required by the application. 

OPERATOR CONTROL 

The central operator typically invokes the Terminal Interface 
Controller at the start of each transaction processing day and 
shuts it down at the end of the day. Commands provided for 
operational control allow him to enable or disable the entire 
communications network, to acquire stations into the network or 
to free them, and to shut down the Terminal Interface Controller 
itself. 

COMMON JOURNAL 

Transactions and reports may be recorded in the common journal 
as historical records, for data collection purposes, or for 
recovery in the event of a system malfunction. Use of this 
journal is optional. When used, it provid~s a complete audit 
trail of the flow of transactions and reports through the system, 
with the date and time stamped on each record.· If the 
installation elects to journalize transactions or reports, or 
both, then in the event of a malfunction, any affected 
transactions and reports may be reprocessed as required from the 
common journal. 

A system may include several journals, but only one can be 
associated with the transaction queue. 

12-4 July 1, 1976 



SYSTEM QUEUE MANAGER 

The System Queue Manager is part of the CP-V monitor. It manages 
the transaction queue, which is a standard random access file, by 
accepting transactions from the Terminal Interface Controller and 
queuing them until the Transaction Processing Controller requests 
them. Conversely, the System Queue Manager accepts reports from 
the Transaction Processing Controller and queues them until they 
are requested by the Terminal Interface Controller. 

The transaction queue is defined to, and owned by, the TP Ghost 
(discussed below). Execution of the System Queue Manager is 
started by the TP Ghost and thereafter all queuing functions are 
completely automatic. Moreover, the System Queue Manager is a 
generalized procedure and its queuing capabilities may be used 
for purposes other than transaction processing. 

When reports and transactions have been completely processed, the 
System Queue Manager deletes' them from the queue. This technique 
frees the queue space and reduces the probability of "losing" 
transactions or reports within the system. 

In typical TP usage, all transactions and reports are 
automatically queued, but the System Queue Manager may be bypassed 
as shown in Figure 12-1. Queuing is optional because the system 
may be used in nontypical ways, some of which are discussed toward 
the end of this chapter. 

TRANSACTION PROCESSING GHOST 

The TP Ghost (not shown in Figure 12-1) is a system component 
that must be explicitly started by the central operator. Once 
started, the operator may define system files, open and close 
files, and terminate transaction processing. 

Specifically, the TP Ghost maintains a file named TPFILES that 
describes the transaction queue, the common journal associated 
with the queue, and any other journals in the system. The TP Ghost 
allocates and initializes these files. Using a special set of 
commands, the central station operator may set file definitions in 
TPFILES; delete definitions from TPFILES; open, close, and 
release files; switch journal volumes; and terminate transaction 
processing. 

July 1, 1976 12-5 



TRANSACTION PROCESSING CONTROLLER 

The Transaction Processing Controller (TPC) is of interest to 
applications programmers at the installation: the actual 
processing of transactions and the creation of reports occurs in 
user modules which they write in COBOL, Meta-Symbol, Assembly 
Program, or FORTRAN. In effect, the TPC consists of a main 
program and several subroutines. The TPC main program performs 
service and control functions for user modules by requesting 
transactions from the System Queue Manager, ac~epting and queuing 
reports created by user modules, and journalizing reports as 
designated. 

TPC subroutines are called by the user modules. For instance, the 
INITATPC subroutine initializes a user module and specifies the 
types of transactions that module is designed to process; the 
GETATRAN subroutine obtains the text of the current transaction; 
and the OUTALINE subroutine supplies the TPC main program with the 
report contents. 

As many as 100 user modules may be linked together with a TPC to 
form a load module. Whenever a central database is managed with 
the Extended Data Management System, the EDMS Database Manager is 
also included in the load module for data manipulation. 

OPERATOR CONTROL 

Two-way communication exists between the TPC and the central 
operator. Using commands, the operator may regulate user modules 
on and off or shut down the load module itself, and the TPC is 
automatically notified. Conversely, because of some abnormal 
processing condition, the TPC may abort the load module or one of 
the user modules, in which case it informs the operator of the 
condition. 

TPC SIMULATOR 

As each user module is written, the programmer may test it with 
the TPC Simulator before executing that module in a live 
transaction processing environment. In particular, use of the 
TPC Simulator can prevent untested modules from affecting the 
common journal and the central database. The TPC Simulator - a 
version of the TPC - is generated from the TPC source program. 

12-6 July 1, 1976 



EXTENDED DATA MANAGEMENT SYSTEM 

The Extended Data Management System (EDMS) is designed especially 
for organizations that require the same data for many purposes, by 
many different departments. An EDMS database consists of network
structured information required for different activities, such as 
payroll, personnel and inventory. EDMS consists primarily of a 
Data Definition Language, a File Definition Processor, the Database 
Manager, and utility processors. The EDMS User's Guide is 
publication number 90 30 37; the EDMS Reference Manual is 
publication number 90 30 12. 

DATA DEFINITION LANGUAGE 

The database administrator employs the Data Definition Language to 
describe the desired databas~ structure in terms of items, groups, 
and sets. Because sets relate data items, they are the most 
important feature of EDMS. Sets relate data such that it is 
physically stored only once, even though that data may be retrieved 
or modified later by several different departments. For instance, 
an employee's social security number, salary, and hire data 
usually appear in the employee's payroll record and also in his 
personnel record. Because of set relationships, this data appears 
once in the database, but the payroll department and the personnel 
department each have that data in their required form, without an 
artificial interface. 

After defining the structure with the Data Definition Language, 
the database administrator uses the definition as input to the 
File Definition Processor. This processor creates the file 
definition in an internal format required to initialize the 
database. The actual database may then be created. 

DATABASE MANAGER 

EDMS may also be used by applications programmers. Once the 
database has been created, programmers can manipulate the data 
using the Database Manager - the term given to a group of library 
routines. These routines may be called by user modules to open 
and close the database, to find a group, to get an item, to store 
a new occurrence, and to delete an occurrence. The Database 
Manager is never used to modify the structure originally defined 
by the database administrator. 

July 1, 1976 12-7 



CHRONOLOGICAL SEQUENCE OF EVENTS 

Figure 12-2 summarizes the foregoing description of the CP-V 
Transaction Processing System. It lists - in chronological 
order - the events that occur during transaction processing and 
shows the paths of transactions and reports as they flow 
through the system. Table 12-1, which follows the illustration, 
expands the annotation that appears adjacent to the event sequence 
numbers. The common journal records named in the figure are 
defined later in this chapter. 

SYSTEM INTEGRITY 

The integrity of the central database, and therefore of the entire 
system, depends on the inclusion of specific records in the common 
journal. When journalization of certain records is specified, 
other records are automatically journalized as diagrammed in 
Figure 12-3. (All common journal records are listed and defined 
in Table 12-2.) 

If an installation elects to journalize transactions or reports, 
or both, then transactions and reports bP.;ng processed when a 
failure occurs may be reprocessed from the common journal. Should 
a failure occur, the database administrator must decide which of 
the recovery phases to execute and the central operator initiates 
the recovery process. 

RECOVERY 

Recovery is an important aspect of transaction processing since 
the system must be capable of detecting failures and of 
recovering from them. Some failures that can occur are operator 
errors, accidental destruction of the database or of the 
transaction queue, and violation of rules established for system 
usage. Errors may also occur in user modules written at the 
installation. 

12-8 July 1, 1976 



s tati Oft la.geed Oft 0 

Stari0tt polled for tra-iuion • fJ 
Statiot ~- 0 • 

Tnmcode ,_. anii TFO recard obtained 0 r..-......._ • 
T-tion rut ..- artd verified 0 c....... • 
U.ique ID -ignecf to r..-ctiOfl 0 • 

h9i" T-rion Recard joul'llllliaed 0 G) 

T..-tlan held in qv.- 0 ,,.... ... 
:::::::::::: ---: - . 
........... ·-··-··· ................................. --: 
--·-··-·····-···· ····-·"f-----·-·-·······---·, CD 

r,_tiOft rewiewd from qu-

User module overlay loaded 

Datobcne accessed 

! 
Before Poge frft099 Record jaumcliud 

After Poge Image Record joumali:i:ed 

Uplated page -itt.ft ro darobose 

Patti oi repart 

Refer ro Table I for d91Cl'iptiom 
of evenn. 

Ref• to Table 2 for definitions oi 
rhe ioumal recorc,. 

0 
G> 

CD 

I : 

T~ Ptoc~ CD 
c.. ... G 

\ u.. .... 4D \ ._. .... ·· .... --

End Report Oeliwty Record .Journalized 

R~tra-itted 

Station selecred for rra-iaion 

S.,ift Report Delivety R-d .Joumaliz.o 

TFO recofd reed ond ,.,...., formatted 

Report retrieved ;,_. q-

Report held in ~ 

End Tronsoctian Recorct jOUft'laliHd 

Report Recard jOUf'ncli:i:ed 

Rel'Of't c:reated 

Joumal Activity 

Journal 
Int•face 

JoumcliHd 
os ;equirea 

Be9in Syncnroni:i:oti0<1 Record 

0 Begin Tronsoction Record 

e Before Poge Image Record 

e After ?099 lmnge Record 

G) ~eport R11eord 

(0 End Tromoction Record 

fD iiegin R~t Delivery Rec:ofd 

fD End Report Delivery Record 

E"nd Synchrani:i:ation Record 

Crash llecard 

TP G~t End Record 

Oueuedump Record 

user Record 

Figure 12-2. Chronological Sequence of Events 

July 1, 1976 12-9 



Event No. 

0 
0 
0 

0 
0 
0 

0 
0 

12-10 

Table 12-1. Chronological Sequence of Events 
Event 

The Station user logs onto the system. 

The Terminal Interface Controiler poils the station for message transmission. 

The Terminal Interface Controller prompts the station user, requesting a trancode. A troncode identifies 
a transaction type. 

The Terminal Interface Control I er receives the troncode from the user and finds the corresponding TFD. 

The Terminal Interface Controller accepts the transaction text from the user and verifies it with the TFD. 

The Terminal Interface Controller assigns a unique ID to the transaction in order to keep track of trans
actions as they flow through the system. 

The Terminal Interface Controller journalizes the Begin Transaction record. 

The Terminal Interface Controller posses the transaction to the System Queue Manager. In turn the 
System Queue Manager queues the transaction and posts on event indicating to the TPC that a trans
action is available for processing. 

The TPC retrieves the transaction from the System Queue Manager. 

The TPC loads the user module that corresponds to the transaction type and posses control to the user module. 

The user module typically accesses the database by colling library routines of the EDMS Database Manager. 

The Database Manager journalizes the Before Page Image record. 

The Database Manager journalizes the After Page Image record. 

The Database Manager writes the modified page back to the database. 

The user module creates the report or reports that may result from the transaction. These reports have 
the some ID assigned to the transaction. 

The TPC journalizes one or more Report records, as required. 

The TPC journalizes the End Transaction record. 

The TPC posses a report to the System Queue Manager. In turn the System Queue Manager queues the 
report and postS on event indicating to the Terminal Interface Control !er that a report is available 
for delivery. 

fne Terminal Interface Control !er retrieves the report from the queue. 

The Terminal Interface Control! er finds the TFD that corresponds to the report type and formats the re
port according to the TFD specifications. 

The Terminal Interface Controller journalizes the Begin Report Delivery record. 

The Terminal Interface Controller selects the station for transmission. 

The Terminal Interface Controller transmits the report to the station. 

The ierminol Interface Controller journolizes the End Report Delivery record. 

The report is printed or displayed at the station. 

July 1, 1976 



When journoli:zation for this record 
is specified in the TFD, 

When journalization for this record 
is specified by EDMS, 

Journolizotion for this record 
may be specified in the 

Begin Transaction 

End Transaction 

this record is automatically journalized. 

Before Poge Image 

After Poge Image 

this record is outomoticolly iourn·olized. 

TPC subroutine OUTALINE. ------..... 

t 
When joumalizotion for this record 
is specified in OUTALINE, 

Figure 12-3. 

July 1, 1976 

Report 

Begin Report Delivery 

End Report Delivery 

._ __ this record is automatically journalized. 

Journalization Scheme 

12-11 



Table 12-2. Common Journal Records 

Record 

Begin Synchronization 

Begin Transaction 

Before Page Image 

After Page Image 

Report 

End Transaction 

Begin Report Delivery 

End Report Delivery 

End Synchronization 

Crash 

TP Ghost End 

Queued ump 

User 

12-12 

Definition 

Indicates that the database area has been opened. EDMS journalizes this record 
when opening an area (CP-V random file) of the database. 

Indicates that the transaction has entered the system. The Terminal Interface Con
troller journalizes this record before the transaction is queued. The TFD for the 
transaction type specifies whether or not transactions are to be journalized. 

Journalizes the database page before the database is modified. Journalization of 
this record is specified in EDMS. 

Journalizes the database page after the database has been modified. When Before 
Page Image records are journalized, After Page Image records ore automatically 
journalized. 

Journalizes the report contents. Report journalizotion is specified in the TPC sub
routine OUTALINE. . 

Proves that the transaction has been processed and indicates whether it was 
successful or had failed. When Begin Transaction records are journalized, End 
Transaction records are automatically journalized. 

Indicates that the Terminal Interface Controller is beginning to deliver the repcrt or 
reports. Journalizction of this record is specified in the TPC subroutine OUTALINE. 

Indicates that the Terminal Interface Controller has completed delivery of the 
report. 'Nhen Begin Report Delivery records are journalized, End Report De
livery records are automatically journalized. 

Indicates that the database area has been closed. 

CP-V recovery automatically writes this record ofter a system failure when closing 
journals. 

The TP Ghost automatically writes this record to journals before closing them. 
This occurs whenever the TP Ghost terminates. 

This record is a snapshot of the transaction queue as it currently appears on disk. [t 
is automatically written to the common journal when the TP Ghost opens the next 
tape in the.~eries. When this record is journalized, together with its subsequent 
transaction records, reconstruction of the queue is expedited by limiting the 
number of journal tapes to be scanned. 

User records may appear on the journal. They con be written with the TPC sub
routine JOURNAL. 

July 1, 1976 



Recovery handles several types of failures. It handles the abort 
of a single transaction, the abort of a system component, and a 
crash of the system itself. Recovery also handles the destruction 
of a critical file, such as the database or the transaction queue. 

ABORT OF A SINGLE TRANSACTION 

If a user module employing EDMS aborts while modifying the 
database, the integrity of the database cannot be guaranteed. 
Should this condition occur, EDMS together with the TPC, rolls 
back the database - backs it up to reflect its contents before 
the transaction was processed - and reports the current 
transaction as failed to the TPC. 

ABORT OF A SYSTEM COMPONENT 

Because the Terminal Interface Controller and the TPC execute as 
standard CP-V jobs, abort of either job stops transaction 
processing. Abort of the TP Ghost stops queuing and 
journalization. Should a system component abort, the operator 
may in effect first stop TP, without damage to CP-V, and then run 
standard recovery (discussed below). 

SYSTEM CRASH 

Events associated with the CP-V monitor could also crash the 
system. In this case, CP-V recovery automatically checks all 
open files for incorrect linkages and inconsistencies. It records 
the cause of the crash, as well as other pertinent data for 
subsequent analysis. Standard recovery can then be run. 

DESTRUCTION OF CRITICAL FILES 

The database or the transaction queue could be destroyed because 
of a hardware or a system malfunction or because of errors in user 
modules. The recovery processes can reconstruct the database and 
the transaction queue only for failures within TP and CP-V. 
Recovery from a malfunctioning user module, or restoration of the 
wrong database during sys~em start-up, must be handled at the 
installation. Standard recovery provides for the inclusion of 
recovery processes at the installation. 

July 1, 1976 12-13 



STANDARD RECOVERY 

standard recovery is initiated by the central operator as a series 
of batch jobs when a failure - other than the abort of a single 
transaction - occurs in CP-V or TP. (Standard recovery assumes 
that the abort of a single transaction has already been handled 
by the TPC/EDMS interface.) The phases of standard recovery are 
designed as separate processors rather than as part of the TP 
Ghost or as a single processor. This allows the installation to 
merge processors into standard recovery to handle special cases, 
and also provides restart points if a failure should occur during 
recovery. The recovery process is effectively checkpointed at the 
end of each phase. 

Figure 12-4 is a functional diagram of recovery. CP-V recovery 
performs standard cleanup following a failure. The central 
operator than restarts the TP Ghost, which verifies the integrity 
of the transaction queue and sends recommendations to the 
operator. If the TP Ghost determines that the transaction queue 
must be reconstructed, then a processor named QREMAKE must be 
executed to reconstruct the transaction queue from the common 
journal. Standard recovery is then run ·to rollback the database, 
and to reset the status of "in progress" transactions and reports 
to allow reprocessing when the system has recovered. · 

Standard recovery consists of several phases. During one phase, 
for example, a processor named LISTQIP locates transactions and 
reports, if any, that were being processed when the failure 
occurred, and durfng another phase another procesor QPREP prepares 
the transaction queue for restart by handling the "in progress" 
transactions and reports located by LISTQIP. At each phase, the 
next phase to be run is determined, e.g., if no transactions or 
reports are in progress when the TP Ghost examines the transaction 
queue, then the execution of some phases can be omitted. 

ADDITIONAL FEATURES AND VARIATIONS IN SYSTEM USAGE 

PROTECTION AND CONTROL FEATURES 

TP provides extensive protection. User modules are written in the 
traditional manner and protection is provided cent~ally within the 
system. Some of the protection and control features are 

0 

12-14 

Each user station is authorized by a log-on procedure in 
order to control access to TP components. 

July 1 , 19 76 



l System Failure J 

CP-V recovery performs standard 
cleanup; e.g., it writes a Crash 
record to active journals and closes 
the journals. 

CP-V is restarted 

The operator opens 
the transocti on 
queue. 

The TP Ghost verifies the integrity of 
the transaction queue and sends rec
ommendations to the operator. 

I r I 

,-----_J L_ - - -- ---, 
r. __ j_ __ -:-i 

I If the queue is inactive at the I 
time of a failure and has not 

I been damaged, then the queue 

t._: o~ a~P:: be res~-::J 

Figure 12-4. 

July 1, 1976 

r- _j_ __ _ 

I 

If the queue has '1in progress•• 
1

1 t 
transactions and reports, the a 

I operator is advised to run I /l 
I standard recovery. _j 
'--- -- - '--re- - -

Standard recovery consists of batch 
execution of TP processon, EOMS 
uti Ii ties, and i nsta I lat ion programs 
(optional) to rollback the database 
and to reset the status of transactions 
and reports to allow rerun. 

The operator opens 
the transaction 
queue and TP is 
restarted. 

-

r - - ~ ---, 
I If the queue is destroyed, the I 
I operator is advised to run I 

QREMAKE. 
L __ I ___ J 

QREMAKE reconstructs 
the queue from the com
mon journal. 

J 

Functional Diagram of Recovery 

12-15 



·o A transaction may be journalized. This ensures that it 
will not be "lost" - between its entry into the system 
and its processing - if an error occurs on the random 
access device used for queuing. 

o When journalization is in effect, TP records the 
successful processing of transactions. This ensures that 
successful transactions will not be rerun should an error 
occur. 

o EDMS may generate a record of the premodified database so 
that changes made by an aborted transaction may be undone 
or a damaged database may be restored. 

o TP does not deliver reports until the transaction is 
successfully processed. Because reports and Begin and 
End Report Delivery records can be journalized, the loss 
of created - but unde~ivered - reports can be corrected. 

SYSTEM QUEUE MANAGER VARIATIONS 

The System Queue Manager is designed with an interface such.·that 
other processors may be substituted for, or added to, the Terminal 
Interface Controller and the TPC. For example, the interface 
could be employed by user programs executing under CP-V 
time-sharing. It may be used as communication between two batch 
programs. It may also be used as a data collection medium where 
transactions are received at random intervals during the day, 
stored in the transaction queue, and processed during slow hours 
by a batch program similar to the TPC. 

SPAWNED TRANSACTIONS 

One transaction may generate other transactions. Transactions are 
spawned in user modules by calling the TPC subroutine OUTATRAN, 
which is typically used to spawn one or more transactions on a low 
priority basis. Spawned transactions break down a unit of work in 
order to improve response times. In an inventory application, for 
example, each time a part is removed from stock, the relevant user 
module decrements the number-in-stock item for that part. When 
number-in-stock is reduced to the re-order point, a transaction 
is spawned to place an order for that part. 

12-16 July 1 , 197 6 



OPERAT.IONAL CONSIDERATIONS 

Some operational features to be considered are 

1. A multiprogramming application may have more than one 
transaction processing load module, gaining the 
efficiency of that mode. 

2. Under the direction of the system manager, the central 
operator may adjust the communications network by freeing 
and acquiring stations. The operator may also examine 
the status of transactions and control the distribution 
of reports. 

3. TP does not affect the availability of the current CP-V 
batch and time-sharing services. These services can be 
used concurrently with transaction processing. Batch 
files and TP files ~re compatible. 

4. TP provides a controlled interface between user modules· 
and the EDMS database files accessed by those modules. 
It does not, however, provide this interface for any 
database other than an EDMS database. The user module 
communicates with those files using the CP-V file 
management system. 

5.. CP-.V handles file contention problems .. 

6.. CP-V enables the use of EDMS as a public library capable 
of concurrently serving the database access requirements 
of multiple on-line and batch users. 

7. TP is fully compatible with, and operates in, the CP-V 
environment. All user programming interfaces involving 
EDMS, COBOL, FORTRAN, or Meta-Symbol are compatible with 
existing versions of those processors. 

TRANSACTION PROCESSING TERMINALS 

Terminals supported include 

o Xerox Model 7015 Keyboard Printer. 

o Teletype Models 33, 35, 37, and 38. 

o IBM 2741 Terminals. 

July 1, 1976 12-17 



o Tektronix Models 4010 and 4013. 

o Datapoint 3300. 

o IBM 3270: Display Stations 3277 (attached to 3271 
Control Unit) and 3275. 

o Terminals compatible with any of the above. 

In addition, a class of message mode terminals is supported, 
including those that may be connected to bipoint and multipoint 
lines. 

12-18 July 1, 1976 



CHAPTER 13. SYSTEM MANAGEMENT FACILITIES 

The manager of a CP-V system may exercise considerable control 
over the system. This control is exercised through the use of 
the following facilities: 

o System Generation 

o User Authorization 

o Use Accounting 

o System Performance Control 

o File Maintenance 

SYSTEM GENERATION 

CP-V system generation is a multipass process by which the user 
can generate an operating system tailored to the requirements of 
a specific installation. Starting with a CP-V master system 
tape, the user can create a bootable system tape from which the 
generated operating system can be loaded into a target machine. 
The target machine can be any system having a hardware 
configuration compatible with CP-V and may have more or less core 
storage than the one used to generate the system tape. 

The master tapes contain a bootable monitor, files of load 
modules (LMs) comprising the processors and other routines to be 
used during system generation, and a large number of element 
files (mostly ROMs) that constitute a data base for the system 
generation process. The user may patch the operating system as 
it is loaded into the machine from tape. When the monitor has 
been booted and the nonresident routines have been written to the 
disk, the CP-V system is fully operational. 

The system generation process for the CP-V operationg system is 
performed by service processors. These processors operate as 
ordinary batch or on-line jobs to collect, compile, load, and 
write the modules required for a system. The service processors 
are as follows: 

Processor 

PCL 

July 1, 1976 

Function 

Selects from various sources the relevant 
modules required in the system generation 
process. 

13-1 



Processor 

PASS2 

LOCCT 
and 
PASS3 

DEF 

Function 

Generates the required dynamic tables for the 
target resident monitor. 

Stores and executes load card images (by 
calling the loader) to produce load modules 
(LMs) for the monitor and its processors. 

Writes a monitor system tape that may be 
booted to bring up the target system. 

Control commands read by the PCL processor allow the user to 
select files from the data base of the master system tape, to 
substitute updated files for these (if necessary), and to add 
files to the resulting revised data base that is maintained in 
disk storage for use in later phases of the current system 
generation. · 

The PASS2 processor reads system generation control commands and 
generates disk files of load modules that establish operational 
labels, peripheral characteristics, logical device streams, 
allocatable system resources, and other installation dependent 
parameters that will be used during a later phase of the current 
system generation. 

The object modules selected with PCL must be combined in load 
module form befor~ a generated system tape can be written. Also, 
the tree structures for any overlays must be established. A tree 
table for each CP-V standard processor is present in the master 
release tape. However, tree tables for nonstandard processors 
must be created by the user through appropriate LOAD and TREE 
control commands. 

After the user has created a tree table for an overlay structure, 
he has the option of using the LOCCT processor to generate a 
permanent LOCCT file containing the tree information so that this 
information need not be created anew during subsequent system 
generations. 

If the generated system is to include CP-V standard modules or 
user-defined programs having associated LOCCT files of tree 
information, the PASS3 processor must be called to initiate the 
formation of load modules for them. 

The PASS3 processor reads control commands specifying which LOCCT 
tables are to be used to define the load structure of CP-V 
standard modules or user-defined programs. 

13-2 July 1, 1976 



The user may specify that a given LOCCT table and associated 
object modules are to be deleted from disk storage after the 
component object modules have been loaded. 

The first command read by PASS3 should specify the monitor's 
LOCCT table (e.g., M:MON), so that the monitor will be loaded 
first. Any items loaded will be biased to that bias contained in 
the LOCCT table for the item (this bias comes from the original 
LOAD control command used to generate the LOCCT table being 
used) . 

Items not specified in PASS3 control commands may be loaded via 
LOAD, OVERLAY, and TREE commands as in ordinary batch processing. 
(The monitor load module (M:MON) and RECOVER must be loaded with 
PASS 3. ) 

When all desired object modules have been converted to load 
module form, the DEF processor must be called to write a tape 
containing the generated syst~m. 

The system tape generated by the DEF processor has the same 
general format as the master tape used in booting the CP-V system 
employed in the system generation process. The method of loading 
the generated system into the target machine is identical to that 
used in booting from the master tape. 

To simplify the system generation process, standard monitor 
systems and standard processors are predefined in files on the 
CP-V release tapes. All LOCCTs and PASS2, PASS3, and DEF jobs 
are also included. These files are described in the release 
documentation. Rather than perform the entire system generation 
from scratch, a system manager can edit these files (using the 
Edit processor) to tailer the standard system generation to the 
needs of the installation. 

USER AUTHORIZATION 

During log-on, four items are requested from the user: account, 
name, password, and extended accounting. (Password and extended 
accounting are optional.) These items are used to reference a 
log-on file that controls the entry of the job and, if the job is 
allowed, the type of usage and system privileges extended to the 
user. 

The log-on file exists in the :SYS account under the name :USERS. 
It is composed of a series of records, one for each user who is 
authorized to log on. Most of these records are created by the 

July 1, 1976 13-3 



system manager using the processor Super. The one exception is 
the :SYS account with the user name LBE. The first time there is 
an attempt to log on under account :SYS and user name LBE, a 
record for this account and name is automatically generated and 
placed in the :USERS file. 

Records within the log-on file are keyed records with the key 
formed by the concatenation of account number and name of each 
valid user. Each record contains the identifying information, a 
password (which may be changed by the PASSWORD command) and other 
information that controls the system facilities granted to the 
user. 

In addition, Super is used to create and maintain a file in the 
:SYS account called :PROCS. This file is keyed similarly to the 
:USERS file but does not necessarily contain a record for each 
user. The :PROCS file allows the system manager to restrict a 
user to an individually specified set of processors or to 
restrict an individual user from a specified set of processors. 
These restrictions may be individually controlled for the three 
modes of user access (on-line, batch, and ghost). The processors 
listed may be :SYS processors (both shared and unshared) or any 
executable load modules in any account. 

Super is also used to create and maintain the :RBLOG file in.the 
:SYS account which contains remote processing workstation · 
authorizations. The records within this file contain information 
such as workstation name, type of remote terminal to be used at 
the workstation, maximum priority for jobs submitted from the 
workstation, and remote peripheral devices to be associated as 
part of the workstation. 

USE ACCOUNTING 

A wide assortment of statistics accumulated during execution of 
each job is maintained in an accounting file by the system. Each 
installation may assign weighted charge values to each of the 
machine resources, and the system will use these to calculate and 
report costs accordingly. In addition, facilities are available 
to allow each installation to augment system accounting with 
routines unique to its particular needs. 

Accounting statistics are gathered throughout the CP-V operating 
system. The first or initialization phase of gathering 
statistics involves the authorization of a user to address the 
system. This is set up by the system processor, SUPER, which 
maintains the log-on file, :USERS, and the log-on file for remote 

13-4 July 1, 1976 



batch, :RBLOG. The log-on file information c~ntrols the user's 
access to the system resources and is static except for the 
updating of accumulated granule space. The second or 
accumulation phase is centered around the information acquired in 
the user's JIT, Job Information Table, and in his AMR, 
Assign-Merge Table (or Record). Each user receives an 
initialized JIT and Assign-Merge Table when the job or terminal 
session begins. The majority of accounting information is then 
accumulated in the user's JIT. The third or tabulation phase 
consists of tallying up the user's resource usage during log-off. 
An accounting record for the user is appended to the accounting 
file :ACCTLG, and the user is charged according to his 
established charge rates in the :RATE file. 

The standard output of accounting information may take either one 
of two forms. One form consists of a summary of accounting 
information. The other form consists of the entire accounting 
record for the user. 

For the on-line user, a summary of accounting information is sent 
to the terminal at the time the user logs off. The format of 
this information is 

CPU:m.mmm CON=h:mm INT:nn CHG:xxxx 

where 

m.mmmm is CPU time expressed in minutes and ten-
thousandths of a minute. 

h:mm is console time expressed in hours (h) and minutes 
(mm). 

nn is the number of terminal interactions. 

xxxx is total charge units for the on-line session. 

The same information may be requested by the user during an 
on-line session by entry of the STATUS command, one of the 
commands of the Terminal Executive Language. 

For the batch user, the entire accounting record is written. It 
is normally written to the line printer; however, at the batch 
user's request, it may be written to a file. The format of this 
printout is shown in Table 13-1. 

July I, 1976 13-5 



Table 13-1. Accounting Printout for Batch Jobs 

(Time and Date) 

ELAPSED JOB TIME hh:mm:ss 

13-6 

pARTITON NUMBER 

CHARGE UNITS xxxxxxxx 

TOTAL CPU TIME x.xxxx 

PROCESSOR EXECUTION TIME 

PROCESSOR SERVICE TIME 

USER EXECUTION TIME 

USER SERVICE TIME 

CARDS: 

PAGES: 

TAPES: 

PACKS: 

CORE: 

I/O: 

CARDS READ 

CARDS PUNCHED 

PROCESSOR PAGES 

USER PAGES 

DIAGNOSTIC PAGES 

DRIVES ALLOCATED 

TAPES MOUNTED 

SPINDLES ALLOCATED 

PACKS MOUNTED 

PEAK CORE (PAGES) 

PAGE * MINUTES 

OPERATIONS 

CALS 

x.xxxx 

x.xxxx 

x.xxxx 

x.xxxx 

xx xx 

xx xx 

xx xx 

xx xx 

xx xx 

xx 

xx 

xx 

xx 

xxx 

xxxxxx 

xxxxx 

xxxxxx 

Ju 1 y 1 , 19 7 6 



Table 13-1. Accounting Printout for Batch Jobs (cont.) 

FILE SPACE 

PEAK RAD TEMPORARY xx xx 

NET RAD PERMANENT xx xx 

AVAILABLE RAD PERMANENT xx xx 

PEAK DISK TEMPORARY xx xx 

NET DISK PERMANENT xx xx 

AVAILABLE DISK PERMANENT xx xx 

NUMBER OF SWAPS xx xx 

RESOURCES ALLOCATED 
co = xx 9T = xxxx 7T = xx xx (etc.) 

SYSTEM PERFORMANCE CONTROL 

CP-V is a multiprogrammed, partition system that was designed to 
maximize utilization of the ~ystem's resources. Job throughput 
is dependent upon the efficiency with which system resources 
(i.e., core, tape drives, disk' pack spindles, etc.) are utilized. 
A crude measure of efficiency is the percentage of time that each 
device and the CPU are busy for a given work load over a given 
period of time. Efficiency goes up and throughput increases when 
the resource utilization is greater for a particular work load 
and time sample. For a varying work load, however, high 
throughput will not always result from simultaneously high usage 
of all system resources. 

Greater efficiency may be realized by overlapping I/O functions. 
One method of accomplishing this is to allow several jobs to 
reside in core concurrently, each receiving a time slice. (This 
concept is referred to as multiprogramming.) If the currently 
executing job issues an I/O call that causes physical I/O to 
occur, its quantum is ended and another job is scheduled and 
begins execution (i.e., it receives the usage of the CPU 
resource). Thus, two system resources, the I/0 device called by 
the first job and the CPU, are now being utilized concurrently. 
It is easy to extrapolate from here to visualize several tape 
drives, a RAD, a disk pack, two line printers, and a card reader 
all operating simultaneously. The cost of achieving this overlap 

July 1, 1976 13-7 



is, of course, more core since it is required for all processes 
whether I/0-bound or CPU-bound. 

However, resource overlap will not occur if, say, three 
compute-bound jobs are scheduled for execution concurrently. 
Each job will, in turns monopolize the only resource all three 
need (the CPU) while other resources stand idle. This is why 
the Multi-Batch Scheduler (MBS) is needed. One of the main 
functions of MBS is to schedule jobs for concurrent execution so 
that they utilize as many resources as possible, and not to 
schedule jobs that will vie for a single resource, which would 
cause one or the other to occupy available core space (itself a 
resource) while waiting for a resource to be freed. Ideally, a 
multi-batch scheduler would schedule a compute-bound job with 
several I/O bound jobs and would let the compute-bound job take 
up the CPU slack while the others wait for I/O to complete. 

Thus far, the discussion of batch system performance has 
approached the subject of resdurce optimization based on only one 
criterion - gross work accomplished per time unit. If the total 
system work done over, say, a twenty-four hour period were the 
only consideration, the discussion might stop here. However, all 
installations have unique user requirements and operational 
procedures, and diverse machine configurations. Consequently, 
there are certain additional criteria on which system perf6rmance 
must be judged. These criteria might be termed operational 
considerations and with each of them is associated a priority 
that is higher than the one assigned to raw throughput. 

,, 
A hypothetical illustration of an operational consideration might 
be an installation that has a system configuration utilizing six 
tape drives. Experience at this installation has shown that when 
a set of jobs that uses all drives comes up for execution, it is 
all the operator can do to mount and dismount the required tapes 
and respond to the messages that appear on the operator's 
console. Also~ it is known that between the hours of 3:00 and 
4:00 p.m. on inordinate number of small listing jobs are 
submitted for processing. Those jobs normally occupy the 
operator's entire time in separating the output. Therefore, the 
installation manager may wish to block execution of either the 
job set requiring six tape drives or the listing jobs between the 
hours of 3:00 and 4:00 p.m. A more common situation would be one 
in which an installation must guarantee fast turnaround on jobs 
of short duration that use minimal resources while jobs of long 
duration or those that use tape drives and private disk packs 
must be given a smaller share of the CPU time until the fast 
turnaround jobs are run. Both of these examples illustrate an 
important principle that emerges as a consequence of tempering 
raw throughput with operational considerations - submitted batch 
jobs must have attributes defined in terms of necessary maximum 

13-8 July 1, 1976 



resources to run the job. This is necessary so the system may 
identify those attributes, categorize the job, and schedule it to 
be run so as to satisfy the operational considerations while 
guaranteeing maximum throughput. 

It is the responsibility of the user to specify the attributes of 
his job on the LIMIT command so that his job will not be 
scheduled for execution in the same manner as one requiring a 
greater slice of the system's resources. 

The system manager is able to allocate the resources of his 
system to jobs with certain attributes by defining batch 
partitions under which diverse categories of jobs may run. A 
partition is a collection of ranges of job attributes. In some 
operating systems, a partition is defined as a fixed, addressable 
area of core in which jobs with certain attributes may run. 
Partitions in CP-V are not that type. No physical system 
resources such as core, spindles, or tape drives are permanently 
allocated to a partition. All jobs executing in the various 
partitions draw their physical resource requirements from a 
common pool without regard to the partition under which they 
qualified for execution except that the numeric limits that 
pertain to that partition will apply. Examples of attributes 
that comprise a partition are: 

o Minimum and maximum job execution time 

o Minimum and maximum amount of core 

o Minimum and maximum number of disk pack spindles 

o Minimum and maximum number of tape drives 

All jobs entering CP-V for batch execution share the same input 
queue (often referred to as the 'batch job stream'). Jobs are 
selected from this queue for execution in the batch partitions. 

Schedulin~ is performed in the following manner: 

I. Available resources are determined. 

2. The highest priority job requiring only available 
resources is selected. 

3. The partition tables are searched for a partition that 
fits requested resources and is currently available. 

4. If a partition is not available for the selected job, 
the next job is considered as in steps 2 and 3. 

July 1, 1976 13-9 



In summary, partition definiti9ns are a primary factor in the job 
selection process. The system manager may direct the power of 
his system to the categories of jobs he so chooses by means of 
those definitions. 

A maximum of 16 partitions may be defined for any system. It is 
recommended that 16 partition definitions be generated for all 
systems unless core memory is a serious consideration. This will 
provide a variety of job attribute classifications and those 
partitions in excess' of the operational number may be locked from 
use through a processor (control) available to the system manager. 

In a time-sharing/batch processing system, emphasis may be given 
to batch processing by opening up more partitions. However, it 
should be noted that CP-V is a queue-driven system and tasks are 
selected from prioritized queues without regard to the source of 
the request (i.e., on-line, batch, or remote batch). When there 
is a heavy on-line user load, as the number of batch partitions 
increases the number of compute-bound tasks increases and each 
receives a small franction of the CPU time. This means that 
batch jobs will be able to get m9re CPU time because of large 
quanta assigned to the batch partitions. This will not make a 
significant dent in on-line response time because interactive 
requests have a higher priority than compute bound jobs. Mo~e 
attention may be given to certain categories of batch jobs by 
increasing the number of partitions suitable for them. 

CP-V has a comprehensive set of performance measurement and 
system control facilities. These facilities allow the system 
manager to determine how the system is performing and to adjust 
critical operational parameters to achieve better performance. 

The three processors that provide these facilities are 

1. Control 

2. STATS 

3. Summary 

The Control processor provides a means of control over system 
performance. Commands of the control processor enable the system 
manager to display certain measurements and to "tune" the system 

13-10 july 1, 1976 



as needed by setting new values for parameters that affect system 
performance. Control provides commands for 

o Display of system parameters. 

o Modification of system control parameters. 

o Display and modification of partition definitions. 

The STATS processor performs two functions. One function 
consists of displaying selected performance data in real-time. 
The other function consists of creating "snapshot" records of 
performance data for later processing by the Summary processor. 

The Summary processor provides a global view of system 
performance by formatting and displaying the statistical data 
collected by STATS. The input data for Summary is the SNAPSHOT 
file created by STATS. The output listings are generally large 
and therefore must be output; to a file or on the line printer. 

The Summary processor allows the user to 

1. Request a chronological listing of snapshot data for one 
or more display groups. 

2. Specify a sort filter to remove undesired snapshots from 
the sample for subsequent reports. 

3. Request filtered, sorted, and ordered listings of 
snapshot data for one or more display groups. 

4. Request filtered, sorted, ordered, and averaged listings 
of snapshot data for one or more display groups. 

5. Request means, minimums, maximums, and standard 
deviations for all display groups computed using the 
snapshots which pass the sort filter and a user 
specified intensity range. Correlation coefficients are 
included in this report that are estimates of the linear 
dependence between any pair of monitored variables. 

MAINTENANCE OF THE FILE SYSTEM 

CP-V provides a variety of processors designed to meet the need 
for maintaining a reliable backup of the file system. A reliable 
backup of the file system is required for several reasons. 

July 1, 1976 13- 11 



o The hardware may fail, either resulting in physical 
damage to the storage device or, more likely, presenting 
bad data to the software which may cause loss of or 
damage to the files. 

o In the course of operation, demand for file space often 
exceeds availability, in which case it is necessary to 
move older files to secondary storage to make room for 
newer files. 

o Privileged users can potentially damage the file system. 

o Scheduled maintenance of the hardware sometimes requires 
use of the file devices by the Customer Engineer. 

o Users make mistakes and delete files that they really 
wanted to keep. 

Each file maintenance processor has a function for which it is 
uniquely suited. Together, the processors comprise a flexible 
mechanism designed to meet most file maintenance needs. Some 
typical file maintenance functions are: 

o Saving individual files or groups of files on bac~up 
tape. 

o Restoring individual files or groups of files from 
backup tape to the disk on which the file system is 
stored. 

o Purging individual files or groups of files. 

Most of the file maintenance processors can only be initiated by 
the central operator or by the file management portion of the 
monitor when space in the file· system disk has reached a 
threshold low enough to warrant special action. However, the 
user may save a file or group of files onto the system backup 
tape at any time. 

13-12 Ju 1 y 1 , 197 6 



CHAPTER 14. COMPUTER OPERATIONS 

SYSTEM START-UP AND INITIALIZATION 

several proceedures combine to cover the general subject of system 
start-up, initialization, and recovery from various levels of 
error situations. Each of the proceedures is tailored to restoration 
of the minimum amount of the system required to regain operation. 
Further recoveries proceed automatically whenever possible -
generally requiring no operator intervention. 

When CP-V is in operation, secondary storage is divided into two 
logical parts: 

o The file storage area (PFA) including its allocation 
tables. 

o The- system storage area (PSA) including the operating 
system, the shared processors, a copy of the file 
allocation tables, and the swapping area for user 
programs. 

These two logical parts may reside on the same physical device 
but are usually separated onto separate devices: a moving arm 
disk for files and a fixed head RAD for system storage and 
swapping. 

The recovery, restart, and initialization options include the 
following: 

1. Automatic system recovery assuming valid contents of 
both PFA and PSA. 

2. Operator directed recovery assuming valid contents of 
PFA and PSA. 

3. Boot of a fresh system from tape after destruction of 
the PSA area, perhaps onto a different PSA device. 

4. Boot of a new version of CP-V from tape without change 
of PFA. This and item three are referred to as "boot 
under the files". 

5. Either three or four with an option to replace the 
system account files (:SYS) from the boot tape. 

Ju 1 y 1 , I ~176 14-1 



6. Complete boot from tape, recreating the file system 
anew and restoring file contents from copies saved on 
tape. 

The last of these is the most comprehensive and thus is detailed 
below, even though in normal system use it is required very 
infrequently. 

The operator begins system loading by mounting the current system 
tape on any 9-track tape unit and using the normal bootstrap 
procedure which is described in the operator's manual. After the 
initial portion of the tape has been read in, the following 
message is issued: 

ENTER ANY OF: 
I = TTY I/O 
p = LP OUTPUT 
F = TAPE FILES 
s = :SYS FILES 
T = TAPE PATCHES 
c = CARD PATCHES 
D = XDELTA 

The response must end in new-line (NL), which is preceded by any 
combination of I, P, F, T, C, D, S, and N, or by nothing. If 
nothing, T is assumed. 

I enables the standard operator-system interaction during the 
boot (except the date/time request, which cannot be disabled). 
If I is not specified, certain messages and system requests are 
omitted from the load procedure. 

P enables printer output during the boot. 

F causes a new file system to be created. Its absence keeps 
the old file system (boot-under-the-files). 

S causes the files to be copied from the tape being read into 
the :SYS account without reinitializing the entire file system. 

C and T indicate that the patch deck(s) are to come from cards 
or tape, respectively. Either, neither, or both may be 
specified. 

D causes the XDELTA processor to be retained after the boot 
for system debugging purposes. 

N is meaningful only by itself and means "none of the above". 

1 4-2 Ju 1 y 1 , 19 7 6 



The system then allows the operator to 

o Override the SYSGEN-defined values for the dedicated 
real-time memory pages (if any). ('I' must have been 
specified to do this.) 

o Enter the date and time. 

o Ensure that the card reader, line printer, and swapping 
disk are addressed correctly. 

After this is completed, CP-V types its version, creation date, 
patching, and sense switch information. The operator may suppress 
some or all of this information, however, by depressing the BREAK 
key at the console an appropriate number of times. 

CP-V then reads the patch deck. Any errors in the deck are 
displayed at the operator's ponsole, along with the indication 
of the point-of-error within the incorrect field. The operator 
(or system programmer) must correct the patch card before 
initialization can continue. Patch card correction procedures 
are described in the CP-V/SP Reference Manual, 90 31 13. 

If F was specified and the files are on a different tape, a 
:GENDCB card must be present in the patch deck. A mount message 
will be issued by CP-V. The operator must mount the tape and 
notify the system that the tape is ready. The tape is then 
copied to the file disk and the swapping disk is initialized. 

' . 
During the time the tape is being copied to disk, the operator 
may adjust the number of on-line users allowed on the system by 
using the ON key-in (described later) or the OFF key-in if no 
on-line users are to be allowed. 

After the tape has been read, the system is ready and terminal 
users receive the CP-V salutation and log-on request if their 
terminals are connected to the system. 

To initiate the batch system, the operator places a deck of jobs 
to be run in a symbiont card reader and terminates the deck with 
a FIN control card. (The FIN control card contains !FIN in 
columns 1 through 4 and informs the system that the end of the 
deck of jobs has been reached.) The operator should then start 
the selected symbiont input device(s). 

July 1, 1976 14-3 



JOB AND SYSTEM CONTROLS 

The operator controls system operation through the use of console 
key-ins. These key-ins are listed in Table 14-1. 

Key-In 

ABORT 

ANSMOUNT 

ANSSCRATCH 

D 

DATE 

DELETE 

DIAG 

DISPLAY 

E 

ERROR 

ER SEND 

FLUSH 

FORM 

GJOB 

HEADING 

14-4 

Table 14-1. Operator Key-ins 

Function 

Abort user or job. 

Inform monitor that an ANS tape has been 
mounted. 

Inform monitor that an ANS scratch tape has 
been mounted. 

Enter date. 

Enter date. 

Delete symbiont file from system. 

Authorize customer engineers to run 
diagnostics. 

Send system information to operator. 

Error (terminate) job step - go to next job 
step. 

Error (terminate) job step - go to next job 
step. 

Build a record in the system error log file. 

Delete concurrent mode output being 
generated by a specified job for a specified 
device. 

Change the form name on output files in the 
system. 

Initiate a ghost job. 

Provide message for on-line top-of-page 
heading or cancel previous heading. 

July 1, 1976 



Key-In 

INT 

MC SEND 

MOUNT 

OBOFF 

OBON 

OFF 

ON 

ONB 

OUTPUT 

OVER 

PRIORITY 

RBBDCST 

RBDISC 

RBLOG 

RBS 

RBSEND 

RBSWITCH 

July 1, 1976 

Table 14-1. Operator Key-Ins (cont.) 

Function 

Transfer control to user's console interrupt 
routine. 

Send message to a Xerox 560 Maintenance 
Control (Remote Assist Station). 

Inform monitor that tape or pack is 
mounted. 

Disallow entry of jobs to the batch stream 
from on-line terminals and processors. 

Reallow on-line and processor entry of jobs 
to the batch stream after an OBOFF key-in. 

Allow no more users to log on. 

Set maximum number of on-line users. 

Set maximum number of batch users. 

Place all output streams of a job into.· 
concurrent output mode or release a device 
from the concurrent output mode. 

Override the rejection of an output tape. 
(Applicable only for ANS tapes in the 
semi-protective mode.) 

Change user file or execution priority. 

Add message to the remote message file. 

Disconnect a remote processing terminal. 

Allow automatic log-on of a remote 
processing terminal. 

Allow connection of remote processing 
terminal. 

Send a message to a remote terminal. 

Switch output files from one workstation to 
another. 

14-5 



Table 14-1. Operator Key-ins (cont.) 

Key-In 

RBX 

READ 

REQUEST 

s 

SCPU 

SCRATCH 

SEND 

SS 

START 

s 

T 

TIME 

x 
XCPU 

ZAP 

device,action 

14-6 

Function 

Disconnect (and disallow connection of) one 
or all remote processing terminals. 

Inform the monitor that a tape without a 
write ring (for which the user specified 
that both reading and writing would be done) 
will be read only. 

Prepare to dismount tape from unit ndd or 
request the tape type of a specified 
resource. 

Search for input symbiont files to run. 

Start the specified secondary CPU. 

Use the specified tape as a scratch unit. 

Issue message to a specific on-line user or 
to all on-line users. 

Start symbiont card reader. 

Search for input symbiont files to run. 

Initiate symbiont action. 

Enter time. 

Enter time. 

Abort user or job. 

Stop specified secondary CPU. 

Abort all users and save the symbiont 
pointers for restart. 

Initiate action indicated on the specified 
device (in response to a previous device 
message). 

July 1, 19 76 



• 

REMOVABLE STORAGE INITIALIZATION 

VOLINIT provides for the initialization of public and private 
disk packs. It is used to establish serial numbers and 
ownership, to write headers and other system information in 
selected areas of the volumes, and to test the surface of the 
disks and select alternate tracks to be used in place of flawed 
tracks. There are two versions of VOLINIT. One is a CP-V 
processor which runs in the batch, on-line, or ghost mode under 
normal CP-V operation. The other version is a stand-alone 
processor which runs on the computer when CP-V is not in control. 

The Label processor initializes ANS tapes by writing ANS 
formatted labels. (CP-V labeled tapes are not initialized; they 
are labeled as part of the I/O procedures.) A secondary purpose 
of Label is to label any unlabeled tape to be used in a protected 
or semi-protective system. In the ANS protective mode, all ANS 
tapes must be prelabeled by Label. In the semi-protective mode, 
ANS tapes may be prelabeled by Label or may be given ANS labels 
as the result of an operator key-in. 

The Label processor performs the following three functions: 

I. It initializes ANS tapes by writing standard expired ANS 
labels. 

2. It creates "unlabeled" tapes to be used as scratch 
tapes. These tapes contain three dummy records and two 
tape marks which facilitate using new tapes as scratch 
tapes. (The tapes will no longer be degaussed and 
therefore will not "run away" when AVRed.) 

3. It prints the contents of the header and trailer labels 
of input labeled tapes or the first 80 bytes of each 
block if the tape is not a labeled tape. 

PERIPHERAL DEVICE ERROR PROCEDURES 

If the monitor encounters an abnormal condition during an I/O 
operation, it will send a message {Table 14-2) to the operator. 
These device error messages are generated both for errors that 
are irrecoverable and for errors that are recoverable with 

July 1, 1976 14-7 



Table 14-2. Device Error Messages and Operator Action 

Message Operator Action 

device MANUAL Ready the device. 

device WRITE PROTECT 

device TIMED OUT 

device ERROR 

device NOT OPERATIONAL 

Error (E) or remove write-protect 
a n d re t ry ( R ) • 

Retry (R) or error (E). Time-out 
values are measured in ticks of a 
5-second clock. 

1. Tape rewind and space file -
50 ticks. 

2. Operator terminal input -
100 ticks. 

3. All others - 2 ticks. 

Retry (R), continue (C), or error 
(E) if card reader of line 
printer; otherwise the error is 
irrecoverable and no operator 
action is needed or possible. 

Device busy, not recognized, or 
I/O not accepted. Correct the 
condition, usually dial tape unit 
or turn power on, and error (E) 
or re t ry ( R ) • 

operator assistance. The operator may respond with a device 
key-in 

device,action 

where 'device' specifies the device and the 'action' is one of 
the following: 

14-8 

C continue as is. 

E 

R 

continue but inform the program of the error. 

retry I/O operation, possibly after correcting the 
problem (e.g., by moving the error card back to the 
read station). 

Ju 1 y 1 , 197 6 



If a required device is in manual status, the following message 
is typed every 20 seconds: 

device MANUAL 

In all other cases, if an operator action is required and none 
is received, the following message is issued: 

device PLEASE RESPOND 

A special form of message is issued for read, write, or 
write-check errors occurring on the swapping disk. A message is 
issued each time an initial or retry error occurs; multiple 
messages are issued if several types of errors are indicated on 
one operation. An accumulated count of retries within any one 
recovery attempt is given i~ the message. The format is: 

n op error 

where 

·n is the number of retries (0 for initial occurrence of 
the error). 

op is RD(read), WRT(write), or WCK(write-check). 

error is one of the following: 

IOP CONTROL ERR 
IOP MEMORY ERR 
MEMORY ADR ERR 
XMISS MEM ERR 
XMISS DATA ERR 

In addition to logging errors on the operator's console, the 
system also maintains a system error log file called ERRFILE. 
This file contains a log of system and peripheral device failures 
that were corrected, that were irrecoverable, or that required 
operator assistance for recovery. (ERRFILE is described in 
greater detail in Chapter 16.) 

July I, 1976 14-9 



LETTING THE SYSTEM RUN ITSELF 

An important feature of the CP-V system is that the computer 
operator may leave the system alone and let it run itself. This 
allows an installation to have selected periods of time (for 
example, grave yard shift) to run time-consuming batch jobs which 
require no peripheral device action on the part of the operator. 

When allowing the system to run itself, the operator usually turns 
the line printer off. Thus, there will be no concern about a 
possible line printer failure in the operator's absence. Printer 
output will collect in the symbiont. When the operator returns, 
the line printer can be turned on and the collected output will 
be printed. 

If some on-line or batch job happens to request an operator 
action such as the mounting of a tape, only that one job will be 
affected. The system continue~ operation in a normal manner. 

14-10 Ju 1 y 1 , 197 6 



CHAPTER 15. RECOVERY 

CP-V attempts to make the system available as much as possible 
with minimal loss of data when problems occur. To this end, a 
recovery package is available which takes actions based on the 
seriousness of any problem which occurs. CP-V accomplishes the 
recovery completely automatically, not requiring operator 
intervention of any kind. 

The various modules of CP-V have code embedded in them to check 
the consistency of the resident operating system tables and the 
important user context. If an inconsistency is detected, or if a 
hardware error is reported which is judged to have compromised 
the integrity of the resident operating system, recovery is 
initiated and one of three actions is taken. 

1. If the damage is jupged to be isolated to the context of 
a single user, a procedure called Single User Abort is 
performed. This involves writing the contents of main 
memory to secondary storage, writing out updated file 
buffers for the user, and eliminating the user job 
(i.e., releasing his main memory and swap storage and 
removing all records of him from the user tables). The 
system is then allowed to proceed for all other u·sers. 
Normal operation of the system is interrupted for less 
than five seconds. 

2. If the damage is not isolated to the context of a single 
user but certain key system tables (Current File Use 
Tables, Allocation Tables, Job Pending Tables, etc.) are 
judged to be intact, a procedure called Normal Recovery 
is performed. The memory image is written to secondary 
storage. The context for each user (in memory or 
swapped out) is then examined. All open files are 
closed with default options (OUT files are released, 
etc.). Partial output symbiont files are packed and put 
into the output queue. Remaining input for batch jobs 
which are partially completed is discarded unless the 
user has ·specified the RERUN option in his job deck, in 
which case the job is put back into the job queue. The 
accounting information is saved along with all temporary 
file names. After all users have been processed in this 
manner, the remaining Current File Use Tables are 
examined. If any open INOUT files remain, the names are 
retained. Then the resident operating system is brought 
in from the system swapping device. Before resuming 
normal operation, accounting records are written and all 
temporary files are deleted. Previously recorded INOUT 

July 1, 1976 15- 1 



files are copied over themselves to eliminate potential 
inconsistencies. At this point, normal system operation 
proceeds. Terminal users must log on again. This 
process requires one-half to five minutes depending on 
the number of users and other factors. 

3. If the key system tables are damaged, a procedure called 
Extended Recovery is performed. The memory image is 
written to secondary storage. Each individual file in 
the system is then examined for space allocation 
information. The allocation tables are rebuilt and dual 
allocations (i.e., situations in which more than one 
file is trying to use the same space in the file system) 
are noted. When this process is complete, the system is 
reinitiated. The Extended Recovery procedure requires 
an amount of time which is proportional to the size of 
the file system (anywhere from 15 minutes to 5 hours). 

After any of the three types of recovery has been performed, the 
monitor dump analysis program (ANLZ) is initiated to aid in 
determining the cause of the problem. The output produced by 
ANLZ consists of formatted displays of monitor and user tables 
and the contents of the registers existing at the time of the 
problem. 

15-2 Ju 1 y 1 , 197 6 



CHAPTER 16. HARDWARE MAINTENANCE AND THE DIAGNOSTIC SYSTEM 

SYSTEM ERROR LOG FILE 

All hardware malfunctions and some software problems occurring 
during system operation, whether recovered or not, are recorded 
in a special disk storage file. This file is periodically copied 
into a standard file (ERRFILE) by a ghost program (ERR:FIL) which 
is initiated automatically for that purpose. 

ERRFILE may be listed and summarized by the Error Log Listing 
processor (ELLA). ERRFILE is also available for on-line 
preventive maintenance of the system and for diagnosis and 
prediction of hardware malfunctions. 

A sample of the types of co~ditions that are recorded in ERRFILE is 
given in the list below. 

o An error was detected during memory access by either the 
CPU or an !OP. 

o Execution of an SIO (Start I/O) instruction failed. 

o An I/O interrupt did not occur within a specified time 
period in response to an I/O instruction (device 
timed-out). 

o An interrupt, other than an attention interrupt, was 
received from a device for which no I/O operation had 
been started by the system. 

o An error occurred during an I/O operation. 

o System initialization or system recovery occurred. 

o The system detected an inconsistency in the file system. 

o A power-on trap occurred. 
..,,, 

o A granule being released contained an invalid disk address 
or had already been released. 

o An error occurred during the transmission of data to or 
from a remote processing workstation. 

o A record was entered by the operator to describe unusual 
conditions surrounding a particular error. 

July 1, 1976 16-1 



o A memory parity error occurred. 

o A resource was partitioned out of the system by the operator. 

o A partitioned resource was returned to the system by the 
operator. 

Not all ERRFILE records are the result of error conditions. For 
example, a time stamp record is entered once each hour on the hour 
and an I/O activity count is recorded each hour and at recovery. 

The Error Log Listing processor {ELLA) provides an efficient tool 
for listing and sorting the error log file, ERRFILE. ELLA output 
furnishes a meaningful and comprehensive diagnostic evaluation of 
the system and its peripherals, aiding in the early detection 
of product failures and thus increasing the reliability, 
maintainability, and availabi~ity of the system. 

The set of ELLA commands allows the user to first specify the kinds 
of errors in which he is interested, and then request a listing of 
those kinds. Four types of listings are available: 

o A chronological listing of error log entries. 

o A sorted listing of error log entries. 

o A summary of error ~og entries by category. 

o A summary of error log entries in graphic form. 

ON-LINE PERIPHERAL DIAGNOSTIC FACILITIES 

Within the system, diagnostics are provided that may be used from 
either local or remote terminals to analyze and repair card readers, 
card punches, line printers, magnetic tapes, RADs, and disk packs. 
These run during system operation without disturbing on-line users 
or batch job throughput {except, of course, for jobs requiring the 
down device). Full direct access to the device is provided, and all 
hardware status information for the read or write operation is 
returned to the diagnostic. The diagnostics provide 

0 

0 

16-2 

Functional tests for peripheral devices that isolate hardware 
problems to the lowest possible level. 

Exercisers that verify that the peripherals are operating 
correctly. 

Ju 1 y 1 , 19 7 6 



o Preventive maintenance tests that reduce the amount of time 
that peripherals are down for repair. 

These tests and exercisers may be run at an on-line terminal while the 
CP-V system is in normal operation. 

July 1, 1976 16-3 





APPENDIX A. CP-V PROCESSORS 

STANDARD CP-V PROCESSORS 

The processors that are available for use with CP-V are briefly 
described in this appendix. References are provided for the 
reader who wants a detailed description. The following 
abbreviations are used in the references: 

BP - batch processing 

LN - language 

OPS - operations 

RP - remote processing 

RT - real-time 

SM - system management 

SP system programming 

TP transaction processing 

TS - time-sharing 

UT utilities 

COMMAND PROCESSORS 

There are four command processors: LOGON/LOGOFF, EASY, TEL, and 
CCI. The first of these processors is available to on-line and 
batch users, the second and third are available to on-line users 
only, and the last is available to batch users only. 

LOGON/LOGOFF 

LOGON admits on-line users to the system and connects the user's 
terminal either to TEL or to an alternative processor, such as 
BASIC, that has been selected by the user. LOGOFF disconnects 
a user from the system and does the final cleanup and accounting. 

July 1, 1976 A-1 



EASY 

EASY is a shared processor that enables the user to create, edit, 
execute, save, and delete program files written in BASIC or 
FORTRAN. EASY also allows the user to create and manipulate 
EBCDIC data files. Although intended primarily for Teletype 
operations, EASY can be used with any type of on-line terminal 
supported by the system. (Reference: EASY/LN, OPS Reference 
Manual, 90 18 73.) 

TERMINAL EXECUTIVE LANGUAGE 

The Terminal Executive Language (TEL) is the principal terminal 
language for CP-V. Most activities associated with FORTRAN, 
COBOL and assembly language programming can be carried out 
directly in TEL. These activities include such major operations 
as composing programs and other bodies of text, compiling and 
assembling programs, linking object programs, initiating 
execution, and debugging programs. They also include such 
minor operations as saving and restoring core images of programs 
for which execution was interrupted, determining program status, 
and setting simulated tab stops. (Reference: CP-V/TS Reference 
Manual, 90 09 07.) 

CONTROL COMMAND INTERPRETER 

The Control Command Interpreter is the batch counterpart of TEL. 
It provides the batch user with control over the processing of 
batch programs just as TEL provides on-line users with control 
over the processing of on-line programs. (Reference: CP-V/BP 
Reference Manual, 90 17 64.) 

LANGUAGE PROCESSORS 

Language processors translate high-level source code into 
machine object code. Seven processors of special importance 
are described below. All of these can be used in both on-line 
and batch mode. 

A-2 July 1, 1976 



ANS FORTRAN 

The ANS FORTRAN compiler is compatible with most features of the 
forthcoming (new) ANS Standard FORTRAN language which includes 
many extensions to the 1966 ANS FORTRAN Standard Language. It is 
operable under CP-V as a shared processor, offering services to 
both the batch user and the on-line user. The user may request, 
as an operation, that the compiler produce either ROM output or 
program execution (LOAD and GO). 

Advantageous features of the ANS FORTRAN compiler are 

o Compiler speed on the order of 2K-3K lines per minute. 

o Compressed input/output capability. 

o Addition of INCLUDE (system) capability. 

o Conversational characteristics for time-sharing. 

o New ANS FORTRAN compatibility. 

o CHARACTER variables. 

o Expanded READ/WRITE capabilities. 

o OPEN and CLOSE statements. 

(References: ANS FORTRAN/LN Reference Manual, 90 32 00, and ANS 
FORTRAN/OPS Reference Manual, 90 32 01.) 

META-SYMBOL 

Meta-Symbol is a procedure-oriented macro assembler. It has 
services that are available only in sophisticated macro assemblers 
and a number of special features that permit the user to 
exercise dynamic control over the parametric environment of 
assembly. It provides users with a highly flexible language 
with which to make full use of the available hardware 
capabilities. 

Meta-Symbol may be used in either batch or on-line mode. When 
used in on-line mode, the assembler allows programs to be 
assembled and executed on-line but does not allow conversational 
interaction. 

One of the many Meta-Symbol features is a highly flexible list 
definition and manipulation capability. In Meta-Symbol, lists 

July 1, 1976 A-3 



and list elements may be conveniently redefined, thus changing 
the value of a given e~ement. 

Another Meta-Symbol feature is the macro capability. Xerox uses 
the term "procedure" to emphasize the highly sophisticated and 
flexible nature of its macro capability. Procedures are 
assembly-time subroutines and provide the user with an extensive 
function capability. Procedure definition, references, and recursions 
may be nested up to 32 levels. 

Meta-Symbol has an extensive set of operators to facilitate the 
use of logical and arithmetic expressions. These operators 
facilitate the parametric coding capabilities available with 
Meta-Symbol (parameteric programming allows for dynamic 
specification of both "if" and "how" a given statement or set of 
statements is to be assembled). 

Meta-Symbol users are provided with an extensive set of directives. 
·These directives, which are commands intrinsic to the assembly, 
fall into three classes: 

~1. Directives that involve manipulation of symbols and 
are not conditionally executed. 

2. Directives that allow parameteric programming. 

3. Directives that do not allow parameteric programming. 

A number oi intrinsic functions are also included in Meta-Symbol. 
These give the user the ability to obtain information on both the 
structure and content of an assembly time construct. For example, 
the user can acquire information on the length of a certain list. 
He can inquire about a specific symbol and whether it occurs in a 
procedure reference. (Reference: Meta-Symbol/LN,OPS Reference 
Manual, 90 09 52.) 

AP 

Assembly Program (AP) is a four-phase assembler that reads source 
language programs and converts them to object language programs. 
AP outputs the object language program, an assembly listing, and a 
cross reference (or concordance listing). AP is available in both 
the on-line and batch modes. 

A-4 July 1, 1976 



The following list summarizes AP's more important features for the 
programmer: 

o Self-defining constants that facilitate use of hexadecimal, 
decimal, octal, floating-point, scaled fixed-point, and 
text string values. 

o The facility for writing large programs in segments or 
modules. The assembler will provide information necessary 
for the loader to complete the linkage between modules 
when they are loaded into memory. 

o The label, command, and argument fields may contain both 
arithmetic and logical expressions, using constant or 
variable quantities. 

o Full use of lists and subscripted elements is provided. 

o The DO, DOl, and GOTO directives allow selective 
generation of areas: of code, with parametric constants 
or expressions evaluated at assembly time. 

o Command procedures allow the capability of generating 
many units of code for a given procedure call line. 

o Function procedures return values to the procedure call 
line. They also provide the capability of generating 
many units of code for a given procedure call line. 

o Individual parameters on a procedure call line can be 
tested both arith~etically and logically. 

o Procedures may call otner procedures, and may call 
procedures recursively. 

(Reference: Assembly Program Reference Manual, 90 30 00.) 

BASIC 

BASIC is a compiler and programming language based on Dartmouth 
BASIC. It is, by design, easy to teach, learn, and use. It 
allows individuals with little or no programming experience 
to create, debug, and execute programs via an on-line terminal. 
Programs are usually small to medium size applications of a 
computational nature. 

July 1, 1976 A-5 



BASIC is used primarily for on-line program development and 
execution, or on-line development and batch execution. In 
addition, programs may be developed and executed in batch 
mode. 

BASIC provides two user modes·of operation. The editing mode 
is used for creating and modifying programs. The compilation/ 
execution mode is used for running completed programs. This 
arrangement simplifies and speeds up the program development 
cycle. 

Statements may be entered via a terminal and immediately 
executed. The principal benefit of direct execution is on-line 
development of programs and short simple computations. During 
execution, programs may be investigated for loop detection, 
snapshots of variables may be obtained, values of variables may 
be changed, flow of execution may be changed, flow of execut.ion 
may be rerouted, and so on. This unique capability allows an 
on-line terminal to be used as a "super" desk calculator. 

At compile and execute time, the user may specify if an array 
dimension check is to be made. In the safe mode, statements are 
checked to verify that they do not reference an array beyond its 
dimensions. In the fast mode, this time consuming check is not 
made. Thus, the safe mode could be used during checkout, _and 
the fast mode could be used to speed up execution when the program 
reaches the production stage. 

BASIC provides an image statement that uses a "picture" of the 
desired output format to perform editing. It also has TAB 
capability and a precision option to indicate the number of 
significant digits (6 or 16) to be printed. 

An easy-to-use feature allows the user to read, write, and compare 
variable alphanumeric data. This is particularly important for 
conversational input processing. 

Chaining permits one BASIC program to call upon another for 
compilation and execution without user intervention. Thus, 
programs that would exceed user core space may be segmented, and 
overlay techniques may be employed via the chaining facility. 
(Reference: BASIC/Reference Manual, 90 15 46.) 

ANS COBOL 

The ANS COBOL compiler is a powerful and convenient programming 
language facility for the implementation of business or 
commercial applications. The language specification fully 

A-6 July 1, 1976 



conforms to the proposed ANSI standard for the various functional 
processing modul~s. Only those language elements that cause 
ambiguities or are seldom used have been deleted. The compiler's 
design takes full advantage of the machine's unique hardware 
features, resulting in rapid compilation of source code, rapit 
~xecution of the resulting object code, and the generation of 
compact programs. 

The result is a highly efficient programming system requiring a 
minimum amount of storage. 

ANS COBOL contains many facilities that are either not found in 
other systems or, if available, are provided only at greater cost 
in terms of equipment required. Some of the facilities that 
provide more flexibility and ease of use in program development 
include 

1. Implementation of table handling mode. 

2. Sort/merge linkage. 

3. Sequential access. 

4. Random access linkage. 

5. Segmentation. 

6. Report writer. 

7. Library utilization. 

8. Calling sequence for FORTRAN, Meta-Symbol, etc. 

9. Packed decimal as well as floating-point arithmetic 
formats. 

10. Data name series options for ADD, SUBTRACT, MULTIPLY, 
DIVIDE, and COMPUTE verbs. 

The system provides the user with a comprehensive set of aids to 
minimize the time required to print "bug-free" programs in the 
form of listings. These listings include 

1. The source language input to the compiler with interspersed 
English language diagnostic messages. 

2. An optional listing of the relocatable binary output, 
printed in line number sequence identical to the source 
language listing. 

July 1, 1976 A-7 



3. A cross-reference listing, indicating by line number 
where each data name or paragraph name is defined in 
the COBOL program and where each reference is located. 

In addition, at run time, the user may use TRACE and EXHIBIT 
to follow execution of the procedure division. 

The compiler is designed to take full advantage of high-speed, 
random access secondary storage (e.g., RAD storage). This 
feature means faster job execution because of minimized I/O 
delays, and smaller core memory requirements because of rapid 
overlay service. (Reference: ANS COBOL/LN Reference Manual, 
90 15 00.) 

APL 

APL is an acronym for A frogramming 1anguage, the language 
invented by Kenneth Iverson. It is an interpretive, problem
solving language. As an interpretive language, APL does not 
wait until a program is completed to compile it into object 
code and execute it; instead, APL interprets each line of 
input as it is entered to produce code that is immediately 
executed. As a problem-solving language, APL requires min~mal 
computer programming knowledge; a problem is entered into the 
computer and an answer is received, all in the APL language. 

Because APL is powerful, concise, easy to learn, and easy to use, 
it is widely used by universities·, engineers, and statisticians. 
It also has features that make it attractive for business 
applications where user interaction and rapid feedback are key 
issues. One of APL's major strengths is its ability to 
manipulate vectors and multidimensional arrays as easily as it 
does scalar values. For example, a matrix addition that might 
require a number of statements and several loops in other 
languages can be accomplished as A+B in APL. This type of 
simplification exemplifies APL's concise power. (Reference: APL/LN, 
OPS Reference Manual, 90 19 31.) 

RPG 

RPG (Report Program Generator) is a convenient means of 
preparing reports from information available in computer-readable 
forms, such as punched cards, magnetic tape, and magnetic disks. 
In addition, it is a means of establishing and updating files of 
information, usually in conjunction with preparation of reports. 

A-8 July 1, 1976 



RPG provides its capabilities through generation. (compilation) of 
·object programs, each of which is tailored to produce a different 
set of reporting results and/or file processing desired by the 
user. The RPG object programs are capable of accepting input 
data, retrieving data from existing files, performing 
calculations, changing formats of data, updating existing files, 
creating new files, comparing data values to one another and to 
specified co~stants to determine appropriate handling, using 
user-defined processing subroutines, using system library 
subroutines, and printing reports derived from the input and file 
data. 

RPG has several advantages over the more traditional method of 
writing object programs in a symbolic programming language. The 
RPG language is oriented toward the user's problem, describing 
reporting requirements, rather than toward the mechanics and 
manipulations of computer usage. The language and specification 
techniques are easily learned. A user can become proficient in 
RPG after writing only a few programs, whereas an equal facility 
in symbolic programming would require considerable experience. 
(Reference: RPG/Reference Manual, 90 19 99.) 

EXECUTION CONTROL PROCESSORS 

Processors in this group control the execution of object 
programs. Delta and COBOL On-Line Debugger can be used in 
on-line mode only. Load can be used in batch mode only. Link, 
LYNX, and FDP can be used in either batch or on-line mode. 

LOAD 

Load is a two-pass overlay loader. The first pass processes 

1. All relocatable object modules (ROMs). 

2. Protection types and sizes for control and dummy 
sections of the ROMs. 

3. Expressions for definitions and references (primary, 
secondary, and forward references). 

The second pass forms the actual core image and its relocation 
dictionary. (Reference: CP-V/BP Reference Manual, 90 17 64.) 

July 1, 1976 A-9 



LYNX 

LYNX is a load processor that is available in both the on-line 
and batch modes. LYNX has most of the capabilities of the overlay 
loader and also provides the same control over internal and global 
symbol table construction which is available in the Link loader. 
LYNX may be veiwed as a preprocessor for the overlay loader. 
After it analyzes the user's commands, it constructs a table of 
loader control information which it then passes to the overlay 
loader. It is the overlay loader which actually performs the 
loading process. (Reference: CP-V/TS Reference Manual, 90 09 07, 
and CP-V/BP Reference Manual, 90 17 64.) 

LINK 

Link is a one-pass linking loader that constructs a single entity 
called a load module, which is an executable program formed from 
relocatable object modules (ROMs). Link is now provided with CP-V 
only for compatability with previous versions of the system. Is 
is recommended that the Load or LYNX loader be used instead. 
(Reference: CP-V/TS Reference Manual, 90 09 07, and CP-V/BP 
Reference Manual, 90 17 64.) 

DELTA 

Delta is designed to aid in the debugging of programs at the 
assembly-language or machine-language levels. It operates on 
object programs and tables of internal and global symbols used 
by the programs but does not require that the tables be at 
hand. With or without the symbol tables, Delta recognizes 
computer instruction mnemonic codes and can assemble machine
language programs on an instruction-by-instruction basis. The 
main purpose of Delta, however, is to facilitate the activities 
of debugging by 

A-10 

1. Examining, inserting, and modifying such program elements 
as instructions, numeric values, and coded information 
(i.e., data in ~11 its representations and formats). 

2. Controlling execution, including the insertion of 
break-points into a program and requests for breaks on 
changes in elements of data. 

July 1, 1976 



3. Tracing execution by displaying information at 
designated points in a program. 

4. Searching programs and data for specific elements and 
subelements. 

Although Delta is specifically tailored to machine language 
programs, it may be used to debug any program. Delta is 
designed and interfaced to the system in such a way that it may 
be called in to aid debugging at any time, even after a program 
has been loaded and execution has begun. (Reference: CP-V/TS 
Reference Manual, 90 09 07.) 

FORTRAN DEBUG PACKAGE 

The FORTRAN Debug Package (FDP) is made up of special library 
routines that are called by ~NS FORTRAN object programs compiled 
in the debug mode. These rotitines interact with the program to 
detect, diagnose, and in many cases, repair program errors. 

The debugger can be used in batch and on-line modes. An 
extensive set of debugging commands are available in both cases. 
In batch operation, the debugging commands are included in the 
source input and are used by the debugger during execution of the 
program. In on-line operations, the debugging commands are 
entered through the terminal keyboard when requested by the 
debugger. Such requests are made when execution starts, stops, 
or restarts. The debugger normally has control of such stops. 

In addition to the debugging commands, the debugger has a few 
automatic debugging features. One of these features is the 
automatic comparison of standard calling and receiving sequence 
arguments for type compatibility. When applicable, the number 
of arguments in the standard calling sequence is checked for 
equality with the receiving sequence. These calling and 
receiving arguments are also tested for protection conflicts. 
Another automatic feature is the testing of subprogram dummy 
storage instructions to determine if they violate the protection 
of the calling argument. (Reference: FOP/Reference Manual, 
90 16 77.) 

COBOL ON-LINE DEBUGGER 

The COBOL On-Line Debugger is designed to be used with ANS COBOL. 
The debugger is a special COBOL run-time library routine that is 
called by programs compiled in the TEST mode. This routine 

July 1, 1976 A- 1 1 



allows the programmer to monitor and control both the execution 
of his program and the contents of data-items during on-line 
execution. The debugger also allows the COBOL source program to 
be examined and modified. 

The debugger can only be used during on-line execution; however, 
programs that have been compiled for use with the debugger may be 
run in the batch mode. This is not recommended, though, because 
of the increased program size when the TEST mode is specified. 
(Reference: ANS COBOL On-line Debugger Reference Manual, 90 30 60.) 

SERVICE PROCESSORS 

The processors in this group perform general service functions 
required for running and using the CP-V system. 

EDIT 

The Edit processor is a line-at-a-time context editor for on-line 
creation, modification, and handling of programs and other bodies 
of information. All Edit data is stored on disk storage in_ a 
keyed file structure of sequence numbered, varied length records. 
This structure permits Edit to directly access each line 
record of data. 

Edit functions are controlled through single line commands 
supplied by the user. The command language permits insertion, 
deletion, reordering, and replacement of lines or groups of lines 
of text. It also permits selective printing, renumbering records, 
and context editing operations of matching, moving, and 
substituting line-by-line within a specified range of text lines. 
File maintenance commands are also provided to allow the user to 
build, copy, merge, and delete whole files. (Reference: CP-V/TS 
Reference Manual, 90 09 07.) 

PERIPHERAL CONVERSION LANGUAGE 

The Peripheral Conversion Language (PCL) is a utility subsystem 
for operation in the batch or on-line environment. It provides for 
information movement among card devices, line printers, on-line 
terminals, magnetic tape devices, disk packs, and RAD storage. 

A-12 July 1, 1976 



PCL is controlled by single-line commands supplied through on-lirie 
terminal input or through command card input in the job stream. 
The command language provides for single or multiple file 
transfers with options for selecting, sequencing, formatting, and 
converting data records. Additional file maintenance and utility 
commands are provided. (References: CP-V/TS Reference Manual, 
90 09 07, and CP-V/BP Reference Manual, 90 17 64.) 

LEMUR 

LEMUR (Library Editor and Maintenance Utility Routine) is a 
processor available in both on-line and batch modes. It builds 
and manipulates ROM and load module libraries. The libraries 
thus built are accessed by the LYNX or Load loaders when 
constructing user load modules. (CP-V/TS Reference Manual, 
90 09 07, and CP-V/BP Reference Manual, 90 17 64.) 

SYSGEN 

SYSGEN is made up of several processors. These processors may 
generate a variety of CP-V systems that are tailored to the 
specific requirements of an installation. The SYSGEN proc~ssors 
are PASS2, LOCCT, PASS3, and DEF. PCL is used to select from 
various sources the relevant modules for system generation. 
PASS2 compiles the required dynamic tables for the resident 
monitor. LOCCT and PASS3 file away and execute load card images 
to produce load.modules for the monitor and its processors. DEF 
writes a monitor system tape that may be booted and used. 
(Reference: CP-V/SM Reference Manual, 90 16 74.) 

GEN MD 

GENMD permits on-line, batch, and ghost users to make permanent 
modifications to existing load modules, thereby reducing the 
number of compilations required to debug a program. (Reference: 
CP-V/SP Reference Manual, 90 31 13). 

July 1, 1976 A-13 



DEFCOM 

DEFCOM makes the DEFs and their associated values in one load 
module available to another load module. It accomplishes this 
by using a load module as input and by producing another load 
module that contains only the DEFs and DEF values from the input 
module. The resultant load module of DEFs can then be combined 
with other load modules. DEFCOM is used extensively in 
constructing the monitor and the shared run-time libraries. 
(Reference: CP-V/BP Reference Manual, 90 16 64.) 

SYMCON 

The Symbol Control Processor (SYMCON) provides a means of 
controlling external symbols in a load module and of building a 
global symbol table. Its primary function is to give the 
programmer a means of preventing double definitions of external 
symbols. It may also be used to reduce the number of external 
symbols. For example, if certain load modules cannot be 
combined because their control tables are too large, the tables 
may be reduced in size by deleting all but essential external 
symbols. (Reference: CP-V/BP Reference Manual, 90 17 64.) 

ANLZ 

ANLZ provides the system programmer with a means of examining 
and analyzing the contents of dumps taken during system recovery. 
It is called automatically by the Automatic Recovery Procedure 
and is executed as a ghost job. It may also be called by the 
operator to analyze tape dumps when recovery is not possible, or 
by an on-line user to examine crash dumps or the currently 
running monitor. (Reference: CP-V/SP Reference Manual, 
90 31 13.) 

BATCH 

The Batch processor is used to submit a file or a series of files 
to the batch queue for execution. Through Batch processor 
commands, the following capabilities are available: 

A-14 

1. A file may be inserted into a file being submitted for 
execution, thus bringing together more than one file to 
create a single job. 

July 1, 1976 



2. Selected strings and fields existing in files being 
submitted for execution may be replaced by new strings 
and fields. 

3. The results of string and field replacements can be 
examined before the job is submitted to the batch 
stream. 

4. Files to be submitted for execution may reside on tape 
or private disk pack. 

5. Jobs may be submitted to run in an account other than 
the account from which the job is submitted. 

The Batch processor may be called in either the on-line or the 
batch mode. (Reference: CP-V/TS Reference Manual, 90 09 07.) 

DRSP 

DRSP (Dynamic Replacement of Shared Processors) enables the 
system programmer to dynamically add, repace, or delete 
processors during normal system operation with other users in 
the system. (Reference: CP-V/SP Reference Manual, 90 31 13r) 

ELLA 

The Error Log Listing program (ELLA) provides an efficient tool 
to list and sort the error data base which is automatically 
generated and updated by the CP-V system. (Reference: CP-V/SP 
Reference Manual, 90 3 1 13.) 

SHOW 

The Show processor allows the user to display his current 
maximum system services and resources, the peripheral devices 
that he has been authorized to use, and several other system 
user parameters. (Reference: CP-V/SP Reference Manual, 
90 31 13.) 

July 1, 1976 A-15 



APPLICATION PROCESSORS 

The application processors are intended for use for specific 
types of applications. 

SORT/MERGE 

The Sort/Merge processor provides the user with a fast, highly 
efficient method of sequencing a nonordered file. Sort may be 
called as a subroutine from within a user's program or as a batch 
processing job by control cards. It is designed to operate 
efficiently in a minimum hardware environment. Sorting can take 
place on from 1 to 16 keys and each individual key field may be 
sorted in ascending or descending sequence. The sorting 
technique used is that of replacement selection tournament and 
offers the user the flexibility of changing the blocking and 
logical record lengths in explicitly structured files to 
different values in the output file. 

The principal highlights of Sort are as follows: 

1. Sorting capability allows either magnetic tapes, disks, 
or both. 

2. Linkages allow execution of user's own code. 

3. Sorting on from 1 to 16 keys fields in ascending or 
descending sequence is allowed. Keys may be 
alphanumeric, binary, packed decimal, or zoned decimal 
data. 

~. Records may be fixed or variable length. 

5. Fixed length records may be blocked or unblocked. 

6. Disks may be used as file input or output devices, or 
as intermediate storage devices. 

1. Sort employs the read backward capability of the tape 
device to eliminate rewind time. 

8. User-specified character collating sequence may be used. 

9. Buffered input/output is used. 

(Reference: Sort-Merge/Reference Manual, 90 11 99.) 

A-1 6 Ju 1 y 1 , 197 6 



EDMS 

EMDS is a generalized data management system that enables the 
user to create an integrated data base. It may be used with 
COBOL, FORTRAN, and Meta-Symbol processors. It simplifies 
programming by performing most of the I/O logic and data base 
management for the application programmer. 

The principal features of EDMS are as follows: 

o The user can describe data in various data structures. 
Using sets, any element can be related to any other 
element. The data structures include lists and 
hierarchies (trees). The two relationships can be 
combined to form extensive networks of data. 

o Access techniques include random, direct, indexed, and 
indirect (relative to another record). 

o An EDMS data base may consist of up to 64 monitor files. 

o Multiple secondary indexes can be defined by the user to 
allow records to be retrieved via any combination of 
secondary record keys. 

o Users may construct any number of logical files or data 
bases within an EDMS file. 

o Data is described separately from the user program to 
facilitate management of the data base. 

o Comprehensive security exists at all levels of a file. 

o Journalization provides an audit trail for backup and 
recovery. 

o A dynamic space inventory is maintained to facilitate 
rapid record storage and to optimize the use of 
available storage space. 

o Detailed data description is provided for inclusion into 
the user's application program to reduce programming 
effort. 

July 1, 1976 A-17 



o File I/O logic is performed for the user program 
including 

1. Logical or physical record deletion. 

2. Record retrieval on random or search basis. 

3. Record insertion or modification. 

(Reference: EDMS/Reference Manual, 90 30 12.) 

TRANSACTION PROCESSING 

Transaction Processing is designed for applications that require 
the entry and processing of on-line transactions. It is a 
collection of general-purpose components and supporting monitor 
services available under the CP-V operating system. Transaction 
Processing (TP) enables a business to move from cyclic batch 
processing to remote on-line operations, where transactions are 
entered directly from their point of origin. The system consists 
of 

o The CP-V monitor and standard processors such as 
COBOL, Meta-Symbol, and FORTRAN. 

o Terminal Interface Controller • 
. 

o Utility processors that create files for external system 
control. 

o Transaction Processing Controller. 

o Extended Data Management System (EDMS). 

(Reference: CP-V /TP Reference Manual, 90 3 1 12.) 

USER PROCESSORS 

users may write their own processors and add them to CP-V or 
replace CP-V processors. The rules governing the creation and 
modification of processors are described in CP-V/SP Reference 
Manual, 90 31 13. 

A-18 Ju 1 y 1 , 197 6 



SYSTEM MANAGEMENT PROCESSORS 

system management processors furnish the manager of a CP-V 
installation with on-line control of the system. 

SUPER 

Super gives the system manager control over the entry of users 
and the privileges extended to users. Through. the use of Super 
commands, the system manager may add and delete users, specify 
how much core and disk storage space a user will have, specify 
how many central site magnetic tape units a user will have, grant 
certain users, such as system programmers, special privileges, 
(e.g., the privilege of examining, accessing, and changing the 
monitor), and individually authorize or deny access to the various 
processors for each user. Super is also used to create and 
delete remote processing workstations. (Reference: CP-V/SM 
Reference Manual, 90 16 74.) 

CONTROL 

The Control processor provides control over system performance. 
CP-V has a number of performance measurements built directly 
into the system. Commands of the Control processor enable the 
system manager to display these measurements and to "tune" the 
system as needed by setting new values for the parameters that 
control system performance. (Reference: CP-V/SM Reference 
Manual, 90 16 74.) 

RATES 

The Rates processor allows the system manager to set relative 
charge weights on the utilization of system services. Specific 
items to which charge weights may be assigned include 

1. CPU time. 

2. CPU time multiplied by core size. 

3. Terminal interactions. 

4. I/O CALs. 

July 1, 1976 A-19 



5. Console minutes. 

6. Tapes and packs mounted. 

7. Page-date storage. 

8. Peripheral I/O cards plus pages. 

(Reference: CP-V/SM Reference Manual, 90 16 74.) 

FILL 

The FILL processor performs three basic file maintenance 
functions: 

1. It copies files from disk to tape as a backup. 

2. It restores files from tape to disk. 

3. It deletes files from disk. 

(Reference: CP-V/OPS Reference Manual, 90 16 75.) 

FSA VE 

The Fast Save (FSAVE) processor is designed to save disk files 
on tape at or near tape speed. The processor is faster than any 
other file saving procedure under CP-V. (Reference: CP-V/OPS 
Reference Manual, 90 16 75.) 

FRES 

The File Restore (FRES) processor is designed to restore to disk 
files that were saved on tape by FSAVE or Fill. (Reference: 
CP-V/OPS Reference Manual, 90 16 75.) 

VOLINIT 

VOLINIT provides for the initialization of public and private 
disk packs. It is used to establish serial numbers and 
ownership, to write headers and other system information in 

A-20 Ju 1 y 1 , 19 7 6 



selected areas of the volumes, and to test the surface of the 
disks and select alternate tracks to be used in place of flawed 
tracks. (Reference: CP-V/OPS Reference Manual, 90 16 75.) 

LABEL 

The Label processor initializes ANS tapes by writing ANS formatted 
labels. It may also be used to create "unlabeled" tapes from new 
tapes to be used as scratch tapes and to print the contents of 
the header and trailer labels of labeled tapes or the first 80 
bytes of each block on unlabeled tapes. (Reference: CP-V/OPS 
Reference Manual, 90 16 75.) 

STATS 

The STATS processor displays and collects performance data on a 
running system and produces snapshot files to be displayed by 
the report generator Summary. (Reference: CP-V/SM Reference 
Manual, 90 16 74.) 

SUMMARY 

The Summary processor provides a global view of system performance 
by formatting and displaying the statistical data collected by 
STATS. (Referene: CP-V/SM Reference Manual, 90 16 74.) 

SYSCON 

SYSCON is a system control processor that can be used to partition 
resources from the system, to return resources to the system, and 
to display the status of the various system resources. SYSCON can 
also be used to build, update, or display the M:MODNUM file, a 
file which contains device and controller model numbers. 
(Reference: CP-V/SM Reference Manual, 90 16 74.) 

GRANULE ACCOUNTING CLEANUP PROCESSOR (GAC) 

The Granule Accounting Cleanup (GAC) processor correlates 
information between the file DISKPOOL and the account 
authorization file, :USERS •. DISKPOOL is created by the FSAVE 

July 1, 1976 A-2 1 



processor and contains specific account information. Each 
account record in DISKPOOL contains an entry for accumulated 
public disk pack granules and an entry for accumulated RAD 
granules. When GAC is run, these accumulated values are 
compared against the maximum values for the corresponding accounts 
in the :USERS file and the user's entry in the :USERS file is ' 
updated to reflect the latest accumulated values for RAD and disk. 
When the accumulated RAD or disk granules exceed the corresponding 
maximum values, this fact is noted in the report that is produced 
by the GAC processor. (Reference: CP-V/OPS Reference Manual, 
90 16 75.) 

FIX 

The Fix processor enables the system manager to repair or delete 
damaged file directories. It also provides HGP reconstruction 
for private disk pack sets and the public file system. 
(Reference: CP-V/OPS Reference Manual, 90 16 75.) 

DE VD MP 

The Device Save/Restore processor (DEVDMP) is a stand-alon·e utility 
program designed to dump entire disk volumes to magnetic tapes for 
restoration at a later time. Restoration may only be made to an 
identical storage unit. (Reference: CP-V/OPS Reference Manual, 
90 16 75.) 

ON LIST 

The ONLIST processor is invoked by a system management account in 
the batch, ghost, or on-line mode to display the contents of the 
:LOGD file used for the TEL WHERE command. This file, created and 
updated by LOGON, contains one record for each on-line user. The 
records are keyed by the users' sysid. Each record contains the 
user's line number, name, account, and the time the user logged 
on or off. Since LOGON accesses the :LOGO file in shared update 
mode, ONLIST should be used to list the file rather than PCL to 
avoid delaying LOGON. When invoked on-line, ONLIST displays only 
those users currently logged on. When invoked in batch or ghost 
mode, all records in the file (those of both logged on and logged 
off users) will be listed. In batch mode, records for logged off 
users are deleted from the file. These listings are produced 
simply by calling the ONLIST processor. No commands are required. 

A-22 July 1, 1976 



PHYSICAL PAGE STEALER (PPS) 

The Physical Page Stealer is a ghost job which is used for 
management of all dedicated foreground memory in real-time 
systems. PPS all6ws the user to display memory segments currently 
allocated, get DYNRESDF pages, free DYNRESDF pages, and redefine 
the RESDF area. (Reference: CP-V /SP Reference Manual, 90 3 1 13.) 

ACCOUNT X 

This CP-V account contains a number of unsupported programs that 
were, for the most part, created in the process of developing 
CP-V. One of these programs (HELP) provides information about 
all of the other programs in account X. HELP is called by 
entering HELP.X in response to a TEL prompt {!). As soon as HELP 
is entered, it prints NEXT: on the terminal. If the user 
responds Y, HELP then types a brief description on the terminal, 
including a definition of the HELP commands. 

Two of the HEL~ commands are List and Help. If the user enters 
-t.he command L, HELP lists the names of all programs in acc.ount X. 
If the user enters the command H, HELP prompts with NAME=· 
whereupon the user enters the name of the program for which he 
desires information. Other HELP commands provide additional 
information about account X programs. 

OTHER PROGRAMS 

The Software Library Distribution Center that distributes CP-V 
contains a large number of useful programs that are not supported 
by the CP-V staff. These programs can be ordered from the library 
for execution under CP-V. This set of programs is listed in the 
Program Availability List (PAL manual). 

Most of these programs are contributed by CP-V users and are 
supported by the users. Examples are SNOBOL and ALGOL. 

- ·c; 

July 1, 1976 A-23 





INDEX 

Note: For each entry in this index, the number of the most 
significant page is listed first. Any pages thereafter are 
listed in numerical sequence. 

A Programming Language, A-8 
access lists, 3-12 
access protection, 3-10 
access protection types, 4-5 
Account Directory, 5-5 
account X, A-23 
accounting, 13-4 
active interrupt, 11-4 
ANLZ processor, A-14,7-10, 15-2 
ANS COBOL, A-6 
ANS FORTRAN, A-3 
ANS labeled tape, 5-19,ix,3-12 

initialization, 14-7 
protective mode, 3-13 
semi-protective mode, 3-13 

AP, A-4 
APL, A-8 
application processors, A-16 
armed interrupt, 11-3 
assembling a program, 4-1 
Assembly Program, A-4 
authorization, 13-3 
automaic crash analysis, 7-10 
automatic processor association, 8-10 
automatic save for line disconnect, 8-11 

bandwidth, ix 
BASIC, A-5 
batch job, 2-2,ix 
batch job stream, ix,8-9, 13-9 
batch mode debugging, 7-8 
batch partitions, 13-9 
batch processing, 9-1, 1-2 
Batch processor, A-14,9-7 
batch type devices, 5-22 
bipoint line, ix 
boot-under-the-files, 7-12 

July 1, 1976 I-1 



CALs, 6-1,ix 
cleared interrupt, 11-4 
COBOL On-line Debugger, A-11,7-1 

command summary, 7-5 
command processors, A-1 
common journal, 12-4 
common journal records, 12-12 
compiling a program, 4-1 
computer operations, 14-1 

letting the system run itself, 14-10 
computer operator, on-line communication with, 8-9 
consecutive files, 5-11 
Control Command Interpreter, A-2 
control commands (see monitor control commands) 
Control processor, A-19,13-10,3-6 
Control Program-Five, 1-1 
control sections, 4-6 
cooperatives, 9-1 
coupling terminals, 8-11 
CP-V, 1-1 
CP-V features, 1-2 
CP-V labeled tape, 5-19,ix 
CP-V processors, A-1 
crash analysis, 7-10 

data control block, 5-1,ix 
Data Definition Language, 12-7 
data encryption, 3-12 
data set, 10-3,ix 
data set controller, 10-3 ,ix 
Database Manager, 12-7 
DCB, 5-1,ix 
debugging facilities, 7-1 

batch processing mode, 7-8 
COBOL On-line Debugger, 7-1 
Delta, 7-1 
FORTRAN Debug Package, 7-1 
system, 7-10 

DEF processor, 13-3 
DEFCOM processor, A-14 
Delta, 7-1,A-10 

command su~rnary, 7-2 
executive version, 7-11 

DEVDMP processor, A-22 

I-2 July 1, 1976 



device error messages, 14-8 
Device Save/Restore processor, A-22 
devices 

batch type, 5-22 
unformatted, 5-22 

diagnosti~ system, 16-1 
disabled interrupt, 11-4 
disarmed interrupt, 11-3 
disk pack initialization, 14-7 
disk storage, 5-17 
DRSP processor, A-15 
dumps, 7-8 
dynamic physical page allocation, 11-8 
Dynamic Replacement of Shared Processors, A-15 
Dynamic Resident Foreground pages, 11-9 
DYNRESDF, 11-9 

EASY processor, A-2 
Edit, 5-25,9-7,A-12 

command summary, 5-28 
EDMS, A-17, 12-1,12-7 
ELLA processor, A-15, 16-1 
enabled interrupt, 11-4 
entry of jobs to the batch job stream, 8-9 
ERRFILE, 16-1, 14-9 
error log file, 16-1 
Error Log Listing program, 16-f,A-15 
error messages, 6-9 
executing a program, 4-2 
execution control processors, A-9 
Extended Data Management System (see EDMS) 

FDP (see FORTRAN Debug Package) 
file, 5-1,5-5 

consecutive, 5-11 
keyed, 5-9 
random, 5- 11 

file access, 5-12 
direct, 5-12 
sequential, 5-14 

file allocation, 5-17 
File Directory, 5-5 
file disposition, 5-6 
file function, 5-6 

July 1, 1976 I-3 



file identification, 5-5 
File Information Table, 5-5,ix 
file management, 2-7 
file organization, 5-8 
file security, 3-11 
file storage devices, 5-16 
file system !J'laintenance, 13-11 
file usage, simultaneous, 5-15 
FILL processor, A-20 
FIT, 5-5,ix 
Fix processor, A-22 
FORTRAN Debug Package, 7-1,A-11 

command summary, 7-3 
FPT, ix 
FRES processor, A-20 
FSAVE processor, A-20 
function parameter table, x 

GAC processor, A-21 
GENMD patching, 7-11 
GENMD processor, A-13 
ghost job, 2-2,x 
granule, x 
Granule Accounting Cleanup processor, A-21 

hardware maintenance, 16-1 
Hasp, 10-3 
HELP program, A-23 

I/O, 5- 1 , 5-2 1 
procedures, 5-3 
special features of, 5-23 

IBM Hasp Multileaving, 10-3 
ICB, 11-4 
index structure, 5-9 
initialization, 14-1 
integrity, 12-8 
Intelligent Remote Terminals, 10-2 
Inter-System Command Language, 10-8 
Interrupt Control Block, 11-4 
interrupt label, 11-4 

I-4 July 1, 1976 



interrupt types, 11-1 
IRBT, I 0-2 
I SCL processor, 10-8 

JCL, 9-1,x 
JIT, x 
job, 2-2,x 
JOB control co~mand, 10-9 
job control language, 9-1 
job controls, 14-2 
job information table, x 
job limits, establishing, 3-5 
job priorities, 3-2 
job step, x 
job step control, 2-7 
job time intervals, 3-3 
journalization scheme, 12-11: 

key, x 
key-ins, 14-2, x 
keyed files, 5-9 

Label processor, A-21,3-13, 14-7 
language processors, A-2 
LDEV control command, 10-9 
LEMUR processor, A-13,4-4 
libraries, 4-4,x 

shared, 3-14 
line disconnect, 8-11 
Link processor, A-10 
LM, 4-2,x 
load module, 4-2,x 
Load processor, A-9,4-2 
load processors, 4-2 
loading a program, 4-2 
LOCCT processor, 13-2 
logical device, x 
logical device stream, x 
LOGOFF processor, A-1 
LOGON processor, A-1 
LYNX processor, A-10,4-2 

July 1, 1976 I-5 



MAILBOX file, xi, 10-8 
maintenance of hardware, 16-1 
mapped real-time programs, 11-1 
MBS, 13-8 
memory, 3-4 
memory layout, 4~5 
memory management, 2-6 
memory map, 3-9 
memory protection, 4-5 
memory write protection, 3-10 
Meta-Symbol, A-3 
modem, 10-3,xi 
modes of operation, 1-2 
monitor, 2-2,xi 
monitor control commands, 9-1,xi,10-7,7-9 

JOB, 10-9 
LDEV, 10-9 
TREE, 4-3 

monitor dump analysis program, 15-2 
monitor error messages, 6-9 
monitor routines, 2-5 
multi-batch job scheduling, 2-7 
Multi-Batch Scheduler, 13-8,9-1 
Multileaving, 10-3 
multipoint line, xi 
multiprocessing; 2-6,3-4,11-2 
multiprogra~ming, 13-7,9-1 

object module, xi 
on-line job, 2-2 
on-line peripheral diagnostic facilities, 16-2 
ONLIST processor, A-22 
op label, xi 
operating system, 2-1 
operational label, xi 
operator actions on errors, 14-8 
operator job controls, 14-2 
operator key-ins, 14-2 
operator system controls, 14-2 
overlay loader, xi 
overlay program, xi 
overlays, 4-2 

I-6 

i ~ ./ 

Ju 1 y 1 , 19 7 6 · 



PAL manual, A-23 
paper tape input, 8-12 
partitions, 13-9 
PASS2 processor, 13-2 
PASS3 processor, 13-3 
password, 3-12 
patching, 7-11 
PCL, 5-23,13-2,A-12 
PCL command summary, 5-25 
performance control, 13-7 
performance measurement, 13-10 
Peripheral Conversion Language (see PCL) 
peripheral device error procedures, 14-7 
physical page allocation, 11-8 
Physical Page Stealer ghost, A-23,11-9 
postmortem dumps, 7-8 
PPS ghost, A-23,11-9 
preventive maintenance, 16-1 
privilege, 3-9 
procedures, 11-5,7-9 
processors, 2-1 
Program Availability List, A-23 
program load and execution, 4-2 
program overlays, 4-2 
prompt character, xi 
protection, 3-9 
protective mode, xii 
public library, xii 

RAD, xii 
random files, 5-11 
Rates processor, A-19 
RBT, 10-2 
real-time procedures, 11-3,11-5 
real-time processing, 11-1, 1-2 
real-time recovery, 11-3 
record blocking, 5-19 
recovery, 15-1, 12-8, 12-13, 14-1 
relocatable object module, 4-1,xii 
remote processing, 10- 1, 1-2 
remote processing hardware, 10-4 
remote processing modes 

master, 10-5 
slave, 10-5 

July 1, 1976 I-7 



remote processing terminals, t 0-1, 10-2 
hardware connection of, 10-3 

remote processing user facilities, 10-7 
ISCL processor, 10-8 
JOB control command, 10-9 
LDEV control command, 10-9 
monitor control commands, 10-7 

remote sites, 10- 1 
remote system analysis, 7-11 
Report Delivery File, 12-3 
Report Delivery Processor, 12-3 
Report Program Generator, A-8 
RESDF, 11-8 
Resident Foreground pages, 11-8 
resource management, 3-5 
ROM, 4-1,xii 
RPG, A-8 

scheduler, x11 
scheduling, 3-1,2-6,13-9 
secondary storage, 14-1,xii 
security, 3-9 
semi-protective mode, xii 
service processors, A-12 
shared libraries, 3-14 
shared processor, xii 
shared processor facilities, 3-14 
Show processor, A-15 
simultaneous file usage, 5-15 
snapshot dumps, 7-9 
software check, xiii 
Software Library Distribution Center, A-23 
Sort/Merge, A-16 
source language, x111 
special shared processor, xiii 
spooling, 9-1 
start-up, 14-1 
Station Names File, 12-3 
Station Names Processor, 12-3 
STATS processor, A-21,13-11 
status queues, 3-2 
stream-id, xiii 
Summary processor, A-21,13-11 
Super processor, A-19,3-7,13-4 
swap scheduler, 3-3 
swap storage, 3-3 
swapping, 3-1,2-6 

I-8 

. .- ~ .. 

~ .~ i~ : -

July 1, 1976-



symbionts, 9-1,xili,2-7 
symbolic patching, 7-11 
S YMCON ·processor, A- 14 
SYSCON processor, A-21 
SYSGEN, 13-1,xiii, 2-3 ,A-13 
SYSGEN, PASS2, 3-6 
system control facilities, 13-10 
system controls, 14-2 
system debugging, 7-10 
system generation (see SYSGEN) 
system integrity, 12-8 
system management facilities, 13-1 
system management processors, A-19 
system procedures (see procedures), 6-1 
System Queue Manager, 12-5 
system start-up, 14-1 

tape (see labeled tape,. ANS labeled tape, CP-V labeled tape) 
tape files, exclusive use of, 5-20 
tape 

ANS labeled tape, 5-19 
CP-V labeled tape, 5-19 

TEL, A-2,8-2 
TEL command summary, 8-2 
terminal connection, 8-1 
terminal coupling, 8-11 
Terminal Executive Language (see TEL) 
Terminal Interface Controller, 12-3 
terminal protocol, 8-2 
terminals, 8-1 
terminals, on-line, 5-22 
TFDs, 12-4 
time-sharing, 8-1,1-2 
time-sharing session sample, 8-7 
TP (see transaction processing) 
TP Ghost, 12-5 
TPC, 12-6 
TPC Simulator, 12-6 
Transaction Format Descriptors, 12-4 
transaction processing, 12-1,1-2,A-18 

chronological sequence of events, 12-8 
operational considerations, 12-17 
protection and control, 12-14 
spawned transactions, 12-16 
terminals, 12-17 

Transaction Processing Controller, 12-6 
Transaction Processing Ghost, 12-5 

July 1, 1976 I-9 



transmission block, 10-2 
TREE control command, 4-3 
tree structures, 4-3 

unformatted devices, 5-22 
unmapped real-time programs, 11-1, 11-2 
use accounting, 13-4 
user authorization, 13-3,3-7,3-10 
user processors, A-18 
user program services, 6-1 
user programs, 4-1 
:USERS file, 13-3 

virtual memory layout, 4-5 
VOLINIT processors, A-20,14-7 

waiting interrupt, 11-3 
workstation, 10-6 

XDELTA, 7-11 

I-1C July 1, 1976 


